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Fenómenos de No-equilibrio en un Sistema de
Discos Rı́gidos
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vior of Hard Disks Systems (Fenómenos de No-equilibrio en un Sistema de
Discos Rı́gidos), ha sido realizada por D. Jesús Javier del Pozo Mellado bajo
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Introduction

One of the most strikingly features of Nature is that it can be described at
different scales. Thought a continuous change of scale from the sub-atomic to
the supra-galactic, the phenomenology and the relevant magnitudes needed
to describe it, change in a rather surprising way. Once the spatio-temporal
scale is chosen we can always define a set of representatives magnitudes that
characterize the description of a given natural phenomenon. For example,
if we are trying to describe sub-nuclear interactions, where spatial scale is
about 10−15 m and the temporal is about 10−12 s, we need magnitudes like
the the quarks’ flavor, or their color. These magnitudes, although present,
are not necessary to describe an atom in a scale of 10−10 m and 10−9 s,
where the relevant magnitudes are, for example, the number of protons,
neutrons and electrons. In both cases there are strong and electromagnetic
interactions, but their relative significance changes with the scale. In the
first case electromagnetic interactions are negligible compared with strong
interactions, but, as we move to greater scales, strong interactions fade away
and electromagnetic interactions take over. In this particular case, the cause
of this shift in the description is easily identified, because the strong in-
teraction is a short range force. But there are other situations where the
cause of the shift is more subtle. One example of such cases can be found
when we go to even greater scales. In a scale of 1010 m and 106 s, the one
associated with the Solar System, the relevant magnitudes are the mass of
the planets and the Sun, and the Electromagnetic interactions become neg-
ligible. This is so even when Electromagnetic interactions are 14 order of
magnitude greater than Gravitational interactions in every scale. However
Electromagnetic interactions, in contrast with Gravitational ones, have pos-
itive and negative contributions that cancels out due to the general neutral
character of stable matter, composed mainly by atoms of equal number of
electrons and protons. To the trained eye these examples may seam trivial,
however we must notice, not only the change in the description theory, but
also that the magnitudes in each layer of description can be related with the
phenomenology occurring in a level below. For example the magnitudes on
the atomic scale, the protons and neutrons, are effective phenomena of the
underlying sub-nuclear theory. In this way how new useful concepts emerge
from the underlying theory is highly relevant to get a coherent description
at all scales.

The particular process in each situation can be very complicated, like on
our first example, or very easy, like the the second one, but it always tries to
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2 Introduction

compactify some degrees of freedom into effective phenomena through some
sort of summation process. Typically, as we increase the number of elements
and degrees of freedom, an analytical relation is increasingly difficult to
obtain. However, when the number of degrees of freedom is sufficiently large,
new, statistical rules can be used to relate the microscopic phenomenology to
the macroscopic one. This approach is the core of one of the most successful
theories of the past century, Statistical Mechanics.

Since the pioneering works of Boltzmann, Maxwell and Gibbs, Statistical
Mechanics has obtained a mayor success in deriving the macroscopic laws of
equilibrium Thermodynamics from the microscopic dynamics of the particles
that constitute a given system. It’s approach is based on the emergent phe-
nomena that arise when a sufficiently large set of particles are constrain by
the same macroscopic variables. For example, in the micro-canonical case,
the constrains correspond to those of an isolated system, where the number
of particles N , the volume V and the total energy E are fixed. If we leave
the system under this conditions for sufficient amount of time, it reaches
a stationary state characterized by a maximum entropy. And this entropy
can be calculated within the framework of Statistical Mechanics from the
dynamical properties of the individual particles, e.g. it’s Hamiltonian. This
microscopic understanding of Thermodynamics opened the path to further
generalizations. In this way Statistical Mechanics became the principal tool
to explain phenomena like the brownian motion, phase transitions or fer-
romagnetism. The power of the theory resides in the general character of
the statistical derivations, which focus on how the different scales relate to
each other, leaving the particular microscopical detail in a second plane.
This general approach allowed Statistical Mechanics to enter in other disci-
plines, and its tools are now being used in fields like Biology, Economics or
Sociology.

However, there is still a shadow in the horizon. The major limitation of
Thermodynamics is that it is applicable only to equilibrium settings. How-
ever, Equilibrium situations in nature are the exception rather than the
rule. Typically the systems are subject to environments that change in
space, time or both. This can lead to very complex behaviors and emer-
gence of patterns that would be forbidden under equilibrium conditions.
Such important phenomena, for practical and philosophical reasons, like the
behavior of the brain, transport phenomena, the whether or even life itself
are non-equilibrium processes, making a fundamental understanding of non-
equilibrium of paramount importance. The general hope was that Statistical
Mechanics would allow us to get rid of this limitation, making possible to
give a fundamental explanation to non-equilibrium phenomena. But, despite
all the efforts, and the myriad of advances in this subject during the last cen-
tury, a general theory, valid arbitrary far from equilibrium, is still lacking.
The different strategies to tackle the problem have varied along time from
macroscopic approaches to modern fluctuations theories. In each step new
information is unraveled, closing the circle towards a profound understand-
ing of this complex subject. In order to put into context the purpose of this
thesis, let us briefly summarize the history of this process.

The first attempts to characterize the basic phenomenology of non-equilibrium
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Physics follow the path of Thermodynamics, giving a macroscopic descrip-
tion in terms of macroscopic variables. Among the many examples two
stand out for its great generality and scope. The Navier-Stokes equations of
hydrodynamics and Transport equations.

Navier-Stokes equations describe in a general form how a continuous fluid
moves. Despite not having found a general solution for this equations 1, they
are used to computationally model the weather, the air flow in a wing, or
ocean currents just to mention a few. Furthermore, the tremendous gener-
ality of this equations has allowed, when coupled with Maxwell’s equations
of Electromagnetism, to even study the plasma currents present in the Sun
[1].

On the other hand, we have Transport equations which include different
laws that share the same formal expression. This expression relates the
fluxes present in a system with the imposed gradient (or force) on a related
magnitude. In this category lies Fourier Law for energy transport, Fick’s
Law for mass transport, or Ohm’s Law for electric transport. The first one
to appear in the literature, and the one directly related with this thesis, is
Fourier’s Law [2, 3]. In his work Fourier related the flux of energy between
to bodies maintained at different temperatures with the difference between
these temperatures, by means of a coefficient which is a property of the body
connecting the two reservoirs. Although he considered only a linear term in
the gradient, the range of gradients for which this law is valid is surprisingly
wide, as confirmed from simulations carried for a system of particles with a
Lenard-Jones potential [4]. It is also remarkable that when there are several
transport conditions acting at once, the coefficients for the different transport
phenomena are related. In particular, for example, it is possible to induce an
energy transport at constant temperature by imposing a pressure gradient,
and also to induce a momentum transfer at constant pressure by imposing a
temperature gradient. Turns out that the coefficients that characterize these
cross effects are equal. Onsager?s Reciprocal Relations, proven under very
general conditions [5, 6], assert that this equality must follow, obtaining for
this work the Nobel Prize in Chemistry in 1968.

This two examples of macroscopic theories are related and compose the
core of the named constitutive (or phenomenological) equations which are
used in macroscopic theories of non-equilibrium [7]. The broad generality of
these equations suggest, as in the thermodynamical case, that their proper-
ties have a statistical nature. In particular we should be able to calculate the
diverse transport coefficients from the microscopic properties of a given sys-
tem, as we can do, for example, with the specific heat of a substance in the
equilibrium case. Key in this calculation is the role played by fluctuations.

The first evidence of this is in the series of papers of Einstein about
brownian motion (an English recompilation can be found in [8]), where, for
the first time, a relation is established between the response of a fluid to an
external force and the equilibrium fluctuations of the fluid. This was further
generalized in 1928 by Nyquist by establishing a relation between the fluc-
tuations of the electrical potential and the resistance in a conductor [9]. His

1The problem of existence and smoothness of the Navier-Stokes equations is among
the Millennium Problems of the Clay Mathematical Institute.
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result was proven and generalized by Callen and Welton for linear dissipative
systems, formulating the Fluctuation-Dissipation theorem [10]. Afterward
Green and Kubo provided exact expressions for transport coefficients close
to equilibrium in terms of time auto-correlation functions [11, 12]. These
results highlighted the role of fluctuations but they are limited to systems
close to equilibrium. When the systems are far from equilibrium general
results are still very scarce. One of such rare general results is the Fluctua-
tion Theorem first discussed in the context of simulations of sheared fluids
[13], and formulated rigorously by Gallavotti and Cohen under very general
assumptions [14].

It has not been until recently that non-equilibrium physics has undergone
a true revolution. At the core of this revolution is the clarification of the
role played by macroscopic fluctuations, with their statistics and associated
structures, to understand non-equilibrium behavior [15, 16, 17, 18, 19, 20,
21]. The language of this revolution is the theory of large deviations, with
large-deviation functions (LDFs), measuring the probability of fluctuations
and optimal paths sustaining these rare events, as central objects in the
theory. In fact, LDFs play in non-equilibrium systems a role akin to the
equilibrium free energy [15, 16, 17, 18, 19, 20]. In this way, the long-sought
general theory of non-equilibrium phenomena is currently envisaged as a
theory of macroscopic fluctuations, and the calculation, measurement and
understanding of LDFs and their associated optimal paths has become a
fundamental issue in theoretical physics. This paradigm has led to a number
of groundbreaking results valid arbitrarily far from equilibrium, many of
them in the form of fluctuation theorems [15, 16, 17, 18, 19, 20, 21].

However there is still a lot of work to do, but at the light of what Statis-
tical Mechanics meant to Thermodynamic, one can only wonder what doors
will open a deep understanding of non-equilibrium phenomena.

In this thesis we want to push forward our understanding of non-equilibrium
behavior by analyzing in detail the physics of a paradigmatic model, the Hard
Body (HB) fluid. In particular we are going to focus on the two dimensional
version of this model, the Hard Disks model, using for its study extensive
molecular dynamics simulations and a complementary theoretical analysis.
The Hard Body model and its relatives are among the most successful, in-
spiring and prolific models of physics. Modeling the particles as impene-
trable bodies is one of the simpler ways to introduce an interaction among
them, yet it contains the essential ingredients to understand a large class
of complex phenomena, from phase transitions or heat transport to glassy
dynamics, jamming, or the physics of liquid crystals and granular materials,
just to mention a few [22, 23, 24, 25]. In addition, the study of HB-like mod-
els has motivated deep insights and new concepts, as fluctuation theorems
[13, 14, 26] or the long-time tails in fluids [27], as well as important tools like
molecular dynamics [28] or importance sampling in Monte Carlo simulations
[29], which are nowadays cornerstones in physics. Such breadth of appli-
cations makes HB models a paradigm in condensed matter and statistical
physics, specially in non-equilibrium settings [26, 30, 31, 32, 33, 34, 35, 36].
There remain however many important open problems in HB physics, from
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the unknown equation of state in dimensions greater than one [22], to the
nature of the melting transition and the weakly diverging heat conductiv-
ity of hard disks [30, 37, 38], making general results for HB models even
more appealing. Our quest will bring us from a deeper understanding of
the subtle Local Thermodynamic Equilibrium hypothesis, a cornerstone in
modern theories of non-equilibrium physics, to the discovery of universal
scaling laws in non-equilibrium fluids and finally to the introduction of a
novel isometric fluctuation relation for current fluctuations valid arbitrarily
far from equilibrium.

In particular in chapter 1 we give a description of the Hard Disks model
and the algorithm needed to efficiently simulate it. We also present the
results obtained for equilibrium simulations, which we used as a validity
check for our program. We find, as expected, that temperature and density
profiles under this situation are flat and consistent with the values imposed
at the boundaries. We notice that in other equilibrium studies of this system,
boundary effects are minimized by the use of periodic boundary conditions.
However, due to the use of hard walls in order to simulate the thermal
reservoirs, we find important boundary effects in our system. We performed
a finite size scaling analysis to characterize these boundary effects, confirming
that they disappear in the thermodynamic limit. We also study the pressure
measured by two different methods. We found that the two approaches
are consistent and they agree with other studies available in the literature
[22, 38, 39, 40]. We conclude from these results that our simulation is correct
and suitable to study non-equilibrium behavior.

In chapter 2 we give an empirical description of the non-equilibrium
physics of our system. We mainly focus on the description of temperature
and density profiles arising once the stationary state is reached. We find
non-linear profiles and give experimental fits which are in very good agree-
ment with our data. We pay a special attention to boundary effects, which
turn out to be more complicated that in the equilibrium case. We show
how boundary and size effects are tangled, being necessary one to obtain the
other, and vice versa. This fact makes a traditional finite size scaling anal-
ysis rather complicated hindering a clear description of the thermodynamic
limit behavior of our system. In chapter 4 we derive a scaling method which
allows us to circumvent this problem. To close this chapter we studied a
main observable of systems out of equilibrium, the energy current across the
system. We show how this current depends on the external gradient and the
number of particles.

In chapter 3 we study in detail the role of Local Thermal Equilibrium
(LTE) and whether or not it is satisfied in our simulations. There is not
a general theoretical proof of this hypothesis [30], and confirming its pres-
ence in a simulation is very hard. In order to do this we distinguish be-
tween macroscopic and microscopic LTE. To see whether macroscopic LTE
holds we study if the equilibrium Equation of State (EoS) is valid locally in
our system. Surprisingly, despite being out of equilibrium and the strong
size dependence found for the density and the temperature profiles in chap-
ter 2, the system follows locally the equilibrium EoS with high precision
without any appreciable size effect. Furthermore the data obtained is in
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very good agreement with equilibrium simulations available in the literature
[41, 42, 39, 40, 43, 44]. This absence of finite size effects will help us in
chapter 4 to construct a strategy to avoid spurious size dependence. To
see whether microscopic LTE holds we check if the measured global distri-
butions, of the velocity and the energy, match the theoretical equilibrium
distributions derived from the assumption that Local Thermal Equilibrium
holds. Although we don’t find deviations for the global velocity distribu-
tions, up to finite size effects, the second moment of the energy distribution
deviates systematically from the local equilibrium prediction. We find that
the difference between these magnitudes depends linearly on the external
gradient squared, with a slope of 1/40. Finally we notice that for high gra-
dients and high mean packing fractions a liquid-solid coexistence occurs. We
studied this non-equilibrium coexistence finding that LTE hypothesis breaks
down in the portion of the system occupied by the solid. We show that the
phenomenology of this solid is not equivalent to that of the equilibrium case.
We can conclude in this chapter that LTE holds at the macroscopic level (at
the liquid phase), and that deviations occur on the fluctuating level.

In chapter 4 we study the validity of Fourier’s Law. In order to do this,
we have to design a strategy to overcome the finite size effect studied in
chapter 2, which distort a direct approach. We know from chapter 3 that
Local Thermal Equilibrium holds in such a way that the Equation of State
doesn’t present finite size effects. Using this and supposing that Fourier’s
Law also holds, we theoretically derive a scaling property for the profiles of
an infinite system of Hard Disks. This scaling Law is characterized by two
universal master curves from which we can derive every possible profile. We
find that the predictions of this theory are in very good agreement with our
data. In particular it is quite remarkable that all the profiles for different
system setups, for a given number of particles, collapse into a universal
curve, indicating that Fourier’s Law holds for our system. This implies, as
a consequence of the scaling, what we called Bulk-Boundary Decoupling. It
is generally believed that, once discarded the part of a system affected by
boundary effects, the remaining bulk part should present finite size effects.
Our combined results, of this chapter and the previous one, strongly suggest
that this is not the case. In fact the system behaves as it were an infinite
system were LTE and Fourier’s Law holds, leaving, as a reminiscence of its
finite character only two effects: an effective thermal reservoir, composed by
the baths and region of the system affected by boundary effects, in whose
values are concentrated all spurious size effects, and a size dependent thermal
conductivity physically relevant, reminiscent of the known long time tails
present on Hard Disks systems [27]. We believe that this analysis could
have many applications in the description of the non-equilibrium stationary
state of more complex fluids. In fact in appendix B we derive a scaling for
soft potentials which are, in certain situations, the limiting case of the more
realistic Lenard-Jones potentials [45, 46].

In chapter 5 we focus in the fluctuations of the energy current. We derive
in detail the recently introduced Isometric Fluctuation Relation which is a
consequence of the deep implications that temporal reversibility introduce
at the fluctuating level. Our measurements are in good agreement with the
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theory although our system does not satisfy, a priory, all the conditions of the
theoretical derivation. This suggest that the Isometric Fluctuation Relation
could be further generalized.



8 Introduction



Introducción

Una de las caracteŕısticas más sorprendentes de la Naturaleza es que se pue-
de describir a diferentes escalas. A través de un cambio continuo de escala
desde lo subatómico hasta lo supragaláctico, la fenomenoloǵıa aśı como las
magnitudes relevantes necesarias para describirla, cambian de una forma sor-
prendente. Una vez establecida la escala espacio-temporal siempre podemos
definir las magnitudes representativas necesarias para describir un fenómeno
determinado. Por ejemplo, si nuestra intención es describir las interacciones
sub-nucleares, donde la escala espacial es del orden de los 10−15 m y la tem-
poral de los 10−12 s, necesitamos magnitudes como el sabor y el color de los
quarks. Estas magnitudes, aunque presentes, no son necesarias para describir
un átomo en el orden de los 10−10 m y 10−9 s, donde las magnitudes relevan-
tes pasan a ser el número de protones, neutrones y electrones, por ejemplo.
En ambos casos están presentes las interacciones Electromagnética y Fuer-
te, pero su importancia relativa cambia con la escala. En el primer caso las
interacciones Electromagnéticas son irrelevantes en comparación con las de
carácter Fuerte, pero según nos vamos moviendo hacia escalas más grandes,
las interacciones fuertes tienen cada vez menos importancia y las electro-
magnéticas toman el mando. En esta caso particular, la causa del cambio de
descripción puede identificarse con claridad debido a que las interacciones
fuertes son de corto alcance. Pero hay otras situaciones en la que el cambio
en la descripción tiene causas más sutiles. Un ejemplo de este caso podemos
encontramos cuando nos vamos a escalas más grandes. En el orden de los
1010 m y 106 s, la escala del Sistema Solar, las magnitudes relevantes son
las masas de los planetas y la del Sol, pasando a ser despreciables las in-
teracciones Electromagnéticas. Y esto pasa incluso cuando las interacciones
electromagnéticas son 14 ordenes de magnitud mayores que las gravitato-
rias en cualquier escala. Sin embargo la interacciones electromagnéticas, al
contrario que las gravitatorias, tienen contribuciones positivas y negativas
que se cancelan debido al carácter neutral de la materia estable, compuesta
principalmente por el mismo número de protones y electrones. Para un ex-
perto estos ejemplos pueden parecer triviales, pero debemos darnos cuenta,
no solo del cambio en la teoŕıa descriptiva, sino también del hecho de que
las magnitudes relevantes en cada nivel de descripción están relacionadas
con la fenomenoloǵıa del nivel inferior. Por ejemplo las magnitudes de la
escala atómica, los protones y los neutrones, son fenómenos efectivos de la
teoŕıa subnuclear subyacente. De esta forma como emergen estos conceptos
de la teoŕıa subyacente es altamente relevante para obtener una descripción

9
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coherente en todas las escalas.

El proceso concreto podrá ser muy complicado, como en nuestro primer
ejemplo, o muy fácil como en el segundo, pero el objetivo siempre será com-
pactificar determinados grados de libertad en ciertos fenómenos efectivos a
través del uso de algún tipo de proceso de sumado. T́ıpicamente según va-
mos aumentando el numero de elementos y de grados de libertad cada vez
resulta más dif́ıcil encontrar una expresión anaĺıtica para este proceso. Sin
embargo, cuando el número de grados de libertad es suficientemente alto,
se pueden usar nuevas reglas estad́ısticas para relacionar el comportamiento
microscópico con el macroscópico. Este enfoque es el núcleo de una de las
teoŕıas más exitosas del siglo pasado, la Mecánica Estad́ıstica.

Desde los trabajos pioneros de Boltzmann, Maxwell y Gibbs, la Mecáni-
ca Estad́ıstica ha obtenido un gran éxito a la hora de derivar las leyes de
la Termodinámica del equilibrio a partir de la dinámica microscópica de
las part́ıculas que componen un determinado sistema. Su planteamiento se
basa en los fenómenos emergentes que aparecen cuando un número suficien-
temente alto de part́ıculas se ven restringidas por las mismas condiciones
macroscópicas. Por ejemplo, en el caso microcanónico, las ligaduras se co-
rresponden con las de un sistema aislado, donde el numero de part́ıculas N ,
el volumen V y la enerǵıa total E se mantienen fijas. Si dejamos al sistema
relajar el suficiente tiempo éste alcanza un estado estacionario caracterizado
por una entroṕıa máxima. Y esta entroṕıa se puede calcular en el ámbito de la
Mecánica Estad́ıstica a partir de las propiedades dinámicas de las part́ıculas,
esto es, a partir de su Hamiltoniano. Esta comprensión microscópica de la
Termodinámica abrió el camino para su consiguiente generalización. De este
modo la Mecánica Estad́ıstica se convirtió en la herramienta principal para
explicar fenómenos como el movimiento Browniano, las transiciones de fase
o el ferromagnetismo, sólo por mencionar algunos. La potencia de esta teoŕıa
reside en el carácter general de las derivaciones estad́ısticas, que se centran en
como se relacionan las escalas entre si dejando los detalles microscópicos en
un segundo plano. Este enfoque general permitió a la Mecánica Estad́ıstica
entrar en otras disciplinas, y sus herramientas están siendo usadas actual-
mente en campos como la Bioloǵıa, la Economı́a o la Socioloǵıa.

Sin embargo todav́ıa hay nubes en el horizonte. La principal limitación
de la Termodinámica es que sólo es aplicable a situaciones de equilibrio. Pe-
ro hay que recordar que el equilibrio en la Naturaleza es más la excepción
que la regla. T́ıpicamente los sistemas de interés están sometidos a entornos
que cambian en el espacio, el tiempo o ambos. Esto se traduce en comporta-
mientos complejos y la emergencia de patrones que estaŕıan prohibidos bajos
condiciones de equilibrio. Fenómenos tan importantes, desde un punto de vis-
ta práctico y filosófico, como el comportamiento del cerebro, los fenómenos
de transporte, el clima o incluso la vida en śı misma, son procesos de no-
equilibrio, convirtiendo la compresión fundamental del no-equilibrio en un
asunto de máxima importancia. La impresión general dentro de la comuni-
dad cient́ıfica era que la Mecánica Estad́ıstica conseguiŕıa deshacerse de esta
licitación, haciendo posible una explicación fundamental de los fenómenos
de no-equilibrio. Sin embargo, a pesar de todos los esfuerzos y la cantidad
de avances en esta materia durante el pasado siglo, todav́ıa no tenemos una
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teoŕıa general válida arbitrariamente lejos del equilibrio. Las diferentes es-
trategias para abordar este problema han cambiado a lo largo de los años
pasando de las descripciones macroscópicas hasta las modernas teoŕıas so-
bre fluctuaciones. En cada paso se ha ido desentrañando nueva información,
cerrando el circulo hacia un entendimiento profundo de este complicado pro-
blema. Con el fin de poner en contexto el propósito de esta tesis, permitidnos
resumir brevemente la historia de este proceso.

Los primeros intentos para caracterizar la fenomenoloǵıa básica de la
F́ısica del no-equilibrio siguieron los pasos de la termodinámica, dando una
descripción macroscópica en términos de variables macroscópicas. Entre los
muchos ejemplos dos resaltan por su generalidad y alcance. Las ecuaciones
de Navier-Stokes de la hidrodinámica y las ecuaciones de Transporte.

Las ecuaciones de Navier-Stokes describen de forma general como se mue-
ve un fluido continuo. A pesar de que no se conoce una solución general para
estas ecuaciones 2, se usan como modelo computacional para describir el
clima, el flujo de aire en un ala, o los flujos oceánicos sólo por mencionar
algunos ejemplos. Además la tremenda generalidad de estas ecuaciones in-
cluso a permitido, cuando se las acopla con las ecuaciones de Maxwell del
Electromagnetismo, estudiar los flujos de plasma presentes en el Sol [1].

Por otra parte tenemos las ecuaciones de Transporte que incluyen leyes
diferentes que comparten la misma expresión formal. Esta expresión relacio-
na los flujos presentes en un sistema con el gradiente (o fuerza) impuesto en
una magnitud relacionada. En esta categoŕıa encontramos la ley de Fourier
para el transporte de enerǵıa, la ley de Fick para la difusión de part́ıculas,
o la ley de Ohm para el transporte eléctrico. La primera en aparecer en la
literatura, y la que está relacionada directamente con esta tesis, es la ley de
Fourier [2, 3]. En su trabajo Fourier relacionó el flujo de enerǵıa entre dos
cuerpos mantenidos a distintas temperaturas con la diferencia entre estas
temperaturas, por medio de un coeficiente caracteŕıstico del material que
une las dos fuentes térmicas. Aunque sólo consideró una relación lineal con
el gradiente, el abanico de gradientes en los que esta ley es valida es sorpren-
dentemente amplio, como confirman las simulaciones hechas para un sistema
de part́ıculas interaccionando con un potencial de Lenard-Jones [4]. También
hay que destacar que cuando hay varias condiciones de transporte actuando
a la vez, los coeficientes para los distintos fenómenos de transporte están
relacionados. En particular, por ejemplo, es posible inducir un transporte
de enerǵıa a temperatura constante imponiendo un gradiente de presión, y
a su vez, es posible inducir un transporte de momento a presión constante
imponiendo un gradiente de temperatura. Resulta que los coeficientes que
caracterizan estos efectos cruzados son iguales entre śı. Las relaciones de
reciprocidad de Onsager, probadas bajos condiciones muy generales [5, 6],
afirman que esta igualdad debe cumplirse, obteniendo por este trabajo el
premio Nobel de Qúımica en el año 1968.

Estos dos ejemplos de teoŕıas macroscópicas están relacionados y compo-
nen el núcleo de las llamadas ecuaciones constitutivas (o fenomenológicas)
que se usan en las teoŕıas macroscópicas de no-equilibrio [7]. La amplia ge-

2El problema de la existencia y diferenciabilidad de las soluciones a las ecuaciones de
Navier-Stokes esta entre los Problemas del Milenio de Instituto Clay de Matemáticas.
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neralidad de estas ecuaciones sugiere, como pasa en el caso termodinámico,
que sus propiedades tienen un origen estad́ıstico. En particular debeŕıamos
ser capaces de calcular los diversos coeficientes de transporte a partir de las
propiedades microscópicas de un determinado sistema, como podemos hacer,
por ejemplo, con el calor especifico de una sustancia en el caso de equilibrio.
La clave de este cálculo resulta ser el papel que juegan las fluctuaciones.

La primera evidencia de esto está en la serie de art́ıculos de Einstein sobre
el movimiento Browniano (una recopilación en inglés puede encontrarse en
[8]), donde, por primera vez, se establece una relación entre la fuerza externa
aplicada a un fluido y sus fluctuaciones de equilibrio. Esto fue generalizado
en 1928 por Nyquist estableciendo una relación entre las fluctuaciones del po-
tencial eléctrico y la resistencia en un conductor [9]. Su resultado fue probado
y ampliado por Callen y Welton a sistemas disipativos lineales, formulando el
teorema de Fluctuación-Disipación [10]. Más tarde Green y Kubo derivaron
expresiones exactas para los coeficientes de transporte cerca del equilibrio en
términos de funciones temporales de auto-correlación [11, 12]. Estos resulta-
dos resaltaron el papel de las fluctuaciones pero estaban limitados a sistemas
cerca del equilibrio. Cuando los sistemas están alejados del equilibrio los re-
sultados generales son todav́ıa escasos. Una de estas raras excepciones es el
teorema de Fluctuación discutido en un principio en el contexto de fluidos
bajos efectos de cizalladura [13], y formulado rigurosamente por Gallavotti
y Cohen bajos suposiciones muy generales [14].

No ha sido hasta hace poco que la F́ısica del no-equilibrio a experimen-
tado una autentica revolución. En el núcleo de esta revolución se encuentra
la clarificación del papel jugado por las fluctuaciones macroscópicas, con su
estad́ıstica y estructuras asociadas, a la hora de entender comportamientos
de no-equilibrio [15, 16, 17, 18, 19, 20, 21]. El lenguaje de esta revolución
es la teoŕıa de largas desviaciones, donde las funciones de largas desvia-
ciones (Large-Deviation Functions (LDFs)), que miden la probabilidad de
las fluctuaciones y los caminos óptimos que sostienen estas desviaciones,
se perfilan como los elementos centrales de la teoŕıa. De hecho las LDFs
juegan un papel similar a la enerǵıa libre en los sistemas de no-equilibrio
[15, 16, 17, 18, 19, 20]. De este modo, la tan ansiada teoŕıa general de los
fenómenos de no-equilibrio se divisa actualmente como una teoŕıa de fluctua-
ciones macroscópicas, y el cálculo, medición y entendimiento de las LDFs y
sus caminos óptimos asociados se ha convertido en una cuestión fundamental
de la F́ısica teórica. Este paradigma ha liderado el camino hacia numerosos
resultados innovadores válidos arbitrariamente lejos del equilibrio, muchos
de ellos en forma de teoremas de fluctuación [15, 16, 17, 18, 19, 20, 21].

Sin embargo todav́ıa hay mucho trabajo por hacer, pero a la luz de lo
que la Mecánica Estad́ıstica significó para la Termodinámica, uno no puede
sino maravillarse ante las puertas que abriŕıa una comprensión profunda de
los fenómenos de no-equilibrio.

En esta tesis queremos avanzar en el entendimiento de los comporta-
mientos de no-equilibrio mediante un análisis detallado de un modelo pa-
radigmático, el fluido de Cuerpos Sólidos (Hard Body (HB)). En particular
nos centraremos en la versión de dimensión dos de este modelo, el modelo de
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Discos Ŕıgidos ((Hard Disks (HD)), usando para su estudio extensas simula-
ciones de dinámica molecular y análisis teóricos complementarios. El modelo
de Cuerpos Ŕıgidos y sus modelos relacionados está entre los modelos más
exitosos, inspiradores y proĺıficos de la F́ısica. Modelar las part́ıculas como
cuerpos impenetrables es una de las maneras más simples de introducir una
interacción entre ellas, sin embargo contiene los ingredientes esenciales para
entender una gran clase de comportamientos complejos, desde las transicio-
nes de fase o el transporte de calor a las dinámicas de vidrios, el “jamming”,
los cristales ĺıquidos o los materiales granulares sólo por mencionar algunos
[22, 23, 24, 25]. Además, el estudio de sistemas relacionados con los cuerpos
ŕıgidos ha motivado profundas revelaciones y nuevos conceptos, como los
teoremas de fluctuación [13, 14, 26] o las colas de tiempos largos en fluidos
[27], aśı como importantes herramientas como la dinámica molecular [28]
o el muestreo Monte Carlo en simulaciones [29], que son en la actualidad
piedras angulares en la F́ısica. Esta amplitud de aplicaciones hacen de los
modelos de Cuerpos Ŕıgidos un paradigma en F́ısica de la materia conden-
sada y en la F́ısica Estad́ıstica, especialmente en situaciones de no-equilibrio
[26, 30, 31, 32, 33, 34, 35, 36].

Sin embargo todav́ıa quedan muchos problemas importantes abiertos en
la F́ısica de los Cuerpos Ŕıgidos, desde la desconocida ecuación de estado pa-
ra dimensiones mayores que uno [22], a la naturaleza de la transición de fase
en dos dimensiones o la divergencia débil de la conductividad térmica para
Discos Ŕıgidos [30, 37, 38], haciendo los resultados generales para Cuerpos
Ŕıgidos todav́ıa más interesantes. Nuestra búsqueda nos llevará desde una
comprensión de la sutil hipótesis de Equilibrio Local Térmico (Local Thermal
Equilibrium (LTE)), una piedra angular en las teoŕıas modernas de la F́ısica
de no-equilibrio, al descubrimiento de leyes de escala universales en fluidos
de no equilibrio, hasta llegar finalmente a una novedosa relación isométrica
fluctuante (Isometric Fluctuation Relation (IFR))) para las fluctuaciones de
la corriente válida arbitrariamente lejos del equilibrio.

En particular en el caṕıtulo 1 damos una descripción detallada del modelo
de discos ŕıgidos aśı como del algoritmo necesario para simularlo eficiente-
mente. Damos, además, los resultados obtenidos en simulaciones de equili-
brio, las cuales hemos usado como comprobación de la bondad de nuestro
programa. Encontramos que los perfiles de densidad y temperatura son pla-
nos y consistentes con los valores impuestos en la frontera. Notamos, que en
otros trabajos donde estudian este sistema en equilibrio, se usan condiciones
de contorno periódicas para reducir los efectos de borde. Sin embargo, de-
bido al uso de muros ŕıgidos para simular las fuentes térmicas, encontramos
importantes efectos de borde en nuestro sistema. Realizamos un análisis de
escalas finitas para caracterizar estos efectos de tamaño, confirmando que
desaparecen en el ĺımite termodinámico. También estudiamos la presión me-
dida con dos métodos diferentes. Encontramos que las dos aproximaciones
son consistentes y que coinciden con los resultados de otras simulaciones
presentes en la literatura [22, 38, 39, 40]. Concluimos de estos resultados
que nuestra simulación es correcta y adecuada para estudiar fenómenos de
no-equilibrio.

