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We compute, for top quark pair production at the Tevatron and the Large Hadron Collider, the
collider-independent forward-backward asymmetries defined in [1] in the standard model at next-
to-leading order in QCD, including also electromagnetic and weak corrections.

I. INTRODUCTION

The charge asymmetry – respectively forward-
backward (FB) asymmetry – in tt̄ production at the Fer-
milab Tevatron stands out as perhaps the most promi-
nent anomaly that the data analysis of this collider has
left. The observable that has been mostly used is the tt̄
rest frame asymmetry whose definition is based on the
difference ∆y = yt − yt̄ between the rapidities of the
top quark and antiquark, which is invariant under boosts
along the beam direction,

AFB =
N(∆y > 0)−N(∆y < 0)

N(∆y > 0) +N(∆y < 0)
, (1)

where N denotes the respective number of tt̄ events. The
measurements of this asymmetry by the CDF [2, 3] and
D0 [4] Collaborations, which are in excess of the standard
model (SM) expectations [5–14], have triggered more
than a hundred theory papers that explain this anomaly
by new physics (see, for example, [15–20]). New physics
explanations of the anomalous Tevatron asymmetry of-
ten predict new related effects at the Large Hadron Col-
lider (LHC) [21], including the observation of new parti-
cles [22]. As yet, none of these effects have been found at
the LHC. But, of course, this does not rule out the pos-
sibility that the Tevatron asymmetry results from new
physics, telling us that, if anything, this new physics is
perhaps not as simply modeled as by the hitherto existing
proposals.

A closer test of the Tevatron excess is provided by the
measurement of the tt̄ charge asymmetry at the LHC.
While the Tevatron FB asymmetry in Eq. (1) involves the
rapidity difference ∆y, the definition of the LHC charge
asymmetry used by the CMS and ATLAS experiments
employs the difference ∆|y| = |yt| − |yt̄| between the ab-
solute values of the top and anti-top rapidities in the
laboratory (LAB) frame [23],

AC =
N(∆|y| > 0)−N(∆|y| < 0)

N(∆|y| > 0) +N(∆|y| < 0)
. (2)

This definition takes advantage of the fact that valence
quarks q = u, d have a larger average momentum frac-
tion than antiquarks q̄. This leads to a boost of the tt̄
system along the direction of the incoming quark. There-
fore, an excess of top quarks in this direction – that is, a

FB asymmetry in the center-of-mass (CM) frame of the
initial partons – leads to more t than t̄ quarks for large
values |y| of the (anti)top rapidity, while for small values
of |y| it is the other way around. Current measurements
of AC by the ATLAS [24] and CMS [25, 26] Collabo-
rations have found agreement with the SM predictions.
However, these results are per se not incompatible with
the Tevatron measurements [1, 27–29], since AFB and
AC are different observables that result from a differ-
ent “weighting” of the “intrinsic” asymmetries Au, Ad in
uū → tt̄, dd̄ → tt̄, respectively. (Notice that gg → tt̄
does not contribute to AFB and AC .) In this way, mod-
els giving rise to different intrinsic asymmetries Au, Ad,
lead to different predictions for the relation between AC

and AFB [30].

A direct test of the Tevatron anomaly has been pro-
posed [1] that consists in the extraction of the asymme-
tries Au,d from the measurement of the suitably binned
asymmetries of Eqs. (1), (2) at the Tevatron and LHC,
respectively, and the subsequent comparison of the re-
spective results. Their numerical values are nearly the
same at both colliders, up to corrections that are much
smaller than the experimental precision; thus their de-
nomination as “collider-independent”. The determination
of the same quantities at the two colliders could shed
light on the origin of the Tevatron anomalies and settle
the apparent tension with the LHC measurements.

The asymmetries Au,d can be extracted from the FB
and charge asymmetries in Eqs. (1), (2) because they can
be written, to a good approximation, as

AFB = AuFu +AdFd ,

AC = AuFuDu +AdFdDd , (3)

provided we restrict ourselves to a narrow interval in
the tt̄ invariant mass mtt̄. This will be shown below.1

The factors Fq – which differ at Tevatron and the LHC
and also depend on the CM energy – can be interpreted
at leading order QCD as the fractions of qq̄ initiated tt̄

1 In fact, in the derivation of Eqs. (3), it is the partonic squared
CM energy ŝ that has to be fixed, which differs in general from
mtt̄. But fixing mtt̄ instead of ŝ, which is required in applications
to data analysis, is good enough for our purpose.
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events. The Dq are “dilution” factors that take into ac-
count that in tt̄ production at the LHC it often hap-
pens that the initial valence quark has smaller momen-
tum fraction than the sea antiquark, thus leading to a di-
lution of the asymmetry generated at the partonic level.
Both Fq and Dq depend on the longitudinal velocity of
the tt̄ pair in the LAB frame,

β =
|pzt + pz

t̄
|

Et + Et̄

, (4)

where E, pz are the LAB-frame (anti)top energy and mo-
mentum along the beam direction, respectively. On the
other hand, for fixed ŝ, Au,d are β-independent. In prac-
tice, where a finite mtt̄ interval has to be used instead of
ŝ, Au,d become mildly β-dependent. This β-dependence
can be weakened by imposing an upper cut on the trans-
verse momentum ptt̄T of the tt̄ pair. Hence, for a chosen
interval mL < mtt̄ < mU , Au,d can be extracted from
a fit to the distributions AFB(β) and AC(β) measured
within this mtt̄ interval, as discussed in [1], using the
Fq and Dq factors computed in the SM, e.g. by Monte
Carlo.

