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Abstract
In the last decades, the interest in the projections of future climate and its

impacts on water resources have grown as a means to identify appropriate mitigation
and adaptation strategies, for example in reference to hydrological and agricultural
activities. Motivated by this reason, in this work climate change projections for the
winter streamflow of the Douro River have been obtained, for the period 2071-2099,
using the Principal Component Regression (PCR) method.

The winter streamflow time series (January to March averaged) from eight sta-
tions distributed over the basin, covering the period 1950-2011, were used as pre-
dictand variables, while the principal components (PCs) of the anomalies of the
sea level pressure (SLP) in winter (December to February averaged) were used as
predictors of the streamflow for the development of a statistical downscaling model.
The period 1950-1995 was used for calibration the regression model, while 1996-2011
was used for validation. In general, the correlation coefficients between the observed
and predicted values are around 0.75, being the highest errors the estimations of the
maximum peak flows.

Finally, the statistical downscaling model obtained from the observational SLP
data was applied to the SLP data from the outputs of the Global Circulation Models
(GCMs) MIROC5, CESM1 and IPSL-CM5A-MR, for the period 2071-2099, under
the climate change scenarios RCP2.6, RCP4.5 and RCP8.5. The main result is a
generalized projected decrease in the winter streamflow of the Douro River for all
models and scenarios.



Resumen
En las últimas décadas, el interés en las proyecciones del clima futuro y sus im-

pactos en los recursos hídricos ha crecido como medio para identificar estrategias
de mitigación y adaptación adecuadas, por ejemplo, en lo concerniente a las ac-
tividades hidrológicas y agrícolas. Motivados por esta razón, en este trabajo se han
obtenido proyecciones de cambio climático del caudal de invierno del río Duero, para
el período 2071-2099, utilizando el método de Regresión de Componentes Principales
(PCR).

Las series temporales del caudal de invierno (promedio de enero a marzo) de
ocho estaciones distribuidas a lo largo de la cuenca, en el período 1950-2011, se
han utilizado como variables a predecir, mientras que las componentes principales
(PCs) de las anomalías de la presión a nivel del mar (SLP) en invierno (promedio
de diciembre a febrero) se utilizaron como predictores del caudal para el desarrollo
de un modelo de downscaling estadístico. El período 1950-1995 se utilizó para
la calibración del modelo de regresión, mientras que 1996-2011 se utilizó para la
validación. En general, los coeficientes de correlación entre los valores observados
y los predichos son alrededor de 0.75, siendo los errores más altos debidos a las
estimaciones de los picos de caudal máximo.

Por último, se ha aplicado el modelo de downscaling estadístico obtenido a partir
de los datos observacionales de la SLP a los datos de SLP procedentes de las salidas
de los modelos de circulación general (GCMs) MIROC5, CESM1 y IPSL-CM5A-
MR, para el período 2071-2099, bajo los escenarios de cambio climático RCP2.6,
RCP4.5 y RCP8.5. El principal resultado obtenido es una disminución generalizada
del caudal de invierno del río Duero para todos los modelos y escenarios.



True science teaches, above all, to doubt and to be ignorant.
—Miguel de Unamuno—



La verdadera ciencia enseña, sobre todo, a dudar y a ser ignorante.
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Chapter 1

Introduction

1.1 Climate change

Climate can be defined as the synthesis of a fluctuating set of weather conditions,
in a certain area, corresponding to a time period long enough to be geographically
representative (Tullot, 2000), ranging from months to thousands or millions of years.
While climate change refers to a change in the state of the climate that can be identi-
fied (e.g., by using statistical tests) by changes in the mean and/or the variability of
its properties, and that persists for an extended period, typically decades or longer
(IPCC, 2013).

We can consider the climate system as a combination of an undetermined level
of internal variability or noise due to the inherent chaotic nature of the system,
superimposed on the net effect of a number of external forcings (Gómez-Navarro
et al., 2010). Hence, when creating reconstructions of the past or simulations of
future, the attribution of observed trends to the anthropogenic forcing could be
often spoiled by this variability.

Radiative forcing (RF) is the net change in the energy balance of the Earth
system due to some perturbation, and the anthropogenic forcing is human-induced
forcing. It is usually expressed in watts per square meter (Wm−2) averaged over a
certain period of time and quantifies the energetic imbalance that occurs when the
brought change takes place. Although generally it is difficult to observe, calculated
RF provides a simple quantitative basis for comparing some aspects of the potential
climate response to different imposed agents, especially global mean temperature,
and therefore it is widely used in the scientific community (IPCC, 2013).

The current climate change is a reality, which can be demonstrated by a series of
indicators, which include physical responses such as changes in the surface temper-
ature or the sea level. Also, according to the Intergovernmental Panel on Climate
Change (IPCC) Fifth Assessment Report (AR5), climate change can lead to other
effects on the Earth’s physical system that are also indicators of climate change, such
as the ocean acidification or the sea ice loss. Some key examples of such changes in
important climate parameters are:
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2 CHAPTER 1. INTRODUCTION

• Greenhouse gas (GHG) concentrations: The modification of the concentration
of GHGs in the atmosphere due to the human activities is an example of an
anthropogenic forcing. However, it can also be caused by the volcanic forcing,
whose eruptions can inject large amounts of SO2 gas in the stratosphere (Tex-
tor et al., 2003). The GHG emissions are the first element in the causal chain
of climate change and thus those factors that directly affect the GHG emis-
sions can be regarded as prime drivers of global warming (Argüeso Barriga,
2011).

• Surface temperatures: Global average temperatures have been rising for the
past half-century, and the trend has accelerated in recent decades (IPCC,
2007).

• Extreme events: At present, single extreme events cannot generally be directly
attributed to anthropogenic influence, although the change in likelihood for
the event to occur has been determined for some events by accounting for
observed changes in climate (IPCC, 2013).

1.2 Climate scenarios
The measuring of the emissions and the climate scenarios are a central component
for performing the developing of the climate change projections, because as we al-
ready know global warming is due largely to the increase in greenhouse gases in the
atmosphere. The scenarios were designed to span a broad range of plausible futures,
but are not aimed at predicting the most likely outcome (IPCC, 2013).

In the Third Assessment Report (TAR) and Fourth Assessment Report (AR4)
of the IPCC, the emission scenarios are known as SRES scenarios, since they were
published in the IPCC Special Report on Emissions Scenarios (Nakicenovic et al.,
2000). There are 40 different SRES scenarios proposed by the IPCC. The set of
scenarios consists of six scenario groups drawn from the four families: one group
each in A2, B1, B2, and three groups within the A1 family, characterizing alternative
developments of energy technologies: A1FI (fossil fuel intensive), A1B (balanced),
and A1T (predominantly non-fossil fuel).

Scenario uncertainty refers to the uncertainties that arise due to limitations in
our understanding of future emissions, concentrations or forcing trajectories. Sce-
narios help in the assessment of future developments in complex systems that are
either inherently unpredictable, or that have high scientific uncertainties (IPCC,
2001). The societal choices defining future climate drivers are surrounded by con-
siderable uncertainty, and these are explored by examining the climate response to
a wide range of possible futures. As we commented before, in past reports, emis-
sions scenarios from the SRES were used as the main way of exploring uncertainty in
future anthropogenic climate drivers, but since the AR5 new scenarios of future forc-
ings have been developed to replace the SRES, using Integrated Assessment Models
(IAMs). These scenarios, named Representative Concentration Pathways (RCPs),
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include four new scenarios designed to explore a wide range of future climate char-
acterized by representative trajectories of well-mixed greenhouse gas (WMGHG)
concentrations and other anthropogenic forcing agents, but they also provide gas
emissions.

The RCPs scenarios are referred to as pathways in order to emphasize that they
are not definitive scenarios, but rather internally consistent sets of time-dependent
forcing projections that could potentially be realized with more than one underlying
socioeconomic scenario. It must be noted that SRES scenarios assumed that no
climate mitigation policy would be undertaken, unlike the RCP scenarios. RCPs
scenarios are identified by the approximate value of the RF (in Wm−2) at 2100 or at
stabilization after 2100 in their extensions, relative to pre-industrial (Meinshausen
et al., 2011b; Moss et al., 2008).

According to Wayne (2013) the main characteristics of each of the RCPs scenarios
are:

• RCP8.5 was developed using the Model for Energy Supply Systems And their
General Environmental impact (MESSAGE) model and the IIASA Integrated
Assessment Framework by the International Institute for Applied Systems
Analysis (IIASA), Austria. This RCP is characterized by increasing green-
house gas emissions over time, representative of scenarios in the literature
that lead to high greenhouse gas concentration levels (Riahi et al., 2007). This
RCP combines the assumption about high population and relatively slow in-
come growth with modest rates of technological change and energy intensity
improvements, leading high energy demand and GHG emissions in absence of
climate change policies.

• RCP6 was developed by the Asia-Pacific Integrated Model (AIM) modeling
team at the National Institute for Environmental Studies (NIES) in Japan. It
is a stabilization scenario in which total RF is stabilized shortly after 2100,
without overshoot, by the application of a range of technologies and strategies
for reducing greenhouse gas emissions (Fujino et al., 2006; Hijioka et al., 2008).

• RCP4.5 was developed by the Global Change Assessment Model (GCAM)
modeling team at the Pacific Northwest National Laboratory’s Joint Global
Change Research Institute (JGCRI) in the United States. It is a stabilization
scenario in which total RF is stabilized shortly after 2100, without overshoot-
ing the long-run radiative forcing target level (Clarke et al., 2007; Smith and
Wigley, 2006; Wise et al., 2009).

