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1 Abstract

Two analytical models for square Gate All Around (GAA) MOSFETs has been intro-
duced. The first part of this report include a quantum viewpoint and this first work
has been published [1], while the second part approach a classical developed.
With the model developed in the first part, it is possible to provide an analytical descrip-
tion of the 2D inversion charge distribution function (ICDF) in square GAA MOSFETs
of different sizes and for all the operational regimes. The accuracy of the model is ver-
ified by comparing the data with that obtained by means of a 2D numerical simulator
that self-consistently solves the Poisson and Schrödinger equations. The expressions
presented here are useful to achieve a good description of the physics of these transis-
tors; in particular, of the quantization effects on the inversion charge. The analytical
ICDF obtained is used to calculate important parameters from the device compact
modeling viewpoint, such as the inversion charge centroid and the gate-to-channel ca-
pacitance, which are modeled for different device geometries and biases. The model
presented accurately reproduces the simulation results for the devices under study and
for different operational regimes.
Anyway the second part of this report is focus on square GAA MOSFETs with a classical
view point, which have not been analytically described in depth due to their particu-
lar geometrical complexity. The analytical description of cylindrical GAA MOSFETs
is simpler since the symmetry of the structure around the rotation angle allows a 1D
description, accounting just for the radial component [2–5]. In the case of square GAA
MOSFETs other modeling strategies are necessary, as will be shown below.
Firstly, a technique to obtain analytical functions which are solutions of the 2D Pois-
son equation where the charge density in the silicon channel has been calculated, and
the total inversion charge is introduced. Among all these functions a simple one for
the electric potential in the silicon core of the square GAA MOSFETs was proposed.
Secondly, the model introduced has been used to calculate the total inversion charge
making use of Gauss’s Law. The models obtained are finally validated with simulations
data obtained with a 2D simulator developed in our group for Multiple-gate MOSFETs.
This second part is organized as follows: in section 7 the electric potential modeling is
introduced. The calculation and modeling of the inversion charge is presented in section
8. Finally, the main conclusions are given in section 9.

2 Introduction

M
ultiple-gate MOSFETs are considered a serious alternative for keeping up with the con-
tinuous reduction in device dimensions imposed by Moore’s law. These structures show
promising possibilities in relation to the control of short channel effects (SCEs) and the

achievement of ideal subthreshold swing values [6–8].
Both square and cylindrical GAA MOSFETs are currently under intense study from the simulation
and modeling viewpoint [?,2–5,8,9,11–13]. One key area in these structures is the study of quantum
mechanical effects (QMEs), since both structural and electrical confinement (produced by a square
gate in the quadruple-gate device and by a circular gate in the cylindrical one) make these devices
(nanowires FETs) quasi-1D transistors, where transport occurs in a set of loosely coupled propagat-
ing modes.
Making use of technologies based on these new geometries, channel lengths could be shrunk to below
22nm accordingly to the latest edition of ITRS [6]. In this respect, their capacity to reduce SCEs and
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the possibility of using undoped channels are essential features for the achievement of this goal. The
latter, in particular, is critical since random impurity effects are by no means negligible in nanometric
devices [14,15]. These effects produce a dispersion of fundamental parameters such as the threshold
voltage and the sub-threshold slope [14–17].
GAA MOSFETs are part of the Silicon-On-Insulator (SOI) transistor family, which demonstrates
unique features that look promising for future mainstream CMOS technologies [16, 17]. The use of
ultra-thin-body (UTB) SOI structures allows the fabrication of fully-depleted devices that offer not
only extremely good control of SCEs but also a very good behaviour with respect to drain-induced
barrier-height lowering (DIBL), threshold voltage roll-off, and off-state leakage [16,17].
In first part of this work the study is focus on square GAA MOSFETs with a cuantum viewpoint. To
the best of our knowledge, these devices have not previously been analytically described in any depth
due to their particular geometrical complexities. The concentration of inversion charge close to the
corners of the silicon body makes a bi-dimensional description of the inversion charge distribution
and other important magnitudes imperative from the compact modeling viewpoint. The analytical
description of cylindrical GAA MOSFETs is simpler since the symmetry of the structure around the
rotation angle allows a 1D description, accounting for just the radial component [2–5]. In the case
of square GAA MOSFETs, other modeling strategies are necessary.
First, an analytical function f(y, z) that accurately reproduces the inversion charge distribution
function (ICDF) for square GAA MOSFETs of different sizes and for different biases have been
introduced. The ICDF is related to the inversion charge density as n(y, z) = Ninv | f(y, z) |2, Ninv

(cm−1) being the value of the total electron density integrated over the square area of the silicon
channel. Second, The inversion charge centroid (ICC) and the gate-to-channel capacitance (CGC),
making use of the proposed analytical ICDF have been successfully modeled. The geometry of these
devices makes the definition and modeling of the ICC a tough issue. To deal with this, I have pre-
sented a definition that correctly characterises the spatial distribution of the inversion charge in the
silicon channel.

