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Abstract 

The observation of the actual behavior by economic decision makers in the lab 

and in the field justifies that bounded rationality has been a generally accepted 

assumption in many socio-economic models. The goal of this paper is to 

illustrate the difficulties involved in providing a correct definition of what a 

rational (or irrational) agent is. In this paper we describe two frameworks that 

employ different approaches for analyzing bounded rationality. The first is a 

spatial segregation set-up that encompasses two optimization methodologies: 

backward induction and forward induction. The main result is that, even under 

the same state of knowledge, rational and non-rational agents may match their 

actions. The second framework elaborates on the relationship between 

irrationality and informational restrictions. We use the beauty contest (Nagel, 

1995) as a device to explain this relationship. 

 

1. Introduction 

Bounded rationality is a concept used in different fields such as economics, 

psychology and computer science, among others. Many models of human 

behavior in the social sciences assume that humans can be reasonably 

approximated or described as "rational" entities that would never fail to behave 

in a rational way according to their preferences. The concept of bounded 
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rationality revises this assumption in order to account for the fact that perfectly 

rational decisions are often not feasible in practice due to the finite 

computational resources available for making them. Herbert Alexander Simon 

(1916–2001) was the first to coin the term “bounded rationality”. This leading 

scientific thinker, whose research ranged across the fields of cognitive 

psychology, computer science, economics and sociology, among other 

disciplines, stressed the limitations of the concept of a rational agent against a 

real human being. In his two seminal papers, one of which was written for the 

Rand Organisation and the other of which was published in the Quarterly 

Journal of Economics, Simon postulates that most people are only partly 

rational, and that they are in fact emotional in the remaining part of their actions.  

Simon describes a number of dimensions along which "classical" models of 

rationality can be made somewhat more realistic. These include a class of utility 

functions, which may be multi-valued functions or recognizing the costs of 

processing information.  

From a more theoretical point of view–particularly in game theory where the 

Nash equilibrium is the most important part–there is a vast amount of literature 

that examines the consequence of bounded rationality on the set of Nash 

equilibrium outcomes. Following Aumman’s suggestion to use simple strategies 

as an approximation to bounded rational strategies, Ariel Rubinstein (1986, 

1988, 1990) and Abraham Neyman (1985,1998) proposed modeling such 

simple strategies as finite machines. After this seminal approach, an active 

branch of research was born, giving rise to a new approach to modeling 

repeated games. These studies have enhanced our understanding of the 

impact of limiting the set of possible strategies and provided answers on how 
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cooperation emerges or how to refine equilibria among the multiplicity 

correspondence from the well-known Folk Theorem. Actually, cooperation is 

justified under the assumption of bounded rationality. 

Another way to capture the idea of bounded rationality is by assuming that 

individuals are on average rational, and that a large amount of people can be 

approximately modeled to act as boundedly rational agents by specifying 

explicit decision-making procedures. This puts the study of decision procedures 

on the research agenda. 

Daniel Kahneman proposes bounded rationality as a model to overcome some 

of the limitations of the rational-agent models in economic literature. In a joint 

work, Kahneman and Twersky refute the standard use of the economic 

decision-making paradigm. Moreover, they prove the emergence of emotional 

and procedural elements. The authors explore the psychology of intuitive beliefs 

and choices, while examining aspects of bounded rationality. More specifically, 

they generate a map of bounded rationality by exploring the systematic biases 

that separate the beliefs that people have, the choices they make from optimal 

beliefs, and the choices assumed in rational-agent models. This work is a 

pioneering approach that lies at the foundation of behavioral economics. In 

addition, bounded rationality suggests that economic agents employ heuristics 

to make decisions rather than a strict rigid rule of optimization in light of the 

complexity of the situation, or the inability to process and compute all the 

possible alternatives due to deliberation costs and the presence of other 

economic activities. 

Nowadays, it is widely accepted among the scientific community that human 
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beings are limited either by the information they have, by their computational 

ability, or by the cognitive limitations of their minds.  

If we accept the fact that boundedly rational agents are limited in formulating 

and solving complex problems and in processing information, then we can 

accept computational approaches for understanding the decision-making 

process. In particular, models of bounded rationality help construct inference 

models and simulate human behavior by using computers. Edward Tsang 

(2008) argues that the effective rationality of agents is determined by their 

computational intelligence. Therefore, we assume that, in many circumstances, 

decision makers lack the ability and resources to arrive at the optimal solution, 

and instead apply their rationality only after having greatly simplified the choices 

available in a pre-processing stage. 