• RCP2.6 was developed by the Integrated Model to Assess the Global En-
vironment (IMAGE) modeling team of the PBL Netherlands Environmental
Assessment Agency. The emission pathway is representative of scenarios in
the literature that lead to very low greenhouse gas concentration levels. It
is a “peak-and-decline” scenario; its RF level first reaches a value of around
3.1 Wm−2 by mid-century, and returns to 2.6 Wm−2 by 2100. In order to
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reach such RF levels, greenhouse gas emissions (and indirectly emissions of air
pollutants) are substantially reduced, over time (Van Vuuren et al., 2007).

In broad terms, the low-emission scenario RCP2.6 is similar to the SRES B1
scenario, RCP4.5 is similar to A1B, RCP6 is similar to A1FI, and RCP8.5 is a new
high-emission scenario (Evans and McGregor, 2012). The time evolution of all of
these scenarios can be seen in Figure 1.1. The RF of RCP2.6 is hence lower by 1.9
Wm−2 than the three SRES scenarios (Johns et al., 2011). RCP4.5 and SRES B1
have similar RF at 2100, and comparable time evolution (within 0.2 Wm−2). The
RF of SRES A2 is lower than RCP8.5 throughout the 21st century, mainly due to a
faster decline in the radiative effect of aerosols in RCP8.5 than SRES A2, but they
converge to within 0.1 Wm−2 at 2100. RCP6.0 lies in between SRES B1 and SRES
A1B.

RCP2.6, which assumes strong mitigation action, yields a smaller temperature
increase than any SRES scenario. The temperature increase with the RCP4.5 and
SRES B1 scenarios are close and the temperature increase is larger with RCP8.5
than with SRES A2. The spread of projected global mean temperature for the RCP
scenarios is considerably larger (at both the high and low response ends) than for
the three SRES scenarios used in CMIP3 (B1, A1B and A2) as a direct consequence
of the larger range of RF across the RCP scenarios compared to that across the
three SRES scenarios (IPCC, 2013).
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Figure 1.1 – Time evolution of the total anthropogenic (positive) and anthropogenic aerosol
(negative) radiative forcing (RF) relative to pre-industrial (about 1765) between 2000 and
2300 for RCP scenarios and their extensions (continuous lines), and SRES scenarios (dashed
lines) as computed by the Integrated Assessment Models (IAMs) used to develop those sce-
narios. The four RCP scenarios used in CMIP5 are: RCP2.6 (dark blue), RCP4.5 (light
blue), RCP6.0 (orange) and RCP8.5 (red). The three SRES scenarios used in CMIP3 are:
B1 (blue, dashed), A1B (green, dashed) and A2 (red, dashed). Positive values correspond to
the total anthropogenic RF. Negative values correspond to the forcing from all anthropogenic
aerosol–radiation interactions (i.e., direct effects only). The total RF of the SRES and RCP
families of scenarios differs in 2000 because the number of forcings represented and our knowl-
edge about them have changed since the TAR. The total RF of the RCP family is computed
taking into account the efficacy of the various forcings (Source: Meinshausen et al., 2011a,
cited by the IPCC (2013)).
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1.3 Climate models and downscaling
Climate models are extremely sophisticated computer programs that encapsulate
our understanding of the climate system and try to numerically simulate the com-
plex interactions between the atmosphere, ocean, land surface, snow and ice, the
global ecosystem and a variety of chemical and biological processes for making cli-
mate predictions, projections of future climate or for investigating the response of
the climate system to various forcings, by combining a large set of well-established
physical laws (IPCC, 2013). They are essential in climate science due to the impos-
sibility to carry out controlled experiments in the real climate increasing the CO2
within the Earth’s atmosphere and obtain the results hundred years later taking
measures to test the anthropogenic warming hypothesis.

Climate models of today are better than their predecessors. The rising computa-
tional power since the IPCC First Assessment Report in 1990 has made possible the
use of models of increasing complexity. However, every bit of added complexity also
introduces new sources of possible error. Furthermore, despite the progress that has
been made, scientific uncertainty regarding the details of many processes remains
(IPCC, 2013).

There are different types of climate models, the Global Circulation Models
(GCMs) and the Regional Circulation Models (RCMs). A GCM consists of the
coupling of several submodels, including at least a complete atmospheric model and
an ocean model. For this the reason they are usually called Atmosphere–Ocean
General Circulation Models (AOGCMs). Each of these models simulates the globe
as a whole, and they are coupled in the sense that they run simultaneously and ex-
change energy, matter and momentum. However, they require a huge computational
cost due to the many submodels included and the large number of grid points where
these models have to be solved iteratively to cover the whole planet (Gómez Navarro,
2011).

The other important type of climate models are the regional climate models
(RCMs). The RCMs are applied over a limited-area domain with boundary condi-
tions either from global reanalyses or GCM outputs. RCMs are able to capture many
of the regional-scale phenomena that the GCMs are unable to resolve. According to
Rummukainen (2010) their resolution has increased and new components have been
added to the climate system, developing their process descriptions as well.

The importance of this last type of models lies in their high resolution. Although
we could obtain regional climate information directly from global models, we would
encounter the problem of horizontal resolution, which would not allow us to resolve
features that are important at regional scales. For this reason, strategies that are
based on the global simulation data and which add them a greater detail are used.
These techniques are called downscaling.

There are two main approaches to downscaling: statistical and dynamical. The
former uses statistical models establishing a mathematical relationship between a
large-scale circulation field with the evolution of variables at a local scale (Evans and
McGregor, 2012). These statistical models need to be calibrated in a control period,
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after which they can be used to predict the local variables using the large scale field
as predictor. They are computationally cheaper, allowing to work with different
models and scenarios. However, their main disadvantage is that they assume that
the relations established between predictand and predictor in the calibration period
hold on for past or future periods of time (Wilby et al., 1998; Zorita and Von Storch,
1999). On the other hand, dynamical downscaling lies in solving the equations of
the atmosphere using a physical model at higher resolutions than the GCM, that
is, using a RCM focused in a limited area domain but imposing some restrictions
(Argüeso Barriga, 2011).

1.4 Impact of the Climate Change on Hydrology
Climate change has a direct and important impact on water resources. The effects
on these resources will manifest not only in the variation of the quantity but also
in the alteration of the quality and temporal distribution (Moreno et al., 2005). A
good example given by the IPCC (2013) could be an earlier spring melt, altering the
timing of peak springtime flow in rivers receiving snowmelt, and therefore producing
a decrease on the later flow rates, which could affect the water resource management.
According to Rasilla et al. (2013), it will certainly become a great challenge to be
faced by humankind. That is the reason why the scientific community must provide
a reliable evaluation of the current status of the water resources at regional and
local scales, and to predict their future response to the climate changes due to
global warming.

Although the flow and storage of water in the Earth’s climate system are highly
variable, it is clear that other changes apart from those due to natural variability
are expected by the end of the current century (IPCC, 2013). The extent to which
climate change affects water resources is evaluated through the changes observed in
the different variables (González-Zeas et al., 2010). The best example could be the
proved increase in temperatures (Dasari et al., 2014), what will cause a net increase
in rainfall, surface evaporation and sea level (Chang et al., 2015). Those changes are
governed by the amount of energy that global warming adds to the climate system
(IPCC, 2013).

A warmer atmosphere can have more water vapour and it can thereby induce
greater evapotranspiration (evaporation and transpiration from plants). However,
the increase of carbon dioxide in the atmosphere reduces the plant’s tendency to
transpire, partly counteracting the effect of warming (IPCC, 2013).

Figure 1.2 shows a schematic diagram of projected changes for the water cycle.
As we can see, the boundaries of high or low moisture regions may change. A further
complicating factor is the character of rainfall. Projections show that precipitation
events overall will tend to occur less frequently, but the events with an extreme
nature could occur every less time, that is, more floods, but yet longer dry periods
between rain events (IPCC, 2013).

We must not confuse hydric contribution and water resources. Hydric contri-
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Figure 1.2 – Schematic diagram of projected changes in major components of the water cycle.
The blue arrows indicate major types of water movement changes through the Earth’s climate
system: poleward water transport by extratropical winds, evaporation from the surface and
runoff from the land to the oceans. The shaded regions denote areas more likely to become drier
or wetter. Yellow arrows indicate an important atmospheric circulation change by the Hadley
Circulation, whose upward motion promotes tropical rainfall, while suppressing subtropical
rainfall. Model projections indicate that the Hadley Circulation will shift its downward branch
poleward in both the Northern and Southern Hemispheres, with associated drying. Wetter
conditions are projected at high latitudes, because a warmer atmosphere will allow greater
precipitation, with greater movement of water into these regions (Source: IPCC, 2013).

bution, defined as the total volume of water annually count at a point in the river
basin in natural regime, is initially conditioned by precipitation, temperature, use
and land cover and soil and subsoil characteristics (Moreno et al., 2005); while water
resources is defined as the available resources or potentially available in sufficient
quantity and quality, at a place and at an appropriate time to satisfy an identifi-
able demand (WMO, 2012), and is the second term with which we must deal, as
its management presents a high degree of uncertainty, and the demand is the main
problem, which depends not only on climate but also of technical and socioeconomic
changes.