In second part of this report, a technique to obtain analytical functions to model the electric potential
will be introduced. These functions are solutions of the 2D Poisson equation where the charge density
in the silicon channel includes the inversion charge. In this respect, the approach I’m following is
much accurated than others presented previously that do not take the inversion charge into account
for the calculation of the charge density (these calculations were thought to analyze the potential
distribution for threshold voltage modeling purposes, at the onset of the inversion operation region,
where the inversion charge can be neglected reasonably). The inclusion of the inversion charge in
my calculations make feasible the modeling of the most important operation regions (from the sub-
threshold regime to strong inversion). Several functions to model the electric potential of a square
GAA MOSFETs were proposed. The use of these functions is faced with the usual compact modeling
trade-off: complexity versus accuracy. In this respect I will discuss the pros and cons of the functions
I make use of. I will also calculate the inversion charge (by means of Gauss’ Law) and compare the
results with simulation data obtained with a 2D simulator developed in my group for Multiple-gate
MOSFETs.
Inversion charge modeling is the starting point for drain current and capacitance models necessary
for the development of a compact models for circuit simulation purposes. The accurate geometrical
description of the charge is also a very interesting feature for mobility modeling, since coulomb and
surface roughness scattering mechanisms strongly depend on the interaction of the inversion charge
with semicoductor-oxide interfaces.
The second part of the report is organized as follows: in section 7 the electric potential modeling is
introduced, and the calculation and modeling of the inversion charge as well as some discussions is
presented in section 8. Finally, the main conclusions are given in section 9.
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3 Simulator description

The simulation data presented in this work have been obtained by using a simulator developed within
the research group of department of electronics and computers technology of Granada University
[9, 11]. The geometry and cross-section of the GAA MOSFET studied is shown in figure 1, where
tins and tSi are the insulator thickness and the silicon body thickness, respectively. It can be seen
that the gate completely surrounds the square silicon channel where conduction takes place. To
reach a fast convergence, the 2D Poisson and Schrödinger equations, the latter solved for each energy
valley, have been self-consistently solved using the predictor-corrector scheme proposed by Trellakis
et al. [18] including the energy valley degeneration of the silicon conduction band. The simulator
achieves accurate results for different structures, materials and gate voltages if the number of energy
levels and their corresponding wave functions employed in the calculation is high enough to capture
all the occupied levels.

tins

y
x

y

z

z

Figure 1: Cross-section and 3D geometry of the square GAA MOSFETs under study.

The geometry of the device shown in figure 1 confines the electrons in the plane perpendicular to
the transport direction, which means that I am dealing with a 1D electron gas. The quantum charge
density is therefore obtained by evaluating the following expression [9, 18]:

ρ(y, z) =
q

π

(
2mkBT

~2

) 1
2 ∑

n

Ψ2
n(y, z)=− 1

2

(
EF − En

kBT

) [
C

cm3

]
(1)

where q is the electron charge, EF is the Fermi level, Ψn is the wave function belonging to energy
level En, =−1/2 the complete Fermi-Dirac integral of order -1/2 and the remaining symbols have their
usual meaning.

The simulator uses finite elements for the discretization of the equations. More details of the code
can be found in the following references [3,9,19]. In all the simulated devices, an undoped substrate
(NA = 1014 cm−3), a metal gate with a work-function of 4.61eV and an insulator thickness of 1.5 nm
have been considered. The tSi values considered in my work were 10, 15 and 20 nm.
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Part I

An analytical model for square GAA
MOSFETs including quantum effects

4 Inversion charge modeling

In this section an analytical model to describe the ICDF of square GAA MOSFETs is proposed.
As starting point, the approach followed by Ge et al. for the symmetrical Double Gate MOSFETs
(DGMOSFETs) [20] was used. Thus, I tried to obtain a 2D analytical model for the ICDF by
generalising the 1D eigenfunctions proposed there (equation (4) in Reference [20]). I adapted the
quantum mechanical variational calculation employed in [20] for the square geometry corresponding
to the GAA MOSFETs considered in this report, in this way linking the analytical expression of the
eigenfunctions to the inversion charge for each gate voltage and device size.

The model obtained with this procedure was compared with the simulation results but it did
not fit well for certain gate voltage values and device sizes. The main explanation for this behavior
could be the following: the boundary conditions chosen for the electric potential calculation were of
Dirichlet kind, using a constant potential value at the semiconductor-insulator interfaces, following
the approach presented in [20]. This approximation was good for DGMOSFETs devices because of
the one-dimensionality of the structure; however, for a 2D square GAA MOSFETs this is not the
case outside the flat band operation regime [9]. More complex boundary conditions would render
more realistic results although they would increase the complexity of the analytical models. This
extra complexity would make the approach useless from the compact modeling point of view.

