$t \bar{t}$ charge asymmetry, family and friends

J.A. Aguilar-Saavedra
University of Granada
Discrete 2012, Lisbon, December 6th, 2012
Outline of the talk

- The Tevatron charge / FB asymmetry
- The younger sister: the LHC charge asymmetry
- The parents: the collider-independent asymmetries
- The friends: $t\bar{t}$ differential distribution, top polarisation
- Discussion

Not covered: the acquaintances (same-sign tops, four tops, tj resonances...)
The charge / FB asymmetry at Tevatron

$q\bar{q} \rightarrow t\bar{t}$ is not symmetric under interchange of t and \bar{t} momenta; the most commonly used observable at Tevatron is the FB asymmetry

$$A_{FB} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

with $\Delta y = y_t - y_{\bar{t}}$, exploiting that in $p\bar{p}$ collisions we know where q and \bar{q} come from. In the SM this asymmetry arises from interference between LO and NLO diagrams, e.g.

As it is well known, Tevatron measures a **positive** asymmetry exceeding the SM expectation...
Status of Tevatron measurements

inclusive measurements not converging to SM
avg 2.7σ from closest prediction

$SM = \begin{align*}
0.058 & \quad MCFM \\
0.0724 & \quad Ahrens et al. \\
0.087 & \quad Kuhn & Rodrigo \\
0.088 & \quad Bernreuther & Si \\
0.089 & \quad Hollik & Pagani
\end{align*}$
Status of Tevatron measurements

A high-mass measurement that triggered interest is closer to SM but still 2.5σ away.
These consistent discrepancies have motivated a plethora of papers proposing new physics explanations.

A_{FB} is an effect competing with QCD

- most likely, new physics in $q\bar{q} \rightarrow t\bar{t}$
- and expected at tree level

What could this new physics be? Group theory helps here.

The Lagrangian must be singlet under $SU(3)_c \times SU(2)_L \times U(1)_Y$

type of bosons determined by quantum numbers of quarks.
Colour

\[3 \otimes \bar{3} = 8 \oplus 1 \]
\[3 \otimes 3 = 6 \oplus \bar{3} \]

Isospin

\[2 \otimes 2 = 3 \oplus 1 \]
\[2 \otimes 1 = 2 \]
\[1 \otimes 1 = 1 \]

Hypercharge

\[\sum Y = 0 \]

\(B \)	\((1,1)\)	\(0\)	\(\phi \)	\((1,2)\)-1/2
\(W' \)	\((1,3)\)	\(0\)	\(\Phi \)	\((8,2)\)-1/2
\(B^1 \)	\((1,1)\)	\(1\)	\(\omega^1 \)	\((6,1)\)-1/3
\(G \)	\((8,1)\)	\(0\)	\(\Omega^l \)	\((6,1)\)-1/3
\(H^l \)	\((8,3)\)	\(0\)	\(\omega^4 \)	\((3,1)\)-4/3
\(G^l \)	\((8,1)\)	\(1\)	\(\Omega^4 \)	\((6,1)\)-4/3
\(Q^l \)	\((3,2)\)1/6	\(\sigma\)	\((3,3)\)-1/3	
\(Q^5 \)	\((3,2)\)-5/6	\(\Sigma\)	\((6,3)\)-1/3	
\(Y^l \)	\((6,2)\)1/6			
\(Y^5 \)	\((6,2)\)-5/6			
Most popular models

s channel
\(G \sim (8,1)_0 \)

0809.3354, 0906.0604, 0911.2955, 1007.0243, 1011.6380, 1011.6557, 1101.2902, 1101.5203, 1103.0956, 1104.1917, 1105.3158, 1105.3333, 1106.0529, 1106.4054, 1107.0978, 1107.1473, 1107.2120, 1107.5769, 1109.0648, 1205.4721, 1209.2741, 1209.3636, 1209.6375

0907.4112, 1101.4456, 1101.5625, 1102.0545, 1103.1266, 1103.4835, 1104.1385, 1104.3139, 1106.5982, 1108.0350, 1108.1802, 1205.0407, 1207.0643, 1209.4354, 1209.4872

1101.1445, 1101.5392, 1104.0083, 1105.4606, 1203.4489, 1205.3311

\(\omega^4 \sim (3,1)_{-4/3} \)

0911.3237, 0911.4875, 0912.0972, 1007.2604, 1102.3374, 1102.4736, 1103.2757, 1108.4027, 1205.5005

\(\Omega^4 \sim (6,1)_{-4/3} \)
These models are mostly “phenomenological”

(which means: do not ask for all bells & whistles)

but good to test:

1. can one enhance A_{FB} without spoiling the good agreement of the total cross section?

