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Abstract

Background: Distant recurrences after antineoplastic treatment remain a serious problem for breast cancer clinical
management, which threats patients’ life. Systemic therapy is administered to eradicate cancer cells from the organism,
both at the site of the primary tumor and at any other potential location. Despite this intervention, a significant proportion
of breast cancer patients relapse even many years after their primary tumor has been successfully treated according to
current clinical standards, evidencing the existence of a chemoresistant cell subpopulation originating from the primary
tumor.

Methods/Findings: To identify key molecules and signaling pathways which drive breast cancer chemoresistance we
performed gene expression analysis before and after anthracycline and taxane-based chemotherapy and compared the
results between different histopathological response groups (good-, mid- and bad-response), established according to the
Miller & Payne grading system. Two cohorts of 33 and 73 breast cancer patients receiving neoadjuvant chemotherapy were
recruited for whole-genome expression analysis and validation assay, respectively. Identified genes were subjected to a
bioinformatic analysis in order to ascertain the molecular function of the proteins they encode and the signaling in which
they participate. High throughput technologies identified 65 gene sequences which were over-expressed in all groups (P #
0?05 Bonferroni test). Notably we found that, after chemotherapy, a significant proportion of these genes were over-
expressed in the good responders group, making their tumors indistinguishable from those of the bad responders in their
expression profile (P # 0.05 Benjamini-Hochgerg̀s method).

Conclusions: These data identify a set of key molecular pathways selectively up-regulated in post-chemotherapy cancer
cells, which may become appropriate targets for the development of future directed therapies against breast cancer.
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Introduction

The searching for predictive tumor biomarkers in breast cancer

treatment has been a major research issue for decades [1,2].

Indeed, the scientific community is conscious that a better and

more accurate system to identify individuals at increased risk of

recurrence, avoid under- and over-treatment and improve the

long-term survival rates of the patients, is needed [3,4]. In this

regard, the revolutionary scientific and technological advances in

the field of genomics has allowed the development of multi-gene

assays which have been approved and commercialized to guide

clinical decisions according with the particular characteristics of

tumors [5-9]. Despite substantial advances in this field, around

30% of patients with early-stage breast cancer relapse after an

unpredictable period, even if they achieved a good response to

systemic treatment [3,5]. This and other scientific findings, such as

the detection of circulating tumor cells (CTCs) in the bloodstream

of treated patients, has pointed out tumor chemoresistance as a

leading process involved in breast cancer progression [10,11].

Clearly, to be able to overcome cancer chemoresistance we

must first acquire a complete understanding of the molecular

processes and leading alterations which make possible this effect.

In this regard, a novel hypothesis involving dedifferentiated cells

with stem-like properties has been highlighted. The cancer stem

cell (CSC) hypothesis assumes that some neoplasms, such as breast

cancer, are the consequence of the accumulation of transforming

genetic and epigenetic changes in adult stem cells or their
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progressively differentiated progenitors. First experimental evi-

dence was reported by Al-Hajj et al. [12] who showed that the

transplantation of few cells characterized by the CD44+/CD24-

inmunophenotype in non-obese diabetic/severe combined immu-

nodeficient (NOD/SCID) immunocompromised mice formed

tumors that recapitulated the phenotypic heterogeneity of the

original breast tumors from which they were derived. Since then,

many studies have focused on the study of this putative tumor-

initiating cell population [13]. Remarkably, CSCs have been

related to chemoresistance since they present a low proliferation

rate, over-express cell surface proteins involved in drug efflux and

dug-metabolizing enzymes [14]. It has also been reported that

CSCs exert a radio-resistant behavior through the over-expression

of free radical scavenging systems [15]. Nevertheless, key

molecular processes conferring the ability to overcome drug-

induced toxicity and promote cancer cell survival in order to

establish a new oncogenic lesion, even several years after successful

systemic treatment, remains to be elucidated despite an increasing

amount of data regarding this issue is published yearly.

In relation to this issue, important concepts has been introduced

changing the way that scientist approach to the study of

chemoresistance and other oncologic events. From the works of

Greenman et al. [16] and Sjøblom et al. [17] it can be extracted

that tumors arise from the alteration of key genes known as ‘‘diver

mutations’’ which also direct tumor biology. The rest of genes

reported to be mutated at a lower frequency across different tumor

samples were termed ‘‘passenger mutations’’, which are thought to

be a consequence of tumor genomic instability but have a modest

impact on tumor phenotype. Indeed, it has been suggested that the

occurrence of passenger mutations and associated gene over- and

under-expression may be on the base of confounding results from

genomic studies, which may have identified different tumoral/

clinical entities under the same genomic category according to the

differential expression of genes that are transiently modified due to

the highly genomic instability to which are subjected tumor cells

[1]. Genes affected by driver mutations, the molecular processes

they direct and the signaling pathways in which they participate

are of great scientific interest given their therapeutic potential.

To investigate the biological processes which drive chemoresis-

tance in breast cancer, we designed and performed a gene

expression study which included patients who registered all

possible pathologic responses to this treatment. The comparison

of gene expression differences induced by chemotherapy allowed

the identification of 30 genes which were over-expressed after

chemotherapy regardless patient’s response to treatment.