A common thread weaves through all of these branches, namely the idea that 

the rational man is a “rara avis”. Behavioral economics, in particular, is the 

branch where bounded rationality is the central theme. Indeed, the notability of 

behavioral economics stems precisely from the fact that it connects the 

assumption of bounded rationality with other disciplines. 

2. Bounded Rationality and Segregation 

2.1. Schelling’s segregation model 

Tomas Schelling was a forerunner in the study of segregation. In his first paper 

(1969, 1971a), he points out the impact of aggregating individual preferences 

on the final landscape of the society. Schelling’s model starts by assuming a 

social context with n agents located in a geographical society. In his model, 
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there are two types of agents: black agents and white agents. All agents have a 

preference over the mixed structure of their neighborhood, but not over the 

specific configuration. This preference establishes when agents are happy in 

such a society. More specifically, a society consists of a set of agents located 

on a line or in a circle. Agents’ utility is only affected by the structure of their 

local neighborhood, i.e., by the agents to the right and to the left of them. 

Agents are defined by “type” (e.g., black or white) and by a number denoted as 

“tolerance”, which specifies the minimum ratio of close neighbors that must be 

of their same type in order to reach a state of happiness. For simplicity sake, we 

assume that the utility of each agent can be one or zero when the agent is 

happy or unhappy, respectively. For instance, an intolerant agent would be one 

who demands that all the neighbors next to her be of her same type, while a 

moderately tolerant agent would accept that half of her neighbors were like her. 

Schelling, moreover, allows unhappy agents to move across the geographical 

society to improve their individual levels of happiness. Specifically, each 

unhappy agent (following an exogenously given order) will move to the nearest 

place where she becomes happy (if any), that is, to the nearest position on the 

line or in the circle where she attains the minimum fraction of like neighbors as 

determined by her tolerance level. In other words, Schelling models economic 

agents as simple machines that can compute the nearest location where the 

agent’s new mixed neighborhood satisfies her tolerance level of happiness, and 

is able to act according to this computation: when it is an unhappy agent’s turn, 

the agent will either decide to move or to stay. 

2.2. From machines to more rational agents 
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Let us now consider a completely different framework from the above scenario: 

a rational agent. We will examine an instance of a society with eight agents: 

four black agents and four white agents. The agents are displayed as a ring (a 

circle) with alternative colors (Figure 1a). Let us fix a mild tolerance level, in 

other words, each agent wants to share at least one neighbor like her (out of 

the two actual neighbors). Suppose that agents must find their closest matching 

location only clockwise. Notice that the society in this example is an unhappy 

society since no individual exceeds her tolerance level. Consequently, starting 

from the top individual and following in a clockwise direction, the eight players 

should compute the nearest place and move to that place. Following the 

bounded rational dynamics suggested by Schelling, the final configuration is a 

fully segregated society. Figure 2 illustrates the movements and how a fully 

segregated society is reached. 

Figure 1: Integration (a) versus segregation (b) with N=8 subjects 

Figure 2: Movements in the sequential game with bounded rational agents 

 

But what happens if all players are rational? This new situation can be modeled 

as an extensive game with eight players. Each player may choose two possible 

actions: to move or to stay. The final configuration depends on the path played 

by all players and leads to a positive payoff (payoff 1) for each happy player 

and zero otherwise. Given this game, we can compute the subgame perfect 

equilibrium. Players will choose their optimal action (to move or to stay) by 

reasoning backwards, yielding the maximum grade of rationality since at any 

stage the individual should anticipate what would be the best response of the 
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remaining players and play accordingly. Actually, this problem could be 

considered difficult as the number of computations needed to act rationally can 

be exponential in the number of players. Moreover, we may find a multiplicity of 

equilibria of equilibrium strategies, but only two final possible configurations: 

either the fully segregated society or a mixed configuration. 

Now let us enrich the payoff structure in the following way. Suppose that each 

player incurs a positive cost c if she decides to move. In such a case, a player 

may guarantee a positive payoff 1+c if she reaches a happy society and stays 

in her original position. Nevertheless, if she reaches the happy position but 

moves, then she only guarantees the happiness payoff 1. In contrast, if she 

obtains an unhappy situation at the end of the game, she will earn c or 0 

depending on whether she stays or moves, respectively. Under this incentive 

structure, as Benito, Brañas, Hernández and Sanchis (2010) prove, there is a 

unique subgame perfect equilibrium, and therefore a unique equilibrium path 

identified by the movements of only players 4 and 8. 

