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Abstract

The enterocin AS-48 is the best characterized antibacterial circular protein in prokaryotes. It is a hydrophobic and cationic
bacteriocin, which is ribosomally synthesized by enterococcal cells and post-translationally cyclized by a head-to-tail
peptide bond. The production of and immunity towards AS-48 depend upon the coordinated expression of ten genes
organized in two operons, as-48ABC (where genes encoding enzymes with processing, secretion, and immunity functions
are adjacent to the structural as-48A gene) and as-48C1DD1EFGH. The current study describes the identification of the
promoters involved in AS-48 expression. Seven putative promoters have been here amplified, and separately inserted into
the promoter-probe vector pTLR1, to create transcriptional fusions with the mCherry gene used as a reporter. The activity of
these promoter regions was assessed measuring the expression of the fluorescent mCherry protein using the constitutive
pneumococcal promoter PX as a reference. Our results revealed that only three promoters PA, P2(2) and PD1 were recognized
in Enterococcus faecalis, Lactococcus lactis and Escherichia coli, in the conditions tested. The maximal fluorescence was
obtained with PX in all the strains, followed by the P2(2) promoter, which level of fluorescence was 2-fold compared to PA

and 4-fold compared to PD1. Analysis of putative factors influencing the promoter activity in single and double
transformants in E. faecalis JH2-2 demonstrated that, in general, a better expression was achieved in presence of pAM401-
81. In addition, the P2(2) promoter could be regulated in a negative fashion by genes existing in the native pMB-2 plasmid
other than those of the as-48 cluster, while the pH seems to affect differently the as-48 promoter expression.
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Introduction

AS-48 is a 70-residue alpha-helical circular cationic bacteriocin

ribosomally produced by diverse Enterococcus strains, with antimi-

crobial activity against food-borne pathogenic and food-spoilage

bacteria. These characteristics, together with its stability and

solubility over wide pH and temperature ranges, confer a clear

potential to be used as food biopreservative (reviewed by [1]).

Besides this, AS-48 could have veterinary and clinical applications

[2] currently under investigation, underscoring its potential as an

antimicrobial agent in some disease treatment. For all these

reasons, the AS-48 producer strains are of great industrial and

pharmaceutical interest and genetic engineering to improve the

production of the enterocin AS-48 may be desirable. The

conclusive identification of the promoters involved in AS-48

expression and a better understanding of the regulation of the gene

expression would facilitate the desired manipulations. Actually,

there is extensive and detailed information on the genetic

determinants and physicochemical characteristics of AS-48

(reviewed by [3]). The gene cluster involved in AS-48 expression

was separately described by Martı́nez-Bueno et al. [4] and Dı́az

et al. [5] in the conjugative, pheromone response plasmid pMB-2

(68 kb), and by Tomita et al. [6], who described the identical

bacteriocin (namely bac21) located in the pPD1 plasmid (59 kb),

both in Enterococcus faecalis strains. An additional variant, AS-48RJ

produced by E. faecium was found to be encoded in the

chromosome [7]. More recently, a new AS-48 producer strain,

E. faecalis UGRA10 carrying a 70-kb plasmid, has been isolated

from a Spanish sheep’s cheese [8]. Remarkably, E. faecalis

UGRA10 shows characteristics of a probiotic strain with

biotechnological potential to be developed as protective agent in

food preservation.

According to Martı́nez-Bueno et al. [4] and Dı́az et al. [5] the full

expression of the as-48 cluster depends on the co-ordinated

expression of ten genes (as-48A, B, C, C1, D, D1, E, F, G and H)

(GenBank accession number KJ146793, Y12234.1 and

AJ438950.1), although only nine (bacA, B, C, D, E, F, G, H, and

I) were identified in the bac cluster [6] (Genbank D85752.1)

(Figure 1). However, in the physical and genetic map published by

each group there are some differences (Figure 1A). The main

discrepancy is that in the bac cluster a protein homologous to As-

48D1, the proposed immunity determinant against AS-48, was not

considered. However, the mutants that were described in that

work show that the deletion of the region where the immunity
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protein As-48D1 is encoded, clearly makes a difference in the

phenotype in terms of resistance against AS-48 [6]. This is

consistent with the existence of a small ORF encoding an

immunity determinant as was shown later [9]. There are some

other variations, in addition to the nomenclature used, related to

the predicted initiation codons for bacC and bacD genes (homol-

ogous to as-48C and as-48C1, respectively), and also on a putative

promoter proposed for the bacC gene (Figure 1A).

Transcriptional analysis of the as-48 cluster revealed the

existence of two polycistronic mRNAs, T1 (3.5 kb) and T2

(6.4 kb), corresponding to the expression of the two operons as-

48ABC and as-48C1DD1EFGH, respectively (Figure 1A). A post-

transcriptional regulation mechanism was elucidated for T1 that

undergoes endonucleolytic processing into two smaller fragments

with different half-life in order to ensure the optimal stoichiometry

of each gene product [10]. Furthermore a second and shorter

mRNA (T3, 5.4 kb), possibly transcribed from an internal

promoter, encodes at least the last four genes (as-48EFGH) [5].

