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Abstract: The heterogeneously catalyzed selective-hydrogenation of citral is one of the 

more feasible ways for obtaining its appreciated unsaturated-alcohols, nerol and geraniol, 

which are present in over 250 essential oils. Thus, citral has very recently come to be 

produced petro-chemically in very large quantities, and so partial hydrogenation of citral 

has become a very economical route for the production of these compounds. However, the 

selective hydrogenation of citral is not easy, because citral is an α,β-unsaturated aldehyde 

which possesses three double bonds that can be hydrogenated: an isolated C=C bond and 

the conjugated C=O and C=C bonds. For this reason, in catalyst selection there are several 

important issues which affect the product selectivity, for example, the active metal and 

metal particle size which are factors related to the catalyst preparation method, catalyst 

precursor, or support surface area, as well as other factors such as porosity, the addition of 

a second catalytic metal, and, of course, the type of catalyst support. About this last one, 

carbon materials are very interesting supports for this type of hydrogenation reaction due to 

their unique chemical and textural properties. This review collects and analyzes the results 

obtained in the selective hydrogenation of citral catalyzed by carbon material  

supported metals. 
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1. Introduction 

Since ancient times, essential oils and extracts have been used for many different applications such 

as perfumes, air fresheners, cosmetics and medicinal substances. These compounds were mainly 

extracted by steam distillation or solvent extraction of different vegetable raw materials. These 

essential oils consist primarily in terpenes, where their unsaturated alcohols play a very important role. 

In particular, nerol and geraniol are present in over 250 essential oils as ninde oil (66.3%) [1], rose oil 

(59.0%) [2], palmarosa oil (80.9% geraniol in leaf) [3], monarda fistulosa oil (>95%) [4], citronella oil 

(24.8%) [5], among other essential oils. 

Geraniol was isolated from palmarosa oil while nerol was obtained from the oil of neroli [6,7]. 

These monoterpenes are widely used in fragrance and flavour industries. A survey of consumer 

products between 1996–2001 revealed that they are present in 76% of 73 investigated deodorants on 

the European market—95% in vapo-spray deodorants, 91% in aerosol sprays deodorants and 46% in 

roll-on deodorants [8]—in the 41% of 59 investigated domestic and occupational products [9], and in 

the 33% of cosmetic formulations [10], their production in that year being more than 1000 metric  

tons [11]. In addition, recent studies revealed that geraniol exhibits various biochemical and 

pharmacological properties as a potential antimicrobial agent [12], an effective plant based insect 

repellent (currently being marketed by Fulltec
®

 and BugBand
®

, for example) [13–15], an  

anti-inflammatory [16], anthelmintic [17,18], anti-oxidant [19,20] and anti-herpetic agent [21], and 

furthermore, geraniol exerts in vitro and in vivo antitumor activity against murine leukemia, hepatoma 

and melanoma cells [22–26]. Furthermore, this molecule is an important intermediate in the synthesis 

of other organic molecules with high added value [27] such as phellandrene, myrcene, ocimene, 

linalool and vitamins A and E [28].  

This increase in the use of geraniol and nerol makes necessary a chemical synthesis of this 

compound. Actually, the industrial production of these compounds is mainly done from β-pinene by 

companies such as International Flavors and Fragrances (IFF), Pinova, DRT and TECNAL 

Corporation [29,30]. This process [31], shown in Figure 1, involves the pyrolysis of β-pinene, which 

yields 90% myrcene by passing it through a tube at 550–600 °C with a very short contact time. Then, 

in a second step (myrcene hydrochlorination), hydrogen chloride is added to myrcene in the presence 

of a small amount of cuprous chloride catalyst and an organic quaternary ammonium salt to effect a 

preferential addition at the allylic double bond resulting in the formation of a higher proportion of 

geranyl or neryl chloride, linalyl chloride and a little myrcenyl chloride. After removal of the catalyst, 

the crude mixture of chlorides is converted to a mixture of acetates (or formates) by addition of sodium 

acetate or sodium formate with a phase-transfer catalyst (PTC) or in the presence of a nitrogen base to 

give predominantly geranyl acetate (50%–55%), neryl acetate (40%–50%) and small amount of linalyl 

acetate. Saponification of the acetates or formates gives the corresponding alcohols and the sodium 

acetate or formate which is recycled. Fractionation of the crude alcohol mixture gives both geraniol 

and nerol products, usually as mixtures. Further fractional distillation yields about  

98% geraniol [30,31]. 
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Figure 1. Industrial-scale production process of nerol and geraniol. Powered by 

International Flavors and Fragrances (IFF), Pinova, and Dérivés Tecnal Résiniques et 

Terpéniques (DRT). Adapted from [31]. 

 

The drawback of the industrial manufacturing process is the multitude of needed stages, including a 

pyrolysis, with the difficulties that it entails the need of large amount of reagents, and the 

corresponding loss of performance of each stage. For these reasons, the selective hydrogenation of 

citral is one of the more feasible ways for obtaining these unsaturated alcohols being a single step 

synthesis. Furthermore, citral has very recently come to be produced petrochemically in very large 

quantities, and so partial hydrogenation of citral has become a very economical route for the 

production of geraniol and nerol [31]. Therefore, the hydrogenation of citral is attracting the attention 

of a large number of scientists worldwide. Citral (3,7-dimethyl-2,6-octadienal) is a monoterpene found 

in plants and citrus fruits. It is an isomeric mixture of the acyclic aldehydes geranial (citral E) and  

neral (citral Z). 
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On the other hand, carbon materials show several advantages when they are used as supports in 

heterogeneous catalysis and especially in hydrogenation reactions [32]: 

(i) Carbon surface is relatively inert, preventing the occurrence of unwanted reactions catalyzed by 

the support surface or reaction of the support with the active phase. 

