
 
 

FACULTAD DE CIENCIAS 
DEPARTAMENTO DE FÍSICA APLICADA 

 
 

TESIS DOCTORAL 

VISCOELASTIC 
MAGNETORHEOLOGICAL FLUIDS 

(FLUIDOS MAGNETO-REOLÓGICOS 
VISCOELÁSTICOS) 

Programa de Doctorado: Programa Oficial de 
Doctorado en Física y Ciencias del Espacio 

 

Juan Pablo Segovia Gutiérrez 
 

Granada, Julio de 2013 
 

 

Supervisores: Juan de Vicente Álvarez Manzaneda, Roque 
Hidalgo Álvarez y Antonio Manuel Puertas López 



Editor: Editorial de la Universidad de Granada
Autor:  Juan Pablo Segovia Gutiérrez
D.L.: GR 507-2014
ISBN: 978-84-9028-814-6



2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

 

 

 

 



4 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

AGRADECIMIENTOS 

 

En primer lugar quiero agradecer a mis directores de Tesis, Juan de Vicente, 

Roque y Antonio el grandísimo apoyo que me han dado durante estos casi 5 

años de doctorado que han sido, con momentos difíciles a veces, realmente 

maravillosos y productivos, tanto profesional como personalmente. También 

quiero agradecerles la gran confianza depositada en mí, y por supuesto, su 

inestimable paciencia. Por tanto, para mí ha sido un orgullo trabajar bajo su 

batuta y espero que en un futuro no muy lejano podamos volver a estar bajo el 

mismo techo.  

 

En segundo lugar quiero agradecer todo el apoyo que he recibido por parte de 

mi familia, de mis padres y, muy especialmente, de mi novia Adriana, que ha 

sido el pilar de mi vida los últimos 3 años (espero que el resto de mi vida lo siga 

siendo) y que sin ella todo hubiera sido mucho más complicado. Te quiero, 

Adriana. 

 

En tercer lugar, y con muchísimo cariño, dar las gracias a todos mis compañeros: 

a Efrén por su inestimable ayuda; a Miguel Peláez por su picardía; a Miguel 

Wulff por su inmejorable humor; a Amelia por su buen hacer; a Paola por su 

maravillosa forma de ver la vida; a Pablo por aguantarme durante  años a su 

lado y escuchar de todo; a José Antonio por su inmensa simpatía y amistad; a 

Carmen y a Felipe por ser como son, porque son muy especiales; a Migue y Leo 

por ser la pareja más luchadora de la Sala; cómo no, a Azahara por guiarnos a 

todos en mil situaciones; a Miriam, por su grandeza de espíritu; a Diego por ser 

una gran persona con maravillosas convicciones; a Dani, porque aunque fugaz 

en la sala, anima la fiesta y a Álvaro, por aportar un toque de juventud a la sala. 



6 
 

Por supuesto, y no se me olvidaba, dar las gracias a Luisma, mi querido 

sevillano, que con mucho arte y salero nos alegró la vida a todos durante unos 

mesecillos. 

 

Quiero dar las gracias también al grupo en general por formar un grandísimo 

equipo de buenas personas y buenos profesionales y, especialmente, a 

Fernando Vereda por estar ahí cuando le he necesitado. 

 

Finalmente, a título póstumo, quiero recordar a Manu que, aunque lo conocí 

poco por desgracia, para mí fue alguien especial.  

 

 

Dedicado a mi familia  

y a mi novia, Adriana 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

OUTLINE 

I. INTRODUCTION……………………………………………………………………………….9 

II. INTRODUCCIÓN…………………………………………………………………………….17 

III. BACKGROUND……………………………………………………………………………….25 

a. Colloids……………………………………………………………………………..25 

b. Magnetic colloids………………………………………………………………27 

i. Ferrofluids…………………………………………………………27 

ii. Magnetorheological (MR) fluids………………………..28 

c. MR fluids……………………………………………. ……………………………30 

i. Basics about Rheology……………………………………….31 

ii. Boger fluids……………………………………………………….40 

iii. Basics about Magnetism……………………………………44 

iv. Experimental rheological tests………………………….52 

d. Brownian Dynamic Simulations on MR fluids…………………….59 

e. References………………………………………………………………………..77 

IV. PART I: EFFECT OF THE PARTICLE MORPHOLOGY……………………………81 

a. Dynamic rheology of sphere- and rod-based 

magnetorheological fluids…………………………………………………81 

b. Effect of the particle shape in magnetorheology……………..121 

c. On the effect of particle porosity and roughness  in 

magnetorheology……………………………………………………………175 

V. PART II: YIELD STRESS AND THE EFFECT OF PARTICLE 

CONCENTRATION…………………………………………………………………………209 

a. Nonlinear viscoelasticity and two-step yielding in 

magnetorheology: A colloidal gel approach to understand 

the effect of particle concentration…………………………………209 



8 
 

b. Average particle magnetization as an experimental scaling 

parameter for the yield stress of dilute magnetorheological 

fluids……………………………………………………………………………….251 

VI. PART III: BROWNIAN DYNAMIC SIMULATIONS IN MR FLUIDS………273 

a. Brownian dynamics simulations in magnetorheology and 

comparison with experiments…………………………………………273 

VII. STRONGLY VISCOELASTIC MR FLUIDS…………………………………………..305 

VIII. CONCLUSIONS……………………………………………………………………………..319 

IX. CONCLUSIONES……………………………………………………………………………323 

X. APPENDIX A: SIMULATION CODES……………………………………………….327 

XI. BRIEF CV.......................................................................................391 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 
 

INTRODUCTION 

 

“Set of knowledge obtained through observation and reasoning, systematically 

structured and from which principles and general laws are deduced”. This 

sentence is the definition of Science which appears in the “Real Academia 

Española de la Lengua” dictionary. Through the History, the human curiosity 

about natural events has led to better understand our environment and this fact 

has allowed us to evolve and to achieve a very high level of knowledge, that has 

given and is giving the best and the worst of the human intelligence. Within this 

great knowledge that is Science, we find one of the most important disciplines, 

Physics. This scientific branch focuses on studying measurable properties of 

matter and energy and is able to address scenarios such vast as the Universe 

and its galaxies, and as small as the inside of an atomic core. Looking at that 

scale, we encounter the microscopic range where we can place colloids. The 

leitmotiv that occupies this dissertation is an attempt to contribute to 

understand what are the fundamental physical mechanisms of very versatile 

systems such as magnetic colloids and more specifically, magnetorheological 

(MR) fluids.  

 

What is a MR fluid? The typical composition of these systems consists in a solid 

phase, usually formed by ferromagnetic microparticles (from 100 nm to 10 µm 

in diameter), dispersed in a non-magnetizable medium (mineral oils, aqueous 

solutions, gels, etc.). The solid phase commonly is constituted by magnetite or 

iron particles, which can have different morphologies and sizes. The main 

feature of these particles is their ability to be magnetically polarized under the 

application of an external magnetic field. The field-induced magnetic moment 

in each particle is aligned in the direction of the magnetic field and, as a first 
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approximation, they behave like magnetic dipoles which interact between 

them; and due to this fact, particles attract or repel each other as a function of 

their relative positions, i.e. when particles are in the perpendicular to the 

magnetic field plane they suffer a total repulsion, contrary to what happens 

when particles are aligned in the magnetic field direction, where the attracting 

force reaches a maximum. In that process, particles move through the bulk, 

relocating and forming columnar aggregates in the direction of the magnetic 

field. In a few milliseconds, structures are completely formed and the final 

result, which involves rigidity and columnar thickness, mainly and strongly 

depends on the particle size, the particle morphology, the particle 

concentration, and the intensity of the external magnetic field. By maintaining 

an active field, these structures remain over time, but if the magnetic field is 

turned off, because of the ferromagnetic nature of particles, they depolarize 

and particle aggregates dissolve, so it is a reversible effect.  

 

One of the main handicaps which present MR fluid technology is particle 

sedimentation. As we mentioned above, the typical composition of particles is 

magnetite or iron and it is well known that these materials have a much higher 

density (5.2 and 7.8 g/cm
3
, respectively), specially in the case of iron, with 

respect to the solvent density (in the case of oils, �  ̴1 g/cm
3
). This fact makes it 

difficult to manufacture a stable commercial MR fluid and many efforts have 

been made in the past to prevent particle settling. Due to this fact, a new 

condition has to be introduced in the formulation of MR fluids: particles must 

have an appropriate size, which should be large enough so that the magnetic 

forces overcome thermal motion and small enough in order to prevent 

sedimentation.  
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How could we study the physical properties of MR fluids? These systems are 

well known because of their magnetic field-tunable rheological properties. In 

the absence of a magnetic field, these systems typically behave as Newtonian 

fluids. Nonetheless, under the application of a magnetic field, dispersed 

particles are polarized and consequently, as it was mentioned above, they form 

columnar aggregates aligned in the direction of the magnetic field, the so-

called “magnetorheological effect” or “MR effect”, first described more than 60 

years ago. Then, the most extended techniques to study MR fluids are placed in 

the field of Rheology and therefore, our experimental tests are mainly based on 

its methods. To better understand experimental results and their interpretation, 

it is convenient to go deeply into the comprehension of what is the mechanism 

behind the magnetorheological response and which parameters are 

determinant. 

 

To carry out rheological tests, the MR fluid sample is confined between two 

parallel plates, where the upper plate is free to move and the lower one is fixed 

(in our case the plates are made of titanium), and they are separated by a 

certain gap distance (usually 300 μ�). In this configuration, an electromagnet is 

used to apply the external magnetic field. Then, when a high enough magnetic 

field is applied perpendicular to the plates, particles form chain-like aggregates 

that, to a greater or lesser extent, span throughout the gap and connect the 

plates. At first glance, the number of connecting aggregates will vary as a 

function of the particle volume fraction and the value of the magnetic field 

strength. In line with the latter, one might be surmised that the 

magnetorheological effect may be dependent on the nature of these 

microstructures and the number of gap spanning aggregates. Hence, it is 

reasonable to argue that gap spanning columns offer a certain resistance to the 
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movement of the upper plate and this fact is directly related with the 

macroscopic response. Therefore, by means of rheological tests, we are able to 

build a bridge which connects microscopic behavior of the structure with 

measurable physical magnitudes of MR fluids. 

 

Rheological tests, basically, consist in the study of the relationship between the 

stress and the deformation that suffers a sample. Throughout this work, four 

kinds of tests were mainly carried out. One of them was the magneto-sweep 

test, in which the sample is subjected to a constant amplitude oscillatory shear 

deformation, at a constant frequency, and then a progressive increase in the 

magnetic field is applied from very low fields to values in the order of 800 kA/m, 

where particles are magnetically saturated. In this test viscoelastic moduli, i.e. 

the storage and the loss modulus (	’ and 	’’, respectively), corresponding to 

the ability of the system to storage or dissipate energy, can be quantified as a 

function of the magnetic field strength. As discussed above, we could suggest 

that the more elastic or the more viscous character of the system is due to a 

stronger or a weaker microstructure. The next two rheological tests were the 

strain amplitude sweep and the frequency sweep. For both methods, the 

sample is under a constant magnetic field from the beginning to the end of the 

test. This allows us to observe the transition from the elastic to viscous 

behavior and therefore, from these results, we can extract information about 

how the microstructure works under different conditions. The fourth test 

consists in varying the shear rate (or deformation velocity at which the sample is 

subjected; shear rate-controlled tests) or the shear stress (shear stress-

controlled tests), i.e. the sample is continuously deformed in both cases. Again, 

this test is executed under constant magnetic fields. Under these flow 

conditions, if the particle concentration and the magnetic field strength are high 



13 
 

enough, a yielding process can be observed, which consists in the appearance of 

a shear stress threshold, below which the sample does not flow. The 

phenomenon can be identified in the log-log representation of shear stress 

versus shear rate as the shear stress plateau at medium shear rate values. 

Concretely, this stress is the so-called static yield stress because it refers to the 

minimum stress value to reach the onset of the flow. Also in the same tests, the 

dynamic yield stress can be observed, which corresponds to the stress needed 

to continuously break the aggregates which reform in the presence of the 

magnetostatic forces once the stress exceeds the static yield stress. This yield 

stress can be easier observed in a lin-lin shear stress-shear rate representation. 

 

Under a colloidal gel approach, we were capable to model the internal structure 

of a magnetized MR fluid from a fractal point of view. In addition, we checked 

some theoretical models reported in the MR literature which try to explain the 

dependence of the storage modulus and the yield stress on magnetic field, 

particle volume fraction and particle magnetization. Also we proposed an 

alternative theoretical model referring to the dependence of the storage 

modulus on particle anisotropy. 

 

An important contribution to this dissertation is the computational section. As a 

way to complete experimental results and to reinforce the knowledge about the 

mechanisms behind the structural behavior, we carried out Brownian Dynamics 

Simulations. This tool allows us to understand how the structuration process 

occurs and connection between structure and dynamics of the system. On the 

one hand, this computational technique provides a complete vision about the 

structure, by parametrizing the most relevant structural aspects. On the other 

hand, we can obtain, from numerical calculations, very important physical 
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magnitudes such as the viscosity, the shear stress and the viscoelastic moduli. 

Also we can study the dynamics of particles inside the structure by means of the 

mean square displacement and the stress correlation function. Interestingly, 

results obtained from simulations and from experiments are satisfactorily 

compared, as there was a very good agreement that reinforces our 

assumptions.     

Why to study MR fluids? There are many motivations to embark on this study, 

such as basic physics which is important itself due to the contribution to the 

knowledge, in general, and to understanding physical mechanisms in magnetic 

colloidal systems, in particular. On the other hand, from a commercial 

application point of view, MR fluids are very adequate because of their 

controllable properties. Some of these applications are, for example, shock 

absorbers, brakes, seismic vibration dampers and sound propagation, and 

biomedical applications among others. 

 

The opening of this dissertation is the Background where the main objective is 

to give the reader a broader view of the fundamental physical mechanisms of 

MR fluids. Regarding the morphology of particles, in Part I we perform a 

systematic study about the influence of that feature (we take spherical, rod-like 

and plate-like particles with different surfaces) in the magnetorheological 

response under different conditions, and we also take into account the effect of 

particle composition in the rheological properties. In Part II, we try to better 

understand the yielding processes (static and dynamic yield stress) and the 

effect of particle concentration, varying the volume fraction from 0.5 to 50 vol%, 

and using the colloidal gel approach to understand the effect. As a way to 

complete the experimental studies, we developed computational methods 

based on Brownian Dynamics Simulations techniques to describe and 
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comprehend the formation of particle aggregates at microscopic level and to 

extrapolate simulation results to macroscopic measurements. The use of 

Brownian Dynamics will be justified in the corresponding part (Part III) and, as 

additional information, simulation codes are shown in Appendix A. The main 

conclusions of this work are written in Part IV. Finally, in the concluding section 

(Conclusions) the main important conclusions from this dissertation will be 

given.
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INTRODUCCIÓN 

 

“Conjunto de conocimiento obtenido a través de la observación y el 

razonamiento, sistemáticamente estructurado y del cual los principios y las 

leyes generales son deducidos”. Esta frase es la definición de Ciencia que 

aparece en el diccionario de la  Real Academia Española de la Lengua. A través 

de la Historia, la curiosidad humana sobre los eventos naturales ha permitido un 

mejor entendimiento sobre nuestro entorno y este hecho nos ha permitido 

evolucionar y alcanzar un alto nivel de conocimiento, que ha dado y está dando 

lo mejor y lo peor de la inteligencia humana. Dentro del gran conocimiento que 

es la Ciencia, encontramos una de las más importantes disciplinas, la Física. Esta 

rama científica se centra en el estudio de las propiedades medibles de la 

materia y es capaz de abarcar escenarios tan inmensos como el Universo y sus 

galaxias así como tan pequeños como el núcleo atómico. Mirando a esta escala, 

encontramos el rango microscópico, donde podemos situar a los coloides. El 

leitmotiv que nos ocupa en esta disertación es un intento de contribuir al 

entendimiento en los mecanismos físicos fundamentales de sistemas tan 

versátiles como los son los coloides magnéticos y, más concretamente, los 

fluidos magneto-reológicos (fluidos MR).  

 

¿Qué es un fluido MR? La composición típica de estos sistemas consiste en una 

fase sólida, normalmente formada por micropartículas ferromagnéticas (con 

diámetros entre 100 nm y 10 µm), dispersas en un medio no magnetizable 

(aceites minerales, soluciones acuosas, geles, etc.). La fase sólida comúnmente 

está constituida por partículas de magnetita o hierro, las cuales pueden tener 

diferentes morfologías y tamaños. La característica principal de estas partículas 

es su habilidad para ser polarizadas magnéticamente en presencia de un campo 
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magnético externo. El momento magnético inducido en cada partícula se alinea 

en la dirección del campo magnético y, como primera aproximación, las 

partículas se comportan como dipolos magnéticos que interactúan entre ellos; y 

debido a este hecho, las partículas se atraen o se repelen entre sí en función de 

su posición relativa, es decir, cuando las partículas están en un mismo plano 

perpendicular al campo magnético sufren una repulsión total, al contrario de lo 

que ocurre cuando las partículas se encuentran alineadas en la dirección del 

campo magnético, donde la fuerza de atracción es máxima. En este proceso, las 

partículas se mueven a través de la fase continua, recolocándose y formando 

agregados columnares en la dirección del campo magnético. En unos pocos 

milisegundos, las estructuras son completamente formadas, dependiendo el 

resultado final principalmente y fuertemente del tamaño de partícula, de su 

morfología, de la fracción de volumen y de la intensidad del campo magnético. 

Manteniendo el campo activo, estas estructuras se mantiene en el tiempo, pero 

si el campo magnético se desactiva, debido a la naturaleza ferromagnética de 

las partículas, se despolarizan y los agregados se disuelven, lo que implica 

reversibilidad.  

 

Uno de los principales inconvenientes que presenta la tecnología que usa fluidos 

MR es la sedimentación de las partículas. Como se dijo antes, la composición 

típica de las partículas es de magnetita o hierro y es bien sabido que estos 

materiales tienen unas densidades más altas (5.2 y 7.8 g/cm
3
, respectivamente), 

especialmente el hierro, que la densidad del solvente (en el caso de aceites de 

silicona, �  ̴1  g/cm
3
). Este hecho hace difícil la fabricación de fluidos MR 

comerciales estables y, por tanto, muchos esfuerzos se han puesto en el pasado 

para prevenir la sedimentación. Por ello, una nueva condición se ha de 

introducir en la formulación de los fluidos MR: las partículas deben de tener un 
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tamaño apropiado que sea lo suficientemente grande como para que las fuerzas 

magnéticas superen a la agitación térmica y lo suficientemente pequeño como 

para prevenir la sedimentación.  

¿Cómo se pueden estudiar las propiedades físicas de los fluidos MR? Estos 

sistemas son bien conocidos porque sus propiedades reológicas pueden ser 

controladas y modificadas. En ausencia de campo magnético, estos sistemas 

típicamente se comportan como fluidos Newtonianos. Sin embargo, bajo la 

aplicación de un campo magnético, las partículas dispersas se polarizan y, 

consecuentemente, como se dijo antes, forman agregados columnares en la 

dirección del campo magnético, lo que se conoce con el nombre de “efecto 

MR”, descrito por primera vez hace unos 60 años. Por ello, las técnicas más 

extendidas en el estudio de los fluidos MR se sitúan dentro del campo de la 

Reología y, por tanto, nuestros experimentos están principalmente basados en 

estos métodos. Para entender mejor los resultados experimentales y su alcanzar 

una interpretación razonada, es conveniente profundizar en la compresión de 

los mecanismos que hay detrás de la respuesta magneto-reológica y cuáles son 

los parámetros determinantes.  

 

Para llevar a cabo los ensayos reológicos, la muestra de fluido MR se confina 

entre dos platos paralelos, donde el plato superior es libre de rotar y el inferior 

se fija (en nuestro caso estos platos están fabricados de titanio), separados una 

cierta distancia (normalmente 300 µ�). En esta configuración, un electroimán 

es usado para aplicar el campo magnético externo. Entonces, cuando el campo 

magnético es lo suficientemente intenso y se aplica perpendicular a los platos, 

las partículas forman agregados en forma de cadenas, más o menos extendidos, 

que conectan ambos platos. A primera vista, el número de agregados que 

conectan los platos variará en función de la fracción de volumen de partículas y 
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del valor de la intensidad del campo magnético. En línea con lo último, uno 

podría intuir que el efecto MR pudiera depender de la naturaleza de las micro-

estructuras y del número de agregados que conectan los platos. Por tanto, es 

razonable argumentar que las columnas que conectan los platos ofrecen una 

cierta resistencia al movimiento del plato superior y que este hecho está 

directamente relacionado con la respuesta macroscópica. Así, mediante los 

ensayos reológicos seríamos capaces de construir un puente que uniese el 

comportamiento microscópico de la estructura con las magnitudes físicas 

medibles de los fluidos MR.  

 

Los ensayos reológicos, básicamente, consisten en el estudio de la relación 

entre el esfuerzo y la deformación que sufre la muestra. A través de este trabajo 

se llevaron a cabo, principalmente, cuatro tipos de ensayos. Uno de ellos fue el 

barrido de campo, en el cual la muestra es sometida a una deformación 

oscilatoria con una amplitud constante a una cierta frecuencia, y un progresivo 

incremento del campo magnético es aplicado desde valores muy bajos hasta 

valores del orden de 800 kA/m, donde las partículas están saturadas 

magnéticamente. En este ensayo, los módulos elástico y viscoso (	’ y 	’’, 

respectivamente), es decir, los módulos viscoelásticos, que corresponden con la 

habilidad del sistema de almacenar o disipar energía, pueden ser cuantificados 

en función del campo magnético. Como se discutió anteriormente, podríamos 

sugerir que el carácter más elástico o más viscoso del sistema se debe a 

estructuras más fuertes o más débiles.  

Los dos siguientes ensayos reológicos fueron el barrido de amplitud de 

deformación y el barrido de frecuencia. Para ambos métodos, la muestra se 

encuentra bajo un campo magnético constante desde el comienzo hasta el final 

del test. Esto nos permite observar la transición desde el estado elástico al 
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viscoso y, por tanto, de estos resultados, podemos extraer información sobre 

cómo la micro-estructura funciona bajo diferentes condiciones.  

El cuarto ensayo consiste en variar la velocidad de deformación a la cual se 

somete la muestra (la muestra es continuamente deformada) y, de nuevo, este 

ensayo se lleva a cabo bajo un campo magnético constante. En estas 

condiciones de flujo, si la concentración de partículas y la intensidad del campo 

magnético son suficientemente elevadas, se puede observar un nuevo 

fenómeno que consiste en la aparición de un esfuerzo de umbral de cizalla por 

debajo del cual la muestra no fluye. El fenómeno se puede identificar en una 

representación log-log del esfuerzo frente a la velocidad de deformación como 

un plateau del esfuerzo de cizalla a valores intermedios de la velocidad de 

deformación. Concretamente, este esfuerzo se conoce como esfuerzo umbral 

estático porque se refiere al mínimo valor del esfuerzo para iniciar el flujo. 

También, en el mismo ensayo se puede observar el esfuerzo umbral dinámico, 

que corresponde con el esfuerzo necesario para continuar rompiendo los 

agregados que se reestructuran en presencia de las fuerzas magnetostáticas, 

una vez se ha excedido el esfuerzo umbral estático. Este esfuerzo umbral puede 

ser observado fácilmente en una representación lin-lin del esfuerzo de cizalla 

frente a la velocidad de deformación.  

 

Dentro del marco de geles coloidales, fuimos capaces de modelar la estructura 

interna de los fluidos MR magnetizados desde un punto de vista fractal. 

Además, testeamos algunos modelos teóricos que aparecen en la bibliografía de 

fluidos MR, que intentan explicar la dependencia del módulo elástico y del 

esfuerzo umbral con el campo magnético, la concentración de partículas y la 

magnetización de las mismas. También, propusimos un modelo teórico 
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alternativo que se refiere a la dependencia del módulo elástico con la 

anisotropía de las partículas.  

 

Una importante contribución a esta disertación es la sección computacional. A 

modo de completar los resultados experimentales y de reforzar el conocimiento 

sobre los mecanismos detrás del comportamiento estructural, llevamos a cabo 

simulaciones en Dinámica Browniana. Esta herramienta nos permite entender 

cómo es el proceso de estructuración así como la conexión entre la estructura y 

la dinámica del sistema. Por un lado, la técnica computacional nos regala una 

visión completa de la estructura mediante la parametrización de los aspectos 

estructurales más relevantes. Por otro podemos obtener, mediante cálculo 

numérico, magnitudes físicas tan importantes como la viscosidad, el esfuerzo de 

cizalla y los módulos viscoelásticos. Además, podemos estudiar la dinámica de 

las partículas dentro de la estructura mediante el desplazamiento cuadrático 

medio y la función de correlación  de esfuerzos. Es relevante hacer notar que los 

resultados obtenidos de las simulaciones fueron comparados de forma 

satisfactoria con los datos experimentales.  

 

¿Por qué estudiar los fluidos MR? Hay muchas motivaciones para embarcarse 

en este estudio, tal como el entendimiento de la base física de los mismos, que 

es importante en la contribución al conocimiento, en general, además del 

entendimiento de los mecanismos físicos en sistemas coloidales magnéticos, en 

particular. Por otro lado, desde un punto de vista de las aplicaciones 

comerciales, los fluidos MR son muy adecuados por sus propiedades 

controlables. Algunas de estas aplicaciones son, por ejemplo, dispositivos de 

absorción de vibraciones, frenos, amortiguadores sísmicos y control en la 

propagación del sonido, además de aplicaciones en biomedicina, entre otras.  
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El comienzo de esta Tesis es un Background, donde el principal objetivo es dar 

al lector una amplia visión de los mecanismos físicos fundamentales de los 

fluidos MR. Fijándonos en la morfología de las partículas en Part I llevamos a 

cabo un estudio sistemático sobre la influencia de esta característica (tomamos 

partículas en forma de esfera, de varilla y de plato con diferentes superficies) en 

la respuesta magneto-reológica bajo diferentes condiciones, y también tenemos 

en cuenta el efecto de la composición de las partículas en las propiedades 

reológicas. En Part II, intentamos entender mejor el fenómeno del esfuerzo 

umbral y el efecto de la concentración de partículas sobre el mismo, variando la 

fracción de volumen del 0.5 al 50 vol% además del uso de una aproximación de 

geles coloidales para entender este efecto. A modo de completar los resultados 

experimentales, desarrollamos métodos computacionales basados en 

simulaciones en Dinámica Browniana para describir y comprender la formación 

de los agregados de partículas a nivel microscópico y extrapolar estos resultados 

de simulación a las medidas macroscópicas. El uso de la Dinámica Browniana 

será justificado en la parte correspondiente (Part III) y, como información 

adicional de las simulaciones, en Appendix A se exponen los principales códigos. 

Además, también estudiamos la influencia de solventes altamente viscoelásticos 

en la preparación de fluidos MR en Strongly Viscoelastic MR Fluids. Finalmente, 

las conclusiones principales de este trabajo se muestran en Conclusions. 
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BACKGROUND 

Throughout this dissertation, many physical concepts and specific rheological 

magnitudes as well as certain experimental techniques are used and therefore, 

this section is an attempt to provide the reader the essential tools which make 

possible a comprehensive monitoring of the present work. 

Colloids 

By following a logical way, the first concept that must be introduced is  

“colloids”. In typical solutions (true solutions) formulated as the dissolution of 

one substance in another, the ultimate particles of the solute have a 

comparable size with solvent molecules and we normally assume that solute 

molecules are dispersed uniformly through the solvent. On the other hand, we 

find an important class of materials in which the particles that are dispersed in 

the solvent have a much larger size than solvent molecules. These systems are 

the so-called colloidal dispersions. 

When one substance is insoluble in another, the first substance will usually be 

broken down into very small particles that can be distributed more or less 

uniformly through the other substance. The dispersed particles are usually 

called the dispersed phase and the other substance is called the continuous 

phase.   

Referring to the size of disperse particles we find a lower limit which 

corresponds to 1 
�, below which, colloids would become indistinguishable 

from true solutions. On the contrary, the upper limit is usually established by 

the presence of thermal motion (known as Brownian motion in colloids), as is 
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taken at a diameter of 2 �� but there is no clear distinction between the 

behavior of particles of 1 ��  and the somewhat larger particles often 

encountered in emulsions, in mineral separation processes, and in ceramic 

engineering
1
. 

The importance of studying colloidal systems and all of the related phenomena 

lies in its wide presence in nature, on the one hand, and in many important 

applications in different industrial and/or technological processes, on the other 

hand. It is sufficient to mention the implication of the related colloidal 

phenomena in several fields of interest, such as the manufacturing of colloids or 

surface active materials (detergents, paints, inks, food, etc.), the direct 

application in colloidal and surface phenomena (lubrication, adhesion, wetting, 

control of rheological properties, emulsions, etc.), the use in purification and 

the improvement in synthetic or natural materials (treatment of wastewater, 

refining processes, etc.) and physiological applications (respiration, enzymes, 

etc.).  

Currently, there is a growing interest in obtaining new colloidal materials with 

different features and properties, depending on the specific application, where 

the research involved is based on the control of chemical surface properties of 

colloids, the manufacturing of particles with an adequate size or morphology, 

the properties of the constituent material, etc. For example, the 

functionalization of the colloidal surface allows copolymerization processes 

which result in the formation of high molecular weight organic polymers. Also, 

by means of growing metal oxide crystals, very monodisperse particles can be 

obtained and used in the experimental contrasting of theoretical models. 
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Within the described colloidal frame, we are going to focus on a specific kind of 

colloids, for which we can control their properties by applying magnetic fields. 

The next section refers to magnetic colloids. 

Magnetic colloids 

Commonly, magnetic colloids are known as magnetic fluids, which can be 

controlled by the application of external magnetic fields of moderate strength 

(they are smart materials). This fact is a challenging subject for research interest 

in the fundamentals of fluid mechanics as well as for industrial applications. The 

use of these systems provides a wide range of applications and opens a 

fascinating field of new phenomena. The ability to control magnetic induced 

forces can be considered as other incentive to put our attention in magnetic 

fluids. 

By focusing on the formulation and intrinsic characteristics of magnetic fluids, 

we can distinguish three main types: ferrofluids, inverse ferrofluids and MR 

fluids. 

Ferrofluids 

The basic composition of these systems consists in nanoscale ferrimagnetic 

particles suspended in a carrier fluid (usually organic solvents or water) and 

these nanoparticles are coated by some kind of surfactant to inhibit coagulation 

due to Van der Waals and magnetostatic interactions. Regarding the stability of 

the suspension, which is of crucial importance, the main aspect to address is the 

stability against particle settling, which can be induced by gravitational and 

magnetic forces. Therefore, due to this fact, it must be ensured that thermal 

energy, or implicit Brownian motion, is capable to dominate. From a theoretical 



28 
 

point of view, a good approximation in the definition of ferrofluids is to assume 

that these systems are composed by non-interacting spherical particles. When 

polydispersed ferrofluids are subjected to an external shearing and, at the same 

time are under the presence of an high enough magnetic field, the 

magnetoviscous effect
4
 is manifested. 

Some highlighted applications of ferrofluids involve lubrication in mechanical 

devices, thermal applications, e.g. ferrofluid as cooling agent in loudspeakers
2
 or 

medical applications, as for example their use as a contrast agents in x-ray 

examinations
3
. 

As a direct consequence of the reduced particle size, particle magnetization that 

can be achieved is very limited and hence, the magnetic response is relatively 

weak, contrasting with the intense induced magnetic forces that develop in 

magnetic fluids with micrometric particles. Thus, at the same external magnetic 

field, e.g. 250 ��/�, a typical value of the magnetization in a usual ferrofluid is 

of the order of 30 ��/�, well below the value (� ~ 400 ��/�) that reaches a 

magnetorheological fluid with similar particle concentration
5
. 

Magnetorheological (MR) fluids 

Unlike ferrofluids, the disperse phase of MR fluids is composed by micrometric 

ferromagnetic particles (from 100 
�  to 10 �� ) suspended in a non-

magnetizable continuous liquid phase (typically mineral oils, aqueous solutions, 

synthetic hydrocarbon, etc.) and, as commented above, it is expected that the 

magnetic response of MR fluids is much higher. These fluids are characterized 

by a reversible and very fast (of the order of milliseconds) transition from liquid 

to nearly solid state
5
 under the presence of external magnetic fields

6
. Thus, for 
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example, the apparent viscosity of MR fluids can change several orders of 

magnitude for applied magnetic flux densities of order of magnitude 1 � (Tesla). 

Not only the particle size but also the constituent material of particles is 

determinant in the MR effect and hence, the use of carbonyl iron particles (iron 

particles obtained from the thermal decomposition of iron pentacarbonyl) is 

widespread in the formulation of MR fluids because of their large saturation 

magnetization ( ��~1500 ��/� )
5
. As in the case of ferrofluids, the 

magnetorheological effect confers to MR fluids a claim for industrial 

applications. Shock absorbers, brakes, clutches, seismic vibration dampers, 

control valves and artificial joints
7
; also control of thermal energy transfer

8,9
, 

biomedical applications
10

 , precision polishing
11-13

, sound propagation
14

, 

isothermal magnetic advection
15

, and chemical sensing applications
16-18

 among 

others, are suitable applications which involve the use of MR fluids.   

One of main properties of ferrofluids was the stability versus particle settling. 

However, ferrofluids experience a lower magnetic response if compared with 

MR fluids. Now, the trend is reversed for magnetorheological fluids: the 

magnetic response is much more significant but, due to the larger particle size 

and the high particle density (typical density of iron is 7.8 �/���), the density 

mismatch between the particles and the surrounding fluid induces 

sedimentation. Thus, inclusion of additives in the formulation of MR fluids to 

inhibit sedimentation and aggregation as well as to provide extra lubrication, is 

a usual practice in commercial and homemade MR fluids. These extra-

components typically consist in thixotropic agents, polymers and surfactants. 

When an external magnetic field is applied on the system, disperse particles are 

magnetized and, as a first approximation, behave like magnetic dipoles. Induced 

magnetic forces make particles attract one another and then, columnar 
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aggregates are formed in the field direction. As a direct consequence of the 

latter we find the MR effect, which plays a fundamental role in the origin of the 

remarkable changes that the MR fluid suffers, namely a very large increment in 

the shear viscosity, an enhance in the viscoelastic properties and eventually, the 

appearance of a yield stress.  

One could demand from an application point of view that MR fluids have some 

basic features, i.e. a large saturation magnetization, a small coercivity or 

remnant magnetization, be active over a wide range of temperatures and be 

stable against settling, irreversible flocculation and chemical 

degradation/oxidation
5
. One of the main reasons to require these features is to 

get a long lifetime for devices based on MR fluids. 

As a way to complete this subsection, just to mention other type of MR fluids 

based on micrometric nonmagnetic particles dispersed in a ferrofluid, the so-

called inverse ferrofluids. The response under magnetic field strengths follows, 

basically, the same mechanism as in conventional MR fluid but gives a lower 

magnetic response because of the limited magnetic response of the ferrofluids. 

The main reason to use inverse ferrofluids lies in the fact of the high 

monodispersity and tunable morphology that available nonmagnetic particles 

have. 

Henceforth, we are going to focus on the study of conventional 

magnetorheological fluids and their rheological properties.  

MR fluids 

Due to the fundamental role of Rheology in this dissertation, firstly we will 

address the basics of this physical discipline, where necessary rheological 
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magnitudes and concepts will be described as a way to better understand the 

following chapters.  

Basics about Rheology 

What is Rheology? This term was coined by E. C. Bingham in 1928 (the word 

comes from the Greek words “ρέω” and “λόγοσ”, pronounced rheos and logos, 

meaning “to flow” and “study”, respectively) and, as a wide definition, consists 

in the study of the deformation and flow of matter
19

. Conventional MR fluids 

with low particle concentrations behave as Newtonian fluids under shear in the 

off-field state and, when the magnetic field is activated, transit to a non-

Newtonian regime where the fluid acquires viscoelastic properties and 

commonly exhibits a shear-thinning behavior (the viscosity decreases as the 

shear rate increases). Therefore, it is remarkable to know the fundamentals 

about the viscoelastic regime. In Figure 1, typical shear thinning curves are 

shown for a suspension of carbonyl iron particles in glucose syrup at a particle 

concentration of 5 ���%, for different constant magnetic fields 
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FIG. 1 Shear thinning behavior of a suspension of carbonyl iron particles in glucose syrup 

of high viscosity, at several external magnetic fields. Each point is an average over 30  . 

Newtonian fluids, also called viscous fluids, obey the Newton’s law that 

indicates a proportional dependence of shear stress on the deformation velocity 

or shear strain: 

 ! = �#$  (1) 

 

where ! (in units of %&) is the applied shear stress that is defined as the applied 

force per unit area, # $ = �/' (in units of  ()) is the velocity gradient (or the 

shear rate) and � (in %& ·  ) is the dynamic shear viscosity. To better understand 

this equation, in Figure 2, a schematic representation of a fluid under constant 

shear is shown.  
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FIG. 2 Schematic representation of a fluid subjected to a constant shear flow, where � is 

the velocity of the upper plate; ' is the gap distance between plates and ! is the applied 

shear stress. Black arrows within the triangle represent a lineal velocity profile along the 

vertical axis19. 

Main properties of Newtonian fluids, which could be deduced from Equation (1), 

are its instantaneous response to shear and its lack of memory. Also, these 

fluids suffer a permanent and irreversible deformation. On the other hand, 

although elastic solids are not exactly the goal of this work, it is worth 

introducing an important concept, namely the elastic modulus, which appears in 

the Hooke’s law: ! = 	 · #, where # is the strain (or relative deformation at 

which the solid is subjected) and 	 is the elastic modulus. This idea involves 

some important implications, such as the existence of a system memory and the 

ability of these systems to recover their initial states. As an implicit 

consequence, the energy is stored, contrary to the energy dissipation process in 

viscous fluids. Later we will see that, under high enough magnetic fields, both 

the elastic and the viscous characters will take part at the same time in the 

rheological responses of MR fluids (viscoelastic behavior) and there will be a 

' 
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competition between them, as a function of the magnetic field and the particle 

concentration.  

Returning to Equation (1), we can classify, basically, the vast majority of fluid 

behaviors under a continuous shear, such as viscoelastic solids, ideal solids, 

Newtonian fluids, shear thinning fluids, shear thickening fluids and Bingham 

fluids. As a way to clarify this classification, a schematic representation for each 

system is shown in Figure 3, where the shear stress is plotted as a function of 

the shear rate.  

     

 

 

 

 

FIG. 3 Schematic representation of the shear stress versus shear rate for different fluids 

under a continuous shear. 

In Figure 3, the curve corresponding to the Newtonian fluid is a linear function 

of the shear stress versus shear rate, indicating a constant slope and hence, a 

constant viscosity. This means that Newtonian fluids, under a continuous shear 

flow, manifest a constant viscosity and therefore, MR fluids have the same 

behavior in the absence of magnetic field. Putting now our attention in the 

shear-thinning fluid, we can observe that the slope decreases when the shear 

rate increases, meaning that the viscosity decreases. This behavior is common in 

Ideal solid 
Viscoplastic solid 
Newtonian fluid 
Shear-thinning fluid 
Shear-thickening fluid 
Bingham fluid 
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magnetized MR fluids in steady shear flow tests: at low shear rate values, MR 

fluids present a high apparent viscosity (depending on the magnetic fluid and 

the particle concentration) because the internal structure remains within the 

elastic region; when the shear rate increases, columnar aggregates begin to 

break and the structure becomes unstable, implying that the viscosity 

decreases; finally, at higher shear rate values the structure is completely 

dissolved and the fluid flows with a very low resistance and eventually the 

viscosity reaches a plateau value (see Figure 2). We will return to the origin of 

the viscosity in MR fluids later. Focusing on the curve which corresponds to the 

Bingham fluid, we observe that the line begins at a non-zero shear stress at zero 

shear rates, in accordance with the existence of a static yield stress. In this case, 

the governing equation is the Bingham Equation
19

 (in the stationary regime): 

 ! = !+ + -.#$  (2) 

 

where !+ is the static yield stress and -. is the plastic viscosity. We can define 

for conventional MR fluids two action regions: the first one, in the region of 

Newtonian fluids when they are in the off-field state; the second one, in the 

case of magnetized MR fluids, if the magnetic field or the particle concentration 

are adequate, they can be placed between Bingham and shear-thinning fluids, 

because they exhibit not only a yield stress but also a shear-thinning behavior.  

Up to now we have seen what occurs when a fluid is subjected to a continuous 

shear flow and from that, we have extracted remarkable information about its 

behavior. However, fluids can be exposed to other kinds of standard rheological 

tests which provide complementary important information about the physics 

behind the fluid response. These rheological experiments are basically two: 
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frequency sweep and strain sweep tests. The first test consists in applying a 

constant oscillatory strain amplitude while frequency is increasing at a certain 

rate. On the other hand, a second test is carried out by maintaining a constant 

frequency while an increasing strain amplitude is applied. Schematically, in 

Figure 4 an oscillatory test is shown. The upper plate oscillates at the indicated 

frequency and amplitude. In the case of frequency tests, the strain has a 

sinusoidal dependence on the angular frequency:  

#/01 = #+ · sin 50 , #$ /01 = #+ · 5 · cos 50 (3) 

 

where #+ is the shear strain amplitude, 5 is the angular frequency and 0 is the 

time. In the case of strain sweeps, the angular frequency is fixed and the strain 

amplitude increases with time. The dependence of the strain on the angular 

frequency implies a sinusoidal dependence of the shear stress with the 

following form, in the case the strain is small enough: 

!/01 = !+/51 · sin[50 + :/51] (4) 

 

where : refers the phase difference of the stress with respect to the strain. 

From Equations (3) and (4), we can see that the response of the system under 

time-dependent stimuli may depend on the timescale of measurements 

(~ 1 5⁄ ) and also we can suppose that different materials have different time-

dependent responses. Before proceeding with the understanding of oscillatory 

tests, we are going to deepen in a fundamental concept that was mentioned 

above and which is much related with the behavior of fluids under time-

dependent conditions: viscoelasticity. 
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FIG. 4 Schematic representation of a typical oscillatory test. The upper plate oscillates 

under controlled frequencies and/or strains. In the graph to the right, the difference 

phase between the strain and the stress is shown. 

 

Depending on the external stimulus to which the fluid is subjected, we can 

obtain different responses, that could be included within three time-dependent 

behaviors: elastic relaxation, viscous relaxation and viscoelastic relaxation. The 

latter is a mix between two others. As a way to clearly comprise these concepts, 

in Figure 5 typical relaxation curves and their mechanical interpretations are 

shown.  Graph (a) represents a sudden step strain: a certain step deformation is 

applied and maintained constant over time. In Graph (c), the response of an 

elastic system is shown: the stress reaches a constant value and remains 

constant with time; storage of energy. The response of a completely viscous 

system is shown in Graph (b), where the stress instantaneously relaxes; energy 

is completely dissipated. Finally, in Graph (d), a viscoelastic response is shown: 

the stress relaxation time is non-zero and depends on the physical features of 

the system; there is some memory in the system. In the figure, 	 is the so-

called stress relaxation modulus which, in general, has this expression:  

 

  

: 

strain stress 
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 	/01 = !/01#+  
(5) 

in which #+ ,in this case, is the step strain value. Then, by measuring the stress 

relaxation with time, the relaxation modulus can be determined. In the case of a 

viscous system, the relaxation modulus is proportional to the Delta function 

and is calculated by means of 	/01 = -:/01. In the case of elastic systems, the 

relaxation modulus acquires this shape: 	/01 = 	, where 	 refers to the elastic 

modulus which appears in Hooke’s Law. The relaxation time can be estimated 

via this expression: 0= = >?. 

 

  

 

FIG. 5 Step strain deformation (a) and its response in an elastic (c), viscous (b) and 

viscoelastic (d) systems are shown. Next to each graph, the mechanical equivalent physical 

mechanism is illustrated, as a way to better understand the involved phenomenon. 
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As we have defined expressions for the behavior of an elastic solid and a viscous 

fluid, we can also interpret a viscoelastic behavior. Returning to Equation (4) 

and by taking into account the elastic and the viscous character of the system, 

we deduce the following expression: 

 !/01 = #+ · 	 ′ · sin 50 + #+ · 	 ′′ · cos 50 (6) 
 

 

where #+ is again the strain amplitude in the oscillatory tests and both 	′ and 	′′ 

represent the viscoelastic behavior of the system. 	′ or the storage modulus 

gives essential information about the elasticity of the system and its capacity to 

storage energy. On the other hand, the loss modulus or 	′′ represents the ability 

of the system to dissipate energy, which concerns to viscous part. These two 

magnitudes are known as the viscoelastic moduli and they can be considered 

parts of the complex modulus 	∗ = 	 ′ + A	 ′′, and are calculated through the 

following expressions: 

 

 	 ′ = |	∗|#+ cos : , 	 ′′ = |	∗|#+ sin : 
 

(7) 
 

 

In this case, : is the out of phase between the strain and the stress and its 

tangent represents the damping factor, tan : = ?′′?′
 and gives a balance between 

the viscous and the elastic behavior. This magnitude is very useful to evaluate 

how the system dissipates or stores energy.  

Most of the solvents used in this dissertation were Newtonian (viscous) fluids, 

so its properties are well explained by the Newton’s Law of viscosity. However, 

also there is other solvent that we used to prepare MR fluids and that was not 

Newtonian, but highly viscoelastic (specifically a Boger fluid) and that needs a 
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special attention. In the next subsection, an overview of this kind of fluid is 

shown. As we mentioned above, one of the main problems in commercial MR 

fluids is the particle settling. For that purpose, Boger fluids provide a non-

negligible solution to minimize sedimentation rate and therefore, this is an 

added motivation to study these fluids and their effects in magnetorheology.   

 

Boger fluids     

 

This kind of fluids are viscoelastic fluids because both their elastic and viscous 

moduli (viscoelastic moduli) are non-zero. The basic composition of these 

systems is a dilute polymer solution usually prepared in a high viscosity solvent. 

The main characteristic of Boger fluids is its constant viscosity when they are 

sheared. Due to the fact that  viscosity is independent of the shear rate or 

nearly so, we can separate elastic effects from viscous effects in viscoelastic 

flows
20

. The use of these fluids in our preparation of MR suspensions is justified 

because its high viscosity, which supposes an important improvement to 

prevent particle settling as mentioned above, and due to the intrinsic 

viscoelastic properties of Boger fluids, a new vision in the formulation of MR 

fluids is conferred. 

The composition of Boger fluids greatly varies, resulting fluids with higher or 

lower viscosities depending on the purpose, and the viscoelastic properties will 

be more or less pronounced. In our case, we prepared a Boger fluid by 

dispersing polyacrylamide in doubly-distilled water and then, this was mixed 

with glucose syrup of very high viscosity. In order to prevent proliferation of 

microorganisms because of the presence of the glucose syrup, sodium azide (in 

a very low proportion) was added
21

. Because of the mechanical degradation of 

polymer chains, we took special care in the latter process. Apart from the fact 
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that the viscosity of this fluid is nearly constant under flow, other important 

properties are exhibited in rheological tests. That is the case of the first normal 

stress difference, E) and the first normal stress coefficient, F), which are 

defined as follows: 

 

     E) = !)) − !HH,  F) = E)#$ H 
 

(8) 
 

 

where !)) and !HH are the first and the second diagonal components of the 

shear stress tensor, respectively. The stress tensor plays a key role in the 

present work, and must be defined in detail. 

As an illustrative example of the functionality of the stress tensor, in Figure 6 a 

general form of the microscopic shear stresses in the case of a simple shear flow 

is shown. In the figure, different stress tensor components acting on a 

differential portion of fluid under shear are shown
19

.  