In this new “costly” environment with rational agents, we are able to 

characterize what is called a rational player. For instance, a rational player 1 

should stay in her initial position even when she is not happy. This is so 

because she can anticipate the best response of player 2, player 3, until player 

8. In particular, the movement of player 8 as her best response will force the 

happiness of player 1. In the same way, player 2 will react identically, and so 

on. But what should be the prediction of a rational player off the equilibrium 

path?  
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Suppose that player 1 has already moved between players 2 and 3. Therefore, 

both players become happy since player 2 is closer to player 8, both are white, 

and player 1 and 3 (both black) stay together. This action is not on the 

equilibrium path. When it is player 4’s turn to play, she has to choose an action 

given the above history that conveys information about the past agents’ choices 

in the society. First, player 1 did not behave rationally. Second, she is not able 

to discriminate the rationality level of players 2 and 3. Hence, player 4 faces a 

dilemma: either the remaining players are all rational or they are not. If she 

considers the first assumption, then her best response following the backward 

induction methodology is to move. Nevertheless, she could consider a different 

approach to tackling this problem: she could react according to a forward 

induction rather than a backward induction, in other words, player 4 assumes 

that the remaining players are rational depending on the rationality observed in 

the previous stages.  

 When players have to face unexpected events, they need to attach meaning to 

such events (see Govindan and Robson,1998). Namely, in our example, player 

4 has to interpret player 1’s action which may convey information about the 

agent’s level of rationality. Therefore, player 4 may generate different beliefs 

such as “no player is rational” or “with probability 2/3, players 5, 6, 7 and 8 are 

rational”. The first belief is consistent with the fact that player 1 is not rational 

and the actions of players 2 and 3 do not convey any information. The second 

belief assumes that player 2 and 3 were rational and that player 1 was the only 

irrational player. Therefore the rest of the society should have the same 

distribution of irrational individuals. When player 4 computes her optimal 

strategy, her best response will naturally depend on these beliefs. 
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This stylized example stresses the difficulties involved in defining bounded 

rationality. The same action of player 4 could be explained as being that of a 

fully rational agent or exactly the opposite! Therefore different actions may 

convey a different level of rationality or not if we assume a change in reasoning. 

 2.3. Complexity theory and tractability of problems 

Complexity theory has been shown to be a useful tool for determining the 

significance of bounded rationality in economic decisions. There are many 

approaches in computer science and mathematics that address the notion of 

complexity, which refers to the difficulty of a general task to be solved (see 

Kolgomorov 1998, Garey and Johnson 1979, Solomonov 2009). We focus on a 

particular dimension of this notion of complexity: time complexity. 

From the computational point of view a problem is a general question regarding 

some abstract object. For instance, a problem could be to determine whether 

there exists a Nash equilibrium in a game when players are not allowed to 

randomize in the choice of their strategies (that is, the problem of determining 

the existence of a pure-strategy Nash equilibrium). 

An instance of a problem is the particularization of this general question. For 

example, to determine whether there is a pure-strategy Nash equilibrium in a 

“beauty contest” game (Nagel, 1995) with three players. The beauty contest is a 

guessing game where all agents must simultaneously announce a number 

between 0 and 100. The player(s) whose announcement is closest to two-thirds 

of the mean wins a prize (for instance 90 euros), which is split equally in the 

case of ties.  For instance, suppose that there are n=3 players who 

simultaneously announce 20, 30 and 40, respectively. In this case, 2/3 of the 
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mean is 20 and player 1 gets the prize. Note that player 3 (who makes the 

highest announcement) regrets her announcement, since given the other 

players’ announcements she would have won the prize by announcing, for 

instance, 13. In that case, 2/3 of the mean would have been 14 and she would 

have won the prize. In this respect, the announcements 20, 30 and 40 do not 

constitute a Nash equilibrium. Now consider the new announcements where 

player 3 anticipated the other players’ actions and the announcements are: 20, 

30 and 13. Here, player 2 also regrets her decision: if she had announced 12, 

2/3 of the mean would have been 10 and she would have won the prize. Hence, 

the announcements 20, 30 and 13 do not constitute a Nash equilibrium either. It 

turns out that the only Nash equilibrium occurs when every player announces 0. 