(ii) The cost of conventional carbon materials is lower than other conventional supports. 

(iii) Carbon materials may be obtained in different forms (granules, pellets, fibers, foams, 

monoliths, fabrics, coatings, etc.). 

(iv) The active phase, usually expensive, can be easily recovered by simple calcination of  

the support. 

(v) They have a high surface area and its porous framework can be modified to obtain the pore size 

distribution (PSD) optimum for each particular reaction. 

(vi) They are stable at high temperatures in non-oxidizing atmospheres (even above 700 °C). 

(vii) Although carbon is usually a material with a hydrophobic nature, the chemical nature of their 

surface can be modified chemically to give them some hydrophilicity. 

Despite all these advantages, carbon materials are not the main supports studied in the 

hydrogenation of citral as derived from the reviewed literature, being these mentioned only in 17% of 

the reviewed literature, and mainly they are used as reference materials. Within the carbon materials, 

the classical materials have been the most studied in the selective hydrogenation of citral (activated 

carbons and graphite were studied in the 57% and 19% of the citations, respectively). However, 

nowadays non-traditional carbon materials such as carbon nanotubes are widely being studied for this 

application (21% of the reviewed literature), and finally some works using advanced composite 

materials like Carbon-TiO2 can also be found. Although carbon xerogels and aerogels are very 

interesting carbon materials especially as catalyst supports [33–37], we have not found works in the 

reviewed literature where they have been used in the selective hydrogenation of citral. Moreover, only 

a few works mention these materials for the hydrogenation of α,β unsaturated aldehydes [38–40]. 

Finally, it should be mentioned that in the catalyst selection for the citral hydrogenation, there are 

several important issues which affect the product selectivity, such as the active metal [41–44], the 

metal-particle size [43,45–47], the support material or the use of bimetallic catalysts [45,48–50], as 

well as other factors relating to the operating conditions as the used solvent, which is important in the 

formation of acetals, the stirring, the operation temperature and pressure as well as the  

initial concentrations. 

In this review, a widely used explanation about the different and possible reaction routes during the 

hydrogenation of citral, as well as a deep review of the role in the activity and selectivity of the main 

transition metal as catalyst in this reaction are shown. The more significant results using carbon 

materials, as catalyst supports in the selective hydrogenation of citral, have been collected. These 

results are shown and discussed by type of material, and finally, some challenges for the future  

are proposed. 

2. Hydrogenation Selectivity 

The selective hydrogenation of citral to nerol and geraniol is not easy, because citral is an α,β 

unsaturated aldehyde which possesses three double bonds that can be hydrogenated: an isolated C=C 
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bond in addition of the conjugated bonds C=O and C=C. A completed reaction scheme is shown in 

Figure 2. Thermodynamics favors hydrogenation of the C=C over the C=O bond [51], and for kinetic 

reasons, the C=C bond is more reactive than the C=O group [51]. Therefore, in the presence of most of 

the monometallic catalysts based on VIII group elements, the saturated aldehyde or alcohol is  

obtained [52,53]. Consequently, the challenge is to selectively enhance the hydrogenation of the C=O 

bond to produce nerol and geraniol, decreasing in parallel the hydrogenation of the corresponding 

conjugated C=C bond reducing the formation of citronellal, and what is even more difficult, to avoid 

consecutives hydrogenations to single unsaturated or saturated alcohol (citronellol and 3,7 

dimethyloctanol, respectively), as well as to avoid cyclization routes which produces isopulegol and its 

saturated alcohol menthol. Finally, other undesired reactions can take place with the use of some 

reaction media, such as alcohols, which can create citronellal acetals. Therefore, a highly selective 

hydrogenation process to nerol and geraniol can only be achieved with an optimal design of the 

catalyst. Nowadays, the more extended proposal for this goal turn around to activate the adsorption 

modes of C=O group and/or prevent the adsorption modes of C=C group [54]. In this way, Figure 3 

shows the different adsorption modes of the molecule of citral [55]. 

Figure 2. Reaction scheme of the citral hydrogenation. Adapted from [56]. 
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Figure 3. Adsorption modes of the α,β-unsaturated aldehyde molecule. Adapted from [55]. 

 

The knowledge of the adsorption modes is very important for understanding the selectivity of the 

hydrogenation of the α,β-unsaturated aldehydes. Basically, there are three basic ways to obtain the 

hydrogenation of the C=O bond and, hence, the desired unsaturated alcohol: (i) the first is to hinder the 

C=C molecular adsorption. This hindrance can be achieved by an increase of the repulsive electron 

interactions with the surface using metals with more extended d-orbitals like osmium or iridium, or 

increasing the {111} face presence in the metal surface, and finally, also using an electronically dense 

surface by means of an active support (i.e., graphite). (ii) The second way is to favor the interaction of 

the C=O bond with the surface using Lewis acid promoters as for example the partially reducible 

oxides TiO2 or CeO2 in which new acid Lewis sites can be created by oxygen vacancies. (iii) The third 

way is a combination of both mentioned strategies, favoring the C=O adsorption and hindering the 

C=C adsorption at the same time. This would be achieved combining satisfactory electropositive and 

electronegative metals which produces a charge transfer between they that favors the electronic 

repulsion against the C=C adsorption, being equally created polarized sites δ
+
-δ

− 
that favor the 

interaction with the C=O bond [57]. 