Methods

Ethics statement
This study was approved by the local Ethical Review Board,

Comité de Ética de la Investigación de Jaén, and in accordance

with Good Clinical Practices and the tenets of the Declaration of

Helsinki. Patients provided their written informed consent to

participate in this study.

Patient population
This study included two independent sets of patients involving a

total of 118 breast cancer cases. All patients were staged based on

physical examination, radiologic findings and pathologic exami-

nation of tumor biopsies. Initially, we recruited 46 patients with a

histologically confirmed diagnosis of breast cancer and scheduled

neoadjuvant chemotherapy treatment based on Anthracyclines

and Taxanes, as determined by the medical oncology team. From

this cohort, 33 patients met the inclusion criteria for genome-wide

expression analysis with oligonucleotide microarrays. Nevertheless,

gene expression data from 4 pre-chemotherapy samples and 1

post-chemotherapy sample were discarded from final analysis as

microarrays data quality control identified them as outliers.

Consequently, whole genome gene expression analysis finally

included 56 matched pre- and post-chemotherapy samples from

28 cases plus 4 pre-chemotherapy and 1 post-chemotherapy

samples from 5 additional cases. Globally, 33 cases and 61 samples

were processed for whole genome expression analysis. To validate

the results derived from gene expression analysis, a qRT-PCR

assay was designed and formalin fixed paraffin embedded (FFPE)

tumor samples from 85 selected breast cancer cases who received

equivalent neoadjuvant chemotherapy were processed. Despite 85

patients were initially included in this validation experiment, a

final sample size of 73 cases were selected for data analysis due to

either of the following reasons: the patient refused chemotherapy,

the medical oncologist finally decided to change the treatment

scheduled, the patient experienced acute toxicity and did not finish

the treatment. The pathologic and clinical information from each

patient was extracted from the medical reports achieved in the

Oncology Department Registry.

Tumor tissue samples
Tumor samples from each patient included in this study

(Table 1) were obtained before and after chemotherapy. Pre-

chemotherapy tumor samples from the initial cohort were

obtained during diagnosis through ultrasound-guided core

needle biopsy and post-chemotherapy tumor samples were

obtained from surgery pieces after mastectomy or surgical

resection. Two core needle biopsies were obtained from each

of the cases included, one was flash frozen in liquid nitrogen

and stored at -80uC and the other was fixed in buffered

formalin and embedded in paraffin for standard histological

and immunohistochemical analyses. The same procedure was

followed to process and store the post-chemotherapy tumor

samples. Pre- and post-chemotherapy tumor samples were

frozen within 30 min after biopsy or surgery. Notably, this

assay was not biased for individual genetic differences, as most

samples used corresponded to paired pre- and post-treatment

samples from each case. Breast cancer patients were distrib-

uted in experimental groups according to their pathological

responses to anthraclycline and taxane-based chemotherapy,

as determined by the Miller and Payne grading system [18].

This resulted in a group of good responders -GR (Miller &

Payne grades 4 and 5)-, a group of mid response –MR (Miller

& Payne grade 3)- and a group of bad responders -BR (Miller

& Payne grades 1 and 2)-. For whole-genome expression

analysis cases were selected irrespectively of their Human

Epidermal growth factor Receptor 2 (Her2) status, unless it was

registered as a phenotypic tumor characteristic. Validation

experiment was performed in an independent set of 170 paired

formalin fixed paraffin embedded (FFPE) samples (before and

after chemotherapy) corresponding to 85 breast cancer cases.

The validation cohort comprised all pathological response

groups described and an extra group of patients with Human

Epidermal growth factor Receptor 2 (Her2) positive tumors

(Her2G). Her2-positive tumors are very different entities from

the molecular point of view [19]. On the other hand, the

addition of Trastuzumab, a therapeutic monoclonal antibody

against Her2, to anthraclycline and taxane-based chemother-

apy is routinely scheduled for these patients as it greatly

improves their pathological response to treatment [20]. Then,

the molecular and clinical distinctive characteristics of Her2-

positive tumors were the main arguments to include this extra
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group in our experimental design. Additionally, the MR group

was further subdivided into two groups for validation analysis –

mid-response high (MRH) and mid-response low (MRL)-. As in

the case of whole genome expression assay and for the same

reasons, this study was not biased for individual genetic

differences among cases (see Supporting Methods (Text S1)

and Figure S1 for a detailed explanation of the procedures

followed for tumor tissue selection).

Table 1. Population demographics and pre-chemotherapy clinical characteristics.

