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Abstract

This dissertation presents our work with computer vision models applied
to video surveillance tasks. This work is focused on key stages of a video
analytics system, such as video segmentation and object tracking, and is
specially centered on embedded devices.

This dissertation is structured in four parts.

In the first part, we review the state of the art, paying special attention
to background subtraction and object tracking. After a general review of
the state of the art, we analyze in more detail the works existing in the
literature related to embedded hardware, sensor fusion, and multi-camera
object tracking.

In the second part of this dissertation we focus on background subtrac-
tion algorithms on embedded hardware. We describe the two algorithms we
have implemented on FPGA. We assess the two proposed architectures, per-
forming a comparison with previous alternatives in the literature. We eval-
uate the performance concerning real-time constraints, hardware resources
and energy consumption, as well as quality of the segmentation.

The third part consists of our work on sensor fusion applied to back-
ground subtraction. We study the integration of depth information in a
background subtraction model, provided by multi-camera stereo vision sys-
tems and active depth sensors. Different fusion methods are studied and
evaluated by means of new datasets. We assess the proposed approaches,
achieving considerable improvement over previous algorithms.

The fourth part corresponds to multi-camera object tracking by using
a smartphone network. We describe a prototype of an architecture to per-
form object tracking with two cameras, exchanging information in real time
between devices. The information shared across the network is used to get
basic calibration of the scene and to solve occlusions and recover from lost
tracks, by gathering information from every device in a global manner. We
also describe an attention model included in the architecture to detect and
select objects of interest.
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Resumen

Esta tesis doctoral presenta el trabajo realizado con modelos de visión ar-
tificial, aplicados a tareas de videovigilancia. Este trabajo se ha centrado
en etapas claves para un sistema de videovigilancia activo, tales como la
segmentación de v́ıdeo y el seguimiento de objetos, estando especialmente
orientado a dispositivos empotrados.

Esta tesis doctoral está dividida en cuatro partes.

En la primera parte revisamos el estado del arte, poniendo especial
atención a la sustracción de fondo y el seguimiento de objetos. Tras una
revisión general del estado del arte, analizamos de forma más detallada los
trabajos existentes en la literatura en relación a hardware empotrado, fusión
de información proveniente de distintos sensores, y seguimiento de objetos
con múltiples cámaras.

En la segunda parte de esta tesis doctoral nos centramos en los algorit-
mos de sustracción de fondo en hardware empotrado. Se describen los dos
algoritmos que hemos implementado en FPGA. Además, evaluamos las dos
arquitecturas propuestas, llevando a cabo una comparación con otras alter-
nativas presentes en la literatura. Realizamos una evaluación de prestaciones
teniendo en cuenta restricciones de tiempo real, recursos hardware, consumo
de enerǵıa, y la calidad de la segmentación.

La tercera parte contiene nuestro trabajo sobre fusión de información
aplicada a sustracción de fondo. Estudiamos la integración de estimaciones
de profundidad en un modelo de sustracción de fondo. Dicha información
es proporcionada por sistemas de visión estéreo y sensores de profundidad
alternativos. Se estudian diferentes métodos de fusión de información de
profundidad y se evalúan por medio de nuevas secuencias de prueba. La
evaluación de los métodos propuestos muestra una considerable mejora con
respecto a algoritmos anteriores.

La cuarta y última parte se corresponde con el seguimiento de obje-
tos con múltiples cámaras, utilizando para ello una red de smartphones.
Describimos un prototipo de arquitectura que lleva a cabo seguimiento de
objetos con dos cámaras, intercambiando información en tiempo real entre
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4 Resumen

dispositivos. La información compartida a través de la red es utilizada para
hacer una calibración básica de la escena, resolver oclusiones y recuperarse
de pérdidas momentáneas en el seguimiento, reuniendo información de forma
global desde cada dispositivo. Además describimos un modelo atencional in-
cluido en la arquitectura, que lleva a cabo la detección y selección inicial de
objetos de interés.



Chapter 1

Introducción

1.1 Motivación

Desde hace más de una década, ha habido un creciente interés por la apli-
cación de métodos de visión artificial para videovigilancia. Los sistemas de
videovigilancia tradicional requieren un trabajo intensivo por parte de los
vigilantes humanos, y a menudo se limitan a mostrar de forma conjunta
una serie de imágenes provenientes de varias cámaras, con los problemas
que eso plantea para el supervisor de dichas imágenes. La gran cantidad
de información que producen estos sistemas, unida a la falta de sistemas
automáticos de análisis y seguimiento, provoca que sólo tengan aplicación
para labores forenses como prueba después de que un evento haya tenido
lugar.

Por el contrario, la utilización de sistemas de videovigilancia automati-
zados permite facilitar la labor del personal humano, al advertir al mismo de
eventos que pudieran ser de interés, aśı como permitir acciones preventivas
cuando se detecta una situación anómala.

Los sistemas de videovigilancia analizan el contenido de los v́ıdeos recibidos
de cada cámara realizando la segmentación de la imagen en primer plano
y fondo (foreground y background respectivamente), detectando objetos y
haciendo un seguimiento (o tracking) de los mismos, y finalmente llevando
a cabo diversos análisis de alto nivel. Dichos análisis desembocan en resul-
tados que nos indican si el escenario es normal o anómalo, de modo que el
operador humano pueda centrar su atención en los escenarios anómalos sin
tener que mirar a un conjunto de pantallas tratando de encontrar algo de
interés manualmente.

Es importante destacar que, si bien actualmente existen sistemas comer-
ciales desarrollados para esta automatización de los sistemas de videovigilan-
cia, tanto su escalabilidad como su robustez son aún aspectos cŕıticos que re-
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6 Introducción

quieren una mejora significativa y que motivan el desarrollo de este proyecto
de tesis. La robustez es el requisito principal de los sistemas automáticos,
y la causa principal de que aún no se haya extendido su implantación. Si
un sistema genera falsos negativos, puede estar dejando pasar situaciones
de alarma sin indicárselo al vigilante, lo que seŕıa un fallo importante de los
sistemas de videovigilancia. Por otro lado, si el sistema tiende a generar alar-
mas con frecuencia en situaciones que no tienen importancia, esto provocará
una pérdida de atención por parte del vigilante. Por ello, el interés radica
en mejorar el comportamiento de las técnicas de visión, ya sea utilizando
algoritmos más sofisticados o utilizando diversas etapas de procesamiento
que proporcionen resultados más fiables.

Una estructura general de un sistema de videovigilancia se muestra en
la figura 1.1 [1], donde podemos ver las diferentes etapas de procesamiento
de la información:

• Módulo de detección FG/BG: este módulo lleva a cabo la clasificación
de cada pixel de la imagen en foreground o background.

• Módulo de detección de entrada de objetos: esta etapa utiliza la
máscara resultante del módulo anterior para detectar cuando un nuevo
objeto entra en la escena.

• Módulo de tracking: este módulo es inicializado por el módulo de de-
tección de entrada de objetos (u otro método de detección de objetos),
y realiza el seguimiento de una lista de objetos de interés en la secuen-
cia.

• Módulo de generación de trayectorias: recolecta posiciones de objetos
de interés y almacena la trayectoria de cada uno cuando el movimiento
del objeto no está presente, como en el caso de oclusiones.

• Módulo de análisis de trayectorias: análisis de trayectorias y detección
de trayectorias anómalas. Esta etapa está profundamente relacionada
con la gestión de alarmas, ya que a partir de los datos proporcionados
por las etapas previas de procesamiento tiene que decidir si la situación
cumple las condiciones para la generación de una alerta o no.

La capacidad de extraer objetos en movimiento de una secuencia de v́ıdeo
es un problema crucial de muchos sistemas de visión, tales como videovigi-
lancia [2, 3, 4], monitorización de tráfico [5], detección y tracking de personas
para teleconferencias e interfaces avanzadas [6, 7, 8], entre otras aplicaciones
que involucran visión artificial. La segmentación de v́ıdeo, o lo que es lo
mismo, separar el foreground del background, consiste en analizar un flujo
de v́ıdeo para detectar qué regiones de cada imagen pertenecen a objetos en
movimiento y qué regiones son parte del fondo.
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Figure 1.1: Estructura general de un sistema de videovigilancia automati-
zado.

Si bien la segmentación de la escena es una tarea clave para llevar a cabo
el procesamiento de v́ıdeo desde una única cámara, cuando el sistema consta
de múltiples cámaras se hace aún más necesaria. La presencia de múltiples
cámaras y, por tanto, múltiples flujos de v́ıdeo, provoca que el sistema de
videovigilancia tenga que procesar una gran cantidad de información. Dado
el creciente número de sistemas de videovigilancia, y el elevado número de
cámaras que tienen que gestionar, la escalabilidad de estos sistemas es un
problema clave. Para limitar la información que un sistema de visión procesa
se recurre a distintos tipos de técnicas que centran la atención en regiones
espećıficas de la escena.
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El sistema visual humano es capaz de recibir y procesar las imágenes con
incréıble eficiencia a pesar de que el sustrato biológico (neuronas basadas en
procesos electroqúımicos) en el que se basa es considerablemente más lento
que los sistemas electrónicos actuales [9]. El proceso de interpretación de la
escena a partir de pares o secuencias de imágenes es un proceso jerárquico
en el que la información fluye desde primitivas básicas (como información
de color, contraste, movimiento, profundidad, etc) hasta niveles más altos
de abstracción en los que se realiza la interpretación de la escena para la
extracción de datos de más alto nivel [10, 11]. Nuestra intención es imitar
este funcionamiento del cerebro, en el que las primeras etapas llevan a cabo
tareas regulares que pueden ser implementadas en dispositivos empotrados.
Posteriores etapas se basarán en la información obtenida sobre las primi-
tivas básicas para llevar a cabo análisis más elaborados. En estos niveles
se requieren descripciones más algoŕıtmicas de los métodos utilizados y son
dif́ıcilmente desarrollables en hardware de propósito espećıfico [12].

Las mejoras en tecnoloǵıa y técnicas de videoanálisis han permitido que
el campo de investigación se centre en sistemas multicámara. Este tipo
de sistemas tiene muchas ventajas, tales como la resolución de oclusiones
en escenarios con cámaras con vistas solapadas o el seguimiento de objetos
entre cámaras no solapadas [13, 14, 15]. No obstante, el creciente número
de cámaras asociadas a estos sistemas conlleva ciertas complicaciones en
relación con la configuración de la red de cámaras, aśı como la capacidad de
procesamiento requerida para procesar múltiples flujos de v́ıdeo. Debido a
estas dificultades, la investigación en redes descentralizadas, en las que parte
del procesamiento se lleva a cabo en cada nodo, ha suscitado gran interés
[16]. Este tipo de solución permite reducir la cantidad de procesamiento a
realizar en los nodos centrales o servidores. Además, la red requiere menor
ancho de banda dado que no se transmite toda la información. Para habilitar
el procesamiento en redes descentralizadas y distribuidas, se ha trabajado
mucho en sistemas empotrados y smart cameras (cámaras con capacidades
de procesamiento y comunicaciones).

Tradicionalmente, la investigación en smart cameras se ha orientado a ar-
quitecturas de propósito espećıfico tales como FPGAs y DSPs. Sin embargo,
debido a las restricciones de recursos de estas arquitecturas, los algoritmos
de visión artificial suelen requerir simplificaciones como el uso de aritmética
en punto fijo, reducción de memoria y de complejidad de operaciones. Dichas
simplificaciones conllevan una cierta pérdida de precisión. Además, los de-
sarrollos hechos para una arquitectura espećıfica raramente son compatibles
con otras, siendo por ello dependientes de un cierto dispositivo o fabricante.
En este contexto, resulta de interés el uso de nuevas plataformas, tales como
los smartphones, como smart cameras para redes distribuidas. Los smart-
phones ofrecen varias ventajas, como por ejemplo disponer de cámaras ra-
zonablemente buenas, procesadores potentes para ser dispositivos móviles,
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diferentes tipos de conectividad y sensores. Además, al tratarse de dis-
positivos comerciales, tienen precios contenidos en comparación con otras
arquitecturas hardware, aśı como bibliotecas y herramientas de desarrollo.

La aplicación de técnicas de detección y seguimiento de personas, aśı
como modelos de inferencia de comportamiento, es un campo complejo y
más cuando se utiliza una plataforma multicámara. El trabajo realizado en
esta tesis comprende desde la segmentación de la imagen hasta la integración
eficiente de estimaciones de distintas cámaras para realizar estas aplicaciones
de forma robusta y global (en el marco del espacio cubierto por las múltiples
cámaras).

1.2 Objetivos cient́ıficos

Los objetivos cient́ıficos establecidos para el desarrollo de esta tesis están
relacionados con el análisis de secuencias de imágenes reales procedentes
de sistemas de videovigilancia. Para ser más espećıficos, las metas que se
establecieron son las siguientes:

• Desarrollo e implementación de modelos de extracción de fondo en
tiempo real. Evaluación de métodos buscando compromiso entre cali-
dad y eficiencia computacional.

• Integración de estimaciones de profundidad (obtenidas con visión es-
tereoscópica multicámara y mediante sensores de profundidad alter-
nativos) en modelos de extracción de fondo. Evaluación de calidad.

• Implementación de modelos de homograf́ıas para calibración del esce-
nario objetivo de monitorización. Ampliación de modelos a platafor-
mas multicámara.

• Utilización de modelos de atención en un sistema multivisión. Com-
promiso entre carga de computación y extracción de información global.

• Aplicaciones. Estudio de diversas aplicaciones en el campo de la
videovigilancia con diferentes configuraciones de cámaras. Fusión de
imágenes, seguimiento de objetos/personas, visión global sin espacios
ocluidos utilizando múltiples cámaras, adaptación del sistema de visión
a distintos escenarios, etc.
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1.3 Marco de proyectos

El trabajo realizado en esta tesis se ha hecho en relación con un Proyecto
de Excelencia de la Junta de Andalućıa denominado MULTIVISION, y un
proyecto europeo de investigación denominado TOMSY.

1.3.1 MULTIVISION

Sistema de visión en tiempo real multi-cámara para interpretación de escenas
(MULTIVISION) (TIC-3873).

En este proyecto se abordará el desarrollo de un sistema de visión h́ıbrido
hardware/software en tiempo real basado en múltiples cámaras. En todo
sistema de visión el objetivo es traducir imágenes a información concreta
(datos extráıdos de la “interpretación de la escena”). En este proyecto se
estudiarán esquemas de visión que permitan el procesamiento eficiente de las
imágenes extráıdas de múltiples cámaras y el tratamiento de forma comple-
mentaria de las estimaciones de las diversas cámaras para realizar la tarea de
“interpretación de la escena” de forma fiable y robusta. Este sistema tiene
aplicación directa en plataformas de vigilancia y monitorización de espacios.

Los objetivos del proyecto se basan en resultados previos del grupo de
investigación (y colaboraciones internacionales en el marco de proyectos Eu-
ropeos y Nacionales).

El término de multivisión se refiere a la utilización de varias cámaras en
diferentes configuraciones que permitirán estudiar conceptos distintos. La
utilización de múltiples cámaras centradas en el mismo escenario (con sola-
pamiento de campos de visión o sin solapamiento) permite la exploración de
esquemas que permitan seguir objetos de un campo de visión a otro, estu-
diar trazas de movimientos entre distintos campos (cubiertos por distintas
cámaras), etc. Además el proyecto estudiará también la configuración de
varias cámaras con campo de visión solapados para cubrir el mismo esce-
nario. En este caso estudiaremos esquemas de visión que permitan utilizar
de forma complementaria la información extráıda de cada una de las cámaras
para realizar de forma fiable la “interpretación de la escena”. Finalmente
estudiaremos la configuración de varias cámaras con solapamiento parcial
para estudiar esquemas de “campo visual global” compuesto por los campos
visuales de cada una de las cámaras (esquemas de fusión de imágenes en
tiempo real para la composición de un mosaico de imágenes captadas con
diferentes cámaras).

Un escenario cubierto por múltiples cámaras genera una cantidad de
datos dif́ıcil de procesar en tiempo real de forma centralizada. Por ello
estudiaremos el diseño de esquemas de atención que permitan que sólo se
procesen todas las imágenes a bajo nivel (movimiento, color, etc) de forma
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distribuida (en diversos dispositivos FPGA como núcleos de procesamiento),
mientras que tareas de más alto nivel se realicen sólo de forma global (es
decir, desde uno de los puntos de vista) y de forma centralizada. Para ello
estudiaremos esquemas en los que cada una de las secuencias (tomada por
cada una de las cámaras) se procesa de forma completa y lo compararemos
con esquemas en los que un “modelo atencional” selecciona una cámara y
extrae la información de más alto nivel de esta fuente. Compararemos los
resultados de interpretación de la escena a los que se llega con estas dos
configuraciones diferentes (análisis exhaustivo frente análisis selectivo). El
objetivo último de esta ĺınea de investigación (que se extenderá más allá
de este proyecto) es diseñar “agentes virtuales” que puedan seleccionar una
fuente de datos u otra en base a primitivas de bajo nivel y llegar a una
interpretación parcial de la escena correcta.

El proyecto además incluye el estudio de esquemas de “aprendizaje”.
Debido a que la estructura y configuración de cámaras de monitorización de
un espacio serán muy diversas en cada escenario, en el proyecto estudiaremos
esquemas de aprendizaje que permitan que el sistema correlacione eventos
visuales con acciones concretas de forma autónoma.

1.3.2 TOMSY

TOMSY (ingl. Topology Based Motion Synthesis for Dexterous Manipula-
tion), proyecto europeo IST-FP7-Collaborative Project-270436. Descripción
del proyecto. El objetivo de TOMSY es permitir un salto generacional en
las técnicas y la escalabilidad de los algoritmos de śıntesis de movimiento.
Nos proponemos hacer esto por el aprendizaje y la explotación de la rep-
resentación topológica adecuada y ponerlos a prueba en los dominios de
manipulación de varios objetos, control de robots y la animación por or-
denador. Los algoritmos tradicionales de planifcación de movimiento han
tenido difcultades para enfrentar la dimensionalidad del espacio de estados
y de la acción y la generalización de las soluciones en tales dominios. Esta
propuesta se basa en las nociones geométricas de métricos topológicos y en
métodos basados en datos para descubrir mapeos (asignaciones) multi-escala
que capturan invarianzas más relevantes - una mezcla entre representaciones
de espacios simbólicos, discretos y continuos.

Por primera vez, TOMSY aspira a lograr esto al darse cuenta de la flex-
ibilidad en los tres niveles de percepción, representación y la generación
de acciones mediante el desarrollo de nuevas representaciones de objeto-
acción para percepción basado en ‘manipulación variedad’ (ingl. manipula-
tion manifold) y el diseño de manipuladores metamórficos. Los métodos y
hardware desarrollados se pondrán a prueba en retos del mundo real de ma-
nipulación que van desde mundos de bloque hasta doblar cartón u origami
e interacciones de cuerpos humanoides con objetos flexibles.
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Los resultados de este proyecto nos proporcionaŕıan algunas respuestas
a la pregunta de cual es la “correcta” representación en un control sensorio-
motor y también proporcionaŕıa una base para una futura generación de
sistemas de visión robótica capaces de śıntesis de movimiento en tiempo
real que resultara en interactuación fluida con su entorno.

1.4 Material y métodos

Los algoritmos presentados en esta tesis doctoral han sido implementados,
inicialmente, en el entorno de programación MATLAB. Hemos elegido MAT-
LAB para la fase de prototipado porque permite una implementación rápida
de los algoritmos y el posterior análisis de resultados. Además, MATLAB
proporciona gran cantidad de funciones para visualización de imágenes y
otros resultados, lo que facilita el desarrollo de distintas soluciones para los
problemas planteados. No obstante, los modelos implementados en MAT-
LAB adolecen de una considerable lentitud de ejecución, motivo por el que
se ha procedido a implementar los algoritmos en C/C++ con soporte de la
biblioteca OpenCV [17]. La implementación de estos modelos en C/C++
requiere un menor tiempo de ejecución, algo importante en algoritmos de
procesamiento de v́ıdeo, debido a la ingente cantidad de información que se
tiene que procesar.

Con respecto a la implementación de los algoritmos para su śıntesis e
integración en hardware empotrado, se requiere el uso de lenguajes de de-
scripción hardware. Se ha elegido una combinación de ImpulseC y VHDL,
apoyados en los entornos EDK (Embedded Development Kit) e ISE Founda-
tion de Xilinx Inc. La información de sensores de profundidad se ha obtenido
utilizando la biblioteca OPENNI [18]. La implementación de algoritmos en
dispositivos comerciales tales como smartphones Android ha sido realizada
mediante la integración de Java y C++, utilizando JNI para la comunicación
entre las aplicaciones Android y el código nativo.

1.5 Organización de los caṕıtulos

La estructura de esta tesis doctoral continúa con una introducción al estado
del arte de las técnicas utilizadas en videovigilancia. En el caṕıtulo 3 se
hace una revisión de las aportaciones existentes en la literatura al proce-
samiento de v́ıdeo para tareas de videovigilancia en general y las técnicas
estudiadas en el desarrollo de esta tesis. En el caṕıtulo 4 estudiamos en más
detalle las técnicas de sustracción de fondo orientadas a su implementación
en hardware reconfigurable, los datasets (secuencias con información sobre
el resultado “ideal”) y métricas disponibles para evaluarlas de forma ex-
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haustiva, y analizaremos los resultados obtenidos por varias arquitecturas
en FPGA. En el caṕıtulo 5 nos centraremos en mejorar la robustez de los
modelos de sustracción de fondo mediante la fusión de color y profundidad.
Este caṕıtulo incluye nuestra propuesta de incorporación de la profundidad
en un algoritmo conocido, distintos métodos de obtención de la información
de profundidad, aśı como resultados utilizando datasets grabados mediante
cámaras estéreo y el sensor Kinect. En el caṕıtulo 6 estudiamos la utilización
de un sistema multicámara con smartphones para la detección y seguimiento
de objetos de interés en una escena. La información obtenida por cada uno
de los dispositivos se comparte con los otros para poder actuar en presencia
de oclusiones y movimientos bruscos. Finalmente, el caṕıtulo 7 resume las
principales aportaciones de nuestra investigación y sugiere varias ĺıneas de
trabajo futuro.





Chapter 2

Introduction

2.1 Motivation

In recent years there has been an increasing interest for the application
of computer vision methods to video surveillance tasks. Traditional video
surveillance systems require intensive work by surveillance guards, and they
usually show only a stream of images provided by several cameras, what
causes different issues to the supervisors of those images. The big amount of
information produced by these systems, as well as the shortage of automatic
systems for analysis and tracking, usually limits their usage to forensics as
evidence after an abnormal event has taken place.

On the contrary, the use of automatic video surveillance systems eases
the task of human observers, since these systems inform them about events
that might be of interest. In addition, they allow for preemptive actions
when an abnormal situation is detected.

Video analytics systems analyze input video streams from each camera
by performing image segmentation in foreground and background, detect-
ing and tracking objects, and finally performing high-level analyses. These
analyses lead to results which indicate whether the scenario is normal or
not, so that the human observer can focus on abnormal scenarios.

It is important to remark that, although there currently are commercial
video analytics systems, both scalability and robustness still are critical fea-
tures which require significant improvement and motivate this thesis project.
Robustness is the key requirement of automatic systems and the main reason
why they are not more established. On the one hand, if a system gives false
negatives, it may be overlooking alarm situations without warning about
them. This would be a very important error in a video surveillance sys-
tem. On the other hand, a system which often generates alarms in scenarios
without importance will lead to lost of attention from human observers. For
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that reason, the interest lies in improving the performance of computer vi-
sion methods, either using more advanced algorithms or combining different
processing stages in order to obtain more reliable results.

Figure 2.1 shows a general scheme of a video analytics system [1], in
which the different processing stages can be seen:

• FG/BG detection module: this module performs foreground/background
classification of each image pixel.

• Object entering detection module: this stage uses the resultant fore-
ground mask from previous module to detect when a new object enters
the scene.

• Tracking module: this module is initialized by the object entering de-
tection module (or other object detection methods), and tracks a list
of objects of interest in a video sequence.

• Trajectory generation module: it collects all objects positions and
saves each trajectory when the motion of the object is no longer pre-
sented, for example in presence of occlusions.

• Trajectory analysis module: this module performs an object trajec-
tory analysis and detection of abnormal trajectories. This stage is
closely related with alarms management, since the module has to de-
cide whether an alert must be generated or not, according to data
provided by previous processing stages.

Extracting objects in movement in video sequences is a key issue for
many vision-based tasks, such as video surveillance [2, 3, 4], traffic moni-
toring [5], person detection and tracking for teleconferencing and advanced
interfaces [6, 7, 8], between other applications which involve computer vision.

Video segmentation consists of analyzing a video stream to detect which
regions of each frame belong to objects in movement and which regions
belong to the background.

Although the segmentation of the scene is a key task for mono-camera
video surveillance, it is even more necessary when the system has multi-
ple cameras. Working with multiple cameras, and thus with multiple video
streams, leads to big amounts of information to be processed by the video
surveillance system. Due to the increasing number of video analytics sys-
tems, which have to manage an also increasing number of cameras, scala-
bility is an important requirement for these systems. In order to limit the
information that a vision-based system processes, different kinds of tech-
niques are used to focus the attention on specific regions of the scene.
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Figure 2.1: General scheme of a video analytics system.

Human visual system is able to capture and process images with impres-
sive efficiency despite the biological substrate (neurons based on electro-
chemical processes) on which it is based is considerably slower than current
electronic systems [9]. The scene understanding process from sequences of
images is a hierarchical process in which information is gathered at different
abstraction levels, from basic primitives (such as color, contrast, movement,
depth, etc.) to higher abstraction levels which perform the interpretation
of the scene [10, 11]. We intend to emulate this brain functioning, in which
the first stages perform tasks which can be implemented on embedded de-
vices. Further processing stages are based on information obtained from
basic primitives to carry out more elaborate analyses. Tasks belonging to
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these abstraction levels require more algorithmic descriptions of the methods
used and are not suitable for specific-purpose hardware development [12].

Improvements on technology and video analysis techniques have allowed
the research field to focus on multi-camera systems. This kind of systems
offers several advantages, such as occlusion solving in scenarios which have
cameras with overlapping views or object tracking between non-overlapping
cameras [13, 14, 15]. However, the increasing number of cameras in a system
leads to several difficulties related to the camera network configuration, as
well as the processing capabilities required to process multiple video streams.
In order to deal with these difficulties, research on decentralized networks,
where part of the processing is performed in each node, has aroused great
interest [16]. This kind of solution allows for reducing the processing in
central nodes or servers. In addition, the bandwidth required by the cam-
era network can be more constrained, since not all information must be
transmitted. Much work has been carried out on embedded systems and
smart cameras (cameras with processing and communication capabilities)
to enable the processing in decentralized and distributed networks.

Traditionally, research on smart cameras has been aimed to specific-
purpose architectures such as FPGAs and DSPs. Nevertheless, computer
vision algorithms usually have to be adjusted to work with constrained re-
sources on these platforms, such as fixed-point arithmetics or memory con-
straints, which leads to certain loss of accuracy. In addition, development
made for a specific architecture is seldom compatible with others, being thus
dependent on a specific device or manufacturer. In this context, our interest
lies in the usage of new platforms (i.e. smartphones) as smart cameras for
distributed networks. Smartphones offer several advantages, such as having
fairly good cameras, powerful processors in comparison with other embedded
systems, and different kinds of connectivity and sensors.

The application of techniques of person detection and tracking is a com-
plex field, specially on multi-camera platforms. The work performed in this
thesis includes from image segmentation to efficient integration of estima-
tions from different cameras to perform these tasks in a more robust and
global way.

2.2 Scientific objectives

The scientific objectives established for the development of this thesis are
related to the analysis of video streams from video surveillance systems.
More specifically, our main goals are the following:
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• Development and implementation of real-time background subtraction
models. Method evaluation searching good trade-off between accuracy
and computational efficiency.

• Integration of depth estimations (provided by multi-camera stereo
vision and active depth sensors) in background subtraction models.
Quality evaluation.

• Implementation of homography models to calibrate monitoring sce-
narios. Models aimed to multi-camera platforms.

• Usage of attention models in a multivision system. Trade-off between
computational workload and extraction of global information.

