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Abstract

Background: The experimental observations and numerical studies with dissipative metabolic networks have shown that
cellular enzymatic activity self-organizes spontaneously leading to the emergence of a Systemic Metabolic Structure in the
cell, characterized by a set of different enzymatic reactions always locked into active states (metabolic core) while the rest of
the catalytic processes are only intermittently active. This global metabolic structure was verified for Escherichia coli,
Helicobacter pylori and Saccharomyces cerevisiae, and it seems to be a common key feature to all cellular organisms. In
concordance with these observations, the cell can be considered a complex metabolic network which mainly integrates a
large ensemble of self-organized multienzymatic complexes interconnected by substrate fluxes and regulatory signals,
where multiple autonomous oscillatory and quasi-stationary catalytic patterns simultaneously emerge. The network adjusts
the internal metabolic activities to the external change by means of flux plasticity and structural plasticity.

Methodology/Principal Findings: In order to research the systemic mechanisms involved in the regulation of the cellular
enzymatic activity we have studied different catalytic activities of a dissipative metabolic network under different external
stimuli. The emergent biochemical data have been analysed using statistical mechanic tools, studying some macroscopic
properties such as the global information and the energy of the system. We have also obtained an equivalent Hopfield
network using a Boltzmann machine. Our main result shows that the dissipative metabolic network can behave as an
attractor metabolic network.

Conclusions/Significance: We have found that the systemic enzymatic activities are governed by attractors with capacity to
store functional metabolic patterns which can be correctly recovered from specific input stimuli. The network attractors
regulate the catalytic patterns, modify the efficiency in the connection between the multienzymatic complexes, and stably
retain these modifications. Here for the first time, we have introduced the general concept of attractor metabolic network,
in which this dynamic behavior is observed.
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Introduction

Living cells are essentially highly evolved dynamic metabolic

structures, in which the more complex known molecules are

synthesized and destroyed by means of a sophisticated metabolic

network characterized by millions of biochemical reactions,

densely integrated, shaping one of the most complex dynamic

systems in nature [1,2].

The enzymes are the main molecules of this surprising

biochemical reactive network. They are responsible for almost

all the biomolecular transformations, which globally considered it

is called cellular metabolism.

Intensive studies of protein-protein interactions have shown that

the internal cellular medium is an assembly of supra-molecular

protein complexes [3], e.g., the analyses of the proteome of

Saccharomyces cerevisiae have shown that at least 83% of all proteins

form complexes (containing from two to eighty-three proteins),

and their overall enzymatic structure is formed by a modular

network of biochemical interactions between multienzyme com-

plexes [4]. This molecular self-organization occurs in all kinds of

cells, both eukaryotes and prokaryotes [5–7].

The self-organization [8] of cooperating enzymes into multien-

zyme complexes [9], seem to be central feature of cellular

metabolism, crucial for the functional activity, regulation and

efficiency of biomolecular processes and fundamental for under-

standing the molecular architecture of cell life (see for more details

Supporting Information S1).

Apart from forming complex enzymatic associations, the

catalytic dynamics of multienzymatic sets present metabolic

transitions between different quasi-stationary and oscillatory

molecular patterns [10] (see Supporting Information S1).

From a dynamic point of view, the multienzymatic complexes

represent dissipative structures in which oscillatory patterns and

functional integrative processes emerge, allowing the reactive

coordination between their catalytic parts [10]. These self-

organized multienzymatic complexes associated with other non-

catalytic biomolecular structures are called metabolic subsystems

[10].
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In concordance with the structural and functional self-organi-

zation of enzymes (see Supporting Information S1), the cell can be

considered a complex metabolic network which mainly integrates

a large ensemble of dissipative metabolic subsystems, where

multiple autonomous oscillatory and some quasi-stationary activity

patterns simultaneously emerge [9,10].

In order to research the functionality of the cellular metabolism,

the dissipative metabolic networks (DMNs) were created [11,12].

Essentially, a DMN is an open system formed by a given set of

metabolic subsystems (self-organized multienzymatic complexes)

interconnected by biochemical substrate fluxes and three classes of

biomolecular regulatory signals: activatory (positive allosteric

modulation), inhibitory (negative allosteric modulation) and all-

or-nothing type (which correspond to the regulatory enzymes of

covalent modulation) [13]. Therefore, each metabolic subsystem is

connected with others by a structure composed of biochemical

message flows [14]. This dynamic process of biochemical

interconnections between subsystems may be understood as

metabolic synapses i.e., the functional connection processes among

self-organized multienzymatic complexes through which biomo-

lecular information flows from one metabolic subsystem to another

[14].

In the DMN, the emergent output activity (the connection

pattern) for each metabolic subsystem can be either steady state or

oscillatory with an infinite number of distinct activity regimes

[12,15].

The DMN adjusts the internal metabolic activities to the

external environmental change by means of flux plasticity i.e.,

changes in the physiological values of the metabolic synapses

which lead to a differential catalytic activity of subsystems, and

structural plasticity i.e., persistent change in the state of the

metabolic subsystems which can be active state, on-off changing

state and inactive state: all these catalytic states are also due to the

metabolic synaptic changes. Flux plasticity and structural plasticity

have been experimentally observed in the metabolism of several

organisms as the main systemic biomolecular mechanisms for the

adaptation to external perturbations [16,17].

Numerous mathematical studies on metabolic rhythms have

contributed to a better understanding of the functionality of the

self-organized multienzymatic subsystems (the nodes of the

dissipative metabolic networks). Most of these functional biochem-

ical studies have been carried out by means of systems of

differential equations e.g., the Krebs cycle [18], the amino acid

biosynthetic pathways [19], the oxidative phosphorylation subsys-

tem [20], the glycolytic subsystem [21], the transduction in G-

protein enzyme cascade [22], the gene expression [23], the cell

cycle [24]. Likewise, in order to understand the emerging

dynamics in a multienzymatic set dissipatively structured we have

also researched the yeast glycolytic subsystem by using a system of

differential equations with delay [25]. In these studies we have

analyzed different attractor dynamics linked to Hopf bifurcations

[26–28], tangent bifurcations [29], the classical period-doubling

cascade preceding chaos [30], persistent behaviors [31–33] and

the multiplicity of coexisting attractors in the phase space [28,30].

In all these studies, it is assumed that each metabolic subsystem

forms a unique dynamical system [9]. The subsystems carry out

their activity with autonomy between them and play distinctive

and essential roles in the cell [34].

Therefore, a dissipative metabolic network can be considered as

a super-complex dynamic structure which integrates a set of

different dynamic systems (the metabolic subsystems) forming a

dynamical-super-system [10].

The first model of a DMN was developed in 1999 [11] which

allowed for the observation of a singular Systemic Metabolic

Structure, characterized by a set of different metabolic subsystems

always locked into active states (metabolic core) while the rest of

the dissipative catalytic subsystems presented on-off dynamics. In

this first numerical work it was also suggested that the Systemic

Metabolic Structure could be an intrinsic characteristic of

metabolism, common to all living cellular organisms [11,12].

Afterward, in 2004 [35] and 2005 [16], several studies

implementing flux balance analysis in experimental data support-

ed new evidence of this Systemic Functional Structure. Specifi-

cally, a set of metabolic reactions belonging to different anabolic

processes which remain active under all investigated growth

conditions was observed. The rest of the enzymatic reactions

belonging to different pathways remain only intermittently active.

These global catalytic processes were verified by Escherichia coli,

Helicobacter pylori, and Saccharomyces cerevisiae [16,35].

Extensive analyses for DMNs have shown that the Systemic

Functional Structure is very robust and stable [36]. Moreover, it

has been observed that this global dynamic structure shapes a

unique dynamical system, in which self-regulation and long-term

memory properties emerge [15]. Long-term correlations have

been observed in different experimental studies, e.g., in the

quantification of DNA patchiness [37], in physiological time series

[38,39], in NADPH series [40], in DNA sequences [41,42], in K+
channel activity [43], mitochondrial processes [44] and neural

electrical activity [45,46].

Recently, it was possible to quantify the bio-molecular

information flows in a single metabolic subsystem [26], and in a

DMN in which the emergence of an effective connectivity

structure was also observed [14]. This functional structure of

biomolecular information flows is modular and the dynamical

changes between the modules correspond to metabolic switches

which allow for critical transitions in the metabolic subsystem

activities. According to these results [14], the Systemic Metabolic

Structure is not only characterized by a metabolic core and self-

organized multienzymatic complexes in an on-off changing state

but also it shapes a sophisticated structure of effective information

flows which provides integrative coordination and synchronization

between all the metabolic subsystems [10,14].

Understanding the systemic mechanisms involved in the

regulation of the cellular enzymatic activities in the complex

conditions prevailing inside the cell is a key issue for the

contemporary biological thought. Here, in order to research the

systemic processes involved in the regulation of the catalytic

activities, the emerging biochemical data have been analysed using

statistical mechanics tools; in concrete, by employing the use of a

Boltzmann machine we have built a Hopfield network represent-

ing the dynamical properties of the DMN.

The results show that the multienzymatic activities of the

network are governed by systemic attractors in which the stored

catalytic information patterns can be correctly recovered from

specific input stimuli.

The systemic attractors regulate all catalytic network patterns,

modify the efficiency in the connection between the multyenzy-

matic complexes, and stably retain these modifications.

The dissipative metabolic network can behave as an attractor

metabolic network which exhibits associative memory properties.

Model and Methods

1. Dissipative Metabolic Networks
Dissipative metabolic networks (DMNs) are dynamical systems

basically formed by a given number of interconnected metabolic

subsystems (MSbs) which represent self-organized multienzymatic

complexes [10,12].
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PLOS ONE | www.plosone.org 2 March 2013 | Volume 8 | Issue 3 | e58284



The metabolic subsystems are interconnected by biochemical

substrate fluxes and three classes of regulatory signals: activatory

(positive allosteric modulation), inhibitory (negative allosteric

modulation) and all-or-nothing type (which correspond to the

regulatory enzymes of covalent modulation), for more details see

[14].

Each subsystem transforms the input substrate fluxes and

regulatory signals into the output catalytic activity. The input-

output conversion is performed in two stages. In the first one, the

input fluxes are transformed in an internal enzymatic activity of

the subsystem by means of flux integration functions. In the second

stage, the received regulatory signals modify the internal

enzymatic activity converting it into output catalytic activity.

The flux integration functions are based in the quantitative

catalytic studies of the amplitude and frequency of the glycolytic

patterns obtained by Goldbetter and Lefever in [47,48] under

dissipative conditions.