En el caṕıtulo 2 damos una descripción experimental dela F́ısica de no-
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equilibrio de nuestro sistema. Nos concentramos principalmente en la des-
cripción de los perfiles de densidad y temperatura que emergen una vez
alcanzado el estado estacionario. Encontramos perfiles no-lineales y damos
ajustes experimentales que presentan un acuerdo muy bueno con nuestros
datos. Le prestamos especial atención a los efectos de borde, que resultan ser
más complicados que en el caso de equilibrio. Mostramos como los efectos
de borde y de tamaño están enredados, siendo necesario uno para explicar
el otro y viceversa. Esto hace que un análisis tradicional de escala sea muy
complicado ocultando una descripción clara de nuestro sistema en el limi-
te termodinámico. En el capitulo 4 derivamos un método de escala que nos
permite salvar este problema. Para cerrar el caṕıtulo estudiamos un observa-
ble principal de los sistemas fuera del equilibrio, la corriente de enerǵıa que
atraviesa el sistema. Mostramos como esta corriente depende del gradiente
externo y del número de part́ıculas.

En el capitulo 3 estudiamos en detalle el papel del Equilibrio Local Térmi-
co (LTE) y si se cumple o no en nuestro sistema. No hay una prueba teórica
general de esta hipótesis [30], y confirmar su presencia en simulaciones es muy
dif́ıcil. Para hacer ésto distinguimos entre LTE macroscópico y microscópico.
Para comprobar si el LTE es valido a nivel macroscópico estudiamos si el
sistema sigue la Ecuación de Estado de equilibrio localmente. Sorprendente-
mente, a pesar de estar fuera del equilibrio y del los fuertes efectos de tamaño
encontrados en el caṕıtulo 2 para los perfiles de densidad y de temperatura,
el sistema sigue localmente la Ecuación de Estado con gran precisión y sin
efectos apreciables de tamaño. Es más, los datos obtenidos concuerdan muy
bien con los datos presentes en la literatura para simulaciones de equilibrio
[41, 42, 39, 40, 43, 44]. Esta ausencia de efectos de tamaño nos ayudará en
el caṕıtulo 4 a construir una estrategia que nos permita evitar efectos de
tamaño espurios. Para comprobar si el LTE es válido a nivel microscópico
estudiamos si las distribuciones globales, de la velocidad y la enerǵıa, medi-
das para nuestro sistema se corresponden con las distribuciones derivadas de
la suposición de que el LTE es válido. Aunque no encontramos desviaciones
para la distribución global de la velocidad, salvo efectos de tamaño, los se-
gundos momentos de la distribución de enerǵıa se desv́ıan sistemáticamente
de la predicción de equilibrio local. Encontramos que la diferencia entre estas
dos magnitudes depende linealmente del gradiente externo al cuadrado con
una pendiente de 1/40. Finalmente encontramos que para gradientes altos y
densidades medias altas aparece una coexistencia de fases ĺıquido-sólido. Es-
tudiamos esta coexistencia de no-equilibrio encontrando que la hipótesis de
LTE se viola en la parte del sistema ocupada por la fase sólida. Mostramos
como la fenomenoloǵıa de este solido no es equivalente a la del caso de equili-
brio. Concluimos de este caṕıtulo que el LTE se cumple a nivel macroscópico
(en la fase ĺıquida) y que se encuentran desviaciones a nivel fluctuante.

En el caṕıtulo 4 estudiamos la validez de la ley de Fourier. Para ello, tene-
mos que diseñar una estrategia para separar los efectos de tamaño estudiados
en el caṕıtulo 2, que distorsionan un enfoque directo. Sabemos del caṕıtu-
lo 3 que el Equilibrio Local Térmico se cumple de forma que no presenta
efectos de tamaño finito. Usando esto y suponiendo que la ley de Fourier se
cumple para nuestro sistema derivamos teóricamente una ley de escala para
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los perfiles de un sistema infinito de Discos Ŕıgidos. Esta ley de escala se
caracteriza por dos curvas universales de las que podemos derivar cualquier
perfil posible. Encontramos que las predicciones de esta teoŕıa concuerdan
muy bien con nuestros datos. En particular es extraordinario que todos los
perfiles obtenidos para las distintas condiciones externas, y para un numero
de part́ıculas dado, colapsen en una curva universal, indicando que la ley de
Fourier se cumple en nuestro sistema. Esto implica, como consecuencia de
la escala, lo que hemos llamado “Bulk-Boundary Decoupling”. Generalmente
se cree que, una vez descartado la parte del sistema afectada por efectos de
borde, el resto del sistema debe presentar efectos de tamaño finito. Nuestros
resultados combinados, de este caṕıtulo y del anterior, sugieren fuertemente
que esto no es aśı. De hecho el sistema se comporta como si fuera infinito
cumpliéndose además el LTE y la ley de Fourier, y dejando, como única re-
miniscencia de su carácter finito sólo dos efectos: una fuente térmica efectiva
, compuesta por los baños y la región del sistema afectada por efectos de
borde, en donde se concentran todos los efectos de tamaño finito espurios,
y una conductividad térmica dependiente del tamaño f́ısicamente relevante,
reminiscencia de las conocidas colas para tiempos largos presentes en siste-
mas de Discos Ŕıgidos [27]. Creemos que este análisis puede tener muchas
aplicaciones en la descripción del estado estacionario de fluidos más com-
plejos. De hecho en el apéndice B derivamos una escala para potenciales de
núcleo suave que son, en ciertos casos, el comportamiento ĺımite del más
realista potencial de Lenard-Jones [45, 46].

En el caṕıtulo 5 nos centramos en las fluctuaciones de la corriente de
enerǵıa. Derivamos en detalle la recientemente introducida Relación Isométri-
ca Fluctuante (Isometric Fluctuation Relation (IFR))) que es una consecuen-
cia de las profundas implicaciones que introduce la reversibilidad temporal a
nivel fluctuante. Nuestras medidas concuerdan con la teoŕıa aunque nuestro
sistema no cumple, a priori, todas las condiciones de la derivación teórica.
Esto sugiere que la Relación Isométrica Fluctuante podŕıa admitir futuras
generalizaciones.
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Chapter 1

Model

Our way of describing nature is based on the construction of models that
approximate reality to a certain precision. However, in practical situations,
we have to reach an agreement between a given acceptable precision and
the complexity of the model. This is achieved by identifying the most im-
portant features of the system at hand, and equipping our model with such
characteristics. In our particular case, as we mention in the Introduction,
we are interested in general properties of non-equilibrium physics and, more
precisely, in heat transport in a fluid. As our intention was to approach this
problem form a computational point of view, we needed a model that could
describe a fluid in a general form. So, what are the most basic characteristics
of a fluid?

We know from Statistical Mechanics that the macroscopic behavior of a
set of particles is determined by the microscopic Hamiltonian of the system.
This Hamiltonian has two parts. A kinetic term, which accounts for the
total kinetic energy of the particles in the system, and a potential term,
which accounts for the interactions among particles. Typically the most
interesting part, and also the most difficult to treat mathematically, is the
potential term. The details of the interaction between the particles that
compose the system usually sets the differences between distinct macroscopic
behaviors. However for certain macroscopic situations this behavior can be
quite similar, as in the case of low density for example.

This fact lead to the engineering of effective potentials that could ac-
count for the most relevant parts of the original electrostatic potential. This
effective potentials took a mesoscopic look at the problem, using emerging
effects due to the fact that there are many particles interacting at once.
One of such simplifications is the well contrasted hypothesis of electrostatic
screening, which leads to effective potentials which attracting part decays
faster than 1

r2
ij

(where rij is the distance between particles), and make them

tractable from a mathematical point of view. Another key element is the
presence of a hard-core repulsion, which describes the Pauli repulsion at
short ranges due to the overlapping of the electron’s orbitals, and that is
necessary in order to prevent a collapse of the system under conditions of
high pressure. This basic characteristics can be implemented in different an-
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alytical forms. The optimal specific form will depend of the physical system
intended to describe.

In our particular case we where interested in far from equilibrium prop-
erties, therefore our particular set up is one with high gradients. This leads
to situations where the temperature and pressure tends to be very high. In
this kind of situations the attractive part of the potential can be neglected
because, typically, the kinetic energy of our particles will be much higher
than the bound energy necessary to stick two particles together, effectively
forbidding this type of configurations. So the only relevant term left, in order
to describe the general behavior of the fluid, is the hard core repulsion.

This kind of reasoning lead at the end of the 50’s decade to a minimalistic
model that was very well suited for the first computational simulations, the
Hard Body model [47]. This kind of models are characterize by a potential
of the form:

V (rij) =

{
0 if | rij |> 2σ
∞ if | rij |≤ 2σ

(1.1)

Where rij and σ are the distance between the centers of the particles and
it’s radius respectively. This potential is equivalent to see the particles as
impenetrable bodies and is one of the simpler ways to introduce interactions.
Depending on the dimension these particles can be seen as rods (1d) , disks
(2d), spheres (3d) or hyper-spheres(d≥4). Despite it’s simplicity finding
analytical results for this system has been a very hard problem of the past
century. The reason for this is the discontinuity that it presents at rij = 2σ.
However, from a computational point of view, this discontinuity has very
useful advantages.

First the system is athermal, i.e. Temperature plays a trivial roll in
order to describe it, reducing the problem to the calculation of the number of
configurations available for a given packing fraction (entropic configurational
term). Another important advantage is that the dynamic of the particles
between collisions is that of a free particle. This allow to define relevant
events and suppose that the particles follow a strait line between them,
eliminating the necessity to solve 2dN differential equations, where N is the
number of particles in the simulation and d the spatial dimension. These
two observations compose the core of the two principal algorithmic ways to
simulate Hard Body systems in equilibrium.

On one side we have Montecarlo methods which focus on the probability
of going from one configuration to another where we stochastically move
one particle, accounting a success if the movement doesn’t make two parti-
cles overlap and a failure otherwise. On the other, we have Event Driven
Molecular Dynamics where the problem is reduced to the calculation of the
minimum time between all the possible events that can occur in a given par-
ticular configuration, evolve the system to that time, apply the collision rules
to the particles involved and repeat the process. Depending on the specific
situation both methods will have strong and weak points, nevertheless the
algorithmic efficiency of the two has been enhance over the last 60 years to
a high degree [48, 38, 49, 50, 51]. However in order to study the stationary
state of a set of particles under a temperature gradient we believe that Event
Driven Molecular Dynamics is a better fit.
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First the modifications we need to introduce in the algorithm is just
one special event of collision with a thermal wall. And second, Monte-
carlo algorithms neglect entirely dynamic effects, which can be important
in a non-equilibrium situation. Also is not clear to us how to introduce
a non-equilibrium condition in this kind of algorithm without making any
assumption on the form of the spatial profiles.

Despite the initial simplicity of this model it’s remarkable the number of
interesting properties that it possess. Already in the first simulations carried
out by Alder et al [28, 52] a transition to a solid state was observed in tree
dimensions (hard spheres) and evidence of quasi-long range order was found
for the two dimensional case (Hard disks). This was a quite surprising result
for a system whose Hamiltonian lacks any attractive term. Moreover, it has
a series of properties that makes it very appealing also from a theoretical
point of view. First is a deterministic Hamiltonian system, this is interesting
due to the fact that a great majority of non-equilibrium studies are based in
stochastic models, i.e. they use a description in terms of a Langevin equation
[53, 54, 55]. These models have succeeded in proving a lot of non-equilibrium
hypothesis. But they are essentially mesoscopic, in the sense that the are
based in coarse-grained dynamics, therefore there is not yet a prove form the
Hamiltonian dynamics. The most important of these hypothesis being that
of Local Thermal Equilibrium [30].

However Hard Disks systems have a property which could complicate
the phenomenology, the Long-time Tails for the velocity auto-correlation
function. This property was discovered also by Alder and Wainwright in
their series of Hard Body simulations [27]. It is characterize by a exponential
decay of the velocity auto-correlation function until one value of time (texp)
from which the velocity auto-correlation decay starts to behave like a power
law with time t−d/2, where d is the dimension of the system. This has
serious consequences when trying to calculate the transport coefficients in the
framework of linear response theory. In particular the thermal conductivity
in two dimensions diverges in the thermodynamic limit. However in a finite
system is very difficult to observe this behavior, being necessary to simulate
a large number of particles to get ride of boundary effects. On top of that
in a system driven out of equilibrium like in our case, the velocity auto-
correlation function is additionally modified by the collisions of the particles
with the thermal walls, introducing a characteristic time tw related with the
mean time elapsed between successive collisions of a particle with one of
the thermal walls, when, due to the characteristics of the collision, all the
information of the previous values of the velocities is erased. Typically this
tw will be less than the necessary time to observe a power law behavior of
the velocity auto-correlation function, mitigating, in this way, the effects due
to Long-Time Tails.

1.1 Algorithm

The fundamental computational problem we have to solve in order to sim-
ulate a hard disk system is finding the minimal collision time between all
the possible collision events and the particles involved. In principle it is
necessary to calculate the time associated with every event to be sure that
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we pick the minimum. However, it’s known, since the first simulations car-
ried by Alder , that this strategy is impracticable because, for every step,
we would have to do O(N2) operations, which will impede us to simulate
systems sufficiently large. In the paper by Alder [47] this is addressed by a
virtual division of the system into boxes. In this way, in order to calculate
the possible events associated with a particle, it is only necessary to check
the future collisions with particles in the adjacent virtual boxes and keep a
track of what virtual box a particle is in.

However this can be further improved. We have to notice that, typically,
a collision occurring in one point of the system doesn’t have to affect to fu-
ture events of particles far away of the colliding particle. So, in principle, it
will be a good strategy not to recalculate these events. To take advantage of
this fact, a new kind of algorithms appeared based in the use of a future event
list. In this kind of algorithms an ordered list of future events is generated
at the beginning. After picking the first event, the one with minimum time,
and evolving the system, new events associated with the colliding particles
are introduced in the list and invalidated future events are removed from it.
This requires from our algorithm a way in which it can handle efficiently the
list and discriminate between valid and invalid future events. There are nu-
merous ways to address this problem, although an optimum strategy usually
depends on the density of the system. This is a problem for us because, in a
typical configuration of the system in the stationary state, there is a density
profile associated to the temperature profile. So we needed an algorithm
that have a good efficiency in a wide range of density values. For this reason
we chose, between all the possibilities available in the literature[48, 49, 51],
the local minima algorithm (LMA) developed in the paper of M. Maŕın,et al
[48], which has a good consistent efficiency in the complete range of possible
density values.

The basic idea of this algorithm is that of ’divide and conquer’. Rather
than having a monumental list with all the future events, this algorithm
divides it in two parts. The first part consists in a list of future events
associated with every particle. Every event in the list have associated the
global time when the event is going to occur, the number of collisions the
particle (and his partner particle) has suffered until the event was recorded,
and the partner element in the collision, which could be a particle, a wall or
a virtual wall. Events recorded in the list of the particle i are not recorded in
the list of the partner particle. Each of this N lists, where N is the number
of particles, has a local minimum event , that is, the event with the lowest
associated time within the list.

The second part consist in a Complete Binary Tree (CBT). In computer
sciences a CBT is a data structure that associates to a starting node, called
root, two other children nodes (hence binary), and to each of this nodes
another two, repeating this process until we have a total of 2N − 1 nodes.
Constructed in this way we will have N leaves, or nodes without children,
in the last layer to which we will associate our N particles. This structure
presents the useful property that any node i, if it has children, they will be
located at the indexes 2i and 2i+ 1. The use of this CBT is analogous to a
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sports tournament. Two sisters leaves compare the time associated with his
local minimum event and the index of that with lowest time is copied in the
parent node. This process is repeated until one index reach the root. This
will be the particle with the lowest global time. After evolving the system
and recalculating the new local minima lists for the particles involved, the
process is repeated. However only will be necessary to modify the encoun-
ters in which the particles get involved, i.e. from the leaves i and j to the
root (see figure [1.1]). In this way the accesses to the CBT are minimized
increasing effectiveness.

Figure 1.1: CBT structure for N = 10. Internal nodes are represented
by circles and leaves by squares. Each leaf have a particle assigned. The
minimum local time is in parenthesis. On top we can see the result of one
’tournament’, notice that particle number 4 was the one with minimum
global time. Below we can see that the local time for particle 4 has changed.
The actualization is carried out only in the affected nodes, following the
arrows. Notice that now is particle 6 the one with minimum global time.

The last element of the algorithm is the strategy to handle the invalidated
events. In the original paper, Marin et al, argued that given the nature of the
algorithm this kind of events rarely reach the root of the CBT, therefore they
decided that, rather than locate and remove the invalidated events, it would
be more efficient to check if the event that reach the root is a valid one. As
an indicator we use the number of collisions. We compare, for the particles
involved in the collision, the actual number of suffered collisions with the
one stored in the local minima list. If this number coincides, meaning that
the particles didn’t collide since the collision was recorded, the event is valid.
If the event turn out to be an invalid one, the next event on the local list is
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picked and the CBT is updated as in the case of an actual valid collision. In
Appendix A we give a copy of the code used with some brief comments.

1.2 Dynamic of the Model

As we saw in the Introduction the evolution of a hard disks system will be
determined by the Hamiltonian:

H =
N∑
i=1

 pi
2m

+
1

2

∑
j 6=i

V (|~ri − ~rj |)

 (1.2)

With the potential determined by:

V (rij) =

{
0 if | ri − rj |> 2σ
∞ if | ri − rj |≤ 2σ

(1.3)

where σ is the radius of the particles. Therefore the equations of movement
for the particles between collisions will be that of a free particle, that is:

~ri(tmin) = ~ri + ~vitmin

Where tmin is the minimum global time between all possible future
events. To calculate the time we introduce in the local lists we are going to
distinguish between three cases:

• Particle-Particle Event (PPE): Given two particles with positions ~r1

and ~r2, and velocities ~v1 and ~v2, after a time t the particles will be at:

~ri(t) = ~ri + ~vi · t i = 1, 2. (1.4)

The particles will collide only if they are approaching each other, so:

(~r1 − ~r2) · (~v1 − ~v2) < 0 (1.5)

Even if this condition is satisfied could be the case that the particles
cross each other without colliding. To check if they are going to collide
we must see if there is a time t in which the distance between the two
particles is equal to it’s diameter:

(~r1(t)− ~r2(t)) · (~r1(t)− ~r2(t)) = 4σ2 (1.6)

This previous checks reduce considerably the number of times calcula-
tions. From the last equation we can obtain the collision time:

t± =
1

v2

[
−x · vx − y · vy ±

[
4σ2 · v2 − (x · vy − y · vx)2

]1/2]
(1.7)

where ~r1 − ~r2 = (x, y), ~v1 − ~v2 = (vx, vy) and v2 = v2
x + v2

y. We
can do one more further check by looking to the discriminant of this
quadratic equation. The particles will collided if 4σ2v2 > (xvy−yvx)2,
or equivalently if:
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2σv > |xvy − yvx|

Therefore the time of collision between two particles is:

tcol =
1

v2

[
−x · vx − y · vy −

[
4σ2 · v2 − (x · vy − y · vx)2

]1/2]
(1.8)

• Particle-Wall Event (PWE): As we will see our particular configuration
has periodic boundary conditions in the y direction, so it only will be
necessary to calculate the time of collision with the thermal walls. This
walls are located at xh = 0 and xc = 1 and the particles will hit them
with it’s surface, so the time of collision will be:

tcol = σ − x/vx
tcol = (1− σ − x)/vx

• Particle-(Virtual Wall) Event (PVE): As part of the algorithm we
divided the system into virtual boxes with the objective of reducing
the number of calculations. However this requires to keep a record of
the particles in a given virtual box. When a particle hit a virtual wall
we have to actualize the content of that virtual box and the one to
which the particle goes. If the particle is in the box (i, j) the walls will
be located at xl = i

NVB
, xr = i+1

NVB
, yb = j

NVB
, ya = j+1

NVB
, where xl

is the coordinate of the left wall, xr of the right wall,yb of the bottom
wall, ya of the above wall and NV B is the number of boxes in one
dimension (that is we have a total of NV B×NV B boxes). We consider
that a particle is in a given virtual box if it’s center is, therefore only
the minimum (positive) time between this four will be recorded in the
local lists. The collision times will be:

tcol = xl−x
vx

tcol = xr−x
vx

tcol = yb−y
vy

tcol = ya−y
vy

(1.9)

Now that we have the collision times associated to every event we are
going to define the collision rules in each case:

• Particle-Particle Event (PPE): We are going to simulate elastic parti-
cles so the momentum and the energy will be strictly conserved. Given
two particles with positions ~r1, ~r2 and velocities ~v1, ~v2 the vector that
connects the centers of the particles will be ~r‖ = ~r2−~r1 = (x, y) (with
x2 + y2 = 4σ2). Lets define ~r⊥ = (−y, x) as a vector perpendicular to
~r‖. The collision rules will be:

v′1⊥ = v1⊥ v′2⊥ = v2⊥ v′1‖ = v2‖ v′2‖ = v1‖

Where v⊥ is the projection of the vector ~v over the direction given
by ~r⊥, namely v⊥ = ~v · ~r⊥/4σ2 and v‖ is it’s projection over the
vector in the direction of ~r‖, that is v‖ = ~v ·~r‖/4σ2. Primed arguments
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correspond to the values after the collision. This rules can be expressed
in Cartesian coordinates as:

v′x1 = vx1 +
x

4σ2
· [x · (vx2 − vx1 ) + y · (vy2 − v

y
1 )] (1.10)

v′y1 = vy1 +
y

4σ2
· [x · (vx2 − vx1 ) + y · (vy2 − v

y
1 )] (1.11)

v′x2 = vx2 −
x

4σ2
· [x · (vx2 − vx1 ) + y · (vy2 − v

y
1 )] (1.12)

v′y2 = vy2 −
y

4σ2
· [x · (vx2 − vx1 ) + y · (vy2 − v

y
1 )] (1.13)

• Particle-Wall Event (PWE): In our simulations we used Stochastic
reservoirs. In this kind of reservoirs every time a particle hit the wall
it gets a new velocity sorted from a Maxwellian distribution at the
temperature of the wall with the condition that the component on the
x direction changes it’s sign. The distributions are:

P (vx) = |vx|√
2πTw

e
−v2
x

2Tw

P (vy) = 1√
2πTw

e
−v2
y

2Tw

(1.14)

• Particle-(Virtual Wall) Event (PVE): Due to that a virtual event is
not relevant to the dynamic of the system, and in order to minimize the
actualization of the position of the particles, the only action performed
in this kind of event is an addition of new future events to the lists.

1.3 Arrangement of the Model

All the previous descriptions are valid for a general simulation of Hard
Disks. In this section we will concentrate in the specific configuration that
we chose in order to study the non-equilibrium stationary state. In figure
1.2 we can see an actual typical configuration of the model stationary state.

The system consist in a squared box of length 1 with periodic boundary
conditions in the y direction. The system is driven out of equilibrium by two
thermal baths along the x-direction operating at different temperatures. The
left wall will always be the hot thermal wall at a temperature Th, and the
right wall will be the cold one at a temperature Tc = 1. Due to the athermal
property of the Hard Disk system we can always set the temperature of the
cold wall to 1 with a trivial rescaling of the measured magnitudes. This point
will be investigated in more detail in chapter 2. Therefore the free parameters
that we can tune are: the maximum number of particles NMax, the Bulk

area density (or packing fraction) η̄ = πσ2NBulk

S and the hot temperature
Th. We are going to work in units where the masses of the particles and the
Boltzmann constant are equal to 1.
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Figure 1.2: Snapshot of a typical configuration with N = 7838 hard disks
at η̄ = 0.5, subject to a temperature gradient (T0 = 10, TL = 1). Colors
represent kinetic energy.

We defined the maximum number of particles (NMax) as the particles
that the system would have in a close-packed configuration. However, due
to the square geometry of the box, is not possible to fit that number of
particles in our system, so our number of simulated particles (NBulk) will
be slightly lower. With this parameters we can calculate the radius of the
particles (σ) and the number of Bulk particles (NBulk). The method used is
the following: First we set the radius of the particles to the value that NMax

particles will have in a box of surface S in a close-packing configuration.

σ =
√

ηcpS
NMaxπ

with ηcp = π
2
√

3
(close-packing fraction)

Then we place the particles in a hexagonal lattice one by one until we
can’t add more particles without overlapping them. This will be our initial
configuration in positions and the number of particles that we could fit in
this way will be the value of NBulk. Once this is done, we reduce the radius of
the particles so that packing fraction of our system match the one introduced
as a parameter:

σ =
√

ηS
NBulkπ

The initial velocities are drawn from a Maxwellian distribution with tem-
perature Tv = Th+Tc

2 . We check that the velocity of the center of mass of the
particles is strictly zero. By giving a different set of velocities we can gen-
erate the different initial conditions. As the dynamics is event driven, time
will be determined by the number of collisions. However in order to make
the measurements more intuitive we instead fixed a time. The procedure to
chose this time is the following: First we evolved the system for 104NBulk

collisions which we check is sufficient to reach the stationary state. Once the
stationary state is reached we measure the mean time in performing 10NBulk

collisions. From this moment ahead the measurements will be separated by
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this interval. In this way the number of collisions between measurements
will fluctuate.

In order to make our local measurements we divided the system into
15 virtual boxes along the x direction. We measure the temperature, the
packing fraction, the number of particles and the virial pressure associated
to those boxes. In the case of the packing fraction and the temperature, if
a particle happens to be crossing the virtual wall at that instant, we assign
to each box values proportional to the area of the particle overlapping with
the box. This is done in order to minimize errors in the calculation of the
profiles that, although are negligible in the case of the mean profiles, will be
significant when we study the fluctuating profiles in chapter 5.

1.4 Equilibrium Results

In order to check the correctness of the program we performed a set of simula-
tions under equilibrium conditions. For this purpose we set the temperature
to equal values and varied the system mean packing fraction and number of
particles. The temperature value will be 5 in our particular units, although,
due to the athermality of the system, the actual value of the temperature is
not relevant and the general behavior of the system can be derived with a
simple rescaling of the velocities. In particular the local value of the packing
fraction will be the same because it is an adimensional variable. The pres-
sure will have a slightly more complicated rescaling. In order to see this we
can look to the general form of the equation of state:

P = kbTρZ(η) with ρ =
N

V
=

η

πσ2
(1.15)

Where ρ is the number density and Z(η) is the compressibility factor
which is a function of the packing fraction. In the limit of η → 0, Z(η)
should tend to 1 in order to recover the ideal gas behavior. Notice that the
Boltzmann constant does not change with a rescaling of the velocities due to
the fact that all energy of the system is in the form of kinetic energy. Using
the relation between the packing fraction and the number density we can
see that our pressure has units of kbT/σ

2. The dependence on the square of
the radius is problematic because, due to the way in which we defined our
system, different system sizes will have different particle radius, therefore
the pressure between different system sizes will not be directly comparable.
So in order to get a more clear cut view of the phenomenology of the system
we can define a new variable Q = Pπσ2 which allow us to get ride of this
problem. If we use Q is easy to see that it will depend linearly on the
temperature of the system allowing us to relate any result for a particular
temperature with the one that we simulated.

Another important technical point is the thermal and density jumps at
the boundaries. This effect is observed in many different systems at no-
equilibrium [4, 54, 56, 57]. As we will see our results agree in general with
the discussions carried out on those papers. Typically the effect is localized
in a very narrow portion of the system near the walls and the principal
manifestation is a distortion of the measured values at the first and last
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Figure 1.3: a) Discrete probability density for the position of the center of
the particles for NBulk = 2900 and η̄ = 0.5, the doted line represent the
limit of the first box. b) Mean experimental packing fractions calculated
excluding the first and last observation boxes. c) Finite Size Scaling of the
difference between the imposed packing fraction and the measured one.

observation boxes. This jump is much more evident in the density profiles
and in this case it appears even for equilibrium conditions. The reason
for this behavior are the spatial correlations induced by the hard wall. To
illustrate this point in figure 1.3a we represented the discrete probability of
finding the center of a particle at distance x from the hot wall. It can be seen
that the probability is zero until it reach x = σ, where we have our first peak.
Thenceforth the probability form resembles that of a damped oscillatory
motion, although only qualitatively. The actual theoretical expression is
more complicated and can be calculated given the radius and the mean
packing fraction. In [22] a calculation is provided in the framework of Density
Functional Theory which go beyond the scope of this Thesis. For us the
important fact will be that the effect is restricted to the observational boxes
near the thermal walls and that the perturbation introduced will go to zero
in the thermodynamic limit. In figure 1.3b the constant profiles can be seen
for η̄ = 0.5 and the different system sizes.

In figure 1.3c we represented the dependence of the difference between the
experimentally measured mean packing fraction, taking off the boxes near
the walls, and the impose packing fraction versus the number of particles.
Although we have simulated only 4 system sizes, we can see that the expected

N
− 1

2

Bulk dependence is in very good agreement with our data and yields a value
of zero difference in the limit NBulk →∞. For completeness in Table 1.1 we
give the parameters of the linear fit.

The temperature is not affected by finite size effects on these equilibrium
configurations. In figure 1.4 we represented the temperature profiles for dif-
ferent system sizes and different packing fractions. We can see that there is
no jump in the values of the temperature neither is an appreciable depen-
dence with the number of particles or the packing fraction. Furthermore the
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η Slope Intercept(10−6) R
0.05 0.0119±0.5·10−4 -4±1 0.9999814
0.10 0.0307±3·10−4 -9±5 0.9999297
0.15 0.0509±4·10−4 -8±9 0.9999245
0.20 0.0699±3·10−4 4±7 0.9999777
0.25 0.0889±9·10−4 -3±12 0.9998949
0.30 0.1050±1·10−4 -1±3 0.9999984
0.35 0.1172±3·10−4 -10±7 0.9999924
0.40 0.1253±4·10−4 2±7 0.999991
0.45 0.1317±13·10−4 4±25 0.9999039
0.50 0.1355±1·10−4 -8±1 0.9999998

Table 1.1: Parameters of the fit shown in figure 1.3c

value throughout the system is equal to the imposed value.

0 0,2 0,4 0,6 0,8 1
x

4,94

4,96

4,98

5

T

N
Bulk

=941 η=[0.05−0.5]
N

Bulk
=4875 η=[0.05−0.5]

N
Bulk

=8838 η=[0.05−0.5]

Figure 1.4: Temperature profiles for different NBulk. Finite size effects are
negligible.

The pressure is a well defined concept in a closed system where particles
interact with the wall of its container:

Pw =
1

Lyτcol

Ncol∑
n=1

∆px,n (1.16)

where the sum extends to all Ncol collisions with the wall (assumed to be
vertical) occurring on the time interval τcol. Such collisions take place at
instants tn, and ∆px,n = limε→0[px(tn+ ε)−px(tn− ε)] is the linear momen-
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tum variation on the perpendicular direction to the wall after the collision
with it.

On the other hand at equilibrium one can use the virial theorem to
compute the pressure. In the hard disk case one gets [58]:

Pv =
NT

LxLy
+

1

2LxLyτcol

Ncol∑
n=1

~rn · ~vn (1.17)

This sum is similar to the wall case but now it extends to any particle-
particle collision and ~rn = ~ri(tn)−~rj(tn), ~vn = ~vi(tn)−~vj(tn) with (i, j) the
pair of particles colliding at instant tn.

η

ηc

η

η η

xx

η

a)

b)

c)

Figure 1.5: a) Wall pressure and virial pressure (see text) computed for a
set of systems at equilibrium with temperature T = 5, several mean areal
packing fractions η̄ and three different sizes. Solid blue symbols are a linear
extrapolation of the data for a given areal density. Below we show the rela-
tive error (in %) obtained between the wall pressure and the virial pressure.
b) Virial pressure profiles. Red lines are the linear extrapolation fit of the
values of the virial pressure, obtained by averaging boxes from 2 to 14 (both
included), for the three different sizes. Dotted lines are the error of such
extrapolation. c) Extrapolations to infinite size obtained for the wall pres-
sure and virial pressure as a function of the mean packing fraction. Solid
line is the value of the pressure obtained by the Henderson equation of state
[22]. Dashed line is the expected value for the critical density where a phase
transition occurs for a hard disk system at equilibrium.

Our intention is to compare these magnitudes under our non-equilibrium
configurations with the aim to check is there is any kind of mechanical equi-
librium in those cases. However under equilibrium conditions these two
magnitudes should yield the same value. We used this fact to check the va-
lidity of our program by performing 42 simulations at equilibrium with the
stochastic boundaries at T = 5, three system sizes NBulk = 941, 4875, 8838
and 14 different mean packing fractions: η̄ = 0.05, . . . , 0.7.
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Wall pressures are measured at the boundaries x = 0 and x = 1. The
averaged values are shown in Figure 1.5a where we compare it with the
mean virial pressure. In figure 1.5b we measured it at each of the 15 boxes
of the system. We can see that there is a well defined spatial structure at
the boundaries (boxes 1 and 15) but it is almost constant on the bulk. We
defined as the virial pressure the average over the 13 cells where the local
virial pressure values are constant. We see that the relative error between
the wall pressure and the local virial pressures are, at most, of the 0.1%
for each size and it is smaller than the respective error bars. It is curious
to realize that the wall pressure, which is measured with particles that are
part of boxes 1 or 15 colliding with the wall, is equal to the virial pressure of
central boxes, but different from the virial pressure calculated on those boxes.
We think that such boundary deviations are due to the already mentioned
spatial correlations of the density near the wall.

