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Copyright © 2014 R. Caballero-Águila et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The optimal least-squares linear estimation problem is addressed for a class of discrete-time multisensor linear stochastic systems
subject to randomly delayed measurements with different delay rates. For each sensor, a different binary sequence is used to model
the delay process. The measured outputs are perturbed by both random parameter matrices and one-step autocorrelated and cross
correlated noises. Using an innovation approach, computationally simple recursive algorithms are obtained for the prediction,
filtering, and smoothing problems, without requiring full knowledge of the state-space model generating the signal process, but
only the information provided by the delay probabilities and the mean and covariance functions of the processes (signal, random
parameter matrices, and noises) involved in the observation model. The accuracy of the estimators is measured by their error
covariance matrices, which allow us to analyze the estimator performance in a numerical simulation example that illustrates the
feasibility of the proposed algorithms.

1. Introduction

In the past decades, the development of network technologies
has promoted the study of the estimation problem in multi-
sensor systems, where the observations provided by all the
sensor networks are transmitted to a fusion center for being
processed, thus obtaining the whole available information
on the signal. This kind of systems with multiple sensors
is becoming an interesting research topic due to its broad
scope of application as they can provide more information
than traditional communication systems with a single sensor.
This form of transmission has several advantages, such as low
cost or simple installation and maintenance; however, due to
the imperfection of the communication channels, during the
transmission process, there exist often random sensor delays
and/ormultiple packet dropouts. Standard observationmod-
els are not appropriate under these random uncertainties,
and classical estimation algorithms, where themeasurements
generated by the system are available in real time, cannot

be applied directly. Therefore, new algorithms are needed
and, recently, the estimation problem in multisensor systems
with some of the aforementioned random uncertainties has
become a research topic of growing interest (see, e.g., [1–6]
and references therein).

There are many current applications, for example, net-
worked multiple sensor systems with measurement-based
output feedback, where the measurements may be randomly
delayed due to network congestion or random failures in
the transmission mechanism. Several modifications of the
standard estimation algorithms have been proposed to incor-
porate the effects of randomly delayedmeasurements, in both
linear and nonlinear systems. Assuming full knowledge of
the state-space model of the signal process to be estimated
we can mention [7–10] and using covariance information,
[11, 12], among others. Although all papers above mentioned
involve systems with randomly delayed sensors, their major
handicap is that all the sensors are assumed to have the same
delay characteristics. Nevertheless, such an assumption is not
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realistic inmany practical situations, where the information is
gathered by an array of heterogeneous sensors, and the delay
probability at each individual sensor can be different from the
others. In recent years, this approach has been generalized
considering multiple delayed sensors with different delay
characteristics (see, e.g., [13, 14], using the state-space model,
and [15, 16], using covariance information).

Furthermore, in many sensor network applications the
measured outputs present uncertainties which cannot be
described only by the usual additive disturbances, and mul-
tiplicative noises must be included in the observation equa-
tions to model such uncertainties (see, e.g., [17, 18]). Also, in
the context of missing and fading measurements, the obser-
vation equations include multiplicative noises described by
scalar random variables with arbitrary discrete probability
distribution over the interval [0, 1] (see, e.g., [19–21]). The
above systems are a special case of systems with random
parameter matrices, which have important practical signifi-
cance and arise in areas such as digital control of chemical
processes, systems with human operators, economic systems,
and stochastically sampled digital control systems [22].

In [22, 23], the optimal linear filtering problem in systems
with independent random state transition and measurement
matrices is addressed by transforming the original system
into one with deterministic parameter matrices and state-
dependent process and measurement noises, to which the
Kalman filter is applied. Although in [22] the Kalman filter
is applied without providing any theoretical justification, in
[23] it is shown that, under mild conditions, the transformed
system satisfies the Kalman filter requirements and, hence,
optimal linear estimators are obtained for systems with inde-
pendent random parameter matrices. In [24], systems with
deterministic transition matrices and one-step correlated
measurementmatrices are considered, and the optimal recur-
sive state estimation problem is addressed by converting the
observation equation into one with deterministic measure-
ment matrices and applying the optimal Kalman filter for the
case of one-step correlated measurement noise. In the above-
mentioned papers, although the noises of the transformed
system with deterministic matrices depend on the system
state and therefore can be correlated, the original system
noises are assumed to be independent white processes. This
assumption can be restrictive in many real world problems
in which correlation and cross-correlation of the noises
may be present. For this reason, the estimation problem
in systems with correlated and cross-correlated noises is
becoming an active research topic (see [25–29] for systems
with deterministic matrices and [30, 31] for systems with
random parameter matrices, among others). In [30] a locally
optimal filter in the class of Kalman-type recursive filters is
presented and, in [31], the optimal least-squares linear filter
is derived.

Motivated by the above analysis, in this paper we address
the signal estimation problem from measurements coming
from multiple sensors which are randomly delayed by one
sampling time with different delay characteristics, under the
assumption that the measured outputs are perturbed by both
random parameter matrices and one-step autocorrelated and
cross-correlated observation noises. The main contributions

of this paper can be highlighted as follows: (1) the observation
model considers simultaneously random delayed measure-
ments and both random parameter matrices and correlated
noises (one-step autocorrelation and also one-step cross-
correlations between different sensor noises are considered)
in the measured outputs; (2) optimal LS linear recursive
filtering and smoothing algorithms are obtained without
requiring signal augmentation approach thus avoiding the
expensive computational cost; (3) the proposed algorithms
are obtained without requiring full knowledge of the state-
space model generating the signal process; and (4) the
innovation technique is used, simplifying substantially the
derivation of the algorithms since the innovation process is
a white noise.

The rest of the paper is organized as follows. In Section 2,
we present the delayed measurement model to be consid-
ered and the assumptions and properties under which the
LS linear estimation problem is addressed. The innovation
approach which, as mentioned above, yields straightforward
derivation of the estimation algorithms is given in Section 3.
The recursive filtering and smoothing algorithms are derived
in Sections 4 and 5, respectively. In Section 6, the perfor-
mance of the proposed filtering algorithms is illustrated
by a numerical simulation example where the signal of a
first-order autoregressive model is estimated from delayed
observations coming from two sensors with different delay
characteristics, considering two kinds of measured outputs
with correlated noises. The paper concludes with some final
comments in Section 7.

Notation. The notation used throughout the paper is stan-
dard. R𝑛 denotes the 𝑛-dimensional Euclidean space and
R𝑚×𝑛 is the set of all𝑚 × 𝑛 real matrices. 𝐴𝑇 and 𝐴−1 denote
the transpose and inverse of a matrix 𝐴, respectively. The
shorthand Diag(𝑎

1
, . . . , 𝑎

𝑚
) denotes a diagonal matrix whose

diagonal entries are 𝑎
1
, . . . , 𝑎

𝑚
. 1 = (1, . . . , 1)

𝑇 denotes the
all-ones vector and 𝐼 the identity matrix. If the dimensions
of matrices are not explicitly stated, they are assumed to be
compatible with algebraic operations. The notation ∘ denotes
the Hadamard product ([𝐶 ∘ 𝐷]

𝑖𝑗
= 𝐶
𝑖𝑗
𝐷
𝑖𝑗
). 𝛿
𝑘−𝑠

represents
the Kronecker delta function, which is equal to one if 𝑘 = 𝑠

and zero otherwise. Moreover, for arbitrary random vectors,
𝛼 and𝛽, wewill denoteCov[𝛼, 𝛽] = 𝐸[(𝛼−𝐸[𝛼])(𝛽 − 𝐸[𝛽])

𝑇

],
where 𝐸[⋅] stands for the mathematical expectation operator.

2. Problem Formulation

The aim of this paper is to find recursive algorithms for
the optimal least-squares (LS) linear filtering and smoothing
problems of an 𝑛-dimensional discrete-time random signal
𝑧
𝑘
using measurements perturbed by random observation

matrices and correlated additive noises, which are transmit-
ted by multiple sensors where one-step random delays with
different rates may occur during the transmission process.

The estimation problem is addressed under the assump-
tion that the evolution model of the signal to be estimated
is unknown and only information about its mean and
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covariance functions is available; this information is specified
in the following assumption.

Assumption 1. The 𝑛-dimensional signal process {𝑧
𝑘
; 𝑘 ≥ 1}

has zeromean and its autocovariance function is expressed in
a separable form, 𝐸[𝑧

𝑘
𝑧
𝑇

𝑗
] = 𝐴

𝑘
𝐵
𝑇

𝑗
, 𝑗 ≤ 𝑘, where 𝐴 and 𝐵 are

known 𝑛 ×𝑀matrix functions.

Remark 2. Although Assumption 1 might seem restrictive, it
covers many practical situations; for example, when the sys-
tem matrix Φ in the state-space model of a stationary signal
is available, the signal autocovariance function is 𝐸[𝑧

𝑘
𝑧
𝑇

𝑗
] =

Φ
𝑘−𝑗

𝐸[𝑧
𝑗
𝑧
𝑇

𝑗
], 𝑗 ≤ 𝑘, and Assumption 1 is clearly satisfied,

taking 𝐴
𝑘
= Φ
𝑘 and 𝐵

𝑗
= 𝐸[𝑧

𝑗
𝑧
𝑇

𝑗
](Φ
−𝑗

)
𝑇. Also, processes

with finite-dimensional, possibly time-variant, state-space
models have semiseparable covariance functions, 𝐸[𝑧

𝑘
𝑧
𝑇

𝑗
] =

∑
𝑟

𝑖=1
𝑎
𝑖

𝑘
𝑏
𝑖𝑇

𝑗
, 𝑗 ≤ 𝑘 (see [32]), and this structure is a particular

case of that assumed, just taking 𝐴
𝑘
= (𝑎
1

𝑘
, 𝑎
2

𝑘
, . . . , 𝑎

𝑟

𝑘
) and

𝐵
𝑗
= (𝑏
1

𝑗
, 𝑏
2

𝑗
, . . . , 𝑏

𝑟

𝑗
). Consequently, the structural assumption

on the signal autocovariance function covers both stationary
and nonstationary signals.