In this paper we calculate Au,d in the SM at next-
to-leading order (NLO) in the QCD coupling, including
also electromagnetic and weak corrections. To be pre-
cise, “NLO” refers in this paper to the computation of
the numerators in Eqs. (1), (2) to order α3

s including the
electroweak corrections of order α2

sα. In the next sec-
tion we derive Eqs. (3) in detail for the SM at NLO.
This derivation holds also if there are new physics con-
tributions to the asymmetries (1), (2). In addition, we
discuss the role of gq contributions, which also lead to an
asymmetry at the LHC, albeit very small in the SM. In
section III we present our numerical results.

II. DERIVATIONS

The following derivations apply to the computation of
the numerators of Eqs. (1), (2) to NLO in the gauge cou-
plings (see above). These numerators receive non-zero
contributions only from terms in the squared matrix ele-
ments that are asymmetric with respect to the exchange
of the t and t̄ momenta. As it is well-known, respective
contributions dσA only arise from the matrix elements
of qq̄ → tt̄(g, γ), where q = u, d, and of gq(q̄) → tt̄q(q̄).
To NLO in the gauge couplings, the charge asymmetric
terms dσA

qg are infrared-finite, while for qq̄ initiated tt̄
production, the soft-gluon divergence that is present in
dσA

qq̄ (virtual + soft) cancels against the corresponding

divergence in
∫

dσA
qq̄ (tt̄g), and likewise for real photon

radiation. To NLO in the gauge couplings, the numer-
ators of Eqs. (1), (2) are free of initial-state collinear
singularities – i.e., no collinear counterterms are required
to this order.

The NLO numerators are denoted by N1 in the fol-
lowing. For definiteness, we consider the denominators

of Eqs. (1), (2) to leading order (LO) and denote them
by N0. Yet, alternatively, NLO denominators may be
used, and the derivations are completely analogous to
the ones presented here. Quantities without subindices
imply a sum over all partonic sub-processes, whereas a
subindex, if present, indicates the corresponding subpro-
cess. For brevity we label with superscripts F,B the tt̄
events with ∆y ≷ 0, respectively, and with superscripts
>,< the events with ∆|y| ≷ 0.

To NLO, the numerator of Eq. (1) receives contribu-
tions from qq̄ → tt̄(g, γ), q = u, d. Top-quark pair pro-
duction by gg fusion is symmetric, and contributions to
the numerator of Eq. (1) by qg, q̄g processes are com-
pletely negligible at the Tevatron. Then, the FB asym-
metry takes the form

AFB =
N1,F

uū −N1,B
uū

N0
+ (u → d)

=
N1,F

uū −N1,B
uū

N0
uū

N0
uū

N0
+ (u → d)

≡ AuFu +AdFd . (5)

Likewise, the LHC charge asymmetry in Eq. (2) can be
written as

AC =
N1,>

uū −N1,<
uū

N0
+

N1,>
gu −N1,<

gu

N0
+ (u → d)

=
N1,>

uū −N1,<
uū

N0
uū

N0
uū

N0
+

N1,>
gu −N1,<

gu

N0
uū

N0
uū

N0

+(u → d) . (6)

The denominators N0 in Eqs. (5) and (6) are the (binned)
LO QCD tt̄ cross sections at the Tevatron and LHC, re-
spectively. For ease of notation, we use the symbols N0,

N1,F
qq̄ , etc., both for the Tevatron and the LHC. The SM

contributions to the numerator of the charge asymmetry
from gq sub-processes are rather small [12, 14] and can
be ignored.2 (We will explicitly compute them in the
next section.) Moreover, it will be shown below that,
provided we restrict ourselves to a narrow ŝ interval and
to small values of ptt̄T , the differences N1,>

qq̄ − N1,<
qq̄ are

related to the differences N1,F
qq̄ −N1,B

qq̄ (where “forward”
and “backward” refer to the initial quark direction) by

N1,>
qq̄ −N1,<

qq̄ = Dq

(

N1,F
qq̄ −N1,B

qq̄

)

. (7)

Here Dq is a so-called dilution factor, defined, again for
a narrow interval in ŝ, by

Dq ≡
N(xq > xq̄)−N(xq < xq̄)

N(xq > xq̄) +N(xq < xq̄)
. (8)