 

 



42 
 

 

FIG. 6 Differential portion of fluid subjected to a simple shear flow, where each face is 

under a certain stress. ∇� is the velocity gradient along the vertical axis and �J is the 

velocity of the upper and the lower  plates. % is the hydrostatic pressure and !KL is the AMth 

stress tensor component. 

 

The mathematical structure of the stress tensor in its general form is: 

 

!N = O−% + !))P + !))Q !)H !)�!H) −% + !HHP + !HHQ !H�!�) !�H −% + !��P + !��Q R (9) 

 

Because of the symmetry, typically !KL = !LK. On the other hand, !KK P  and !KKQ are 

the diagonal stress tensor components and correspond to the elastic 

contribution and the viscous contribution, respectively. In a Newtonian fluid, 

both the first normal stress difference and the first normal stress coefficient are 

zero and hence, this fact can be used to distinguish between Newtonian and 

�J 

3 

2 ∇� 

!H) 
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−% + !�� 
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Boger fluids. Directly related to the strong viscoelastic nature of Boger fluids, it 

takes place an important effect when the system is under moderate or high flow 

rates, the so-called Weissenberg effect (or rod climbing effect), that is a clear 

manifestation of the existence of the characteristic first normal stresses in 

viscoelastic fluids. This effect appears in simple shear experiments and, without 

going into further detail, can be explained, from a microscopic point of view, 

because of the coupling of two effects: a stretching of the elastic particles 

(polymer chains) under the action of local shear; once deformed, their tendency 

to align along the flow direction. These two effects are based in the “dumbbell 

model”, widely employed in rheology of polymers
19

. A schematic qualitative 

description is shown in the next figure (Figure 7). 

 

      

 

FIG. 7 Left: Weissenberg effect of a sheared sample of viscoelastic fluid between two 

parallel plates. In the right, microscopic representation of the dumbbell model which 

provides an explanation for the exhibited normal force, based on the stretching and 

aligning of the polymer chains along the flow. 
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After this basic introduction of Rheology, it is necessary to understand the 

magnetic mechanisms behind the MR effect and therefore, we are going to 

dedicate the following section to this end. 

 

Basics about Magnetism 

 

The magnitude of the MR response depends on the details of the particle 

magnetization
22

, which controls the magnetostatic force between particles. 

Estimating the force requires to know what is the the magnetic field intensity, TSSJ, in the vicinity of the particle. This magnitude is related to the magnetic flux 

density, USJ, as follows: 

 

 USJ = �+VTSSJ + �SSJW 
(10) 

 
 

where �+ = 4X · 10(Y E/�H is the magnetic permeability of the vacuum, and �SSJ 

is the particle magnetization. In nature, most materials fall under one of the 

following three magnetic types:  

 

-Diamagnetic materials: these materials have a negative magnetization, which 

implies that, for a given magnetic field intensity, TSSJ, the magnetic flux density 

(USJ) of this material is smaller in magnitude than the magnetic flux density of the 

vacuum or free space under the same magnetic field intensity.  

-Paramagnetic materials: this kind of material has a small but positive 

magnitude of the magnetization, so USJ would be slightly larger in magnitude 

than the corresponding to free space. 
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-Ferromagnetic materials: in this case, they have a very large (in magnitude) 

magnetization, so the magnetic flux density would be much larger than that of 

the vacuum. 

 

In the formulation of MR fluids, the use of ferromagnetic materials is the most 

common, due to the large magnetic flux densities that can be generated. For 

ferromagnetic materials that do not exhibit permanent magnetization, the value 

of �SSJ depends on the applied magnetic field. An important factor that evaluates 

the latter is the relative magnetic permeability, � , which relates TSSJ  and �SSJ 

through this expression:  

 

 �SSJ = /� − 11TSSJ 
(11) 

 
 

where the magnetic permeability is not a constant and depends on  the 

magnitude of TSSJ : � = �VZTSSJZW. Therefore, by using this expression and the 

Equation (11) in (10), we deduce: 

 

  

 USJ = �VZTSSJZWTSSJ 
(12) 

 

 

In the range of low values of the magnetic field intensity, the magnetization is 

directly proportional to the magnetic field intensity, TSSJ so, in that case, the 

relative magnetic permeability is a constant. When ZTSSJZ increases, the material 

magnetization begins to saturate and, if the magnetic field intensity is high 

enough, it will be reached a field-independent value of �SSJ, the saturation 
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magnetization ��SSSSSJ.  Because of this behavior under magnetic fields, �VZTSSJZW can 

be represented by these three expressions: 

 

-At low fields: �VZTSSJZW = �+�+. 

-At moderate fields: �VZTSSJZW = �+ [1 + Z\SSJVZ]SSJZWZZ]SSJZ ^. 

-In the region of saturation: �VZTSSJZW = �+ [1 + \_Z]SSJZ^. 

 

In the first equation, �+ refers to a constant of proporcionality between ZTSSJZ and ZUSJZ at low magnetic fields and  Z�SSJVZTSSJZWZ is the field-dependent magnitude of 

the magnetization at moderate fields. In Figure 8, a typical magnetization curve 

for a MR fluid prepared with carbonyl iron particles at 5 ���% dispersed in 

silicone oil is shown. We can observe that at low magnetic field intensities, there 

is a proportional relation between the magnetization and the magnetic field 

intensity. Then, the slope of the curve decreases up to reach a constant value at 

high magnetic field strengths, where the MR fluid is completely saturated. In 

light of this behavior, it is clear that when the system is very close to the 

saturation region, Equation (10) tends to USJ = �+VTSSJ + ��SSSSSJW.  

 

The relative magnetic permeability of ferromagnetic materials is expressed 

empirically by the Fröhlich-Kennely Equation
23

: 
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 �VZTSSJZW�` = 1 + /�+ − 11 Z��SSSSSJZ ZTSSJZa
/�+ − 11 + Z��SSSSSJZ ZTSSJZa  

 
 

(13) 

 

This equation was compared to experimental data
24

 for �+ = 100  and �+Z��SSSSSJZ = 2 � and it was found that equation fitted the data better at large 

magnetic field strengths than at lower values. In Figure 8, a conventional � − T 

curve is shown. 
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FIG. 8 Suspension magnetization of a MR fluid based on carbonyl iron particles at 5 ���% 

in silicone oil, as a function of the external magnetic field intensity. 
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The calculation of the inter-particle magnetostatic force is fundamental to 

understand the MR effect. To determine these forces we need to solve the 

appropriate Maxwell equations. The current density in the steady-state in the 

suspension, bcSSSJ, is related to the applied magnetic field via ∇ × TSSJ = bcSSSJ but, 

because the current is zero in our case, then the magnetic field intensity of each 

phase in the suspension can be defined by using a magnetic potential, eK : 
 

 TSSJK = −∇eK, ∇ · USJ = 0 
(14) 

 
 

where the subscript A refers to the Ath suspension phase. Now, using Equations 

(12) and (14) leads to a differential equation for the magnetic potential with this 

general form: 

 

 ∇V�/e1W · ∇e + �/e1∇He = 0 (15) 
 

 

When the magnetic field tends to the lowest values,  USJ is directly proportional 

to the magnetic field intensity, TSSJ and then, under these conditions, we lead to: 

 

 ∇HeK = 0 (16) 
 

 

The next step is to consider the boundary conditions:  

 

-In the interface between the particle and the continuous medium we have that U.SSSSJ · 
SJ = UfSSSSJ · 
SJ and e. = ef¸where 
SJ is the normal to the particle surface and 

the subscripts g  and �  refer to the particle and the continuous medium, 
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respectively. Due to the nature of the magnetostatic interactions, it is 

convenient to introduce two additional conditions: 

 

 ef → −T+SSSSJ · iJ as |iJ| → ∞ e. is finite as j → 0 

 
(17) 

 
 

where j is the distance from the particle’s center. Before proceeding with the 

analysis of the magnetic equations, it is convenient to show a schematic 

diagram illustrating the definitions of the spherical coordinates used in the 

magnetostatic force resolution (see Figure 9). In these coordinates, the 

magnetostatic potential in the medium is: 

 

 ef = −T+j cos k l1 − m&jn� o\p , o\ = �. − �f�. + 2�f  
 

(18) 
 

 

where & is the particle radius, o\  is the magnetic contrast factor (0 < o\ < 1) 

and �f and �. are the magnetic permeability of the medium and the particles, 

respectively. In most of cases, the magnetic permeability of the medium is taken 

as the free space (�+). 
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FIG. 9 Schematic representation of spherical coordinates which are involved in the 

representation of inter-particle magnetic forces. 

 

The real magnetization of particles in a magnetized system containing millions 

of these units is really difficult to determine but as a way to get a first 

approximation in the resolution of equations, we suppose that particles, when 

they are magnetized, interact like magnetic dipoles whose magnetic moments 

are only induced by the external magnetic field (multibody effects are 

neglected). Therefore, we can define the potential in the surrounding medium 

due to one sphere as the potential generated by a magnetic dipole at the origin 

with a dipole moment: 

 

 �SSJrcc = 4Xo\&�T`ŝ (19) 
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Then, this dipolar magnetic moment induces a magnetic flux density: 

 USJwK. = �+�fTSSJwK. = �+�fo\T+ mx=n� y2cos k ĵ + sin k kz{ (20) 

 

In the point-dipole limit, where the later assumption takes place, the force on 

the particle at the origin (particle 1) due to another particle (particle 2) at /j, k1 

is 

 

 |J)H\ = �SSJ)rcc · ∇USJHwK./iJ)1 
(21) 

 
 

where �SSJ)rcc
 is the magnetic moment of particle 1 and USJHwK./iJ)1 is the magnetic 

flux density generated by the particle 2 at the center of particle 1. Introducing 

expressions for the magnetic moment and the magnetic flux density into 

equation (21), we obtain the magnetic force exerted on a sphere at the origin 

due to another particle in the position /j, k1: 

 |J)H\ = 12X�+�f&H/T+o\1 mx=n} y/3 cosH k − 11ĵ + sin k kz{ (22) 

 

From the expression of the magnetostatic force it can be deduced the following: 

when particles are aligned in the direction of the magnetic field, particles attract 

each other and the magnitude of the force is a maximum. Contrary, if particles 

are in the same horizontal plane, they repel each other. Any other pair of 

particles which form an angle will suffer a rearrangement in the direction of the 

magnetic field due to other particles. As a result, this force causes the particle 

aggregation into columnar structures along the magnetic field direction. 
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It is clear that the magnetorheological effect is greatly determined by this 

microscopic interaction between particles and the parameters involved in its 

calculation. Therefore, it is not strange that these interactions are directly 

related with macroscopic magnitudes measured in rheological tests. The 

magnetization model predicts at low fields, for example, that the yield stress is 

directly proportional to the squared of the magnetic field intensity, !~ ∝ T+H. At 

high fields, in saturation, the model predicts that the yield stress does not 

depend on the magnetic field intensity but the squared saturation 

magnetization, !~ ∝ ��H. The case of intermediate fields is more complicated. 

The relationship between the yield stress and the magnetic field has this form: !~ ∝ T�̀ , where 0 < 
 < 2 and then numerical calculations are necessary. 

Ginder et al. (1996) employed a finite element method to predict the behavior 

of model MR suspensions idealized as single-particle width chains
26

. They used 

the Fröhlich-Kennely equation to estimate the dependence of the magnetic 

permeability on the magnetic field intensity. These results were in a good 

agreement with published MR data. They postulated that particles, at moderate 

fields, begin to saturate in their polar regions and, with this approach, they 

predicted that !~ ∝ T�̀/H
 and that the elasticity of the suspension (	′) was 

proportional to the magnetic field intensity at intermediate fields.  

 

Experimental rheological tests 

 

Basically, we carried out four kinds of rheological tests to characterize MR fluids: 

magneto-sweeps, frequency and strain sweeps and steady shear flow tests. 
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Magneto sweep tests  

 

In these experiments we studied the evolution of the viscoelastic moduli as a 

function of the magnetic field intensity. For this purpose, a MR sample was 

confined between two non-magnetizable parallel plates (made of titanium; 

diameter 20 ��) with a gap distance of 300 ��. Before the test, the sample 

was homogenized by manual stirring and sonication. To determine the 

viscoelastic moduli, the sample is sheared at constant strain amplitude (usually #+ = 0.003%) and frequency (� = 1 Ts) while the magnetic field strength 

increases. The experimental procedure was: (i) the sample is sheared at a 

constant shear rate #$ = 200  () during 30  ; (ii) the sample is left to rest during 

one minute; (iii) the magnetic field is increased (logarithmically) from nearly 

zero magnetic field values to 885 ��/�, which corresponds to a current 

intensity in the electromagnet of 5 �. The field is applied in the normal direction 

of the flow. The evolution of 	′ and 	′′ in a conventional magneto sweep test is 

shown in Figure 10. At low magnetic fields, attraction between particles is too 

weak to induce the formation of aggregates and due to this fact, both the 

storage and the loss moduli are very low and measured with high deviations 

because we are in the resolution limit of the rheometer. This does not occur if 

the particle concentration is high. At a certain value of the magnetic field 

strength, in the region of intermediate magnetic field intensities, an increase is 

clearly observed for the viscoelastic moduli (there are some particle aggregates 

that span the gap), reaching maximum values at high magnetic fields (saturation 

region; thick particle columnar aggregates connect the upper and the lower 

plates). In this region we observed that the elastic character of the system 

clearly overcomes the dissipation behavior.  
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FIG. 10 Conventional magneto sweep test of a MR fluid based on carbonyl iron particles 

dispersed in silicone oil at 5 ���%. 

 

Strain amplitude sweep tests 

 

In this test we wanted to study the rheological response of MR fluids when they 

are subjected to a continuous increasing strain amplitude, at a fixed frequency 

of 1 Ts. The experimental procotol is basically the same that of magneto-sweep 

tests. Also in this case, the magnetic field is applied in the normal direction to 

the flow. Equilibration (under constant magnetic field) is important because the 

microscopic structures present before the test, determine the later rheological 

response: not only the length of the linear viscoelastic region (LVR, where there 

is a linear relationship between the stress and the deformation) but also the 

initial plateau values of the viscoelastic moduli can be altered because of the 

initial conditions. In Figure 11, a strain amplitude sweep for a MR suspension 
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based on a mixture of glucose syrup and water, at a carbonyl iron particle 

concentration of 5 ���% is shown. At very low strains, we envisage a small 

plateau in the storage modulus which correponds to LVR. While the sample 

structure is maintained, the viscoelastic moduli are constant; when the applied 

strain becomes too high, breakdown occurs and the moduli decrease and, at 

higher strain amplitude values, the structure is completely broken and then, the 

viscous behavior dominates. The length of the LVR is a measure of stability and, 

in the case of MR fluids, the length of this region decreases when the magnetic 

field increases, becoming extremely small at high magnetic fields (below 0.01 %). There are some criteria about the calculation of the length of the LVR. 

In our case the exit of the LVR is considered when 	� = 0.9	′+, where 	′+ is the 

low strain storage modulus plateau (critical strain, #f). 
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FIG. 11 Strain amplitude sweep test for a sample prepared by carbonyl iron particles at 5 ���%, dispersed in a mix of glucose syrup and water. This test was carried out under a 

magnetic field intensity of 259 ��/�. The angular frequency remains constant at 1 Ts. 
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Frequency (oscillatory) sweep tests 

 

In this test, the sample is subjected to a constant strain amplitude (well within 

the LVR), only varying the oscillation frequency. Preconditions were the same as 

in the case of the strain sweep test. The rheological response of a conventional 

MR fluid under a standard frequency sweep test is shown in Figure 12. 
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Fig. 12 Viscoelastic moduli as a function of the angular frequency. The sample was under a 

constant magnetic field intensity of 259 ��/� and subjected to a constant strain 

amplitude of 0.003 %, well whitin the LVR. Also results from the same test and the same 

material without magnetic field are shown in order to observe the effect of the magnetic 

field on the system. 

 

Results from frequency sweeps can be interpreted as follows. At strain 

amplitude values below #f, the storage modulus, 	′ (in the on-field state), is 

often nearly independent of angular frequency, as would be expected from a 
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structured or solid-like material. The more frequency dependent the elastic 

modulus is, the more liquid-like is the system. Also, as we observe in the figure, 

the effect of the magnetic field is totally determinant in the MR response: under 

no field conditions, the viscous behavior overrides the elastic response and 

viscoelastic moduli are not constant with frequency (fluid-like behavior). 

 

Steady shear flow tests 

 

These tests were usually carried out after the previous tests in order to facilitate 

interpretation of the results. Under this experimental approach we wanted to 

determine the shear viscosity. Again, preconditions in protocols are the same 

than in the previous tests and also the effect of the applied magnetic field is 

determinant. In the test, the shear rate is increased from nearly zero shear rate 

values to 1000  () (shear rate-controlled tests). Also it is possible to carry out 

flow tests by varying the shear stress (in so-called shear stress-controlled test). 

As we said in previous sections, MR fluids in off-field state behave as Newtonian 

fluids and then, the shear stress is directly proportional to the shear rate via the 

viscosity. But the rheological response greatly changes in presence of magnetic 

fields. The initial particle structure induces high values of the apparent viscosity 

at low shear rate values and a later shear thinning behavior, falling the viscosity 

to values several orders of magnitude below the initial data points, at larger 

shear rates. Depending on the magnetic field and the particle concentration, 

this viscosity drop is more or less pronounced. In Figure 13 a conventional 

steady shear flow test is shown for a MR fluid based on glucose syrup with 

carbonyl iron particles at 5 ���%. 
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FIG. 13 Shear thinning behavior for a MR fluid based on glucose syrup and carbonyl iron 

particles at 5 ���%. 

 

During these rheological tests, hydrodynamic and magnetic forces are 

confronted within the physical mechanisms behind rheological response, so it 

would be important to know about the influence of each force on the overall 

behavior. The Mason number, that establishes a balance between those two 

forces, and denoted as ��: 

 

 �
 = 8-f#$�+�f=o\H T+H 
(23) 

 

 

where -f  is the solvent viscosity and �f= = ����  is the relative magnetic 

permeability of the continuous medium (~1). Regarding expression (23),  the 

Mason number is, basically, a dimensionless shear rate that can be defined as 
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the ratio of hydrodynamic drag (estimated as Stokes drag) and magnetostatic 

forces (estimated as the dipole force magnitude) acting on the particles
5
. 

Usually the Mason number is used to scale viscosity versus shear rate and gets a 

collapse of all the curves onto a master curve, indicating that the hydrodynamic 

and magnetic force dominate the physics.  

 

Brownian Dynamics Simulations on MR fluids 

 

During the last two decades, computational techniques have played a relevant 

and complementary role in the development of Science and its importance has 

been growing until our days, occuping an undeniable place in the scientific 

method and therefore, we have sufficient arguments to include these 

techniques in our work. There are many different computational methods to 

tackle physical problems as the present case, but we are going to focus on 

solving that by using Brownian Dynamics Simulations. As its name suggests, the 

core of this technique is the Brownian or random motion that will be 

introduced in the system dynamics. One can think that because of the large size 

of particles in MR fluids (of the order of one micron), Brownian motion does not 

have great influence in the global behavior but as it will be seen later, the 

introduction of this motion will perform a remarkable role in the dynamics. As it 

was mentioned above, Brownian motion consists, basically, in the transmission 

of kinetic energy from solvent particles or molecules to the suspended 

microparticles via multiple collisions that, as we will see later, produces defects 

in the final microstructure due to the continuous rearrangement of particles. 

Taking into account the main interactions that particles suffer (magnetic and 

repulsive forces and Brownian motion), the equation that drives the particle 

motion is, adequately, the Langevin equation: 
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 �KjJ�K = � |JKLL − #KjJ$K + �JK  
 

(24) 
 

 

where �K and #K are the mass and friction coefficient with the solvent of the 

particle, |JKL is the interaction force between particles A and M (core repulsion 

plus dipolar interaction), and �JK the Brownian force that fulfils the fluctuation-

dissipation theorem. No hydrodynamic particle–particle interaction is 

considered. 

 

Normalization of equations 

 

Before running simulations it is important to carry out the normalization of 

equations in order to make easier the computation process. Quantities such as 

the value of the Boltzmann constant (�/10(H�1), the particle radius (�/10(�1), 

or the particle mass (�/10()�1), are too small and are not adequate from a 

computational point of view, hence its use can be translated in large 

computational times. In order to prevent this effect, we normalize all the 

equations by: 

 

length ~ �, mass ~ � and energy ~ ��� 

 

where & is the average particle radius, � is the average particle mass, ��  is the 

Boltzmann constant and � is the temperature (��� is the thermal energy). 

Then, for example, �+ (Equation26) would be normalized by &� · ��� and the 

mean square displacement by &H.  

 



61 
 

As an important discussion, the stability and the time evolution of the structure 

will be determined not only by the magnetic field intensity but by the thermal 

energy that the random motion introduces: for low magnetic fields, the thermal 

energy overcomes the potential magnetic energy and columnar aggregates are 

not stable or directly, they do not form. Other important action that the 

Brownian motion realizes is the random redispersion before running 

simulations: to equate initial conditions in each simulation, firstly particles are 

placed in an ordered network and then left to redisperse via Brownian motion, 

which is introduced in the equations of motion as a random parameter in a 

certain numerical range. Once particles are well dispersed, an external magnetic 

field is applied and then the system begins to equilibrate until the potential 

magnetic energy reaches a plateau value with time indicating the stabilization 

of the system. In addition to the effect of Brownian motion in the structuration 

of the system and its dynamics, there is another important factor which clearly 

determines the final structure and the resulting measurements, the particle size 

distribution. It is well known that monodisperse systems can crystallize under 

certain conditions so therefore,  it would be reasonable to use polydisperse 

systems to try to simulate the real behavior of MR fluids. Indeed, in our real 

system, carbonyl iron particles are very polydisperse confirming the necessity to 

include polydispersity in the simulations. As we are going to see later, 

polydispersity plays an important role in the evolution of the structure and it 

will be seen that a low polydispersity index can avoid crystallization. It must be 

kept in mind that the polydispersity in the system is very small and despite this 

fact, we observe differences with respect to the monodisperse system. Our 

criterion to calculate the polydispersity index is %�� = ∑ �/&K − &1H�K�) Ea   

where E is the number of particles and &K is the radius of particle A. In the case 
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of a monodisperse system, %�� = 0. Deviations from this value indicate the 

high or low polydispersity of the system. 

 

Real particles, such as carbonyl iron particles, do not penetrate each other and 

this effect must be introduced in computational methods. They behave as 

particles that are not easily deformable, i.e. quasi-hard spheres and hence we 

try to simulate this kind of repulsion to prevent particle overlapping. For this 

purpose we take as a repulsive force an exponential function with this form: 

 

 |JKL=r. = − 3�+16&} exp  −100 ZjJKLZ − V&K + &LW&K + &L ¡ ĵ 

 
(25) 

 

 

 

where ZjJKLZ is the distance between particles A  and M and �+  is the magnetic 

control parameter defined as: 

 

 �+ = 4X�+�f=o\H &K�&L�T+H (26) 
 

 

 

We notice that the particle radius has a subscript because of the option of a 

polydisperse system, where particles have different sizes. As we will see later, 

the definition of �+ will be essential. Also we could model the repulsion by using 

other kinds of functions such as power-law functions but it has been shown that 

the exponential repulsion better simulates the real behavior, corroborated by 

studying differences between the two final structures under the influence of 

both repulsions
28

. A conventional repulsion-attraction potential in magnetic 

systems has the shape which is shown in Figure 14. Regarding both the 
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magnetic and repulsion forces, Equations (22) and (25), respectively, one can 

understand the repulsion-attraction mechanisms and can extract two basic 

conclusions: if particles are in the same horizontal plane (k = 90°), they will 

absolutely repel each other; on the other hand, if particles are aligned in the 

magnetic field direction (k = 0°), the attraction will be a maximum. Looking at 

the scheme of Figure 14, it is clear that when particles are very close to each 

other (near to contact), the repulsive force strongly dominates and particles 

repel. Moving towards larger distances, the attractive interaction grows and 

repulsive force suffers a fast decrease. Therefore, the repulsive force only 

contributes to avoid overlapping and its effect at medium/large distances is 

negligible. Hence, this approach to reproduce the real repulsion between 

particles is not too far from reality. 

 

FIG. 14 Interaction potential between magnetic particles. The dashed line corresponds to 

particles in a plane perpendicular to magnetic field and the continuous line to particles in 

different planes. The vertical dashed line marks the distance where two hard spheres 

would collide.  
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To study the evolution of the structure towards the equilibrium, in addition to 

the potential magnetic energy we calculated other parameters (order 

parameters) such as the average number of neighbors per particle. This shows 

the number of particles which are in the immediate environment of a particle, 

defined as the sphere centered in the center of such particle with a certain 

radius (cut-off radius). Also this average number of neighbors indicates that the 

system is equilibrated by reaching a plateau with time. As a way to better 

understand this order parameter, a simple scheme is shown in Figure 15, for 

two cases: single width particle chains and thick columns. In the figure, jf refers 

to the cut-off radius of the neighbors sphere. As we can see, the red particle 

would have only two close neighbors contrary to the green particle that has six 

close neighbors. In MR systems, there is a mix of these structures and due to 

that, an average over all of the particles is required to take this parameter as an 

effective parameter. Simply by taking the total number of close neighbors and 

then dividing by the number of particles within the system this parameter is 

calculated.  
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FIG. 15 Number of close neighbors for two probe spheres in two different columnar 

aggregates. The red particle has two neighbors (single width particle chain) and the green 

particle (thick columnar aggregate), six neighbors. 

 

It was mentioned before the potential magnetic energy as a structural 

parameter which determined the equilibrium state. It is well known that 

magnetic interactions in MR fluids are very complex but a good first approach is 

to suppose that particles interact like magnetic dipoles, whose magnetic 

moments only depend on the external magnetic field, neglecting multipolar 

interactions. The total magnetic force on a particle can be calculated by adding 

all contributions from the other particles in the system, using the Equation (22) 

for each pair of particles. The average potential magnetic energy is calculated as 

follows: 

 

 £¤x¥ = 1E � �+
�

K¦L   1ZjJKLZ¡� /1 − 3 cosH k1 

 
(27) 

 

 

 

jf 

T+ 
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where E is the total number of particles that, in our case it is §¨¨¨, and k is the 

angle between the direction of the magnetic field and the vector jJKL. 

 

In our simulations we consider E = 1000 particles, with a flat distribution of 

radii bewteen 0.9& and 1.1&, giving a PDI =  0.05. The volume fraction is always 5 ���% and the parameter �+  is changed from 0 to values up to 100. The 

system was equilibrated prior to applying the magnetic field (as quasi hard 

spheres), and then equilibrated again in the external field. Further simulation 

details are given in the sections Part III and Appendix A, which are devoted to 

simulations. In Figure 16 the evolution of the potential magnetic energy and the 

average number of neighbors per particle as a function of the magnetic control 

parameter is shown. Data points correspond to plateau values in the 

representation of these parameters as a function of time. The control 

parameter and the potential magnetic energy are normalized and due to this 

fact there are no units in the figure. Also in Figure 16, there are two snapshots 

of the microstructure in simulations: at off-field state and at a normalized value 

of �+ = 60. 
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FIG. 16 Black squares correspond to the potential magnetic energy and red circles to the 

average number of neighbors per particle. The off-field state clearly shows the random 

disorder of particles. On the other hand, thick columnar aggregates are shown in the 

snapshot at �+ = 60. 

 

In static conditions, as it is our case, it was mentioned above that there was a 

competition between magnetic and Brownian forces and such competition 

determines the stability of the structure. To evaluate each contribution, as in 

the case of the Mason number which plays an important role in dynamic 

conditions, there is a parameter that shows the balance of both Brownian and 

magnetic forces, the lambda parameter, ©, defined as follows
29

: 

 

 ª = X�+�f=o\H &�T+H2���  

 
(28) 

 
 



68 
 

As we can see, this parameter is clearly a balance between the magnetic 

interaction and the thermal motion, evaluated by the temperature � (usually 25 ℃ in experiments) and the Boltzmann constant �� = 1.38065 · 10(H� b/¬. 

Therefore, ª gives an estimation about the predominat force: for sufficient large 

values of this parameter, magnetostatic interactions dominate over Brownian 

motion, leading to form columnar aggregates; if the value of ª is sufficiently 

small, thermal motion dominates and structures are not possible, as it occurs in 

the case of dilute MR fluids (0.1 ���% − 5 ���%). The use of ª  in static 

conditions is justified because Brownian motion is non-negligible, contrary to 

the case of dynamic conditions, where hydrodynamic forces completely 

dominate at low magnetic field values in dilute suspensions. Once the system is 

in equilibrium, a wide range of possibilities to study the structure and the 

dynamics under no flow conditions opens up . Referring to the structural aspect, 

we used both the average number of neighbors and the potential magnetic 

energy to characterize the structure, but there are other interesting magnitudes 

that lead to further understand the structural conformation. That is the case of 

the the particle pair distribution function, the static structure factor and the 

crystallization order parameter. 

 

First of all, the radial particle pair distribution function, ­/®1, gives information 

about how density varies through the system as a function of the radial distance 

from a reference particle. Therefore, this function provides an idea of how 

matter is distributed in space and its calculation is easy: the method consists in 

counting the number of particles in a spherical shell centered in a reference 

particle. In Figure 17 an illustrative scheme to understand the sense of this 

function is shown. 
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FIG. 17 Calculation of �/j1. The thickness is the same for each shell and the distribution 

extends  throughout the simulation box. The calculation of the distribution function 

results from an average over all particles. 

 

In our MR systems, it is important to remark that under the presence of a 

magnetic field, the system is no longer isotropic and the radial distribution 

function has to be divided into its parallel and perpendicular to the external 

field components to study the matter distribution. On the other hand, the 

Fourier transform of the pair distribution faction, the structure factor, ¯/°SSJ1, 

basically, is a mathematical tool to interpret interference patterns of incident 

radiation on a system. By means of this factor one can understand the scatter 

mechanisms of a certain material and find how is the internal structure 

(columnar distribution, etc.). This factor is defined as follows
32

: 

:j 
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 ±/²J1 = 〈´� cos ²J · jJK
�

K�) µH + ´� sin ²J · jJK
�

K�) µH〉 

 
 

(29) 
 

 

 

where ²J is the wave vector restricted to ²J = H·̧ V
¹, 
~ , 
ºW, with 
K  integer 

numbers and » is length of the side of the cubic simulation box (we will see in 

more detail this aspect later). Finally, the crystallization order parameter, ¼½, 
gives us information about how crystalline is the system, i.e. how the structure 

is close or far from a crystallized state. The definition has this expression
30

: 

 

   ¾¿ = À 4X2� + 1 � Á1E � � Â¿¤VkL , eLW�Ã
L�)

�
Ä�) ÁH¿

¤�(¿  

 
 

(30) 
 

 

 

where E now is the total number of bonds between nearest neighbors, � is an 

integer, 
Ä is the number of nearest neighbours of a particle �, and Â¿¤ are the 

spherical harmonics that depend on the angles in spherical coordinates kL  and eL. We mentioned above that introducing polydispersity avoids crystallization 

and thanks to the three parameters that we have shown before, it is possible to 

discern exactly in which state is the system. As we are going to see in the next 

chapters, the crystallization order parameter has higher values in the case of 

monodisperse systems, indicating a possible crystalline order. As an illustrative 

way, in Figure 18 two snapshots corresponding to the monodisperse and 

polydisperse systems are shown. The normalized value of �+ is 60 and these 
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snapshots correspond to the equilibrium state. In light of these results, it has 

become clear that the influence of the polydispersity is really important in the 

equilibirum state as we can see in the figure: thicker and ordered columnar 

aggregates are observed in the case of the monodisperse system, unlike in the 

case of the polydisperse system, where structures are apparently less rigid and 

thin and a clear particle order is not observed. 

 

 

 

 

FIG. 18 Snapshots of a monodisperse and a polydisperse system at �+ = 60. 

 

At this point we have to distinguish between rheological experimental tests and 

the system dynamics in simulations: while in experiments the MR fluid is 

subjected to several kinds of deformations, i.e. external stresses are applied, in 

simulations the dynamics in the equilibrium state (without external stresses) is 

studied by taking into account only magnetic and Brownian forces, which have 

Monodisperse 

system 

Polydisperse 

system 
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an internal character. Even so, by means of some physical magnitudes it can be 

built a bridge between microscopic results and macroscopic interpretation. 

 

Once the structural aspect is clear, it is the moment to tackle the dynamics in 

the equilibrium state. In this state, structure continues evolving because of the 

Brownian motion but, in average, the system is in equilibrium and the potential 

magnetic energy and the average number of neighbors reach a constant plateau 

value. We are going to study those changes in this state. For this, we study the 

stress correlation function, the bond correlation function and the mean square 

displacement. The first one has a clear physical meaning: the stress correlation 

function indicates how the system relaxes the stress provoked by a fluctuation 

and to do that, this function studies the correlation between the stress tensor 

components during time. This is a measure about the stability or rigidity of the 

structure or in other words, this is a measure of the stress relaxation time. 

Before showing the expression of the stress correlation function it is important 

to remark that we will only take into account the non-diagonal components of 

the stress tensor because we are interested only in the shear stress and 

deformation. First, we calculated the non-diagonal components of the 

microscopic stress tensor by using the following equation
31

: 

 

      !ÅÆ = � �K�K,Å�K,Æ
�

K�) − � jKL,Å|KL,ÆKÇL  

 
(31) 

 

 

where �K is the particle mass, �K,Å is the ÈÉÊ  component of velocity of particle A, jKL,Å the ÈÉÊ  component of the vector position between particles A and M and |KL,Æ refers to the oÉÊ  component of the total force between the particle pair 

(magnetic + repulsive force). Looking at the later expression one can see that 
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the calculation of the stress tensor involves two components: the kinetic part 

which refers to the particle motion itself and the part which corresponds to the 

effect of the forces acting on particles. The stress correlation function is defined 

as: 

 

 ËÌÌ/01 = 1���Í �〈!ÅÆ/01!ÅÆ/01〉ÅÇÆ  
 

(32) 
 

 

In this expression, Írefers to the simulation box volume and 0 is the time. 〈… 〉 

indicates an ensemble average. As we mentioned above, this equation studies 

the time correlation between non-diagonal components of the microscopic 

stress tensor, starting the correlation from 0 = 0. In light of that, lower values of 

the function would indicate that stress tensor components would be totally 

decorrelated and this would mean that the system behaves as a very low 

viscous fluid, i.e. stress relaxation time is really short or zero. When the initial 

values of the stress correlation function increase, this means that the system is 

approaching a solid-like state and the stress relaxation time grows, the 

decorrelation is slower. In fluids, more or less viscoelastic, the stress correlation 

function falls to zero but, in solids, this function decreases up to a long-time 

plateau. By applying the Fourier transform (ËÏÌÌ/51) to the stress correlation 

function it is possible to calculate a macroscopic magnitude, the complex 

modulus, 	/51 = A5ËÏÌÌ/51 
 32

 and then, the viscoelastic moduli, 	/51 = 	′ +A	′′, which are easly measurable in the lab by a conventional dynamic oscillatory 

shear test as mentioned previously. This means that we are able to connect the 

microscopic measurements (stress tensor components) with macroscopic 

measurable magnitudes (viscoelastic moduli).  
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Another important function in the study of the system dynamics is the bond 

correlation function. This is very similar to stress correlation function but refers 

to the evolution of the neighbors of a given particle during time, i.e. this 

function evaluates how many particles are close neighbors of a probe particle 

and how many particles are still close neighbors after a time interval. As a way 

to better understand this: if the system is a crystal, for example, this function 

would be a constant because the internal structure does not evolve and 

particles remain in its place. For a Newtonian fluid, this function would decay 

fast to zero. For viscoelastic fluids, we would have a combination of these two 

extreme states. In Figure 19 conventional curves for the stress correlation 

function and the bond correlation function are shown at different values of the 

magnetic control parameter �+. 
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FIG. 19 The upper graph corresponds to the stress correlation function as a function of 

time; in the bottom, the time evolution of the bond correlation function for a polydisperse 

system. 

 

Finally, we study the mean square displacement  in the equilibrium state. This 

magnitude provides us information about the particle motion within the system. 

The particle can stay in several situations, for example, particles can move 

through the bulk or can be arrested within a dense structure. Both cases could 

be determined studying the mean square displacement. The conventional 

representation of this magnitude is versus time (Figure 20). The expression is: 

 

 〈∆j/01H〉 = 1E � ∆jK/01H�
K�)  

 
(33) 

 

 



76 
 

where ∆jK/01H refers to the square of the difference between the initial and 

actual positions of the particle. Basically, this magnitude evaluates the absolute 

displacement of particles during a certain time. 
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FIG. 20 Mean square displacement in three coordinates axis as a function of time for two 

different control parameter values. Diffusion coefficients as a function of �+ in the inset. 

 

Typical results of the MSD are shown in Figure 20. At short times we can 

observe in the figure that the particle moves in the ballistic regime. At larger 

times, the particle begins to suffer collisions with other particles and the trend 

changes, and the particle begins to be arrested within a certain structure: 

particle has close neighbors that difficult its free motion until diffusion is 

reached at long times. In the inset, the diffusion coefficients are shown. These 

are calculated as the long time slopes of the mean square displacement and 

have the following expression: 
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 � = logÉ→Ó 160 〈|jJ/01 − jJ/01|H〉 
 

(34) 
 

 

We observe that these coefficients decay when the control parameter �+ 

increases: when the magnetic field is more intense, columnar aggregates are 

more stable and thicker and particles inside these structures have its motion 

more and more limited. 
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Abstract 

 

The effect of particle shape in the small amplitude oscillatory shear behavior of 

magnetorheological (MR) fluids is investigated from zero magnetic field 

strengths up to Ô¨¨ �Õ/�. Two types of MR fluids are studied: the first system 

is prepared with spherical particles, and a second system is prepared with rod-

like particles. Both types of particles are fabricated following practically the 

same precipitation technique, and have the same intrinsic magnetic and 

crystallographic properties. Furthermore, the distribution of sphere diameters is 

very similar to that of rod thicknesses. Rod-based MR fluids show an enhanced 

MR performance under oscillatory shear in the viscoelastic linear regime. A 

lower magnetic field strength is needed for the structuration of the colloid and, 

once saturation is fully achieved, a larger storage modulus is observed. Existing 

sphere- and rod-based models usually underestimate experimental results 

regarding the magnetic field strength and particle volume fraction dependences 

of both storage modulus and yield stress. A simple model is proposed here to 

explain the behavior of microrod-based MR fluids at low, medium and 

saturating magnetic fields in the viscoelastic linear regime in terms of magnetic 

interaction forces between particles. These results are further completed with 

rheomicroscopic and dynamic yield stress observations. 
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I. INTRODUCTION 

 

Magnetorheological (MR) fluids are well known because of their magnetic-field 

tunable rheological properties. In the absence of a magnetic field, MR fluids 

typically behave as Newtonian fluids. However, under the application of a 

magnetic field particles aggregate to form chain-like structures aligned in the 

direction of the field. As a consequence, magnetized MR fluids present a yield 

stress and highly elastic response
1
. 

Typical MR fluids are formulated by dispersing magnetizable spheres in a non 

magnetic medium. The effect of magnetic field and particle volume fraction in 

their rheological response has been largely studied in the past and a collapse is 

generally found in terms of the Mason number
2
. However, up to now the 

influence of particle shape has been scarcely studied, the reason for this 

probably being the lack of suitable non-spherical magnetic particles having 

appropriate size; particles should be large enough so that magnetic forces 

overcome thermal motion and small enough in order to prevent sedimentation.  

 

Basically, the influence of particle shape on MR response stems from the fact 

that a spheroid whose major axis is aligned with the magnetic field and has the 

same intrinsic magnetic properties and volume as a spherical particle, will have 

a greater induced magnetic moment due to its smaller demagnetization factor 

in that direction. As a consequence, stronger fluids are expected to be prepared 

using anisotropic particles. Apart from this, other advantages are as follows: (i) 

lower volume fractions are required for the column like aggregates to connect 

the gap in a rheometer, (ii) better stability against sedimentation because of 

hindered settling, (iii) easy re-dispersion because of the formation of a less 

compacted sediment once the magnetic field is absent. 
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Shaw and coworkers
3,4

 were probably the first to investigate the effect of 

particle shape in electrorheological (ER) fluids in an attempt to improve the 

rheological properties of the fluid. They showed that using poly(p-phenylene-

2,6-benzobisthiazole) rodlike particles it is possible to enhance the dielectric 

interaction of the particles as well as their mechanical interaction. Yabing and 

Wen
5
 presented experimental results on the effect of particle shape on dried 

and water activated ER fluids under both DC and AC fields. Their results for 

water activated fluids were explained due to surface effects; a lower ER effect is 

observed for anisotropic particles in contrast to the findings by Kanu and Shaw. 

Watanabe et al.
6
 analyzed the orientational distributions and rheological 

properties of magnetic spherocylinders subjected to a simple shear flow. Tsuda 

et al.
7
 studied the yield stress vs. electric field dependence for spheres and 

whisker suspensions. For whisker suspensions, the yield stress was clearly 

larger, although the slope of the yield stress vs. electric field curve decreased 

from 2 to 1.3. The observed enhancement of ER performance for whisker 

suspensions electrified under oscillatory shear can be explained by the column 

thickening induced by oscillatory shear. Yin and coworkers
8
 prepared nano-

fibrous polyaniline (PANI) particles by a modified oxidative polymerization in 

aniline in acid solution. These particles were later dispersed in solution and 

investigated with rheological techniques. Both steady state and oscillatory 

responses were larger for nano-fibrous particles than spherical ones. Bell and 

coworkers showed that MR fluids utilizing nonspherical magnetic particles 

exhibit enhanced rheological properties as well as greater stability
9,10,11

. 

 

Early 2007 our group developed a procedure to prepare highly elongated 

micron-sized magnetite particles by magnetic field-induced self-assembly
12

. 

These particles were then anticipated to be of great interest in MR fluid 
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formulations. An important advantage of this method is that it makes possible 

to prepare both spheres and microrod particles of the same material (in this 

case magnetite) and with the same electrokinetic, intrinsic magnetic and 

crystallographic properties. Furthermore, the resulting distribution of sphere 

diameters is very similar to that of rod thicknesses. 

 

Typical rheological experiments found in the literature are carried out under 

steady state conditions. However, physical information drawn from such tests is 

rather poor compared to what can be obtained from a spectromechanical 

analysis. This kind of test allows us to separate elastic and viscous contributions 

to the rheological performance, and can reveal relaxation phenomena present 

in the microstructure without destroying it. To date, no conclusive studies of the 

field-dependent moduli of MR-materials have been reported. 

 

In this work we report below, we investigated the effect of particle shape in the 

MR performance of model magnetic colloids. Experiments were carried out in 

oscillatory shear flow using a parallel plate torsional magneto-rheometer under 

the presence of a wide range of magnetic fields up to ~ 800 ��/�.  

 

II. EXPERIMENTAL 

A .Synthesis of MR-fluids 

 

Both types of particles were fabricated following the method described by 

Sugimoto and Matijević
13

. Briefly, the method relies in the precipitation of 

Fe(OH)2 and its subsequent oxidation at 90 
o
C in the presence of KNO3. The main 

difference between the fabrication process of the rods and the spheres was 

that, in the case of the rod-like particles, the reactant mixture was cured in a flat 
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flask that was placed inside the gap of a permanent magnet (U~400 ��) as 

that depicted in ref. 14. For both spheres and rods, a first solution (sol. no. 1) 

was prepared with doubly distilled water and the required amounts of KOH and 

KNO3. This solution was purged with N2 for at least 1 hour. A second solution 

(sol. no. 2) of FeSO4⋅7H2O was prepared with doubly distilled water that had also 

been previously purged for at least 1 hour with N2. The concentrations of the 

solutions were adjusted so that in the final reactant mixture there was a 

concentration of Fe(OH)2 of 0.025 � an excess of Fe
2+

 in solution of 0.005 � 

and a concentration of KNO3 of 0.20 �. One of the difficulties we had to 

overcome for the preparation of the MR fluids was the low yield of the reaction. 

For the concentrations given above, we obtained less than 2 �� of magnetite 

per �» of reactant mixture, whereas the preparation of the MR fluids required 

a relatively large amount of magnetite. For instance, a MR fluid with a 

magnetite content of 5 ���%  in volume requires approximately 258 ��  of 

magnetite per �» of fluid. This difficulty was especially severe for the rod-like 

particles because of the limited volume of reactants that could be cured inside 

the magnet.  

 

The reactant mixture inside the magnet was cured for 70 minutes. It had been 

established in the past
12

 that under the conditions described above this curing 

time was sufficient for the full growth of the magnetite rods. Therefore, after 70 

minutes the reaction flask was emptied and refilled with the proper volumes 

from stocks of solutions no. 1 and no. 2, which were purged with N2 for as long 

as needed.  
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Spheres were fabricated using a reactant mixture with identical concentrations 

as those mentioned above, but curing it in 250 �» screw-cap flasks in the 

absence of any magnetic fields. These particles were cured for 4 hours. 

 

After the curing process, both spheres and rods were washed with doubly 

distilled water at least 8  times, and then stored in absolute ethanol. A 

permanent magnet was used during the washing process to accelerate 

sedimentation of the particles and facilitate the decantation of the supernatant. 

For the preparation of the MR suspensions, particles were dried at 40 ℃ in air 

for approximately 8 hours or until no further weight loss due to ethanol 

evaporation was detected.  

 

The preparation of the suspensions consisted of the following steps: (i) 

magnetite and silicone oil (20 �%& ·  ) were mixed in a polyethylene container; 

(ii) the mixture was stirred first by hand, and then in an ultrasonic bath; (iii) step 

(ii) was repeated several times, and finally, the sample was immersed in a 

Branson sonifier (model 450) to ensure the required final homogeneity. The 

gradual homogenization of the samples was confirmed by the disappearance of 

the aggregates initially observed in the container bottom. Using this preparation 

procedure, the resulting suspensions, at a given volume fraction, were found to 

be reproducible from the point of the rheological tests results.  

 

The fragmentation of rod-like particles during shearing tests was found not to 

be significant. To investigate this point, suspensions were prepared varying the 

time they were subjected to ultrasounds using a different preshear. Negligible 

differences in the rheological response were observed suggesting that particles 

fragmentation is not likely.  
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B. Microscopic characterization 

 

A Motic B3 optical microscope was used to investigate the structure at large 

magnetic fields. A rheomicroscope (MCR, Anton Paar, Austria) was employed to 

see the evolution of the structure at low and medium magnetic fields during 

rheological tests. The rheomicroscope was employed with a parallel plate 

measuring configuration (40 �� diameter, 300 �� gap). The upper plate is 

free to rotate at a commanded velocity. In this case, the lower plate is made of 

glass and is maintained immobile. The microscope objective looks from below in 

reflective light mode. A CCD camera captures the image which is later processed 

in a PC.   

 

C. Rheological characterization 

 

Dynamic oscillatory properties of the MR-fluids were measured at 25℃ using a 

parallel-plate magneto-rheometer (MCR Anton Paar, Austria). The diameter of 

the plates was 20 �� and the plate separation was fixed at 300 ��. The 

magnetic field was applied normal to the direction of flow. All plates used for 

magnetorheological characterization were made of titanium with the exception 

of rheomicroscope tests, which were obtained using the glass disk mentioned in 

section II B. 