• Applications. Study of diverse applications in the video analytics re-
search field, using different camera setups. Image fusion, person and
object tracking, global vision with occlusion solving by means of mul-
tiple cameras, adaptation of the vision system to different scenarios,
etc.

2.3 Projects

The work developed in this thesis is related to a Project of Excellence
from Junta de Andalucia named MULTIVISION and an european research
project named TOMSY.

2.3.1 MULTIVISION

Real-time multi-camera vision system for scene understanding (MULTIVI-
SION) (TIC-3873).

This project will address the development of an hybrid hardware/software
vision system in real time, based on multiple cameras. The main goal of
every vision system is extracting specific information from images (data ex-
tracted from “scene understanding”). In this project we will study vision
schemes which allow for efficient processing of images provided by multi-
ple cameras, and the joint management of estimations from the different
cameras to carry out the “scene understanding” task in a more reliable and
robust manner. This system has direct application in video surveillance and
spaces monitoring platforms.

The objectives of this project are based on previous results from our re-
search group (and international collaborations in the framework of European
and national projects).
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The term “multivision” is related to the usage of several cameras in dif-
ferent configurations which will allow us to study different notions. The
use of multiple cameras focused in the same scenario (with or without over-
lapping views) enables exploring schemes to track objects between fields
of view, studying traces of movements between different cameras, etc. In
addition, the project will study configurations with several cameras with
overlapping views. In this case we intend to study vision models which use
complementary information from each camera to perform reliable “scene un-
derstanding”. Finally we will study “global visual field” schemes, in which
fields of view from several cameras with partial overlapping are combined.

A scenario covered by multiple cameras produces a considerable amount
of information which is difficult to process in real time in a centralized way.
For that reason we will study attention models which allow the system to
perform low-level tasks in distributed nodes (for example, different FPGA
devices), whilst high-level tasks are performed globally in central servers. We
will study models in which all sequences are processed independently and
we will compare them with models in which an “attentional model” selects
a camera and extracts high-level information only from that source. We will
compare the results obtained by both configurations (exhaustive analysis
against selective analysis). The main goal is the design of “virtual agents”
which can select a source of information based on low-level primitives to
achieve correct partial understanding of the scene.

The project also includes the study of “learning” models. Since the
structure and setup of surveillance cameras can vary in each scenario, the
project will study learning models to correlate visual events with specific
actions without supervision.

2.3.2 TOMSY

TOMSY, Topology Based Motion Synthesis for Dexterous Manipulation,
EU project IST-FP7-Collaborative Project-270436.

Project description. The aim of TOMSY is to enable a generational
leap in the techniques and scalability of motion synthesis algorithms. We
propose to do this by learning and exploiting appropriate topological repre-
sentations and testing them on challenging domains of flexible, multi-object
manipulation and close contact robot control and computer animation. Tra-
ditional motion planning algorithms have struggled to cope with both the
dimensionality of the state and action space and generalisability of solu-
tions in such domains. This proposal builds on existing geometric notions
of topological metrics and uses data driven methods to discover multi-scale
mappings that capture key invariances - blending between symbolic, discrete
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and continuous latent space representations. We will develop methods for
sensing, planning and control using such representations.

TOMSY, for the first time, aims to achieve this by realizing flexibility at
all the three levels of sensing, representation and action generation by devel-
oping novel object-action representations for sensing based on manipulation
manifolds and refining metamorphic manipulator design in a complete cy-
cle. The methods and hardware developed will be tested on challenging real
world robotic manipulation problems ranging from primarily “relational”
block worlds, to articulated carton folding or origami and all the way to full
body humanoid interactions with flexible objects.

The results of this project will go a long way towards providing some
answers to the long standing question of the “right” representation in a
sensorimotor control and provide a basis for a future generation of robotic
and computer vision systems capable of real-time synthesis of motion that
result in fluent interaction with their environment.

2.4 Methods and Tools

The algorithms presented in this thesis have been implemented, initially,
in the development environment MATLAB. We have chosen MATLAB for
the prototyping stage since it allows for fast algorithm development and
result analysis. In addition, MATLAB provides big amount of functions to
display images and other results, what eases the development of different
solutions for the proposed problems. However, the models implemented in
MATLAB are fast to develop but quite slow to run. For that reason, we have
implemented the algorithms using C/C++ with support from the OpenCV
library [17]. The implementation of these models in C/C++ requires less
execution time, and this is important for video processing algorithms, due
to the huge amount of information to be processed.

Regarding implementation of algorithms in embedded hardware, the use
of hardware description language is required. A combination of ImpulseC
[19] and VHDL has been chosen, using the environments EDK (Embedded
Development Kit) and ISE Foundation by Xilinx Inc. [20]. Information
from depth sensors (Microsoft Kinect [21]) has been obtained by means
of OpenNI library [18]. Development of algorithms in commercial devices
such as Android smartphones [22] has been performed by means of Java
and C++, using JNI (Java Native Interface) to communicate the Android
applications with native code.
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2.5 Organization of chapters

The organization of this doctoral thesis continues with an introduction to
the state of the art of the techniques used in video surveillance. In chap-
ter 3 we revise the works existing in the literature for video analytics as
well as the techniques studied in the development of this thesis. In chapter
4 we study with more detail background subtraction models suited to the
implementation on reconfigurable hardware, the datasets (sequences with
information about ideal results) and metrics used to evaluate them objec-
tively, and we analyze the results obtained by several FPGA architectures.
In chapter 5 we focus on improving the robustness of background subtrac-
tion models by fusing color and depth. This chapter includes our approach
to integrate depth in a well-known algorithm, different methods to obtain
depth information as well as results from datasets recorded by means of
stereo cameras and Kinect sensor. In chapter 6 we study the use of smart-
phones in a multi-camera system to detect and track objects of interest in
a scene. The information provided by each device is shared with the others
to work in presence of occlusions and sudden movements. Finally, chapter
7 summarizes the main contributions of our research and suggests several
lines of future work.



Chapter 3

State of the art

As we have mentioned in the introduction, there has been an increasing in-
terest in the application of computer vision methods to video surveillance
issues. Video surveillance addresses real-time observation of humans, vehi-
cles and objects of interest in different environments, in order to perform
“scene understanding”, that is, leading to a description of the activities car-
ried out by those objects. It is mostly used for security monitoring, traffic
flow measuring, etc. [23, 24].

Video analytics is a field of research that is currently focusing on pro-
cessing from multiple video streams. This is a logical evolution for the field
due to its application to traditional video surveillance, in which every sys-
tem consists of a camera network and a centralized monitoring terminal.
However, single-camera video processing is already computationally expen-
sive, and the increment on the number or sensors produces an even higher
volume of information to process. This can make unfeasible the analysis in
real-time of several video inputs.

The main interest of video analytics systems is the detection and track-
ing of people who appear in the scene to analyze trajectories and behaviors
which could result in alarm situations. For that reason, extracting the back-
ground from a video sequence is a required feature for many applications
related to video surveillance: vehicle traffic control, intruders’ detection, sus-
picious objects, etc. The most usual approach to segment moving objects
is known as background subtraction, and is considered a key first stage in
video surveillance systems.

In the following sections we revise the state-of-the-art techniques for
background subtraction in general, models and implementations oriented
to embedded devices, and advanced methods which fuse information from
different types of sensors. Furthermore, we revise the state of the art for
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multicamera video surveillance, including feature extraction, tracking, cali-
bration and information exchange.

3.1 Background subtraction

Background subtraction algorithms get a sequence of frames as an input,
and they build reference models which represent the static background of
the scene during a certain period of time. These models are used to classify
each pixel of a new frame as foreground (objects in movement which do
not belong to the scene) or background. The segmentation obtained by
the background subtraction model is provided to next stages of the video
analytics system, allowing it to focus the attention in the objects of interest.

Multiple factors and events may affect the scene, causing the extraction
of the background to be a non-trivial task. The main issues which back-
ground subtraction algorithms have to deal with are the following:

• Shadow detection. The shadow of an object produces a change in
the lighting of certain region of the image, which can mislead the
algorithm. Shadows and highlighted regions tend to be cause of false
positives en those regions.

• Need of training. These algorithms build a reference model that repre-
sents the background. Nevertheless, there are scenes where the learn-
ing stage is complicated due to presence of foreground objects during
the training.

Figure 3.1: Example of scene with presence of foreground objects during
the training stage. An algorithm must deal with foreground objects while
building the initial model, since the presence of these can be unavoidable in
certain scenes or camera setups, i.e. the hall of an airport.

• Illumination changes. Both gradual and sudden illumination changes
are a challenge for this kind of algorithms, the formers related to pro-
gressive adaptation, and the latters related to the skill of the algorithm
to detect global changes.
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Figure 3.2: Example of scene with sudden illumination changes.

• Changes in the setup of the scene. In real-world problems, the back-
ground may change after the reference background model is built.
Some examples of changes that would affect the segmentation are the
addition of elements to the background, the movement of objects be-
longing to it or the removal of these objects from the camera field.

Figure 3.3: Example of scene with movements of objects that belong to the
background.

• Repetitive movements. The presence of repetitive movements in ele-
ments that belong to the background is an important issue with which
algorithms must deal. In order to deal with it, background models
need to consider multiple color values for each pixel. Some examples
that illustrate this problem are trees waving during a sequence, waves
on the water surface or similar periodic movements. These should not
be detected as foreground and require the generation of multivalued
backgrounds.

There exist several methods of classification of background subtraction
algorithms, according to how they deal with the mentioned problems. On
the one hand, these techniques can be classified in static and dynamic algo-
rithms. Static background subtraction methods assume that the background
is fixed, and that differences are solely caused by foreground objects [25].
This kind of algorithms builds a reference background model during the
training stage, but they do not perform any subsequent model maintenance.
Dynamic algorithms, on the contrary, have an update stage which allows
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Figure 3.4: Example of scene with presence of repetitive movements in back-
ground elements.

them to adapt the model to changes in the setup of the scene as well as
illumination changes.

On the other hand, background subtraction algorithms are also classified
into unimodals or multimodals. This classification is related to the number
of values that the algorithm can model for each pixel. Unimodal algorithms
are the most basic ones, since they can model only one color value per pixel.
For that reason, this kind of algorithms has considerable loss of accuracy
with repetitive movements such as waving trees. In contrast, multimodal
algorithms store in the model several possible values for each pixel, for ex-
ample the green color of the trees and the color of behind them.

Regarding static background segmentation methods, there are different
methods described in the literature which gather in this classification [25].
Haritaoglu et al. [3] propose a method which uses only grayscale informa-
tion. Francois et al. [26] propose the usage of a Gaussian distribution to
model mean and standard deviation in the RGB color space. Horprasert
et al. [27] separate the luminance and chrominance in order to classify the
pixel in foreground, background, shadow and highlighted background. Other
works focus on color and edge detection [28, 29, 30, 31] or fuzzy classification
[32]. The approach proposed by Horprasert el al. [27] is described in more
detail in section 4.1.

Although these approaches allow for modeling shadows and small vari-
ations of color, they are limited to static backgrounds. In addition, most
of the static models store only one value per pixel, being then unimodal
algorithms. For that reason, they are affected by some of the problems
mentioned before, what leads to loss of accuracy and large number of false
alarms in real-world scenarios. The current state of the art of background
segmentation algorithms is able to deal not only with static backgrounds,
but also with moving ones. In order to model these complex scenarios, many
models have been developed. One of the most widely used approaches for
background modeling is the Mixture of Gaussians, MOG, by Stauffer and
Grimson [33]. MOG is a pixel-wise technique which uses multiple Gaussians
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for each pixel in order to model multimodal backgrounds. Nevertheless, this
algorithm suffers from slowness in the initial learning, as well as difficulties
to differ between foreground objects and shadows, among other issues. For
that reason, numerous improvements of the original method developed in
[33] have been proposed over recent years. Bouwmans et al. [34] perform
an exhaustive survey and of different kinds of improvements to MOG, clas-
sifying them into four different categories: intrinsic model improvements,
extrinsic model improvements, reduction of computation time and fusion
with other segmentation method.

In addition to models based on Mixture of Gaussians [33, 35], there are
many others that use Bayesian decision rules [36, 37], Codebook-based mod-
els [38, 39, 40, 41], nonparametric kernel-based techniques [2], or Component
Analysis (PCA and ICA) [42, 43]. The Codebook algorithm, proposed by
Kim et al. [38] is explained in section 4.2.

Since there are many different types of algorithms, a proper comparison
method is necessary. In [25] some relative metrics are proposed, based on
True and False Positives and Negatives (TP,TN,FP,FN). Regarding test se-
quences and datasets which offer ground truth (ideal foreground) to obtain
those quantitative measures, there exist several approaches in the litera-
ture [44, 45, 46, 47, 48]. Toyama et al. [44] proposed the dataset known
as Wallflower, which has been used to test and compare background sub-
traction techniques during the last ten years. In [45], Prati et al. focus on
algorithms with shadow detection capabilities. They present a comprehen-
sive survey of moving shadow detection approaches, proposing both novel
quantitative metrics and video sequences with associated ground truth to
evaluate these approaches. Most recently, several new datasets have been
proposed to test background subtraction methods [46, 47, 48]. The dataset
proposed by Brutzer et al. [46] is an artificial dataset which is stated not to
suffer from imperfect labels or small number of annotated frames.

As mentioned in the introduction, the work developed in this thesis
project focuses on its application to smart cameras and distributed cam-
era networks. In order to enable distributed and decentralized processing,
much work has been performed on the deployment of video analytics tech-
niques on embedded hardware such as FPGAs or DSPs. The usage of this
kind of architecture allows the system to process the initial stages in each
node, reducing bandwidth and required processing capabilities in the central
servers. In addition, FPGAs require less power than commodity processor or
GPUs, being more suitable for power constrained scenarios, between many
others. In the following section, we revise the current state of the art of
background subtraction methods regarding embedded platforms.



28 State of the art

3.1.1 Background subtraction on embedded hardware

In spite of the differences between existing algorithms, background subtrac-
tion techniques are computationally expensive in general, especially when
they are considered only the first stage in a multi-level video analytics sys-
tem. For that reason, efficient implementation is key to the development
of real-time video surveillance systems. In the framework of embedded sys-
tems implementations, characterized by power consumption and real-time
constraints, several of these techniques have been implemented using FP-
GAs [43, 49, 50, 51, 52], or DSPs [53, 54]. There also are other real-time
approaches using GPUs [55, 56], but these are not suitable yet for embedded
devices. In the case of embedded systems, commodity processor implemen-
tations are not usually utilized although latest devices, such as Intel Atom,
could soon address this market.

Oliveira et al. [51] introduce an FPGA implementation for the Hor-
prasert algorithm, although the throughput reached by this approach is
fairly low. Jiang et al. [50] present a compression scheme for Mixture of
Gaussians model [33] which allows reaching a high frame rate. However,
this approach is not explained in detail, and no results are shown about
accuracy or power consumption. Appiah et al. [49] propose an implemen-
tation based on a simplified MOG, which offers fairly good throughput and
acceptable accuracy. Bravo et al. [43] propose an FPGA implementation
based on Principal Component Analysis (PCA), getting a good throughput
and specifying the resource consumption. Nevertheless, there is no data
about accuracy with a standardized dataset. Kryjak et al. [52] propose an
FPGA architecture to perform background subtraction on high resolution
images acquired through HDMI input, showing fairly good results both in
accuracy and throughput by using high-end FPGAs. Carr [55] and Pham et
al. [56] present GPU implementations based on MOG, with very different
results in performance. Despite the approach described in [56] has higher
frame rate than any of the other mentioned hardware implementations, be-
ing a GPU implementation is an impediment for embedded systems and low
power constraints. Strictly speaking, there are new GPU families oriented
to embedded devices that could solve that problem. However, the perfor-
mance of these families is considerably lower than the ones of GPUs used
on standard PCs or laptops.

3.1.2 Background subtraction with sensor fusion

Although state-of-the-art background subtraction algorithms are able to
cope with many issues that affect this kind of technique, they rely specifically
on color values. For that reason, they are prone to errors when foreground
objects have color similar to the background. In addition, they suffer from
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the presence of shadows if these shadows are too dark, since the change of
color in some image regions is greater than what the algorithm is able to
adapt to. Since robustness is an important requirement of video analytics
systems, there is a need for algorithms with higher accuracy than the studied
ones.

Currently, there is a clear understanding that, in order to achieve this
robustness, multimodal information fusion is required. For that reason,
many works have proposed algorithms fusing intensity, edges and texture
information [57, 58, 59, 60, 61, 36, 62, 29]. Even though these methods
are a very valuable contribution for any robust surveillance application, the
problems associated to the camera sensor still persist.

For that reason, the use of range information applied to foreground seg-
mentation has been previously studied in the literature [63, 64, 65, 66, 67,
68, 69]. Cristani et al. [63] proposes a comprehensive review of background
subtraction techniques, focusing on different sensor channels, including sys-
tems based on stereo cameras. Ivanov et al. [64] proposed an approach that
uses the disparity to warp one image of the pair (principal) in the other
one (auxiliary). If the color and brightness between corresponding points
do not match, the pixels either belong to a foreground object or to an occlu-
sion shadow. This method does not use background subtraction algorithms
in order to perform the segmentation. In [65], Gordon et al. described a
background estimation method based on range and color clustering at each
image pixel. Disparity and color are used together to reduce the effect of
classic segmentation problems in each data source when taken separately.
This approach used an approximation of a Mixture of Gaussians to fit the
background data. This approximation assumes only one of the clusters is
associated to background information, thus being an unimodal background
subtraction algorithm.

Kolmogorov et al. [66] described two algorithms for bi-layer segmenta-
tion fusing stereo and color/contrast information, focused on live background
substitution for teleconferencing. In order to segment the foreground, this
approach relies most on the stereo method, assuming that people participat-
ing in the teleconference are closer to the camera, and then color information
is used to cope with stereo occlusion and low-texture regions.

Schiller et al. [67], Crabb et al. [68] and Zhu et al. [69] proposed
combinations of color-based background subtraction and depth information
obtained by low-resolution Time-Of-Flight camera (204 × 204 pixels, 160 ×
120 and 176 × 144, respectively). Due to this low resolution, inaccuracies are
produced at object boundaries. For that reason, Schiller et al. [67] proposed
a reliability measure for depth information based on the amplitude image
provided by the ToF camera. ToF cameras or the Kinect peripheral are not
based on color, suffering thus from different issues than other color-based
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approaches such as binocular disparity. For that reason, these sensors are
an interesting option that has also been studied in this project.

3.2 Object tracking

In addition to background subtraction, object tracking is considered an im-
portant task within the field of computer vision, and especially in video
analytics. As it is mentioned in the chapter 2, the stages in a video surveil-
lance system can be gathered in three steps: detection of interesting moving
objects, tracking of such objects from frame to frame, and analysis of object
tracks to recognize their behavior and detect abnormal situations.

In section 3.1 we have revised the first step, detecting interesting moving
objects by means of video segmentation. The second step, object tracking, is
an interesting application of computer vision that has aroused much interest
in recent years. In [70], Yilmaz et al. propose a survey that categorizes
many tracking methods according to several aspects: object representation
and features selected to track, how the object detection is performed, and
the methods used to generate robust trajectories.

In the following sections we revise the state of the art methods for mod-
eling objects of interest and track them frame to frame. Furthermore, a
revision of multi-camera segmentation and tracking techniques is performed
in section 3.2.3.

3.2.1 Feature selection

Almost all tracking algorithms require detection of the objects either in the
first frame or in every frame. This detection can be performed by means
of point detectors, segmentation, background modeling or supervised classi-
fiers. Some well-known works in the literature about point detectors include
Harris interest point detector [71], KLT detector [72], SIFT detector [73],
and SURF detector [74, 75]. The aim of image segmentation algorithms
is to partition the image into similar regions. The most relevant image
segmentation techniques for object tracking are Mean-Shift Clustering [76],
Graph-Cut [77] and Active Contours [78]. Regarding supervised classifiers,
the most widely used are SVM (Support Vector Machines) [79], Neural Net-
works [80] and Adaptive Boosting [81].

3.2.2 Tracking

The main aim of a tracker is the generation of object trajectories by locating
the position of the object in every frame. There are many works which cover
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track generation, divided in different categories according to the represen-
tation of the object to track. Some examples of widely used point trackers
are MGE tracker [82], Kalman filter [83], Particle filter [14, 84] and PMHT
[85]. Regarding kernel tracking, Mean-Shift is the best known color-based
tracker [86], while KLT [72] computes the translation of a region centered
on an interest point, being thus a feature-based tracker.

3.2.3 Multi-camera approaches

In this thesis project we are interested on multi-camera networks for video
surveillance. Despite the improvements on mono-camera trackers, the usage
of multiple video streams improves the robustness in presence of occlusions
or when tracking multiple objects. There exist many works in the liter-
ature which focus specifically on multi-camera segmentation and tracking
[14, 87, 88, 13, 89, 90, 15, 62, 91, 92, 93, 16, 94, 95, 96, 97]. In [14], Num-
miaro et al. use calibrated cameras in smart rooms in order to perform face
tracking by means of particle filtering. The information from different cam-
eras is integrated only when a camera loses the target. Möller et al. [87] use
non-calibrated cameras by defining transfer regions to perform hand-over to
other camera when the tracked object enters these regions. The first camera
detects and stores the histogram of the object using [81], and objects are
tracked by means of Mean-Shift [72]. Black et al. [88] require a full Tsai
calibration [98] to obtain 3D geometry, computing homographies between
each camera pair. After that, tracking is carried out by using Kalman filters,
correlating the centroids by means of the homographies. Kim et al. [13] do
not require full Tsai calibration [98], but homographies between each cam-
era and the ground floor. They define a human appearance model assuming
that people are standing and textures are thus vertical. Background sub-
traction [38] is combined with Bayes classifiers [99] and Particle Filtering
to perform an iterative segmentation-tracking method. Berclaz et al. [97]
use probability occupancy maps [92] to extract fragments of trajectories.
This information is used to build behavioral maps in top-view. Khan et
al. [15] do not build appearance models for each person, only segmentation.
Instead of obtaining FG/BG masks, they compute foreground probability
maps which are gathered in top-view by using homographies to the ground
floor. Tracking is performed only in reference view and propagated to the
others.

3.2.3.1 Distributed and decentralized camera networks

About distributed and decentralized camera networks, [16] presents a survey
covering calibration, synchronization and fusion of information from differ-
ent cameras, as well as a comparison between decentralized trackers. In
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[100], four kinds of two-node architectures to perform particle filtering are
analyzed regarding bandwidth utilization and energy consumption. These
architectures differ in the information sent across the network, and the steps
of the particle filtering (PF) algorithm executed in each node.

Regarding smart camera networks, [101] propose a self-organizing net-
work of mobile phones based on Java J2ME which performs communication
between devices through Bluetooth connections. Background differencing
is used in order to detect objects entering or leaving the field of view. Ex-
periments were performed on a two-node setup. In [102], a hardware ar-
chitecture on DSPs to track people in a two-camera network is proposed.
Tracking is combined with predefined transfer regions to perform handover
between cameras. [103] present an architecture using MIDs (Mobile Internet
Devices) that detects people using the Android built-in face detector, and
obtains the optical flow field in order to perform frame synchronization.



Chapter 4

Background subtraction on
embedded hardware

Extracting background from a video sequence is a required feature for many
applications related to video surveillance: vehicle traffic control, intruders’
detection, suspicious objects,etc. The most usual approach to segment mov-
ing objects is known as background subtraction, as has been explained in
section 3.1. This technique consists of building a reference model which
represents the static background of the scene during a certain period of
time. Multiple factors and events may affect the scene, making background
subtraction a non-trivial task: sudden and gradual illumination changes,
presence of shadows, or background repetitive movements (such as waving
trees), among many others.

Despite there exist many different algorithms to perform background
subtraction, in general it is a computationally expensive task. Whilst this
could be solved by using powerful processing units in a centralized network,
in multi-camera video analytics systems that would not be a scalable solu-
tion. When the number of cameras increases, having a centralized surveil-
lance network leads to issues related to the network topology, due to high
bandwidth requirements. For that reason, our interest in this part of the
thesis project lies in the deployment of background subtraction techniques
on embedded hardware, which allows for distributed and decentralized cam-
era networks. Thus, the use of FPGAs [43, 49, 50, 51] and DSPs [53, 54]
is justified by requirements of scalability, size and low power consumption
which are key features that other technologies are not able to achieve.

The state of the art of background subtraction on embedded hardware
has been summarized on section 3.1.1. In this thesis project, we have pro-
posed two FPGA architectures based on the method described by Horprasert
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[27, 25], with the extension that allows for shadow detection [45], and the
Codebook method described by Kim et al. [38].

The first method [27] has been selected since it requires less memory
to store the model while keeping fairly good accuracy, hence being more
suitable for implementation in low cost FPGAs [51]. This algorithm builds
a static background model, which means that the model is obtained at an
initial training phase. There are other methods which build dynamic back-
ground models [33, 38], which can adapt themselves to changes in the scene.
The main difference between these models, as far as required hardware re-
sources are concerned, is that the latter have much higher memory consump-
tion requiring external memory with an important bandwidth. Furthermore,
the shadow detection capabilities increase the accuracy of the object shape
detection, which helps to achieve a better object classification and reduces
the errors due to shadows artifacts.

The second implementation is based on the algorithm proposed by Kim
et al. [38]. This algorithm has been classified by several authors [40, 41] as
a good trade-off between accuracy and efficiency. This has motivated our
choice as a target model for implementation even though it is a much more
complex model than the previous hardware implementations available in the
literature. This model has much higher memory comsumption than the one
proposed by Horpraser et al. [27], requiring thus both optimization and
simplifications as well as external memory with an important bandwidth.

The rest of this chapter is organized as follows. In sections 4.1 and 4.2
we explain the two background algorithms studied for the deployment on
reconfigurable hardware. In section 4.3 we describe the datasets and the
metrics used to evaluate and compare our architectures with previous works
in the literature. Section 4.4 shows the experimental results obtained by the
proposed architectures. Finally, we summarize in section 4.5 the conclusions
of this work.

4.1 Horprasert algorithm

As previously mentioned, our first implementation is based on the algorithm
proposed by Horprasert et al. [27]. This algorithm basically obtains a
reference image to model the background of the scene so that it can perform
automatic threshold selection, subtraction operation and, finally, pixel-wise
classification.

Horprasert et al. [27] propose a color model in the three-dimensional
RGB color space. The main idea is that chromaticity and brightness are
perceived separately, since humans tend to assign a constant color to an
object despite illumination changes.
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In this section we describe the original model, explaining the background
modeling and the subtraction operation and classification steps. We also
give an overview of the architecture we have developed on FPGA and the
modifications made to the model in order to aim for hardware-friendly im-
plementation.

4.1.1 Background Modeling

In order to build a reference image which represents the background, a
number N of images will be used, whose color space is given in RGB. The
algorithm is pixel-wise, being the background modeled statistically on a pixel
by pixel basis. Each pixel < i > from the image is modeled by a 4-tuple
< Ei,Si, ai, bi >, where each element is defined as follows:

• Ei the expected color value, defined as

Ei = [µR(i), µG(i), µB(i)] (4.1)

being µR(i), µG(i), µB(i) the arithmetic means of each color channel
for pixel i.

• Si the value of the color standard deviation for each channel, defined
as

Si = [σR(i), σG(i), σB(i)] (4.2)

• ai the variation of the brightness distortion αi, given by Equation
(4.3).
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[

(

IR(i)−αiµR(i)
σR(i)

)2
+
(

IG(i)−αiµG(i)
σG(i)

)2
+
(

IB(i)−αiµB(i)
σB(i)

)2
]

=

IR(i)µR(i)
σ2
R
(i)

+ IG(i)µG(i)
σ2
G
(i)

+ IB(i)µB(i)
σ2
B
(i)

(

µR(i)
σR(i)

)2
+
(

µG(i)
σG(i)

)2
+
(

µB(i)
σB(i)

)2 (4.3)

• bi the variation of chromaticity distortion CDi, which is described in
Equation (4.4).
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Since α and CD follow different distributions for different pixels, the
model requires the use of the variation of these values as a normalization
factor to use the same thresholds for all pixels. These variations are in-
cluded in the background model as ai and bi in the 4-tuple that models the
background for each pixel.

ai represents the variation of the brightness distortion of the ith pixel,
given by

ai = RMS(αi) =

√

∑N
i=0 (αi − 1)2

N
(4.5)

bi represents the variation of the chromaticity distortion of the ith pixel,
given by

bi = RMS(CDi) =

√

∑N
i=0CD2

i

N
(4.6)

More detailed information about how the background model is built can
be found in [27].