2. can one reproduce the Tevatron inclusive and high-mass A_{FB}?

3. is this compatible with other measurements, in particular at LHC?

If all these conditions are met, one can go further and try to build a new physics theory explaining A_{FB}.
Can the asymmetry be generated keeping $\sigma_{\text{exp}} \sim \sigma_{\text{SM}}$ at Tevatron?

$\sigma_{\text{exp}} = 7.50 \pm 0.48 \text{ pb}$

$\sigma_{\text{SM}} = \begin{cases} 7.46^{+0.66}_{-0.80} \text{ pb} & \text{Langenfeld et al `09 and others} \\
6.30 \pm 0.19^{+0.31}_{-0.23} \text{ pb} & \text{Ahrens et al `10} \end{cases}$

$\sigma(t\bar{t}) = \sigma_{\text{SM}} + \delta\sigma_{\text{int}} + \delta\sigma_{\text{quad}} \sim \sigma_{\text{SM}}$ implemented in two ways

$\begin{cases} \delta\sigma_{\text{int}} + \delta\sigma_{\text{quad}} \sim 0 & \text{fine-tuned cancellation} \\
\delta\sigma_{\text{int}} \sim 0 & \delta\sigma_{\text{int}}^F = -\delta\sigma_{\text{int}}^B \text{ from symmetry} \end{cases}$

These possibilities are radically different:

- $\delta\sigma_{\text{int}} + \delta\sigma_{\text{quad}} \sim 0$ occurs at a given CM energy for a given coupling
- $\delta\sigma_{\text{int}}^F = -\delta\sigma_{\text{int}}^B$ arises from vertex structure (axial), at all energies
Results of test #1

There are many models with new particles exchanged at tree level in s, t or u channel that can generate large A_{FB} while keeping the total σ

Other more exotic models:
- one loop: effective g_{tt} couplings 1106.4553, 1108.1173, 1112.5885
- spin-2 particles 1203.2183
- combinations of particles 1102.0279, 1208.4675
Test #2

Is the Tevatron picture consistent? (new CDF 9.4 fb\(^{-1}\))

![Graphs showing various decay channels and their AFB distributions for m_{t\bar{t}} > 450 GeV, with different decay modes such as Z', W', φ, and Ω. Each graph illustrates the AFB as a function of the AFB for different mass intervals and decay branching ratios.](image-url)
Results of test #2

Most models can reproduce the central values

\[A_{FB} = 0.187 \pm 0.036 \quad \text{inclusive (naive world avg)} \]
\[A_{FB} = 0.295 \pm 0.066 \quad \text{CDF high-mass (new)} \]

Only Z´fails the test

The picture is more consistent than in January 2011 when the 3.6σ discrepancy appeared. This is good news!
The younger sister: the LHC charge asymmetry

At the LHC, a suitable observable to test “asymmetric” $t\bar{t}$ production is

$$A_C = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$

with $\Delta|y| = |y_t| - |y_{\bar{t}}|$, that exploits the fact that we have pp instead of $p\bar{p}$ collisions.

Clearly, this is not the same observable as at Tevatron, and a result consistent with the SM does not say anything about the Tevatron excess.

But comparing predictions for A_{FB} and A_C does say a lot about models addressing the Tevatron excess.
Status of LHC measurements

Good agreement with SM

SM =

0.006 MC@NLO
0.0115 Kuhn & Rodrigo
0.0123 Bernreuther & Si
Test #3

Is the Tevatron - LHC picture consistent?

Z', W' disfavoured/excluded

(choose preferred wording)

for the rest of models the future is unclear
Results of test #3

The interest on AFB has decreased… or maybe not!
A_{FB} strikes back!