Whole-genome expression analysis cohort Validation assay cohort

Age at diagnosis in years

, 40 5 (15.1) 10 (13.7)

40-49 9 (27.3) 30 (41.1)

50-59 10 (30.3) 11 (15.1)

$ 60 9 (27.3) 22 (30.1)

Median 54 50.45

Range 29-74 26-75

Histological type

Ductal 30 (90.9) 65 (89.1)

Lobular 3 (3.1) 6 (8.2)

Mixed 0 (0) 2 (2.7)

T staging

T1 0 (0) 2 (2.7)

T2 28 (84.9) 48 (65.8)

T3 4 (12.1) 18 (24.7)

T4 1 (3) 5 (6.8)

N staging

N0 9 (27.3) 38 (52.1)

N1-3 24 (72.7) 35 (47.9)

AJCC Staging

IA/IB 0 (0) 1 (1.4)

IIA/IIB 18 (54.5) 56 (76.7)

IIIA/IIIB/IIIC 15 (45.5) 16 (21.9)

Bloom-Richardson’s histological grade

I 3 (9.1) 22 (30.1)

II 14 (42.4) 28 (38.4)

III 16 (48.5) 23 (31.5)

Estrogen receptor

+ 24 (72.7) 55 (75.3)

- 9 (27.3) 18 (26.7)

Progesterone receptor

+ 24 (72.7) 42 (57.5)

- 9 (27.3) 31 (42.5)

Her2

+ 6 (18.2) 15 (20.5)

- 27 (81.8) 58 (79.5)

Miller & Payne grade

1 and 2 (BR) 15 (45.4) 12 (20.7)

3 (MR) 9 (27.3) NA

3 – MRL (30-60% tumor cell reduction)- NA 12 (20.7)

3 – MRH (61-90% tumor cell reduction)- NA 15 (25.8)

4 and 5 (GR) 9 (27.3) 19 (32.8)

Results are presented as n (%) of 33 patients for the whole-genome expression analysis cohort and as n (%) of 73 patients for the validation assay cohort.
Abbreviations: AJCC, American Joint Committee on Cancer; BR, bad response group; GR, good response group; Her2G, Her2-positive group; MRH, mid-response high
group; MRL, mid-response low group; NA, not applicable.
doi:10.1371/journal.pone.0053983.t001.
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RNA isolation and microarray analysis
Sample processing, microarray hybridization and gene expres-

sion analysis were carried out with the Affymetrix Genechip

System (Affymetrix, Santa Clara, CA, USA). Briefly, total RNA

was extracted and purified for microarray analysis using

QIAshredder columns and the RNeasy Mini kit (Qiagen, Hilden,

Germany) according to manufacturer’s instructions. From 1mg of

total RNA, complementary DNA (cDNA) was synthesized using

the One-Cycle cDNA Synthesis kit (Affymetrix). Biotinylated

complementary RNA (cRNA) was synthesized following the IVT

labeling kit (Affymetrix) and purified using the GeneChip Sample

Cleanup Module (Affymetrix). Subsequently, Biotinylated cRNA

was fragmented and hybridized to the Genechip Human Genome

U133 Plus 2.0 microarrays (Affymetrix). After hybridization,

microarrays followed washing and staining protocol and were

scanned using the GeneChip Scanner 3000 (Affymetrix). The

fluorescent signal corresponding to the intensity of hybridization

intensity of each transcript was determined using the Gene Chip

Operating Software (GCOS 1.4; Affymetrix). Intensity values were

scaled such that the overall fluorescence intensity of each array was

equivalent. Finally, probe set measurements were generated from

quantified Affymetrix image (.CEL) files using the Robust

Multichip Average method (RMA) from the Affy package

Bioconductor (available at http://www.bioconductor.org).

Bonferroni test was estimated to correct for multiple tests,

considering P # 0.05 to be significant, and Fold-change (FC)

values were calculated for all comparisons. After non-supervised

Principal components analysis (PCA) and clustering, gene expres-

sion statistical significances were identified by two linear regression

models taking into account the pathologic response to chemo-

therapy, if the sample was obtained before or after systemic

treatment and the matching of pre- and post-chemotherapy

samples derived from the same patient. Supervised PCA analysis

and clustering were performed with processed data. Partek

Genomics Suite v7.3.1 (Partek, St. Louise, MO, USA) software

was employed for the statistic analysis and clustering and the

Euclidean distance for similarity measurements, and average

linkage was selected as association. Functional enrichment analysis

was carried out using the Protein ANalysis THrough Evolutionary

Relationships (PANTHER) (http://www.pantherdb.org) and the

Database for Annotation, Visualization and Integrated Discovery

(DAVID) (http://david.abcc.ncifcrf.gov/) software.

Figure 1. Experimental design and main results from genome-wide expression analysis. A) Experimental design of the discovery assay. B)
Genes differentially over-expressed after chemotherapy C) Gene Ontology (GO) terms over-represented by the genes differentially over-expressed
after chemotherapy at a significance level of P,0.05. Circular representation must be read clockwise and legend must be read from left to right and
top to bottom. Numbers within the figure correspond to the number of genes classified in each GO category.
doi:10.1371/journal.pone.0053983.g001
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Quantitative real-time RT-PCR analysis
Based on the microarray results, expression levels of 90 genes were

evaluated using qPCR analysis. With this purpose, 5 sections of 10 mm

from each formalin-fixed, paraffin-embedded breast cancer sample

were processed to isolate 10 ng of total RNA using the RNesay FFPE

Kit (Qiagen). cDNAs were reverse-transcribed from total RNA

samples using the High Capacity cDNA Archive Kit (Applied

Biosystems) according to manufacturer’s instructions. TaqMan PCR

reactions were performed on cDNA samples using the Taqman Gene

Expression Master Mix (Applied Biosystems) in conjunction with

custom 7,900 microfluidic cards (Applied Biosystems) and ABI PRISM

7,900 HT Sequence Detection Systems, according to manufacturer’s

instructions. The gene set contained 6 housekeeping genes, GADPH,

HPRT1, MRPL19, RPLP0, TBP and TFRC selected according to

specific bibliography [21]. According to Genorm calculations, we

considered all six housekeeping genes for normalization. Absolute

threshold cycle values (Ct values) were determined by using SDS 2.2.2

software (Applied Biosystems).