Thus, in order to obtain a model analytically simple and accurate enough to reproduce the
simulation results for different gates voltages and device sizes, I had to use a different approach. I
proceeded to do so by using several trial functions. I found the best results were achieved by making
use of the following inversion charge distribution function:

f(y, z) = A′
[
sin

(
πy

tSi

)] 1
2
[
sin

(
πz

tSi

)] 1
2
(

e
−b(tSi−y)

tSi + e
−by
tSi

)(
e

−b(tSi−z)

tSi + e
−bz
tSi

)
(2)

where the normalization of (2) leads to:

A′ =

(
1 + b

π

)2
eb

tSi

(
b+ b2

π2 + eb

2b

) (3)

In this way, the electron density can be obtained as n(y, z) = Ninv | f(y, z) |2. A heuristic
algorithm was developed to determine the value of the b coefficients (i.e., to obtain the dependencies
of the b coefficients on the inversion charge and the device size b(Ninv, tSi)). To do this, I calculated and
minimized the root mean square error (RMSE) of the simulated and modeled data for the inversion
charge distribution function for all the grid nodes used in my calculations. The b coefficients obtained
are given in figure 2 (shown as NA, numerical algorithm). I also developed an empirical analytical
expression (4) to reproduce these b coefficients for compact modelling purposes (plotted as FF, fitting
function, in figure 2). As shown, a good fit is achieved.

b = v(tSi) + g(tSi) (Ninv)h(tSi) (4)

where:
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v(tSi) = −1.388 · 1012t2Si + 5.481 · 106tSi − 3.248

g(tSi) = 2.053 · 109t2Si − 7418.12tSi + 0.0069

h(tSi) = −9.353 · 1010t2Si + 376995.66tSi + 0.1696
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b

NI [cm-1]

 N. A. tSi=10nm
 F.F. tSi=10nm
 N.A. tSi=15nm
 F.F. tSi=15nm
 N.A. tSi=20nm
 F.F. tSi=20nm

Figure 2: b coefficients versus inversion charge for different square GAA MOSFETs (tSi =10 nm, tSi =15
nm,tSi =20 nm). The b coefficients correspond to the model proposed in (2). Numerical Algorithm (NA)
and fitting fuction (FF) results are shown.

As can be seen in figures 3, 4 and 5, the new model, despite its relative simplicity, reproduces the
simulation data reasonably well. The three dimensional comparison of the simulated and modelled
ICDF (the latter obtained with (2)) shows a good fit in figure 3. I also analysed the accuracy of the
model in depth by plotting different ICDF cross sections for several device sizes and gate voltages.
In figure 4, the tSi=10nm device has been chosen and some cross sections of the ICDF are depicted
along the y axis for several z values, both in weak and strong inversion. In figure 5, ICDF cross
sections are plotted along the y axis for several gate voltages and different device sizes. To obtain the
most representative ICDF values (maxima and minima), the selected z positions generally depended
on the device size. The fit is good for all the gate voltages considered, as shown in figures 4 and 5.
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Figure 3: Three-dimensional view of the inversion charge distribution function for a square GAA MOSFET.
The technological parameters used were the following: tSi = 10 nm, tins = 1.5 nm, NA = 1014 cm−3,
qφm=4.61 eV. The modelled (simulated) data are represented by the surface with solid (dashed) borders.
a) VG=0.1V
b) VG=1.1V
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Figure 4: Inversion charge distribution function cross sections along the y axis for several z values for a
square GAA MOSFET with tSi = 10nm. a) VG=0.4V, b) VG=1.1V
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Figure 5: Inversion charge distribution function cross sections along the y axis for several gate voltages for
square GAA MOSFETs.
a) z = tSi

1.5 and tSi = 15nm.
b) z = tSi

1.3 and tSi = 20nm.
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In the following sections, I will use equation (2) to approximate the square GAA MOSFET ICDF
in order to deal with the ICC and the CGC modelling. As will be shown, the use of more complex
models (e. g., a linear combination of eigenfunctions) for the ICDF would make the calculation of
the ICC extremely time-consuming.

5 Inversion charge centroid calculation

The ICC in conventional bulk MOSFETs is defined as the first momentum of the inversion charge
distribution (the semiconductor-insulator interface is chosen as the origin for this calculation) [?,
21, 22]. This parameter is essential in modelling current MOSFETs since when compared to the
physical gate insulator thickness, it represents the influence of quantum mechanical effects (QMEs)
on the inversion charge spatial distribution. The 1D definition of the ICC is intuitive, as reported
in [?,21,22], and its modelling was carried out in bulk, double-gate and surrounding gate MOSFETs
[?, 3, 21, 22] (note that cylindrical 2D devices can be analysed as 1D by means of an appropriate
choice of coordinate system [3]). However, the definition of a useful ICC for square GAA MOSFETs
is not simple. Some attempts towards this definition have been made previously [24,25]. Here, I have
followed [25] and dealt with this issue by defining an ideal square (depicted in dashed lines in figure
6) with its sides parallel to the semiconductor-insulator interfaces. The sides of the square represent
the zones where, on average, most of the inversion charge is placed for a particular gate voltage.

|f(y,z)|2

y

z

<R> <R
>

R(p/4)

R(q)Cos(q)

R(q)

q

D
I

D I

Figure 6: Representation of the R(θ) and 〈R〉 parameters needed for the inversion charge centroid definition
of square GAA MOSFETs.
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To determine the square that best represents the ICDF, its first momentum R(θ) has been calcu-
lated (here, θ is the angular coordinate of the polar coordinate system with its origin located at the
centre of the square silicon body, see figure 6). The mathematical expression for the R(θ) calculation
is the following:

R(θ) =

∫ tSi
2 cos(θ)

0 r n(r cos(θ), r sin(θ))dr∫ tSi
2 cos(θ)

0 n(r cos(θ), r sin(θ))dr

(5)

where tSi
2 cos(θ)

is the distance from the centre of the silicon core to the semiconductor-insulator interface

for each θ value (note that due to the device symmetry, only 0 ≤ θ ≤ π
4

has to be considered in the
calculation of R(θ)).