We linearly extrapolated the three sizes to obtain an infinite size wall and
virial pressure values for each packing fraction. In Figure 1.5c we represented
their values and compare the data with the Henderson’77 [22] equation of
state for hard disks

QH77 = ηT

[
1 + η2/8

(1− η)2
− 0.043

η4

(1− η)3

]
(1.18)

where in our case T = 5. The coincidence is very good except when we ap-
proach the density for the transition gas-liquid at ηc = 0.7062. It is known
that the equation of state (1.18) it is one of the best for densities less than
η ' 0.65 but it doesnt reproduce at all the phase transition.

After performing this analysis of a equilibrium configuration we are con-
fident that our program works correctly. It also allows us to get a first
impression on the boundary effects present for this kind of simulation. This
effects are remarkable in the case of the packing fractions where the spatial
correlations, occurring due to the use of hard walls, became significant for
a finite number of particles. This behavior is transferred to the measure-
ment of the virial pressure. However we saw that in both cases these effects
disappear in the thermodynamic limit.



Chapter 2

Non-equilibrium
Stationary State

In this chapter we are going to deal with one of the simplest cases of non-
equilibrium phenomena. When a system is put in contact with at least two
thermal reservoirs at different temperatures, it evolves towards a stationary
state. In the case of a fluid this stationary state is characterized not only
by a temperature profile, but also, as the particles are free to move around
in the system, by a nontrivial density profile. The goal of a macroscopic
description of this system will be to give a theoretical expression, in the
limit of large number of particles, for the profiles in term of the parameters
of the system. In our case these are the mean density and the temperature
of the hot bath. Following de Groot and Mazur [7], this profiles will be
determined by continuity equations relating the fluxes across the system with
the gradient imposed. However, this approach use as a given fact that certain
constitutive phenomenological relations, diffusion like type of equations, hold
for the system at hand. In this way, in order to apply this theory, it will be
necessary to give a microscopic foundation to the phenomenological law and,
in case it is correct in all regimes, calculate the constants that relates the
fluxes with the gradients. In the case of thermal transport the constitutive
equation is the well known Fourier’s law. It states that the flux of energy
(J) it’s related to the gradient of temperature by means of a constant, the
thermal conductivity (κ) :

J = −κ∇Text (2.1)

It’s important to notice that this is a purely phenomenological law derived
from experiments of heat transport in which, although a reading is recorded
with a thermometer, we can’t, in general, relate that measurement with an
actual thermodynamic temperature of the system. In order to do this, we
have to add to our theoretical description the strong hypothesis of Local
Thermal Equilibrium (LTE). This hypothesis is based on the assumption
that the time necessary to achieve a local thermalization of the system is very
small, when compared with the characteristic time of the non-equilibrium
process. This allows to define locally a temperature, density and pressure as
well as to use locally any equilibrium thermodynamic relation. If we assume

31
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that LTE holds, the expression for κ will depend on the local values of the
density and temperature. In this way we can define a local Fourier law as:

J = −κ(η, T )
dT

dx
(2.2)

To test if this relation is valid locally we are going to calculate the con-
ductivity using expression 2.2 for a wide number of configurations that are
far from equilibrium. If the calculated value is independent of the external
gradient applied we can conclude that Fourier’s Law holds. This will require
an analysis of the profiles and their size and boundary effects. Such a direct
approach is rarely seen in the literature.

Despite of the many papers using the Hard Disks system at equilibrium,
is remarkable that there are only a few studying this system under actual
non equilibrium conditions, some notable exceptions are the papers by Risso
and Cordero [57, 59] and Mareschal et al [60, 56, 61]. We believe this is due
to the great difficulties arising in this kind of studies. Since the first simula-
tions of equilibrium systems, boundary effects have been a mayor concern.
The general strategy to mitigate these effects is the use of periodic boundary
conditions. However this type of boundaries are incompatible with a direct
use of a thermal reservoir. This led to a number of simulation methods where
the reservoirs are substituted by a modification of the dynamics of the par-
ticles, which allow to conserve the periodic boundary conditions [62, 63].
Without detracting those approaches, we believe that a direct treatment
is potentially more clear. Furthermore, the exponential growth in compu-
tational power allows us now to simulate larger systems, with the hope of
survey these boundary effects.

To try to shed some light into these questions in this chapter we are going
to characterize the general morphology of the non-equilibrium stationary
state. First we are going to focus on the temperature and density profiles,
how they depend on the gradient applied, the mean density of the system
and the number of particles. We will give experimental fits to these profiles
and will try to analyze the size and boundary effects. Next we are going
to focus on the energy flux across the system and its dependence on the
various parameters used. The question of the validity of LTE hypothesis
will be treated in the next chapter.

Before we proceed to analyze the results of the profiles we want to men-
tion an important technical issue. As explained in section 1.3 we divide
our system into measurement boxes. The number of boxes is fixed for ev-
ery system size so, even in the thermodynamic limit, this boxes will have a
macroscopic character, and due to the nonlinear dependence of the profiles
with the x coordinate is expected that the measured values differ from the
actual values at the center of the box. In order to correct this effect we are
going to use a Taylor series expansion around the center of the box.

Let’s TC and ηC be the local temperature and areal density measured in
a box centered at xc of size ∆. Assuming that there exist temperature and
density profiles T (x) and η(x) we can relate both by:

TC =
1

∆ηC

∫ xc+∆/2

xc−∆/2

dx η(x)T (x) , ηC =
1

∆

∫ xc+∆/2

xc−∆/2

dx η(x) (2.3)
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We can expand the profiles around xc inside a box and make the integrals.
We keep results up to ∆2 order:

TC =
1

ηC

[
η(xc)T (xc) +

∆2

24

d2

dx2
[η(x)T (x)]x=xc

+O(∆3)

]
ηC = η(xc) +

∆2

24

d2η(x)

dx2
|x=xc +O(∆3) (2.4)

We get the desired result inverting the above expressions and discretizing
the derivatives using the values of the neighbor boxes:

T (xc) = TC −
1

24

[
2

ηC
(ηC+1 − ηC)(TC+1 − TC) + TC+1 − 2TC + TC−1

]
η(xc) = ηC −

1

24
[ηC+1 − 2ηC + ηC−1] (2.5)

Typically the corrections are small (0.1%) but, as we will see, relevant to
study deviations from the local equilibrium predictions.

We performed simulations with a large set of different parameters. In
table 2.1 we give a summary of them.

NBulk ∇Text η̄
1456 [1,2,...,18,19] 0.5
2244 [1,2,...,18,19] 0.5

[1,2,...,18,19] 0.5
2900 9 [0.05,0.1,...,0.65,0.7]

19 [0.05,0.1,...,0.65,0.7]
[1,2,...,18,19] 0.7

3729 [1,2,...,18,19] 0.5
4367 [1,2,...,18,19] 0.5
5226 [1,2,...,18,19] 0.5
5935 [1,2,...,18,19] 0.5

2 [0.650,0.655,...,0.750,0.755]
6853 [1,2,...,18,19] 0.5
7838 [1,2,...,18,19] 0.5

[1,2,...,18,19] 0.7
8838 [1,2,...,18,19] 0.5

Table 2.1: Summary of all the external parameters used in the simulations.

2.1 Temperature profiles

In figure 2.1a we can see the typical shape of the temperature profile for our
system. The profile is smooth and non linear for all temperature gradients,
although they become more linear as we decrease the gradient. It is also
observed a small difference between the extrapolated temperature at x = 0
and the impose temperature of the wall. We did a phenomenological analysis
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to the temperature profiles. We tried several analytical forms and the one
with which we obtained better results was: T (x)α = a+ bx. This form was
deduced for some two-dimensional Hamiltonian and stochastic models [64].
In table 2.2 we see the coefficients obtained.

∇Text a0 a1 α χ2 R
1 1.612 -0.603 0.699 2.051e-06 0.999999
2 2.158 -1.144 0.709 7.42298e-07 1.000000
3 2.643 -1.626 0.709 3.03581e-06 1.000000
4 3.093 -2.075 0.709 1.26663e-05 0.999999
5 3.538 -2.521 0.712 3.95863e-05 0.999999
6 3.931 -2.914 0.710 0.000106999 0.999998
7 4.324 -3.309 0.710 0.000180338 0.999998
8 4.722 -3.710 0.712 0.000379898 0.999996
9 5.103 -4.095 0.713 0.000564661 0.999996

9.5 5.306 -4.301 0.715 0.000791723 0.999995
10 5.498 -4.495 0.716 0.000945252 0.999994
11 5.833 -4.833 0.715 0.00123657 0.999994
12 6.222 -5.230 0.718 0.00172625 0.999993
13 6.574 -5.589 0.719 0.00233933 0.999991
14 6.923 -5.945 0.719 0.00275901 0.999991
15 7.276 -6.306 0.721 0.00426485 0.999988
16 7.591 -6.628 0.720 0.00465778 0.999989
17 7.987 -7.039 0.724 0.00638423 0.999986
18 8.319 -7.379 0.724 0.00681082 0.999987
19 8.558 -7.628 0.721 0.00744746 0.999987

Table 2.2: Fit coefficients for NBulk = 8838 and η̄ = 0.5. Notice that
when the gradient applied is low, we get a correlation coefficient of 1 or
nearly 1, indicating that, maybe, our assumed analytical form has too many
parameters for these data. For these gradients the profiles are almost linear.

One remarkable thing about these fits is the weak, but systematic, depen-
dence of the α coefficient with the gradient applied. This coefficient has also
very little dependence on the number of simulated particles. To illustrate
this in figure 2.1b we give α as a function of ∇T for the different simulated
system sizes.

Despite the apparent very good agreement between our fits and the mea-
sured values, we detected a number of inconsistencies that hamper the phys-
ical meaning of the T (x)α = a+bx law. First we must mention the practical
difficulties of the fitting algorithm. Due to the great variability of the values
of the temperatures any maximum likelihood method will try to adjust bet-
ter the higher values of our curve. In return the lower values, namely those
near the cold bath, will be poorly adjusted. The consequence of this miss
mach is dramatic for high gradients, in the sense that our phenomenological
fits give an extrapolated value of the temperature at x = 0 below that of the
thermal wall, which is totally nonphysical.
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Figure 2.1: a) Temperature profiles for NBulk = 8838 and η̄ = 0.5. b) α
parameter as a function of the gradient for the different simulated system
sizes. c) Difference between the extrapolated value and the imposed value
at the two walls. Beside the results for our fit, we represent the results using
an interpolation by cubic splines extrapolated to the position of the walls.

This fact is more evident when we try to analyze the behavior of the
boundary effects. These effects are usually constrain to the measurement
boxes near the walls [57, 4] and, as the number of particles of the system goes
to infinity, the difference between the extrapolated value and the imposed
value should tend to zero. We study the extrapolations to the wall by two
methods. The first is the already mentioned extrapolation from the non-
linear fits, the second is a cubic splines interpolation extended to the points
x = 0 and x = 1. In figure 2.1c we represented the imposed temperature

minus the extrapolated temperature as a function of N
−1/2
Bulk for the two

methods.
As we can see, for small gradients the two methods give the same result

of zero difference in the large number of particles limit. For large gradients
it is not longer clear that this zero difference should be the limiting value,
although we strongly believe that simulations with more particles will prob-
ably settle that there is no gap. It is also clear that the given extrapolation
for the temperature at x = 1 give a erroneous behavior in this limit.

The second inconsistency that we observe, has to do with the behavior
of the exponent with the mean packing fraction η̄. In figure 2.2a we can see
the temperature profiles for TH = 20, TC = 1 and η̄ in the range [0.05−0.80]
and in table 2.3 a summary of the fit parameters.

We can see in Figure 2.2b that the α parameter has a non trivial de-
pendence with mean packing fraction. However in our system we have a
density profile associated with the temperature profile, therefore this strong
dependence of the exponent on the areal density, is another clear sign of the
phenomenological character of this law.

Finally we want to make some comments on the general aspect of the size
effects associated with the temperature profiles. In Figure 2.3 we plot the
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Figure 2.2: a) Temperature profiles for∇T = 19. We can see how the profiles
changes from convex to concave as we increase the mean packing fraction.
b) Dependence of the α parameter with the mean packing fraction.

η̄ a0 a1 α χ2 R
0.05 57.00 -55.76 1.399 0.00633408 0.999984
0.10 45.90 -45.12 1.311 0.00097683 0.999998
0.15 35.85 -35.20 1.220 0.000874132 0.999998
0.20 28.01 -27.36 1.133 0.00329832 0.999994
0.25 22.02 -21.31 1.049 0.00694016 0.999987
0.30 17.49 -16.71 0.969 0.0099943 0.999982
0.35 14.08 -13.22 0.894 0.011538 0.999979
0.40 11.54 -10.62 0.826 0.0114494 0.999980
0.45 9.650 -8.685 0.765 0.00988003 0.999983
0.50 8.315 -7.323 0.715 0.00677496 0.999988
0.55 7.313 -6.313 0.671 0.00325825 0.999994
0.60 6.477 -5.518 0.630 0.0043217 0.999992
0.65 5.636 -4.690 0.583 0.0154027 0.999973
0.70 5.214 -4.187 0.557 0.00376188 0.999993
0.75 4.557 -3.485 0.512 0.00122979 0.999998
0.80 3.921 -2.864 0.462 0.00525047 0.999990

Table 2.3: Fit coefficients for NBulk = 2900 and ∇Text = 19.



2.2 Density profiles 37

Figure 2.3: Difference between the temperature profiles for the largest and
smallest system simulated (NBulk = 8838 and NBulk = 1456) and η̄ = 0.5.
As the gradient applied grows also grows the difference between the profiles

differences between the profiles for NBulk = 8838 and NBulk = 1456 (∆NT ).
Notice that if we exclude the boxes near the walls the differences are almost
linear. We can think about this effect as a tilt of the profiles. This tilt is
more pronounced for smaller number of particles but the general form of the
profiles is quite similar. We can conclude from the morphological analysis
performed that, despite the smoothness of the temperature and the good
behavior of the gap with the number of particles, the global form of the
bulk profiles has a strong dependence on the size of the system caused by
boundary effects which are difficult to get ride off.

2.2 Density profiles

When the system reach the stationary state we will have an areal density
profile associated to every temperature profile. The zones of the system with
high temperature will correspond with zones of low areal density, making the
pressure across the system constant, i.e. we will have a sort of mechanical
equilibrium. In chapter 3 we will inspect with more detail the validity of
this assertion, which depend on the validity of the LTE hypothesis for our
system. Nevertheless we are going to describe the general morphology of our
system at the stationary state as we did in the case of the temperature. This
will give us some intuition on the general forms of the profiles as well as the
typical boundary effects and size dependence appearing in our system.

In figure 2.4a we can see the typical shape of our density profiles. As
now we don’t have a theoretical expression to check, we tried different forms
for the fits. The one that worked better in all the range of temperature
gradients has this form η(x) = a0

(x−a1) . This fits are the solid lines in the
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Figure 2.4: a) Density profiles for NBulk = 8838, η̄ = 0.5 and all simulated
temperature gradients. b) Difference between the areal density profiles for
the largest and smallest system simulated (NBulk = 8838 and NBulk = 1456)
and η̄ = 0.5.

figure, and, as we did with the temperatures, the first and last measurement
boxes where excluded to perform the fits. In table 2.4 we give the values of
the parameters obtained for NBulk = 8838 and η̄ = 0.5.

Figure 2.5: a) Average areal density among boxes from 2 to 14, both in-

cluded, as a function of N
−1/2
Bulk . Gradients represented from top to bottom

∇T = 1, 2, ..., 19, and η̄ = 0.5. b) Profiles of 1/η and linear fits excluding
the first and last measurement boxes for NBulk = 2900, Th = 20 and, from
top to bottom, η̄ ∈ [0.05, 0.1, ..., 0.65]

We can see a few interesting things in this plot. First the variation of
the areal density profiles with the temperature gradient slows down for high
gradients. Notice that for high gradients the areal density values near the
cold wall get over 0.7, which is approximately the solidification value of this
system. When this happens the compressibility of the fluid gets substantially
reduce conditioning the values of the rest of the profile. In chapter 3 we will
study this non-equilibrium phase coexistence in detail. We must also notice
that significant areal density jumps appear near the walls. The origin of this
jumps is the same as in the equilibrium case, namely the spatial correlations
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∇Text a0 a1 χ2 R
1 -2.30337 5.1114 0.000242038 0.993018
2 -1.47259 3.46478 0.000248798 0.997050
3 -1.18269 2.89353 0.000254347 0.998055
4 -1.03022 2.59477 0.000249135 0.998556
5 -0.935133 2.40951 0.000230397 0.998904
6 -0.869076 2.28153 0.000210437 0.999148
7 -0.819863 2.18686 0.000190456 0.999345
8 -0.781439 2.11347 0.000194851 0.999448
9 -0.749991 2.0537 0.000239563 0.999442

9.5 -0.736242 2.02764 0.000268645 0.999422
10 -0.723447 2.00338 0.000299379 0.999396
11 -0.700595 1.95995 0.000352542 0.999351
12 -0.680255 1.92128 0.000379049 0.999345
13 -0.66224 1.88688 0.000370906 0.999383
14 -0.6466 1.85706 0.000361199 0.999411
15 -0.63258 1.83034 0.00034679 0.999441
16 -0.619727 1.80572 0.000313606 0.999484
17 -0.607979 1.78326 0.000284289 0.999516
18 -0.598009 1.76424 0.000271581 0.999526
19 -0.587645 1.74421 0.000252256 0.999533

Table 2.4: Fit parameters for NBulk = 8838 and η̄ = 0.5

induce on the particles by the hard wall. However now it is not possible to
apply the same theoretical formalism that we suggested in the equilibrium
case. The reason for this is that, in order to apply it, we have to know the
areal density near the wall. However, now this areal density will depend
on the particular form of the profiles which in return will depend in the
boundary effects. Furthermore, if we try to do an analysis of the mean areal
density, as we did in the equilibrium case, now we don’t get a clear result due
to the no linearity of the profiles. In figure 2.5a we plot the size dependence
of the mean packing fractions, measured in the central boxes, for the different
gradients. We can see that the limit mean areal density changes with the
gradient. This limiting value will depend on the global analytical form of
the limit density profile, therefore, without some information on how this
profile might be, we can’t compare our results. Nevertheless the analytical
form used to describe the areal density profiles works very well across the
whole range of temperature gradients.

As we did with the temperature, we checked is this simple fit will work
for other mean packing fractions. To better appreciate a possible deviation
from our analytical form we represented, in Figure 2.5b, 1/η as a function
of x. If our analytical form is correct we should see a linear dependence.
However we see that for areal densities in the range of η̄ ∈ [0.05, 0.20] a
strait line is not sufficient to fit the data. This indicate that our simple law
breaks down for low mean packing fractions.

Finally we want to give some comments on the size dependence of the
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specific shape of the areal density profiles. In Figure 2.4b we represented the
difference between the profiles for the largest system simulated NBulk = 8838
and the smallest one NBulk = 1456. We see that the size dependence is of
the order of 2% as in the case of the temperature profiles, however now
the form of the differences is more complicated. First we can see that the
areal density differences at the boxes 1 and 15 differs from the difference
at the bulk and they are not equal between them. In the the box near the
hot boundary, x = 0, the difference is almost independent of the gradient
applied, in contrast with the box near the cold wall, x = 1, where there is a
significant dependence with the gradient. And second now the difference is
not quasilinear for moderately high gradients, ∇Text ≥ 6, i.e. this difference
is not a small tilt of the profiles but an intrinsic change of behavior. We
believe that this is caused, apart from the mentioned spatial correlations
induced by the hard wall, by a liquid-solid coexistence near the cold wall,
which we will study in detail in chapter 3.

2.3 Heat Current

We define the heat current as the average energy transmitted in any of the
thermal walls per unit time. That is,

jw =
1

Lτ

∑
col

(∆Ec)col (2.6)

In our case, we sum over particle collisions the increments of kinetic energy
each time that a particle hits a given thermal wall and divide over the time
between measurements τ . As we mentioned in section 1.3 τ is the average
time in which the system performs 10N collisions.

In Figure 2.6 we can see that τ scales with N−1/2. That can be un-
derstood by using a kinetic theory argument. We know that the collision
frequency is given by

Γ =
Nv

2l
(2.7)

where v = (πkBT/2m)1/2 is the mean velocity and l = πr/4
√

2θη being θ the
pair correlation function at contact which is a function of the areal density.
In our case Γ = 10N/τ and η = Nπr2/L2 and therefore τ ' r ' N−1/2

because when we change N , we change r in order to maintain η constant.
For each gradient we fit a second order polynomial in 1/N to the data and
we extrapolate to the infinite size value. We see in figure 2.6 the smooth
dependence of the data on 1/N (left figure) and the extrapolation points.
In figure 2.6 (right) we plot the τ dependence on T0 for each size and we
included the extrapolated data to the infinity size (red solid circles). We see
that size effects are not important for N1/2τ . We have found an effective fit
to the infinite size extrapolated data:

τN1/2 = 2.9865 (∆Text + 1.8365)
−0.457

(2.8)

In order to do the fit we have included the equilibrium Enskog value for
τN1/2 = 2.2627 that is obtained by using θ = (1 − 7η/16)/(1 − η)2 in the
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Figure 2.6: Left: Averaged time between 10N collisions for T0 = 2, 3, . . .,
20 (from bottom to top) and T1 = 1 as a function of 1/N for η̄ = 0.5. The
points on the x = 0 axis correspond to the extrapolation of a parabolic least
square fit to the data (solid lines) for each T0. Right: Behavior of the scaled
measurement time τ as a function of the gradient.

above formulas. We see that τN1/2 ' ∆T−0.457
ext for large gradients. Of

course this is an effective fit but we tried many more regular ones and we
only succeed with such singular one.

We have measured the energy current through the hot and cold thermal
walls and both give the same results in average. We first find that the
natural scale for jw is r ' N−1/2. Moreover, the moments of the current also
scale with τ as mk(jw) ' τk−1. In this way we can fit smooth second order
polynomials in 1/N for each gradient data set and we get good extrapolations
to the infinite value limit.

We see that the energy current increases following a nonlinear law:

jw = 1.9232∆Text + 1.3639∆T
3/2
ext (2.9)

We use this behavior because we taken into account that for small ∆Text

values we expect a linear regime as Fourier’s Law predicts. On the other
hand, for large values of the gradient the interaction between particles is
not dominant compared with their kinetic energy and thus, the thermal
conductivity should behave as T 1/2. That is, the Fourier’s law in this case

is jw = −T 1/2dT/dx and solving the equation we get that jw ' ∆T
3/2
ext . The

rescaled second momentum of jw seems to follow a less singular behavior
as a function of ∆Text. In fact we fit a third order polynomial (see Figure
2.7). The rescaled third momentum seems to have a similar behavior as
the second one but it tends to zero with N large. We cannot exclude the
zero value of m3 for all ∆Text when N → ∞. Finally, the kurtosis deviates
from the pure Gaussian value 3 for small systems but it moves consistently
towards it as the size of the system increases, also we find no systematic



42 Chapter 2 Non-equilibrium Stationary State

Figure 2.7: The moments of the current of energy jw for η̄ = 0.5 as a function
of ∆Text for different sizes N . from bottom to top in all figures. Solid red
points are the extrapolation to the infinite size limit obtained with a second
order polynomial in 1/N . Solid red line is a phenomenological fit of the
infinite size limit.

dependence with ∆Text. We also studied the behavior of jw as a function
of the mean density of the system for a fixed temperature gradient that we
have chosen to be T0 = 3. We have chosen a density interval where we know
a solid-like phase appears on the system. We want to observe if there is any
kind of singular behavior in the current. The unique anomaly we find is in
the second momenta in which we detect a change of behavior at η = 0.691
where there is a local minimum on the fluctuations and on the value of
the expected equilibrium phase transition at η = 0.706 where it seems that
m2(jw) have a turning point (see Figure 2.8). We don’t have any theoretical
description for this behavior, which could be an interesting point to perform
further analysis.

There are other possible definitions of the energy current. For instance,
for hard disks, the most natural could be:

jB =
1

N

N∑
i=1

1

2
m~v2

i vi,x (2.10)

The main problem with this expression is that, as we will see in chapter
3, local equilibrium holds for our system and the non-equilibrium behavior
seems to live on the fluctuating level. That is, when we average the data,
the system seems to behave as it is in mainly at equilibrium and the ex-
trapolation to infinite sizes should (apparently) go to zero because the local
equilibrium measure is even in the velocities. We show in Figure 2.9 the
behavior of jB as a function of 1/N1/2 for different gradients. We see that
the second moment of jB behaves normally and it scales with N . m3(jB)
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Figure 2.8: The moments of the current of energy jw for a fixed temperature
gradient T0 = 3 and T1 = 1 as a function of η̄ ∈ [0.65, 0.745] for N = 5226
particles. Solid red line are in each case the best fit shown.

Figure 2.9: The moments of the current of energy jB as a function of 1/N
for η = 0.5, T1 = 1 and T0 = 2, . . ., 20 from bottom to top in all figures.
The points on the x = 0 axis correspond to the extrapolation of a parabolic
least square fit to the data (solid lines) for each T0.
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Figure 2.10: The moments of the current of energy jB for η̄ = 0.5 as a
function of ∆Text for different sizes N . from bottom to top in all figures.
Solid red points are the extrapolation to the infinite size limit obtained in
Fig.2.9. Solid red line is a phenomenological fit of the infinite size limit.

has the same problem as jB and we cannot even try to fit a smooth curve.
The fact that jB has that strong dependence on N makes its analysis to the
infinite size behavior very problematic and depending on the function that
we use to fit the data. The effect is clear in Figure 2.10. The data for jB is
very noisy but it has a similar behavior to that of jw. The most important
fact is that the infinite size limit for jB is non zero and it confirms that local
equilibrium is not the stationary measure of the system. However we should
be cautious with this conclusion because in this case the limiting jB is very
dependent on the function that we use to fit the data.

The last question we should answer is if jw is proportional to jB . We plot
in Figure 2.11 the measured jB/r vs. rjw (the scale in each case is to get
similar values on both magnitudes). The data present a small dependence
on N . In fact we see that the best fit is a parabolic like function with only
one parameter C(N) that we plot in the inset as a function of N−1/2. The
numerical extrapolated behavior of jB/r as a function of rjw is then given
by:

r−1jB = 1.625rjw (1 + 0.000386rjw) (2.11)

that is, for small gradients, say T0 ∈ [0, 5] both currents are almost propor-
tional. However, for large gradients one sees a systematic deviation from
linear behavior. Therefore we conclude that is not equivalent to use any
energy-like current observable.

2.4 Concluding Remarks

In this chapter we analyzed the temperature and density profiles as well as
the heat current across the system. We find that temperature and density
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Figure 2.11: The bulk current jB vs jw. Each point is the measured values
of both currents for a given ∆Text and N . Equal color points correspond to
a given N . Lines are the fits of the data to the function written in the figure.
The inset shows the behavior of the coefficient C(N) obtained by the fit.

profiles are nonlinear which indicate that the conductivity across the system
is not constant. This will prevent us to perform an analysis equivalent to
the performed in [57], i.e. in terms of the external gradient. If we want
to check if Fourier’s Law holds we need to do it locally. This represent a
challenge because the temperature and density profiles have a highly non-
trivial dependence with the system size. Without a clear clarification of this
effects it will be impossible to discern between a behavior related to the heat
conductivity or one related with the behavior of the profiles. In chapter 4
we give an argument to solve this problem.
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Chapter 3

On Local Thermodynamic
Equilibrium in
Non-equilibrium Fluids

In chapter 2 we have implicitly assumed that the system temperature and
density profiles are relevant observables in the macroscopic characterization
of our system. Here, local temperature means the average local kinetic en-
ergy. That is, we have in mind that Local Thermal Equilibrium holds in
our system. From a theoretical point of view, the existence of LTE is a very
hard unresolved problem (see for instance [65]). If LTE holds we expect that
several things occur (at least at the thermodynamic limit):

• Local observables measured at each macroscopic point, ~x, would follow
the corresponding equilibrium values with respect the local tempera-
ture T (x), local areal density η(x), etc, and, locally, the thermody-
namic relations should hold. For instance, the local pressure (defined
by its virial form), the local temperature and the local areal density
are related by the equation of state of the system that in our case is
of the form:

Q = Pπr2 = TηZ(η) (3.1)

• Measured global observables should be the average with respect a con-
figurational measure that is approximately the product of local equi-
librium Gibbs measures depending on local temperatures and areal
densities.

In practice, is very hard to prove local equilibrium from a computer simula-
tion. However, we may have some indications suggesting that both proper-
ties hold in our system, by studying a small set of observables. In any case
deviations are typically so small that we should make a special emphasis on
finite size effects that may distort the analysis.

47
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Figure 3.1: a)Wall pressure and virial pressure (see text) computed for a set
of systems under the action of several thermal gradients and system sizes
for a mean packing fraction of η̄ = 0.5. In top figure each symbol are for
wall pressure obtained from gradients (from bottom to top): 1, 2, . . ., 19
and ten different sizes. Solid blue symbols are a linear extrapolation of the
data to obtain their infinite size value. Below we show the relative error
(in %) between the wall pressure and the virial pressure. b) Virial pressure
measured at each of the 15 boxes of a system. Red lines are the linear
extrapolation fit of the three average values of the virial pressure obtained
by averaging boxes from 2 to 14 (both included). Dotted lines are the error
of such extrapolation. c) Wall pressure and virial pressure of a system under
the action of thermal gradients for η̄ = 0.5. Solid line is a phenomenological
fit. Solid symbol is the pressure equilibrium value line for T = 1 obtained
from Henderson equation of estate 1.18.

3.1 Mechanical Equilibrium and Equation of
State

When the system reach the stationary non-equilibrium state we measured
the wall pressure and the virial pressure at each box. The overall behavior
about pressures is quite similar to the already explained for the equilibrium
case. For instance, in figure 3.1a we can see that the wall pressure and the
virial pressure, measured on the central boxes, coincide for each size (up
to a 0.2%) and for their respective infinite size extrapolation. Therefore
the system at a non-equilibrium steady state have a kind of mechanical
equilibrium in which the virial pressure is constant along the system (as in
equilibrium) and it coincides with the wall pressure. Moreover, it seems
that there is a local equilibrium property in which the virial pressure still
has locally some physical meaning. We plot in Figure 3.1c the extrapolation
to infinite size of the virial and wall pressures as a function of the external
thermal gradient. The phenomenological cubic fit is very good and it is
coherent with the expected equilibrium value for zero gradient.
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We can assume with some confidence that local equilibrium holds and,
therefore, the local equation of state should hold:

Q = T (x)η(x)Z(η(x)). (3.2)

This relation only depends on the local values of the temperature, packing
fraction and pressure on each measurement box, therefore in Figure 3.2 we
represented Q̄ ≡ Q/η(x)T (x) versus η(x) for all our available data, with
the only exception of the boxes next to the thermal walls. As a reference
we included Henderson 77 Equation of State (EoS) given by eq. 1.18 and
a set of data coming from other equilibrium computer simulations. Let us
remark, for instance, the first data available by Metropolis et al. (1953) by
doing Monte Carlo simulations on hard disks [41], or the very good data
obtained by Alder et al. (1968) for the solid-like phase [42]. Also we include
the data obtained by two of the best computer simulations on hard disks
in equilibrium: Erpenbeck and Luban (1985) [39] and Kolafa and Rottner
(2006) [40]. In these studies they simulated as much as 50000 particles in
equilibrium, founding small deviations to the Henderson expression in the
range of η ∈ [0.4, 0.65]. Finally we also represent more recent data focused
on the phase transition (fluid-solid) that occurs between η = 0.7062 and
η = 0.7201 [66], Mak (2006) [43] and Engel (2013) [44], which where perform
in order to specify the kind phase transition present in this system.

We can see that, although our purpose in this study was not to calculate
this magnitude, our data is in excellent agreement with other equilibrium
computer simulation (less than a 1% of relative error) despite the fact of
being in a non-equilibrium situation. This is quite shocking by itself, but
also for other several reasons. First, we saw in chapter 2 the strong finite
size effects present in the profiles of temperature and areal density which
add up to the moderate ones we saw in figure 3.1 for the pressure. However,
these effects totally compensate each other, leaving any possible systematic
behavior with N within the error bars. Furthermore, we should remark that
the mean number of particle in each box is quite low, going from about 70
particles for the system with NBulk = 1456 to about 750 for the system with
NBulk = 8838, in contrast with the cited equilibrium simulations. On top of
that we can see in the bottom inset of Figure 3.2 that a simple running aver-
age over the points, i.e. supposing that they are independent, reproduce the
same deviations from Henderson EoS, in the range of η ∈ [0.4, 0.65], already
seen in the cited works. All this suggest that Local Thermal Equilibrium is
such a strong property of the system that allows us to treat, at least at the
macroscopic level, the values obtained for the temperature, packing fraction
and pressure, in each measurement box, as if they were the equilibrium val-
ues of an infinite system. This means that all size effects previously analyzed
for the Bulk part of our system disappear, leaving as a reminiscence an effec-
tive thermal reservoir, composed by the baths and the first and last boxes, in
whose values are concentrated all size and boundary effects. This property,
that we called Bulk-Boundary decoupling, will be better understood in the
context of chapter 4.
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Figure 3.2: Experimental equation of state for hard disks. We plot for each
box Q̄ = Q/η(x)T (x) against the box density η(x) for all simulated systems
mentioned on Table 2.1. Color data are different results obtained by other
authors. Solid line is the Henderson 77 EoS (1.18). Vertical dashed lines are
the expected transition points. Top inset is the difference Q̄− Q̄H77 and in
the bottom inset we focus on densities η < 0.65. Red data is just a running
average over 20 data points.