DCt values were used as dependent variables in the statistical

analysis. A linear regression model (Limma) was used to detect

differentially expressed changes among groups and Benjamini and

Hochberg’s method was used to control the false discovery rate (FDR)

with an adjusted P-value threshold of 0.05.

Functional networks and pathways analyses were generated through

the use of Ingenuity Pathways Analysis (IPA) (Ingenuity SystemsH,

www.ingenuity.com). Fischer‘s exact test was used to calculate a P-

value determining the probability that each biological function and/or

disease assigned to that dataset and network is due to chance alone (P-

values # 0.05 were considered as significant). Activation z-score was

calculated as a measure of functional and translational activation in

Networks and Upstream regulators analysis. An absolute z-score of

below (inhibited) or above (activated) 2 was considered as significant

(see Supporting Methods (Text S1) for details).

Results

After comparing pre-chemotherapy and post-chemotherapy

samples, we identified a subset of 65 gene sequences whose

Figure 2. Main results from Post-CT vs Pre-CT comparisons in the validation assay. A) Log10 fold change in mRNA abundance of each
differentially expressed gene after chemotherapy considering all experimental groups together (Post-CT vs Pre-CT) and each experimental group
individually –GR (Post-CT vs Pre-CT), Her2G (Post-CT vs Pre-CT), MRH (Post-CT vs Pre-CT) and MRL (Post-CT vs Pre-CT)-. B) Venn diagram outlining
differentially expressed genes after chemotherapy in each pathological response group with respect differentially expressed genes after
chemotherapy considering all experimental groups. C) Venn diagram outlining differentially expressed genes after chemotherapy in the four
pathological response groups. D) Log10 fold change in mRNA abundance of genes differentially expressed after chemotherapy considering all
experimental groups together (Post-CT vs Pre-CT) and GR –GR (Post-CT vs Pre-CT)-.
doi:10.1371/journal.pone.0053983.g002
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expression was significantly up-regulated after chemotherapy

considering all groups (Figure 1A, 1B, Table S1). Gene ontology

(GO) analysis revealed that the proteins coded by these genes were

mainly involved in extracellular matrix metabolism, cell prolifer-

ation and adhesion, oxidative stress response, angiogenesis and

developmental processes (Fig. 1C). These are key processes in

breast cancer chemoresistance and progression given their central

role in invasion and connections with cellular dedifferentiation

[2,22]. Further study of the molecular signaling pathways in which

these proteins are involved allowed the selection of 41 out of the 65

gene sequences detected and 49 additional genes of interest to test

in a validation assay (Table S2). Remarkably, validation of the

microarray results by quantitative reverse transcriptase PCR

(qRT-PCR) in an independent data set confirmed previous

observations, except for 4 out of the 41 genes selected for

validation –CDC42 binding protein kinase alpha (DMPK-like)

(CDC42BPA), protocadherin 7 (PCDH7), purine-rich element

binding protein A (PURA) and SPARC related modular calcium

binding 2 (SMOC2)-. In sum, in a cohort of 106 breast cancer

patients and 207 tumor samples we identified a set of 37 genes

significantly up-regulated after chemotherapy.

Notably, intra-group differences revealed an increasing number

of differentially over-expressed genes after chemotherapy as

pathological response to chemotherapy improved (Figure 2A, B,

C, Table S3). Post-chemotherapy vs Pre-chemotherapy compar-

ison yielded 55 differentially expressed genes in the GR group,

while the same comparison within the BR group did not identify

any differentially expressed gene after chemotherapy. Interesting-

ly, all these genes were over-expressed after chemotherapy except

two of them -adaptor-related protein complex 1, mu 2 subunit

(AP1M2) and topoisomerase (DNA) II alpha (TOP2A)- (Table S4).

These results suggest that the high proportion of chemotherapy-

induced cancer cell death observed in the GR group is

accompanied by pronounced changes in gene expression, while

a moderate effect of chemotherapy on cancer cell survival, as

noted by microscopic analysis of the pre- and post-chemotherapy

samples in the BR group, is also undetectable at the genetic level.