 

First, the viscoelastic linear region was determined. Storage and loss moduli 

were measured as a function of strain at a frequency � = 1 Ts, in the presence 

of the following magnetic fields: 0 ��/�, 175 ��/�, 353 ��/�, 530 ��/�, 707 ��/� and 884 ��/�. Then, magnetosweeps were carried out at a strain 
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amplitude #+ = 0.003 % (well within the viscoelastic linear region in all cases) 

and a frequency � = 1 Ts according to Laeuger et al.
15

 

The experimental procedure is summarized as follows: (i) precondition at a 

constant shear rate γ&  = 200 s
-1

 during 30 seconds, (ii) suspension is left to 

equilibrate for 1 minute, (iii) constant dynamic-mechanical shear conditions are 

preset (both frequency and amplitude are kept constant) and magnetic field is 

gradually increased from 0.175 to 884 kA/m (logarithmically increased at a rate 

of 10 points per decade). In all cases experiments were repeated at least three 

times with fresh new samples.  

 

Dynamic yield stress measurements were carried out in controlled shear rate 

mode. In a first step a preshear is applied in the absence of a magnetic field. 

Then, the magnetic field is turned on without any shear applied yet. After 30 

seconds of equilibration the shear rate starts to increase from 0.01 s
-1

 to 500 s
-1

. 

Dynamic yield stress is obtained from curve fitting using the Bingham model at 

large shear rates. The yield stress is obtained by extrapolation of the curve to 

zero shear rate. It is important to observe that different model functions usually 

produce different yield point values
16

. We chose this procedure because it is 

frequently used in the MR fluids literature
17

.  

 

III. THEORY 

A. Sphere-based MR-fluids 

 

At low magnetic fields, dipolar interactions dominate between magnetisable 

particles in non magnetic media. In this case, a quadratic dependence is usually 

observed for the yield stress and the storage modulus, both as functions of the 
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magnetic field strength. The model by Martin and Anderson
18

 predicts the 

following dependence of the storage modulus: 

 

 22
0311.2' HkG βφµ=  

(1) 
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Here, φ  is the particle volume fraction, 0µ  is the magnetic permeability of 

vacuum, H  is the internal magnetic field in the suspension (see the Appendix A 

for its calculation), and sphµ  is the relative magnetic permeability of the 

spheres. 

 

The model by de Vicente et al.
19

 assumes a different hydrodynamic interaction. 

According to these authors the storage modulus can be written as: 

 

 22
076.1' HG βφµ=  

(2) 

 

 

At medium magnetic fields, poles in the particles begin to saturate. In this case, 

a quadratic dependence is no longer observed. Ginder
20

 proposed the following 

equation:  

 

 HMG s03' φµ=  
      (3) 
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where sM  is the saturation magnetisation of the particles. At large fields, 

particles are completely saturated. In this case, both yield stress and storage 

modulus are constant with the field. From a finite element calculation, Ginder 

obtained the following result
20

:  

 

 2
03.0' sMG φµ=  

(4) 

 

 

B. Rod-based MR-fluids 

 

As a first approximation, acicular and rod-like particles can be modelled 

mathematically by prolate spheroids. The magnetic dipolar moment of a solid 

spheroid dispersed in a non magnetic medium can be written as
21

: 

 

 

( ) H
N

Vm
Drod

rod

11

1
0 −+

−
=

µ
µµ  

(5) 

 

 

where 2
216

1
ddV π=  is the volume of the particle, 1d  and 2d  are the length and 

width of the spheroids respectively, rodµ  is the relative magnetic permeability 

of the spheroid, and DN  is the demagnetizing factor of the spheroid. In this 

work, the permeability of both microsphere, sphµ , and microrod, rodµ , 

magnetite particles was calculated from the Frohlich-Kennelly equation
22

 with 

15,, == irodisph µµ  and �� = 490 ��/�  (the hysteresis curve at room 

temperature corresponding to these particles can be found elsewhere
12

). The 

length and width of the spheroids are given by ') = 6900 
�  and 'H =
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560 
� (see Ref.12). From Eq.(5), the dipolar interaction force between two 

spheroids is given by: 
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and θ  and r  are the tilt angle and the centre-to-centre distance respectively 

(see Figure 1). 

 

Assuming that these two dipoles are aligned in a head-to-tail configuration, as 

expected for spheroids due to the contribution of the shape anisotropy energy, 

the horizontal component of the force required to separate them is given by: 
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where the centre-to-centre distance between dipoles is 
θ

α
cos

1d
r = . As a first 

approximation, the storage modulus in the viscoelastic linear region can be 

obtained from:  
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φ=  is the number of chains per unit surface. Substituting Eq.(8) 

in Eq.(9) we get: 
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On the other hand, the maximum force allowed is given by: 
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If we assume that spheroids aggregate to form single-width chains upon the 

application of the magnetic field, basically, the yield stress in a suspension of 
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magnetized spheroids depends on the number of chains per unit surface, and 

the maximum force which is given by Eq.(11). 
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Substituting Eq.(11) in Eq.(12) we get an equation for the yield stress in rod 

suspensions as a function of the storage modulus: 

 

 
my fG'4=τ  

(13) 

 

 

As observed from Eq.(10) and Eq.(13), the internal magnetic field dependence of 

both the yield stress and modulus is found to be quadratic at low fields. As a 

first approximation, at large magnetic fields, saturation of the particles comes 

into play through magnetic permeability odrµ . Even though Eq.(5) is strictly 

valid at low fields, in the limit of large fields the equation reduces to 

VMm s0µ=  which is valid for two saturated spheroids. As a consequence, 

Eq.(5) will be used here for the whole magnetic field range investigated. 

 

Yield stress and storage modulus scale as a power of -2 on 21 dd  for large 

enough aspect ratios (where DN  asymptotically approaches zero). In the case 

of aspect ratios lower than approximately 5, the aspect ratio dependence is 

more complicated because of the demagnetization factor. Interestingly, a strong 

dependence is observed with α , which basically represents the interparticle 

distance in the aggregate  cf. Figure 1. 
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Models reported above assume that particles aggregate forming single-width 

chains aligned in the direction of the magnetic field. However, this assumption is 

far from being reasonable for typical concentrations used in the formulation of 

MR fluids. In Figure 2(c) we show a photograph of typical structures induced by 

the presence of a magnetic field in a microrod based MR fluid at 5 ���%. As 

observed, thick columnar structures exist instead of single width chains. 

Realistic models should consider thick aggregates and this is not easy to model 

because of multipolar interactions, interparticle friction and the presence of 

other short range forces appearing at small distances. 



96 
 

 

FIG. 1. Schematic representation showing the shape and orientation of the anisotropic 

structures in the presence and absence of a steady shear flow. 

 

Recently, a “column structure” model has been developed by Bossis and 

coworkers
23

 to explain the shear stress in magnetorheological fiber based 
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suspensions. In this model, fibers overlap each other in the aggregate at the 

same overlap length 0b . When the suspension is strained, the fibers slip along 

each other and the columns extend and tilt. This model takes into account three 

interactions that contribute to the total stress: particle

interactions ( fieldτ ), solid friction ( frictionτ ) and magnetic interactions between 

the fibers ( magneticτ ). Furthermore, the model can be adapted to predict 

storage modulus by taking the limit to low displacement angles: 

 

FIG. 2. Characteristic SEM micrographs of magnetite spheres (a) and rods (b) used for the 

preparation of the magnetorheological suspensions. Typical structure induced by the 

magnetic field in rod based MR fluids (c). Detail of rod-like particles (d).
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suspensions. In this model, fibers overlap each other in the aggregate at the 

s strained, the fibers slip along 

each other and the columns extend and tilt. This model takes into account three 

interactions that contribute to the total stress: particle-field magnetic 

) and magnetic interactions between 

). Furthermore, the model can be adapted to predict 

 

 

s (a) and rods (b) used for the 

preparation of the magnetorheological suspensions. Typical structure induced by the 

like particles (d). 
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where each contribution to the stress can be obtained as follows: 
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Here, ( ) ( )[ ] ( )[ ] 232
1212 ddddG +−= βξβθ , with ( ) θββ cos11 0−−= , 

where 100 db=β  and ξ  represents the friction coefficient. In the case of small 

angles, structures are slightly perturbed and according to this model only 

particle-field interactions prevail. A simplified equation results: 
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IV. RESULTS AND DICUSSION 

 

Micrographs of typical magnetite spheres and rods are shown in Figure 2(a) and 

Figure 2(b) and (d) respectively. Apart from their different morphology, no other 

differences regarding their crystalline structure or intrinsic magnetic properties 

were found.
12

 

 

However, a number of comments should be made regarding the size and 

morphology of the magnetite particles used in this study. We measured the 

diameter of over 500  magnetite spheres, and obtained a value of 680 ±150 
�. For the rod-like particles, the average cross section was 560 ± 120 
� 

and the average length was 6900 ± 3800 
�. The uncertainties indicated 

above correspond to the standard deviation of each population. Note the large 

uncertainty of the rod length measurement, which is indicative of their very 

inhomogeneous length. Furthermore, the rod-like particles are actually linear 

arrays of individual particles that fused together (see Figure 2(d)) during growth. 

This leads to a relatively rough texture that constitutes a major difference from 

the ideal spheroids of our model.  

 

Preliminary experiments were run in order to ascertain which is the effect of 

gap distance in the plate-plate configuration. It is well known that the MR 

response may depend on gap distance since the mechanical response is strongly 

dependent on the number of columns per unit surface
24,2

. As a consequence, 

measuring at large gap distances may result in a negligible MR response due to 

the lack of gap-spanning structures.  
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In Figure 3(a) we present experimental results corresponding to microrod-based 

suspensions at 0.5 ���% measured at different gap distances. As observed, 

similar results are obtained suggesting that the effect of gap distance is not 

relevant in this system. Small discrepancies may arise from gaps that are not 

correctly filled. In the experiments whose results we report below, we used a 

gap distance of 300 ��. Such distance requires a small sample amount, while it 

ensures continuum rheology and a small enough gap in order to facilitate 

gapspanning structures. 
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FIG. 3. Effect of experimental conditions in the dynamic moduli. a) Effect of gap distance 

in the magneto-rheological response for rod-based MR fluids at 0.5 ���%. Integration 

time 15  . b) Effect of sweep time in the magneto-rheological response for rod-based MR 

fluids at 0.5 ���%. Gap 300 ��. 

 

The speed at which the magnetic field is increased may be an important factor 

in these studies. The rate of increase of the magnetic field had to be 

conveniently chosen so as to get quasi-equilibrium states. The effect of the rate 

of increase was investigated, and the results obtained for different rates are 

shown in Figure 3(b). Here, associated to each curve there is a “integration 

time” which refers to the data acquisition time spent at every point in the plot. 

As observed, if measurements are carried out too quickly, the sample is not 

allowed to relax and a non equilibrium state is explored. For times larger than 
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12 seconds results do not differ too much. In the following, a rate of increase of 12 seconds is fixed. 
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FIG. 4. Internal magnetic field, T, dependence of storage, 	’, and loss moduli, 	’’, for 

sphere and rod-based MR fluids at 0.5 ���% (a), 1 ���% /Ø1 and 5 ���% /�1. 

 

Averaged magnetosweep curves are presented in Figure 4(a), 4(b) and 4(c) for 

volume fractions of 0.5 ���%, 1 ���% and 5 ���% respectively. Lower volume 

fractions were difficult to investigate because of the sensitivity limitation of the 

rheometer. Larger volume fractions are also difficult to be investigated due to 

the low yield of the synthesis routes. As observed, regardless of the internal 

magnetic field strength, the storage modulus, 	’ , is larger than the loss 

modulus, 	’’.  
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FIG. 5. Structure evolution of a 1	���% suspension of magnetite spheres and microrods in 

a 20	�%&	  silicone oil contained between 40	�� diameter glass parallel plates (

gap), as the magnetic flux density is increased from 0.03	��/� to 17.8

magnetosweep test. The magnetic field is perpendicular to the paper.

 

This suggests some degree of structuration in the colloid. For magnetic fields 

larger than 1 G 10	��/� , both moduli increase at least two orders

magnitude. This finding is in agreement with a magnetically induced chain

structure in the colloid (cf. Figure 5); in the presence of a magnetic field, 

particles aggregate to align in the direction of the magnetic field. Interestingly, 

rod-based magnetorheological fluids show a much larger elastic and viscous 

response when compared to sphere-based fluids. By increasing the particle 

volume fraction, a stronger MR response is observed. Interestingly, 

microrod based MR fluids present a non negligible low field storage modulus 

plateau (cf. Figure 4(c)) which is associated to hindered settling in the rod

suspension as compared to the sphere-based MR fluids with the same particle 

 

suspension of magnetite spheres and microrods in 

diameter glass parallel plates (300	µ� 

8	��/� during a 

magnetosweep test. The magnetic field is perpendicular to the paper. 

in the colloid. For magnetic fields 

, both moduli increase at least two orders of 

magnitude. This finding is in agreement with a magnetically induced chain-like 

5); in the presence of a magnetic field, 

particles aggregate to align in the direction of the magnetic field. Interestingly, 

agnetorheological fluids show a much larger elastic and viscous 

based fluids. By increasing the particle 

volume fraction, a stronger MR response is observed. Interestingly, 5	���% 

microrod based MR fluids present a non negligible low field storage modulus 

4(c)) which is associated to hindered settling in the rod-based 

based MR fluids with the same particle 
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content. Such behaviour has been observed by Bell and coworkers in the past
10

. 

In summary, three regions are clearly observed in magnetosweep curves.  

 

(I) At low magnetic fields, both moduli are nearly constant. Particles become 

magnetized but interparticle magnetostatic interactions are still too weak to 

promote the formation of gap-spanning aggregates. In this region, a slight 

decrease in 	’ is observed at the largest fields and particle volume fractions, 

probably associated to some particle arrangement which favours oil to flow in 

between the dispersed particles (cf. Figure 4(c)). For low particle contents, some 

noise is found as a result of limited torque resolution of the rheometer. 

(II) At medium magnetic fields, both moduli strongly increase as a consequence 

of the appearance of strong magnetic interactions between the particles. 

Particles aggregate and motion is partially impeded. Note that for solid contents 

of 0.5 ���% and 1 ���% the increase of the moduli clearly starts at lower fields 

in the case of the rod-based suspensions.  

(III) At high magnetic fields, the structuration is fully achieved and particle 

arrangement prevents plate motion. This is manifested by constant moduli. 

 

These results were further corroborated from rheomicroscope observations. In 

Figure 5 we show snapshots corresponding to the typical structures observed in 1 ���% magnetorheological fluids at different external magnetic fields during 

the magnetosweep test described above using the microscope. For comparison, 

photographs corresponding to sphere and rod based MR fluids are shown. At 

low magnetic fields aggregates do not exist or they are loose enough for a dark 

image to be obtained. However, upon increasing the magnetic field thick 

aggregates appear. Interestingly, in the case of sphere-based MR fluids a critical 

magnetic field for the formation of the thick aggregates exists around 10 ��/�, 



106 
 

whereas rod-based MR fluids do not show any critical field in the range 

investigated, only a slight column width decrease is observed as the magnetic 

field increases. The fact that the aggregates of the rod-based fluids are visible in 

the microsocope at lower fields is a sign of an earlier structuration, and must be 

related to the increase of the dynamic moduli that was also observed at lower 

fields (see Figure 4). 

 

In Figure 6(a) we show the results corresponding to low field responses of the 

sphere-based MR fluids. As observed, theoretical models, Eq.(1) and Eq.(2), 

satisfactorily predict a quadratic field storage modulus dependence at low 

particle volume fractions. However, models significantly underestimate 

experimental results for particle volume fractions larger than 0.5 ���%. This is 

expected since models assume single width particle chains and this is not the 

kind of structure observed at such concentrations, cf. Figure 2(c) and Figure 5. 

Also, other short-range interactions seem to have relatively large contributions 

to the moduli. The low magnetic field region has been largely investigated in the 

literature. However, particle volume fraction dependence varies between 

different authors. A detailed study by Claracq et al.
25

 found a 1.65 ±  0.50 

power law exponent for the dynamic moduli versus particle volume fraction 

dependence in carbonyl iron based MR fluids. Unfortunately, they did not report 

on the three volume fractions used for the fitting. It is important to remark that 

lower particle contents are not accessible with our rheometer due to limited 

torque resolution. Including multipolar contributions to the MR response would 

result in a better agreement with experimental data as reported by 

Klingenberg
26

 (in the case of yield stress) and de Vicente et al.
19

 (in the case of 

storage modulus). 
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In Figure 6(b) we present medium field (30��/�) storage modulus as a function 

of particle volume fraction for the two systems investigated. In all cases, the 

storage modulus for microrods is larger than the storage modulus of spheres. 

This is expected from the smaller critical field strength associated to the sudden 

increase in storage moduli (see Table I) which results from a lower 

demagnetizacion energy for axisymmetric particles oriented with the field when 

compared to their spherical counterparts. Such a lower DN  results in a larger 

internal magnetic field in the rodlike particle and hence in a larger magnetic 

moment, a stronger interparticle magnetostatic interaction and enhanced field 

induced torque. 
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FIG. 6. Particle volume fraction, φ, dependence of small amplitude oscillatory shear 

moduli. a) Low field response and quadratic field theories for sphere-based MR fluids. 

Solid lines correspond to Eq.(1). Dashed lines correspond to Eq.(2). b) Medium field 
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response and Ginder’s theoretical predictions -solid line, Eq.(3)- for sphere-based MR 

fluids. External magnetic field 30 ��/�. c) High field response and Ginder’s theoretical 

predictions , solid line, Eq.(4), for sphere-based MR fluids. 

 

It is worth to remark that this finding may be of interest in the case of low field 

MR applications. Observing the results for the critical field in Table I it is 

important to make some comments on the 5 ���% results. The critical field of 3.1 ��/� for microrod based MR fluids at 5 ���% is actually greater than that 

of the sphere based fluid at the same concentration. This is the opposite of what 

was observed for lower volume fractions, and a consequence of the much larger 

off-field storage modulus for that particle concentration.  

 

TABLE I. Critical field strength (kA/m) associated to the increase in storage modulus. 

 ÙÚ½ % Microspheres Microrods ¨. Û ÜÝ. Ý §. ¨Þ § §ß. Þ Ü. ¨ Û Ü. Ô ß. § 

 

 

The solid line in Figure 6(b) corresponds to the predictions of Eq.(3) for spheres. 

Even though this model predicts the order of magnitude correctly, it fails at 

explaining the experimental dependence of G’ on particle volume fraction. By 

linear fitting experimental data of sphere based MR fluids, a slope of 2.5 ±  0.3 

is obtained. Power law exponents for spheres and rods at medium and 

saturating fields are shown in Table II. 
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Measurements of the storage modulus for spheres and microrods at saturation 

are shown in Figure 6(c). Smaller differences are now appreciated between rods 

and spheres as expected because the storage modulus in this region mainly 

depends on squared saturation magnetization (see Eq.(4)). In agreement with 

results presented in Figure 6(b), a slope larger than one for 	’ vs. φ dependence 

is observed both for sphere and rod-based fluids (see Table II). This is in contrast 

to analytical models that predict a storage modulus proportional to particle 

concentration and to the square of the saturation magnetization of the 

particles. Even though the correct order of magnitude is captured, the particle 

content dependence requires further investigations, especially at larger 

concentrations. 

 

Even though theories intended to model the behaviour at saturation (Eq.(3) and 

(4)) typically predict yield stresses that compare quite favourably with the 

experimental data of carbonyl iron at 50 ���%27,28
, the theoretical storage 

modulus is greatly exceeded by the experimental results. In this work we show 

that the particle volume fraction effect is not trivial. The discrepancies are likely 

due to the fact that the models presented here treat only the stresses resulting 

from magnetic interactions and not those associated with other interactions 

such as van der Waals, steric, etc, which are expected to come into play at large 

particle contents specially for nonisotropic magnetic particles were entropic 

repulsion is significant at low fields. All theories considered in this manuscript 

assume that magnetic interaction forces are always more important than other 

forces that may also be present in a magnetorheological fluid. As a 

consequence, only magnetic contributions to the stress are considered. 

However, conventional magnetorheological suspensions usually contain a very 

large amount of particles that under the presence of a magnetic field eventually 
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come into very close contact. At very short interparticle distances, other forces 

apart from magnetostatic ones may be relevant and should be considered in a 

more detailed analysis. Of outstanding interest is van der Waals attraction 

which could lead to the formation of much stronger structures than those 

expected from a simple analysis only including magnetic forces.  

 

TABLE II. Power law exponent, �, according to à’ ∝ φ� in sphere and rod based MR fluids 

at medium (ß¨ �Õ/�) and saturating fields. 

 

 Medium fields Large fields 

Microspheres Ü. Û ± ¨. ß Ü. Ü ±  ¨. Ý 

Microrods Ü. á ±  ¨. Þ Ü. Þ ±  ¨. § 
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FIG. 7. Comparison between experimental results and theoretical predictions for the 

storage modulus, 	’, of rod-based MR fluids. Solid lines represent microrod model 

predictions at 015.0=DN  and different α  values (Eq.(10)). Dotted lines correspond to 
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full Kuzhir model predictions (Eq.(14)) with nmb 25000 =  and 0=ξ . Dashed lines 

correspond to approximated Kuzhir model predictions (Eq.(15)) 15, =irodµ , Ms = 490 

kA/m and º0≈θ . 

 

In Figure 7 we present results corresponding to the microrod based models 

described in section III B. On the one hand, the proposed model , Eq.(10), 

satisfactorily captures both the medium field increase in storage modulus and 

the plateau at saturation through a magnetic field-dependent permeability. Best 

fit α  values increase with decreasing particle content as expected from larger 

interparticle distances. On the other hand, column structure models (dashed 

lines) underpredict experimental results at large particle contents. This finding is 

in agreement with Kuzhir et al.
23

 results on yield stress measurements. To 

further understand the effect of interparticle distance in the proposed model, 

dynamic yield stress measurements were carried out on sphere- and microrod-

based fluids. Figure 8 includes the most relevant results for suspensions at three 

different volume fractions. As observed, the proposed model satisfactorily 

explains dynamic yield stresses at the lowest fields investigated for a fixed 

3.0=α .  
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FIG. 8. Dynamic yield stress, τ~, as a function of the internal magnetic field, T, for 

microrod based MR fluids. Solid lines represent the predictions of the microrod based 

model (Eq.(13)) with 34.0=α  for the three concentrations investigated. The decrease at 

high fields corresponding to 0.5 and 1 ���% suspensions is ascribed to the sedimentation 

and/or migration of the largest aggregates. 

 

This is consistent with the fact that interparticle distances, right at the moment 

in which aggregates break, are expected to be the same for any particle 

concentration in the suspension. As expected, dynamic yield stresses at large 

fields reach a plateau at 5 ���%. The observed decrease at 0.5 and 1 ���% 

concentration is possibly due to sedimentation of the larger aggregates even 

though the rheometer is rotating
29

. Another possible explanation would be the 

particle/aggregate migration towards regions with large magnetic field 

gradients. Due to the design of the magnetorheological cell, the magnetic field is 

not homogeneous everywhere between the plates. Low particle density regions 
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are expected just at the center and at the rim. Actually, this magnetic field 

gradient has proved recently to be useful for confining ferrofluids in a simulated 

face seal
30

. 

 

V. CONCLUSIONS 

 

In summary, rod-based MR fluids show an enhanced MR performance under 

oscillatory shear. Firstly, a lower magnetic field strength is needed for the 

structuration of the colloid. Secondly, once the saturation is fully achieved, a 

larger elastic modulus is observed in rod-based suspensions as compared to 

sphere-based MR fluids. Existing sphere-based models satisfactory capture the 

order of magnitude of storage modulus but fail to predict the particle volume 

fraction dependence. By concentrating the microrod-based MR fluids, a larger 

saturation storage modulus is obtained, but also a larger value for the off-field 

storage modulus is observed. Taking the off-field modulus as the baseline, and 

for relatively low solid contents (0.5 ���% and 1 ���%), the critical field for 

structuration was significantly smaller for rod-based suspensions than for their 

sphere-based counterparts. At larger concentrations (5 ���%) this behavior 

reverses, which seems to be related to the larger off-field storage modulus at 

that concentration. In spite of the fact that magnetorheological models 

reported in the literature neglect loss modulus values, these are demonstrated 

to strongly depend on magnetic field strength. The microscopic rod-based 

model proposed satisfactorily captures the dependence of 	’ vs. the internal 

magnetic with one fitting parameter. This model was satisfactorily tested with 

steady state measurements. 

 

 



115 
 

ACKNOWLEDGEMENTS 

 

This work was supported by MEC MAT 2006-13646-C03-03 and MEC MAT 2009-

14234-C03-03 projects (Spain), by the European Regional Development Fund 

(ERDF) and by Junta de Andalucía P07-FQM-02496, P07-FQM-03099 and P07-

FQM-02517 projects (Spain).  

 



116 
 

APPENDIX A. Calculation of the internal magnetic field in magneto-rheological 

suspensions 

 

In general, the internal magnetic field depends on the external magnetic field, 

0H , and magnetic permeability of the suspension, ( )Hµ  through: 

 

 

( )H

H
H

µ
0=  

 

(A.1) 

 

 

Considering a mean field Maxwell-Garnett theory, the permeability of the 

suspension can be written as a function of the particle volume fraction, φ , and 

the magnetic contrast factor, β : 
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where the magnetic field strength in the sphere is written as: 
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being, ( )
sph

s

isph

isph
sphsph

H
M

H
,

,

1

1 µ
µ

µ
+

+=  with isph,µ  the initial magnetic 

permeability of the spheres. In order to obtain the internal field in a suspension 

of spheres, Eq.(A.1-A.3) are simultaneously solved by numerical iteration. 

 

In the case of magnetic microrod suspensions, the internal magnetic field is 

written as: 

 

 

θµθµ 22
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(A.4) 

 

 

where θ  is the strain angle, and ( )11 −+= rodII µφµ  and 

1

1
1

1

1
1

+
−−

+
−+

=⊥

rod

rod

rod

rod

µ
µφ

µ
µφ

µ  

are the permeability components along the major and minor microrod axes.  

Here, 
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(A.5) 

 

 

where irod,µ  is the initial magnetic permeability of the microrods, and the 

magnetic field strength in the rod is given by: 
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Eq.(A.4-A.6) are simultaneously solved by numerical iteration to obtain the 

internal field in the magnetic microrod suspension. 
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Abstract 

 

Magnetorheological (MR) properties were investigated for sphere, plate and 

rod-like iron particles in suspension under the presence of magnetic fields to 

ascertain the effect of particle shape in MR performance. A novel two-step 

synthesis route for micrometer sized iron particles with different morphologies 

is described in detail. Small-amplitude dynamic oscillatory and steady shear flow 

measurements were carried out in the presence of external magnetic fields. 

Finite element method calculations were performed to explain the effect of 

particle shape in the magnetic field induced yield stress. Compared to their 

sphere and plate counterparts, rod-like particle based MR fluids present a larger 

storage modulus and yield stress. The effect of particle shape is found to be 

negligible at large particle content and/or magnetic field strengths. 
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I. INTRODUCTION 

 

Magneto-rheological (MR) fluids are typically prepared by dispersing 

magnetizable spherical microparticles in a non magnetic medium. Because of 

the large -magnetic multidomain- particle size, structuration is achieved in the 

presence of an external field. This structure is able to support shear stresses, 

presenting large field dependent viscoelastic moduli and a yield stress
1-3

. Up to 

now, most of the studies reported in the literature deal mainly with spherical 

particles and a wide range of synthesis routes exist to prepare them within the 

ideal size range of 100 
� −  10 µ� diameter
4
. Increasing the size of the 

particles typically increases the MR response but the particles tend to settle 

rapidly. Smaller particles settle more slowly but Brownian motion hinders 

magnetic field induced structuration, eventually resulting in a 

superparamagnetic colloidal ferrofluid when particle size approaches 10 
�5
. 

 

Many attempts have been made in the past to improve the MR response in the 

mesoscale particle size, especially by addition of thickeners and stabilisers that 

may promote stronger and more kinetically stable structures
6-8

, and by 

incorporation of magnetic additives that may form physical networks and/or 

bridge the gaps between particles increasing the magnetic permeability of the 

composites
9-11

. Since the magnetic particles dispersed in a conventional MR 

fluid come into close contact under the application of magnetic fields, particle 

shape is reasonably expected to determine the field induced structure at rest 

and also the aggregates break-up, friction and dissipation mechanisms under 

shear. Furthermore, a greater induced magnetic moment is expected for non-

spherical particles due to their smaller demagnetization factor in their long 

direction.  
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The effect of particle shape on the rheological performance of field-responsive 

fluids has been explored in the past. Kanu and Shaw (1996, 1998) investigated 

the effect of particle shape in electrorheological (ER) fluids in an attempt to 

improve the rheological properties of the fluid
12,13

. They showed that by using 

poly(p-phenylene-2,6-benzobisthiazole) rod-like particles it is possible to 

enhance the dielectric interaction between the particles as well as their 

mechanical strength. Qi and Wen (2002) presented experimental results on the 

effect of particle shape on dried and water activated ER fluids under both DC 

and AC fields
14

. Their results for water-activated fluids were explained in terms 

of surface effects; a lower ER effect was observed for anisotropic particles in 

contrast to the findings by Kanu and Shaw. Satoh (2001) and Watanabe et al. 

(2006) computed the rheological properties and the orientational distributions 

of particles of a highly dilute colloidal dispersion composed of ferromagnetic 

spherocylinders under a simple shear flow
15,16

. Chin et al. (2001) added Co-γ-

Fe2O3 and CrO2 magnetic needle-like particles to the formulation of 

conventional MR fluids, which provided improved stability against rapid 

sedimentation
7
. Furthermore, additive-containing MR suspensions exhibited a 

larger yield stress, especially at the largest magnetic fields investigated 

(0.64 ��â). By addition of titanate wiskers in electric field responsive fluids, Yin 

and Zhao (2006) observed a yield stress increase of two orders of magnitude
17

. 

Tsuda et al. (2007) studied the yield stress versus electric field dependence for 

spheres and whisker suspensions
18

. For the later, the yield stress was clearly 

larger. The slope of the yield stress versus electric field curve decreased from 2 

to 1.3 from spheres to whiskers. Yin et al. (2008) prepared a nano-fibrous 

polyaniline electrorheological fluid by means of a modified oxidative 

polymerization in acid aqueous solution
19

. The resulting fluid possessed 

significantly improved stability and stronger ER effect compared to spherical 
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polyaniline ER fluids. López-López et al. (2009) used polyol techniques to 

prepare 60 µ� long cobalt microfibers. Steady shear flow tests suggested an 

enhanced field induced effect for suspensions of magnetic fibers
20

.  

 

A generalised problem that arises from previous works on non-spherical 

magnetic particles is the difficulty to ascertain the effect of particle shape in 

isolation from other parameters. This difficulty arises because preparation 

routes normally differ for each material under study, which results in very broad 

size distributions and in magnetic particles with different chemical composition 

and hence magnetic characteristics. In many cases the typical particle size also 

changes, making it even more difficult to interpret the results because the effect 

of particle size is not well understood either
21

. 

 

Recently, some studies have appeared regarding well defined non-spherical 

magnetic particles in the mesoscale range, in particular for micro-wires and 

micro-rods
22,23

. Bell et al. (2008) used template-based electrodeposition using 

anodized alumina membranes to fabricate iron microwires with a diameter of 260 
� and lengths of 5.4 µ� and 7.6 µ�. By precipitation and magnetic field-

induced self assembly under constant uniaxial fields, de Vicente et al. (2009) 

prepared magnetite rod-like particles with average diameter and length of 560 
� and 6.9 µ� respectively. These works showed that MR performance is 

significantly improved for elongated magnetic particles under small-amplitude 

shear and simple steady shear flows, hence suggesting that particle shape 

strongly affects the structuration under an external field.  

 

To the best our knowledge, a study on the effect of particle shape in MR 

performance, a study in which only shape changes while the rest of the 
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parameters are kept practically constant, is missing in the literature. Very scarce 

and ill-connected information exists in the literature and is mostly concerning 

sphere, rod, wires and fiber-like magnetic particles. As far as we know, magnetic 

plate-like particles based MR fluids have never been prepared nor investigated 

yet from a rheological perspective. The preparation of one- two- and three-

dimensional microparticles of the same magnetic material, having well defined 

rod-like, plate-like and sphere-like morphologies may be helpful, from a 

fundamental and practical point of view, for the design of advanced MR fluids 

with a better performance.  

 

In this work we describe a simple procedure to prepare micron-sized spheres, 

plates and rods of the same material and hence very similar intrinsic magnetic 

responses. The material chosen is iron mainly because iron-based MR fluids are 

extensively studied in MR technology
24

 and a very large MR response is 

observed due to its large low-field magnetic permeability and saturation 

magnetization compared to ferrites
23

 and cobalt-based
20

 MR fluids
25

. 

Furthermore, the chemistry of pure iron and that of iron oxides are both very 

well known and many methods exist for iron particle functionalization and 

surface treatment
26

.  

 

This manuscript is structured as follows: firstly we describe the experimental 

section, which includes the synthesis of iron microparticles -having spherical, 

plate-like and rod-like shape-, the preparation of MR fluids including these 

particles, the rheological essays carried out for their mechanical 

characterization, and finally their magnetic properties. Next we show 

preliminary results of finite element method calculations of model magnetic 

structures with non spherical shape. In the following section we report on the 
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characterization of the particles and the mechanical study of the suspensions 

prepared. Results of small-amplitude oscillatory and simple steady shear flow 

tests, together with yield stress measurements, are presented. 

 

II. EXPERIMENTAL 

A. Synthesis and characterization of colloidal sphere-, plate- and rod-like 

magnetic particles 

 

A.1. Magnetite and hematite precursors 

 

Magnetite spheres and rods were fabricated following a procedure previously 

described in the literature
23,27

. The chemistry involved in the fabrication of both 

types of particles is the same
28

, and relies in the precipitation of Fe(OH)2 upon 

the mixing of FeSO4·7H2O (reagent grade, Sigma-Aldrich, Germany) with KOH 

(chemically pure, Panreac, Spain) in aqueous solution, and in the curing of that 

precipitate at á¨ ℃ in the presence of KNO3 (reagent grade, Scharlau, Spain). 

The concentrations of reactants were adjusted to produce ¨. ¨ÜÛ �Ú½ãä of 

Fe(OH)2 per liter of the mixture, an excess concentration of Fe
2+

(aq) of ¨. ¨¨Û � 

and a concentration of KNO3 of ¨. Ü¨ �. Rod-like particles were obtained by 

curing the reactants in the presence of a DC magnetic field of approximately Ý¨¨ ��, whereas the absence of this field during the curing process resulted in 

spherical particles. After the curing process, the black magnetic precipitate 

obtained in both cases was washed with doubly-distilled water. A permanent 

magnet was used to keep the precipitate while the supernatant was discarded. 

The particles were finally stored in ethanol. 

Hematite plates were prepared according to the process described by Sugimoto 

and coworkers
29

. Basically, equal volumes of solutions of FeCl3·6H2O (2 �) 
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(Extra pure, Scharlau, Spain) and NaOH (8 �) (analysis grade, Panreac, Spain), 

were mixed and stirred with a magnet for 10 minutes. A volume of 12 �» of 

that mixture was then placed in a teflon-lined autoclave with a total capacity of 

approximately 24 �». The autoclave was placed in an oven that had been 

previously heated to 180 ℃ , and the mixture was maintained at that 

temperature for 2 hours. After that time the autoclave was left to cool at 

ambient temperature. The resulting suspension had a reddish color. Particles 

were washed by allowing them to settle and pippeting the supernatant. This 

process was repeated 4 times, and particles were finally stored in ethanol. 

Powder samples of the magnetite and hematite precursors were obtained by 

drying at 40 ℃ aliquots of the corresponding suspensions in ethanol.  

 

A.2. Iron particles 

 

The sphere, plate and rod-like precursors were then reduced to metal iron by 

exposing them to a hydrogen atmosphere under optimum conditions of 

temperature, time and hydrogen
30,31

. First the sample was heated at Ý¨¨ ℃ 

during two hours under nitrogen flow to eliminate any water. Then, reduction of 

the iron oxide particles was carried out at Ý¨¨ ℃ during Ý hours under a 

hydrogen flow of Ý¨ åæ(§. Once the sample had cooled, nitrogen gas wetted 

with ethanol was passed through the sample for Û hours in order to passivate 

the surface. Stable iron particles coated with an oxide layer were finally 

obtained without the addition of any extra element. 

 

 

 

 



129 
 

A.3. Particle characterization 

 

Electron microscopy was used to study the morphology, size and size 

distribution of both the precursors and the final iron particles. Samples were 

prepared by drying droplets of the suspensions in ethanol on top of a glass slide, 

and coating the resulting powder with a thin (ca. 20 
�) graphite coating. 

These samples were examined in a LEO Gemini 1530 field emission scanning 

electron microscope in a secondary electron (SE) mode. 

 

The phases present in the samples were identified by powder X-ray diffraction 

(XRD) measurements using a Philips 1710 diffractometer and the Cu Kα 

radiation. X-ray patterns were collected between 2θ =  5 ° and 2θ =  70 °.  

 

The magnetic characterization of the powders was carried out in a vibrating 

sample magnetometer (MLVSM9 MagLab 9T, Oxford Instruments). Coercive 

field and saturation magnetization values were obtained from the hysteresis 

loops recorded at room temperature. Saturation magnetization values were 

evaluated by extrapolating to infinite magnetic field the experimental results 

obtained in the high field range where the magnetization linearly decreases with 

H1 . 

 

B. Preparation of MR fluids 

 

The preparation of the suspensions consisted of the following steps: (i) the 

magnetic powder (iron or magnetite with the appropriate particle morphology) 

and silicone oil (Sigma-Aldrich, 20 �%& ·  ) were mixed in a polyethylene 

container; (ii) the mixture was stirred first by hand, and then in an ultrasonic 
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bath; (iii) step (ii) was repeated several times, and finally, the sample was 

immersed in a Branson sonifier (model 450) to ensure the required final 

homogeneity. The gradual homogenization of the samples was confirmed by the 

disappearance of the aggregates initially observed in the container bottom.   

 

C. Magnetorheological characterization 

 

Dynamic oscillatory properties of the MR-fluids were measured at 25 ℃using a 

parallel-plate configuration in a MCR 501 Anton Paar magneto-rheometer. The 

diameter of the plates was 20 �� and the plate separation was fixed at 300 µ�. A DC magnetic field was applied normal to the velocity gradient and 

vorticity vectors. Firstly, the viscoelastic linear region was determined. Storage 

and loss moduli were measured as a function of strain at a frequency f  =  1 Ts, in the presence of a magnetic field. Then, magnetosweeps were 

carried out at a strain amplitude 0γ  =  0.003 % (well within the viscoelastic 

linear region in all cases) and a frequency f  =  1 Ts . The experimental 

procedure can be summarized as follows: (i) precondition at a constant shear 

rate γ&  =  200  () during 30 seconds, (ii) the suspension was left to equilibrate 

for 1 minute with the magnetorheometer’s magnetic field off, (iii) constant 

dynamic-mechanical shear conditions were preset (both frequency and 

amplitude are kept constant) and the magnetic field was gradually increased 

from 185 �/� to 884 ��/� (logarithmically increased at a rate of 10 points 

per decade). In all cases experiments were repeated at least three times with 

fresh new samples.  

 

Steady shear flow tests were carried out at 25 ℃ using the same measuring 

device mentioned above. The experimental procedure is summarized as follows: 
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(i) precondition at a constant shear rate γ&  =  200  () during 30 seconds, (ii) 

the suspension was left to equilibrate for 1 minute in the presence of a 

magnetic field, (iii) shear stress was logarithmically increased from 0.1 %& at a 

rate of 10 points per decade, (iv) finally shear stress was decreased from the 

maximum value to zero in order to ascertain any thixotropic behavior. Again, 

experiments were repeated at least three times with fresh new samples. The 

yield stress in the MR fluids was determined using two different approaches. 

The first one consists in the determination of the so-called static yield stress as 

the stress corresponding to the onset of flow in double logarithmic 

representations of stress versus shear. A second method to determine the yield 

stress is to fit the Bingham plastic equation to a rheogram in lin-lin 

representation. The latter procedure results in the so-called Bingham yield 

stress. Even though there are other more appropriate methods to measure the 

yield stress, these two approaches are frequently used in the MR 

literature
32,50,20.

  

 

D. Magnetic properties of the MR fluids 

 

The effect of particle shape in the magnetic hysteresis curves of the suspensions 

was ascertained using a Quantum Design (San Diego, CA) MPMS-XL 5.0 Tesla 

magnetometer. The initial magnetization of the sample was measured from H  =  0  to H  =  4000 ��/� . The external magnetic field was subsequently 

swept from +4000  to −4000 ��/�  and then back to +4000 ��/� . 

Measurements were carried out at room temperature. 
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FIG. 1 Schematic representation of the axisymmetric problem solved using FEMM. The 

computational area is outlined with a dashed line. The magnetic character of the particles 

was introduced with a ( )HBB =  relationship given by the Fröhlich-Kennelly equation34, 

with relative initial magnetic permeability of 40 and saturation magnetization of 1550 ��/�. The density of iron is assumed to be ~ 7.8 �/���. 

 

III. FINITE ELEMENT METHOD CALCULATIONS 

 

The Finite Element Method Magnetics (FEMM) software [D. C. Meeker, Finite 

Element Method Magnetics, Version 4.2 (15 Jul 2009 Build), 

http://www.femm.info] was employed to calculate the magnetostatic force 

acting on a given microparticle as a function of interparticle gap distance, both 

for spheres and rod-like particles, and for various field strengths. No calculations 

were carried out for the plates because in the case of three-dimensional 

problems the software is limited to axial symmetry. A general configuration 

solved using FEMM consisted of an infinite chain of particles exposed to a 

uniform magnetic field. Particle geometry was chosen to resemble our iron 

particles: we considered chains of spheres of 0.7 µ� of diameter and chains of 

spherocylinders of the same diameter and an aspect ratio of 8 (cf Section IV.A). 

z 

ρρρρ    

Periodic B.C. 

Antiperiodic B.C. 

H = Ho z 
Magnetic 

Sphere 

Non magnetic medium 

z = h 

ρ = W 
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The magnetic character of the particles was introduced with a ( )HBB =  

relationship given by the Frölich-Kennelly equation
34

, with relative initial 

magnetic permeability of 40 and saturation magnetization of 1550 ��/� (see 

Section IV.C.1). This Frölich-Kennelly equation was multipled by factor of 0.47 to 

correct for particle porosity. 

 

The problem solved using FEMM is graphically depicted in Figure 1 for the case 

of the spherical particles. The infinite chain was created by applying periodic 

boundary conditions on the top boundary and antiperiodic boundary conditions 

in the bottom boundary of the computational region, which is depicted with a 

dashed line. Because of the axial symmetry of the problem, the computational 

region is a cylinder with a radius W  and a height h . A uniform field 0H  along 

the z  axis was imposed by fixing its value on the outer surface ( W=ρ ) and 

moving this surface far enough from the particle, i.e. moving it to a point from 

which any further removal of this surface has no effect on the calculated fields 

near the particle.    

 

The force acting on a given particle due to the particles above was calculated by 

integrating the magnetic field strength due to the particles, 0HH − , on the top 

plane of the computational region
36

.  

 

 
[ ]∫ −= =

W

ohz
o dHHF

0
2)(

2
ρπρρµ

 

 

(1) 

 

 

where 0µ  is the magnetic permeability of free space. 
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Eq. (1) follows from the calculation of the force using the Maxwell stress tensor 

(�) for the field due to the particles ( 0HH − ). The total force acting on a 

particle would be given by the evaluation of � · � over any surface that encloses 

the particle, where � is the normal to that surface
5
.  

 

 

 

FIG. 2 SEM photographs corresponding to A) magnetite spheres, B) hematite plates, C) 

magnetite rods, D) iron spheres, E) iron plates, and F) iron rods. 

 

If � · � is evaluated over the surface of a cylinder that totally surrounds the 

particle, the contribution of the lateral surface of the cylinder would vanish 

because of the axial symmetry of the problem, whereas the contribution of the 

top and bottom planes would cancel each other because the net force acting on 

the particle is zero. The contribution of the top plane could be considered the 

force due to the particles above the particle of interest. 
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IV. RESULTS AND DISCUSSION 

A. Particle characterization 

 

In Figure 2 we show SEM photographs corresponding to the three types of 

particles obtained before (A-C) and after (D-E) reduction. As can be observed, 

particle shape is preserved even though irregularities appear on the surface due 

to the porosity induced by the reduction process. This porosity must result from 

the loss of oxygen from the lattice of the iron oxides and the associated change 

of density, which increases from that of the iron oxides (ca. Û ­/ç�ß) to that of 

metallic iron (è. Ô ­/ç�ß). Furthermore, the histograms shown in Figure 3 

reveal that the average sizes and the size distributions are also preserved during 

the reduction of the iron oxide particles. Interestingly, in all cases the typical 

particle size is of the order of a micrometer, and hence large enough for MR 

applications. In particular, since the magnetic dipolar moment in the particles 

grows with the cube of their radius and thermal Brownian motion is negligible 

for this range of sizes, strong magnetically-induced structures are expected. 

 

The effect of the porosity of the iron particles on the mechanical properties of 

the final MR dispersions is not well understood and is beyond the scope of this 

article, but it should be noted that this porosity affects equally the three 

morphologies that we studied. Concretely, taking Û. ÜÛ ­/ç�ßand Û. §è ­/ç�ß as the densities of hematite (α-Fe2O3) and magnetite (Fe3O4) respectively, 

it can be seen that the volumetric iron content is nearly the same: ÞÛ. Ô × §¨(ß �Ú½/ç�ß for hematite and Þè ×  §¨(ß �Ú½/ç�ß for magnetite. Since 

the volume of the particles was preserved after their complete reduction to 

iron, it follows that the porosity of the iron particles is almost the same 

independently of whether the precursor was magnetite or hematite. The 
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density of our iron particles can then be estimated to be in the vicinity of 

ß. è ­/ç�ß, which implies a porosity (volume of voids divided by volume of 

particle) of approximately ¨. Ûß.   
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 FIG. 3 Histograms corresponding to spheres, plates and rods. The solid lines represent a 

log-normal fit where the mean diameters of the magnetite and the iron particles are 

found to be 631 ±  10 
� and 658 ±  10 
� respectively. N stands for the number of 

particles used for the statistical analysis. 
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FIG. 4 X-ray diffraction spectra of the metal iron particles. Characteristic peaks for pure 

iron are observed for the three different particles. Lattice planes of iron are indicated in () 

brackets. 

 

It should also be noted that in this work the concentration of the colloidal 

suspensions is given in terms of volumetric percentage of solid (iron) content. 

When suspensions were prepared, the mass of the solid phase was measured 

and the density of metallic iron was then used to calculate the volume of that 

phase. 

 

X-Ray results are shown in Figure 4. As observed, the reduction process 

promotes the formation of iron particles. Minor peaks corresponding to iron 

oxides at around ßÛ ° were not observed, in contrast to smaller iron particles 
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prepared by a similar route or by electrodeposition
22

. These results suggest that 

particles are truly passivated by a very thin surface oxide layer that is negligible 

in comparison to the metal iron core. In all cases the crystallite size was much 

smaller than the size of the particle as an indication of the polycrystalline 

character of the particles. 

 

Magnetic measurements at low temperature (Figure 5a) after cooling in the 

presence of a magnetic field show no hysteresis shift. Therefore, exchange 

anisotropy coming from the core-shell (metal/oxide) type structure was not 

observed, further supporting the presence of a very thin oxide surface layer.  

 

Magnetic properties of the particles at room temperature were also 

ascertained. In Figure 5b we show the hysteresis cycles corresponding to the 

three systems investigated. As observed, a typical sigmoidal M  versus H  

dependence is found, which is characteristic of multidomain magnetic particles. 

Low values of �®/�ä (remnant magnetization over saturation magnetization) 

are typical of highly interacting systems and multidomain particles where 

magnetization rotation takes place by wall motion.  A summary of the most 

important magnetic magnitudes extracted from Figure 5b is shown in Table I. 