Figure 6 shows R(θ) in solid lines for a square GAA MOSFET. I calculated R(θ) making use of the
ICDF model introduced in the previous section (n(r, θ) = Ninv |f(r cos(θ), r sin(θ))|2) and compared
it with the results achieved using simulated data for all the GAA MOSFETs sizes and gate voltages
considered in this part of the work (see figure 7). I tried to establish how accurately my ICDF model
reproduced the R(θ) data obtained with simulated data. To do this, I defined an error function,
Err(θ), as the relative difference between the R(θ) values obtained with the simulator and with the
model:

Err(θ) =
∆R(θ)

Rmax

× 100(%) =
|RAnalytical(θ)−RSimulator(θ)|

tSi
2 cos(θ)

× 100(%) (6)

For each applied gate voltage, I calculated the maximum Err(θ) by solving dErr(θ)
dθ

∣∣∣
θ=θmax

= 0, and

then selected the highest value achieved for each device size. The results are summarized in table 1.
As can be seen, the model also works well (in relation to the calculation of R(θ)) for all the devices
under study and for the whole bias voltage range considered.

Table 1: Maximum value of the Err(θ) function for the GAA MOSFETs studied.

tSi 10nm 15nm 20nm
EMAX
rr 1.6% 3.5% 4.6%

To calculate the size of the ideal square that models the inversion charge position (see figure 6),
the geometric average of the R(θ) projection at the Y axis was estimated as:

〈R〉 = RI =

(
N∏
k=0

[
R

(
kπ

4N

)
cos

(
kπ

4N

)]) 1
N+1

(7)

Finally, the average inversion charge centroid, ∆I , was calculated as is usual in 1D MOSFETs, i.
e., by considering the origin to be at the semiconductor-insulator interface. This definition (see the
equation below), which makes use of RI, allows the inclusion of QMEs in the gate capacitance model
as will be shown in the next section.

∆I =
tSi

2
−RI (8)

The ∆I data are plotted in figure 8. It can be seen that the ICC values obtained with the
simulation results correctly reproduce those calculated using the ICDF model (2).
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Figure 7: R(θ) polar plots for square GAA MOSFETs. The inversion charge centroid is calculated with
modelled and simulated data for several VG voltages.
a) tSi = 10nm.
b) tSi = 15nm.
c) tSi = 20nm.
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6 Gate-to-channel capacitance modelling

The gate-to-channel capacitance, CGC, is an essential MOSFET parameter since it determines the
transconductance of the transistor [4, 7]. In 1D devices, CGC can be calculated as the series combi-
nation of the gate insulator capacitance Cins and the channel capacitance Cch [26–28]:

CGC =

(
1

Cins

+
1

Cch

)−1

(9)

However, in the case of square GAA MOSFETs, several approximations are needed to achieve
my goal of developing a simple analytical expression for CGC. First, the semiconductor-insulator
interface is not isopotential, making equation (9) an approximate expression [9, 19, 25]. Moreover,
there are no closed analytical expressions either for Cins or for Cch. For the insulator capacitance
term, an empirical expression previously obtained by curve-fitting was used [29]:

Cins =
5εins

ln
(

1 + 5tins
4tSi

) (10)

It can be seen that for low values of the tins/tSi ratio (within the limit tSi >> tins), the Cins value
of a conventional bulk MOSFET is obtained, as should be the case.

Regarding the channel capacitance, an approximate expression can be achieved, using the expres-
sion corresponding to DG MOSFETs, which can be calculated as:

C−1
ch =

dφs

dQinv

=
d (φs − φc)

dQinv

+
dφc

dQinv

(11)

φs and φc being the electrostatic potential at the surface and the centre of the silicon body,
respectively, and Qinv the inversion charge per unit length (Qinv = qNinv). The former equation can
be rewritten as [30]:

C−1
ch =

xi

WεSi

+
Qinv

WεSi

dxi

dQinv

+
dφc

dQinv

=
1

Cinv

+
1

Cc

(12)

where xi is the charge centroid position, defined in [22], and W is the transistor width (necessary to
calculate the capacitance per unit length).