4.1.2 Subtraction Operation and Classification

In this stage, the difference between the background model and the current
image is evaluated. This difference consists of two components: brightness
distortion αi and chromaticity distortion CDi. In order to use a single
threshold for all pixels, it is necessary to normalize αi and CDi as follows:

α̂i =
αi − 1

ai
(4.7)

ĈDi =
CDi

bi
(4.8)

After the normalization of brightness and chromaticity distortions, the
given pixel can be classified into one of the four categories:

• Background. If both brightness and chromaticity of the current pixel
are similar to those of the background model.

• Shadowed background. If the chromaticity is similar to the background
model but the brightness is lower in the current pixel. This assumes
that the chromaticity of a shadow is similar to the one of the object
under normal lighting.

• Highlighted background. If the chromaticity is similar to the back-
ground model but the brightness is higher.
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• Foreground. If the pixel has different chromaticity from the expected
values.

Based on these definitions, a pixel is classified into one category according
to Equation (4.9), that is the analytical representation derived from the
model presented in Figure 4.1.

C(i) =























Foreground: ĈDi > τCD, or α̂i < ταlo else

Background: α̂i > τα1 , and α̂i ≥ τα2 else

Shadowed background: α̂i < 0, else

Highlighted background: otherwise

(4.9)

Figure 4.1: Graphic representation of the model used to classify the pixels
in the categories. This model is oriented to shadow and highlights detection,
taking into account chromaticity lines as well as brightness changes.

The thresholds τCD, τα1, τα2 are automatically selected from the infor-
mation obtained during the training stage, as explained in [27]. ταlo is a
lower bound used to avoid misclassification of dark pixels.

This approach to shadow detection is considered a Statistical non-parametric
(SNP) method [45], what means that the approach uses probabilistic func-
tions to describe the class membership, and it is non-parametric since the
thresholds are automatically determined by means of a statistical learning
procedure.

This model has been selected for its implementation on reconfigurable
hardware. For that reason, several modifications have been made in order to
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reduce the hardware complexity of the architecture. These simplifications
towards a hardware friendly model generate some degradation on the orig-
inal model’s quality that will be evaluated in subsequent sections. These
modifications are described in Section 4.1.3.

4.1.3 Model simplifications

The foreground/background segmentation is executed by a hardware mod-
ule with an independent access to the memory, where the current image
and the background model are stored. Considerable reduction of the hard-
ware complexity of the architecture is achieved through precalculating and
storing several constants during the training stage and avoiding division op-
erations by substituting them for multiplications, which require less hard-
ware resources. In the case of brightness distortion αi, these constants are
computed according to Equation (4.10):

Ai =

(

µR(i)

σR(i)

)2

+

(

µG(i)

σG(i)

)2

+

(

µB(i)

σB(i)

)2

Bi =

(

µR(i)

Aiσ2
R(i)

)

Ci =

(

µG(i)

Aiσ2
G(i)

)

Di =

(

µB(i)

Aiσ2
B(i)

)

(4.10)

The brightness distortion αi will remain as in Equation (4.11), making use
of the constants Bi, Ci, Di.

αi = BiIR(i) + CiIG(i) +DiIB(i) (4.11)

In order to remove the divisions in the computation of the chromaticity
distortion CDi, we store (Si)

−1, (ai)
−1 and (bi)

−1 instead of Si, ai and bi.
Besides, the training stage is done with N = 128 images to facilitate the
computation of the mean, standard deviation and root mean square, avoid-
ing divisions. Previously, the model had a 4-tuple for each pixel, composed
by < Ei, Si, ai, bi >, whereas now a 7-tuple will have to be stored< Ei, Bi,
Ci, Di, (Si)

−1, (ai)
−1, (bi)

−1 >. The hardware complexity has been reduced
considerably, but at the cost of increasing memory consumption, since now
we also have to store the constants Bi, Ci and Di.

The software implementation has been developed using double floating-
point representation. This allows reaching a higher degree of accuracy at the
expense of a worse performance on embedded devices. In order to develop
a hardware implementation on FPGA with constrained resources, a fixed-
point representation is usually employed since it adjusts itself better to the
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type of available resources, although a detailed study is required in order
to optimize the trade-off between accuracy and hardware consumption. It
is important to take into account that an insufficient number of bits may
lead to inaccurate results with high quantification noise. On the contrary,
the use of too many bits can increase the hardware resources consumption,
making the system implementation on a moderate cost FPGA unfeasible.
In order to determine the appropriate number of bits for the fractional part
of the variables, we have measured the error between the results obtained
with different bit-width configurations and the floating-point representation.
This comparison has been performed by using the Wallflower dataset [44],
which we describe in section 4.3. The selected bit-width configuration is
shown in Table 4.1

Table 4.1: Bit-width of each variable taking part in the calculation of col-
ordist and brightness. The first value represents the integer part and the
second value represents the fractional part. The bit-width values have been
determined as the minimum values of the fractional part for which the quan-
tization error is approximately stable.

Variable Bits

< Bi, Ci, Di > [18 8]
< Ei, (Si)

−1 > [8 8]
< (ai)

−1, (bi)
−1 > [8 10]

αi [28 8]
CDi [18 8]
α̂i [36 10]
ˆCDi [26 10]

4.1.4 Hardware Architecture

An optimized hardware architecture has been developed using novel ideas
that allow for a high degree of algorithm tuning for optimized digital hard-
ware implementation. They can be summarized as follows:

1. Hardware/software co-design. The use of a mixed hardware/software
architecture allows us to share its resources to solve many algorithm
stages as the ones related with communication, system initialization,
basic control, system debugging,etc. . . It is not necessary to develop
custom datapaths for these stages because no critical real-time restric-
tions are imposed to them. This permits to reduce hardware resources,
to extend the system flexibility and to significantly reduce development
time.
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2. Superscalar and pipelined architecture. Multiple functional units run
in parallel to adapt the intrinsic algorithm parallelism. The whole
implementation has been carefully pipelined in order to increase the
throughput. These strategies allow us to keep the pixel-rate very high
and to achieve a significant performance.

3. Adaptable fixed-point arithmetics. The bit-width of the different pro-
cessing stages has been tuned according to the accuracy requirements
of each processing element. This approach is very different from the
one used on many DSPs or digital hardware implementations that has
a basic bit-width for all the processing stages. Our approach allows us
to keep resources always tuned to the required accuracy at the cost of
increasing the complexity of the system design. Hopefully, the use of
high-level description languages helps to reduce the development time
and make this option feasible with acceptable design time.

4. Proper utilization of the right level of abstraction for description of the
different algorithm modules. The processing stages mainly require a
DSP-based design flow which is well described using high-level descrip-
tion languages (as provided by ImpulseC [19]) whilst basic controllers
such as the ones required for memory interfaces or low level commu-
nications are better described in RTL (for instance using VHDL or
Verilog). In addition, sequential operations such as the ones required
to build communication packages are well described by software code.
Our implementation uses different descriptions based on the previous
considerations. This enables to get the maximum output out of each
description level in terms of performance or development time.

As it could be understood from the previous sentences, the advantage of
our implementation relies on the combination of the latest design method-
ologies, seldom addressed together in the same design. The drawback of this
novel approach is that it requires a high degree of competences at many dif-
ferent design levels, languages and tools. Nevertheless, the advantage is that
it allows highly optimized designs that completely fit the target application.

In order to address this implementation, we have used EDK (Embed-
ded Developer’s Kit) of Xilinx Inc. [20]. The EDK environment facilitates
the design of complex and completely modular SoC architectures able to
support embedded microprocessors (MicroBlaze, PowerPC, . . .), peripheral
and memory controllers (Ethernet, DDR2, ZBT, . . .), and interconnecting
buses (PLB, NPI, MCH . . .), whilst IP cores for specific processing can be
designed using HDL languages through the ISE tool. As board we use the
ViSmart4 video processing board from Seven Solutions [104].

This architecture consists of several modules and interconnect buses, as
shown in Figure 4.2. Processing modules, peripherals and a Microblaze pro-
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Figure 4.2: Scheme of the complete architecture and connections between
modules, peripherals, memory and processor.

cessor are connected to a PLB bus. The VIDEOIN module captures images
from four independent analog inputs and stores them in a ZBT SSRAM ex-
ternal memory, through the MCH port. Through the PLB bus, Microblaze
has access to: memory regions (ZBT or DDR2), configuration registers of the
peripherals and the ethernet interface for data and image sending/receiving.
The Background subtraction, shadow detection and blob detection (erosion,
dilation and RLE) module performs an intensive processing on the pixels
of each image in order to separate foreground and background, and then
proceeds to the blob extraction of the different objects. This module uses
ImpulseC [19] in order to develop a DSP-based design flow system. The
Microblaze processor is programmed in C/C++ for initialization and com-
munications tasks, and the rest of peripherals are described in VHDL. The
MPMC module (DDR2 memory controller) offers an easy access to the ex-
ternal DDR2 memory, which stores the background model. This memory
offers efficient high bandwidth access, thus providing a feasible use for ap-
plications requiring real-time processing.

Figure 4.3 shows a basic scheme of the proposed architecture for the
IP core that performs the background subtraction, pixel classification and
blob detection processing stages [105, 106]. This architecture consists of a
pipelined structure divided into several basic stages which work in parallel.
In addition, it is controlled by means of the embedded Microblaze processor.
It is important to note that memory has a key role in the system performance
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Figure 4.3: Simplified datapath architecture for background subtraction and
blob detection core. The IP core can process streams from up to four cam-
eras.

and requires an efficient memory accessing scheme. This has motivated the
use of high performance multiport memory controllers (Xilinx MPMC for
DDR2) as well as very specific and optimized memory ports (NPI).

4.2 Codebook algorithm

The Codebook algorithm, as proposed by Kim et al. [38], is based on the
construction of a background model adopting a quantization/clustering tech-
nique described by Kohonen [39] and Ripley [107]. The above-mentioned
work shows that the background model for each pixel is given by a code-
book consisting of one or more codewords. Codewords are data structures
that contain information about pixel colors, color variances and information
about how frequently each codeword is updated or accessed.

The different stages of the Codebook algorithm are described below:

4.2.1 Background modeling

Given a set of N time steps (frames), a training sequence S is used for each
pixel consisting of N RGB vectors. Each pixel has a different codebook,
represented as C = {c1, c2, c3, ...cL}, consisting of L codewords, where L can
be different for each pixel. Each codeword ci, i = 1...L; consists of a RGB

vector vi =
(

R̄i, Ḡi, B̄i

)

and a 6-tuple auxi =
〈

Ǐi, Îi, fi, λi, pi, qi

〉

, described

as follows:
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• vi =
(

R̄i, Ḡi, B̄i

)

, average value of each color component.

• Ǐi, Îi, min and max brightness, respectively, of all pixels assigned to
codeword ci.

• fi, the frequency (number of frames) with which codeword ci has been
updated.

• λi, the maximum negative run-length (MNRL), defined as the longest
interval of time during which codeword ci has not been updated.

• p, q, the first and last updating access times of codeword ci.

The detailed algorithm for codebook construction is given in Alg. 1.

Algorithm 1 Algorithm for Codebook construction

C = φ, i = 0
for t = 1→ N do

xt = (R,G,B), I ←
√
R2 +G2 +B2

Find the codeword cm in C matching to xt based on two conditions:
(a) colordist(xt, vm) ≤ ǫ1

(b) brightness
(

I,
〈

Ǐm, Îm

〉)

= true

if C = φ or there is no match then
{Create a new codeword}
vi = (R,G,B)
auxi = 〈I, I, 1, t− 1, t, t〉

else
Update matched codeword cm consisting of vm =

(

R̄m, Ḡm, B̄m

)

and

auxm =
〈

Ǐm, Îm, fm, λm, pm, qm

〉

by setting

vm =
(

fmR̄m+R
fm+1 , fmḠm+G

fm+1 , fmB̄m+B
fm+1

)

auxm =
〈

min(I, Ǐm),max(I, Îm), fm + 1,max(λm, t− qm), pm, t
〉

end if
end for

Conditions (a) and (b) in step 2 must be evaluated in order to determine
if a pixel xt = (R,G,B) matches the codeword cm. colordist(xt, vm) ≤ ǫ1
is satisfied when the pure colors of xt are similar to those of vm, whilst

brightness
(

I,
〈

Ǐm, Îm

〉)

is true when the brightness of xt lies between the

acceptable bounds of cm. These conditions are explained in more detail in
section 4.2.1.2
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4.2.1.1 Maximum negative run-length

The set of codebooks obtained from the previous step may include some
moving foreground objects as well as noise. In order to obtain the true
background model, it is necessary to separate the codewords containing fore-
ground objects from the true background codewords. This true background
includes both static pixels and background pixels with quasi-periodic move-
ments (for instance waving trees in outdoor scenarios). This motivates the
temporal criterion of MNRL (λ), which is defined as the maximum interval
of time that the codeword has not appeared during the training period. A
codeword with large λ is associated to an object that does not appear in that
location except for specific moments, being probably a foreground object.

The background model M obtained from the initial set of codebooks C is
given in (4.12). λm is the MNRL of codeword cm. TM is the time threshold
set equal to half the number of training frames, N/2. Thus, codewords
having a large λm (larger than TM ) will be eliminated from the corresponding
codebook.

M ← {cm|cm ∈ C ∧ λm ≤ TM} (4.12)

4.2.1.2 Color and brightness

In order to deal with illumination changes, the original algorithm [38] de-
velop a color model to perform a separate evaluation of color and brightness
distortions. This separation was already addressed in the other studied al-
gorithm [27].

Summarizing, we can say that the evaluation of color distorsion basically
consists of determining the distance between the color of an input pixel
xt = (R,G,B) and vi =

(

R̄i, Ḡi, B̄i

)

of codeword ci, as indicated in (4.13).

‖xt‖2 = R2 +G2 +B2

‖vi‖2 = R̄2
i + Ḡ2

i + B̄2
i (4.13)

〈xt, vi〉2 =
(

R̄iR+ ḠiG+ B̄iB
)2

Color distortion δ is calculated as indicated in (4.14).

p2 = ‖xt‖2cos2θ =
〈xt, vi〉2

‖vi‖2
(4.14)

colordist (xt, vi) = δ =

√

‖xt‖2 − p2

Now, condition (b) evaluates how brightness change of xt = (R,G,B) lies
within [Ilow, Ihi] range for codeword ci. In this way, we allow the brightness
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change to vary in a certain range, as defined in (4.15).

Ilow = αÎ (4.15)

Ihi = min

{

βÎ,
Ǐ

α

}

Typically, α is in the interval [0.4, 0.8], and β is in the interval [1.1, 1.5].
The brightness function is defined in (4.16).

brightness
(

I,
〈

Ǐ , Î
〉)

=

{

true ifIlow ≤ ‖xt‖ ≤ Ihi

false otherwise
(4.16)

4.2.2 Foreground detection

Extracting the foreground from the current image is straightforward once
we have obtained the background model M . The algorithm performing this
task is detailed in Alg. 2.

Algorithm 2 Algorithm for Background subtraction

xt = (R,G,B), I ←
√
R2 +G2 +B2

For all codewords in M , Find the codeword cm matching to xt based on
two conditions:
(a) colordist(xt, vm) ≤ ǫ2

(b) brightness
(

I,
〈

Ǐm, Îm

〉)

= true

Update matched codeword as in algorithm 1

BGS(X) =

{

foreground if there is no match

background otherwise

4.2.3 Background model update

The original model proposed by Kohonen [39] assumes that the background
obtained during the initial background modeling is permanent. In order to
improve the model, making it more useful in a surveillance system, Kim
et al. [38] have proposed a layered modeling and detection scheme. The
initial scene can change after training. Therefore, these changes should be
used to update the background model M . This can be done by defining
an additional model H, called cache, where the new codewords are stored.
Three new parameters (TH , Tadd, Tdelete) are also defined. The periodicity of
a codeword hi stored in cache H is filtered by TH , as we did previously with
TM in the background model M in eq. (4.12). The codewords hi remaining
in cache H for a time interval larger than Tadd are added to the background
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model M . Codewords of M not accessed foa a period of time (Tdelete) will
be deleted from the background model. The detail procedure is given below:

Algorithm 3 Algorithm for Background model update

After training, the background model M is obtained. Create a new model
H as cache.
For an incoming pixel x, find a matching codeword in M . If found, update
the codeword.
Otherwise, find a matching codeword in H and update it. If not found,
create a new codeword h and add it to H.
Filter out the cache codewords based on TH :
H ← H − {hi|hi ∈ H ∧ λi > TH}

Move the cache codewords staying for enough time to M :
M ←M ∪ {hi|hi ∈ H ∧ hi stays longer than Tadd}

Delete the codewords not accessed for a long time from M :
M ←M − {ci|ci ∈M ∧ λi > Tdelete}

Repeat process from the step 2.

4.2.4 Model simplifications

The original model by Kim et al. [38] needs to be simplified in order to
arrive at an affordable high performance hardware system. The main stages
suitable for simplification can be summarized as follows:

• Storage and memory management. The amount of memory required
to store the codebooks may change because the total number of code-
words may increase or decrease dynamically. Our system uses a DDR2
memory, which provides high bandwidth, but it needs a regular access
to reach the maximum performance, which complicates the dynamic
management of the set of codebooks.

• Color distortion and brightness distortion computation. Equation
(4.14) requires a square root and division operations, which are ex-
pensive on resources-constrained hardware devices.

• Model accuracy degradation due to fixed point arithmetic. Customized
hardware systems normally use fixed-point data representation to re-
duce hardware resources utilization. However, this strategy requires
careful analysis to avoid any degradation in accuracy.

In order to adapt the algorithm to the hardware implementation, al-
lowing an easier use of the external memory containing the codewords, we
have limited the number of codewords in each pixel. To establish the maxi-
mum number of codewords, we have carried out a detailed study using the
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Wallflower dataset [44], which tests different algorithms in several problem-
atic situations from which de ground truth is known. If we limit the number
of codewords to 2 or 3 in sequences with non-static backgrounds (i.e. waving
trees), our architecture performs similarly to unimodal models (Horprasert
et al. [27]). After an in-depth analysis of accuracy and resources consump-
tion, our choice of optimal number of codewords for a wide range of possible
scenes is set to 5.

As stated before, the number of codewords assigned to a pixel will be lim-
ited in order to facilitate the hardware implementation, without significantly
compromising the accuracy of the system. With this simplification, it may
happen that the memory space of certain codebooks is already full (maxi-
mum limit reached) when new codewords are created. Then, it is necessary
to replace an existing codeword. If this is the case, the replaced codeword
will be the one not having been accessed for the longest time period. This
condition will be added in Alg. 1, when new codewords are created.

Regarding the computation of color and brigthness distortions, all the
codewords cm are compared with the incoming pixel xt = (R,G,B) in par-
allel, using a colordist(xt, vi) and brightness

(

I,
〈

Ǐ , hatI
〉)

block for each
codeword cm. Both division and square root operations implemented in
these blocks represent a considerable consumption of hardware resources.
Therefore, it is desirable to avoid these calculations in the FPGA implemen-
tation without significantly affecting the accuracy of the algorithm, using in
some cases multipliers which are optimized with the embedded resources of
the FPGA DSP48 for a Xilinx Spartan-3A DSP [20].

With respect to color distortion δ, we have implemented the modifica-
tions indicated in eq. (4.17).

‖vi‖2p2 = 〈xt, vi〉2 (4.17)

‖vi‖2δ2 = ‖vi‖2‖xt‖2 − ‖vi‖2p2 = ‖vi‖2‖xt‖2 − 〈xt, vi〉2

Condition (a) in Alg. 2 will remain as eq. (4.18).

‖vi‖2‖xt‖2 − 〈xt, vi〉2 ≤ ǫ2‖vi‖2 (4.18)

With respect to brightness, we have established values α = 0.5 and
β = 1.25, so that calculations in eq. (4.15) can be easily computed by
means of bit shifts, as follows in eq. (4.19).

Ilow = αÎ = Î >> 1 (4.19)

Ihi = min

{

βÎ,
Ǐ

α

}

= min
{

Î + (Î >> 2), Ǐ << 1
}

In this way, we have reduced the consumption of hardware resources by
avoiding the use of two multipliers and one division.
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Table 4.2: Bit-width of each variable involved in the Codebook algorithm.
The first value represents the integer part and the second value, the frac-
tional part.

Variable Bits

Ri, Gi, Bi [8 0]
R̄i, Ḡi, B̄i [8 5]

Ǐ , Î ‖xt‖ [9 3]

〈xt, vi〉2 ‖vi‖2 ‖xt‖2 − 〈xt, vi〉2 ‖vi‖2 ‖xt‖2 [36 5]

‖vi‖2 ‖xt‖2 [18 5]

ǫ2 ‖vi‖2 [26 5]

During the updating process of vm, there is a division for each color
component. In order to reduce the consumption of resources in the FPGA,
we have approximated f to its nearest power of 2, so that shift operations can
be used instead of divisions. The implementation details of this modification
can be seen in Alg. 4:

Algorithm 4 Simplified algorithm for updating vm
if 1 ≤ f ≤ 3 then sf = 2
else if 4 ≤ f ≤ 6 then sf = 4
else if 7 ≤ f ≤ 12 then sf = 8
else if 13 ≤ f ≤ 24 then sf = 16
else sf = 32
vm ←

{

sf ·R̄m−R̄m

sf
+ R

sf
, sf ·Ḡm−Ḡm

sf
+ G

sf
, sf ·B̄m−B̄m

sf
+ B

sf

}

The software implementation has been developed using double floating-
point representation, which enables a high accuracy (at the expense of using
high cost computing units with high resources consumption). For FPGA
hardware implementation with constrained resources, a fixed-point data rep-
resentation is usually adopted, as it is more suitable for the type of resources
in FPGA devices. In addition, specific purpose architectures cannot afford
floating point arithmetic when implementing long-datapath pipelined com-
puting architectures that may have a large number of processing elements.
In this case, a study has been performed using an analog method to the
one used with Horprasert algorithm. We have measured the error between
the results obtained with different bit-width configurations and the original
floating-point approach. In order to evaluate the accuracy of each configu-
ration, the Wallflower dataset [44] has been used.

Table 4.2 shows the main algorithm data structures (system registers)
and the associated bit-width choices, fixed after this study.
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Once we have established the bit-width of the fractional part of vi =
(

R̄i, Ḡi, B̄i

)

and
(

Ǐ , Î
)

, we have also evaluated the degradation of our de-

sign combining all the modifications required to obtain a hardware-friendly
model. These results are shown in section 4.4.

4.2.5 Hardware Architecture

An optimized hardware architecture for the Codebook algorithm is described
in this section, following the same ideas that motivated the development of
the Horprasert architecture, summarized in section 4.1.4.

The proposed architecture has been developed using EDK (Embedded
Developer’s Kit) and ISE Foundation of Xilinx Inc [20]. The EDK environ-
ment facilitates the design of complex and completely modular SoC architec-
tures able to support embedded microprocessors (MicroBlaze, PowerPC. . . ),
peripheral and memory controllers (Ethernet, DDR2, ZBT...), interconnect-
ing buses (PLB, NPI, MCH, FSL. . . ) whilst IP cores for specific processing
can be designed using HDL languages in the ISE tool. For a better under-
standing of the designed architecture using EDK, it is important to highlight
the use of a ViSmart video processing board from Seven Solutions [104], in-
cluding: two Xilinx XC3SD3400aFG676 FPGAs, two 256MB DDR2 DIMM
memory modules, four independent analog video inputs, two gigabit ether-
net connections, 485 connection, a 3G connection module, a 64 MB Flash
memory, and two 1MBx36 bits ZBT memories. In our case, we have only
used one of the FPGAs included in the ViSmart board. This architecture
has already been described in Figure reffig:HorprasertEDK

The hardware description language that we have used to implement this
IP core is ImpulseC [19], which allows us to work at a high level of ab-
straction, enabling the construction of a multi-stage pipelined architecture
running in parallel. The parallel execution of these stages is the key point
for the high performance obtained in our system. Figure 4.4 shows the pro-
posed architecture for this IP core. Blob detection is performed in an analog
way to the architecture designed for the Horprasert algorithm, which is ex-
plained in [105, 106]. It is important to remark that memory has a key role
in the performance of the system and requires an efficient memory accessing
scheme. The codebook model requires an intensive utilization of memory re-
sources and poor system memory architectures drastically reduce the system
performance. This has motivated the utilization of high performance mul-
tiport memory controllers (Xilinx MPMC for DDR2 and XPS EMC MCH
for SSRAM) as well as very specific and optimized memory ports (NPI for
DDR2 and MCH for SSRAM).
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Figure 4.4: Simplified datapath architecture for background subtraction and
blob detection core with 5 scalar units (C1, C2, C3, C4, C5).

4.3 Datasets and evaluation metrics

As it has been mentioned in the chapter 3, there are many different types
of algorithms in the literature. For that reason, it is important to evaluate
the quality of the segmentation obtained by a new algorithm and to carry
out a comparison with other background subtraction algorithms.

Basically, in order to evaluate the accuracy of a background subtrac-
tion algorithm by means of a quantitative analysis, it is required the use
of a dataset with ground truth information, that is, the ideal segmentation
that an algorithm should obtain. Regarding this kind of test sequences and
datasets, there exist several approaches in the literature [44, 45, 46, 47, 48].
Toyama et al. [44] proposed the dataset known as Wallflower, which has
been used to test and compare background subtraction techniques during
the last ten years. In [45], Prati et al. focus on algorithms with shadow de-
tection capabilities. They present a comprehensive survey of moving shadow
detection approaches, proposing both novel quantitative metrics and video
sequences with associated ground truth to evaluate these approaches. Most
recently, several new datasets have been proposed to test background sub-
traction methods [46, 47, 48]. The dataset proposed by Brutzer et al. [46]
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is an artificial dataset which is stated not to suffer from imperfect labels or
small number of annotated frames.

In the work developed in this section we have used the sequences which
belong to the dataset Wallflower [44]. This dataset has been widely used
in the field of background subtraction techniques [34, 35, 37, 44, 52], and
consists of a set of sequences in which each sequence presents a different issue.
The performance of the algorithm is evaluated against a hand-segmented
frame. The sequences are the following:

• Moved Object: a person enters a room, makes a phone call, and gets
out of the room leaving the telephone and a chair in a different position.
This sequence allows researchers to test the capability of the algorithm
to adapt to movement in background objects.

• Time Of Day: this sequence shows an initially darkened room that
gradually becomes more illuminated. While this happens, a person
walks into the room and sits on a couch. This sequence aims to test
the adaptation to gradual illumination changes.

• Light Switch: the scene begins with a room in which the lights are
on during a period of time longer than the training stage. Later, a
person enters the room and turns the light off for a long time. Finally,
a person enters the room and turns the light on again. The evaluation
frame takes place shortly after turning the light on, thus leaving the
algorithm inadequate time to adapt.

• Waving Trees: a person walks in front of a tree which keeps moving,
testing the capability of the algorithm to detect foreground over a
non-static background.

• Camouflage: a person walks in front of a monitor which has interfer-
ence bars on the screen. These bars have similar color to the person’s
clothes.

• Bootstrapping: the sequence consists of several minutes of a view of
a cafeteria, with people moving in every frame. This sequence offers
some complications for the training stage of the algorithm, since the
training has to be performed in presence of foreground objects.

• Foreground Aperture: a person with uniformly colored clothes, who
had been absorbed in the background model, wakes up and slowly
begins to move.

Figure 4.5 shows the evaluation frames of the mentioned sequences, as
well as the ideal foreground segmentation.
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Figure 4.5: Evaluation frames of the Wallflower dataset. There is an evalu-
ation frame with hand-segmented ground truth in each video sequence.

Since foreground/background segmentation is a two-fold classification
problem, the quantitative results are based on measures related to True and
False Positives and Negatives (TP, FP, TN and FN).
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Figure 4.6: Statistical parameters for evaluation

Although the amount of errors is a measure which allows evaluating the
quality of an algorithm, it is an absolute measure and thus depends entirely
on the sequence. In addition, it does not represent a reliable measure of
the quality of the algorithm, since there are cases in which a few errors
can be located in important areas of the image, leading to false alarms or
misdetecting potential alarm situations.