All the commented features are in agreement with the general

trend in bacteria, where numerous genes are organized in operons

transcribed from the same promoter into a single polycistronic

mRNA molecule, although many genes could also be transcribed

from internal promoters located at intergenic regions or within

adjacent genes [11]. Nevertheless, it has been suggested that T1

and T2 are constitutively expressed, while transcription from

putative internal promoters might be regulated [5]. In other

circular bacteriocins like uberolysin, circularin A and butyrivi-

briocin AR10 there are regulatory elements encoded in the same

gene cluster [12], whereas the production of subtilosin A is

controlled by external regulators in response to environmental

factors [13–15].

Our group has provided valuable information regarding the

impact of the amino acids in the propeptide sequence that are

involved in the head-to-tail peptide bond formation [16] and the

impact of circularization in the activity and structure of AS-48

[17,18]. In this moment, we are interested in unravelling the

interactions between the proteins encoded in the as-48 gene cluster

and in elucidating the regulation of the gene expression. Thus, an

accurate identification of the promoters is crucial. Such informa-

tion could also help to explain the failure in the heterologous

expression of AS-48 in other lactic acid bacteria, especially in

Lactococcus lactis [19], a GRAS (generally recognized as safe) bacterium

of great biotechnological interest. Additionally, the identification

of promoters, particularly those strong and inducible, provides a

potent biotechnological tool for research and industry [20–23].

However, the identification of promoter regions is problematic

when dealing with bacterial genomes that have a high A+T

content such as E. faecalis (ca. 60% A+T). In these genomes,

stretches resembling 210 elements (59-TATAAT-39) are frequent

and, therefore, the definitive identification of promoters from

sequence information remains more difficult [11]. For these

reasons, we have investigated the activity of the several putative as-

48 promoter regions identified in silico measuring their different

expression level in diverse strains. For this, we carried out

transcriptional fusions of each putative promoter fragment to drive

the expression of a synthetic mCherry gene codon-optimized for

Enterococcus into the pTLR1 vector [24]. We isolated seven putative

promoter fragments from the as-48 cluster according to two

software analyses and cloned each fragment to drive the expression

Figure 1. (A) Schematic representation of the as-48 (black) and bac21 (grey) gene clusters. Solid black arrows represent the proposed promoter
regions and dotted arrows indicate the mRNAs detected by Fernandez et al. [10], Dı́az et al. [5] and Martı́nez-Bueno et al. [9]. Solid grey arrows
represent the promoter regions proposed by Tomita et al. [6]. (B) Promoters identified in silico (dashed arrows) and their location according to AS-48
nomenclature (Genebank KJ146793 and Y12234.1): PA (nt 1105-nt 1396), Pc (nt 2129-nt 2477), P2(2) (nt 2788-nt 3163), P2(1) (nt 2788-nt 3010), PD1 (nt
3721-nt 4160), P3(1) (nt 4353-nt 4544) and P3(2) (nt 4188-nt 4544). Predicted terminators according to BPROM [32] in as-48 gene cluster are pointed
with a T.
doi:10.1371/journal.pone.0090603.g001
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of the mCherry reporter gene in three bacterial strains, E. faecalis, L.

lactis and E. coli, using the previously characterized promoter PX of

Streptococcus pneumoniae for comparison [24].

Materials and Methods

Bacterial strains, vectors and culture conditions
Bacterial strains and vectors used in this work are listed in

Table 1. Escherichia coli was grown at 37uC with shaking in Luria

broth (LB; Scharlau, Barcelona, Spain) and selected with

erythromycin (Em 250 mg/ml, Sigma-Aldrich, Madrid, Spain)

for cells harboring the pTLR1-derivatives. E. faecalis and L. lactis

were routinely grown in brain heart infusion (BHI; Scharlau) at

37uC and M17 (Scharlau) plus glucose (0.5%), GM17, at 30uC,

respectively. Erythromycin at 10 mg/ml and/or chloramphenicol

at 20 mg/ml (Sigma-Aldrich, Madrid, Spain) were added to the

culture medium for cells harboring pTLR1 derivative plasmids or

pAM401-81 plasmid, respectively.

For fluorescence detection, several culture media were assayed:

the chemically defined media CDM-PC [25] and CDM-BP [26],

the semi-defined complex medium supplemented with 0.8%

glucose (CM-G) [27] and the complex media GM17 and LB.

General DNA manipulation and transformation
The plasmid-free strain E. coli TOP10 was used in cloning

experiments. The preparation of chemiocompetent cells to be

transformed with plasmid DNA and ligation products was done by

the calcium chloride protocol as described by Seidman et al. [28].

Electroporation of L. lactis and E. faecalis was performed according

to the methods described by Holo and Nes [29] and Friesenegger

et al. [30], respectively. Plasmid DNA was isolated from E. coli

using the Plasmid Mini I kit from Omega bio-tek (VWR

International, USA). PCR products were purified with the

AccuPrep PCR Purification Kit (Bioneer, Daejeon, Korea) and

sequenced. Restriction enzymes were obtained from Thermo

Scientific (Madrid, Spain), ligase from Invitrogen (Life Technol-

ogies, Madrid, Spain), TaqDNA polymerase from MBL (MBL

International Corporation, Woburn, USA); and used as recom-

mended by the suppliers. DNA was sequenced using an ABI

PRISM Dye Terminator Cycle Sequencing Ready Reaction

(Perkin Elmer, Applied Biosystems, USA).