In order to model the gate capacitance of square GAA MOSFETs, a term equivalent to each of
(12) is needed. First, a model of the electric potential within the silicon body is needed to calculate
Cc. Due to the lack of symmetry of this kind of device, an alternative option is to make use of the
similarities found between the potential behaviour in cylindrical and square GAA devices [31]. An
example of these similarities is found in figure 9, where dφc/dQinv is compared for cylindrical and
square GAA MOSFETs. As can be seen, the results for the two devices are found to be almost
identical. Analytical models for the electrostatic potential of cylindrical GAA devices are available
in the literature [?, 32, 33], and here I have modelled the potential at the centre of a square GAA
MOSFET making use of the expression proposed in [?]. Thus, the Cc term can be calculated as:

Cc =
Q0kBT

qQinv (Q0 +Qinv)
(13)

where Q0 = (kBT/q)8πεSi and the remaining parameters keep their usual meaning.
To calculate the inversion capacitance term in (12), Cinv, the DG centroid definition was first

replaced by the one introduced in this work for the square GAA device. Then, the planar capacitance
formula WεSi/xi was replaced by its square quadruple-gate counterpart (found from (10) where tins

and tSi are replaced by ∆I and tSi − 2∆I, respectively). Finally a fitting parameter F replaced the
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channel width W in the second part of the Cinv term, to appropriately take into account the 2D
confinement effect. The resulting expression for square GAA MOSFETs Cinv is:

C−1
inv =

 5εSi

ln
(

1 + 5
8

∆I

RI

)
−1

+
Qi

FεSi

d∆I

dQinv

(14)

For the sake of compactness, an empirical expression to obtain the values needed for the F
parameter as a function of tSi (here, both tSi and F are given in centimetres) have been developed:

F = 2.9 · 10−6(cm)− 4.45tSi + 2.9 · 106(cm−1)t2Si (15)

Figure 10 shows the overall gate capacitance obtained from the simulation of a square GAA
MOSFET with tSi = 10nm, and each one of its components (i.e., Cins, Cinv and Cc), calculated used
the models developed. As can be seen, the Cc term controls the behaviour of the device in the weak
inversion regime, while Cinv is responsible for the gate capacitance degradation with respect to the
ideal limit value Cins. A very good agreement between the model and the simulated data is achieved.

 I

Figure 8: Average inversion charge centroid versus inversion charge for square GAA MOSFETs of different
sizes.

I have compared the simulated gate-to-channel capacitance values with those obtained with (9)
for various device sizes and the results are plotted in figure 11. As can be seen, quite a good
fit is achieved in both the weak and strong inversion regimes. It should be highlighted that the
different capacitances obtained with (9), plotted in symbols, were calculated through a fully analytical
approach, which involved the calculation, using (2), of the ICDF for each device size and gate voltage,
and the subsequent estimation of ∆I making use of (8). Therefore, the model introduced in this work
reproduces reasonably well the simulation data obtained for the inversion charge distribution, the
charge centroid and the gate-to-channel capacitance for different device sizes and bias voltages.
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Figure 10: Decomposition of CGC versus VG for a GAA MOSFET with tSi = 10nm into its three components:
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tSi=20nm are included. The simulated (modelled) data for the capacitance are shown in solid lines (symbols).
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Part II

An analytical model of the potential and
charge in square GAA MOSFETs

7 Electric potential modeling

The electric potential in the silicon channel of the device shown in figure 1 has been obtained by
solving Poisson’s equation making use of the coordinate system sketched in the figure. I have only
accounted for electron charge in my calculations (holes are neglected considering that qψ

kT
> 1 as well

as the depletion charge because of the use of an undoped or lightly doped silicon core, it is supposed
that NA, ND << n). For the calculation of electric potential Poisson’s equation holds.

∂2ψ(x, y)

∂x2
+
∂2ψ(x, y)

∂y2
=
−ρ(x, y)

εSi
=
qn(x, y)

εSi
=

q

εSi
nie

qψ(x,y)
KT (16)

where q is the electronic charge, εSi is the silicon permittivity, K is Boltzmann’s constant, T stands
for the temperature and ni for intrinsic electron density. Poisson’s equation solutions can be built
by using equation 17 (see the Appendix A).

ψ(x, y) =
1

β
Ln

(
8φ′(z)φ′∗(z)

αβ (1− φ(z)φ∗(z))2

)
(17)

It is important to highlight that the complex function φ(z), can be described as φ(z) = u(x, y) +
iu(x, y); therefore, the electric potential can be written as ψ(x, y). In order to determine completely
the expression of the electric potential I considered the boundary conditions along the perimeter of
the silicon channel, at the silicon-insulator interface. These boundary conditions can be expressed
as follows:

~∇ψ · r̂i
⌋
Pi,Boundary

= Ω
VG −∆φMS − ψ(Pi,Boundary)

tOx
cosθ

(18)

where r̂i are unitary vectors with their initial point at the center of the silicon channel and their direc-

tion sweeping different points, Pi,Boundary, at the insulator-semiconductor interface, θ = arctg
(
|riy |
|rix|

)
,

Ω = εOx
εSi

is the ratio between the silicon and oxide permittivities, ∆φMS is the difference between
the metal and semiconductor work-functions, VG is the gate voltage and ψ(Pi,Boundary) is the value
of electric potential at Pi,Boundary. The evaluation of Equation 18 at two representative points of the
silicon-insulator interface (placed in the middle of the silicon channel side PHalf−Side =

(
tSi
2
, 0
)

and
at the corner PCorner =

(
tSi
2
, tSi

2

)
).

