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Abstract:  We calculate whether deviations of Lambert-Beer’s law, which 
regulates depth ablation during corneal ablation, significantly influence 
corneal refractive parameters after refractive surgery and whether they 
influence visual performance. For this, we compute a point-to-point 
correction on the cornea while assuming a non-linear (including a quadratic 
term) fit for depth ablation. Post-surgical equations for refractive parameters 
using a non-linear fit show significant differences with respect to parameters 
obtained from a linear fit (Lambert-Beer’s law). Differences were also 
significant for corneal aberrations. These results show that corneal-ablation 
algorithms should include analytical information on deviations from 
Lambert-Beer’s law for achieving an accurate eye correction 
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1. Introduction 
 
Discrepancies between real and expected post-surgical corneal shape can  limit the outcome of 
corneal refractive surgery, avoiding an effective correction of eye-aberrations, improvements 
of visual performance, and even emmetropization [1-2]. Physical aspects of corneal ablation, 
among other factors (e.g. corneal biomechanics), cause such discrepancies [3-7].  

An essential point in corneal ablation is to quantify with high accuracy the stroma 
removed per pulse. Usually, Lambert-Beer’s law [8-13] (also called the blow-off model [13]) 
is assumed for photo-ablation of corneal tissue: 
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where dp is the ablation depth per pulse, m is the slope efficiency of the ablation, Finc is 

the incident exposure of the laser (energy per illuminated area) pulse and Fth is the threshold 
exposure for the ablation. The quantification of this law would not be very important if the 
incident exposure at the cornea did not vary during ablation.  Reflection losses and non-
normal incidence on the cornea are two factors [5-7] that cause the incident exposure differ at 
each point of the cornea. Therefore, deviations of Lambert-Beer’s law are crucial if the 
incident exposure on the cornea,  Finc, varies during the ablation. 

In recent years, a number of works [3,5,6] quantify the effect that these factors exert on 
the ablation while assuming Lambert-Beer’s law, but no analysis has been made of how 
deviations from this law may affect the corneal ablation. In the present work, we evaluate the 
influence of these deviations and the consequences for post-surgical corneal parameters, 
corneal spherical aberration and the design of new ablation algorithms. 
 
2. Method 
 

 
Fig. 1. Linear and quadratic fit of experimental data on ablation 
depth corresponding to Krueger et al. [11]. F and Fth indicate the 
intensity exposure on the cornea and the threshold exposure, 
respectively. 

 
A numerical review [10-12] of the data provided by experimental works shows that Lambert-
Beer’s law does not accurately fit experimental results.  Most papers perform a linear fit to the 
equation y=mx, with y being the ablation depth per pulse and x=ln(Finc/Fth). As an example, 
Fig. 1 shows experimental data from Krueger et al. [11] on depth ablation in which we have 
made a linear (Lambert-Beer) fit y=mx and a non-linear fit by including a quadratic term that 
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quantifies the linear deviation—that is, y=ax+bx2. As can be seen in Fig. 1, the correlation is 
higher when including a non-linear term. This tendency is similar with other experimental 
data [10-12].  

The point is to know whether the assumption of a non-linear fit significantly alters visual 
performance as compared to the use of a linear fit.  We shall calculate the effects on corneal 
refractive parameters when Eq. (1), used in practical surgery, is replaced by the following 
equation, which includes a quadratic term: 
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First, we provide an analytic factor which quantifies the point-to-point corneal  deviation  

by using Eq. (2) and, from it we will examine the changes in two important refractive 
parameters of the cornea (curvature radius and corneal asphericity), evaluating whether these 
changes are significant for visual performance. Other possibilities of non-linear fit [13] of 
experimental data will be discussed below. 

The point-to-point corneal deviation can be calculated applying the following correction 
factor [3,5,6]: 
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The parameter ρ in Eq. (3) provides the deviation in the ablation when assuming  

Lambert-Beer’s law while the real ablation depth more closely approaches a non-linear 
quadratic fit. The parameters a, b and m are determined from the fits of the particular 
experimental data of the corneal ablation for each laser system.  To deduce a general 
expression that can be evaluated in practice, we need [3,5,6] to calculate Eq. (3) as a function 
of the geometric corneal parameters, corneal radius, and p-factor (p=1+Q, with Q being the 
corneal asphericity). To determine ρ, we will introduce into the term Finc of the numerator the 
variations being due to reflection losses and non-normal incidence on the cornea [5]:  

 
   ( ))~1(cos0 RFFinc −⋅= α      (4) 

 
where F0 is a constant that indicates the maximum exposure, the factor (1- R~ ) provides 

the information concerning the reflection losses [5] and cosα concerns non-normal incidence 
on the cornea [5]. Equations (3-4) depend on the incident point on the cornea and vary across 
the cornea [3,5] since factor (1- R~ ) and cosα depend on the incidence height of the laser from 
the optical axis [3].  