Each allosteric signal has a qi,k regulatory coefficient which

represents the influence of the different activatory and inhibitory

modulators on the metabolic subsystems. The index i in qi,k

denotes the subsystem that is regulated, and the index k denotes

the element (amplitude, baseline or frequency, as will be defined

in the next subsection) of the i-th subsystem that is regulated.

If the signal is of all-or nothing type, then it will use a parameter

d which is called the threshold value (the level of the enzymatic

covalent regulatory activity). When a given threshold value is

reached, it fully inhibits the activity of the MSb.

In agreement with experimental observations, the output

activity of all the enzymatic subsystems may be oscillatory or

steady state and comprise a very large number of distinct

activity regimes [9,10]. When a subsystem shows an activity

with rhythmic behaviour the output catalytic activities present

nonlinear oscillations with different levels of complexity, as it

could be expected in cellular conditions. Therefore, in the

subsystems a large number of transitions between periodic

oscillations and steady-states including deterministic chaotic

patterns may emerge [15].

2. Subsystem Activities
All the explicit details on how DMNs are constructed can be

found in [11,12] and here they are sketched in what follows.

Formally, we assume that the activity of the i-th enzymatic

subsystem is defined by

yi tð Þ~BizAi sin 2pvitð Þ, ð1Þ

where Ai is the amplitude of oscillation, Bi is the baseline and vi is

the oscillation frequency. Moreover, to have yi(t)w0 we assume

that 0ƒAiƒBi and the baselines and frequencies are bounded

values, so there exists Bmax and vmax such that BiƒBmax and

viƒvmax Vi:
In this way, the activity of each subsystem yi(t) is characterized

by three variables xi,1,xi,2 and xi,3, with values between 0 and 1

such that

Bi~xi,1Bmax, ð2Þ

Ai~xi,2Bi, ð3Þ

vi~xi,3vmax, ð4Þ

A subsystem is inactive when xi,1~0, and is in a steady state

when xi,2~0 or xi,3~0.

We fix 0vTvz? as the total duration of the process and M
as the number of transitions, and define Dt~T=M as the time

interval during which the oscillations is maintained in the m-th

time interval between tm{1~(m{1)Dt and tm~mDt: In that

interval, the activity of the i-th subsystem is determined by the

vector xm
i ~(xm

i,1,xm
i,2,xm

i,3) and the state matrix by

X m~

xm
1

..

.

xm
N

0
BB@

1
CCA~

xm
1,1 xm

1,2 xm
1,3

..

. ..
. ..

.

xm
N,1 xm

N,2 xm
N,3

0
BB@

1
CCA, ð5Þ

which characterizes the whole DMN system, with N the total

number of subsystems.

3. Flux Integration
Let us suppose that the i-th subsystem receives a flux from the j-

th. Its internal activity represented by zm
i will be computed by

three flux integration functions:

zm
i,1~F1 xm

j,1,pi,1

� �
, ð6Þ

zm
i,2~F2 xm

j,2,pi,2

� �
, ð7Þ

zm
i,3~F3 xm

j,3,pi,3

� �
, ð8Þ

Where pi,1, pi,2 and pi,3are parameters associated to the flux

integration function which are characteristic of each metabolic

subsystem, and the Fi are piecewise linear approximations for

nonlinear functions obtained by Goldbeter and Lefever in [48].

One way to reproduce the shape of the functions reported in [48]

is to take:

F1 x,pð Þ~F2 x,pð Þ~

0, if xƒ0:1,

2:5 x{0:1ð Þ if 0:1vxƒ0:3,

0:5z
p{0:5

0:5
x{0:3ð Þ if 0:3vxƒ0:8,

p

0:1
0:9{xð Þ if 0:8vxƒ0:9,

0, if xw0:9,

8>>>>>>>><
>>>>>>>>:

ð9Þ

and

F3 x,pð Þ~

0, if xƒ0:1,

2:5 x{0:1ð Þ if 0:1vxƒ0:3,

0:5z
p{0:5

0:6
x{0:3ð Þ if 0:3vxƒ0:9,

p, if xw0:9:

8>>>>><
>>>>>:

ð10Þ
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When a subsystem receives different fluxes from at least two

subsystems, we compute the arithmetic mean of the F-values

previously calculated.

4. Regulatory Signal Integration
In this second stage, the internal activity values are modified

using the signal integration functions, which depend on the

combination of the received regulatory signals and their corre-

sponding parameters (regulatory coefficients). In the metabolic

subsystems, the existence of some regulatory enzymes (both

allosteric and covalent modulation) increases the interconnection

among them. The allosteric enzymes present different sensitivities

to the effectors, which can generate diverse changes on the kinetic

parameters and in their molecular structure; likewise, the

enzymatic activity of covalent modulation also presents different

levels of regulation. These effects on the catalytic activities are

represented in the dynamical system by the regulatory coefficients

and consequently each signal has an associated coefficient which

defines the intensity of its influence.

There exist three kinds of signal integration functions:

– Activation function AC.

– Inhibition function IN.

– Total inhibition function TI.

In this way, to compute xmz1
i from zm

i the i-th subsystem

receives enzymatic regulatory signals from r subsystems and they

work sequentially computing.

zm
i ~ xm

i

� �0? xm
i

� �1? xm
i

� �2? . . . . . .? xm
i

� �r
~xmz1

i ð11Þ

where each step depends on the signal type. From xm
i

� �s
to xm

i

� �sz1

if the signal is AC and is received from the j-th MSb

xm
i,k

� �sz1

~AC xm
i,k

� �s

,xm
j,k,qi,k

� �

~1{ qi,k{1ð Þxm
j,kz1

� �
1{ xm

i,k

� �s� � ð12Þ

for k = 1, 2, 3 and qi,k are regulatory coefficient to each allosteric

activity signal which represents the sensitivity to the allosteric

effectors.

If the allosteric signal is inhibitory

xm
i,k

� �sz1

~IN xm
i,k

� �s

,xm
j,k,qi,k

� �

~ qi,k{1ð Þxm
j,kz1

� �
xm

i,k

� �s

,

ð13Þ

and, finally, if the signal is of the total inhibition type

xm
i,k

� �sz1

~TI xm
i,k

� �s

,xm
j,k,d

� �
~

xm
i,k

� �s

, if xm
j,kvd

0, if xm
j,k§d,

8<
: ð14Þ

where d, the threshold value, is the regulatory coefficient

associated to each enzymatic activity signal of covalent modulation

which defines the intensity of its influence.

5. Metabolic Network Generation
First, we have fixed the following elements as control

parameters: (1) 18 subsystems in the DMN, (2) up to three

substrate input fluxes for each subsystem (each MSb can receive a

maximum of three substrate fluxes and it is not restricted the

number of flows leaving of them), (3) three input regulatory signals

for each metabolic subsystem and (4) the same number of signals

per class (allosteric activation, allosteric inhibition and covalent

modulation). Certain metabolic subsystems may receive a

substrate flux from the exterior and we have arbitrarily fixed the

MSb3 and the MSb10 for this function.

Having fixed these elements, the structure of the network has

been randomly configured, including: (1) the topology of flux

interconnections and regulatory signals, (2) the pi parameters

associated to the flux integration functions, (3) the qi regulatory

coefficients to the allosteric activities, and (4) the values of the

initial conditions in the activities of all metabolic subsystems (Table

in Supporting Information S3).

The values of pi and qi are random numbers between 0 and 1.

The changes in the parameters pimodify the flux integration

functions. The values of qi represents the influence level of the

allosteric regulatory signals (qi&0 for a low level and qi&1 for a

high level). The random values of the parameters pi and qi

originate metabolic networks with a great variety of catalytic

activities in each subsystem.

We have taken the constants Amax, Bmax, and vmax equal to 2,

and d= 0.54 the threshold value of the regulatory coefficient

associated with the covalent modulation signal which defines the

intensity of its influence.

Finally, given T and M we calculate the activity matrices X m for

m = 1,…, M using the flux integration functions and regulatory

signals.

After numerical integration of the selected network, we generate

a discrete time-series for the 3-tuples (xk
i,1,xk

i,2,xk
i,3). For all cases,

the series of baseline, amplitude and frequency are analyzed after

1000 transitions.

6. Representation of the Activity of the Metabolic
Subsystems

We consider a number N of transitions. At the k-th iteration-step

we suppose that the oscillation is harmonic, Eqs. (1–4). The

duration of the harmonic oscillation is a given parameter Th

independent on the stage and on the subsystem. Along the two

stages, a mixed transition regime is maintained with a duration

Ttrwhich is independent of the stage number and of the subsystem.

If the transition goes from the k-th stage to the (k+1)-th stage then,

during the Ttr seconds of the transition regime, the activity is given

by a function of the form y tð Þ~A tð Þy1 tð ÞzB tð Þy2 tð Þ, where y1 tð Þ
is the activity corresponding to the prolongation in time of the

previous harmonic activity in the k-th stage, and y2 tð Þ is the back-

propagation in time of the subsequent harmonic activity in the

(k+1)-th stage. The numbers A tð Þand B tð Þ are time dependent and

indicate the weights with which the activities of the subsystem in

the previous and posterior stage are present during the transition

time. At the beginning of the transition, sayt~t0, A t0ð Þ is 1 and

B t0ð Þ is 0, and at the end of the transition, say t~t1, A t1ð Þ is 0 and

B t1ð Þ is 1. At the rest of the transition times A tð Þ and B tð Þ vary

according to A tð Þ~ t{t1

t0{t1
, B tð Þ~ t{to

t1{t0
: Finally, during the

transition time the activity is given by

y tð Þ~ t{t1
t0{t1

xk
1Amaxzxk

1xk
2Amaxsin xk

3vmaxt
� �� �

z
t{t0

t1{t0
xkz1

1 Amaxzxkz1
1 xkz1

2 Amaxsin xkz1
3 vmaxt

� �� �
:
ð15Þ
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The transition regimes are combinations of two harmonic

oscillations with nonconstant coefficients A tð Þ and B tð Þ depending

on time. Thus, the introduction of these transition regimes

provokes the emergence of nonlinear oscillatory behaviors, both

simple and complex.

7. Brief Justification on the Use of the Boltzmann-Gibbs
Distribution in DMNs

We have shown that the enzymatic activity for each MSb in the

DMN can be very complex and highly non-linear; however, to

understand the global-emerging properties within the DMN is not

necessary to incorporate all the details in each MSb. This general

flavor, it is well-known in Physics, and in particular the Statistical

Mechanics is the discipline for pooling the dynamics of all the

(many) system constituents (ie. the micro-states) to come out with the

time-evolution of a few global measures, the ones which can

properly characterize the system as a whole (ie. the macro-states).

