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Brasil.
e-mail: K.Tenenblat@mat.unb.br

Abstract

We extend the classical theory of Ribaucour transformations to the
family of improper affine maps and use it to obtain new solutions of the
hessian one equation. We prove that such transformations produce com-
plete, embedded ends of parabolic type and curves of singularities which
generically are cuspidal edges. Moreover, we show that these ends and
curves of singularities do no intersect. We apply Ribaucour transforma-
tions to some helicoidal improper affine maps providing new 3-parameter
families with an interesting geometry and a good behavior at infinity. In
particular, we construct improper affine maps, periodic in one variable,
with any even number of complete embedded ends.

2000 Mathematical Subject Classification: 53A15
Keywords: Ribaucour transformations; Improper affine spheres; Hessian one
equation.

1 Introduction

Differential geometry of surfaces and partial differential equations (PDEs)
are tied up by a productive interaction by means of which both theories benefit
mutually.

∗Research partially supported by Ministerio de Educación Grants No: MTM2013-43970-
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CAPES/DGU Proc. No. 23038010833/2010-37.
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Actually, many classic PDEs are linked to interesting geometric problems.
The geometry allows to integrate these equations, to establish non trivial prop-
erties of the solutions and to give some superposition principles which determine
new solutions in terms of already known solutions.

One of the biggest contributions from geometry to PDEs theory is Monge-
Ampère equations. Such equations are totally non linear PDEs which model
interesting geometric aspects related to the curvature, and its study has become
a topic of great mathematical importance. Among the most outstanding Monge-
Ampère equations we can quote the hessian one equation:

Det(∇2f) = 1, in Ω. (1.1)

This is the easiest Monge-Ampère equation, and it appears in problems of affine
differential geometry, minimal surfaces, flat surfaces and Calabi-Yau metrics,
as well as in the description of area-preserving diffeomorphisms. The above
equation has been studied from a global perspective by many authors, [20,
21, 26]. In particular, it is known that the only global C2 solutions of this
equation are the quadratic polynomials [4, 7, 18], and that the exterior Dirichlet
problem has a solution [6, 12, 13]. The solutions defined on R2 minus a finite
number of points are classified in [14], and a local classification result for isolated
singularities is obtained in [1].

Another important issue in the theory of geometric PDEs is the study of
singularities. Concerning equation (1.1), a geometric theory of smooth maps
with singularities (improper affine maps) has been developed in [22]. Actually,
improper affine maps are given locally as a pair (Ω, f) of a solution of (1.1), and
they can be recovered in terms of their singular set. Generically, the singularities
are cuspidal edges and swallowtails, (see [1, 17, 24, 25]).

Several methods as the method of perturbation, [28], integrable systems,
[23] and Weierstrass’ type representation, [1, 11, 22, 24] have been used in the
construction of solutions of (1.1). But the classical theory of surfaces shows that
geometric transformations may also be used to construct new surfaces from a
given one. Recently, the third author and her collaborators (see [8, 9, 10, 19])
have extended and applied a classical theory on Ribaucour transformations,
developed by Bianchi in 1918-1919, [3], to provided global description of new
families of complete minimal and constant mean curvature surfaces obtained
from surfaces which are invariant under a one-parametric group of transforma-
tions.

In this work, we shall introduce a Ribaucour type transformation between
improper affine maps, denoted by R-transformation, that provides the descrip-
tion of a large class of new examples with an interesting geometry and a good
behavior at infinity.

The paper is organized as follows. In Section 2, we recall some basic facts of
the theory of improper affine maps and define the affine isothermic coordinates.

In Section 3, we introduce the notion of R-transformation between such
surfaces and show that R-transformations produce embedded ends of parabolic
type and curves of singularities which are, generically, cuspidal edges. Moreover
we prove that these ends and curves of singularities do not intersect.
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In Section 4, we describe all improper affine maps obtained by applying an
R-transformation to some helicoidal improper affine maps. We also determine
the ends of parabolic type and the curves of singularities produced by the R-
transformation.

2 A complex resolution for the Hessian one equa-
tion

In this section, we recall some results from the theory of improper affine
maps, which are surfaces in R3 locally given as vertical graphs of solutions of
the Hessian one equation (1.1), that may have some admissible singularities.
For more details see [5, 22].