In silico analysis
Putative promoter regions from as-48 or bac regions (GenBank

KJ146793 and Y12234.1, and D85752.1, respectively [9,6]) were

analysed with the bioinformatic programs Promoter Prediction by

Neural Network (NNPP) [31] (http://s.fruitfly.org/seq_tools/

promoter.html) and BPROM (Softberry Inc., Mount Kisco, NY,

USA; http://linux1.softberry.com) [32].

Construction of the pTLR1-derivative plasmids with the
mCherry reporter gene

pTLR1 (KitMygen, Madrid, Spain) is a vector for promoter

analysis that contains the strong promoter PX from S. pneumoniae

upstream of mCherry [24]. The plasmid pAM401-81 was used as a

template for PCR amplification of the different predicted

promoters [5,9]. All primers used in PCRs (listed in Table 2)

were synthesized by Biomedal S.L. (Sevilla, Spain) and were based

on the published DNA sequence of the as-48 locus of E. faecalis

(Genebank KJ146793, Y12234.1 and AJ438950.1). The PCR

conditions were the same for all the amplifications performed:

96uC 29, 306 (96uC 30’’, 50uC 30’’, 72uC 30’’), 72uC 29. The

amplified DNA fragments containing the presumed promoter

regions were cut with BglII and BamHI and ligated into pTLR1

previously digested with the same enzymes, obtaining the pTLR1-

derivative constructions shown in Table 1. The ligation mix was

transformed into E. coli TOP10. The desired orientation of the

fragments was determined by colony PCR using the forward

primer of each promoter and the pTLR-rev primer, which anneals

in the vector backbone (Table 2). The verified plasmid isolated

from E. coli was used to transform L. lactis LM2301 and E. faecalis

JH2-2 or JH2-2 harboring either pMB-2 or pAM401-81 plasmids.

pTLR1d lacking the polylinker but containing the mCherry gene

Table 1. Strains and plasmids used in this study. CmR chloramphenicol resistant, EmR erythromycin resistant.

Bacteria Characteristics Source

Escherichia coli TOP10 F- mcrA D(mrr-hsdRMS-mcrBC) w80lacZDM15 DlacX74 nupG recA1 araD139 D (ara-leu)7697
galE15 galK16 rpsL(StrR) endA1 l2

Invitrogen

Enterococcus faecalis JH2-2 Plasmid free, Rifr, Fusr, AS-48s [42]

Enterococcus faecalis JH2-2 (pMB-2) JH2-2 transconjugant with pMB-2 plasmid [5]

Lactococcus lactis LM2301 Plasmid free, host strain for cloning [43]

Plasmid Characteristics Source

pAM401-81 CmR, as-48 gene cluster cloned in pAM401 (25 kb) [5]

pTLR1d Obtained from pTLR-1 vector after digestion with BglII and BamHI (lacking the polylinker
but containing the mCherry gene)

This work

pTLR1 pTLR derivative containing the promoter PX; EmR (8.3 kb) [24]

pTLR1-PA EmR, PA promoter cloned in substitution of Px, controlling mCherry expression (8.0 kb) This work

pTLR1-PC EmR, PC promoter cloned in substitution of Px, controlling mCherry expression (8.1 kb) This work

pTLR1-P2(1) EmR, P2(1) promoter cloned in substitution of Px, controlling mCherry expression (8.0 kb) This work

pTLR1-P2(2) EmR, P2(2) promoter cloned in substitution of Px, controlling mCherry expression (8.2 kb) This work

pTLR1-PD1 EmR, PD1 promoter cloned in substitution of Px, controlling mCherry expression (8.2 kb) This work

pTLR1-P3(1) EmR, P3(1) promoter cloned in substitution of Px, controlling mCherry expression (8.0 kb) This work

pTLR1-P3(2) EmR, P3(2) promoter cloned in substitution of Px, controlling mCherry expression (8.15 kb) This work

doi:10.1371/journal.pone.0090603.t001
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without promoter was here obtained from pTLR1 vector after

digestion with BglII and BamHI enzymes and religation.

Detection and quantification of fluorescence emission in
microtiter plates

Each assay was repeated in triplicate in a 96-well optical flat-

bottom microplate (Nuclon Delta Surface, Thermo Scientific,

Roskilde, Denmark) and monitored with an Infinite 200 Pro

microplate spectrophotometer (Tecan Group Ltd., Mannedorf,

Switzerland). Briefly, each transformant was separately inoculated

into three wells with a final volume of 100 ml/well of the CM-G

medium with the appropriate antibiotics at an OD600 nm 0.05 and

then grown for 18 h at 30uC for Lactococcus or 37uC for E. coli and

Enterococcus. During cultivation the spectrophotometer simulta-

neously provided quantitatively online data every 10 minutes of

cell density (OD600) and in vivo mCherry fluorescence measured at

an excitation wavelength of 590 nm and an emission wavelength

of 620 nm. E. coli cultures were grown with continuous shaking

and stopped 1 min before measuring the OD and fluorescence. In

the case of E. faecalis and L. lactis shaking was applied only for 10

second before taking the measurements of OD and fluorescence.

In order to determine the influence of the pH, the medium was

adjusted at different pH values (6, 6.5, 7.0, 7.5 and 8.0) using

0.1 M phosphate buffer according to Gomori [33]. All the

experiments were performed in triplicate. The background

fluorescence of the control strains (harboring the pTLR1d

promoterless plasmid) was subtracted for each time point during

the growth. In addition the values of fluorescence shown were

normalized by the OD to avoid differences in the growth that may

lead to erroneous conclusions.