Also, other factors relating to the catalytic system should be considered such as the solvent. The 

solvent is important not only for preventing the formation of acetals, but also because it could affect 

the selectivity and the hydrogenation rates. Generally, the higher the polarity of the solvent, the higher 

is the hydrogenation rates, due to an increase of the H2 solubility in the solvent [58–60]. Related to the 

product distribution, some authors have obtained a trend modifying the polarity of the solvent. Polar 

solvents activated the C=O hydrogenation whereas non-polar solvents favored the C=C bond 

hydrogenation over non acidic catalysts to avoid the acetals formation over alcohol  

solvents [59,61,62]. Additionally, supercritical CO2 has been used as non-conventional solvent due to 

its important benefits such as: (i) the higher solubility of hydrogen than conventional solvents; (ii) 

much easier separation after reaction; (iii) and the improvement of selectivity in the C=O 

hydrogenation. The higher selectivity towards the unsaturated alcohols using supercritical CO2 has 

been ascribed to specific interactions between CO2 and the citral molecules [63–65]. 

Another way to favor the C=O interaction with the catalyst may be achieved by adding a water film 

to the surface of the catalysts. In this sense, Jiang et al. [66] used a combination of Ru/AlO(OH) and 

water improving the catalyst activity and its selectivity to geraniol and nerol. The interactions between 

water molecules and the surface hydroxyl groups of the support made possible a water film adhesion 

around the catalyst particles. This water favoured the citral adsorption throughout the C=O bond due to 
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its more polarized bond character. In a similar way, with SLPC (supported liquid-phase catalyst) the 

selectivity towards the unsaturated alcohols can be modified adding water (or another polar solvent) to 

an organic media [67,68]. The drawback of this type of methodology is that the entire surface should 

be covered by water in order to maintain the desired selectivity [67]. 

3. The Type of Transition Metal as Catalytic Phase 

In the hydrogenation of α,β-unsaturated aldehydes, usually transition metals supported on oxides or 

carbon materials are used as catalysts. The selection of the catalytic phase is very important due to its 

influence on the product’s selectivity. In general, Ir and Os catalysts show moderately high 

selectivities to C=O hydrogenation, while Pt, Ru and Co possess moderate selectivities and Pd, Rh and 

Ni are unselective or poorly selective to the un-saturated alcohol. These trends were confirmed by 

Sokolskii et al. [69,70] in the crotonaldehyde hydrogenation with catalysts supported on carbon 

finding the following selectivity trend to the un-saturated alcohol: Os > Ir > Ru> Rh ≈ Pt ≈ Pd, and 

also by Giroir-Fendler et al. [41] in the hydrogenation of cinnamaldehyde using coal and graphite as 

supports finding the trend Ir> Pt> Ru> Rh> Pd with both supports. This increase of selectivity is 

attributed to an electronic effects according to theoretical calculations of Delbecq and Soutet and  

semi-empirical calculations of Hückel [54,57]. According to these authors, the selectivity to the 

unsaturated alcohol can be correlated with the metal d-band width. With increasing electron density 

and, hence, d-orbital population, the repulsive four electron interaction of the C=C double bond with 

the metal surface increases, however, the interaction of the metal surface with the C=O π-system is 

favored [52,55]. Thus, the binding of unsaturated molecules on metal surfaces is based on the 

distinction between stabilizing two-electron (of the C=O) and destabilizing four-electron interactions 

(of the C=C) [71]. The C=C coordination is very sensitive to Pauli repulsion with the surface. A metal 

with more diffuse orbitals will increase the Pauli repulsion and therefore weaken the C=C adsorption. 

This is the case of Ru and Os which have a large radial expansion of the d orbitals and therefore give a 

good selectivity to un-saturated alcohol. In contrast, Pd has more contracted d orbitals, and in this case 

the molecule can easily approach the surface and a flat η4 mode is preferred [72]. As a result, Pd gives 

a poor selectivity in unsaturated alcohol. The calculated metal d-band width is Ni< Pd< Ru< Pt< Ir, 

Os, which is in agreement with the experimentally obtained selectivities toward the  

un-saturated alcohol [57,73]. 

In the selective hydrogenation of citral, the above mentioned tendency was also shown by Vannice 

and Singh [53] who examined the influence of the active metal on the activity and selectivity in the 

liquid phase hydrogenation of citral at 300 K and 1 atm using silica as support. These researchers 

found the following trend in activity Pd> Pt> Ir> Os> Ru> Rh> Ni> Co >> Fe and in selectivity was 

found that Os showed high selectivity to unsaturated alcohols (88%), the Ru and Co showed moderate 

selectivity (55%) and Rh, Ni and Pd were more selective to citronellal and isopulegol (0% unsaturated 

alcohols). In turn, Manikandan et al. [74] analyzed Pt and Ru catalysts intercalated in a silicate 

(Mantmorillonite) obtaining a selectivity of 60% for Pt and 45% for Ru. Taking into account the 

literature review collected in Table 1 and the results obtained by Vannice and Singh, a reasonable 

activity trend for the most α, β-unsaturated aldehydes independently of the support and the conditions 

employed would be the following: Ni< Pd<<< Rh< Ru, Pt, Co< Ir, Os.  
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With regard to the selectivity, the susceptibility of the Ir to the formation of un-saturated alcohols in 

the hydrogenation of citral as well as with other aldehydes [52] is not clear. Comparing the results 

(Table 1) for Ir/TiO2 in the same operating conditions, some authors achieved selectivities as high as 

91%–100% while others get a moderate selectivity of 60%, whereas using other supports like SiO2, 

very different selectivities among 100%, 40% or 15% were obtained. However, it seems clear that with 

Ir catalyst, low conversions are achieved (5%–10%). Thus, despite that Os and Ir seem to be the most 

selective to un-saturated alcohols in the hydrogenation of citral, they are the least active. On the other 

hand, Pt and Ru are the most employed in the literature (they are present in 68% of the reviewed 

papers): Pt because it shows moderate activity and selectivity, and Ru because it combines an 

acceptable catalytic performance with the cheapest price among the best metals. Obviously, the ideal 

would be to achieve a high selectivity with a great conversion without losing sight of the economic 

factor. For this reason, the challenge is to improve the selectivity of Pt and Ru by adding a second 

metal or enhancing electronic effects of the support. 