Spain is a country with a huge variety of water uses. Mainly its developed
agriculture and its high hydroelectric potential have led to the development of a large
amount of reservoirs, dams and underground water intakes (Moreno et al., 2005).
And it is, by far, the agricultural activity the largest water consumer, representing on
average 40% of the total water consumption in Europe, although in Mediterranean
countries, like Spain, it represents 60–80% (Rasilla et al., 2013).

Unfortunately, Spanish water resources have a high spatiotemporal irregularity
in natural regime, especially when it is compared with the European average. For
this reason, it has been necessary a marked human intervention in the hydrologi-
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cal cycle throughout the time, having profoundly altered its natural characteristics
(Garrote de Marcos et al., 2008).

According to Falkenmark et al. (1976) a consumption of 20% of the total renew-
able water resources is considered as the limit of overexploitation of a system. In
most of the basins of Spain water resources are overused. As shown in the Water
White Book in Spain (MIMAM, 1998), the Douro River is dangerously in the limit
of overexploitation, with 14175 Hm3 of input and 2929 Hm3 of intake, which makes
a relationship of 21% of consumption. Meanwhile, other important rivers in Spain
such as the Tagus, the Ebro or the Guadalquivir have an exploitative relationship
of 20%, 29% and 29%, respectively. A notable case is the Segura River with 96% of
consumption.

Therefore, natural water resources in the Iberian Peninsula (IP) are used in-
tensively, especially in agriculture, but also in other sectors, such as hydropower
industry or tourism. Together with the increase in water demand, the observed
decrease in water availability has intensified the situation of water stress in the IP.
A country of this nature is very sensitive to declines that may present the inherent
water resources to climate change, and, as mentioned before, adapting to the coming
water stress conditions will demand economic, social and technical measures beyond
the frontiers of each country. Thus, economic development and environmental pro-
tection must go together to avoid unintended effects in the near future (Duarte et al.,
2014).

1.5 Teleconnection patterns
Teleconnections are integral phenomena of the climate system, which indicate re-
curring fluctuations in the circulation (atmospheric or oceanic) in distant areas cor-
related with each other (Kawale et al., 2011). Therefore, they contribute to climate
variability (at regional level) of precipitation, temperature and some ecosystems.
Teleconnections reflect important aspects of internal variability of the system and
the interaction between the atmosphere and other components of greater inertia
as oceans. These are determined by a spatial structure or teleconnection pattern
(TCP) and a temporal series (or teleconnection index) which characterizes its evo-
lution through the time, its amplitude and its phase. A challenge of great interest
for climate research is the pursuit of teleconnection signals which allow explaining
the occurrence of anomalous weather events such as droughts, floods and thermal
extremes, as well as improving climate predictions (Pérez et al., 2010). Here, the
most important pattern affected the IP are presented.

North Atlantic Oscillation (NAO)

One of the most prominent teleconnection patterns in all seasons, and the pre-
dominant in the North Atlantic sector (including the IP) is the North Atlantic Os-
cillation (NAO). The NAO consists of a north–south pressure dipole of geopotential
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anomalies, with one center located over Greenland and the other center, of opposite
sign, spanning between 35◦N and 40◦N in the central North Atlantic (Hurrell, 1995).

According to Pérez et al. (2010), NAO justifies an important part of the precipi-
tation variability in Europe, so that a positive phase of this oscillation, characterized
by an increase in pressure at the center of subtropical high pressures (in the Azores
High), and a decrease over the center of subpolar low pressures (in the Icelandic
Low), is associated with an increase in precipitation in northern Europe and a de-
crease in the European southwest; the opposite occurs for negative phase. This link
with precipitation is explained by the close relationship between the NAO and the
displacements of the zonal flow and the jet stream (Hurrell, 1995). In the positive
phase air masses are from the northwest, dry and cold; while in the negative phase
are from the southwest, hot and humid (Rodríguez-Puebla and Nieto, 2010).

The NAO index is obtained by projecting the NAO loading pattern, chosen as
the first mode of a Rotated Empirical Orthogonal Function (EOF) analysis using
monthly mean 500 mb height anomaly data, to the daily anomaly 500 mb height
field over 0-90◦N (NOAA).

As stated by Rodríguez-Puebla et al. (1998), the structure of the NAO experi-
ences seasonal, interannual, decadal and multidecadal variations, exhibiting some-
times a tendency to remain in one phase for intervals which may last several years
(Pérez et al., 2010).

There is a proved increase in the NAO index over the past few decades, and it is
linked to the winter frequency of the “pure anticyclone” weather type described by
Jenkinson and Collison (1977), which has grown significantly between 1948 and 2008
(Fernandez-Gonzalez et al., 2012). They also found positive correlations between the
frequency of the cyclonic weather type and precipitation in many parts of the IP. To
show this result, Figure 1.3a shows the time series of observed precipitation averaged
over the IP in mm/day, and the NAO index from the Climate Prediction Center
(NOAA) for winter (DJFM) season. In addition to the year to year fluctuations,
the figure indicates a decrease in the linear trends in the case of precipitation and
an increase in the case of the NAO index.

Additionally, there is a relation between precipitation variability and the NAO
(Figure 1.3), which could be directly reflected in the seasonal flow of rivers, as there
is a temporal lag based on the premise that a delay occurs between precipitation and
runoff derived from physical processes such as snowmelt, interception, infiltration
or the retention of flows in dams for hydropower generation (Trigo et al., 2004).
NAO teleconnection pattern is especially high correlated in the IP and particularly
in winter (Lorenzo-Lacruz et al., 2011; Rodríguez-Puebla and Nieto, 2010). Figure
1.3b indicates that precipitation in the western part of the IP is well linked to the
NAO with the opposite sign (Rodríguez-Puebla and Nieto, 2010).

As commented in the Section 1.4, it is very difficult to carry out a properly water
management in the IP because of the great variability of seasonal and annual flows,
caused by the high spatio-temporal variability of precipitation (Esteban-Parra et al.,
1998). Due to its importance, a lot of authors have tried to predict precipitation
using the values of the NAO index (e.g Castro et al., 2011). Fernandez-Gonzalez
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Figure 1.3 – a. Time series (in bars) and linear trend (blue line) of precipitation averaged
over the Iberian Peninsula and NAO index (red line) for DJFM season. b. Correlation of
precipitation and NAO index (multiplied by 100 in contour lines), leading EOF of precipitation
(multiplied by 100 in shaded for DJFM) (Source: Rodríguez-Puebla and Nieto, 2010).

et al. (2012) indicated that if we could forecast the value of the NAO index for a
winter some months before, then we would be able to obtain an accurate estimate of
the amount of precipitation that would be recorded in that winter, providing large
potential economic advantages (Trigo et al., 2004). However, Lorenzo-Lacruz et al.
(2011) states that there is a non-stationary relationship between climate and the
NAO, which must be better understood in order to advance in predicting available
water resources in particular basins.

At the moment, climate projections for the XXI century show a trend toward the
positive phase of the NAO, which would entail a reduction in the peninsular precip-
itation, especially in the southern half, and an overall temperature increase in the
IP, with higher values the higher the concentration of greenhouse gases (Rodríguez-
Puebla et al., 1998).

East Atlantic pattern (EA)

The East Atlantic (EA) pattern is the second prominent mode of low-frequency
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variability over the North Atlantic, and appears as a leading mode in all months. The
EA pattern is structurally similar to the NAO, and consists of a north-south dipole of
anomaly centres which span the entire North Atlantic Ocean. The anomaly centres
are displaced towards the southeast with respect to the NAO. However, the lower-
latitude center contains a strong subtropical link in association with modulations
in the subtropical ridge intensity and location. This subtropical link makes the EA
pattern distinct from its NAO counterpart.

The positive phase of the EA pattern is associated with above-average surface
temperatures in Europe in all months, and with below-average temperatures over
the southern U.S. during January-May and in the north-central U.S. during July-
October. It is also associated with above-average precipitation over northern Europe
and Scandinavia, and with below-average precipitation across southern Europe.

East Atlantic-Western Russia pattern (EA-WR)

The EA-WR pattern consists of two main anomaly centres, located over the
Caspian Sea and western Europe in winter. The patterns change in spring and
autumn.

The main surface temperature anomalies associated with the positive phase of the
EA-WR pattern reflect above-average temperatures over eastern Asia, and below-
average temperatures over large portions of western Russia and northeastern Africa.
The main precipitation departures reflect generally above-average precipitation in
eastern China and below-average precipitation across central Europe.

Scandinavian pattern (SCAND)

The SCAND consists of a high pressure center over Scandinavia, with weaker
centers of opposite sign over western Europe and eastern Russia / western Mongolia.
The positive phase of this pattern is associated with positive height anomalies, some-
times reflecting major blocking anticyclones, over Scandinavia and western Russia,
while the negative phase of the pattern is associated with negative height anomalies
in these regions.

The positive phase of the Scandinavia pattern is associated with below-average
temperatures across central Russia and also over western Europe. It is also asso-
ciated with above-average precipitation across central and southern Europe, and
below-average precipitation across Scandinavia.

1.6 Objectives
In view of the above, the main objective of this work is to obtain climate change
projections of the Douro River winter streamflow for the period 2071-2099.

On the other hand, we also set some secondary objectives:

• To analyze the existence of the relationships between different teleconnection
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patterns and the Douro winter streamflow.

• To evaluate the capacity of the sea level pressure (SLP) variability in the North
Atlantic region at predicting the streamflow of an Iberian river.

• To evaluate the performance of three GCMs (MIROC5, CESM1 and IPSL-
CM5A-MR) of the IPCC-AR5 at simulating the SLP in the North Atlantic
region.

