Mineralogía de los depósitos de cobre del Cretáceo inferior de la cordillera de la costa de Chile Central. Datos preliminares

F.J. Carrillo Rosúa (1), S. Morales Ruano (1), D. Morata (2), Belmar M. (2), P. Fenoll Hachali (1)

(2) Departamento de Geología, Universidad de Chile, P. Ercilla 803, Santiago de Chile, Chile.

Las mineralizaciones filonianas y estratoligadas de Cu (y Cu-Ag) de la Cordillera de la Costa de Chile central en la región de Melipilla, 50 km al suroeste de Santiago, se encuentran alojadas en niveles carbonatados de la Formación Lo Prado (Berriasiense Superior-Hauterivienense) y en rocas volcánicas de la Formación Veta Negra (Hauteriviense-Barremitense). Ambas unidades están intruidas por granitoides del Cretáceo Superior y presentan paragénesis minerales metamórficas propias de las facies prehnita-pumpellyita.

Se han distinguido dos tipos de mineralizaciones según la paragénesis mineral característica:

Tipo A. Es la mineralización más escasa constituida por una densa diseminación de bornita, calcosina sieno asociarla con covellina, asociada con materia orgánica. La bornita, que comienza a cristalizar previamente a la calcosina, presenta con estas intercercimientos simplecticitos (Fig. 1a). En cuanto a los minerales de la ganga, éstos son fundamentalmente cuarzo granular y prehnita, siendo menos abundantes pumpellita, epida-

La prehnita presenta pequeñas cantidades de Fe (1.93 - 2.53% at.), mientras que la calcita posee pequeños contenidos en Mg (0.14 - 0.16% at.) y prácticamente nulos de Mn y Fe.

Tipo B. Es la mineralización más frecuente, variando desde finas diseminaciones de sulfuros a agregados muy ricos en estos en venas. La mineralogía metálica mayoritaria está constituida por calcopirita y pirita. Entre las fases minoritarias destacan cobres grises, esfalerita, galena, arsenopirita, marcasita y cobaltita (aunque debido al pequeño tamaño de sus cristales no se ha podido corroborar con exactitud su naturaleza). La pirita se presenta con textura de grano grueso, con Cu como único elemento acenerio, o con textura framboidal. La calcopirita posee zonaciones de enriquecimiento en As de hasta 0.2% at. Los cobres grises corresponden a términos muy ricos en tenantita (porcentaje en tetradrita entre 0 y 19%, media: 4%), y Zn/(Fe+Zn) entre 0.50 y 0.68. El Zn (y lo inverso para el Fe) presenta una buena correlación directa con el Sb e inversa con el As. El con-

Figura 1. (a) Fotomicrofotografía de luz reflejada de un intercercimiento simplecticito de bornita (bn) con calcosina (cs). (b) Imagen de electrones retrodispersados de arsenopirita (apy), calcopirita (ccp) y cobre gris (cg). Este último está zonado con borde (más rico en Sb y Zn y empobrecido en As) más claro que el núcleo.
en Chile central indican la existencia de dos tipos de mineralizaciones. La formada en primer lugar, tal como indica el estudio petrográfico, es la de tipo A. Es la mineralógica más pobre, y la que se pudo haber originado por procesos ligados a un metamorfismo de muy bajo grado, tal como pone de manifiesto las relaciones texturales entre los minerales metamórficos (prehnita, pumpellita, clorita y epidota) y los sulfuros. También es coherente con esta hipótesis la existencia de intercimientos simplectíticos de bornita y calcosina, ligados a procesos de exfoliación por cambios lentos de temperatura y la presencia de materia orgánica que provendría de la movilización desde las rocas sedimentarias durante el proceso metamórfico. La mineralización más abundante en volumen y cantidad de sulfuros, la de tipo B, tiene una mineralogía relativamente variada. Podría estar originada por fluidos epitermales de moderada o baja temperatura, tal como sugiere la presencia de pirita framboiada y calcedonia. Dichos fluidos presentarían, en las etapas iniciales de la mineralización, un pH relativamente bajo (marcasita “hidrotermal” pH<5, Murowchick y Barnes (1986)) y alta f(3) (presencia de arsenopirita). No obstante, para corroborar esta hipótesis preliminar, sería necesario disponer de estudios mineralógicos, isotópicos y de inclusiones fluidas actualmente en curso.

AGRADECIMIENTOS

Este trabajo ha sido financiado por el proyecto de cooperación CSIC-Universidad de Chile 2001-CL-00015 y CSIC/2001/02-08, los proyectos BTE 2001-3308 y 2003-06265 de la DGCYT, el “Plan Propio de la Universidad de Granada” (Programa 17, Convenio 680), el proyecto de la Universidad de Chile DID 1001-99/2 y el Grupo de Investigación RNM 131 de la Junta de Andalucía. Se agradece a Compañía Minera “Las Abuelitas” su apoyo y facilidades en los trabajos de terreno.

REFERENCIAS