Table 1. Effect of the type of metal on the selectivity toward the un-saturated alcohol in 

the selective hydrogenation of citral. 

Metal Support T ª (°C) P (Bar) S (%) C (%) Ref. 

Rh TiO2 70 70 10 100 [75] 

Rh TiO2 70 70 11 94 [76] 

Rh SiO2 35 1 5.2 100 [77] 

Pt TiO2 70 70 58 98 [75] 

Pt TiO2 90 100 68 95 [78] 

Pt SiO2 100 20 56 30 [79] 

Ir TiO2 90 6.2 100 11.2 [80] 

Ir SiO2 90 6.2 47 5 [81] 

Ir Nb2O5 90 6.2 82 15 [82] 

Ir SiO2 90 6.2 44 3 [82] 

Ir TiO2 90 6.2 91 10 [81] 

Ir SiO2 70 4 100 10 [83] 

Ir TiO2 70 4 100 10 [83] 

Ir SiO2 27 1 15 5 [44] 

Os SiO2 27 1 88 5 [44] 

Co TiO2 90 70 50 80 [42] 

Co C 120 10 60 17 [84] 

Au TiO2 80 40 16 6 [85] 

Ru TiO2 80 40 22 15 [85] 

Ru TiO2 126 50 42 76.8 [86] 

Ru Al2O3 126 50 48 12.2 [86] 

Pd TiO2 80 40 8 27 [85] 

Pd SiO2 130 70 0 100 [87] 

Ni Al2O3 70 1 0 n.d. [88] 

Ni Cr2O3 120 40 0 n.d. [89] 

Ni Graphite 50 50 0 100 [90] 
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4. Carbon Materials as Supports 

In heterogeneous catalysis, the active phase is deposited on a support material which normally is 

catalytically inert. These supports are usually metal oxides or carbon with the aim of maximizing the 

specific surface area to achieve a greater dispersion of the active phase. However, the use of  

micro-mesoporous supports may not be suitable for hydrogenation reactions in liquid phase where 

hydrogen solubility in the solvent is small, because when very active metals are used, isomerization 

reactions may occur to a greater extent than the desired ones due to an immediate decrease of the 

hydrogen concentration on the active site [91,92]. Sometimes, we find in the literature that selectivity 

results in these types of reactions—including citral hydrogenation—can be affected by the above 

mentioned process, but the explanation is attributed to other factors. 

4.1. Activated Carbons 

The activated carbons are the supports most studied in hydrogenation of citral. These materials do 

not present electronic effect like the partially reducible oxides, or graphite which could enhance the 

selectivity towards un-saturated alcohols, but due to their high surface areas they are very interesting 

for the preparation of bimetallic catalysts. For these reasons, most authors who used activated carbon 

as support, used them for preparing bimetallic catalysts, or as reference materials. 

Galvagno et al. [43,93,94] studied the influence of Ru particle size, type or metal precursor and the 

reaction media, using a commercial activated carbon with a surface area between 900 and 1100 m
2
/g 

by impregnation with RuCl3 and different metal loading. Due to the high surface area of the carbon 

support, Ru could be dispersed better than using other supports such as Al2O3 or SiO2. Metal particle 

sizes among 3.7 and 10.3 nm, with Ru loading among 0.5 and 10 wt.% were obtained treating the 

impregnated catalysts at 300 °C in H2. They found that the specific catalytic activity per Ru surface 

atom as well as the product distribution did not depend of Ru particle size supported on the activated 

carbon. On the other hand, making a catalytic comparison among the supports activated’ carbons, 

Al2O3 and SiO2 [43,94], the authors explained that due to the hydrophobic nature of the carbon 

support, which leads to a weaker interaction between the catalyst and the solvent (ethanol), the 

poisoning effect on the Ru active sites decreased, and higher amounts of unsaturated alcohols were 

also obtained. 

On the other hand, in other works activated carbons were used to prepare bimetallic  

catalysts [48,84,95–100] employing their high surface areas to improve the dispersion of the bimetallic 

clusters. Vilella et al. [99] studied the influence of the addition of different Ge and Sn loading to 

Pt/activated carbon catalysts. These catalysts were prepared by successive impregnation of the 

precursor salts (H2PtCl6 and SnCl2 or GeCl4). They used a commercial carbon with an apparent surface 

area of 987 m
2
/g and high ash content. The activated carbon was demineralised and a fraction of this 

was oxidized with a HNO3 treatment. Pt-Sn catalysts worked better than Pt alone increasing both 

activity and selectivity towards reaching 78% of selectivity at 70% of conversion. By contrast, the 

addition of Ge forming the Pt-Ge clusters decreased the activity and the selectivity towards unsaturated 

alcohols, which was ascribed to very few oxidized Ge species being placed near Pt in order to polarize 

the carbonyl group of the citral molecule. This can explain the catalysts’ low selectivity to unsaturated 
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alcohols. Moreover, the formation of unsaturated alcohols did not improve with the addition of Ge 

because this would be mainly located over the support without modifying either electronically or 

geometrically the Pt sites. In order to enhance the numbers of Pt-Ge clusters, these catalysts were again 

prepared by controlled surface reactions which could ensure a contact between Pt and Ge [97] and 

using the oxidised activated carbon, in this case, a clear improvement of the selectivity to unsaturated 

alcohols was detected. 