Here, everyone gets the split prize (30 euros each) and no individual has 

incentives to deviate from her announcement. Intuitively, a strictly positive 

announcement by any player would trigger regret by some other player and 

only a zero announcement by all players can be sustained as an equilibrium. 

Even though the answer to this particular instance is yes (since all players 

guessing zero is an equilibrium in pure strategies), there are instances of other 

games where players cannot achieve an equilibrium in pure strategies. 

Another problem is to determine the best-response to other players’ strategies 

in the beauty contest. A particular instance of this problem would be a set of 

strategies (guesses) by the other players (for instance, 30 and 40): the solution 

for this particular instance would be 20. In this particular problem, note that any 

instance or situation can be handled by a player with a relatively cheap amount 

of resources: just a small set of basic operations must be performed in order to 

give a best-reply to opponents’ strategies. More specifically, this amount of 
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computation is not expected to increase more than linearly as the problem 

increases with the number of opponents. In this sense, we say that best-

replying in the beauty contest is a problem of linear (polynomial) complexity; an 

easy problem. In contrast, we may find other problems that are exponentially 

difficult in which only relatively small instances will be handled (solved) in a 

reasonable amount of time. 

A usual way of measuring the difficulty or complexity of an instance is to 

measure the time that the most efficient machine (or algorithm) would take to 

solve that particular instance. Finally, the time-complexity of a problem is 

measured as the worst time among these efficient solutions (worst-case 

complexity) or the average time among these efficient solutions (average-case 

complexity). In other words, the (worst case) time-complexity of a problem is the 

time that the best machine would take to solve the most difficult instance of that 

problem. Naturally, complexity must be measured as a function of the size of 

the instance, given that larger instances will need a longer time to be 

processed. 

Surprisingly, it has been shown that some problems are very difficult in nature, 

that is, machines will encounter difficulties to solve certain instances of these 

problems in a reasonable period of time. Or even worse, there are problems 

that can never be solved by regular computers! (for a detailed study of 

computational complexity, see Garey and Johnson 1979). This proposition 

provides a very sharp intuition of the natural limitations of human brains in 

dealing with problems. 
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Problems of such intrinsic complexity include the computation of the Nash 

equilibrium or best responses in some games. This makes it difficult to 

associate human behavior with that of a completely rational agent playing the 

Nash equilibrium, and calls for a model of bounded rationality. In fact, many 

other economic environments, such as the formation of coalitions or the 

formation of economic and social networks involve decisions by players or 

social planners that are complex in nature. Ballester (2004), for instance, 

studies the difficulty of problems faced by decision makers (social planners) 

who must achieve the stable organization of society in the sense of minimizing 

the moves across different groups by “unhappy” agents. He shows that many 

general problems of this type are NP-complete, a computational notion of 

complexity that includes a vast amount of well-known problems that are very 

unlikely to be solved in polynomial time. 

 

3. Rationality and Information 

As we already pointed out, bounded rationality is related to situations where an 

agent’s decision-making process does not completely adhere to classical 

rationality assumptions. A further aspect of bounded rationality is incomplete 

information, which takes into account the possibility of scarce information about 

the actual state of the world when agents are faced with economic decisions. In 

principle, this latter concept is independent of rationality, that is, we can have 

fully rational agents making decisions in a world with uncertainty, or completely 

informed agents that are not fully rational, or both. 
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In order to understand this distinction more clearly, we will illustrate it by means 

of the beauty contest explained in section 2. 

3.1. An incomplete information setting 

Consider now a situation in which each player i is privately informed about the 

set of players for which she must guess 2/3 of their mean, that is, player i 

receives a guessing assignment that only she knows. This assignment is 

generated by some random rule that is commonly known by all players. A 

player’s strategy consists of a guess that is contingent on the assignment that 

she receives. 

One example could be a situation with n=2 players where every player is in her 

opponent’s guessing assignment with a probability of 1/2. Each player i would 

have to guess about all 2 players with a probability of 1/2; and only about 

herself with a probability of 1/2 (in this case, the player has a clear advantage: 

her guess would be straightforward and she would earn something). 

The interesting point in this new incomplete information framework is that each 

player privately knows the set of players she must make predictions about (her 

guessing assignment), but she does not know what the other player must 

guess. Hence, in one particular situation, player 1 could be randomly assigned 

to guess about players 1 and 2 and she would have this information, but she 

would not know which set of players player 2 must make predictions about. 