Full CDF data set shows a smooth, convincing excess…

... that is hard to regard as a statistical fluctuation!

p-value of slope: 7.4×10^{-3} (2.4σ)
But the rebel A_C agrees with the SM!

<table>
<thead>
<tr>
<th>Kinematic variable</th>
<th>A_C in bin 1</th>
<th>A_C in bin 2</th>
<th>A_C in bin 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y_{t\bar{t}}$</td>
<td>0.029\pm0.021</td>
<td>0.016\pm0.015</td>
<td>0.001</td>
</tr>
<tr>
<td>$p_{T,t\bar{t}}$</td>
<td>0.037\pm0.025</td>
<td>0.014</td>
<td>0.030\pm0.021</td>
</tr>
<tr>
<td>$m_{t\bar{t}}$</td>
<td>0.051\pm0.027</td>
<td>0.017</td>
<td>0.019\pm0.017</td>
</tr>
<tr>
<td>(SM pred.)</td>
<td>0.0030\pm0.0002</td>
<td>0.0086\pm0.0004</td>
<td>0.0235\pm0.0010</td>
</tr>
</tbody>
</table>

- is all this compatible?
- how to solve this puzzle?
- is there something we can measure at both colliders and compare?
The parents: the collider-independent asymmetries

The Tevatron A_{FB} and LHC A_C originate from the “intrinsic” partonic asymmetries A_u, A_d in $u\bar{u} \rightarrow t\bar{t}$ and $d\bar{d} \rightarrow t\bar{t}$ respectively.

A_{FB} and A_C are different “combinations” of A_u, A_d

- Different sizes of $u\bar{u} \rightarrow t\bar{t}$ and $d\bar{d} \rightarrow t\bar{t}$ relative to total $t\bar{t}$ production
- Asymmetry “dilution” at LHC due to q, \bar{q} coming from either p

but, for fixed \hat{s}, A_u and A_d are (\sim) the same at Tevatron and LHC (!!!)

Precisions:
- SM asymmetries in $gq \rightarrow t\bar{t}j$ irrelevant
- in practice, replacing fixed \hat{s} by finite $m_{t\bar{t}}$ intervals introduces small deviations
- deviations smaller at low $p_T^{t\bar{t}}$

a possible solution to the asymmetry puzzle is to measure A_u, A_d at Tevatron and LHC and compare
Measure \(A_u\) and \(A_d\)?

Exploiting the dependence of \(A_{FB}\) and \(A_C\) on the \(t\bar{t}\) velocity

\[
\beta = \frac{|p_{\tilde{t}} + p_{\tilde{\bar{t}}}|}{E_{\tilde{t}} + E_{\tilde{\bar{t}}}}
\]

\(A_u\) and \(A_d\) can be extracted from a fit to

\[
A_{FB}(\beta) = A_u F_u(\beta) + A_d F_d(\beta)
\]

\[
A_C(\beta) = A_u F_u(\beta) D_u(\beta) + A_d F_d(\beta) D_d(\beta)
\]

where \(F_q(\beta)\) (\(q\bar{q}\) fractions) and \(D_q(\beta)\) (dilution factors) are computed from MC in the SM.
A_u and A_d in the SM

\begin{align*}
\text{no cut on } p_T^{t\bar{t}} \\
\text{\quad } \text{Tevatron / LHC} \\
\text{differences much smaller than exp. uncertainty}
\end{align*}
Goal: to measure A_u and A_d. What if?

That might tell us

- whether Tevatron and LHC results are compatible or not.

Possible results assuming SM, stat. unc. only.
Goal: to measure A_u and A_d. What if?

That might tell us

- whether their combination is compatible with SM

`Expected` 1σ combined limits in axigluon model, $\Delta A_{FB} = 0.07$
Asymmetry friend #1: $t\bar{t}$ differential distribution

Enhancements expected in *almost all* models, especially those implementing $\delta\sigma_{\text{int}} + \delta\sigma_{\text{quad}} \sim 0$ to keep Tevatron cross section agreement...