3.2 Liquid-Solid Coexistence

Finally, our data seems to reproduce the solid phase and it follows that data
from Metropolis [41] and Alder [42]. This case is interesting by itself because
typically, for a large enough average density, not all boxes of the system are
in the solid phase. In fact there is a kind of non-equilibrium coexistence of
local equilibrium phases already seen in a recent paper by Wooszczuk and
Lipowski (2010) [67]. Let us study the solid phase more carefully.

In figure 3.3c we show a typical configuration in which there is coexis-
tence between liquid and solid phases. In Figure 3.3a we have measured the
number of disk centers on a little box of width 1/10000. In the plot we show
that disk centers are, in average, aligned in well defined layers parallel to
the cold thermostat. The disk centers are aligned to the right part of the
system and they fluctuate more as we move to hotter parts. There are not
structure at all when we reach the liquid phase. We also see the effect of the
hot boundary into the liquid. There is an averaged ordered structure related
to the presence of the hard wall. We also see in the inset an amplification
of the distribution near the cold wall. Red lines are the virtual boxes in
which we measure local equilibrium observables. There is a systematic, box
depending, effect when we measure the box disk density (see figure 3.3b).
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Figure 3.3: Typical hard disk configuration at the stationary state in which
there is liquid-solid phase coexistence. Nmax = 6000, η = 0.745, T0 = 3 and
T1 = 1. Vertical line shows the box in which liquid exists to the left of it
and solid appears to the right.

Boxes contains a small number of disk lines and there are interface effects
when a line of disk is in the boundary of a box. That finite size effect only
appears in the solid phase and we should correct it to obtain a well defined
average value for the density at each box.

From the structure showed in figure 3.3a we are able to measure the
parameters that define the underlying average hexagonal local structure in
the solid: the distance between centers in a vertical line of disks (a) and the
distance between center lines (h) (see figure 3.3c). The results are shown in
figure 3.4.

We observe that the hexagonal structure of the solid phase is not regular
and it depends on x. In fact it seems that there are two well defined regions:
Region I near the cold wall where a is practically constant and its value
depends on the average areal density η̄, larger in any case than 2σ, i.e. there
are not overlapping. h depends linearly on x and it has values smaller than
the one corresponding to a regular hexagonal lattice, that is, h(x) < h0(x) =√

3a(x)/2. Therefore we have a compressed hexagonal lattice. Region (II)
where a grows with smaller x and reaches a maximum value around 2.35σ
independently of the density. h(x) grows smoothly when decreasing x but
with some nonlinear behavior until it reaches the value h(x) = 2σ where
disks lose their natural geometric constraint and they can move freely (in
average) along the vertical direction. That seems to define the transition
from solid to the liquid phase. In Figure 3.4c we plotted h/h0 versus x in
order to see if the regular hexagonal structure is the limiting behavior at
some x zone. That is not clear. For small densities h systematically deviates
from h0 maybe due to finite size effects. For large densities seems that most
of the Region II have h(x) that is almost h0(x) up to the liquid transition.
That is, in those cases the lattice structure goes, from large x to smaller ones,
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Figure 3.4: Hexagonal local lattice structure of the hard disk solid phase for
T0 = 3, NBulk = 5935 and 1.5 × 106 averaged configurations. Each curve
is for a system areal density η̄ ranging from 0.65 up to 0.745 in steps of
0.005. a)Measured a(x) and h(x) values in units of the radius of the disks.
Black circles correspond to the x∗ values where local h and a follow the
regular hexagonal lattice relation: h(x∗) =

√
3 a(x∗)/2. b)a/σ, h0,σ and h1,σ

(see text) as a function of the mean packing fraction. c) h/h0 vs x, where
h0 =

√
3 a(x)/2. The curves with the peak near the right wall correspond to

the smaller densities. d) Areal density profiles’ correction procedure. Black
points are measured data. Blue points are the packing fraction using eq.
3.3. Red points are the corrected data.

from a compressed hexagonal lattice (Region I) up to a regular hexagonal
lattice (Region II). We can define a criteria to find the x∗ that separate both
regions: h(x∗) =

√
3 a(x∗)/2. We show in figure 3.4a the x∗ points and, at

least qualitatively, they work quite well. Finally we studied with more care
Region I. In figure 3.4b we have plotted the a/σ’s constant values and we
have fitted to the h(x)/σ values the line h(x)/σ = h0,σ + h1,σ(1 − x). We
see its regular behavior with η̄ and their tendency to the theoretical closed
packed limit.

Once clarified the structure of the solid phase in our system we can design
a way to define correctly the areal density as a function of position. First we
compute the centers distribution on a 1/104 x-mesh (see Figure 3.4a). Then
we localize the maximum and the minimum of the distribution. We compute
the total number of disks that are between two consecutive minimum, that
will be the number of disks in one disk line. This number divided by Ly
give us an estimation of the local value of a = a(x). The local value of
h(x) is obtained as the average between the maximum at x and its nearest
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ηη

Figure 3.5: Temperature and density profiles for systems with coexisting
non-equilibrium phases. Left figures are for NBulk = 7838, η̄ = 0.7, and
T0 = 2, 3, . . ., 20 and T1 = 1. Right figures are for NBulk = 5935, T0 = 3,
T1 = 1 and η̄ = 0.65, 0.655, 0.660, . . . , 0.745.

maximums. Finally the local density is the corresponding to an infinite
triangular compressed lattice with parameters a(x) and h(x):

η(x) =
πσ2

a(x)h(x)
(3.3)

On Figure 3.4d is plotted the density measured in the virtual boxes (black
circles), and using the information of the underlying lattice structure by
following the above scheme (blue dots). We may recover a density in a
virtual box by interpolating them (red dots). We see that this method is
useful as long as we are on the solid phase and it breaks down when we are
on the liquid phase. Nevertheless using the solid phase scheme, we recover
the right values of η when we average enough local points for instance in a
virtual box.

With this method we may draw the temperature and density profiles for
several cases with coexisting non-equilibrium phases. In figure 3.5a we plot
temperature profiles for a system with NBulk = 7838, mean areal density
η̄ = 0.7 and temperature gradients ranging from 1 up to 19. Also, we fixed
the temperature gradient T0 = 3 and studied the profiles as a function of
the system average density η̄ for systems with NBulk = 5935. We observe:

• Temperature profiles are regular and behave similarly to the ones with
an unique liquid phase (see figure 2.3). No singular behavior is found
when crossing liquid to crystal phases.

• Density profiles are also regular but its convexity changes when going
from the liquid to the crystal phase.
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• The size of the crystal phase depend only on the mean packing fraction
η̄. The local densities depend also on the imposed gradient.

• Size effects are important in the solid phase: one particle more or less
in a solid column with around 80 particles, changes appreciably the
local density.

• There are some effects due to slow relaxation to the final stationary
state that affect to the observed measured profiles.

There is a final question to be addressed: local equilibrium holds in the
crystal phase? If the answer is positive then we can use the local data
to reproduce the equilibrium equation of state for the crystal phase. First
we have measured the wall pressure as a function of several η-values and
temperature gradients. We find a monotone behavior. In fact the data may
be well fitted with a second order polynomial. Size effects are small and there
is no effect when the average areal density crosses the equilibrium density
transition point (see Figure 3.6a). Second we studied the local pressure using
its virial form. We saw that in the liquid phase both quantities were equal.
Now things change.

Figure 3.6: a) Left: Wall pressure as a function of mean packing fraction
η̄ for NBulk = 5935 and T0 = 3. Right: Wall pressure as a function of the
external gradient for a mean packing fraction of η̄ = 0.7. Red points are for
NBulk = 7838 and black point for NBulk = 2900 b) Top: Virial pressure, Qv,
versus x for different temperature gradients (top) for NBulk = 2900 (black
circles), NBulk = 7838 (green circles), η̄ = 0.7, and T0 = 2, 3, . . ., 20 and
T1 = 1. Bottom: Qv versus areal density η̄ for NBulk = 5935, T0 = 3, T1 = 1
and η̄ = 0.65, 0.655, 0.660, . . . , 0.745. Dotted lines are the corresponding
wall pressure for a given density or gradient. The first and last point of every
curve is the value of the wall pressure Qw

In figure 3.6b we show the local virial pressure in several system situa-
tions. We may remark:

• The local virial pressure has some local structure: in the liquid phase its
value is the same of the wall pressure, Qw, however in the solid phase
the virial pressure increases for intermediate densities and decreases
when the density increases.



3.3 Global Velocity Distribution 55

• Temperature gradient stresses the x-dependence.

• The average density expands the x-structure.

The x-dependence of Qv may imply that local equilibrium doesn’t hold.
In order to confirm this point we have plotted the local triangular structure
h/h0 as a function of Qv/T . We want to see if the local magnitude depend
only on the local triangular structure.

Figure 3.7: Rescaled local triangular structure h(x)/h0(x) versus the local
virial pressure, Qv(x)/T (x), for NBulk = 2900 (black circles), NBulk = 7838
(green circles), η̄ = 0.7, T0 = 2, 3, . . ., 20 and T1 = 1, and for NBulk = 5935,
T0 = 3, T1 = 1 and η̄ = 0.65, 0.655, 0.660, . . . , 0.745.

We see that the data do not scale. There is a small region between
Qv/T = 6 and 8 where there is an apparent scaling. However, when plotting
such data versus the local density the scaling disappears. Therefore we can
conclude that when the system mean packing fraction is large enough, it
appears a crystal like phase that is a regular triangular lattice deformed.
Such structure is macroscopically correlated. Moreover, local equilibrium
does not hold in it and therefore its nature depends directly to the external
conditions applied to the system. It is a non-equilibrium crystal phase.

3.3 Global Velocity Distribution

We wanted to check if local equilibrium holds in a global way. We though
that we could see any deviation to local equilibrium if we measured global
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properties of the system and compared them to the local equilibrium corre-
sponding values. In particular we measured the average velocity moments
at the stationary state:

vn ≡
1

NdN

Nd∑
l=1

N∑
i=1

|~vi|n n = 1, 2, 3, 4 (3.4)

where Nd is the number of data measured. To obtain errors bars we also
measured v5, . . ., v8. To get good enough data we reached values NdN '
6 × 109. We compared the obtained values with the corresponding local

equilibrium ones, v
(le)
n . Then we first should define what we mean as local

equilibrium. Assuming that temperature varies only on the x-direction, the
local equilibrium probability to get a particle configuration with moments
~pi and positions ~ri is given by [65]:

µ(le)(~p1, . . . , ~pN , ~r1, . . . , ~rN ) ' exp

−
N∑
i=1

β(εxi)

~pi 2

2m
+
∑
j 6=i

Φ(~ri − ~rj)

 .

(3.5)
Where ε is the parameter that connects the microscopic scale with the

hydrodynamic one. Under this hypothesis one may argue that the probabil-
ity density that any particle has a velocity with modulus equal to v is given
by:

f(v) = v

∫ 1

0

dx
η(x)

η̄T (x)
exp

[
− v2

2T (x)

]
(3.6)

with

η̄ =

∫ 1

0

dxη(x). (3.7)

Then

ṽ(le)
n ≡ 〈vn〉 =

an
η̄

∫ 1

0

dxη(x)T (x)n/2 (3.8)

where a1 = (π/2)1/2, a2 = 2, a3 = 3(π/2)1/2 and a4 = 8. Before to compare

ṽ
(le)
n with the direct measure vn from eq. (3.4) we should slightly manipulate

equation (3.8) to adapt it to our measurements. Three things should be done:
(a) To express equation (3.8) as a function of box temperatures and densities
TC and ηC following eqs. (2.5). (b) To include the fact that TC and ηC have
error bars and thus should be considered as fluctuating values around their
average. This influences, for instance, the average value of T (x)n/2. In this
respect we have also to account in the calculus of the fluctuations of η(x)
the role of a constant global η̄. And finally (c) To compute the error bars of

v
(le)
n .

(a) Conversion to box variables. We should convert expression (3.8) with
respect to box variables. To do that we write

ṽ(le)
n =

an
η̄

∑
C

∫ xc+∆/2

xc−∆/2

dxη(x)T (x)n/2 (3.9)
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where xc are the center of the boxes. We may expand the later expres-
sion up to order ∆2 and we get

ṽ
(le)
n = an

η̄ ∆
∑
C

[
η(xc)T (xc)

n/2 + ∆2

24

[
d2η(x)
dx2

∣∣∣∣
x=xc

T (xc)
n/2 +

ndη(x)
dx

∣∣∣∣
x=xc

T (xc)
n/2−1 dT (x)

dx

∣∣∣∣
x=xc

+ n
2

(
n
2 − 1

)
η(xc)T (xc)

n/2−2 +(
dT (x)
dx

∣∣∣∣
x=xc

)2

+ n
2 η(xc)T (xc)

n/2−1 d
2T (x)
dx2

∣∣∣∣
x=xc

]]
(3.10)

that can be written as

ṽ(le)
n =

∆an
η̄

∑
C

ηCT
n/2
C +

∆an
96η̄

n (n− 2)
∑
C

ηCT
n/2−2
C (TC+1 − TC)

2

(3.11)

(b) The effects of the fluctuations of box temperature and density. Due to
the finite number of measurements done, any magnitude and, in par-
ticular, the box magnitudes fluctuate and that influences the observed
averaged behavior. Let us assume that the fluctuations are gaussian
like:

ηC = η̄C + ξCψC P (ψ1, . . . , ψM ) =
√

2πM

M∏
i=1

[
1√
2π
e−ψ

2
i /2

]
δ

(
M∑
i=1

ψi

)

TC = T̄C + θCφC Q(φ1, . . . , φM ) =
M∏
i=1

[
1√
2π
e−φ

2
i /2

]
(3.12)

where M = 15 is the number of boxes and ξC and θC are the experi-
mental errors of density and temperature at box C, and ψC and φC are
the Gaussian random variables with zero mean and variance one. No-
tice that we included the fact that the total areal density is constant.
In our case we can assume that the errors are of order ∆ and we will
expand the results up to order θ2 or ξ2. Now we have to substitute ηC
and TC in equation (3.11) by expressions in (3.12) and then average
with respect P and Q distributions. That is,

v(le)
n ≡ 〈ṽ(le)

n 〉ψ,φ =
∆an
η̄

∑
C

η̄C〈Tn/2C 〉φ +

∆an
96η̄

n (n− 2)
∑
C

η̄C T̄
n/2−2
C

(
T̄C+1 − T̄C

)2
+O(∆3)

(3.13)

where

〈Tn/2C 〉φ = T̄
n/2
C +

1

8
n(n− 2)T̄

n/2−2
C θ2

C +O(θ4
C) (3.14)

Therefore the fluctuations in the box add a small correction to v
(le)
n
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(c) Computing the v
(le)
n error bars. Once we know how to compute v

(le)
n

from our set of data we want to obtain the error bars, χn:

χ2
n = 〈(ṽ(le)

n )2〉ψ,φ − 〈ṽ(le)
n 〉2ψ,φ (3.15)

and, in particular, one needs to know that

〈(ψC)2〉ψ = 1− 1

M
〈ψCψC′〉ψ = − 1

M
if C 6= C ′ (3.16)

and we get

χ2
n =

(
∆an
η̄

)2 [∑
C

(
bnθ

2
C η̄

2
C T̄

n−2
C + ξ2

C T̄
n
C

)
− 1

M

[∑
C

ξC T̄
n/2
C

]2]
(3.17)

with b1 = 1/4, b2 = 1, b3 = 9/4 and b4 = 4.

In order to see the relevance of the above corrections let us define

(v(le)
n )0 ≡

∆an
η̄

∑
C

η̄CT
n/2
C (v(le)

n )corr ≡ v(le)
n − (v(le)

n )0 (3.18)

That is, (v
(le)
n )corr contains the ∆2 effects due to the finite sizes of the boxes

and the effects of the errors of the temperature and density profiles.

Figure 3.8: Difference between measured averaged velocity moments, vi
i = 1, . . . , 4 and the predicted ones coming from local equilibrium with-

out corrections,(v
(le)
i )0 at each box as a function of the inverse of particle

number N . Error bars are included. Solid lines are a least square fit to the
curve y = a0 + a1/N + a2/N

2. The data for 1/N = 0 are the values of the
a0 coefficients of the fits for each case.

We see in figure 3.8 the finite size analysis of both parts of v
(le)
n . In both

cases we find a smooth behavior as a 1/N function that can be very well
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fitted with a parabolic function: a0+a1/N+a2/N
2. We take a0’s coefficients

as the infinite size behavior for each gradient and we compute the inherited
error bars of these coefficients from the errors of the measured data. In
figure 3.9 we represent the values of the difference between the measured
moments and the local equilibrium ones as a function of the temperature
difference for different values of N . We see that, consistently, all differences
tend to be small as the size increases. Red symbols are the extrapolation

to infinite N of vn − (v
(le)
n )0. Black symbols are vn − (v

(le)
n )corr where we

include all the corrections. We see that (i) the differences are very small but
our data is good enough to resolve structure at such level of precision, (ii)
the corrections always move the local equilibrium data in the boxes towards
zero and (iii) the error bars of the extrapolations include in most cases the
zero value. Notice that que are considered only ∆2 corrections.

We may conclude in this section that local equilibrium ansatz is consis-
tent with the measured global average powers of the velocity of particles at
the thermodynamic limit. We think that the deviations to local equilibrium
observed for finite systems are mainly due to boundary effects.

Figure 3.9: Values of the difference between velocity moments and local
equilibrium ones as a function of the external increment of temperature for
different sizes. The smallest size are the black dots. Red solid dots are
the extrapolation to infinite size of data for a given temperature increment.
Black dots are the red solid dots values plus the correction due to the finite
size box density and temperature. Insets are the measured averaged velocity
moments for different sizes and temperature increments.

3.4 Breakdown of Local Equilibrium

As we saw above, the system of hard disks seems to have the local equilibrium
property in its liquid phase at least in the macroscopic level. We want to
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check if there is any deviation of local equilibrium at the fluctuating level.
For that we focus in measuring the fluctuations of the global energy density:

mn(U) ≡ 〈(U − 〈U〉)n〉 , U =
N∑
i=1

1

2
m~v2

i , (3.19)

and we compare it with its local equilibrium counterpart. Let us remind
the equilibrium expressions of the energy fluctuations in the grand canonical
ensemble:

mn(U) =
(−1)n+1

∂βn
∂n ln Ξ, (3.20)

where U = 〈HN 〉, and

Ξ =

∞∑
N=0

zNZN , ZN =
1

N !h2N

∫
S

d~xN

∫
d~pNe

−βHN . (3.21)

For hard disks the canonical partition function ZN can be written:

ZN =
(2π)N

N !h2NβN
Q(N,S, r), (3.22)

where Q is the configurational part of the canonical partition function and
it doesn’t depend on the temperature. The energy fluctuations are:

m2(U) = T 2 [〈N〉+m2(N)]

m3(U) = T 3 [2〈N〉+ 3m2(N) +m3(N)] . (3.23)

Assuming now that local equilibrium holds we get:

〈U〉(le) =

∫ 1

0

dx〈N〉xT (x)

mn(U)(le) =

∫ 1

0

dxmn(Ux). (3.24)

Finally, if N is the system total number of particles we get

u(le) =
〈U〉
N

=

∫ 1

0

dx
η(x)

η
T (x)

Nm2(u)(le) =
m2(U)

N
=

∫ 1

0

dx
η(x)

η
T (x)2

[
1 +

m2(Nx)

〈N〉x

]
N2m3(u)(le) =

m3(U)

N
=

∫ 1

0

dx
η(x)

η
T (x)3

[
1 +

3

2

m2(Nx)

〈N〉x
+

1

2

m3(Nx)

〈N〉x

]
.

(3.25)

In figure 3.10 we study the size effects when measuring the second mo-
mentum of the energy density on a direct approach or by using the local
equilibrium approximation. In both cases there is a small but systematic
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Figure 3.10: Left figure: energy density, u and the its second momentum,
m2(u) as a function of the inverse of particle number N for different gradients
(from bottom to top T0 = 2, 3, . . ., 20) and η̄ = 0.5. Error bars are included.
Solid lines are the data least square fit y = a0 +a1/N +a2/N

2. The data for
1/N = 0 are the values of the a0 coefficients of the fits for each case. Right
figure: energy density u(le) and its second momentum, m2(u)(le) using the
local equilibrium approximation (see text).

size effect that should be taken into account. We find that the best fit to
the data is a second order polynomial on 1/N in both cases. In this way we
can extrapolate the infinite size behavior.

Figure 3.11 shows the behavior of the energy and energy momentum
as a function of the external gradient for different sizes. We see that the
effects of size are very small for u and Nm2(u). N2m3(u) is much more
fluctuating and size dependent showing that we are reaching the sensitivity
and precision of our computer simulation. Finally the kurtosis behaves in a
gaussian manner with values near 3 for all sizes. Black solid circles are the
infinite size behavior of u and Nm2(u) by fitting a second order polynomial
in 1/N to our data. Red solid circles are also the infinite behavior of u(le)

and m2(u)(le). We see that u ∼ u(le) for all the external gradient range.
However the energy fluctuations shows a increasing deviation from its local
equilibrium counterpart. In the inset we plot their difference versus ∆T 2

and we fit the data to a line, finding a phenomenological slope of 0.025 that
is around 1/40. Let us remind that some one dimensional stochastic models
(WASEP and KMP) have corrections of Nm2(u)−Nm2(u)(le) of order ∆T 2

and its coefficient is ±1/12.
In conclusion, we see that at the fluctuating level and for large external

gradients we can see deviations from local equilibrium.
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Figure 3.11: Energy density, u and the its second momentum, m2(u), third
momentum, m3(u), and kurtosis, κ = m4(u)/m2(u)2 as a function of the ex-
ternal gradient for different sizes and η̄ = 0.5. Error bars are included. Black
solid points are the infinite size extrapolation via second order polynomials
in 1/N to the data. Red solid points are the infinite size extrapolation of
energy and its momentum in the local equilibrium approximation. The inset
shows the difference between the direct measures and the local equilibrium
ones versus the square of the external gradient. The blue dotted line is a
linear fit with slope 0.025.



Chapter 4

Scaling Law and
Bulk-Boundary
Decoupling in
Non-equilibrium Fluids

We saw in chapter 2 that the temperature and packing fraction profiles
present a series of size effect which are very difficult to treat with a traditional
finite size scaling. Our intention is to derive the heat conductivity as a
function of these profiles and the heat current. Therefore, without a clear
picture of the size effects associated to each of these magnitudes, is impossible
to study the thermodynamic limit of the heat conductivity. In this chapter
we give a strategy to circumvent this problem. First we are going to prove a
scaling law for Hard Disks, which can be generalize to any athermal system
(see appendix B), with the following starting hypothesis:

(a) The system obeys Local Thermal Equilibrium at the macroscopic level,
therefore locally the temperature, density and pressure are related by
an Equation of State.

(b) Fourier’s law holds locally.

The actual formal expression for these equations will be irrelevant as long
as the temperature and density dependence are separable, which is auto-
matically satisfied by athermal systems. As we saw in chapter 3 we can be
confident that hypothesis (a) holds and that the system follows the equilib-
rium Equation of Estate without finite size effects. Therefore if the scaling
fails then it will mean that Fourier’s Law breakdown for our system. This
will allow us to find the limits associated with this hypothesis and study the
thermal conductivity for this system.

63
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4.1 The scaling property of Fourier’s law for
hard disks

Let us define our hard disk system in a box of side L where there are N
disks of radius σ. We apply a temperature gradient in the x-direction, that
is, we fix the temperature T0 at x = 0 and T1 at x = L.

The system stationary state follows the Fourier’s law :

J = −κ(T (x), η(x))
dT (x)

dx
x ∈ [0, L] (4.1)

where J is the heat current that it is assumed to be constant along the
system, κ is the thermal conductivity that depends on the local temperature
T (x) and on the local areal density η(x) = πσ2n(x) where n(x) ≡ N(x)/L2

is the local particle density per unit area. In the hard disk case κ is of the
form:

κ(T, η) =
√
Tg(η) (4.2)

In particular, the Enskog theory applied to the hard disk system [68] predicts:

g(η) =
1

σπ1/2
a1(s)

[
1

ξ
+ 3η +

(
9

4
+

4

πa1(s)

)
η2ξ

]
(4.3)

with ξ = (1− 7η/16)/(1− η)2 and a1(s) are the Sonine polynomial approx-
imation up to s order (a1(1) = 1, a1(3) = 1.029). However it is already
known that this result deviates significantly from simulations results [57].

We assume that, at this macroscopic level, local equilibrium holds in the
sense that the local density and the local temperature are related by its
equilibrium equation of state that is of the form:

Q = TZ(η) (4.4)

where Q = Pπσ2 and P is the pressure. We have assumed units where the
Boltzmann constant equals to one. Z(η) is unknown but there are many
proposals that almost fit actual numerical simulations results [22].

Equations (4.1), (4.2) and (4.4) are the necessary equations to completely
describe the system macroscopic behavior. That is, we can write down the
Fourier’s law (4.1) as a function of the density profile:

J

Q3/2
= F (η)

dη(x)

dx
(4.5)

where

F (η) = g(η)
dZ(η)

dη
Z−5/2(η) (4.6)

We will assume that F (η) > 0 for all the studied η̄ and then η(x) is a
monotone increasing function. Then the density profile η(x) is given by:

x

L
=

∫ η(x)

η0
dη F (η)∫ η1

η0
dη F (η)

(4.7)
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η

Figure 4.1: Schematic form of two arbitrary solutions of the density profile
obtained by solving the Fourier’s law for hard disks. The meaning of labels
is explained in the text

where η0,1 can be obtained from the initial given data T0, T1 and η̄ by solving
the coupled equations

T0

T1
=

Z(η1)

Z(η0)
(4.8)

η̄ =
1

L

∫ L

0

dx η(x) =

∫ η1

η0
dη ηF (η)∫ η1

η0
dη F (η)

(4.9)

As a byproduct we can find the heat current J and the reduced pressure
Q:

Q = T0Z(η0) (4.10)

J =
Q3/2

L

∫ η1

η0

dη F (η) (4.11)

Obviously we don’t know the expressions for the thermal conductivity
(4.2) and the equation of state (4.4) but we can derive several useful prop-
erties of the temperature and density profiles that we can use to analyze the
data from computer simulations.

Let η′(x) and η”(x) two solutions of the Fourier’s law each one for a
different set of values T0, T1, η̄ and the same system length L. Let η′0 = η′(0),
η”0 = η”(0), η′1 = η′(L) and η”1 = η”(L) and we define x0 and x1 as the
solutions of the equations η′(x0) = η”0 and η′(x1) = η”1 respectively (see
figure 4.1). Then the following properties hold:

Property 1:

1

L

∫ η′1

η′0

dη F (η) =
1

x1 − x0

∫ η”1

η”0

dη F (η) (4.12)

Proof: We use (4.7) applied to the solution η′(x) evaluate at the points x0



66 Chapter 4 Scaling Law and Bulk-Boundary Decoupling in
Non-equilibrium Fluids

and x1. Then

x0

L
=

∫ η′(x0)

η′0
dη F (η)∫ η′1

η′0
dη F (η)

;
x1

L
=

∫ η′(x1)

η′0
dη F (η)∫ η′1

η′0
dη F (η)

(4.13)

Subtracting both expressions and using the fact that η′(x0) = η”0 and
η′(x1) = η”1 we get (4.12).

Property 2: The profiles η′(x) and η”(x) are related by the following
scaling:

η”(L
x− x0

x1 − x0
) = η′(x) ∀x ∈ [x0, x1] (4.14)

Proof: The profile η”(x) is defined by

x

L
=

∫ η”(x)

η”0
dη F (η)∫ η”1

η”0
dη F (η)

(4.15)

we define the change of variables:

y = x0 + x
x1 − x0

L
(4.16)

then equation (4.15) reads:

y − x0 = L

∫ η”(L(y−x0)/(x1−x0))

η”0
dη F (η)∫ η′1

η′0
dη F (η)

(4.17)

where we have applied Property 1. Finally substituting in the later equation
the expression x0/L from eq. (4.13) we get

y

L
=

∫ η”(L(y−x0)/(x1−x0))

η′0
dη F (η)∫ η′1

η′0
dη F (η)

(4.18)

that is, by definition, the implicit equation for the profile η′(y) and therefore
the scaling relation (4.14) should hold.

Property 3: The scaling behavior of density profiles is transferred to
the corresponding temperature profiles in the following way:

T ′(x)

Q′
=
T”(L x−x0

x1−x0
)

Q”
(4.19)

where Q′ and Q” are the reduced pressures corresponding to the system with
density profiles η′(x) and η”(x) respectively.

Proof: We have assumed that the equation of state holds locally. That
means:

T ′(x) = Q′Z(η′(x))−1 , T”(x) = Q”Z(η”(x))−1 (4.20)

By using the scaling property (4.14) we can relate both temperature profiles:

T”(L x−x0

x1−x0
)

Q”
= Z(η”(L

x− x0

x1 − x0
)) (4.21)

= Z(η′(x)) =
T ′(x)

Q′
(4.22)
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Property 4: The reduced pressures and currents of the corresponding
profiles η′(x) and η”(x) are related by:

J ′

LQ′3/2
=

J”

(x1 − x0)Q”3/2
(4.23)

Proof: We know from eq. (4.11):

J ′L

Q′3/2
=

∫ η′1

η′0

dη F (η) (4.24)

J ′′L

Q”3/2
=

∫ η”1

η”0

dη F (η) (4.25)

Dividing both equation and using Property 1 (4.12) we get the desired result.

4.2 Experimental Test of the Scaling Law

We know that if local equilibrium and Fourier’s law hold then for a given set
of external parameters (say average density, and the wall temperatures at
the extremes) there is a well defined solution of the equations whose solution
are a density and temperature profiles η(x) and T (x) respectively. Moreover,
these profiles and any other solution of a different set of external parameters,
η̄(x) and T̄ (x), are related in the following way:

η(x) = η̄

(
JQ̄3/2

J̄Q3/2
(x− x0)

)
T (x) =

Q

Q̄
T̄

(
JQ̄3/2

J̄Q3/2
(x− x0)

)
(4.26)

where J and Q are the stationary heat current and the scaled pressure re-
spectively for the system with density profile η(x) and J̄ , Q̄ the ones for the
system with density profile η̄(x). x0 is related with the set of the system
parameters in both cases.

We saw in chapter 2 that it is not clear that Fourier’s law holds for our
system. We were not able to study the infinite size limit of the temperature
profiles even though they behave in a very smooth way. Thermal resistance
at the boundaries and finite size effects on the currents and pressure make
very difficult to obtain a coherent finite size study of the system. Moreover,
we also saw that density profiles have a lot of structure near the boundaries
and they are very sensitive to the system size making their analysis much
more difficult. However we have also shown in chapter 3 that the bulk of the
system follows the EoS of Hard Disks to a high accuracy, suggesting that it
was not necessary to perform a finite size analysis on the profiles. For this
reason we try to circumvent these problems by discarding the data near the
thermal wall and performing the scaling over the remaining points. We will
see how the rest of the data scale as the theory predicts.

This Bulk-Boundary Decoupling (BBD), that we advance in chapter
3, is a property by which the system naturally reorganizes itself in two well
defined regions:

• The stochastic boundary plus the boxes near them that we will call
effective thermal walls.
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η
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η
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a)
b)

Figure 4.2: a) Measured JQ3/2 for systems with η = 0.5, T1 = 1, T0 = 2,
3, . . ., 20 for all the ten sizes (black points are the smaller size data). b)
Strategy followed to scale all the data. We use as example the density profiles
obtained for η = 0.5, T1 = 1, N = 8838 and T0 = 10.5 (black points) and
T0 = 20 (red points). The data interpolation is done with the formula in
(3) with parameters: a = −0.2634, b = 1.7576, c = 5.2094 and d = −2.3545
for the black data points and a = −0.2123, b = 1.8653, c = 5.6701 and
d = −2.6221 for the red data points.

• The rest of the system, which behave as an infinite fluid system in
LTE.

The effective thermal walls create new boundary conditions to the bulk
part that lacks of boundary effects like, for instance, the thermal resistance
or density structure near it. Then, the bulk part follows the ideal Fourier’s
law with effective boundary temperatures and average density. Obviously,
we have no predictive control of the effective boundary conditions. We will
show in the rest of this section that they exist and that we can numerically
study the thermal transport of an ideal hard disk system without worrying
for boundary size effects. BBD maybe a common property of particle systems
with well behaved interactions but we can only proof its existence via the
scaling property of the profiles.

Let us show that the bulk part of our system have the scaling property.
First, let us define a reference profile as the one with the property J̄ = Q̄3/2.
There are infinite many of them and they are related by a shift on the x-
coordinate. For instance in Figure 4.2a we show the behavior of JQ3/2 for
our simulations with η = 0.5, temperatures T1 = 1, T0 = 2, 3, . . ., 20 and
ten different sizes. We see that one can find JQ3/2 = 1 when ∆Text ' 2.