Usually, saturation magnetization and permeability decreases when increasing 

the oxidation degree of the particle
33

. In this case, since X-ray analysis and low 

temperature magnetic measurements suggest that the oxide layer is negligible; 

other sources are required to explain such data.  
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FIG. 5 a) Magnetisation curves after Zero Field Cooled and Field Cooled corresponding to 

rod-like particles (§á. ß �­). Temperature: Û é. Magnetic field: Û �. b) Magnetic 

hysteresis curve for iron spheres, plates and rods. 



142 
 

It is well known that particle size strongly affects the coercive field but a 

reduction in saturation magnetization has only been observed for nanometer 

size particles
38

. Such decrease in �ä can be explained by the presence of non 

magnetic impurities resulting from the synthesis. It should be noted that we 

employed magnetic separation during the washing process of the magnetite 

particles but not during the washing of the hematite particles. Finally, since the 

formation mechanism is different in the case of plates, structural defects may 

be present in this sample giving rise to a lower saturation magnetization.  

 

TABLE I. Magnetic properties of synthesized iron particles. Assuming an iron density of 

è. Ô ­/ç�ß, the averaged best fit curve to Fröhlich-Kennelly equation provides an initial 

relative magnetic permeability of Ý¨ and saturation magnetization of §. ÛÛ¨ �Õ/�. 

 

 Spheres Plates Rods 

Saturation magnetization (emu/g) Ü¨Û §Ôß §áß 

Coercive field (Oe) ÜÝ¨ §Ü¨ ßÜÛ 

Remnant magnetization (emu/g) §Þ. Ô §¨. Û ÜÜ. Û 

 

 

Coercive field changes from one sample to the other. Assuming that shape 

anisotropy is the driving mechanism for coercivity, particles having smaller 

demagnetization factor in the longest direction should present larger 

coercivities. According to this, the expected order for coercitivity is rod > plate > 

sphere. However, plates present the smallest coercivities, which may further 

indicate that magnetization inversion occurs by domain wall motion and that 

differences in the coercivity exhibited by the different samples may result from 

small differences in the microstructure of the samples, or in the case of the 
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plates from the presence of non magnetic material coexisting with magnetic 

material. Magnetic interactions are also expected to affect the magnetic 

behavior of the particles, mainly the remnant magnetization and coercivity 

values. Those interactions are expected to be stronger for the anisometric 

particles. 

 

To sum up, by means of the fabrication of the three types of iron-oxide particles 

and their subsequent reduction to iron, we obtained a set of particles of the 

same chemical composition (metallic iron), comparable typical size (∼ § µ�), 

almost identical porosity and surface roughness, and very similar magnetic 

properties, so that the only relevant difference between them was their 

morphology. 

 

B. Small-amplitude oscillatory shear magnetorheology 

 

Viscoelastic moduli are probably the most important rheological material 

functions of MR fluids. From a fundamental point of view, they provide 

quantitative information about the magnetically induced structures in a wide 

range of time and frequency domains. From a practical point of view, many 

promising applications of MR fluids, as is the case of mechanical dampers, 

involve operation in dynamic conditions and thus oscillatory perturbations. As a 

consequence, the first tests to be described here concern small-amplitude 

oscillatory shearing. 

 

Furthermore, MR response is well known to depend on a variety of parameters, 

the most relevant one being the magnetic field strength. Hence, we investigated 
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the magnetic field dependence of viscoelastic moduli for MR fluids prepared 

with particles having different shape. 

 

It should be mentioned that all the rheological functions measured for our 

samples and reported and commented below are much smaller than those of 

typical commercial MR fluids. The reason for this is the very low (compared to 

commercial MR fluids) particle concentrations of our fluids.  

 

B.1. Magnetite and iron spherical particles 

 

Averaged small-amplitude oscillatory shear magnetosweep
39

 curves at a 

constant strain amplitude ( 0γ  =  0.003 % ) and excitation frequency ( f  =  1 Ts) are presented in Figure 6a for volume fractions of 0.5 ���%, 1 ���% 

and 5 ���% . Three regimes are typically found when performing a 

magnetosweep test
23,40

. At low fields, structures are weak and do not span 

between the plates.  
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FIG. 6 Small-amplitude oscillatory shear magnetosweep curves corresponding to sphere 

(a) and rod-based (b) MR fluids. Particles with different magnetic properties were 

investigated at three different volume fractions. Due to lack of instrumental sensitivity, 

data below 1 %& usually appeared scattered and as a consequence it is not shown in the 

figures. 

 

As a consequence, the elasticity of the sample, if it exists, is hard to be 

measured. Upon increasing the magnetic field strength, the average length of 

the structures increases and the storage modulus rises up by more than two 

orders of magnitude. At large enough magnetic fields the particles magnetically 

saturate and the storage modulus levels off. As observed, iron-based 

suspensions typically show larger storage modulus than magnetite suspensions, 

which is expected from the larger saturation magnetization of iron. 

Interestingly, for the two lowest volume fractions the storage modulus starts to 

increase at the same magnetic field regardless of the material used. Larger 
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volume fractions result in an upwards shift of the curves, which is indicative of a 

stronger viscoelastic behavior. 

 

Theoretical models available in the literature qualitatively explain the behavior 

observed. In general, a quadratic dependence with the magnetic field is 

observed at low field values ( 2' HG ∝ ). Upon increasing the magnetic field the 

particles begin to saturate at the poles hence decreasing the power law 

exponent ( HG ∝' )
41

. At very large magnetic fields particles are fully saturated 

and the storage modulus becomes constant. A quantitative agreement is hardly 

found in the literature mainly because the volume fraction dependence is not 

linear, in contrast with the predictions of simple width chain models. Typically, 

theoretical predictions overestimate experimental results at low volume 

fractions and underestimate experimental results at high volume fractions
42,23

. 

 

B.2. Magnetite and iron rod-like particles 

 

A first insight on the effect of particle shape comes from Figure 6b. Here we 

show results relative to the effect of magnetic field on storage modulus for rod-

like particle based MR fluids prepared with either magnetite or iron as bulk 

material. Curves are qualitatively similar to those shown in Figure 6a. A larger 

modulus is measured for iron based MR suspensions at 0.5 ���%. Interestingly, 

the difference between iron and magnetite particles is significantly reduced 

(compared to results presented in Section IV.B.1 above) due to shape 

anisotropy, especially at the largest volume fraction investigated. Another 

interesting feature is the fact that the sudden increase of storage modulus is 

delayed to larger fields in the case of iron-based microrods. This feature is 
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possibly due to a larger interparticle friction inhibiting the field-induced ordering 

(cf Figure 2). 

 

B.3. Sphere, plate and rod-like iron particles 

 

In Figure 7 we show magnetosweep results for spherical, plate-like and rod-like 

iron particle based MR fluids. It is clearly observed that rod-like particle based 

MR fluids are stronger than any of the other systems we investigated. However, 

for the larger concentration investigated and/or for large magnetic fields, 

negligible differences exist between the three morphologies studied. This 

finding could be explained assuming a well defined macroscopic structure 

whose microscopic detail is not relevant in the suspension mechanical behavior. 

It is also worth remarking that plate and sphere-based suspensions behave very 

similarly in small-amplitude oscillatory shear in spite of the very different 

particle shape. 

 

C. Steady shear flow magnetorheology 

 

As observed in Section IV.B, negligible differences exist in the linear viscoelastic 

rheological behavior of MR fluids containing particles of different shape at 5 ���%. As a consequence, the steady shear flow of MR fluids having a 1 ���% 

concentrations was investigated to highlight the differences. Results from a 

typical steady shear flow experiment are shown in Figure 8. The flow curves 

corresponding to plate and rod-based MR fluids are included in Figure 8a for 

two magnetic fields (17.7 and 265 ��/�). The most important differences are 

observed at the lowest fields, where rod particles develop a larger stress 

compared to plates. However, at the largest fields investigated the flow curves 
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are very similar independently of the particle shape, which is in agreement with 

results from small-amplitude oscillatory  
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FIG. 7 Magnetic field dependence of storage and loss moduli for iron spheres, plates and 

rods. a) 0.5 ���%, b) 1 ���%, and c) 5 ���%; squares, 	´; circles, 	´´; closed symbol, 

spheres; open symbol, plates; crossed symbol, rods. 
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FIG. 8 Typical ramp-up shear flow curves for plate and rod-based MR fluids at 1 ���%. a) 

rheogram, b) viscosity curve. 
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shear experiments. In the presence of strong enough magnetic fields, MR fluids 

behave as plastic materials presenting a yield stress that is manifested by the 

appearance of a plateau value at medium shear rate values (cf. Fig 8a). In Figure 

8b we show typical viscosity curves corresponding to the same plate and rod-

based MR fluids. Regardless of the magnetic field strength applied, a clear shear 

thinning is observed as a consequence of structure degradation because of the 

shearing forces. At large shear rates an occurrence of shear thickening behavior 

is found in spite of the low concentration of the samples studied. More detailed 

information on this atypical behavior is included in Table II. As observed, this 

phenomenon is only found at large enough magnetic fields. The larger the 

magnetic field, the larger the shear rate and stress associated to the increase in 

viscosity. The three types of particles investigated showed such increase in 

viscosity at large shear rates. However, it is interesting to note that this 

phenomenon was not observed in the case of smooth carbonyl iron particles 

with the same magnetic properties and similar size as the iron particles used 

here (results not shown for brevity). This may suggest that interparticle friction 

may be at the heart of this finding. Nevertheless, more experiments should be 

carried out to investigate any dependence of the critical shear rate/stress for 

the onset of shear thickening on the gap of the measuring geometry.  

 

TABLE II. Onset of the viscosity increase at high shear observed in rheograms like those 

shown in Figure 8. 

 

 Spheres Plates Rods 

 Shear 

Stress (Pa) 

Shear 

rate 
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17.7 

kA/m 

- - - - - - 

53.0 

kA/m 

26 50 - - - - 

88.4 

kA/m 

39 66 58 60 49 60 

176.8 

kA/m 

71 135 83 94 89 66 

265.3 

kA/m 

107 248 114 147 102 151 

 

A similar anomalous shear flow behavior was described by Yin et al. (2008) in 

the case of granular polyaniline particles
19

. Results were then explained in terms 

of an insufficient time for the broken fibrillated structures to reform by the 

external field at high shear, hence the hydrodynamic forces dominating the 

flow. In Figure 8a we show the results of the fitting to the Bingham equation 

below and above the critical shear rate, even though only the former will be 

considered in the following analysis. 

 

C.1. Scaling behavior with the Mason number 

 

Under a steady shear flow, typical dominant contributions acting on a 

conventional MR fluid are only magnetostatic and hydrodynamic forces. These 

two interactions are typically grouped in the so called Mason number, which 

can be defined as: 
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22
0

8

H
Mn

sr

c

βµµ
γη &

=  

 

(2) 

 

 

where cη  is the viscosity of the continuous medium, γ&  is the shear rate, srµ  is 

the relative magnetic permeability of the suspending medium, 

( ) ( )srpsrp µµµµβ 2+−=  is the magnetic contrast factor, pµ  is the relative 

magnetic permeability of the particles, and H  is the magnetic field strength in 

the suspension. This definition comes from the balance between stokesian 

hydrodynamic and dipolar magnetostatic forces acting on a particle, and agrees 

with other definitions given in previous works within a numerical coefficient
43-46

. 

At low Mn , magnetic forces are dominant and gap-spanning structures exist 

between confining surfaces. On the contrary, at large Mn , structures are 

expected to be broken because hydrodynamic forces overcome magnetostatic 

forces. Since the particle volume fraction investigated here was very low (φ  

=  0.01), the internal magnetic field could be assumed to be simply the applied 

external magnetic field. As a consequence srµ  and β  were easily calculated 

from a Fröhlich-Kennelly equation
34

 for the M  versus H  dependence for the 

particles. From the fit to this equation, the relative initial permeability of the 

solid phase is found to be 40 and their saturation magnetization 1550 ��/� 

(assuming the density of iron is ca. 7.8 �/���). Results for srµ  and β  for a 

range of magnetic fields investigated are shown in Table III. 
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TABLE III. Suspension relative magnetic permeability and magnetic contrast factor 

corresponding to the three samples investigated. These values are considered in the 

calculation of the Mason number for the scaling under steady shear flow. 

 

H (kA/m) srµ  β  

17.7 1.0273 0.902 

53.0 1.0257 0.849 

88.4 1.0243 0.803 

176.8 1.0213 0.706 

265.3 1.0190 0.630 

 

 

As a first approximation, magnetic field-induced structures in a MR fluid can be 

modeled as chains with the width of a single particle. Several models exist in the 

literature for moderate shear rates (i.e. in the shear thinning region of Figure 

8b) under steady shear flow
45,47,48,32

, all of them predicting a viscosity versus 

Mason number scaling according to: 

 

 1−∞ =−
CMn

cφη
ηη

 

 

(3) 

 

 

where φ  is the particle volume fraction and ∞η  is the high shear viscosity. 

 

Rearranging in Eq. (3) for the case of small Mason numbers, assuming that η >> 

η∞, we obtain the following expression for the shear viscosity as a function of 

Mn : 
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Mn

Ccφηη ≈  

 

(4) 

 

where C  is a constant that depends on the details of the microscopic model 

considered, 82.8=C  
45

, 485.8=C  
47

, 25.5=C  
48

, and 91.1=C  
32

.  

 

In Figure 9 we show results for steady shear flow tests on sphere, plate and rod 

based MR suspensions for a wide range of magnetic fields that are mostly within 

the magnetic linear regime (cf. Figure 5). Interestingly, all curves taken at 

different magnetic field collapse, suggesting that, for a given particle volume 

fraction, magnetostatic and hydrodynamic forces dominate the problem 

whereas other forces such as interparticle friction or short ranged van der Waals 

attractions are negligible. The only exception is the rod-based MR fluids, for 

which the collapse is not as good as that observed for spheres and plates. More 

interesting is the fact that, regardless of particle shape, viscosity curves are very 

similar and do nearly collapse. This further suggests that the effect of particle 

shape is not relevant under shear flow. Bearing in mind that Eq. (4) is only 

applicable at intermediate Mason numbers, from the inspection of Figure 9 it 

seems clear that our experimental data is better explained by the model 

proposed by Volkova et al. (2000)
32

. It is well known that theoretical predictions 

overestimate experimental results in the case of both sphere-based 

conventional MR fluids
47

 and inverse ferrofluids
48

. The model by Volkova et al. 

(2000) takes into account a more refined hydrodynamic interaction than the 

usual stokesian approximation. By using a better hydrodynamic description, 

theoretical predictions are in better accordance with experiments. It is also 

important to remark here that these chain models assume that aggregates are 
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fully free to rotate and consequently viscosity should always decrease with the 

Mason number regardless of the range of Mason number considered. The 

plateau observed at low Mason number can also be theoretically predicted if 

chain-like aggregates interconnect the plates
45

. However, due to the scatter of 

our measurements at such low deformations, it is not possible to withdraw any 

further conclusion. 
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FIG. 9 Shear viscosity as a function of Mason number for a wide range of magnetic fields 

and three different particle shapes. a) spheres, b) plates and c) rods. Lines correspond to 

theoretical models at low and moderate Mason numbers: black solid line45; red dashed 

line47; green dotted line48; blue dash-dotted line32. 
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FIG. 10 Slope and intercept values for linear fits to the scaling curves shown in Figure 9 in 

the interval range between �
 =  10(ë and �
 =  10(}. Lines correspond to 

theoretical models at low and moderate Mason numbers: black solid line45; red dashed 

line47; green dotted line48 blue dash-dotted line32. 

 

A longstanding debate exists on the slope of the double logarithmic 

representation of η  versus Mn  under steady shear flow regime. 

Micromechanical models assuming single width chain aggregates do predict a -1 

slope that to the best of our knowledge has never been found experimentally. 

Most experimental data available in the literature have an absolute slope value 

smaller than 1 [de Gans et al. (1999)
48

, 9.08.0 − ; Volkova et al. (2000)
32

, 

87.074.0 − ; Felt et al. (1996)
49

 83.074.0 − ]. For completeness, we show in 

Figure 10 slopes and intercept values obtained from linear fits to the 

experimental data of Figure 9, in the range between Mn  =  10(ë and Mn  
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=  10(}. The slope approaches -1 for the largest magnetic fields investigated, in 

agreement with previous works by de Gans et al. (1999)
48

, Volkova et al. 

(2000)
32

 and Felt et al. (1996)
49

. More interestingly, it does not significantly 

change with particle shape except at low fields, where the slope for rods is 

smaller than that for the other morphologies. Intercept values also depend on 

the magnetic field. Actually, a given micromechanical model is found to fit the 

experimental data better than the other models in a particular range of 

magnetic field intensities, whereas in a different region one of the other models 

might provide the best fit. This may be at the heart of the diversity of 

explanations for the steady shear flow behavior of MR fluids. Of course, the 

model by Volkova
32

 is again the one that better agrees with experiments at 

largest fields. For fields larger than 300 ��/� , particles do magnetically 

saturate and hence a plateau is expected for large fields in Figure 10. 

 

Results obtained for ramp-down curves do behave similarly to those shown in 

this section. Slight changes are observed that may be due to the well known 

formation of shear cylindrical layers under the presence of external magnetic 

fields
37,51,52,53

.  

 

The strength of a MR fluid is undoubtedly its main characteristic since this 

property can be externally controlled by the application of magnetic fields. The 

strength is usually manifested as a frequency constant storage modulus under 

small-amplitude oscillatory shear test and also by the appearance of both a 

static and dynamic yield stress. To obtain a better understanding of this 

phenomenon, yielding behavior is now analysed in more detail below.  
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C.2. Yielding 

 

The yield stress is probably one of the most important properties envisaged for 

applications of MR fluids
54

. As can be seen in Figure 8, a yielding behavior of the 

magnetized MR fluids is clearly observed, this yielding being the result of 

structure collapse under the application of large enough shear stresses. The 

yielding is manifested by the stress plateau in Figure 8a and the ~  − 1 slope 

observed in Figure 8b. In order to quantify the strength of these structures 

under shear flow, both static and dynamic yield stresses were obtained from the 

rheograms carried out under stress-controlled conditions in the presence of 

external magnetic fields. 

 

The static yield stress is estimated here as frequently done in MR literature by 

extrapolating the shear stress versus shear rate plots in double logarithmic 

representations. Basically, the static yield stress corresponds to the value of the 

stress in the plateau in Figure 8a. The magnetic field dependence of this yield 

stress is shown in Figure 11. In all cases a power-law dependence is 

approximately found (see Table IV) in agreement with other authors for sphere 

and elongated particles
19

. A local saturation model by Ginder et al. (1996) 

predicts a power law dependence of 3/2 in the case of spheres
41

. Experimental 

data obtained here suggest a value of 1.58 ±  0.19, which is in good agreement 

with Ginder’s finite element calculations. As observed in Table IV, anisotropic 

particles result in a significantly smaller slope. Qualitatively, similar results were 

obtained for spherical and elongated polyaniline particles by Yin et al. (2008)
19

, 

and aluminum borate sphere and whisker-like particles by Tsuda et al. (2007)
18

. 

As observed, rod-like particle based MR fluids present the largest static yield 

stress regardless of the magnetic field intensity applied. However, the larger the 
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magnetic field, the smaller the difference between the yield values for different 

morphologies, in agreement with the small-amplitude oscillatory shear results 

shown in Figure 7.  
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FIG. 11 Effect of particle shape in the static yield stress of MR fluids at different magnetic 

field strengths. Lines are plotted to guide the eye. 

 

Results shown in Figure 11 can be understood after inspection of the 

magnetization curve of the suspensions. In Figure 12 we show magnetization 

versus magnetic field strength for iron-based suspensions. As observed, spheres 

do magnetize at a slower rate compared to plates and rods, both of which 

magnetize in a similar way. These findings are in good agreement with the static 

yield stress observations (for a given applied field, the larger the magnetization 

the larger the static yield stress) and can be qualitatively explained in terms of 
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the demagnetization factor associated to the different particle geometries. The 

demagnetization factor of a sphere is 0.333, whereas that associated with the 

long direction (symmetry axis) of a prolate spheroid with an aspect ratio of 8 

can be calculated to be 0.02855
. In the case of an oblate spheroid, also with an 

aspect ratio of 8, the demagnetization factor associated with any direction 

perpendicular to its symmetry axis is 0.085. It seems clear that non-spherical 

particles tend to align with their long direction parallel to the applied external 

field, and that as this field is increased they experience a larger internal field due 

to their lower demagnetization factors, which results in a faster magnetization 

process and in a stronger structuration for fields below saturation. 

 

Further insight on the yielding behavior can be obtained by using Finite Element 

Methods. Finite element calculations were carried out for infinite chains of 

particles whose size and shape was chosen to resemble those in our sphere-

based and rod-based suspensions. Calculations shown in Figure 13 suggest that 

when the chains are exposed to a uniform magnetic field, the magnetostatic 

interparticle force is larger in the case of the spherocylinders than in the case of 

the spherical particles. The calculations also show that as the uniform field 

increases and particle magnetization comes near to saturation, the force 

between spherical particles approaches that between spherocylinders. This 

behavior agrees qualitatively well with that observed for the static yield stress in 

our suspensions (see Figure 11).    
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TABLE IV. Slopes corresponding to linear fits for static and dynamic yield stresses as a 

function of the magnetic field strength from Figure 11 and Figure 14, respectively. 

 

 

 Static Dynamic 

Spheres 1.58 ± 0.19 0.84 ± 0.06 

Plates 1.07 ± 0.25 0.77 ± 0.04 

Rods 0.71 ± 0.13 0.68 ± 0.05 
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FIG. 12 Initial magnetic hysteresis curves for iron based MR suspensions at 1 ���% up to 1000 ��/�. Magnetization data are normalized by the saturation value for a comparative 

discussion. Lines are plotted to guide the eye. 
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The static yield stress suffers from important criticisms in the sense that it is not 

well defined because it strongly depends on factors such as the surface 

roughness of the plates or the formation of a wall slip layer
56

. In some cases it is 

a better option to gauge the strength of the MR fluid through the dynamic yield 

stress, which is basically the stress needed to continuously separate the 

particles against attractive magnetic forces in the low shear rate limit
3
. 
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FIG. 13. Force acting on a given particle due to particles above (or below), as a function of 

interparticle gap, for chains of spherical particles and chains of spherocylinders in a 

uniform external field. This force was calculated using the FEMM software and is 

presented for three values of the external field that correspond to data points shown in 

Figure 11. 
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FIG. 14 Dynamic yield stress as a function of magnetic field obtained by fitting the 

Bingham equation for low shear rates. Lines are plotted to guide the eye. 

 

Since the rheograms measured for iron based MR suspensions (cf. Figure 8) 

suggest the occurrence of shear thickening behavior at high shear, it would be 

possible to consider two differentiated dynamic yield stresses corresponding to 

low and large values of the shear stress. However, only extrapolations at low 

stresses were considered here. Dynamic yield stresses are plotted in Figure 14. 

They were found to be larger than their static counterparts in agreement with 

experiments by López-López et al. (2009)
20

. Again, the smallest yield stresses 

correspond to sphere-based MR fluids. More interesting is the fact that the 

slope of the dynamic yield stress versus magnetic field curves depends on 

particle shape and that values significantly lower than two are found (see Table 

IV). 
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V. CONCLUSIONS 

 

The effect of particle shape in MR performance was studied using iron-based 

MR fluids. In particular, spherical, plate-like and rod-like magnetic particles were 

investigated.  

 

A novel two-step synthesis route was developed to obtain micron-sized iron 

particles with three very different morphologies covering one- two- and three-

dimensional materials. The first step basically consisted in a wet chemical 

precipitation. This method allowed us for the fabrication of iron oxide particles 

having sphere, plate and rod shapes. Oxides obtained at this stage were later 

reduced to pure iron and surface passivated under controlled experimental 

conditions. Resulting iron particles have relative initial magnetic permeability of 40 and saturation magnetization of 1550 ��/�. These values are well within 

the largest among magnetic materials normally employed in MR technology. 

 

In a next step, MR fluids were prepared by dispersing iron particles in silicone 

oil. Rod-based MR fluids typically presented a larger storage modulus. Plates 

and spheres did show a very similar storage versus magnetic field strength 

dependence. Interestingly, at large particle concentration and/or large magnetic 

fields applied, negligible differences exist between the three morphologies 

studied under small-amplitude oscillatory shear magnetosweep tests.  

 

Steady shear flow behaviour was satisfactorily captured by the Mason number. 

A master curve was obtained in all cases for spheres, plates and rods. Only for 

the later, the collapse was slightly worse suggesting that other forces apart from 

magnetostatic and hydrodynamic ones may be present under flow. 
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Experimental results were qualitatively explained in terms of the model 

proposed by Volkova et al. (2000)
32

. The viscosity versus Mason number slope 

asymptotically approached -1 for large magnetic fields. 

 

Ramp-up stress controlled experiments were carried out to determine the yield 

stress. The stronger structures were formed by rod-like particles, and the 

weaker ones were obtained in the case of sphere-based MR fluids. Again, the 

yield stress did not significantly depend on particle shape for large magnetic 

fields applied. Yield stress observations were in good qualitative agreement with 

initial magnetization versus magnetic field strength curves for MR suspensions 

and Finite Element Method calculations. 

 

To sum up, MR fluids prepared with non-spherical particles exhibited a stronger 

structuration that was apparent in their higher storage modulus and higher yield 

stress. Such stronger structuration, however, was less noticeable for larger 

particle concentrations and for larger applied fields. Under steady flow 

conditions, i.e. once the initial structures have been broken, no relevant 

differences were observed between the morphologies that we studied. The fact 

that non-spherical particles magnetize more easily when their long axis is 

aligned with the external field accounts for the formation of stronger structures 

at fields below saturation. When particles of different morphologies experience 

the same magnetization (i.e. when they saturate), differences become smaller.  
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Abstract 

 

We report a study on the mechanical properties of magnetorheological (MR) 

fluids prepared with porous iron particles with rough surfaces. These particles 

were obtained by reducing a magnetite precursor in a H2 atmosphere at 400 
o
C. 

Small-amplitude dynamic oscillatory and steady shear flow measurements were 

carried out in the presence of external magnetic fields. Results were compared 

with those obtained for MR fluids prepared with conventional solid carbonyl 

iron particles of comparable size. We found significant differences between the 

rheology of both types of suspensions and, more importantly, we found that 

simple available models can predict quantitatively those differences as long as 

the average density of the particles is known and is used to calculate their 

effective volume magnetization and the real volume fraction of the MR fluids 

prepared with them. By doing so, we obtained for both the porous iron 

suspensions and the solid iron suspensions a single master curve of the 

dimensionless storage modulus at saturation [	′�xÉ �+��
H⁄ ] as a function of 

volume fraction (φ), and a good collapse of the viscosity versus Mason number 

curves, as well as of the yield stress versus applied field curves. Particle porosity 

is thus an important factor in MR fluids and should be considered in their design 

and modeling. Finally, the porous iron suspensions also exhibited an atypical 

thickening behaviour that was not observed in the solid iron analogues and that 

we tentatively ascribe to the rougher surface of the porous particles. 
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I. INTRODUCTION 

 

Magnetorheological (MR) fluids are typically prepared by dispersing 

magnetizable microparticles in a non-magnetic medium. In the presence of a 

magnetic field, these particles are sufficiently large for the magnetostatic 

interparticle interactions to be much greater than their thermal energy, so that 

large aggregates connecting confining surfaces appear within the suspension. 

The structure formed by the aggregates can withstand shear stresses, 

presenting field-dependent viscoelastic moduli and a yield stress.
1
 

 

We recently developed a versatile method for the preparation of micron-sized, 

iron particles with different shapes by chemical reduction of iron oxides at high 

temperature
2
. It turned out that the resulting particles presented a porosity that 

could be easily estimated, as the volume was preserved in the reduction 

process, and were therefore ideal systems to evaluate the influence of particle 

porosity in magnetorheology. Interestingly, MR fluids are usually prepared in 

the laboratory by dispersing a known mass of the solid phase in a known volume 

(or mass) of a liquid carrier. It may happen that particles have voids, i.e. that 

they are hollow 
3
 or relatively porous 

2
, which would affect particle density and 

average particle volume magnetization. If this fact remains unknown during the 

preparation of the suspensions, porosity can lead to miscalculations of the 

particle volume fraction or to an average particle volume magnetization that is 

lower than that assumed from the dry powder magnetization measurements. 

The goal of this study was to compare the main magnetorheological properties 

under shear (yielding and viscoelasticity) of porous particle-based MR fluids with 

those of MR fluids prepared with solid particles of the same material and a 
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similar size. We also wanted to verify if properly accounting for the porosity of 

the particles could quantitatively explain the differences observed.  

 

According to the physical mechanism for the field-driven structuration of MR 

fluids, it is also expected a profound effect of the particle surface roughness in 

the MR response. In fact, the effect of particle roughness and friction in the 

structuration of MR fluids was discussed by J. E. Martin and co-workers 
4
, and 

interparticle friction has been considered in some models 
5
 and simulations 

6
 

aimed to describe mechanical properties of MR fluids. However, there are few 

experimental studies dedicated to the effect of particle surface roughness. 

Recently, Son and co-workers
7
 reported an enhanced magnetic response of MR 

fluids prepared with particles of “petal like morphology”, and ascribed their 

larger magnetic response to the rugged surface of the particles and the 

concomitant interparticle friction. Because our porous particles also had a rough 

surface, another goal of this article was to determine the effect of particle 

surface roughness on the properties of the MR fluids prepared with them. 

 

II. MATERIALS AND METHODS 

A. Fabrication of porous iron particles 

 

Porous iron particles were obtained by the chemical reduction of magnetite 

particles. The fabrication of the magnetite precursor has been described 

previously 
8
 and was based on the work of Sugimoto and Matijevic

9
. The method 

relies in the mixing of FeSO4⋅7H2O and KOH in aqueous solution, which results in 

the formation of a green precipitate, and in the subsequent curing of that 

precipitate at 90 
o
C in the presence of KNO3. The resulting black precipitate is 

then washed with doubly distilled water using magnetic decantation. The final 



179 
 

wash was done with ethanol to facilitate the drying of the powder, which was 

carried out at 40 ℃ in air.  

 

The reduction of the magnetite powder to iron has also been described 

previously.
10

 The sample was first heated at 400 ℃ for 2 h under nitrogen flow 

to eliminate any adsorbed water. Then, reduction of the iron oxide particles was 

carried out at 400 ℃ for 4 h under a hydrogen flow of 40 » ℎ(). Once the 

sample had cooled, nitrogen gas wetted with ethanol was passed through the 

sample for 5 h in order to passivate the surface 
2
  

 

B. Particle characterization (SEM, particle size, magnetometry, X-ray) 

 

Electron microscopy was used to study the morphology, size, and size 

distribution of 

both the precursor and the final iron particles. Samples were prepared by drying 

droplets of the suspensions in ethanol on top of a glass slide and coating the 

resulting powder with a thin (approximately 20 
�) graphite coating. These 

samples were examined in an LEO Gemini 1530 field emission scanning electron 

microscope in a secondary electron mode.  

The phases present in the samples were identified by powder X-ray diffraction 

measurements using a Philips 1710 diffractometer and the Cu Kα radiation. X-

ray patterns were collected between 2θ =  5° and 2θ =  70°. 

 

The magnetic characterization of the dry powders and the MR fluids were 

carried out in a vibrating sample magnetometer (MLVSM9 MagLab 9T, Oxford 

Instruments) at room temperature. The applied magnetic field was swept 

between +4000 ��/�  and −4000 ��/� . Saturation magnetization values 



180 
 

were evaluated by extrapolating to infinite magnetic field the experimental 

results obtained in the high field range where the magnetization linearly 

decreases with 1/T. 

 

C. Preparation of MR fluids 

 

MR fluids were prepared with either our porous iron particles or commercial 

solid iron particles (HQ carbonyl iron, BASF).  

 

The preparation of the MR suspensions consisted of the following steps: (i) the 

appropriate mass of iron microparticles and volume of silicone oil (20 �%& ·  , 

Sigma-Aldrich) were mixed in a polyethylene container; (ii) the mixture was 

stirred first by hand, and then in an ultrasonic bath; (iii) step (ii) was repeated 

several times and, finally, the sample was immersed in a Branson sonifier 

(model 450) to ensure the required final homogeneity. The gradual 

homogenization of the samples was confirmed by the disappearance of the 

aggregates initially observed in the container bottom. 

 

For the comparison between MR fluids prepared with either porous or solid iron 

particles, we prepared suspensions with both the same concentration of 

magnetizable material, i.e. with the same mass concentration of iron, as well as 

with the same particle volume fraction. We estimated that the density of the 

porous particles was 0.47 times that of bulk iron (see Section III A below). It 

follows that for the same gravimetric content of iron, the suspensions prepared 

with the porous particles had a larger particle volume fraction (approximately 

twice as many particles) because of their lower density.  
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Table I provides a list of the mass concentrations of the MR fluids used in this 

study, and of the corresponding particle volume fraction (φ) for the porous iron 

and solid iron suspensions. The iron content was low because of two reasons: 

the relatively small yield of the synthesis processes, and the fact that we were 

mostly interested in a range of φ in which the growth of MR parameters with φ 

is expected to be linear, which would facilitate the quantitative comparison 

between the two types of particles.  

 

TABLE I. Gravimetric iron concentrations and the equivalent particle volume fractions for 

the porous iron and the solid iron suspensions used in this study. 

 

Mass concentration 

of iron (mg cm
-3

)
a 

Volume fraction (φ ) of 

solid iron particles (D = 

7.87 g cm
-3

)
a 

Volume fraction ( φ ) of 

porous iron particles (D ≈ 

3.74 g cm
-3

)
a 

39.3 0.005 0.011 

78.7 0.010 0.021 

165 0.021 - 

393 0.05 0.11 

787 0.10 - 

a
 Concentrations are given per volume of suspension. 

 

D. MR fluid characterization  

 

Dynamic oscillatory properties of the MR fluids were measured at 25 ℃ using a 

parallel-plate magneto-rheometer (MCR Anton Paar). The diameter of the plates 

was 20 �� and the plate separation was fixed at 300 µ�. The magnetic filed H 

mentioned throughout the manuscript was supplied by the magneto-rheometer 
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coils, and had been calibrated in the gap between the plates with no sample 

filling that gap. This magnetic field was applied normal to the direction of flow. 

Firstly, the linear viscoelastic region was determined. Storage and loss moduli 

were measured as a function of strain at a frequency � =  1 Ts, in the presence 

of the following magnetic fields: 0 �/�, 175 ��/�, 353 ��/�, 530 ��/�, 707 ��/� and 884 ��/�. Then, magnetosweeps were carried out at a strain 

amplitude γ+  =  0.003 %  (well within the linear viscoelastic region in all cases) 

and a frequency � =  1 Ts. The experimental procedure is summarized as 

follows: (i) precondition at a constant shear rate γ&  =  200  () during 30 s in 

the absence of any magnetic field, (ii) suspension was left to equilibrate for 1 

minute, (iii) constant dynamic-mechanical shear conditions were preset (both 

frequency and amplitude are kept constant) and the magnetic field was 

gradually increased from 175 to 884 ��/� (logarithmically increased at a rate 

of 10 points per decade). In all cases experiments were repeated at least three 

times with fresh new samples. 

 

Steady shear flow tests were carried out at 25 °Ë using the same measuring 

device mentioned above. The experimental protocol can be summarized as 

follows: (i) precondition at a constant shear rate γ&  =  200  () for 30 s in the 

absence of any magnetic field, (ii) the suspension was left to equilibrate for 1 

min in the presence of a magnetic field, and (iii) with the field still applied, shear 

stress was logarithmically increased from 0.1 Pa at a rate of 10 points per 

decade, until a relatively large shear rate (ca. 800  ()) was reached. Higher 

rates could result in sample ejection. Again, experiments were repeated at least 

three times with fresh new samples. 

 

 



 

E. Calculation of static and dynamic yield stresses 

 

The yield stress in the MR fluids was determined using two different 

approaches. The first one consists in the determination of the so

yield stress as the stress corresponding to the onset of flow in double 

logarithmic representations of stress versus shear rate. A second method to 

determine the yield stress is to fit the Bingham plastic equation to a rheogram in 

lin-lin representation. The latter procedure results in the so

yield stress. Even though there may be other more appropriate methods to 

measure the yield stress, these two approaches are frequently used in the MR 

literature.
1
 

 

III. RESUTLS AND DISCUSSION 

A. Particle size and morphology. Particle porosity 

 

 

 

FIG. 1 SEM micrographs of the two types of particles used for the preparation of the MR 

fluids. Solid carbonyl iron (A and B) and porous iron particles obtained from the reduction 

of a magnetite precursor (C and D). 
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approaches. The first one consists in the determination of the so-called static 
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logarithmic representations of stress versus shear rate. A second method to 

determine the yield stress is to fit the Bingham plastic equation to a rheogram in 
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SEM micrographs of the two types of particles used for the preparation of the MR 

carbonyl iron (A and B) and porous iron particles obtained from the reduction 
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It can be seen in micrographs A and C of Figure 1 that the two types of particles 

have a comparable size. Size distributions of the solid carbonyl iron particles can 

be found in the literature. The diameter distribution given by Bombard et al.
11

, 

which was measured by laser light scattering, peaks somewhere between 0.6 

and 0.7 µ�, whereas that reported by Hydutsky et al.
12

, obtained by measuring 

the diameter of many particles in SEM micrographs, has the maximum at 0.77 ��. The actual size distribution of the porous particles is shown in Figure 

2. The diameter (d) distribution of the porous particles can be fit to a log-normal 

distribution:  
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with parameters  '+ =  658 
� and ! = 0.219. The fitted curve shown in 

Figure 2 peaks at 628 
�.  

 

The composition of the porous particles was inferred from X-ray diffraction. All 

the peaks of the X-ray diffraction spectrum [not shown here for brevity, see de 

Vicente et al.
2
 of the powder after the reduction process are ascribed to metallic 

iron. Remarkably, none of the peaks corresponding to the spinel structure of 

magnetite were visible after the reduction process. 

 

One of the most important features of the porous iron particles is that their size 

distribution is almost identical to that measured for the magnetite precursor 
2
, 

which means that particle size was practically preserved during the reduction 
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process. This is intimately related to the porosity of the particles: the fact that a 

given particle maintains its original volume while its chemical composition 

changes from Fe3O4 to pure Fe, as stated in the previous paragraph, giving away 

all its oxygen (i.e. losing some mass) leads to the formation of voids. The 

preservation of particle size also allowed for a simple estimation of particle 

porosity as follows. The volumetric iron content of magnetite is 6.70 ×10(H ���â /���. If this iron remains in the same volume previously occupied 

by magnetite, the density of the particles after reduction will be 3.74 �/���. 

Since the density of bulk iron is 7.87 �/���, the relative volume of the porous 

particles that is occupied by metallic iron is 0.47 and thus the porosity (volume 

of voids divided by the total volume of particle) is 0.53. Both the porosity of and 

the surface roughness can be qualitatively appreciated in the micrographs B and 

D of Figure 1. It is also clear that the porous particles have a qualitatively 

rougher surface than the solid iron particles. Furthermore, the shapes of the 

particles shown in those micrographs are representative of the two types of 

particles: solid carbonyl iron particles are spherical, whereas the porous 

particles exhibit a more irregular morphology. This morphology is a 

consequence of the reduction process and of the fact that the magnetite 

precursor was mainly formed by particles in the shape of rhombic dodecahedral 

crystals 
3
 and not spheres.  
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FIG. 2 Diameter distribution of the synthesized porous iron particles. 

 

Because of their lower density, porous particles will occupy a larger volume of 

the suspension than solid particles for the same iron content. Also, the average 

volumetric magnetization of a porous particle will be smaller than that of a solid 

particle.  

 

B. Magnetization of particles and fluids 

 

The magnetization curves for the two iron powders are shown in Figure 3(A). 

Both types of particles exhibit almost identical saturation magnetization. We 

obtained values of 205 � �H ��()  and 209 � �H ��()  for the saturation 

magnetization of the solid iron and the porous iron powders respectively. The 

main difference between the magnetization curves is the fact that the 

magnetization of the solid iron increases more rapidly, reaching saturation at a 



187 
 

lower applied field. This must be the consequence of the different 

microstructure of both types of particles. Figure 3B shows the magnetization 

curves for two MR fluids prepared with the two types of particles. The iron 

content for both fluids is 78.7 ��/�». Again, the saturation magnetization is 

practically the same and the fluid prepared with the solid iron particles reaches 

saturation at lower fields. 
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FIG. 3 Mass magnetization of the dry powders (A) and suspensions with 78.7 ��/�» of 

iron (B). 
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C. Magnetorheology 

C.1. Dynamic oscillatory shear 

 

Small-amplitude oscillatory shear tests are a powerful tool to evaluate the 

viscoelastic behavior of MR fluids in the linear regime. On the one hand, the 

elastic properties are typically described by the storage modulus (	’), which is 

directly related to the strength of the structures formed in the suspensions. On 

the other hand, the viscous properties are determined by the loss modulus (	”), 

which accounts for the energy dissipation.    

 

Figure 4 shows the results of small-amplitude oscillatory shear magnetosweeps 

for suspensions prepared with either porous or solid iron, and with iron 

concentrations of 39.3 , 78.7  and 393 ��/�»  (corresponding to solid iron 

particle volume fractions of 0.005, 0.01 and 0.05 respectively.) At low iron 

concentrations (39.3 and 78.7 ��/�») 	’ starts increasing at practically the 

same field for both types of suspensions and the solid particle suspensions 

exhibit larger 	’  at saturation. This is expected, since we are comparing 

suspensions with the same mass of iron, which implies that the particle volume 

fraction of the porous iron based suspension is approximately twice that of the 

solid iron suspension ( φ porous ≈ 2 φ solid), whereas the average volumetric 

magnetization of each porous particle will be approximately half that of a solid 

particle �.`=`î� ≈ ��`¿Kw/2 . Simple micromechanical chain-like models 
13

 

predict that 	’ at intermediate fields scales as HMG somed µφ3' ≈ , while 	’ at 

saturation is 
23.0' sosat MG µφ≈ . Therefore, when �.`=`î� ≈ ��`¿Kw/2 and 

φ porous ≈ 2 φ solid one would expect 	’�`¿Kw  ≈ 	’.`=`î�  at medium fields and 	’�`¿Kw  ≈ 2	’.`=`î�  at saturation. The values of 	’ that we measured for our 
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suspensions with iron contents of 39.3 and 78.7 ��/�» are in good agreement 

with these predictions: the storage modulus for both types of suspensions are 

practically the same at intermediate fields, and the ratio 	’�`¿Kw  / 	’.`=`î� at 

saturation is equal to 1.9 and 2.1 at iron concentrations of 39.3 and 78.7 ��/�» respectively. 
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FIG. 4 Small-amplitude oscillatory shear magnetosweep curves for suspensions prepared 

with porous iron (open symbols) or solid iron (solid symbols) with the same gravimetric 

iron content. A: storage modulus (	’). B: loss modulus (	”). 

 

The curves for the suspensions with the highest iron content (393 ��/�») 

show more clearly the effect of porosity: even though the gravimetric 

concentration of iron was the same in both suspensions, the porous iron based 

suspension exhibits at low fields a larger storage modulus. More importantly, 

the field-induced structuration of this suspension starts at lower fields than for 

its solid iron counterpart, and the 	’ of the porous iron suspension at saturation 
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is about twice as large as that of the solid iron suspension. Please note that 

experiments were repeated three times with fresh samples and the curves 

shown in Figures 4 and 5 include error bars. The fact that the particle volume 

fraction of the porous iron suspension was approximately twice that of the solid 

iron suspension can account for these observations. This was also the case for 

suspensions with 39.3 and 78.7 ��/�» of iron content, but apparently at such 

small concentrations the contribution of the volume fraction to 	’ at saturation 

was closer to being linear (as predicted by micromechanical chain-like models), 

and at larger concentrations an increase faster than linear is expected because 

of the presence of thick columnar structures and/or non-affine motion of the 

aggregates.
1
 

 

The loss modulus (	”) is associated with energy dissipated under flow. Results of 

measurements of the loss modulus of our suspensions are presented in Figure 

4(B). Once the magnetic field is large enough, the loss moduli are clearly smaller 

than the storage moduli. Even though a complete understanding of the loss 

modulus in MR fluids is still missing in the literature, expected contributions to 

the viscous dissipation are the liquid carrier viscosity, and dissipation due to the 

field-induced aggregates. It is apparent that in our suspensions the latter 

dominates, since the storage moduli increase with the field, and the field 

dependence of 	” resembles that of 	’.   
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FIG. 5 Small amplitude oscillatory shear magnetosweep curves for suspensions prepared 

with porous iron (open circles) or solid iron (solid circles) with the same particle volume 

fraction (φ =  0.10). A: storage modulus. B: loss modulus. 

 

Since the dependence of 	’ on φ is hard to predict as φ grows, it seemed 

reasonable to compare suspensions with the same φ. Figure 5(A) shows 	’ as a 

function of the magnetic field for two suspensions with φ  =  0.10. Note that the 

curves for the porous particle suspension with φ =  0.10 shown in Figure 5(A) 

are the same curves shown in Figure 4 with an iron content of 393 ��/�». 

Since φ  is the same for both suspensions but ��`¿Kw  ≈ 2�.`=`î� , chain-like 

models predict that at saturation 	’�`¿Kw  ≈ 4	’.`=`î�. Note that the values we 

obtained are again in good agreement with this prediction: 125 �%&  and 516 �%&  for the porous iron suspension and the solid iron suspension 

respectively. 
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It is also noticeable in Figure 5(A) that the porous particle suspension exhibits a 

larger G’ before structuration, and that it starts the structuration at lower fields. 

We believe this may be caused by the roughness of the porous particles. Surface 

roughness can affect the MR properties either by a mere enhancement of 

mechanical friction or by facilitating the coupling of the magnetic field between 

particles. The latter would result in a more efficient magnetization of the 

particles and therefore in the formation of aggregates (structuration) at lower 

fields, as we observed. The contributions of roughness and volume fractions are 

intimately related, since roughness plays a more important role at higher 

concentrations due to the proximity among particles and to the formation of 

thicker columnar aggregates.  

 

Once again, it can be seen in Figure 5(B) that at large enough fields the storage 

moduli of the two suspensions is larger than the loss moduli, and that 

dissipation associated with the field-induced structuration is the dominating 

contribution.  

 

The fact that chain-like micromechanical models predict correctly the ratio 

between the two storage moduli of the two types of suspensions at saturation 

as long as their particle volume fraction is matched suggests that 	’�xÉ is truly 

proportional to ��
H. Further insight on the dependence of 	’�xÉ on φ can be 

obtained by plotting 	’�xÉ t and 	’�xÉ /�+��
H1⁄  versus φ  (see Figure 6). A 

reasonably good collapse of the curves corresponding to the two types of 

suspensions was obtained when 	’�xÉ  was divided by �+��
H. The saturation 

magnetization was calculated by multiplying the gravimetric saturation 

magnetization measured for the dried powders (Figure 3(A)) by the density of 

the particles: 7.87  and 3.74 �/��� for the solid and the porous particle 



193 
 

respectively. The quality of the collapse further supports our estimations for the 

density of the porous particle being half the density of iron and for their 

volumetric magnetization being also half that of iron. It also confirms that 	’�xÉ 

is proportional to ��
H and, more importantly, that for both types of particles 

	’�xÉ depends in the same fashion on φ in the range of φ of our measurements 

(0.005 < φ < 0.10). By visual inspection of the bottom graph of Figure 6, we can 

conclude that the increase of 	’�xÉ with φ is only linear at the smallest volume 

fractions investigated, whereas for φ > 0.02 the growth of 	’�xÉ is significantly 

faster than ∼ φ , as was observed in the data presented in Figure 4. 
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FIG. 6 Storage modulus at saturation, 	’�xÉ, (A) and scaled storage modulus at saturation, 	’�xÉ /�+��H1⁄ , (B) as a function of volume fraction for both types of particles. Solid circles: 

solid iron. Open circles: porous iron. Lines in A are a guide to the eye. 
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C.2. Steady shear 

 

In the steady shear flow tests the MR suspension is first left to structure in the 

presence of a constant magnetic field and an increasing shear stress is applied 

subsequently while the field is maintained on. This stress eventually leads to the 

rupture of the structures and to the onset on flow, therefore providing 

information about both the strength of the field-induced structures as well as 

the flow properties of the suspension. The magnetic fields at which the shear 

flow tests were carried out were chosen in the 20 –  300 ��/� range. We were 

especially interested in probing this region because it was where most of the 

field-induced change of the viscoelastic moduli had been observed.  