Next, the observationmodelwith one-step randomdelays
is described and the assumptions under which the LS linear
estimation problem will be addressed are presented.

2.1. Delayed Observation Model. Let {𝑧
𝑘
; 𝑘 ≥ 1} be the signal

process satisfying Assumption 1 and consider 𝑚 sensors
which provide scalar measurements of the signal according
to the following model:

𝑦
𝑖

𝑘
= 𝐻
𝑖

𝑘
𝑧
𝑘
+ Ṽ𝑖
𝑘
, 𝑘 ≥ 1, 𝑖 = 1, 2, . . . , 𝑚, (1)

where 𝑦𝑖
𝑘
∈ R is the measurement provided by the 𝑖th sensor

at time 𝑘 (actual output); {𝐻𝑖
𝑘
; 𝑘 ≥ 1} are 1 × 𝑛 random

parameter matrices; {Ṽ𝑖
𝑘
; 𝑘 ≥ 1} are measurement noises.The

following assumptions are established on this model.

Assumption 3. For 𝑖 = 1, 2, . . . , 𝑚, {𝐻𝑖
𝑘
; 𝑘 ≥ 1} are 1 × 𝑛

randomparametermatriceswith knownmeans,𝐸[𝐻𝑖
𝑘
] = 𝐻

𝑖

𝑘
;

𝐻
𝑖

𝑘
and 𝐻

𝑗

𝑠
are independent for 𝑘 ̸= 𝑠; the covariances and

cross-covariances at the same time, Cov[ℎ𝑘
𝑖,𝑝
, ℎ
𝑘

𝑗,𝑞
], are also

known (ℎ𝑘
𝑖,𝑝

denotes the 𝑝th entry of𝐻𝑖
𝑘
, for 𝑝 = 1, 2, . . . , 𝑛).

Assumption 4. The additive measurement noises {Ṽ𝑖
𝑘
; 𝑘 ≥ 1},

𝑖 = 1, 2, . . . , 𝑚, are zero-mean processes with Cov[Ṽ𝑖
𝑘
, Ṽ𝑗
𝑠
] =

𝑅̃
𝑖𝑗

𝑘,𝑘
𝛿
𝑘−𝑠

+ 𝑅̃
𝑖𝑗

𝑘,𝑠
𝛿
𝑘−𝑠+1

+ 𝑅̃
𝑖𝑗

𝑘,𝑠
𝛿
𝑘−𝑠−1

, for 𝑖, 𝑗 = 1, 2, . . . , 𝑚.

Remark 5. From Assumption 4, the measurement noises of
any two sensors are correlated at the same sampling time and
at consecutive sampling times and uncorrelated otherwise;
the cross-covariances of Ṽ𝑖

𝑘
with Ṽ𝑗

𝑘
, Ṽ𝑗
𝑘−1

, and Ṽ𝑗
𝑘+1

are 𝑅̃𝑖𝑗
𝑘,𝑘
,

𝑅̃
𝑖𝑗

𝑘,𝑘−1
, and 𝑅̃𝑖𝑗

𝑘,𝑘+1
, respectively.

It is assumed that, at any sampling time, the outputs are
transmitted from the𝑚 different sensors to a data processing
center producing the signal estimation and, as a consequence
of possible failures during the transmission process, one-
step delays may occur randomly in the measurements used
for estimation. These measurement delays are modelled by
introducing different sequences of Bernoulli variables whose
values, zero or one, indicate whether the current mea-
surement is up-to-date or delayed, respectively. Specifically,
assume that, at initial time 𝑘 = 1, the actual outputs, 𝑦𝑖

1
, are

always available for the estimation but, at any time 𝑘 > 1,
the available measurements coming from each sensor may
be randomly delayed by one sampling time according to
different delay rates. Therefore, if {𝛾𝑖

𝑘
; 𝑘 > 1}, 𝑖 = 1, 2, . . . , 𝑚,

denote sequences of Bernoulli randomvariables, the available
measurements from the 𝑖th sensor are described by

𝑦
𝑖

𝑘
= (1 − 𝛾

𝑖

𝑘
) 𝑦
𝑖

𝑘
+ 𝛾
𝑖

𝑘
𝑦
𝑖

𝑘−1
, 𝑘 > 1;

𝑦
𝑖

1
= 𝑦
𝑖

1
, 𝑖 = 1, 2, . . . , 𝑚.

(2)

Remark 6. Model (2) is commonly used to describe mea-
surements coming from multiple sensors which are one-
step randomly delayed with different delay rates (see, e.g.,
[13] using the state-space model and [15] using covariance
information). From (2) it is clear that if 𝛾𝑖

𝑘
= 1, which

occurs with a certain probability 𝑝𝑖
𝑘
, then 𝑦

𝑖

𝑘
= 𝑦
𝑖

𝑘−1
and the

measurement from the 𝑖th sensor is delayed by one sampling
period; otherwise, 𝛾𝑖

𝑘
= 0 and 𝑦𝑖

𝑘
= 𝑦
𝑖

𝑘
, which means that the

measurement is up-to-date with probability 1−𝑝𝑖
𝑘
.Therefore,

the variables {𝛾𝑖
𝑘
; 𝑘 > 1}model the random delays of the 𝑖th

sensor and the following assumption is made.

Assumption 7. For 𝑖 = 1, 2, . . . , 𝑚, the process {𝛾𝑖
𝑘
; 𝑘 > 1} is

a sequence of independent Bernoulli random variables with
known probabilities 𝑃[𝛾𝑖

𝑘
= 1] = 𝑝

𝑖

𝑘
, ∀𝑘 > 1. For 𝑖, 𝑗 =

1, 2, . . . , 𝑚 the variables 𝛾𝑖
𝑘
and 𝛾

𝑗

𝑠
are independent for 𝑘 ̸= 𝑠,

and Cov[𝛾𝑖
𝑘
, 𝛾
𝑗

𝑘
] are known.

Note that this assumption is more general than that
considered in [13, 15] where the processes {𝛾𝑖

𝑘
; 𝑘 > 1}, for

𝑖 = 1, 2, . . . , 𝑚, are assumed to be mutually independent.
Finally, the following independence hypothesis is also

assumed.

Assumption 8. For 𝑖 = 1, 2, . . . , 𝑚, the signal process, {𝑧
𝑘
; 𝑘 ≥

1}, and the processes {𝐻𝑖
𝑘
; 𝑘 ≥ 1}, {Ṽ𝑖

𝑘
; 𝑘 ≥ 1}, and {𝛾

𝑖

𝑘
; 𝑘 >

1} are mutually independent.

To address the optimal LS linear estimation problem of
the signal based on the measurements coming from all the
sensors, {𝑦𝑖

1
, 𝑦
𝑖

2
, . . . , 𝑦

𝑖

𝐿
, 𝑖 = 1, 2, . . . , 𝑚}, 𝐿 ≥ 𝑘, the centralized

fusionmethod will be used. For this purpose, the observation
equations of the different sensors (1) and (2) are combined
yielding the following vectorial observation model:

𝑦
𝑘
= 𝐻
𝑘
𝑧
𝑘
+ Ṽ
𝑘
, 𝑘 ≥ 1,

𝑦
𝑘
= (𝐼 − Γ

𝑘
) 𝑦
𝑘
+ Γ
𝑘
𝑦
𝑘−1

, 𝑘 > 1; 𝑦
1
= 𝑦
1
,

(3)
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where 𝑦
𝑘

= (𝑦
1

𝑘
, . . . , 𝑦

𝑚

𝑘
)
𝑇, 𝐻
𝑘

= (𝐻
1𝑇

𝑘
, . . . , 𝐻

𝑚𝑇

𝑘
)
𝑇, Ṽ
𝑘

=

(Ṽ1
𝑘
, . . . , Ṽ𝑚

𝑘
)
𝑇, and Γ

𝑘
= Diag(𝛾1

𝑘
, . . . , 𝛾

𝑚

𝑘
).

Hence, the problem is to obtain the LS linear estimator of
the signal, 𝑧

𝑘
, based on the randomly delayed observations

{𝑦
1
, . . . , 𝑦

𝐿
} given in (3). Next, we present the statistical

properties of the processes involved in observation model
(3), from which the LS linear filtering and fixed-point
smoothing algorithms of the signal 𝑧

𝑘
will be derived; these

properties are easily inferred from themodel Assumptions 3–
8 previously established.

(i) {𝐻
𝑘
; 𝑘 ≥ 1} are 𝑚 × 𝑛 independent random

parameter matrices with known means, 𝐻
𝑘

≡

𝐸[𝐻
𝑘
] = (𝐻

1𝑇

𝑘
, . . . , 𝐻

𝑚𝑇

𝑘
)
𝑇

, and known covariances,
Cov[ℎ𝑘

𝑖,𝑝
, ℎ
𝑠

𝑗,𝑞
], where ℎ𝑘

𝑖,𝑝
denotes the (𝑖, 𝑝)th entry of

matrix,𝐻
𝑘
, for 𝑖 = 1, 2, . . . , 𝑚 and 𝑝 = 1, 2, . . . , 𝑛.

(ii) {Ṽ
𝑘
; 𝑘 ≥ 1} is a zero-mean process with Cov[Ṽ

𝑘
, Ṽ
𝑠
] =

𝑅̃
𝑘,𝑘
𝛿
𝑘−𝑠

+ 𝑅̃
𝑘,𝑠
𝛿
𝑘−𝑠+1

+ 𝑅̃
𝑘,𝑠
𝛿
𝑘−𝑠−1

, where 𝑅̃
𝑘,𝑠

=

(𝑅̃
𝑖𝑗

𝑘,𝑠
)
𝑖,𝑗=1,2,...,𝑚

.