With respect the reference profile, η̄(x), we should prove that the profiles
from the numerical simulation have the properties:

η(x) = η̄(y + y0) ,
T (x)

Q
=
T̄ (y + y0)

Q̄
(4.27)

where y = JQ−3/2x. That is, the bulk part of all the profiles obtained from
different thermal gradients, averaged densities or sizes, should be part of a
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Figure 4.3: Collapse of scaled bulk density profiles measured for NBulk =
2900 and three different sets of conditions (see legend) for a total of 572
data points. Left inset: Collapse with 2200 data points obtained for η̄ = 0.5,
T0 ∈ [2, 20] and different sizesN ∈ [1456, 8838]. Right inset: Widely different
bulk density profiles measured for different conditions collapse onto different
parts of the same universal master curve.

universal curve (the reference profile) except by a coordinate shift, related to
the boundary effects. The strategy is simple and it is shown for the density
profile in Figure 4.2b. We follow four steps: (1) we discard the two near the
walls data points from our 15 points in all the measured profiles. (2) We
rescale the coordinate x using the measured values of J andQ (y = JQ−3/2x)
for all the profiles. (3) We interpolate a function through the points for
each profile and (4) Fixing one profile, we look for the best shift for the
interpolated curves (say the one that minimizes the distance between the
fixed profile and the data to be moved) and we apply it to the data set.

We have found that the best function to interpolate the density profiles
data coming form any temperature gradient, size or average density is given
by the implicit form:

x =
a

ηb
+ cη + dη2 (4.28)

where a, b, c and d are fitted to interpolate a data set.
In Figure 4.3 we show the scaled data for N = 2900 and three set of sim-

ulations. One with fixed average areal density 0.5 and 20 different temper-
ature gradients, and two sets with fixed temperature gradient and different
average areal density ranging from 0.05 up to 0.8. The full data set is fitted
to the curve:

y = 101.75674η̄ − 0.542411η̄−1.41714 (4.29)

with a correlation coefficient of 0.99999. The left inset shows the scaled
packing fraction profiles for η̄ = 0.5, T1 = 1 and T0 = 2, . . ., 20. Where we
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Figure 4.4: Collapse of bulk temperature profiles for the same conditions
that the top panel. Note that the shifts ζ are obtained from the density
scaling, yielding a perfect scaling for temperature profiles.

intentionally plot the scaled data for each size in different curves to show the
strength of the scaling property and its small dependence on the system size.
Each curve contains 220 data points. We see there that the data for each
size scale very well but there is a small tilt of the scaled curve depending
on the system size (we have translated the scaled curves to almost coincide
at the beginning point to see clearly the size effect). That is, it seems that,
for a given size, the system has the boundary decoupling property and it
follows Fourier’s law with a size dependent thermal conductivity. Maybe
this behavior is singular to the hard disks systems alone. We know that
strictly speaking, thermal conductivity for hard disks should be infinite on
the thermodynamic limit due to the existence of the long time tail behavior
of the current-current time correlation functions. Therefore maybe we are
detecting the effects of such limiting behavior. We will come back to such
effect when analyzing the system thermal conductivity.

Once we managed to scale the areal density profiles, we may check if
the temperature profiles divided by their pressure scales as well. In Figure
4.4 we show the scaling of T/Q where we used the same shifts (yo) as in
the case for the packing fraction. Again we see, at the bottom inset, some
systematic dependence on the system size. However, this time we translated
the curves to coincide in the middle point to stress that this dependence is
very subtle. In the top inset we represented the original profiles for different
configurations and where they scale to. We managed to interpolate a curve
for all data points that we have for N = 2900:

y = 99.0656−0.871563 ln

(
T̄

Q̄

)
−0.106756

(
ln

(
T̄

Q̄

))2

−0.558971

(
T̄

Q̄

)1.41381

(4.30)

At this point we should say something about profiles where there is co-
existing liquid-solid phase. We already shown that on the solid phase lo-
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Figure 4.5: Rescaled profiles with coexisting liquid-solid phase for three
different sizes and various gradients and densities.

cal equilibrium doesn’t hold. Therefore we cannot expect that neither the
boundary decoupling, or the scaling behavior of the profiles should apply.
In Figure 4.5 we see our best trial of scaling data. We manager to scale the
data of the liquid phase for each size separately However we are unable to
scale the solid-like part. We see that even for a equal size, the solid part of
the profiles do not show scaling that it is consistent with our premises.

Once we have the scaled profiles and its interpolated, to close the strategy,
we should be able to recover from them the behavior of the system for any set
of external parameters we would like to study. We will assume that T1 = 1
because from the theory above we see that if T0 → αT0 and T1 → αT1 for
any positive alpha, the density profile solution of the equations are equal
and the temperature profiles, heat current and pressure are multiplied by α,
α3/2 and α respectively. Let us explicit the path to get any desired result:

• (0) Give T0 and η̄ (T1 = 1, L = 1).

• (1) Solve the equations to get y0 and y1:

T̃ (y0)

T̃ (y1)
= T0 , η̄ =

1

y1 − y0

∫ y1

y0

dy η̄(y) (4.31)

where T̃ (y) ≡ T̄ (y)/Q and we can use the interpolations that define
implicitly T̃ (y) and η̄(y).

• (2) Obtain the system pressure

Q =
1

T̃ (y1)
(4.32)

• (3) Obtain the heat current:

J = Q3/2(y1 − y0) (4.33)

For example, if T0 = 10 and η̄ = 0.25 then Q = 2.03649, J = 21.2774,
y0 = −9.10878 and y1 = −1.78731. The profiles are trivially obtained once
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η
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Figure 4.6: Density dependence of the heat conductivity as obtained from
the rescaled temperature profiles T̃ (y) ≡ T̄ (y)/Q for different η ∈ [0.05, 0.8],
T0 ∈ [2, 20] and N ∈ [1456, 8838]. A well-defined deviation from Gass result
based on Enskog kinetic theory (full line) is found [68]. Moreover, a system-
atic dependence with system size is also observed, see inset for η̄ = 0.5, which
scales as ln(ln(N)), as expected from the marginally anomalous behavior of
heat conductivity in two dimensions.

we know Q, J , y0 and y1. Let us obtain some more physical information
from our system. The first thing that we see in Figure 4.4 is that there is
a convexity change in the scaled temperature curve. By using the above
interpolation we can compute the point at which it occurs:

T̃ ∗ = 1.86866 ,
dT̃

dy

∣∣∣∣
T̃=T̃∗

= −0.64042 , η∗ = 0.276182 (4.34)

where T̃ = T̄ /Q. One can compute the set of parameters that one needs
in order to see such change of curvature of the temperature profile in an
numerical experiment. For instance, assuming T1 = 1, for η̄ = 0.5, T0 > 100,
for η̄ = 0.4, T0 > 7.05 and for η̄ = 0.3, T0 > 1.37.

Our detailed data for the universal master curves in Fig. 4.4 allows to
do a precise measurement of the hard-disks heat conductivity over a broad
range of densities. In fact, by multiplying Fourier’s law (4.1) by Q−3/2

and recalling the separable form of the conductivity, κ(T, η) =
√
Tk(η), it

is easy to show that k(η) = [T̃ (y)1/2T̃ ′(y)]−1, with η = η(y). We hence
performed discrete derivatives of the measured master curve T̃ (y) for each
of the different sets of parameters ∆T , η̄ and N , identifying each value of
[T̃ (y)1/2T̃ ′(y)]−1 with the associated η(y). Fig. 4.6 shows the resulting k(η),
which exhibits deviations from the Gass prediction based on Enskog kinetic
theory [68], as already reported [57, 69]. For each size we have interpolated
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the data around η = 0.5 to a line and we have obtained an estimation of
the conductivity value at such point (subtracting the Enskog counterpart).
We have plotted such values as a function of N and we see a very regular
behavior with N . The best fit we have found is

g(0.5)− gEnskog(0.5) = −0.686221 + 0.427707 ln(ln(N)) (4.35)

This very weak but systematic double-logarithmic N -dependence of k(η) is
a reminiscent of the marginally anomalous heat conductivity of hard disks
resulting from the long time tails in two dimensions [27, 70, 71]. This shows
that our scaling method, together with the bulk-boundary decoupling mech-
anism, allows one to get rid of spurious finite-size effects related with the
presence of boundaries, keeping physically relevant finite-size information.
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Chapter 5

Symmetries in
Fluctuations far from
Equilibrium

As we argued in the Introduction, most non-equilibrium systems are
characterized by currents of locally conserved observables. Therefore un-
derstanding current statistics in terms of microscopic dynamics has become
one of the main objectives of non-equilibrium statistical physics [14, 13, 54,
72, 20, 73, 15, 17, 19, 74, 75, 76, 77, 31, 34, 78]. Pursuing this line of research
is both of fundamental as well as practical importance. At the theoretical
level, the function controlling current fluctuations can be identified as the
non-equilibrium analog of the free energy functional in equilibrium systems
[20, 15, 17, 19], from which macroscopic properties of a non-equilibrium sys-
tem can be obtained (including its most prominent features, as for instance
the ubiquitous long range correlations [79, 80]). On the other hand, the
physics of most modern mesoscopic devices is characterized by large fluctua-
tions which determine their behavior and function. In this way understand-
ing current statistics in these systems is of great practical significance.

Despite the considerable interest and efforts on these issues, exact and
general results valid arbitrarily far from equilibrium are still very scarce. The
reason is that, while in equilibrium phenomena dynamics is irrelevant and the
Gibbs distribution provides all the necessary information, in non-equilibrium
physics dynamics plays a dominant role, even in the simplest situation of a
non-equilibrium steady state [20, 15, 17, 19]. However, there is a remarkable
exception to this absence of general results which has triggered an important
surge in activity since its formulation in the mid nineties. The Fluctuation
Theorem [13, 14], which implies a relation between the probabilities of a
given current fluctuation and the inverse event, is a deep statement on the
subtle consequences of time-reversal symmetry of microscopic dynamics at
the macroscopic level. Particularly important here is the observation that
symmetries are reflected at the fluctuating macroscopic level arbitrarily far
from equilibrium. Inspired by this illuminating result, we explore in this
chapter the behavior of the current distribution under symmetry transfor-

75
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mations [81]. Key to our analysis is the observation that, in order to facilitate
a given current fluctuation, the system traverses a well-defined optimal path
in phase space [20, 15, 17, 19, 75, 76, 82]. This path is, under very gen-
eral conditions, invariant under certain symmetry transformations on the
current. We confirm here the validity of the new symmetry in extensive
numerical simulations of a Hard-Disk fluid in a temperature gradient.

5.1 The Isometric Fluctuation Relation

Our starting point is the continuity equation given by Eq.(5.1), which de-
scribes the macroscopic evolution of a wide class of systems characterized
by a locally-conserved magnitude (e.g. energy, particle density, momentum,
etc.)

∂tρ(r, t) = −∇ ·
(
QE[ρ(r, t)] + ξ(r, t)

)
. (5.1)

Here ρ(r, t) is the density field, j(r, t) ≡ QE[ρ(r, t)]+ξ(r, t) is the fluctuating
current, with local average QE[ρ(r, t)], and ξ(r, t) is a Gaussian white noise
characterized by a variance (or mobility) σ[ρ(r, t)]. This (conserved) noise
term accounts for microscopic random fluctuations at the macroscopic level.
Notice that the current functional includes in general the effect of a conserva-
tive external field, QE[ρ(r, t)] = Q[ρ(r, t)]+σ[ρ(r, t)]E. Examples of systems
described by Eq.(5.1) range from diffusive systems [19, 20, 15, 17, 74, 75,
76, 77], where Q[ρ(r, t)] is given by Fourier’s (or equivalently Fick’s) law,
Q[ρ(r, t)] = −D[ρ]∇ρ(r, t), to most interacting-particle fluids [83], charac-
terized by a Ginzburg-Landau-type theory for the locally-conserved particle
density. To completely define the problem, the above evolution equation
must be supplemented with appropriate boundary conditions, which may
include an external gradient. We are interested in the probability Pτ (J) of
observing a space- and time-averaged empirical current J, defined as

J =
1

τ

∫ τ

0

dt

∫
Λ

dr j(r, t) . (5.2)

where Λ ∈ [0, 1]d is the space domain, being d the dimensionality of the
system. This probability obeys a large deviation principle for long times
[84, 85, 86], Pτ (J) ∼ exp[+τLdG(J)], where L is the system linear size
and G(J) ≤ 0 is the current large-deviation function (LDF), meaning that
current fluctuations away from the average are exponentially unlikely in time.
According to macroscopic fluctuation theory we have [19, 15, 17, 74],

G(J) = −min
ρ(r)

∫
Λ

(J−QE[ρ(r)])
2

2σ[ρ(r)]
dr , (5.3)

which expresses the locally-Gaussian nature of fluctuations [74, 75, 76]. The
optimal profile ρ0(r; J) solution of the above variational problem can be
interpreted as the density profile the system adopts to facilitate a current
fluctuation J [75, 76, 82]. To derive Eq. (5.3) we assumed the additivity
conjecture, namely that (i) the optimal profiles associated to a given current
fluctuation are time-independent [19, 20, 15, 17, 74, 75, 76, 77, 82] , and (ii)
the optimal current field has no spatial structure. This last hypothesis,
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which greatly simplifies the calculation of current statistics, can be however
relaxed for our purposes (as shown in appendix C). The probability Pτ (J)
is thus simply the Gaussian weight associated to the optimal profile. Note
however that the minimization procedure gives rise to a nonlinear problem
which results in general in a current distribution with non-Gaussian tails
[20, 15, 17, 19, 74, 75, 76].

The optimal profile is solution of the following equation

δω2[ρ(r)]

δρ(r′)
− 2J · δω1[ρ(r)]

δρ(r′)
+ J2 δω0[ρ(r)]

δρ(r′)
= 0 , (5.4)

where δ
δρ(r′) stands for functional derivative, and

ωn[ρ(r)] ≡
∫

Λ

dr Wn[ρ(r)] with Wn[ρ(r)] ≡ Qn
E[ρ(r)]

σ[ρ(r)]
. (5.5)

Remarkably, the optimal profile ρ0(r; J) solution of Eq. (5.4) depends ex-
clusively on J and J2. Such a simple quadratic dependence, inherited from
the locally-Gaussian nature of fluctuations, has important consequences at
the level of symmetries of the current distribution. In fact, it is clear from
Eq. (5.4) that the condition

δω1[ρ(r)]

δρ(r′)
= 0 , (5.6)

implies that ρ0(r; J) will depend exclusively on the magnitude of the current
vector, via J2, not on its orientation. In this way, all isometric current
fluctuations characterized by a constant |J| will have the same associated
optimal profile, ρ0(r; J) = ρ0(r; |J|), independently of whether the current
vector J points along the gradient direction, against it, or along any arbitrary
direction. In other words, the optimal profile is invariant under current
rotations if Eq. (5.6) holds.

It turns out that condition (5.6) follows from the time-reversibility of
the dynamics, in the sense that the evolution operator in the Fokker-Planck
formulation of Eq. (5.1) obeys a local detailed balance condition [73, 72]. In
this case

W1[ρ(r)] =
QE[ρ(r)]

σ[ρ(r)]
= −∇δH[ρ]

δρ
, (5.7)

where H[ρ(r)] is the system Hamiltonian. In this case, by using vector
integration by parts, it is easy to show that

δ

δρ(r′)

∫
Λ

drW1[ρ(r)] ·A(r) = − δ

δρ(r′)

∫
∂Λ

dΓ
δH[ρ]

δρ
A(r) · n̂ = 0 , (5.8)

for any divergence-free vector field A(r). The second integral is taken over
the boundary ∂Λ of the domain Λ where the system is defined, and n̂ is the
unit vector normal to the boundary at each point. In particular, by taking
A(r) = J constant, Eq. (5.8) implies that δω1[ρ(r)]/δρ(r′) = 0. Hence for
time-reversible systems the optimal profile ρ0(r; J) remains invariant under
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Figure 5.1: The isometric fluctuation relation at a glance. Sketch of the
current distribution in two dimensions, peaked around its average 〈J〉ε, and
isometric contour lines for different |J|’s. The isometric fluctuation rela-
tion, Eq. (5.9) , establishes a simple relation for the probability of current
fluctuations along each of these contour lines.

rotations of the current J, see Eq. (5.4). Using this invariance in Eq. (5.3)
we can relate in a simple way the current LDF of any pair of isometric
current fluctuations J and J′, with |J| = |J′|

lim
τ→∞

1

τ
ln

[
Pτ (J)

Pτ (J′)

]
= ε · (J− J′) , (5.9)

Here ε = ε + E is a constant vector directly related to the rate of entropy
production in the system, which depends on the boundary baths via ε.

This isometric fluctuation relation (IFR), which includes as a particular
case the Gallavotti-Cohen (GC) result for J′ = −J, relates in a strikingly
simple manner the probability of a given fluctuation J with the likelihood
of any other current fluctuation on the d-dimensional hypersphere of radius
|J|, see figure 5.1 , projecting a complex d-dimensional problem onto a much
simpler one-dimensional theory. Unlike the GC relation which is a non-
differentiable symmetry involving the inversion of the current sign, J→ −J,
Eq. (5.9) is valid for arbitrary changes in orientation of the current vector.In
fact relation (5.9) can be expressed as:

G(J)−G(J′) = |ε||J|(cos θ − cos θ′) , (5.10)

where θ and θ′ are the angles formed by vectors J and J′, respectively. By
letting J and J′ differ by an infinitesimal angle, the IFR can be cast in a
simple differential form, ∂θG(J) = |ε||J| sin θ. This makes the experimental
test of the above relation a feasible problem, as data for current fluctuations
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involving different orientations around the average can be gathered with
enough statistics to ensure experimental accuracy.

The condition δω1[ρ(r)]/δρ(r′) = 0 can be seen as a conservation law.
It implies that the observable ω1[ρ(r)] is in fact a constant of motion, ε ≡
ω1[ρ(r)], independent of the profile ρ(r), which can be related with the rate
of entropy production via the Gallavotti-Cohen theorem [14, 73, 72]. In a way
similar to Noether’s theorem, the conservation law for ε implies a symmetry
for the optimal profiles under rotations of the current and a fluctuation
relation for the current LDF. This constant can be easily computed under
very general assumptions (see appendix C). Finally, it is also important
to notice that the isometric fluctuation relation is valid for arbitrarily large
fluctuations, i.e. even for the non-Gaussian far tails of current distribution.

5.2 Checking the Isometric Fluctuation Rela-
tion

We have tested the validity of the IFR in extensive numerical simulations
of a Hamiltonian hard-disk fluid subject to a temperature gradient. This
model is a paradigm in liquid state theory, condensed matter and statistical
physics, and has been widely studied during last decades. The model consists
in N hard disks of unit diameter interacting via instantaneous collisions and
confined to a box of linear size L such that the particle density is fixed
to Φ = N/L2 = 0.58. Here we choose N = 320. The box is divided in
three parts: a central, bulk region of width L− 2α with periodic boundary
conditions in the vertical direction, and two lateral stripes of width α = L/4
which act as deterministic heat baths, see bottom inset to figure 5.2. This
is achieved by keeping constant the total kinetic energy within each lateral
band via a global, instantaneous rescaling of the velocity of bath particles
after bath-bulk particle collisions. This heat bath mechanism has been shown
to efficiently thermostat the fluid [36]. We performed a large number of
steady state simulations of long duration (τ > 104N collisions per particle)
for T0 = 4 and T1 = 1, accumulating statistics for the space- and time-
averaged current J and measuring the average temperature profile associated
to each J. figure 5.2 shows the linear collapse of |J|−1[G(J) − G(J′)] as a
function of cos θ− cos θ′ for different values of |J|, confirming the validity of
the IFR for this hard-disk fluid in the moderate range of current fluctuations
that we could access. Moreover, the measured optimal profiles for different
isometric current fluctuations all nicely collapse onto single curves, see top
inset to figure 5.2, confirming their rotational invariance.

5.3 Conclusions

The IFR is a consequence of time-reversibility for systems in the hydrody-
namic scaling limit, and reveals an unexpected high level of symmetry in the
statistics of non-equilibrium fluctuations. It generalizes and comprises the
Gallavotti-Cohen fluctuation theorem for currents, relating the probabilities
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Figure 5.2: IFR in a macroscopic hard-disk fluid. Confirmation of IFR
in a two dimensional hard-disk fluid under a temperature gradient after a
polar binning of the measured current distribution. As predicted by IFR,
the difference of current LDFs for different isometric current fluctuations,
once scaled by the current norm, collapses in a line when plotted against
cos θ − cos θ′. Top inset: Optimal temperature profiles associated to dif-
ferent current fluctuations. Profiles for a given |J| and different angles
θ ∈ [−7.5◦,+7.5◦] all collapse onto a single curve, thus confirming the in-
variance of optimal profiles under current rotations. Notice that the profiles
smoothly penetrate into the heat baths. Bottom inset: Snapshot of the 2D
hard-disk fluid with Gaussian heat baths.

of an event not only with its time-reversal but with any other isometric fluc-
tuation. This has important consequences in the form of hierarchies for the
current cumulants and the linear and nonlinear response coefficients, which
hold arbitrarily far from equilibrium and can be readily tested in experiments
(see appendix C). A natural question thus concerns the level of generality
of the isometric fluctuation relation. In this chapter we have demonstrated
the IFR for a broad class of systems characterized at the macro-scale by
a single conserved field, using the tools of macroscopic fluctuation theory
(MFT). This theoretical framework has been rigorously proven for a number
of interacting particle systems [20, 15, 17, 19], but it is believed to remain
valid for a much larger class of systems. The hard-disk fluid is a fully hydro-
dynamic system, with 4 different locally-conserved coupled fields possibly
subject to memory effects, defining a far more complex situation than the
one studied here within MFT, see eq. (5.1). Therefore the validity of IFR
in this context suggests that this fluctuation relation, based on the invari-
ance of optimal profiles under symmetry transformations, is in fact a rather
general result valid for arbitrary fluctuating hydrodynamic systems.
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In this thesis we have studied the behavior of a system of Hard-Disk under
a temperature gradient. Within the out of equilibrium phenomena this is
one of the simpler cases. Surprisingly enough, even this simple case, is not
fully understood from a theoretical viewpoint. The main drawback is that
the theories that describe it use certain assumptions which lack a rigorous
demonstration. In our particular case two of these hypotheses stand as pillars
on which steady state descriptions are based: Local Thermal Equilibrium
and Fourier’s law.

Local Thermal Equilibrium is based on the assumption that the times
needed to equilibrate the system locally are much shorter than the charac-
teristic time associated with non equilibrium macroscopic phenomena. This
allows to define local variables, such as temperature or density, as well as
using the thermodynamic relations locally. However when using this concept
we have to deal with a very important subtlety. It is known that, from a
formal point of view, the measure associated with a non-equilibrium system
at steady state can not be a local equilibrium measure, i.e. a local Gibbs
measure with temperature T (x) and density ρ(x), since, in this case, there
would be no long range correlations in the system or a flow associated with
the gradient imposed [30]. Thus we can define more precisely a system in
Local Thermal Equilibrium as the one in which the configurations associated
with the system’s steady state are such that any expected local values coin-
cide with the calculated using a equilibrium distribution with temperature
T (x) and density ρ(x), but fluctuations calculated with these two methods
differ from each other. Thus when study this concept we have to distinguish
between the macroscopic level observation and the fluctuating level, being
necessary to study both to have a clear confirmation of this hypothesis.

On the other hand the problem associated with the Fourier’s law in par-
ticular, and constitutive equations in general, is that there is not a rigorous
calculation of transport coefficients from the microscopic dynamics of the
system, valid arbitrarily far from equilibrium. This has only been possible
in very simplified transport models [30, 54]. This has the consequence that
it is not known, a priori, whether Fourier’s applies to a given system, being
necessary to determine it computationally model by model.

Our main motivation for conducting this thesis was to deepen in un-
derstanding these theoretical hypotheses that, to date, have not a rigorous
mathematical demonstration. This lack of results is due to the complexity
associated with the problem. Therefore, a computational characterization
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of the limits of validity of these hypothesis has great guidance value in order
to find new ways to address these problems. However, this computational
approach is not without problems too. Two major drawbacks are boundary
and size effects. In particular boundary effects are especially problematic. In
equilibrium these effects are, typically, minimized by using periodic bound-
ary conditions. However, this type of boundary conditions are incompatible
with the introduction of heat baths at the border [62]. In chapter 1 and 2
of this thesis we study these effects in our system.

In Chapter 1 we found that when the heat sources have the same temper-
ature, i.e. in the equilibrium case, both boundary and size effects disappear
when the number of particles tends to infinity. However, as we saw in Chap-
ter 2, when the system is subject to a temperature gradient, these effects get
more complicated, in such a way, that the infinite N extrapolation doesnt
yield a conclusive result for the profiles of temperature and areal density. De-
spite these effects, profiles, once discarded those boxes next to the sources,
are smooth but not linear, allowing us to obtain experimental fits that re-
produce our data very well. Finally we study the energy flow through the
system. Although in this case we get a clear limiting behavior, we conclude
in this chapter that, of the behavior of the profiles, we can not get a clear
picture of the behavior of the thermal conductivity, postponing its analysis
to chapter 4 where we introduce a new method to solve these problems.

Keys to make this analysis are the results in chapter 3. In this chapter we
study the Local Thermal Equilibrium in detail. To characterize its behavior
at the macroscopic level we focus on the study of the Equation of State.
We found excellent agreement between the values of the Equation of State
calculated in our system and the ones calculated in equilibrium present in
the literature, indicating that the assumption of Local Thermal Equilibrium
is met in our system at the macroscopic level. Particularly interesting is
that we found no dependence of these values with the size, although the
magnitudes used to calculate it seem to have it. We therefore conclude that
the size effects of the temperature and packing fraction profiles, as well as
that of the pressure are only apparent. This property, which we call Bulk-
Boundary Decoupling allows us to divide our system into two parts: Some
effective thermal sources, consisting on the thermal baths itself and neigh-
boring boxes, and the Bulk of the system, compose by the central boxes,
which behaves as it was an infinite system. We also note that, for high gra-
dients and high packing fractions, a liquid-solid coexistence occurs already
observed in [67]. Studying this coexistence in detail we find that the hypoth-
esis of Local Thermal Equilibrium is not satisfied in the area of the system
occupied by the solid phase, i.e. the values calculated for the Equation of
State in this part of the system deviate from the equilibrium values, though
only slightly, and also have size effects. Finally we study the Local Thermal
Equilibrium at the fluctuating level. To do this, we measure the moments
of the global distribution of velocities and energies to compare with the pre-
diction given by assuming Local Thermal Equilibrium. Although we found
no deviations for the global velocity distribution, the second moment of the
energy distribution systematically deviates from the prediction of local equi-
librium. We found that the difference between these two quantities depends
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linearly on the external gradient squared with a slope of 1/40. This type
of behavior, which has been observed in simplified transport models [87],
hasn’t been observed previously for Hamiltonian systems.

In light of the results of chapter 3 can trust that Local Thermal Equi-
librium is satisfied, in such a way, that it didn’t present finite size effects.
Using this and also assuming that Fourier’s law holds for our system, in
chapter 4 we theoretically derived scaling law for the profiles of an infinite
system of Hard Disks. This scaling Law is characterized by two universal
master curves from which we can derive every possible profile. We find that
the predictions of this theory are in very good agreement with our data.
In particular it is quite remarkable that all the profiles for different system
setups, for a given number of particles, collapse into a universal curve, in-
dicating that Fourier’s Law holds for our system. This result together with
the property of Bulk-Boundary Decoupling allows us to get rid of spurious
size effects, making it possible, finally, to study the behavior of the thermal
conductivity of our system. We note that the thermal conductivity deviates
slightly from the prediction given by the Enskog theory for Hard Disks [68]
and also depends weakly on the system size. We conclude that this effect is
reminiscent of the known long time tails present on Hard Disks systems [27].

As a final comment of this part of the thesis, should be mentioned that
this analysis may have many applications in the description of the steady
state of more complex fluids. In fact in appendix B we derive a scaling
for soft potentials which are, in certain situations, the limiting case of the
more realistic Lenard-Jones potentials [45, 46]. In addition, although the
scale depends on the athermal character of the system, can be the case that
Bulk-Boundary Decoupling is satisfied for systems in which the hypothesis of
Local Thermal Equilibrium is valid at the macroscopic level.In these cases,
although the characteristic scale can not be calculated theoretically could be
calculated experimentally by following the strategy described in chapter 4.

In chapter 5 we shown how symmetry principles come forth in fluc-
tuations far from equilibrium. By demanding invariance of the optimal
path responsible of a given fluctuation under symmetry transformations,
we unveiled a novel and very general isometric fluctuation relation for time-
reversible systems which relates in a simple manner the probability of any
pair of isometric current fluctuations. We showed that this Isometric Fluc-
tuation Relation holds in our simulations of Hard Disks. However the Hard
Disk fluid is a fully hydrodynamic system, with 4 different locally-conserved
coupled fields possibly subject to memory effects, defining a far more complex
situation than the one studied here within macroscopic fluctuation theory
framework. This suggest that the Isometric Fluctuation Relation could be
further generalized. Invariance principles of this kind can be applied with
great generality in diverse fields where fluctuations play a fundamental role,
opening the door to further exact and general results valid arbitrarily far
from equilibrium. This is particularly relevant in mesoscopic biophysical
systems, where relations similar to the isometric fluctuation relation might
be used to efficiently measure free-energy differences in terms of work distri-
butions [88, 89].



84 Conclusions and Outlook



Conclusiones

En esta tesis hemos estudiado el comportamiento de un sistema de Discos
Ŕıgidos sometido a un gradiente de temperatura. Dentro de los fenómenos
de no-equilibrio el estado estacionario de un sistema sometido a un gradiente
de temperatura es uno de los más simples. Sorprendentemente, incluso este
caso tan sencillo, no se comprende enteramente desde un punto de vista
teórico. El principal inconveniente es que las teoŕıas que lo describen se
basan en hipótesis que carecen de una demostración rigurosa. En nuestro
caso particular dos de estas hipótesis resaltan por ser los pilares en los que
se fundamentan las descripciones del estado estacionario: el Equilibrio Local
Térmico y la ley de Fourier.

El Equilibrio Local Térmico se basa en la suposición de que los tiempos
necesarios para equilibrar el sistema localmente son mucho más cortos que
los tiempos caracteŕısticos asociados con los fenómenos macroscópicos de no
equilibrio. Esto permite definir magnitudes locales, como la temperatura o
la densidad, aśı como usar las relaciones termodinámicas localmente. Sin
embargo a la hora de usar este concepto hay que lidiar con una sutileza muy
importante. Se sabe que desde un punto de vista formal la medida asociada
a un sistema fuera del equilibrio en el estado estacionario, en analoǵıa con
la medida de Boltzman-Gibs para el caso de equilibrio, de existir, no puede
ser exactamente la misma que la de equilibrio, ya que en este caso no exis-
tiŕıan ni correlaciones de largo alcance en el sistema ni un flujo asociado al
gradiente impuesto [30]. De esta forma una manera más precisa de definir el
Equilibrio Local Térmico seŕıa que la medida asociada a las configuraciones
de un sistema en el estado estacionario son tales que los valores esperados
macroscópicos coinciden con los calculados con una distribución de equilibrio
pero que las fluctuaciones calculadas con estos dos métodos no son iguales
entre si. Por lo tanto a la hora de estudiar este concepto tenemos que distin-
guir entre el nivel macroscópico de observación y el nivel fluctuante, siendo
necesario estudiar ambos para tener una confirmación clara de esta hipótesis.

Por otro lado el problema asociado a la Ley de Fourier en particular, y a
las ecuaciones constitutivas en general, es que no existe un cálculo riguroso
de los coeficientes de transporte a partir de la dinámica microscópica del
sistema, válido arbitrariamente lejos del equilibrio. Esto sólo ha sido posible
hacerlo en modelos muy simplificados de transporte [30, 54]. Esto tiene
como consecuencia que no se sepa si a priori la Ley de Fourier es válida para
un sistema determinado, siendo necesario determinarlo computacionalmente
modelo a modelo.
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Nuestra motivación principal para la realización de esta tesis era ahon-
dar en la comprensión de estas hiptesis teóricas que no tienen, a d́ıa de hoy,
una demostración matemática rigurosa. Esta falta de resultados se debe a
la gran complejidad asociada al problema. Por lo tanto una caracterización
computacional de los ĺımites de validez de estas hipótesis tiene gran valor ori-
entativo a la hora de encontrar nuevas formas de abordar dichos problemas.
Sin embargo este enfoque computacional no está exento de problemas. Dos
de los problemas principales son los efectos de tamaño y de frontera. En par-
ticular los efectos de frontera son especialmente problemáticos. En equilibrio
estos efectos, t́ıpicamente, se minimizan mediante el uso de condiciones de
contorno periódicas. Sin embargo este tipo de condiciones de contorno son
incompatibles con la introducción de fuentes térmicas en la frontera [62]. En
los caṕıtulos 1 y 2 de esta tesis estudiamos estos efectos en nuestro sistema.

En el caṕıtulo 1 vimos que cuando la fuentes térmicas tienen la misma
temperatura, es decir en el caso de equilibrio, tanto los efectos de borde como
los de tamaño desaparecen cuando el número de part́ıculas tiende a infinito.
Sin embargo, como vimos en el caṕıtulo 2, cuando el sistema se somete a un
gradiente de temperatura, estos efectos se complican de tal manera que la
extrapolación aN infinito no arroja un resultado concluyente para los perfiles
de temperatura y fracción de volumen. A pesar de estos efectos, los perfiles,
una vez descartadas las cajas próximas a las fuentes, son suaves aunque no
lineales, permitindonos obtener unos ajustes experimentales que reproducen
bien nuestros datos. Finalmente estudiamos el flujo de enerǵıa que atraviesa
el sistema. Aunque en este caso si obtenemos un ĺımite claro concluimos en
este caṕıtulo que, a la luz del comportamiento de los perfiles, no es posible
obtener una imagen clara del comportamiento de la conductividad térmica,
posponiendo su análisis al caṕıtulo 4 donde introducimos un nuevo método
de análisis para solventar estos problemas.