In a general sense, the approach of going from micro to macro

states is not straightforward and to make it possible, one needs first

to define the probability distribution of having a macroscopic state

based on a microstates configuration. By using this distribution,

one can connect micro to macro-states by properly averaging over

microstates configurations. In particular, here we will make use of

the widely-known Boltzmann-Gibbs distribution [49–51], i.e.,

p(s)~
1

Z
exp {bE sð Þ½ � ð16Þ

in which s: s1s2:::sNð ÞT is the microstates vector,

Z~
P

s exp {bE sð Þ½ � the partition function (i.e. a normalization

factor), b the Boltzmann constant and E sð Þ the energy associated

to the configuration s.

8. The Utilization of Binary Variables in the Modeling of
Enzymatic Activity and its Similarity to the Modeling of
Neural Networks

A DMN is as a network of i~1,:::,N different MSbs, each one

manisfesting a highly nonlinear dynamics. To make possible its

description through Eq. (16), we need first to determine the

possible states for the microscopic variables. Here on, we will

represent the enzymatic activity for each subsystem by a binary

variable, with states si~{1 for inactivation and si~1 for

activation. Although this assumption can seem too simple to

describe the real dynamics, however, this is not necessary the case;

for instance, it is well understood from neural networks studies,

where the input-output relation for individual neurons is well-

known to be highly non-linear and noisy (due to the stochastic

nature of the neural activity) that binary states can work well to

understand global net properties; thus ignoring most of the

intrinsic details, the two-states neuronal dynamics can be sufficient

for capturing some of the relations between macroscopic variables

and neuron dynamics (cite for instance, [49–51]).

The enzymatic activity of the MSbs is represented by a

continuous signal; thus, the two-states time-series of activity is

achieved simply by looking at each time-instant when the activity

is upper or below a threshold of one half the maximum value

achieved along the total time-series (cf. the two-states time-series

colored in blue in Figure 1).

9. The Connection between the Boltzmann-Gibbs
Distribution and the Dynamics of Neural Networks

An important reason for the success in the understanding of the

collective properties in neural networks in the last decades was the

possibility of having the Boltzmann-Gibbs distribution coinciding

with the stationary distribution of the neural network dynamics

[49–52]. This allowed applying some of the Statistical Mechanics

techniques to make the mapping between microstates configura-

tions and macroscopic properties. In particular, of special interest

was the use of the mean field methods, which based on the

Boltzmann-Gibbs distribution, allowed for the first analytical

solution to the retrieval properties and storage in the so-popular

Hopfield nets; the model [52] and its solution [53].

In concrete, four different reasons made possible to study the

neural network dynamics by using the Boltzmann-Gibbs distribu-

tion: 1) the neuronal activity was represented by binary variables,

2) the synaptic connections (or weights) were considered to be

symmetric, 3) the input-output relation in the activity of each

neuron was described by a sigmoid function, 4) the updating for

the neural activity was sequential, the well-known Glauber dynamics

[49–52].

During Glauber dynamics one neuron is selected at random at

each time-instant and after it is updated with a probability which

depends on its current state, its neural threshold, the total input

arriving to that neuron and the temperature parameter, which is

simply a parameter accounting for random (‘‘not-coming from the

input’’) fluctuations in the neural activity.

Under these four considerations, the stationary probability

distribution resulting from the detailed-balance condition is the

Boltzmann-Gibbs distribution. If T s?s’ð Þ is the transition

probability in the movement s?s’, detailed balance ensures that

the constraint T s?s’ð Þp sð Þ~T s’?sð Þp s’ð Þ holds for any s and s’.
That is, Glauber dynamics (i.e. sequential updating) defines a

specific choice for the transition probability to move from

configuration s tos’, see for instance [49], which allows to have

the following stationary probability:

p sð Þ~ 1

z
exp b

1

2

XN

i~1

XN

j~1
vijsisjzb

XN

i~1
hisi

� �
ð17Þ

in which vij represents the weight from neuron i to j and hi the

firing-threshold for neuron i. The Botlzmann constant here

introduces the temperature parameter, b: 1
T

.

A simple comparison between Eq. (16) and Eq. (17) gives that

E sð Þ~{
1

2

XN

i~1

XN

j~1
vijsisj{

XN

i~1
hisi, ð18Þ

which is the Energy function governing the neural network

dynamics, and by analogy, in this paper modeling the enzymatic

activity in the DMN.

10. The Use of the Boltzmann Machine to Learn the
Boltzmann-Gibbs Distribution

The aim of the Boltzmann Machine is to learn from the

metabolic data the N N{1ð Þ=2 different values of vij (a

symmetric matrix with all elements in the principal diagonal

equal to zero) and theNvalues hi to then use Eq. (17) to obtain

global properties of the system by averaging over the Boltzmann-

Gibbs distribution.

It is important to remark that the purpose of this paper is not to

give a detailed derivation of the algorithm for the Boltzmann

Machine; in contrast, we only present it in its simpler formulation,

but further details can be found in [54,55]. At time zero, the

parameters vij (weights) and hi (thresholds) are randomly

initialized. As in any learning process, some of the data is used

for training the learning algorithm. At each iteration, weights and
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Figure 1. Dynamic catalytic behavior in the dissipative metabolic network (DMN). A,D: metabolic network formed by 18 self-organized
multienzymatic complexes (metabolic subsystems); it is shown the interconnection by substrate fluxes and the substrate input fluxes. For
simplification in the illustration, the topological architecture of the regulatory signals affecting the DMN is shown in Fig. S1. The network was studied
in two different external conditions: condition I, in which only the stationary stimulus S1 was affecting the DMN (left column in panel) and condition
II, with two substrate input fluxes S1 and S2 (right column). A: A systemic metabolic structure spontaneously emerges in the network in which the
enzymatic subsystem MSb12 is always active (i.e. the metabolic core, red circle) whereas the rest of enzymatic subsystems exhibit on-off changing
states (white circles). D: In the condition II the network preserves the metabolic core (red circle) but the MSb15 becomes in a permanent off-state
(black circle). B: for condition I, an example of the enzymatic activity of the MSb12 (metabolic core) which presents different catalytic transitions
between periodic oscillations and steady states, and (E) same as in B but for condition II. C,F: Time series of the amplitude of several catalytic activity
oscillations as a function of the iterations number. Green lines represent the average value of the amplitude in the whole time series. In blue we are
plotting the two-states representation of the amplitude time series, 1 for values higher than the green line and 0 for lower values. This figure was
slightly adapted from Fig. 2 in (De la Fuente et al. 2011).
doi:10.1371/journal.pone.0058284.g001
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thresholds are updated with a value which is proportional to the

difference between the statistics computed directly from the data

(the one used for training) and the statistics performed by the

Boltzmann-Gibbs distribution with the new updated parameters

vij and hi. This procedure is repeated until algorithm conver-

gence. In such a way, the Boltzmann machine after convergence

ensures that the statistics achieved through the learned Boltzmann-

Gibbs distribution (hereon, the model) coincide with the one

directly computed from the data (more concrete, both model and

data have the same average activity and pair-wise correlations).

We provide here a mathematical formulation for the previous

explanation. After random initialization of weights and thresholds

the specific iterative algorithm is given by:

hi tz1ð Þ~hi tð Þzh SsiTdata{SsiTmodelð Þ ð19Þ

vij tz1ð Þ~vij tð Þzh SsisjTdata{SsisjTmodel

� �
ð20Þ

with h sufficiently small to ensure convergence and where

expectations are given by

SsiTdata~
1

M

XM

m~1
sm

i ð21Þ

SsisjTdata~
1

M

XM

m~1
sm

i sm
j ð22Þ

SsiTmodel~
X

s
sip(s) ð23Þ

SsisjTmodel~
X

s
sisjp(s) ð24Þ

In each iteration, the probability p sð Þ in Eqs. (23) and (24) is the

one given by Eq. (17) with the new values vij and hi resulting from

Eqs. (19) and (20). The index m~1,:::,M is denoting the different

data points which are chosen for algorithm training.

Note that the sums appearing in the expectations given by Eqs.

(23) and (24) are involving 2N different terms (the number of all

possible microstates), and for large networks this number becomes

computationally intractable. A common strategy in Statistical

Mechanics is the use of Monte Carlo methods, but these methods,

although in principle might provide exact calculations, they

become very slow for large networks. Alternatively, one can use

approximate methods as the achieved by the mean field

approximation (details below).

11. A Simplified (but Very Efficient) Learning Strategy in
Boltzmann Machines with no Hidden Units

Although the learning algorithm given by Eqs. (19) and (20)

together with the use of Monte Carlo methods to compute the

expectations in Eqs. (23) and (24) is exact [54,55], for large

networks, the algorithm convergence with the use of Monte Carlo

methods can be very slow, and other approximations have to be

done (for a comparison of methods see [56]).

In particular, we will assume here that all neurons are

susceptible for learning (so there are not any hidden units, see

[54,55]). And in this case, the learning in the Boltzmann Machine

can be simplified substantially. In particular, we will apply here an

efficient and fast method which was elegantly developed by

Kappen and Rodriguez [57]. In concrete, Kappen and Rodriguez

added better corrections to the solely mean field assumption by

applying results from the linear response theory. In this situation,

and for the case of not hidden units, the iterative learning

algorithm required by Eqs. (19) and (20) has a unique (stable)

fixed-point (fp) solution which is given by:

v
fp
ij ~b{1 dij

1{m2
i

� 	
{ C{1
� �

ij
ð25Þ

hfp
i ~b{1 tanh{1 mið Þ{

XN

j~1
vijmj ð26Þ

where mi~SsiTdata is the mean value in the data and

Cij~SsisjTdata{SsiTdataSsjTdata the correlations, cf. Eqs. (21)

and (22).

Notice that to obtain Eqs. (25) and (26) one has to assume that

the neuronal dynamics is stochastic and represented by the

probability for a neuron to fire, i.e.

p si~1ð Þ~ 1

2
1z tanh bhið Þ½ � ð27Þ

the so-called Glauber dynamics [49–51]. Here,

hi~
PN

j~1 vij sjzhi refers to the local field arriving to neuron i.

One can see that (as it occurs for any probability) Eq. (27) satisfies

that p si~1ð Þzp si~{1ð Þ~1.

Notice that Eqs. (25) and (26) have the term b{1~T on the

right-hand side in contrast with Kappen and Rodriguez in [57] in

which they fixed T~1 arguing that the value of the temperature

can finally be rescaled in both the weights and thresholds. This

assumption is true, but however, we have preferred to preserve the

temperature parameter in our derivation of Eqs. (25) and (26) to

have the possibility of studying the temperature effects in the

learning procedure; thus, in the high temperature regime (low b)

will make the term
dij

1{m2
i

to be dominant versus { C{1
� �

ij
in the

calculation of the weights; similarly, tanh{1 mið Þ will dominate

versus {
PN

j~1 vijmj for the threshold calculation. Thus, high

temperature values will ignore network effects, ie. contributions

j=i into i, and only the terms with no interactions will prevail at

high temperature.