There are two possibilities to compute the denominator of ρ in Eq. (3), depending on the 
variables that the ablation algorithm takes into account. Lambert-Beer’s law is assumed for 
ablation depth but we do not know whether corrections for reflection losses and non-normal 
incidence are also applied in ablation algorithms (they are proprietary). Therefore, if in the 
denominator of Eq. (3) we take Finc as given by Eq. (4), the factor ρ  would compute the 
deviation with an algorithm that takes into account reflection losses and non-normal incidence 
but not any deviation of Lambert-Beer’s law. If in the denominator of ρ we assume Finc=F0, 
the parameter ρ will enable us to compare the deviation with algorithms that assume the 
Lambert-Beer’s law and the incidence exposure on the cornea to be constant for a laser 
device. In the mathematical procedure described in this paper, we will consider this second 
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option, Finc=F0, since, as we will discuss below, the first possibility implies the same 
procedure but mathematically simpler. 

To calculate ρ, we will apply a numerical procedure (described extensively in different 
papers [3,5,6]), in which we assume the conicoid model [3,5,6] and revolution geometry for 
the anterior cornea. The point is to obtain ρ as a function of laser parameters and the distance 
from the optical axis [3,5]. The factor ρ can be expressed analytically as a series expansion in 
the variable y/R up to order 4 [3], where y indicates the distance from the optical axis and R is 
the corneal radius. Thus, it is necessary to compute the coefficients of the following factor: 
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After computations [3], we get: 
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with R and p being the pre-surgery radius and p-factor, respectively, and )/ln( 0 thFFt = .  

Although this factor allows us to evaluate a point-to-point correction, we will evaluate its 
effect on refractive corneal parameters. We will calculate the post-surgical radius, R’ and p-
factor, p’,  by applying the standard paraxial Munnerlyn formula for ablation depth corrected 
(multiplied) by the factor ρ, given by Eq. (3) [5-6]. Therefore, we would obtain the expected 
refractive parameters after refractive surgery when considering the effects included in the 
factor ρ.  The paraxial Munnerlyn formula,  c(y), used in non-customized refractive surgery 
[1,5] is given by:  
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where s is the ablation diameter and D the number of diopters to correct. Other equations 

could be tested but algorithms are proprietary and cannot be explicity known. We used the 
paraxial formula, as it is usual in different works,  given that most non-customized algorithms 
are based on the paraxial formula. We also computed the procedure shown here with the non-
paraxial Munnerlyn formula [1] obtaining similar results.  

The mathematical procedure, an analytical minimum-squares analysis, can be found 
elsewhere [1,3,5,6]. After computations, the post-surgical corneal radius and p-factor are 
given by:  
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3. Results and discussion 

These general equations provide the final refractive parameters when considering a correcting 
quadratic term for ablation depth per pulse that includes the deviation of  Lambert-Beer’s laws 
and reflection losses and non-normal incidence on the cornea. The point is to compare 
refractive parameters given by Eqs. (8) and (9)  with the values expected after using the 
standard paraxial Munnerlyn formula but while assuming the Lambert Beer’s law and without 
considering reflection losses and non-normal incidence on the cornea. These values, R’Munn 
and p’Munn are given by [5]: 
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For a computational simulation, we used the coefficients a, b and m from Krueger et al. 

[11] (see numerical values in Fig. 1) and average initial values [3] d=7 mm, R=7.7 mm, 
p=0.74, t=0.69. We calculated the corneal-power difference Δϕ=ϕ’-ϕMunn obtained from  Eqs. 
(8) and (10). Corneal power is calculated as ϕ=Δn/R, with R being the corneal radius and 
Δn=0.375 the refraction-index difference between the air and cornea. After computations, we 
get Δϕ=0.14D. The results show that the differences are significant for visual performance. 
For example, from D=-2 (diopters) of initial ametropia, the difference is greater than 0.28D 
(diopters), a value that clearly reduces the effective visual acuity [6,14]. In addition, a 
contrast-sensitivity reduction is expected [6,14]. We checked that from t=0.38 (120mJ/cm2) to 
t=0.90 (400mJ/cm2), the difference in corneal power ranged from Δϕ=0.14D  to Δϕ=0.064D, 
respectively, being significant for visual performance for a wide range of laser fluences. 