2 If these contributions were measurable, it would be more ade-
quate to use N1

gq for the relative normalization in Eq. (6), in-

stead of N0
qq̄ . On the other hand, our choice shows more clearly

the relative size of the gq asymmetries, compared to qq̄.
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Using Eq. (7) and neglecting the gq contributions, the
charge asymmetry (6) can be written as

AC =
N1,>

uū −N1,<
uū

N0
uū

N0
uū

N0
+ (u → d)

=
N1,F

uū −N1,B
uū

N0
uū

N0
uū

N0
Du + (u → d)

≡ A′

uF
′

uDu +A′

dF
′

dDd . (9)

Here, we have put primes on A′

q and F ′

q to emphasize
that these quantities correspond to the LHC, while the
unprimed quantities refer to the Tevatron. However, as
it will be shown below, the asymmetries A′

u,d are, for the
same narrow interval in ŝ, approximately equal to the
Tevatron asymmetries Au,d defined in Eq. (5).

We will first show the equality between Au,d and A′

u,d.
For the latter, the forward and backward directions are
defined with respect to the initial quark momentum di-
rection. (Of course this is impossible to tell event by
event.) Then, we derive Eq. (7). Our notation is as fol-

lows. We denote by xi, i = 1, 2 the momentum fractions
of the initial partons, and fp(xi) is the distribution func-
tion for parton p in the proton with momentum fraction
xi. The dependence of the parton distribution functions
(PDF) on the factorization scale µF is not exhibited.
The (anti)proton 4-momenta at the Tevatron and LHC,
respectively, are denoted by P1,2, and dσ̂ denotes the
differential cross section of a partonic subprocess which
includes the corresponding phase-space measure dΦ and
flux factor.

In the following, we consider binned asymmetries by
restricting the partonic CM energy ŝ to an interval
[ŝmin, ŝmax]. This is accomplished by a factor

H = θ(ŝ− ŝmin)θ(ŝmax − ŝ) (10)

in the integrals.

At the Tevatron, the FB asymmetries Au,d are defined
with respect to the proton direction. Their numerators
are, in terms of the proton PDF,

N1,F
qq̄ −N1,B

qq̄ =

∫

dx1dx2 fq(x1)fq(x2)dσ̂
1[q(x1P1)q̄(x2P2)] [θ(∆y)− θ(−∆y)]H

+

∫

dx1dx2 fq̄(x1)fq̄(x2)dσ̂
1[q(x2P2)q̄(x1P1)] [θ(∆y) − θ(−∆y)]H , (11)

where dσ̂1 denotes here the sum of the qq̄ initiated NLO
differential cross sections for 2-particle and 3-particle fi-
nal states, and ∆y is the difference of the t and t̄ ra-
pidities in the CM frame of the initial partons. The sec-
ond integral corresponds to events where the initial anti-
quark comes from the proton and the quark from the
anti-proton, and is much smaller than the first integral.
(It amounts to a “dilution” of order 10−3 in the asym-
metry.) Choosing ŝmax and ŝmin in (10) close enough to
each other, the factor H fixes ŝ within a suitably nar-
row interval, in which

∫

dσ̂1, which are functions of ŝ,
are nearly constant and can then be taken out of the xi

integrals. Dropping the argument in dσ̂1 for brevity,

N1,F
qq̄ −N1,B

qq̄ =

∫

dσ̂1[θ(∆y)− θ(−∆y)]

×

∫

dx1dx2 fq(x1)fq(x2)H . (12)

Notice that ∆y is independent of x1 and x2. The same
can be done for the LO denominators,

N0,F
qq̄ +N0,B

qq̄ =

∫

dσ̂0
qq̄

∫

dxi fq(x1)fq(x2)H , (13)

where dσ0
qq̄ is the LO differential cross section for qq̄ → tt̄,

so the asymmetries are

Aq =

∫

dσ̂1 [θ(∆y)− θ(−∆y)]
∫

dσ̂0
qq̄

. (14)

The numerators of the LHC “FB” asymmetries A′

u, A′

d

defined in (9) are

N1,F
qq̄ −N1,B

qq̄ =

∫

dx1dx2 fq(x1)fq̄(x2)dσ̂
1[q(x1P1)q̄(x2P2)] [θ(∆y)− θ(−∆y)]H

+

∫

dx1dx2 fq̄(x1)fq(x2)dσ̂
1[q(x2P2)q̄(x1P1)] [θ(−∆y)− θ(∆y)]H , (15)
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where the “forward” and “backward” directions are de-
fined with respect to the incoming quark direction (note
the opposite signs in the arguments of the θ functions of
the second integral). By rotational invariance, the sec-
ond term is equal to the first one, so we can concentrate
on the former. Taking again the phase-space integrated
partonic cross sections out of the xi integrals, we have

1

2

(

N1,F
qq̄ −N1,B

qq̄

)

=

∫

dσ̂1 [θ(∆y) − θ(−∆y)]

×

∫

dx1dx2 fq(x1)fq̄(x2)H .