Vilella et al. [100] also studied the catalytic performance of two different activated carbon-based 

supports using Pt and Pt-Sn clusters: an activated carbon in powder shape against a commercial 

activated carbon felt. Differences in selectivity to unsaturated alcohols were found, which were 

ascribed to the different surface acid characteristics of the supports as well as to the presence of Sn° 

species, being the catalysts supported on carbon powders (equilibrium pH 10) more selective than that 

supported on carbon felts (equilibrium pH 7) and obtaining a larger amount of isopulegol than the 

latter. Sn
0
 species produced blocking or dilution of de Pt particles. This effect was produced mainly on 

the felts based catalyst which provoked that this catalyst were less active and selective (80% and 68% 

of selectivity, for activated carbon and carbon felt, respectively, at 95% of conversion)  

Neri et al. [95] have also studied bimetallic Pt-Sn catalysts supported on activated carbon, prepared 

by co-impregnation (2 wt.% of Pt), obtaining an increase in selectivity towards unsaturated alcohols 

(from 40%–90%) by increasing the Sn loading from 0–0.82 wt.%.  

Another bimetallic catalyst supported on carbon is Pt-Co. Bertero et al. [84] prepared Pt/C, Co/C 

and Pt-Co/C catalysts using a sub-bituminous carbon of high surface area (1300 m
2
/g) by impregnation 

of acetylacetonete precursor salts. The catalysts were reduced at 150 °C and 500 °C in H2 flow. The 

activity and selectivity of the bimetallic catalysts were higher than the monometallic ones, suggesting 

the creation of new polarizated sites which would activate the C=O bond hydrogenation. Moreover, 

secondary reactions such as decarbonylation and hydrogenolysis observed with the monometallic 

catalysts would be inhibited using the bimetallic ones. 

Active carbon cloths (Figure 4) also have been employed in the selective hydrogenation of citral. 

Aumo et al. [101,102] studied Pt catalysts supported on carbon cloth and on woven active carbon fiber. 

Unsaturated alcohols selectivities of 80%–100% for carbon fiber catalysts were reached against a 

selectivity of 49%–62% for the activated carbon catalysts used for comparison. However, the authors 

mentioned that the price of these types of cloths is still a limiting factor for extended use. 

Figure 4. SEM images of the (a) woven activated carbon and (b) Pt-woven activated 

carbon catalyst [102]. 
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4.2. Graphite 

In general, the literature shows that graphite-supported catalysts are more selective towards the 

unsaturated alcohol than other conventional supports (alumina, activated carbon, or silica). This higher 

selectivity would be explained on the basis of electron transfer from the graphitic support to the metal 

particles located at the edges of the basal planes (Figure 5). The increased charge density on the metal 

particles would decrease the probability of adsorption via the C=C bond, and therefore hindering its 

hydrogenation [103]. 

Figure 5. Electron transfer from the graphitic support to the metal particles. 

 

Steffan et al. [104] studied the catalytic behaviour of Pt catalysts supported on SiO2, Al2O3, 

activated carbon and graphite. The reaction was carried out at 140 °C, 70 bar H2, 1.5 g of catalyst and 

an initial citral concentration of 0.56 M in n-hexane, as reaction media. They found the following trend 

in selectivity to unsaturated alcohols Pt/AC < Pt/Al2O3 < Pt/SiO2 < Pt/G. For the carbon based 

catalysts Pt/G and Pt/AC, the use of graphite as support yielded a higher selectivity towards geraniol 

and nerol compared to activated carbon, in agreement with previous results for the hydrogenation of 

cinnamaldehyde [105]. However, this work also showed than Pt catalysts supported on graphite were 

much more selective to nerol and geraniol than those supported on other conventional supports such as 

silica or alumina. 

Bachiller-Baeza et al. [106] studied Ru and Ru-Fe catalysts supported on a high-surface-area 

graphite (SBET 295 m
2
/g) and activated carbon (SBET 964 m

2
/g). The activated carbon was 

demineralised by acid treatments, and the graphite was treated in He at 900 °C in order to remove the 

surface oxygen groups. Monometallic catalysts were prepared by incipient wetness of the supports 

with an aqueous solution of RuNO(NO3)3, and bimetallic catalysts were prepared by a co-impregnation 

method with aqueous solution of RuNO(NO3)3 and Fe(NO3)3·9H2O. The catalysts were reduced in H2 

flow at 400 °C for 2 h. The liquid-phase hydrogenation of citral was carried out in isopropanol at 

atmospheric pressure under H2 at 60 °C, 850 rpm of agitation. A citral/Ru molar ratio of 30 was used. 

Contrary to what was expected the initial activities and the selectivity to unsaturated alcohols (~38%) 

for both monometallic Ru catalysts were similar. Authors ascribed this behaviour to the absence of 

oxygen groups at the surface of the graphite during the impregnation which would restrain the  

metal-support interaction. Oxygen groups were not present on the support before impregnation, but 

they were introduced into the carbon materials during the catalyst preparation procedure due to the 
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very high oxidizing character of the ruthenium precursor (RuNO(NO3)3). The presence of these 

oxygen functional groups at the surface of the graphite also impeded the electron donor effect of the 

macro-ligand graphite. On the other hand, using Fe as promoter, the selectivity was enhanced due to 

the bimetallic effect. However, bimetallic catalysts supported on graphite achieved higher selectivity to 

unsaturated alcohols than those on activated carbon probably due to the lower oxygen content and the 

maximum electronic transfer from support to the metals. This work clearly shows the importance of 

the surface chemistry of carbon materials in the selective hydrogenation of citral. 

Asedegbega-Nieto et al. [90] studied the catalytic behaviour of Ru-Cu and Ni-Cu bimetallic 

catalysts supported on a high surface area graphite. Bimetallic catalysts with different Cu loadings 

were prepared by a co-impregnation method employing ethanolic solutions of ruthenium acetyl 

acetonate and copper acetate for the Ru–Cu system, and nickel nitrate and copper nitrate for the Ni–Cu 

system. The graphite was treated under inert atmosphere at 900 °C in order to remove oxygen groups 

before its impregnation, and the catalysts were treated in hydrogen flow at 350 °C, for the Ru–Cu 

system, and 350 °C for the Ni–Cu system, both for 2 h. The reaction were carried out at 50 bar of 

pressure, 50 °C, initial citral concentration of 0.03 M in isopropanol under 500 rpm of stirring. 