(iii) The randommatrices {Γ
𝑘
; 𝑘 > 1} are independent or,

equivalently, the 𝑚-dimensional process {𝛾
𝑘
; 𝑘 > 1},

where 𝛾
𝑘
= (𝛾
1

𝑘
, . . . , 𝛾

𝑚

𝑘
)
𝑇, is a white sequence. The

first- and second-order moments of these processes
are known, and the following notation will be used:

Γ
𝑘
≡ 𝐸 [Γ

𝑘
] = Diag (𝑝1

𝑘
, . . . , 𝑝

𝑚

𝑘
) ,

𝐾
𝛾

𝑘
≡ 𝐸 [𝛾

𝑘
𝛾
𝑇

𝑘
] ,

𝐾
1−𝛾
𝑘

≡ 𝐸 [(1 − 𝛾
𝑘
) (1 − 𝛾

𝑘
)
𝑇

] ,

𝐾
𝛾,1−𝛾
𝑘

≡ 𝐸 [𝛾
𝑘
(1 − 𝛾

𝑘
)
𝑇

] .

(4)

(iv) The signal process, {𝑧
𝑘
; 𝑘 ≥ 1}, and the processes

{𝐻
𝑘
; 𝑘 ≥ 1}, {Ṽ

𝑘
; 𝑘 ≥ 1}, and {Γ

𝑘
; 𝑘 > 1} aremutually

independent.

Remark 9. From the above properties, the following ones,
which will be frequently used in the derivation of the
algorithms, are obtained.

(a) The covariances of vectors 𝐻̃
𝑘
𝑧
𝑘
, with 𝐻̃

𝑘
= 𝐻
𝑘
−𝐻
𝑘
,

are given by

𝐾
𝐻̃𝑧

𝑘
≡ 𝐸 [𝐻̃

𝑘
𝑧
𝑘
𝑧
𝑇

𝑘
𝐻̃
𝑇

𝑘
] = 𝐸 [𝐻̃

𝑘
𝐴
𝑘
𝐵
𝑇

𝑘
𝐻̃
𝑇

𝑘
] , 𝑘 ≥ 1. (5)

This identity is easily obtained from the conditional
expectation properties, using the independence of 𝑧

𝑘

and 𝐻̃
𝑘
, and Assumption 1:

𝐸 [𝐻̃
𝑘
𝑧
𝑘
𝑧
𝑇

𝑘
𝐻̃
𝑇

𝑘
] = 𝐸 [𝐸 [𝐻̃

𝑘
𝑧
𝑘
𝑧
𝑇

𝑘
𝐻̃
𝑇

𝑘
| 𝐻̃
𝑘
]]

= 𝐸 [𝐻̃
𝑘
𝐸 [𝑧
𝑘
𝑧
𝑇

𝑘
| 𝐻̃
𝑘
] 𝐻̃
𝑇

𝑘
]

= 𝐸 [𝐻̃
𝑘
𝐸 [𝑧
𝑘
𝑧
𝑇

𝑘
] 𝐻̃
𝑇

𝑘
] .

(6)

From (5), these matrices are known and their entries
are given by

(𝐾
𝐻̃𝑧

𝑘
)
𝑖𝑗

=

𝑛

∑
𝑝=1

𝑛

∑
𝑞=1

Cov [ℎ𝑘
𝑖,𝑝
, ℎ
𝑘

𝑗,𝑞
] (𝐴
𝑘
𝐵
𝑇

𝑘
)
𝑝𝑞

,

𝑖, 𝑗 = 1, 2, . . . , 𝑚.

(7)

(b) The covariances of the vectors𝐻
𝑘
𝑧
𝑘
are given by

𝐸 [𝐻
𝑘
𝑧
𝑘
𝑧
𝑇

𝑘
𝐻
𝑇

𝑘
] = 𝐾

𝐻̃𝑧

𝑘
+ 𝐻
𝑘
𝐴
𝑘
𝐵
𝑇

𝑘
𝐻
𝑇

𝑘
, 𝑘 ≥ 1. (8)

(c) If𝐺 is a𝑚×𝑚 randommatrix independent of {Γ
𝑘
, 𝑘 >

1}, the Hadamard product properties and (iii) lead to

𝐸 [Γ
𝑘
𝐺Γ
𝑘
] = 𝐾

𝛾

𝑘
∘ 𝐸 [𝐺] ,

𝐸 [Γ
𝑘
𝐺 (𝐼 − Γ

𝑘
)] = 𝐾

𝛾,1−𝛾
𝑘

∘ 𝐸 [𝐺] ,

𝐸 [(𝐼 − Γ
𝑘
) 𝐺 (𝐼 − Γ

𝑘
)] = 𝐾

1−𝛾
𝑘

∘ 𝐸 [𝐺] .

(9)

To simplify future formulas and expressions, the observa-
tion model (3) will be written equivalently as follows:

𝑦
𝑘
= 𝑥
𝑘
+ V
𝑘
, 𝑘 ≥ 1,

𝑥
𝑘
= (𝐼 − Γ

𝑘
)𝐻
𝑘
𝑧
𝑘
+ Γ
𝑘
𝐻
𝑘−1

𝑧
𝑘−1

, 𝑘 ≥ 2; 𝑥
1
= 𝐻
1
𝑧
1
,

V
𝑘
= (𝐼 − Γ

𝑘
) Ṽ
𝑘
+ Γ
𝑘
Ṽ
𝑘−1

, 𝑘 ≥ 2; V
1
= Ṽ
1
.

(10)

Taking into account the model properties and those specified
in Remark 9, the first- and second-order properties of the
processes {𝑥

𝑘
; 𝑘 ≥ 1} and {V

𝑘
; 𝑘 ≥ 1} and, consequently,

those of the observation process, {𝑦
𝑘
; 𝑘 ≥ 1}, are easily

obtained. They are established in the following lemmas.

Lemma 10. The process {𝑥
𝑘
; 𝑘 ≥ 1} has zero mean and 𝐾𝑥

𝑘
≡

Cov [𝑥
𝑘
, 𝑥
𝑘
] is given by

𝐾
𝑥

𝑘
= 𝐾
1−𝛾

𝑘
∘ (𝐾
𝐻̃𝑧

𝑘
+ 𝐻
𝑘
𝐴
𝑘
𝐵
𝑇

𝑘
𝐻
𝑇

𝑘
)

+ 𝐾
1−𝛾,𝛾

𝑘
∘ (𝐻
𝑘
𝐴
𝑘
𝐵
𝑇

𝑘−1
𝐻
𝑇

𝑘−1
)

+ 𝐾
𝛾,1−𝛾

𝑘
∘ (𝐻
𝑘−1

𝐵
𝑘−1

𝐴
𝑇

𝑘
𝐻
𝑇

𝑘
)

+ 𝐾
𝛾

𝑘
∘ (𝐾
𝐻̃𝑧

𝑘−1
+ 𝐻
𝑘−1

𝐴
𝑘−1

𝐵
𝑇

𝑘−1
𝐻
𝑇

𝑘−1
) , 𝑘 ≥ 2;

𝐾
𝑥

1
= 𝐾
𝐻̃𝑧

1
+ 𝐻
1
𝐴
1
𝐵
𝑇

1
𝐻
𝑇

1
.

(11)
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Lemma 11. {V
𝑘
; 𝑘 ≥ 1} has zero mean and Cov [V

𝑘
, V
𝑠
] =

𝑅
𝑘,𝑘
𝛿
𝑘−𝑠

+ 𝑅
𝑘,𝑠
𝛿
𝑘−𝑠−1

+ 𝑅
𝑘,𝑠
𝛿
𝑘−𝑠−2

, 𝑠 ≤ 𝑘, where

𝑅
𝑘,𝑘

= 𝐾
1−𝛾

𝑘
∘ 𝑅̃
𝑘,𝑘

+ 𝐾
1−𝛾,𝛾

𝑘
∘ 𝑅̃
𝑘,𝑘−1

+ 𝐾
𝛾,1−𝛾

𝑘
∘ 𝑅̃
𝑘−1,𝑘

+ 𝐾
𝛾

𝑘
∘ 𝑅̃
𝑘−1,𝑘−1

, 𝑘 > 1;

𝑅
𝑘,𝑘−1

= (𝐼 − Γ
𝑘
) 𝑅̃
𝑘,𝑘−1

(𝐼 − Γ
𝑘−1

) + Γ
𝑘
𝑅̃
𝑘−1,𝑘−1

(𝐼 − Γ
𝑘−1

)

+ Γ
𝑘
𝑅̃
𝑘−1,𝑘−2

Γ
𝑘−1

, 𝑘 > 2;

𝑅
𝑘,𝑘−2

= Γ
𝑘
𝑅̃
𝑘−1,𝑘−2

(𝐼 − Γ
𝑘−2

) , 𝑘 > 3;

𝑅
1,1

= 𝑅̃
1,1
, 𝑅
2,1

= (𝐼 − Γ
2
) 𝑅̃
2,1

+ Γ
2
𝑅̃
1,1
, 𝑅
3,1

= Γ
3
𝑅̃
2,1
.

(12)

Lemma 12. The processes {𝑥
𝑘
; 𝑘 ≥ 1} and {V

𝑘
; 𝑘 ≥ 1} are

uncorrelated and, consequently,

𝐾
𝑦

𝑘
≡ Cov [𝑦

𝑘
, 𝑦
𝑘
] = 𝐾

𝑥

𝑘
+ 𝑅
𝑘,𝑘
, 𝑘 ≥ 1, (13)

with 𝐾𝑥
𝑘
and 𝑅

𝑘,𝑘
given in (11) and (12), respectively.