Let Σ be an orientable 2-manifold and consider ψ : Σ −→ R2 × R the
improper affine map induced by a special Lagrangian immersion L := x+

√
−1n,

L : Σ −→ C2 ≡ R2 +
√
−1 R2, where

x : Σ −→ R2, n : Σ −→ R2,

are differentiable maps. Then, ψ may be written as

ψ :=
(
x,−

∫
< n, dx >

)
, (2.1)

and the non-regular points of ψ correspond with the degenerate points of its
flat fundamental form ds2,

ds2 :=< dx, dx > . (2.2)

Because L is special and Lagrangian, we have that, around any regular point,
ψ is a vertical graph of a solution f : Ω ⊆ Σ −→ R of the unimodular Hessian
equation (1.1) and

n = −∇f = −(fx1 , fx2), (x1, x2) ∈ Ω. (2.3)

Thus, at the regular points, ψ is an improper affine sphere with Berwald-
Blaschke metric g given by

g := − < dx, dn > . (2.4)

We say that the singularities of ψ are admissible since they are not degenerate
points of the induced metric dτ2,

dτ2 :=< dx, dx > + < dn, dn > . (2.5)

The metric dτ2 generates on Σ the complex structure of a Riemann surface and
we have the following Weirstrass’ type representation:

Theorem 2.1. Complex Representation, [22]:
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• Let ψ : Σ −→ R2 × R be an improper affine map induced by the spe-
cial Lagrangian immersion L := x +

√
−1n. If we identify R2 to C

in the standard way, then there exists a regular planar complex curve
α := (F,G) : Σ −→ C2 such that,

x = G+ F , n = F −G (2.6)

ψ :=
(
G+ F ,

1
2

(|G|2 − |F |2) + Re
(
GF − 2

∫
FdG

))
. (2.7)

Moreover, the induced metric, the Berwald-Blaschke metric and the flat
fundamental form are given, respectively, by

dτ2 = 2(|dG|2 + |dF |2),

g = |dG|2 − |dF |2, (2.8)

ds2 = |dG|2 + |dF |2 + dGdF + dGdF .

• Conversely, if Σ is a Riemann surface and (F,G) : Σ −→ C2 a regu-
lar complex curve, then (2.7) gives an improper affine map which is well
defined if and only if

∫
FdG does not have real periods.

We shall call (F,G) Weierstrass data of ψ.

Remark 1. From (2.7) and (2.8), the admissible singularities of ψ correspond
to the points where |dF | = |dG| 6= 0. Also, it is clear that dτ2 and g are
conformal metrics.

The (2, 0)-part of ds2 is a holomorphic quadratic differential which is globally
defined and it can be written as

Q = dGdF. (2.9)

This form Q is called L-Hopf differential and its zeros are the L-umbilical points
of ψ .

Coordinates in which both fundamental forms, g and ds2 diagonalize simul-
taneously give an L-curvature lines parametrization (not necessarily conformal).

A conformal L-curvature line parametrization is called affine isothermic and,
in this case, the pre-images of the L-curvature lines are the lines u = const and
v = const, where z = u+

√
−1v is a conformal coordinate.

Proposition 2.2. Let ψ : Σ −→ R2 × R be an improper affine map and p ∈ Σ
a non L-umbilical point. Then, there is an affine isothermic parametrization of
ψ around of p.

Proof. Since (dGdF )(p) 6= 0, there exists a complex parameter z = u +
√
−1v

around p such that
dGdF = dz2. (2.10)
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From (2.8) and (2.10) we conclude that

dτ2 = 4 cosh(2φ)|dz|2,
g = 2 sinh(2φ)|dz|2, (2.11)

ds2 = 4 cosh2(φ)du2 + 4 sinh2(φ)dv2,

where φ is the harmonic function given by

φ =
1
2

log
∣∣∣dG
dF

∣∣∣. (2.12)

Remark 2. From Proposition 2.2 and having in mind that x+
√
−1n is special

and Lagrangian one can see that, at the regular points, the pair of quadratic
forms (g, ds2) is a Codazzi pair with constant Gaussian curvature one,

K(ds2, g) ≡ 1.

Actually, around any non L-umbilical point, the principal curvatures of the pair
(g, ds2) are given by

λ1 = − tanh(φ), λ2 = − coth(φ).

Many other examples of Codazzi pairs also appear in [2, 16, 27] and references
therein.

Remark 3. From (2.8) and (2.12), the harmonic function φ vanishes at the
admissible singularities of ψ. Moreover, the elliptic paraboloid is characterized
by the fact that φ is a non vanishing constant, see [4, 11, 18].

3 R-transformations of improper affine maps

Now, we can extend the classical theory of Ribaucour transformations to the
family of improper affine maps in the following way.