... but nothing unusual seen as yet!
Tevatron asymmetries after LHC $t\bar{t}$ tail constraints

Disclaimer: additional constraints (tj resonances, top FCNC…) not included
Least disturbing model: s-channel coloured resonance \mathcal{G}

necessary that \mathcal{G} couples to up/down and to top
coupling to light quarks small, otherwise dijet production
large coupling to top required (natural in extra dimensions)
Colour octet features

- Interference $\delta\sigma_{\text{int}}$ identically zero (at all energies) if either coupling to $q\bar{q}$ or $t\bar{t}$ axial.

- Asymmetry maximised respect to $\delta\sigma$ if both couplings axial (old friend axigluon).

- Distinctive signature: peak (bump) in the $m_{t\bar{t}}$ distribution from quadratic term $\delta\sigma_{\text{quad}}$ if the resonance is reached.

- Non-observation of peak $\xrightarrow{} G$ heavy, wide or below threshold.

- LHC limits more and more stringent: if G heavy, it is “too heavy” and large (nonperturbative) couplings required to reproduce A_{FB}.

- Cool, fashionable, viable alternative: light gluons.
Light gluons below the TeV

- invisible at Tevatron if very wide or below threshold
- even more at LHC (gg dominated)
- can satisfy flavour and dijet constraints
- diverse A_{FB} profiles vs $m_{t\bar{t}}$ possible
A_{FB} profiles: from flat to camel

Sustainable model

flat

rising

hill

dip-rising

dip-hill

camel

G_μ below \tilde{t} threshold

G_μ, $M = 1050$ GeV

G_μ, $M = 870$ GeV

G_μ, $M = 870$ GeV

G_μ, $M = 1050$ GeV

G_μ, $M = 870$ GeV

G_μ, $M = 870$ GeV

G_μ, $M = 450$, 1050 GeV

G_μ, $M = 450$, 870 GeV

G_μ, $M = 450$, 870 GeV

G_μ, $M = 450$, 570, 870
Light gluons are LHC-friendly

Light gluons can accommodate small A_C… for the moment…

Average value of $A_C = 0.013 \pm 0.012$ has 90% uncertainty!

Borrowed from Gross et al. `12

![Graph showing LHC and Tevatron asymmetry](image)

Latest averages (this talk)

crucial to see what happens when the precision is improved and with 8 TeV data
Asymmetry friend #2: $t\bar{t}$ polarisation

The double angular distribution for a $t\bar{t}$ pair is

$$\frac{1}{\sigma} \frac{d\sigma}{d \cos \theta_t d \cos \theta_{\bar{t}}} = \frac{1}{4} [1 + B_t \cos \theta_t + B_{\bar{t}} \cos \theta_{\bar{t}} - C \cos \theta_t \cos \theta_{\bar{t}}]$$

with $\theta_t, \theta_{\bar{t}}$ the angles of the top, antitop momenta w.r.t. chosen spin axes.

In the SM:

- $B_t, B_{\bar{t}} = 0$ (unpolarised tops) at tree level due to QCD vector coupling, and $B_t, B_{\bar{t}} \approx 0$ at higher orders
- $C \neq 0$ choosing suitable axes

Beyond the SM, these predictions can be significantly altered.
C at Tevatron, beamline basis

Borrowed from Fajfer et al. ’12

ΔC_{beam, (Tevatron)}

ΔA_{FB}

CDF dil 5.1 fb^{-1}
D0 dil 5.4 fb^{-1}
D0 l+j 5.3 fb^{-1}
D0 l+j / dil

naive world avg
C at LHC, helicity basis

Borrowed from Fajfer et al. ’12

The results for the relevant spin observables at the 7 TeV LHC are shown in Fig. 8. Among these, presently the most powerful probe of FBA inspired models is the helicity basis spin correlation as measured recently by ATLAS [41]. In particular it already represents a non-trivial constraint for the scalar isodoublet and heavy axigluon models. In the light scalar isodoublet scenario, the large negative deviation in C_{hel} can be traced to sizable non-standard contributions. For example, at the Tevatron, spin correlation measurements at O(2%) precision would be required to probe such FBA explanations.