Comparisons between groups before and after chemotherapy

yielded interesting and clarifying results. Before chemotherapy,

GR and BR groups significantly differed in the expression of 46

sequences, all of which resulted to be repressed in the GR group

with respect the BR group (Figure 3A, Table S5). Surprisingly, we

realized that 30 of the genes composing the result list of the intra-

group comparison for GR group were also present in the

comparison GR vs BR before chemotherapy, but with shifted

expression, except for AP1M2 (Figure 3B, 3C, Table 2). In other

Figure 3. Chemoresistance gene set. A) Log10 fold change in mRNA abundance of genes differentially expressed before chemotherapy when
comparing GR and BR groups. B) Log10 fold change in mRNA abundance of genes differentially expressed for GR (Post-CT vs Pre-CT) comparison and
Pre-CT (GR vs BR) comparison C) Venn diagram outlining differentially expressed genes in GR (Post-CT vs Pre-CT) and Pre-CT (GR vs BR) comparisons.
doi:10.1371/journal.pone.0053983.g003
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words, we observed that the expression levels of 30 genes, which

significantly differed between chemo-sensitive and chemoresistant

breast tumors before chemotherapy, shifted from repression to

over-expression along chemotherapy in chemo-sensitive tumors.

The comparison between GR and BR groups after chemotherapy

showed no differences in the expression of any of the genes

analyzed, further sustaining this finding.

The comparisons concerning mid-response sub-groups

resulted in a variable number of differentially expressed genes

highlighting the molecular heterogeneity of intermediate

responses to chemotherapy (Table S6, Table S7). Nevertheless,

closer results from the comparisons involving MRH and MRL

to the results of equivalent comparisons involving GR and BR,

respectively, suggest a reliable concordance between histo-

pathological response and the expression of this set of genes

(Figure 4). With respect to Her2G, pre-chemotherapy com-

parisons confirmed the known molecular differences between

Her2-positive and Her2-negative tumors but, interestingly, the

results from post-chemotherapy comparisons involving Her2G

and post-chemotherapy vs pre-chemotherapy comparison

within the Her2G showed a higher degree of homology with

those involving GR tumors (see Supporting Discussion (Text

S1) for a detailed description).

As mentioned in the Methods section (see above), expression

data from 12 patients were excluded from final analysis due to

treatment differences. Thus, final sample size was 73 cases (146

paired pre- and post-chemotherapy samples). Nevertheless, we

performed a parallel analysis including all patients recruited

(85 cases, 170 paired pre- and post-chemotherapy samples).

Highly significant correlations between both datasets (P ,

0.001) (data not shown) highlighted the statistical robustness of

the data.

Finally, IPA analysis allowed further insights into the molecular

processes and pathways involved in breast cancer chemoresistance.

According to IPA, the 30-gene set was enriched by genes related to

cellular movement and migration, cell survival and connective

tissue development and function involving tumor cells and

fibroblasts. Additional important biological processes that were

enriched in our gene set were related to growth and proliferation

of tumor cells and fibroblasts, hematological system development

and function (mostly regarding chemotaxis and blood cells

aggregation) and cell morphology in relation to reorganization of

the cytoskeleton. Consistent with these results, the only function

close to significance which showed to be repressed is related to

organismal death (Fig. 5A). IPA network analysis generated 4

networks related to previously described functions, further

confirming the involvement of these processes in breast cancer

chemoresistance. Networks 2, 3 and 4 were interconnected,

whereas Network 1 was only related to Network 4 (Fig. 5B).

Merging overlapping networks for pathways identification resulted

in complicated models of direct and indirect interactions, so we

focused on molecular pathways associated to the highlighted

processes (see Supporting Methods (Text S1) for details).

Interestingly, despite the complexity of the network resulting from

the IPA analysis, we were able to observe that catenin (cadherin-

associated protein), beta 1 (CTNNB1), hypoxia inducible factor 1

(HIF1) and CDC42 cell division cycle 42 (CDC42) occupied

central positions in the network resulting from merging function-

ally related networks according to IPA analysis (Fig. 5C). Indeed,

after analyzing the molecular relationships between our 30 target

genes and genes known to be related with chemoresistance, cell

survival, extracellular matrix invasion and remodeling and cellular

migration we were able to observe that CTNNB1 and HIF1

continued occupying a central position within each network,

whereas the rest of target genes tended to cluster around.

Commonest canonical pathways indentified from this analysis

were the Wnt/b-catenin signaling pathway and the HIF1 signaling

pathway, together with p53 signaling pathways, Rho GTPases

signaling pathways and some other pathways related to cytoskel-

eton and tissue remodeling. Worthy of note is the presenceidenti-

fication of efficacy biomarkers for breast cancer treatment among

the genes participating in each gene expression network (Fig. 6).

Lastly, IPA analysis suggested that the expression of the 30-gene

set related to chemoresistance in our experimental system may be

promoted by 4 growth factors - Transforming growth factor beta 1

(TGF-b1), Insulin Growth Factor 1 (IGF1), Vascular Endothelial

Table 2. Genes differentially over-expressed after
chemotherapy within the GR group –GR (Post-CT vs Pre-CT)
comparison- and differentially repressed before
chemotherapy in the GR group with respect the BR group –
Pre-CT (GR vs BR) comparison.