For that reason, relative measures have been used to compare algorithms
in different test sequences maintaining similar ranges of values. These mea-
sures include Recall, Precision, F1 and Similarity [25, 108].

The use of Recall offers the ratio of correctly classified positives, defined
as the number of true positives against the total number of positive pixels
in the ground truth, following eq. (4.20):

R =
TP

TP + FN
(4.20)

Precision is the ratio of correctly classified foreground pixels among all
pixels labelled as foreground, as defined in eq. (4.21)

P =
TP

TP + FP
(4.21)

These metrics, despite offering objective evaluation regarding the sensi-
tivity of the algorithm to true positives and false positives, respectively, are
not reliable separately. For example, an algorithm classifying every pixel
as foreground would have maximum Recall, although with many false pos-
itives. For that reason, there are two accuracy metrics, F1 and Similarity,
which combine Precision and Recall to evaluate an overall quality of the
segmentation.

F1 = 2
P ·R
P +R

(4.22)

Similarity =
TP

TP + FP + FN
(4.23)
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These measures offer a balance between the ability of an algorithm to
detect relevant and non-relevant pixels and have been widely used in the
literature [25, 109, 110, 108].

Although the presented metrics allow for evaluating the overall quality
of the segmentation computed by a background subtraction algorithm, in
order to evaluate the performance in presence of shadows two metrics have
been proposed by Prati et al. [45], based on the work presented in [111]:
the shadow detection accuracy η and the shadow discrimination accuracy ξ.
These two metrics are defined as follows:

η =
TPS

TPS + FNS

(4.24)

ξ =
¯TPF

TPF + FNF

(4.25)

where the subscript S stands for shadow and F for foreground. ¯TPF is
the number of ground truth points of the foreground minus the number of
points detected as shadows belonging to foreground objects. The first mea-
sure, the shadow detection accuracy, shows the capability of the algorithm to
detect shadow points, or the low probability to misclassify a shadow point.
The second measure shows the discrimination capability, that is, the low
probability to classify a non-shadow foreground pixel as shadow.

In order to obtain the values for these metrics, a dataset needs ground
truth information which classifies each pixel not only in foreground or back-
ground, but also shadows. We have tested the Horprasert approach using
the Intelligent Room sequence provided by Prati et al. [45], which offers
hand-segmented ground truth for most of the frames of the sequence, allow-
ing researchers to get more meaningful results than a single value. Some
frames of this sequence are shown in section 4.4.

4.4 Results

This section shows the results obtained by the proposed architectures. We
have analyzed the performance of the algorithm in comparison with other
hardware-oriented approaches, as well as an objective accuracy evaluation
based on the Wallflower dataset [44].

4.4.1 Performance comparison with other approaches

It is important to compare the current implementation with other approaches
described in the literature (shown in Table 4.3). In order to evaluate the
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processing speed, we use the MegaPixels per Second measure (MPPS), mul-
tiplication of image size by frame rate. The background subtraction al-
gorithm by Horprasert [27] has been implemented by other authors [51],
reaching 30 fps with resolution 240x120, i.e. 0.824 MPPS. Our architecture
for Horprasert presents a large improvement over this performance (32.8 fps,
1024x1024, i.e. 32.8 MPPS), and we have implemented other features such
as morphological filters, shadow detection, and a mechanism to send results
through Ethernet gigabit. On the other hand, the architecture developed to
perform background subtraction according to the Codebook approach [38]
reaches 24 fps with resolution 1024x1024, obtaining much higher accuracy,
as we show in section 4.4.2.

Other authors have proposed different approaches, as in [50] and [49]
based on MOG (Mixture of Gaussians). Jiang et al. [50] reach 38 fps
with resolution 1024x1024 by applying a compression scheme, but with a
considerable loss of accuracy. The system proposed by Appiah et al. [49]
performs 145 fps for 768x576 frames, but obtaining worse results in terms
of accuracy than our presented approach (Section 4.4.2). Bravo et al. [43]
implement PCA algorithm on FPGA, which performs at maximum between
190 and 250 fps for 256x256 frames depending on the number of significant
eigenvectors, i.e. between 11.875 and 15.625 MPPS. However, due to the
lack of accuracy information, a deeper comparison is not possible.

For standard GPU platforms, the approaches described in Carr [55] and
Pham et al. [56] achieve high accuracy. Furthermore, Pham et al. [56]
presents a high frame rate (980 fps, 400x300, i.e. 112.15 MPPS). The main
limitation of our approaches with respect to other contributions based on
MOG (Mixture of Gaussians) such as [56] is the accuracy of results, but
on the other hand, GPU platforms have the problem of implementation for
embedded systems especially in terms of portability, size and power con-
sumption.

Other implementations have been proposed using TI DM642 DSP plat-
form, as in [53]. This contribution is based on MOG (Mixture of Gaussians)
and it has been implemented using fixed-point arithmetics. According to
datasheet [112] and using the spreadsheet spra962f [113], we have calculated
the power consumption of DM642 DSP, obtaining 2.5 W. We have assumed
that this DSP run at 720 MHZ and a 80% CPU utilization. According to
Table 4.3, this DSP is able to compute 2.03 MPPS and if we take into ac-
count its low power consumption (2.5 W), it has 0.8 MPPS per Watt. If
we do the calculations for our systems (5.76 W for Horprasert and 5.13 W
for Codebook), we achieve 5.7 MPPS per Watt and 4.67 MPPS per Watt
respectively, therefore our FPGA-based systems have a better performance.

For some applications, these DSPs offer all the performance we need. In
addition, DSPs enable rapid development of complex algorithms and are bet-
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Table 4.3: Comparison with other previous approaches described in the
literature.

Approach Method Resolution Frame
Rate

MPPS Processor
Type

Oliveira et al. [51] Horprasert 240x120 30 0.824 FPGA
Jiang et al. [50] MOG 1024x1024 38 38 FPGA
Appiah et al. [49] MOC 768x576 145 61.18 FPGA
Bravo et al. [43] PCA 256x256 190-

250
11.875-
15.625

FPGA

Carr, P. [55] MOG 704x576 16.7 6.46 GPU
Pham et al. [56] Zivkovic’s

Extended
MOG

400x300 980 112.15 GPU

Ierodiaconou et
al. [53]

MOG 352x288 21 2.03 DSP

Presented work Horprasert 1024x1024 32.8 32.8 FPGA
Presented work Codebook 1024x1024 24 24 FPGA

ter suited for low power applications, although they can only run up to four
calculations at a time. On the other hand, when we need more performance
for other applications (e.g background subtraction, image stabilization...),
FPGAs are a good option, since they can perform mathematical operations
in parallel at one time. Furthermore, FPGAs are excellent for glue logic,
connecting multiple processing chips, peripherals and memories together.
Therefore it is often better to use the FPGA as a coprocessor (video pre-
processing functions) for a DSP. The integration of these two devices onto
a single development platform can offer the best of both architectures by
increasing performance and reducing overall cost [114].

Finally, note that the processing performance is directly determined by
the running clock frequency, and we are using low cost FPGAs with a re-
duced performance compared to other FPGAs on the market. Therefore,
migration to faster technologies as Virtex-6 or Virtex-7 FPGAs could di-
rectly represent an improvement of the system performance. An easy way
to increase this performance in case of need could be simply replicate the
processing cores and split the input image into a number of parts equal to the
replication of cores, although the system would have a significant increment
on price and power consumption.

4.4.2 Evaluation of the accuracy of the background model

Apart from the evaluation of system performance performed in the previ-
ous subsection, it is important to evaluate the quality of the segmentation
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obtained by the proposed architectures and to carry out a comparison with
other background subtraction algorithms found in the literature. The al-
gorithms which have been used for this comparison are MoG (Mixture of
Gaussians) [33], a segmentation method based on Bayes decision rules [37],
a simplification of MoG for FPGAs [49], and the original algorithms de-
scribed in this chapter, that is, Horprasert [27] and Codebook [38]. These
models have been selected since they represent different kinds of algorithms
and they are among the most frequently used. The implementations of
MoG and the Bayesian algorithm that have been used are versions from
the OpenCV library, while the other approaches have been developed by
ourselves from the information shown in their respective papers. In this sec-
tion, the methodology used to compare the different approaches is presented.
We have evaluated the general performance as a background subtraction al-
gorithm of the two proposed approaches and the behavior in presence of
shadows of the Horprasert implementation. The former has been performed
by means of the dataset Wallflower [44], described in section 4.3, while the
latter has been studied using the sequences presented in [45].

4.4.2.1 Background subtraction evaluation

The metrics and dataset used in order to evaluate and compare different
background subtraction algorithms have been described in section 4.3. How-
ever, the test Moved Object cannot be evaluated using these metrics, since
the ground truth does not have any foreground pixel. As a result, there
are not True Positives (TP) or False Negatives (FN), being impossible to
compute Precision or to get useful results from Similarity. For that rea-
son, the performance in this test is only studied in a qualitative manner, by
observing the resultant images (Figure 4.9).

Figure 4.7 shows the F1 and Similarity values obtained by each al-
gorithm in the dataset. From this figure, it can be seen that our proposed
implementation for the algorithm by Horpraser [27] offers acceptable results,
especially in comparison with the other hardware-oriented implementation
[49]. Regarding the Codebook implementation, we can see that it gets very
good results, being the best algorithm in two of the tests, and obtaining very
high marks in the others. Concerning hardware approaches studied in this
work, the accuracy decreases minimally so that they get slightly worse re-
sults than the original ones. However, the degradation caused by fixed-point
limitations and additional modifications is fairly acceptable, obtaining our
architectures very good results, specially the one based on the Codebook
algorithm.

Besides the general comparison, it is interesting to see the accuracy of
these algorithms in outdoor and indoor situations. Instead of constructing
figures for all the tests of the benchmark, we have grouped the sequences
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Figure 4.7: Overall performance evaluated using F1 and Similarity. FGD is
the Bayesian algorithm [37], MOG Mixture of Gaussians [33], HWMOC the
FPGA implementation [49] for MOG, HOR Soft the approach by Horprasert
[27], CB Soft [38] the original implementation of Codebook, and HOR Hard
and CB Hard the proposed approaches.

in two groups according to the characteristics of each one, and the results
are obtained as a weighted averages of the results of each test. In the in-
door group, we have taken into account the sequences Bootstrap, Foreground
Aperture and Light Switch. In the outdoor group, the sequences are Cam-
ouflage, Time of Day and Waving Trees.

Figure 4.8 shows that the quality of the segmentations provided by the
proposed implementations are similar to the ones provided by the origi-
nal algorithms. In the case of Horprasert implementation (HOR Hard), it
performs better in outdoor situations than the previous hardware-oriented
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Figure 4.8: Performance in outdoor and indoor circumstances.

approach, while maintaining accuracy in indoor situations in an acceptable
level. However, the proposed Codebook architecture (CB Hard) gets results
similar to the obtained by Bayesian [36] and MOG [33] models, and it offers
a great improvement over other hardware solutions.

In Figure 4.9, the evaluation images resultant from each algorithm on
the Wallflower dataset [44] are displayed, as well as the original frame and
the ground truth to evaluate the quality of the segmentation. This com-
parison allows us to see in a qualitative manner the foreground/background
segmentation quality of the different approaches. This subjective evaluation
supports the conclusions of the quantitative analysis. Regarding the Moved
Object test, the Horprasert algorithm, due to its static nature, commits more
mistakes than MOG [33] or HW MOC [49]. In the Codebook implementa-
tion, only a small regions of less than 10 pixels has been misclassified. In
both cases, most of the misclassified pixels are sparse errors which could be
removed by subsequent morphological filtering.
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Figure 4.9: Wallflower evaluation frames, ground truth and resultant images
from tested algorithms.

4.4.2.2 Shadow detection behavior

Despite the implementation proposed for the Codebook algorithm offers
much higher accuracy than the Horprasert architecture, one of the benefits of
the latter is that it is able to compute not only the background information
of the scene but also information about the visible shadows. In order to
evaluate these capabilities, we use the metrics proposed by Prati et al. [45],
the shadow detection accuracy η and the shadow discrimination accuracy ξ.

Table 4.4 shows the results obtained by the proposed architecture and
the original software implementation in the Intelligent Room sequence as
well as the results from other approaches found analyzed in [45]. Despite
the degradation suffered by the hardware implementation (mainly due to
the utilization of fixed-point arithmetics), it offers acceptable results, con-
sidering the greater complexity of the other approaches that makes them
unsuitable for FPGAs with limited resources.
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Table 4.4: Shadow detection and discrimination accuracy, tested on “Intel-
ligent Rooom” sequence. SNP (Statistical Non Parametric, Horprasert, our
approach), SP (Statistical Parametric) [115], DNM1 [116] and DNM2 [117]
(Deterministic Non-Model-based approaches).

Approach
Intelligent Room

η (%) ξ (%)

SNP Soft 74.54 91.76
SNP Hard 71.14 88.13

SP 76.27 90.74
DNM1 78.61 90.29
DNM2 62.00 93.89

About the degradation between the software implementation and the
proposed one, figure 4.10 shows the results for the Intelligent Room sequence
during a series of evaluation frames. In the worst of the scenarios, the loss
of accuracy due to the restrictions of the hardware implementations is lim-
ited to 5%, offering fairly good results in both detection and discrimination
metrics.

Figure 4.10: Shadow detection accuracy and discrimination accuracy of the
original software model and the proposed approach, evaluated on Intelligent
Room sequence.

This loss of accuracy can be easily seen in figure 4.11. Images a) and b)
show the segmentation obtained by the software and hardware implemen-
tation respectively. The degradation is noticeable in the higher dispersion
of the shadow points in the hardware detection, whilst the shadow regions
resultants from the software implementation are denser. The same effect is
shown in images c) and d), as well as some noise detected as shadows instead
of be classified as foreground. However, the results are fairly accurate and
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the noise can be removed during the connected component stage, which was
not included here in order to facilitate comparison with other approaches.

(a) (b)

(c) (d)

Figure 4.11: Frames of the “Intelligent Room” sequence, frame 100 for
(a) software and (b) hardware implementations, and frame 282 for (c) soft-
ware and (d) hardware.

4.5 Conclusions

We have designed and analyzed two architectures to perform background
subtraction in video sequences. Our first approach is based on the algorithm
by Horprasert [27], a static model whose simplicity allows for a low cost
FPGA implementation and which has been extended to perform also shadow
detection. The second one is based on the Codebook algorithm by Kim et
al. [38], which allows us to model dynamic and multimodal backgrounds and
is well known because of its robustness and good balance between accuracy
and efficiency.

Two FPGA implementations of background subtraction algorithms have
been studied which offer low degradation in comparison with the original
ones. Since the hardware environment has limited resources, we have opti-
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mized memory access, low-level interfaces with external memory and storage
of the background models. For the first time, an FPGA implementation of
a background model includes shadow detection logic. This allows us to in-
crease the model robustness as well as to improve object localization on the
scene. This is a valuable contribution that significantly enhances the appli-
cability of the proposed approach. The second approach, despite not having
shadow detection capabilities, uses a much more accurate algorithm which
can be used in a wider range of scenarios.

We have evaluated the approaches with the benchmark Wallflower [44]
to test the quality of the segmentation. The first architecture offers good
results (in terms of accuracy) in comparison with other hardware implemen-
tations found in the literature [49]. Furthermore, shadow detection behavior
has been analyzed by means of manually segmented video sequences [45].
The implementation is able to segment objects in complex sequences with
resolution 1,024 × 1,024 at 32.8 fps (therefore 32.8 MPPS, Megapixels per
Second) or from up to four cameras with less resolution. This represents a
speed up over 35× with respect to the other approach [51] based on Hor-
prasert. Concerning the cost of the system, the architecture has been de-
signed for low cost FPGAs Spartan-3 by Xilinx, and it offers low power
consumption (5.76 W). Therefore we achieve 5.7 MPPS per Watt. Our ap-
proach can be included in embedded systems, where parameters such as size
and power are key elements that are not achievable by other approaches,
such as commodity processors or GPU-based systems.

Regarding the second architecture, the results are excellent in compari-
son with other hardware-oriented approaches found in the literature, being
similar to the ones offered by advanced software algorithms such as Bayesian
and MoG. The implementation is able to segment objects in complex se-
quences with resolution 768x576 at 50 fps (therefore 21.1 MPPS) or at a
higher speed with less resolution sources. Concerning the cost of the sys-
tem, the architecture has been designed for low cost FPGAs Spartan-3 by
Xilinx, with an estimated power consumption of 5.13 W (4.11 MPPS per
Watt).

The work performed in this chapter aimed to the first objective pre-
sented in Section 2.2, which is the development of background subtraction
models in real-time and the evaluation of methods which offer good trade-off
between accuracy and computational efficiency. The methodology we have
used to validate our architectures and to compare them with the state-of-
the-art methods has been followed by recent works related to background
subtraction on embedded hardware [52].





Chapter 5

Background subtraction
based on color and depth
cues

Background subtraction, as mentioned in chapter 4, is a well-known tech-
nique which has aroused much interest as a research field. However, de-
spite current state-of-the-art algorithms are able to cope with classic issues
(such as sudden and gradual illumination changes, moving background ob-
jects, repetitive movements...), robustness is a critical requirement for video
analytics. Most of the studied techniques rely specifically on color values
[33, 38, 37, 2]. For that reason, they are prone to errors and misclassifications
when foreground objects have colors similar to those of the background. In
addition, although some approaches are specially suited to work in pres-
ence of shadows [27, 45], they suffer from it if these shadows are too dark,
since the change of color in some image regions is greater than what the
algorithms are capable to adapt to.

Currently, there is a clear understanding that, in order to achieve higher
robustness, multimodal information fusion is required. For that reason,
many works have proposed algorithms fusing intensity, edges and texture
information [57, 58, 59, 60, 61, 36, 62, 29]. Even though these methods
are a very valuable contribution for any robust surveillance application, the
problems associated to the camera sensor still persist.

In order to reduce the impact of issues related to camera sensors, we
focus on the combined use of depth and color. Depth is an interesting signal
for segmentation that is less affected by the classic color segmentation issues,
such as shadows or highlighted regions. Depth information can be obtained
in real-time by different methods or technologies: stereo-camera setups with
disparity estimation algorithms [118], Time-of-Flight (TOF) cameras [119]

65
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or the Kinect peripheral from Microsoft [21]. In this thesis project we have
studied the usage of depth information provided by the Kinect sensor [21]
as well as stereo cameras with disparity computation. The combination of
depth and visual (RGB) sensing allows for more robust and accurate object
detection.

The state of the art of background subtraction with sensor fusion has
been summarized on section 3.1.2. In this thesis project, we have proposed
a model which fuses color and depth, based on the Codebook method de-
scribed by Kim et al. [38]. Depth is included in the background model,
allowing for the combined use of depth and RGB.

The rest of this chapter is organized as follows. In section 5.1 we de-
scribe the different methods used to compute depth information. In Section
5.2 the fusion techniques used to integrate background and depth are ex-
plained. In Section 5.3 we describe the datasets proposed for the evaluation
and comparison of the algorithms based on color and depth. Section 5.4
shows the experimental results obtained by the proposed methods. Finally,
conclusions of this work are presented in Section 5.5.

5.1 Depth estimation

Depth information can be obtained by means of stereo camera rigs or active
sensors such as Kinect [21] or Time-of-Flight cameras [120, 121, 119].

Depth cameras offer several advantages over traditional intensity sen-
sors, such as performance under low light, being color and texture invariant
and resolving silhoutte ambiguities in pose [122]. However, since they use
infrared light to compute depth, they do not work outdoors. For that rea-
son, we have studied the use of both depth cameras and stereo camera rigs
for foreground segmentation.

Regarding stereo camera rigs, depth perception derives from the differ-
ences in the positions of points in correspondence between stereo images
captured by a pair of binocular cameras. As a first approximation, these
positions are related by a 1-D horizontal shift, taking into account that the
pair of cameras differ only in their horizontal position. The disparity is
related to the direction of the epipolar lines [123, 124, 125].

Accurate stereo matching is a required feature for many applications,
like 3D reconstruction. Matching is a challenging task due to occlusions,
object boundaries, lack of structure or repetitive textures. Therefore, many
algorithms and improvements have been studied in the literature.

In the next subsections, we describe the different methods used in this
work, including a brief explanation of the Kinect sensor [21] and different
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stereo algorithms. These algorithms are representative models of the most
common approaches used for disparity estimation, i.e. coarse-to-fine local
methods, global ones here represented by a variational technique and finally
an intermediate local-global solution based on pixels correspondences. They
have been chosen because each of them suffers from different constraints and
limitations and this allows us to generalize the results to other algorithms.
Of course, the quality of the final stereo algorithm has an impact on the final
segmentation accuracy, but the motivation of the current methods selection
is to provide an overview of the different possibilities and trade-offs. The
choice of disparity algorithm should be made based on accuracy as well
as additional considerations as real-time constraints or robustness to image
artifacts.

(a) Left image (b) Right image

(c) Ground truth (d) Disparity

Figure 5.1: Disparity example: 5.1(a) and 5.1(b) are the left and right
original images from Middlebury’s cones sequence. 5.1(d) is the disparity
calculated using [126] where warm colors codify farther objects and cold
colors, closer objects.
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Figure 5.2: Kinect consists of infrared emitter, infrared sensor and RGB
camera, as well as microphones and tilt motor. (Illustration from [129]).

5.1.1 Kinect sensor

The Kinect peripheral from Microsoft [21] is a composite device which has
three openings on its front, each housing a core piece of technology [127]. On
the left, there is an IR emitter which projects a factory calibrated pattern
of dots. The second opening is an RGB camera. Finally, the third is the IR
sensor which reads the dot pattern to triangulate points in space. A scheme
of Kinect is shown in Figure 5.2. As a measuring device, Kinect delivers
three outputs: IR image, RGB image, and Depth image [128].

Data from Kinect have been obtained by using OpenCV [17] and OpenNI
drivers [18]. Since we are interested on the segmentation in the RGB video
stream, all sensors in Kinect must be calibrated so that depth information
can be directly applied to RGB images. In this work, we have used the
default calibration offered by OpenNI [18] driver, which allows for a fairly
good mapping. Both depth maps and RGB images are obtained at the
default 640x480 resolution, working at 30 fps. The sequences recorded by
using Kinect are explained in detail in Section 5.3.1.

Since Kinect depth estimation is performed by using infrared sensors, it
does not work properly in several situations. For example, black objects do
not reflect infrared light, being thus undetectable to the IR depth sensor.
In addition, Kinect and ToF-cameras are not suitable for outdoor scenarios.
For that reason, we have studied stereo disparity algorithms as well as active
sensors.
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5.1.2 Phase-based method

This method is based on a local technique with a coarse-to-fine refinement
to extend the depth range. It measures the disparity in terms of phase
differences in the output of local, band-pass, linear filters applied to the
stereo image pair [130]. One important advantage of phase-based approaches
is that the estimation of disparity is obtained with sub-pixel accuracy. For
that reason, these techniques do not require an explicit sub-pixel signal
reconstruction of feature detection and localization. In addition, phase-
based approaches are more robust to image deformations typically present
between left and right views. In particular, phase information is stable under
small scale changes and contrast variations. Despite the general stability of
phase information, there are regions which are prone to errors near phase
singularities where disparity estimations should not be trusted. However,
these regions can be detected through simple constraints and thresholds in
order to discard unreliable measurements at the cost of producing a sparse
disparity map.

The algorithm used in this work is based on the computing model pro-
posed by Solari and Sabatini [131] and on its multi-scale extension proposed
in [132]. Phase measurements can be obtained by filtering operations with
Gabor filters.

The basic steps of the mono-scale computation can be summarized as
follows:

• Even and odd (C, S) filtering with quadrature filter image pairs.

• Disparity computation at eight orientations and threshold assuming
k(x) ≈ k0.

• Final disparity estimation chosen as the median value of the different
orientations.

This mono-scale version is extended by using a coarse-to-fine approach
as proposed in [132]. To perform this strategy efficiently, an image pyramid
is used where the resolution is halved at each level. Specifically, a coarse-
to-fine Gaussian pyramid is constructed [133], [134] in which each layer is
separated by an octave scale. The image is blurred with a Gaussian kernel
and sub-sampled to build each level. At each pyramid level k, resolution is
halved with respect to level k−1, reducing the disparity range and enabling
the filters to tune their response. The control strategy starts at the lowest
resolution and uses the mono-scale method at each level. The stereo estima-
tion obtained is used to warp the images at the next level in order to remove
the estimated disparity, so that the residual disparity is within the range of
the filters for the next level. The stereo algorithm manages strictly local



70 Background subtraction based on color and depth cues

information, what makes it particularly suitable for this warping strategy.
After the disparity has been computed in every level of the pyramid, dis-
parity values are transformed from the low resolution levels and propagated
to the next ones. This procedure is repeated until the original resolution is
obtained.

The multi-scale extension enables the method to cope with higher dispar-
ity range. In addition, the multiple orientation scheme allows it to optimize
the phase estimations, what leads to accuracy increase. The main limita-
tions of the approach are caused by its local nature, that frequently leads to
wrong values specially at object boundaries, therefore reducing the overall
method accuracy.

5.1.3 Variational approach

An example of a global method is presented here based on a variational
approach. Variational methods are robust and relatively well performing,
due to the incorporation of a regularization term. In addition, these methods
have a solid mathematical base with existing efficient solvers, what allows
researchers to straightforwardly extend the algorithms [135], [136], [137]. In
addition, these kinds of methods enable the inclusion of both spatial and
temporal constraints in the framework [126]. These constraints bound the
solution based on a priori information, that is, based on what is known of
a possible solution. For example, in real image sequences, there are some
assumptions that can be made about the solution: the sky is far from the
cameras (i.e. disparity near zero), the ground is a relatively flat surface, and
in the case of automatic video surveillance, background structures tend to be
flat and static. In the variational disparity calculation, the model minimizes
the energy functionals given in (5.1):

E(d) =

∫

Ω
(D (IL, IR, d) + αS (∇IL,∇d)) dx+

+ γS

∫

Ω
(CS (dSC , d)) dx (5.1)

where the data term is D (IL,1, IR,1, d), while S (∇IL,1,∇d) is the regu-
larization term, α > 0 is the weight of the smoothness term, and d is the
disparity. The spatial and temporal constraint is CS (dSC , d), where dSC is
the constraining value and γS is the spatial and temporal constraint weight.
More information about how data terms, regularization terms and spatial
and temporal constraints are obtained can be found in [138].

The energy functional (5.1) is minimized using the corresponding Euler-
Lagrange equation: a necessary (but not sufficient) condition for a minimum
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is for the Euler-Lagrange equation to be zero. Because of the late lineariza-
tion of the data term the model is able to cope with large displacements.
However, as a consequence of this, the energy functional is not convex. Due
to the non-convexity, searching for a suitable minimizer becomes more dif-
ficult. A suitable minimizer is searched for using a coarse-to-fine strategy,
while non-linearities are dealt with using a lagged diffusitivity fixed point
method [137]. The solver used for the linearized version of the equation is
ALR (Alternating Line Relaxation) which a Gauss-Seidel type block solver
[135].

5.1.4 Semi-global block matching

The Semi-Global Matching (SGM) method [139] combines a local matching
based on mutual information with a semi-global optimization that is com-
puted using a cost aggregation function from, typically, multiple directions
through the image.

Mutual information has the advantage to be insensitive to radiometric
problems and due this it has been used as matching cost. This cost func-
tion relies on the idea that, for well registered images, the joint entropy is
low, since one image can be predicted by the other, which corresponds to
low information and translates on a higher Mutual Information. Therefore,
estimation of the disparity values consists of finding the function that, after
warping one image towards the other, maximizes their mutual information.

In order to achieve a good matching without using any additional method,
the authors use a coarse-to-fine strategy. This allows researchers to hierar-
chically estimate the best matching pixel for each image scale and to refine
the process at the next level. In addition, pixel-wise cost calculation is
generally ambiguous and wrong matches can easily have lower cost than
correct ones, due to noise, etc.. For that reason, an additional constraint
is added that supports smoothness by penalizing changes of neighboring
disparities. As important differences with the variational method, this ap-
proach uses a new matching approach based on the idea of aggregating 1D
directions equally instead of performing a global optimization. The aggre-
gated (smoothed) cost for a pixel and disparity is calculated by summing
the costs of all 1D minimum-cost paths that end in pixel at given disparity.
This technique leads to efficient implementations with almost no accuracy
degradation.