3. Innovation Approach to the LS Linear
Estimation Problem

To obtain a recursive algorithm for the LS linear estimator,
𝑧̂
𝑘/𝐿

, of the signal, 𝑧
𝑘
, based on the randomly delayed obser-

vations, {𝑦
1
, . . . , 𝑦

𝐿
}, an innovation approach will be used

[32]. This approach consists of transforming the observation
process {𝑦

𝑘
; 𝑘 ≥ 1} into an equivalent one (innovation

process) of orthogonal vectors {𝜇
𝑘
; 𝑘 ≥ 1}, defined by

𝜇
𝑘
= 𝑦
𝑘
− 𝑦
𝑘/𝑘−1

, where 𝑦
𝑘/𝑘−1

is the orthogonal projection
of 𝑦
𝑘
into the linear space generated by {𝜇

1
, . . . , 𝜇

𝑘−1
}. The

orthogonality property of the new process allows us to
simplify the estimators’ expressions (which also simplifies the
algorithms derivation) in comparison to those obtainedwhen
the estimators are expressed directly as linear combination of
the observations.

Specifically, if 𝑤
𝑘
denotes a random vector to be esti-

mated, the LS linear estimator of 𝑤
𝑘
based on the observa-

tions {𝑦
1
, . . . , 𝑦

𝐿
} (which will be denoted as𝑤

𝑘/𝐿
) agrees with

that based on the innovations {𝜇
1
, . . . , 𝜇

𝐿
} or, equivalently,

with the orthogonal projection of 𝑤
𝑘
onto the linear space

generated by {𝜇
1
, . . . , 𝜇

𝐿
}. Hence,

𝑤
𝑘/𝐿

=

𝐿

∑
𝑗=1

𝑁
𝑘,𝑗
𝜇
𝑗
, (14)

and the impulse-response function,𝑁
𝑘,𝑗
, 𝑗 = 1, . . . , 𝐿, is cal-

culated from the orthogonality property, 𝐸[(𝑤
𝑘
− 𝑤
𝑘/𝐿

)𝜇
𝑇

𝑠
] =

0, 𝑠 ≤ 𝐿, which leads to the Wiener-Hopf equation, taking
into account that 𝐸[𝜇

𝑗
𝜇
𝑇

𝑠
] = 0 for 𝑗 ̸= 𝑠,

𝐸 [𝑤
𝑘
𝜇
𝑇

𝑠
] = 𝑁

𝑘,𝑠
𝐸 [𝜇
𝑠
𝜇
𝑇

𝑠
] , 𝑠 ≤ 𝐿. (15)

Consequently, by denoting Π
𝑗

= 𝐸[𝜇
𝑗
𝜇
𝑇

𝑗
], the following

general expression for the LS linear estimators of 𝑤
𝑘
is

obtained:

𝑤
𝑘/𝐿

=

𝐿

∑
𝑗=1

𝐸 [𝑤
𝑘
𝜇
𝑇

𝑗
]Π
−1

𝑗
𝜇
𝑗
. (16)

3.1. Innovation Process. As indicated above, the innovation
at time 𝑘 is defined as 𝜇

𝑘
= 𝑦
𝑘
− 𝑦
𝑘/𝑘−1

, where 𝑦
𝑘/𝑘−1

, the
orthogonal projection of𝑦

𝑘
onto the linear space generated by

{𝜇
1
, . . . , 𝜇

𝑘−1
}, is the LS one-stage linear predictor of 𝑦

𝑘
. From

(10) and the orthogonal projection lemma, this estimator can
be expressed by

𝑦
𝑘/𝑘−1

= 𝑥
𝑘/𝑘−1

+ V̂
𝑘/𝑘−1

, 𝑘 ≥ 2,

𝑦
1/0

= 0,
(17)

so we need the one-stage predictors 𝑥
𝑘/𝑘−1

and V̂
𝑘/𝑘−1

which,
by using the general expression (16) for the LS linear estima-
tors, are given by

𝑥
𝑘/𝑘−1

=

𝑘−1

∑
𝑗=1

𝐸 [𝑥
𝑘
𝜇
𝑇

𝑗
]Π
−1

𝑗
𝜇
𝑗
,

V̂
𝑘/𝑘−1

=

𝑘−1

∑
𝑗=1

𝐸 [V
𝑘
𝜇
𝑇

𝑗
]Π
−1

𝑗
𝜇
𝑗
.

(18)

(1) From the independence property (iv), it is clear that

𝐸 [𝑥
𝑘
𝜇
𝑇

𝑗
] = (𝐼 − Γ

𝑘
)𝐻
𝑘
𝐸 [𝑧
𝑘
𝜇
𝑇

𝑗
] + Γ
𝑘
𝐻
𝑘−1

𝐸 [𝑧
𝑘−1

𝜇
𝑇

𝑗
] ,

𝑗 ≤ 𝑘 − 2,

(19)

and hence, for 𝑘 > 2,

𝑥
𝑘/𝑘−1

= (𝐼 − Γ
𝑘
)𝐻
𝑘

𝑘−2

∑
𝑗=1

𝐸 [𝑧
𝑘
𝜇
𝑇

𝑗
]Π
−1

𝑗
𝜇
𝑗

+ Γ
𝑘
𝐻
𝑘−1

𝑘−2

∑
𝑗=1

𝐸 [𝑧
𝑘−1

𝜇
𝑇

𝑗
]Π
−1

𝑗
𝜇
𝑗

+ 𝐸 [𝑥
𝑘
𝜇
𝑇

𝑘−1
]Π
−1

𝑘−1
𝜇
𝑘−1

;

(20)

then, from (16) for 𝑧̂
𝑘/𝑘−2

and 𝑧̂
𝑘−1/𝑘−2

, we obtain

𝑥
𝑘/𝑘−1

= (𝐼 − Γ
𝑘
)𝐻
𝑘
𝑧̂
𝑘/𝑘−2

+ Γ
𝑘
𝐻
𝑘−1

𝑧̂
𝑘−1/𝑘−2

+ 𝐸 [𝑥
𝑘
𝜇
𝑇

𝑘−1
]Π
−1

𝑘−1
𝜇
𝑘−1

, 𝑘 > 2,

𝑥
2/1

= 𝐸 [𝑥
2
𝜇
𝑇

1
]Π
−1

1
𝜇
1
.

(21)

(2) The uncorrelation of Ṽ
𝑘
and Ṽ

𝑘−1
with Ṽ

1
, . . . , Ṽ

𝑘−3

and the independence property (iv) guarantee that
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𝐸[V
𝑘
𝜇
𝑇

𝑗
] = 0, 𝑗 = 1, . . . , 𝑘 − 3, and 𝐸[V

𝑘
𝜇
𝑇

𝑘−2
] =

𝐸[V
𝑘
𝑦
𝑇

𝑘−2
], and this last expectation is equal to

𝐸[V
𝑘
V𝑇
𝑘−2

] from the uncorrelation of V
𝑘
and 𝑥

𝑘−2
;

hence,

V̂
𝑘/𝑘−1

= 𝑅
𝑘,𝑘−2

Π
−1

𝑘−2
𝜇
𝑘−2

+ 𝐸 [V
𝑘
𝜇
𝑇

𝑘−1
]Π
−1

𝑘−1
𝜇
𝑘−1

, 𝑘 > 2,

V̂
2/1

= 𝐸 [V
2
𝜇
𝑇

1
]Π
−1

1
𝜇
1
.

(22)

Now, from (21) and (22), by denoting 𝑇
𝑘,𝑘−1

= 𝐸[𝑦
𝑘
𝜇
𝑇

𝑘−1
],

it is immediately clear that the innovation at time 𝑘 can be
expressed as

𝜇
𝑘
= 𝑦
𝑘
− (𝐼 − Γ

𝑘
)𝐻
𝑘
𝑧̂
𝑘/𝑘−2

− Γ
𝑘
𝐻
𝑘−1

𝑧̂
𝑘−1/𝑘−2

− 𝑅
𝑘,𝑘−2

Π
−1

𝑘−2
𝜇
𝑘−2

− 𝑇
𝑘,𝑘−1

Π
−1

𝑘−1
𝜇
𝑘−1

, 𝑘 > 2;

𝜇
2
= 𝑦
2
− 𝑇
2,1
Π
−1

1
𝜇
1
; 𝜇

1
= 𝑦
1
,

(23)

and, hence, its determination requires that of the linear signal
predictors, 𝑧̂

𝑘/𝐿
, 𝐿 = 𝑘 − 1, 𝑘 − 2. The derivation of the linear

predictors is analogous to that of the filter, 𝑧̂
𝑘/𝑘

, so both are
obtained simultaneously in the following section.

4. Prediction and Filtering
Recursive Algorithm

The following theorem presents a recursive algorithm for the
signal LS linear predictor and filter based on the delayed
observation model given in Section 2.