 

Shear stress versus shear rate curves obtained from the steady shear tests were 

first used to obtain the static and the dynamic yield stresses. Both parameters 

give an idea on the strength of the field-induced structures in the suspensions. 

The static yield stress can be understood as the stress needed to start the flow 

of the suspension, whereas the dynamic yield stress is the stress needed to 

continuously separate the particles against attractive magnetic forces 
14

. The 

former was obtained from the plateau observed in the double logarithmic 

representation of the shear stress vs. shear rate curves, whereas the second was 

estimated by fitting a Bingham plastic equation to the lin-lin representation of 

the same curves 
2
. All values of the dynamic yield stress presented in Table II 

and in Figure 7 where obtained from fits in a range of shear rate between 5 and 50  (). The values obtained for the static and the dynamic yield stresses for 

suspensions with the same iron content (78.7 ��/�») are summarized in Table 

II.  
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TABLE II. Values of the static yield stress and the dynamic yield stress obtained from the 

ramp-up shear flow rheograms for both the porous particle and the solid particle based 

suspensions. 

 

 Static Yield Stress (Pa)  Dynamic Yield Stress (Pa) 

H (kA/m) Solid Iron
a 

Porous Iron
a 

 Solid Iron
a 

Porous Iron
a 

17.7 0.5 0.2  2.5±0.2 1.5±0.3 

53.0 4.0 2.0  9.8±0.6 4.4±0.2 

88.4 10.5 4.0  18.6±0.2 6.9±0.2 

176.8 20.0 7.9  36±1 12.1±0.5 

265.3 31.6 12.0  60±3 16.4±0.5 

a 
Iron content in both types of suspensions was 78.7 ��/�». 

 

The field dependence of the yield stresses is shown in Figure 7(A) and 7(B). The 

curves for the two different types of particles have very similar slopes, although 

some trends are observed: slopes for static yield stresses are in general larger 

than those for the dynamic yield stresses, and slopes for the φ  =  0.021 solid 

iron suspensions are also larger than those for the other two suspensions.  In 

the case of intermediate fields, local saturation models predict a yield stress 

that scales as 
2321

0 HM soµφτ ≈  
13,14

 eventually becoming field strength-

independent at saturation. As expected, experimental data shown in Figure 7(A) 

and 7(B) follow the 3/2 prediction in the field range investigated. It can be seen 

both in Table II and in Figure 7 that for an iron concentration of 78.7 ��/�», 

the solid iron suspension exhibits a stronger structuration despite its lower 

particle content. This is the result of the larger volumetric magnetization of the 

solid particles, and is in agreement with the results of the small-amplitude 
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oscillatory shear tests reported in the previous section for the same gravimetric 

iron concentration. We show in Figure 7(C) and 7(D) the result of scaling the 

yield stresses with respect to φ  and �+�.
H/T1 , the latter term being 

proportional to typical interparticle magnetostatic forces of the system. In this 

expression �. is the average particle magnetization. �. can be obtained from 

magnetization measurements of dry powder samples, or by measuring the 

suspension magnetization at a given field and dividing it by φ. We tried both 

methods for the calculation of �. and in both cases obtained reasonably good 

collapses of the stress vs. field curves. The �. values used to generate the 

graphs shown in Figure 7(C) and 7(D) were obtained from dry powder 

magnetization curves. The collapse was significantly poorer when we divided 

the yield stress by φ�+��
)/H

, as suggested by the Ginder model for intermediate 

fields mentioned above.  
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FIG. 7 Top: Dependence of the static yield stress (A) and the dynamic yield stress (B) on 

the applied field for porous and solid iron suspensions. Note that one of the solid iron 

suspensions had the same mass concentration as the porous iron suspension (that with 

φ =  0.01), whereas the other solid iron suspension was prepared with the same particle 

volume fraction as the porous iron suspension (φ =  0.021). Bottom: scaled static (C) and 

dynamic (D) yield stresses. The range of four orders of magnitude in the y-axis has been 

preserved to facilitate the comparison with the data before scaling. 

 

Regarding the flow behaviour of our MR fluids, viscosity (-) versus shear rate (
.
γ

) curves in a log-log representation are shown in Figure 8(a) for suspensions with 

the same volume fraction of particles (φ  =  0.021) and for several field 

strengths. The viscosity of the suspensions is clearly a function of the field 
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strength and the shear rate. In general viscosities of the solid iron suspensions 

are higher for the same field and shear rate. The same data is represented as a 

function of the Mason number (�
) in Figure 8(b). A few expressions can be 

found in the literature
15,16

 for this number, which is basically the ratio between 

hydrodynamic and magnetostatic forces. We used the expression provided by 

Klingenberg et al.
17

: 
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where -f is the viscosity of the continuous medium (0.020 %&  ), φ  is the 

particle volume fraction of the suspension ( 0.021 ), �+  is the vacuum 

permeability, �f is the relative permeability of the continuous phase and � is 

the measured magnetization of the suspension. Note that �φ()
 is the average 

particle magnetization (�.) mentioned above. �. can then be calculated from 

magnetization curves of dry powder samples (Figure 3(A)) or from curves of 

suspensions like those shown in Figure 3(B). Dry powder magnetization curves 

were used to obtain the curves shown in Figure 8(b), although the quality of the 

collapse was similar when the calculation of Mn was based on the 

magnetization of suspensions. 

 

The relatively good collapse of all the -/�
1 curves for �
 > 10(ñ indicates 

that for the volume fraction that we studied, magnetostatic and hydrodynamic 

forces dominate the flow behavior. The fact that curves corresponding to both 

porous and solid particles collapse together is also interesting, and supports 

again that our estimation that the density of the porous particles was 
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approximately 0.5 that of the solid particles is reasonable. This estimation was 

necessary to prepare suspensions of the same particle volume fraction. 
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FIG. 8.  Viscosity curves for the two types of suspensions at four different field strengths. 

A: viscosity as a function of the shear rate. B: viscosity as a function of the Mason number, �
 (see Eq. 1). Suspensions had the same particle volume fraction /φ =  0.021). 
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Perhaps the most striking difference between the two types of MR fluids is the 

fact that for the suspensions prepared with porous particles there is a shear 

thickening (i.e. a flow-induced increment of the viscosity) regime. The presence 

of the shear-thickening regime is evident in the viscosity curves obtained for the 

porous particle suspension (Figure 9, bottom). Such shear thickening behaviour 

was not observed in the suspensions prepared with solid particles (Figure 9, 

top). Because the occurrence of shear thickening seems to be very ubiquitous in 

the flow of suspended solids as long as the appropriate shear rate range is 

reached 
18

, it is possible that in our experiments such rate was reached for the 

porous particle suspensions but not for the solid particle suspensions. In fact, 

Lootens et al.
19

 studied suspensions prepared with rough-surface silica particles, 

and found that roughness decreased the shear rate at which thickening 

occurred.  

 

At the heart of the current picture on shear thickening is the fact that at high 

shear hydrodynamic forces lead to the formation of hydroclusters – ‘transient 

concentration fluctuations that are driven and sustained by the applied shear 

field’ 
18

. Hydroclusters are associated with large stress fluctuations that lead to 

high dissipation rates and high shear viscosity. It happens that particles in 

hydroclusters can be at very short distances from each other - typical separation 

between particles in hydroclusters has been estimated to be in the order of 

nanometers 
18

 - which can make particles’ surfaces roughness a key factor in 

shear thickening. Hoffman 
20

 proposes a model in which particles can cluster 

and/or reach physical contact, so that ‘lubrication forces and frictional forces 

are most likely involved in the shear thickening process.’ 
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FIG. 9 Viscosity (-) as a function of shear stress (ò) for suspensions prepared with solid 

particles (A) and porous iron particles (B). Particle volume fraction was the same 

(φ =  0.021) for both types of suspensions. 

 

Figure 10 shows the critical shear stresses, i.e. the shear stress at which 

thickening starts, and the stress at which thinning is resumed as a function of 

applied field. The thickening regime started at a higher stress as the field 
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intensity was increased. Brown et al.
21

 have shown that this is a general 

behaviour in suspensions in which the source of a yield stress can be controlled, 

such as magnetorheological fluids and suspensions of hard spheres at high 

concentrations. As the source of the yield stress is manipulated and the yield 

stress increases, the critical yield stress also increases. If the yield stress is 

increased above a given threshold, it could mask completely the thickening 

region.  

 

For our porous iron suspension the stress that marks the end of the shear 

thickening behaviour increases with the applied field, whereas for the 

suspensions presented by Brown et al. 
21

 that stress remains constant. However, 

we have only four data points in the curves of Figure 10 and more points are 

needed to draw conclusions on a definite trend. 

 

It is also interesting that our suspension exhibited shear thickening at a particle 

volume concentration of 0.021. In general, shear thickening also occurs in dilute 

suspensions
22

 but is hard to observe, and in fact most of the reported data that 

we have found has been taken on suspensions with much larger concentrations 

18,23
. We have only come across two reports on shear thickening on MR fluids, 

and the particle volume fractions were 0.20 
21

 and 0.25 
24
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FIG. 10 Shear stresses that mark the onset of flow (static yield stress), the onset of shear 

thickening (critical stress) and the end of the shear thickening for different field strengths 

and for a porous iron suspension with a particle vol. concentration of φ =  0.021. The 

boundaries of the shear thickening region are given by the local minima and maxima of 

the curves shown in Figure 9 (bottom). 
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IV. CONCLUSIONS 

 

We carried out a comparative study between the rheology of MR fluids 

prepared with porous iron particles and that of MR fluids prepared with solid 

iron particles. 

 

We found that suspensions that have the same mass concentration of iron, that 

were prepared with particles of very similar size, and that have practically 

identical magnetization curves, may have a very different rheological behaviour. 

The reason behind that different behaviour was particle porosity. Voids within 

particles lead to a density smaller than that of the bulk material and to an 

average volume magnetization also smaller than that of the bulk material. 

Because of the lower density of the porous particles, for the same mass content 

porous particles occupy a larger volume fraction. 

 

More importantly, we have shown that porous particles can be modelled 

reasonably well if the appropriate corrections are made, i.e. if the right particle 

volume concentration and an effective volume magnetization are estimated. By 

doing this, the rheological parameters of the porous iron suspensions were 

satisfactorily related to those of the more conventional solid iron suspensions. 

Concretely, a single master curve of the dimensionless storage modulus at 

saturation [	′�xÉ//�+��H1] as a function of volume fraction (φ) was obtained 

from experimental data of the two types of particles. This also confirmed that 	′�xÉ  is proportional to ��H and that for both types of particles 	′�xÉ   depends in 

the same fashion on φ. The increase of 	′�xÉ   with φ was generally faster than 

linear even at small volume fractions. We were also able to collapse together 

the yield stress versus H curves by scaling the yield stresses with respect to φ 
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and �+�.
H , the latter term being proportional to the typical interpaticle 

magnetostatic forces of a system. Furthermore, we could account for the 

influence of particle porosity in the flow behavior of the MR fluids by using a 

Mason number that also takes into account the average particle magnetization 

(�.) at different fields
17

 for the calculation of the magnetostatic forces. This 

Mason number led to a good collapse the viscosity curves of the solid iron 

suspensions and the porous iron suspensions. 

 

Interestingly, the term (�+�H ) was involved in the scaling of the three 

rheological parameters we studied, which comfirms that magnetostatic forces 

determine to a great extent the mechanical properties of MR fluids. It was also 

interesting to verify that despite the inhomogeneous nature of the porous 

particles, the properties of MR suspensions prepared with them can be 

predicted reasonable well by assuming an average particle magnetization. 

 

Finally, we have detected an atypical thickening behaviour in relatively diluted 

porous iron suspensions (φ =  0.021) that was not observed in the solid 

counterparts and that may be caused by the rougher surface of the porous 

particles.  
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Abstract 

 

The yielding behavior of conventional magnetorheological (MR) fluids is 

revisited for a wide range of magnetic fields and particle concentrations under a 

colloidal gel perspective. A two-step yielding behavior is found at intermediate 

magnetic fields (~§¨�Õ/�) that can be explained as a transition from a strong-

link to a weak-link (or transition) regime upon increasing the particle 

concentration in the MR fluid. This two-step yielding behavior is reminiscent of 

the classical concepts of static (frictional) and dynamic (Bingham) yield stress. By 

relating macroscopic elastic properties to a scaling fractal model we could 

identify the prevalent gelation regime in MR fluids. 
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I. INTRODUCTION 

 

Magnetorheological (MR) fluids are field-responsive colloidal suspensions with 

tunable rheological properties. The presence of an external magnetic field 

induces string-like particulate structures in the direction of the field. This 

microstructure greatly affects the bulk rheology, either increasing the shear 

viscosity (at low volume fractions and low fields) or developing a yield stress 

accompanied by a viscoelastic behavior (at large field strength)
1-3

. Traditionally, 

the control over the rheology of MR fluids is essentially achieved by adjusting 

either the particle volume fraction or the interparticle magnetic interaction 

force.  

With no additives, magnetic particles employed in the formulation of 

conventional MR fluids are rather strongly attractive (even in the absence of 

external fields). Hence, similarly to other aggregating suspensions, in the 

absence of an external magnetic field the rheological properties of MR fluids 

slightly increase when increasing the volume fraction at low values, and 

abruptly increase once the concentration is larger than a critical or threshold 

volume fraction (óf) corresponding to the formation of a space-filling particle 

network (Figure 1). It has been reported in the literature that óf is basically 

independent of the external field strength, and is a characteristic parameter 

related to the suspension itself evidencing a sort of first-order phase transition 

(i.e. percolation transition)
4
. As a consequence, isolated clusters exist below óf 

while aggregated and percolated structures exist above óf, hence resulting in 

very different rheological behaviors when exploring the volume fractions below 

and above this critical concentration
4,6

.  
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Obviously, another important quantity in magnetorheology concerns the 

magnetic field strength. This is so because the interparticle magnetic interaction 

force depends on the external field
2
. On the one hand, the effect of magnetic 

field strength in MR performance below óf has been described in terms of a 

directional gelation model
6
. Initially the zero shear viscosity grows with the field 

strength up to a certain point when the loss factor becomes independent on the 

excitation frequency (the so-called gelation point). Next, at some critical value 

Tf, a yield stress appears and the storage modulus 	′ becomes higher than the 

loss modulus  	′′ (Figure 1). On the other hand, the effect of magnetic field 

strength in suspensions above óf  has been extensively documented mainly 

because most of MR fluids' applications involve volume fractions of the order of 

30 vol% and hence well above óf7,2
. The physics behind the rheological behavior 

of MR fluids operating below or above óf and/or Tf is definitely different (cf. 

Figure 1), but, surprisingly, in spite of its importance, there are very few 

systematic works, if any, where both magnetic field strength and particle 

volume fraction are varied in a wide range. On the one hand, the effect of 

magnetic field strength seems to be reasonably well understood. At small field 

strengths, the yield stress and the storage modulus are predicted to be 

essentially proportional to the magnetic field strength squared
7,8

.  

 



213 
 

 

FIG. 1 Schematics of the magnetic field strength and particle concentration dependence of 

the low shear viscosity ô¨, storage and loss moduli (à′ and à′′) and yield stress õö in 

magnetorheology. 

 

As the applied field strength increases and the magnetization begins to saturate, 

the yield stress will increase sub-quadratically with the external field strength, 

ò~ = √6ó�+��
) H⁄ T+

� H⁄ , eventually becoming field strength-independent at 

large field strengths, ò~ = 0.086ó�+��H 9,2
. Similarly, for intermediate magnetic 

field strengths, Ginder et al. (1996)
9
 predicted that 	′ = 3ó�+��T� . The 

nonquadratic dependence on the field strength arises as the particle 

magnetization begins to saturate near the poles in chainlike aggregates. At large 

field strengths where the particles’ magnetization is completely saturated, the 

storage modulus becomes independent of field strength, and is given by 	� = 0.3ó�+��H 
2
. 
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On the other hand, there is very limited number of thorough studies on the 

effect of particle concentration. Micromechanical models based on the 

fibrillation model (i.e., gap-spanning single particle-width chains) predict a yield 

stress and elastic (storage) modulus that increase linearly with the number of 

chains, that is to say, with the volume fraction
2
. This prediction has been 

experimentally confirmed in the case of diluted MR fluids at low fields were 

interchain interactions are ignored. Felt et al. (1996)
10

 claimed a linear increase 

of the dynamic (Bingham) yield stress with volume fraction in the range ¨. ¨§Ý < ø  < ¨. §Ü . Unfortunately, these authors only investigated three volume 

fractions. The dynamic yield stress was also found to increase roughly linear 

with the particle concentration in the case of electrorheological fluids in the 

range ¨. § < ø < ¨. Ü 
11

. Rankin et al. (1999)
12

 found that the dynamic yield 

stress in MR greases also has an approximately linear relation with the volume 

fraction in the range ¨. ¨Ü < ø < ¨. ÜÛ. Unfortunately, only four data were taken 

for the fitting. In general, more data points are needed to draw any further 

conclusion. In most cases, a more rapid than linear increase with volume 

fraction is observed for more concentrated conventional MR fluids that is 

thought to be associated with thick columnar structures and/or non-affine 

motion of the aggregates
2
. For example, Volkova et al. (2000)

13
 showed that 

static (frictional) and dynamic yield stresses increase faster than linear in the 

range ¨. § < ø < ¨. Ý. Also, Chin et al. (2001)
14

 found that only at low volume 

fractions ø < ¨. Ü a linear relation was found. As volume fraction increased, the 

dynamic yield stress increased faster than linear. A faster than linear increase of 

the dynamic yield stress has been also measured in ER fluids
15

. 

 

More exotic behaviors have also been reported in the literature and some of 

them in contradiction with each other. Using conventional MR fluids in 
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dimethylpolysiloxane, Fujita et al. (2000)
16

 reported a yield stress that increases 

as volume fraction increases and saturates for volume fractions larger than 30 

vol%. In the case of inverse ferrofluids, Volkova et al. (2000)
13

 also 

demonstrated that after an initial increase, both static and dynamic yield 

stresses saturate at ó = 0.3, and even decrease with the volume fraction. Linear 

chain models fail to predict the saturation with volume fraction, however, the 

yield stress dependence with volume fraction calculated with macroscopic 

models show an increase at low concentrations, reaches a maximum at 30 ���% and then decreases at higher volume fractions
13

.  

In this work, we report a comprehensive study on the non-linear (yielding) 

behavior in gelled (i.e. fully percolated, T > Tf) model conventional MR fluids 

prepared by dispersing magnetizable carbonyl iron particles in a non-magnetic 

liquid medium. The yielding behavior is investigated as a function of particle 

volume fraction in a wide range to explore both regions below and above óf. 

 

II. MATERIALS AND METHODS 

 

Additive-free MR fluids were prepared by carefully mixing carbonyl iron powder 

(HQ grade from BASF; diameter ~ 800
�) in silicone oil (20 mPa s, Sigma-

Aldrich) to get suspensions having well defined volume fractions ranging from 0.5 ���% to 50 ���% (metallic iron density 7.8 �/���). Carbonyl iron particles 

(grade HQ, BASF) were chosen for this study because they are frequently used in 

the formulation of MR fluids
7,2

. It is well known that additive-free MR fluids are 

not kinetically stable and experience sedimentation. However, we decided not 

to include additives in the recipe in order to keep the fluids as simple as possible. 

It is also important to remark that the magnetic field employed in the rheology 

tests was sufficiently large for the structuration of the suspension, and always 
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applied from the beginning of the test. Under these conditions, the occurrence 

of sedimentation is not expected to be a problem. The preparation of 

suspensions consisted of the following steps: (i) magnetic powder and silicone 

oil were mixed in a polyethylene container; (ii) the mixture was stirred first by 

hand, and then in an ultrasonic bath; (iii) step (ii) was repeated several times to 

ensure the required final homogeneity. 

 

A MCR 501 (Anton Paar) magnetorheometer was employed to investigate the 

rheological properties of MR fluids under shearing flows. Non-magnetic 

(titanium-based) parallel plates of diameter 20�� were used. The commanded 

gap was set as 300��. An external magnetic circuit was used to generate 

uniaxial DC magnetic fields of the order of ~100��/� in the gap between the 

plates [Wollny et al. (2002)]. To achieve a reasonably uniform radial magnetic 

flux density profile, we studied the effect of sufficiently small magnetic field 

strengths (≤ 300 ��/�)
18

. As usual, magnetic field strengths reported in this 

manuscript refer to the maximum plateau value corresponding to radial 

magnetic flux density profiles provided by the manufactures of the 

magnetocell
19

. Results presented below are always averages over at least three 

separate runs with fresh new samples. Preliminary experiments at different gap 

distances demonstrate that slippage effects can be discarded. All experiments 

were run at 25 ℃.  

 

III. LINEAR RHEOLOGICAL RESPONSE UNDER MAGNETIC FIELDS 

 

The linear viscoelastic behavior of the MR fluids was investigated as a function 

of the magnetic field strength for a wide range of particle volume fractions. The 

strain amplitude was fixed at ¨. ¨¨ß % and the excitation frequency was § ùú. 
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Typical magnetosweep curves in the linear viscoelastic regime are shown in 

Figure 2. Interestingly, two well differentiated scenarios are found depending on 

the particle concentration in the suspension. On the one hand, for particle 

volume fractions below §¨ ÙÚ½%, the viscoelastic moduli are found to be 

negligible for magnetic field strengths below §¨ �Õ/�. In fact, the torque at 

these very low moduli/field values was below the lower limit of the torque 

transducer and this is the reason for the scatter in the data. For larger fields, the 

storage modulus (à′) becomes larger than the loss modulus (à′′) and both 

moduli increase towards a final plateau at large fields close to the saturation of 

the dispersed particles. On the other hand, for particle concentrations larger 

than §¨ ÙÚ½%,  non-negligible moduli are measured even at low fields 

suggesting that for these suspensions øç  is somewhere close to §¨ ÙÚ½%. 

Actually, for concentrations larger than Ü¨ − ß¨ ÙÚ½%, the storage modulus 

overpasses the loss modulus at low fields. As expected, upon increasing the 

magnetic field strength the storage modulus reaches a saturating value that in 

this case does not differ much when changing the particle concentration. 

Interestingly, the loss modulus reaches a local maximum and then decreases 

towards a final plateau value. 

 

In summary, results presented in Figure 2 suggest that for carbonyl iron-based 

conventional MR fluids the percolating transition (gelation threshold
20

) appears 

at øç  ~  §¨ ÙÚ½%  and that ùç  ~  §¨ �Õ/� . Well below the percolating 

transition øç  
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FIG. 2 Magnetic field strength dependence of storage  	′ and loss moduli 	′′ (in the linear 

viscoelastic region) for conventional MR fluids. a) particle concentrations below 10 vol%. 

b) particle concentration above 10 ���%. Strain amplitude #+ =  0.003% and frequency � =  1 Ts. 
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and for magnetic fields smaller than ùç aggregates are expected to be short and 

consequently not connecting the gap. As a result, energy is completely 

dissipated under shear and the storage modulus is negligible. This statement is 

reinforced by the fact that the yield stress of the sample was found to be 

negligibly small. On the other hand, for magnetic fields larger than ùç 

percolated field-induced structures should exist for all the particle 

concentrations investigated (¨. Û ÙÚ½% −  Û¨ ÙÚ½%).  

 

In the following we will focus our attention to magnetic fields above the gel 

point ùç, by using the criterion of the crossover of à′ and à′′ mentioned above. 

Nevertheless, it is worth noting that yield stress values from steady shear flow 

measurements of the same suspensions (data not shown here) indicate that the 

critical values ùç and øç are closely related each other, and vary inversely. In 

other words, the higher ùç, the lower øç, in agreement with the scenario 

described by Trappe et al. (2001)
21

 for aggregating colloids.  

 

IV. YIELDING BEHAVIOR FROM SIMPLE SHEAR FLOW TESTS 

 

Yield stress measurements in MR fluids are typically obtained using steady shear 

flow tests via extrapolation at low shear rates
13,2

.  
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FIG. 3 Steady shear flow curves for MR fluids at two different volume fractions: a) and b) 

§ ÙÚ½%; c) and d) ß¨ ÙÚ½%. Note the non-monotonic behavior observed for the most 

concentrated MR fluid for magnetic fields larger than ùç. 

 

In Figure 3 we show typical results obtained for MR fluids at 1 ���% and 30 ���%  in the presence of different magnetic fields from 3.5 ��/�  to 53 ��/�. Care was taken to favor that the sheared sample had reached a 

steady state. Accordingly, every point in the Figure 3 is an average during 30 

seconds. We employ two different representations to show the onset of 

yielding. In the first representation (Figs. 3a and 3c) we show the shear stress 

dependence of the shear viscosity. Here, the yield stress is associated to the 

sharp drop in the viscosity when increasing the stress. On the other hand, the 

yield stress is given by the low-shear shear stress plateau in shear stress versus 
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shear rate representations (cf. Figs. 3b and 3d). Of course, both yield stresses 

are the same independently of the method employed. 

 

MR fluids with a particle content below óf (e.g. 1 ���% in Figure 3) clearly show 

the typical behavior with a yield stress that increases with the magnetic field 

strength for T > Tf. This finding has been extensively found in the literature 

and in some cases a good scaling behavior with the average particle 

magnetization has been reported
22

. On the other hand, more concentrated MR 

fluids with particle concentration larger than óf (e.g. 30 ���% in Figure 3) seem 

to exhibit two yielding processes for intermediate fields, larger than Tf 

(17 ��/� and 53 ��/�). It is interesting to remark here that these results 

were highly reproducible both using stress and strain controlled modes, and 

smooth and rough surfaces. In all cases, wall slip did not occur as demonstrated 

by measuring at different gap thicknesses.  

 

V. YIELDING BEHAVIOR FROM DYNAMIC OSCILLATORY SWEEPS 

 

A more accurate determination of the yielding behavior results from unsteady 

dynamic oscillatory shear tests
23,24

. In Figure 4 we show the strain amplitude 

sweep tests for different particle volume fractions in the presence of a magnetic 

field strength of 53 ��/�.  
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FIG. 4 Dynamic strain amplitude sweep tests with storage modulus à′ (squares) and loss 

modulus à′′ (circles) as a function of the strain amplitude at ω =  § ®�û/ä. a) volume 

fractions below §¨ ÙÚ½%, b) volume fractions above §¨ ÙÚ½%. Magnetic field strength Ûß �Õ/�. 
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Experiments are grouped in two figures for better clarity. Results for volume 

fractions up to 10 ���% are included in the Figure 4a, while those for volume 

fractions larger than 10 ���% are shown in Figure 4b. While dilute MR fluids 

experience a dramatic change in the viscoelastic properties when increasing the 

volume fraction (see Figure 4a), more concentrated MR fluids exhibit a very 

similar behavior very slightly dependent on the particle content (see Figure 4b). 

These findings are in agreement with magnetosweep tests reported in Figure 2. 

As expected, MR fluids investigated clearly operate well above the gelation 

threshold (T > Tf) even for a particle volume fraction as low as  0.5 ���%. This 

is so because the magnetic field strength is already very large (if compared to 

the thermal Brownian motion) resulting in the anisotropic connectivity of the 

field-induced structures and a storage modulus significantly larger than the loss 

modulus at low strains (cf Figure 2). Similar results to those reported in Figure 4 

are obtained for magnetic field strengths in the range from 17 to 265 ��/� 

(not shown here for brevity). 
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FIG. 5 Low strain storage modulus as a function of particle volume fraction (¨. Û ÙÚ½% −Û¨ ÙÚ½%) for different magnetic field strengths (¨ �Õ/� −  ÜÞÛ �Õ/�). The lines 

represent power law fits of the data (see Table I). 

 

As stated in sections above, for fields larger than 10 ��/�, the storage modulus 

overpasses the loss modulus and this means that the samples are well above 

the so-called gel point
6
. Hence, the scaling with volume fraction is expected to 

be no longer of the percolation type but rather is affected mainly by the 

structure of the individual aggregates
25,20,26,27

. Accordingly, a convenient way to 

explore the scaling behavior is to interrogate the particle volume fraction 

dependence of the low strain storage modulus and the yield strain.  
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A. Low strain storage modulus 

 

Let us begin reporting the low strain storage modulus dependence. The low 

strain 	′ plateau value as obtained from strain amplitude sweeps (Figure 4) is 

typically used to quantify the elastic character of colloidal MR gels. In the 

absence of external magnetic fields the storage modulus is negligible below 10 ���%. This finding reinforces the idea that the percolation transition in these 

MR fluids is around óf = 10 ���%. Presumably, this limiting value of 10 ���% 

should depend on the ratio between the size of the system (i.e. the gap 

thickness of the rheometer tools) and the typical particle size
28,29

. As a 

consequence, different formulations in the MR fluid would give a different óf. 

For particle contents larger than 10 ���% the MR fluids display a strong volume 

fraction dependence of the storage modulus. A power law 	�~ó�  with 

exponent 
 = 4.15 ±  0.30 is able to fit the data. Experimental values of 2.4 

to 4.4 have been reported in the literature
30

. The magnitude of the power law 

exponent is believed to be related to interconnectedness and space filling ability 

of the network microstructure
31

. Hence, this high power in ó is indicative of a 

compact coagulated structure.  

 

For magnetic fields larger than 10 ��/� the storage modulus increases and 

tends towards a quasi-plateau at large concentrations (Figure 5). Interestingly, 

two well differentiated regions can be observed where 	′ exhibits a power-law 

behavior and can be fitted to the form 	′~ó�. The best fit results for 
 are 

summarized in Table I. Below a particle concentration of 10 ���%, 
 value 

remains approximately constant (~ 2.5) independently of the magnetic field 

applied. This value is significantly larger than the theoretical predictions under 

the assumption of single-width particle chains models that predict a scaling with 
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ó  2
, and still larger than classical theories for strong 3-dimensional particulate 

gels that predict a scaling with óH  32,33
.  

 

TABLE I. Slopes corresponding to linear fits for low strain storage modulus and yield strain 

#)¸ as a function of particle volume fraction in the gel regime (T > Tf) from Figure 5 and 

Figure 7a, respectively. (*) negative slope. 

 

 Low strain storage modulus Yield strain, ü§å 

H(kA/m) φ < 10 vol% φ > 10 vol% φ < 10 vol% φ > 10 vol% 

17 2.4 ± 0.3 1.8 ± 0.3 -1.35 ± 0.04 * 

53 2.48 ± 0.18 1.06 ± 0.18 -1.35 ± 0.04 0.4 ± 0.5 

88 2.7 ± 0.2 0.76 ± 0.12 -1.35 ± 0.04 0.7 ± 0.3 

176 2.55 ± 0.12 0.39 ± 0.04 -1.35 ± 0.04 1.4 ± 0.3 

265 2.55 ± 0.02 0.26 ± 0.10 -1.35 ± 0.04 2.6 ± 0.2 

 

 

Above a particle concentration of 10 ���%, � depends on the magnetic field 

strength. With increasing the field strength, the � value decreases from a value 

close to 2 to a value of 0.26.  

 

B. Limiting strain/stress for linearity 

 

Upon increasing the strain amplitude, MR fluids eventually yield exhibiting a 

clear decay in 	′ associated to the appearance of higher harmonics in the stress 

signal (see Figure 4). As frequently done, we interpret the onset of nonlinearity 

to be the breaking of the weakest bonds in the gel-like network. Interestingly, 

depending on the particle content, 	′′ exhibits either only one or two peaks 
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with increasing the strain amplitude that are indicative of a maximum 

dissipation of energy during the period of destroying the elastic structure. Dilute 

MR fluids (below 10 ���%) reveal a single yielding process associated to a single 

peak in 	′′ around a strain amplitude of #+ = 10% as commonly reported in the 

literature of dilute MR fluids and also predicted by macroscopic and microscopic 

micromechanical models with #+  ~  50%  and #+  ~  30% , respectively
2
. 

Significantly, the peak in 	′′ occurs when 	′ drops below 	′′ meaning that local 

yielding coincides with macroscopic yielding. More concentrated MR fluids 

(above 10 ���% ) show a complex rheological response with two distinct 

yielding processes (two peaks in 	′′) similarly to attractive glasses and colloidal 

depletion gels with intermediate volume fraction
34

. In attractive glasses the two 

yielding processes are associated with the breaking of interparticle bonds at 

small strains (~4%) and with the limit of elastic cage deformations (i.e. breaking 

of topological constraints) at large strains (~50%)
35

. On the other hand, in 

depletion colloidal gels the first yield point is presumably due to the breaking of 

bonds between interconnected clusters ( ~5% ) while the second one is 

attributed to the breaking of clusters into smaller constituents (~100%)
36

.    

 

A more convenient representation of the dynamic oscillatory strain amplitude 

sweep data is to plot the strain dependence of the in-phase (elastic) component 

of the total stress 	′#+  37
. Interestingly, this kind of representation highlights 

the two key factors determining the strength of the MR fluid (i.e. the cohesive 

energy of the flocs £f~ )H 	′#)Ḩ ): on the one hand, the attractive force between 

particles (i.e. storage modulus 	′) and on the other hand, the strain level at 

which the structure persists without losing its rigidity (i.e. the limiting strain for 

linearity #)¸). As a way of example, in Figure 6 we show the results for the 

lowest and largest fields investigated in this study (17 and 265 ��/�). The 
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maxima or shoulders of the elastic stress provide a quantitative way of localizing 

the shear yield point(s).  
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FIG. 6 Elastic stress 	′#+ as a function of strain amplitude #+ for different particle 

concentrations from 0.5 ���% to 50 ���%. a) 17 ��/�, b) 265 ��/�. 
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Actually, this approach has been used in other glassy materials to illustrate the 

progressive structural breakdown and demonstrated the existence of two 

yielding processes in attractive glasses and colloidal gels
38,39,35,40,34,36

. As 

observed in Figure 6, yield stresses strongly depend on magnetic field strength 

and particle concentration. For low and medium fields, yield strengths are of 

similar magnitude /	′#+1¤x¹~ϑ/10H%&1  as other experiments reported in 

literature on weakly flocculated gels, although the maxima are attained at 

exceedingly small strain values
38

. Figure 6 reveals that a single yielding process 

is only present for volume fractions well below 10 ���% independently of the 

magnetic field. If the particle content increases, a two yielding process is clearly 

observed. Also, the linear region is very small indeed in the case of low magnetic 

fields especially at the largest volume fractions investigated. 

 

B.1. Yield strain 

 

Next, we consider the dependence of the two yield points, as well as the 

crossing point between 	′  and 	′′  (so-called flow point
41

), on the particle 

volume fraction and discuss the corresponding yield strains and yield stresses 

(Figs. 7 and 8). The first yield strain was determined following two approaches: i) 

from the point beyond which 	′ deviates more than 10% from its maximum 

plateau value #)¸  (cf Figure 4) and ii) from the first maximum in elastic stress 

versus strain representations #) (cf Figure 6). Their dependence with particle 

volume fraction and magnetic field strength is comparable. Also, the limiting 

strain for linearity obtained for our MR fluids (ranging from ~0.01 % to ~1 %) 

was about the same level as reported in the literature for MR and ER 

fluids
42,38,43,6,44,45

.  
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FIG. 7 Yield strains as a function of particle concentration taken from dynamic strain 

sweeps. a) Limit of the linear viscoelastic region ü§å, b) first yield strain ü§, c) second yield 

strain üÜ, d) crossover yield strain üç (à� = à′′). The straight lines have power law 

exponents reported in Table I. Straight lines in c) and d) are exactly the same with a power 

law exponent of 1. 

 

As observed in Figure 7, there are two well differentiated regions. Below 10 

vol% the yield strain strongly decreases with a slope of G1.35 ±  0.04 (see 

Table I) independently of the magnetic field. This is possibly due to the lower 

particle densities and the higher structural and bonding flexibility that allows 
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elongation and stretching before bonds break similarly to depletion gels
36

. In 

this region, the MR fluid becomes stiffer with increasing concentration hence 

showing a large modulus (cf Figure 5), but starts to break at smaller strain as the 

observable linear region shrinks with increasing particle concentration (ie. 

stronger gels also are more brittle). However, above 10 ���% the yield strain 

either remains constant at a low value for small fields, or increases as a power 

law for larger fields. We will come back to this point in Section VI. For the 

moment, it is worth to remark here that the behavior of our MR fluids at the 

lowest magnetic fields investigated very closely resembles the behaviour of 3D 

depletion gels investigated by Koumakis and Petekidis (2011)
36

.  
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FIG. 8 Stresses corresponding to the yield strains of Figure 7. a) Limit of the linear 

viscoelastic region õ§å, b) first yield stress õ§, c) second yield stress õÜ, d) crossover yield 

stress õç (à� = à′′). The straight lines have a power law exponent of 1.0 (dashed line) and 

2.0 (solid line). Dotted lines correspond to static (Figure b) and dynamic (Figure c) yield 

stress measurements under steady shear flow tests. 

 

The second yield strain #H is found to increase with increasing the particle 

concentration as expected because particle caging should reinforce as 

concentration increases. Only for the lowest field investigated the second yield 
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strain decreases. This apparently surprising result for the lowest field can be 

explained if cages turn into clusters due to attractions as the volume fraction 

decreases. Hence, the second yield strain should increase with decreasing 

particle content because of the enhanced flexibility of interconnected clusters
36

. 

Of course, the second yielding process disappears at particle concentrations 

below 10 ���% in agreement with a critical concentration of óf = 10 ���%. 
 

MR fluids show a liquid-like behavior (	′′ > 	′) for strain amplitudes larger than 

the crossover strain #f. This crossover strain amplitude is expected to have an 

intermediate behavior between #)¸  (or #)) and #H when increasing the particle 

concentration (#)¸~#) < #f < #H). As a consequence, for the lowest particle 

concentration investigated #f~#)¸~ 10 %, while for the largest concentrations 

investigated #f~#H  (see Figure 7). Actually, for low particle concentrations, 

aggregates are expected to be both scarce and floppy and by simply breaking 

some intra-aggregate bonds the suspensions may flow. On the contrary, for 

more concentrated MR fluids it is necessary to break not only inter-aggregate 

bonds but also intra-aggregate links to make the suspension flow resulting in 

the observed power law increase of #f (exponent of 1) for concentrations larger 

than 10 ���%. It is interesting to observe that #f remains essentially constant 

(#f~10 %) for particle concentrations below 10 ���%. This suggests that in this 

concentration range, MR fluids are increasingly brittle but do shear melt (	′′ > 	′) at the same strain amplitude. The reason for this is unknown yet. Finally, 

decreasing branches in #f are presumably associated to flow instabilities as 	′ 
reverses to lower stresses when increasing the strain amplitude. An extreme 

example is the yielding behavior of MR fluids at 17 ��/�.  
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B.2. Yield stress  

 

The yield stresses corresponding to the various yield strain points discussed 

above are plotted in Figure 8. For a given particle volume fraction, these are 

expected to be the multiplication of the low shear storage modulus by the yield 

strain (ò = 	′#). As a consequence, the stresses involved in the first yield point 

do linearly increase up to a particle concentration of 10 ���%. In this region, the 

effect of magnetic field is manifested through the field dependence of the 

storage modulus as the yield strain is not sensitive to the field in this 

concentration range. For a particle concentration larger than 10 ���% the first 

yield stress increases with ó  following a power law dependence with an 

exponent of 2.0 that is independent of the magnetic field applied in spite of the 

fact that both the storage modulus and yield strain strongly depend on the 

magnetic field applied (see Figs. 5 and 7, respectively). These results are in good 

agreement with previous experimental data reported in the literature where an 

intermediate slope between 1 and 2 has been claimed in a very wide volume 

fraction range spanning from 0.1 to 50 ���%. Remarkably, here we show that a 

closer look to the volume fraction dependence reveals two well differentiated 

regions. It is also interesting to note that there is a good correlation between 

the first yield stress and the static yield stress obtained from steady shear flow 

tests exemplified in Figure 3 (cf. dotted lines in Figure 8b). 

 

The second yield stress exhibits a more complex behavior. The field dependence 

of the second yield stress comes from the field dependence of the storage 

modulus. The only exception being the lowest field investigated because in this 

case not only the modulus but also the second yield strain depends on the field 

strength. As a consequence, the slopes of these curves change when changing 
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the field. It is also interesting to note that there is a reasonably good correlation 

between the second yield stress and the so-called dynamic (Bingham) yield 

stress values extrapolated from rheograms to zero shear rate (cf. dotted lines in 

Figure 8c). These Bingham yield stresses were found to depend on the square of 

the volume fraction in many colloidal
46,47,33

.  

 

The crossover yield stress represents the transition between the viscoelastic 

solid at low strain and the viscoelastic liquid at high strain. As observed in Figure 

8d, a power law exponent of two is obtained as a function of the volume 

fraction. 

 

VI. COLLOIDAL GEL DESCRIPTION 

 

Generally speaking, the link between the structural properties of colloidal gels 

and their macroscopic rheological behavior is provided by a so-called scaling 

theory. Basically, the structures in MR fluids are highly disordered, but similarly 

to other colloidal gels, there is experimental evidence that in certain length 

scales and at sufficiently low volume fractions they are self-similar and can be 

described in terms of fractal geometry
48

. Fractal models assume that the 

structure of the gels is constituted by a collection of closed packed fractal 

clusters of colloidal particles which during gelation aggregate with each other. 

Pioneering work in this field was carried out by Brown and Ball (1985)
25

. They 

formulated a power-law relationship of the elastic modulus to the solid volume 

fraction. This formulation was experimentally verified by Sonntag and Russel 

(1987)
49

 and Buscall et al. (1988)
52

 among others. Then, Shih et al. (1990)
20

 and 

Wu and Morbidelli (2001)
26

 extended the models by Brown and Ball (1985)
25
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including previous contributions by Kantor and Webman (1984)
51

 and Buscall et 

al. (1988)
52

.  

 

In general, depending on the strength of the links between the aggregates in 

comparison to that of the aggregates, we can distinguish two limiting 

rheological regimes, namely, strong-link regime and weak-link regime 

reminiscent of the scaling theory for polymeric systems (Figure 9)
26

. The strong-

link regime is achieved with very big flocs while the weak-link regime results 

from the formation of small flocs. At low particle concentration, well inside the 

strong-link regime, the links between aggregates (inter) are stronger than the 

intrinsic elasticity of the aggregates (intra). As a consequence, the breaking of 

bonds occurs within an aggregate. On the contrary, at high particle 

concentration, the so-called weak-link regime prevails that is dominated by the 

elasticity of the aggregates rather than the interlinks between aggregates. The 

scaling (power law behaviour) for both the storage modulus 	′ and the limit of 

linearity (i.e. yield strain) #)¸  with respect to the particle concentration ó is 

dictated by the fractal nature of the colloidal flocs. The forms of the equations 

for the strong-link regime (SLR) are: 

 

 	′þ¸�~ó/w�¹1 Vw(w�W�
 

(1a) 

 

 #)¸,þ¸�~ó(/)�¹1 Vw(w�W�  (1b) 

 

 

whereas the equations for the weak-link regime (WLR) read as follows: 

 



 

 

FIG. 9 Structure representation of a gelled MR fluid for ù > ùç. Dashed lines represent 

the weakest bonds in the field-induced structures. Red dotted spheres represent the 

secondary structure reported in Pan and McKinley (1997)38. Left; ø q

regime. Right; ø > øç, weak-link regime. 

 

 	′�¸�~ó/w(H1 Vw(w�W�
 

 

 #)¸,�¸�~ó) Vw(w�W⁄
 

 

 

Here ' is the Euclidean dimension (' " 3), 'c  is the fractal dimension of the 

flocs, and i is the backbone fractal dimension of the flocs (1

the one hand, the fractal dimension 'c  is a parameter that describes the spatial 

distribution of mass within the network. On the other hand, the parameter 

that fraction of the aggregate that sustains the applied load. It is difficult to 

estimate and is usually assumed to be in the range i ∈	91,1.3;27,53

and weak-link extreme situations have been verified by experiments using 

various gelation systems
20,54,55,56,57

.  
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(2b) 

is the fractal dimension of the 

q i q 'c)
20

. On 

is a parameter that describes the spatial 

distribution of mass within the network. On the other hand, the parameter i is 

lied load. It is difficult to 

27,53
. Both strong- 

link extreme situations have been verified by experiments using 
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Of course, the strong- and weak-link regimes described by Shih et al. (1990)
20

 

represent two extreme situations. In practice, intermediate situations have 

been reported in the literature, in the so-called transition regime (TR), where 

both inter-aggregate and intra-aggregate links contribute to the gel's overall 

elasticity
55,56

. Expressions for 	′ and #)¸  in this intermediate situation were 

developed by Wu and Morbidelli (2001)
26

: 

 

 	′��~óÆ Vw(w�W⁄
 (3a) 

 

 #)¸,��~ó/w(Æ()1 Vw(w�W�
 

(3b) 

 

 

where o = /' G 21 + /2 + i1/1 − È1 and È is a microscopic elastic constant in 

the range È ∈ [0,1]. As expected, equations for the transition regime reproduce 

correctly the limiting scenarios; for the strong-link regime È = 0, whereas for 

the weak-link regime È = 1. 

 

As shown in sections above, in the absence of magnetic fields, conventional MR 

fluids reported in this manuscript exhibit a power law dependence of both the 

storage modulus and yield strain on the volume fraction for ó > 10 ���%: 	′~ó}.)�±+.�+  and #)¸~ó(+.ñ)±+.H) , respectively. It is well known that the 

exponent of the volume fraction dependence of the storage modulus is related 

to the structure through the fractal dimension of the clusters and also related to 

the mechanism of particle aggregation. For example, experiments and 

simulations show that the exponent should be 4.5 ±  0.2 for a reaction-limited 

(slow) aggregation (RLA) process and 3.5 ± 0.2 for a diffusion-limited (fast) 

cluster-cluster aggregation (DCA) process
50,27

. Using the model developed by 
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Wu and Morbidelli (2001)
26

, and assuming a fractal dimension of backbones i 

=  1.3 we estimated a value of α =  0.527 and a fractal dimension 'c  =  2.383, 

the later being very close to the reaction-limited aggregation (RLCA) model 

prediction 'c  =  2.1 suggesting that the MR fluid, in the absence of magnetic 

fields, behaves similarly to conventional transition gels (see Table II)
55,56

. 

Interestingly, these results suggest that other interparticle interactions apart 

from purely magnetostatic forces exist that are relevant in the absence of 

magnetic fields. As previously emphasized in the Introduction section, these 

findings are in good agreement with microscopic observations in very similar 

(conventional) MR fluids reported in the MR literature. Also, similar values for 

the power-law exponent (4.0 ± 0.5) for the elastic modulus were obtained in 

silica and polystyrene latex suspensions
50

 and fumed silica dispersions
58

. 

 

TABLE II. Evaluated microscopic parameters at i =  1.3 (/ i =  1.0) using Wu and 

Morbidelli model (2001)26 for conventional MR fluids. α microelasticity constant and df 

fractal dimension. 