12. Two Examples on the Use of the Boltzmann-Gibbs
Distribution for Calculation of Network Properties:
Shannon Entropy and Average Energy under the Mean
Field Approximation

Known the Boltzmann-Gibbs distribution given by Eqs. (16)

and (18) is possible to compute different macroscopic variables

representing some of the global net properties. Thus, for instance,

one can compute the net Shannon Entropy, which defined as

S netð Þ~{
X

s
p sð Þ log p sð Þ ð28Þ

is accounting for the average uncertainty in the network activity,

which in the case of base-2 logarithms is given in bits, it accounts

for the amount of information which is on-average required to

describe the dynamics of the DMN [58]. Notice that this
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information is directly computed from the time-series of enzymatic

activity.

Another important connection between Shannon entropy is its

relation with the Mutual Information, a measure for the amount of

uncertainty reduction in one variable by knowing another. It can

be easily proven that the Mutual information of one variable with

itself is the Shannon Entropy. Thus, this self-information has been

interpreted as a measure of stored information in the time-series.

Another net observable one can measure having the Boltz-

mann-Gibbs distribution is the mean Energy, which defined a

E netð Þ~
X

s
p sð ÞE sð Þ ð29Þ

it can account for the network stability; the smaller the mean

Energy the more stable is the net configuration.

For the calculation of both Entropy and Energy given by Eqs.

(28) and (29), one needs to evaluate the total number of possible

microstates, equal to 2N with N the network size. We have

mentioned before that an alternative to that is the use of the mean

field approximation, similar to what has already widely used for

the modeling of neural networks, for details [49–51]. In this paper,

we have computed both S netð Þ and E netð Þ by using the mean

field (mf) approximation, which is a particular situation in which

the probability given by Eq. (17) has the following factorial form

pmf sð Þ~PN
i~1 pmf sið Þ, ð30Þ

with

pmf sið Þ~
1

2
1zsimi½ � ð31Þ

Notice that it is satisfied that mi=f sð Þ; in concrete, the

expectation mi is given by the mean field solution [49–51], ie.

mi~ tan h bDXN

j~1
vijmjzhiD

� 	
ð32Þ

Thus, using Eqs. (30–32), Eqs. (28) and (29) become

Smf netð Þ~{
XN

i~1

1zmi

2
log

1zmi

2

� 	

{
XN

i~1

1{mi

2
log

1{mi

2

� 	 ð33Þ

and

Emf netð Þ~{
1

2

XN

i~1

XN

j~1
vijmimj{

X
i
himi ð34Þ

13. Reading-out Hopfield Memories from the Attractor States in
DMNs

Eqs. (25) and (26) are the result of the learning algorithm given

by Eqs. (19) and (20) in absence of hidden units, under the mean

field approximation in addition with some corrections based on

the linear response theory, details in [57]. Here, we explore the

possibility of reading-out Hopfield memories from the learned

weights given by Eq. (25).

More concrete, we have assumed that the learned weights given

by Eq. (25) are the result of a Hebbian rule similar to the one

considered in Hopfield nets (see [52], and [49–51] as well).

Although this problem (given the weights to determine the set of

previously encoded memories) is ill-posed as there exists an infinite

number of possible memories to be stored consistent with the same

weights matrix, here we will show a specific procedure which

allows the finding of a set of Hopfield memories which are locally

stable and controls the DMN dynamics versus other memories

which are locally unstable.

In the following lines, we detail this method. Firstly, we consider

the most general (and simple) Hebbian rule, i.e.

vHebb
ij ~

1{dij

� �
N

XP

l~1
jl

i jl
j , ð35Þ

where dij is the Kronecker delta operator and jl
i ~+1 represent

the value of the l memory at site i. Eq. (35) is the result of

encoding-and-storing P different memories in the weights matrix.

Networks of binary neurons connected by weights given by Eq.

(35) have been widely popular, the so-called Hopfield nets [1–4].

Interestingly, these networks manifest associative memory, which

means that the different attractors in the system dynamics are

corresponding to one of the different stored memories jl. This

case, named of pure attractors, is the most simple situation but it is

also possible to have mixed states, in which the attractors

correspond to a combination of some of the different encoded

memories.

Next, we assume that weights given by Eq. (35) can be

represented by the ones learned from the data, Eq. (25). In

concrete, our criteria to search the different stored memories jl is

to minimize the Mean Square Error; that is, to find the best

memories which minimize the cost given by

cos t j1,j2,:::,jP
� �

~
1

2

XN

i~1

XN

j~1
v

fp
ij {vHebb

ij j1
i ,j1

j ,j2
i ,j2

j ,:::,jP
i ,jP

j

� �h i2 ð36Þ

with vHebb
ij given by Eq. (35).

Several concerns have to be made before performing the

minimization of the cost given by Eq. (36): 1) there are N �P

unknown variables (the best memories) and
N N{1ð Þ

2
observations

(given by the matrix vHebb
ij which is symmetric and with diagonal-

terms equal to zero). Therefore, the system is overdetermined for

Nw2Pz1. 2) For binary memories, the number of possible states

in the search-space is 2N�P, which indicates that the optimization

is in principle hard. 3) the cost minimization has to be done over

variables which are discrete, implying that standard analytical

methods existing for optimization (which make use of the

derivatives of the cost function) such as the Newton method,

Conjugated Gradient, or Gradient Descent are not applicable to

this problem (further details for these methods see [59,60]). For

discrete optimization, other methods have to be applied; among

others, they are very popular Dynamic Programming or Heuristic

Methods (see [61] and references therein). Herein, we have

performed for P~1 an exhaustive search among all possible

memories and compute the minimum cost for each of the

memories, i.e., after an exhaustive search we have provided the

Least Squares Error (LSE) solution. For P~2 a genetic algorithm

has been used to minimize the cost given by Eq. (36), details below.
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The solution to Eq. (36) constitutes the essential of our method

that can be summarized as the following: from time-series data of

enzymatic activity, the matrix v
fp
ij is obtained using Eq. (25). Then,

we test the possibility of such weights resulting from a storing-

encoding rule of P memories, like the one in Eq. (35). The best

memories, according to the LSE criteria, are the one that makes

vHebb
ij to be most similar to vfp

ij .

14. Validating the Associative Memory in the DMN; or
How much Locally Stable are the Metabolic Memories

To test the validity of the solutions obtained after minimization

of the cost given by Eq. (36), we have simulated the dynamics of a

Hopfield network with weights given by Eq. (25), thresholds given

by Eq. (26), encoding rule given by Eq. (35), and metabolic

memories corresponding to the ones minimizing the cost given by

Eq. (36). Hereon, we will refer to this as the Hopfield net which is

equivalent to the DMN.

If the network manifests associative memory, the activity

patterns given by the metabolic memories must correspond with

local minima of the dynamics. This can be easily addressed by

studying how far the net activity goes after perturbing it when

initially was fixed to the activity of one of the metabolic memories.

The time evolution of the net activity is computed in Monte Carlo

Steps (MCS), one MCS corresponding to N different movements

per site in the net activity [49–51]. Around a local minimum,

fluctuations can push the net activity outward the attractor, but

after a transitory the net activity converges back to the attractor.

For initial conditions which are not local minima, fluctuations

rapidly provoke the net activity to scape permanently from the

attractor.

The distance from the initial activity configuration to the

evolving net activity has been defined as d:1{ml, with

ml:
1

N

XN

i~1
jl

i si the usual overlap measure, a Hamming

distance between the net activity and the l~1,:::,P encoded

memory. Further details in [49–51].

In the Hopfield net simulations, fluctuations are coming from

the temperature parameter, T:
1

b
in Eq. (17), which introduces

random fluctuations in the input-output relation for each

subsystem. In such a way, those fluctuations provide a self-

mechanism to perturb the initial condition of the net activity.

15. The Use of a Genetic Algorithm to Approximate the
Least Squares Error Solution in Discrete-optimization

In the search of the P~2 binary metabolic memories, there are

more than 6:8|1010 possibilities to be explored for the cost

evaluation, cf. Eq. (36). An exhaustive method in the search (as the

one performed for the case P~1) is computationally hard, so we

alternatively have approached a genetic algorithm, a heuristic-

optimization technique which, inspired in the process of natural

evolution, is mixing and mutating different solutions in order to get

a minimize the fitness function given by Eq. (36). Here, we briefly

explain its roots, but for further details see for instance [62].

Initially, a genetic algorithm defines a set (‘‘population’’) of

candidate solutions (‘‘individuals’’) for the specific problem in

question. The cost associated to each solution is ranked between

the worst and the best solution, in a cost-function basis. Next, in an

iterative fashion some of the good solutions (the parents) are

probabilistically selected according to their cost, then mixed (using

a crossover operator) and changed (via a mutation operator) to

generate new solutions (the childs) that will replace the high-cost

ones from the previous iteration; thus, imitating the evolutionary

principle of survival of the fittest (i.e. the one with least cost).

As the genetic algorithm solutions are based on a random

search, it do exists the possibility that the genetic algorithm

becomes trapped in a local minimum; to avoid that possibility the

method usually is executed several times and the best solution is

selected.

In this work, we use a population of k~1,:::,150 individuals,

each one corresponding to one possible set of P~2 metabolic

memories, i.e., memories A and B represented by

jk
A:jk

A1,jk
A2,:::,jk

AN and jk
B: jk

B1,jk
B2,:::,jk

BN

� �T
. Thus, an indi-

vidual is formed by two vectors of size N. The population is

evaluated using the Eq. (36) and sorted with a cost-basis criteria.

The 10% of the best solutions are passed through the next

generation (so they are new candidates to be chosen); the 90% of

the left are modified using crossover and mutation.

Crossover operation works as follows: first, two pairs of

individuals are randomly selected, and the best two of the four

are considered to be crossed (named dad and mum respectively).

After chosen the integer vector-position i at random, the new

crossed individual is built taken the dad positions from the 1st to

the ith and the mum positions from the (i+1)th to the Nth.

Technically speaking it is said that there is a tournament selection

with a tournament size equal to 2. Notice that this crossover is

performed in the two P~2 memories A and B.

Mutation selects at random one individual (a two N-size vectors)

and one integer vector position and flips its value. The mutation

operator is applied several times.

Finally, the new individuals are in-cost-evaluated and the

procedure is repeated for a given number of iterations.

Notice that the main purpose of the use of the genetic algorithm

was not to perform a fine optimization of the fitness function given

by Eq. (36). For that reason, we have not explicitly studied.