Statistical analysis
The statistical analysis of the data was performed using the IBM

SPSS statistics 20 (IBM, Spain). Data relating to microbiological

density and fluorescence under different conditions were subjected

to ANOVA. Tukey was used as a post-hoc test to determine

significant differences between promoters and a 0.05 signification

level (p value) was considered. The average data from duplicate

trials 6 standard deviation was determined.

Fluorescence microscopy
Cells were grown overnight in 1 ml of the appropriate medium

and harvested by centrifugation. After 3 washes in sterile PBS

(Sigma-Aldrich, Madrid, Spain), 5 ml of cells were placed on slides

and observed in an Olimpus BX51 microscopy (model BX51TF

with a power supply unit Olimpus U-RFL-T SN 1101008) using a

TRITC filter (excitation 590 nm and emission 620 nm). The

images were taken at 250 ms of excitation.

Activity tests
The antibacterial activity of diverse AS-48-producing E. faecalis

strains was performed as described by Fernández et al. [18].

Results and Discussion

Bioinformatic location of promoter regions in the as-48
gene cluster

In previous works (e.g. [4–6]) several promoter regions

triggering the as-48/bac21 gene cluster expression have been

proposed (Figure 1). To unambiguously define the promoter

regions involved in AS-48 expression, putative 210 and 235

hexamers were located by their resemblance to the previously

defined Enterococcus consensus sequences, using the Promoter

Prediction by Neural Network (NNPP) [31] and the BPROM

programs (Softberry Inc., Mount Kisco, NY, USA; http://linux1.

softberry.com) [32]. Preference was given to motifs that matched

to the consensus sequence at the most conserved positions of the

hexamers and gave rise to a 235/210 with a 1761 nt spacer

according to both programs. Therefore, a set of seven putative

promoters was predicted (Table 3 and Figure 1B). Detection of

other promoter regions binding different s factors in which the

235 sequences are not required or extracellular function s factors

which do not bind a standard 210 sequences could not be

achieved using this software. In general, the 210 sequences are

Table 2. Oligonucleotides used in this study.

Target Primer Sequence* 59-39 Product size (bp)

PA ForPA ACAAAGATCTGCCATGATTGATGAAAAAAA 256

RevPA TTTTGGATCCTGCATTTCATTGCTATTATAC

Pc ForPC-P2(1) ACGTAGATCTGTACATGCGATTAGATACCATTAATTTTG 347

RevPc CATCGGATCCTAAAAGTTCTATAAAAAAATGTGGAAG

P2(1) RevP2(1) TTTTGGATCCCTTTCTTAAGAACTTATATGG 263

ForP2 TTACAGATCTTGCTGAGTTAAAGGTATACTC

P2(2) ForP2 TTACAGATCTTGCTGAGTTAAAGGTATACTC 396

RevP2(2) TACGGGATCCTAATTTAGGAAAAAAACTCAAGTTTTTTTC

PD1 RevPD1 TAGTGGATCCTTCAGTTTGTCAAGATTAATTA 439

ForPD1 ACGTAGATCTGAATATGACGGCACATTGTATACAG

P3(1) ForP3(1) AATTAGATCTAAAATAAGAAGCTGTACAATAG 191

RevP3 TTTTGGATCCCTTTCTTGTCATAATTAAAG

P3(2) RevP3 TTTTGGATCCCTTTCTTGTCATAATTAAAG 356

ForP3(2) CCGAAGATCTGAATTGATTACATTATTATTATAGTCTCAC

pTLR
plasmid

pTLR-rev GTTGAAACTCGTGCGATCCCCCGGG

*Restriction enzyme sites are depicted in italics.
doi:10.1371/journal.pone.0090603.t002
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better conserved in all the proposed regions while the 235

sequences were substantially less conserved (Table 3). A charac-

teristic TG motif of Gram-positive bacteria promoters, often found

1 bp upstream of the 210 sequence (the 216 region) [34], was

found in 4 of the 7 promoters studied (Table 3). Also an AT-rich

region located upstream from the 210 and 235 hexamers was

identified. Such an AT-rich region may activate the promoter by

DNA bending [35] or form an UP element that stimulates

transcription through a direct interaction with the C-terminal

domain of the RNA polymerase alpha subunit [36]. In general, the

distance between the 210 and 235 hexamers ranged from 11 to

18 bp (Table 3).

As a result, we have selected the following promoter regions

putatively involved in the expression of the AS-48 character

(Figure 1 and Table S1):

i) The PA promoter: it is a region with canonical 210 and 235

regions, separated by a correct spacing that could allow for the

binding of the vegetative s factor of the bacterial RNA polymerase

without the need for an activator [10].

ii) The PC promoter: Fernández et al. [10] reported that as-48BC

genes overlapped and they had a coupled transcription from the

PA promoter in absence of a specific promoter for as-48B. This fact

does not invalidate, however, the possibility that as-48C could have

its own promoter (PC) as it had been proposed for its counterpart

bacC [6]. In such case, bacC would encode a shorter protein (57

residues), starting 246 nt downstream from bacB, which does not

overlap with bacB as, in fact, it was proposed for its homologous as-

48C in the as-48ABC operon [9]. To address this point, we have

amplified the region located 347 nt upstream the as-48C gene. It

contains motifs that match the consensus sequence at the most

conserved positions of the hexamers and an appropriate spacer in

accordance with the two predictive programs used (Table 3).

iii) The P2 promoter: according to Dı́az et al. [5], this promoter

drives the expression of the as-48C1DD1EFGH operon. However,

there are discrepancies between Martı́nez-Bueno et al. [9] and

Tomita et al. [6], who place the origin of as-48C1 or bacD 400 bp

and 500 bp, respectively, from the previous predicted ORF.