(16)

The LO denominators N0
qq̄ = N0,F

qq̄ +N0,B
qq̄ of A′

u,d are

1

2

(

N0,F
qq̄ +N0,B

qq̄

)

=

∫

dσ̂0
qq̄

×

∫

dx1dx2 fq(x1)fq̄(x2)H .

(17)

Thus the LHC asymmetries A′

u,d are, given for fixed ŝ,
by

A′

q =

∫

dσ̂1 [θ(∆y)− θ(−∆y)]
∫

dσ̂0
qq̄

. (18)

They are equal to the ones at the Tevatron, Eq. (14).

Next we show under which conditions Eq. (7) holds.
The contribution from qq̄ initial states to the numerator
of the binned LHC charge asymmetry (6) is

N1,>
qq̄ −N1,<

qq̄ =

∫

dx1dx2 fq(x1)fq̄(x2)dσ̂
1[q(x1P1)q̄(x2P2)]HE

+

∫

dx1dx2 fq̄(x1)fq(x2)dσ̂
1[q(x2P2)q̄(x1P1)]HE , (19)

where the asymmetric terms are selected by the factor

E = θ(|yt| − |yt̄|)− θ(|yt̄| − |yt|) . (20)

Here yt, yt̄ are the top and anti-top rapidities in the
laboratory (LAB) frame, respectively. Using rotational
invariance, the first integral equals the second one, so
we can concentrate on the former. We now perform a
rotation-free boost to the tt̄ rest frame. Using that the

sign of the difference of the t and t̄ rapidities is frame
invariant, we obtain, with some algebra, that in the limit
of ptt̄T → 0,

E → [θ(x1 − x2)− θ(x2 − x1)][θ(∆y) − θ(−∆y)] . (21)

Inserting Eq. (21) into Eq. (19) we obtain that for tt̄
events with sufficiently small ptt̄T ,

1

2
(N1,>

qq̄ −N1,<
qq̄ ) =

∫

dx1dx2 fq(x1)fq̄(x2)× {θ(x1 − x2)θ(∆y) − θ(x1 − x2)θ(−∆y)− θ(x2 − x1)θ(∆y)

+θ(x2 − x1)θ(−∆y)} × dσ̂1H . (22)

Again, the factor H fixes ŝ within a suitably narrow in-
terval, in which the

∫

dσ̂1 are nearly constant and can be
taken out of the xi integrals:
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1

2
(N1,>

qq̄ −N1,<
qq̄ ) =

∫

dσ̂1θ(∆y)

∫

dx1dx2 fq(x1)fq̄(x2)θ(x1 − x2)H

−

∫

dσ̂1θ(−∆y)

∫

dx1dx2 fq(x1)fq̄(x2)θ(x1 − x2)H

−

∫

dσ̂1θ(∆y)

∫

dx1dx2 fq(x1)fq̄(x2)θ(x2 − x1)H

+

∫

dσ̂1θ(−∆y)

∫

dx1dx2 fq(x1)fq̄(x2)θ(x2 − x1)H . (23)

Now let us define

drq ≡

∫

dx1dx2 fq(x1)fq̄(x2)dσ̂qq̄θ(x1 − x2)H
∫

dx1dx2 fq(x1)fq̄(x2)dσ̂qq̄H

=

∫

dx1dx2 fq(x1)fq̄(x2)θ(x1 − x2)H
∫

dx1dx2 fq(x1)fq̄(x2)H
,

dwq ≡

∫

dx1dx2 fq(x1)fq̄(x2)dσ̂qq̄θ(x2 − x1)H
∫

dx1dx2 fq(x1)fq̄(x2)dσ̂qq̄H

=

∫

dx1dx2 fq(x1)fq̄(x2)θ(x2 − x1)H
∫

dx1dx2fq(x1)fq̄(x2)H
. (24)

Here dσ̂qq̄ denotes the (LO or NLO) differential cross

section for qq̄ → tt̄X . In the next section, we use dσ̂0
qq̄

in (24). The cancellation of the dσ̂qq̄ in the ratios (24)
works, for fixed ŝ, also to NLO, because all the terms
in dσ̂1

qq̄, which is the sum of the contributions from the
tree-level term, virtual corrections, soft and hard gluon
radiation, and the collinear counterterm, are convoluted
with the same product of PDF.