Results

To research the systemic biomolecular mechanisms involved in

the regulation of the enzymatic activity when several enzymatic

sets interact with each other we have built a Dissipative Metabolic

Network (DMN) with 18 metabolic subsystems, each one

representing a self-organized multienzymatic complex; hereon,

we will name indifferently catalytic subsystem, multienzymatic

subsystem or MSb.

The DMN has been built according to the following concerns:

– The number of catalytic subsystems in the DMN is fixed to 18.

– The maximum number of substrate input fluxes for each

subsystem is fixed to 3.

– The number of input regulatory signals for each metabolic

subsystem is fixed to 3.

– There are three classes of regulatory signals in the network:

activatory (positive allosteric modulation), inhibitory (negative

allosteric modulation) and all-or-nothing type (which corre-

spond to the regulatory enzymes of covalent modulation). The

regulatory signals are affecting all the catalytic subsystems and

it is not required any flux relationship.

– Every metabolic subsystem receives both fluxes and regulatory

signals.

– It exists a balanced number between allosteric activation,

allosteric inhibition and regulatory signals of covalent modu-

lation.
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The network architecture was built by choosing a random

topology of substrate flux interconnections and regulatory signals.

Moreover, we have randomly defined the parameters describing

the flux-integration functions, the regulatory coefficients of the

allostetic activities and the values of the initial conditions for all

metabolic subsystems (Tables in Supporting Information S2 and

Supporting Information S3).

Dissipative metabolic networks are open systems and some of

the metabolic subsystems may receive a substrate flux from the

exterior. Here, we have arbitrarily fixed the MSb3 and MSb10 to

receive external stimuli; in concrete we have applied constant

substrate inputs of S1 = 0.54 to MSb3 and S2 = 0.16 to MSb10.

Figure 1A, 1D illustrates the organization of substrate fluxes and

input fluxes of the DMN. Notice that the MSb18 is presenting a

self-catalytic process. The complex architecture of the regulatory

signals affecting the network is depicted in Figure S1.

1. Catalytic Dynamics of the Self-organized Multi-
enzymatic Complexes Under Systemic Conditions

We have studied first the catalytic dynamical patterns emerging

in the network when only a stationary input flux of substrate S1 is

considered (hereon Condition I).

Under this external condition, a systemic metabolic structure

emerges spontaneously in the network: the MSb12 is always in an

active state (i.e. metabolic core), whereas the rest of multi-

enzymatic subsystems exhibit intermittently activity transitions

between on and off states.

All metabolic subsystems present complex output patterns with

large transitions between different oscillatory behaviors (350

transitions per period). Figures 1B,1E show a representative time

series of the catalytic activities belonging to the MSb12 where only

30 transitions between oscillatory behaviors are depicted.

In another condition, the biochemical network was receiving

two external and simultaneous stimuli S1 and S2 (hereon

Condition II).

Under this new external perturbation the same network

undergoes a drastic reorganization of its catalytic dynamics

showing flux plasticity which involve persistent changes in the

enzymatic activities of all subsystems (Figure 1B vs 1C, and 1E vs

1F), and structural plasticity which, in this case, implies a persistent

change in the state of the MSb15 i.e., in condition I the MSb15

was locked to an on-off changing dynamics and in condition II the

MSb15 exhibits a permanent off-state (Figure 1A,1D).

In condition II all subsystems change their catalytic patterns

presenting complex activity with 105 transitions (per period)

between oscillatory and steady state behaviors (in Figure 1E an

example of only 30 transitions in the catalytic activity of the

MSb12 can be observed). Notice that despite the non-linear

behavior of the time-series, its dynamics is purely deterministic and

noise-free. Despite the drastic catalytic changes observed in the

time evolution of the dynamics of the all subsystems, the network

preserves its Systemic Metabolic Structure, i.e., the MSb12 is the

metabolic core (which is always active) and the rest of active

subsystems continue exhibiting on-off intermittently dynamics.

The complex dynamic behaviors which spontaneously emerge

in the network have their origin in the regulatory structure of the

feedback loops, and in the nonlinearity of the constitutive

equations of the system. Therefore, the mechanism that

determines the complex catalytic behaviors is not prefixed in

any particular location of the metabolic system and there are no

specifically designed rules that force the system to present these

complex transitions in the output catalytic activities for the all

metabolic subsystems.

Once the main dynamical behaviors of the dissipative metabolic

network have been reported, we have used the amplitude of the

catalytic patterns (see some examples in Figures 1C, 1F ) to study

in a quantitative way, some macroscopic properties of the network

using statistical mechanic tools. In concrete by exploiting a

Boltzmann machine algorithm we have described the stationary

properties of the DMN by a Boltzmann-Gibbs distribution;

allowing studying some network properties, such as the energy,

the Shannon Entropy and the mapping of the local minima of the

dynamics with Hopfield-like attractors, reporting in such a way on

the possibility of that the DMN manifests associative memory.

Details below.

2. Reading-out Boltzmann-Gibbs Distributions from
Attractors in DMNs by Using a Boltzmann Machine

We have applied a Boltzmann machine to learn from time-

series of enzymatic activity the matrix of weights connectivity and

the vector of thresholds; cf. Eqs. (25) and (26). The Boltzmann

machine was applied to the two stimulation conditions (explained

before). Results for condition I are given in Tables 1 and 2; for

condition II results are given in Tables 3 and 4.

The weights data given in Tables 1 and 3 have a standard

deviation which is higher than the one in standard Hopfield nets.

This occurred in both stimulation conditions I (mean = 2.71, std

dev = 34.36) and II (mean = 0.37, std dev = 2.8). In standard

Hopfield nets, weights are given by Eq. (35) and typically are

generated by using the so-called orthogonal memories, in which

their probability distribution is assumed to be factorisable, i.e.

p jð Þ~PP
l~1P

N
i~1p jl

i

� �
with p jl

i

� �
~ 1

2
d jl

i {1
� �

z 1
2

d jl
i z1

� �
.

For this case, it is straightforward to proof that the weights

generated through Eq, (35) have a mean value of zero and a

standard deviation of
ffiffiffi
P
p

N
, so for large size nets the standard

deviation is practically zero.

The reason for this discrepancy comes from the fact that the

weights in the DMN data are strongly non-Gaussian. This is

illustrated in Figure 2, weights colored in red, thresholds in blue.

The normal probability plot is a graphical statistical test to validate

how much Gaussian is the data. Data purely Gaussian had been

depicted precisely on the straight line (the more non-Gaussian is

the data, the bigger deviations appear from the straight line).

In most of the situations Hopfield networks assume weights

which are Gaussian distributed (black line in the inset in

Figure 2A). However, the constraints for the thresholds are more

flexible, and different considerations have been assumed before:

Gaussian thresholds, all thresholds equal to a constant, a different

constant for each threshold, oscillatory thresholds, etc. For details

see [49–51].

For both stimulation conditions I and II, weights have both

positive and negative values, meaning that the activity belonging

to two interacting subsystems (say 1 and 2) can either be positively

correlated (when one is up the other is up) and anti-correlated

(when one is up the other is down). This is illustrated in Figure 3.

For the two stimulation conditions, we plot the two matrices of

weights connectivity, result from Eq. (25). Notice that although the

mean values in both matrices are small (2.71 in panel A and 0.37

in panel B), the variance in panel A is much higher compared to

the one in panel B (A: 34.36, B: 2.83). Thus, from Figure 3 it is

observed how the learned weights clearly depend on the different

stimulation condition.

The results for the thresholds are given in Tables 2 and 4. In

general, one can see that, similar to the weights, thresholds have

positive and negative values; the more positive is the threshold

value, the less excitable is the associated MSb.
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3. Shannon Entropy as a Measure for the Information in
the DMN

After convergence in the learning, the Boltzmann machine

allows to obtain a weights matrix and a vector of thresholds such as

the stationary probability of the dynamics of the DMN coincides

with the Botlzmann-Gibbs distribution with an Energy function

given by Eq.(18). This is very important as it allows describing

global (stationary) properties of the DMN from the dynamics of

the catalytic subsystems. The Shannon Entropy given by Eq. (28)

can be interpreted as the information in bits that can be read-out

from the time series describing the dynamics of the DMN. To do

this, we have considered Eqs. (30) and (31), the so-called ‘‘mean

field approximation’’. Under these conditions, the Shannon

Entropy is given by Eq. (33).

We have computed the Shannon Entropy for the two

stimulation conditions I and II. It had a value of 10.45 for

condition I and 10.56 for condition II. Thus, the Shannon

Entropy did change very little (with a small relative error) in the

two stimulation conditions. Notice that, in contrast with the

Energy in Eq. (34), the Entropy given by Eq. (33) does not depend

on weights and thresholds; thus, the Entropy is a measure which

has not a direct dependence on the temperature, as all the

temperature dependencies come from the weights and the

thresholds cf. Eqs. (25) and (26).

It is important to remark that we have computed the Entropy

for all enzymatic subsystems except the number 15. The reason

was that for condition II, the MSb 15 was in the off state, so giving

a not-a-number (NAN) contribution to the Shannon Entropy, c.f.

Table 4. For comparison purposes, we have skipped as well the

contribution of the MSb 15 in the condition I. Thus, the stored

information was about 10.5 for 17 subsystems in total, which gives

about 0.61 bits of information per each subsystem.

The fact that the Shannon Entropy kept almost unchanged and

independently on the stimulation condition, it can give cues about

a possible invariant in the information stored in the dynamics of

the DMN.

4. Net Energy as a Measure of the Global Stability in the
DMN

The use of the Botlzmann machine allows for describing

different stationary properties at the network level for the DMN by

exploiting the statistics of the Boltzmann-Gibbs distribution. The

net energy (see methods) is a convenient measure for global

stability of the dissipative metabolic network. Similar to the

calculation of the Shannon Entropy (corresponding to the

metabolic network information), we have assumed also for the

energy calculation the mean field approximation. The energy in

this case is given by Eq. (14).

We have computed the net energy for the two conditions I and

II. Network energy had a value of 2158.34 for condition I versus

227.83 for condition II, thus when only the stimulus S1 is

stimulating the biochemical system, the DMN is 5.69 times more

stable than when the two stimuli S1 and S2 are activating the

network. This occurred for a temperature value of T = 0.5. The

Table 1. Matrix of weights connectivity: condition I (only stimulus S1).