Regarding the Ru-Cu system, the monometallic catalyst (only Ru) produced citronellal and unsaturated 

alcohols. The addition of Cu did not modify the activity, but the selectivity to unsaturated alcohols 

decreased probably due to a poor Ru-Cu interaction where the Cu phase would be mainly covering the 

Ru particles. Regarding the Ni-Cu system, the saturated aldehydes were the main product obtained, 

and when Cu was added, changes in the selectivity were not observed. Therefore, Cu did not enhance 

selectivity to unsaturated alcohols in any case. 

Court et al. [107] prepared Ni-M (M=Al, Cr, Cu, Co, Mo) bimetallic catalyst supported on graphite 

by incipient wetness using an aqueous solution of the appropriated composition of the two metal salts, 

and later reduction with naphthalene sodium. Hydrogenations were carried out at 80 °C under constant 

hydrogen pressure (1.01 MPa) using a citral concentration in 2-propanol of 0.195 M. It was expected 

that Ni-Cr catalysts were more selective to citronella1 whereas Ni-Mo catalysts were more selective to 

citronellol. However, in none of the cases, the bimetallic catalysts modified the selectivity of Ni to 

unsaturated alcohols.  

Cerro-Alarcón et al. [108] studied the behaviour of Ni catalysts supported on a high surface area 

graphite (200 m
2
/g) and 3 wt.% oxygen surface content. Two different metal salts were used, namely, 

Ni(NO3)2·6H2O and Ni(CH3COO)2·4H2O, and with different pre-treatment: reduction in H2 at 400 °C 

for 2 h, and hydrazine based treatments; reduction of the impregnated support directly with hydrazine, 

or reduction-deposition in situ of Ni precursor with hydrazine. The hydrogenation of citral was 

performed operating at 50 °C, a H2 pressure of 5 MPa, under 500 rpm of stirring, and using around 

0.4–0.5 g catalyst and 0.4–0.5 mL of citral in 100 mL of 2-propanol. The catalytic results indicated 

that the determining factor in the activity data was the reduction method employed independently of 

the Ni precursor. While the treatment of reduction in hydrogen flow Ni° was obtained, the reduction 

with hydrazine provided low proportions of Ni° sites and mainly oxidised Ni
2+

 and/or Ni
3+ 

species. 

These oxidised Ni species can activate the unsaturated aldehyde hydrogenation via the C=O bond. In 

fact, when only Ni° was present the hydrogenation activity was the highest; several orders of 

magnitude higher than those observed for catalysts prepared by reduction with hydrazine, however, 

these catalysts were not selective to the unsaturated alcohol formation. On the contrary, catalysts  
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pre-treated with hydrazine were much more selective to unsaturated alcohols than the hydrogen  

pre-treated ones, but with very poor activities. 

Zhao et al. [109] prepared catalysts for the selective hydrogenation of citral towards citronellal, 

instead to the unsaturated alcohols, using Pd catalysts supported on a graphite oxide (GO) pre-treated 

with 1,1,3,3-tetramethylguanidine (TMG). It is known that the use of palladium-supported catalysts in 

citral hydrogenations together with basic promoters, such as NaOH or NaCO3, leads to higher 

selectivity toward citronellal [110,111]. In this case, the above mentioned procedure was the basis to 

modify the GO surface for immobilizing Pd nanoparticles and using Pd(CH3COO)2 in ethanol solution. 

In a last step, the catalyst was reduced in a NaBH4 aqueous solution, obtaining the GO supported Pd 

nanocatalysts. This type of catalyst had small Pd particle sizes, in a narrow size distribution, which 

produced a selectivity to citronellal of 89.6% with a high activity. 

4.3. Carbon Nanotubes 

Recently [32], carbon nanotube (CNT) structures have been found to produce remarkable catalytic 

effects when they are used as a support for selective hydrogenation reactions due to their unique 

properties such as excellent electrical and thermal conductivity, uniform pore size distribution, 

development of meso and macropore bodies [112], and high length-to-diameter aspect ratio, the latter 

providing them a high external surface area [113]. These special properties could influence the metallic 

particle size distribution, dispersion, metal oxidation state, but also can reduce problems as mass 

transfer rates obtaining high catalytic performances in comparison with other conventional  

supports [114]. Besides, due to their three-dimensional nanoscale structure of rolled up graphene 

layers, a transfer of electronic density from the support to the deposited metallic particles [115,116] 

could take place affecting the properties of the metallic phase and their catalytic behaviour [117]. For 

these reasons, they have been recently used as supports in the hydrogenation selective of citral, 

because they can improve the selectivity to the unsaturated alcohol due to a transfer of the p-electrons 

from the graphene layer to the metal particles. Moreover, the curvature of the CNT channel could also 

induce an extra modification on the molecular adsorption on the metallic phase, which also would 

modify the catalytic activity and/or selectivity of the hydrogenation reaction. However, during the 

CNT synthesis other carbon forms and amorphous carbon are formed as well. Therefore, it is necessary 

to have a good knowledge of the purity of CNT when using them for catalytic applications. 

Asedegbega-Nieto et al. [118], studied the catalytic behaviour of four different carbon materials, 

including two types of carbon nanotubes with very similar sizes, as supports of Pt catalysts: 

commercial carbon nanotubes obtained by arc discharge (CNT1) with a 30–40 wt.% of nanotube 

content, carbon nanotubes obtained by CVD (CNT2), carbon black and a high surface area graphite, 

pretreated at 900 °C in He flow in order to remove surface groups. The Pt catalysts were prepared by 

impregnation of the supports with hexachloroplatinic acid obtaining the smallest particle sizes on 

graphite and carbon black probably due to their highest surface area in comparison with CNTs. Figure 6 

shows some pictures of Pt supported on carbon nanotubes. Citral hydrogenation reactions were carried 

out at 50 °C and H2 pressure of 50 bar, with 500 rpm of stirring, employing isopropanol as solvent. 