Moreover, the method uses some additional disparity refinements as peak
removal, intensity-consistent disparity selection or discontinuity preserving
interpolation. The final approach is among the most accurate approaches
for stereo disparity computation and it is very efficient, which has motivated
some real-time implementations as [140, 141].
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5.2 Fusion model

The fusion of background subtraction models with stereo models for dis-
parity computation has been previously studied by Gordon et al. [65], im-
proving the performance obtained by each separate technique. In [65] a
4-channel background subtraction algorithm based on an unimodal mixture
of Gaussians [33] is proposed.

In our contribution we have studied three fusion methods which can be
used cumulatively and differ on the integration of depth information with
RGB values. Our approach consists of an update of the model proposed by
Gordon et al. [65], although a 4-channel (R,G,B,Z) Codebook has been
used. The first fusion method simply considers depth as the fourth channel
of the Codebook, which has a completely independent mechanism than color
and brightness. The second one is based on this approach, but the distance in
chromaticity associated to a pixel is biased by the depth distance. The third
approach has been applied as a post-processing stage after the second one,
and consists of performing morphological reconstruction of the foreground
mask obtained by the previous method, using the output from the color-
based Codebook algorithm. These approaches are further elaborated in
following subsections.

5.2.1 4D Codebook: CB4D

Our first approach to RGB-D background subtraction is the generalization
of the Codebook model proposed by Kim et al. [38], described in Section
4.2, to work with depth values as a fourth channel. The 4D Codebook works
enhancing the matching conditions between an input pixel value and a code-
word. In the original algorithm, the pixel value matches the codeword if both
color and brightness distortions are below a threshold ((4.14) and (4.16)).
Our approach includes a third condition based on depth. Since depth in-
formation is 1-dimensional, we have considered the evaluation of matching
between the pixel value and the background model using a method similar
to the brightness condition.

Dlow = αD̂ (5.2)

Dhi = min

{

βD̂,
Ď

α

}

In (5.3), we obtain a range of values [Dlow, Dhi] which represents the
depth change allowed for input values. Dlow and Dhi are computed from
Ď and D̂, which are the min and max depth values for a codeword. These
two values are added to the 6-tuple described in the original model (Section
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4.2.1). α and β define the threshold in the depth distortion, being typically
α between 0.4 and 0.7, and β between 1.1 and 1.5. The logical disparity
function is defined as follows:

disparity
(

D,
〈

Ď, D̂
〉)

=























true if ¬V alid(D)∨
∨ (Dlow ≤ D∧
∧D ≤ Dhi)

false otherwise

(5.3)

When color, brightness and disparity distortions have been computed,
the algorithm matches the current pixel value with the appropriate code-
word based on these conditions. A pixel is then classified as foreground or
background as in (5.4):

BGS(x) =



























BG if (colordist (xt, vi) < ǫ) ∧
∧ brightness

(

I,
〈

Ǐ , Î
〉)

∧
∧ disparity

(

D,
〈

Ď, D̂
〉)

FG otherwise

(5.4)

According to (5.3), the condition disparity
(

D,
〈

Ď, D̂
〉)

is always true

if the depth value of the pixel obtained by the Kinect sensor is invalid.
Therefore, when the depth value is invalid, the condition required in (5.4)

depends entirely on colordist (xt, vi) and brightness
(

I,
〈

Ǐ , Î
〉)

, relying the

foreground/background classification on the color-based background model.

5.2.2 Early Fusion: Depth-extended Codebook (DECB)

As mentioned in the introduction of Section 5.2, a second approach has been
tested, based on the 4D Codebook described in the previous subsection.

The main motivation of this approach is improving the robustness of
the 4D Codebook to shadows, highlighted regions and sudden illumination
changes. Depth computation sensors are more robust to lighting artifacts
and shadows than passive sensors such as cameras, since they work at the
infrared range without interferences with visible light. For that reason,
instead of simply considering depth as an independent fourth channel, deeper
dependence between RGB and depth has been studied.

The most straightforward method to remove shadows and highlighted
regions will be not considering color distortion if the pixel is background
according to depth information. However, Fig. 5.3 shows a scenario where



74 Background subtraction based on color and depth cues

(a) Original frame (b) RGB Detection (c) Depth Detection

Figure 5.3: Example of complicated scenario for RGB-D methods: presence
of shadows and flat foreground objects. Foreground objects are correctly
detected by color-based algorithms while are misdetected by depth-based
ones, since the objects are too close to the wall to be discernible.

this approach would produce misdetections due to the presence of foreground
objects with similar depth to the background.

Our approach consists of biasing the threshold for color distortion de-

pending on the depth information. When the condition disparity
(

D,
〈

Ď, D̂
〉)

is fulfilled, a second threshold ǫ2 for color distortion is used. This thresh-
old has a fixed value depending on the original one, ǫ2 = 1.8ǫ1. Thus, the
matching condition regarding color distance remains as follows in (5.5):

color(x) = colordist(x, cm) ≤ ǫ1 ∨ (5.5)

∨ (ǫ1 < colordist(x, cm) ≤ ǫ2 ∧
∧ disparity

(

D,
〈

Ď, D̂
〉)

)

Equation (5.5) can be interpreted in the following way: if an input pixel
is considered to be foreground (based on color), but it is close enough to the
threshold, the classification will take into account the knowledge about the
depth value for that pixel.

This modification will produce less foreground pixels than the 4D Code-
book, being most of the removed pixels false positives in the original model.
Section 5.4 shows the experiments performed and the results obtained with
both RGB-D algorithms as well as the color-based Codebook.

5.2.3 Late Fusion: DECB-LF

The third approach consists of refining the foreground mask obtained by the
Depth-Extended Codebook algorithm (DECB) using the output of the color-
based algorithm. This approach has been specially designed for the usage of
depth information from stereo-cameras and disparity estimation algorithms.
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Since disparity images tend to have more noise than color ones, we have
evaluated a fusion method that reduces the impact of that noise in the
resultant segmentation without having to perform aggresive erosion or small
region suppression.

Our assumption is that the Codebook model over color and brightness
is less affected by noise in isolated pixels thanks to the uniformity of image
regions. In this approach, the methods used to obtain the range information
are based on color correspondences between cameras. Possible disruptions
and noise in the original images will affect both the color-based Codebook
model and the disparity algorithms. In addition, the errors obtained in the
disparity algorithm will be propagated to the Codebook model over dispar-
ity. This two-stage error propagation leads us to consider the color-based
algorithm alone more reliable than a method based only on the disparity.
Nevertheless, depth cues still provide very relevant information, as we show
in Section 5.4.

An example of complicated scenario for disparity computation algo-
rithms is shown in Figure 5.4. Since disparity is computed from color corre-
spondences, it is affected by events such as flickering lights, overexposed and
uniform regions, or the presence of many levels of depth. Figure 5.4 shows
that this type of scenario requires the use of more advanced and accurate
disparity computation algorithms such as the variational [126], leading to
higher computational costs of the total system.

(a) Original frame (b) Phase disparity (c) Variational disparity

Figure 5.4: Scenario which offers different kinds of complications for dis-
parity computation algorithms: flickering lights, overexposed regions and
different range levels. These difficulties result in some local errors in 5.4(b),
with a fair amount of invalid pixel values, as well as noise in planar sur-
faces. This scenario requires more accurate methods such as Variational
[126], shown in 5.4(c).

In order to remove foreground pixels caused by noise from disparity from
the mask obtained by the Early Fusion method, we perform a morpholog-
ical reconstruction [142] of this mask taking the output of the color-based
Codebook algorithm as the marker.
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Stereo Image Pair Disparity

Early

Fusion

Color 

FG/BG

Late Fusion Ground Truth

Figure 5.5: Complete scheme of masks fusion process.

Fig. 5.5 shows the complete process from stereo image pairs until the
resultant Late Fusion mask. Foreground masks are obtained by the classic
color-based algorithm and the proposed Depth-Extended Codebook approach.
Then, morphological reconstruction is performed over the Early Fusion mask
using Color FG/BG mask as a marker. This reconstruction produces a bi-
nary image with the connected components in the Early Fusion mask which
partially overlap with foreground regions in the marker. As a result, most
of the false foreground regions due to noise in disparity data are removed
from the final segmentation.
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This approach is specially aimed to the combination of background sub-
traction techniques with faster and less accurate disparity computation al-
gorithms, such as the Phase-based approach used in this work [143]. The use
of this kind of algorithms is justified by the need of real-time video surveil-
lance systems, where the computational costs associated to each stage of the
final system are quite constrained.

5.3 Datasets

As explained in the chapter 4, in order to evaluate objectively background
subtraction algorithms by means of a quantitative analysis, we require the
use of a dataset with ground truth segmentation. There are different bench-
marks used for evaluation of background models [44, 45], but they do no
have available information about depth. Thus, since we are focused on the
use of Kinect [21] and stereo-cameras with disparity estimation algorithms,
we have recorded and manually segmented some sequences by using these
sensors. In the following subsections, we describe the two datasets recorded.

5.3.1 Kinect-based dataset

Data from Kinect have been obtained by using OpenCV [17] and OpenNI
drivers [18]. The recorded sequences have been made publically available at
[144]. The sequences are the following:

• ChairBox : a person enters the field of view and leaves a box on a
chair. There are flickering lights as well as areas where depth cannot
be obtained by the Kinect.

• Wall : a flat object (paper sheet) appears close to a wall, creating
shadows and highlighted regions. The main difficulties are the simi-
larity of depth between foreground and background and the changes
of lighting.

• Shelves: a person enters the scene and puts two objects on shelves.
There are changes of exposure as well as difficult depth estimation.

• Hallway : sequence recorded aiming to a hallway. There are reflections,
complicated lighting, objects similar to background, and sudden illu-
mination changes.

Figure 5.6 shows some frames from the four described sequences. We
have hand-segmented the ground truth for several frames in each of these
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Figure 5.6: Samples of frames from the proposed dataset based on Kinect.

sequences. More specifically, there are four hand-segmented frames in Chair-
Box sequence, five in Wall sequence, five in Shelves and seven in Hallway
sequence. Depth sensor is calibrated so that the information can be applied
to the corresponding pixels in the RGB image.

5.3.2 Disparity-based dataset

In addition to the usage of Kinect [21] peripheral, depth information can be
obtained by means of stereo cameras. Regarding contributions that aim to
fuse the color and range information, in [66] a set of stereo sequences has
been proposed in order to evaluate the quality of the segmentation. However,
these sequences are not suitable for video surveillance applications, since
they are aimed to videoconferencing. Therefore, there are people present
in the foreground during the entire sequences, what makes these sequences
unsuitable for background subtraction algorithms, since the background is
not visible in most of the frames.

To the best of our knowledge, there are no video sequences available
in the literature that offer the required information. For that reason, we
have recorded and manually segmented some sequences which allow us to
numerically evaluate the different approaches. The goal is to show that
color information is not enough to achieve a good foreground/background
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estimation but it could be significantly improved by the utilization of the
approaches here proposed.

The dataset has been recorded by using two Philips SPC1300NC cameras
working at 30 fps. The stereo-camera rig has been calibrated to rectify the
distortion produced by the camera pair and to enable proper stereo disparity
estimation. These sequences are publically available at [144]. They are the
following:

• Suitcase. In this sequence, a person enters the scene with a suitcase
and leaves it on the floor. The main difficulty of the sequence is the
low lighting and color saturation, as well as the similar color between
the suitcase and the floor.

• Crossing. Two people walk in and out of the camera field. The dark
floor complicates the detection based on color when they get close to
the camera, while the range is less useful when they get close to the
wall.

• LCDScreen. A person walks into a lab and deposits a black box in
front of a black LCD screen. In addition, there are flickering lights in
the ceiling.

• LabDoor. A person walks in and out of the camera field, project-
ing shadows on background objects. In addition, there are occlusions
due to background objects, flickering lights in the ceiling and sudden
illumination changes.

As shown in Figure 5.7, each sequence presents important problems that
are typically challenging for background subtraction algorithms. Since the
quantitative evaluation is really important in order to compare models objec-
tively, we have hand-segmented the ground truth for several frames in each
of these sequences. More specifically, there are four hand-segmented frames
in Suitcase sequence, six in Crossing sequence, three in LCDScreen and
seven in LabDoor sequence. All sequences have been recorded with stereo
cameras to compute depth information. Cameras have been calibrated and
each pair of images has been rectified as a required stage prior to accurate
disparity computation. The ground truth has been segmented in the left
images of the corresponding frames.

5.4 Results

In this section, we analyze the differents studied fusion methods by evalu-
ating them with the proposed datasets. In order to evaluate these models,
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Figure 5.7: Samples of frames from the proposed dataset based on disparity.

we have used the same metrics proposed for the comparison of background
subtraction algorithms in previous chapter, that is, Recall, Precision and
F1 measures.

Each of the evaluations we have performed compares two of the proposed
fusion models. The tests run over the Kinect-based dataset involve the 4D-
Codebook (CB4D) and the Depth-extended Codebook (DECB). On the other
hand, based on the results obtained with this dataset, our evaluation of
fusion methods using disparity maps has been carried out on DECB and its
Late Fusion variation, DECB-LF .

5.4.1 Evaluation of algorithms using Kinect

By using the sequences described in Section 5.3.1, five different approaches
have been studied and evaluated. These approaches are the following ones:
a 4D version of MOG based on the implementation proposed by Schiller et
al. [67] (MOG4D), the original color-based Codebook (CB), the Codebook
based only on depth (CB1D), the 4D Codebook (CB4D), and the depth-
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Figure 5.8: F1 gain over standard (color-based) CB obtained from the test
ChairBox. The gain using CB1D is not displayed in this dataset because it
is very unstable and it reduces the readability of the comparisons.

extended Codebook (DECB). The tested version of MOG4D differs slightly
from the proposed by Schiller et al. [67], since we cannot use the amplitude
image provided by the ToF-camera. For that reason, the fusion of color and
range has been performed according to Gordon et al. [65], as a disjunction
of the previous results.

The experiments performed on Codebook-based approaches involve only
the segmentation stage, without morphological filtering. We have decided
to avoid any postprocessing stage to evaluate the capabilities of the algo-
rithms by themselves, although raw results can be easily improved by these
simple operators. In addition, morphological filtering can be applied after
segmentation in any moment. Nevertheless, the MOG4D approach includes
morphological filtering, as in the approach proposed by Gordon et al. [65],
in order to remove small isolated foreground points caused by noise.

Table 5.1: Segmentation evaluation for sequence ChairBox. The table shows
F1 results for the five studied approaches on four different evaluation frames,
the mean and standard deviation on the entire sequence.

ChairBox Evaluation Frame Global

Approach 278 286 328 356 Mean STD

DECB 0,937 0,928 0,876 0,914 0,914 0,027
CB4D 0,936 0,907 0,819 0,882 0,886 0,050
CB 0,921 0,845 0,784 0,837 0,847 0,057

CB1D 0,904 0,904 0,800 0,808 0,854 0,058
MOG4D 0,883 0,865 0,795 0,859 0,851 0,038
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Figure 5.9: Results obtained from the test ChairBox. MOG4D includes
a morphological opening stage, whilst Codebook-based approaches do not
perform it, producing then more noise due to isolated pixels. Most of this
noise is filtered by DECB by means of the fusion method.

Figure 5.8 and Table 5.1 show the quantitative results obtained in the
ChairBox sequence. Table 5.1 shows F1 values resultant from the five ap-
proaches on the evaluation frames, the mean and standard deviation. Figure
5.8 shows the gain on F1 obtained by the three RGB-D algorithms (MOG4D,
CB4D and DECB) over the color-based one (CB). All RGB-D approaches
get improvements against CB, obtaining higher F1 values despite the good
performance of the color-based method. This good performance explains
why the gain is moderate, since the gain is limited by 1/FCB

1 , where FCB
1 is

the F1 value obtained by the CB algorithm (for example, when FCB
1 = 0.845,

gain ≤ 1.183). In any case, the graph shows that depth-extended Codebook
obtains the best results in all tests, whilst MOG4D gets more moderated
results than the Codebook-based approaches.
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Figure 5.9 shows the segmentation produced by the five approaches.
In general, the CB4D algorithm improves over CB and CB1D by using
depth and color, but DECB reduces the amount of noise generated by both
algorithms (specially noticeable on last two frames).

The second sequence, Wall, is especially complicated for the depth-based
algorithm, due to similar depth between foreground objects and background.
This is shown in Figure 5.10, where MOG4D obtains worse results than CB
in all tests, whilst depth-extended Codebook obtains slightly worse results
than CB in one frame. This can be explained by checking Figure 5.11,
where in the first frame the CB1D approach is unable to detect the object,
thus misleading the 4D Codebook. However, despite being based on useless
data, DECB gets F1 = 0.9 (Table 5.2), showing that it is fairly robust to
difficult situations.

Table 5.2: Segmentation evaluation for sequence Wall. The table shows F1

results for the five studied approaches on five different evaluation frames,
the mean and standard deviation on the entire sequence.

Wall Evaluation Frame Global

Approach 74 93 134 168 199 Mean STD

DECB 0,900 0,966 0,912 0,957 0,952 0,938 0,029
CB4D 0,939 0,843 0,901 0,857 0,800 0,868 0,054
CB 0,942 0,850 0,910 0,851 0,664 0,843 0,108

CB1D 0,006 0,927 0,314 0,919 0,806 0,595 0,414
MOG4D 0,860 0,406 0,699 0,734 0,435 0,627 0,198

Figure 5.10: F1 gain over CB obtained from the test Wall

In addition, it gets much better results on every other frame, reaching
gain values over 40%. Last two frames in Figure 5.11 show the reasons of this
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Figure 5.11: Results obtained from the test Wall. Codebook-based ap-
proaches do not perform morphological opening.

gain, that are proficient noise reduction and a complete shadow suppression
by using depth values.

In the third sequence, Shelves, the main difficulty is related to changes
of lighting and exposure that produce many false positives on the entire
image. This can be seen in Table 5.3 with the decrease of F1 obtained by
the CB approach, as well as in Figure 5.13 with fair amount of noise on
the furniture. Depth is a more stable cue, although there are regions too
close to the sensor to be estimated as well as foreground objects too close to
the background. Figure 5.12 shows that the DECB algorithm obtains much
better results by using depth and color combined, since each different input
can overcome the weakness of the other. MOG4D gets very good results in
four frames, although it is prone to errors due to noise in frame 299. In this
graph, gain values between 10% and more than 60% are obtained by DECB
in all tests of the sequence, proving that the proposed method is much more
robust than the original one based only on color cues.

Figure 5.14 and Table 5.4 show the results for the last sequence, Hallway.
Being this sequence specially complicated due to the amount of difficulties,
F1 values for the CB algorithm are quite low, which allows for higher possible
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Table 5.3: Segmentation evaluation for sequence Shelves. The table shows
F1 results for the five studied approaches on five different evaluation frames,
the mean and standard deviation on the entire sequence.

Shelves Evaluation Frame Global

Approach 197 212 299 364 418 Mean STD

DECB 0,926 0,909 0,622 0,876 0,909 0,848 0,128
CB4D 0,855 0,681 0,365 0,819 0,837 0,711 0,205
CB 0,818 0,655 0,380 0,804 0,838 0,699 0,192

CB1D 0,897 0,942 0,595 0,863 0,876 0,835 0,137
MOG4D 0,927 0,892 0,154 0,862 0,937 0,754 0,337

Figure 5.12: F1 gain over CB obtained from the test Shelves

gain values (higher improvement), as seen in Figure 5.14. According to
this graph, both CB4D and DECB approaches offer improvement over the
original algorithm, but the latter gets much greater gain values (up to 120%
in one test). MOG4D shows good results in four of the frames, but performs
worse than the others in presence of sudden illumination changes.

Table 5.4: Segmentation evaluation for sequence Hallway. The table shows
F1 results for the five studied approaches on seven different evaluation
frames, the mean and standard deviation on the entire sequence.

Hallway Evaluation Frame Global

Approach 120 258 308 363 435 524 565 Mean STD

DECB 0,782 0,888 0,930 0,844 0,905 0,385 0,745 0,783 0,187
CB4D 0,606 0,701 0,835 0,629 0,675 0,222 0,653 0,617 0,190
CB 0,598 0,625 0,802 0,565 0,593 0,174 0,529 0,555 0,189

CB1D 0,791 0,939 0,791 0,630 0,801 0,693 0,744 0,770 0,097
MOG4D 0,424 0,875 0,875 0,744 0,732 0,128 0,221 0,571 0,311



86 Background subtraction based on color and depth cues

Figure 5.13: Results obtained from the test Shelves. Codebook-based ap-
proaches do not perform a morphological opening stage.

Figure 5.14: F1 gain over CB obtained from the test Hallway

By checking Figure 5.15, more detailed qualitative analysis can be per-
formed. In general, it is shown that DECB algorithm gets an important
noise reduction as well as almost total shadow suppression. In addition, the
presence of objects with similar color to the background is complicated for
the CB approach, but solved with the usage of depth information. This also
happens on the fifth frame, with reflections on the floor that are detected
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Figure 5.15: Results obtained from the test Hallway. Codebook-based ap-
proaches do not perform morphological opening.

correctly by the CB1D and DECB approaches. The most complicated frame
in this sequence, that is the sixth evaluation frame, includes sudden illumi-
nation changes. A directional light is turned on, producing changes in a
big region of the image. Since the CB1D approach is based only on depth
obtained by infrared sensors from Kinect, it does not suffer from this light-
ing change. For that reason, despite the CB and CB4D approaches have a
considerable amount of false positives, DECB minimizes this amount, thus
being more robust than the other methods.

Finally, Figure 5.16 shows the average F1 and gain over CB obtained by
each approach in each sequence of the entire benchmark, while error bars
show the standard deviation. According to this figure, the depth-extended
Codebook (DECB) shows the best results on every sequence, and the stan-
dard deviation associated to this approach is lower than any other, what is a
sign of its robustness. Only in one case the CB1D algorithm has lower stan-
dard deviation, because of the change of illumination in Hallway sequence,
but even in this case the depth-extended Codebook outperforms the other
algorithm.
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Figure 5.16: Average F1 obtained from the entire benchmark, including error
bars showing the standard deviation, and average F1 gain over CB (along
each benchmark sequence).

5.4.2 Evaluation of algorithms using disparity maps

After having performed the experiments with depth information provided
by the Kinect peripheral, we conclude that the DECB approach obtains
more accurate foreground masks than CB4D or the 4-channel version of
MOG (MOG4D). For that reason, in the following experiments, based on
disparity estimation, we have focused on improvements over CB and DECB,
instead of comparison against previous methods.

Seven different approaches have been studied and evaluated with the
benchmark described in Section 5.3.2. These approaches are the following
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ones: the original Codebook model [38], the Early Fusion (DECB) using
three different disparity stereo models as source of depth information, and
the model including Late Fusion (DECB-LF ) also using the three different
disparity models.

Table 5.5: Segmentation evaluation for sequence Suitcase. The table shows
F1 results for the seven studied approaches on four different evaluation
frames, the mean and standard deviation on the entire sequence.

Suitcase Evaluation Frame Global

Approach 143 171 190 265 Mean STD

CB 0,608 0,677 0,665 0,131 0,520 0,261
DECB-LF-Var 0,827 0,782 0,814 0,578 0,750 0,116
DECB-Var 0,836 0,795 0,798 0,635 0,766 0,089

DECB-LF-Phase 0,786 0,768 0,792 0,551 0,724 0,116
DECB-Phase 0,594 0,585 0,533 0,282 0,499 0,147

DECB-LF-SGBM 0,878 0,822 0,805 0,555 0,765 0,143
DECB-SGBM 0,884 0,835 0,799 0,642 0,790 0,105

Figure 5.17 and Table 5.5 show the quantitative results obtained by
each approach in the Suitcase sequence. There are four different evaluation
frames in order to test the algorithms in a more reliable manner in compar-
ison with the results from only one frame. These results show a fairly good
improvement when using range information against only color and intensity.
In this sequence the Semi-Global and Variational approaches get the best re-
sults, although DECB-LF with Phase information gets similar results. The
Late Fusion improves the average results from the DECB when using Phase
disparity in more than 0.2. The Semi-Global and Variational models ob-
tain slightly better results when used in the DECB without the Late Fusion
stage. This is due to the high accuracy of the depth information from these
models in this video sequence. For that reason, the suppression performed
during Late Fusion removes less false positives caused by noise than true
positives.

Figure 5.18 shows the foreground/background segmentation produced by
the studied approaches, as well as the original left frame, the disparity ob-
tained by each image pair and the hand-made segmentation (ground truth).
The images for Suitcase correspond with the obtained results, being Vari-
ational and Semi-Global approaches the ones with best performances. The
Phase-based model performs much better with the masks fusion method (i.e.
Late Fusion, DECB-LF ), since it suppresses most of the noise generated by
disparity.
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Figure 5.17: F1 gain over CB obtained from the test Suitcase. CB is the
original Codebook algorithm [38]; DECB-Var, DECB-Phase and DECB-
SGBM are the early fusion methods with each one of the disparity models;
DECB-LF-Var, DECB-LF-Phase and DECB-LF-SGBM are the methods
using early and late fusion combined.

Table 5.6: Segmentation evaluation for sequence Crossing. The table shows
F1 results for the seven studied approaches on six different evaluation frames,
the mean and standard deviation on the entire sequence.

Crossing Evaluation Frame Global

Approach 100 163 334 381 483 565 Mean STD

CB 0,706 0,860 0,592 0,583 0,587 0,592 0,653 0,112
DECB-LF-Var 0,824 0,900 0,731 0,664 0,816 0,810 0,791 0,082
DECB-Var 0,816 0,898 0,734 0,667 0,826 0,740 0,780 0,082

DECB-LF-Phase 0,823 0,915 0,631 0,640 0,774 0,808 0,765 0,111
DECB-Phase 0,569 0,723 0,626 0,611 0,646 0,643 0,636 0,051

DECB-LF-SGBM 0,830 0,901 0,847 0,843 0,888 0,797 0,851 0,038
DECB-SGBM 0,796 0,834 0,847 0,839 0,788 0,718 0,804 0,048

In the second sequence, Crossing, two different kinds of evaluation frames
have been selected. The first one corresponds to people walking next to the
wall, thus complicating the disparity-based detection. During the second
one, people walk next to the camera. For that reason, results in Fig. 5.19 and
Tab. 5.6 show several frames where the improvement over the color-based
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Figure 5.18: Original frames, disparity computed by each stereo algorithm,
and FG/BG masks obtained by all approaches in the Suitcase sequence.

Codebook is more moderate, although the studied approaches get better
results in every test. The only exception to this statement is the DECB with
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Figure 5.19: F1 gain over CB obtained from the test Crossing.

Phase disparity, approach that benefits significantly from the Late Fusion
post-processing stage. In this test, the approaches with Late mask fusion
(DECB-LF ) perform better than their equivalent without it. Regarding
the comparison with the color-based algorithm, the average improvement of
the usage of depth information varies between 0.11 and 0.2 (17% and 30%
respectively). Segmentation frames obtained with this test are shown in
Figure 5.20.

Table 5.7: Segmentation evaluation for sequence LCDScreen. The table
shows F1 results for the seven studied approaches on three different evalua-
tion frames, the mean and standard deviation on the entire sequence.

LCDScreen Evaluation Frame Global

Approach 303 335 435 Mean STD

CB 0,875 0,749 0,612 0,745 0,132
DECB-LF-Var 0,884 0,784 0,740 0,803 0,074
DECB-Var 0,880 0,746 0,725 0,784 0,084

DECB-LF-Phase 0,746 0,717 0,611 0,691 0,071
DECB-Phase 0,671 0,637 0,607 0,639 0,032

DECB-LF-SGBM 0,889 0,859 0,748 0,832 0,075
DECB-SGBM 0,858 0,851 0,750 0,820 0,061

Fig. 5.21 and Tab. 5.7 show the results obtained over the LCDScreen
sequence. Taking into account these results, the approaches that perform
better are the Semi-Global and Variational ones. These methods get slightly
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Figure 5.20: Original frames, disparity computed by each stereo algorithm,
and FG/BG masks obtained by all approaches in the Crossing sequence.

higher marks with the DECB-LF approach, and both obtain better results
than the color-based approach in every frame. In this test, lighting changes
due to fluorescent lights produce a loss of performance in the Phase dispar-
ity estimation (phase information is robust against illumination changes, but
the reliability threshold and corresponding density of the disparity map still
have dependencies on the illumination values). For that reason, the output
obtained by the approaches based on this depth information does not repre-
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Figure 5.21: F1 gain over CB obtained from the test LCDScreen.

sent a real improvement over the original background subtraction method.
Qualitative results obtained by the studied approaches on this sequence are
shown in Fig. 5.22.