0.00 1.09 4.25 21.57 1.30 20.36 21.86 0.79 21.48 22.43 20.02 0.09 1.97 0.58 0.00 20.70 22.93 0.47

1.09 0.00 26.12 2.82 24.29 1.79 3.55 23.68 20.60 0.23 21.46 3.07 21.29 0.76 0.00 0.25 1.86 1.22

4.25 26.12 0.00 4.15 26.66 0.24 7.41 23.17 8.79 18.31 23.19 6.53 24.42 20.06 0.00 23.65 10.13 20.65

21.57 2.82 4.15 0.00 2.53 20.18 23.67 3.32 20.67 21.00 1.02 22.81 20.97 20.63 0.00 0.16 21.14 1.06

1.30 24.29 26.66 2.53 0.00 0.93 3.71 22.89 1.48 20.60 22.03 5.42 21.44 2.49 0.00 1.48 20.32 2.39

20.36 1.79 0.24 20.18 0.93 0.00 20.42 20.54 2.64 23.85 20.65 1.97 3.00 1.41 0.00 1.82 20.51 0.03

21.86 3.55 7.41 23.67 3.71 20.42 0.00 5.02 22.17 21.33 1.15 21.80 1.65 20.36 0.00 20.45 22.74 0.94

0.79 23.68 23.17 3.32 22.89 20.54 5.02 0.00 20.40 22.43 23.00 2.69 1.35 0.55 0.00 2.55 20.18 0.34

21.48 20.60 8.79 20.67 1.48 2.64 22.17 20.40 0.00 20.78 20.35 21.20 0.31 20.09 0.00 20.16 21.56 0.92

22.43 0.23 18.31 21.00 20.60 23.85 21.33 22.43 20.78 0.00 21.63 20.39 5.63 2.34 0.00 6.18 25.95 2.49

20.02 21.46 23.19 1.02 22.03 20.65 1.15 23.00 20.35 21.63 0.00 1.74 2.92 0.92 0.00 1.75 20.50 0.16

0.09 3.07 6.53 22.81 5.42 1.97 21.80 2.69 21.20 20.39 1.74 0.00 0.05 22.43 0.00 0.34 1.28 20.76

1.97 21.29 24.42 20.97 21.44 3.00 1.65 1.35 0.31 5.63 2.92 0.05 0.00 20.49 0.00 22.18 3.66 0.28

0.58 0.76 20.06 20.63 2.49 1.41 20.36 0.55 20.09 2.34 0.92 22.43 20.49 0.00 0.00 20.90 0.82 20.67

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20.70 0.25 23.65 0.16 1.48 1.82 20.45 2.55 20.16 6.18 1.75 0.34 22.18 20.90 0.00 0.00 3.06 22.00

22.93 1.86 10.13 21.14 20.32 20.51 22.74 20.18 21.56 25.95 20.50 1.28 3.66 0.82 0.00 3.06 0.00 1.61

0.47 1.22 20.65 1.06 2.39 0.03 0.94 0.34 0.92 2.49 0.16 20.76 0.28 20.67 0.00 22.00 1.61 0.00

Each cell in the table corresponds with a given weight; ith row, jth column is correponding to vij . Notice that the matrix is symmetric and with the principal diagonal
equal to zero. Mean val 2.71; std dev 34.36; min val 2150.11; max val 151.23.
doi:10.1371/journal.pone.0058284.t001

Table 2. Vector of thersholds: condition I (only stimulus S1).

48.31 7.31 15.89 28.89 24.70 23.29 81.05 3.09 233.86 29.12 20.29 274.57 6.77 211.91 233.86 13.93 271.88 48.34

Each cell for each threshold value. Mean val 0.59; std dev 39.04; min val 274.57; max val 81.05.
doi:10.1371/journal.pone.0058284.t002
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effect of the temperature was not very relevant though; thus for

T = 0.1 we obtained 2158.79 (condition I) and 228.13 and for

T = 1.0, 2157.78 (I) and 227.47 (II). Thus, increasing the

temperature, the Energy function also increased, making the

network to be less stable. However, despite of this (well-known)

tendency, the DMN is about 6 times more stable in condition I in

comparison with condition II, and this fact was independent on

the value of the temperature.

Interpreting in terms of the energy the transition of the MSb15

from an on-off state in condition I to an off state in condition II, it

says that the dynamical condition in which all subsystems except

the metabolic core are in on-off states is about 6 times more stable

in comparison with the situation in which the MSb 15 was in the

off-state. In other words, the situation in which all non-core

subsystems are oscillating is energetically 6 times cheaper than the

one to force the MSb15 to be in the off-state.

5. Testing Attractors Stability of the Metabolic Memories
We have tested the attractors stability by looking into the

dynamics of the Hopfield net which is equivalent to the DMN (see

methods). By fixing the initial net activity to the activity of one

metabolic memory, one can study how much stable is that

memory by looking the time evolution of the net activity. This is

represented in Figure 4. Black lines represent the evolving net

activity when the initial condition was equal to the memory

provided by the Least Square Error (LSE); another arbitrary

memory with a higher cost than the LSE is plotted with red lines

(i.e. worse than LSE). Figure 4 shows that for both stimulation

conditions I and II, the LSE metabolic memory is a local minima

as the net activity random-fluctuates around it, but without

escaping from it; this does not occur, however, with the memory

having a higher cost than the LSE, from which after very few time-

iterations the network activity goes far from the initial state, and

never returns back to the attractor, thus indicating that the

memory is locally unstable. In such a way, the metabolic memory

provided by the LSE solution is a local minimum of the equivalent

Hopfield dynamics of the DMN, an evidence for associative

memory.

For P~2 metabolic memories the cost minimization has been

performed by using a genetic algorithm (see methods). Results are

plotted in Figure 5. The time-evolution of the net activity

dynamics is represented for the two stimulation conditions I and

II with different initial conditions: for the first metabolic memory,

this is depicted in Figures 5A and 5C. For the second memory, in

5B and 5D. Similar to the case of Figure 4, the two metabolic

memories provided by the LSE are local minima of the dynamics

(black lines) but this does not happen for another arbitrary solution

with a higher cost than the LSE (red lines). Thus, indicating that

the equivalent Hopfield net of the DMN can manifest associative

memory also for P~2.

Table 3. Matrix of weights connectivity: condition II (both stimuli S1 and S2).

0.00 1.09 4.25 21.57 1.30 20.36 21.86 0.79 21.48 22.43 20.02 0.09 1.97 0.58 0.00 20.70 22.93 0.47

1.09 0.00 26.12 2.82 24.29 1.79 3.55 23.68 20.60 0.23 21.46 3.07 21.29 0.76 0.00 0.25 1.86 1.22

4.25 26.12 0.00 4.15 26.66 0.24 7.41 23.17 8.79 18.31 23.19 6.53 24.42 20.06 0.00 23.65 10.13 20.65

21.57 2.82 4.15 0.00 2.53 20.18 23.67 3.32 20.67 21.00 1.02 22.81 20.97 20.63 0.00 0.16 21.14 1.06

1.30 24.29 26.66 2.53 0.00 0.93 3.71 22.89 1.48 20.60 22.03 5.42 21.44 2.49 0.00 1.48 20.32 2.39

20.36 1.79 0.24 20.18 0.93 0.00 20.42 20.54 2.64 23.85 20.65 1.97 3.00 1.41 0.00 1.82 20.51 0.03

21.86 3.55 7.41 23.67 3.71 20.42 0.00 5.02 22.17 21.33 1.15 21.80 1.65 20.36 0.00 20.45 22.74 0.94

0.79 23.68 23.17 3.32 22.89 20.54 5.02 0.00 20.40 22.43 23.00 2.69 1.35 0.55 0.00 2.55 20.18 0.34

21.48 20.60 8.79 20.67 1.48 2.64 22.17 20.40 0.00 20.78 20.35 21.20 0.31 20.09 0.00 20.16 21.56 0.92

22.43 0.23 18.31 21.00 20.60 23.85 21.33 22.43 20.78 0.00 21.63 20.39 5.63 2.34 0.00 6.18 25.95 2.49

20.02 21.46 23.19 1.02 22.03 20.65 1.15 23.00 20.35 21.63 0.00 1.74 2.92 0.92 0.00 1.75 20.50 0.16

0.09 3.07 6.53 22.81 5.42 1.97 21.80 2.69 21.20 20.39 1.74 0.00 0.05 22.43 0.00 0.34 1.28 20.76

1.97 21.29 24.42 20.97 21.44 3.00 1.65 1.35 0.31 5.63 2.92 0.05 0.00 20.49 0.00 22.18 3.66 0.28

0.58 0.76 20.06 20.63 2.49 1.41 20.36 0.55 20.09 2.34 0.92 22.43 20.49 0.00 0.00 20.90 0.82 20.67

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20.70 0.25 23.65 0.16 1.48 1.82 20.45 2.55 20.16 6.18 1.75 0.34 22.18 20.90 0.00 0.00 3.06 22.00

22.93 1.86 10.13 21.14 20.32 20.51 22.74 20.18 21.56 25.95 20.50 1.28 3.66 0.82 0.00 3.06 0.00 1.61

0.47 1.22 20.65 1.06 2.39 0.03 0.94 0.34 0.92 2.49 0.16 20.76 0.28 20.67 0.00 22.00 1.61 0.00

Similar to Table 1, ith row, jth column is corresponding to vij . Notice that the matrix is symmetric and with the principal diagonal equal to zero. Mean val 0.37; std dev
2.83; min val 26.66; max val 18.31.
doi:10.1371/journal.pone.0058284.t003

Table 4. Vector of thersholds: condition II (both stimuli S1 and S2).

24.38 23.53 21.52 20.20 25.05 22.61 20.26 24.69 23.08 27.33 26.45 6.16 5.99 3.23 NaN 3.52 24.56 3.34

Each cell for each threshold value. Mean val 21.26; std dev 4.29; min val 27.33; max val 6.16.
Note: The NaN number in position 15 is because the MSb15 is in an off-state, which is equivalent to have a positive infinite threshold. This value has been removed and
not considered in the calculation of both mean and standard deviation.
doi:10.1371/journal.pone.0058284.t004
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Discussion

One of the most important goals of contemporary biology is to

understand the elemental principles and quantitative laws

governing the enzymatic processes in cellular conditions.

Here, in order to research the systemic regulatory mechanisms

involved in the control of the cellular enzymatic activity we have

quantified macroscopic properties and essential dynamic aspects of

a dissipative metabolic network formed by 18 metabolic subsys-

tems each one representing a set of enzymes functionally

associated and dissipatively structured.

The enzymes, proteins and RNAs characterized by exhibiting

catalytic activity, are the main functional molecules of cell, and

they do not function in isolation of one another [4] but by shaping

self-organized multienzymatic complexes called metabolic subsys-

tems which exhibit autonomous oscillatory and quasi-stationary

activity patterns [9,10]. These multienzymatic subsystems are

responsible for almost all the biomolecular transformations, which,

globally considered, are called cellular metabolism, and they

represent the nodes of the dissipative metabolic networks.