Definition 3.1. Consider ψ : Σ −→ R2×R and ψ̃ : Σ̃ −→ R2×R two improper
affine maps induced by the special Lagrangian immersions L := x+

√
−1 n and

L̃ := x̃+
√
−1 ñ. We say that ψ and ψ̃ are associated by an R-transformation if

there is a differentiable function h : Σ −→ R and a biholomorphism R : Σ −→ Σ̃
such that

• x(p) + h(p)n(p) = x̃(R(p)) + h(p)ñ(R(p)) for all p ∈ Σ.

• R preserves the L-Hopf differential.
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Theorem 3.2. Two improper affine maps are associated by an R-transformation
if and only if they admit Weierstrass data, defined on the same Riemann surface
Σ, such that either (F̃ , G̃)− (F,G) is constant or there is a constant c ∈ R−{0}
such that

(F̃ , G̃) =
(
F +

1
cR

,G+R
)
, (3.1)

where R is a holomorphic solution of the following equivalent Riccati equations

dR+ dG = cR2dF, dG = cR2
(
dF + d

( 1
cR

))
. (3.2)

Proof. From (2.6), (2.9) and Definition 3.1, if we denote by (F,G) and (F̃ , G̃)
the Weierstrass data of ψ and ψ̃◦R, respectively, then we have that either F̃−F
and G̃−G are simultaneously constants or

dFdG = dF̃dG̃,
F̃ − F
R

=
h− 1
h+ 1

=
F̃ − F
R

, (3.3)

with R = G̃−G a non-constant function, (note that h is a real function).
Thus, the holomorphic function R(F̃ −F ) must be a non zero real constant

and there exists c ∈ R− {0} such that

R(F̃ − F ) = (G̃−G)(F̃ − F ) =
1
c
, (3.4)

which implies (3.1).
Now, by differentiating (3.4), R satisfies the following differential equation

dG̃− dG = cR2(dF − dF̃ ) = cR2
(

1− dG

dG̃

)
dF

equivalent to (3.2), because dR = dG̃− dG has only isolated zeros.
On the other hand, from (3.3) and (3.4), we obtain

h =
c|R|2 + 1
c|R|2 − 1

(3.5)

and the converse is clear.

Remark 4. (F̃ , G̃) − (F,G) is constant if and only if the corresponding La-
grangian immersions L̃ and L are the same up to translation in C2.

Corollary 3.3. If ψ and ψ̃ are improper affine maps associated by an R-
transformation such that their Weierstrass data do not differ by a constant,
then the function h in Definition 3.1 is given by

h =
(

coth
(φ+ φ̃

2

))ε

, (3.6)

where ε = 1 if c > 0, ε = −1 if c < 0, and c is the non zero constant of Theorem
3.2.
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Proof. From (2.12), (3.1) and (3.2), we get∣∣∣cR2
∣∣∣ =

∣∣∣dG̃
dF

∣∣∣ =
∣∣∣dG
dF̃

∣∣∣ =
∣∣∣dG̃dG
dFdF̃

∣∣∣1/2

= exp(φ+ φ̃)

and (3.5) gives (3.6).

From [22], we know that each complete end of an improper affine map is
biholomorphic to a punctured disk D − {p0} ⊂ C and the Weierstrass data
extend meromorphically to the puncture p0. Thus, we can determine when an
R-transformation produces new ends.

Theorem 3.4. Let ψ̃ : D−{p0} −→ R2×R be an improper affine map associated
by an R-transformation to an improper affine map, ψ : D −→ R2 ×R. Then ψ̃
has an end at p0 ∈ D if and only if it is either a zero or a pole of the complex
function R given in Theorem 3.2.

In this case, if the L-Hopf differential Q of ψ does not vanish at p0, then the
end of ψ̃ at p0 is complete, embedded and of parabolic type.

Proof. From (3.1) and having in mind that the movable singularities of R are
simple poles, it is clear that ψ̃ has an end at p0 if and only if p0 is either a zero
or a pole of R .

In this case, if Q(p0) 6= 0, then (3.2) gives

(dR)(p0) = −(dG)(p0) 6= 0,
(

resp. d
( 1
cR

)
(p0) = −(dF )(p0) 6= 0

)
and p0 is a simple zero (resp. a simple pole). Hence, see [11, 22], ψ̃ has a com-
plete embedded end at p0 and the same behavior at infinity that the revolution
improper affine map with Weierstrass data(

1
c(z − p0)

, z − p0

)
, or

(
z − p0

c
,

1
z − p0

)
.