Theorem 13. The signal predictors 𝑧̂
𝑘/𝐿

, 𝐿 < 𝑘, and the signal
filter, 𝑧̂

𝑘/𝑘
, are obtained as

𝑧̂
𝑘/𝐿

= 𝐴
𝑘
𝑂
𝐿
, 𝐿 < 𝑘; 𝑧̂

𝑘/𝑘
= 𝐴
𝑘
𝑂
𝑘
, (24)

where the vectors 𝑂
𝑘
are recursively calculated from

𝑂
𝑘
= 𝑂
𝑘−1

+ 𝐽
𝑘
Π
−1

𝑘
𝜇
𝑘
, 𝑘 ≥ 1; 𝑂

0
= 0. (25)

The matrix function 𝐽 is given by

𝐽
𝑘
= 𝐺
𝑇

𝐵𝑘

− 𝑟
𝑘−2

𝐺
𝑇

𝐴𝑘

− 𝐽
𝑘−2

Π
−1

𝑘−2
𝑅
𝑇

𝑘,𝑘−2
− 𝐽
𝑘−1

Π
−1

𝑘−1
𝑇
𝑇

𝑘,𝑘−1
,

𝑘 > 2;

𝐽
2
= 𝐺
𝑇

𝐵2

− 𝐽
1
Π
−1

1
𝑇
𝑇

2,1
, 𝐽

1
= 𝐵
𝑇

1
𝐻
𝑇

1
,

(26)

with 𝑟
𝑘
= 𝐸[𝑂

𝑘
𝑂
𝑇

𝑘
] recursively obtained from

𝑟
𝑘
= 𝑟
𝑘−1

+ 𝐽
𝑘
Π
−1

𝑘
𝐽
𝑇

𝑘
, 𝑘 ≥ 1; 𝑟

0
= 0. (27)

The innovation, 𝜇
𝑘
, satisfies

𝜇
𝑘
= 𝑦
𝑘
− 𝐺
𝐴𝑘
𝑂
𝑘−2

− 𝑅
𝑘,𝑘−2

Π
−1

𝑘−2
𝜇
𝑘−2

− 𝑇
𝑘,𝑘−1

Π
−1

𝑘−1
𝜇
𝑘−1

,

𝑘 > 2;

𝜇
2
= 𝑦
2
− 𝑇
2,1
Π
−1

1
𝜇
1
, 𝜇

1
= 𝑦
1
,

(28)

where 𝑇
𝑘,𝑘−1

= 𝐸[𝑦
𝑘
𝜇
𝑇

𝑘−1
] is recursively obtained from

𝑇
𝑘,𝑘−1

= 𝐺
𝐴𝑘
𝐽
𝑘−1

+ Γ
𝑘
𝐾
𝐻̃𝑧

𝑘−1
(𝐼 − Γ

𝑘−1
) + 𝑅
𝑘,𝑘−1

− 𝑅
𝑘,𝑘−2

Π
−1

𝑘−2
𝑇
𝑇

𝑘−1,𝑘−2
, 𝑘 > 2;

𝑇
2,1

= 𝐺
𝐴2
𝐵
𝑇

1
𝐻
𝑇

1
+ Γ
2
𝐾
𝐻̃𝑧

1
+ 𝑅
2,1
.

(29)

The innovation covariance matrix, Π
𝑘
, is given by

Π
𝑘
= 𝐾
𝑦

𝑘
− 𝐺
𝐴𝑘
𝑟
𝑘−2

𝐺
𝑇

𝐴𝑘

− 𝑅
𝑘,𝑘−2

Π
−1

𝑘−2
𝑅
𝑇

𝑘,𝑘−2

− 𝑇
𝑘,𝑘−1

Π
−1

𝑘−1
𝑇
𝑇

𝑘,𝑘−1
− 𝐺
𝐴𝑘
𝐽
𝑘−2

Π
−1

𝑘−2
𝑅
𝑇

𝑘,𝑘−2

− 𝑅
𝑘,𝑘−2

Π
−1

𝑘−2
𝐽
𝑇

𝑘−2
𝐺
𝑇

𝐴𝑘

, 𝑘 > 2;

Π
2
= 𝐾
𝑦

2
− 𝑇
2,1
Π
−1

1
𝑇
𝑇

2,1
, Π

1
= 𝐾
𝑦

1
.

(30)

Thematrices𝐾𝐻̃𝑧
𝑘

and𝐾𝑦
𝑘
are given in (5) and (13), respectively.

𝑅
𝑘,𝑠
, for 𝑠 = 𝑘, 𝑘−1, 𝑘−2, are given in (12). Finally, the matrices

𝐺
𝐴𝑘

and 𝐺
𝐵𝑘

are defined by

𝐺
Ψ𝑘

= (𝐼 − Γ
𝑘
)𝐻
𝑘
Ψ
𝑘
+ Γ
𝑘
𝐻
𝑘−1

Ψ
𝑘−1

, Ψ = 𝐴, 𝐵. (31)

Proof. From the general expression (16), 𝑧̂
𝑘/𝐿

= ∑
𝐿

𝑗=1
𝐸[𝑧
𝑘
𝜇
𝑇

𝑗
]

Π
−1

𝑗
𝜇
𝑗
, for 𝐿 ≤ 𝑘, and the coefficients 𝑆

𝑘,𝑗
= 𝐸[𝑧

𝑘
𝜇
𝑇

𝑗
], 𝑗 ≤ 𝑘,

must be calculated in order to determine the predictors and
filter of 𝑧

𝑘
. Using expression (23) for 𝜇

𝑗
, we obtain

𝑆
𝑘,𝑗

= 𝐸 [𝑧
𝑘
𝑦
𝑇

𝑗
] − 𝐸 [𝑧

𝑘
𝑧̂
𝑇

𝑗/𝑗−2
]𝐻
𝑇

𝑗
(𝐼 − Γ

𝑗
)

− 𝐸 [𝑧
𝑘
𝑧̂
𝑇

𝑗−1/𝑗−2
]𝐻
𝑇

𝑗−1
Γ
𝑗

− 𝑆
𝑘,𝑗−2

Π
−1

𝑗−2
𝑅
𝑇

𝑗,𝑗−2
− 𝑆
𝑘,𝑗−1

Π
−1

𝑗−1
𝑇
𝑇

𝑗,𝑗−1
, 2 < 𝑗 ≤ 𝑘,

𝑆
𝑘,2

= 𝐸 [𝑧
𝑘
𝑦
𝑇

2
] − 𝑆
𝑘,1
Π
−1

1
𝑇
𝑇

2,1
,

𝑆
𝑘,1

= 𝐸 [𝑧
𝑘
𝑦
𝑇

1
] .

(32)

(a) On the one hand, from (10) and independence
hypotheses, we have

𝐸 [𝑧
𝑘
𝑦
𝑇

𝑗
] = 𝐸 [𝑧

𝑘
𝑥
𝑇

𝑗
]

= 𝐸 [𝑧
𝑘
𝑧
𝑇

𝑗
]𝐻
𝑇

𝑗
(𝐼 − Γ

𝑗
) + 𝐸 [𝑧

𝑘
𝑧
𝑇

𝑗−1
]𝐻
𝑇

𝑗−1
Γ
𝑗

= 𝐴
𝑘
𝐺
𝑇

𝐵𝑗

, 𝑗 ≥ 2,

𝐸 [𝑧
𝑘
𝑦
𝑇

1
] = 𝐸 [𝑧

𝑘
𝑥
𝑇

1
] = 𝐸 [𝑧

𝑘
𝑧
𝑇

1
]𝐻
𝑇

1
= 𝐴
1
𝐵
𝑇

1
𝐻
𝑇

1
,

(33)

where Assumption 1 and expression (31) for 𝐺
𝐵𝑗
have

been used.
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(b) On the other hand, using again (16) for 𝑧̂
𝑗/𝑗−2

and
𝑧̂
𝑗−1/𝑗−2

and 𝐸[𝑧
𝑘
𝜇
𝑇

𝑖
] = 𝑆
𝑘,𝑖
, we have

𝐸 [𝑧
𝑘
𝑧̂
𝑇

ℎ/𝑗−2
]

= 𝐸[

[

𝑧
𝑘
(

𝑗−2

∑
𝑖=1

𝑆
ℎ,𝑖
Π
−1

𝑖
𝜇
𝑖
)

𝑇

]

]

=

𝑗−2

∑
𝑖=1

𝑆
𝑘,𝑖
Π
−1

𝑖
𝑆
𝑇

ℎ,𝑖
,

ℎ = 𝑗, 𝑗 − 1, 𝑗 > 2.

(34)

Therefore,

𝑆
𝑘,𝑗

= 𝐴
𝑘
𝐺
𝑇

𝐵𝑗

−

𝑗−2

∑
𝑖=1

𝑆
𝑘,𝑖
Π
−1

𝑖
𝑆
𝑇

𝑗,𝑖
𝐻
𝑇

𝑗
(𝐼 − Γ

𝑗
)

−

𝑗−2

∑
𝑖=1

𝑆
𝑘,𝑖
Π
−1

𝑖
𝑆
𝑇

𝑗−1,𝑖
𝐻
𝑇

𝑗−1
Γ
𝑗

− 𝑆
𝑘,𝑗−2

Π
−1

𝑗−2
𝑅
𝑇

𝑗,𝑗−2
− 𝑆
𝑘,𝑗−1

Π
−1

𝑗−1
𝑇
𝑇

𝑗,𝑗−1
, 2 < 𝑗 ≤ 𝑘,

𝑆
𝑘,2

= 𝐴
𝑘
𝐺
𝑇

𝐵2

− 𝑆
𝑘,1
Π
−1

1
𝑇
𝑇

2,1
,

𝑆
𝑘,1

= 𝐴
𝑘
𝐵
𝑇

1
𝐻
𝑇

1
,

(35)

and this expression guarantees that

𝑆
𝑘,𝑗

= 𝐴
𝑘
𝐽
𝑗
, 1 ≤ 𝑗 ≤ 𝑘, (36)

where 𝐽 is a function satisfying

𝐽
𝑗
= 𝐺
𝑇

𝐵𝑗

−

𝑗−2

∑
𝑖=1

𝐽
𝑖
Π
−1

𝑖
𝑆
𝑇

𝑗,𝑖
𝐻
𝑇

𝑗
(𝐼 − Γ

𝑗
) −

𝑗−2

∑
𝑖=1

𝐽
𝑖
Π
−1

𝑖
𝑆
𝑇

𝑗−1,𝑖
𝐻
𝑇

𝑗−1
Γ
𝑗

− 𝐽
𝑗−2

Π
−1

𝑗−2
𝑅
𝑇

𝑗,𝑗−2
− 𝐽
𝑗−1

Π
−1

𝑗−1
𝑇
𝑇

𝑗,𝑗−1
, 𝑗 > 2,

𝐽
2
= 𝐺
𝑇

𝐵2

− 𝐽
1
Π
−1

1
𝑇
𝑇

2,1
,

𝐽
1
= 𝐵
𝑇

1
𝐻
𝑇

1
.