In the multienzymatic network that we have analyzed, the

metabolic subsystems are interconnected through a complex

Figure 2. Evidence for non-Gaussianity in weights and thresholds obtained through the Boltzmann machine. Normal probability plot;
data deviations from the Gaussian distribution are graphically mapping to the deviations from the straight line (built with a purely Gaussian
distribution). A: stimulation condition I in which only the stimulus S1 is presented. B: condition II: both stimuli S1 and S2 are applied to the DMN. For
both conditions, weights (colored in red) and thresholds (in blue) are strongly non-Gaussian. This is important as standard Hopfield nets assume that

weights are following a Gaussian distribution with mean zero and standard deviation

ffiffiffiffi
P
p

N
; this is represented in the inset of panel A with a black line

for P~100.
doi:10.1371/journal.pone.0058284.g002
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topological structure of biochemical signals formed by substrate

fluxes and three classes of molecular regulatory processes:

activatory (positive allosteric modulation), inhibitory (negative

allosteric modulation) and an all-or-nothing type (which corre-

sponds to the regulatory enzymes of covalent modulation). These

kinds of biochemical signals constitute the main mechanisms of the

enzymatic interconnection in living cells [13], and they may be

understood as metabolic synapses i.e., the functional connection

processes among self-organized multienzymatic complexes

through which biomolecular information flows from one metabolic

subsystem to another [14].

The preliminary analysis of the network catalytic activities

shows that the enzymatic patterns spontaneously self-organize

themselves, leading to the emergence of a Systemic Metabolic

Structure characterized by a set of different enzymatic reactions

which are always locked into active states (metabolic core) while

the rest of the catalytic processes are only intermittently active.

This global dynamic structure is in agreement with experimental

results [16,17,35].

Moreover, our study shows how complex catalytic patterns

emerge in the subsystems, which exhibit hundreds of different

transitions between oscillatory behaviors, and some steady states,

as it is expected on the cellular conditions [9,10].

It is interesting to remark that the dissipative metabolic

network that we have studied self-adjusts the internal enzymatic

activities to the external environmental changes by means of

metabolic flux plasticity (changes in the physiological values of

the metabolic synapses which lead to a differential catalytic

Figure 3. Weights connectivity matrix learned from the DMN
by the Boltzmann machine. For the two stimulation conditions, we
plot the two matrices of weights connectivity that are the result of the
learning by the Boltzmann machine. Notice that although the mean
values in both matrices are small (2.71 in panel A and 0.37 in panel B),
the variance in panel A is much higher compared to the one in panel B
(A: 34.36, B: 2.83). The tables with these values and their corresponding
statistics are given in Tables 1 and 3.
doi:10.1371/journal.pone.0058284.g003

Figure 4. The metabolic memories are local minima of the DMN
dynamics (case P~1). For only P~1 metabolic memory encoded in
the weights, we plotted the time evolution of the distance between the
evolving net activity and the initial net activity s0, fixed to be equal to
the activity of the metabolic memory (details in methods). A,B: Time is
given in units of Monte Carlo Steps (MCS). Black lines correspond to
fixing the initial activity to the memory provided by the LSE solution.
Red lines correspond to fixing the activity to an arbitrary memory that
has a higher cost than the LSE (i.e. worse than LSE). A: stimulation
condition I (only stimulus S1). B: stimulation condition II (both stimuli S1
and S2). In this case of P~1 the LSE solution has been found by using
an exhaustive method in the search-space and providing the LSE
memory (details in the text). Fluctuations in the time-series are
originated by a temperature parameter of T = 0.7.
doi:10.1371/journal.pone.0058284.g004
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activity of subsystems) and metabolic structural plasticity

(persistent change in the state of the multienzymatic subsystems

which can be in an active state, in an on-off changing state or

an inactive state: all these catalytic states are also due to the

metabolic synaptic changes). The global self-regulations of the

enzymatic processes by means of metabolic flux plasticity and

structural plasticity have been experimentally observed in

several unicellular organisms as the main systemic metabolic

mechanisms for the adaptation to external perturbations

[17,35].

As a first preliminary conclusion of our work, the dissipative

metabolic network analyzed here, despite its remarkable

conceptual simplicity, shows fundamental organizational ele-

ments which are present in all unicellular metabolic organisms,

i. e., (1) the enzymes functionally associated forming self-

organized multienzymatic complexes, (2) the main biochemical

mechanisms for the metabolic synapses (substrate fluxes,

allosteric processes, and regulatory mechanisms of covalent

modulations), (3) the emergence of dissipative catalytic patterns,

(oscillatory and stationary enzymatic activities in far from

equilibrium conditions), (4) the global enzymatic self-organiza-

tion (presence of the Systemic Metabolic Structure which is

characterized by an enzymatic core and intermittently active

catalytic processes), and (5) the systemic enzymatic self-

regulation (adaptation to environmental changes by means of

flux plasticity and structural plasticity).

Consequences of the Use of the Boltzmann Machine in
the DMN: Lyapunov Function, Energy Landscape,
Hopfield-like Attractors and Metabolic Associative
Memory

The main conclusions of the use of the Boltzmann machine are

the following:

I. The catalytic dynamics of the dissipative metabolic network

are dependent on the Lyapunov function i.e, the energy

function of the biochemical system, which is a fundamental

element in the regulation of all the enzymatic activities.

Started in any initial system state after an external stimulus, and

due to the global multienzymatic dynamics, the metabolic network

evolves trying to reduce the energy function, which in absence of

noise will decrease in a monotone way until achieving a final

system state that is a local minimum of the Lyapunov function.

When the biochemical system state reaches a local minimum, it

becomes a (locally) stable state for the enzymatic network.

The dissipative metabolic network has multiple stable states and

each one of them corresponds to a specific global enzymatic

pattern of the biochemical system.

II. The enzymatic activities of the dissipative metabolic network

are governed by systemic attractors which are locally stable

states, where all the enzymatic dynamics are stabilized.

The minimums of the Lyapunov function correspond to these

systemic attractors which regulate the metabolic patterns of the

Figure 5. The metabolic memories are local minima of the DMN dynamics (case P~2). This figure is similar than Fig. 3 but now there are
P~2 metabolic memory encoded in the weights. A,C: the first metabolic memory in both cases LSE and worse than LSE conditions. B,D: similar than
in A,C but for the second metabolic memory. A,B: stimulation condition I (only stimulus S1). C,D: condition II (both stimuli S1 and S2). In this case of
P~2, the LSE solution has been found by using an genetic algorithm for minimization of the cost given by Eq. (36), details in the text. The
temperature parameter is fixed to T = 0.7.
doi:10.1371/journal.pone.0058284.g005
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subsystems and determine that the enzymatic network operates as

an individual and completely integrated system.

The energy function on which the dynamics of the metabolic

network depend has a complex landscape with multiple attractors

(local minima).

III. The emerging systemic attractors analyzed here are corres-

ponding with Hopfield-like attractors [52] in which metabolic

information patterns can be stored.

The biochemical information contained in the attractors behave

as metabolic memories i.e., enzymatic activity patterns stored as

stable states, which regulate both the permanent changes in the

internal catalytic medium as well as the metabolic responses to

properly integrate the perturbations coming from the external

environment.

When a stimulus pattern is presented to the system, the network

states are driven by the intrinsic enzymatic dynamics towards a

determinate systemic attractor which corresponds to a memorized

biochemical pattern.

The formation of the attractor landscape is achieved by

metabolic synaptic modifications in which each biochemical

synapse is involved in the storage of the metabolic memories.

Metabolic synaptic plasticity seems to be the basis of the stored

memories in the metabolic network.

IV. A key attribute of the analyzed systemic attractors is that when

the dissipative metabolic network (DMN) is stimulated with a

pattern input, the enzymatic activities converge to the stored

pattern which most closely resembles the input, i. e. the

attractors have ‘‘associative memory’’.

The metabolic network attractors seem to store functional

enzymatic patterns which can be correctly recovered from specific

input patterns.

Our results explicitly show that indeed, there exists memory

attractors and capacity to retrieve binary information patterns

(from the weights) which are local minima of the catalytic activity

in the DMN.

Thus, if the initial condition of the network dynamics starts

within the basin of attraction of such a pattern, the dynamics will

converge to the originally stored pattern. As it is well known, this

class of ‘‘pattern-completion’’ dynamics has been addressed in

Hopfield nets studies for years, and it is generally named

‘‘associative memory’’ [49–52].

Beyond the Mean Field Approximation
We have computed the mean field energy of the equivalent-

Hopfield network which is built from the dynamics of the DMN,

and we have found some explicit information patterns which are

local minima of this energy. Notice that the original dissipative

metabolic network can have much more complicated energy

landscape than the one approached by the mean field solution.

However, even if the calculation of a more exact energy function is

beyond the scope of the present work, these results give clues that

the local minima of the metabolic net energy can first store

information to eventually be retrieved. And this is what

researchers in neural networks studies named to have associative

memory.

Encoding and Retrieving Information Patterns:
Associative Memory in the DMN

In our case, the synaptic connectivity matrix in the Hopfield

network is the result of an adaptation of a Hebbian learning rule

(firing together, wiring together) for which ‘‘simultaneous activa-

tion of two metabolic subsystems leads to pronounced increases in

biochemical synaptic strength between both metabolic subsys-

tems’’.

The stimuli sequences of vectors which are encoded into the

learning rule correspond to an information pattern. In the simplest

case, after learning the synaptic weights do not change their

strength any more. When connecting metabolic subsystems with

the weights matrix, the stable states of the entire network dynamics

coincide with one of the stimulus which was stored in the learning

rule. Thus, the name of information pattern comes from the fact

that the information existing in the weights-encoded vector can be

retrieved after learning by simply stimulating the network with a

stimulus which is close to the one used for patterns encoding.

Therefore, pattern information, encoding and retrieval in the

dissipative metabolic network exist in the dissipative metabolic

network.

The metabolic network analysed here converts the biomolecular

information flows into new activity patterns, modifies the efficiency

in the connection between the multyenzymatic complexes, and

stably retains these modifications. These enzymatic dynamic

behaviors are governed by Hopfield-type attractors, and therefore,

the dissipative metabolic network behaves as an attractor

metabolic network which has associative memory properties.

Neural networks with associative memory, addressing storage

and recollection of encoded patters in the learning rule, have been

studied in theoretical neurobiology since longer than 50 years ago.

Starting at the preliminary work done by Willshaw et al [63] and

continuing by several studies [64–66] to finally becoming highly

popularized by Hopfield in [52], an article with about twelve

thousands citations in Google Scholar.