• To fit downscaling models to simulate the winter streamflow of the Douro River
for the historic period (1951-2005), and consequently obtaining their bias in
reference to that variable.

• To evaluate the skill of the downscaling models for the winter streamflow in
the Douro River.
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Chapter 2

Data

In this Master Thesis we will focus on the IP and more specifically on the Douro
river basin, as it is an interesting area of study due to its climatic heterogeneity.

The IP encompasses 583254 km2 and is located in a climatic transition zone
between temperate and tropical latitudes. The existence of semidesertic, Mediter-
ranean, Atlantic and high mountain environments leads to significant spatial vari-
ations in temperature and precipitation to which a large interannual variability is
added.

The Douro River has the largest drainage basin (Figure 2.1) within the IP with
an area of 97290 Km2, which is also the highest of the great basins. Moreover, with
897 km in length it corresponds to one of the longest rivers in Iberia (second only
to Tagus), running from the Iberian Mountains in north-eastern Spain down to the
Atlantic Ocean across Portugal. There is a lack of proportionality between area,
runoff and volume in the two countries due to the fact that the Douro Basin is a
complex region from both the topographical and meteorological perspectives. This
region includes prominent mountains, several mountain ranges, hilly areas, valleys
and tributary streams.

The streamflow data base used in this work has been provided by the Center for
Studies and Experimentation of Public Works, CEDEX. Time series from gauging
stations and reservoirs with less than 5% of missing data in the period 1950-2011
have been considered. So, we have selected just eight stations whose gaps were filled
by regression with well correlated neighboring stations. Table 2.1 shows a brief
summary of the selected stations, while their localizations can be found in Figure
2.2.

The study of river flow regimes in the Iberian region using the calendar year
(January to December) may result in misleading results, since the high winter pre-
cipitation would be splitted between two different years. Thus, it is usual to adopt
the October-to-September definition of the hydrological year: the average river flow
for the year 1961, say, is the sum of monthly flow from October 1960 until September
1961. We also have to remember the temporal lag commented in the Section 1.5,
knowing that there is a delay between precipitation and runoff. For this reason we
consider that the winter streamflow is given by the January-February-March (JFM)

15
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Figure 2.1 – Location of the international Douro river basin in the Iberian Peninsula and
the catchments boundaries (Source: http://es.wikipedia.org/wiki/Cuenca_hidrogr%C3%
A1fica_del_Duero)

averaged flow as is also sugared by Trigo et al. (2004).
In the present study, as predictor variable for winter Douro streamflow we use

the sea level pressure (SLP) averaged from December to February (DJF), because
the links between precipitation and atmospheric circulation tend to be the strongest
in winter. Database used is the SLP monthly mean from the reanalysis data of the
National Centers for Environmental Prediction-National Center for Atmospheric
Research (NCEP-NCAR). This SLP data set has a temporal coverage from 1950 to
2011, and horizontal resolution of 2.5◦ X 2.5◦.

Also, the SLP outputs from three GCMs of the CMIP5 for a historic (1951-2005)
and a future period (2071-2099) are used. The GCMs are the following:

• CESM1 (CAM5): The Community Earth System Model (CESM) version 1
from the Community Atmosphere Model (CAM) version 5.0 is a coupled cli-
mate model composed of four separate models, simultaneously simulating the
Earth’s atmosphere, ocean, land surface and sea-ice, and one central coupler
component. Equilibrium climate sensitivity of CESM1 is 4.10◦C, which is
higher than its predecessor.

• IPSL-CM5A-MR: It is the mid resolution version of the IPSL-CM5A Earth
system model, from the Institut Pierre Simon Laplace (IPSL). The resolution
is 1.25◦ x 2.5◦, with 39 vertical levels for the atmosphere (144 x 143 L39) and

http://es.wikipedia.org/wiki/Cuenca_hidrogr%C3%A1fica_del_Duero
http://es.wikipedia.org/wiki/Cuenca_hidrogr%C3%A1fica_del_Duero
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Name Number Type of station UTM Coordinates (X,Y) Average annual
streamflow (m3/s)

Covarrubias 2030 Natural watercourse 458015,4656096 12.751
Peral de Arlanza 2031 Natural watercourse 411343,4659287 15,139

Quintana del Puente 2036 Natural watercourse 397462,4656950 27,703
Toro 2062 Natural watercourse 298767,4598960 111,454

Morales del Rey 2082 Canalisation with
shallow water channel 271646,4660092 6,148

Villalcampo 2002 Reservoir 743376,4597622 776820000
Castro 2003 Reservoir 734588,4606683 780120000

Ricobayo 2029 Reservoir 251040,4601807 408220000

Table 2.1 – Basic characteristics of the gauging stations and reservoir which have been chosen
for this work. The average annual streamflow was obtained from CEDEX.

about 2◦, with a meridional increased resolution of 0.5◦ near the Equator and
with 31 vertical levels for the ocean (149 x 182 L31).

• MIROC5: The Model for Interdisciplinary Research on Climate (MIROC)
version 5 was developed jointly at the Center for Climate System Research
(CCSR), University of Tokyo; National Institute for Environmental Studies
(NIES); and Japan Agency for Marine-Earth Science and Technology. It has
the standard resolution of the T85 atmosphere and 18 ocean models.

Figure 2.2 – Localization of the streamflow series analyzed in this work within the Spanish
part of the Douro basin. Gauging stations are shown in red and reservoirs in green.

All SLP data, reanalysis and GCMs, were chosen for a range covering the area
of latitude from 20◦ N to 90◦ N and longitude from 110◦ O to 70◦ E. But note that
due to the different spatial resolution of the SLP outputs from the GCMs, we had
to regrid all of them in order to have the same grid than the NCEP reanalysis data.

For computing the climate change projections of winter Douro streamflow, the
RCPs scenarios 2.6, 4.5 and 8.5 have been chosen.
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Finally, the monthly time series of the NAO, EA, EA-WR and SCAND tele-
connection indices were obtained from the Climate Prediction Center (CPC) at the
National Center of Environmental Predictions (NCEP; www.cpc.noaa.gov), and
winter indices were computed using December-January-February average.

www.cpc.noaa.gov


Chapter 3

Methodology

This section shows the methodology used in this work for computing climate change
projections of Douro streamflow through statistical downscaling. There are many
different statistical techniques that have been applied in order to downscale climate
data. In this work we follow the methodological scheme based on the Principal
Component Regression (PCR), developed by Palomino-Lemus et al. (2015). PCR is
a method that can be used to overcome the problem of multicollinearity on predictor
variables, because a multiple regression model needs among predictors uncorrelated
or not multicollinear (Wigena and Djuraidah, 2014). In summary, the PCR method
has two parts: 1) obtaining flow predictors through a Principal Component Analysis
(PCA) applied to the SLP field, and 2) the construction of a multiple regression
model that use the selected predictors to simulate de streamflow.

Summarizing, PCA or Empirical Orthogonal Function (EOF) analysis is an or-
thogonal transformation that reduces an original dataset containing a large number
of possibly correlated variables to a dataset usually containing many fewer uncorre-
lated variables (Sahriman et al., 2014). The space variance of our variable’s distribu-
tion is given by the eigenvector maps or the before mentioned EOFs. The eigenvalues
of EOFs indicate the amount of variance accounted for by a pattern. The projection
of the time series observations on to the eigenvectors are called principal components
(PCs) (Rodríguez-Puebla et al., 1998). The PCA can be performed in S or T modes
(Lorenzo-Lacruz et al., 2011). The S mode identifies regions in which the temporal
variation of our variables have the same pattern. The S mode can be therefore used
to identify general temporal patterns in the analyzed variable. Using this approach
we can obtain an additional non-correlated set of variables called principal compo-
nents, PCs, that are the linear combinations of the originals. The coefficients of
such combinations are called loading factors, and represent the correlations of the
principal component with each original variable. A more detailed description about
PCA can be seen in the Appendix A. In the following, a mathematical description
of the PCR method is presented. As PCs are uncorrelated, they can be used in
regression models avoiding multicollineary problems between predictors.

Let Qcalib(t, x) and Qvalid(t, x) denote the observed winter streamflow from the
gauging stations and reservoirs (predictands) at the q grid points x = 1, . . . , q for
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observation time t = 1, . . . , m for the calibration period 1950–95 and t = m+1, . . . ,
n for the validation period 1996–2011. The SLPcalib(t, y) and SLPvalid(t, y) from the
reanalysis data are the predictor data field at p SLP grid points y = 1, . . . , p at the
same periods. The first step in PCR consists of performing a PCA (see Appendix
A) (Preisendorfer and Mobley, 1988) of the covariance matrix from predictor input
data, that is, the SLPcalib. From this PCA the SLP spatio-temporal variability
can be analyzed from the empirical orthogonal functions (EOFs, eigenvectors of
the covariance matrix) and the principal component series (PCs, projections of the
observed SLP anomalies on the EOFs).

A key aspect is the choice of the number k of EOFs to retain, but there are
no definitive rules to choose it. For this selection we have taken into account that
they explain a high percentage of variance and a significant correlation between the
different PCs with streamflow series.