As mentioned in Section 5.2.3, the scenario shown in the LCDScreen se-
quence includes several issues that affect the performance of disparity com-
putation algorithms based on color. Therefore, since the main problem is
the influence of the scenario over the computed disparity, this scenario would
benefit from the use of active sensors such as Kinect [21] or Time-Of-Flight
cameras.

Table 5.8: Segmentation evaluation for sequence LabDoor. The table shows
F1 results for the seven studied approaches on seven different evaluation
frames, the mean and standard deviation on the entire sequence.

LabDoor Evaluation Frame Global

Approach 157 197 216 299 792 854 1003 Mean STD

CB 0,806 0,738 0,360 0,703 0,368 0,591 0,642 0,601 0,176
DECB-LF-Var 0,792 0,880 0,411 0,762 0,465 0,643 0,763 0,674 0,176
DECB-Var 0,748 0,675 0,331 0,662 0,375 0,334 0,708 0,548 0,190

DECB-LF-Phase 0,755 0,857 0,445 0,729 0,552 0,621 0,748 0,673 0,140
DECB-Phase 0,754 0,822 0,429 0,700 0,547 0,606 0,745 0,658 0,137

DECB-LF-SGBM 0,857 0,813 0,493 0,707 0,510 0,663 0,794 0,691 0,145
DECB-SGBM 0,839 0,804 0,468 0,693 0,470 0,580 0,775 0,661 0,156
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Figure 5.22: Original frames, disparity computed by each stereo algorithm,
and FG/BG masks obtained by all approaches in the LCDScreen sequence.

The results obtained from the LabDoor test sequence are shown in Fig.
5.23 and Tab. 5.8. As seen in Tab. 5.8, the DECB-LF based on SGBM dis-
parity obtains the most accurate results, while Variational and Phase ones
get similar results, differing only slightly (in the range of 10−3). Average im-
provement of depth and color approaches over the original Codebook is more
constrained in this test, between 0.07 and 0.09 (12% and 15% respectively).
This is so thanks to acceptable performance from the color-based algorithm
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Figure 5.23: F1 gain over CB obtained from the test LabDoor.

and to the difficulty of the scenario for disparity estimation. Qualitative
results from this sequence are shown in Fig. 5.24.

As conclusion, in all the experiments we have done we see that the inclu-
sion of depth information significantly improves the foreground segmentation
process. Fig. 5.25 shows the overall results obtained by all approaches on
each sequence, averaging the F1 values from every evaluation frame, and
showing the standard deviation of these values as error bars in the plot.

In general, the Depth-Extended Codebook gets better results with the
Late Fusion post-processing stage (average improvement of 7.5% overDECB,
taking into account all disparity estimation approaches). The version with-
out mask fusion only got higher marks on the Suitcase sequence, with the
most accurate disparity estimation methods.

For faster disparity computation approaches such as the phase-based
one, the DECB-LF method obtains much better results than the other ap-
proach (average improvement of 17.46%, being able to achieve up to 30% of
improvement). This is justified by the use of morphological reconstruction
using the color-based output as marker, which enables the combined algo-
rithm to accurately remove false positives without the use of erosion filters
or the definition of minimal area size.

It must be highlighted that depth information has been computed by
visual disparity algorithms. For that reason, illumination changes and issues
that affect the codebook algorithm will affect resultant range information
as well. Nonetheless, the fusion models offer very good results in every test
sequence.
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Figure 5.24: Original frames, disparity computed by each stereo algorithm,
and FG/BG masks obtained by all approaches in the LabDoor sequence.

5.5 Conclusions

As stated in the introduction of this chapter, the problem of foreground seg-
mentation is a well-known problem but still far from being solved. Therefore,
in this chapter we have analyzed the inclusion of depth information in an
advanced background subtraction algorithm such as the Codebook proposed
by Kim et al. [38]. Having range information in addition to color and inten-
sity can improve the robustness of the algorithms used in the segmentation
stage of a video surveillance system.
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Figure 5.25: Average F1 obtained from the entire benchmark, including error
bars showing the standard deviation, and average F1 gain over CB (along
each benchmark sequence)

Depth information can be obtained by means of different computer vision
methods and range sensors. We have studied the usage of depth information
provided by both an active RGB-D sensor such as Microsoft Kinect [21] and
stereo disparity methods. On the one hand, Kinect sensor allows for high-
resolution depth maps at a lower cost than Time-of-Flight cameras. Since
depth is obtained by using infrared structured light instead of image pro-
cessing, both signals are complementary and can be used to tackle classical
issues of background subtraction algorithms.
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On the other hand, Kinect cannot be used in outdoor scenarios and has
a more constrained range than stereo camera rigs. For that reason, we have
studied the fusion of RGB and depth information provided by disparity esti-
mation algorithms. The only preliminary stage to be done is to calibrate and
rectify the two camera views. This is a rather standard method that needs
to be done only when installing the system. Three different stereo models
for disparity computation have been studied: Variational [126], Phase [143]
and Semi-global block matching [139].

We propose an adaptation of the Codebook algorithm [38] to use depth as
well as color. The Codebook algorithm is an advanced multimodal method
which offers good trade-off between accuracy and efficiency, which makes it
a very appropriate approach for implementation on embedded systems and
smart cameras. Furthermore, it is robust to dynamic background and grad-
ual scene changes. The use of depth enables proficient shadow suppression
as well as reduction of noise due to sudden illumination changes. In addi-
tion, it minimizes the impact of camouflage (foreground objects with color
similar to background).

We have studied three models that differ in the integration method. The
first one (CB4D) simply considers depth as a fourth channel of the back-
ground model. The second one, named Depth-Extended Codebook (DECB),
considers the range information an additional channel of the model and
biases the thresholds on color-based detection depending on depth informa-
tion. Results show a considerable improvement on accuracy and robustness
when using depth and color combined, since the proposed approach outper-
forms the other methods in almost every test performed by using Kinect
[144].

However, this technique has been proved to highly depend on the quality
of the depth information. For that reason, we have developed a third ap-
proach, Late Fusion (DECB-LF ), which consists of a post-processing stage
which fuses the resultant FG/BG masks from the color-based Codebook and
the Depth-Extended Codebook. We propose a mask fusion method based on
morphological reconstruction of connected components. This reconstruc-
tion uses the color mask as a marker to suppress false foreground regions
due to disparity noise, thus being specially suited for faster and less accurate
disparity estimation algorithms.

Qualitative and quantitative analysis have been performed by using two
complete datasets recorded with Kinect and stereo cameras, which are made
publically available at [144].

In the dataset recorded by using Kinect, results show a considerable
improvement on accuracy and robustness when using depth and color com-
bined, since the proposed approach outperforms the other methods in almost
every test.
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When using disparity methods, the inclusion of depth cues represents an
average improvement of around 10.8% with respect to the standard color-
based Codebook, whilst the average improvement when using our Late Fu-
sion scheme is approximately 19%. According to the experimental results,
the disparity quality (among the three methods evaluated) can represent an
impact of 10% in the final segmentation accuracy.

Regarding computational costs, the color-based algorithm has been pre-
viously implemented in real-time on FPGA, as seen in Section 4.2, being the
depth-extended Codebook suitable for embedded systems and smart cameras.

The work performed in this chapter focuses on the second objective pre-
sented in Section 2.2, the integration of depth estimations in background
subtraction models and quality evaluation.



Chapter 6

Multi-camera tracking on
embedded devices

Whilst the previous work has been focused on background subtraction as
a key task for video analytics systems, we are also interested on further
processing stages of these systems, such as object tracking.

As seen in Chapter 3, object tracking is an interesting application of
computer vision that has caused much interest in recent years. There are
many works in the literature regarding object representation and selection
of features to track [71, 72, 73, 74, 75], object detection and segmentation
[76, 77, 78], and tracking of objects of interest frame to frame [82, 83, 14,
84, 85].

With the improvements in computer technology, real-time techniques are
becoming more feasible in terms of computing power and time constraints.
These advances have enabled researchers to focus on multi-camera systems.
This kind of systems has many advantages, such as occlusion solving with
overlapping views or object tracking between non-overlapping views. This
significantly helps to reduce the impact of problems that affect mono-camera
systems, such as false alarm generation produced by problematic object
views or illumination changes. Multi-camera systems can add robustness to
the tracking mechanisms providing a more stable solutions [95, 13, 15, 88,
92]. However, the increasing number of cameras associated to these systems
includes some issues related to the physical setup of the surveillance network,
as well as to the computing power required to process multiple video streams.

Due to these difficulties of centralized processing, research on distributed
networks, where part of the processing is made in each node, has aroused
great interest. This kind of solution can reduce the amount of computation
to be made by the central servers. In addition, the network requires less
bandwidth since not all information has to be sent from sensors to servers.

101
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The information that is shared and transferred between nodes is of higher
level of abstraction than raw images. This helps to optimize the communica-
tion bandwidth that otherwise would become unaffordable when the number
of cameras increases. The idea is to keep the first low-level pixel-wise pro-
cessing stages on the nodes so that traffic can be minimized. At the same
time, if complex decision-making processes are required they can be done
on a centralized way so that simple devices can be used at each node. In
order to enable decentralized processing, much research has been done on
embedded systems and smart cameras.

Traditionally, work on smart cameras has been oriented to dedicated
computing architectures (specific purpose hardware) such as FPGAs (Field
Programmable Gate Arrays) and DSPs (Digital Signal Processors), as men-
tioned in Chapter 4. In this context, we focus on the use of embedded
devices such as smartphones as smart cameras for distributed and decen-
tralized camera networks. Smartphones have several advantages, such as
having reasonably good cameras, fast-evolving powerful processors despite
being mobile systems, different types of connectivity and sensors. In addi-
tion, they are much more common in the market (in comparison with DSPs
and FPGAs), what leads to low prices due to high sales, active communities
and availability of development tools that also allow researchers to easily
migrate the models among different types of smartphones. We take advan-
tage of these properties to propose a distributed video surveillance network
based on smartphones.

The rest of this chapter is organized as follows. We analyze, in Section
6.1, the related work in the literature. In Section 6.2, we describe the ar-
chitecture of our system, considering both hardware structure and software
implementation. Section 6.3 shows an introduction to single-camera track-
ing and the explanation of the single-camera tracker used in each camera.
We explain, in Section 6.5, the information sharing between devices, and
the approach to multi-camera setup. In Section 6.6, experimental results
obtained with the architecture are shown and analyzed. Finally, conclusions
and discussion are presented in Section 6.7.

6.1 Related work

Object tracking is a research field that has aroused much interest in recent
years. For that reason, there are many works in the literature regarding
tracking, selection of the object of interest and usage of multi-camera net-
works. These works have already been revised in Section 3.2. In this section,
we revise the literature related to our contribution, focusing on the selection
of the object of interest, multi-camera tracking and smart camera networks.
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6.1.1 Selection of the object of interest

The selection of the object of interest to be tracked is the first step of any
tracking application. This is usually performed by manually selecting the
target, using blob-based motion detectors or detecting objects by means
of supervised classifiers, among many others (as seen in Section 3.2.1). We
propose the use of human visual attention to automatically capture the most
salient object in the scene [145]. Visual saliency is computed in a bottom-up
way and encodes the relevance of each pixel to visual attention.

The visual information is processed along two parallel visual paths after
entering the primary visual cortex: the “where pathway” or dorsal stream
that directs the gaze towards the most interesting objects in the scene, and
the “what pathway” or ventral stream that participates in object recognition
[146]. Attention is part of the “where pathway” and selects the most rele-
vant areas, according to their inherent relevance (bottom-up selection) and
the task that is being performed (top-down modulation). Its main objective
is the optimization of the bandwidth by efficiently reducing the informa-
tion that has to be processed by the visual system. Moreover, the selection
can also be used to increase the robustness of the final multi-tracking sys-
tem, helping to recover the track after a sudden large movement or a total
occlusion.

Itti and Koch [145] considered a bottom-up model with spatial competi-
tion for saliency maps. Based on center-surround local contrast of intensity,
orientation, and color differences at different spatial resolutions, it computes
the saliency map. Although there exist several approaches based for exam-
ple on edges [147], image torque [148], or segments in the polar coordinate
system [149], we use Itti’s approach because it is the metric against which
most attention models are compared [150] due to its accuracy predicting
human gazing.

Additionally, the bottom-up selection of the most relevant features may
be modulated by a conscious top-down task-dependent mechanism [146].
In our case, this top-down modulation is deployed using a skin detector
operator based on TSL-colored (Tint, Saturation, and Luminance) Gaus-
sian model [151]. This feature was selected due to its feasibility for video-
surveillance tasks for which people actions are usually the target, such as
for example wandering, bag dropping, or loitering. Nevertheless, other fea-
tures can be used to drive this task-dependent mechanism if they are rel-
evant for any specific surveillance application. The use of this top-down
task-dependent mechanism allows the system to be easily reconfigurable or
adapted to diverse surveillance applications.



104 Multi-camera tracking on embedded devices

6.1.2 Multi-camera tracking

There are several works in the literature regarding multi-camera tracking
with calibrated cameras for overlapping views. Kim et al. [13] propose
multi-camera person tracking assuming planar homography constraint and
that the homography between the image plane and floor is known. Models
of appearance are defined assuming people are standing, and tracking is per-
formed with particle filtering. In [15], objects are tracked in the reference
view and results are propagated to other views by means of the image-to-
floor homographies. Tracking is performed based only on blob detection,
without building color models. In [95], people tracking is done in a top-view
perspective after fusion of foreground mask from every view in the floor
plane. Multiple homography layers are computed at different heights. In
[14], epipolar geometry between cameras is used in order to integrate track-
ing information when the track is lost in one camera. These works require
a full Tsai calibration [98] or several homographies computed previously,
whilst our approach aims for uncalibrated cameras.

Regarding calibration-free camera networks, [87] and [102] use multi-
camera tracking in order to perform camera hand-over based on transfer
regions. People are tracked in one camera at a time, and the histogram in-
formation is sent to other camera when the tracked object enters the defined
transfer region. In both works, Mean-Shift tracking [72, 76] based on hue
color histograms is performed.

6.1.3 Smart camera networks

There are many works in the literature about video analytics on embed-
ded systems as FPGAs and DSPs, as has been mentioned in Chapters 3
and 4. The use of FPGAs and DSPs allows for the implementation and
optimization of computer vision techniques on low power devices, and pe-
ripherals can be used in order to exchange information with servers or other
embedded systems. However, reconfigurable hardware systems are difficult
to develop, requiring deep knowledge about architecture. Because of this,
time to market for this kind of platforms is long, usually not comparable
with other software solutions. Furthermore, migration of this specific pur-
pose hardware to other devices or platforms can be troublesome. This has
motivated our focus on smartphones as development platforms.

About distributed and decentralized camera networks, [16] presents a
survey covering calibration, synchronization and fusion of information from
different cameras, as well as a comparison between decentralized trackers.
In [100], four kinds of two-node architectures to perform particle filtering are
analyzed regarding bandwidth utilization and energy consumption. These
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architectures differ in the information sent across the network, and the steps
of the particle filtering (PF) algorithm executed in each node.

Regarding smart camera networks, Bolliger et al. [101] propose a self-
organizing network of mobile phones based on Java J2ME which performs
communication between devices through Bluetooth connections. Background
differencing is used in order to detect objects entering or leaving the field
of view. Experiments were performed on a two-node setup. In [102], a
hardware architecture on DSPs to track people in a two-camera network is
proposed. Tracking is combined with predefined transfer regions to perform
handover between cameras. Wittke et al. [103] present an architecture us-
ing MIDs (Mobile Internet Devices) that detects people using the Android
built-in face detector, and obtains the optical flow field in order to perform
frame synchronization.

Table 6.1: Summary of related work on smart camera networks.

Quaritsch (2007)[102] Bolliger (2007)[101] Wittke (2008)[103]

Platform DSP J2ME Android
Camera number 2 2 3
Network Ethernet Bluetooth Wi-Fi/P2P
Task Tracking Background subtraction Optical flow
Objective Handover Synchronize Synchronize
Resolution 352x288 160x120 352x288
Frame rate 20 12.8 10

Table 6.1 summarizes the main characteristics of the different architec-
tures proposed in the literature for distributed and decentralized smart cam-
era networks. Despite a direct comparison between them would not be com-
pletely fair, since they operate on different platforms, we consider that it is
a relevant starting point. The architecture proposed in [102] offers the best
frame rate with greater or equal resolution in comparison with the other
approaches. However, this approach is an implementation on specific pur-
pose hardware, whilst [101] and [103] focus on commercial mobile phones.
These two architectures can be more easily compared, since both aim to
synchronize cameras based on visual cues and operate on more related plat-
forms. [103] outperforms [101] by using Android devices instead of Java 2
MicroEdition (J2ME). Nevertheless, the latter uses commercial Nokia 6630
mobile phones (released in November 2004), while the former uses small
computers with Android OS [152] installed.

In this chapter, we describe an architecture that performs multi-camera
color-based tracking on a fully distributed and decentralized camera network
with overlapping views. Tracked object trajectories are used in order to
obtain the homography between cameras [90]. With this basic calibration,
single-camera tracking is guided by means of the information from other
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cameras, allowing us to improve the tracker, easily recovering from lost
tracks whilst solving occlusions.

6.2 Smart camera platform

Smart cameras are key components in video analytics systems on distributed
an decentralized networks. In this type of network, each node must not only
capture images but also make some kind of image processing independently
of the rest of the network. With hybrid networks, where there are servers
in addition to smart cameras, the processing made in the cameras allows
for the reduction of the information that the servers need to analyze. The
tasks that can be performed in the nodes include motion detection, object
recognition and tracking.

In order to be suitable for this work, smart cameras require sufficient
computing power for image analysis, as well as the presence of development
tools and libraries for video and image processing. Furthermore, since our
aim is focused on camera networks, connectivity capabilities are an impor-
tant requirement.

In this section, we describe the hardware architecture in which our ap-
proach has been developed and tested. We also explain the software archi-
tecture and give implementation details.

6.2.1 Hardware architecture

The hardware platform has to provide the computer power required to per-
form video analytics tasks, as well as to enable communications between
different devices.

Our approach is oriented to commercial smartphones with Android OS
[152]. The research and implementation of this work has been done using
high-end devices such as Samsung Galaxy S II and Samsung Galaxy Tab
10.1. The key components of the architecture of these devices, from the point
of view of smart cameras, are the sensors, the processor and the connectivity
unit.

The core of the sensing unit of the smartphone is an 8-megapixel back-
illuminated sensor that can record videos in full high-definition 1080p at
30 frames per second. Nevertheless, the resolution of the images has been
reduced in order to improve the throughput, as we mention in Section 6.6.
In addition to the camera sensor, the hardware offers different categories of
sensors [22]:
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• Motion sensors. These sensors measure acceleration and rotational
forces of the devices along three axes. This category includes ac-
celerometer, gravity sensor, gyroscope and rotational vector sensors.

• Environmental sensors, which measure several parameters such as tem-
perature, illumination and humidity.

• Position sensors. These sensors derive the physical position of the
device from the earth’s magnetic field in combination with the ac-
celerometer and gyroscope.

The Galaxy S II includes a 1.2 GHz dual core ARM Cortex-A9 processor
that uses Samsung’s own Exynos SoC (System on a chip). This SoC also
includes an ARM Mali-400 MP GPU. In addition to the processor, the hard-
ware has 1 GB of dedicated RAM. The Samsung Galaxy Tab 10.1 includes
a 1.0 GHz dual core ARM Cortex-A9 processor with Nvidia Tegra 2 chipset
and 1GB of RAM.

The connectivity unit integrates 802.11n Wi-Fi and Bluetooth 3.0, be-
tween others kinds of communication protocols. The communication chip
also supports Wi-Fi Direct that communicates directly with other device
without having to interact with an access point. However, in order to avoid
aiming to such a specific variety of commercial devices (for the sake of porta-
bility), our architecture works using only Wi-Fi and Bluetooth.

6.2.2 Software architecture

The software architecture is supported by Android OS [152] for all the hard-
ware architecture components: sensing, image processing and communica-
tion. Android is a freely downloadable open source software stack that
includes an operating system specially suited for ARM architecture, middle-
ware and key applications based on Linux and a Java API as programming
interface [103].

Figure 6.1 [152] shows a complete scheme of the architecture of Android
system. Android is built on top of a Linux kernel, which acts as a hardware
abstraction layer. This layer contains the drivers for all key hardware com-
ponents, such as the display, the camera, Wi-Fi and Bluetooth, and power
management and memory access.

On the next abstraction level, Android provides a set of C/C++ li-
braries used by various components of the Android system, as well as the
Android Runtime. These libraries are available not only to internal compo-
nents of Android, but also to developers through the Android Application
Framework. From the many different libraries provided by the system, our
architecture focuses on Surface Manager, Media Framework, OpenGL and
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Figure 6.1: Scheme of Android Architecture.

libc. Surface Manager enables access to the display subsystem and allows
for the management of graphics; Media Framework consists of libraries for
audio and video playback and recording, as well as support for static image
files; OpenGL is used for visualization issues; finally, libc is the implementa-
tion of standard C system library for embedded Linux-based devices, being
thus the basis for native code development. Android Runtime runs over
the previous described libraries, offering additional core libraries that pro-
vide most on the funcionality available in the Java programming language.
These core libraries support Android’s own Java Virtual Machine, called
Dalvik Virtual Machine, which is specifically designed for mobile devices re-
garding embedded environment constraints such as limited battery, memory
and CPU power.

The Android Application Framework layer offers full access to the APIs
provided by the core libraries, while allowing developers to access additional
non-code resources such as security permissions associated to the applica-
tion, graphics and layout files, or data from other applications.

Additionally to the possibilities offered by the Android platform, our
architecture also uses the recent OpenCV port for Android [17] for image
processing and computer vision methods. The OpenCV port works over
Android NDK (Native Development Kit), since it is developed in C/C++,
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thus being Android NDK more suitable for OpenCV than the Dalvik Vir-
tual Machine over which Android SDK (Software Development Kit) works.
However, it is not advisable to implement an entire Android application with
NDK due to features present in the SDK. For that reason, Java wrappers
are implemented in OpenCV to call functions of the NDK port through JNI
(Java Native Interface). JNI allows for communication between the applica-
tion running over the Virtual Machine and the code developed using native
code.

Fig. 6.2 shows a scheme of our architecture. This scheme includes the
components provided by Android and the native and managed versions of
OpenCV, as well as the different modules of our implementation. Some
modules are implemented directly over the Dalvik Virtual Machine in or-
der to benefit from its features. These modules are: the Graphical User
Interface (GUI) that allows the user to interact with the devices; the Net-
working module, which is responsible of the connection between devices in
the network and the exchange of information between them; the Homog-
raphy Computation module obtains the homography between two cameras
from the information given by single-camera trackers. On the other hand,
the Attention Module, the Histogram Manager and the CAMSHIFT Tracker
run over the NDK in order to improve the efficiency of the application by
reducing unnecessary JNI function calls.

6.3 Single-camera tracking: CAMSHIFT

Visual tracking involves the detection and extraction of objects from video
streams, and tracking them over time in order to form trajectories. The
main requirements for a tracking algorithm are robutsness and stability,
while keeping good throughput in terms of frames per second (fps).

There are many different approaches in the literature to perform object
tracking. Between the most widely used, we can find tracking algorithms
based on features and color-based ones. Probably the best known feature
tracker is KLT [72] which is based on tracking point features, such as corners,
using a correlation measure. Regarding color-based trackers, the mean-shift
algoritm [76] uses color distributions in order to track objects.

In this work, we use the Continuously Adaptive Mean Shift algorithm
(CAMSHIFT), presented by Bradski [153], which is a generalization of mean-
shift [76]. It combines the basic mean-shift algorithm with an adaptive
region-sizing step. As well as mean-shift, CAMSHIFT operates on a color
probability distribution image obtained from histogram back-projection.
The model of the tracked object is a histogram of Hue from HSV color
model.



110 Multi-camera tracking on embedded devices

Figure 6.2: Architecture of the MultiCam framework, which makes use of
the OpenCV port for Android. We have implemented the native modules
for attention, histogram management and CAMSHIFT tracking as well as
the modules to share information through the network and to perform cali-
bration by means of homography.

Figure 6.3 summarizes the algorithm for CAMSHIFT tracker. For each
video frame, the raw image is converted to a color probability distribution
image via a color histogram model of the color being tracked. The center of
the color object is found via mean-shift, and the size is adjusted according
to the area under the search window. The 2D orientation is then computed
using second moments. Finally, the current size and location of the tracked
object are reported and used to set the search window in the next video
image.

We have considered appropriate the use of this tracker in our architecture
due to its low computing requirements in comparison with more advanced
trackers. Furthermore, CAMSHIFT deals fairly well with image problems
such as irregular object motion due to perspective, image noise, distractors
and partial occlusion [153].

Figure 6.4 shows an example of use of CAMSHIFT tracker. This example
consists of non-consecutive video frames in which the size and rotation of
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Figure 6.3: Block diagram of CAMSHIFT tracker.

the tracked object are adjusted by means of the probability distribution and
second moments. Calculation of 2D rotation is explained in more detail in
Section 6.4.

6.4 Tracking initialization by an attention module

As mentioned in Section 6.1, the object of interest is selected according
to Itti’s saliency model [145]. The main interest of this automatic selec-
tion resides in the flexibility and power that it confers to the multi-camera
tracking system. On the one hand, the bio-inspired selection of the object
is performed without a previous segmentation, mimicking the human visual
system to enhance the most significant cues. On the other hand, this flexible
approach differs from the traditional ones which need the object of interest
main features. In our case, the attentional module can be easily modulated
through a new top-down mechanism. In our application, the skin detector
modulates the response to enhance people detection. Nevertheless, the ad-
dition of for example, a simple motion detector may modulate the system
to detect any animated intruder in a video surveillance system. Thus, the a
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Figure 6.4: Example of use of CAMSHIFT. Object size and 2D rotation are
adjusted for every new frame.

priori knowledge about the object of interest converts this module, and for
extension the complete tracking, in a very powerful tool.

The block diagram in Fig. 6.5 illustrates the main stages of our attention
module that integrates the bottom-up inherent stream and the top-down
task-dependent modulation.

Regarding the bottom-up saliency model, the initial assumption is that
visual information is centralized in a topographical map that represents the
relevance of the different regions in the scene. The saliency map computation
is summarized as follows:

1. Compute the input image pyramid for different spatial resolutions.

2. Extract the bottom-up features: color differences (red-green and blue-
yellow), intensity, orientation.

3. Compute the center-surround subtraction for different spatial scales
within the same feature (local contrast).

4. Calculate the weighted summation of the previous maps into a map
per each feature (“conspicuity maps”).

5. Combine the “conspicuity maps” and the top-down modulation maps
into a unique saliency map.
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Figure 6.5: Attention module block diagram. It shows the main stages of the
bottom-up saliency model and the top-down modulation that is deployed in
our case using a skin detector.

Regarding bottom-up feature extraction, Itti’s model [145] focuses on
three different sets of feature maps. The first set is concerned with in-
tensity contrast, which is detected in dark centers on bright surrounds or
bright centers on dark surrounds. The second set is constructed for color
channels, enhancing spatial and chromatic opponency, such as red/green
and blue/yellow. The third set of feature maps consists of local orientation
information between the center and surround scales.

According to the original [146] and to the modifications performed in
[154], the first step consists in sub-sampling the input image I into a Gaus-
sian pyramid of factor two (with 6 levels) in the same way that [133]. As-
suming an RGB-color input image, we firstly extract the color differences
for all the scale resolutions: red-green and blue-yellow (6.1).