~∇ψ · î
⌋
PHalf−Side

= Ω
VG −∆φMS − ψ(PHalf−Side)

tOx
(19)

~∇ψ ·

(
î√
2

+
ĵ√
2

)⌋
PCorner

= Ω
VG −∆φMS − ψ(PCorner)√

2tOx
(20)
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Several holomorphic functions, φ(z) = u(x, y) + iu(x, y), in equation 17 to generate different analytic
expressions for the electric potential, ψ(x, y), can be used. One of the simplest could be φ1(z) = mz,
where m ∈ R and z ∈ C.
By rewriting the previous holomorphic function as φ1(z) = mz = u1(x, y)+ ıv1(x, y) we can conclude

that u1(x, y) = mx and v1(x, y) = my. Hence, φ′1(z)φ′∗1 (z) =
(
∂u1
∂x

)2
+
(
∂v1
∂x

)2
= m2 and φ1(z)φ∗1(z) =

u2
1 + v2

1 = m2(x2 + y2) are obtained. Puting all these results together in equation 17 an analytical
solution for the electric potential is obtained:

ψ1(x, y) =
1

β
Ln

(
8m2

αβ(1−m2(x2 + y2))2

)
(21)

ψ1(x, y) fulfils equation 16. This function, ψ1(x, y), was compared with an analytical expression
proposed previously (it is given below) as the electric potential for a cylindrical Surrounding Gate
Transistors (SGTs) (see reference [2]).

ψ(r) =
KT

q
Ln

(
−8B

δ(1 +Br2)

)
(22)

After changing the Cartesian coordinate system to a cylindrical coordinate system (x2+y2 = r2), and
transforming a few constants (B = −m2, δ = αβ and β = q

KT
) it is easy to conclude that equations

21 and 22 are just the same expression. The electric potential shown in 22 worked well in developing
an inversion charge model for cylindrical SGTs as explained in reference [2]. Nevertheless, as it will
be shown below, the square GAA MOSFET inversion charge model based on ψ1(x, y) works well
only in the subthreshold operation region.
The boundary conditions sketched above can be simplified in this case. So, making use of equation
20 the following equation is obtained.(

∂ψ1

∂x

⌋
( tSi2 ,

tSi
2 )

î+
∂ψ1

∂y

⌋
( tSi2 ,

tSi
2 )

ĵ

)(
î√
2

+
ĵ√
2

)
= Ω

VG −∆φMS − ψ1

(
tSi
2
, tSi

2

)
√

2tOx
(23)

Introducing ψ1(x, y) in the previous expression the following equation is obtained.

− 4m2(x+ y)

β (m2 (x2 + y2)− 1)
=

Ω

VG −∆φMS −
ln

(
8m2

αβ( 1
2m

2t2
Si

−1)2

)
β


tOx

(24)

The parameter m can be obtained by solving Equation 24 for different gate voltages VG.
It is important to assess the appropriateness of the potential proposed by analyzing the inversion

charge distribution of the devices under study. Figure 12 shows the simulated inversion charge
corresponding to a tSi = 20nm square GAA MOSFET. At high gate voltages (figure 12(a) VG > Vt,
where Vt stands for the threshold voltage) the inversion charge is close to the silicon insulator interface,
as expected in a MOSFET device. The corners are obviously more inverted since the potential well
there is deeper. It can be seen that for an inversion charge model to work well in the strong
inversion operation region it is essential to model reasonably well the electric field in the silicon
channel square perimeter (to do so it is necessary to develop a model that shows a square shape at
high gate voltages). In addition, for gate voltages below the threshold voltage the variation of the
electric potential at the semiconductor-insulator interface is not so high. In this case the inversion
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Figure 12: Three-dimensional view of the simulated inversion charge density for a square GAA MOSFET.
The device technological parameters were the following: tSi = 20nm, tOx = 1.5nm, NA = 1014cm−3,
qφm=4.63 eV. a) VG = 1.2V and b) VG = 0.4V

charge is mainly placed at the center of the silicon core (volume inversion). It can be seen that
the charge has approximately a ”cylindrical shape” (if the contribution of the corners is neglected,
which is a reasonable approximation). In strong inversion when the inversion charge is placed at
the semiconductor-insulator interface, showing a square shape (the inversion charge in the corners
is important) a potential such us ψ1(x, y) (which shows cylindrical symmetry) is not expected to do
well. Nevertheless, for the subthreshold operation region ψ1(x, y) works well as we will show below.
In this respect, the lower the tSi value the better this model works since the role played by the corners
is less important (volume inversion effects are enhanced).