Gene RQ GR (Post-CT vs Pre-CT) RQ Pre-CT (GR vs BR)

AP1M2 0.18527341 0.25512521

CCDC80- 24.9035562 0.22079355

CDC42 3.26993026 0.20638594

COL1A1 9.42556898 0.12550981

CTNNB1- 3.16379687 0.19267806

CXCL12 17.7098848 0.18718921

ELN 32.8078197 0.05031032

FBLN1 21.7898132 0.12001847

FLRT2 8.25765462 0.08162272

FLT1 3.66768961 0.22111543

GAS6 9.25756696 0.18383045

HIF1A 3.23169083 0.1967843

HMCN1 17.8855569 0.17215669

KIT 7.21497578 0.18731882

MAPK1 3.32065324 0.21790637

NAP1L3 5.25859157 0.1153033

NDFIP1 5.03897534 0.11807199

OGN 74.4143783 0.07692849

PDGFD 35.7791181 0.0488577

PER1 18.8005316 0.10464691

PRKG1 6.87755998 0.10094629

RASGRF2 5.19824073 0.17215156

SFRP4 16.3994467 0.16618226

SMAD9 9.43966808 0.06364068

SOCS5 3.95622867 0.2120314

SPARC 12.0367405 0.09934201

SPON1 11.6892213 0.07514114

SSPN 11.4258243 0.10431547

ZAK 3.30297386 0.23327466

ZFHX4 11.9025459 0.09150727

RQ GR (Post-CT vs Pre-CT) describes the magnitude of change of each target gene
after chemotherapy with respect its expression before chemotherapy for GR
group and RQ Pre-CT (GR vs BR) describes the magnitude of change of each target
gene in the GR group with respect the BR group before chemotherapy. BR, bad
response group; GR, good response group; Post-CT, after chemotherapy; Pre-
CT, before chemotherapy; RQ, relative quantity.
doi:10.1371/journal.pone.0053983.t002
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Growth Factor A (VEGFA) and Epithelial Growth Factor (EGF)- ,

2 transcriptional factors – Myotrophin (MTPN) and Sp1

transcription factor (Sp1)- and 1 ligand-dependent nuclear

receptor - Thyroid Hormone Receptor, Beta (THRB)- (Fig. 7).

Discussion

During the last decade, many efforts have focused on the

identification of a gene signature able to either predict patient’s

prognosis or response to systemic therapies against breast cancer.

The main objective of such studies was to identify those patients

who would clearly receive a benefit from cytotoxic therapies from

those who could safely avoid this treatment [2,23]. That work

came to fruition in several commercial prognostic multigene

classifiers, whose clinical utility is being assessed in large

prospective clinical trials [24,25]. Despite initial enthusiasm, it

has been shown that the prognostic abilities of microarrays-derived

gene signatures are complementary to traditional clinicopatholog-

ical markers in clinical practice and treatment decision-making

[26]. Multigene predictors for response to chemotherapy have

been less successful, with no one of them commercially available or

being tested for clinical utility [23]. Most of these studies analyzed

tumor samples taken before chemotherapy and correlated the

resulting gene expression data with the rate of pathological

complete response (it would correspond to Miller & Payne grade 5

exclusively). Therefore the scientific novelty added by this work is

that, from the best of our knowledge, this is the first time that a

defined set of genes are reported to be expressed across breast

tumors that show different histopathological responses to chemo-

therapy. Moreover, the main objective of the present study was not

the prediction of response to chemotherapy, instead, we were

mainly interested in the discovery of genetic markers for

chemoresistance. This prompted us to include paired pre-/post-

chemotherapy samples in order to observe significant gene

expression changes selected by chemoresistant cancer cells to

cope with cytotoxicity, which is a very different approach of that

followed by preceding predictive genomic studies. Notably, this

assay was not biased for individual genetic differences, as most

samples used corresponded to paired pre- and post-treatment

samples from each case.

We have shown that a set of 30 genes, functionally related with

extracellular matrix metabolism, angiogenesis and developmental

processes, undergo a positive switch in response to anthracycline

and taxane-based chemotherapy in those patients who achieved a

good pathological response to the treatment. The magnitude of the

change reached up to a point to which transcriptional levels

became similar to those found in patients that registered a poor

histopathological response to the same treatment. These data

suggest that those cells able to overcome chemotherapy and

survive select the activation of a common transcriptional program,

Figure 4. Diagram of pre-chemotherapy and post-chemotherapy comparisons and involvement of mid-response groups. A) Log10

fold change in mRNA abundance of genes differentially expressed in common for Pre-CT (GR vs BR) and Pre-CT (GR vs MRL) comparisons. B) Venn
diagram outlining differentially expressed genes in common between Pre-CT (GR vs BR) and Pre-CT (GR vs MRL) comparisons. C) Summary of pre-CT
and post-CT comparisons.
doi:10.1371/journal.pone.0053983.g004
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regardless primary response to chemotherapy. Then, the activa-

tion of this transcriptional program may draw the underlying

molecular scenario that enable disease relapse despite chemother-

apy-derived tumor shrinkage, in both good and bad responders,

and reflect driving genetic and epigenetic aberrations which

render chemoresistance. As pointed out previously [27], breast

tumors are often composed of a mosaic of transformed cells among

which only a rare subclone may overcome chemotoxicity. In the

present study we target for analysis the cells within the residual

tumor tissue after chemotherapy, which may correspond to those

cells harboring selected genetic aberrations to resist the cytotoxic

effect of chemotherapy.