(37)

Hence, denoting

𝑂
𝑘
=

𝑘

∑
𝑖=1

𝐽
𝑖
Π
−1

𝑖
]
𝑖
, 𝑂

0
= 0, (38)

which obviously satisfies (25), expression (24) for the predic-
tors and filter is proved.

Next, taking into account (36) and denoting

𝑟
𝑘
= 𝐸 [𝑂

𝑘
𝑂
𝑇

𝑘
] =

𝑘

∑
𝑗=1

𝐽
𝑗
Π
−1

𝑗
𝐽
𝑇

𝑗
, 𝑘 ≥ 1; 𝑟

0
= 0, (39)

expression (26) for 𝐽
𝑘
is easily derived just making 𝑗 = 𝑘 in

(37). The recursive formula (27) for 𝑟
𝑘
is immediately clear

from (39).

Expression (28) for 𝜇
𝑘
is derived by substituting 𝑧̂

𝑘/𝑘−2
=

𝐴
𝑘
𝑂
𝑘−2

and 𝑧̂
𝑘−1/𝑘−2

= 𝐴
𝑘−1

𝑂
𝑘−2

in (23) and considering
expression (31) for 𝐺

𝐴𝑘
.

To prove recursive expression (29) for 𝑇
𝑘,𝑘−1

=

𝐸[𝑦
𝑘
𝜇
𝑇

𝑘−1
] = 𝐸[𝑥

𝑘
𝜇
𝑇

𝑘−1
] + 𝐸[V

𝑘
𝜇
𝑇

𝑘−1
], 𝑘 ≥ 2, we calculate both

expectations as follows.

(1) From expression (10) for 𝑥
𝑘
, using the independence

properties and 𝐸[𝑧
ℎ
𝜇
𝑇

𝑘−1
] = 𝑆
ℎ,𝑘−1

= 𝐴
ℎ
𝐽
𝑘−1

, for ℎ =

𝑘, 𝑘 − 1, we have

𝐸 [𝑥
𝑘
𝜇
𝑇

𝑘−1
] = 𝐺
𝐴𝑘
𝐽
𝑘−1

+ Γ
𝑘
𝐸 [𝐻̃
𝑘−1

𝑧
𝑘−1

𝜇
𝑇

𝑘−1
] , 𝑘 > 2,

(40)

and since

𝐸 [𝐻̃
𝑘−1

𝑧
𝑘−1

𝜇
𝑇

𝑘−1
]

= 𝐸 [𝐻̃
𝑘−1

𝑧
𝑘−1

𝑦
𝑇

𝑘−1
] = 𝐸 [𝐻̃

𝑘−1
𝑧
𝑘−1

𝑥
𝑇

𝑘−1
]

= 𝐸 [𝐻̃
𝑘−1

𝑧
𝑘−1

𝑧
𝑇

𝑘−1
𝐻̃
𝑇

𝑘−1
] (𝐼 − Γ

𝑘−1
) ,

(41)

it is clear that

𝐸 [𝑥
𝑘
𝜇
𝑇

𝑘−1
] = 𝐺
𝐴𝑘
𝐽
𝑘−1

+ Γ
𝑘
𝐾
𝐻̃𝑧

𝑘−1
(𝐼 − Γ

𝑘−1
) , 𝑘 > 2.

(42)

Analogously, 𝐸[𝑥
2
𝜇
𝑇

1
] = 𝐺
𝐴2
𝐽
1
+ Γ
2
𝐾
𝐻̃𝑧

1
.

(2) Using that𝑦
𝑘−1/𝑘−2

= ∑
𝑘−2

𝑗=1
𝑇
𝑘−1,𝑗

Π
−1

𝑗
𝜇
𝑗
and𝐸[V

𝑘
𝜇
𝑇

𝑗
] =

0, 𝑗 = 1, . . . , 𝑘 − 3, we have

𝐸 [V
𝑘
𝜇
𝑇

𝑘−1
]

= 𝐸 [V
𝑘
𝑦
𝑇

𝑘−1
] − 𝐸 [V

𝑘
𝑦
𝑇

𝑘−1/𝑘−2
]

= 𝐸 [V
𝑘
𝑦
𝑇

𝑘−1
] − 𝐸 [V

𝑘
𝜇
𝑇

𝑘−2
]Π
−1

𝑘−2
𝑇
𝑇

𝑘−1,𝑘−2
, 𝑘 > 2,

(43)

and since 𝐸[V
𝑘
𝑦
𝑇

𝑘−1
] = 𝐸[V

𝑘
V𝑇
𝑘−1

] and 𝐸[V
𝑘
𝜇
𝑇

𝑘−2
] =

𝐸[V
𝑘
𝑦
𝑇

𝑘−2
] = 𝐸[V

𝑘
V𝑇
𝑘−2

], we obtain

𝐸 [V
𝑘
𝜇
𝑇

𝑘−1
] = 𝑅
𝑘,𝑘−1

− 𝑅
𝑘,𝑘−2

Π
−1

𝑘−2
𝑇
𝑇

𝑘−1,𝑘−2
, 𝑘 > 2. (44)

Clearly, 𝐸[V
2
𝜇
𝑇

1
] = 𝐸[V

2
𝑦
𝑇

1
] = 𝐸[V

2
V𝑇
1
] = 𝑅
2,1
.

So expression (29) is proved.
Finally, formula (30) for the innovation covariancematri-

ces is obtained by writing Π
𝑘
= 𝐸[𝑦

𝑘
𝑦
𝑇

𝑘
] − 𝐸[𝑦

𝑘/𝑘−1
𝑦
𝑇

𝑘/𝑘−1
],

using the expression for the observation predictor, 𝑦
𝑘/𝑘−1

,
and taking into account that 𝐸[𝑂

𝑘
𝑂
𝑇

𝑘
] = 𝑟
𝑘
and 𝐸[𝑂

𝑘
𝜇
𝑇

𝑘
] =

𝐽
𝑘
.

4.1. Filtering Error Covariance Matrices. The performance of
the LS estimators 𝑧̂

𝑘/𝐿
, 𝐿 ≤ 𝑘, is measured by the covariance

matrices of the estimation errors, Σ
𝑘/𝐿

= 𝐸[(𝑧
𝑘
− 𝑧̂
𝑘/𝐿

)(𝑧
𝑘
−

𝑧̂
𝑘/𝐿

)
𝑇

]. Since the error of a LS linear estimator is orthogonal
to the estimator, using Assumption 1, thesematrices are given
by

Σ
𝑘/𝐿

= 𝐴
𝑘
𝐵
𝑇

𝑘
− 𝐸 [𝑧̂

𝑘/𝐿
𝑧̂
𝑇

𝑘/𝐿
] , 𝐿 ≤ 𝑘. (45)
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Then, by using expression (24) and taking into account that
𝑟
𝐿
= 𝐸[𝑂

𝐿
𝑂
𝑇

𝐿
], we obtain the following expressions for the

prediction and filtering error covariance matrices:

Σ
𝑘/𝐿

= 𝐴
𝑘
[𝐵
𝑇

𝑘
− 𝑟
𝐿
𝐴
𝑇

𝑘
] , 𝐿 ≤ 𝑘. (46)

Note that the computation of the prediction and filtering
error covariance matrices does not depend on the current
set of observations, as it only needs the matrices 𝐴

𝑘
and 𝐵

𝑘
,

which are known, and the matrices 𝑟
𝐿
, which are recursively

calculated from (27); hence, the error covariance matrices
provide a measure of the estimator performance even before
we get any observed data.

5. Fixed-Point Smoothing Algorithm

In this section, we present a recursive algorithm for the LS
linear fixed-point smoothers, 𝑧̂

𝑘/𝐿
, 𝐿 > 𝑘, where 𝑘 is fixed

and recursions for increasing 𝐿 are proposed. By starting
from the general expression for the LS linear estimator of
the signal, 𝑧̂

𝑘/𝐿
= ∑
𝐿

𝑗=1
𝑆
𝑘,𝑗
Π
−1

𝑗
𝜇
𝑗
, where 𝑆

𝑘,𝑗
= 𝐸[𝑧

𝑘
𝜇
𝑇

𝑗
] and

Π
𝑗
= 𝐸[𝜇

𝑗
𝜇
𝑇

𝑗
], it is clear that the linear fixed-point smoothers,

𝑧̂
𝑘/𝐿

, 𝐿 > 𝑘, can be recursively calculated as

𝑧̂
𝑘/𝐿

= 𝑧̂
𝑘/𝐿−1

+ 𝑆
𝑘,𝐿
Π
−1

𝐿
𝜇
𝐿
, 𝐿 > 𝑘, (47)

with the linear filter, 𝑧̂
𝑘/𝑘

, as initial condition.
Hence, to calculate the fixed-point smoothing estimators,

𝑧̂
𝑘/𝐿

, for 𝐿 > 𝑘 (𝑘 fixed), we need a recursive relation in 𝐿 for
𝑆
𝑘,𝐿

= 𝐸[𝑧
𝑘
𝜇
𝑇

𝐿
] = 𝐸[𝑧

𝑘
𝑦
𝑇

𝐿
] − 𝐸[𝑧

𝑘
𝑦
𝑇

𝐿/𝐿−1
], 𝐿 > 𝑘.

On the one hand, as in the proof of Theorem 13, using
(10) and taking into account the independence hypotheses,
together with Assumption 1 and expression (31) for 𝐺

𝐴𝐿
, we

have
𝐸 [𝑧
𝑘
𝑦
𝑇

𝐿
] = 𝐸 [𝑧

𝑘
𝑥
𝑇

𝐿
]

= 𝐸 [𝑧
𝑘
𝑧
𝑇

𝐿
]𝐻
𝑇

𝐿
(𝐼 − Γ

𝐿
) + 𝐸 [𝑧

𝑘
𝑧
𝑇

𝐿−1
]𝐻
𝑇

𝐿−1
Γ
𝑗

= 𝐵
𝑘
𝐺
𝑇

𝐴𝐿

, 𝐿 > 𝑘.