MRG =
r − g

max(r, g, b)

MBY =
b−min(r, g)

max(r, g, b)
(6.1)

Gabor filtersGθ(x) oriented for θ = {0◦, 45◦, 90◦, 135◦} are used for the
computations of the local orientation maps (see (6.2)). In (6.2), x = (x, y)T

represents the pixel, w0 the peak frequency, σ the standard deviation, and
• stands for the convolution. ρθ and φθ are the amplitude and the phase
components of the complex response, and Cθ and Sθ the real and imaginary
responses.
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Gθ(x) = e
x2+y2

2δ2 ejw0(xcosθ+ysinθ)

Qθ(x) = (I •Gθ)(x) = ρθ(x)e
jφθ(x) = Cθ(x) + jSθ(x) (6.2)

The orientation maps Mθ are computed as the amplitude response for
the different orientations. The intensity map MI is calculated as the square
root of the average of the amplitude response (as defined in (6.3)).

Mθ = C2
θ (x) + S2

θ (x)

MI =

√

∑

N Mθ

N
(6.3)

After the feature extraction, the model performs the center-surround
subtraction ⊖ between a center c and a surround s scale levels for couples
of maps of the same feature Mf , as shown in (6.4). Next, the across-scale

combination (⊕j
i ) sums the maps for the different spatial resolutions into a

single map Ff with the resolution of the third scale. Furthermore, we are
using a normalization operator N that simulates local competition. Between
the proposals in [155], we have selected the iterative localized interaction,
that convolves iteratively the feature maps with a difference of Gaussians.
After the normalization, it obtains the “conspicuity maps” for each feature
map CF as in (6.5).

Ff = N
(

⊕4
c=2 ⊕c+4

s=c+3 (N(|Mf (c)⊖Mf (s)|))
)

(6.4)

CI = FI

CC = N





∑

C∈{RG, BY }

FC



 (6.5)

CO = N





∑

O∈{0, 45, 90, 135}

FO





Finally, the method generates the bottom-up saliency map S as shown
in (6.6). After the generation of the saliency map, its maximum peak would
correspond to the location to be attended.

S =
∑

F∈{I,C,O}

CF (6.6)
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Regarding the top-down modulation, the skin operator computes a map
of skin likelihood. The implementation is based on a Gaussian chrominance
distribution model [151]. Firstly, the original RGB input images are con-
verted to the TSL (Tint, Saturation, and Luminance) color space. In the
mentioned work, the normalized TSL-color image yields the best fit to the
model. The normalized TSL color space is defined from the RGB as in (6.7)

r =
R

R+G+B

r′ = (r − 1/3)

S =
√

9/5(r′2 + g′2)

g =
G

R+G+B

g′ = (g − 1/3)

L = 0.2999R+ 0.587G+ 0.114B

T =







arctan(r′/g′)/(2π) + 1/4 if g′ > 0
arctan(r′/g′)/(2π) + 3/4 if g′ < 0
0 if g′ = 0

(6.7)

The skin chrominance model assumes that the skin distribution may be
modeled by an elliptical Gaussian joint probability density function that is
defined as in (6.8)

P

[

x(i, j)

Cs

]

=
1

2π
√

|Σs|
e

λ2s(i,j)

2 (6.8)

where the vector x(i, j) stores the T and S values of the pixel (i, j), Cs

represents the skin class, and Σs is the covariance matrix for TS skin value.
λs is the Mahalanobis distance as defined in (6.9)

λ2
s(i, j) = (x(i, j)− µs)

TΣ−1
s (x(i, j)− µs) (6.9)

where µs is the mean vector for the TS skin chrominance. Both, µs and
Σs are estimated for the TS values using a set of images belonging to the
IBTD database available at [156].

6.4.1 Automatic object segmentation

The proposed Attention Module that integrates the bottom-up saliency and
the top-down modulation mechanism generates a saliency map. Whilst tak-
ing the most salient pixel of that map and setting a fixed area region around
it would be straightforward, this approach is not suitable for systems where
the objects of interests may differ in size or distance to the camera. For
that reason, we have performed an adaptation stage obtained from the
CAMSHIFT algorithm.
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Figure 6.6: Example of usage of the Attention Module. Attention can be
focused on different kinds of characteristics, such as color, texture or con-
trast.

Figure 6.7: Example of usage of the skin detector included in our Attention
Module.

The goal is to infer information about position, size and orientation of the
object detected by means of the Attention model. The adaptation method
we use was presented by Freeman et al. [157], and uses image moments to
calculate an equivalent rectangle for the information presented in the current
image.

According to [157], if I(x, y) is the image intensity at position (x, y),
then the image moments, up to second order, are computed as in (6.10):
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M00 =
∑

x

∑

y

I(x, y)

M10 =
∑

x

∑

y

xI(x, y)

M20 =
∑

x

∑

y

x2I(x, y)

M11 =
∑

x

∑

y

xyI(x, y)

M01 =
∑

x

∑

y

yI(x, y) (6.10)

M02 =
∑

x

∑

y

y2I(x, y)

The method consists of finding the position (xc, yc), orientation θ and
dimensions l1 and l2 of an equivalent rectangle which has the same moments
as those measured in the region of interest. The position (xc, yc) is obtained
as follows:

xc =
M10

M00
yc =

M01

M00
(6.11)

The intermediate variables a, b and c are defined as:

a =
M20

M00
− x2c

b = 2

(

M11

M00
− xcyc

)

(6.12)

c =
M02

M00
− y2c

The orientation θ is computed as follows:

θ =
arctan(b, (a− c))

2
(6.13)

and the dimensions of the rectangle are

l1 =

√

(a+ c) +
√

b2 + (a− c)2

2

l2 =

√

(a+ c)−
√

b2 + (a− c)2

2
(6.14)

The extracted parameters are independent of the overall image intensity.
Therefore, this method is suitable for both attention and skin detection
algorithms, despite they give results with different ranges of saliency.

Moments are obtained from a region of interest of the saliency map. For
that reason, in order to use this method we set an initial window around the
most salient pixel with dimensions 10% the ones of the image. The adapta-
tion performed by this stage allows the algorithm to select an appropriate
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Figure 6.8: Adaptation stage applied to the skin detector included in our
Attention Module.

size and orientation according to the saliency map. Fig. 6.8 shows the result
of applying this method on a saliency map obtained by the skin detection
module. The area selected by means of the described method is used to
compute the histogram for the CAMSHIFT tracker.

6.5 Multi-camera model

In this section, we explain the multi-camera model used in our approach.
We start by explaining briefly what projective transformations or homogra-
phies are. Later, the importance of multi-camera setups and communication
between devices is highlighted. Furthermore, we describe the sharing of in-
formation through the network and the calibration performed by means
of this information. Finally, we explain the incorporation of information
exchanged across the network and its usage to improve the single-camera
tracker.

6.5.1 Projective transformations: homography

A projective transformation or homography is a linear transformation on
homogeneous 3-vectors represented by a non-singular 3× 3 matrix [123]:





x′1
x′2
x′3



 =





h11 h12 h13
h21 h22 h23
h31 h32 h33









x1
x2
x3



 (6.15)

or more briefly, x′ = Hx, where x = (x1, x2, x3)
T is a point on the

image plane when the camera is at position C and x′ = (x′1, x
′
2, x

′
3) the
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corresponding point of x when viewed from C ′. A scheme of this relation is
shown in Figure 6.9.

Figure 6.9: Two images of the same planar object are related by a linear
transformation in homogeneous coordinates called projective transformation
or homography

Homographies have been widely used as a mean to locate objects in
multi-camera setups, as seen in Section 6.1. The idea relies on having the
homographies of the ground plane or planes parallel to it between pairs of
cameras, so that successful tracks of an object in a camera view can be
propagated to other views.

The problem of estimation of a 2D homography is defined as follows
[123]: given a set of points xi in P

2 and a corresponding set of points x′i
likewise in P

2, compute the projective transformation that takes each xi to
x′i.

We consider a set of point correspondences xi ↔ x′i between two images.
Our problem is to compute a 3 × 3 matrix H such that Hxi = x′i for each
i. Since the matrix H contains 9 entries but is defined up to scale, the total
number of degrees of freedom is 8. On the other hand, each correspondence
between points specifies two degrees of freedom, since both xi and x′i are
homogeneous 3-vectors. As a consequence, in order to estimate H at least
four point correspondences are required. If more than four correspondences
are given, instead of having an exact solution, the homography is estimated
by minimizing some cost function. The estimation of 2D homographies is
explained with more detail in [123].
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6.5.2 Communication network

Exchanging information between cameras is important in order to increase
the robustness of the tracking. Such information exchange can be used for
many applications in different forms. For instance, multiple camera setups
can be used for obtaining different views of the same object and determine
which view is the best one. In addition, in a scenario with overlapping
views, an object can be tracked by all cameras at the same time, refining
the tracker information and allowing the network to handle occlusions.

In our architecture, we consider a network architecture where nearby
phones form an ad-hoc network using short range communication such as
Bluetooth. Communication of this ad-hoc network with other networks or
central servers can be performed through a Wi-Fi connection. The usage
of Bluetooth connections allows us to deploy the device network in places
without access to a Wi-Fi network. In addition, devices can be paired di-
rectly, instead of requiring knowledge about the IP addresses associated to
each smartphone.

As the bandwidth of wireless communication among devices is rather
constrained, collaboration in our framework is based on distributed events
instead of exchanging raw image streams. The information exchanged be-
tween devices will be described in Section 6.5.3.

Regarding the communication network implementation, device discovery
is performed by using Bluetooth API, requiring this process at least 15
seconds to complete. For that reason, the use of this function has been
reduced to on-demand operation. After that, the peer-to-peer connection
remains established, allowing for full-duplex communication.

Unfortunately, the Bluetooth API JSR-82 [158] has the fundamental lim-
itation that only a single Bluetooth connection can be open at a time. For
that reason, broadcasting to a network or simply exchanging information
between more than two devices requires either the use of Wi-Fi connections
or closing Bluetooth connections before opening new ones. In our architec-
ture, we plan to make the extension by using Wi-Fi in order to perform UDP
broadcasting and use TCP for peer-to-peer connections as future work.

6.5.3 Information exchange

As mentioned in Section 6.5.2, the sharing of information in a smart camera
network is important to increase the tracking robustness. In our archi-
tecture, cameras are able to exchange many types of information, from raw
image streams to keypoints or descriptors. Nevertheless, in order to perform
multi-camera tracking, the information that is sent through the network is
the following:
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• Histogram: the detection of the tracked object is performed by one
device of the network, which extracts the Hue histogram and sends
the histogram bins to the other devices. Tracking in the other devices
starts automatically when the histogram is received.

• Trajectories: every camera computes CAMSHIFT obtaining the track
window (center, size and angle). This information is thus sent to the
other device.

• Homography: parameters for the 3x3 view-to-view homography are
exchanged between cameras when the homography is recomputed.

In the current state of our approach, we have implemented a very simple
form of exchange of information, based on event distribution. When a node
generates an event, this event is broadcast to the other devices using the open
Bluetooth connections. Each other device stores the information received as
corresponding to the most recent state.

Histogram information, composed by the Hue histogram bins obtained
from the object to track, is sent to the other devices right after its compu-
tation. In our experiments, this information consists of 16 bins of 1-channel
Hue values, requiring 72 bytes to store and send (64 of values plus 8 of the
header information). However, this information is sent only once during the
tracking process, being initiated by user interaction. The other devices start
the tracking automatically after the reception of the histogram.

Regarding trajectory information, the exchange is continuous. During
the tracking process, if the current device is connected to others, data about
tracked object is sent as soon as they are available. Thus, this exchange of
information is performed as many times per second as the throughput of the
tracking algorithm. Since the requirements on synchronization accuracy in
our architecture are not very strong, we assume that the latest information
received is paired with the current local information at a given time, being
the inaccuracy more relevant when the frame rate is lower. The trajectory
information for every state of the tracking process consists of center, size
and angle, being then 4 integers and 1 float.

Homography information consists of 9 parameters, which compose the
3x3 homography matrix H. Homography is computed from at least four
plane-to-plane correspondences. This process is explained in more detail
in Section 6.5.4. The homography matrix between two image views has
to be shared every time it is recomputed, that is, when a new point in
correspondence is selected, being thus four or more of them.
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6.5.4 Camera calibration

Our approach focuses on cameras with overlapping views. In order to use
information from the cameras to refine the single-camera tracking, cameras
have to be aware of each other and to recognize where and at what abstrac-
tion level the information is fused.

Multicamera fusion thus requires at least basic calibration, although full
Tsai calibration provides more information. While it would be possible to
perform calibration by placing each camera in a predefined location, this
is not a practical solution. The interest for our architecture relies on an
automated way to calibrate the camera network. In general, calibration
methods are based either on visual evidence, such as markers in overlapping
fields of view, or based o motion of objects.

Our architecture calibrates a pair of smart cameras by computing the
image-to-image homography. Automatic homography computation could be
done from feature matching performed by using descriptors such as SIFT [73]
or SURF [74]. However, in order to obtain valid correspondences, we require
matched features to be coplanar, being non-coplanar features outliers for
the homography computation algorithm. In indoor scenarios, for instance,
many features can be detected on walls or pieces of furniture, which makes
homography computation a difficult task due to the high number of outliers.

For that reason, we have decided to compute the homography using
object tracks in a single plane. In video surveillance scenarios, most objects
lie on or near a single ground plane [90]. Thus, this paper assumes tracked
objects’ centroids are roughly coplanar. Under this assumption, the position
of an object that is visible in two different camera views a and b is related
by a 3x3 homography Hab.

Hab · pa(t) = pb(t) (6.16)

where pa(t) = (x, y, 1) is the location of the object in camera a in ho-
mogeneous coordinates at time t, pb(t) the location of the same object in
camera b, and Hab the homography.

This approach of plane-to-plane homography computation requires that
the objects involved in the calibration process are correctly tracked. If the
tracking is not correct the centroid of the tracked object will be shifted from
its real position, leading to inaccuracies in the homography computation
process or outliers.

In the current state of our architecture, object tracking starts on demand
in one camera, then the color histogram is sent to the other camera to start
the tracking automatically. When both cameras are successfully tracking
the object, the track information (centroid, size and angle) is exchanged at



6.5. Multi-camera model 123

each time t, using remote and local information as correspondences for the
homography estimation process.

6.5.5 Multi-camera tracking

After the homography between a pair of cameras is correctly estimated,
we incorporate the information exchanged across the network to the single-
camera tracker. When the tracker is unable to provide a correct track, the
last information received from the other camera is then used.

In order to improve the robustness of the single-camera tracking to sud-
den movements or occlusions, the main idea is using the information resul-
tant from tracking algorithm running in the other cameras as the search
window in which to resume the tracker when it fails to successfully track
the object. This allows the tracker to easily recover from lost tracks due to
sudden movements whilst one of the cameras in the network has tracked the
object correctly.

Regarding occlusion handling, the search window of the tracker is up-
dated continuously according to the information received from cameras with
fields of view where this occlusion is not taking place. Thus, the search win-
dow will be set to the real location of the object and the tracker will recover
the track as soon as the object becomes visible again.

We assume that camera a has lost the tracked object. The remote infor-
mation obtained from camera b consists of the centroid pb, the area size and
the 2D rotation θb. Let rpb(t, i) = (x, y, 1) with i = 1..4 be the points which
determine the bounding box for the ellipse tracked by camera b in time t.
Then, warped points wpa(t, i) are computed as follows

wpa(t, i) = H−1
ab rpb(t, i) (6.17)

where H−1
ab is the inverse of the homography Hab computed in Section

6.5.4. These warped points correspond to the region in camera a where
the object successfully tracked by camera b is located. However, the warped
points wpa(t, i)i = 1..4 define a non-rectangular area due to the homographic
transformation, which is not suitable as search window for the tracker. For
that reason, instead of using these points directly, we compute the rectangu-
lar bounding box of wpat, i and use it as search window for the next iteration
of CAMSHIFT tracker.

Figures 6.10 and 6.11 shows a scheme that illustrates the usage of remote
information and an example of information sharing while tracking a simple
object.

The detailed multi-camera tracking process is given in Algorithm 5.



124 Multi-camera tracking on embedded devices

Ca

Cb

Hab

Centroid Plane

Figure 6.10: Scheme of multi-camera tracking via homography. The object
in camera b is not correctly tracked, whilst tracking is successful in camera
a. The bounding box in camera a is warped into a quadrilateral in camera
b by means of Hab, giving the tracker associated to camera b an approxi-
mate location of the object of interest. The track window in b is set to the
bounding box of the quadrilateral, which is highlighted in red.

6.6 Experimental results

Our focus for application scenarios is mostly on indoor video surveillance,
where smartphones can be easily deployed. In addition, video analytics
applications require longer lifetime than what a smartphone battery is able
to provide, thus needing access to a permanent power supply.

For the evaluation of the architecture we performed experiments with a
commercial Samsung Galaxy S II smartphone and a Samsung Galaxy Tab
10.1 tablet. Our implementation platform bases upon Android SDK and
NDK running over Android 4.0.1 (Ice Cream Sandwich). The frame rate
is betweem 8 and 9 frames per second with images of resolution 640x480.
The native code has been optimized, although the OpenCV library is still in
development for the Android platform [17], and the model implemented is
computationally expensive despite being a more basic tracker than particle
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CAMERA A CAMERA B

Figure 6.11: Simplified example of tracking using view-to-view homography
information. The object location and bounding box in camera a are sent
to camera b to incorporate the warped bounding box information (yellow
quadrilateral) in the tracker. The blue rectangle indicates that the tracker
hast lost the object, and the track window needs to be reset.

filtering or KLT. The architecture has been developed using Eclipse [159]
for the Java elements, and g++ over cygwin for the native code.

As described in Section 6.5.2, we use Bluetooth to establish the commu-
nication between the two nodes. Since latency in Bluetooth communications
is mainly dominated by opening and closing connections [101], we have left
the connection established during the tracking tests.

In order to evaluate the performance of the architecture with the multi-
camera tracker approach described in Section 6.5, we have performed qual-
itative tests checking the adaptability of the tracker to change of target,
objects leaving the field of view, long occlusions and sudden large move-
ments. Our system shows on-screen information in three different ways:
when the tracking is successful, a red ellipse is shown around the object;
a blue rectangle means the tracker has completely lost the tracked object
(it resets the search window); finally, the yellow quadrilateral corresponds
to the warped points obtained from the bounding box of the other camera,
using the homography Hab between both cameras. This quadrilateral is thus
the location of the occluded object in the view.
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Algorithm 5 Multi-camera tracking algorithm, cameras a and b

loop
frame← CaptureFrame(a)
(pa, sizea, θa)← CAMSHIFT (frame,window)
if size > 0 then
{Tracking successful}
Send(pa, sizea, θa)
window ← BoundingBox(pa, sizea, θa)

else
{Tracking failed}
Receive(pb, sizeb, θb)
rpb(i)← BoundingBox(pb, sizeb, θb)
for i = 1→ 4 do
wpa(i) = H−1

ab · rpb(i)
end for
window ← wpa(i); i = 1..4

end if
end loop

We show, in Figure 6.12, an example of the flexibility that the usage of
an attentional model offers. At the beginning the tracker was monitoring
the luggage. However, when the tracked object stopped moving, we detected
a new object of interest using the top-down attention model with the skin
detector, following the person to check how far from the luggage he goes.

Figure 6.13 shows the behavior of the tracker when the tracked object
leaves the field of view of one of the cameras, whilst is correctly tracked by
the other. Since the actual location of the object is exchanged through the
network, our tracker updates the search window according to it. Due to
this, the object is relocated as soon as it appears in the camera field of view.

Regarding occlusion handling, Fig. 6.14 shows a different experiment
where the object is completely occluded in one of the views (camera A, on
the left side). In this test the images are not of consecutive frames, but
on frames that show interesting changes. In the first image, we can see the
entire scene, with the two devices in the left border and the top-right corner.
The second image (first frame) shows the object being successfully tracked
by both cameras. The next two frames show how the actual location of
the occluded object is updated by means of remote information, since the
yellow quadrilateral changes to reflect the movements of the object. In the
last frames, the object appears again in a different region than the one
where it has disappeared. As soon as the object becomes visible, remote
information allows camera A to locate it in that precise instant, refining the
tracking when the whole object is visible.
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Figure 6.12: Flexibility of attentional tracker. The use of an attentional
model to detect objects of interest allows for adapting the tracker, choosing
a new object to track if we consider it more interesting.

Fig. 6.15 shows four consecutive frames of one test with the two devices.
In the first frame, camera A is correctly tracking the object, which is out
of the field of view of camera B. In the second frame, camera B finds the
object by means of remote information (yellow shape in previous frame),
while camera A loses the object due to sudden movement and occlusion.
The third frame shows the information provided by camera B to camera A,
which allows the latter to locate the object again in the last frame.

According to the experiments, the multi-camera tracking algorithm is
able to recover from occlusions and lost tracks whilst one of the cameras
keeps tracking the object successfully. For that reason, the main requirement
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CAMERA A CAMERA B

Figure 6.13: Object leaving the field of view and entering it again. Camera
B loses track of the object when it leaves the field of view, but it keeps
information about its true location sent by camera A (the yellow quadrilat-
eral is the closest the tracker can get to the location of the object). When
the object reappears in the field of view of camera B, the tracker recovers
despite the object is barely visible. It must be remarked that the fields of
view are fairly different, affecting not only to scene geometry but also to
lighting conditions.
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CAMERA A CAMERA B

Figure 6.14: Behavior of the tracking in the presence of occlusions. The
object is completely occluded in camera A, depending the tracker on remote
information provided by camera B. Movements of the object are tracked
by camera B and forwarded to camera A, allowing it to update the object’s
location and the search window of the CAMSHIFT tracker. Thus, the object
is located and tracked in the first moment that it becomes visible again.

of this architecture is having a reliable tracker that minimizes the possibility
of losing the objects in all cameras of the network at the same time.

One issue that we can find in the current version of the architecture
involves coping with false positive and misdetections. If the cameras are
tracking an object, and one of the trackers is incorrect, the information that
the camera will broadcast to the network will be incorrect too. Then, if any
other camera of the network has a lost track or occlusion, it will use remote
information to update the location of the object, leading to greater errors.
Apart from the use of better single-camera trackers that would reduce these
errors, we are interested on evaluating the reliability of the information that
every camera is providing before using it (in multi-camera setups with more
than two cameras).
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CAMERA A CAMERA B

Figure 6.15: Increase in robustness of single-camera tracker against lost
tracks. While any of the cameras tracks the object, the other recovers in-
stantly from lost tracks by setting the search window to the actual location
of the object.

6.7 Conclusions

In this chapter, we have presented our approach to multi-camera tracking
on smartphone architectures, using them as embedded smart cameras. In
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comparison with other approaches in the literature, we focus on the use of
commercial smartphones using Android as operating system. Smartphones
have several advantages, such as having reasonably good cameras, powerful
ARM processors despite being embedded systems, different types of connec-
tivity and sensors. Furthermore, the high sales of these devices lead to lower
prices than custom-built hardware.

We have implemented a prototype of our architecture and used it to
track an object simultaneously with two cameras, with real-time exchange
of information between the devices. Instead of computing a full Tsai calibra-
tion, homography between two cameras is estimated by using tracked object
trajectories. We illustrate with an example how the tracking information
from one device can be shared with the second device, allowing it to handle
occlusions and recover from lost tracks.

Moreover, we have also included an automatic bio-inspired method for
the selection of objects of interest. Our proposal is based on a visual atten-
tion method that conjugates bottom-up inherent saliency for the selection of
regions of interest and top-down task-dependent conscious modulation. Ad-
ditionally, this module is also used to increase the robustness of the method.
It helps the tracking application to recover the target after being lost due to
total occlusions or sudden large movements, in the same way that homogra-
phies between the two cameras are used. Finally, as our target application
is related with video surveillance, we have included a skin detector operator
as top-down modulation since the possible aims of the work usually involve
people actions.

The work that has been presented in this chapter focuses on multi-camera
platforms and calibration of the camera setup by means of homographies,
as well as the usage of attention models on a real application field such as
video surveillance.





Chapter 7

Conclusions

This doctoral thesis shows our contributions to the areas of computer vision
and video surveillance. This chapter is structured as follows. Firstly, we
present a general discussion of the problems that have motivated the devel-
opment of this thesis and the proposed solutions. Secondly, several sugges-
tions for future work are included. Finally, we enumerate the publications
derived from our work and highlight the main contributions achieved.

7.1 General discussion

Active video surveillance systems analyze the contents of video streams pro-
vided by each camera, segmenting the image in foreground and background,
detecting and tracking objects. Besides these basic tasks, diverse high-level
analyses are performed which indicate whether the situation is normal or
not. Thus, human observers can focus their attention on potential alarm
situations. Accuracy and robustness are key to this kind of systems, since
errors can lead to false alarms or undetected alarm situations.

The first stage of video surveillance systems usually is the extraction of
background in a video sequence. A large part of this thesis has been focused
on background subtraction methods, presenting real-time implementations
on embedded hardware or developing methods which fuse image and depth
information.

We have designed and validated two architectures to carry out video
segmentation on FPGA, based on well-known background subtraction al-
gorithms. The first architecture implements an unimodal static algorithm
[27] which is less complex than the methods that define the state of the
art. This lack of complexity enables its implantation on low-cost FPGA
platforms with constrained energy consumption. In addition, due to the
simplicity of the algorithm, both morphological filtering, connected compo-
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nents encoding and a shadow detection and discrimination stage have been
incorporated.

The second architecture implements a multimodal dynamic algorithm
[38] which has greater complexity than all previous hardware implementa-
tions of background subtraction methods.

We have evaluated both solutions by means of a dataset which has been
widely used in the literature [44]. The two architectures have been validated
considering accuracy and quality of the segmentation as well as processing
speed and energy consumption. The comparison with previous embedded
hardware implementations is focused on the image resolution, throughput
and energetic requirements. In this comparison, the first solution represents
a considerable improvement over previous works, processing 32.8 fps with
resolution 1024×1024, and a consumption of 5.76 Watt. The second solution
processes 24 images per second, with a consumption of 5.13 Watt.

The evaluation of the accuracy shows that the first architecture performs
better than previous solutions on reconfigurable hardware in scenarios with
shadows and objects with colors similar to those of the background, and it
gets acceptable results in the other sequences. Besides the evaluation and
comparison by means of objective metrics, we have validated the shadow de-
tection and discrimination capability of the architecture, which offers good
results despite the degradation due to hardware constraints. The second
architecture obtains very good results in every test, better than the other
hardware-oriented algorithms in most of the cases, comparable to more ad-
vanced algorithms oriented to software platforms.

Besides the study and evaluation of models suitable for embedded hard-
ware, we have researched the integration of depth estimations in background
subtraction models. This study is motivated by the fact that video segmen-
tation algorithms continue dealing with classic issues derived from image
capture process. These issues can be more effectively solved by having
depth information. We have integrated depth information obtained with
multi-camera stereo vision and active depth sensors such as Kinect.

We have developed several versions of background subtraction models
which combine color and depth, based on the Codebook algorithm [38].
We have chosen this algorithm because we have worked with it previously in
architectures on FPGA. In addition, it offers an appropriate balance between
accuracy and requirements related to computational cost. We have studied
three models which differ in the degree of information fusion: the first one
includes depth as an independent channel; the second one takes into account
the detection by depth to bias the classification based on color; the last one
suppresses error regions produced by noise in depth information using the
detection by color.
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In order to carry out an objective and quantitative evaluation, we have
built two datasets which include video sequences, depth estimations and
information about ideal segmentation. These datasets have been recorded
by means of Kinect in the first case, and two stereo cameras combined
with disparity estimation algorithms in the second one. Both datasets are
publically available for the research community at [144].

We have evaluated the proposed approaches by means of these datasets.
The results show considerable improvement over previous algorithms both
with depth information provided by Kinect and with the one provided by
stereo disparity algorithms. In the dataset recorded with Kinect, the pro-
posed method (DECB) obtains the best average values for the metric F1 in
every sequence. In the sequences recorded with stereo cameras, the third
proposed approach, which includes a post-processing fusion stage (DECB-
LF ), gets better results than the previous method without post-processing
(average improvement 7.5% over DECB), because of the elimination of noise
produced by disparity estimation.

Continuing with vision models applied to video surveillance, we have
studied the use of multi-camera system with smartphones to detect and
track objects of interest in a scene. We have implemented a prototype of our
architecture to perform object tracking simultaneously with two cameras,
with information sharing in real time between devices. Multi-camera setups
require some sort of calibration to exchange information processed by each
one and work with it globally. Thus, we have used the trajectories of the
tracked objects to compute correspondences between cameras and calculate
the homography from a camera to the other.