Once the main PCs of SLPcalib have been selected, the PCR method has been
applied to model the winter streamflow following the scheme proposed by Li and
Smith (2009). So, the regression model between the PCs of the SLPcalib and Qcalib

have been fitted, obtaining the regression coefficients (bi and aij, ) by the usual least
squares method, that is

Qcalib(i, t) = bi + aijPCj + error(i) (3.1)

where i =1,. . . q and j =1,. . . k.
For the validation period (1996–2011), the predictor variables (PCs*) are ob-

tained projecting the SLPvalid onto the EOFs of the SLP. Then the Qvalid is calcu-
lated by applying the regression models:

Qvalid(i, t) = bi + aijPC
∗
j (3.2)

The following step is to recalibrate the models using the whole observational
period (1950–2011) in order to take into account the recent variability of the fields
within the regression models. These last models are the statistical downscaled (SD)
models.

Finally, we obtain streamflow projections for the period 2071-2099 by applying
the obtained downscaling model to the SLP data derived from the GCM simulations
under the three chosen RCPs scenarios (RCP2.6, RCP4.5 and RCP8.5). In other to
correct the models bias, the Delta method (Hijmans et al., 2005; Palomino-Lemus
et al., 2015) was used, so the projected changes are calculated as the difference
between the modeled streamflow using historical and RCPs output for each model.

The difference of the mean values for present and future downscaled streamflow
was evaluated by the Wilcoxon–Mann–Whitney rank sum test. If the p value is
lower than 0.05, the mean values for both periods are significantly different at 95%,
while if it is higher than 0.1 they are not different with a significance level of 90%,
for example.



Chapter 4

Results

In this section the results of the analysis are shown. First, the spatio-temporal
variability of the winter SLP from the reanalysis data is instigated. Secondly, a
validation of the SLP outputs of the GCMs has been carried out in order to de-
termine if the models are able to reproduce the main modes of variability of the
SLP for present climate. From this point, the correlation between the variability
modes of the SLP and the streamflow will be computed in order to determine the
potential predictors for the streamflow, which will be used in a regression model.
The downscaled model obtained for present climate will be finally used for obtaining
the climate change projections of winter streamflow.

4.1 Spatio-temporal variability of SLP
For starting, the stability of the predictor field, winter SLP, is analyzed computing
the average SLP fields, their patterns of variability and their associated variances for
each database, reanalysis and GCMs. For this end, Figure 4.1 shows a comparison
of the averaged SLP field from the reanalysis data and the three models that we will
use in this work. On the map from the NCEP data we can see a dipolar pattern
with two action centers, one with high SLP values around the latitude band of 30◦-
40◦N, and another one, presenting lower values of SLP located closed to Iceland.
The CESM model presents the same structure. However, the IPSL-CM5A-MR has
similar shape but with a lower gradient between Azores and Iceland, and also with
a SLP overestimation over Greenland. Lastly, MIROC5 presents a structure that
approximates to the NCEP data, although it doesn’t capture the regions around the
centers properly, maybe related with the coarser resolution of this model.

The next step is the Empirical Orthogonal Functions (EOF) analysis, used to
identify the main variability patterns of winter SLP. This PCA obtains patterns
(EOFs) that facilitate the comparison of the climate variability reproduced by the
reanalysis data (NCEP) and the models.

For this analysis, the first six modes of winter SLP variability identified by the
PCA of the reanalysis data in the period 1950–2011, which explain 85.7% of the
total variance, were retained. The time series of these modes are shown in Figure
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Figure 4.1 – Average patterns of the SLP (mb) of the reanalysis data (1950-2011), MIROC5,
CESM1 and IPSL-CM5A-MR data (1951-2005).

4.2, while the associated spatial patterns (EOFs) are shown in Figure 4.3. Similarly,
Figures 4.4 to 4.6 show the results of the PCA to the winter SLP outputs of the
three GCMs used, for the period historical (1951-2005).

For reanalysis data, EOF1 explains the majority (46.48%) of the variance for the
winter SLP field, with one positive correlated center located over Greenland and
another negative correlated center over the Mediterranean and the central North
Atlantic. This spatial pattern corresponds clearly to the NAO. The second EOF,
which explains 11.90% of winter SLP variance, exhibits a positive center located in
the North Atlantic. EOF3 (10.86% of variance) represents a tripolar structure with
a high negative correlation center in northern Europe. EOF4 (9.93% of variance)
also shows a tripolar structure with a pattern with high negative loading factors
centered on the British Isles. EOF5 and EOF6 (3.54% and 3.02%, respectively)
account for only 14.43% of the SLP variance and show different action centers over
the study region with lower correlations.

Figure 4.2 shows the PCs associated with the EOFs. These time series present
for all the cases an important interannual variability. Note that for the PC1 decadal
variability is also apparent. To explore the physical meaning of these spatial modes,
correlations between the PC series and several teleconnection indices for the period
1951-2010 have been computed, and they are shown in the table 4.1 . As expected,
the time series of the first EOF is strongly linked with the NAO (r = -0.55), and it
exhibits a significant increase in the year 2010. PC1 is also linked to both the EA
(r = -0.33) and the EA-WR index (r = -0.27). Also, the third PC series is linked
with the SCAND index (r = 0.26).

To check if the model data represent the real current conditions for winter SLP
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field, the spatial patterns of the SLP variability (EOFs) from the reanalysis data
(1950-2011 ) have been compared to those obtained from the model outputs also for
the present time (1951-2005), and they can be seen in Figures 4.4, 4.5 and 4.6 for
the models MIROC5, CESM1 (CAM5) and IPSL-CM5A-MR, respectively.

For the first EOF, all models show similar structures and have almost the same
percentage of explained variance than the EOF1 from the reanalysis data, except
for the MIROC5 model, whose structure is mainly the same but spread to the west,
being its variance a little bit lower. EOF2 is characterized by a positive center
located in the North Atlantic for the NCEP data , being a negative center for
the CESM1 (CAM5) and IPSL-CM5A-MR models, which explain a bit more of
variance. On the other hand, the model MIROC5 represents a structure that is
further from the EOF of the reanalysis data, although its variance is higher. For
EOF3, all models show similar structures to the EOF3 from reanalysis data, and
showing also the same percentage of explained variance. Regards the fourth EOF,
it is the CESM1 (CAM5) model which is the nearest to represent the EOF4 from
the reanalysis data, being the MIROC5 model which presents a more differentiated
pattern to the NCEP data. Again, the variance explained is very similar. Finally,
EOF5 and EOF6 represent different structure between them and from the NCEP
data, and their variance is almost similar.

Figure 4.2 – Principal Components of the six leading SLP modes.

In order to select adequate predictors for winter Douro streamflow that can be
used in in the regression model, correlations between streamflow time series and the
six leading PCs of the SLP from reanalysis data for the period 1950-2010 have been
calculated. PCs that show significant correlations at 95% confidence level with the
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streamflow time series in the Douro River were selected as predictor variables for
the regression model. This result is shown in Table 4.2. Note that the first two
variability modes and the fifth and sixth (also the fourth but just for the gauging
station number 2082) of the winter SLP are significantly associated with winter
Douro streamflow. Thus, only these five modes were considered for the development
of the regression models.

Figure 4.3 – Factor loading of the first six leading Empirical Orthogonal Factors of winter
SLP over the study area for the reanalysis data. Variance explained by each mode is indicated
in parentheses.
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Figure 4.4 – Factor loading of the first six leading Empirical Orthogonal Factors of winter
SLP over the study area for the MIROC5 data (1951-2005). Variance explained by each mode
is indicated in parentheses.
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Figure 4.5 – Factor loading of the first six leading Empirical Orthogonal Factors of winter
SLP over the study area for the CESM1(CAM5) data (1951-2005). Variance explained by
each mode is indicated in parentheses.
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Figure 4.6 – Factor loading of the first six leading Empirical Orthogonal Factors of winter
SLP over the study area for the IPSL-CM5A-MR data (1951-2005). Variance explained by
each mode is indicated in parentheses.
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PC1 PC2 PC3 PC4 PC5 PC6
NAO -0.557 -0.179 0.131 0.193 -0.001 0.007
EA -0.333 -0.047 -0.150 -0.014 0.006 0.080

SCAND 0.025 0.043 0.268 -0.106 0.076 0.001
EA-WR -0.279 -0.043 -0.019 0.182 0.071 0.133

Table 4.1 – Correlations between the six leading PCs of the winter SLP reanalysis data
and the teleconnection indices NAO, EA, SCAND and EA-WR, for the period 1951-2010.
Significant correlations at 95% confidence level are shown in bold.

PC1 PC2 PC3 PC4 PC5 PC6
2030 -0.647 -0.248 -0.067 0.093 0.255 0.178
2031 0.608 -0.273 -0.048 -0.011 0.259 0.117
2036 0.575 -0.243 -0.021 0.024 0.235 0.165
2062 0.608 -0.279 -0.020 -0.044 0.191 0.225
2082 0.635 -0.237 -0.157 -0.235 0.142 0.233
2002 0.620 -0.288 0.001 -0.075 0.191 0.240
2003 0.597 -0.294 0.013 -0.065 0.211 0.242
2029 0.633 -0,255 -0.021 -0.102 0.166 0.263

Table 4.2 – Correlations between the six leading PCs from winter SLP of reanalysis data and
the selected gauging stations (dark gray) and reservoirs (light gray). Significant correlations
at the 95% confidence level are shown in bold.

4.2 Principal component regression models for the
streamflow

As was described in the Chapter 3, we used the principal component regression
(PCR) method to build the forecasting model for the streamflow. For this analysis,
we retained the first two variability modes of SLP field in all stations, but also the
fourth, fifth and sixth PCs appeared in some cases as significant. As mentioned in
the Chapter 3, the training period 1950–1995 was used as calibration period, and
the period 1996–2011 to verify the model. The objective was to develop a robust
model that provides a downscaled prediction for the streamflow given a predictor
large-scale SLP field.