Additionally, the software used in the predictions also shows two

possible promoters in the region. Therefore, we decided to clone

the two putative promoters, namely P2(1) and P2(2), to clarify this

point (Table 3 and Figure 1B).

iv) The PD1 promoter: the possibility of an internal promoter in

the as-48C1DD1EFGH operon, from which the gene as-48D1 might

be transcribed has been also investigated. This new promoter

might be located in a 439 nt fragment upstream from the start

codon of as-48D1 containing a 210 and a 235 consensus sequence

with 4 out of 6 matches (Table 3). This putative internal promoter,

which was not considered in the bac21 cluster [6], would confer

some degree of immunity to the producer strain (reviewed by

[3,12]).

v) The P3 promoter: the putative P3 promoter firmly postulated

by both, Dı́az et al. [5] and Tomita et al. [6], driving the expression

of the four overlapped as-48EFGH genes should be located in the

204 nt intergenic region identified between the as-48D1 and as-

48E genes, where a plausible 210 and 235 region separated by a

correct spacing was found (promoter P3(1)) (Table 3). Additionally,

a larger region including part of as-48D1 and a series of conserved

sequences separated by 9 nt (named promoter P3(2)) has been also

cloned according to the prediction.

Construction of pTLR1-derivatives containing the
promoter regions fused to the mCherry gene

To map more precisely the promoter regions driving the

expression of as-48ABC, as-48C, as-48C1DD1EFGH, as-48D1 and

as-48EFGH genes, the presumed promoter fragments were

amplified and separately inserted into the promoter-probe vector

pTLR1, creating several transcriptional fusions with the mCherry

gene, which is codon optimized for expression in LAB [24]. To

amplify such regions, we used the pAM401-81 plasmid as template

and specific pairs of primers (Table 2) discarding the putative RBS

of each promoter in the amplifications. In this way, the RBS is

common in all the constructions and therefore the amount of

mCherry produced will correlate more accurately with the

strength of each promoter without any effect of the individual

RBSs. The advantage that this expression system provides is the

easy monitoring of the mCherry expression as autofluorescence

emitted after an excitation pulse of light with a wavelength of

590 nm. As positive and negative controls, the strong PX promoter

from S. pneumoniae, which in the absence of the pneumococcal

MalR regulator is constitutively expressed [24] and the pTLR1d

vector here constructed were used. The recombinant pTLR1-

derivative plasmids were separately constructed and cloned into E.

coli TOP10, and transferred to the LAB hosts L. lactis LM2301 and

the well-characterized laboratory strain E. faecalis JH2-2.

Conditions for the evaluation of the promoter regions
The mCherry expression can be detected in different ways [20].

As a first indication, a distinct colour of the colonies on agar plates

is observed according to the host used: the strongest colour

appeared in E. coli, being paler in the LAB hosts indicating roughly

the strength of the promoters cloned. This result was confirmed by

microscopic analysis during both exponential and stationary phase

Table 3. Nucleotide sequences of the predicted promoters from the as-48 gene cluster.

Promoter 235 Spacing and TG motif 210 RBS and +1

consensus TTGACA TATAAT AGGAGG

PA TTGcat CAAAATAAACTACATGGG TATAAT (30 nt)AGGAGGA(5 nt)ATG

PC TTttCt GGGAGTGTTAGTAGG TATAAT (246 nt) AGGA(14 nt)ATG

P2(1) TTGggA TAGGCAACTATATTC TAaAAT (56nt)AGGAAG(6 nt)TTG

P2(2) TTcACt ATTTTTTTTGTTTTCAA TtTAAT (51 nt)AGGGA(20 nt)ATG

PD1 TTGtag AATATTTGTCAAA TATAAT (17 nt)AGGGA (16 nt)ATG

P3(1) TaGACt AATCAGCAAAGGGAGTAT aATAAT (108 nt)AGGA(9 nt)ATG

P3(2) TTtttt TTCTTCCCCAT TAaAAT (220 nt)AGGA(9 nt)ATG

The putative ribosome binding sites (RBS), TG motif and the distance to 210 boxes and +1 position are shown.
doi:10.1371/journal.pone.0090603.t003

The as-48 Cluster Promoters

PLOS ONE | www.plosone.org 5 March 2014 | Volume 9 | Issue 3 | e90603



(data not shown). However the most quantitative results were

obtained with E. faecalis, L. lactis and E. coli transformants by

measuring the simultaneous cell growth and fluorescence during

prolonged cultivations using a microplate reader spectrophotom-

eter. To optimize the cultural conditions, we assayed two

chemically defined media (CDM-PC and -BP), a semi-defined

complex medium (CM-G) specifically designed for AS-48 produc-

tion and purification purposes, and two complex media (GM17

and LB). The basal arbitrary units of fluorescence (AU) detected

before inoculation for CDM-PC (315.8), CDM-BP (316.3), CM-G

(401.0), LB (695.8) and GM17 (2943.0), revealed that although

CM-G had higher background fluorescence than the CDMs, this

medium allows the growth of the different strains to higher OD.