In a similar way, we can determine when an R-transformation produces new
curves of singularities.

Theorem 3.5. Let ψ, ψ̃ : Σ −→ R2×R be improper affine maps associated by an
R-transformation. Then the singular set S̃ of ψ̃ is the nodal set of the harmonic
function φ − log(|c||R|2), where φ is given by (2.12) and c, R by Theorem 3.2.
In particular, the new ends do not intersect S̃.

Moreover, in an isothermic parameter z around a singular point p0, the
curves of singularities are given by

|R′ +G′| = |cR2F ′| = 1 (3.7)

and p0 is a cuspidal edge if and only if

Im
(R′′ +G′′

R′ +G′

)
(p0) 6= 0. (3.8)
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Proof. From Remark 1, we have that the admissible singularities of ψ̃ satisfy

|dF̃ | = |dG̃| 6= 0.

Thus, from (2.12) and Theorem 3.2, we obtain

c2|R|4 =
∣∣∣dG̃dG
dFdF̃

∣∣∣ =
∣∣∣dG
dF

∣∣∣ = exp(2φ), (3.9)

which proves the first part of the theorem.
Now, if we take an isothermic parameter z = u +

√
−1v so that dGdF =

dz2 = dF̃dG̃, then
G′F ′ = 1 = F̃ ′G̃′,

and since
|G̃′|2 = |R′ +G′|2 = |cR2F ′|2 =

∣∣∣c2R4 dF

dG

∣∣∣,
we get that (3.9) is equivalent to (3.7).

Moreover, the singular set of ψ̃ around p0 is characterized by

|F̃ ′|2 = |G̃′|2 = 1 = F̃ ′G̃′.

Actually, G̃′ = F̃ ′ and (2.6) give dx̃ = 2G̃′du and (0, 1) is the null direction at
the singular points.

Finally, since the tangent vector to the curve S̃ ≡ |G̃′|2− 1 = 0 is (−S̃v, S̃u),
we conclude that p0 is a cuspidal edge if and only if

0 6=
∣∣∣∣ 0 1
−S̃v S̃u

∣∣∣∣ (p0) = S̃v(p0),

that is, one gets (3.8), (see also Remark 3.1 in [15]).

4 New families of examples

In this section, we will obtain new 3-parameter families of improper affine
maps by applying the theory in the previous section to some helicoidal improper
affine maps.

For this study we will denote by A0(R3) the group of unimodular affine
transformations whose differential preserves the vertical direction e3 = (0, 0, 1)
and we consider the 1-parameter subgroup G of A0(R3) given by the composition
of a vertical translation plus a rotation around < e3 >.

Then, a G-helicoidal surface, (invariant under G), is generated by a suitable
curve α : I −→ R2 × R as

ψ(s, t) =

 cos(t) − sin(t) 0
sin(t) cos(t) 0

0 0 1

α(s) +

 0
0
a3t

 , a3 ∈ R. (4.1)
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Theorem 4.1. Let ψ : Σ −→ R2×R be an improper affine map with Weierstrass
data (F,G). Then ψ lies on a G-helicoidal surface if and only if FG = −a2 for
some constant a ∈ C.

Proof. Assume ψ is G-helicoidal, then from (4.1) and by the identification of C
to R2 in the standard way, ψ may be written as

ψ(s, t) = (exp(
√
−1t)(α1(s) +

√
−1α2(s)), α3(s) + a3t), (4.2)

for some suitable curve α := (α1 +
√
−1α2, α3). Thus, we have that

n(s, t) = − exp(
√
−1t)

α1(s)α′
3(s)− a3α

′
2(s) +

√
−1(a3α

′
1(s) + α2(s)α′

3(s))
α1(s)α′

1(s) + α2(s)α′
2(s)

,

(4.3)
and from (2.6), 4GF = (x+ n)(x − n) is a holomorphic function that depends
only on the variable s, which implies FG = −a2, for some constant a ∈ C.

Conversely, if FG = −a2, we distinguish two cases:
Case I: a = 0 and then ψ is, trivially, a rotational surface lying on an elliptic

paraboloid, (see Figure 1).