Claves para formular dicho análisis son los resultados obtenidos en el
caṕıtulo 3. En este caṕıtulo estudiamos el Equilibrio Local Térmico en
detalle. Para caracterizar su comportamiento a nivel macroscópico nos cen-
tramos en el estudio de la Ecuación de Estado. Encontramos una excelente
concordancia entre los valores de la Ecuación de Estado calculados en nue-
stro sistema y los calculados para sistemas de equilibrio presentes en la lit-
eratura, indicando que se cumple la hipótesis de Equilibrio Local Térmico a
nivel macroscópico en nuestro sistema. Particularmente interesante es que
no encontramos dependencia de estos valores con el tamaño, a pesar de que
las magnitudes usadas para calcularlo si parecen tenerla. Por lo tanto con-
cluimos que los efectos de tamaño de los perfiles de temperatura y fracción
de volumen, aśı como los de la presión son sólo aparentes. Esta propiedad
que llamamos Bulk-Boundary Decoupling nos permite dividir nuestro sistema
en dos partes: Unas fuentes térmicas efectivas, compuesta por las propias
fuentes y las cajas vecinas a éstas, y el “bulk” del sistema, compuesto por las
cajas centrales del sistema, que se comporta como un sistema infinito. Por
otra parte notamos que para gradientes altos y fracciones de volumen altas
se produce una coexistencia ĺıquido-sólido ya observada en [67]. Estudiando
esta coexistencia en detalle encontramos que la hipótesis de Equilibrio Local
Térmico no se cumple en la zona del sistema ocupada por la fase sólida, es
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decir que los valores calculados para la Ecuación de Estado en esta parte
del sistema se desv́ıan de los valores de equilibrio, aunque sólo ligeramente,
y además presentan efectos de tamaño. Finalmente estudiamos el Equi-
librio Local Térmico a nivel fluctuante. Para ello medimos los momentos
de la distribución global de velocidades y enerǵıas para compararlas con la
predicción dada suponiendo Equilibrio Local Térmico. Aunque no encon-
tramos desviaciones para la distribución global de la velocidad, salvo efectos
de tamaño, los segundos momentos de la distribución de enerǵıa se desv́ıan
sistemáticamente de la predicción de equilibrio local. Encontramos que la
diferencia entre estas dos magnitudes depende linealmente del gradiente ex-
terno al cuadrado con una pendiente de 1/40. Este tipo de comportamiento,
que ha sido observado en modelos simplificados de transporte [87], no se
hab́ıa observado anteriormente para sistemas Hamiltonianos.

A la luz de los resultados del caṕıtulo 3 podemos confiar que el Equilib-
rio Local Térmico se cumple de forma que no presenta efectos de tamaño
finito. Usando esto y suponiendo, además que la ley de Fourier se cumple
para nuestro sistema, en el caṕıtulo 4 derivamos teóricamente una ley de
escala para los perfiles de un sistema infinito de Discos Ŕıgidos. Esta ley de
escala se caracteriza por dos curvas universales de las que podemos derivar
cualquier perfil posible. Encontramos que las predicciones de esta teoŕıa con-
cuerdan muy bien con nuestros datos. En particular es extraordinario que
todos los perfiles obtenidos para las distintas condiciones externas, y para
un numero de part́ıculas dado, colapsen en una curva universal, indicando
que la ley de Fourier se cumple en nuestro sistema. Este resultado junto con
la propiedad de Bulk-Boundary Decoupling nos permite deshacernos de los
efectos de tamaño espurios, haciendo posible, finalmente, estudiar el compor-
tamiento de la conductividad térmica para nuestro sistema. Observamos que
esta conductividad térmica se desva ligeramente de la predicción dada por la
teoŕıa de Enskog para Discos Ŕıgidos [68] y que además depende débilmente
del tamaño del sistema. Concluimos que este efecto es una reminiscencia
de las conocidas colas para tiempos largos presentes en sistemas de Discos
Ŕıgidos [27].

Como comentario final de esta parte de la tesis debemos mencionar que
este análisis puede tener muchas aplicaciones en la descripción del estado
estacionario de fluidos más complejos. De hecho en el apndice B deriva-
mos la escala para potenciales de ncleo suave que son, en ciertos casos, el
comportamiento ĺımite del más realista potencial de Lenard-Jones [45, 46].
Además, aunque la escala depende del carcter atérmico del sistema, puede
darse el caso de que la propiedad de Bulk-Boundary Decoupling se cumpla
para sistemas en los que la hipótesis de Equilibrio Local Térmico sea válida
a nivel macroscópico. En estos casos, aunque la escala caracteŕıstica no se
pueda calcular teóricamente, se podrá calcular experimentalmente siguiendo
la estrategia descrita en el caṕıtulo 4.

En el caṕıtulo 5 hemos visto como principios de simetŕıa aparecen en
fluctuaciones lejos del equilibrio. Exigiendo la invariancia de la trayecto-
ria óptima, responsable de una fluctuación dada, bajo transformaciones de
simetŕıa, descubrimos una nueva, y muy general, relación de fluctuación
isométrica para sistemas reversibles temporalmente, que relaciona de una
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manera sencilla la probabilidad de que cualquier par de fluctuaciones isométricas
de la corriente. Hemos demostrado que esta relación de fluctuación isométrica
se cumple en nuestras simulaciones de Discos Ŕıgidos. El fluido de Discos
Ŕıgidos es un sistema totalmente hidrodinámico, con 4 campos localmente-
conservados diferentes, y posiblemente sujeto a efectos de memoria, es decir
una situación mucho más compleja que la estudiada en la parte teórica del
caṕıtulo 5, en el contexto de la teoŕıa de fluctuaciones macroscópicas. Esto
sugiere que la Relación Isomtrica Fluctuante podŕıa admitir futuras gener-
alizaciones. Principios de invariancia de este tipo pueden ser aplicados con
gran generalidad en diversos campos donde las fluctuaciones desempeñan un
papel fundamental, abriendo la puerta a resultados más generales, válidos
arbitrariamente lejos del equilibrio. Esto es particularmente relevante en
sistemas biof́ısicos mesoscópicos, donde relaciones similares a la relación de
fluctuación isométrica pueden ser utilizados para medir de manera eficiente
las diferencias de enerǵıa libre en términos de las distribuciones de trabajo
[88, 89].



Appendix A

Source Code

!2d hard disk program 18 of July 2010.

program hardisk2d

implicit real*8(a-h,o-z)

parameter (npmax=10000,nklon=1,Nvmax=100,Nal=200)

common /c/ pi,tabs(nklon),tabstot(nklon),r,De,aN,tini,tpaso

&,iold,jold,Ncm,nl,N,Ncv,klon,Nvflag

common /pos/ x(0:npmax,nklon),y(0:npmax,nklon)

common /vel/ vx(0:npmax,nklon),vy(0:npmax,nklon)

common /cajaV/ nv(Nvmax,Nvmax,0:npmax,nklon)

&,nx(npmax,nklon),ny(npmax,nklon)

common /Cborde/ lx(9),ly(9),lx2(3),ly2(3)

common /z/ Ey,Ex,Ex1,Ex2,tv,T1,T2

common /lma/ al(1:Npmax,0:Nal,nklon),even(1:Npmax,0:Nal,nklon)

&,eveni(1:Npmax,0:Nal,nklon),evenj(1:Npmax,0:Nal,nklon)

&,nchoke(-10:Npmax,nklon)

common /dsa/ ncbt(1:2*Npmax,nklon),tcol,jcol,icol

common /medida/ etot(npmax,2),distri(15000,Nvmax)

&,tcolu(Nvmax,npmax),denc(Nvmax,npmax),densi2(Nvmax,npmax)

&,vcmx(Nvmax,npmax),vcmy(Nvmax,npmax),v(npmax,8),distrimax

&,ajgtot(npmax,6),tabs4(npmax,nklon),ecin_b(Nvmax,npmax)

common /medida2/ tmedias(Nvmax,8),dmedias(Nvmax,8)

&,anmedias(Nvmax,8),emedias(Nvmax,8),pmedias(Nvmax,8)

&,vcymd(Nvmax,8),vmedias(8),ajmedias(6,8),vcxmd(Nvmax,8)

&,xmedtot

common /medida3/ cpre(Nvmax),ajabs(2),ncol(Nvmax)

&,presion(Nvmax,npmax),ajcurrent(2,npmax),coli(Nvmax,npmax)

&,colmedias(Nvmax,8),ajmb(2,8)

!Maximun number of iterations

nbumax=1000000000

!Optinal parameter to introduce an external field

!(Ex y Ey), number of clones (klon), and control variable (z)

Ex=0.d0

Ey=0.d0

klon=1

z=0.d0

! inicialization routine

tabstot(klon)=0.d0

tabs(klon)=0.d0

do klon=1,nklon

call ini()

Ncicle=10*N

write(6,*) N,Ncv

!Thermalization of the sistem

do lmn=1,100

call evol(Ncicle,z)

! call check(1.45d0,175) !particle overlap checking

! resetting of tabs to avoid rounding errors

do is=1,N

jjs=dint(al(is,0,klon))

do js=1,jjs

bal=al(is,js,klon)-tabs(klon)

al(is,js,klon)=bal

enddo

enddo

tabstot(klon)=tabstot(klon)+tabs(klon)

tabs(klon)=0.d0

enddo

!Mesurement of the time between mesurements

!time in wich we get an average of 10 colisions per particle

stx=tabstot(klon)+tabs(klon)

sumtx=0.d0

ntx=0

tpaso=1.d7

do lmn=1,1000

call evol(Ncicle,z)

! call check(1.45d0,175) !particle overlap checking

! resetting of tabs to avoid rounding errors

do is=1,N

jjs=dint(al(is,0,klon))

do js=1,jjs

bal=al(is,js,klon)-tabs(klon)

al(is,js,klon)=bal

enddo

enddo

tabstot(klon)=tabstot(klon)+tabs(klon)

tabs(klon)=0.d0

enddo

sumtx=sumtx+tabstot(klon)+tabs(klon)-stx

stx=tabstot(klon)+tabs(klon)

ntx=ntx+1

enddo

tini=tabs(klon)+tabstot(klon)

tpaso=sumtx/dble(ntx)

write(6,*) tini,tpaso,N,r

enddo

!initialization of colision variables

do is=1,Ncm+3

cpre(is)=0.d0

ncol(is)=0.d0

enddo

ajabs(1)=0.d0

ajabs(2)=0.d0

!principal loop

z=2.d0

do nbucle=1,nbumax

do klon=1,nklon

do lmn=1,1000

call evol(Ncicle,z)

! call check(1.45d0,175) !particle overlap checking

! resetting of tabs to avoid rounding errors

do is=1,N

jjs=dint(al(is,0,klon))

do js=1,jjs

bal=al(is,js,klon)-tabs(klon)

al(is,js,klon)=bal

enddo

enddo

tabstot(klon)=tabstot(klon)+tabs(klon)

tabs(klon)=0.d0

enddo

enddo

enddo

enddo

end

subroutine ini()

implicit real*8(a-h,o-z)

parameter (npmax=10000,nklon=1,Nvmax=100,Nal=200)

common /c/ pi,tabs(nklon),tabstot(nklon),r,De,aN,tini,tpaso

&,iold,jold,Ncm,nl,N,Ncv,klon,Nvflag

common /pos/ x(0:npmax,nklon),y(0:npmax,nklon)

common /vel/ vx(0:npmax,nklon),vy(0:npmax,nklon)

common /cajaV/ nv(Nvmax,Nvmax,0:npmax,nklon)

&,nx(npmax,nklon),ny(npmax,nklon)

common /Cborde/ lx(9),ly(9),lx2(3),ly2(3)

common /z/ Ey,Ex,Ex1,Ex2,tv,T1,T2

common /lma/ al(1:Npmax,0:Nal,nklon),even(1:Npmax,0:Nal,nklon)

&,eveni(1:Npmax,0:Nal,nklon),evenj(1:Npmax,0:Nal,nklon)

&,nchoke(-10:Npmax,nklon)
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common /dsa/ ncbt(1:2*Npmax,nklon),tcol,jcol,icol

common /medida/ etot(npmax,2),distri(15000,Nvmax)

&,tcolu(Nvmax,npmax),denc(Nvmax,npmax),densi2(Nvmax,npmax)

&,vcmx(Nvmax,npmax),vcmy(Nvmax,npmax),v(npmax,8)

&,ajgtot(npmax,6),tabs4(npmax,nklon),ecin_b(Nvmax,npmax)

&,distrimax

common /medida2/ tmedias(Nvmax,8),dmedias(Nvmax,8)

&,anmedias(Nvmax,8),emedias(Nvmax,8),pmedias(Nvmax,8)

&,vcymd(Nvmax,8),vmedias(8),ajmedias(6,8),vcxmd(Nvmax,8)

&,xmedtot

common /medida3/ cpre(Nvmax),ajabs(2),ncol(Nvmax)

&,presion(Nvmax,npmax),ajcurrent(2,npmax),coli(Nvmax,npmax)

&,colmedias(Nvmax,8),ajmb(2,8)

!External input file

open(unit=1,file="input2.dat",status="unknown")

!number of particles, aspect-ratio,random number seed

read(1,*) npar,aspect,iseed

!Thermal bath’s Temperatures and density of the system

read(1,*) T1,T2,den

!External field components; nflag if a control variable

!to use a previus configuration (read from an archive)

! or to generate one

read(1,*) Ex1,Ey1,nflag

close(1)

!initialization of the matrices

nl=0

xmedtot=0.d0

Nvflag=0

Ncm=15!number of mesurement boxes

iold=-10

jold=-10

distrimax=dsqrt(T1+T2)

do ii=1,15000

do jj=1,Nvmax

distri(ii,jj)=0.d0

enddo

enddo

if(klon.eq.1 )call dran_ini(iseed)

ajabs(1)=0.d0

ajabs(2)=0.d0

do i=1,Nvmax

cpre(i)=0.d0

ncol(i)=0.d0

enddo

do i=1,npmax

do j=1,nklon

x(i,klon)=0.d0

y(i,klon)=0.d0

vx(i,klon)=0.d0

vy(i,klon)=0.d0

enddo

enddo

do k=1,8

do i=1,Nvmax

tmedias(i,k)=0.d0

dmedias(i,k)=0.d0

anmedias(i,k)=0.d0

emedias(i,k)=0.d0

pmedias(i,k)=0.d0

vcxmd(i,k)=0.d0

vcymd(i,k)=0.d0

enddo

vmedias(k)=0.d0

do i=1,6

ajmedias(i,k)=0.d0

enddo

enddo

pi=4.d0*datan(1.d0)

dencp=pi/(2.d0*dsqrt(3.d0))!densidad close packing

if(den.gt.dencp)then

write(6,*)’densidad superior a close packing’

stop

endif

aly=aspect

r=dsqrt(dencp/(dble(npar)*pi))

!generation of the initial configuration

if(nflag.eq.0) then

!Introdution of as many particle as possible in close packing

x(1,klon)=r

y(1,klon)=r

ncont=1

ncont2=0

k=0

do while(ncont2.ne.ncont.or.k.lt.ncont)

ncont2=ncont

k=k+1

do i=0,5

x2=x(k,klon)+2.d0*r*dcos(dble(i)*pi/3.d0)

y2=y(k,klon)+2.d0*r*dsin(dble(i)*pi/3.d0)

control=1.d0

do j=1,ncont

x3=x(j,klon)

y3=y(j,klon)

if(dsqrt((x3-x2)**2.d0+(y3-y2)**2.d0).lt.2.d0*r-1.d-7)

&control=2.d0

if(x2.gt.(1.d0-r+1.d-7).or.x2.lt.r-1.d-7) control=2.d0

if(y2.gt.(1.d0-r+1.d-7).or.y2.lt.r-1.d-7) control=2.d0

enddo

if(control.lt.1.5d0) then

ncont=ncont+1

x(ncont,klon)=x2

y(ncont,klon)=y2

endif

enddo

enddo

N=ncont

!Determination of the velocities of the particles from a

!Maxwellian distrubution at temperature (T1+T2)/2,

!we impose a center of mass velocity equal to 0

vmax2=(T1+T2)/2.d0

vmax=dsqrt(vmax2)

4 do i=3,N

u1=dran_u()

u2=dran_u()

vy(i,klon)=dsqrt(-2.d0*dlog(u1))*dcos(2.d0*pi*u2)*dsqrt(vmax2)

vx(i,klon)=dsqrt(-2.d0*dlog(u1))*dsin(2.d0*pi*u2)*dsqrt(vmax2)

enddo

a=0.d0

b=0.d0

do i=3,N

a=a-vx(i,klon)

b=b-vy(i,klon)

enddo

delta2=4.d0*vmax2-a**2.d0-b**2.d0

if(delta2.lt.0.d0)goto 4

vx(1,klon)=(a+b*dsqrt(delta2/(a**2.d0+b**2.d0)))/2.d0

vy(1,klon)=(b-a*dsqrt(delta2/(a**2.d0+b**2.d0)))/2.d0

vx(2,klon)=a-vx(1,klon)

vy(2,klon)=b-vy(1,klon)

else

!reading of a previus configuration

open(unit=999,file="configuracion.dat",status="unknown")

read(999,*) tabstot(klon),tabs(klon),iold,jold

ncont=1

do while(ncont.lt.npmax)

read(999,*,end=998)x(ncont,klon),y(ncont,klon)

&,vx(ncont,klon),vy(ncont,klon)

ncont=ncont+1

enddo

998 continue

close(999)

ncont=ncont-1

endif

N=ncont

aN=dble(N)

!reseting of the radius to mach the system density

r=dsqrt(den/(aN*pi))

Ncv=dint(dsqrt(aN))!number of virtual boxes

if(Ncv.gt.Nvmax) then

write(6,*) "numero de cajas virtuales mayor que Nvmax"

stop

endif

De=1.d0/dble(Ncv)

!Asigning to a virtual box the particles within the box

do i=1,Ncv

do j=1,Ncv

nv(i,j,0,klon)=0

enddo

enddo

do i=1,N

nx(i,klon)=1+dint(x(i,klon)*dble(Ncv))

ny(i,klon)=min(1+int(y(i,klon)*dble(Ncv)),Ncv)

ni=nv(nx(i,klon),ny(i,klon),0,klon)+1

nv(nx(i,klon),ny(i,klon),0,klon)=ni

nv(nx(i,klon),ny(i,klon),ni,klon)=i

enddo

!Parametrization of next next neighbors

lx(1)=-1

ly(1)=-1

lx(2)=-1

ly(2)=0

lx(3)=-1

ly(3)=1

lx(4)=0

ly(4)=1

lx(5)=0

ly(5)=0

lx(6)=0

ly(6)=-1

lx(7)=1

ly(7)=-1

lx(8)=1

ly(8)=0

lx(9)=1

ly(9)=1

!Parametrization of next neighbors

lx2(1)=-1
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lx2(2)=0

lx2(3)=1

ly2(1)=-1

ly2(2)=0

ly2(3)=1

call colinit()

return

end

subroutine colinit()

implicit real*8(a-h,o-z)

parameter (npmax=10000,nklon=1,Nvmax=100,Nal=200)

common /c/ pi,tabs(nklon),tabstot(nklon),r,De,aN,tini,tpaso

&,iold,jold,Ncm,nl,N,Ncv,klon,Nvflag

common /pos/ x(0:npmax,nklon),y(0:npmax,nklon)

common /vel/ vx(0:npmax,nklon),vy(0:npmax,nklon)

common /cajaV/ nv(Nvmax,Nvmax,0:npmax,nklon)

&,nx(npmax,nklon),ny(npmax,nklon)

common /Cborde/ lx(9),ly(9),lx2(3),ly2(3)

common /z/ Ey,Ex,Ex1,Ex2,tv,T1,T2

common /lma/ al(1:Npmax,0:Nal,nklon),even(1:Npmax,0:Nal,nklon)

&,eveni(1:Npmax,0:Nal,nklon),evenj(1:Npmax,0:Nal,nklon)

&,nchoke(-10:Npmax,nklon)

common /dsa/ ncbt(1:2*Npmax,nklon),tcol,jcol,icol

!inicialization of the local minima list

!al->time list

!even-> particle or wall to colide with particle i

!eveni->control parameter for i

!evenj->control parameter for it’s partner

!ncol->number of colision sufered by the particle

do i=1,N

al(i,0,klon)=0.d0

even(i,0,klon)=0.d0

eveni(i,0,klon)=0.d0

evenj(i,0,klon)=0.d0

do j=1,Nal

al(i,j,klon)=1.d10

even(i,j,klon)=0

eveni(i,j,klon)=0

evenj(i,j,klon)=0

enddo

nchoke(i,klon)=0

enddo

do i=-10,0

nchoke(i,klon)=0

enddo

!Intruduction of the future events on the lists

!particle-particle events

do i=1,N

do j=1,9

nxv=nx(i,klon)+lx(j)

nyv=mod(ny(i,klon)+ly(j)+Ncv-1,Ncv)+1

if(nxv.gt.Ncv.or.nxv.lt.1)cycle

if(nv(nxv,nyv,0,klon).gt.0)then

do k=1,nv(nxv,nyv,0,klon)

if(nv(nxv,nyv,k,klon).gt.i)then

jj=nv(nxv,nyv,k,klon)

if(i.eq.iold.and.jj.eq.jold)cycle

xij=x(i,klon)-x(jj,klon)

yij=y(i,klon)-y(jj,klon)

vxij=vx(i,klon)-vx(jj,klon)

vyij=vy(i,klon)-vy(jj,klon)

aa=xij*vxij+yij*vyij

if(aa.lt.0.d0)then

v2ij=vxij**2.d0+vyij**2.d0

dis=4.d0*r*r*v2ij-(xij*vyij-yij*vxij)**2.d0

if(dis.ge.0.d0) then

t7=tabs(klon)+(-aa-dsqrt(dis))/v2ij

i1=jj

call almin(t7,i1,i)

endif

endif

yij=-sign(1.d0,yij)*(1.d0-dabs(yij))

aa=xij*vxij+yij*vyij

if(aa.lt.0.d0)then

v2ij=vxij**2.d0+vyij**2.d0

dis=4.d0*r*r*v2ij-(xij*vyij-yij*vxij)**2.d0

if(dis.ge.0.d0) then

t7=tabs(klon)+(-aa-dsqrt(dis))/v2ij

i1=jj

call almin(t7,i1,i)

endif

endif

endif

enddo

endif

enddo

!particle-wall events

if(iold.eq.i.and.jold.eq.-1) goto 4

if(nx(i,klon).le.2)then

t7=tabs(klon)+(r-x(i,klon))/vx(i,klon)

i1=-1

call almin(t7,i1,i)

endif

4 if(iold.eq.i.and.jold.eq.0) goto 6

if(nx(i,klon).ge.(Ncv-1))then

t7=tabs(klon)+(1.d0-x(i,klon)-r)/vx(i,klon)

i1=0

call almin(t7,i1,i)

endif

!particle-virtual wall events

6 t7=1.d10

aa=dble(nx(i,klon))/dble(Ncv)

t72=tabs(klon)+(aa-x(i,klon))/vx(i,klon)

if(t72.gt.tabs(klon)) then

i1=-4

t7=t72

endif

aa=dble(nx(i,klon)-1)/dble(Ncv)

t72=tabs(klon)+(aa-x(i,klon))/vx(i,klon)

if(t72.gt.tabs(klon).and.t72.lt.t7) then

i1=-2

t7=t72

endif

aa=dble(ny(i,klon)-1)/dble(Ncv)

t72=tabs(klon)+(aa-y(i,klon))/vy(i,klon)

if(t72.gt.tabs(klon).and.t72.lt.t7) then

i1=-5

t7=t72

endif

aa=dble(ny(i,klon))/dble(Ncv)

t72=tabs(klon)+(aa-y(i,klon))/vy(i,klon)

if(t72.gt.tabs(klon).and.t72.lt.t7) then

i1=-3

t7=t72

endif

call almin(t7,i1,i)

enddo

!inicialization of the complete binary tree

do i=N,2*N-1

ncbt(i,klon)=i-N+1

enddo

do i=2*N-1,3,-2

if(al(ncbt(i,klon),1,klon).le.al(ncbt(i-1,klon),1,klon)) then

ncbt(i/2,klon)=ncbt(i,klon)

else

ncbt(i/2,klon)=ncbt(i-1,klon)

endif

enddo

return

end

subroutine almin(t1,mtev,i)

implicit real*8 (a-h,o-z)

parameter (npmax=10000,nklon=1,Nvmax=100,Nal=200)

common /c/ pi,tabs(nklon),tabstot(nklon),r,De,aN,tini,tpaso

&,iold,jold,Ncm,nl,N,Ncv,klon,Nvflag

common /pos/ x(0:npmax,nklon),y(0:npmax,nklon)

common /vel/ vx(0:npmax,nklon),vy(0:npmax,nklon)

common /cajaV/ nv(Nvmax,Nvmax,0:npmax,nklon)

&,nx(npmax,nklon),ny(npmax,nklon)

common /Cborde/ lx(9),ly(9),lx2(3),ly2(3)

common /lma/ al(1:Npmax,0:Nal,nklon),even(1:Npmax,0:Nal,nklon)

&,eveni(1:Npmax,0:Nal,nklon),evenj(1:Npmax,0:Nal,nklon)

&,nchoke(-10:Npmax,nklon)

common /dsa/ ncbt(1:2*Npmax,nklon),tcol,jcol,icol

if(t1.gt.tabs(klon)) then

nk=1

do while(t1.gt.al(i,nk,klon))

nk=nk+1

enddo

if(nk.le.al(i,0,klon)) then

nmax=al(i,0,klon)+1

do k=nmax,nk+1,-1

al(i,k,klon)=al(i,k-1,klon)

even(i,k,klon)=even(i,k-1,klon)

eveni(i,k,klon)=eveni(i,k-1,klon)

evenj(i,k,klon)=evenj(i,k-1,klon)

enddo

endif

nm=al(i,0,klon)+1

al(i,0,klon)=nm

even(i,0,klon)=nm

eveni(i,0,klon)=nm

evenj(i,0,klon)=nm

al(i,nk,klon)=t1

even(i,nk,klon)=mtev

eveni(i,nk,klon)=nchoke(i,klon)

evenj(i,nk,klon)=nchoke(mtev,klon)

endif

return

end

subroutine evol(ns,z)

implicit real*8(a-h,o-z)

parameter (npmax=10000,nklon=1,Nvmax=100,Nal=200)

common /c/ pi,tabs(nklon),tabstot(nklon),r,De,aN,tini,tpaso



92 Appendices

&,iold,jold,Ncm,nl,N,Ncv,klon,Nvflag

common /pos/ x(0:npmax,nklon),y(0:npmax,nklon)

common /vel/ vx(0:npmax,nklon),vy(0:npmax,nklon)

common /cajaV/ nv(Nvmax,Nvmax,0:npmax,nklon)

&,nx(npmax,nklon),ny(npmax,nklon)

common /Cborde/ lx(9),ly(9),lx2(3),ly2(3)

common /z/ Ey,Ex,Ex1,Ex2,tv,T1,T2

common /lma/ al(1:Npmax,0:Nal,nklon),even(1:Npmax,0:Nal,nklon)

&,eveni(1:Npmax,0:Nal,nklon),evenj(1:Npmax,0:Nal,nklon)

&,nchoke(-10:Npmax,nklon)

common /dsa/ ncbt(1:2*Npmax,nklon),tcol,jcol,icol

do j=1,ns

tcol=al(ncbt(1,klon),1,klon)

icol=ncbt(1,klon)

jcol=even(icol,1,klon)

!executing the virtual colitions

do while(jcol.le.-2)

tv=tcol

call virtuacol(icol,jcol)

call rencbt(icol,jcol)

tcol=al(ncbt(1,klon),1,klon)

icol=ncbt(1,klon)

jcol=even(icol,1,klon)

enddo

!Calls to the mesurement and save data routines

!activated for z greater than 1

if (z.gt.1.d0) then

ab=tabstot(klon)+tcol

ac=tini+tpaso

if(ab.ge.ac) then

tini=tini+tpaso

nl=nl+1

call measure(nl)

if(nl.eq.1000)then

call salvar()

nl=0

endif

call mov(tcol,jcol)

else

call mov(tcol,jcol)

endif

else

call mov(tcol,jcol)

endif

if(jcol.gt.-2) then

iold=icol

jold=jcol

call choq(icol,jcol)

nchoke(icol,klon)=nchoke(icol,klon)+1

if(nchoke(icol,klon).gt.100000) nchoke(icol,klon)=0

call colision(icol)

if (jcol.gt.0.) then

nchoke(jcol,klon)=nchoke(jcol,klon)+1

if(nchoke(jcol,klon).gt.100000) nchoke(jcol,klon)=0

call colision(jcol)

endif

endif

if(Nvflag.gt.0) then

nchoke(Nvflag,klon)=nchoke(Nvflag,klon)+1

if(nchoke(Nvflag,klon).gt.100000) nchoke(Nvflag,klon)=0

call colision(Nvflag)

Nvflag=0

endif

call rencbt(icol,jcol)

enddo

return

end

subroutine virtuacol(i,jcol2)

implicit real*8(a-h,o-z)

parameter (npmax=10000,nklon=1,Nvmax=100,Nal=200)

common /c/ pi,tabs(nklon),tabstot(nklon),r,De,aN,tini,tpaso

&,iold,jold,Ncm,nl,N,Ncv,klon,Nvflag

common /pos/ x(0:npmax,nklon),y(0:npmax,nklon)

common /vel/ vx(0:npmax,nklon),vy(0:npmax,nklon)

common /cajaV/ nv(Nvmax,Nvmax,0:npmax,nklon)

&,nx(npmax,nklon),ny(npmax,nklon)

common /Cborde/ lx(9),ly(9),lx2(3),ly2(3)

common /z/ Ey,Ex,Ex1,Ex2,tv,T1,T2

common /lma/ al(1:Npmax,0:Nal,nklon),even(1:Npmax,0:Nal,nklon)

&,eveni(1:Npmax,0:Nal,nklon),evenj(1:Npmax,0:Nal,nklon)

&,nchoke(-10:Npmax,nklon)

common /dsa/ ncbt(1:2*Npmax,nklon),tcol,jcol,icol

!actualization of the virtual box

ncan=i

nmk=dint(al(ncan,0,klon))

do nor=1,nmk

al(ncan,nor,klon)=al(ncan,nor+1,klon)

even(ncan,nor,klon)=even(ncan,nor+1,klon)

eveni(ncan,nor,klon)=eveni(ncan,nor+1,klon)

evenj(ncan,nor,klon)=evenj(ncan,nor+1,klon)

enddo

al(ncan,0,klon)=al(ncan,0,klon)-1

even(ncan,0,klon)=even(ncan,0,klon)-1

eveni(ncan,0,klon)=eveni(ncan,0,klon)-1

evenj(ncan,0,klon)=evenj(ncan,0,klon)-1

if(jcol2.eq.-2) then

if(nx(i,klon).eq.1) then

nx2=nx(i,klon)

ny2=ny(i,klon)

lxflag=0

lyflag=1

else

nx2=nx(i,klon)-2

ny2=ny(i,klon)

lxflag=0

lyflag=1

nor1=nv(nx(i,klon),ny(i,klon),0,klon)

do lnk=1,nor1

if(i.eq.nv(nx(i,klon),ny(i,klon),lnk,klon)) nr=lnk

enddo

nx3=nx(i,klon)

ny3=ny(i,klon)

do lnk=nr,nor1-1

nv(nx3,ny3,lnk,klon)=nv(nx3,ny3,lnk+1,klon)

enddo

nv(nx3,ny3,0,klon)=nv(nx3,ny3,0,klon)-1

nx(i,klon)=nx(i,klon)-1

nv(nx(i,klon),ny(i,klon),0,klon)

&=nv(nx(i,klon),ny(i,klon),0,klon)+1

nor=nv(nx(i,klon),ny(i,klon),0,klon)

nv(nx(i,klon),ny(i,klon),nor,klon)=i

endif

endif

if(jcol2.eq.-3) then

nx2=nx(i,klon)

ny2=mod(ny(i,klon)+2+Ncv-1,Ncv)+1

lxflag=1

lyflag=0

nor1=nv(nx(i,klon),ny(i,klon),0,klon)

do lnk=1,nor1

if(i.eq.nv(nx(i,klon),ny(i,klon),lnk,klon)) nr=lnk

enddo

do lnk=nr,nor1-1

nbc=nv(nx(i,klon),ny(i,klon),lnk+1,klon)

nv(nx(i,klon),ny(i,klon),lnk,klon)=nbc

enddo

nv(nx(i,klon),ny(i,klon),0,klon)

&=nv(nx(i,klon),ny(i,klon),0,klon)-1

ny(i,klon)=ny(i,klon)+1

if(ny(i,klon).gt.Ncv)ny(i,klon)=1

nv(nx(i,klon),ny(i,klon),0,klon)