Therefore, we chose CM-G for the fluorescence assays.

Identification of functional promoters in the as-48 gene
cluster

Taking together our results about the fluorescence emitted in

CM-G medium by the transformants with the different promoter

regions cloned (Figure 2), we can confirm the existence of PA and

the suitability of the P2(2) proposed by Tomita et al. [6]. These two

promoters are functional and active in E. coli and in the two lactic

acid bacteria investigated. Apart from this, our results confirm the

existence of the internal PD1 promoter suggested by Martı́nez-

Bueno et al. [9]. The absence of fluorescence observed in the

micrographs and during the growth curves, unequivocally

confirms that those fragments cloned as PC, P2(1), P3(1) and P3(2),

did not express the mCherry protein in any of the culture

conditions assayed, being for this reason discarded (data not

shown). PA, P2(2) and PD1 contain the typical 216 region,

reinforcing the interest of this region for the promoter activity.

The absence of PC is in accordance with the expression pattern

observed by Fernández et al. [10] for the as-48ABC operon. In this

operon, the PA promoter controls the normal expression of as-48-

ABC genes rendering the transcript T1 that undergoes a post-

transcriptional processing, and arises two different transcripts TA

and TBC with distinct half-life and stability, ensuring the

appropriate stoichiometry of the different gene products

(Figure 1A). Additionally, the existence of the promoter PC

proposed by [6] would mean that bacC is an ORF shorter than as-

48C and would not match with the typical DUF95 domain found

in circular bacteriocin gene clusters.

The absence of mCherry expression driven from P3 suggests

that if P3 does not exist, the second and shorter mRNA (T3,

5.4 kb) identified by Dı́az et al. [5] that encodes the last four genes

(as-48EFGH), could only be explained by transcription from the

internal PD1 promoter here identified. This conclusion is in

accordance with the loss of transcription observed in JH2-2

(pAM401EH) transformants where the as-48A-D1 genes were

deleted [5]. These results also indicate that most likely there is

no monocistronic mRNA encoding for As-48D1 as it was

suggested by [9] and that the immunity determinants As-

48D1EFGH are transcribed together since no P3 promoter could

drive the expression of the T3 detected by [5].

As it is shown in Figure 2, the PX promoter from S. pneumoniae

was the strongest one in E. coli as well as in both, L. lactis and E.

faecalis, under these experimental conditions. It is worth noting that

among the three functional as-48 promoters identified in this work,

P2(2) directs the highest levels of transcription with maximal

fluorescence values ranging from 2585 AU in E. coli to 984 AU in

E. faecalis or 1206 AU in L. lactis, being E. coli the exception where

PA reaches a maximum fluorescence value of ca. 3600 AU

(Figure 3). All this is in accordance with the colour of the colonies

in solid media and the fluorescence of the cells observed in the

fluorescence microscopy (data not shown). As expected, the

transcriptional fusion of PA with the mCherry gene displayed

fluorescence in the LAB species, although surprisingly it was more

efficient in lactococcal cells (633 AU versus 466 AU). Finally, the

PD1 promoter shows a basal and maintained expression, of around

25% compared with that of P2(2) in LAB or 20% in case of E. coli.

This expression level must be enough to ensure its protective

functional role in the cells (Figures 2 and 3), together with the

expression of the additional determinants As-48EFGH [5], and

with As-48C [19], which contains a DUF95 domain recently

suggested to be involved in both, production of and immunity,

against the circular bacteriocin lactocyclicin Q [37]. In general,

the level of fluorescence reached by LAB strains containing

pTLR1-P2(2) was 2-fold compared to pTLR1-PA and 4-fold

compared to pTLR1-PD1. Although the level of expression was

lower in LAB strains than in E. coli, the ratio between each

promoter was maintained. Our cumulative results indicate that the

mCherry fluorescence increased in parallel with OD600 during

the exponential phase of growth reaching the maximal values

during the transition to stationary phase.

Induction of mCherry expression
It is likely that the promoters here identified could be regulated

in the native E. faecalis S-48 strain by the presence of genes

harbored in its genome or in pMB-2 (the native plasmid found in

this strain) or even to be influenced by the presence of pAM401-81

(with only the as-48 gene cluster cloned). Furthermore, an adapted

response to the cultural conditions cannot be discarded in

whichever condition. To address these questions, we have

designed different experiments in E. faecalis to compare the

fluorescence emitted during the growth of the JH2-2 transformants

containing PA, P2(2) or PD1 cloned into pTLR1, with that of the

double transformants containing, additionally, either pAM401-81

or pMB-2, both of them compatible with pTLR1. In the results

exposed in Figures 3 and 4, it could be observed that the presence

of pAM401-81 or pMB-2 affects the expression of P2(2) and PA

promoters (Figures 3 and 4). Thus, in presence of pAM401-81,

P2(2) reaches values of 1065 AU at 22 h, which are higher

(p = 0.018) than those obtained for the single JH2-2(pLTR1-P2(2))

transformants, although the most noticeable result is the remark-

ably reduced fluorescence (p values between 0.004 and 0.000)

repeatedly observed in presence of pMB-2. These results are also

in accordance with the minor amounts of secreted AS-48 observed

by JH2-2(pMB-2) compared to that of JH2-2(pAM401-81)

transformants (Figure S1). In relation to PA we found that the

levels of fluorescence emitted by E. faecalis JH2-2 (pTLR1-PA) are

slightly higher in presence of pAM401-81 but more reduced when

pMB-2 is present, with significant differences after 14 h of growth

(p value of 0.014) according to the statistical analysis performed.