Regarding biological function, the genes selected for the

validation assay were involved in key biological processes for

breast cancer invasion, among which, extracellular matrix

metabolism, angiogenesis and developmental processes worth to

be highlighted. Recently, several works has showed the relevance

of tumor-microenvironment interactions in tumor chemoresis-

tance and clinical outcome in breast cancer [28-30]. With respect

to angiogenesis, it is well-known the involvement of this process

into breast cancer invasion and disease progression [31]. On the

other hand, some of the genes classified in the developmental

processes category have been shown to participate in molecular

pathways described in cancer stem cells (CSCs) [32-35]. Further

functional characterization was performed using IPA software.

Pathways analysis revealed that transcriptome networks, including

our target genes and genes related to chemoresistance, cell survival

and migration, and extracellular matrix remodeling and invasion,

clustered around two central genes: CTNNB1 and HIF1. b-

catenin, the protein encoded by CTNNB1, plays a key role in the

regulation of mammary development through a dual role. In

plasma membrane, b-catenin associates to cadherins forming cell-

cell adherens junctions, which maintain mammary epithelial

integrity. Loss of b-catenin from adherens junctions results in its

elevation in cytosol and nucleus, where it regulates the expression

of genes involved in mammary stem cell biology and breast

development. Importantly, both of these events have been related

to breast carcinogenesis and progression [36,37]. The nuclear

activity of b-catenin is promoted by several effectors through

different signaling pathways. Transforming Growth Factor b
(TGFb) and several Wnt proteins are known to reduce b-catenin

localization to adherens junctions by increasing the expression of

transcription factors from the ZEB, SNAIL, and TWIST protein

families and inducing the epithelial-to-mesenchymal transition

(EMT) program. The EMT is a latent embryonic process

converting epithelial cells into mesenchymal cells with enhanced

Figure 5. Functional annotation and network analysis of the Chemoresitance dataset by IPA software. A) List of predicted inhibited and
activated functions according the Chemoresistance dataset. B) Summary of the IPA network analysis of the Chemoresistance dataset C) Gene-
expression network resulting from merging overlapping Networks 2, 3 and 4 according to IPA network analysis.
doi:10.1371/journal.pone.0053983.g005

Genetic Drivers of Breast Cancer Chemoresistance

PLOS ONE | www.plosone.org 9 January 2013 | Volume 8 | Issue 1 | e53983



motility and invasiveness capabilities [38]. Physiologically, EMT is

related to organogenesis but experimental evidences have shown

that the EMT process is linked to breast carcinogenesis and

progression since it promotes the acquisition of stem-like

properties, chemoresistance and metastasis [38,39]. In addition,

b-catenin localization to the nucleus is promoted by the kinase

activity of growth factors receptors, such as those of the Epidermal

Growth Factor (EGF) or the Insulin-like Growth Factor (IGF)

families, components of the Nuclear Factor kappa B (NFkB)

signaling pathway and the integrin-linked kinase (ILK) signaling

pathway, which inhibits b-catenin targeting to proteasomal

destruction [40]. Interestingly, both the ILK and the NFkB

signaling pathways have been related with the Wnt/ b-catenin

signaling pathway in our pathways analysis. Finally, increased

tumor motility conferred by EMT requires changes in cell shape

and polarity, which are mainly mediated by Rho Family GTPases

activation via Wnt/ b-catenin signaling [41], as reflected in our

pathways analysis. These facts, together with the identification of

TGFb1, IGF1 and EGF as potential upstream regulators of our 30

target genes, highlights the relevance of the molecular network

centered on b-catenin for chemoresitance in breast cancer and its

connections with the EMT process and CSCs biology, a

hypothesis that warrants further investigation.

On the other hand, the HIF family comprises several transcription

factors involved in the cellular adaptation to hypoxia through the

modulation of key processes in tumor initiation and progression, such

as angiogenesis, cell survival, metabolic reprogramming and thera-

peutic resistance. Adaptation to hypoxic conditions is crucial for tumor

development and disease progression, since oxygen deprivation is a

common microenvironmental feature of solid tumors and it increases

as tumor growths [42]. Indeed, tumor hypoxia and consequent HIF-1

overexpression have been significantly correlated with worse clinical

outcomes in cancer patients [43]. The molecular bases of these clinical

observations rely on a complex network of interactions affecting HIF-1

transcription upon physicochemical stimuli, as low oxygen tension,

increased reactive oxygen species (ROS) concentrations, growth factor

Figure 6. Gene-expression regulatory networks of breast cancer chemoresistance. Pathway analysis by IPA software based on the
Chemoresistance dataset and gene lists related to A) Chemoresistance, B) Survival, C) ECM invasion and remodeling, and D) Migration created using
the Ingenuity Knowledge Base. The relations between the genes were inferred from the relationships known in the scientific literature using data-
mining Ingenuity software. Each node represents a gene; red color denotes over-expressed genes; green color denotes down-expressed genes. The
colors intensity appears according to the related expression level by fold change. Connections indicate direct regulatory interactions. Arrows are
colored differently to ease the identification of the genes involved in over-represented Canonical Pathways and Biomarkers according to Ingenuity
Knowledge Base.
doi:10.1371/journal.pone.0053983.g006
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and cytokine signaling [42]. Recent works support the idea that cancer

chemoresistance is mediated by HIF-1-driven inactivation of intact p53

[44,45] and activation of NFkB [45]. In line with these observations,

our pathways analysis shows a connection between p53, NFkB and

HIF-1 signaling pathways in relation to chemoresistance and survival.