&=nv(nx(i,klon),ny(i,klon),0,klon)+1

nor=nv(nx(i,klon),ny(i,klon),0,klon)

nv(nx(i,klon),ny(i,klon),nor,klon)=i

endif

if(jcol2.eq.-4) then

if(nx(i,klon).eq.Ncv) then

nx2=nx(i,klon)

ny2=ny(i,klon)

lxflag=0

lyflag=1

else

nx2=nx(i,klon)+2

ny2=ny(i,klon)

lxflag=0

lyflag=1

nor1=nv(nx(i,klon),ny(i,klon),0,klon)

do lnk=1,nor1

if(i.eq.nv(nx(i,klon),ny(i,klon),lnk,klon)) nr=lnk

enddo

do lnk=nr,nor1-1

nbc=nv(nx(i,klon),ny(i,klon),lnk+1,klon)

nv(nx(i,klon),ny(i,klon),lnk,klon)=nbc

enddo

nv(nx(i,klon),ny(i,klon),0,klon)

&=nv(nx(i,klon),ny(i,klon),0,klon)-1

nx(i,klon)=nx(i,klon)+1

nv(nx(i,klon),ny(i,klon),0,klon)

&=nv(nx(i,klon),ny(i,klon),0,klon)+1

nor=nv(nx(i,klon),ny(i,klon),0,klon)

nv(nx(i,klon),ny(i,klon),nor,klon)=i

endif

endif

if(jcol2.eq.-5) then

nx2=nx(i,klon)

ny2=mod(ny(i,klon)-2+Ncv-1,Ncv)+1

lxflag=1

lyflag=0

nor1=nv(nx(i,klon),ny(i,klon),0,klon)

do lnk=1,nor1

if(i.eq.nv(nx(i,klon),ny(i,klon),lnk,klon)) nr=lnk

enddo

do lnk=nr,nor1-1

nbc=nv(nx(i,klon),ny(i,klon),lnk+1,klon)

nv(nx(i,klon),ny(i,klon),lnk,klon)=nbc

enddo
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nv(nx(i,klon),ny(i,klon),0,klon)

&=nv(nx(i,klon),ny(i,klon),0,klon)-1

ny(i,klon)=ny(i,klon)-1

if(ny(i,klon).lt.1)ny(i,klon)=Ncv

nv(nx(i,klon),ny(i,klon),0,klon)

&=nv(nx(i,klon),ny(i,klon),0,klon)+1

nor=nv(nx(i,klon),ny(i,klon),0,klon)

nv(nx(i,klon),ny(i,klon),nor,klon)=i

endif

! scheduling of the new particle-particle events

do j=1,3

nxv=nx2+lx2(j)*lxflag

lk=ny2+ly2(j)*lyflag+Ncv-1

nyv=mod(lk,Ncv)+1

if(nxv.gt.Ncv.or.nxv.lt.1)cycle

if(nv(nxv,nyv,0,klon).gt.0)then

do k=1,nv(nxv,nyv,0,klon)

jj=nv(nxv,nyv,k,klon)

if(i.eq.iold.and.jj.eq.jold)cycle

xij=x(i,klon)-x(jj,klon)

yij=y(i,klon)-y(jj,klon)

vxij=vx(i,klon)-vx(jj,klon)

vyij=vy(i,klon)-vy(jj,klon)

aa=xij*vxij+yij*vyij

if(aa.lt.0.d0)then

v2ij=vxij**2.d0+vyij**2.d0

dis=4.d0*r*r*v2ij-(xij*vyij-yij*vxij)**2.d0

if(dis.ge.0.d0) then

t7=tabs(klon)+(-aa-dsqrt(dis))/v2ij

i1=jj

call almin(t7,i1,i)

endif

endif

yij=-sign(1.d0,yij)*(1.d0-dabs(yij))

aa=xij*vxij+yij*vyij

if(aa.lt.0.d0)then

v2ij=vxij**2.d0+vyij**2.d0

dis=4.d0*r*r*v2ij-(xij*vyij-yij*vxij)**2.d0

if(dis.ge.0.d0) then

t7=tabs(klon)+(-aa-dsqrt(dis))/v2ij

i1=jj

call almin(t7,i1,i)

endif

endif

enddo

endif

enddo

! scheduling of the new particle-wall events

if(iold.eq.i.and.jold.eq.-1) goto 4

if(nx(i,klon).le.2)then

t7=tabs(klon)+(r-x(i,klon))/vx(i,klon)

i1=-1

call almin(t7,i1,i)

endif

4 if(iold.eq.i.and.jold.eq.0) goto 6

if(nx(i,klon).ge.(Ncv-1))then

t7=tabs(klon)+(1.d0-x(i,klon)-r)/vx(i,klon)

i1=0

call almin(t7,i1,i)

endif

6 continue

! scheduling of the new particle-virtual wall events

t7=1.d10

tv2=tv+1.d-13

tabs2=tv2-tabs(klon)

if(vx(i,klon).gt.0.d0) then

aa=dble(nx(i,klon))/dble(Ncv)

xvir=x(i,klon)+vx(i,klon)*tabs2

t72=tv2+(aa-xvir)/vx(i,klon)

if(t72.gt.tv2.and.t72.lt.t7) then

i1=-4

t7=t72

endif

endif

if(vx(i,klon).lt.0.d0) then

aa=dble(nx(i,klon)-1)/dble(Ncv)

xvir=x(i,klon)+vx(i,klon)*tabs2

t72=tv2+(aa-xvir)/vx(i,klon)

if(t72.gt.tv2.and.t72.lt.t7) then

i1=-2

t7=t72

endif

endif

if(vy(i,klon).lt.0.d0) then

aa=dble(ny(i,klon)-1)/dble(Ncv)

yvir=y(i,klon)+vy(i,klon)*tabs2

yvir=yvir+1.d0-dint(yvir+1.d0)

t72=tv2+(aa-yvir)/vy(i,klon)

if(t72.gt.tv2.and.t72.lt.t7) then

i1=-5

t7=t72

endif

endif

if(vy(i,klon).gt.0.d0) then

aa=dble(ny(i,klon))/dble(Ncv)

yvir=y(i,klon)+vy(i,klon)*tabs2

yvir=yvir+1.d0-dint(yvir+1.d0)

t72=tv2+(aa-yvir)/vy(i,klon)

if(t72.gt.tv2.and.t72.lt.t7) then

i1=-3

t7=t72

endif

endif

call almin(t7,i1,i)

return

end

subroutine rencbt(i,j)

implicit real*8(a-h,o-z)

parameter (npmax=10000,nklon=1,Nvmax=100,Nal=200)

common /c/ pi,tabs(nklon),tabstot(nklon),r,De,aN,tini,tpaso

&,iold,jold,Ncm,nl,N,Ncv,klon,Nvflag

common /pos/ x(0:npmax,nklon),y(0:npmax,nklon)

common /vel/ vx(0:npmax,nklon),vy(0:npmax,nklon)

common /cajaV/ nv(Nvmax,Nvmax,0:npmax,nklon)

&,nx(npmax,nklon),ny(npmax,nklon)

common /Cborde/ lx(9),ly(9),lx2(3),ly2(3)

common /z/ Ey,Ex,Ex1,Ex2,tv,T1,T2

common /lma/ al(1:Npmax,0:Nal,nklon),even(1:Npmax,0:Nal,nklon)

&,eveni(1:Npmax,0:Nal,nklon),evenj(1:Npmax,0:Nal,nklon)

&,nchoke(-10:Npmax,nklon)

common /dsa/ ncbt(1:2*Npmax,nklon),tcol,jcol,icol

control=0.d0

nor=1

do while(control.lt.1)

if (j.gt.0) then

!trace back in the tree for the two particles

np1=i

np2=j

!the one with grater local colision time first

if (al(np1,1,klon).lt.al(np2,1,klon)) then

np1=j

np2=i

endif

npadre=(N-1+np1)/2

do while (npadre.ge.1)

if(al(ncbt(2*npadre,klon),1,klon).le.

&al(ncbt(2*npadre+1,klon),1,klon)) then

ncbt(npadre,klon)=ncbt(2*npadre,klon)

npadre=npadre/2.d0

else

ncbt(npadre,klon)=ncbt(2*npadre+1,klon)

npadre=npadre/2.d0

endif

enddo

npadre=(N-1+np2)/2

do while (npadre.ge.1)

if(al(ncbt(2*npadre,klon),1,klon).le.

&al(ncbt(2*npadre+1,klon),1,klon)) then

ncbt(npadre,klon)=ncbt(2*npadre,klon)

npadre=npadre/2

else

ncbt(npadre,klon)=ncbt(2*npadre+1,klon)

npadre=npadre/2

endif

enddo

else

!trace back in the tree for one particle

npadre=(N-1+i)/2

do while (npadre.ge.1)

if(al(ncbt(2*npadre,klon),1,klon).le.

&al(ncbt(2*npadre+1,klon),1,klon)) then

ncbt(npadre,klon)=ncbt(2*npadre,klon)

npadre=npadre/2

else

ncbt(npadre,klon)=ncbt(2*npadre+1,klon)

npadre=npadre/2

endif

enddo

endif

!new candidates to colision event

ncan=ncbt(1,klon)

njcan=even(ncan,1,klon)

!check of valid event

if (eveni(ncan,1,klon).eq.nchoke(ncan,klon).and.

&evenj(ncan,1,klon).eq.nchoke(njcan,klon)) then

!valid event

control=1.d0

else

!invalid event is erased from the list

!and another candidate event it’s selected

nmk=dint(al(ncan,0,klon))

do nor=1,nmk

al(ncan,nor,klon)=al(ncan,nor+1,klon)

even(ncan,nor,klon)=even(ncan,nor+1,klon)



94 Appendices

eveni(ncan,nor,klon)=eveni(ncan,nor+1,klon)

evenj(ncan,nor,klon)=evenj(ncan,nor+1,klon)

enddo

al(ncan,0,klon)=al(ncan,0,klon)-1

even(ncan,0,klon)=even(ncan,0,klon)-1

eveni(ncan,0,klon)=eveni(ncan,0,klon)-1

evenj(ncan,0,klon)=evenj(ncan,0,klon)-1

i=ncan

j=njcan

endif

enddo

return

end

subroutine mov(tt2,iflag)

implicit real*8(a-h,o-z)

parameter (npmax=10000,nklon=1,Nvmax=100,Nal=200)

common /c/ pi,tabs(nklon),tabstot(nklon),r,De,aN,tini,tpaso

&,iold,jold,Ncm,nl,N,Ncv,klon,Nvflag

common /pos/ x(0:npmax,nklon),y(0:npmax,nklon)

common /vel/ vx(0:npmax,nklon),vy(0:npmax,nklon)

common /cajaV/ nv(Nvmax,Nvmax,0:npmax,nklon)

&,nx(npmax,nklon),ny(npmax,nklon)

common /Cborde/ lx(9),ly(9),lx2(3),ly2(3)

common /z/ Ey,Ex,Ex1,Ex2,tv,T1,T2

common /lma/ al(1:Npmax,0:Nal,nklon),even(1:Npmax,0:Nal,nklon)

&,eveni(1:Npmax,0:Nal,nklon),evenj(1:Npmax,0:Nal,nklon)

&,nchoke(-10:Npmax,nklon)

common /dsa/ ncbt(1:2*Npmax,nklon),tcol,jcol,icol

tt=tt2-tabs(klon)

!check of a valid time

if(tt.lt.0.d0) then

write(6,*) icol,jcol,tabstot(klon),tabs(klon),tt2

stop

endif

tabs(klon)=tt2

do i=1,N

nxv=1+dint(x(i,klon)*dble(Ncv))

nyv=1+dint(y(i,klon)*dble(Ncv))

tv=tabs(klon)

yy=y(i,klon)+vy(i,klon)*tt+0.5d0*Ey*tt**2.d0

vy(i,klon)=vy(i,klon)+Ey*tt

x(i,klon)=x(i,klon)+vx(i,klon)*tt+0.5d0*Ex*tt**2.d0

vx(i,klon)=vx(i,klon)+Ex*tt

y(i,klon)=yy+1.d0-dint(yy+1.d0)

nxv=1+dint(x(i,klon)*dble(Ncv))

nyv=1+dint(y(i,klon)*dble(Ncv))

!check that particle i is in the right virtual box

if(nyv.ne.ny(i,klon).or.nxv.ne.nx(i,klon)) then

ncontrol=0

jcol2=even(i,1,klon)

nvxd=(nxv-nx(i,klon))

nvyd=(nyv-ny(i,klon))

if(nvxd.eq.1.and.jcol2.eq.-4) ncontrol=1

if(nvxd.eq.-1.and.jcol2.eq.-2) ncontrol=1

if(nvyd.eq.1.and.jcol2.eq.-3) ncontrol=1

if(nvyd.eq.-(Ncv-1).and.jcol2.eq.-3) ncontrol=1

if(nvyd.eq.-1.and.jcol2.eq.-5) ncontrol=1

if(nvyd.eq.(Ncv-1).and.jcol2.eq.-5) ncontrol=1

! write(6,*)"nvmal",nxv,nx(i,klon),nyv,ny(i,klon),tabstot(klon)

if(ncontrol.eq.0) then

!in this case we just move the particle to the correct box

nor1=nv(nx(i,klon),ny(i,klon),0,klon)

do lnk=1,nor1

if(i.eq.nv(nx(i,klon),ny(i,klon),lnk,klon)) nr=lnk

enddo

! write(6,*) nr

nx3=nx(i,klon)

ny3=ny(i,klon)

do lnk=nr,nor1-1

nv(nx3,ny3,lnk,klon)=nv(nx3,ny3,lnk+1,klon)

enddo

nv(nx3,ny3,0,klon)=nv(nx3,ny3,0,klon)-1

nx(i,klon)=nxv

ny(i,klon)=nyv

nv(nx(i,klon),ny(i,klon),0,klon)

&=nv(nx(i,klon),ny(i,klon),0,klon)+1

nor=nv(nx(i,klon),ny(i,klon),0,klon)

nv(nx(i,klon),ny(i,klon),nor,klon)=i

! write(6,*)"nvmal0",nxv,nx(i,klon),nyv,ny(i,klon),i,jcol2,tt2

else

! in this case we recalculate the particle-virtual wall events

tv=tt2

call virtuacol(i,jcol2)

do m=N,2*N-1

ncbt(m,klon)=m-N+1

enddo

do m=2*N-1,3,-2

if(al(ncbt(m,klon),1,klon).le.

&al(ncbt(m-1,klon),1,klon)) then

ncbt(m/2,klon)=ncbt(m,klon)

else

ncbt(m/2,klon)=ncbt(m-1,klon)

endif

enddo

endif

endif

enddo

return

end

subroutine choq(i1,i2)

implicit real*8(a-h,o-z)

parameter (npmax=10000,nklon=1,Nvmax=100,Nal=200)

common /c/ pi,tabs(nklon),tabstot(nklon),r,De,aN,tini,tpaso

&,iold,jold,Ncm,nl,N,Ncv,klon,Nvflag

common /pos/ x(0:npmax,nklon),y(0:npmax,nklon)

common /vel/ vx(0:npmax,nklon),vy(0:npmax,nklon)

common /cajaV/ nv(Nvmax,Nvmax,0:npmax,nklon)

&,nx(npmax,nklon),ny(npmax,nklon)

common /Cborde/ lx(9),ly(9),lx2(3),ly2(3)

common /z/ Ey,Ex,Ex1,Ex2,tv,T1,T2

common /lma/ al(1:Npmax,0:Nal,nklon),even(1:Npmax,0:Nal,nklon)

&,eveni(1:Npmax,0:Nal,nklon),evenj(1:Npmax,0:Nal,nklon)

&,nchoke(-10:Npmax,nklon)

common /dsa/ ncbt(1:2*Npmax,nklon),tcol,jcol,icol

common /medida3/ cpre(Nvmax),ajabs(2),ncol(Nvmax)

&,presion(Nvmax,npmax),ajcurrent(2,npmax),coli(Nvmax,npmax)

&,colmedias(Nvmax,8),ajmb(2,8)

if(i2.gt.0)then

!particle-particle colision

xx=x(i2,klon)-x(i1,klon)

yy=y(i2,klon)-y(i1,klon)

if(dabs(yy).gt.2.d0*De)yy=-sign(1.d0,yy)*(1.d0-dabs(yy))

AD=xx*(vx(i2,klon)-vx(i1,klon))+yy*(vy(i2,klon)-vy(i1,klon))

x1=x(i1,klon)

nx1=1+dint(x1*dble(Ncm))

cpre(nx1)=cpre(nx1)-AD

cpre(Ncm+1)=cpre(Ncm+1)-AD

vx(i1,klon)=vx(i1,klon)+xx*AD/(4.d0*r**2.d0)

vy(i1,klon)=vy(i1,klon)+yy*AD/(4.d0*r**2.d0)

vx(i2,klon)=vx(i2,klon)-xx*AD/(4.d0*r**2.d0)

vy(i2,klon)=vy(i2,klon)-yy*AD/(4.d0*r**2.d0)

ncol(nx1)=ncol(nx1)+1

ncol(Ncm+1)=ncol(Ncm+1)+1

else

if(i2.eq.-1) then

!particle-wall colision. Hot thermal bath

ecivo=(vx(i1,klon)**2.d0+vy(i1,klon)**2.d0)/2.d0

u1=dran_u()

u2=dran_u()

vy(i1,klon)=dsqrt(-2.d0*dlog(u1))*dcos(2.d0*pi*u2)*dsqrt(T1)

ac=dran_u()

vx2=dsqrt(-2.d0*T1*dlog(1.d0-ac))

cpre(Ncm+2)=cpre(Ncm+2)+vx(i1,klon)-vx2

vx(i1,klon)=vx2

cc=ecivo-(vx(i1,klon)**2.d0+vy(i1,klon)**2.d0)/2.d0

ajabs(1)=ajabs(1)-cc

ncol(Ncm+2)=ncol(Ncm+2)+1

endif

if(i2.eq.0) then

!particle-wall colision. Cold thermal bath

ecivo=(vx(i1,klon)**2.d0+vy(i1,klon)**2.d0)/2.d0

u1=dran_u()

u2=dran_u()

vy(i1,klon)=dsqrt(-2.d0*dlog(u1))*dcos(2.d0*pi*u2)*dsqrt(T2)

ac=dran_u()

vx2=-dsqrt(-2.d0*T2*dlog(1.d0-ac))

cpre(Ncm+3)=cpre(Ncm+3)+vx(i1,klon)-vx2

vx(i1,klon)=vx2

cc=ecivo-(vx(i1,klon)**2.d0+vy(i1,klon)**2.d0)/2.d0

ajabs(2)=ajabs(2)-cc

ncol(Ncm+3)=ncol(Ncm+3)+1

endif

endif

return

end

subroutine colision(i)

implicit real*8(a-h,o-z)

parameter (npmax=10000,nklon=1,Nvmax=100,Nal=200)

common /c/ pi,tabs(nklon),tabstot(nklon),r,De,aN,tini,tpaso

&,iold,jold,Ncm,nl,N,Ncv,klon,Nvflag

common /pos/ x(0:npmax,nklon),y(0:npmax,nklon)

common /vel/ vx(0:npmax,nklon),vy(0:npmax,nklon)

common /cajaV/ nv(Nvmax,Nvmax,0:npmax,nklon)

&,nx(npmax,nklon),ny(npmax,nklon)

common /Cborde/ lx(9),ly(9),lx2(3),ly2(3)

common /z/ Ey,Ex,Ex1,Ex2,tv,T1,T2

common /lma/ al(1:Npmax,0:Nal,nklon),even(1:Npmax,0:Nal,nklon)

&,eveni(1:Npmax,0:Nal,nklon),evenj(1:Npmax,0:Nal,nklon)

&,nchoke(-10:Npmax,nklon)

common /dsa/ ncbt(1:2*Npmax,nklon),tcol,jcol,icol

!Same routine that colinit but for only one particle

al(i,0,klon)=0.d0

even(i,0,klon)=0.d0



A Source Code 95

eveni(i,0,klon)=0.d0

evenj(i,0,klon)=0.d0

do j=1,Nal

al(i,j,klon)=1.d10

even(i,j,klon)=0

eveni(i,j,klon)=0

evenj(i,j,klon)=0

enddo

do j=1,9

nxv=nx(i,klon)+lx(j)

nyv=mod(ny(i,klon)+ly(j)+Ncv-1,Ncv)+1

if(nxv.gt.Ncv.or.nxv.lt.1)cycle

if(nv(nxv,nyv,0,klon).gt.0)then

do k=1,nv(nxv,nyv,0,klon)

jj=nv(nxv,nyv,k,klon)

if(i.eq.iold.and.jj.eq.jold)cycle

xij=x(i,klon)-x(jj,klon)

yij=y(i,klon)-y(jj,klon)

vxij=vx(i,klon)-vx(jj,klon)

vyij=vy(i,klon)-vy(jj,klon)

aa=xij*vxij+yij*vyij

if(aa.lt.0.d0)then

v2ij=vxij**2.d0+vyij**2.d0

dis=4.d0*r*r*v2ij-(xij*vyij-yij*vxij)**2.d0

if(dis.ge.0.d0) then

t7=tabs(klon)+(-aa-dsqrt(dis))/v2ij

i1=jj

call almin(t7,i1,i)

endif

endif

yij=-sign(1.d0,yij)*(1.d0-dabs(yij))

aa=xij*vxij+yij*vyij

if(aa.lt.0.d0)then

v2ij=vxij**2.d0+vyij**2.d0

dis=4.d0*r*r*v2ij-(xij*vyij-yij*vxij)**2.d0

if(dis.ge.0.d0) then

t7=tabs(klon)+(-aa-dsqrt(dis))/v2ij

i1=jj

call almin(t7,i1,i)

endif

endif

enddo

endif

enddo

if(iold.eq.i.and.jold.eq.-1) goto 4

if(nx(i,klon).le.2)then

t7=tabs(klon)+(r-x(i,klon))/vx(i,klon)

i1=-1

call almin(t7,i1,i)

endif

4 if(iold.eq.i.and.jold.eq.0) goto 6

if(nx(i,klon).ge.(Ncv-1))then

t7=tabs(klon)+(1.d0-x(i,klon)-r)/vx(i,klon)

i1=0

call almin(t7,i1,i)

endif

6 t7=1.d10

aa=dble(nx(i,klon))/dble(Ncv)

t72=tabs(klon)+(aa-x(i,klon))/vx(i,klon)+1.d-13

if(t72.gt.tabs(klon).and.t72.lt.t7)then

i1=-4

t7=t72

endif

aa=dble(nx(i,klon)-1)/dble(Ncv)

t72=tabs(klon)+(aa-x(i,klon))/vx(i,klon)+1.d-13

if(t72.gt.tabs(klon).and.t72.lt.t7) then

i1=-2

t7=t72

endif

aa=dble(ny(i,klon)-1)/dble(Ncv)

t72=tabs(klon)+(aa-y(i,klon))/vy(i,klon)+1.d-13

if(t72.gt.tabs(klon).and.t72.lt.t7) then

i1=-5

t7=t72

endif

aa=dble(ny(i,klon))/dble(Ncv)

t72=tabs(klon)+(aa-y(i,klon))/vy(i,klon)+1.d-13

if(t72.gt.tabs(klon).and.t72.lt.t7) then

i1=-3

t7=t72

endif

call almin(t7,i1,i)

return

end

subroutine check(tlim,nbadpar)

implicit real*8(a-h,o-z)

parameter (npmax=10000,nklon=1,Nvmax=100,Nal=200)

common /c/ pi,tabs(nklon),tabstot(nklon),r,De,aN,tini,tpaso

&,iold,jold,Ncm,nl,N,Ncv,klon,Nvflag

common /pos/ x(0:npmax,nklon),y(0:npmax,nklon)

common /vel/ vx(0:npmax,nklon),vy(0:npmax,nklon)

common /cajaV/ nv(Nvmax,Nvmax,0:npmax,nklon)

&,nx(npmax,nklon),ny(npmax,nklon)

common /Cborde/ lx(9),ly(9),lx2(3),ly2(3)

common /z/ Ey,Ex,Ex1,Ex2,tv,T1,T2

common /lma/ al(1:Npmax,0:Nal,nklon),even(1:Npmax,0:Nal,nklon)

&,eveni(1:Npmax,0:Nal,nklon),evenj(1:Npmax,0:Nal,nklon)

&,nchoke(-10:Npmax,nklon)

if(tabstot(klon).gt.tlim) then

jjs=dint(al(10,0,klon))

do js=1,jjs

write(6,*)al(i,js,klon),even(i,js,klon),10,tabstot(klon)

enddo

jjs=dint(al(nbadpar,0,klon))

do js=1,jjs

write(6,*)al(i,js,klon),even(i,js,klon),nbadpar,tabs(klon)

enddo

endif

!overlapping and scaping particles check

do kkl=1,N

x3=x(kkl,klon)

y3=y(kkl,klon)

do kkl2=kkl,N

if(kkl.ne.kkl2) then

x2=x(kkl2,klon)

y2=y(kkl2,klon)

dist=dsqrt((x3-x2)**2.d0+(y3-y2)**2.d0)+1.d-7

if(dist.lt.2.d0*r) then

write(6,*)"s",x3,y3,x2,y2,klon,kkl,kkl2

jjs=dint(al(kkl,0,klon))

do js=1,jjs

write(6,*)al(kkl,js,klon),even(kkl,js,klon)

&,icol,jcol,tt,tt2,tabstot(klon)

enddo

stop

endif

endif

enddo

if(x3.gt.(1.d0-r+1.d-7).or.x3.lt.r-1.d-7) then

write(6,*) "particle out",kkl,x3,r

endif

enddo

return

end

subroutine measure(ns)

implicit real*8(a-h,o-z)

parameter (npmax=10000,nklon=1,Nvmax=100,Nal=200)

dimension vcmden(Nvmax)

dimension densi(Nvmax),auxt(Nvmax)

common /c/ pi,tabs(nklon),tabstot(nklon),r,De,aN,tini,tpaso

&,iold,jold,Ncm,nl,N,Ncv,klon,Nvflag

common /pos/ x(0:npmax,nklon),y(0:npmax,nklon)

common /vel/ vx(0:npmax,nklon),vy(0:npmax,nklon)

common /cajaV/ nv(Nvmax,Nvmax,0:npmax,nklon)

&,nx(npmax,nklon),ny(npmax,nklon)

common /Cborde/ lx(9),ly(9),lx2(3),ly2(3)

common /z/ Ey,Ex,Ex1,Ex2,tv,T1,T2

common /lma/ al(1:Npmax,0:Nal,nklon),even(1:Npmax,0:Nal,nklon)

&,eveni(1:Npmax,0:Nal,nklon),evenj(1:Npmax,0:Nal,nklon)

&,nchoke(-10:Npmax,nklon)

common /dsa/ ncbt(1:2*Npmax,nklon),tcol,jcol,icol

common /medida/ etot(npmax,2),distri(15000,Nvmax)

&,tcolu(Nvmax,npmax),denc(Nvmax,npmax),densi2(Nvmax,npmax)

&,vcmx(Nvmax,npmax),vcmy(Nvmax,npmax),v(npmax,8)

&,ajgtot(npmax,6),tabs4(npmax,nklon),ecin_b(Nvmax,npmax)

$,distrimax

common /medida2/ tmedias(Nvmax,8),dmedias(Nvmax,8)

&,anmedias(Nvmax,8),emedias(Nvmax,8),pmedias(Nvmax,8)

&,vcymd(Nvmax,8),vmedias(8),ajmedias(6,8),vcxmd(Nvmax,8)

&,xmedtot

common /medida3/ cpre(Nvmax),ajabs(2),ncol(Nvmax)

&,presion(Nvmax,npmax),ajcurrent(2,npmax),coli(Nvmax,npmax)

&,colmedias(Nvmax,8),ajmb(2,8)

Ncmt=Ncm+1

aN=dble(N)

aNc=dble(Ncm)

tabs4(ns,klon)=tabstot(klon)+tabs(klon)

do i=1,Ncmt

vcmx(i,ns)=0.d0

vcmy(i,ns)=0.d0

vcmden(i)=0.d0

densi(i)=0.d0

auxt(i)=0.d0

densi2(i,ns)=0.d0

enddo

!Mesurement of presures and currents at the border

tf=tpaso

ajcurrent(1,ns)=ajabs(1)/tf

ajcurrent(2,ns)=ajabs(2)/tf

ajabs(1)=0.d0

ajabs(2)=0.d0

do i=1,Ncm+3

coli(i,ns)=ncol(i)
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presion(i,ns)=cpre(i)

cpre(i)=0.d0

ncol(i)=0

enddo

!mesurement of velocity of the center of mass,

! per boxes and global

do i=1,N

ii=1+dint(x(i,klon)*dble(Ncm))

vcmy(ii,ns)=vcmy(ii,ns)+vy(i,klon)

vcmx(ii,ns)=vcmx(ii,ns)+vx(i,klon)

vcmx(Ncmt,ns)=vcmx(Ncmt,ns)+vx(i,klon)

vcmy(Ncmt,ns)=vcmy(Ncmt,ns)+vy(i,klon)

vcmden(ii)=vcmden(ii)+1.d0

vcmden(Ncmt)=vcmden(Ncmt)+1.d0

enddo

do i=1,Ncmt

vcmy(i,ns)=vcmy(i,ns)/vcmden(i)

vcmx(i,ns)=vcmx(i,ns)/vcmden(i)

enddo

!mesurement of the mean velocity

do i=1,8

v(ns,i)=0.d0

enddo

do i=1,N

vmodulo=dsqrt(vx(i,klon)**2.d0+vy(i,klon)**2.d0)

c write(6,*) vmodulo

do kk=1,8

akk=dble(kk)

v(ns,kk)=v(ns,kk)+vmodulo**akk

enddo

enddo

!mesurement of the global current by componets and modulus

!with and without sustracting the mean center of mass velocity

ajglox1=0.d0

ajglox2=0.d0

ajgloy1=0.d0

ajgloy2=0.d0

ajgloz1=0.d0

ajgloz2=0.d0

ecin1=0.d0

ecin2=0.d0

vcx=vcmx(Ncmt,ns)

vcy=vcmy(Ncmt,ns)

do i=1,N

ev1=(vx(i,klon))**2.d0+(vy(i,klon))**2.d0

ev2=(vx(i,klon)-vcx)**2.d0+(vy(i,klon)-vcy)**2.d0

ecin1=ecin1+ev1

ecin2=ecin2+ev2

ajglox1=ajglox1+ev1*(vx(i,klon))

ajgloy1=ajgloy1+ev1*(vy(i,klon))

zz1=dsqrt((ev1*vx(i,klon))**2.d0+(ev1*vy(i,klon))**2.d0)

ajgloz1=ajgloz1+zz1

ajglox2=ajglox2+ev2*(vx(i,klon)-vcx)

ajgloy2=ajgloy2+ev2*(vy(i,klon)-vcy)

zz2=(ev2*(vx(i,klon)-vcx))**2.d0

zz1=dsqrt(zz2+(ev2*(vy(i,klon)-vcy))**2.d0)

ajgloz2=ajgloz2+zz1

enddo

ajgtot(ns,1)=ajglox1/(2.d0*aN)

ajgtot(ns,2)=ajgloy1/(2.d0*aN)

ajgtot(ns,3)=ajgloz1/(2.d0*aN)

ajgtot(ns,4)=ajglox2/(2.d0*aN)

ajgtot(ns,5)=ajgloy2/(2.d0*aN)

ajgtot(ns,6)=ajgloz2/(2.d0*aN)

etot(ns,1)=ecin1/(2.d0*aN)

etot(ns,2)=ecin2/(2.d0*aN)

!mesurement of the temperature number of particles and density

!and velocity distribution for each box.

do i=1,N

ii=1+dint(x(i,klon)*dble(Ncm))

ecin=dsqrt((vx(i,klon))**2.d0+(vy(i,klon))**2.d0)

densi2(ii,ns)=densi2(ii,ns)+1.d0

densi2(Ncmt,ns)=densi2(Ncmt,ns)+1.d0

auxt(Ncmt)=auxt(Ncmt)+0.5d0*ecin*ecin

densi(Ncmt)=densi(Ncmt)+pi*r*r

jik=1+dint(3500.d0*ecin/distrimax)

if (jik.le.15000) then

distri(jik,ii)=distri(jik,ii)+1

distri(jik,Ncmt)=distri(jik,Ncmt)+1

endif

xmu=abs(dble(ii)/aNc-x(i,klon))

cont=0

if(xmu.lt.r.and.ii.ne.Ncm) then

fi=pi/2.d0-dasin(xmu/r)

atri=fi*r*r-xmu*dsqrt(r*r-xmu*xmu)

densi(ii)=densi(ii)+pi*r*r-atri

densi(ii+1)=densi(ii+1)+atri

auxt(ii)=auxt(ii)+(pi*r*r-atri)*ecin*ecin/(pi*r*r*2.d0)

auxt(ii+1)=auxt(ii+1)+(atri)*ecin*ecin/(pi*r*r*2.d0)

cont=2

endif

xmu=abs(dble(ii-1)/aNc-x(i,klon))

if(xmu.lt.r.and.ii.ne.1) then

fi=pi/2.d0-dasin(xmu/r)

atri=fi*r*r-xmu*dsqrt(r*r-xmu*xmu)

densi(ii)=densi(ii)+pi*r*r-atri

densi(ii-1)=densi(ii-1)+atri

auxt(ii)=auxt(ii)+(pi*r*r-atri)*ecin*ecin/(pi*r*r*2.d0)

auxt(ii-1)=auxt(ii-1)+(atri)*ecin*ecin/(pi*r*r*2.d0)

cont=2

endif

if(cont.lt.1) then

densi(ii)=densi(ii)+pi*r*r

auxt(ii)=auxt(ii)+ecin*ecin/2.d0

endif

enddo

do i=1,Ncmt

denc(i,ns)=densi(i)*aNc

ecin_b(i,ns)=auxt(i)

tcolu(i,ns)=auxt(i)*pi*r*r/densi(i)

enddo

end

subroutine salvar()

implicit real*8(a-h,o-z)

parameter (npmax=10000,nklon=1,Nvmax=100,Nal=200)

common /c/ pi,tabs(nklon),tabstot(nklon),r,De,aN,tini,tpaso

&,iold,jold,Ncm,nl,N,Ncv,klon,Nvflag

common /pos/ x(0:npmax,nklon),y(0:npmax,nklon)

common /vel/ vx(0:npmax,nklon),vy(0:npmax,nklon)

common /cajaV/ nv(Nvmax,Nvmax,0:npmax,nklon)