The results for D_i, C_i and B_i at the 7 TeV and 8 TeV LHC are almost identical and we do not show the later separately.
B at LHC, helicity basis

- CMS dil 5.0 fb\(^{-1}\)
- ATLAS \(l+j\) 4.7 fb\(^{-1}\)
- naive world avg

Borrowed from Fajfer et al. '12

\[\Delta A_{FB} \]

\[B_{\text{hel}}(\text{LHC7}) \]

The results for the relevant spin observables at the 7 TeV LHC are shown in Fig. 8. Among these, presently the most powerful probe of FBA inspired models is the helicity basis spin correlation as measured recently by ATLAS [41]. In particular it already represents a non-trivial constraint for the scalar isodoublet and heavy axigluon models. In the light scalar isodoublet scenario, the large negative deviation in \(C_{\text{hel}}\) can be traced to sizable non-standard contributions.

The results for \(D, C_i, B_i\) at the 7 TeV and 8 TeV LHC are almost identical and we do not show the later separately.
Discussion

After various measurements at the Tevatron and LHC
various updated SM asymmetry predictions
plenty of proposals for new physics explanations
at this point the question is:

Is this a hint of new physics? Or we will have another 3σ disappointment?

Typical answers are:

- it is new physics!
- it is a higher-order QCD effect
- it is an unknown systematic
Can the excess be new physics?

Using the equations for the collider-independent asymmetries

\[A_{FB}(\beta) = A_u F_u(\beta) + A_d F_d(\beta) \]
\[A_C(\beta) = A_u F_u(\beta) D_u(\beta) + A_d F_d(\beta) D_d(\beta) \]

one can revert the argument and obtain model-independent predictions for \(A_{FB} \), \(A_C \) by scanning over \(A_u \), \(A_d \)

\(A_{FB} \sim 0.2 \) compatible even with \(A_C \lesssim 0 \) if \(A_u \), \(A_d \) have opposite signs

model implementing this mechanism: Drobnak et al. ’12
other models with small \(A_C \): Alvarez et al. ’12, Drobnak et al. ’12
Can the excess be higher-order QCD?

One can estimate the effect of higher QCD (& EW) orders with the same procedure, but randomly varying A_u, A_d around the SM NLO values to “predict” the relation A_{FB} vs A_C…

… an explanation by QCD would not (likely) fit current data!
Can the excess be an unknown systematic?

Hard to think of, because it appears in two experiments. But unknown systematics are by definition unknown…
One-page summary

The A_{FB} puzzle is far from being solved. There are some chances that there is new physics in the top sector.

This new physics might also be visible indirectly, in precision measurements of the $t\bar{t}$ differential distribution and in top polarisation measurements.

Or not.

And, in any case, the puzzle may be in its way to be solved.
Farewell

A day may come when the courage of men fails, when we forsake our models and break all bonds with A_{FB}. But it is not this day.

JAAS & the rest of A_{FB} fans
ADDITIONAL SLIDES
$F_{u/d}$ and $D_{u/d}$: dependence on β
$A_{u,d}$: dependence on β?

As defined by

$$A_{FB}(\beta) = A_u(\beta)F_u(\beta) + A_d(\beta)F_d(\beta)$$

Fu: 3x variation
Du: 20x Dd: 30x

Tevatron $m_{t\bar{t}} < 450$ GeV

LHC7

$p_{T} < 30$ GeV

The dependence on β is small
Prediction / constraint on light gluons: four tops

The parameter space for masses / couplings / widths can be probed at 7 TeV and the model may be excluded at 14 TeV.
flavour-changing ut couplings required
this gives problems at low energy, for example atomic parity violation
but these models already have worse problems in $t\bar{t}$ production itself
Z’ features

• Negative interference with SM decreases A_{FB}

• A positive contribution to A_{FB} and agreement with Tevatron $\sigma(t\bar{t})$ requires large coupling and cancellation $\delta \sigma_{int} + \delta \sigma_{quad} \sim 0$

• Cancellation cannot happen at LHC too: excess in $t\bar{t}$ tail (unobserved)

• The same comments apply to W (also t-channel)
\(\Omega^4 / \omega^4 \) features

- The contribution to \(A_{FB} / A_C \) is negative for small \(\Omega^4 / \omega^4 \) masses
 - u-channel propagator prefers *backward* tops
- Numerator does not, and wins for large \(M \)
- Going to high \(m_{t\bar{t}} \) you finally `see´ the u-channel propagator:
 - good test for LHC