Otherwise, the pH is an outstanding factor in LAB bacteria

because of the production of lactic acid during the fermentative

metabolism leads to the acidification of the media and the arrest of

cell growth and, consequently, to the beginning of stationary

phase. The influence of the pH in the production of different

bacteriocins, including the circular sactipeptide subtilosin A, has

been reported [15,38240]. Consequently, we have investigated

the influence of the pH on the levels of mCherry expression

relative to the cell mass, in the single and double transformants

during prolonged cultivation in CM-G broth buffered at pH

values of 6.0, 6.5, 7.0, 7.5 and 8.0. The growth curves showed a

similar profile in all the conditions tested. The highest OD values

were achieved at the highest starting pH of the culture, reaching

the stationary phase between 6 h and 10 h after inoculation

(Figures S2, S3, S4). In overall, the mCherry expression driven
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from PA and P2(2) promoters confirmed that the highest expression

levels are achieved at the high pHs (ca. 8) with significant results (p

values of 0.000) from 16 and 18 h of growth (Figure 5 A and B),

respectively, while PD1 seems to perform better at low pH

(Figure 5C). Therefore, it is worth to emphasize that due to the

presence of glucose in the medium the initial pH is only

maintained during the first 6 h of growth and then, when the

exponential growth commences, declined between 1.522 units in

each case. These results justify the growth curves obtained and are

in accordance with the importance of the pH stabilization at 6.5

during the growth as a key factor influencing the AS-48

production [41].

As above, the response of the as-48 promoters showed an

improved expression of the mCherry protein in presence of

pAM401-81, particularly at the most alkaline pH (Figure 5). The

most outstanding result was once more detected with P2(2) in the

presence of pMB-2 (Figure 5B). Promoter P2(2) controls the

expression of the as-48C1DD1EFGH genes encoding two ABC

transporters for secretion (as-48C1D) and self-protection (as-

48EFGH), in addition to the immunity determinant (as-48D1)

against AS-48. As it can be seen in Figure 5B, expression of

mCherry from P2(2) was retarded in E. faecalis JH2-2 (pMB-2) and

the fluorescence levels were visibly lower at any pH assayed. These

results, that have been several times repeated, confirm the above

suggestion on the P2(2) promoter, in the sense that it could be

regulated in a negative fashion by genes existing in the native

pMB-2 plasmid different from those of the as-48 cluster.

Conclusions

The current study analyses the functionality of seven promoter

regions (namely PA, PC, PD1 and two regions for P2 and for P3)

putatively involved in the full expression of the AS-48 character,

which is dependent on the co-ordinated expression of the as-

48ABCC1DD1EFGH genes. Identifying promoters in this locus is

relevant to understand how AS-48 is produced, and how to

engineer strains to more effectively produce AS-48. The corre-

sponding amplified regions were cloned into the promoter-probe

vector pTLR1 by transcriptional fusions with the mCherry gene.

The fluorescence emitted by the transformants with the pTLR1-

derivatives during a prolonged incubation in CM-G medium,

allowed us to ratify the existence of the PA promoter (driving the

expression of the as-48ABC operon) and, more importantly, to

definitively localize the P2(2) promoter (involved in the transcrip-

tion of the second operon as-48CC1DD1EFGH), and the internal

PD1 promoter, presumably responsible for the transcription of the

Figure 2. Expression of mCherry normalized by the OD 600 nm encoded by pTLR1-derivatives in E. coli TOP10, L. lactis LM2301 and
E. faecalis JH2-2 during prolonged growth in CM-G medium. Fluorescence emission of mCherry was recorded at 620 nm after excitation at a
wavelength of 590 nm. The growth of cultures was monitored at a wavelength of 600 nm. pLTR1-PX (dark blue), pLTR1-PA (purple), pLTR1-P2(2) (sky
blue), pLTR1-PD1 (orange) and pTLR1d (red) used as negative control. Standard deviation bars for the different replicates are included.
doi:10.1371/journal.pone.0090603.g002
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last four genes (as-48EFGH) together with the immunity determi-

nant as-48D1. The other promoter regions studied, included the P3

promoter reiteratively proposed [426,9], could be discarded for

the absence of functionality in the current assay.

Remarkably, the strongest promoter of the as-48 cluster in LAB

strains was the P2(2) promoter here identified, which seems

negatively regulated by genes present in pMB-2 plasmid and up-

regulated by high pHs and genes of the as-48 cluster, although

having a strong basal activity in the absence of regulators. It is

tempting to speculate with a membrane stress caused by AS-48 as

the trigger for an increased transcription from P2(2) that could

involve alternative extracellular function s factors. This stress could

be controlled in cells containing pMB-2 by additional mechanisms

encoded in this plasmid whereas in the cells transformed with

pAM401-81 this function is overtaken by the two ABC-transporters

coded in the as-48C1DD1EFGH operon. Additionally, the pMB-2

plasmid is a pheromone-responding plasmid involved in conjuga-

tion process between enterococcal communities in natural environ-

ments. Cells harboring pMB-2 have the capability to elicit a

complex response to sex pheromones secreted by the receptor cells,

inducing coordinated responses among members of a community

and resulting in the formation of cell aggregates that allow clumping

of cells to facilitate efficient conjugal transfer of this plasmid.