Clearly, drq + dwq = 1. The integrals with respect to xi

in Eq. (23) can be written in terms of drq and dwq , resulting
in

1

2
(N1,>

qq̄ −N1,<
qq̄ ) =

∫

dσ̂1θ(∆y) drq

∫

dx1dx2fq(x1)fq̄(x2)H−

∫

dσ̂1θ(−∆y) drq

∫

dx1dx2fq(x1)fq̄(x2)H

−

∫

dσ̂1θ(∆y) dwq

∫

dx1dx2fq(x1)fq̄(x2)H+

∫

dσ̂1θ(−∆y) dwq

∫

dx1dx2fq(x1)fq̄(x2)H .(25)

Rearranging terms, we have

1

2
(N1,>

qq̄ −N1,<
qq̄ ) = (drq − dwq )

∫

dx1dx2 fq(x1)fq̄(x2)

×dσ̂1[θ(∆y)− θ(−∆y)]H . (26)

Comparing with Eq. (16) we obtain Eq. (7), i.e.,

N1,>
qq̄ −N1,<

qq̄ = (drq − dwq )
(

N1,F
qq̄ −N1,B

qq̄

)

, (27)

where

drq − dwq = Dq (28)

are the dilution factors introduced in Eqs. (7), (8).
We recall that this derivation holds for fixed ŝ and

sufficiently small ptt̄T . On the other hand, the formula (27)
and the resulting formula (9) holds for arbitrary values
0 < β < 1 of the longitudinal velocity of the tt̄ system.
In practice, the requirement of fixed ŝ must be replaced

by choosing a reasonably narrow bin in the tt̄ invariant
mass mtt̄, i.e.,

H −→ θ(mtt̄ −mL)θ(mU −mtt̄) . (29)

This will be done in the numerical computations of the
next section. Then the intrinsic asymmetries A(′)

u,d will

become β-dependent; that is, the formulae Eqs. (14) and
(18) do no longer apply – for the computations one has

to use instead the definitions of A(′)

u,d given in Eqs. (5)

and (9), respectively. But we will show that, for a given
mtt̄ bin, this β-dependence is rather mild in the SM to
NLO. More importantly, as the results below will signify,
A′

u and A′

d remain equal to Au and Ad, respectively, to
a good approximation – even if no upper cut is imposed
on ptt̄T . In addition we will show by numerical compu-
tation that neglecting the gq contributions to the LHC
charge asymmetry AC in the formula (6) is indeed justi-
fied, given the level of precision one aims at in applying
Eq.(6) to future data analysis.
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III. NUMERICAL RESULTS

Our numerical calculations are based on the code de-
scribed in [8, 14]. We compute the binned asymmetries
of Eqs. (1) and (2), and the asymmetries Au,d (Tevatron)
and A′

u,d (LHC, 7 and 8 TeV) for a sequence of intervals

mL < mtt̄ < mU . Within a specified interval [mL,mU ],
the asymmetries AFB and AC are computed, for β bins
of width ∆β = 0.2 for the Tevatron (i.e., 0 < β < 0.2,
etc.) and ∆β = 0.1 for the LHC (i.e., 0 < β < 0.1, etc.).

In the numerators of Eqs. (1) and (2) and of A(′)u,d we
take into account the O(α3

s) QCD and the O(α2
sα) elec-

troweak corrections. For definiteness, we evaluate the
denominators of all asymmetries considered in this pa-
per with LO QCD matrix elements, which is in the spirit
of a consistent fixed-order perturbative expansion of ra-
tios like Eqs. (1), (2). The fractions F (′)

q and the dilution
factors Dq are computed for the Tevatron and the LHC
(7 and 8 TeV) using LO QCD matrix elements both in
the numerators and denominators. We evaluate both the
numerators and denominators of the binned asymmetries
and of F (′)

q and Dq with NLO parton distribution func-
tions.

As emphasized above, the analysis for A(′)

u,d could also
be done by replacing, on the left- and right-hand sides
of Eqs. (5) and (6), the global normalization factors N0

(Tevatron and LHC) by the respective NLO factors N1.
We use mt = 173.1 GeV (on-shell mass), the QED

coupling α(mZ) = 0.008, and the weak mixing angle
sin2 θW = 0.23. We use the CTEQ6.6M PDF [32] and
the respective value of αs(mZ) provided by this set. We
put µR = µF = µ, and numerical results are given for
µ = mt/2,mt, and 2mt. These scale choices are purely

conventional. In Ref. [1] the asymmetries A(′)

u,d were ob-
tained for a benchmark new physics model using a two-
parameter fit to the AFB(β) and AC(β) distributions,
mimicking the procedure that has to be eventually per-
formed with real data. That can be done, for the Teva-
tron and the LHC, by minimizing

χ2 =
∑

i

[AFB(βi)−Au Fu(βi)−Ad Fd(βi)]
2

[dAFB(βi)]
2

,

χ2 =
∑

i

[AC(βi)−A′

u F ′

uDu(βi)−A′

d F ′

dDd(βi)]
2

[dAC(βi)]
2

,

(30)

with respect to A(′)
u and A(′)

d . Here i labels the different
β bins and dAFB(βi), dAC(βi) are the statistical uncer-
tainties of the binned asymmetries. Unfortunately, this
procedure requires extremely high Monte Carlo statistics
in order to have the two-parameter fit converging to the
true values. Especially at the LHC, the β-binned A′

u,d

are obtained from the ratio of a tiny asymmetry AC(βi)
over a small FqDq(βi) factor. Therefore, in order to save
computing time, we calculate the asymmetries with a
one-parameter fit, considering uū and dd̄ contributions

separately. The values of A(′)

u,d presented in Tables I - III
below are obtained from a one-dimensional least squares
parameter fit,