We have studied the exchange of different types of information, such as
appearance of the object of interest (color histogram, keypoints and descrip-
tors, etc.) and tracking information (location, size and orientation of the
object). The usage of information shared between devices allows the system
to solve occlusions, when the object of interest is not visible in the field
of view of one camera but it is in the other one, as well as to continue the
tracking after a lost track. We have illustrated the functioning of the system
with several examples under controlled conditions.

In addition, we have included an automatic bio-inspired method to detect
and select the object of interest. Since our main goal is the application to
video surveillance, a skin detector has been included as top-down modulator
of attention, because the tasks are usually centered on actions performed
by people. The inclusion of attention dependent of the task to carry out
(top-down) allows the multi-camera tracker to acquire new objectives which
may be of interest at a given moment. It also can help the tracker to recover
from lost tracks by relocating the object.
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To sum up, we have worked in different computer vision models applied
to video analytics, focusing on quality evaluation methodologies, compari-
son with previous works, and real-time implementation on several kinds of
embedded systems.

7.2 Future work

As future work, we intend to continue with the line of multi-camera systems
for video surveillance.

On the one hand, we intend to improve the process of mono-camera
tracking, by using more advanced models than the color-based one used in
chapter 6, such as KLT or particle filtering. In addition, we want to combine
the tracker with the foreground/background segmentation stage.

On the other hand, we will work on multi-camera setups with multiple
nodes as well as central processing servers, combining different types of
connectivity (such as Bluetooth and Wi-Fi) for the communications through
the network. Our intent with these multi-camera configurations is not only
the exchange of information through the network, but also to provide a
reliability measure of that information in order to avoid using incorrect data.
Besides, we intend to study the balance between distributed and centralized
processing. We want to study network topologies which include cameras
with overlapping views, as we have seen in chapter 6, and non-overlapping
views in which the goal is tracking an object from a view to another (problem
known as person re-identification).

Finally, we would like to continue with further processing stages of video
analytics systems, performing high-level analysis of the information provided
by segmentation and tracking to automatically detect situations of interest,
and direct the system to solve specific problems.

7.3 Publications

The published or submitted works related to this doctoral thesis are the
following:

7.3.1 International journals with scientific impact

• Rodriguez-Gomez R., Fernandez-Sanchez E.J., Diaz J., Ros E. FPGA
Implementation for Real-Time Background Subtraction Based on Hor-
prasert Model. Sensors. 2012; 12(1):585-611.
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• Rodriguez-Gomez R., Fernandez-Sanchez E.J., Diaz J., Ros E. Code-
book hardware implementation on FPGA for background subtraction.
Real-Time Image Processing, Journal of. 1-15.

• Fernandez-Sanchez E.J., Diaz J., Ros E. Background subtraction model
based on color and depth cues. Submitted to Special Issue on ”Back-
ground Modeling for Foreground Detection in real-world dynamic scenes”.
Journal of Machine Vision and Applications

• Fernandez-Sanchez E.J., Diaz J., Ros E. Video segmentation based
on color and depth using Kinect. Submitted to Journal of Visual
Communication and Image Representation.

7.3.2 National conference

• Rodŕıguez-Gómez R., Fernández-Sánchez E.J., Rat B., Agis R., Diseño
de una arquitectura Hw/Sw en FPGA para la sustracción del fondo
en secuencias de video. III Congreso Español de Informática (CEDI
2010), X Jornadas de Computación Reconfigurable y Aplicaciones
(JCRA2010), 7-10 Septiembre 2010. Valencia (Spain). Pp.135-142.
ISBN 978-84-92812-56-1

7.4 Main contributions

In this section, we include a summary of the main contributions achieved in
this Ph.D work:

• We have modified models and evaluated two architectures on FPGA
to perform background subtraction on video sequences. The first one,
based on a static algorithm, includes a shadow detection and discrim-
ination stage, which is a novelty regarding hardware implementations.
The second one is based on a complex, multimodal and dynamic algo-
rithm, better suited for the wide variety of scenarios.

• We have validated both architectures, performing a comparison with
previous approaches described in the literature. We have evaluated
the performance concerning real-time constraints, hardware resources
and energy consumption. We have also evaluated the quality of the
segmentation by means of widely used datasets, obtaining satisfactory
results.

• We have studied the integration of depth estimations in a background
subtraction model. The depth information is provided both by multi-
camera stereo vision systems and active depth sensors such as Kinect.
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• We have studied three depth fusion methods in a specific background
subtraction model. These methods differ in the degree of integration
of depth and color, and they aim to solve certain issues which affect
color-based algorithms.

• We have built two new datasets to validate the studied methods, since
there was no dataset suitable for depth-based algorithms in video
surveillance scenarios. We have created two sets of sequences, the
first one recorded by Kinect, and the second one recorded by stereo
cameras and disparity estimation algorithms. Both datasets have been
made available for the research community.

• We have evaluated the proposed approaches using the previously men-
tioned datasets. Our methods outperform previous algorithms in both
sets of sequences, being specially noticeable when using information
provided by Kinect.

• We have studied the usage of a multi-camera system with smartphones
to detect and track objects of interest. The feasibility of these devices
has been studied both regarding hardware and connectivity and avail-
able development tools. We have implemented a prototype of an archi-
tecture to perform object tracking simultaneously with two cameras,
with real-time information exchange between different devices.

• We have used information of tracked object trajectories to perform a
basic scene calibration. This calibration allows for globally using the
information obtained by each camera independently.

• We have studied the exchange of different types of information across
the network, such as information about the appearance of the object of
interest, tracking information or parameters related to the calibration
of the scene. We have used the information shared between devices
to solve occlusions when the object of interest is visible in only one
camera, and to increase the robustness of the system to momentary
lost tracks.

• We have included an automatic bio-inspired method to detect and
select the object of interest. This enables modulating the attention of
the system depending on the task to perform or the kind of objects
which needs to be detected. More specifically, we have integrated a
skin detector to focus on detecting people in the scene.



Chapter 8

Conclusiones

Esta tesis doctoral muestra nuestras aportaciones a las áreas de visión ar-
tificial y videovigilancia. Este caṕıtulo está estructurado de la siguiente
manera. En la primera sección, presentamos una discusión general de los
problemas que han motivado el desarrollo de esta tesis y las soluciones prop-
uestas. A continuación se incluyen algunas sugerencias para trabajo futuro.
Después enumeramos las publicaciones derivadas de nuestro trabajo y, para
finalizar, destacamos las principales aportaciones realizadas.

8.1 Discusión general

Los sistemas de videovigilancia activa analizan el contenido del v́ıdeo proce-
dente de cada cámara de vigilancia segmentando la imagen en primer plano y
fondo, detectando objetos y haciendo un seguimiento de los mismos. Además
de estas tareas más básicas, se llevan a cabo diversos análisis de más alto
nivel cuyos resultados indican si la situación que está teniendo lugar es nor-
mal o anómala, de modo que el vigilante humano pueda centrar su atención
en situaciones de alarma. La precisión y robustez es clave en este tipo de
sistemas, ya que los fallos pueden dar lugar a falsas alarmas o situaciones
de alarma no detectadas.

La primera etapa de un sistema de videovigilancia suele ser la extracción
de fondo en una secuencia de v́ıdeo. Gran parte de esta tesis doctoral se ha
centrado en los métodos de extracción de fondo, presentando tanto imple-
mentaciones en tiempo real sobre hardware empotrado como desarrollando
métodos que integran imagen e información de profundidad.

Hemos diseñado y validado dos arquitecturas para llevar a cabo la seg-
mentación de v́ıdeo en FPGA, basadas en algoritmos de sustracción de fondo
bien conocidos. La primera arquitectura implementa un algoritmo estático
unimodal [27], de menor complejidad a los métodos que conforman el es-
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tado del arte. Esto permite su implantación en plataformas FPGA de bajo
coste y con un consumo de enerǵıa contenido. Además, debido a la mayor
sencillez del algoritmo, se han podido incorporar filtros morfológicos, codifi-
cación de componentes conexas, y una etapa de detección y discriminación
de sombras.

La segunda arquitectura implementa un algoritmo dinámico multimodal
[38], cuya complejidad es mayor a la de todas las implementaciones hardware
de métodos de sustracción de fondo realizadas con anterioridad.

Hemos evaluado ambas soluciones por medio de secuencias de test ampli-
amente utilizadas en la literatura [44]. Se han validado las dos arquitecturas
teniendo en cuenta tanto la precisión y calidad de la segmentación como
la velocidad de procesamiento y el consumo energético. La comparación
con anteriores implementaciones en hardware empotrado se ha centrado en
la resolución a la que trabajan, el número de imágenes por segundo, y el
consumo energético. En esta comparativa, la primera solución representa
una mejora considerable con respecto a trabajos anteriores, procesando 32.8
imágenes por segundo con resolución 1024×1024, y un consumo de 5.76 va-
tios. La segunda solución procesa 24 imágenes por segundo, con un consumo
de 5.13 vatios.

La evaluación de la calidad de la segmentación muestra que la primera
arquitectura se comporta mejor que soluciones anteriores en hardware recon-
figurable en situaciones con sombras y objetos similares al fondo, y obtiene
resultados aceptables en las demás secuencias. Aparte de la evaluación y
comparación utilizando métricas objetivas, hemos validado la capacidad de
detección y discriminación de sombras de la arquitectura, que ofrece buenos
resultados a pesar de la degradación producida por las limitaciones del hard-
ware. La segunda arquitectura obtiene muy buenos resultados en todos los
tests, superiores en la mayoŕıa de los casos a las otras alternativas hardware,
y comparables a algoritmos complejos orientados a plataformas software.

Además del estudio y la evaluación de modelos para implementaciones
en hardware empotrado, hemos investigado la integración de estimaciones
de profundidad en modelos de extracción de fondo. La motivación para este
estudio es que los algoritmos de segmentación de v́ıdeo siguen enfrentándose
a problemas clásicos derivados de la captura de imagen, que teniendo infor-
mación de profundidad pueden ser solventados de forma más eficaz. Hemos
integrado información de profundidad obtenida con visión estereoscópica
multicámara y mediante sensores de profundidad activos como Kinect.

Hemos desarrollado varias versiones de modelos de sustracción de fondo
que combinan color y profundidad, basadas en el algoritmo Codebook [38].
Hemos seleccionado este algoritmo por haber trabajado con él anteriormente
en las arquitecturas para FPGA, y porque ofrece un equilibrio adecuado
entre precisión y requisitos relacionados con el coste computacional. Hemos
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estudiado tres modelos que difieren en su grado de fusión de información: el
primero incorpora la profundidad como un canal independiente; el segundo
tiene en cuenta la detección por profundidad para modificar la clasificación
basada en color; el último suprime regiones de error producidas por ruido
en la información de profundidad, utilizando la detección por color.

Para poder llevar a cabo una evaluación objetiva y cuantitativa, hemos
construido dos conjuntos de secuencias que incluyen tanto los v́ıdeos como
las estimaciones de profundidad e información de la segmentación ideal.
Dichos conjuntos de secuencias han sido grabados utilizando Kinect en un
caso, y dos cámaras estéreo junto a algoritmos de estimación de disparidad
en el otro. Ambos conjuntos de prueba han sido puestos a disponibilidad de
la comunidad investigadora en [144].

Hemos evaluado los métodos propuestos utilizando estos bancos de prueba,
mostrando los resultados una mejora considerable con respecto a algoritmos
anteriores tanto con información de profundidad proporcionada por Kinect
como con la obtenida mediante algoritmos de disparidad estéreo. En el con-
junto de pruebas grabado utilizando Kinect, el método propuesto (DECB)
obtiene los mejores valores medios de la métrica F1 para todas las secuen-
cias. En las secuencias grabadas con cámaras estéreo y algoritmos de dis-
paridad, el último método propuesto, que incorpora una etapa de fusión en
post-procesado (DECB-LF ), obtiene mejores resultados que el método an-
terior sin post-procesado (mejora media de 7.5% sobre DECB), gracias a la
supresión de ruido provocado por la disparidad.

Continuando con modelos aplicados a videovigilancia, hemos estudiado
la utilización de un sistema multicámara con smartphones para la detección
y seguimiento de objetos de interés en una escena. Hemos implementado un
prototipo de nuestra arquitectura para llevar a cabo el tracking de un ob-
jeto simultáneamente con dos cámaras, con intercambio de información en
tiempo real entre los distintos dispositivos. Las configuraciones con varias
cámaras requieren cierta calibración para poder poner la información proce-
sada por cada una en común. Aśı, hemos utilizando las trayectorias de
objetos bajo seguimiento para calcular correspondencias entre cámaras y
calcular la homograf́ıa de una cámara a otra.

Hemos estudiado la compartición de diversos tipos de información, tales
como información de la apariencia del objeto de interés (histograma de
color, puntos caracteŕısticos y descriptores, etc.) o información de tracking
(posición, tamaño y orientación del objeto). La utilización de información
compartida entre dispositivos permite al sistema la resolución de oclusiones,
cuando el objeto de interés no es visible en el campo de visión de una cámara
pero śı lo es en la otra, aśı como continuar el tracking tras haber perdido el
objeto momentáneamente. Hemos ilustrado el funcionamiento del sistema
con una serie de ejemplos bajo condiciones controladas.
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Además, hemos incorporado un método automático bio-inspirado para la
detección y selección inicial del objeto de interés. En nuestro caso, dado que
nuestro principal objetivo es la aplicación a videovigilancia, se ha inclúıdo
un detector de piel como modulación top-down, ya que las tareas suelen
centrarse en acciones llevadas a cabo por personas. Esta incorporación de
atención dependiente de la tarea a realizar (top-down) permite a la aplicación
de tracking multicámara adquirir nuevos objetivos que resulten de interés
en un momento dado, aśı como recuperar el objeto de interés en casos en
que el tracker se haya perdido completamente.

En resumen, hemos trabajado en distintos modelos de visión artificial
aplicados a videovigilancia, centrándonos en metodoloǵıas de evaluación
de calidad de los mismos, comparación con trabajos previos, y su imple-
mentación en tiempo real en distintos tipos de sistemas empotrados.

8.2 Trabajo futuro

Como trabajo futuro, nos planteamos continuar con la ĺınea de sistemas
multicámara para videovigilancia.

Por un lado, pretendemos mejorar el proceso de tracking monocámara,
utilizando modelos más avanzados que el modelo de color utilizado en el
caṕıtulo 6, tales como KLT o filtros de part́ıculas, además de combinar el
tracking en śı con la etapa de segmentación en primer plano y fondo.

Por otro lado, trabajaremos en configuraciones multi-cámara con múltiples
nodos aśı como servidores centrales de procesamiento, combinando distin-
tos tipos de conexiones (como Bluetooth y Wi-Fi) para las comunicaciones
en la red. Con estas configuraciones multi-cámara, nuestra intención es no
sólo el intercambio de información a través de la red, sino también propor-
cionar una medida de fiabilidad de dicha información para evitar utilizar
información incorrecta, además de llevar a cabo estudios de equilibrio entre
procesamiento distribuido y centralizado. Dentro de las distintas configura-
ciones posibles de la red, queremos estudiar topoloǵıas que incluyan cámaras
con vistas solapadas, como en el caṕıtulo 6, y cámaras con vistas no sola-
padas en las que se trata de seguir a un objeto de una vista a otra (problema
conocido como re-identificación de personas).

Finalmente, nos gustaŕıa continuar con posteriores etapas de proce-
samiento del sistema de videovigilancia, realizando análisis de alto nivel
de la información proporcionada por la segmentación y tracking para de-
tectar situaciones de interés de forma automatizada, y orientar el sistema a
resolver problemas espećıficos.
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8.3 Publicaciones

Los trabajos relacionados con esta tesis doctoral publicados o en proceso de
revisión son los siguientes:

8.3.1 Revistas Internacionales con Índice de Impacto

• Rodriguez-Gomez R., Fernandez-Sanchez E.J., Diaz J., Ros E. FPGA
Implementation for Real-Time Background Subtraction Based on Hor-
prasert Model. Sensors. 2012; 12(1):585-611.

• Rodriguez-Gomez R., Fernandez-Sanchez E.J., Diaz J., Ros E. Code-
book hardware implementation on FPGA for background subtraction.
Real-Time Image Processing, Journal of. 1-15.

• Fernandez-Sanchez E.J., Diaz J., Ros E. Background subtraction model
based on color and depth cues. Submitted to Special Issue on ”Back-
ground Modeling for Foreground Detection in real-world dynamic scenes”.
Journal of Machine Vision and Applications

• Fernandez-Sanchez E.J., Diaz J., Ros E. Video segmentation based
on color and depth using Kinect. Submitted to Journal of Visual
Communication and Image Representation.

8.3.2 Conferencias nacionales

• Rodŕıguez-Gómez R., Fernández-Sánchez E.J., Rat B., Agis R., Diseño
de una arquitectura Hw/Sw en FPGA para la sustracción del fondo
en secuencias de video. III Congreso Español de Informática (CEDI
2010), X Jornadas de Computación Reconfigurable y Aplicaciones
(JCRA2010), 7-10 Septiembre 2010. Valencia (Spain). Pp.135-142.
ISBN 978-84-92812-56-1

8.4 Aportaciones principales

En esta sección incluimos un resumen de las principales aportaciones con-
seguidas en esta tesis doctoral:

• Hemos modificado modelos y evaluado dos arquitecturas en FPGA
para llevar a cabo la extracción del fondo en secuencias de v́ıdeo. La
primera, basada en un algoritmo estático, incluye una etapa de de-
tección y discriminación de sombras, que es algo novedoso en lo que
a implementaciones hardware se refiere. La segunda está basada en
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un algoritmo complejo, dinámico y multimodal, más apropiado para
la gran variedad de escenarios que se pueden plantear.

• Hemos validado ambas arquitecturas, comparándolas con otras alter-
nativas presentes en la literatura. Hemos evaluado su rendimiento en
lo que concierne a restricciones de tiempo real, recursos hardware y
consumo energético. También hemos evaluado la calidad de la seg-
mentación por medio de bancos de prueba ampliamente utilizados en
la literatura, obteniéndose resultados satisfactorios.

• Hemos estudiado la integración de estimaciones de profundidad en
un modelo de sustracción de fondo procedente de sistemas de visión
estereoscópica multicámara y sensores de profundidad activos como
Kinect.

• Hemos estudiado tres métodos de fusión de profundidad en un modelo
concreto de sustracción de fondo. Dichos métodos difieren en el grado
de integración de la información de color y profundidad, y se orien-
tan a resolver determinados problemas asociados a modelos que usan
únicamente color.

• Hemos construido nuevos bancos de pruebas para la validación de los
métodos estudiados, ya que no exist́ıa ninguno apropiado para compro-
bar el comportamiento de estos algoritmos en escenarios de videovigi-
lancia. Hemos creado dos conjuntos de secuencias, el primero grabado
con el sensor Kinect, y el segundo con cámaras estéreo utilizando algo-
ritmos de estimación de disparidad. Ambos conjuntos de prueba han
sido puestos a disponibilidad de la comunidad investigadora.

• Hemos evaluado los métodos propuestos utilizando los bancos de prueba
mencionados anteriormente. Nuestros métodos obtienen una mejora
considerable con respecto a algoritmos anteriores en ambos conjuntos
de secuencias, siendo más significativo con información de profundidad
proporcionada por Kinect.

• Hemos estudiado la utilización de un sistema multicámara con smart-
phones para la detección y seguimiento de objetos de interés. Se ha
estudiado tanto la viabilidad de estos dispositivos desde el punto de
vista de hardware y conectividad como en lo referente a herramientas
disponibles. Hemos implementado un prototipo de una arquitectura
para llevar a cabo el tracking de un objeto simultáneamente con dos
cámaras, con intercambio de información en tiempo real entre los dis-
tintos dispositivos.

• Hemos utilizado información relativa a trayectorias de objetos bajo
seguimiento para hacer una calibración básica de la escena. Esto
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permite utilizar de forma conjunta la información obtenida por cada
cámara independientemente.

• Hemos estudiado la compartición de información de diversos tipos a
través de la red, como información de la apariencia del objeto de in-
terés, información de tracking o información de calibración de la es-
cena. Hemos utilizado la información compartida entre dispositivos
para resolver oclusiones cuando el objeto de interés no es visible en
una cámara pero śı en otra, aśı como aumentar la robustez del sistema
a pérdidas momentáneas del tracker.

• Hemos incorporado un método automático bio-inspirado para la de-
tección y selección inicial del objeto de interés. Esto permite modular
la atención del sistema dependiendo de la tarea a realizar o del tipo
de objetos que se desea detectar. Concretamente, hemos integrado un
detector de piel para la detección de personas en la escena.
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[136] J. Weickert and C. Schnörr, “A theoretical framework for convex
regularizers in pde-based computation of image motion,” Interna-
tional Journal of Computer Vision, vol. 45, pp. 245–264, 2001.
10.1023/A:1013614317973.

[137] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy
optical flow estimation based on a theory for warping,” in Computer
Vision - ECCV 2004 (T. Pajdla and J. Matas, eds.), vol. 3024 of
Lecture Notes in Computer Science, pp. 25–36, Springer Berlin / Hei-
delberg, 2004.

[138] J. Ralli, J. Diaz, and E. Ros, “Complementary image representation
spaces in variational disparity calculation,” EURASIP Journal on Ad-
vances in Signal Processing, 2011.

[139] H. Hirschmuller, “Stereo processing by semiglobal matching and mu-
tual information,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 30, pp. 328 –341, feb. 2008.

http://www.ros.org/wiki/kinect_calibration/technical


160 Bibliography

[140] I. Ernst and H. Hirschmüller, “Mutual information based semi-global
stereo matching on the gpu,” in Advances in Visual Computing,
vol. 5358 of Lecture Notes in Computer Science, pp. 228–239, Springer
Berlin / Heidelberg, 2008.

[141] C. Banz, S. Hesselbarth, H. Flatt, H. Blume, and P. Pirsch, “Real-time
stereo vision system using semi-global matching disparity estimation:
Architecture and fpga-implementation,” in Embedded Computer Sys-
tems (SAMOS), 2010 International Conference on, pp. 93 –101, july
2010.

[142] L. Vincent, “Morphological grayscale reconstruction in image analy-
sis: applications and efficient algorithms,” Image Processing, IEEE
Transactions on, vol. 2, pp. 176 –201, apr 1993.

[143] M. Tomasi, M. Vanegas, F. Barranco, J. Diaz, and E. Ros, “Massive
parallel-hardware architecture for multiscale stereo, optical flow and
image-structure computation,” Circuits and Systems for Video Tech-
nology, IEEE Transactions on, vol. 22, pp. 282 –294, feb. 2012.

[144] E. J. Fernandez-Sanchez. http://atcproyectos.ugr.es/mvision/,
2012.

[145] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual
attention for rapid scene analysis,” Pattern Analysis and Machine In-
telligence, IEEE Transactions on, vol. 20, no. 11, pp. 1254 – 1259,
1998.

[146] L. Itti and C. Koch, “Computational modelling of visual attention,”
Nature Review Neuroscience, vol. 2, no. 3, pp. 194 – 203, 2001.

[147] T. Alter and R. Basri, “Extracting salient curves from images: an
analysis of the saliency network,” in Computer Vision and Pattern
Recognition, 1996. Proceedings CVPR ’96, 1996 IEEE Computer So-
ciety Conference on, pp. 13 –20, 1996.

[148] M. Nishigaki, C. Fermuller, and D. Dementhon, “The image torque
operator: A new tool for mid-level vision,” in Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on, pp. 502 –
509, june 2012.

[149] A. Mishra, Y. Aloimonos, and C. Fermuller, “Active segmentation
for robotics,” in Intelligent Robots and Systems, 2009. IROS 2009.
IEEE/RSJ International Conference on, pp. 3133 –3139, 2009.

[150] N. Bruce, Saliency, attention and visual search: an information theo-
retic approach. PhD thesis, York University, 2008.

http://atcproyectos.ugr.es/mvision/


Bibliography 161

[151] J.-C. Terrillon, M. Shirazi, H. Fukamachi, and S. Akamatsu, “Compar-
ative performance of different skin chrominance models and chromi-
nance spaces for the automatic detection of human faces in color im-
ages,” in Automatic Face and Gesture Recognition, 2000. Proceedings.
Fourth IEEE International Conference on, pp. 54 –61, 2000.

[152] Google, “Android.” http://www.android.com/about/, 2012.

[153] G. R. Bradski, S. Clara, and I. Corporation, “Computer vision face
tracking for use in a perceptual user interface,” Interface, vol. 2, no. 2,
pp. 12–21, 1998.

[154] F. Barranco, J. Diaz, A. Gibaldi, S. P. Sabatini, and E. Ros, “Vec-
tor disparity sensor with vergence control for active vision systems,”
Sensors, vol. 12, no. 2, pp. 1771–1799, 2012.

[155] L. Itti and C. Koch, “Feature combination strategies for saliency-based
visual attention systems,” Journal of Electronic Imaging, vol. 10, no. 1,
pp. 161–169, 2001.

[156] ICBS Learning-Based Multimedia: Eclipse IDE. http://lbmedia.

ece.ucsb.edu/resources/dataset/ibtd.zip, 2013.

[157] W. Freeman, K. Tanaka, J. Ohta, and K. Kyuma, “Computer vision
for computer games,” in Automatic Face and Gesture Recognition,
1996., Proceedings of the Second International Conference on, pp. 100
–105, oct 1996.

[158] JSR 82: Java APIs for Bluetooth. http://jcp.org/en/jsr/detail?
id=82, 2012.

[159] The Eclipse Foundation: Eclipse IDE. http://www.eclipse.org/,
2012.

http://lbmedia.ece.ucsb.edu/resources/dataset/ibtd.zip
http://lbmedia.ece.ucsb.edu/resources/dataset/ibtd.zip
http://jcp.org/en/jsr/detail?id=82
http://jcp.org/en/jsr/detail?id=82
http://www.eclipse.org/

	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Abstract
	Resumen
	Introducción
	Motivación
	Objetivos científicos
	Marco de proyectos
	MULTIVISION
	TOMSY

	Material y métodos
	Organización de los capítulos

	Introduction
	Motivation
	Scientific objectives
	Projects
	MULTIVISION
	TOMSY

	Methods and Tools
	Organization of chapters

	State of the art
	Background subtraction
	Background subtraction on embedded hardware
	Background subtraction with sensor fusion

	Object tracking
	Feature selection
	Tracking
	Multi-camera approaches
	Distributed and decentralized camera networks



	Background subtraction on embedded hardware
	Horprasert algorithm
	Background Modeling
	Subtraction Operation and Classification
	Model simplifications
	Hardware Architecture

	Codebook algorithm
	Background modeling
	Maximum negative run-length
	Color and brightness

	Foreground detection
	Background model update
	Model simplifications
	Hardware Architecture

	Datasets and evaluation metrics
	Results
	Performance comparison with other approaches
	Evaluation of the accuracy of the background model
	Background subtraction evaluation
	Shadow detection behavior


	Conclusions

	Background subtraction based on color and depth cues
	Depth estimation
	Kinect sensor
	Phase-based method
	Variational approach
	Semi-global block matching

	Fusion model
	4D Codebook: CB4D
	Early Fusion: Depth-extended Codebook (DECB)
	Late Fusion: DECB-LF

	Datasets
	Kinect-based dataset
	Disparity-based dataset

	Results
	Evaluation of algorithms using Kinect
	Evaluation of algorithms using disparity maps

	Conclusions

	Multi-camera tracking on embedded devices
	Related work
	Selection of the object of interest
	Multi-camera tracking
	Smart camera networks

	Smart camera platform
	Hardware architecture
	Software architecture

	Single-camera tracking: CAMSHIFT
	Tracking initialization by an attention module
	Automatic object segmentation

	Multi-camera model
	Projective transformations: homography
	Communication network
	Information exchange
	Camera calibration
	Multi-camera tracking

	Experimental results
	Conclusions

	Conclusions
	General discussion
	Future work
	Publications
	International journals with scientific impact
	National conference

	Main contributions

	Conclusiones
	Discusión general
	Trabajo futuro
	Publicaciones
	Revistas Internacionales con Índice de Impacto
	Conferencias nacionales

	Aportaciones principales

	Bibliography