Regarding tumor metabolism under hypoxic conditions, it has recently

been found that Sp1 cooperates with HIF-1 to promote glycolysis in

solid tumors and thus, facilitating cancer metabolic reprogramming

and tumor progression [46]. Similarly, Thyroid hormone has been

shown to induce HIF-1a expression through THRB/Retinoid X

receptor a (RXRa)-dependent activation of the Hepatic leukemia

factor (HLF) in human hepatocytes and Hep2 cells [47], a possible role

in breast cancer metabolism according to the results of our upstream

regulator analysis with IPA software. In relation to MTPN, a protein

related to cardiac hypertrophy, no significant relation with cancer has

been reported to our knowledge. Additionally, some recent works point

out the role of HIF-1 in mediating EMT through activation of the

Wnt/b-catening signaling pathway. In 2008, Cannito et al. [48]

reported that exposure cancer cells of different epithelial origin

(hepatoma, pancreas, colon and breast carcinoma) to hypoxia

invariably resulted in EMT. Based on their in vitro experiments, the

authors proposed a mechanistic model by which early EMT events

were induced by an increase in intracellular ROS production due to

hypoxia, whereas late migration and invasiveness traits were promoted

by HIF-1 through VEGF overexpression. Later studies have

corroborated a significant enrichment in cell populations exhibiting

stem like and EMT phenotypes after exposure to hypoxia [49,50] and

very recently, Conley et al [51] have proposed that tumor hypoxia

secondary to antiangiogenic therapy in breast cancer limits its

effectiveness, as it stimulates stem-like cell enrichment through HIF1-

driven EMT.

These new data and concepts are integrated into the current debate

regarding CSCs origin and biology. The hierarchical CSCs model

proposed that oncogenesis is initiated by the occurrence of transform-

ing mutations in normal stem cells (SC), which are transferred to their

progeny following a hierarchical and unidirectional path. As a

consequence, most progenitors and differentiated tumor cells are

generated by self-renewal and differentiation of CSCs. Conceptually,

this model presents some limitations since the mutation rate of SC

might not be sufficiently high to promote oncogenesis. Main reasons

are the small size of SC population and their quiescent proliferative

state. These considerations and the biological insights coming from the

discovery and study of the EMT process in cancer have pointed out

cancer phenotypic plasticity as a major force directing oncogenesis and

tumor progression. The dedifferentiation capacity of cancer cells to a

stem-like phenotype through EMT conciliates the CSC and the multi-

step tumorigenesis models, since mutations are more likely to strike

actively dividing cells, which are later selected for clonal expansion or

Figure 7. Upstream regulators analysis by IPA software based on the Chemoresistance dataset. Each ode represents a gene; red color
denotes over-expressed genes. The colors intensity appears according to the related expression level by fold change. Connections indicate direct
regulatory interactions. Arrows are colored differently to ease the identification of each connection.
doi:10.1371/journal.pone.0053983.g007
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introduced into the CSCs compartment via EMT and upon the

appropriate stimuli. Interestingly, microenvironmental factors, such as

hypoxia, seem to trigger EMT in cancer and promote chemoresistance

[39,51].

Future studies will tell whether this set of genes for chemore-

sistance is constitutively expressed by a minority of aggressive cells

within chemo-sensitive tumors or it is up-regulated in response to

treatment-derived cytotoxicity. Similarly, further characterization

of the cells expressing this set of genes will reveal their stemness.

Indeed, they seem to share important features with undifferenti-

ated cells since they are chemoresistant, represent a minor cell

population within breast tumors, and show the up-regulation of

genes functionally related with micro-environmental signaling

pathways involved in the acquisition of motility and invasiveness

traits [34,35]. In any case, these data suggest that chemotherapy

elicits a selective pressure able to activate the expression of

adaptive capabilities in a selected population within the tumors

whose proportion may vary depending on its molecular charac-

teristics.

Then, the genes reported to differentially over-express after

chemotherapy are ideal candidates for functional analysis to test their

suitability as therapeutic targets itself or through the disruption of the

molecular pathway in which they participate. Additionally, the study of

molecular mechanism leading to the overexpression of these genes may

shed light on the genetic aberrations leading chemoresistance. On the

other hand, the development of a predictor based on the expression

levels of these genes, or a selection of them, may support treatment

decision-making in breast cancer, as it would help to identify those

patients bearing chemosensitive tumors from those whose absolute

benefit from current chemotherapy is very scarce, but still suffer from

the severe toxicity associated to the use of cytostatics and other

chemotherapeutic drugs. This strategy may allow a better selection of

candidate breast cancer patients to be included in clinical trials testing

new drugs.
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