Aq =
∑

i

Aqq̄
FB(βi)

[

dAqq̄
FB(βi)

]2

/

∑

i

1
[

dAqq̄
FB(βi)

]2
,

A′

q =
∑

i

Aqq̄
C (βi)/Dq(βi)
[

dAqq̄
C (βi)

]2

/

∑

i

1
[

dAqq̄
C (βi)

]2
, (31)

where the superscripts of AFB , AC indicate that we
restrict the calculation to these specific sub-processes,
eventually including gq contributions as well. We will
demonstrate below the consistency of both methods by
showing that the values of A(′)

u,d calculated using either

(30) or (31) agree very well within the expected experi-
mental uncertainties. The one-parameter fit is more pre-
cise.

We estimate the statistical uncertainty of the β-binned
asymmetries by taking an integrated luminosity of 20
fb−1 for the Tevatron and 10 (30) fb−1 for the LHC with 7
(8) TeV. This corresponds to an eventual combination of
results from both experiments at the Tevatron and LHC,
respectively. A selection efficiency of ∼ 25% is taken for
the semileptonic tt̄ decay channels, similar to that found
in the experimental analyses [24, 25]. This results in a
combined efficiency factor of about 7%. The results for
the Tevatron are collected in Table I and for the LHC in
Tables II and III, without and with an upper cut ptt̄T < 30
GeV.

TABLE I: Asymmetries Au,d at the Tevatron, without ptt̄T cut

(top) and for ptt̄T < 30 GeV (bottom).

µ = mt µ = 2mt µ = mt/2

mtt̄ [GeV] Au Ad Au Ad Au Ad

< 400 0.058 0.039 0.054 0.036 0.061 0.044

400− 450 0.096 0.066 0.091 0.060 0.102 0.073

450− 500 0.123 0.086 0.116 0.079 0.131 0.095

500− 550 0.145 0.102 0.137 0.092 0.154 0.113

550− 600 0.164 0.115 0.156 0.106 0.176 0.128

µ = mt µ = 2mt µ = mt/2

mtt̄ [GeV] Au Ad Au Ad Au Ad

< 400 0.069 0.046 0.065 0.042 0.075 0.051

400− 450 0.117 0.078 0.110 0.071 0.126 0.087

450− 500 0.150 0.101 0.141 0.092 0.161 0.113

500− 550 0.178 0.120 0.167 0.109 0.191 0.135

550− 600 0.201 0.137 0.190 0.125 0.217 0.153

These tables show that the SM values of Au,d and A′

u,d

computed for the Tevatron and the LHC, respectively,
are in quite good agreement, which is remarkable given
the difference of roughly one order of magnitude between
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TABLE II: Asymmetries A′

u,d at the LHC (7 TeV), without

ptt̄T cut (top) and for ptt̄T < 30 GeV (bottom).

µ = mt µ = 2mt µ = mt/2

mtt̄ [GeV] A′

u A′

d A′

u A′

d A′

u A′

d

< 400 0.055 0.038 0.052 0.035 0.059 0.042

400 − 450 0.089 0.060 0.084 0.055 0.096 0.066

450 − 500 0.112 0.077 0.106 0.070 0.120 0.085

500 − 550 0.128 0.083 0.120 0.076 0.136 0.092

550 − 600 0.142 0.093 0.134 0.085 0.151 0.101

600 − 650 0.155 0.103 0.146 0.093 0.165 0.113

650 − 700 0.164 0.110 0.156 0.102 0.177 0.122

700 − 750 0.176 0.119 0.165 0.104 0.185 0.129

750 − 800 0.182 0.118 0.170 0.107 0.195 0.131

µ = mt µ = 2mt µ = mt/2

mtt̄ [GeV] A′

u A′

d A′

u A′

d A′

u A′

d

< 400 0.071 0.054 0.068 0.047 0.077 0.059

400 − 450 0.115 0.078 0.108 0.071 0.124 0.087

450 − 500 0.149 0.103 0.140 0.093 0.160 0.114

500 − 550 0.170 0.110 0.159 0.100 0.183 0.124

550 − 600 0.193 0.128 0.180 0.116 0.209 0.144

600 − 650 0.211 0.143 0.197 0.127 0.227 0.159

650 − 700 0.229 0.153 0.215 0.140 0.247 0.169

700 − 750 0.245 0.165 0.228 0.148 0.261 0.184

750 − 800 0.262 0.177 0.244 0.158 0.282 0.194

the predictions for the inclusive asymmetries AFB and
AC . For illustration, in Fig. 1 the intrinsic asymmetries
in Tables I–III are displayed, for µ = mt, as functions
of mtt̄. For the Tevatron, only bins with mtt̄ < 600
GeV are included. These plots show the increase of these
asymmetries with increasing mtt̄ and, furthermore, that
the upper cut on ptt̄T reduces the slight difference be-
tween the Tevatron and LHC asymmetries, making them
nearly equal. We remark that the differences exhibited
in the left plot are irrelevant from an experimental point
of view, as we shall see below. We also point out that the
differences between the Tevatron and LHC results origi-
nate from Monte Carlo statistics to some extent, as it can
be noticed from the fact that the smooth increase of the
asymmetries with mtt̄ is modulated by small fluctuations.