Regarding the catalytic results, Pt supported on carbon, graphite and CNT1 showed similar selectivity 

to unsaturated alcohols, around 30%, but using CNT2 which had much fewer carbon impurities, a 
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selectivity of 62% was achieved. The presence of graphitized carbon in CNT1 conferred to this 

catalyst a behaviour similar to the graphite-supported one, probably because the Pt particles were 

localized mainly on the carbon impurities, which have a flat-like morphology and not the  

round-shaped structure of CNTs; consequently, the carbon impurities did not produce the effect of 

electronic transfer of the CNTs. In this line, Qin et al. [119] also obtained higher selectivity using 

carbon nanotubes produced by CVD than using activated carbon as supports of Pt catalysts: 59% vs. 

26%, respectively. 

Figure 6. Pt catalysts supported on carbon nanotubes [118]. 

 

Functionalized carbon nanotubes have also been studied as catalyst supports similar to graphite. So, 

Qin et al. [119,120] modified carbon nanotubes by functionalization with polyacrylic acid (PAA). In 

this work Pt was introduced into pure and PAA grafting multi-walled carbon nanotubes (MWNTs) by 

electroless metal deposition method as used as catalysts for hydrogenation of citral. These catalysts 

exhibited higher activity when compared with Pt impregnated activated carbon catalyst, similar to 

previous discussed results [118]. However, a decrease in the selectivity to unsaturated alcohols from 

59% for MWNTs without functionalization, to 7% for PAA grafted MWNTs, was observed. This 

result is related to the large amount of carboxylic groups that PAA treatment fixed on the outside of 

the MWNTs, which decreased the electronic effect of the support. Moreover, PAA prevented the 

formation of Pt {111} affecting the various product distributions obtained. The PAA treatment in the 

nanotube leads to better dispersion of Pt nanoparticles and, therefore, better activities, but worse 

selectivity towards unsaturated alcohols. 

Zgolicz et al. [121] also functionalized carbon nanotubes by thermal and oxidative treatments. Pt 

and Pt-Fe catalysts supported by multi-wall carbon nanotubes were developed to study the influence of 

the support surface composition on the catalytic performance for the unsaturated alcohols. The citral 

hydrogenation was performed at 70 °C and atmospheric pressure in a discontinuous reactor using 0.3 

mL of citral, 0.300 g of catalyst in 30 mL of 2-propanol. Low numbers of oxygen groups on the 

support surface produced an optimized Pt size. The Pt loading of the catalysts was 5 wt.% which 

together with the presence of Fe, yields a very high selectivity (96%) to unsaturated alcohols. 

Bimetallic catalysts have also been prepared using CNT as supports. Ananthan et al. [122] prepared 

Pt, Ru and Pt-Ru catalysts over carbon nanotubes to study the effect of these bimetallic particles. They 

also studied the effect on the catalysts of the carbon nanotube surface chemistry by a previous 

functionalization of the support with nitric acid followed by two different heat treatments (375 °C and 
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675 °C in N2 flow), in order to partially remove the oxygen-containing groups from the CNT surface. 

The catalytic results showed that as expected the removal of oxygen-containing groups increased both 

activity and selectivity. In fact, the selectivity to the unsaturated alcohols reached 95% by using 

bimetallic catalysts, due to a close contact between Pt and Ru nanoparticles where a charge transfer 

could be developed from Ru to Pt atoms. Recently [123], these authors have developed Pt-Au 

bimetallic catalysts supported on CNT confirming the above mentioned effect of the oxygen groups on 

CNT, however the Pt-Ru system was more selective to unsaturated alcohols than the Pt-Au; 95% vs. 

70%, respectively. 

4.4. Composite Materials 

By attempting to combine the carbon materials and partially reducible oxide properties, new 

composite materials have been developed as supports for the selective hydrogenation of citral. In this 

line, the influence of the supports carbon-TiO2 and carbon-CeO2 on the deposited metal phase have 

been mainly studied [96,124–127].  

Partilly Pt catalyst supported by reducible oxides have shown very good selectivity to C=O bond 

hydrogenation as it was described [78,128]. Figure 7 shows a scheme for the preferred orientation of 

citral when it is hydrogenated on TiO2 [75], pretreated at high temperatures. 

Figure 7. Citral being hydrogenated on Pt supported on TiO2.  Ti
3+

 or Ti
4+

 species and 

 oxygen vacancies and  C=O bond [75,129]. 

 

Zhu et al. prepared carbon nanofibers (CNFs)–TiO2 composites [125–127] as supports for Pd 

catalysts. In this way, TiO2 was impregnated with aqueous solutions of Ni(NO3)2·6H2O or mixture of 

Ni(NO3)2·6H2O and Cu(NO3)2·3H2O, and then a reduction treatment at 600 °C in N2/H2 (80:20) was 

carried out. CNFs were grown by methane decomposition at 873K for 5h, and finally, Ni and Cu 

particles were removed by means of a treatment with HNO3 at 120 °C. A TiO2 coated cordierite 

monolith was also prepared by a sol-gel method [126] which also was used for CNFs growing. The 

CNF-TiO2 support contained 38% of carbon phase, which was composed by CNFs, 95%, and 

amorphous carbon, 5%. Pd catalyst was prepared by impregnation with an aqueous solution of PdCl2 

and then it was tested in the citral hydrogenation with the aim of obtaining citronellal as the main 

product. A commercial Pd/activated carbon catalyst (Pd/AC) was also tested for comparison.  
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Pd/CNF-TiO2 catalyst had a very low surface area—58.1 m
2
/g versus 810 m