Expression of genes involved in secretion of the bactericidal AS-48

bacteriocin, rapidly kill conventional recipient enterococcal cells

preventing the conjugation process, being a disadvantage relative to

the transfer of the pMB-2-plasmid from bacteriocin-producing

donors, as it has been already demonstrated in a recent study about

the transferability of R-Plasmid in bacteriocin-producing E. coli

donors [44]. Interestingly, PA and PD1 promoters have a strength

Figure 3. Maximal fluorescence values of the mCherry protein reached during prolonged growth in CM-G medium normalized by
the OD 600 nm in single and double transformants bacteria, harbouring the functional derivatives pTLR1-PX (dark blue), pTLR1-PA

(purple), pTLR1-P2 (sky blue) pTLR1-PD1 (orange), and pTLR1d used as negative control (red). Standard deviation bars for the different
replicates are included.
doi:10.1371/journal.pone.0090603.g003
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that is one half and one quarter, respectively, compared to P2(2).

Both promoters drive a constitutive transcription in all the assay

conditions, although the presence of the as-48 genes and the pH

seem to enhance their expression.

We also conclude that the strength of the as-48 promoters is

organism dependent. Thus, the strength of all these promoters was

highest in E. coli, while in LAB strains only minor differences could

be observed. Surprisingly the three promoters of the as-48 cluster

perform slightly better in lactococcal cells (Figure 2), indicating

that this is not the reason that can justify the inability for the

heterologous expression of AS-48 described by Fernández et al.

[19] and supporting the idea of an incorrect processing of the

mRNA or an inefficient production of the modification machinery

involved in AS-48 maturation.

Supporting Information

Figure S1 Antibacterial activity of JH2-2(pAM401-81) and JH2-

2(pMB-2) against JH2-2 used as indicator strain.

(TIF)

Figure S2 Influence of pMB-2 and pAM401-81 plasmids in the

expression of PA promoter during prolonged growth in CM-G

medium at different pH values normalized by the OD 600 nm in

E. faecalis JH2-2 (pTLR1-PA) (low panels). The growth of cultures

was monitored at a wavelength of 600 nm (upper panels).

Fluorescence emission of mCherry was recorded at 620 nm after

excitation at a wavelength of 590 nm (medium panels). pH 6 (red),

pH 6.5 (green), pH 7.0 (purple), pH 7.5 (sky blue), and pH 8.0

(orange). Standard deviation bars for the different replicates are

included.

(TIF)

Figure S3 Influence of pMB-2 and pAM401-81 plasmids in the

expression of P2(2) promoter during prolonged growth in CM-G

medium at different pH values normalized by the OD 600 nm in

E. faecalis JH2-2 (pTLR1-P2(2)) (low panels). The growth of cultures

was monitored at a wavelength of 600 nm (upper panels).

Fluorescence emission of mCherry was recorded at 620 nm after

excitation at a wavelength of 590 nm (medium panels). pH 6 (red),

pH 6.5 (green), pH 7.0 (purple), pH 7.5 (sky blue), and pH 8.0

Figure 4. Influence of pMB-2 and pAM401-81 plasmids in the expression of the as-48 cluster promoters during prolonged growth in
CM-G medium normalized by the OD 600 nm in E. faecalis JH2-2 containing the pTLR1-derivatives (low panels). The growth of cultures
was monitored at a wavelength of 600 nm (upper panels). Fluorescence emission of mCherry was recorded at 620 nm after excitation at a
wavelength of 590 nm (medium panels). pTLR1d (red), pLTR1-PA (purple), pLTR1-P2(2) (sky blue), pLTR1-PD1 (orange). Standard deviation bars for the
different replicates are included.
doi:10.1371/journal.pone.0090603.g004
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(orange). Standard deviation bars for the different replicates are

included.

(TIF)

Figure S4 Influence of pMB-2 and pAM401-81 plasmids in the

expression of PD1 promoter during prolonged growth in CM-G

medium at different pH values normalized by the OD 600 nm in

E. faecalis JH2-2 (pTLR1-PD1) (low panels). The growth of cultures

was monitored at a wavelength of 600 nm (upper panels).

Fluorescence emission of mCherry was recorded at 620 nm after

excitation at a wavelength of 590 nm (medium panels). pH 6 (red),

pH 6.5 (green), pH 7.0 (purple), pH 7.5 (sky blue), and pH 8.0

(orange). Standard deviation bars for the different replicates are

included.

(TIF)

Table S1 Sequence of promoter regions studied in this work.

The predicted -10 and -35 sequences are underlined and depicted

in bold.
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Valdivia E, et al. (2008) Processing of the as-48ABC RNA in AS-48 enterocin
production by Enterococcus faecalis. J Bacteriol 190: 240–250.

11. Ruiz-Cruz S, Solano-Collado V, Espinosa M, Bravo A (2010) Novel plasmid-
based genetic tools for the study of promoters and terminators in Streptococcus

pneumoniae and Enterococcus faecalis. J Microbiol Methods 83: 156–163.

12. Maqueda M, Sánchez-Hidalgo M, Fernández M, Montalbán-López M,
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