As we have emphasized before, at the LHC the contri-
butions from gq processes to A′

u,d are quite small. This
can be shown, for example, by using in the second of
Eqs. (31) the SM values of Aqq̄+gq

C (βi) instead of Aqq̄
C (βi).

The resulting intrinsic asymmetries are presented in Ta-
ble IV for 7 TeV, without ptt̄T cut. Comparison with the
corresponding numbers of Table II shows that the dif-
ferences are negligible. The differences are even further
reduced if an upper cut on ptt̄T is applied.

Next, we check the equivalence of the two- and one-

TABLE III: Asymmetries A′

u,d at the LHC (8 TeV), without

ptt̄T cut (top) and for ptt̄T < 30 GeV (bottom).

mtt̄ [GeV] µ = mt µ = 2mt µ = mt/2

A′

u A′

d A′

u A′

d A′

u A′

d

< 400 0.055 0.038 0.052 0.035 0.059 0.042

400− 450 0.088 0.058 0.083 0.053 0.094 0.065

450− 500 0.111 0.075 0.105 0.070 0.118 0.084

500− 550 0.126 0.081 0.119 0.075 0.135 0.091

550− 600 0.139 0.089 0.131 0.081 0.147 0.097

600− 650 0.153 0.102 0.144 0.094 0.163 0.113

650− 700 0.161 0.107 0.153 0.099 0.172 0.120

700− 750 0.172 0.115 0.162 0.106 0.185 0.129

750− 800 0.177 0.115 0.167 0.106 0.190 0.131

µ = mt µ = 2mt µ = mt/2

mtt̄ [GeV] A′

u A′

d A′

u A′

d A′

u A′

d

< 400 0.073 0.040 0.068 0.050 0.078 0.061

400− 450 0.115 0.074 0.108 0.070 0.123 0.086

450− 500 0.147 0.101 0.139 0.092 0.159 0.113

500− 550 0.170 0.118 0.159 0.102 0.183 0.124

550− 600 0.191 0.128 0.179 0.113 0.205 0.141

600− 650 0.209 0.148 0.197 0.126 0.227 0.157

650− 700 0.229 0.157 0.215 0.139 0.246 0.168

700− 750 0.242 0.164 0.225 0.147 0.261 0.186

750− 800 0.258 0.174 0.243 0.155 0.277 0.193

TABLE IV: Asymmetries A′

u,d at the LHC (7 TeV), without

ptt̄T cut, including gq contributions.

µ = mt µ = 2mt µ = mt/2

mtt̄ [GeV] A′

u A′

d A′

u A′

d A′

u A′

d

< 400 0.056 0.038 0.053 0.035 0.060 0.042

400− 450 0.091 0.060 0.086 0.055 0.097 0.067

450− 500 0.115 0.078 0.108 0.071 0.123 0.087

500− 550 0.132 0.085 0.124 0.078 0.141 0.095

550− 600 0.147 0.097 0.139 0.088 0.157 0.106

600− 650 0.161 0.108 0.152 0.097 0.172 0.118

650− 700 0.172 0.115 0.163 0.107 0.186 0.129

700− 750 0.184 0.125 0.172 0.110 0.195 0.136

750− 800 0.191 0.125 0.178 0.113 0.205 0.139

dimensional fits in determining the intrinsic asymmetries.
In Fig. 2 these asymmetries are plotted for the first four
mtt̄ bins. The dots represent the values calculated with
one-parameter fits (these are the numbers given in Ta-
bles I-III), and the ellipses are the two-dimensional 68%
confidence level (CL) regions from the 2-dimensional fit,
where the centre is the best-fit value giving the minimum
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FIG. 1: Summary of asymmetries for the Tevatron and the LHC (7 and 8 TeV), for µ = mt, without ptt̄T cut (left) and for

ptt̄T < 30 GeV (right). The data correspond to the first two columns of Tables I–III.

χ2
min

and the border corresponds to χ2 = χ2
min

+ 2.3, in-
cluding statistical uncertainties only and assuming a per-
fect reconstruction of the t and t̄ momenta. From these
plots, it is also clear that the slight differences between
the Tevatron and LHC asymmetries are irrelevant as to
the anticipated experimental uncertainty. This justifies
the ansatz of extracting the same quantities from two
different sets of data.