Figure 4.7 compares the predicted and observed winter streamflow for all selected
gauging stations and reservoirs. Meanwhile, Table 4.3 presents a summary with
the statistics obtained from the regression model, showing the correlations values
between the observed and predicted streamflow, significant at the 95% level, and
also the root-mean-square error (RMSE), for both periods.

In general the regression model works properly, performing well during the train-
ing period, in years like 1960 and 1966, but a bit worse during the subsequent verifi-
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cation period, although it clearly fails when estimating peak values as the high flows
registered during the years 1979 and 2001, which correspond to very rainy years in
the region. We may attribute to these years the principal cause of the high RMSE
values obtained.
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Figure 4.7 – Streamflow series for the gauging stations 2030, 2031, 2036, 2062 and 2082 and
the reservoirs 2002, 2003 and 2029. The observed streamflow (1950-2011) is represented by
the black line, the prediction during the training period (1950-1995) corresponds to the red
line and the prediction for the validation period (1996-2011) is represented by the blue line.
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Training period (1950-1995) Verification period (1996-2011)

Station r RMSE r RMSE

2030 0.79 23.99 0.66 34.47
2031 0.76 32.69 0.65 55.70
2036 0.68 61.20 0.68 79.63
2062 0.75 231.51 0.63 373.03
2082 0.78 12.53 0.70 19.04
2002 0.77 516.19 0.63 795.23
2003 0.77 505.22 0.63 783.56
2029 0.80 227.83 0.64 440.82

Table 4.3 – Correlation (r) and root-mean-square error (RMSE) between the observed and
predicted streamflow by the regression model, both for the calibration period (1950-1995) and
the validation period (1996-2011).

Recalibration (1950-2011)

Station r RMSE

2030 0.75 26.59
2031 0.72 8.85
2036 0.68 65.63
2062 0.73 55.45
2082 0.76 14.09
2002 0.75 578.14
2003 0.70 611.09
2029 0.75 287.67

Table 4.4 – Correlation (r) and root-mean-square error (RMSE) between the observed and
predicted streamflow by the regression model after the recalibration.

Once the downscaling model has been validated, we have recalibrated it using
all data, that is, calibrating it again for the full period. In Figure 4.8 we can see
the comparison between the observed winter streamflow and the prediction with
the recalibration just commented. The correlation coefficients between the observed
and predicted values and their RMSE are presented in Table 4.4. It should be noted
that there is an improvement in the prediction in respect to the verification period,
although the model is not able to reproduce the extreme streamflow values of the
last records.
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Figure 4.8 – Streamflow series for the gauging stations 2030, 2031, 2036, 2062 and 2082 and
the reservoirs 2002, 2003 and 2029. The observed streamflow (1950-2011) is represented by
the black line, the prediction after the recalibration for all period (1950-2011) corresponds to
the red line.



4.3. CLIMATE CHANGE PROJECTIONS 33

4.3 Climate change projections
After having established the principal component regression model for the statistic
downscaling of the streamflow, and in order to identify the potential impact of
the climate change, we have applied it to the SLP data derived from the GCM
simulations for both the present (1951-2005) and future (2071-2099) climate under
the RCP2.6, RCP4.5 and RCP8.5 scenarios. The results obtained are shown in
Tables 4.5, 4.6 and 4.7 for each of the three GCMs, respectively.

In general, for present climate we could say that CESM1 and IPSL-CM5A-MR
models present a clear streamflow underestimation, whereas MIROC5 shows impor-
tant overestimations. Furthermore, there are marked differences between the perfor-
mance of the different models, being the IPSL-CM5A-MR which better represents
the present conditions for most of the stations. Therefore, there are a considerable
bias between the observational streamflow data and the present climate estimations
from the models, which could be attributed to the tendency of the GCMs to show a
more zonal pattern of the SLP than the NCEP data. This bias is taken into account
when calculating the winter streamflow projections for the period 2071-2099. Thus,
the streamflow differences have been obtained by subtracting the average model val-
ues in the present time to the projected future data, being the percentages relative
to the modeled average.

As can be seen, the results of the projected changes for later this century show
generalized decreases of the winter streamflow for all models and scenarios. As
expected, the RCP2.6 scenario presents the lowest decreases, in contrast to RCP8.5,
which shows the highest decreases in the winter streamflow for CESM1 and IPSL-
CM5A-MR models, but being the RCP4.5 scenario which surprisingly projects the
greatest changes for MIROC5. The stations 2002, 2003 and 2029 suffer the biggest
changes, due to the fact that are reservoirs and contain the biggest amount of water.

We can see that the p value obtained from the Wilcoxon–Mann–Whitney rank
sum test is higher for the results obtained with the CESM1 and IPSL-CM5A-MR
models, being the lowest values for the RCP8.5 scenario, so for this scenario the
projected streamflow changes are significant for some locations. On the other hand,
the MIROC5 model presents low p values in general, therefore, it shows the most
significant changes, above all for the RCP4.5 in all stations, which ranges from -
12.42% to -67.52%. It should be remarked the projected decrease by CESM1 in the
stations 2031 and 2029 for the RCP8.5 scenario, reaching decreases of around -40%.
It is also very significant the projected decrease by the IPSL-CM5A-MR model for
the RCP4.5 and RCP8.5 scenarios in the station 2029, with -63.57% and -91.90%,
respectively.

These declines are consistent with the results obtained by Esteban Parra et al.
(2014) for another peninsular river. Moreover, the results also agree with the de-
crease in projected precipitation obtained usingWRF simulation with CCSM3 model
as boundary conditions (Argüeso et al., 2012). This model is the predecessor of the
CESM1 used in this work.

On the other hand, the Douro River streamflow is not only influenced by precip-
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itation. Temperature is another factor affecting the streamflow, regulating evapo-
transpiration processes in the basin as well as snow, which contributes to the spring
flow (López-Moreno and García-Ruiz, 2004). While precipitation during the winter
in large part of the IP, particularly in the Douro Valley, is controlled largely by at-
mospheric circulation, mainly through the impact of the NAO (Esteban-Parra et al.,
1998)), this pattern slightly affects the behaviour of the winter temperatures form
(Esteban-Parra et al., 2003).

Several studies (e.g. IPCC, 2013) show that for various scenarios, including
RCP8.5, the average increases in temperature in winter in the 2071-2099 period
obtained using ECHAM5 as WRF input are around 2.5 ◦C compared to the period
1970-2000. However, this study does not allow to clarify the direct impact of tem-
perature on the streamflow in the sense of knowing whether the obtained streamflow
increase in the present climate may reflect, for example, the contribution of snowmelt
during the winter instead of in spring.
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Present (1951-2005) Future (2071-2099)

Station Source Amount
(hm3)

Diff with
obs (hm3) Diff(%) Amount

(hm3)

Diff with
(1950-2011)

(hm3)
Diff(%)

2030 Obs 62.66
GCM 97.93 35.27 56.28

RCP2.6 89.59
(0.030) -8.34 -8.51

RCP4.5 62.15
(10−7) -35.78 -36.53

RCP8.5 84.13
(0.006) -13.80 -14.09

2031 Obs 78.87
GCM 110.37 31.50 39.93

RCP2.6 102.74
(0.120) -7.63 -6.91

RCP4.5 96.65
(0.039) -13.71 -12.42

RCP8.5 104.09
(0.332) -6.27 -5.68

2036 Obs 134.46
GCM 206.41 71.95 53.51

RCP2.6 203.04
(0.604) -3.36 -1.62

RCP4.5 122.12
(10−10) -84.29 -40.83

RCP8.5 200.63
(0.572) -5.78 -2.80

2062 Obs 534.66
GCM 811.20 276.54 51.72

RCP2.6 724.85
(0.058) -86.35 -10.64

RCP4.5 446.01
(10−6) -365.18 -45.01

RCP8.5 745.12
(0.235) -66.08 -8.14

2082 Obs 29.71
GCM 44.90 15.19 51.12

RCP2.6 41.83
(0.275) -3.07 -6.83

RCP4.5 21.34
(10−6) -23.56 -52.47

RCP8.5 42.92
(0.486) -1.98 -4.40

2002 Obs 1123.91
GCM 1750.10 626.19 55.71

RCP2.6 1551.11
(0.059) -198.99 -11.37

RCP4.5 906.40
(10−6) -843.70 -48.20

RCP8.5 1598.43
(0.243) -151.67 -8.66

2003 Obs 1132.25
GCM 1719.14 586.89 51.83

RCP2.6 1521.72
(0.055) -197.41 -11.48

RCP4.5 927.84
(10−6) -791.29 -46.02

RCP8.5 1570.45
(0.243) -148.68 -8.64

2029 Obs 634.29
GCM 980.42 346.13 54.56

RCP2.6 1307.76
(10−6) 327.34 33.38

RCP4.5 318.43
(10−9) -661.99 -67.52

RCP8.5 1244.11
(10−4) 263.68 26.89

Table 4.5 – Average streamflow values obtained by the MIROC5 model for both the present (1950-2011) and
future (2071-2099). A comparison between observed and downscaled GCM value for both periods. In column
6 the p value results from Wilcoxon–Mann–Whitney rank sum test are shown in parentheses.
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Present (1951-2005) Future (2071-2099)