&,nx(npmax,nklon),ny(npmax,nklon)

common /Cborde/ lx(9),ly(9),lx2(3),ly2(3)

common /z/ Ey,Ex,Ex1,Ex2,tv,T1,T2

common /lma/ al(1:Npmax,0:Nal,nklon),even(1:Npmax,0:Nal,nklon)

&,eveni(1:Npmax,0:Nal,nklon),evenj(1:Npmax,0:Nal,nklon)

&,nchoke(-10:Npmax,nklon)

common /dsa/ ncbt(1:2*Npmax,nklon),tcol,jcol,icol

common /medida/ etot(npmax,2),distri(15000,Nvmax)

&,tcolu(Nvmax,npmax),denc(Nvmax,npmax),densi2(Nvmax,npmax)

&,vcmx(Nvmax,npmax),vcmy(Nvmax,npmax),v(npmax,8)

&,ajgtot(npmax,6),tabs4(npmax,nklon),ecin_b(Nvmax,npmax)

,distrimax

common /medida2/ tmedias(Nvmax,8),dmedias(Nvmax,8)

&,anmedias(Nvmax,8),emedias(Nvmax,8),pmedias(Nvmax,8)

&,vcymd(Nvmax,8),vmedias(8),ajmedias(6,8),vcxmd(Nvmax,8)

&,xmedtot

common /medida3/ cpre(Nvmax),ajabs(2),ncol(Nvmax)

&,presion(Nvmax,npmax),ajcurrent(2,npmax),coli(Nvmax,npmax)

&,colmedias(Nvmax,8),ajmb(2,8)

character*1 iklon

open(unit=21,file="tmedia.dat",status="unknown"

&,position="append")

open(unit=22,file="dmedia.dat",status="unknown"

&,position="append")

open(unit=23,file="anmedia.dat",status="unknown"

&,position="append")

open(unit=24,file="emedia.dat",status="unknown"

&,position="append")

open(unit=25,file="vmedia.dat",status="unknown"

&,position="append")

open(unit=26,file="ajgmedia.dat",status="unknown"

&,position="append")

open(unit=27,file="ajbmedia.dat",status="unknown"

&,position="append")

open(unit=28,file="evol.dat",status="unknown"

&,position="append")

open(unit=29,file="distribucion.dat",status="unknown")

open(unit=30,file="pmedia.dat",status="unknown"

&,position="append")

open(unit=31,file="colisiones.dat",status="unknown"

&,position="append")

open(unit=33,file="vxcmmedia.dat",status="unknown"

&,position="append")

open(unit=34,file="vycmmedia.dat",status="unknown"

&,position="append")

open(unit=667,file="configuracion.dat",status="unknown")

write(667,*) tabstot(klon),tabs(klon),iold,jold

do is=1,N

write(667,*) x(is,klon),y(is,klon),vx(is,klon),vy(is,klon)

enddo

close(667)

con=0

Ncmt=Ncm+1

do k=1,8

do i=1,Ncmt+2

tmedias(i,k)=0.d0

dmedias(i,k)=0.d0

anmedias(i,k)=0.d0

emedias(i,k)=0.d0

pmedias(i,k)=0.d0

colmedias(i,k)=0.d0

vcxmd(i,k)=0.d0
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vcymd(i,k)=0.d0

enddo

vmedias(k)=0.d0

do i=1,6

ajmedias(i,k)=0.d0

enddo

do i=1,2

ajmb(i,k)=0.d0

enddo

enddo

do kj=1,Ncmt

do i=1,15000

write(29,*) i,distri(i,kj),kj

enddo

enddo

do j=1,1000

do kk=1,8

akk=dble(kk)

do i=1,Ncmt

tmedias(i,kk)=tmedias(i,kk)+tcolu(i,j)**akk

pmedias(i,kk)=pmedias(i,kk)+presion(i,j)**akk

colmedias(i,kk)=colmedias(i,kk)+coli(i,j)**akk

dmedias(i,kk)=dmedias(i,kk)+denc(i,j)**akk

anmedias(i,kk)=anmedias(i,kk)+densi2(i,j)**akk

emedias(i,kk)=emedias(i,kk)+ecin_b(i,j)**akk

vcxmd(i,kk)=vcxmd(i,kk)+vcmx(i,j)**akk

vcymd(i,kk)=vcymd(i,kk)+vcmy(i,j)**akk

enddo

pmedias(Ncm+2,kk)=pmedias(Ncm+2,kk)+presion(Ncm+2,j)**akk

pmedias(Ncm+3,kk)=pmedias(Ncm+3,kk)+presion(Ncm+3,j)**akk

colmedias(Ncm+2,kk)=colmedias(Ncm+2,kk)+coli(Ncm+2,j)**akk

colmedias(Ncm+3,kk)=colmedias(Ncm+3,kk)+coli(Ncm+3,j)**akk

vmedias(kk)=vmedias(kk)+v(j,kk)

do i=1,6

akk=dble(kk)

ajmedias(i,kk)=ajmedias(i,kk)+ajgtot(j,i)**akk

enddo

do i=1,2

ajmb(i,kk)=ajmb(i,kk)+ajcurrent(i,j)**akk

enddo

enddo

enddo

xmedtot=xmedtot+1000.d0

do i=1,Ncmt+2

write(30,*) pmedias(i,1),pmedias(i,2),

&pmedias(i,3),pmedias(i,4),pmedias(i,5),

&pmedias(i,6),pmedias(i,7),pmedias(i,8)!,xmedtot

write(31,*) colmedias(i,1),colmedias(i,2),

&colmedias(i,3),colmedias(i,4),colmedias(i,5),

&colmedias(i,6),colmedias(i,7),colmedias(i,8)!,xmedtot

enddo

do i=1,Ncmt

write(21,*) tmedias(i,1),tmedias(i,2),

&tmedias(i,3),tmedias(i,4),tmedias(i,5),

&tmedias(i,6),tmedias(i,7),tmedias(i,8)!,xmedtot

write(22,*) dmedias(i,1),dmedias(i,2),

&dmedias(i,3),dmedias(i,4),dmedias(i,5),

&dmedias(i,6),dmedias(i,7),dmedias(i,8)!,xmedtot

write(23,*) anmedias(i,1),anmedias(i,2),

&anmedias(i,3),anmedias(i,4),anmedias(i,5)

&,anmedias(i,6),anmedias(i,7),anmedias(i,8)!,xmedtot

write(24,*) emedias(i,1),emedias(i,2),

&emedias(i,3),emedias(i,4),emedias(i,5),

&emedias(i,6),emedias(i,7),emedias(i,8)!,xmedtot

write(33,*) vcxmd(i,1),vcxmd(i,2),

&vcxmd(i,3),vcxmd(i,4),vcxmd(i,5),

&vcxmd(i,6),vcxmd(i,7),vcxmd(i,8)!,xmedtot

write(34,*) vcymd(i,1),vcymd(i,2),

&vcymd(i,3),vcymd(i,4),vcymd(i,5),

&vcymd(i,6),vcymd(i,7),vcymd(i,8)!,xmedtot

enddo

write(25,*) vmedias(1),vmedias(2),

&vmedias(3),vmedias(4),vmedias(5),

&vmedias(6),vmedias(7),vmedias(8),xmedtot,N,tpaso,r

do i=1,6

write(26,*) ajmedias(i,1),ajmedias(i,2),

&ajmedias(i,3),ajmedias(i,4),

&ajmedias(i,5),ajmedias(i,6),

&ajmedias(i,7),ajmedias(i,8)!,xmedtot

enddo

do i=1,2

write(27,*) ajmb(i,1),ajmb(i,2),

&ajmb(i,3),ajmb(i,4),

&ajmb(i,5),ajmb(i,6),

&ajmb(i,7),ajmb(i,8)!,xmedtot

enddo

call flush(21)

call flush(25)

call flush(22)

call flush(23)

call flush(24)

call flush(26)

call flush(27)

call flush(28)

call flush(29)

call flush(30)

call flush(31)

call flush(33)

call flush(34)

close(21)

close(22)

close(25)

close(23)

close(24)

close(26)

close(27)

close(29)

close(30)

close(31)

close(33)

close(34)

end

cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

!random number

subroutine dran_ini(iseed0)

integer*8::ip,np,nbit,m,np1,nn,nn1,ic,i,j

real*8::dseed,rand_xx,p,t,x

parameter(ip=1279)

parameter(np=14)

parameter(nbit=31)

integer*8,dimension(1:ip)::ix

common /ixx/ ix

common /icc/ ic

dseed=iseed0

do i=1,ip

ix(i)=0

do j=0,nbit-1

if(rand_xx(dseed).lt.0.5d0) ix(i)=ibset(ix(i),j)

enddo

enddo

ic=0

end subroutine dran_ini

subroutine dran_read(iunit)

parameter(ip=1279)

parameter(np=14)

integer*8::ic,i

integer*8,dimension(1:ip)::ix

common /ixx/ ix

common /icc/ ic

read(iunit,*)ic

read(iunit,*)(ix(i),i=1,ip)

end subroutine dran_read

subroutine dran_write(iunit)

parameter(ip=1279)

parameter(np=14)

integer*8,dimension(1:ip)::ix

integer*8::i,ic

common /ixx/ ix

common /icc/ ic

write(iunit,*) ic

write(iunit,*) (ix(i),i=1,ip)

end subroutine dran_write

integer*8 function i_dran(n)

integer*8::ip,iq,is,ic,i_ran

parameter(ip=1279)

parameter(iq=418)

parameter(is=ip-iq)

integer*8,dimension(1:ip)::ix

common /ixx/ ix

common /icc/ ic

ic=ic+1

if(ic.gt.ip) ic=1

if(ic.gt.iq)then

ix(ic)=ieor(ix(ic),ix(ic-iq))

else

ix(ic)=ieor(ix(ic),ix(ic+is))

endif

i_ran=ix(ic)

if(n.gt.0)i_dran=mod(i_ran,n)+1

end function i_dran

real*8 function dran_u()
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integer*8::ip,iq,is,ic

real*8::rmax

parameter(ip=1279)

parameter(iq=418)

parameter(is=ip-iq)

parameter (rmax=2147483647.0)

integer*8,dimension(1:ip)::ix

common /ixx/ ix

common /icc/ ic

ic=ic+1

if(ic.gt.ip) ic=1

if(ic.gt.iq)then

ix(ic)=ieor(ix(ic),ix(ic-iq))

else

ix(ic)=ieor(ix(ic),ix(ic+is))

endif

dran_u=dble(ix(ic))/rmax

end function dran_u

real*8 function rand_xx(dseed)

real*8:: a,c,xm,rm,dseed

parameter (xm=2.d0**32,rm=1.d0/xm,a=69069.d0,c=1.d0)

dseed=mod(dseed*a+c,xm)

rand_xx=dseed*rm

end function rand_xx



Appendix B

General Scaling for Soft
Potentials in d-Dimensions

The scaling properties for the density and temperature profiles saw in chapter
4 can be further generalized to d-dimension soft potentials of the form:

V (x) = ε
(σ
x

)n
(B.1)

where x is the d-dimensional euclidean distance between two particles. Hard
d-dimensional spheres can be obtained in the limit n→∞:

V (x) = 0 if x > σ

= ∞ if x < σ (B.2)

where σ = 2r where r is the radius of the d-dimensional sphere.
General forms for the equation of state and conductivity can be derived

for this class of soft potentials:

EOS: P = β̃−1g(ρ̃)

Thermal conductivity: κ =
kB
2m

σaεbβ̃cy(ρ̃) (B.3)

where

β̃ = β(βε)d/nσd

ρ̃ = ρ(βε)d/nσd (B.4)

and

a =
n(2− d)

2(n+ d)
; b =

2− d
2(n+ d)

; c =
2− 2d− n
2(n+ d)

(B.5)

g(x) and y(x) have no dimensions and g(x) ' x when x ' 0. In order to
obtain such general scaled forms one should prove the following properties.
(1) Scaling form of the canonical partition function:

Z(N,V, T ) =

[
σ(βε)1/n

(
β

2m

)1/2
]Nd

Z̄

(
N,

V

(βε)d/nσd

)
(B.6)

99



100 Appendices

Proof: The canonical partition function is:

Z(N,V, T ) =
1

N !hdN

∫
V

d~rN

∫
Rd
d~pN exp [−βH(~rN , ~pN )] (B.7)

where the Hamiltonian is given in our case by:

H(~rN , ~pN ) =
N∑
i=1

~p2
i

2m
+ εσn

∑
i<j

1

|~ri − ~rj |n
(B.8)

We change the variables of the integrals to extract the system parameters
out of the exponential:

~ki =

(
β

2m

)1/2

~pi , ~qi = (βε)−1/nσ−1~ri (B.9)

And we get B.6 with

Z̄ (N,V ) =
1

N !hdN

∫
V

d~qN

∫
Rd
d~kN exp

[
−H̄(~qN ,~kN )

]
(B.10)

where

H̄(~qN ,~kN ) =

N∑
i=1

~k2
i +

∑
i<j

1

|~qi − ~qj |n
(B.11)

(2) Scaling form of the equation of state:

P = β̃−1g(ρ̃) (B.12)

Proof:
The equation of state is obtain from the canonical partition function:

P =
1

β

∂

∂V
lnZ(N,V, T )

∣∣∣∣
N,T

(B.13)

When substituting the scaling form of Z we get

P = β−1(βε)−d/nσ−d
∂

∂V̄
ln Z̄(N, V̄ )

∣∣∣∣
N

(B.14)

where V̄ = V (βε)−d/nσ−d. One should note that if the system has a well
defined thermodynamic limit, then

∂

∂V̄
ln Z̄(N, V̄ )

∣∣∣∣
N

= P (β = 1,m = 1/2, ε1/nσ = 1;N, V̄ ) = g(
N

V̄
) (B.15)

and we get the above form of the eos.
(3) Thermal conductivity: We know the Green-Kubo expression for

the thermal conductivity:

κ = kBV β
2

∫ ∞
0

dt〈J(0)J(t)〉eq (B.16)
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where:

J =
1

mV

N∑
i=1

eipx,i − 1

2

∑
j 6=i

(~rij · ~pi)
rx,ij
rij

V ′(rij)

 (B.17)

where rij = |~ri − ~rj | and ei = ~p2
i /2m+ 1/2

∑
j 6=i V (rij). And

J(t) = etLJ(0) , Lb = {b,H} =
∑
i,α

[
∂H

∂piα

∂b

∂riα
− ∂H

∂riα

∂b

∂piα

]
(B.18)

We can express all these equations in function of ~k and ~q variables defined
above. We find that:

L = σ−1(βε)−1/n(2mβ)−1/2L̄ (B.19)

with

L̄ =
∑
i,α

2kiα
∂

∂qiα
+ n

∑
j 6=i

qiα − qjα
|~qi − ~qj |n+2

∂

∂kiα

 (B.20)

ei = β−1ēi , ēi = ~k2
i +

1

2

∑
j 6=i

1

|~qi − ~qj |n
(B.21)

J = (V β)−1(2mβ)−1/2J̄ , J̄ =
N∑
i=1

2ēiki,x + n
∑
j 6=i

(~qij · ~kij)
qij,x

qn+2
ij


(B.22)

Substituting all these expressions on the κ definition, we get the above ex-
pression for the thermal conductivity.

Let us note that, in particular, for d-dimensional spheres (n → ∞) we
get:

P = β−1σ−dg(η) , η = ρσd

κ =
kB

(2m)1/2
σ1−dβ−1/2y(η) (B.23)

We can use the scaled forms for the eos and κ to get a closed expression
of the Fourier law in density variables as we did in the hard disk case:

(2m)1/2

(
1 +

d

n

)
Jσāεb̄P c̄ = F̄ (ρ̃)

dρ̃

dx
(B.24)

where F̄ (ρ̃) = y(ρ̃)g(ρ̃)c̄−1g′(ρ̃), and

ā = −n(d+ 2)

2(n+ d)

b̄ = − d+ 2

2(n+ d)

c̄ =
2− 2d− 3n

2(n+ d)
(B.25)

We recover the expression found in the hard disk case when n → ∞ and
d = 2. From eq. B.24 we can redo the computations for hard disks and we
get similar four properties by changing ρ→ ρ̃ and β → β̃.
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Appendix C

Implications and
Generalizations of the IFR

The isometric fluctuation relation, Eq. (5.9), has far-reaching and nontriv-
ial consequences. As we shall see, the IFR implies remarkable hierarchies
of equations for the current cumulants, see Eq. (C.4), and the nonlinear
response coefficients, see eqs. (C.6)-(C.9), going far beyond Onsager’s reci-
procity relations and Green-Kubo formulas.

C.1 Hierarchies for the cumulants and response
coefficients

The moment-generating function associated to Pτ (J), defined as

Πτ (λ) =

∫
Pτ (J) exp(τLdλ · J)dJ, (C.1)

scales for long times as Πτ (λ) ∼ exp[+τLdµ(λ)], where µ(λ) = maxJ[G(J)+
λ · J] is the cumulant generating function and corresponds to the Legendre
transform of the current LDF. The cumulants of the current distribution can
be obtained from the derivatives of µ(λ) evaluated at λ = 0, i.e.

µ
(n)
(n1...nd) ≡

[
∂nµ(λ)

∂λn1
1 ...λndd

]
λ=0

= (τLd)n−1〈∆Jn1
1 ...∆Jndd 〉ε for n ≥ 1, (C.2)

where ∆Jα ≡ Jα − (1 − δn,1)〈Jα〉ε and δn,m is the Kronecker symbol. In
virtue of the IFR, which states that G(J) − G(RJ) = ε · (J − RJ), the
Legendre transform of the current LDF fulfills

µ(λ) = max
J

[G(J)+λ·J] = max
J′

[G(J′)+(R(λ+ε)−ε)·J′] = µ[R(λ+ε)−ε)],

where we have used the change of variables J′ = RJ. Hence, the IFR can
be stated for µ(λ) as

µ(λ) = µ[R(λ+ ε)− ε], (C.3)
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whereR is any d-dimensional rotation. Using this relation in the definition of
the n-th order cumulant in the limit of infinitesimal rotations, R = I+∆θL,
it is easy to show that

nαLβαµ(n)
(n1...nα−1...nβ+1...nd) + ενLγνµ(n+1)

(n1...nγ+1...nd) = 0 , (C.4)

where L is any generator of d-dimensional rotations, and summation over
repeated Greek index (∈ [1, d]) is assumed. The above hierarchy relates in a
simple way cumulants of orders n and n+ 1 ∀n ≥ 1, and is valid arbitrarily
far from equilibrium. As an example, eqs. (C.10) and (C.11) below show the
first two sets of relations (n = 1, 2) of the above hierarchy in two dimensions.

In a similar way, we can explore the consequences of the IFR on the linear
and nonlinear response coefficients. For that, we now expand the cumulants
of the current in powers of ε

µ
(n)
(n1...nd)(ε) =

∞∑
k=0

1

k!

k∑
k1...kd=0∑

i ki=k

(k)
(n)χ

(k1...kd)
(n1...nd) ε

k1
1 ...ε

kd
d (C.5)

Inserting expansion (C.5) into the cumulant hierarchy, Eq. (C.4), and match-
ing order by order in k, we derive another interesting hierarchy for the re-
sponse coefficients of the different cumulants. For k = 0 this reads

nαLβα (0)
(n)χ

(0...0)
(n1...nα−1...nβ+1...nd) = 0 , (C.6)

which is a symmetry relation for the equilibrium (ε = 0) current cumulants.
For k ≥ 1 we obtain

k∑
k1...kd=0∑
i ki=k≥1

[
nα
k
Lβα (k)

(n)χ
(k1...kd)
(n1...nα−1...nβ+1...nd) + Lγν (k−1)

(n+1)χ
(k1...kν−1...kd)
(n1...nγ+1...nd)

]
= 0 ,

(C.7)

which relates k-order response coefficients of n-order cumulants with (k −
1)-order coefficients of (n + 1)-order cumulants. Relations (C.6)-(C.7) for
the response coefficients result from the IFR in the limit of infinitesimal
rotations. For a finite rotation R = −I, which is equivalent to a current
inversion, we have µ(λ) = µ(−λ− 2ε) and we may use this in the definition
of response coefficients,

(k)
(n)χ

(k1...kd)
(n1...nd) ≡ k!

[
∂n+kµ(λ)

∂λn1
1 ...λndd ∂εk1

1 ...ε
kd
d

]
λ=0=ε

, (C.8)

see Eq. (C.5), to obtain a complementary relation for the response coeffi-
cients

(k)
(n)χ

(k1...kd)
(n1...nd) = k!

k1∑
p1=0

...

kd∑
pd=0

(−1)n+p2p

(k − p)!
(k−p)
(n+p)χ

(k1−p1...kd−pd)
(n1+p1...nd+pd) , (C.9)
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where p =
∑
i pi. A similar equation was derived in [90] from the standard

fluctuation theorem, although the IFR adds further relations. All together,
eqs. (C.6)-(C.9) imply deep relations between the response coefficients at
arbitrary orders which go far beyond Onsager’s reciprocity relations and
Green-Kubo formalism. As an example, the cumulant hierarchy in two di-
mensions implies the following relations

〈Jx〉ε = τL2
[
εx〈∆J2

y 〉ε − εy〈∆Jx∆Jy〉ε
]

(C.10)

〈Jy〉ε = τL2
[
εy〈∆J2

x〉ε − εx〈∆Jx∆Jy〉ε
]

2〈∆Jx∆Jy〉ε = τL2
[
εy〈∆J3

x〉ε − εx〈∆J2
x∆Jy〉ε

]
(C.11)

= τL2
[
εx〈∆J3

y 〉ε − εy〈∆Jx∆J2
y 〉ε
]

〈∆J2
x〉ε − 〈∆J2

y 〉ε = τL2
[
εx〈∆Jx∆J2

y 〉ε − εy〈∆J2
x∆Jy〉ε

]
,

for the first cumulants, with ∆Jα ≡ Jα − 〈Jα〉ε. It is worth stressing that
the cumulant hierarchy is valid arbitrarily far from equilibrium.

In a similar way, the IFR implies a set of hierarchies for the nonlinear
response coefficients, see eqs. (C.6)-(C.9) above. In our two-dimensional

example, let
(k)
(n)χ

(kx,ky)

(nx,ny) be the response coefficient of the n = nx + ny order

cumulant 〈∆Jnxx ∆J
ny
y 〉ε to order εkxx ε

ky
y , with n = nx + ny and k = kx + ky.

To the lowest order these hierarchies imply Onsager’s reciprocity symmetries
and Green-Kubo relations for the linear response coefficients of the current.

They further predict that in fact the linear response matrix is propor-
tional to the identity, so in our two-dimensional example

(1)
(1)χ

(1,0)
(1,0) =

(1)
(1)χ

(0,1)
(0,1) =

(0)
(2)χ

(0,0)
(2,0) =

(0)
(2)χ

(0,0)
(0,2),

while
(1)
(1)χ

(0,1)
(1,0) = 0 =

(1)
(1)χ

(1,0)
(0,1).

The first nonlinear coefficients of the current can be simply written in terms
of the linear coefficients of the second cumulants as

(2)
(1)χ

(2,0)
(1,0) = 2

(1)
(2)χ

(1,0)
(2,0) and

(2)
(1)χ

(0,2)
(1,0) = −2

(1)
(2)χ

(1,0)
(1,1),

while the cross-coefficient reads

(2)
(1)χ

(1,1)
(1,0) = 2

[
(1)
(2)χ

(0,1)
(2,0) +

(1)
(2)χ

(0,1)
(1,1)

]
(symmetric results hold for nx = 0, ny = 1). Linear response coefficients for
the second-order cumulants also obey simple relations, e.g.

(1)
(2)χ

(1,0)
(1,1) = −(1)

(2)χ
(0,1)
(1,1) and

(1)
(2)χ

(1,0)
(2,0) +

(1)
(2)χ

(0,1)
(2,0) =

(1)
(2)χ

(1,0)
(0,2) +

(1)
(2)χ

(0,1)
(0,2),

and the set of relations continues to arbitrary high orders. In this way hier-
archies (C.6)-(C.9), which derive from micro-reversibility as reflected in the
IFR, provide deep insights into nonlinear response theory for non-equilibrium
systems [90].
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C.2 Generalized IFR

The IFR and the above hierarchies all follow from the invariance of optimal
profiles under certain transformations. This idea can be further exploited in
more general settings. In fact, by writing explicitly the dependence on the
external field E in Eq. (5.4) for the optimal profile, one realizes that if

δ

δρ(r′)

∫
Λ

Q[ρ(r)]dr = 0, (C.12)

together with the time-reversibility condition, Eq. (5.6), the resulting op-
timal profiles are invariant under independent rotations of the current and
the external field. It thus follows that the current LDFs for pairs (J,E) and
(J′ = RJ,E∗ = SE), with R, S independent rotations, obey a generalized
isometric fluctuation relation

GE(J)−GE∗(J
′) = ε · (J− J′)− ν · (E−E∗) + J ·E− J′ ·E∗ , (C.13)

where we write explicitly the dependence of the current LDF on the external
field. The vector ν ≡

∫
Λ

Q[ρ(r)]dr is now another constant of motion,
independent of ρ(r), which can be easily computed (see Sec. C.3). For a
fixed boundary gradient, the above equation relates any current fluctuation
J in the presence of an external field E with any other isometric current
fluctuation J′ in the presence of an arbitrarily-rotated external field E∗, and
reduces to the standard IFR for E = E∗. Condition δ

δρ(r′)

∫
Λ

Q[ρ(r)]dr = 0

is rather general, as most time-reversible systems with a local mobility σ[ρ]
do fulfill this condition (e.g., diffusive systems).

The IFR can be further generalized. Let us remember the hypothesis
used in the derivation of the IFR:

• (i) The optimal profiles associated to a given current fluctuation are
time-independent

• (ii) The optimal current field has no spatial structure.

Relaxing hypothesis (ii) we can generalize the IFR to cases where the current
profile is not constant. Let Pτ [J (r)] be the probability of observing a time-
averaged current field J (r) = τ−1

∫ τ
0
dt j(r, t). Notice that this vector field

must be divergence-free because it is coupled via the continuity equation
to an optimal density profile which is assumed to be time-independent, see
hypothesis (i). This probability also obeys a large deviation principle,

Pτ [J (r)] ∼ exp
(
+τLdG[J (r)]

)
, (C.14)

with a current LDF equivalent to that in Eq. (5.3) but with a space-
dependent current field J (r). The optimal density profile ρ0[r;J (r)] is
now solution of

δ

δρ(r′)

∫
Λ

dr
(
W2[ρ(r)]− 2J (r) ·W1[ρ(r)] + J 2(r)W0[ρ(r)]

)
= 0 , (C.15)

which is the equivalent to Eq. (5.4) in this case. For time-reversible systems
condition (5.8) holds and ρ0[r;J (r)] remains invariant under (local or global)
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rotations of J (r). In this way we can simply relate Pτ [J (r)] with the
probability of any other divergence-free current field J ′(r) locally-isometric
to J (r), i.e. J ′(r)2 = J (r)2 ∀r, via a generalized isometric fluctuation
relation,

lim
τ→∞

1

τ
ln

[
Pτ [J (r)]

Pτ [J ′(r)]

]
=

∫
∂Λ

dΓ
δH[ρ]

δρ
n̂ · [J ′(r)−J (r)] , (C.16)

where the integral (whose result is independent of ρ(r)) is taken over the
boundary ∂Λ of the domain Λ where the system is defined, and n̂ is the
unit vector normal to the boundary at each point. Notice that in general an
arbitrary local or global rotation of a divergence-free vector field does not
conserve the zero-divergence property, so this constraints the current fields
and/or local rotations for which this generalized IFR applies. Note that the
probability of observing a time averaged integrated current, Pτ (J), is given
by

Pτ (J) =

∫
DJPτ [J (r)]δ

(
J−

∫
Λ

drJ (r)

)
. (C.17)

Hence, taking into account the above equation and that for long times Eq.
(C.14) holds and Pτ (J) ∼ exp

(
+τLdG(J)

)
, we can relate the large deviation

function for the space- and time-averaged current, G(J), to G[J (r)] via a
contraction principle

G(J) = max
J (r):∇·J (r)=0

J=
∫
Λ drJ (r)

G[J (r)] . (C.18)

The optimal, divergence-free current field J 0(r; J) solution of this varia-
tional problem may have spatial structure in general. Eq. (C.16) generalizes
the IFR to situations where hypothesis (ii) is violated, opening the door
to isometries based on local (in addition to global) rotations. However, nu-
merical results and phenomenological arguments strongly suggest that the
constant solution, J 0(r; J) = J, is the optimizer at least for a wide interval
of current fluctuations, showing that hypothesis (ii) is not only plausible but
also well justified on physical grounds. In any case, the range of validity of
this hypothesis can be explored by studying the limit of local stability of the
constant current solution using tools similar to those in Ref.[77].

C.3 Constants of motion

A sufficient condition for the IFR to hold is that

δω1[ρ(r)]

δρ(r′)
= 0 , (C.19)

with the functional ω1[ρ(r)] defined in Eq. (5.5) of chapter 5. We have shown
that condition (C.19) follows from the time-reversibility of the dynamics, in
the sense that the evolution operator in the Fokker-Planck formulation of
Eq. (5.1) obeys a local detailed balance condition, see Eq. (5.8). Condition
(C.19) implies that ω1[ρ(r)] is in fact a constant of motion, ε, independent of
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the profile ρ(r). Therefore we can use an arbitrary profile ρ(r), compatible
with boundary conditions, to compute ε. We now choose boundary condi-
tions to be gradient-like in the x̂-direction, with densities ρL and ρR at the
left and right reservoirs, respectively, and periodic boundary conditions in
all other directions. Given these boundaries, we now select a linear profile

ρ(r) = ρL + (ρR − ρL)x , (C.20)

to compute ε, with x ∈ [0, 1], and assume very general forms for the current
and mobility functional

Q[ρ(r)] ≡ D0,0[ρ]∇ρ+
∑
n,m>0

Dnm[ρ](∇mρ)2n∇ρ ,

σ[ρ(r)] ≡ σ0,0[ρ] +
∑
n,m>0

σnm[ρ](∇mρ)2n ,

where as a convention we denote as F [ρ] a generic functional of the profile
but not of its derivatives. It is now easy to show that ε = εx̂+ E, with

ε =

∫ ρR

ρL

dρ
D0,0(ρ) +

∑
n>0Dn1(ρ)(ρR − ρL)2n

σ0,0(ρ) +
∑
m>0 σm1(ρ)(ρR − ρL)2m

, (C.21)

and x̂ the unit vector along the gradient direction. In a similar way, if the
following condition holds

δ

δρ(r′)

∫
Λ

Q[ρ(r)]dr = 0 , (C.22)

together with time-reversibility, Eq. (C.19), the system can be shown to obey
an extended isometric fluctuation relation which links any current fluctuation
J in the presence of an external field E with any other isometric current
fluctuation J′ in the presence of an arbitrarily-rotated external field E∗,
and reduces to the standard IFR for E = E∗, see Eq. (11) in the chapter.
Condition (C.22) implies that ν ≡

∫
Q[ρ(r)]dr is another constant of motion,

which can be now written as ν = νx̂, with

ν =

∫ ρR

ρL

dρ

[
D0,0(ρ) +

∑
n>0

Dn1(ρ)(ρR − ρL)2n

]
, (C.23)

As an example, for a diffusive system Q[ρ(r)] = −D[ρ]∇ρ(r), with D[ρ] the
diffusivity functional, and the above equations yield the familiar results

ε =

∫ ρL

ρR

D(ρ)

σ(ρ)
dρ ,

ν =

∫ ρL

ρR

D(ρ)dρ ,

for a standard local mobility σ[ρ].



Appendix D

List of Publications

D.1 Publications

D1 Hurtado, Pablo I., Carlos P. Espigares, Jess J. del Pozo, and Pedro
L. Garrido. ”Thermodynamics of currents in nonequilibrium diffusive
systems: theory and simulation.” Journal of Statistical Physics (2013):
1-51.

D2 Hurtado, Pablo I., Carlos Prez-Espigares, Jess J. del Pozo, and Pe-
dro L. Garrido. ”Symmetries in fluctuations far from equilibrium.”
Proceedings of the National Academy of Sciences 108, no. 19 (2011):
7704-7709.

D.2 Preprints

• del Pozo, J. J., P. L. Garrido, and P. I. Hurtado. ”Universal scaling
laws and bulk-boundary decoupling in fluids out of equilibrium.” arXiv
preprint arXiv:1401.5244 (2014).

D.3 Contribution to Conference Proceedings
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