  

 α df Gel type 

>10 vol% no field 0.527 2.383 Transition gel 

<10 vol% all fields 0 1.32 Strong-link gel 

>1
0

 v
o

l%
 

17 kA/m 0.697 / 0.667 1.889 / 1.889 Transition gel 

53 kA/m 0.863 / 0.849 1.63 / 1.63 Weak-link gel 

88 kA/m 0.988 / 0.986 1.63 / 1.63 Weak-link gel 

176 kA/m 1.171 / 1.188 1.883 / 1.883 Weak-link gel 

265 kA/m 1.248 / 1.273 2.301 / 2.301 Weak-link gel 
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The behavior of MR fluids under the presence of magnetic fields is more 

complex. Samples below 10 ���% do behave similarly, independently of the 

magnetic field strength. Using the corresponding equations for the strong-link 

regime we obtain i = 1.269 and 'c  =  1.319, while using the model by Wu and 

Morbidelli (2001)
26

 we obtain α = 0 and a fractal dimension 'c  =  1.32 −under 

the assumption of i =  1.3, as otherwise is frequently done in the literature
26− 

(Table II). As observed, the fractal dimension estimated from the two models is 

very similar indeed. The similar results obtained under the application of the 

two fractal models indicate that the system is in the strong-link regime. Besides, 

the small value of the fractal dimension is in agreement with a much smaller 

cluster size
27

, if compared to the fractal dimension obtained in the absence of 

magnetic fields, and also in agreement with the formation of one-dimensional 

elongated structures in the direction of the field
59

.   

 

More concentrated suspensions (>  10 ���%) under the presence of magnetic 

fields do exhibit an interesting behavior. Using the corresponding relations for 

the weak-link regime to estimate 'c  one obtains unrealistic values as they are 

different when obtained from 	′ and #)¸  data. However, when using Wu and 

Morbidelli (2001)
26

 model remarkable results are found. Results contained in 

Table II show that either choosing i =  1 or i =  1.3 do not provide much 

difference. For the weakest field investigated, α =  0.697 and 'c  =  1.889 

suggesting that in this case inter- and intrafloc links are comparable, and then 

we are in the transition regime. This justifies the failure of the application of the 

weak-link model /α =  1). Upon increasing the field, α increases up to a value 

very close to α =  1 (for fields ≳ 88 ��/�) while the fractal dimension still 

remains close to 'c  =  1.7 independently of the field strength applied. Only for 
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the largest fields investigated 'c  increases possibly due to the much larger 

cluster size
27

.  

 

A priori, any colloidal gel may cross over from the strong-link regime to the 

weak-link regime with increasing particle concentration and this seems to be 

the case in conventional MR fluids under the presence of an external magnetic 

field from the inspection of Figs. 5 and 7a. This is manifested by the appearance 

of two regions. On the one hand, for low concentrations, 	′ increases with 

particle content, while #)¸  decreases with particle content. On the other hand, 

for large particle contents, 	′ still increases but more slowly than in the strong-

link regime, and #)¸  increases with concentration. Accordingly, MR fluids 

operating in the strong-link regime (below 10 ���%) do exhibit a single yielding 

process (#)¸) that is associated to intracluster bond breaking. On the contrary, 

MR fluids operating in the weak-link regime (above 10 ���%) do exhibit a two 

yielding process (#)  and #H) that are associated to the breaking of bonds 

between interconnected clusters and to the breaking of clusters into smaller 

constituents, respectively. 

 

The explanation above seems to be coherent with the fact that micromechanical 

models available in MR literature are only valid at low particle concentration
2
. 

This is expected because only for low particle concentrations it is feasible to 

assume that bond breaking first occurs inside the aggregate. Also, for large 

enough concentrations, the first yielding process is compatible with the 

existence of a secondary structure resulting from many-body interactions, and 

comprised of short chains tilted with respect to the field direction
38

. This 

secondary structure originates a nonuniform distribution of local strain that is at 

the heart of the exceedingly low values of  #)¸  and #). 
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Finally, it is worth to remark that the application of colloidal gel scaling theories 

in magnetorheology has limitations. First, original fractal gel models did not take 

into account the field strength-dependent, long-range and anisotropic feature 

of the magnetic interactions between particles. As a consequence, special care 

has to be taken when drawing conclusions. Second, inherent to the theory is the 

fact that the interactions between particles are assumed to be independent of 

particle concentration. In general, it has been documented that clusters may 

swell in dilute suspensions if the interparticle interaction has a particle-

concentration dependence
20,60

. Unfortunately, strictly speaking, this is not the 

case for MR fluids where interparticle magnetic forces enhance due to 

multipolar effects upon increasing the concentration. Consequently, this 

suggests that we are far from the ideal case where the volume fraction and 

strength of attraction could be varied independently. Third, the fractal gel 

models do have an upper and lower concentration bound. The lower bound is 

limited by the maximum size of the growing flocs and the upper bond is 

determined by the shrinking range of the fractal scaling region with 

concentration
29

. Generally speaking, fractal models can be applied only for low 

enough particle concentrations −even though the fractal scaling behavior has 

been observed at high volume fractions as well
52−. At large volume fractions the 

number of particles per cluster are in fact so small that the use of fractal models 

can no longer be justified and more advanced theoretical models would be 

needed
26,61

.  

 

VII. CONCLUSIONS 

 

We have conducted an extensive experimental research on model 

magnetorheological fluids having a wide range of particle concentrations and 
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submitted to a wide range of uniaxial DC magnetic field strengths. These 

experiments show that most of the inconsistencies found in MR fluid literature 

regarding particle concentration dependences can be explained under a 

colloidal gel perspective well above the gelation threshold (T > Tf). For typical 

particle contents employed in the formulation of conventional MR fluids, the 

elastic behavior of the field-induced gels is not determined by the scaling of the 

percolation transition as it might be near the gelation threshold
62

 but is instead 

dominated by the fractal nature of the colloidal flocs. 

 

Considering the structure of the field-induced gel network as a collection of 

closed-packed fractal flocs of colloidal particles, two different scenarios are 

found depending on the particle concentration. On the one hand, for low 

enough particle volume fractions in the strong-link regime the storage modulus 

increases with increasing the concentration while the yield strain decreases with 

increasing the particle content. On the other hand, for large particle 

concentrations, well in the weak-link regime, both the storage modulus and 

yield strain increase when increasing the particle concentration. The crossover 

concentration (óf ~ 10 ���%) from the strong-link regime to the weak-link 

regime does not depend on the magnetic field strength but is expected to 

depend on the ratio between the gap thickness and particle size. We 

demonstrate that the existence of a crossover concentration has severe 

consequences in the yielding behavior of MR fluids both under steady and 

dynamic oscillatory shearing flows. A single yielding process only appears when 

the concentration is below óf. For larger particle contents, a two-step yielding 

process comes up that reveals similarities to the rheology of attractive colloidal 

glasses and depletion colloidal gels, and resembles the classical static and 

dynamic definitions for the yield stress. 
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We have demonstrated that by using a colloidal gel scaling theory it is possible 

to extract structural information that otherwise is difficult to be obtained 

because MR fluids are opaque and conventional light scattering techniques are 

not easily applied. Surprisingly, very few papers have treated MR fluids as 

physical gels, in spite that MR fluids are simple fluids amenable to be used as 

prototypes of the directional gel transition of colloidal gels. The rheological 

fractal model developed by Wu and Morbidelli (2001)
26

 is successfully employed 

to the case of MR fluids in the presence of magnetic fields. Its use is twofold: i) 

from the rheological data it is possible to extract structural information of the 

aggregates such as the fractal dimension, and ii) assuming the backbone fractal 

dimension, one can compute the corresponding α value and identify the 

gelation regime prevailing in the system. 

 

Results presented in this work are believed to have implications in the 

formulation of effective MR fluids containing the optimal amount of magnetic 

material according to the desired application and hence reducing costs. 
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Abstract 

 

We propose an experimental parameter for the scaling of the yield stress (òy) of 

magnetorheological (MR) fluids: the average particle magnetization 〈�.〉 as 

estimated from magnetization curves of the MR suspensions. When òy was 

expressed as a function of this scaling parameter, the curves for MR suspensions 

prepared with particles of different saturation magnetization and even different 

morphology collapsed together. In addition, the collapse worked reasonably 

well for a wide range of magnetic fields: from weak fields below which the 

sensitivity of our magnetorheometer could not detect the òy
,
 to fields close to 

particle saturation. The collapse failed for particles of a highly anisotropic 

morphology, which must be indicative of non-magnetostatic contributions to 

the yield stress. 

 

I. INTRODUCTION 

 

Conventional magnetorheological (MR) fluids are suspensions of relatively large 

(ca. 1 ��) magnetizable particles in a non-magnetic liquid carrier. Because of 

the size of the particles, the magnetic forces typically overcome particle thermal 

agitation upon the application of an external magnetic field. This leads to a 

structuration within the suspension and to a dramatic change in its mechanical 

properties that can be regarded as a transition from a liquid to a nearly solid 

state
1
.
 
 

The yield stress òy is one of most relevant properties in the characterization and 

design of MR fluids. It is the minimum stress needed for the onset of flow, and is 

therefore an indication of the strength of the field-induced structure. Because of 

practical reasons, research has traditionally focused on the prediction of the 
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dependence of the yield stress on the external magnetic field (T). Such 

dependence can be expressed as a power law (òy ∼ T� ). However, due to the 

non-linearity of the magnetization of dispersed materials, different exponents 

(
) are expected for weak, intermediate and strong external fields. It is well 

established that the yield stress is proportional to T H at small fields, and that it 

reaches a plateau (i.e., becomes field-independent) once particle magnetization 

saturates. In the saturation regime the stress scales with the square of the 

saturation magnetization of the particles
2
. For intermediate fields, Ginder et al.

3
 

and Bossis et al.
4
 predicted that òy would be proportional to T �/H . Such 

dependence has been observed experimentally
5,6

, although other reports are 

inconsistent with that prediction
7
.  

 

In this letter we present an experimental parameter that has been successfully 

used for the scaling of mostly all that yield stress data collected by our group in 

the past few years
8
 for a variety of dilute MR fluids. Such parameter seems to 

capture well the external field dependence, is easily accessible, and should be 

useful for experimentalists and engineers dedicated to magnetorheology.  

Scaling functions are particularly useful in science because they can gather 

together the dependences of a given physical property on several variables. 

Furthermore, they usually provide physical insight into the forces or interactions 

that are relevant to the phenomenon under study. The two most frequently 

used scaling parameters in magnetorheology (and electrorheology) are probably 

the coupling parameter (ª) 
9
 and the Mason number (�
) 

10
. The former 

parameter, ª is the balance between the magnetostatic energy and the thermal 

energy of the system. In the absence of flow, the equilibrium structure of a MR 

fluid can be determined by the particle volume fraction (φ ) and ª 
9
. Another 

important parameter in magnetorheology is �
. When MR fluids are subjected 
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to a flow, the dependence of the fluid viscosity on the shear rate and the 

magnetic field strength can be collapsed into a single function of �
, which is 

basically the ratio between the hydrodynamic drag and the magnetostatic 

forces acting on the particles. In addition to ª and �
, a number of examples of 

yield stress scaling functions in electrorheology and magnetorheology can be 

found in the literature
11-13

.  

In ª and �
 both the magnetostatic energy (in ª) and magnetostatic forces (in �
 ) are usually calculated within the frame of the fixed point-dipole 

approximation, and are proportional to the square of the magnetic moment (�) 

induced in each particle. It is also common
1,7,14,15

  to calculate � as a function of 

the external field H and the magnetic contrast factor o 

 

 Hm β∝  
(1) 

 
 

where o  is given by /�.−�c1 /�.+2�c1⁄ , and �.  and �c  are the relative 

permeabilities of the particles and the fluid carrier, respectively. 

 

The point-dipole approximation and the linear dependence of m with � and T 

work reasonably well for small fields and for wide separations between 

particles. For intermediate fields, o becomes field dependent. Some authors use 

experimental magnetization curves for the particles, or �/T1 curves calculated 

from the Fröhlich–Kennelly equation, to calculate �./T1 and thus introduce the 

dependence of o on T. For finite separations T and o vary with position in the 

vicinity of the particles, and � is no longer proportional to o T.  

 

An alternative approach is to express � as a function of an average volumetric 

particle magnetization 〈�.〉: 
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pMVm =  

(2) 
 

 

Both the typical energy and magnetostatic force would be then proportional to 

〈�.〉
H, where 〈�.〉 as a function of T can be obtained dividing the measured 

suspension magnetization by the volume fraction
16

: 

 

 

φ
)(

)(
HM

HM
Suspension

p =  

(3) 
 

 

The calculation of the average particle magnetization from magnetization curves 

of the suspensions was proposed by Klingenberg and co-workers
16

, who used it 

for the calculation of �
  and the collapse of flow curves. Finite-element 

calculations carried out by these authors showed a better scaling of the 

interparticle magnetic force with respect to 〈�.〉
H than with respect to/oT1H. 

The calculations also showed that the scaling was valid over a wide range of 

〈�.〉. 

 

The yield stress is proportional to the forces needed to break field-induced 

structures
1
. If other short range interactions are negligible (friction, Van der 

Waals), the forces needed to break the structures are expected to be intimately 

related to the magnetostatic forces, so that we expected the yield stress to be 

also proportional to 〈�.〉
H. 

 

The experimental parameter chosen to scale the yield stress was thus 〈 �./T1〉, 
which was calculated from magnetization curves taken either from powder 
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samples or from the suspensions. In the latter case eq. (3) was used to relate 

the suspension magnetization to the average particle magnetization. 

 

II. MATERIALS AND METHODS 

 

The properties of the different types of particles used for the preparation of the 

MR fluids are summarized in table 1. Representative micrographs of those 

particles are presented in Figure 1. As can be seen, we used particles of iron and 

magnetite, with several different average particle magnetization saturations 

(that of bulk iron, porous iron and magnetite), and three basic shapes (spheres, 

plates and rods).  

 

TABLE I. Relevant physical properties of the different types of particles used for the 

preparation of the MR fluids. 

 

 Shape Typical size
a
 (��) Saturation

ParticleM  

(��/�)
c 

Commercial solid iron 

particles
b 

Spherical 
0.76±0.40

 

1600 

Porous iron spheres Spherical 0.7±0.2 [8]
 766 [8] 

Porous iron plates Plate-like 

Diameter: 2.1±0.5 [8] 

Thickness: 0.25±0.05 

[8] 

671 [8] 

Porous iron rods Rod-like 

Diameter: 0.45±0.08 

[8] 

Length: 4.7±2.2 [8] 

707 [8] 
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Solid magnetite 

spheres 
Spherical 

0.68±0.15[17] 
475 [18] 

Solid magnetite rods Rod-like 

Diameter: 0.56±0.12 

[17] 

Length: 7±0.4 

475 [18] 

a) Average plus or minus standard deviation obtained for sets with at least 150 

particles. 

b) HQ carbonyl iron (BASF). 

c) Saturation magnetization of the particles was obtained from dry powder 

samples, assuming a density of 5170  �� �(�and 7800 �� �(� for magnetite and 

iron respectively, and estimating
8
 that the density of the porous iron particles was 0.47 times that of bulk iron.  

 

The MR fluids were prepared by dispersing a given type of particles in 20 �%&⋅  

silicon oil (Sigma-Aldrich). Particle volume content (φ) was always low, ranging 

from 0.5 %   to 2.1 %,  mainly because we wanted to work with dilute 

dispersions for which the yield stress is expected to depend linearly on φ.  

 

Rheology experiments were carried out in an MCR Anton Paar magneto-

rheometer (MRD 180) in a parallel plate configuration. The diameter of the 

plates was 20 mm and the plate separation was fixed at 300 µ�. The magnetic 

field was applied normal to the direction of flow. The experimental protocol of 

the steady shear flow tests can be divided in three steps: (i) precondition at a 

constant shear rate γ&  = 200  () for 30   in the absence of any magnetic field, 

(ii) the suspension was left to equilibrate for 1 min in the presence of a magnetic 

field, and (iii) with the field still applied, shear stress was logarithmically 

increased from 0.1 %& at a rate of 10 points per decade. 
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FIG. 1. Scanning electron micrographs of the different types of particles used for the 

preparation of the MR fluids: A: commercial carbonyl iron spheres; B: porous iron spheres; 

C: magnetite spheres; D: porous iron plates; E: magnetite rods; F: porous iron ro

 

The static yield stress ( ò static) was obtained from double logarithmic 

representations of the stress versus the shear rate. Two linear fits were carried 

out on data points that precede the onset of flow (rapid increase of stress for a 

small increase of rate) and on points right after the onset of flow (rapid increase 

of shear rate for a negligible increase of stress). The point at which the two 

linear fits intercept was taken as the static yield stress
19,20

. Yield stress data 

points were also calculated from small-amplitude oscillatory shear (SAOS) 

experiments. In those experiments the suspensions were left to equilibrate in 

the presence of a magnetic field, and the storage and the loss moduli (

respectively) were measured as a function of the stress amplitude. For small 

stress amplitudes (amplitudes within the linear viscoelastic regime) 

constant, but the continuous increase of the stress eventually results in the 

 

. Scanning electron micrographs of the different types of particles used for the 

preparation of the MR fluids: A: commercial carbonyl iron spheres; B: porous iron spheres; 

C: magnetite spheres; D: porous iron plates; E: magnetite rods; F: porous iron rods. 

) was obtained from double logarithmic 

representations of the stress versus the shear rate. Two linear fits were carried 

out on data points that precede the onset of flow (rapid increase of stress for a 

fter the onset of flow (rapid increase 

of shear rate for a negligible increase of stress). The point at which the two 

. Yield stress data 

atory shear (SAOS) 

experiments. In those experiments the suspensions were left to equilibrate in 

the presence of a magnetic field, and the storage and the loss moduli (	’ and 	” 
respectively) were measured as a function of the stress amplitude. For small 

stress amplitudes (amplitudes within the linear viscoelastic regime) 	’  is 

constant, but the continuous increase of the stress eventually results in the 



259 
 

onset of flow, whose revealing feature is a drop of 	’ and a maximum in 	”. The 

yield stress can be taken as the stress amplitude at which 	” becomes as large 

as 	’ (	’ =  	” in Figure 2), or as the stress amplitude at which 	’ has decreased 

to 0.9 times its low stress plateau value (	’ =  0.9 	′�¿xÉrxî in Figure 2). Finally, 

the dynamic yield stress (òdynamic) was calculated by fitting the Bingham plastic 

equation to a typical steady shear flow rheogram in a lin-lin representation. 

 

The contrast factor o as a function of T was calculated from the magnetization 

curves of powder samples, calculating �p(T) from: 

 

 ( ) 1+=
H

M
Hpµ  

 
(4) 
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FIG. 2 A: Static yield stress (òstatic) versus applied field for MR fluids prepared with different 

types of particles. B: Scaled static yield stress vs. average particle magnetization 〈�p(T )〉, 

which was calculated from magnetization curves of the suspensions using eq. (3). Vertical 

lines in B indicate the saturation magnetization of magnetite (solid, 475 ��/�); porous 
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iron (dashed, ca. 700 ��/�); and solid iron (short dots, 1600 ��/�). C: Same as B, but 

〈�p(T )〉 was calculated from the magnetization curves of powder samples. D: Scaled 

static yield stress versus o(T)T (see eq. 1). o(T) was obtained from magnetization curves 

of the dry powders. The particle volume content of each suspension is indicated as a 

percentage in the legends. 

 

III. RESULTS AND DISCUSSION 

 

The yield stress versus the external field for a number of different MR fluids is 

presented in Figure 2(A). The scaled static yield stress (òstatic/φ) versus the 

average particle magnetization, calculated from the magnetization curves of the 

suspensions using eq. (3), is presented in Figure 2B. As can be seen, the use of 

〈� p〉 calculated from the magnetization of the suspensions results in an 

excellent collapse of the curves of the different types of MR fluids. The quality of 

the collapse is remarkable if we take into account: i) that data come from a 

collection of MR fluids prepared with particles of different properties; and ii) 

that for each set of data shown, the external field H was swept from values 

below which the sensitivity of our rheometer was not enough to detect a yield 

stress, to values close to the magnetic saturation.  Furthermore, a linear fit to all 

the data points presented in Figure 2B results in a slope of 2.00 ± 0.08 and a 

relatively large correlation coefficient (	 =  0.98). This suggests that the static 

yield stress of dilute MR suspensions scales as: 

 

 

 2〉〈∝ pstatic Mφτ  
(5) 
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The equation of the linear fit shown in Figure 2(B) is: 

 

 0.231019.2 p
static M−×=
φ

τ
 

 
(6) 

 
 

It is important to note that the graphs of Figure 2 include two curves that were 

obtained from SAOS experiments. The fact that the yield stress calculated from 

the SAOS data also scales well into the master curve (Graph 2(B)) strengthens 

the validity of the collapse and rules out the possibility of slipping during our 

measurements.  

 

Relevant information can also be obtained from the situations in which a poorer 

collapse was obtained. This happened when we used the volumetric 

magnetization measured on powder samples (as opposed to suspensions) as the 

average particle magnetization (Graph C of Figure 2), and when we represented 

the scaled static yield stress vs. o/T1T (see Graph D of Figure 2 and eqs. 1 and 

4) as typically done in MR literature
21,22

. The magnetization process of the 

powder samples differs from that of the suspensions, mainly because particles 

in suspension can move more easily and form columnar structures. The 

magnetization as measured in a suspension provided a better scaling (Graph B 

as opposed to Graph C in Figure 2) because this magnetization is more 

representative of the process that actually takes place in the 

magnetorheometer
23

. The poorer collapse when oT was used as the scaling 

parameter can be explained in terms of the reasons mentioned in the 

introduction: the non-trivial dependence of oon T, and the fact that for finite 

separations T and o vary with position in the vicinity of the particles, and � is 

no longer proportional to oT. 
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It is also interesting to note that the data collected from the two MR fluids 

prepared with rod-like particles (both of magnetite and iron) failed to fall on the 

master curve (see Figure 3). In both cases the deviation from the master curve is 

greater at lower particle magnetization, and becomes smaller as the particle 

magnetization grows. There are a number of studies dedicated to the 

magnetorheology of suspensions of non-brownian elongated particles. When 

they are compared under similar experimental conditions to MR fluids prepared 

with spherical particles, several authors have observed a larger yield stress
8,24,25

 
 

and larger storage modulus
17

. Our group observed in the past
8,17

  that for MR 

fluids prepared with rod-like particles: i) those two rheological parameters (òy 

and 	’ ) started increasing at lower external fields, which indicated that, 

compared to the sphere-based fluids, the rod-based fluids underwent 

structuration at lower fields; and ii) both 	’ and òy were larger for rod-based 

than for sphere-based MR fluids for small and intermediate fields, but the 

difference became smaller at larger external fields as particle magnetization 

approached saturation. The earlier structuration and the larger 	’ and òy of the 

rod-based MR fluids was attributed to an easier magnetization (i.e. higher 

susceptibility) of the elongated particles because of their lower demagnetization 

factor along their long axis. Such easier magnetization, compared to spheres, 

was actually confirmed by measuring the magnetization of suspensions of iron 

spheres, rods and plates [8]. Gómez-Ramírez et al.
26

 also attributed the larger 

dynamic yield stress observed in suspensions of cobalt microfibres to the 

enhanced susceptibility of the aggregates of fibres compared to those 

composed of spheres. The data now presented in Figure 3, however, strongly 

suggests that the static yield stress of fibre MR fluids is only partially controlled 

by magnetostatic particle interactions, and that other contributions, such as 

interparticle friction, must be important particularly at low fields. The data 
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points for the rod-based MR fluids eventually tend to converge with the master 

curve, indicating that at larger particle magnetization the contribution of the 

magnetostatic interactions to the static yield stress overcomes the non-

magnetic contributions. 
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FIG. 3 Scaled static yield stress vs. average particle magnetization 〈�p(T )〉, as calculated 

from magnetization curves of the suspensions using eq. (3) (i.e. same as Figure 2(B)), this 

time including data corresponding to MR fluids prepared with porous iron rod-like 

particles and magnetite rod-like particles. 

 

Finally, it is also worth mentioning that when òdynamic was considered (Figure 4) 

the collapse of the curves was also very good, but poorer than in the case of òstatic, especially at low values of 〈�p〉. The static yield stress is the minimum 

stress required to start the flow, whereas the dynamic yield stress is viewed as 

the stress needed to continuously break the aggregates that reform by the 

influence of the field once the flow has started
1
.  In fact, òdynamic was estimated 
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by extrapolating to zero shear rate the fitting of a Bingham plastic equation, 

which means that òdynamic is determined by a fit to data points of non-negligible 

shear rate. The static yield stress thus depends almost exclusively on the 

interparticle magnetic interactions (with the exception of the rod-based MR 

fluids, as discussed in the paragraph above), which explains the good collapse of 

the òstatic(〈�p〉) curves. The poorer collapse of the data points with low values of 

〈�p〉 in Figure 4, which are precisely the points with the lowest relative 

contribution of the magnetostatic forces, suggests that òdynamic depends on 

other factors, such as hydrodynamic interactions between particles or 

aggregates. This is in accordance with the model mentioned above (the dynamic 

yield stress as the stress needed to continuously break aggregates) and with the 

fact that points of non-negligible shear rate determine its value. 
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FIG. 4  A: Dynamic yield stress vs. external field. B: Scaled dynamic yield stress versus 

average particle magnetization. Points with 〈�p〉 below 286 ��/� where not used for the 

fit. The particle volume content of each suspension is indicated as a percentage in the 

legends. 



268 
 

The equation of the linear fit shown in Figure 4 is: 

 

 
1.2310824.1 Particle

dynamic
M−×=

φ
τ

 

 
(7) 

 

 

Data points with 〈�p〉 below 286 ��/� were not considered for the linear 

regression. 

 

IV. CONCLUSIONS 

 

To sum up, in this letter we have shown that the average particle magnetization, 

as obtained from magnetization measurements of the suspensions, is a good 

parameter for the scaling of the yield stress (static as well as dynamic) of 

conventional MR fluids at low particle concentration. We were able to collapse 

into a single master curve data points taken on suspensions prepared with 

particles of different saturation magnetization and even morphology. The 

collapse was reasonably good for a large range of particle magnetizations, 

whose limits were set by our magnetometer sensitivity and by magnetic 

saturation. The collapse failed for suspensions prepared with rod-like particles, 

which was indicative of other contributions (apart from magnetostatic forces) to 

the yield stress. The existence of these contributions, such as interparticle 

mechanical friction, is reasonable given the pronounced shape anisotropy of the 

rod-like particles. The collapse was slightly poorer for dynamic yield stress data 

than for the static yield stress data, especially at low particle magnetizations. 

The reason must be again an additional contribution from non-magnetostatic 

forces, in this case probably hydrodynamic interactions, to the dynamic yield 

stress. 
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Abstract 

 

The rhelogical behaviour of unsheared magnetorheological fluids are studied 

using Brownian dynamics simulations and experiments. In the simulations, we 

use monodisperse and polydisperse systems, and study the structure formation 

and the stress autocorrelation function, that provide the shear moduli and shear 

viscosity of the system. Whereas the monodisperse system crystallizes, as 

identified by the pair distribution function, polydispersity hinders crystallization 

and allows a comparison with the experiments. These are performed with 

carbonyl iron particles in different Newtonian solvents (silicone oils and a 

glucose syrup). Special attention is paid to the equilibration of the samples. A 

rescaling of the viscosity is introduced that collapses data from different 

systems and shear rates, leaving solely the dependence on the external 

magnetic field. The simulation data can be collapsed onto the same curve if the 

magnetic field is also rescaled, due to the approximations involved. The master 

curve shows the expected quadratic dependence on the external field. The 

shear moduli from simulations and experiments agree qualitatively; both moduli 

develop a shoulder at low frequencies, indicating a slow mechanism of stress 

relaxation connected to structural relaxation. 

 

I. INTRODUCTION 

 

Magnetorheological (MR) fluids are known because of their magnetic field-

tunable rheological properties. In the absence of a magnetic field, MR fluids 

typically behave as Newtonian fluids. However, under the application of a 

magnetic field, particles aggregates to form chainlike structures aligned in the 

direction of the field, the so-called magnetorheological effect, first described 
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more than 60 years ago
1,2

. In magnetized MR fluids, therefore, the viscosity can 

increase by several orders of magnitude. For high enough fields MR fluids 

present a yield stress and highly elastic response. These kind of fluids are very 

good candidates for a wide range of applications, from mechanical systems such 

as shock absorbers, brakes and seismic vibration dampers to biomedical 

applications
3
, and sound propagation

4
 among others. 

 

Theoretical and experimental characterization of these systems and its 

rheological properties under different conditions have been widely studied by 

many researches
2,5-9

. Furthermore, besides previous experimental and 

theoretical works, dynamic simulation techniques have played a very important 

role in understanding the behaviour of MR and, more commonly, ER fluids
10-19

. 

Computational methods have been usually applied to investigate the formation 

of particle aggregates in presence of static electric or magnetic fields and how 

the microstructure behaves in small
13,20

 and large
15

 amplitude oscillatory shear 

flows, mainly focusing on the static and dynamic yield stresses. Most of the 

research efforts have assumed that Brownian motion is negligible
12-17

 but there 

are also some reports where thermal motion is considered in spite of the large 

size of the constituents
18

. However, most of the works cited previously focus on 

the solidified system either cristallized, in monodisperse systems, or 

amorphous. 

 

In this contribution we focus on the rheological behaviour of the equilibrium 

state in the presence of uniaxial (DC) magnetic fields, up to the formation of 

rigid structures, i.e. a solid phase. To achieve this goal we make use of both 

Brownian Dynamic Simulations and experiments.  
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The dipolar approximation for the particle-particle interaction is taken in the 

simulations, plus a hard-sphere-like repulsion
12

. Under no flow conditions, only 

competition between dipolar interaction and Brownian force is relevant, and 

the rheological behaviour is obtained from the microscopic stress tensor. In the 

range of low magnetic field strengths, thermal motion dominates and weak 

structures break down continuously. Upon increasing the field strength, we 

observe the formation of solid columnar structures aligned with the external 

field, in competition with the Brownian motion; in the case of monodisperse 

particles, an hexatic crystal phase is reached. In the experiments, carbonyl iron 

particles were used because of their high and fast magnetic response. We focus 

on the the region of low magnetic fields and low shear rates, to allow direct 

comparison with simulations. Viscosities from simulations and experiments can 

be properly presented to fall onto the same master curve, showing a cuadratic 

depence with the external magnetic field, as predicted by the theoretical 

models. The comparison of the shear moduli also shows qualitative agreement. 

The fluid-solid transition point, however, is poorly defined. 

 

The next section deals with the simulation part of the work; the simulation 

method as well as the characterization of the structural aspect and the rheology 

in the equilibrium state in these systems are presented. The next section 

(Experiments) is concerning to the experimental procedure and results from 

rheological tests. In Section IV (Discussion) the comparative study between both 

techniques is shown and finally, conclusions are exposed in the last section 

(Conclusions). 
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II. SIMULATIONS 

 

The use of simulations in MR fluids has been usually carried out in the large-

particle limit, where Brownian motion can be neglected, simplifying the 

simulation method. Here, we retain this contribution since we study quiescent 

systems. This allows us to study the fluid regime in MR fluids, where the 

magnetic forces are not strong enough to render the system solid. A crucial 

point in this case is the equilibration of the system, which we monitor using 

structural parameters, such as the potential magnetic energy and the average 

number of neighbors per particle, and dynamical ones, particularly the mean 

squared displacement (MSD), and bond correlation and shear stress correlation 

functions. We concentrate on the structure and dynamics of the equilibrated 

systems, and not on the kinetics of structure formation. 

 

As mentioned above, the simulations and experiments are performed at a 

concentration of 5 ���%. Although typical volume fractions used in mechanical 

applications are commonly much higher, around 30 − 40 ���\%, we use this 

low volume fraction to reduce the computational time and minimize the effect 

of magnetic multipolar interactions, while retaining the main driving mechanism 

for MR effect. 

 

Upon increasing the strength of the dipolar interaction, elongated clusters 

aligned with the external field form. More intense fields cause the formation of 

transient columns that span through the system, but the system is still in the 

fluid state, as observed by the MSD and correlation functions. In particular, the 

stress correlation function decays to zero, giving a finite viscosity. 
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A. Simulation Details 

 

We perform Brownian Dynamics Simulations of both monodisperse and 

polydisperse systems, composed by E = 1000 spherical particles. The equation 

of motion of particle A is given by the Langevin equation: 

 

 �KjJ�K = � |JKLL − #KjJ$K + �JK  
(1) 
 

 

where �K  and #K  are the mass and friction coefficient with solvent of the 

particle, |JKL is the interaction force between particles A and M (core repulsion 

plus dipolar interaction), and �JK  is the Brownian force. No hydrodynamic 

particle-particle interaction is considered. In the case of the monodisperse 

system, all particles have the same mass, �+, radius, &, and friction coefficient #+ . On the other hand, in the polydisperse system the particle radius 

distribution is flat, between 0.9&N and 1.1&N, with &N the average radius, giving a 

polydispersity index of 5 % as calculated by: 

 

 %�� = ∑ �/&K − &N1H�K�) Ea  

(2) 
 

 

The particle mass is calculated as �+/&K &N⁄ 1� , and the friction coefficient 

as #+ &K &N⁄ . The system is simulated in a cubic box (�¹ = �~ = �º = 43.76& for 

the monodisperse system and �¹ = �~ = �º = 43.92&N for the polydisperse one; 

in both cases 5 ���% ) with periodic boundary conditions in the three 
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dimensions. The external field is applied along the s-direction, what sets the 

dipolar interaction: 

 

 |J)H¤x¥ = 3�+   1ZjJKLZ¡} yV3 cosH kKL − 1Wĵ + sin 2kKL kz{ 

 
 

(3) 
 

 

where jJKL denotes the relative position between two particles and kKL  is the 

angle that jJKL forms with the magnetic field direction, ĵ and kz represent the unit 

vectors in the direction defined by the pair of particles and the angular vector, 

respectively. The parameter �+ sets the strength of the attraction and is given 

by the physical parameters of the system. In MR fluids, �+ = 4X�+�f=oH&K�&L�T+H where T+ is the modulus of the external magnetic 

field strength, �+ is the magnetic permeability of the vacumm, �f= = �f\�+~1 

refers to the relative magnetic permeability of the continuous phase and o is 

the contrast factor: 

 

 o = �. − �f�.+2�f  
 

(4) 
 

 

where�f and �. are the magnetic permeabilities of the continuous medium and 

particles, respectively. 

In the simulations, �+ is the control parameter; and in order to compare with 

experiments, the magnetic field is calculated using the average radius in the 

expressions given above.  
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FIG. 1 Total interaction potential between particles of different sizes and with 

different angles: black lines correspond to &K = &L = 0.9, red lines to &K = &L = 1 andblue 

ones to &K = &L = 1.1. Continuous lines indicate the interactionwith kKL = 0 andbroken 

lines to kKL = X 2� . Inset: schematic representation of the coordinate system, jJKLand kKL for 

the dipolar interaction. 

 

In addition to the dipolar interaction, the core-core repulsion is modeled by the 

following exponential form: 

 

 |JKL=r. = − 3�+16&} exp  −100 ZjJKLZ − V&K + &LW&K + &L ¡ ĵ 

 
 

(5) 
 

 

This functional form of the core-core repulsion correctly describes the lateral 

attractive interaction between columns
12,21

.  
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The equations of motion were integrated using Heun's algorithm
22

 for the 

Langevin dynamics. The average particle radius, &N, average particle mass, �� , 

and thermal energy, ���, are the units of length, mass and energy, respectively. 

The solvent friction coefficient is set to #+ = 10 ����� &N⁄ , and the equations 

of motion were solved with a time step :0 = 5 × 10(}�/�&H1 / ���1⁄  

 

B. Simulation results 

 

The structure and rheological behaviour of equilibrium states from hard spheres 

to strongly interacting systems (�+~100) are studied using suitable parameters, 

discussed in the following. Equilibration of the system is monitored by structural 

and dynamical parameters (energy, number of neighbours, pair distribution 

function, mean squared displacement, bond and stress correlation functions, 

and viscosity), and the equilibrium values were taken from the long time 

plateaux. The comparison of the monodisperse and polydisperse systems 

reveals important differences that ultimately lead to the frustration of 

crystallization in the polydisperse one. We discuss first the structure and then 

move on to the rheological behaviour of the equilibrium states. 

The mean number of neighbours per particle is presented in the upper panel of 

Figure 2 as a function of the parameter �+; two particles are considered 

neighbours when the distance between them is less or equal than (&¡ + &L +0.5&N). At low �+the monodisperse and polydisperse systems agree, whereas the 

value for the monodisperse system is larger for strong interactions. As expected, 

polydispersity provokes a less optimal arrangement of the particles. 

Interestingly, in both cases the number of neighbours is above two, indicating 

the formation of thick columns and not only single chains; i.e. lateral 

aggregation of the clusters is taking place. This is confirmed by visual inspection 
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of the system. At low �+, elongated clusters form, that grow and form chains 

that percolate in the s −direction. At high �+, the chains aggregate laterally to 

form the columns shown in the snapshots for the mono and polydisperse 

systems. 

Despite the larger number of neighbours in the monodisperse system, the 

energy per particle is larger in the polydisperse system (in absolute value), as 

shown in the lower panel of Figure 2. The potential energy is calculated as: 

 

 £¤x¥ = 1E � �+
�

K¦L   1ZjJKLZ¡� /1 − 3 cosH k1 

 
(6) 
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FIG 2. Upper panel: Mean number of neighbours per particle vs. �+ for both monodisperse 

and polydisperse systems and two snapshots of the microstructure in each case. Lower 

panel: Evolution of potential energy with �+ for both cases. 
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where �+ ∝ &K�&L�, as mentioned above. The polydisperse system has a larger 

energy since the contribution from pairs with big particles is much larger than 

average particles, and also have more neighbours.  

 

The local structure is studied by means of the pair distribution function. Due to 

the anisotropy induced by the interaction potential, the contributions to the 

function parallel and transversal to the external field must be separated. The 

parallel contribution is shown in Figure 3 for �+ = 60 for the monodisperse and 

polydisperse systems.  

 

Whereas the monodisperse system shows clear peaks and dips, indicating the 

long range ordering within the columns, in the polydisperse case the pair 

distribution function does not show this order.  

 

 

FIG. 3 Pair distribution functions for both monodisperse and polydisperse systems at �+ = 60 in the direction of the magnetic field. 
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The crystallization order parameter ¾¿ defined by Steinhardt et al.
23

 has been 

also used to the check the local ordering of the particles: 

 

 ¾¿ = À 4X2� + 1 � Á1E � � Â¿¤VkL , eLW�Ã
L�)

�
Ä�) ÁH¿

¤�(¿  

 
 

(7) 
 

 

 where E is the total number of bonds between nearest neighbours, 
Äis the 

number of nearest neighbours of a particle �, and Â¿¤   are the spherical 

harmonics that depend on the angles in spherical coordinates kL  and eL; the 

case � = 6 is particularly useful in identifying different crystalline structures. The 

values for Q6 in the mono and polydisperse systems for �+ = 60 are presented 

in Figure 3, and indicate that the monodisperse system is crystallized while the 

polydisperse one is amorphous. 

 

We move now to the study of the rheology of the system. This is based on the 

auto correlation function of the non-diagonal components of the microscopic 

stress tensor. This is defined as  

 

 !ÅÆ = � �K�K,Å�K,Æ
�

K�) − � jKL,Å|KL,ÆKÇL  

 
 

(8) 
 

 

where �K,Å refers to ÈÉÊ  component of the velocity of particle A. The correlation 

function of the non-diagonal component is calculated as 
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 ËÌÌ/01 = 1Í��� � 〈!ÅÆ/01!ÅÆ/01〉ÅÇÆ  
 
 

(9) 
 

 

where the brackets indicate ensemble average and !ÅÆ refers to a non-diagonal 

component of the stress tensor; Í is the volume of the system and ��� is the 

thermal energy. Given the anisotropy of the system, we average this correlation 

function using the components that contain the s direction, !)�and !H�, and 

present the results in the upper panel of Figure 4 for different states of the 

polydisperse system. This function decays to zero in the fluid, as shown, but to a 

finite value in the solid, and shows a two-step decay in a viscoelastic fluid, which 

appears as a shoulder for �+. The short-time decay is associated to ballistic 

motion, whereas the long time one corresponds to the structural relaxation. 

This mechanism relaxes stress for longer times with increasing �+, i.e. the 

system is becoming a solid, as the structure results presented above showed. 

 

The Fourier transform of ËÌÌ/01 gives the complex shear modulus, 	/51 =

A5ËÏÌÌ/51, which is experimentally accesible by dynamic oscillatory shear 

rheology; 	/51 = 	′ + A	′′ , with 	′  and 	′′  the storage and loss moduli, 

respectively. Fluid states are characterized by 	�� > 	′, while in solid ones 

	� > 	′′. The moduli are presented in the lower panel of Figure 4 for different 

fluid states, with increasing �+. Looking at the region of low frequencies, the 

energy dissipation dominates (	�� > 	′) and the conventional cuadratic and 

linear dependence on angular frequency of 	′  and 	′′ , respectively, are 

observed. These behaviours crossover with decreasing frequency, reaching the 

solid-like or the elastic behaviour (	� > 	′′), where 	′ becomes constant. Upon 

increasing �+, both 	′ and 	′′ grow, indicating that the system becomes more 
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viscous but also more elastic. More notably, the region with liquid-like character 

shrinks, and both 	′ and 	′ show a shoulder at low frequencies, signalling the 

appearence of the mechanism of stress relaxation at longer times mentioned 

above. 

 

 

FIG. 4 Upper panel: Stress correlation function for different states, as labeled, in 

polydisperse systems. Lower panel: Viscoelastic moduli as a function of the angular 

frequency for four different control parameter values. 
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This solidification of the system can be noted using the viscosity, which should 

diverge at the fluid-solid transition point. The viscosity can calculated using the 

Green-Kubo relation, - = 
 ËÌÌ'0Ó+ , but computationally, it is more efficient to 

calculate it using the Einstein relation: 

 

 - = limÉ→Ó -/01 = 12Í�� limÉ→Ó 10 〈∆�H/01〉 
 

(10) 
 

 

where ∆�/01 is defined as follows: 

 

 ∆�/01 = �/0 +  1 − � = � � !ÅÆ/0�1'0′ÅÇÆ
É��

�  

 
(11) 

 

 

where the summation is restricted to the 130ℎ  and 230ℎ  components, as 

discussed above. Figure 5 presents the evolution of -/01 for different states with 

increasing �+. The shear viscosity is read from the long time plateau, which 

increases with �+. The results are presented in Figure 6, together with the 

diffusion coefficient and the time scale for bond break-up (see below). For the 

range of �+ studied here, the viscosity raises more than two decades. Note, 

however, that since this is a Brownian system, the actual viscosity of the system 

should be calculated as-+ + -, where -+ is the solvent viscosity, -+ = ���·. 

The self diffusion coefficients presented in Figure 6 were obtained from the long 

time slope of the mean squared displacement of the particles. At low values of �+ (low magnetic fields) the diffusion coefficients are close to 
)
�� = 0.1 since 

particle motion is governed solely by Brownian forces.  
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FIG. 5 Evolution of - in several equilibrium states for different values of the control 

paremeter. The viscosities are given by the long time plateaux. 

 

 

FIG. 6 Dynamic parameters as a function of �+ viscosity (asterisks), inverse diffusion 

coefficient in the i-axis (circles), u-axis (up triangle) and s-axis (down triangles), and time 

scale for bond break-up (squares). 
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When the magnetic field increases, a deviation from this trend appears, 

connected with the formation of clusters and columns, and a significant slowing 

down of the dynamics is observed. Notably, the diffusion coefficient 

corresponding to the s-axis falls down faster than other coefficients because the 

magnetic field is parallel to saxis and particles are confined along the vertical 

columnar aggregates described above. In the i  and s  axis, the diffusion 

coefficient also decays when the trapping inside the columns is strong enough, 

although the interaction itself does not confine it. 

 

This trapping is however transient, as the system is in the fluid states for all the 

values of �+  studied here, as noted by the finite viscosity and diffusion 

coefficient. This can be confirmed by studying the bond correlation function, 

which is calculated as the fraction of neighbours that a particle retains after 

time 0. This function decays to zero for all the states studied here, as expected 

for fluid states, but the decay is slower with increasing �+. The time when this 

function decays to 0.5 is defined as ò�, and is included in Fig, 6. ò�  increases 

with �+ over two decades for the range studied. It is interesting to note that 

above �+~20 the three dynamic parameters presented in the figure evolve in 

the same manner, after a trivial rescaling. This value of �+ corresponds to the 

point where clusters are observed in the system, i.e. the interaction forces 

dominate over Brownian motion.  

 

Finally, we wish to note that for the monodisperse system at �+~50, the mean 

squared displacement shows long time trapping, i.e. the diffusion coefficient is 

very small, and the bond correlation function shows a long time plateau and 

does not decay to zero, i.e. ò�  diverges. These features are connected to 

crystallization, and are completely absent in the case of the polydisperse 
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system. Crystallization is a fluid-solid transition, as identified by the dynamic 

parameters, but the polydisperse system also shows an important increase of 

the viscosity, albeit at larger magnetic fields. 

 

III. EXPERIMENTS 

 

In this section we show the experimental protocol which was followed to 

prepare the MR fluids and the rheological techniques employed. Special 

attention was paid to ensure equilibrated systems prior to running the tests. 

The low shear viscosity was ascertained by running steady shear flow 

experiments. 

 

A. Synthesis of the MR fluids   

 

MR fluids were formulated by dispersing carbonyl iron spherical particles with a 

diameter '~900 ± 300 
� (HQ grade, BASF) --as determined by SEM--, in two 

Newtonian silicone oils of different viscosities 20 and 500 �%& ·  , Sigma-

Aldrich) and in glucose syrup of high viscosity (793 �%& ·  , Cargill), at a particle 

concentration of 5 ���%. This volume fraction was taken in order to directly 

compare with simulations. To prepare samples we took a carbonyl iron density 

of 7.87 �/��� and a silicone oil density of 1 �/��� at 25 ℃. In the case of 

samples based on glucose syrup, the density of the solvent was 1.45 �/���. 

Homogenization of the suspensions was achieved by dispersing the sample 

manually (with a spatula) and subjecting the suspension to sonication in an 

ultrasonic bath (Selecta, 360 �). 

 

 



292 
 

B. Rheological characterization 

 

Rheological tests were performed using a stress-controlled rheometer (MCR 

501, Anton Paar). On the one hand, a custom-built fixture was designed to get 

homogeneous fields and to achieve sufficient torque resolution (0.1 ��E) at 

low magnetic field strengths (below 10 ��/�) for the less viscous (oil-based) 

samples. In this case a glass plate-plate geometry with a diameter of 43 �� 

was combined with a solenoid having 2000turns. On the other hand, a 

commercial MRD180 magnetorheology fixture was employed for the glucose 

syrup-based sample. This involves the use of titanium parallel plates (diameter 20 ��). A gap of 300 ��  was always chosen as frequently done in the 

literature
7
.  

To ensure that experimental measurements were run in equilibrium, prior to 

the test, the system was stabilized under magnetic fields during a long period of 

time (~2 × 10�  ). To monitor the system stabilization we did perform small-

amplitude oscillatory shear time sweeps (Amplitude= 0.01 %, Frequency= 1 Ts). As a way of example, in the upper panel of Figure 7 we show the time 

evolution of the elastic modulus for the sample based on glucose syrup, for 

different magnetic fields. These curves demonstrate the slow dynamics of the 

particles within the glucose syrup:  
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FIG. 7 Upper graph: evolution with time of the elastic moduli for different external 

magnetic fields for the glucose syrup with particles. Bottom graph: shear viscosity of the 

glucose syrup sample as a function of time in a conventional creep test. In this case, T+ = 250 ��/� and the constant stress was 150 %&. 