Station Source Amount
(hm3)

Diff with
obs (hm3) Diff(%) Amount

(hm3)

Diff with
(1950-2011)

(hm3)
Diff(%)

2030 Obs 62.66
GCM 46.46 -16.20 -25.85

RCP2.6 47.70
(0.977) 1.24 2.66

RCP4.5 38.41
(0.184) -8.05 -17.32

RCP8.5 30.04
(0.008) -16.42 -35.34

2031 Obs 78.87
GCM 61.53 -17.34 -21.98

RCP2.6 58.41
(0.604) -3.12 -5.07

RCP4.5 50.17
(0.175) -11.36 -18.46

RCP8.5 36.64
(0.002) -24.89 -40.45

2036 Obs 134.46
GCM 96.17 -38.29 -28.47

RCP2.6 96.16
(0.925) -0.01 -0.01

RCP4.5 91.71
(0.638) -4.45 -4.62

RCP8.5 68.43
(0.016) -27.74 -28.84

2062 Obs 534.66
GCM 392.50 -142.16 -26.58

RCP2.6 371.89
(0.631) -20.61 -5.25

RCP4.5 304.83
(0.109) -87.67 -22.33

RCP8.5 257.17
(0.013) -135.33 -34.47

2082 Obs 29.71
GCM 12.74 -16.97 -57.11

RCP2.6 11.70
(0.457) -1.04 -8.16

RCP4.5 8.33
(0.129) -4.41 -34.61

RCP8.5 9.10
(0.166) -3.64 -28.57

2002 Obs 1123.91
GCM 802.79 -321.12 -28.57

RCP2.6 755.94
(0.598) -46.85 -5.83

RCP4.5 602.92
(0.097) -199.87 -24.89

RCP8.5 500.78
(0.014) -302.01 -37.62

2003 Obs 1132.25
GCM 831.97 -300.28 -26.52

RCP2.6 784.72
(0.604) -47.25 -5.67

RCP4.5 633.45
(0.103) -198.52 -23.86

RCP8.5 542.56
(0.015) -289.41 -34.78

2029 Obs 634.29
GCM 457.79 -176.50 -27.82

RCP2.6 368.19
(0.207) -89.60 -19.57

RCP4.5 428.74
(0.446) -29.05 -6.34

RCP8.5 245.80
(0.002) -211.99 -46.30

Table 4.6 – As Table 4.5, for the model CESM1.
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Present (1951-2005) Future (2071-2099)

Station Source Amount
(hm3)

Diff with
obs (hm3) Diff(%) Amount

(hm3)

Diff with
(1950-2011)

(hm3)
Diff(%)

2030 Obs 62.66
GCM 65.97 3.31 5.28

RCP2.6 62.15
(0.534) -3.82 -5.79

RCP4.5 61.35
(0.604) -4.61 -6.98

RCP8.5 63.10
(0.749) -2.86 -4.33

2031 Obs 78.87
GCM 98.82 18.95 25.29

RCP2.6 96.65
(0.770) -2.16 -2.18

RCP4.5 93.31
(0.631) -5.50 -5.56

RCP8.5 84.19
(0.144) -14.63 -14.80

2036 Obs 134.46
GCM 126.05 -8.41 -6.25

RCP2.6 122.12
(0.678) -3.92 -3.10

RCP4.5 112.45
(0.337) -13.59 -10.78

RCP8.5 93.21
(0.015) -32.83 -26.04

2062 Obs 534.66
GCM 465.60 -69.06 -12.91

RCP2.6 446.01
(0.785) -19.58 -4.20

RCP4.5 485.13
(0.770) 19.53 4.19

RCP8.5 396.18
(0.474) -69.42 -14.90

2082 Obs 29.71
GCM 20.19 -9.52 -32.04

RCP2.6 21.34
(0.821) 1.15 5.69

RCP4.5 21.65
(0.685) 1.46 7.23

RCP8.5 18.17
(0.572) -2.01 -9.95

2002 Obs 1123.91
GCM 950.92 -172.99 -15.39

RCP2.6 906.40
(0.792) -44.52 -4.68

RCP4.5 1001.63(0.727) 50.71 5.33

RCP8.5 799.20
(0.492) -151.72 -15.95

2003 Obs 1132.25
GCM 970.25 -162.00 -14.30

RCP2.6 927.84
(0.799) -42.40 -4.37

RCP4.5 1027.33
(0.685) 57.07 5.88

RCP8.5 835.50
(0.547) -137.74 -14.19

2029 Obs 634.29
GCM 497.82 -136.47 -21.51

RCP2.6 318.43
(0.048) -179.39 -36.03

RCP4.5 181.33
(0.001) -316.49 -63.57

RCP8.5 40.29
(0.00004) -457.53 -91.90

Table 4.7 – As Table 4.5, for the model IPSL-CM5A-MR.
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Chapter 5

Conclusions

In this study we have obtained climate change projections for winter Douro River
streamflow under the scenarios RCP2.6, RCP4.5 and RCP8.5, for the period 2071-
2099 using the outputs of three GCMs (MIROC5, CESM1 and IPSL-CM5A-MR).
The methodology that we have followed has been the PCR. The PCA applied to
the winter SLP reanalysis data from the NCEP showed the existence of six leading
variability modes, which explain 85.7% of the total variance. Hence, we analyzed the
association between these resulting principal components and the streamflow series
from the eight selected gauging stations and reservoirs in order to use the SLP PC
series as predictor variables in a multiple regression model.

The statistic models built for the eight stations showed in general a good rep-
resentation both for the calibration and validation periods, although they clearly
failed at estimating peak values which correspond to very rainy years. After this
step, we recalibrated it again for the full period.

Finally, we applied the model data to our regression model, obtaining the stream-
flow projections, evaluating the difference of the mean values for present and future
by the Wilcoxon–Mann–Whitney rank sum test.

Our general conclusions are the following:

• The North Atlantic Oscillation is the teleconnection pattern that mainly con-
trols the winter precipitation variability in the west part of the Iberian Penin-
sula, and therefore it is directly reflected in the winter seasonal flow of the
Douro River. This pattern is mainly represented by the first SLP EOF.

• For the downscaling model, there is an improvement in the regression model
during the verification period after having recalibrated it for the full period.
However, the model fails at estimating peak values related to very rainy years.

• CESM1 and IPSL-CM5A-MR models present a clear underestimation of the
present streamflow, whereas MIROC5 shows important overestimations. Thus,
that bias has effects on the results of the future projections.

• The Global Circulation Models MIROC5, CESM1 and IPSL-CM5A-MR clearly
show generalized decreases of the Douro River winter streamflow for the period
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2071-2099, under the scenarios RCP2.6, RCP4.5 and RCP8.5, being particu-
larly significant for MIROC5 model and the RCP4.5 scenario, in which it
projects decreases from -12.42% to -67.52%.

It should be noted that the downscaling method in this work can only represent
the changes in the streamflow, which are principally derived from the changes in the
rain, linked to changes in the atmospheric circulation as we only used one predictor
field (SLP) in the downscaling model. For this reason, this study may lead to
subsequent research in order to demonstrate that the changes in the streamflow are
also linked to other predictor fields, e.g. the temperature, or perform climate change
projections for another river basin of the Iberian Peninsula.



List of Figures

1.1 Time evolution of the total anthropogenic (positive) and anthro-
pogenic aerosol (negative) radiative forcing (RF) relative to pre-industrial
(about 1765) between 2000 and 2300 for RCP scenarios and their
extensions (continuous lines), and SRES scenarios (dashed lines) as
computed by the Integrated Assessment Models (IAMs) used to de-
velop those scenarios. The four RCP scenarios used in CMIP5 are:
RCP2.6 (dark blue), RCP4.5 (light blue), RCP6.0 (orange) and RCP8.5
(red). The three SRES scenarios used in CMIP3 are: B1 (blue,
dashed), A1B (green, dashed) and A2 (red, dashed). Positive val-
ues correspond to the total anthropogenic RF. Negative values corre-
spond to the forcing from all anthropogenic aerosol–radiation inter-
actions (i.e., direct effects only). The total RF of the SRES and RCP
families of scenarios differs in 2000 because the number of forcings
represented and our knowledge about them have changed since the
TAR. The total RF of the RCP family is computed taking into ac-
count the efficacy of the various forcings (Source: Meinshausen et al.,
2011a, cited by the IPCC (2013)). . . . . . . . . . . . . . . . . . . . . 5

1.2 Schematic diagram of projected changes in major components of the
water cycle. The blue arrows indicate major types of water movement
changes through the Earth’s climate system: poleward water trans-
port by extratropical winds, evaporation from the surface and runoff
from the land to the oceans. The shaded regions denote areas more
likely to become drier or wetter. Yellow arrows indicate an impor-
tant atmospheric circulation change by the Hadley Circulation, whose
upward motion promotes tropical rainfall, while suppressing subtrop-
ical rainfall. Model projections indicate that the Hadley Circulation
will shift its downward branch poleward in both the Northern and
Southern Hemispheres, with associated drying. Wetter conditions
are projected at high latitudes, because a warmer atmosphere will al-
low greater precipitation, with greater movement of water into these
regions (Source: IPCC, 2013). . . . . . . . . . . . . . . . . . . . . . . 8