In order to shed light on this issue, the electric potential calculated with Equation 21 and the
simulation data for square GAA MOSFETs are shown for two gate voltages 13(a) below and 13(b)
above threshold. The accuracy of the model is strongly reduced in strong inversion (figure 13(b)), as
expected. For low gate voltages the electric potential at the corners is well reproduced taking into
consideration the slight variation in absolute terms of the potential.
It is clear that in order to reproduce the electric potential in all the operation regions a more complex
function has to be used. To do so other holomorphic functions have been studied. Among them was
the following:

φ2(z) = mz + n

(
1

(z − ıa)
+

1

(z + ıa)
− 1

(z + a)
− 1

(z − a)

)
(25)

φ2(z) can be written as follows: φ2(x, y) = u2(x, y) + v2(x, y), where u2(x, y) and v2(x, y) are given
below:
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Figure 13: Three-dimensional view of the electric potential for a square GAA MOSFET. The technological
parameters were the following: tSi = 20nm, tOx = 1.5nm, NA = 1014cm−3, qφm=4.63 eV. The modeled
(simulated) data are represented by the surface with dashes (continuous) borders. a) VG=0.4V, b) VG=0.8V.

u2(x, y) = n

(
x

(y − a)2 + x2
+

x

(a+ y)2 + x2
− x− a

(x− a)2 + y2
− a+ x

(a+ x)2 + y2

)
+mx

v2(x, y) = n

(
− y − a

(y − a)2 + x2
− a+ y

(a+ y)2 + x2
+

y

(x− a)2 + y2
+

y

(a+ x)2 + y2

)
+my

A procedure similar to one followed for φ1(z), gives the expression below (equation 17):

ψ2(x, y) = β−1Ln

8
(
m2 + η(x,y)+ϕ(x,y)

(ω(x,y))2

)
αβ
(

1− ξ(x,y)
ω(x,y)

)2

 (26)

where,

ω(x, y) = a8 − 2a4
(
x4 − 6x2y2 + y4

)
+
(
x2 + y2

)4

η(x, y) = 16a4n2
(
a8 + 6a4

(
x4 − 6x2y2 + y4

)
+ 9

(
x2 + y2

)4
)

ϕ(x, y) = 8a2mn
(
a12 + a8

(
x4 − 6x2y2 + y4

)
− a4

(
5x8 + 52x6y2 − 34x4y4 + 52x2y6 + 5y8

)
+

+ 3
(
x2 + y2

)4 (
x4 − 6x2y2 + y4

))
ξ(x, y) =

(
x2 + y2

) (
a8m2 + 8a6mn− 2a4

(
m2
(
x4

− 6x2y2 + y4
)
− 8n2

)
− 8a2mn

(
x4 − 6x2y2 + y4

)
+m2

(
x2 + y2

)4
)
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Because of the symmetry of the device under study, it can be deduced that the electric potential

satisfies, ∂ψ
∂x

⌋
(0,0)

= ∂ψ
∂y

⌋
(0,0)

= 0, at the center point, PCenter = (0, 0), as indicated in Figure 1. The m,

n parameters have to be determined making use of the boundary conditions 19 and 20. In addition,
the a parameter was chosen to make function ψ2(x, y) fit the geometrical restrictions of the potential
for different device sizes, and most important (as it will be explained in the next section) to reproduce
the inversion charge simulation data. An empirical expression was obtained for a parameter in doing
so: a = tSi

2
+ δ(VG, tSi).

where,

δ(VG, tSi) = R(tSi)(6− VG) (27)

and R(tSi) = 0.01998t2Si + 0.27873tSi + 8.53015.

y (nm)

x (nm)

tSi=20nm
VG=0.4V

(a)

y (nm)

x (nm)

tSi=20nm
VG=0.8V

(b)

Figure 14: Three-dimensional view of the electric potential for a square GAA MOSFET. The technological
parameters were the following: tSi = 20nm, tOx = 1.5nm, NA = 1014cm−3, qφm=4.63 eV. The modeled
(simulated) data are represented by the surface with dashes (continuous) borders. a) VG=0.4V, b) VG=.2V.

As can be seen in figure 14, ψ2(x, y) reproduces reasonably well the simulated electric potential
even for gate voltages above threshold. It will be showed in the next section that this accuracy is
enough to reproduce the inversion charge (calculated by means of Gauss’s law) for all the operation
regions.
Other electric potential functions could be generated by means of different holomorphic functions.
We have also used ψ3(x, y), generated by φ3(z) and given below. In this case, the analytic complexity
of the electric potential is higher than the two previous cases although the accuracy of the model is
improved.

Φ3 (z) = mz + n

(
1

(z − a)2 −
1

(z + a)2 +
i

(z + ia)2 −
i

(z − ia)2

)
, a, n,m ∈ R,

21



8 Inversion charge calculation

I have made use of Gauss’s law to obtain the inversion charge of square GAA MOSFETs. The total
inversion charge per unit of length QINV was calculated by integrating the charge density in the
silicon channel.

QINV =

∫ tSi
2

− tSi
2

∫ tSi
2

− tSi
2

ρ(x, y)dxdy = 8εSi

∫ tSi
2

0

−∂ψ(x, y′)

∂x

⌋
x=

tSi
2

dy′ (28)

the symmetry of the device under study was used in the right-and part of equation 28, where the
integral of the electric field along the GAA MOSFET silicon-insulator interface was calculated.
Making use of ψ1(x, y)), the electric field can be calculated as follows: ∂ψ1

∂x

⌋
x=

tSi
2

= − 2m2tSi

β

(
m2

(
t2
Si
4

+y2
)
−1

) .