 

particles need a certain amount of time to form stable structures under a 

magnetic field. It is also important to remark that whether the system appears 
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to be equilibrated or not depends on the measuring time scale. With this in 

mind, the figure reveals that up to 20 ��/� , 	′  the viscoelastic modulus 

reaches a clear plateau, i.e. the system is in the fluid state, whereas at high 

fields, above 250 ��/�, the system shows the typical behaviour of aging (a fast 

increase at short times followed by a slow growth), i.e. the system is solidifying. 

The latter was corroborated by measuring the instantaneous shear viscosity in 

creep tests (lower panel of Figure \ref{estabg}) at a constant shear stress of 150 %& during a long time period. It is not clear if the states between 20 ��/� 

and 250 ��/� will reach equilibrium at longer times or not; the transition from 

fluid to solid is located between these two values. 

 

Stress controlled tests were carried out using both geometries mentioned above 

and we explored rheological properties over a wide range of magnetic fields, 

from 0 to 350 ��/� (see Figure 8).This range was limited in the case of samples 

based on silicone oil due to the difficulty to control the temperature of the 

external copper coil at fields around 20 ��/� . Furthermore, we took a 

sufficient time interval length (30  ) over each point to achieve a steady shear 

viscosity value at low-shear rates. Once the shear viscosity curves are obtained, 

we are in conditions to calculate the shear viscosity at a convenient shear rate 

value and in particular at zero shear rate by extrapolation.  

 

Note that all states show a plateau at low shear rates; with increasing magnetic 

field, this plateau moves to higher viscosities and lower shear rates. This, 

however, does not indicate that the system is in equilibrium, as discussed 

previously. As the system ages, the plateau displaces up and to lower shear 

rates -- the actual value of the plateau, thus, depends on the waiting time
26,27

.  
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FIG. 8 Conventional stress controlled test results for the sample based on glucose syrup 

for several magnetic fields. 

 

 

FIG. 9 Storage (	′) and loss (	′′) moduli for different magnetic fields, as labeled, for the 

samples based on glucose syrup (Amplitude=0.01 %) 



296 
 

In order to make a direct comparison with the simulations, the storage and loss 

moduli have been determined experimentally by small-amplitude oscillatory 

frequency sweeps. This allows also an estimation of the transition point from 

the fluid to the solid state, given by the crossover from 	′′ > 	′ to 	′ > 	′′, as 

discussed above. The moduli are presented in Figure 9 for different magnetic 

fields. The expected linear and quadratic trends with frequency are obtained for 

	′′ and 	′, respectively, at low fields, with 	′′ > 	′, whereas for large magnetic 

fields both moduli show a shoulder at low frequencies. Also, for�+~80 ��/� , 
	′ ≈ 	′′ in the range of 5 presented, giving an estimation of the transition 

point. 

 

IV. DISCUSSION 

 

To complete this work, in this section we present a comparative study between 

results from simulations and experimental tests. We focus first on the viscosity, 

although a direct comparison cannot be performed because: (i) in the 

simulations it is assumed that particles only interact via magnetic dipolar forces, 

neglecting the possible remnant magnetization of particles and other 

interactions (van der Waals, electrostatic, ...); (ii) the solvent viscosity is fixed in 

the simulations to a low value (since hydrodynamic interactions are not 

considered, it only introduces a trivial time scale). Due to these reasons, we 

propose the following rescaling for the viscosity to carry out the comparison: 

 

 - G -�
-]�+ G -�

 
 

(12) 
 

 



297 
 

where -]�+ corresponds to the shear viscosity at zero magnetic field and -� is 

the solvent viscosity. In this way, we correct for the two effects discussed above. 

We present the shear viscosity using this scaling for different values of the shear 

rate and different systems in Figure 10. Note that the data indeed collapse onto 

a master curve for all shear rates and systems, although the bare viscosity 

depends on both of them. This collapse indicates that the proposed scaling 

allows a comparison between different systems, probing only the dependence 

on the external magnetic field. 

The comparison between experiments and simulations is shown in Figure 11 To 

collapse the computational results as shown in the figure, the i −axis was 

rescaled by a factor 18. The reason for this factor is unclear, but it is not 

surprising that a scaling factor for the magnetic field is needed. Different 

possibilities are discussed in the following. 

 

 

FIG. 10 Normalized viscosities as a function of the magnetic field for different shear rates 

and systems, as labeled. 
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FIG. 11 Comparison between simulations and experiments using the representation 

proposed in Eq. (12), as a function of the magnetic field. Different symbols represent the 

rescaled viscosity for different systems, as labeled. 

 

In the simulations the simple dipolar interaction between particles is used, with 

strength �+ = 4X�+�f=oH&K�&L�T+H , where it is assumed that the magnetic 

permeabilities of the particles and solvent (and the contrast factor, o) are 

constant with the magnetic field. This can be check using the Fröhlich-Kennelly 

equation
28

: 

 

 �.= = �.�` = 1 + �K\_]�
�K�\_]�

 

 
 

(13) 
 

 

which models the variation of the magnetic permeability of the particles, �., 

with the magnetic field. Here  
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�K is the initial magnetic susceptibility and �� is the saturation magnetization of 

the particles. We take for our system, �K = 131 and �� = 1990 Ä�¤  29
. The 

variation of the relative magnetic permeability of the particles directly affects 

the calculation of the contrast factor, o which, in turn, modifies the real value of T+. Despite of that, o remains practically constant (~1) over a wide range of 

magnetic fields (Figure 12, dashed line). The effect on the calculation of T+ is 

thus small. 

 

Another possible explanation for the scaling of the magnetic field lies on the 

effect of the particles on the magnetic field, but due to the low density of 

particles it is expected to play a minor role. Also, the interaction can have 

influence from quadrupolar and higher terms, which are neglected since the 

dipolar interaction is considered as a good approximation. It must be also 

remembered that the system is polydisperse both in the simulations and 

experiments, and the average radius is taken to calculate the interaction 

strength. The polydispersity is, however, different in both systems, log-normal 

like and much larger in the experimental one. 

 

The viscosity of the monodisperse system is also included in Figure 11. These 

data are also collapsed onto the same curve, but starts to deviate when 

crystallization occurs, as discussed previously. The master curve obtained by the 

collapse of all data can be described by a quadratic dependence of the viscosity 

on the magnetic field, shown in the figure as a discontinuous line. This 

functional form is predicted by the particle magnetization model
2
, indicating the 

validity of the model for the range of magnetic fields studied here. 
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FIG. 12 Evolution of o(dashed line) and �.=(solid line) as a function of the external 

magnetic field. 

 

The viscoelastic moduli obtained from simulations and experiments can also be 

compared qualitatively. Both moduli grow with increasing magnetic field, and 

develop a shoulder at low frequencies, indicative of the slowing down of the 

structural relaxation. Whereas the experimental system reaches the point 

where 	′ ≈ 	′′, giving an estimate of the fluid to solid transition, in the 

simulations 	′′ >  	′ for all states (except at high frequencies). 

 

V. CONCLUSIONS 

 

Brownian dynamic simulations and experimental techniques have been used to 

study of magnetorheological fluids. We focus on the rheological properties of 

unsheared systems. The study of the structure of the system shows that thick 

columns form for moderate field strengths. The monodisperse system 

crystallizes, while the polydispersity effectively suppresses it. A scaling of the 
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viscosity is presented that allows comparison of different experimental systems 

and shear rates. The simulation results, can also be collapsed onto the same 

master curve, with a suitable scaling of the magnetic field. This scaling is 

neccessary due to the approximations involved in the simulations (dipolar 

interaction, effective field, polydispersity,...). The master curve where all 

systems collapse shows a quadratic behaviour with the magnetic field. The 

shear moduli have also been obtained experimentally and in simulations, and 

agree qualitatively. Both moduli develop a shoulder at low frequencies upon 

increasing the external magnetic field. These moduli also give us an estimation 

of the fluid to solid transition point. 
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STRONGLY VISCOELASTIC MR FLUIDS 

 

Up to now, the solvents used in the formulation of MR fluids have been 

Newtonian fluids. In this section, as a complementary part of our work, we are 

going to study MR fluids based on viscoelastic liquids, specifically Boger fluids. It 

is worth to remark that this section is far to be complete and only preliminary 

experimental results will be included. 

 

There are many reasons to explore these new fluids but, in our case, there were 

mainly two ones which led us to carry out this study: the high viscosity of Boger 

fluids and its viscoelastic properties. On the one hand, sedimentation process is 

inherent in MR fluids due to the large particle density and therefore, reducing 

the settling rate is very important. One possibility is to modify the medium by 

adding thixotropic agents, surfactants, etc. or, by changing the solvent. Then, 

the high viscosity (~2 %& ·  ) of Boger fluids plays a relevant role in this sense. 

On the other hand, intrinsic viscoelastic properties of Boger fluids can introduce 

new and interesting effects in the rheological response. Therefore, this study 

leaves the door open for further research. 

 

The formulation of these new MR fluids is the following: as a solid phase, we 

used silica coated carbonyl iron particles ('~1 ��) to prevent degradation of 

iron in presence of water; a Boger fluid composed by glucose syrup, distilled 

water, a very small amount of polyacrylamide and sodium azide
1
 (to avoid the 

evolution of microorganisms) was used as the solvent.  

To characterize these systems, we performed conventional rheological tests, 

such as strain amplitude sweep tests, small amplitude oscillatory shear tests or 

steady shear flow tests. The used devices were both a MCR 501 torsional 
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rheometer (Anton Paar) with a parallel-plate (20 ��) geometry and a Haake 

Caber 1 extensional rheometer (Thermo Fisher Scientific). 

 

Boger fluid  

 

The first thing that we did was to characterize the Boger fluid without particles. 

As in the case of Newtonian fluids, the dissipation of energy dominates 

(	�� > 	′) in the rheological response of the Boger fluid. However, the elastic 

part or the storage modulus (	′) in the response is non-negligible, contrary to 

Newtonian fluids. In Figure 1 viscoelastic moduli of the Boger fluid are shown as 

a function of the strain amplitude and the angular frequency. In both tests the 

predominance of the loss modulus (	′′) is evident over the entire frequency and 

strain amplitude ranges. 

In steady shear flow tests, the elastic character of the Boger fluid becomes more 

evident, as we can observe in Figure 2, where the first normal stress difference 

(E) = !)) G !HH; E) = 0 in Newtonian fluids) is plotted against the shear rate. 

Also in steady shear flow tests, the appearance of a normal force (|�) is 

remarkable. Therefore, despite of the small amount of polyacrylamide in the 

solvent, this polymer greatly alters the rheological properties of the medium. 

 



307 
 

10-2 10-1 100 101 102 103

100

101

102

 G' 
 G'' 

 

 

G
', 

G
'' 

(P
a)

Strain (%)

a)

 

10-1 100 101 102

10-1

100

101

102

103

b)
 

 

 G' 
 G''

G
', 

G
'' 

(P
a)

ω (s-1)
 

FIG. 1 In a), viscoelastic moduli are presented versus the strain amplitude. In b), the 

moduli are shown as a function of the angular frequency. It is clear the non-negligible 

value of the storage modulus.  
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 FIG. 2  First normal stress difference as a function of the shear rate. Solid lines represent 

theoretical predictions1. 

 

Boger fluid with particles 

 

The next step was to add particles to the Boger fluid. Particle concentrations 

were  1 and 5 ���% and the system was subjected to a constant magnetic field 

strength of 259 ��/� . Again, the same experimental procedures were 

performed. We observed that the presence of particles in the solvent changes 

the rheological response by conferring more elasticity, even without magnetic 

field. This particle effect is also observed in the case of MR fluids based on 

Newtonian solvents. 

The storage modulus shows an enhancement when particles are added to the 

medium and the growth of 	′ is much more relevant when the system is under 

the presence of magnetic fields. Not only the storage modulus increases, but 
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also the loss modulus suffers important changes under those conditions. Due to 

that, it is possible to observe a clear transition from liquid-like to solid-like state, 

as we can see in the graph a) of Figure 3. A Boger fluid without particles exhibits 

a predominant energy dissipation state; at 5 ���%, energy dissipation and 

storage become almost the same over all the frequency domain (	′ ≈ 	′′); in 

presence of a high magnetic field, elastic behavior dominates (	� > 	′′).  
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FIG. 3 In the graph a), the viscoelastic moduli are shown versus the angular frequency. At 

b): shear stress-shear rate curves are shown for three different particle concentrations: 0, 1 and 5 ���%, with and without magnetic field. CI means Carbonyl Iron. 

 

This particle effect also manifests in steady shear flow tests, where the shear 

stress increases with the particle volume fraction and the magnetic field (see 

bottom graph in Figure 3).  

The normal force was also studied as it is shown in Figure 4. In this figure, 

apparently there seems to be a contradiction with that has been seen before: 

the normal force (directly related with the elasticity) decreases when increasing 

particle concentration and becomes negative in the presence of magnetic fields 

at 5 ���%. This apparent contradiction will be explained later. 
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FIG.4 Normal force exerted on the upper plate as a function of the shear rate. The 

maximum force is achieved by the Boger fluid without particles. 

 

Effect of the polyacrylamide 

 

An essential part of this study is the effect of the presence or absence of 

polyacrylamide in the solvent. In order to evaluate that effect, we carried out an 

experimental comparison between the MR fluid based on the Boger fluid and a 

MR fluid based on a liquid with the same composition and viscosity than the 

Boger fluid, but without polyacrylamide. Direct comparison of the storage 

modulus for both systems clearly reflects the effect of the presence of the 

polymer in the solvent, as we can observe in the graph a) of Figure 5. Without 

particles, the storage modulus that corresponds to the Boger fluid increases 

with 5 two orders of magnitude, while 	� for the Newtonian fluid remains at 

very low values. At a particle concentration of 5 ���%, both elastic moduli are 
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non-negligible, and a greater increase is observed in the case of the Newtonian 

fluid if compared with the MR fluid based on the Boger. It can be explained due 

to the intrinsic elasticity of the Boger fluid, that makes the storage modulus 

larger in the region of low frequencies. Finally, under the presence of large 

magnetic fields, there are no clear differences because magnetostatic forces 

dominate. Graph b) of Figure 5 corroborates the influence of polyacrylamide. 
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FIG. 5 In the upper graph, storage moduli as a function of the angular frequency are 

shown in presence and absence of a magnetic field. At the bottom, viscoelastic moduli are 

shown at a concentration of 5 ���%, under a constant magnetic field strength of 259 ��/�. 

 

In Figure 6, normal force for both MR fluids is shown. In this case, the presence 

of particles does not affect the response of the MR fluid based on the 

Newtonian fluid: normal force remains nearly constant and is very close to zero. 

It is clear that polyacrylamide in the solvent improves the viscoelastic response 

of MR fluids under different rheological tests. Other factor which also affects 

the behavior of the system is the presence of particles. We have seen that the 

normal force, in the case of the Boger fluid, decreases when particles are 

dispersed in the solvent and additionally, this diminution is greater when the 

volume fraction increases. On the other hand, the presence of particles in MR 

fluids based on Newtonian fluids produces an increase in the normal force and, 
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when the particle volume fraction increases, the normal force also increases. 

Therefore, the polyacrylamide and the particles somehow interact between 

them. We mentioned above that carbonyl iron particles were coated with a thin 

silica layer and it is well known that silica and polyacrylamide interact. The latter 

implies the plausible adsorption of polymer chains onto silica surface
2
 and this 

could affect the system elasticity due to the diminution in the number of 

dispersed polyacrylamide chains. This should be one of the main reasons to 

explain the decrease in the normal force. However, this effect has not been 

studied thoroughly in this work yet. 
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FIG. 6 Normal force versus shear rate, with and without particles, for MR fluids based on 

Newtonian and Boger liquids. 

 

 On the other hand, it is also known that polymer chains can break when they 

are subjected to mechanical stresses. To disperse well the particles in the Boger 

fluid it is necessary to stir the sample up to its correct homogenization, and this 
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requires some minutes of stirring. Therefore, stirring the sample may affect the 

elasticity of the solvent due to the degradation of the polymer chains. Thus, we 

carried out a systematic study to understand the dependence of the solvent 

elasticity on the strirring time (see Figure 7).  
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FIG. 7 Elongational relaxation time of the Boger fluid as a function of the stirring time. 

 

In elongational flow experiments, the elastic relaxation time is directly related 

with the elasticity of the system
3
. In Figure 7, we notice that the relaxation time 

decreases when the stirring time increases. This fact can be explained because 

of the correlation between the polymer chain length and the relaxation time: an 

increase in the stirring time produces a greater polymer chain degradation and 

therefore, a decrease in the elongational relaxation time. We can see that up to ~5 minutes, there is a sharp drop in the relaxation time and then, a plateau 

value is achieved. With this, we can now propose a qualitative explanation for 

the trends observed in Figure 4, where we observe that the curve which 
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corresponds to 1 ���% shows a larger normal force if compared with the curve 

at 5 ���%. This fact can be explained by arguing the following: on the one hand, 

due to the higher particle concentration, the adsorption of polyacrylamide onto 

silica surface may be more important and this implies the consequent decrease 

in the elasticity; on the other hand, dispersing less amount of particles requires 

lower strirring times, so degradation in the polymer chains is less important. 

Thus, elongational relaxation time is higher.  

 

CONCLUSIONS 

 

As a direct consequence of the high viscosity of the Boger fluid, we considerably 

can reduce the particle settling time if compared the viscosity of the Boger with 

the corresponding to silicone oils (~0.02 %& ·  ) . Boger fluid itself has enhanced 

elastic properties with respect to the Newtonian fluid with the same viscosity 

and implicitly improves the response of the global system. The presence of 

polyacrylamide in the medium, with and without iron particles clearly improves 

the viscoelastic properties (	’ and 	’’ increase) and it would give a higher 

efficiency in mechanical applications. The stirring of the sample reduces the 

length of polymer chains but the elasticity remains despite of this fact. The 

effect of stirring is most notable in the case of the normal force. The adsorption 

of polyacrylamide onto the silica surface of iron particles may be important in 

the diminution of the elasticity, but this effect has not been studied in detail yet.  
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CONCLUSIONS 

 

Within this last section, the main conclusions and reflections of this dissertation 

are extracted. 

 

First conclusion that should be shown is that magnetorheological fluids are very 

versatile systems and really good candidates to be considered as smart 

materials. We have seen that under the presence of an external magnetic field, 

rheological properties of these fluids are completely modified and can be 

controlled. As important modifications: the viscosity increases several orders of 

magnitude, the elastic behavior of the system overcomes the dissipation 

process and, if the magnetic field is sufficiently high, yielding processes make its 

appearance.   

 

As a second conclusion, it has become clear from Part I that the particle 

morphology is determinant in the MR effect and, more specifically the particle 

anisotropy, where it has been demonstrated that rod-based MR fluids gives the 

most efficient and the highest magnetorheological response, the lower 

gelation threshold and the highest viscoelastic moduli. In that sense, 

formulation of MR fluids based on rod-like particles is highly recommended for 

mentioned applications. Also it is highlighted the influence of the surface 

roughness, which translates in an enhancement in the MR response, so this 

must also be taken into account in commercial applications. Finally, it is worth 

to remark that depending on the material in the composition of particles, higher 

or lower values of the viscoelastic moduli can be achieved because of the 

intrinsic saturation magnetization of that material. In light of these results, iron 
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particles present higher viscoelastic moduli and therefore, they are more 

appropriate for industrial applications.  

 

A third conclusion concerns the effect of particle concentration in the MR 

effect. We have seen that below a certain particle volume fraction (Φc), 

magnetorheological response at low magnetic fields (below a magnetic field 

threshold or gelation threshold, Hc) is negligible and independent of the particle 

morphology. Therefore, from an industrial application point of view, it should be 

fundamental to exceed this value in the preparation of commercial MR fluids. 

Interestingly, we could observe that theories and interpretations applied to 

other physical systems such as attractive colloidal glasses and depletion colloidal 

gels, can extrapolate to our systems because many similarities are present in the 

rheological behavior, when volume fraction is over the critical particle 

concentration, Φc.  

 

From a fundamental point of view, as a fourth conclusion, we checked the 

validity of several theoretical models which try to explain the storage modulus 

and yield stress dependence on the magnetic field and the particle 

concentration. Also a new theoretical model, applied to rod-like particles, was 

proposed and tested, resulting in a very good agreement with experimental 

results, and manifesting the dependence of the storage modulus and the yield 

stress on the volume fraction (directly linked with the number of gap spanning 

aggregates), the square of the magnetic field and the relative dimensions of 

particles. On the other hand, by using a colloidal gel approach to understand 

mechanisms which involve the effect of the particle concentration on the MR 

effect, we satisfactorily explained the inconsistencies found in the MR fluid 

literature about this issue.  
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Also within the fundamental aspects, the Mason number reveals that there are 

two fundamental physical interactions which control the dynamics of sheared 

MR fluids: the magnetic and the hydrodynamic forces. Additionally, it is shown 

that in the case of MR fluids based on anisotropic particles (rods or plates), 

frictional forces between particles play an important role in the total 

contribution.  

 

As a fifth conclusion, Brownian Dynamic Simulations has provided us a more 

complete vision about the physics behind the MR effect. We have observed the 

time evolution of the microstructure in a more accurate way and we have 

corroborated the existence of a minimum magnetic field below which, 

structures are not stable. Also we studied the internal dynamics of the 

structure, and we could establish a direct relationship between this internal 

dynamics and the measurable macroscopic magnitudes such as the viscosity and 

the viscoelastic moduli, for which we covered regions of very low frequencies 

that are experimentally inaccessible.  

 

Another important aspect that we studied was the effect of the solvent in the 

MR response. Conventional MR fluids have to be modified by adding thixotropic 

agents, etc. to diminish the settling rate of particles. Thus, in our case, we 

changed the common solvents (silicone oils) for a Boger fluid, as an attempt to 

improve the particle stability and to introduce new mechanical properties to MR 

systems. From the results shown above, it is clear that intrinsic properties of the 

solvent affect the rheological response of MR fluids. Due to the high viscosity of 

the Boger fluid, the sedimentation process could be slowed down and, 

additionally, viscoelastic properties of the Boger fluid provide an enhancement 

in the elastic behavior, even in the off-field state. However, the stirring process 
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to disperse particles and the plausible adsorption of polyacrylamide onto the 

silica surface greatly affect to the solvent elasticity. For all that, the 

development of MR systems based on viscoelastic fluids could be a new line in 

Magnetorheology.                           

               

Therefore, understanding fundamental parameters which control the behavior 

of MR fluids, one can get a complete vision about these systems and hence, one 

can have powerful tools to plan and design devices and applications in a better 

and efficient way. Throughout this dissertation, we have seen the use of 

theoretical, experimental and computational methods, and this fact clearly 

shows that the fusion of these three disciplines provides researchers with a 

broader vision and a wider understanding in MR fluids in particular, and in 

Science, in general.        
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CONCLUSIONES 

 

Dentro de esta última sección, las principales conclusiones y reflexiones de esta 

disertación son expuestas.  

 

La primera conclusión que debería ser expuesta es la de que los fluidos MR son 

sistemas muy versátiles y que son realmente buenos candidatos para ser 

considerados como materiales inteligentes. Hemos visto que bajo la presencia 

de un campo magnético externo, las propiedades reológicas de estos fluidos son 

completamente modificadas y pueden ser controladas. Como importantes 

modificaciones: la viscosidad aumenta varios órdenes de magnitud, el 

comportamiento elástico del sistema domina al proceso de disipación y, si el 

campo magnético es lo suficientemente intenso, el fenómeno de esfuerzo 

umbral aparece.  

 

Como segunda conclusión, ha quedado claro que la morfología de las partículas 

es determinante en el efecto MR y, más específicamente, la anisotropía de las 

partículas, donde se ha demostrado que los fluidos MR basados en partículas en 

forma de varilla dan una más eficiente y alta respuesta MR, un menor umbral de 

gelificación y un efecto viscoelástico. En este sentido, la formulación de los 

fluidos MR basados en partículas en forma de varilla son altamente 

recomendables para las aplicaciones mencionadas. También se destaca la 

influencia de la rugosidad de la superficie, la cual se traduce en un aumento y 

mejora de la respuesta MR, por lo que esto debe de ser tenido en cuenta, 

también, en las aplicaciones comerciales. Finalmente, es importante remarcar 

que dependiendo del material del que estén compuestas las partículas, mayores 

o menores valores de los módulos viscoelásticos se pueden alcanzar, debido al 
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valor intrínseco de la magnetización de saturación del material. A la luz de los 

resultados, las partículas de hierro presentan un mayor efecto viscoelástico y, 

por tanto, son más apropiadas para las aplicaciones industriales.  

 

La tercera conclusión se refiere al efecto de la concentración de partículas en la 

respuesta MR. Hemos visto que bajo un cierto valor de la fracción de volumen 

(Φc), el efecto MR a bajas intensidades de campo magnético (por debajo del 

umbral de campo magnético o umbral de gelificación, Hc) es despreciable e 

independiente de la morfología de las partículas. Por tanto, desde un punto de 

vista comercial, sería fundamental exceder este valor en la preparación de 

fluidos MR. Es notable decir que pudimos observar que las teorías e 

interpretaciones aplicadas a otros sistemas físicos tales como vidrios coloidales 

atractivos y geles coloidales, pueden extrapolarse a nuestros sistemas debido a 

las similitudes presentes en el comportamiento reológico, siempre que la 

fracción de volumen esté sobre la concentración crítica, Φc 

 

Desde un punto de vista fundamental, como cuarta conclusión, testeamos la 

validez de varios modelos teóricos que intentan explicar la dependencia con la 

intensidad del campo magnético y la concentración de partículas del módulo 

elástico y del esfuerzo umbral. También, un nuevo modelo teórico, aplicado a 

partículas en forma de varilla, fue propuesto y testeado, resultando en un muy 

buen acuerdo con los resultados experimentales, y manifestando la 

dependencia del módulo elástico y del esfuerzo umbral con la fracción de 

volumen (directamente conectado con el número de agregados que conectan 

los platos), el cuadrado de la intensidad del campo magnético y las dimensiones 

relativas de las partículas. Por otro lado, usando una aproximación de gel 

coloidal para entender los mecanismos envueltos en el efecto de la 
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concentración de partículas sobre el efecto MR, explicamos satisfactoriamente 

las inconsistencias encontradas en la bibliografía sobre fluidos MR.  

También, dentro de los aspectos fundamentales, el número de Mason revela 

que hay dos interacciones fundamentales que controlan la dinámica en los 

fluidos MR bajo cizalla: las fuerzas magnéticas e hidrodinámicas. Además, se 

muestra que en el caso de fluidos MR basados en partículas anisótropas (varillas 

y platos), las fuerzas de fricción entre partículas juegan un papel fundamental 

en la contribución total.  

 

Como quinta conclusión, las simulaciones en Dinámica Browniana nos aportaron 

una visión más completa sobre la física que hay detrás del efecto MR. Hemos 

observado la evolución estructural de la micro-estructura de un modo más 

preciso y hemos corroborado la existencia de un mínimo en el valor del campo 

magnético, por debajo del cual, la estructura no es estable. También estudiamos 

la dinámica interna de la estructura y pudimos establecer una relación directa 

entre esta dinámica y las magnitudes macroscópicas medibles tales como la 

viscosidad y los módulos viscoelásticos, para los cuales cubrimos regiones a muy 

bajas frecuencias que son experimentalmente inaccesibles.  

 

Otro importante aspecto que estudiamos fue el efecto del solvente en la 

respuesta MR. Los fluidos MR convencionales tienen que ser modificado 

mediante la adición de agentes tixotrópicos, etc. para disminuir la velocidad de 

sedimentación de las partículas. En nuestro caso, hemos cambiado los 

disolventes comunes (aceites de silicona) por un fluido Boger, como un intento 

de mejorar la estabilidad de las partículas e introducir nuevas propiedades 

mecánicas de los sistemas MR. A partir de los resultados mostrados 

anteriormente, está claro que las propiedades intrínsecas del disolvente afectan 
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a la respuesta reológica de estos fluidos. Debido a la alta viscosidad del fluido 

Boger, el proceso de sedimentación es más lento y, además, las propiedades 

viscoelásticas del fluido Boger proporcionan una mejora en el comportamiento 

elástico, incluso en el estado sin campo. Sin embargo, el proceso de agitación 

para dispersar las partículas y la posible adsorción de poliacrilamida sobre la 

superficie de sílice de las partículas afecta en gran medida a la elasticidad del 

disolvente. Debido a ello, el desarrollo de sistemas MR basados en fluidos 

viscoelásticos podría ser una nueva línea de investigación en Magneto-reología. 

               

Por lo tanto, de la comprensión de los parámetros fundamentales que controlan 

el comportamiento de los fluidos MR se puede obtener una visión completa 

acerca de estos sistemas y así, obtener poderosas herramientas para planificar y 

diseñar dispositivos y aplicaciones de una mejor y más eficiente manera. A lo 

largo de esta tesis hemos visto el uso de métodos teóricos, experimentales y 

computacionales, y este hecho demuestra claramente que la fusión de estas 

tres disciplinas proporciona a los investigadores una visión y una comprensión 

más amplias de los fluidos MR en particular, y de la Ciencia, en general. 
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APPENDIX: SIMULATION CODES 

 

In this appendix the simulation codes used in this work are going to be shown. 

Codes were written and compiled with Fortran 90 and all the equations are 

normalized by ���, � and & and to carry out simulations, these parameters 

were taken as the unit: ��� = � = & = 1. Data obtained from the “main code” 

were analyzed by other external programs: structure factor, order parameters, 

mean square displacement, stress correlation function, bond correlation 

function, viscosity, etc.  

 

Main simulation code 

 

program particles 

  

!Files 

!50 "input.dat" phi, no, tmax, trelaj(1), ncorr, rand_file 

!12 "pos.dat" 

!17 "tensor.dat" 

!18"energia_pot_cin.dat" nmax, phi, trelaj(1), lx 

!14"long_pos.dat" 

 

!Variable Definition 

!Number of particles   

parameter (nmax=1000)  

real*8 dkin,dpot,pcoseno,sumtau2 
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!Position vector components and  integrals of the stress tensor components 

real*8 x0(1000),y0(1000),z0(1000),A12(500),A13(500),A23(500)  

 

!Velocity components, stress tensor components, magnetic field parameters 

real*8 vx0(1000),vy0(1000),vz0(1000),tau(3,3),u0,uN 

real*8 

x0c(500,1000),y0c(500,1000),z0c(500,1000),rad(1000),mas(1000),mm,mastot 

                                                                                            !particle radius; particle 

mass 

!Definition of total forces 

real*8 ftotx(1000),ftoty(1000),ftotz(1000),r2 

 

¡Number of correlators; maximum of iterations 

integer*4 i,imax,idn,j,k,rand_file,icorr,jcorr(500),alf,bet,ncorr  

 

!lx,ly,lz dimensions of the simulation box, kt thermal energy, dt time step 

real*8 

dt,lx,ly,lz,t,sigma(1000),ddgamma,kt,dn(500),l,sumtau,nvecmedio,sumcol,volpar

t,diamed  

 

!Relaxation time of the first correlator, trelaj(1)!phi, particle concentration (in 

volume) 

!MSD, mean square displacement!tmax, maximum computation time 

real*8 trelaj(500),phi,distx,disty,distz,dcm(500),rc,tmax,dcmx,dcmy,dcmz,rm 

character*10 b(3) 

character*70 aaa 
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!Change the onset of the random number function 

integer*4 date_time(8),icho 

common /bloque/ ddgamma,sigma,mas 

common /blot/ dt,t,ncorr 

common /caja/ lx,ly,lz,l 

common /pos/ x0,y0,z0  

common /vel/ vx0,vy0,vz0  

common u0 

common /force/ ftotx,ftoty,ftotz 

common /radios/ rad 

 

!Read from "input.dat" file these parameters: phi, u0, tmax, trelaj(1), ncorr, 

rand_file  

open (50,file='input.dat',status='old') !input.dat 

read (50,201) aaa 

201        format (A70) 

read (50,*) phi,u0 !Particle concentration!Magnetic control parameter 

read (50,201) aaa 

read (50,*) tmax,trelaj(1),ncorr !Total time !Relaxation time of the first 

correlator 

read (50,201) aaa 

read (50,*) rand_file !If rand_file=1 is generated a random distribution (=/1 

read) 

close (50) 

write(*,*) 'rand_file',rand_file 

 

!U0=4*PI*MU0*MUCR^2*BETA^2*H0^2  
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!The prefactor in the magnetic force is: F0=3*U0*A(i)^3*A(j)^3 

pi=acos(-1.) !number Pi 

 

!Generate a random seed with the milliseconds of the actual hour 

call date_and_time(b(1),b(2),b(3),date_time) 

icho=date_time(8)+1000*date_time(7) 

call srand(icho) 

 

!Values of the main variables 

dt=0.0005 !Time step 

ddgamma=10.0 ¡Inverse of the diffusion coefficient 

kt=1.0 !Normalized thermal energy 

imax=int(tmax/dt) !Maximum of iterations 

 

!We give a very large relaxation time to all correlators, contrary to the first 

one  

do icorr=2,ncorr 

trelaj(icorr)=1e8 

end do 

 

!New files 

t=0.0 

open(unit=12,file='pos.dat',status='unknown',form='unformatted') !Store all the 

positions and velocities as a function of time 

open(unit=15,file='prueba.dat',status='unknown') !Store the mean square 

displacement 
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open(unit=17,file='tensor.dat',status='unknown') !Store the stress tensor 

components 

open(unit=18,file='energia_pot_cin.dat',status='unknown') !Store the structural 

order parameters: potential energy, kinetic energy, number of neighbors 

open(unit=31,file='diam_alea.dat',status='unknown') !Store particle radius 

open(unit=35,file='vol_alea.dat',status='unknown') !Store particle volume 

 

!Read the diameter file, the particle volume and the average radius                 

read(31,*) volpart 

read(31,*) diamed 

read(31,*) mm !Average particle mass 

mastot=0. 

do i=1,nmax 

read(31,*) rad(i) !Read the particle radius 

mas(i)=(4./3.)*pi*(rad(i)**3.) !Mass of each particle 

mas(i)=mas(i)/mm !Normalized particle mass                            

end do 

do i=1,nmax 

mastot=mastot+rad(i)**3 

end do 

mastot=mastot*(4./3.)*pi 

mastot=mastot/mm 

write(*,*) 'Total mass',mastot 

write(*,*) 'Average radius',diamed 

write(*,*) 'Average mass',mm 

write(*,*) 'Total particle volume',volpart 
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!Calculation of the sigma coefficient for each particle; mass varies from one 

particle to another; Mass is divided by the average mass  

do i=1,nmax 

sigma(i)=SQRT(2.0*ddgamma*mas(i)*kt) 

end do 

 

!Volume of the simulation box 

volcaja=volpart/phi 

lx=(volcaja)**(1./3.) 

ly=lx 

lz=lx 

write(*,*) 'Edge: ',lx 

write(*,*) 'Particle concentration',phi 

l=lx/((real(nmax))**(1./3.)) !Length of the edge segments: edge is divided in 

parts with the same length 

write(*,*) 'Segments: ',l 

 

!Write in "energia_pot_cin.dat"  the values of nmax, phi, trelaj y l            

call inicposvel(rand_file) !Give the initial positions and velocities 

write(18,*) nmax 

write(18,*) phi 

write(18,*) trelaj(1) 

write(18,*) lx 

call flush(18) !Write instantaneously 

write(12) lx 

 

!Initialization of correlators  
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do icorr=1,ncorr 

dn(icorr)=1.0 

jcorr(icorr)=0 

A12(icorr)=0.0 

A13(icorr)=0.0 

A23(icorr)=0.0 

dcm(icorr)=0.0 

end do 

 

!Before running simulation, calculation of the structural order parameters  

call informe(dkin,dpot,nvecmedio,pcoseno,sumcol) 

 

!Write in the screen several variables of interest 

write(*,200) t,dkin,dpot,nvecmedio,pcoseno,sumcol 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!ONSET OF THE MAIN LOOP (TEMPORAL LOOP) 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

  

do i=1,imax  

call posvel(mastot)  !Calculation of particle positions and velocities; Also, this 

function moves particles to the next position.  

t=t+dt !Update time 

 

!Every 200 steps structural order parameters are written 

 if (i/200 .eq. i/200.) then  

call informe(dkin,dpot,nvecmedio,pcoseno,sumcol)   !Call "informe" 
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write(*,200) t,dkin,dpot,nvecmedio,pcoseno,sumcol 

write(18,200) t,dkin,dpot,nvecmedio,pcoseno,sumcol 

200 format(F10.5,F8.2,F8.2,F8.3,F8.3,F8.3)   !Erase negligible decimals 

call flush(18) 

end if 

 

!Every 200 steps positions and velocities are written in "longpos.dat" for 

safety 

if (i/200 .eq. i/200.) then  

open(unit=14,file='longpos.dat',status='unknown')  

write(14,*) lx !Write the length of the edge of the simulation box 

do j=1,nmax 

 

!Write all the positions and velocities  

write(14,*) x0(j),y0(j),z0(j),vx0(j),vy0(j),vz0(j)  

end do 

close(14) 

end if 

 

!Give the sum of the stresses in each time if the current time overcomes the 

relaxation time of the first correlator (first measurements), calculates the 

stress tensor with the corresponding subroutine. When t overcomes the 

relaxation time of the first correlator, the stress tensor will be always 

calculated. 

if (t .gt. trelaj(1)) call tenes(tau) 

 

!Sweep over all the correlators that have already started to measure. 
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do icorr=1,ncorr 

 

!dn(icorr) is the time step of the correlator icorr at which the correlator writes 

!The measurement frequency of the correlator decreases with the total 

computational time, i.e. firstly measurements are carried out more frequently 

and progressively, this frequency decreases. 

idn=int(dn(icorr))  

 

!If the total time overcomes the relaxation time of the current correlator, then 

this correlator starts to measure and it counts the number of times that this 

correlator appears. For that purpose, we use jcorr 

if (t .ge. (trelaj(icorr)-dt/2.)) then  

jcorr(icorr)=jcorr(icorr)+1 

 

!Integrals 1,2; 1,3 y 2,3 via the rectangle method. alpha<beta  

!It is integrating to finally calculate the viscosity 

A12(icorr)=A12(icorr)+tau(1,2)*dt  

A13(icorr)=A13(icorr)+tau(1,3)*dt  

A23(icorr)=A23(icorr)+tau(2,3)*dt  

 

!If the last condition is true, it means that we are in the first measurement of 

the current correlator 

if (abs(t-trelaj(icorr)) .lt. dt/2.) then  

 

!Old positions are changed by the current positions  

do k=1,nmax 

x0c(icorr,k)=x0(k) 
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y0c(icorr,k)=y0(k) 

z0c(icorr,k)=z0(k) 

end do 

end if 

 

!If the number of times that the current correlator has counted is greater than 

the integer part of its measurement frequency, it relaxation time is changed 

by the current time. At this moment, the mean square displacement is 

calculated for each coordinate axis and positions and velocities are written in 

“pos.dat”  

if (jcorr(icorr) .ge. idn) then  

write(12) t-trelaj(icorr),icorr 

dcm(icorr)=0. 

dcmx=0.0 

dcmy=0.0 

dcmz=0.0 

do j=1,nmax 

 

!Write positions and velocities 

write (12) x0(j),y0(j),z0(j),vx0(j),vy0(j),vz0(j)  

 

!Periodic boundary conditions are applied to distances 

distx=x0(j)-x0c(icorr,j)                           

distx=distx-lx*anint(distx/lx) !Closer integer with + or - 

disty=y0(j)-y0c(icorr,j) 

disty=disty-lx*anint(disty/lx) 

distz=z0(j)-z0c(icorr,j) 
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distz=distz-lx*anint(distz/lx) 

 

!Calculation of the mean square displacement 

dcmx=dcmx+distx*distx 

dcmy=dcmy+disty*disty 

dcmz=dcmz+distz*distz 

dcm(icorr)=dcm(icorr)+distx*distx+disty*disty+distz*distz 

end do 

dcmx=dcmx/nmax 

dcmy=dcmy/nmax 

dcmz=dcmz/nmax 

dcm(icorr)=dcm(icorr)/nmax 

 

!Determination of the viscosity approximation = (beta/6V)*lim t-> inf (A*A/t)  

sumtau=(A12(icorr)*A12(icorr)+A13(icorr)*A13(icorr)+A23(icorr)*A23(icorr))/3. 

 

!Only xz and yz components of the stress tensor 

sumtau2=(A13(icorr)*A13(icorr)+A23(icorr)*A23(icorr))/2.  

if((t-trelaj(icorr)) .gt. 1.0e-5) then  

write(15,*) icorr,t-trelaj(icorr),dcmx,dcmy,dcmz,sumtau/(t-

trelaj(icorr)),sumtau2/(t-trelaj(icorr)) 

end if 

if (icorr .lt. ncorr) then  

 

!If the current correlator measures a mean square displacement greater than 

0.5 and also the next correlator has not started yet, the relaxation time of  the 
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next correlator is changed by the current time, so that this correlator starts in 

the next round.  

if ((dcm(icorr) .gt. 0.5) .and. (trelaj(icorr+1) .eq. 1e8)) then  

trelaj(icorr+1)=t 

end if 

end if 

 

!The step to write is increased 

dn(icorr)=dn(icorr)*1.25  

end if 

 

!If all the correlators have been covered and the mean square displacement 

overcomes 25, the main loop stops 

if ((icorr .eq. ncorr) .and. (dcm(icorr) .ge. 25.)) goto 150  

end if 

end do 

 

!It is ordered to write all of the things which are stored in memory 

call flush(15)  

end do 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!END OF THE TEMPORAL LOOP 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

150 continue 

stop 

end 
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!Initial positions and velocities 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

subroutine inicposvel(rand_file) 

parameter (nmax=1000) 

real*8 x0(nmax),y0(nmax),z0(nmax) 

real*8 vx0(nmax),vy0(nmax),vz0(nmax) 

real*8 x1,y1,z1,lx,ly,lz,l,vm2,f,v1,v2,v3 

real*8 vxm2,vym2,vzm2,nmax3,mas(nmax),ddgamma,sigma(nmax) 

integer*4 i,j,k,ipart,rand_file 

common /bloque/ ddgamma,sigma,mas 

common /caja/ lx,ly,lz,l 

common /pos/ x0,y0,z0 

common /vel/ vx0,vy0,vz0 

nmax3=exp(log(nmax*1.)/3.) 

vm2=0. 

ipart=1 

open(unit=334,file='posinicial.dat',status='unknown')  

 

!If rand_file =1, random positions and velocities will be generated 

if (rand_file.eq.1) then 

do i=1,int(nmax3) 

do j=1,int(nmax3) 

do k=1,int(nmax3) 

x1=rand()  

y1=rand() 

z1=rand() 
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v1=rand() 

v2=rand() 

v3=rand() 

x1=x1-0.5 

y1=y1-0.5 

z1=z1-0.5 

v1=v1-0.5 

v2=v2-0.5 

v3=v3-0.5 

x0(ipart)=-lx/2.+((2.*real(i)-1)/2.)*l+l*(1./4.)*x1 !Random term 

y0(ipart)=-ly/2.+((2.*real(j)-1)/2.)*l+l*(1./4.)*y1 !Random term 

z0(ipart)=-lz/2.+((2.*real(k)-1)/2.)*l+l*(1./4.)*z1 !Random term 

vx0(ipart)=v1*3. 

vy0(ipart)=v2*3. 

vz0(ipart)=v3*3. 

vxm2=vx0(ipart)*vx0(ipart) 

vym2=vy0(ipart)*vy0(ipart) 

vzm2=vz0(ipart)*vz0(ipart) 

 

!Conservation of energy:  

!Total kinetic energy must be (3/2)kT=3/2, then vm2=3 

vm2=(vxm2+vym2+vzm2)*mas(ipart) 

f=3./vm2 

vx0(ipart)=v1*3.*SQRT(f) 

vy0(ipart)=v2*3.*SQRT(f) 

vz0(ipart)=v3*3.*SQRT(f) 

vxm2=vx0(ipart)*vx0(ipart) 
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vym2=vy0(ipart)*vy0(ipart) 

vzm2=vz0(ipart)*vz0(ipart) 

vm2=vxm2+vym2+vzm2 

ipart=ipart+1 

end do 

end do 

end do 

write(334,*) lx 

do ipart=1,nmax 

write(334,*) x0(ipart),y0(ipart),z0(ipart),vx0(ipart),vy0(ipart),vz0(ipart) 

end do 

 

!If rand_file =/ 1, initial positions and velocities come from  "pos_ini.dat" 

else 

open (16,file='pos_ini.dat',status='old')  

read (16,*) lx 

do i=1,nmax 

read(16,*) x0(i),y0(i),z0(i),vx0(i),vy0(i),vz0(i) 

end do 

end if 

return 

end 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!Subroutine of the calculation of positions and velocities (Paul and D. Y. Yoon, 

Phys. Rev. E, 1995, 52, 2076) 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
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subroutine posvel(mastot) 

parameter (nmax=1000) 

real*8 vx(nmax),vy(nmax),vz(nmax),x(nmax),y(nmax),z(nmax) 

real*8 dgg,fvelx(nmax) 

real*8 dx(nmax),dy(nmax),dz(nmax) 

real*8 fvely(nmax) 

real*8 fvelz(nmax) 

real*8 fx,fy,fz,fposx,fposy,fposz 

real*8 x0(nmax),y0(nmax),z0(nmax),t,dt 

real*8 vx0(nmax),vy0(nmax),vz0(nmax) 

real*8 ftotx(nmax),ftoty(nmax),ftotz(nmax) 

real*8 lx,ly,lz,l,ddgamma,sigma(nmax),mas(nmax),mastot 

real*8 vxcm,vycm,vzcm 

integer*4 i,j,ncorr 

common /bloque/ ddgamma,sigma,mas 

common /blot/ dt,t,ncorr 

common /pos/ x0,y0,z0 

common /caja/ lx,ly,lz,l 

common /vel/ vx0,vy0,vz0 

common /force/ ftotx,ftoty,ftotz 

 

call repmag!(ftotx,ftoty,ftotz)  

call aleat(dx,dy,dz)  

dgg=1.0-0.5*ddgamma*dt !"1-0.5*gamma*h" en Paul 1995  

 

!Calculation of positions 

do i=1,nmax 
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fposx=0.5*dt*dt*(ftotx(i)) !"0.5*h^2*Fialfa(0)" en Paul 1995 

fvelx(i)=(ftotx(i))*0.5*dt*(1.0-ddgamma*dt)/mas(i) !"0.5*h*(1-

gamma*h)*Fialfa(0)" 

fposy=0.5*dt*dt*(ftoty(i)) 

fvely(i)=(ftoty(i))*0.5*dt*(1.0-ddgamma*dt)/mas(i) 

fposz=0.5*dt*dt*(ftotz(i)) 

fvelz(i)=(ftotz(i))*0.5*dt*(1.0-ddgamma*dt)/mas(i) 

 

!Equations of the Brownian motion  

x(i)=x0(i)+vx0(i)*dt*dgg+fposx+0.5*sigma(i)*dt*dx(i) 

y(i)=y0(i)+vy0(i)*dt*dgg+fposy+0.5*sigma(i)*dt*dy(i) 

z(i)=z0(i)+vz0(i)*dt*dgg+fposz+0.5*sigma(i)*dt*dz(i) 

 

!Periodic boundary conditions 

x(i)=x(i)-lx*anint(x(i)/lx) 

y(i)=y(i)-ly*anint(y(i)/ly) 

z(i)=z(i)-lz*anint(z(i)/lz) 

end do 

do j=1,nmax 

x0(j)=x(j) 

y0(j)=y(j) 

z0(j)=z(j) 

end do 

 