2
/g—of Pd/activated 

carbon. Moreover, the porosity was also very different being that Pd/CNF-TiO2 is mainly mesoporous 

with an average pore diameter of 9.7 nm while Pd/AC was microporous with an average pore diameter 

of 2.1 nm. Regarding the activity and selectivity of these supports, Pd/AC was more active than 

Pd/CNF-TiO2 (90% conversion after 4 h and 32 h, respectively) which could be explained by the 

higher Pd dispersion and narrow Pd particle size distribution in Pd/AC due to its larger surface area; 

conversely, a poorly dispersed catalyst with larger Pd particles was obtained over Pd/CNF-TiO2 due to 

its smaller surface area which would lead to lower catalytic activity than for Pd/AC. In regards to 

selectivity to citronellal, considering that palladium catalysts are very active in the hydrogenation of 

the C=C bonds, the selectivity towards citronellal was expected to be very high in both cases, however 

the selectivity towards citronellal achieved with Pd/CNF-TiO2 was significantly higher than Pd/AC, 

and particularly at high conversion (88% versus 35% selectivity, respectively, at 90% conversion). 

This result suggested that the porosity of the supports could play an important role, as explained by the 

following: on the catalyst external surface citral would be firstly hydrogenated to citronellal and then 

citronellal can be easily desorbed from Pd crystals to the solution. Inside the porosity, the product 

distribution should be different. If the reaction took place in the macro- and meso-pore network of the 

catalyst, the main products would be citronellal as they occur on the external surface because these 

pore sizes are wide enough to not influence product diffusions, while if the reaction took place inside 

the micropores, citral would also be hydrogenated to citronellal but it would be confined inside the 

micropores and, therefore, it would be completely hydrogenated to 3,7-dimethyloctanol. According to 

this explanation, at low conversions the selectivity to citronellal was similar in both catalysts due to 

only the external surface being involved in the reaction, however, at higher conversions, the selectivity 

to citonellal using Pd/AC decreased, increasing the formation of 3,7-dimethyloctanol in the 

microporosity of the active carbon. 

Regarding the TiO2 coated cordierite monolith [126], it was used to grow CNFs in order to be 

employed as structured supports of Pd catalyst as well. The obtained results showed a very good 

selectivity to citronellal which was also explained in terms of decreasing internal diffusion limitation. 

On the other hand, Serrano-Ruiz et al. [96] dispersed ceria on a carbon Norit in order to enhance the 

amount and surface area of partially reducible CeO2 sites which acts to improve the selectivity towards 

unsaturated alcohols. The composite material was prepared by impregnation of carbon (previously 

outgassed) with an acetonic solution of Ce(NO3)3·6H2O obtaining a CeO2 loading of 20 wt.%. On this 

support, Pt and Pt-Sn catalysts were deposited, and then, they were pre-treated at both 200 °C, and  

500 °C, in order to evaluate the strong metal–support interactions effect. Bimetallic catalyst achieved 

higher selectivity to unsaturated alcohols than monometallic ones, increasing the selectivity parallel to 

the amount of Sn; however, regarding the conversion, the trends were the opposite: conversion 

decreased when the Sn loading increased which was ascribed to some Pt particles being able to be 

covered by Sn species. On the other hand, reduction treatment at 500 °C increased the selectivity to 

geraniol and nerol by 50% in both monometallic and bimetallic catalysts, explained by the presence of 

new Pt–SnOx and/or Pt–CeOx active sites. It is noteworthy that although bimetallic cluster and partially 

reducible oxide were used, and being well known that both favour the C=O bond hydrogenation, a 

selectivity to unsaturated alcohol was achieved that was not too high (35%). 
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Bachiller-Baeza et al. [124] also prepared composite materials, as supports of Ru catalysts, using 

Ce or Mg as promoter phases in combination with activated carbon (AC) or Al2O3. Composites were 

prepared by different impregnations procedures, where RuNO(NO3)3 pre-impregnated supports, 

Ru/AC or Ru/Al2O3, were again impregnated with aqueous solutions of Ce(NO3)3 or Mg(NO3)2. All 

the composite catalysts and Ru free supports were tested in the selective hydrogenation of citral and 

crotonaldehyde. Addition of MgO or CeO2 decreased the hydrogenation activity. However, while MgO 

did not influence the selectivity, CeO2 increased the selectivity to unsaturated alcohols, especially on 

carbon supported catalysts. Finally, the authors suggested that defects on the surface of the promoter 

were highly selective sites for unsaturated aldehydes hydrogenation due to their influence on the C=O 

bond activation. 

5. Conclusions  

Three types of carbon materials have been mainly used as catalyst supports in the selective 

hydrogenation of citral: activated carbons, graphite, and carbon nanotubes. In most cases, Pt was the 

metal supported, followed by Ru, and only a few works have been found focusing on the use of carbon 

composite materials in this reaction. It is noteworthy that no work has been found where carbon 

aerogels or xerogels were used as support, in spite of the extensive uses these materials have for very 

different catalyzed heterogeneous reactions. Carbon materials have shown very good performance as 

catalyst support for citral hydrogenation; both characteristic porosity and chemical surface can be used 

to modify selectivity in different ways. Moreover, very high selectivity to the unsaturated alcohols 

nerol and geraniol has also been reported in some cases. It should be mentioned that the amount of 

work discovered for citral hydrogenation is smaller than that of other α,β-unsaturated aldehydes. Thus, 

we consider that it is still possible to improve the catalyst development for this reaction, which is a 

challenge that can be addressed with new carbon materials, such as carbon gels, carbon nanotubes or 

carbon fibers, or new carbon material-oxide composites, though optimizing in all cases the metal 

particle sizes and their distribution throughout the porosity of  the supports. 
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