41



42 LIST OF FIGURES

1.3 a. Time series (in bars) and linear trend (blue line) of precipita-
tion averaged over the Iberian Peninsula and NAO index (red line)
for DJFM season. b. Correlation of precipitation and NAO index
(multiplied by 100 in contour lines), leading EOF of precipitation
(multiplied by 100 in shaded for DJFM) (Source: Rodríguez-Puebla
and Nieto, 2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Location of the international Douro river basin in the Iberian Penin-
sula and the catchments boundaries (Source: http://es.wikipedia.
org/wiki/Cuenca_hidrogr%C3%A1fica_del_Duero) . . . . . . . . . . 16

2.2 Localization of the streamflow series analyzed in this work within the
Spanish part of the Douro basin. Gauging stations are shown in red
and reservoirs in green. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Average patterns of the SLP (mb) of the reanalysis data (1950-2011),
MIROC5, CESM1 and IPSL-CM5A-MR data (1951-2005). . . . . . . 22

4.2 Principal Components of the six leading SLP modes. . . . . . . . . . 23
4.3 Factor loading of the first six leading Empirical Orthogonal Factors

of winter SLP over the study area for the reanalysis data. Variance
explained by each mode is indicated in parentheses. . . . . . . . . . . 24

4.4 Factor loading of the first six leading Empirical Orthogonal Factors
of winter SLP over the study area for the MIROC5 data (1951-2005).
Variance explained by each mode is indicated in parentheses. . . . . . 25

4.5 Factor loading of the first six leading Empirical Orthogonal Factors of
winter SLP over the study area for the CESM1(CAM5) data (1951-
2005). Variance explained by each mode is indicated in parentheses. . 26

4.6 Factor loading of the first six leading Empirical Orthogonal Factors of
winter SLP over the study area for the IPSL-CM5A-MR data (1951-
2005). Variance explained by each mode is indicated in parentheses. . 27

4.7 Streamflow series for the gauging stations 2030, 2031, 2036, 2062 and
2082 and the reservoirs 2002, 2003 and 2029. The observed streamflow
(1950-2011) is represented by the black line, the prediction during
the training period (1950-1995) corresponds to the red line and the
prediction for the validation period (1996-2011) is represented by the
blue line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.8 Streamflow series for the gauging stations 2030, 2031, 2036, 2062 and
2082 and the reservoirs 2002, 2003 and 2029. The observed streamflow
(1950-2011) is represented by the black line, the prediction after the
recalibration for all period (1950-2011) corresponds to the red line. . . 32

http://es.wikipedia.org/wiki/Cuenca_hidrogr%C3%A1fica_del_Duero
http://es.wikipedia.org/wiki/Cuenca_hidrogr%C3%A1fica_del_Duero


List of Tables

2.1 Basic characteristics of the gauging stations and reservoir which have
been chosen for this work. The average annual streamflow was ob-
tained from CEDEX. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Correlations between the six leading PCs of the winter SLP reanalysis
data and the teleconnection indices NAO, EA, SCAND and EA-WR,
for the period 1951-2010. Significant correlations at 95% confidence
level are shown in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Correlations between the six leading PCs from winter SLP of reanal-
ysis data and the selected gauging stations (dark gray) and reservoirs
(light gray). Significant correlations at the 95% confidence level are
shown in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Correlation (r) and root-mean-square error (RMSE) between the ob-
served and predicted streamflow by the regression model, both for the
calibration period (1950-1995) and the validation period (1996-2011). 31

4.4 Correlation (r) and root-mean-square error (RMSE) between the ob-
served and predicted streamflow by the regression model after the
recalibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 Average streamflow values obtained by the MIROC5 model for both
the present (1950-2011) and future (2071-2099). A comparison be-
tween observed and downscaled GCM value for both periods. In col-
umn 6 the p value results from Wilcoxon–Mann–Whitney rank sum
test are shown in parentheses. . . . . . . . . . . . . . . . . . . . . . . 35

4.6 As Table 4.5, for the model CESM1. . . . . . . . . . . . . . . . . . . 36
4.7 As Table 4.5, for the model IPSL-CM5A-MR. . . . . . . . . . . . . . 37

43



44 LIST OF TABLES



List of Acronyms

AIM Asia-Pacific Integrated Model

AOGCM Atmosphere–Ocean General Circulation Model

AR4 Fourth Assessment Report

AR5 Fifth Assessment Report

CAM Community Atmosphere Model

CCSM3 Community Climate System Model Version 3

CCSR Center for Climate System Research

CEDEX Centro de Estudios y Experimentación de Obras Públicas

CESM Community Earth System Model

EA East Atlantic

EA/WR Eastern Asia/Western Russia

EOF Empirical Orthogonal Function

GCAM Global Change Assessment Model

GCM Global circulation model

GHG Greenhouse Gases

IIASA International Institute for Applied Systems Analysis

IP Iberian Peninsula

IMAGE Integrated Model to Assess the Global Environment

45



IPCC Intergovernmental Panel on Climate Change

IPSL Institut Pierre Simon Laplace

MESSAGE Model for Energy Supply Systems And their General Environmental
impact

MIMAM Ministerio de Medio Ambiente

MIROC Model for Interdisciplinary Research on Climate

NCAR National Center for Atmospheric Research

NCEP National Centers for Environmental Prediction

NIES National Institute for Environmental Studies

NAO North Atlantic Oscillation

PCA Principal Component Analysis

PC Principal component

PCR Principal Component Regression

RCM Regional climate model

RCP Representative Concentration Pathways

RF Radiative forcing

RMSE Root-mean-square error

SCAND Scandinavia

SD Statistical downscaled

SLP Sea Level Pressure

SRES Special Report on Emission Scenarios

TAR Third Assessment Report



TCP Teleconnection pattern

WMGHG Well-mixed greenhouse gas

WMO World Meteorological Organization

WRF Weather Research and Forecasting Model





Appendix A

Principal Component Analysis

The PCA is a multivariate technique that transforms the original set of interrelated
data to a new coordinate system such that the new variables are uncorrelated and
are ordered so that the first few retain most of the variation present in the original
dataset (Jolliffe, 2002).

Therefore, only keeping the few first new variables, most of the variation is still
retained and a considerable reduction of the dimensionality of the data is achieved.
As a consequence, the interpretation of the dependencies between variables is much
more straightforward. Another advantage which is significant within the regional-
ization framework is that it helps to stabilize measurements for additional statistical
analysis such as cluster analysis (Timm, 2002) by reduction of information redun-
dancy.

Suppose a dataset containing K variables that have been measured M times.
Let us define a M by K matrix X where according to the standard nomenclature
for PCA, the rows represent measurements (or observations) and the columns the
different variables. In the particular case of S-Mode PCA, the rows might be the
times (days) and the columns the different locations (stations).

Let us also define the matrix of anomalies formed by the K column vectors
X ′k = Xk − X̄k, where X̄k are the means calculated over the M elements of column
k.

The new variables or principal components are then defined as linear combina-
tions of the Kx’k that have certain properties:

um =
K∑

k=1
(ek,1 · x’k), m = 1...M (A.1)

The new base is composed by the em eigenvectors and the first one e1 is aligned
in the direction in which the data vectors jointly exhibit the most variability. This
is the primary property of the principal components: the first linear combination is
calculated so that it has the maximum variance, the second one is calculated so that
it is orthogonal to the previous principal component and explain as much variance
as possible, and so on.

Therefore, the largest eigenvalue λ1 corresponds to the first eigenvector e1. The
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second-largest eigenvalue λ2 corresponds to the second eigenvector e2, which is forced
to be orthogonal to e1 and points to the direction in which x’k show the next
largest variations. Subsequent eigenvectors are defined similarly, associated with
eigenvalues of decreasing magnitude and orthogonal to the previous eigenvectors.
The matrix of the transformation can thus be written:

U = [E]TX ′ (A.2)

Owing to the fact that principal components are orthogonal and thus uncorre-
lated, the covariance matrix of U is diagonal. Taking into account this property, the
covariance matrix for the principal components can be obtained by diagonalization
of the covariance matrix for the original dataset:

[Sx] = X ′X ′T

[Su] = [ET ][Sx][E] = [E−1][Sx][E] = [Λ] (A.3)

Which is equal to solve the equation:

det([Sx] − λ[I]) = 0 (A.4)

that allows us to determine the eigenvectors and then calculate the principal
components. In addition, the eigenvalues indicate the variance explained by each of
the principal components. The fraction of total variation in the original xk vectors
explained by a certain principal component is proportional to its eigenvalue:

Percentage of variance = λm∑K
k=1(λk)

× 100% (A.5)

The transformation can be reverted and thus the original anomaly vectors can
be retrieved from the principal components:

X ′ = [E]U (A.6)

Truncation of the principal components
Considering that the objective of PCA is to reduce the information contained in the
original data, the number of principal components can be truncated and keep only a
fraction of the total variance. There are as many principal components as elements in
the vector x’m. However, atmospheric data usually contains redundant information
that is removed by approximating the original vectors by linear combinations of K∗
eigenvectors, where K∗ < K:

x’m ≈
K∗∑
k=1

(em,k · uk), m = 1...M (A.7)



The fraction of the total variance explained by the new reduced base of eigen-
vectors is thus computed as:

V ariance explained (%) =

K∗∑
k=1

(λk)
K∑

k=1
(λk)

(A.8)

In the atmospheric data, selecting K∗ << K usually leads to large variance
explained and thus the original large dataset can be reduced to a base composed of
very few eigenvectors which explain a substantial proportion of the total variance
and thus are easier to interpret. The number of principal components to be retained
are still a matter of controversy and different method have been proposed.
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