Therefore, the expression for the inversion charge per unit of length in this case was given by:

QINV = −
32 · 107mtSiεSiArctan

(
mtSi√
m2t2Si−4

)
β
√
m2t2Si − 4

(29)

The inversion charge calculated through Equation 29 was compared with simulated data (Figure
15) for GAA MOSFETs with different silicon channel thicknesses. It can be seen that this model
reproduces accurately the inversion charge in the subthreshold operation region. However, it does
not fit the simulation data in the strong inversion regime, as expected.
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Figure 15: Inversion charge versus gate voltage for a square GAA MOSFETs with different tSi values.
Simulation data are shown in symbols and modeled data (for ψ1(x, y)) are plotted in lines.

I have also used ψ2(x, y) to calculate the inversion charge by means of Equation 28. Figure 16
shows the modeled inversion charge data comparing with simulations. In this case, a good fit is
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obtained for all the gate voltages considered in this work. Parameter a was tunned to improve the
fitting, and an empirical expression (equation given in the previous section) was used to reproduce
the values obtained. It can be seen that the fitting of the subthreshold operation region is good for
all the silicon layer thicknesses considered.
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Figure 16: Inversion charge versus gate voltage for a square GAA MOSFETs with different tSi values.
Simulation data are shown in symbols and modeled (for ψ2(x, y)) data are plotted in lines.

9 Conclusions

In this first part, an analytical model for the inversion charge distribution function of GAA MOSFETs
where quantum effects have been taken into account has been introduced. The model has been
tested by means of a comparison with simulation data obtained by self-consistently solving the 2D
Schrödinger and Poisson equations for a wide variety of device sizes and bias ranges.
I have also calculated the inversion charge centroid and gate-to-channel capacitance by using the
inversion charge distribution function developed previously. A very good agreement between the
simulated and modelled data was achieved both for the ICC and the CGC for different sizes and for
all the operational regimes.
In the second part, Poisson’s equation 16 is solved A, and it has allowed to obtain the electric
potential in the silicon channel of square GAA MOSFETs. This potential has been used to calculate
the total inversion charge per unit of length QINV by using Gauss’s law for several device sizes and
all operative range of voltages.
The simplicity and accuracy of the models presented are very promising from the compact modelling
point of view since GAA MOSFETs are considered good candidates for future sub-22nm integrated
circuit technologies.
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A Appendix

Equation 16 can be rewritten as follows for simplicity:

∆ψ(x, y) = αeβψ(x,y) (30)

where α = q
εSi
ni and β = q

KT
.

In order to find an analytic function ψ(x, y), solution of the differential equation 30, a general func-
tion to find electric potential analytical expressions ψ(x, y) that fulfill equation 30 has been deduced.
It can be seen that equation 30 is a particular case of equation 31):

∆ψ(x, y) = εf(x, y)eβψ(x,y) (31)

I. Sabitov [34] found the following general solution for equation 31:

ψ(x, y) =
−2

β
Ln

(
|β| |F (z)| (1− 2εβ−1φ(z)φ∗(z))

4 |φ′(z)|

)
(32)

where |F (z)|2 = f(x, y), ε = ±1 and φ(z) an arbitrary holomorphic 1 2 function.
We have obtained a more appropriate general function and proved that solutions for equation 31 can
be built as given in the following equation (see reference [36]):

ψ (x, y) = − 2

β
ln

√
|β|
2
|F (z)| (1− ε sgn β φ (z)φ∗ (z))

2 |φ′ (z)|
. (33)

It can be shown that equations 32 and 33 are equivalent. It can also be seen that equation 30 can
be obtained from 31 if ε = +1 and f(x, y) = α > 0. Therefore, a general solution for equation 30
could be given by the following expression:

ψ (x, y) = − 2

β
ln

√
αβ
2

(1− φ (z)φ∗ (z))

2 |φ′ (z)|
=

1

β
Ln

(
8φ′(z)φ′∗(z)

αβ (1− φ(z)φ∗(z))2

)
(34)

1An holomorphic function is a complex-valued function of one or more complex variables that is complex-
differentiable in a neighborhood of every point in its domain. The phrase ”holomorphic at a point z0” means not
just differentiable at z0, but differentiable everywhere within some neighbourhood of z0 in the complex plane. If U is
an open subset of the complex plane, C, then a function φ : U → C is holomorphic and its derivative is everywhere
non-zero on U if and only if it is conformal (or angle-preserving) at u0 and if it preserves oriented angles between
curves through u0 with respect to their orientation [35].

2If a complex function φ(z) = u(x, y) + ı v(x, y) (where z = x+ ı y ∈ C) is holomorphic, then u(x,y) and v(x,y) first
partial derivatives with respect to x and y exist and satisfy the CauchyRiemann equations ∂u

∂x = ∂v
∂y and ∂u

∂y = − ∂v
∂x . [35]
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[9] F.J.Garćıa Ruiz and A.Godoy and F.Gámiz and C.Sampedro and L.Donetti., IEEE Transactions
on Electron Devices, 54: 3369-3377, 2007.
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[21] J. A. López-Villanueva and P. Cartujo-Cassinello and J. Banqueri and F. Gámiz and S.
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