(48)

On the other hand, the expression of𝑦𝑇
𝐿/𝐿−1

obtained from
(28) for 𝑘 = 𝐿 yields

𝐸 [𝑧
𝑘
𝑦
𝑇

𝐿/𝐿−1
] = 𝐸 [𝑧

𝑘
𝑂
𝑇

𝐿−2
] 𝐺
𝑇

𝐴𝐿

+ 𝑆
𝑘,𝐿−2

Π
−1

𝐿−2
𝑅
𝑇

𝐿,𝐿−2

+ 𝑆
𝑘,𝐿−1

Π
−1

𝐿−1
𝑇
𝑇

𝐿,𝐿−1
, 𝐿 > 𝑘, (𝐿 > 2) ,

𝐸 [𝑧
1
𝑦
𝑇

2/1
] = 𝑆
1,1
Π
−1

1
𝑇
𝑇

2,1
= 𝐴
1
𝐽
1
Π
−1

1
𝑇
𝑇

2,1
.

(49)

Therefore, defining the function 𝐸
𝑘,𝐿

= 𝐸[𝑧
𝑘
𝑂
𝑇

𝐿
], the

following expression holds:

𝑆
𝑘,𝐿

= [𝐵
𝑘
− 𝐸
𝑘,𝐿−2

] 𝐺
𝑇

𝐴𝐿

− 𝑆
𝑘,𝐿−2

Π
−1

𝐿−2
𝑅
𝑇

𝐿,𝐿−2

− 𝑆
𝑘,𝐿−1

Π
−1

𝐿−1
𝑇
𝑇

𝐿,𝐿−1
, 𝐿 > 𝑘, (𝐿 > 2) ,

𝑆
1,2

= 𝐵
1
𝐺
𝑇

𝐴2

− 𝑆
1,1
Π
−1

1
𝑇
𝑇

2,1
,

(50)

with initial conditions given by 𝑆
𝑘,𝑘−1

= 𝐴
𝑘
𝐽
𝑘−1

and 𝑆
𝑘,𝑘

=

𝐴
𝑘
𝐽
𝑘
, from (36).
Finally, we need a recursive expression for 𝐸

𝑘,𝐿
, 𝐿 > 𝑘 −

2. Taking into account that, from the orthogonality property,
𝐸
𝑘,𝑘−1

= 𝐸[𝑧
𝑘
𝑂
𝑇

𝑘−1
] = 𝐸[𝑧̂

𝑘/𝑘−1
𝑂
𝑇

𝑘−1
] and 𝐸

𝑘,𝑘
= 𝐸[𝑧

𝑘
𝑂
𝑇

𝑘
] =

𝐸[𝑧̂
𝑘/𝑘

𝑂
𝑇

𝑘
], using (24), and that 𝑟

𝑘
= 𝐸[𝑂

𝑘
𝑂
𝑇

𝑘
], we have that

𝐸
𝑘,𝑘−1

= 𝐴
𝑘
𝑟
𝑘−1

and 𝐸
𝑘,𝑘

= 𝐴
𝑘
𝑟
𝑘
. Now, using (25) for 𝑂

𝐿
, the

following formula is immediately deduced:

𝐸
𝑘,𝐿

= 𝐸
𝑘,𝐿−1

+ 𝑆
𝑘,𝐿
Π
−1

𝐿
𝐽
𝑇

𝐿
, 𝐿 > 𝑘. (51)

Summarizing these results, the following recursive fixed-
point smoothing algorithm is obtained.

Theorem 14. The fixed-point smoother 𝑧̂
𝑘/𝐿

, with, 𝐿 > 𝑘, of
the signal 𝑧

𝑘
is calculated as

𝑧̂
𝑘/𝐿

= 𝑧̂
𝑘/𝐿−1

+ 𝑆
𝑘,𝐿
Π
−1

𝐿
𝜇
𝐿
, 𝐿 > 𝑘, (52)

with initial condition given by the filter, 𝑧̂
𝑘/𝑘

, and

𝑆
𝑘,𝐿

= [𝐵
𝑘
− 𝐸
𝑘,𝐿−2

] 𝐺
𝑇

𝐴𝐿

− 𝑆
𝑘,𝐿−2

Π
−1

𝐿−2
𝑅
𝑇

𝐿,𝐿−2

− 𝑆
𝑘,𝐿−1

Π
−1

𝐿−1
𝑇
𝑇

𝐿,𝐿−1
, 𝐿 > 𝑘, (𝐿 > 2) ,

𝑆
1,2

= 𝐵
1
𝐺
𝑇

𝐴2

− 𝑆
1,1
Π
−1

1
𝑇
𝑇

2,1
,

(53)

with 𝑆
𝑘,𝑘−1

= 𝐴
𝑘
𝐽
𝑘−1

and 𝑆
𝑘,𝑘

= 𝐴
𝑘
𝐽
𝑘
.

The matrices 𝐸
𝑘,𝐿

satisfy the following recursive formula:

𝐸
𝑘,𝐿

= 𝐸
𝑘,𝐿−1

+ 𝑆
𝑘,𝐿
Π
−1

𝐿
J𝑇
𝐿
, 𝐿 > 𝑘;

𝐸
𝑘,𝑘−1

= 𝐴
𝑘
𝑟
𝑘−1

, 𝐸
𝑘,𝑘

= 𝐴
𝑘
𝑟
𝑘
.

(54)

The filter 𝑧̂
𝑘/𝑘

, the matrices 𝐺
𝐴𝐿
, 𝑇
𝐿,𝐿−1

, and 𝐽
𝐿
, and the

innovations ]
𝐿
and their covariance matrices Π

𝐿
are obtained

from the linear filtering algorithm given in Theorem 13.

Using the recursive formula of the fixed-point smoother,
the following recursive expression for the fixed-point smooth-
ing error covariance matrices, Σ

𝑘/𝐿
= 𝐸[(𝑧

𝑘
− 𝑧̂
𝑘/𝐿

)(𝑧
𝑘
−

𝑧̂
𝑘/𝐿

)
𝑇

], 𝐿 > 𝑘, is immediately deduced:

Σ
𝑘/𝐿

= Σ
𝑘/𝐿−1

− 𝑆
𝑘,𝐿
Π
−1

𝐿
𝑆
𝑇

𝑘/𝐿
, 𝐿 > 𝑘, (55)

with the filtering error covariance matrix, Σ
𝑘/𝑘

, as initial
condition.

6. Numerical Simulation Example

In this section, the applicability of the proposed prediction,
filtering, and fixed-point smoothing algorithms is shown by
a numerical simulation example with two kinds of mea-
sured outputs. For this purpose, the signal values and their
observations have been simulated inMATLAB and the signal
estimates have been calculated, as well as the corresponding
error variances, which provide a measure of the estimation
accuracy.

It is assumed that {𝑧
𝑘
; 𝑘 ≥ 1} is a zero-mean scalar signal

with autocovariance function 𝐸[𝑧
𝑘
𝑧
𝑗
] = 1.025641 × 0.95

𝑘−𝑗,
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𝑗 ≤ 𝑘, which is factorizable according to Assumption 1 just
taking, for example, 𝐴

𝑘
= 1.025641 × 0.95

𝑘 and 𝐵
𝑘
= 0.95

−𝑘.
For the simulations, the signal is assumed to be generated by
an autoregressive model, 𝑧

𝑘+1
= 0.95𝑧

𝑘
+ 𝑤
𝑘
, where {𝑤

𝑘
; 𝑘 ≥

1} is a zero-mean white Gaussian noise with variance 0.1, for
all 𝑘.

Measurements coming from two sensors are considered
and, according to the proposed observation model, it is
assumed that, at any sampling time 𝑘 ≥ 2, the measured
output from the 𝑖th sensor, 𝑦𝑖

𝑘
, can be randomly delayed by

one sampling period during network transmission; that is,

𝑦
𝑖

𝑘
= (1 − 𝛾

𝑖

𝑘
) 𝑦
𝑖

𝑘
+ 𝛾
𝑖

𝑘
𝑦
𝑖

𝑘−1
, 𝑘 ≥ 2; 𝑦

𝑖

1
= 𝑦
𝑖

1
, 𝑖 = 1, 2,

(56)

where {𝛾𝑖
𝑘
; 𝑘 > 1}, 𝑖 = 1, 2, are independent sequences of

independent Bernoulli random variables with 𝑃[𝛾
1

𝑘
= 1] =

𝑝
𝑖, ∀𝑘 > 1.

Case 1 (systems with observation multiplicative noises).
Consider measurements coming from two sensors,

𝑦
1

𝑘
= (1 + 0.1𝜖

1

𝑘
) 𝑧
𝑘
+ Ṽ1
𝑘
, 𝑘 ≥ 1,

𝑦
2

𝑘
= (0.5 + 0.1𝜖

2

𝑘
) 𝑧
𝑘
+ Ṽ2
𝑘
, 𝑘 ≥ 1,

(57)

where the multiplicative noises {𝜖𝑖
𝑘
; 𝑘 ≥ 1}, 𝑖 = 1, 2, are

independent zero-mean Gaussian white processes with unit
variance, and the additive noises {Ṽ𝑖

𝑘
; 𝑘 ≥ 1}, 𝑖 = 1, 2, are

defined by Ṽ𝑖
𝑘
= 𝑐
𝑖
(𝜂
𝑘
+ 𝜂
𝑘+1

), 𝑖 = 1, 2, with 𝑐
1
= 1, 𝑐

2
= 0.5,

and {𝜂
𝑘
; 𝑘 ≥ 1} a zero-mean Gaussian white process with

variance 0.5. Clearly, according to Assumption 4, the additive
noises {Ṽ𝑖

𝑘
; 𝑘 ≥ 1} are one-step autocorrelated with

𝑅̃
𝑖𝑖

𝑘,𝑘
= 𝑐
2

𝑖
, 𝑅̃

𝑖𝑖

𝑘,𝑘+1
= 0.5𝑐

2

𝑖
,

𝑅̃
𝑖𝑗

𝑘,𝑘
= 𝑐
𝑖
𝑐
𝑗
, 𝑅̃

𝑖𝑗

𝑘,𝑘+1
= 0.5𝑐

𝑖
𝑐
𝑗
.