It is possible to calculate the difference in profile, to provide a quantitative measure of the 
magnitude of the error. If the paraxial Munnerlyn formula is given by c(y), the ablation profile 
corrected by the factor ρ is given by ρ·c(y), and therefore the ablation profile difference is 
Δc(y)=( ρ-1)·c(y). Δc(y), as a function of t and D is : 
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Equation (11) is computed in microns if D is given in diopters and y in meters.  
Computational simulations can be made with any ablation data [11-13]. We selected 

Krueger et al. [11] data because their experimental data include low values (x<1) for 
x=ln(Finc/Fth) although no data with x>0.6. These data are more appropriate to our aim, since 
our calculations include the cosine law and the effects of reflection losses and, it would be 
expected that the incident exposure on the cornea would give lower values than the maximum 
exposure , F0, the farther we get from the optical axis.  Data provided by other authors [12-13] 
show higher values for x, x>1, but only few experimental data for x<1. 

Concerning the p-factor, the results lead to the same conclusion: a significant influence in 
visual performance. An easy computation shows that the post-surgery p-factor difference, 
Δp’=p’-p’Munn, calculated from Eqs. (9) and (10) is higher than Δp’=0.01 from 1D (diopters) 
of initial myopia. Values of Δp’ higher than 0.01 diminish significantly contrast-sensitivity. 
Figure 2 shows the corneal primary spherical-aberration difference as a function of the initial 
degree of myopia computed from the post-surgery p-factor differences. Primary spherical-
aberration, S, is given by [14] S=((p-1)y4

Δn)/R3. Spherical-aberration differences exceed the 
quarter-wavelength criterion [8] for aberration from 1D (diopters). 

Our results show that deviations of Lambert-Beer’s law exert an influence when 
determining refractive parameters after surgery. During corneal ablation, changes occur in 
incident exposure on the cornea, and therefore a highly accurate quantification of ablation 
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depth per pulse is necessary. The analysis shown in this paper can be extended in a similar 
procedure including more terms in the non-linear fit.  

 

 
Fig. 2. Post-surgical corneal spherical-aberration difference (ΔS) 
between computations when considering or not a quadratic deviation 
from Lambert-Beer’s law as a function of the initial degree of 
myopia. 

 
As commented above, other models could be applied for determining the best fit of the 

experimental data corresponding to ablation per pulse. For example, the steady-state model 
for which, the ablation rate, dp, is given by dp=a(x-1)/x, with x=Finc/Fth and a constant, and a 
model that unifies the blow-off and the steady-state model for which [13], 
dp=a+bln((Finc/Fth)+c) with a, b and c as constants. We computed fits from experimental data 
[10-12] to these models obtaining  lower correlation coefficients (r<0.93) than the non-linear 
quadratic fit. In any case, for each laser device the important point is to achieve the best 
analytical adjustment for ablation rate and to apply it jointly to the computation of reflection 
losses and non-normal incidence. 

An additional point is that algorithms are proprietary and it is not possible to know 
exactly which aspects the companies take into account in their algorithm designs. As indicated 
above, the analysis shown here assumes a comparison with algorithms that do not consider 
exposure changes (reflection losses and non-normal incidence on the cornea) and deviations 
of Lambert-Beer’s laws. Equations including reflection losses and non-normal incidence have 
been published in recent years [3,5,6], and thus it is possible that recent algorithms consider 
these two effects but not the deviations of Lambert-Beer’s law. In this case, an easy 
computation in Eq. (3) shows that the point-to-point correction in the cornea, ρ’, is given by a 
linear equation type ( ))~1(cos' 21 Rctecte −⋅+= αρ  with cte1 and cte2 being constants and 
depending on laser parameters. For obtaining ρ’, using the same procedure shown in methods, 
we get: 

      
( ) ( )

[ ]
m

b
andbta

m
with

ypy

=+=

−+−−=

βα

βββαρ
1

5.0232.05.0043.0' 42

    (12) 

Computing the effect on refractive parameters and aberrations for Krueger et al.  data 
[11], we get significant differences for corneal parameters (radius and p-factor) and corneal 
spherical-aberration although we consider only the deviations of Lambert-Beer’s law. 

We should indicate that manufacturers could use their corresponding experimentally 
measured data (with interpolation to obtain a continuous function) for ablation depth as a 
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function of laser fluence. In that case, the non-lineal behaviour of the ablation depth does not 
necessarily imply errors in the ablation algorithm.  

From these results, our proposal is that ablation algorithms should not assumed Lambert-
Beer’s law, and should include analytical correction factors or new corneal-ablation laws after 
experimentally quantifying deviations from Lambert-Beer’s law. This could help minimize 
experimental corneal-shape differences found between the real ablation and the predicted one, 
a necessary step towards more effective eye correction during surgery. 
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