!Calculation of velocities 

call repmag!(ftotx,ftoty,ftotz) 

do i=1,nmax 
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fx=fvelx(i)+0.5*dt*(ftotx(i))/mas(i)!"0.5*h*(1-gamma*h)*Fialfa(0) + 

0.5*h*Fialfa(q(h))" 

fy=fvely(i)+0.5*dt*(ftoty(i))/mas(i) 

fz=fvelz(i)+0.5*dt*(ftotz(i))/mas(i) 

vx(i)=vx0(i)+fx-ddgamma*dt*dgg*vx0(i)+(sigma(i)/mas(i))*dgg*dx(i) 

vy(i)=vy0(i)+fy-ddgamma*dt*dgg*vy0(i)+(sigma(i)/mas(i))*dgg*dy(i) 

vz(i)=vz0(i)+fz-ddgamma*dt*dgg*vz0(i)+(sigma(i)/mas(i))*dgg*dz(i) 

end do 

 

!Calculation of the velocity of the center of mass of the system 

vxcm=0.0 

vycm=0.0 

vzcm=0.0 

do j=1,nmax 

vxcm=vxcm+(mas(j)*vx(j)/mastot) 

vycm=vycm+(mas(j)*vy(j)/mastot) 

vzcm=vzcm+(mas(j)*vz(j)/mastot) 

end do 

 

!The motion of the center of mass is corrected 

do j=1,nmax 

vx0(j)=vx(j)-vxcm  

vy0(j)=vy(j)-vycm  

vz0(j)=vz(j)-vzcm  

end do 

return 

end 
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!Subroutine of random forces (Delta W, Equation A1, Paul and D. Y. Yoon, 

Phys. Rev. E, 1995, 52, 2076) 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

subroutine aleat(dx,dy,dz) 

parameter (nmax=1000) 

real*4 r1,r2,r3,dd,t,dt 

real*8 dx(nmax),dy(nmax),dz(nmax) 

integer*4 ncorr 

common /blot/ dt,t,ncorr 

 

dd=0.02236068!SQRT(0.0005) 

do i=1,nmax 

r1=rand() 

r2=rand() 

r3=rand() 

dx(i)=1.732050808*dd*int(3.*r1-1.5)  

dy(i)=1.732050808*dd*int(3.*r2-1.5) 

dz(i)=1.732050808*dd*int(3.*r3-1.5) 

end do 

return 

end 
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!Subroutine of the calculation of the magnetic and repulsive forces 

!Give ftotx, ftoty y ftotz 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

subroutine repmag!(ftotx,ftoty,ftotz) 

parameter (nmax=1000) 

real*8 frepx,frepy,frepz 

integer*4 i,j 

real*8 x0(nmax),y0(nmax),z0(nmax),u0,rv4 

real*8 lx,ly,lz,l,distx,disty,distz,rv,f 

real*8 co,co2,se,se2tet,rx,ry,rz 

real*8 fmagx,fmagy,fmagz,rad(nmax),uNrep,uN!nueva u0 

real*8 ftotx(nmax),ftoty(nmax),ftotz(nmax),r2,percent 

common /pos/ x0,y0,z0 

common /caja/ lx,ly,lz,l 

common u0 

common /force/ ftotx,ftoty,ftotz !nuevo common 

common /radios/ rad 

 

do i=1,nmax 

ftotx(i)=0. 

ftoty(i)=0. 

ftotz(i)=0. 

end do 

do i=1,nmax-1 

do j=i+1,nmax 
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distx=x0(j)-x0(i) 

distx=distx-lx*anint(distx/lx) 

disty=y0(j)-y0(i) 

disty=disty-lx*anint(disty/lx) 

distz=z0(j)-z0(i) 

distz=distz-lx*anint(distz/lx) 

rv=sqrt(distx*distx+disty*disty+distz*distz) 

uNrep=u0*rad(i)*rad(j) 

r2=rad(i)+rad(j) 

if (rv .lt. 4.) then!Cut-off for the repulsive force 

f=-(3./16.)*uNrep*exp(-50.*(rv-r2)/r2) !To obtain the initial equilibrium state 

we have to eliminate the u0 dependence (in the case of u0=0) 

else 

f=0. 

end if 

 

!co=distz/rv=rz: theta cosine 

rx=distx/rv 

ry=disty/rv 

rz=distz/rv 

co2=rz*rz !co2=co*co 

!Magnetic force 

uN=u0*(rad(i)*rad(i)*rad(i))*(rad(j)*rad(j)*rad(j)) !The new u0 depends on the 

particle radius because of polydispersity. In the case of the monodisperse 

system, uN=u0 

 rv4=rv*rv*rv*rv 

fue=3.*uN*(1./rv4)  



348 
 

!Calcuation of the magnetic and repulsive force components 

fmagx=fue*((5.*co2-1.)*rx)  

fmagy=fue*((5.*co2-1.)*ry)  

fmagz=fue*((5.*co2-3.)*rz) 

frepx=f*rx 

frepy=f*ry 

frepz=f*rz 

ftotx(i)=ftotx(i)+fmagx+frepx 

ftoty(i)=ftoty(i)+fmagy+frepy 

ftotz(i)=ftotz(i)+fmagz+frepz 

ftotx(j)=ftotx(j)-fmagx-frepx 

ftoty(j)=ftoty(j)-fmagy-frepy 

ftotz(j)=ftotz(j)-fmagz-frepz 

end do 

end do 

return 

end 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!Subroutine “informe” gives the structural order parameters 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

subroutine informe(dkin,dpot,nvecmedio,pcoseno,suma) 

parameter (nmax=1000) 

real*8 c,dkin,dpot,nvecmedio,pcoseno,coseno(nmax) 

integer*4 i,j,ncell,ix,iy,iz,izcor 

real*8 x0(nmax),y0(nmax),z0(nmax),u0,vecinos(nmax),uN,uNrep 
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real*8 vx0(nmax),vy0(nmax),vz0(nmax),suma,rv3,f2 

real*8 lx,ly,lz,l,distx,disty,distz,rv,rc,lcell 

real*8 co,co2,se,se2tet,rx,ry,rz,tetx,tety,tetz 

real*8 sigma(nmax),ddgamma,mas(nmax),rad(nmax),r2 

integer*4 icajita(100,100,100) 

common /bloque/ ddgamma,sigma,mas 

common /pos/ x0,y0,z0 

common /caja/ lx,ly,lz,l 

common /vel/ vx0,vy0,vz0 

common u0 

common /radios/ rad 

 

dkin=0. 

nvecmedio=0. 

pcoseno=0. 

do j=1,nmax 

dkin=dkin+(vx0(j)*vx0(j)+vy0(j)*vy0(j)+vz0(j)*vz0(j))*mas(j) 

vecinos(j)=0. 

coseno(j)=0. 

end do 

dkin=dkin/2./nmax !3/2 kT. Kinetic energy 

dpot=0. 

do i=1,nmax-1 

do j=i+1,nmax 

distx=x0(j)-x0(i) 

distx=distx-lx*anint(distx/lx) 

disty=y0(j)-y0(i) 
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disty=disty-lx*anint(disty/lx) 

distz=z0(j)-z0(i) 

distz=distz-lx*anint(distz/lx) 

rv=sqrt(distx*distx+disty*disty+distz*distz) 

uN=u0*(rad(i)*rad(i)*rad(i))*(rad(j)*rad(j)*rad(j)) 

uNrep=u0*rad(i)*rad(j) 

r2=rad(i)+rad(j) 

if (rv .lt. 4.) then 

f2=-(3./16.)*uNrep*exp(-50.*(rv-r2)/r2) 

else 

f2=0. 

end if 

  

!Closer neigbhors 

co=distz/rv 

co2=co*co 

rc=rad(i)+rad(j)+0.5 

if (rv .le. rc) then  

vecinos(i)=vecinos(i)+1. 

vecinos(j)=vecinos(j)+1. 

coseno(i)=coseno(i)+(co2-0.5) 

coseno(j)=coseno(j)+(co2-0.5) 

end if 

rv3=rv*rv*rv 

 

!Potential energy 

dpot=dpot+2.*f2+uN*(1./(rv3))*(1.-3*co2) 
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end do 

end do 

do i=1,nmax 

nvecmedio=nvecmedio+vecinos(i)/nmax 

pcoseno=pcoseno+coseno(i)/nmax  

end do 

dpot = dpot/nmax 

suma=0 

 

!Columnar parameter: gives the structuration degree of particle columns 

do ix=1,100 

do iy=1,100 

do iz=1,100 

icajita(ix,iy,iz)=0 

end do 

end do 

end do 

ncell=int(lx/1.)+1 

lcell=lx/ncell 

do i=1,nmax 

ix=int((x0(i)+lx/2.)/lcell)+1 

iy=int((y0(i)+lx/2.)/lcell)+1 

iz=int((z0(i)+lx/2.)/lcell)+1 

icajita(ix,iy,iz)=1 

end do 

do izcor=1,ncell-1 

do iz=izcor+1,ncell 
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do ix=1,ncell 

do iy=1,ncell 

suma=suma+icajita(ix,iy,izcor)*icajita(ix,iy,iz) 

end do  

end do 

end do 

end do 

suma=suma*2./(ncell/2.-1.)/nmax  

 

return 

end 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!Subroutine of the stress trensor (Puertas A. M., De Michele C., Sciortino F., 

Tartaglia P. and Zacarelli E. J. Chem. Phys. 127, 144906, 2007 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

subroutine tenes(tau) 

parameter (nmax=1000) 

integer*4 i,j,alf,bet,ncorr 

real*8 tau(3,3),v(nmax,3),dist(3),rv4,u0,tau331,tau332,uN,uNrep,r2 

real*8 distx,disty,distz,rv,suma1(3,3),suma2(3,3) 

real*8 c,lx,ly,lz,l,m,sumtau,dt,t,f,ddgamma,sigma(nmax) 

real*8 x0(nmax),y0(nmax),z0(nmax) 

real*8 vx0(nmax),vy0(nmax),vz0(nmax) 

real*8 frepmag(3),fmagx,fmagy,fmagz,fmag(3) 

real*8 ftotx(nmax),ftoty(nmax),ftotz(nmax) 
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real*8 co,co2,se,se2tet,rx,ry,rz,tetx,tety,tetz,fue,mas(nmax),rad(nmax) 

common /radios/ rad  

common /vel/ vx0,vy0,vz0 

common /blot/ dt,t,ncorr 

common /bloque/ ddgamma,sigma,mas 

common u0 

common /pos/ x0,y0,z0 

common /caja/ lx,ly,lz,l 

 

sumtau=0.0 

 

!Calculation of the velocity components  

do i=1,nmax 

v(i,1)=vx0(i) 

v(i,2)=vy0(i) 

v(i,3)=vz0(i) 

end do 

 

!Initial conditions of the stress tensor components 

do alf=1,2 

do bet=alf+1,3 

tau(alf,bet)=0.0 

suma1(alf,bet)=0.0 

suma1(bet,alf)=suma1(alf,bet) 

suma2(alf,bet)=0.0 

suma2(bet,alf)=suma2(alf,bet) 

tau(bet,alf)=tau(alf,bet) 
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end do 

end do 

 

!Calculation of the stress tensor 

do alf=1,3 

do bet=1,3 

do i=1,nmax 

 

suma1(alf,bet)=suma1(alf,bet)+mas(i)*v(i,alf)*v(i,bet)  

end do 

end do 

end do 

 

!Calculation of the stress tensor component 3,3 (z,z). Normal force 

do i=1,nmax-1 

do j=i+1,nmax 

distx=x0(j)-x0(i)!he cambiado j por i 

distx=distx-lx*anint(distx/lx) 

disty=y0(j)-y0(i) 

disty=disty-lx*anint(disty/lx) 

distz=z0(j)-z0(i) 

distz=distz-lx*anint(distz/lx) 

rv=sqrt(distx*distx+disty*disty+distz*distz) 

dist(1)=distx  

dist(2)=disty 

dist(3)=distz 

uN=u0*(rad(i)*rad(i)*rad(i))*(rad(j)*rad(j)*rad(j)) 



355 
 

uNrep=u0*rad(i)*rad(j) 

r2=rad(i)+rad(j) 

if (rv .lt. 4.) then 

f=-0.1875*uNrep*exp(-50.*(rv-r2)/r2)  

else 

f=0. 

end if 

rx=distx/rv 

ry=disty/rv 

rz=distz/rv 

co2=rz*rz 

 

!Magnetic force bewteen i and j 

rv4=rv*rv*rv*rv 

fue=3.*uN*(1./rv4) 

fmagx=fue*((5.*co2-1.)*rx) 

fmagy=fue*((5.*co2-1.)*ry) 

fmagz=fue*((5.*co2-3.)*rz)  

fmag(1)=fmagx 

fmag(2)=fmagy 

fmag(3)=fmagz 

do alf=1,3 

do bet=1,3 

 

!Total force: magnetic + repulsive 

suma2(alf,bet)=suma2(alf,bet)+dist(alf)*(f*(dist(bet)/rv)+fmag(bet)) ! 

end do 



356 
 

end do 

end do  

end do 

do alf=1,3 

do bet=1,3 

 

!Total stress tensor component value 

tau(alf,bet)=suma1(alf,bet)+suma2(alf,bet)  

end do 

end do 

write(17,*) t,(tau(2,3)+tau(1,3))/2.,tau(3,3) 

return 

end 

 

Structure factor ¯/°1 

 

program  factor 

integer*4 nlim,cont,i,icorr,j,nz,k,nx,ny,cc 

real*8lx,pi,mq,t,x(1000),y(1000),z(1000),va,vb,vc,coseno1,seno1,conseno2,seno

2,contador 

real*8 pesc,sparal(500,-200:200),sperpen(500,-200:200, 

200:200),suma1,suma2,q(0:10000) 

 

!Opening files 

open(12,file='pos.dat',status='old',form='unformatted') 

open(15,file='sparal.dat',status='unknown') 

open(20,file='sperpen.dat',status='unknown') 
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open(45,file='pantalla.dat',status='unknown') 

 

read(12) lx 

pi=acos(-1.) !Number Pi 

mq=2.*pi/lx !Prefactor in the calculation of the wave vector 

write(*,*) lx 

nlim=200 

cont=0 

 

!Initialization of the parallel component 

do icorr=1,500 

do nz=-200,200 

sparal(icorr,nz)=0. 

end do 

 

!Initialization of the perpendicular component 

do nx=-200,200 

do ny=-200,200 

sperpen(icorr,nx,ny)=0. 

end do 

end do 

end do 

 

!Read the time and the correlator 

do i=1,100000000 

read(12,end=100) t,icorr 

do j=1,1000 
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!Read the position of particles 

read(12,end=100) x(j),y(j),z(j),va,vb,vc 

end do 

if (t .eq. 0.) then 

cont=cont+1 

write(*,*) icorr 

 

!Wave vectors parallel to the magnetic field nx=ny=0 

do nz=0,nlim 

coseno1=0. 

seno1=0. 

do k=1,1000 

pesc=z(k)*nz*mq 

coseno1=coseno1+cos(pesc) 

seno1=seno1+sin(pesc) 

end do 

sparal(icorr,nz)=coseno1*coseno1+seno1*seno1 

end do 

 

!Wave vectors perpendicular to the magnetic field nz=0 

do nx=1,nlim 

do ny=1,nlim 

coseno2=0. 

seno2=0. 

do k=1,1000 

pesc=x(k)*nx*mq+y(k)*ny*mq !Scalar product q*r 
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coseno2=coseno2+cos(pesc) 

seno2=seno2+sin(pesc) 

end do 

sperpen(icorr,nx,ny)=coseno2*coseno2+seno2*seno2 

end do 

end do 

end if 

end do 

100 continue 

do nz=1,nlim 

suma1=0. 

do icorr=1,cont 

suma1=suma1+sparal(icorr,nz) 

end do 

write(15,*) abs(nz*mq),suma1/(1000.*cont) 

end do 

cc=0 

q(0)=0. 

contador=0. 

do nx=1,nlim 

do ny=1,nlim 

suma2=0. 

cc=cc+1 

do icorr=1,cont 

suma2=suma2+sperpen(icorr,nx,ny) 

end do 

q(cc)=sqrt((nx*mq)**2.+(ny*mq)**2.) !Magnitude of the wave vector 
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if (q(cc) .gt. contador) then 

write(20,*) sqrt((nx*mq)**2.+(ny*mq)**2.),suma2/(1000.*cont) 

contador=q(cc)+0.05 

end if 

end do 

end do 

stop 

end 

 

Crystal order parameters (¼½1 

 

program crystalorderparameter 

 

implicit none 

real*8 

x(1100),y(1100),z(1100),vx(1100),vy(1100),vz(1100),distx,disty,distz,ntot,ALF 

real*8r,lx,Alm(-10:10),pi,pij(-10:10,-10:10),pji(-10:10,-

10:10),rc,alfa(1100,1100),qtot 

real*8 termcos1,termcos2,factor,Yima,Yreal,qreal,qima,alfatot,tt,mediaqtot 

real*8 qimatot,qrealtot,nbondtot,jju(1100),liminf,limsup,aa,sen,a,b,c 

integer*4 i,j,nbond(1100),h,gg,nvecver(1100),ii,jj,nvechor(1100),npart(0:20) 

integer*4 l,m,nb,k,contador 

real*8 facl,flmenosm,flmasm,flmasmmenosk,flmenosk,fkmenosm,fack 

character*70 ffile 

common /lon/ lx,pi,rc 

common /nbon/ nbond 

common /lm/ l,m 
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common /fact/ facl,flmenosm,flmasm,flmasmmenosk,flmenosk,fkmenosm,fack 

common /pos/ x,y,z 

common /alff/ alfa,ALF,nb 

common /qq/ qimatot,qrealtot 

common /coco/ jju 

common /limites/ liminf,limsup 

common /vecinos/ nvecver,nvechor 

 

write(*,*) 'Positions file:' 

read(*,*) ffile 

open(12,file=ffile,status='old') 

open(23,file='nbond-ji.dat',status='unknown') 

 

!Definitions of the constants         

pi=acos(-1.) !Number Pi 

rc=2.47 !Cut-off 

 

!Specification of parameter values      

write(*,*) 'Harmonic parameters:' 

write(*,*) 'l' !Parameter l 

read(*,*) l 

 

!Initialization of some variables which are implied in the calculation of 

Spherical Harmonics 

do i=1,1100 

do j=1,1100 

alfa(i,j)=0. 
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end do 

end do 

read(12,*) lx 

mediaqtot=0. 

contador=0 

do i=1,110000 

read(12,*,end=100) a,b,c,nb 

write(*,*) i 

ALF=0. 

do j=1,1100 

nbond(j)=0 

end do 

do j=1,nb 

read(12,*,end=100) x(j),y(j),z(j) 

end do        

do j=1,nb-1 

do k=j+1,nb 

distx=x(k)-x(j) 

disty=y(k)-y(j) 

distz=z(k)-z(j) 

r=sqrt(distx**2+disty**2+distz**2) 

alfa(j,k)=((r-rc)/(2.-rc))*((r-rc)/(2.-rc)) 

alfa(k,j)=alfa(j,k) 

ALF=ALF+alfa(j,k)+alfa(j,k) 

if (r .le. rc) then       

nbond(j)=nbond(j)+1 

nbond(k)=nbond(k)+1 
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end if 

end do 

end do                 

qtot=0. 

do m=-l,l 

call fff        

qtot=qtot+(qimatot**2.+qrealtot**2.) 

end do        

mediaqtot=mediaqtot+qtot 

contador=contador+1 

end do 

100     continue        

write(*,*) mediaqtot/contador,contador 

stop 

end  

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

! Subroutine of main calculations  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

subroutine fff 

 

real*8 x(1100),y(1100),z(1100),vx(1100),vy(1100),vz(1100),distx,disty,distz,ntot 

real*8 r,lx,Alm(-10:10),pi,pij(-10:10,-10:10),rc,alfa(1100,1100),ALF,pji(-10:10,-

10:10) 
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real*8 

termcos1,termcos2,termcos3,termcos4,factor,Yima(1100,1100),Yreal(1100,110

0),qreal,qima 

real*8 qimatot,qrealtot,alfatot,a,jju(1100),liminf,limsup 

integer*4 i,j,h,nbond(1100),gg,ii,jj,nvecver(1100),nvechor(1100) 

integer*4 l,m,nb 

real*8 facl,flmenosm,flmasm,flmasmmenosk,flmenosk,fkmenosm,fack 

common /nbon/ nbond 

common /lm/ l,m 

common /lon/ lx,pi,rc 

common /fact/ facl,flmenosm,flmasm,flmasmmenosk,flmenosk,fkmenosm,fack        

common /pos/ x,y,z 

common /alff/ alfa,ALF,nb 

common /qq/ qimatot,qrealtot 

common /coco/ jju 

common /limites/ liminf,limsup 

common /vecinos/ nvecver,nvechor 

 

!Initialization of the Associated Legendre Polynomials 

do i=-10,10 

do j=-10,10 

pij(i,j)=0. 

pji(i,j)=0. 

end do 

end do 

qimatot=0. 

qrealtot=0. 
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qima=0. 

qreal=0. 

 

!Calculation of the Associated Legendre Polynomials 

do i=1,nb-1 

do j=i+1,nb 

distx=x(j)-x(i) 

distx=distx-lx*anint(distx/lx) 

disty=y(j)-y(i) 

disty=disty-lx*anint(disty/lx) 

distz=z(j)-z(i) 

distz=distz-lx*anint(distz/lx) 

r=sqrt(distx**2+disty**2+distz**2) 

a=distz/r 

        pij(0,0)=1. 

        pji(0,0)=1. 

        pij(1,0)=a 

        pji(1,0)=a 

        pij(1,1)=((1.-a**2)**0.5) 

        pji(1,1)=pij(1,1) 

        pij(1,-1)=(-1./2.)*pij(1,1)      

        pji(1,-1)=(-1./2.)*pji(1,1)    

        pij(2,0)=(1./8.)*(-4.+12.*(a**2)) 

        pji(2,0)=pij(2,0) 

        pij(2,1)=-3.*a*(1.-a**2)**0.5 

        pji(2,1)=-3.*a*(1.-a**2)**0.5 

        pij(2,-1)=(-1./6.)*pij(2,1) 
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        pji(2,-1)=(-1./6.)*pji(2,1) 

        pij(2,2)=3.*(1.-a**2) 

        pji(2,2)=pij(2,2) 

        pij(2,-2)=(1./24.)*pij(2,2) 

        pji(2,-2)=(1./24.)*pji(2,2) 

        pij(3,0)=(1./48.)*24.*a*(-3.+5.*(a**2)) 

        pji(3,0)=pij(3,0) 

        pij(3,1)=-(3./2.)*(5.*(a**2.)-1.)*(1.-a**2)**0.5 

        pji(3,1)=pij(3,1) 

        pij(3,-1)=(-1./12.)*pij(3,1) 

        pji(3,-1)=(-1./12.)*pji(3,1) 

        pij(3,2)=15.*a*(1.-a**2) 

        pji(3,2)=pij(3,2) 

        pij(3,-2)=(1./120.)*pij(3,2) 

        pji(3,-2)=(1./120.)*pji(3,2) 

        pij(3,3)=-15.*((1.-a**2)**1.5) 

        pji(3,3)=-15.*((1.-a**2)**1.5) 

        pij(3,-3)=(-1./720.)*pij(3,3) 

        pji(3,-3)=(-1./720.)*pji(3,3) 

        pij(4,0)=(1./8.)*(35.*(a**4.)-30.*(a**2.)+3.) 

        pji(4,0)=pij(4,0) 

        pij(4,1)=(-5./2.)*a*(7.*(a**2.)-3.)*(1.-a**2)**0.5 

        pji(4,1)=pij(4,1) 

        pij(4,-1)=(-1./20.)*pij(4,1) 

        pji(4,-1)=(-1./20.)*pji(4,1) 

        pij(4,2)=(15./2.)*(7.*(a**2.)-1.)*(1.-a**2) 

        pji(4,2)=pij(4,2) 
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        pij(4,-2)=pij(4,2)*(1./360.) 

        pji(4,-2)=pji(4,2)*(1./360.) 

        pij(4,3)=-105.*a*(1.-a**2)**1.5 

        pji(4,3)=-105.*a*(1.-a**2)**1.5 

        pij(4,-3)=pij(4,3)*(-1./5040.) 

        pji(4,-3)=pji(4,3)*(-1./5040.) 

        pij(4,4)=105.*((sin(distz/r))**4.) 

        pji(4,4)=pij(4,4) 

        pij(4,-4)=pij(4,4)*(1./40320.) 

        pji(4,-4)=pji(4,4)*(1./40320.) 

        pij(5,0)=(1./3840.)*480.*a*(15.-70.*a**2+63.*(a**4)) 

        pji(5,0)=pij(5,0) 

 

        pij(5,1)=(-1./3840.)*((1.-a**2)**0.5)*7200.*(1.-14.*a**2+21.*(a**4)) 

        pji(5,1)=pij(5,1) 

        pij(5,-1)=(-1./30.)*pij(5,1) 

        pji(5,-1)=(-1./30.)*pij(5,1) 

        pij(5,2)=(1./3840.)*(1.-a**2)*201600.*a*(-1.+3.*(a**2)) 

        pji(5,2)=pij(5,2) 

        pij(5,-2)=pij(5,2)*(1./840.) 

        pji(5,-2)=pij(5,2)*(1./840.) 

        pij(5,3)=(-1./3840.)*((1.-a**2)**1.5)*201600.*(-1.+9.*(a**2)) 

        pji(5,3)=pij(5,3) 

        pij(5,-3)=(-1./20160.)*pij(5,3) 

        pji(5,-3)=(-1./20160.)*pij(5,3) 

        pij(5,4)=(1./3840.)*((1.-a**2)**2)*3628800.*a 

        pji(5,4)=pij(5,4) 
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        pij(5,-4)=pij(5,4)*(1./362880.) 

        pji(5,-4)=pij(5,-4) 

        pij(5,5)=(-1./3840.)*((1.-a**2)**2.5)*3628800. 

        pji(5,5)=pij(5,5) 

        pij(5,-5)=pij(5,5)*(-1./3628800.) 

        pji(5,-5)=pij(5,-5) 

        pij(6,0)=(1./46080.)*2880.*(-5.+105.*(a**2)-315.*(a**4)+231.*(a**6)) 

        pji(6,0)=pij(6,0) 

        pij(6,1)=(1./46080.)*((1.-a**2)**0.5)*120960.*a*(5.-

30.*(a**2)+33.*(a**4)) 

        pji(6,1)=pij(6,1) 

        pij(6,-1)=pij(6,1)*(-1./42.) 

        pji(6,-1)=pij(6,-1) 

        pij(6,2)=(1./46080.)*(1.-a**2)*604800.*(1.-18.*(a**2)+33.*(a**4)) 

        pji(6,2)=pij(6,2) 

        pij(6,-2)=pij(6,2)*(1./1680.) 

        pji(6,-2)=pij(6,-2) 

        pij(6,3)=(1./46080.)*((1.-a**2)**1.5)*7257600.*a*(-3.+11.*(a**2)) 

        pji(6,3)=pij(6,3) 

        pij(6,-3)=pij(6,3)*(-1./60480.) 

        pji(6,-3)=pij(6,-3) 

        pij(6,4)=(1./46080.)*((1.-a**2)**2)*21772800.*(-1.+11.*(a**2)) 

        pji(6,4)=pij(6,4) 

        pij(6,-4)=pij(6,4)*(1./1814400.) 

        pji(6,-4)=pij(6,-4) 

        pij(6,5)=(1./46080.)*((1.-a**2)**2.5)*479001600.*a 

        pji(6,5)=pij(6,5) 
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        pij(6,-5)=pij(6,5)*(-1./39916800.) 

        pji(6,-5)=pij(6,-5) 

        pij(6,6)=(1./46080.)*((1.-a**2.)**3.)*479001600. 

        pji(6,6)=pij(6,6) 

        pij(6,-6)=pij(6,6)*(1./479001600.) 

        pji(6,-6)=pij(6,-6) 

 

!Spherical Harmonics �½,� 

call factorial !Call subroutine “factorial” 

Alm(m)=sqrt((2.*l+1.)*flmenosm/(4.*pi*flmasm)) 

 

 

!Imaginary part I of the spherical harmonics 

Yima(i,j)=((-

1.)**abs(m))*Alm(m)*pij(l,m)*sin(abs(m)*acos(distx/sqrt(distx**2.+disty**2.))) 

 

!Real part I of the spherical harmonics 

Yreal(i,j)=((-

1.)**abs(m))*Alm(m)*pij(l,m)*cos(abs(m)*acos(distx/sqrt(distx**2.+disty**2.))) 

 

!Imaginary part II of the spherical harmonics 

Yima(j,i)=((-1.)**abs(m))*Alm(m)*pji(l,m)*sin(abs(m)*acos((-

distx)/sqrt(distx**2.+disty**2))) 

 

!Real part II of the spherical harmonics 

Yreal(j,i)=((-1.)**abs(m))*Alm(m)*pji(l,m)*cos(abs(m)*acos((-

distx)/sqrt(distx**2.+disty**2)))                 
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end do 

end do    

do i=1,nb 

do j=1,nbond(i) 

qima=qima+Yima(i,j)*alfa(i,j) !Imaginary 

qreal=qreal+Yreal(i,j)*alfa(i,j) !Real 

end do 

qrealtot=qrealtot+qreal 

qimatot=qimatot+qima 

end do 

qrealtot=qrealtot/ALF 

qimatot=qimatot/ALF 

return  

end 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

! Subroutine of the factorial calculation 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

subroutine factorial 

 

integer*4 i,j,t 

real*8 facl,flmenosm,flmasm,flmasmmenosk,flmenosk,fkmenosm,fack 

common /lm/ l,m 

common /fact/ facl,flmenosm,flmasm,flmasmmenosk,flmenosk,fkmenosm,fack 
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!Initialization of factorials   

facl=1. !l! 

flmasm=1. !(l+m)! 

flmenosm=1. !(l-m)! 

flmasmmenosk=1. !(l+m-k)! 

flmenosk=1. !(l-k)! 

fkmenosm=1. !(k-m)! 

fack=1. !k! 

do t=0,l 

if (t .eq. 0) then 

facl=1. 

else 

facl=facl*(t) 

end if         

end do 

do t=0,l+abs(m) 

if (t .eq. 0) then 

flmasm=1. 

else        

flmasm=flmasm*(t) 

end if         

end do 

do t=0,l-abs(m) 

if (t .eq. 0) then 

flmenosm=1. 

else        

flmenosm=flmenosm*(t) 
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end if         

end do 

return 

end 

 

Mean square displacement (MSD) 

 

program meansquaredisplacement 

 

implicit none 

real*8 x(1000),y(1000),z(1000),distx,disty,distz,despx,despy,despz 

real*8 x0(1000,500),y0(1000,500),z0(1000,500),lx,ly,lz,phi,pi 

real*8 vx0(1000,500),vy0(1000,500),vz0(1000,500),dcmtot,desptot 

real*8 vx(1000),vy(1000),vz(1000) 

real*8 t,dcmx,dcmy,dcmz,mt(0:1000),md(500,1000,4),desp 

integer*4 i,j,nmax,icorr,k,nfin,ncorr,cont(500) 

character*70 ffile 

 

write (*,*) 'File name:' 

read (*,200) ffile 

200 format (A70) 

write (*,*) 'Particle concentration: ' 

read (*,*) phi 

pi=acos(-1.) !Number Pi 

nmax=1000 

ncorr=1 

!Opening of positions and mean square displacement files  
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open(unit=12,file=ffile,status='old',form='unformatted') 

open(unit=14,file='dcm.dat',status='unknown') 

read(12) lx 

write(*,*) lx 

do icorr=1,500 

cont(icorr)=0 

end do 

do j=1,1000000 

 

!Read time and correlator 

read(12,end=100) t,icorr 

write(*,*) t,icorr 

if (icorr .gt. ncorr) ncorr=icorr 

if (t .le. 1e-4) then 

mt(cont(icorr))=t 

 

!Read particle positions 

do i=1,nmax 

read(12,end=100) 

x0(i,icorr),y0(i,icorr),z0(i,icorr),vx0(i,icorr),vy0(i,icorr),vz0(i,icorr) 

end do 

else 

cont(icorr)=cont(icorr)+1 

 

!Initialization of the mean square displacement 

dcmx=0.0 

dcmy=0.0 
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dcmz=0.0 

dcmtot=0.0 

do i=1,nmax 

 

!Calculation of the mean square displacement 

read(12,end=100) x(i),y(i),z(i),vx(i),vy(i),vz(i) 

distx=x(i)-x0(i,icorr) 

distx=distx-lx*anint(distx/lx) 

disty=y(i)-y0(i,icorr) 

disty=disty-lx*anint(disty/lx) 

distz=z(i)-z0(i,icorr) 

distz=distz-lx*anint(distz/lx) 

dcmx=dcmx+distx*distx 

dcmy=dcmy+disty*disty 

dcmz=dcmz+distz*distz 

dcmtot=dcmtot+distx*distx+disty*disty+distz*distz 

end do 

 

!Divide by the number of particles 

dcmx=dcmx/nmax 

dcmy=dcmy/nmax 

dcmz=dcmz/nmax 

dcmtot=dcmtot/(3.*nmax) 

md(icorr,cont(icorr),1)=dcmx !MSD x-axis 

md(icorr,cont(icorr),2)=dcmy!MSD y-axis 

md(icorr,cont(icorr),3)=dcmz !MSD z-axis 

md(icorr,cont(icorr),4)=dcmtot !Total MSD 
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mt(cont(icorr))=t 

end if 

end do 

100 ncorr=ncorr-10 

nfin=cont(ncorr) 

do k=1,nfin 

despx=0.0 

despy=0.0 

despz=0.0 

desptot=0.0 

do icorr=1,ncorr 

 

 

!Divide by the number of correlators 

despx=despx+md(icorr,k,1)/ncorr 

despy=despy+md(icorr,k,2)/ncorr 

despz=despz+md(icorr,k,3)/ncorr 

desptot=desptot+md(icorr,k,4)/ncorr 

end do 

write(14,*) mt(k),despx,despy,despz,desptot 

end do 

close(12) 

stop 

end 
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Stress correlation function 

program funcorrelacion 

 

!Calculation of the stress tensor components 

parameter (nmax=1000) 

integer*4 i,j,alf,bet,ncorr,icorr,kj,jcorr(500),nfin,k 

real*8 tau(3,3),v(nmax,3),dist(3),rv6,u0 

real*8 distx,disty,distz,rv,suma1(3,3),suma2(3,3) 

real*8 c,lx,m,sumtau(500,10000,3,3),dt,t,f,ekin 

real*8 x0(nmax),y0(nmax),z0(nmax),mt(0:10000),volpart,mm,diamed 

real*8 vx0(nmax),vy0(nmax),vz0(nmax),tau0(3,3,500),pi,mas(nmax) 

real*8 fmag(3),fmagx,fmagy,fmagz,rad(nmax),uN,uNrep,r2 

real*8 co,co2,se,se2tet,rx,ry,rz,tetx,tety,tetz,fue,fcorr(3,3),rv4 

real*8 A12(500),A13(500),A23(500),DelA(500,10000),visc 

character*70 ffile 

 

dt=0.0005 !Time step 

ncorr=1 

u0=x !Introduce value of u0 

do icorr=1,500 

 

!From Einstein relationship 

A12(icorr)=0. 

A13(icorr)=0. 

A23(icorr)=0. 

end do 

do icorr=1,500 
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do k=1,10000 

DelA(icorr,k)=0. 

end do 

end do 

do icorr=1,500 

 

!Non-diagonal stress tensor components 

tau0(1,2,icorr)=0. 

tau0(1,3,icorr)=0. 

tau0(2,3,icorr)=0. 

end do 

do icorr=1,500 

jcorr(icorr)=0 

end do 

!Opening of files 

open(12,file='pos.dat',status='old',form='unformatted') !Positions and velocities 

file 

open(17,file='funcorr-poli.dat',status='unknown')!fichero de salida 

open(26,file='prom3tau+vis.dat',status='unknown') 

open(unit=31,file='diam_alea.dat',status='unknown') !fichero de radios 

open(unit=222,file='prueba_tensor.dat',status='unknown') 

read(31,*) volpart 

read(31,*) diamed 

read(31,*) mm  

pi=acos(-1.) !Number Pi 

do i=1,nmax 

read(31,*) rad(i) 
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mas(i)=(4./3.)*pi*(rad(i)**3.) 

mas(i)=mas(i)/mm!normalizado por la masa media 

end do      

read(12) lx 

write(*,*) lx 

write(*,*) (volpart/0.05)**(1./3.) 

do kj=1,1000000 

read(12,end=100) t,icorr  

if (icorr .gt. ncorr) then 

ncorr=icorr 

end if 

if (t .lt. dt/2.) write (*,*) 'Starting correlator ',icorr 

jcorr(icorr)=jcorr(icorr)+1 

mt(jcorr(icorr))=t 

 

!Read positions and velocities 

do i=1,nmax 

read(12,end=100) x0(i),y0(i),z0(i),vx0(i),vy0(i),vz0(i) 

end do 

 

!Calculation of the velocity components  

do i=1,nmax 

v(i,1)=vx0(i) 

v(i,2)=vy0(i) 

v(i,3)=vz0(i) 

end do 

!Initialization of the stress tensor components 
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do alf=1,3 

do bet=1,3 

tau(alf,bet)=0.0 

suma1(alf,bet)=0.0 

suma2(alf,bet)=0.0 

end do 

end do 

 

!Calculation of the stress tensor 

do alf=1,2 

do bet=alf+1,3 

do i=1,nmax 

suma1(alf,bet)=suma1(alf,bet)+mas(i)*v(i,alf)*v(i,bet)!sumando de las 

velocidades 

end do 

end do 

end do 

do i=1,nmax-1 

do j=i+1,nmax 

 

!Periodic boundary conditions 

distx=x0(j)-x0(i) 

distx=distx-lx*anint(distx/lx) 

disty=y0(j)-y0(i) 

disty=disty-lx*anint(disty/lx) 

distz=z0(j)-z0(i) 

distz=distz-lx*anint(distz/lx) 
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!Distance between particles 

rv=sqrt(distx*distx+disty*disty+distz*distz) 

dist(1)=distx 

dist(2)=disty 

dist(3)=distz 

 

!u0 for polydispersity 

uN=u0*(rad(i)*rad(i)*rad(i))*(rad(j)*rad(j)*rad(j))  

uNrep=u0*rad(i)*rad(j) 

r2=rad(i)+rad(j) 

if (rv .lt. 4.) then 

f=-(3./16.)*uNrep*exp(-50.*(rv-r2)/r2) 

else 

f=0. 

end if 

rx=distx/rv 

ry=disty/rv 

rz=distz/rv 

co2=rz*rz 

 

!Components of the magnetic forces 

rv4=rv*rv*rv*rv 

fue=3.*uN*(1./rv4) !Magnitude of the magnetic force 

fmagx=fue*((5.*co2-1.)*rx)  

fmagy=fue*((5.*co2-1.)*ry)  

fmagz=fue*((5.*co2-3.)*rz) 

fmag(1)=fmagx 
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fmag(2)=fmagy 

fmag(3)=fmagz 

do alf=1,2 

do bet=alf+1,3 

suma2(alf,bet)=suma2(alf,bet)+dist(alf)*((dist(bet)/rv)*f+fmag(bet))  

end do 

end do 

end do 

end do 

 

!Stress tensor components 

do alf=1,2 

do bet=alf+1,3 

tau(alf,bet)=suma2(alf,bet)+suma1(alf,bet) 

if (mt(jcorr(icorr)) .lt. dt/2.)  then 

tau0(alf,bet,icorr)=tau(alf,bet)!esfuerzo inicial para el correlador icorr 

end if 

sumtau(icorr,jcorr(icorr),alf,bet)=tau(alf,bet)*tau0(alf,bet,icorr) 

end do 

end do 

 

!Calculation of the viscosity by means of the Einstein relationship 

A12(icorr)=A12(icorr)+tau(1,2)*dt A13(icorr)=A13(icorr)+tau(1,3)*dt 

A23(icorr)=A23(icorr)+tau(2,3)*dt 

DelA(icorr,jcorr(icorr))=((A13(icorr)+A23(icorr)+A12(icorr))**2.) 

write(222,*) icorr,t,(tau(2,3)+tau(1,3))/2.,suma2(3,3)+suma1(3,3) 

call flush(222) 



382 
 

end do 

100 ncorr=ncorr-50 

nfin=jcorr(ncorr) !Total final time 

do k=2,nfin  

 

!Initialization of the stress correlation functions 

fcorr(1,2)=0.0 

fcorr(1,3)=0.0 

fcorr(2,3)=0.0 

visc=0. 

do icorr=1,ncorr 

 

!At the moment k, there is an average over all the correlators 

fcorr(1,2)=fcorr(1,2)+sumtau(icorr,k,1,2)/(lx*lx*lx*ncorr) 

fcorr(1,3)=fcorr(1,3)+sumtau(icorr,k,1,3)/(lx*lx*lx*ncorr) 

fcorr(2,3)=fcorr(2,3)+sumtau(icorr,k,2,3)/(lx*lx*lx*ncorr) 

visc=visc+DelA(icorr,k)/ncorr!Calculation of the viscosity to compare with the 

other calculation method 

end do 

write(17,*) mt(k),fcorr(1,2),fcorr(1,3),fcorr(2,3),(fcorr(1,3)+fcorr(2,3))/2. 

write(26,*) mt(k),(fcorr(1,2)+fcorr(1,3)+fcorr(2,3))/3.,visc/(mt(k)*lx*lx*lx*6.) 

call flush(17) 

call flush(26) 

end do 

stop 

end 
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Bond correlation function 

 

program neighbors 

 

real*8 x(1000),y(1000),z(1000),distx,disty,distz,despx,despy,despz 

real*8 x0(1000,500),y0(1000,500),z0(1000,500),lx,ly,lz,phi,pi,g 

real*8 vx0,vy0,vz0,desv 

real*8 vx,vy,vz,p0(1000,1000),p(1000,1000) 

real*8 t,mt(1:1000),vec(500,1000),media 

integer*4 i,j,nmax,icorr,k,nfin,ncorr,cont(500) 

character*70 ffile 

 

nmax=1000 !Number of particles 

ncorr=1 

 

!Opening of files 

open(unit=12,file='pos.dat',status='old',form='unformatted') 

open(unit=14,file='fvecinos.dat',status='unknown') 

read(12) lx 

write(*,*) lx 

do icorr=1,500 

cont(icorr)=0 

end do 

do icorr=1,500 

do k=1,1000 

vec(icorr,k)=0. 

end do 
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end do 

do j=1,1000000 

read(12,end=100) t,icorr 

if (icorr .gt. ncorr) ncorr=icorr 

if (t .lt. 0.0005) then 

write(*,*) 'Starting correlator', icorr 

cont(icorr)=1 

mt(cont(icorr))=t 

 

!Read positions and velocities 

do i=1,nmax 

read(12,end=100) x0(i,icorr),y0(i,icorr),z0(i,icorr),vx0,vy0,vz0 

end do 

else  

cont(icorr)=cont(icorr)+1 

mt(cont(icorr))=t 

do i=1,nmax 

read(12,end=100) x(i),y(i),z(i),vx,vy,vz 

end do 

end if 

g=0. 

do i=1,nmax-1 

do k=i+1,nmax 
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!Periodic boundary conditions 

distx=x0(i,icorr)-x0(k,icorr) 

distx=distx-lx*anint(distx/lx) 

disty=y0(i,icorr)-y0(k,icorr) 

disty=disty-lx*anint(disty/lx) 

distz=z0(i,icorr)-z0(k,icorr) 

distz=distz-lx*anint(distz/lx) 

r=distx*distx+disty*disty+distz*distz 

if (r .le. 6.25) then  

p0(i,k)=1. 

p0(k,i)=1. 

g=g+1. 

else  

p0(i,k)=0. 

p0(k,i)=0. 

end if 

end do 

end do 

 

if (cont(icorr) .gt. 1) then 

g=0. 

do i=1,nmax-1 

do k=i+1,nmax 

distx=x0(i,icorr)-x(k) 

distx=distx-lx*anint(distx/lx) 

disty=y0(i,icorr)-y(k) 

disty=disty-lx*anint(disty/lx) 
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distz=z0(i,icorr)-z(k) 

distz=distz-lx*anint(distz/lx) 

r=distx*distx+disty*disty+distz*distz 

if (r .le. 6.25) then  

g=g+1. 

p(i,k)=1. 

p(k,i)=1. 

else  

p(i,k)=0. 

p(k,i)=0. 

end if 

end do 

end do 

do i=1,nmax-1 

do k=i+1,nmax 

vec(icorr,cont(icorr))=vec(icorr,cont(icorr))+(p(i,k)*p0(i,k))/(g) 

end do 

end do 

else  

do i=1,nmax-1 

do k=i+1,nmax 

vec(icorr,cont(icorr))=vec(icorr,cont(icorr))+(p0(i,k))/(g) 

end do 

end do 

end if 

end do 

100 ncorr=ncorr-200 
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nfin=cont(ncorr) 

do k=1,nfin 

media=0. 

desv=0. 

do icorr=1,ncorr 

media=media+vec(icorr,k)/(ncorr) 

desv=desv+vec(icorr,k)*vec(icorr,k)/(ncorr) 

end do 

desv=desv-media*media 

write(14,*) mt(k),media,sqrt(desv) 

end do 

stop 

end 

Viscosity (From the Einstein relationship) 

 

program viscosity 

implicit none 

 

real*8 Atot,A2,lx,ly,lz,phi,pi,eta(100000),A,dcmx,dcmy,dcmz,var 

real*8 t,dcm,mt(0:100000),At(500,100000),tpro,etapro,var1,var2 

integer*4 j,icorr,k,nfin,ncorr,cont(500),nmax,pro 

character*70 ffile 

 

!Opening of files 

write (*,*) 'File name:' 

read (*,200) ffile 

200 format (A70) 
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pi=acos(-1.) 

nmax=1000 

lx=x !Depending on the system: monodisperse or polydisperse. We have a 

cubic box. 

ly=lx 

lz=lx 

write (*,*) lx 

ncorr=1 

open(unit=15,file=ffile,status='old') 

open(unit=17,file='viscosidad.dat',status='unknown') 

do icorr=1,500 

cont(icorr)=0 

end do 

do icorr=1,500 

do j=1,100000 

At(icorr,j)=0.0 

end do 

end do 

do j=1,1000000 

 

!Read correlator, time, mean square displacement in three coordinate axes 

and the necessary magnitudes to calculate the viscosity from the Einstein 

relationship 

read(15,*,end=100)  icorr,t,dcmx,dcmy,dcmz,A,A2 

if (icorr .gt. ncorr) then 

ncorr=icorr 

end if 
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cont(icorr)=cont(icorr)+1 

At(icorr,cont(icorr))=A2 

mt(cont(icorr))=t 

end do 

100 ncorr=ncorr-60 !We subtract correlators in order to achieve a larger time 

in the evolution of the system 

nfin=cont(ncorr) 

etapro=0. 

pro=0 

do k=1,nfin 

Atot=0.0 

do icorr=1,ncorr 

Atot=Atot+At(icorr,k) 

end do 

eta(k)=(Atot/(2.*lx*ly*lz))/ncorr 

end do 

do k=1,nfin 

var1=0. 

var2=0. 

do icorr=1,ncorr 

var1=var1+(At(icorr,k)/(2.*lx*ly*lz))*(At(icorr,k)/(2.*lx*ly*lz)) 

end do 

var=var1/ncorr-eta(k)*eta(k) 

write(17,*) mt(k),eta(k),var !Time, viscosity, standard deviation 

end do 

stop 

end 
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