So far we have determined the intrinsic asymmetries
A(′)

u,d by simulating the proposed fitting procedure with
SM data: we have computed, for various mtt̄ bins, the
binned asymmetries AFB(βi), AC(βi), the fractions F (′)

q

and the dilution factors Dq in the SM and performed the
fits using Eqs. (31) and (30). This leads, by definition, to

constant A(′)

u,d for each mtt̄ bin. It remains to show that
this is an acceptable procedure – i.e., that the β-binned
intrinsic asymmetries are only mildly β-dependent within
the mtt̄ bins chosen above, as it was claimed. This is
shown in Fig. 3 for the first mtt̄ bin. (For the other mtt̄

bins the behavior is quite similar.) This variation can be
compared, for example, with an increase in F ′

u by a fac-
tor of 3 and Du (Dd) by factors of 20 (40), between the
bins 0 < β < 0.1 and 0.9 < β < 1. These results corrobo-
rate the assumption of constant A(′)

u,d, especially when an

upper cut on ptt̄T is used. The LHC results shown in the
plot in the right panel of Fig.3 exhibit some statistical
fluctuations, which have some effect on the resulting fit
values of of A′

u,d.

Finally we comment on the importance of the SM elec-
troweak contributions [11, 12, 14] of order α2

sα to the
charge asymmetries Au,d and A′

u,d. The dominant con-

tributions are due to the photonic corrections [11] whose
size with respect to the pure QCD asymmetries is roughly
given by the ratio Rq = (36QqQt/5)(α/αs). That is,
these QED contributions amount to a positive correc-
tion of ∼ 25% for A(′)

u , while they are negative, ∼ −13%

for A(′)

d . The pure QCD contributions to A(′)

u,d may of
course be computed also with one of the generally avail-
able NLO QCD Monte Carlo programs, e.g. with the

codes of [13, 31]. One should keep in mind, however, that
in Monte Carlo computations one normalizes the asym-
metries with NLO QCD denominators, while we have
used denominators computed at LO QCD.

IV. CONCLUSIONS

The formulae (3) allow to extract the intrinsic forward-
backward asymmetries Au,d and A′

u,d from the Teva-

tron tt̄ forward-backward asymmetry AFB and the LHC
charge asymmetry AC , respectively, if measured in suit-
ably chosen bins of the tt̄ invariant mass mtt̄ and longitu-
dinal velocity β of the tt̄ system. We have shown under
which conditions Eqs. (3) hold in the SM to NLO in the
gauge couplings. Our derivations apply of course also
to possible new physics contributions to these asymme-
tries. In particular, we have shown within the SM that
the intrinsic asymmetries are indeed collider-independent
and, furthermore, only mildly β-dependent for suitably
narrow mtt̄ bins, especially if an upper cut on the ptt̄T of
the tt̄ samples is applied. This corroborates the proposal
of [1] to use (3) with constant Au and Ad for performing
a two-parameter fit to the respective Tevatron and LHC
data.

In order to apply Eqs. (3) to data analysis, one has
to compute the fractions Fq and factors Dq in the SM,3

either to LO or NLO QCD for a specific PDF set and
for chosen values of the renormalization and factoriza-
tion scales. The outcome of the fits depend, of course,
on these choices. Needless to say, this would be extremely
valuable information. It has previously been shown, on a
model-independent basis [1] as well as for specific new

3 The present knowledge about the (differential) hadronic tt̄ pro-
duction cross section implies that possible new physics contribu-
tions to these functions can be neglected.
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FIG. 2: Comparison between asymmetries obtained with two- and one-dimensional fits, for µ = mt, without ptt̄T cut. The mass
range in the lower left corner indicates the mtt̄ bin (in GeV). The ellipses represent the 68% CL regions for the two-dimensional
fit, where only statistical uncertainties are considered.
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FIG. 3: Dependence of Au,d on β in the SM, for mtt̄ < 400 GeV at the Tevatron (left) and the LHC with 7 TeV (right). Black

and gray triangles correspond to no ptt̄T cut and cut ptt̄T < 30 GeV, respectively.

physics models [27–29], that current measurements of
AFB at the Tevatron and AC at the LHC are compatible.
Therefore, the comparison of the measured values Aexp

u,d

with their SM predictions ASM

u,d would reveal whether or
not there is agreement with the SM – and if a deviation
would be found, it would show whether it is located in

Au or Ad, or in both. This could be achieved by a combi-
nation of the results from measurements at the Tevatron
and the LHC (and by eventually testing whether they
are consistent), and would be a big step forward in pin-
ning down the origin of the new physics contribution(s), if
there are any. The experimental determination of Au and
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Ad will certainly be a challenge, as it will involve in gen-
eral a 3-dimensional unfolding of the data with respect
to mtt̄, β, and the (anti)top rapidity, but it is certainly
worth the effort, for the aim of resolving this puzzle.
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