(58)

Firstly, to compare the performance of the predictor,
𝑧̂
𝑘/𝑘−1

, filter, 𝑧̂
𝑘/𝑘

, and fixed-point smoothers, 𝑧̂
𝑘/𝐿

, with 𝐿 =

𝑘 + 1, 𝑘 + 2, 𝑘 + 3, the corresponding error variances are
calculated considering constant delay probabilities, 𝑝1 = 0.1

and 𝑝
2

= 0.3. The results are displayed in Figure 1 which
shows that the error variances corresponding to the fixed-
point smoother are less than those of the filter and the filtering
error variances are smaller than the prediction ones, thus
confirming that the smoother has the best performance while
the predictor has the worst performance. This figure also
shows that the performance of the fixed-point smoothers
improves as the number of available observations increases.
Analogous results are obtained for other values of the proba-
bilities 𝑝𝑖, 𝑖 = 1, 2.

Next, we study the filtering error variances, Σ
𝑘/𝑘

, when
the delay probabilities 𝑝1 and 𝑝2 are varied from 0.1 to 0.9. In
all the cases, the filtering error variances present insignificant
variation from the 10th iteration onwards and, consequently,
only the error variances at a specific iteration are shown here.
Figure 2(a) displays the filtering error variances at 𝑘 = 50
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Fixed-point smoothing error variances k/k+2
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Σ

Σ

Σ

Σ
Σ

Figure 1: Prediction, filtering, and smoothing error variances, when
𝑝
1

= 0.1 and 𝑝2 = 0.3.

versus 𝑝1 (for constant values of 𝑝2) and Figure 2(b) shows
these variances versus 𝑝2 (for constant values of 𝑝1).

From these figures it is concluded that the performance
of the filter improves as the delay probabilities, 𝑝𝑖, 𝑖 =

1, 2, decrease. Consequently, more accurate estimations are
obtained as 𝑝𝑖 comes nearer to 0, a case in which all the
observations arrive on time.

Case 2 (systems with missing measurements). As in [28],
consider missing measurements from two sensors, with
different missing characteristics and noise correlation:

𝑦
𝑖

𝑘
= 𝜃
𝑖

𝑘
𝑧
𝑘
+ Ṽ𝑖
𝑘
, 𝑘 ≥ 1, 𝑖 = 1, 2, (59)

where the noise processes {Ṽ𝑖
𝑘
; 𝑘 ≥ 1}, 𝑖 = 1, 2, are

the same as those in Example 1. Two different independent
sequences of random variables {𝜃𝑖

𝑘
; 𝑘 ≥ 1}, 𝑖 = 1, 2, with

a probability distribution over the interval [0, 1] are used to
model the missing phenomenon: {𝜃1

𝑘
; 𝑘 ≥ 1} is a sequence of

independent variables with 𝑃[𝜃
1

𝑘
= 0] = 0.1, 𝑃[𝜃

1

𝑘
= 0.5] =

0.5, and 𝑃[𝜃
1

𝑘
= 1] = 0.4, and {𝜃

2

𝑘
; 𝑘 ≥ 1} is a sequence of

independent Bernoulli variables with 𝑃[𝜃
2

𝑘
= 1] = 𝜃. For all

𝑘, themeans and variances of these variables are𝐸[𝜃1
𝑘
] = 0.65,

𝐸[𝜃
2

𝑘
] = 𝜃, Var[𝜃1

𝑘
] = 0.1025, and Var[𝜃2

𝑘
] = 𝜃(1 − 𝜃).

For different values of the missing probability 𝜃 and
the delay probabilities 𝑝

1 and 𝑝
2, a comparative analysis,

similar to that carried out in Case 1, based on the estimation
error variances of the predictor, filter, and smoother was
performed. For all values, the results were similar to those
given in Figure 1, showing that the fixed-point smoothing
error variances are less than the filtering ones which, in
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Figure 2: (a) Filtering error variances, Σ
50/50

, versus 𝑝
1
(for constant values of 𝑝

2
). (b) Filtering error variances Σ

50/50
versus 𝑝

2
(for constant

values of 𝑝
1
).

turn, are smaller than the prediction error variances, thus
confirming the comments on Figure 1.

Next, considering a fixed value of 𝜃, namely, 𝜃 = 0.5,
the filtering error variances have been calculated for different
values of the delay probabilities 𝑝1 and 𝑝

2. Specifically, the
values 𝑝

1

= 0.1, 0.3, 0.4 and 𝑝
2

= 0.1, 0.3, 0.4, 0.5
have been used. The results are given in Figure 3 which
shows that, as the delay probability 𝑝

1 or 𝑝2 increases, the
filtering error variances become greater and, consequently,
worse estimations are obtained. Also, a similar study to that
performed in Figure 2 has been carried out in this case;
specifically, for fixed values of 𝜃 and fixed delay probability
in one of the sensors, the filtering error variances have been
analyzed for different delay probabilities in the other sensor.
The results are omitted as they are completely analogous to
those displayed in Figure 2.

Also, to analyze the performance of the proposed esti-
mators versus the probability 𝜃 that the signal is present in
the measurements of the second sensor, the filtering error
variances have been calculated for 𝑝1 = 0.1, 𝑝2 = 0.3, and
𝜃 varying from 𝜃 = 0.3 to 𝜃 = 0.8. The results are displayed
in Figure 4; this figure shows that, as 𝜃 increases, the filtering
error variances become smaller and, hence, better estimations
are obtained. Analogous conclusions are deduced for other
values of 𝑝1, 𝑝2, and 𝜃.

Finally, we present a comparative analysis of the proposed
filter and the following filters:

(a) the suboptimal Kalman-type filter [13] for systems
with uncorrelated white noises and one-step random
delays,

(b) the optimal linear filter based on covariance informa-
tion [15] for the same class of systems considered in
[13],

(c) the centralized Kalman-type filter [26] for systems
with correlated and cross-correlated noises,

(d) the optimal centralized filter [28] for systems with
missing measurements and correlated and cross-
correlated noises.

Considering the values 𝜃 = 0.75, 𝑝1 = 0.4, and 𝑝
2

=

0.5 and using one thousand independent simulations, the
different filtering estimates were compared using the mean
square error (MSE) at each time instant 𝑘, which is calculated
as MSE

𝑘
= (1/1000)∑

1000

𝑠=1
(𝑥
(𝑠)

𝑘
− 𝑥
(𝑠)

𝑘/𝑘
)
2

, where {𝑥(𝑠)
𝑘
; 1 ≤ 𝑘 ≤

50} denote the 𝑠th set of artificially simulated data and 𝑥
(𝑠)

𝑘/𝑘

is the filter at the sampling time 𝑘 in the 𝑠th simulation run.
The results are displayed in Figure 5, which shows that (a)
the proposed filtering algorithm provides better estimations
than the other four filtering algorithms; (b) the performance
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Figure 4: Filtering error variances for 𝜃 = 0.3 to 𝜃 = 0.8, when
𝑝
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= 0.1 and 𝑝2 = 0.3.

of the optimal filter [15] is better than that of the suboptimal
filter [13]; (c) the performance of the filters [13, 15] is better
than that of the filters [26, 28] since these filters ignore any
delay assumption; (d) the filtering algorithm in [26] provides
the worst estimations as this filter considers correlated and
cross-correlated noises, but neither missing observations nor
delayed measurements are taken into account.

7. Conclusions

The optimal least-squares linear estimation problem from
randomly delayed measurements has been investigated for
discrete-timemultisensor linear stochastic systems with both
random parameter matrices and correlated noises in the
measured outputs. The main contributions are summarized
as follows.

(1) The currentmultisensor observationmodel considers
simultaneously one-step random delayed measure-
ments with different delay rates and both random
parameter matrices and correlated noises in the
measured outputs. This observation model covers
those situations where the sensor noises are one-step
autocorrelated and also one-step cross-correlations
between different sensor noises are considered. This
correlation assumption is valid in a wide spectrum of
applications, for example, in target tracking systems
where a target is observed by multiple sensors and
all of them operate in the same noisy environment.
A similar study to that performed in this paper
would allow us to generalize the current results by
considering more general situations in which the
signal and the observation noises are correlated. This
extension would cover systems where the sensor and
process noises are correlated and would constitute an
interesting research topic.

(2) The random delay in each sensor is modelled by a
sequence of independent Bernoulli random variables,
whose parameters represent the delay probabilities.
Another interesting future direction would be to
complement the current study considering randomly
delayedmeasurements correlated at consecutive sam-
pling times, thus covering situations where two suc-
cessive observations cannot be delayed. This kind of
delay is usual in situations such as network conges-
tion, random failures in the transmissionmechanism,
or data inaccessibility at certain times.

(3) Using covariance information, recursive optimal LS
linear prediction, filtering, and smoothing algo-
rithms, with a simple computational procedure, are
derived by an innovation approach without requiring
full knowledge of the state-space model generating
the signal process.

(4) The applicability of the proposed algorithms is illus-
trated by a numerical simulation example, where a
scalar state process generated by a first-order autore-
gressive model is estimated from delayed measure-
ments coming from two sensors, in the following
cases: (1) systems with observation multiplicative
noises and (2) systems with missing measurements,
both with correlated observation noises.
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