In these pioneer theoretical studies it was suggested that such

associative memory could explain the operational mechanisms for

memory in neural systems; recently the theoretical predictions

formulated several decades ago have been experimentally validat-

ed [67], showing the existence of attractors in neural circuits, thus

underlying associative memory.

Here for the first time, we are suggesting that associative

memory could be also present in metabolic networks, thus defining

the general concept of attractor metabolic network, in which this

dynamic behavior, emerging as collective phenomena, might be

also observed.

Shannon Information in the DMN
On the other hand, we have measured the systemic Shannon

entropy (under the mean field approximation) of the enzymatic

activity in the metabolic network. The Shannon entropy (the

average uncertainty in the dynamics of enzymatic activity) is

directly related to the concept of information. More precisely, the

Shannon entropy coincides with the amount of information which

on-average is required to describe the DMN system dynamics

[58]. It is important to remark that this information can be

naturally read-out from the time-series of enzymatic activity.

Interestingly, Shannon entropy is related to the measure of mutual

information between two variables as well (the mutual information

measures the amount of uncertainty reduction in one variable by

knowing another). Concretely, the mutual information of one

variable with itself is the Shannon Entropy.

We have computed the Shannon Entropy for the two

stimulation conditions: one in which only the stimulus S1 is

applied to the metabolic network (condition I), and the other in

which both stimuli S1 and S2 are applied (condition II). The

Shannon Entropy changed very little in the two stimulation

conditions and was about 10.5 bits for 17 multienzymatic

subsystems in total, which gives around 0.61 bits per metabolic

subsystem.
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Both the Energy function and the Shannon Entropy have been

computed under the mean field assumption; but other more

sophisticated non-equilibrium methods can be approached starting

at the Boltzmann-Gibbs distribution, i.e. in Ising-like systems. For

a pedagogical book on these methods see [68].

About the Maximum Capacity for Storing Information
Patterns in the DMN

Another important feature of an associative Hopfield network is

the maximum number of patterns that the network can be stored

to after be retrieved, i.e. the storage capacity. Studies on the

storage capacity in Hopfield networks are very abundant as this

problem has been widely studied and discussed [49–52]. Under

many different network assumptions and encoding rules, and

beyond specific model details, the storage capacity for recollection

memory, which is requiring a full retrieval of the complete

encoded memory, it scales with N, the number of nodes. For

instance, Hopfield suggested that a network with N nodes could

store about 0.15 N patterns in the form of the stable states [52],

later, it was theoretically found that the storage capacity is 0.138 N

by Amit et al. [53].

Much less studies exist on the storage capacity of Hopfield

network regarding familiarity memory [69,70]; the possibility that

the neural network can discriminate previously encoded patterns

from patterns which are novel and have not been encoded before.

For this ‘‘yes or no’’ discrimination task, the storage capacity has a

different nature in the size scaling; it scales with N‘2 versus the N

scaling occurring for recollection [70–72]. Thus, the same

Hopfield network can both perform recollection (full pattern

retrieval) and familiarity (the discrimination between one memory

which was encoded before or just a novel one, never-seen before),

and very interestingly the different memory nature has a very

different storage capacity (N‘2 for familiarity vs N for recollection).

Broad Estimation on the Storage of Metabolic Memories
in Prokaryotic Cells

In light of these data, one might wonder how many metabolic

information patterns a living cell could possibly store.

At present, the number of metabolic subsystems present in

unicellular organisms is unknown, but it is possible to get a rough

estimation of its magnitude order.

The genome of E. coli K12, one of the most studied cellular

micro-organisms, only contains 4452 open reading frames, of

which 2403 (54.1%) have an experimentally determined function,

1425 (32%) were predicted by computational analysis, and the

remaining 663 (14.9%) are of unknown function [73]. Total of all,

at least 931 correspond to enzymes [74] which are organized into

165 metabolic pathways [75].

However, despite this small number of genes, the amount of all

synthesized proteins per cell including the enzymes is very high

around 3,600,000 [76] due the existence of multiple molecular

copies. A million corresponds to external proteins (flagella and

pili), and in the inner part of the cell there is around 2,600,000

(1,000,000 of them are placed in the cytoplasm, excluding 900,000

ribosomal proteins, 80,000 are in the periplasmic area and

100,000 are nucleoid-associated proteins; likewise, the inner

membrane contains around 200,000 and the outer membrane

exhibits around 300,000 proteins [76]).

Like the rest of cellular organisms, the enzymes and the non-

catalytic proteins of the E. coli K12 present a multiplicity of copies

which can shape numerous metabolic subsystems, e.g., the number

of ribosomes/cell in E. coli range from 6800–72000 units [77]

each one of them can be considered a metabolic subsystem [78],

the bacterial RNA polymerase holoenzyme responsible for the

whole transcription is a complex structure of five subunits which

range from 1500–11400 units per cell [79], the glucose-specific

permease IICBGlc which form part of multifunctional system for

the phosphorylation and translocation of sugar substrates through

the cytoplasmic membrane have about 2361 copies in the bacteria

[80], the b-galactosidase exhibits 3,000–5,000 molecules per cell

when E. coli grown in lactose as the sole carbon source [81], the

phosphofructo-kinase possesses about 10483 copies per cell [80]),

the phosphoglycerate mutaseA around 6526 enzymes per bacteria

[80]), the OmpR molecules about 3037–4628 units per cell [82],

etc.

E.coli very possibly exceed 100,000 self-organized multienzy-

matic subsystems and taking into account this minimal estimation

of its magnitude order, the number of functional metabolic

memories stored (recollection memory) will be well above 100,000

(the familiarity metabolic memory is even much greater, scaling

with N‘2), whereas the genetic structural information for this

bacteria is around 4,500 genes.

Broad Estimation on the Storage of Metabolic Memories
in Eukaryotic Cells

Eukaryotic cells are larger and more structured than prokaryotic

cells, with bigger genomes and much more complex metabolic

systems. For instance, a human liver cell only has genetic structural

information of 20,000–25,000 genes [83] and exhibits around 13

million ribosomes on the rough endoplasmic reticulum [84].

If we consider only the number of ribosomes as the total

number of metabolic subsystems, the minimum number of

functional metabolic memories stored (recollection memory) will

be well above 13,000,000 in the hepatocyte, and familiarity scaling

with N‘2.

Experimental Findings of Biomolecular Information
Processing in Unicellular Organisms

Different experimental works have shown that several unicel-

lular organisms possess complex behaviors that are only possible if

biomolecular information is stored and processed.

One of the most studied examples of information processing in a

single cell is the Physarum polycephalum. This unicellular species

belongs to the amoebozoa, an important branch of eukaryote

evolution, is characterized by a large cytoplasm with many nuclei

which remain suspended in a single contiguous protoplasmic

volume called plasmodium. The body of the plasmodium contains

a network of tubular structures by means of which nutrients and

biomolecular elements circulate through the organism in an

effective manner [85].

The movement of plasmodium is termed shuttle streaming

which is characterized by the rhythmic back-and-forth flow of the

biomolecular substances. The dynamically reconfiguring network

of tubular structures can redirect the flow of protoplasm towards

the plasmatic membrane causing the movement of a mass of

flowing pseudopods, and as a result, the organism can crawl over

ground at a speed of approximately 1–5 cm/h [86].

The complex protoplasm exhibits a rich spatiotemporal

oscillatory behavior, and streams rhythmically synchronised with

intracellular oscillatory patterns such as the oscillations in ATP

concentration, the plasmagel/plasmasol exchange rhythm and the

oscillations in the cytoplasmic free calcium level [87].

In the last several years, a notable number of studies in Physarum

polycephalum have shown that this cell is able to store information,

learn and recall past events.
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For instance: this unicellular organism had the ability to find the

minimum-length solution between two points in a maze, which has

been considered cellular information processing [88,89] and it has

also been verified that the shortest path problem in the maze is a

mathematically rigorous solution [90]; the Physarum construct

appropriate networks for maximizing nutrient uptakes achieving

better network configurations than that of the ones based on the

shortest connection of Steiner’s minimum tree [91,92]; direct

experimental studies evidenced that these kind of amoebas can

memorize sequences of periodic environmental changes and recall

past events during the adaptation of cells to different stimuli (it can

even anticipate a previously applied 1 hour cold-dry pattern) [93];

despite being a single multinucleate cell the plasmodium can be

used to control autonomous robots [94,95]; furthermore, it has

also been verified that the plasmodium can solve complex

multiobjective foraging problems [96–98] and other complex

problems of optimization by means of adaptive network develop-

ment [99,100].

All these experimental results hint at the emergence of an

intrinsic memory storage device [100] and a primitive intelligence

[88,93,101–103].

Many other experimental examples show that other different

unicellular organisms have sophisticated behaviors including

information storage.

A pioneer in revealing such behaviour was H. S. Jennings, who

showed many years ago that a single cell such as Paramecium

could have a primitive kind of learning and memory [104].

Neutrophils also exhibit a rudimentary memory system in which

they are able to ‘‘recall’’ past directions [105]. Dictyostelium and

Polysphondylium amoebae seem to have a rudimentary memory and

they can show long directional persistence (,10 min), being able

to remember the last direction that they had just turned [106].

Even individual neurons seem to show short-term memories, and

permanent information can be stored when nerve cells in the brain

reorganize and strengthen the connections with one another [107].

Final Summary
We have quantified essential dynamic aspects of a dissipative

metabolic network among which we have found that the systemic

enzymatic activities are governed by attractors with the capacity to

store metabolic information patterns which can be correctly

recovered from specific input stimuli (associative memory). As a

consequence, the multienzymatic network has the capacity to

learn, self-regulate and self-adapt to new external conditions.

In a quantitative manner, our numerical analysis show

indications that the systemic catalytic processes of living cells

may behave as a functional attractor network and therefore it is

endowed of its capacity for storing metabolic patterns.

In light of our results, and, in addition to the relatively small

amount of genetic information that characterizes most cells, the

metabolic networks of living cells may have far more biomolecular

information in the form of functional metabolic memories stored

in the connectivity patterns of the self-organized multienzymatic

subsystems.

It has not escaped our notice that the possible duality in the

storage system of molecular information in cells (structural-genetic

and functional-metabolic) are of considerable biological interest.

We are now working on some elementary properties of this

dynamic system capable of storing functional metabolic informa-

tion. Details on the molecular mechanisms that link both storage

systems (metabolic memory and genetic memory) will be published

later.

Understanding how the enzymes are functionally organized

under the complex conditions prevailing inside the cell and which

systemic mechanisms are involved in the regulation of the cellular

enzymatic activity, are crucial for the unraveling of the funda-

mental biomolecular dynamics of cellular life.
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Figure S1 Sketch of regulatory signals in the DMN. Each
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