Figure 1: Elliptic paraboloid

Case II: a 6= 0 and then we can take a = exp(a1 +
√
−1a2),

G = a exp(w), F = −a exp(−w), (4.4)

with a1, a2 ∈ R and some holomorphic function w = s +
√
−1t. Actually, s is

the harmonic function φ : Σ −→ R defined in (2.12).
Then, from (2.7), we have

ψ(s, t) =(2 exp(
√
−1t) exp(a1) sinh(s+

√
−1a2),

exp(2a1)(sinh(2s) + 2 cos(2a2)s− 2 sin(2a2)t)) (4.5)

and ψ lies on a G-helicoidal improper affine map generated by the rotation of
the curve

α(s) = (2 exp(a1) sinh(s+
√
−1a2), exp(2a1)(sinh(2s) + 2 cos(2a2)s)) (4.6)

and a vertical translation with a3 = −2 sin(2a2), which concludes the proof.
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Remark 5. In particular, ψ is a rotational improper affine map if and only if
FG = −a2 ∈ R, (see Figures 1 and 2).

Figure 2: Rotational improper affine maps.

Figure 3: G-helicoidal and non-rotational

Theorem 4.2. Let ψ : Σ −→ R2 × R be the G-helicoidal improper affine map
with the Weierstrass data (F,G) given by (4.4), for some a ∈ C − {0} . Then
the family of improper affine maps ψ̃ associated to ψ by an R-transformation is
given by

F̃ = −F 1− b+ (1 + b)E
1 + b+ (1− b)E

, G̃ = G
(b+ 1)2 + (b− 1)2E

(b2 − 1)(1 + E)
, (4.7)

with

E = E(w) = k exp(bw), b =
√

1 + 4a2c 6= 0, (4.8)

where k ∈ C− {0} and c ∈ R− {0}.
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Proof. From Theorem 3.2 and (4.4), we must consider the Riccati equation

R′(w) + a exp(w) = acR(w)2 exp(−w).

Then, we eliminate the trivial solution R = exp(w)/(2ac), when 1 + 4a2c = 0,
because it gives (F̃ , G̃) = −(F,G).

So, we have (4.7) from the general solution

R =
exp(w)

2ac
1 + b+ (1− b)E

1 + E
= 2G

1 + b+ (1− b)E
(b2 − 1)(1 + E)

(4.9)

and
1
cR

= 2a exp(−w)
1 + E

1 + b+ (1− b)E
= −2F

1 + E

1 + b+ (1− b)E
.

Theorem 4.3. Each improper affine map ψ̃ in Theorem 4.2 has embedded com-
plete ends of parabolic type determined by the points w0 such that

E(w0) = −1, or E(w0) =
1 + b

b− 1
.

Moreover the singular set of ψ̃ is described by

exp(s)
|b2 − 1|

∣∣∣1 + b+ (1− b)E
1 + E

∣∣∣2 = 1. (4.10)

Proof. The first part is clear from Theorem 3.4, (4.4) and (4.9), since the L-Hopf
differential of ψ is Q = dGdF = a2dw2 6= 0.

This also implies that z = aw is an isothermic parameter and we deduce the
second part from Theorem 3.5, (4.4) and (4.9).

In particular, when 4a2c+ 1 = n2/m2, with n,m ∈ N, we have the following
result, (see Figures 4 and 5).

Theorem 4.4. Let ψ̃ be an improper affine map given by Theorem 4.2, with

b =
n

m
∈ Q− {0, 1} (4.11)

an irreducible rational number. Then

• ψ̃ is periodic in t with period 2mπ.

• ψ̃ has 2n complete embedded ends of parabolic type.

• The singular set of ψ̃ is contained in a compact set.

• There are two complete ends of geometric index m given by the limit of s
to ±∞.
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Proof. In fact, 2mπ is the minimum common period of the terms exp(
√
−1t)

and exp(
√
−1bt) in the Weierstrass data (4.7) of ψ̃.

Hence, we can consider t ∈ [0, 2mπ], bt ∈ [0, 2nπ] and, from Theorem 4.3,
the 2n complete embedded ends of parabolic type of ψ̃ are given by

s1 +
√
−1
(
t1 + l

2π
b

)
and s2 +

√
−1
(
t2 + l

2π
b

)
, l = 0, . . . , n− 1,

where

s1 +
√
−1t1 =

1
b

log
(−1
k

)
and s2 +

√
−1t2 =

1
b

log
( 1 + b

k(b− 1)

)
.

Moreover, from Theorem 3.4 and (4.9), ψ̃ has two complete ends of geometric
index m when s tends to ±∞, which do not intersect its singular set S̃, see
Theorem 3.5 and (4.10).

Then, we conclude that S̃ is contained in a compact set.

Figure 4: R-transformations, a = 1, n = 1, m = 2 and n = 1, m = 3
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Figure 5: R-transformations, a = 1, n = 2, m = 1 and n = 3, m = 2
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