Here, a player must form beliefs about the actual guessing assignment of the 

other player. Moreover, she must also assess what beliefs the other player has 

about her own guessing assignment. And so on.  
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In this new context of incomplete information, the equilibrium only occurs if both 

players announce 0, independently of the guessing assignment that they each 

received according to the assignment rule. Intuitively, equilibrium behavior 

under complete information also turns out to be an equilibrium under incomplete 

information. More importantly, in this particular example, it is the unique optimal 

behavior. 

 

3.2. Information and rationality 

We now turn our attention to the complete information case in order to relate 

our previous example to a bounded rationality setting. We use the same beauty 

contest framework, where bounded rationality is defined using the concept of k-

level rationality as in Nagel (1995). To simplify matters, we define a 0-rational 

player as one whose guess is a focal point such as 50. A 1-rational player is a 

player that best-replies to 0-rational opponents. For instance, in the case of 3 

players, a 1-rational player would choose the best guess assuming that her 

opponents guess is 50, that is, her guess would be around 29. A 2-rational 

player would be a player that best-replies to 1-rational opponents (playing 29), 

so that she would play around 16 (for the sake of simplicity, we adopt a slightly 

different notion from Nagel’s definition of k-level rationality). Continuing this 

reasoning ad infinitum, it would be easy to verify that an infinitely rational player 

would play 0, which is the Nash equilibrium. In many situations, infinitely rational 

players may not play some equilibria that are unstable or not reachable through 

this process. 
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Yet can we relate levels of information to levels of rationality? For instance, in 

the case of incomplete information, let us define (as in Ballester, Ponti and van 

der Leij, 2010) a 1-informed player as a player who knows only her assignment, 

a 2-informed player as a player who knows her own assignment and the 

assignment of the players appearing in her own assignment, a 3-informed agent 

would be defined accordingly, etc… It is important to note that in our example 

with incomplete information, two 2-informed players correspond to a game with 

complete information as long as the level of information possessed by each 

player is common knowledge: each player knows her own assignment and her 

opponent’s, and this is common knowledge. 

The question that arises is whether there is some common pattern in the 

behaviors of a boundedly-rational agent (for instance, a 1-level rational payer) 

and a partially informed agent (for instance, a 1-informed player). This problem 

has been addressed in Ballester et al. (2010), who study the behavior of 

experimental subjects under both frameworks. Even though they focus on a 

different game structure, they show that subjects in the lab tend to behave 

similarly under incomplete information and under rationality limitations. These 

two notions are different and it is difficult to provide a satisfactory theory for this 

feature. This is mainly due to the fact that the task of mapping levels of 

information to levels of rationality involves building an ex-ante link between 

these two notions. 

In order to make this important point clear, let us return to our examples with the 

beauty contest. Note that a minimum level of information (like 1) by all players 

can lead to optimal equilibrium behavior (that is, guessing 0), while all players 

are required to have a sufficiently high level of rationality in order to make 
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guesses that are close to the unique zero-equilibrium. Partially informed agents 

are able to reason ad infinitum within their limited informational environments, 

while boundedly rational agents are only able to perform limited calculations in 

a complete information set-up. 

A completely different approach to establishing this relationship between 

information and rationality has been proposed by computer scientists. The 

rationality-information pair can be easily mapped to the time-space pair in 

computer science. Suppose that a computer has to derive its optimal strategy 

(such as guessing in the beauty contest) against the other computers. The input 

of the machine is the information available about the game payoffs and possibly 

about the other machines’ configurations. Here the level of rationality may 

correspond to the complexity of the machine circuits, while the level of 

information may correspond to the input size or the memory size. In this 

computational context, at least one direct relationship arises between both 

concepts: information bounds rationality in the sense that in order to read or 

process all the available information, we at least need computational resources 

in order to read it! This fundamental relationship is not considered under the 

game-theoretical approach where public or private information is assumed to be 

known by players, but the process by which agents come to acquire this 

knowledge is not specified. 

 

4. Conclusion 
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In this paper, we have explored some of the fundamental difficulties involved in 

identifying bounded rationality in economics. On the one hand, these difficulties 

have to do with the distinction between rational behavior and rational thinking 

as shown through an example using the Schelling’s segregation game. On the 

other hand, there seems to be a link between rationality and information, but 

again it may be difficult to disentangle both dimensions from the observation of 

individual behavior. 
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Figure 1: Integration (a) versus segregation (b) with N=8 subjects 
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Figure 2: Movements in the sequential game with bounded rational agents 

 




