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Abstract: Depth information has been used in computer vision for a wide variety of
tasks. Since active range sensors are currently available at low cost, high-quality depth
maps can be used as relevant input for many applications. Background subtraction and
video segmentation algorithms can be improved by fusing depth and color inputs, which
are complementary and allow one to solve many classic color segmentation issues. In this
paper, we describe one fusion method to combine color and depth based on an advanced
color-based algorithm. This technique has been evaluated by means of a complete dataset
recorded with Microsoft Kinect, which enables comparison with the original method. The
proposed method outperforms the others in almost every test, showing more robustness to
illumination changes, shadows, reflections and camouflage.
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1. Introduction

In recent years, there has been an increase of interest in the application of computer vision to
video surveillance tasks. One of these tasks, which is typically considered the first step in video
analytics systems, is the extraction of moving objects from a video sequence. A common approach
for segmenting objects from the background is called background subtraction. This technique consists
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of analyzing a video sequence to create a reference background model and detect regions that belong to
foreground objects.

Background subtraction is a well-known technique, which has aroused much interest as a research
field. Therefore, there are many works in the literature focused on it: simple models for static
backgrounds [1–3] or more advanced methods capable of dealing with dynamic backgrounds, such
as MOG (Mixture of Gaussians) [4–6], Bayesian decision rules [7], the Codebook-based model [8,9],
Kernel density estimation [10] or Component Analysis (PCA, Principal Component Analysis, and ICA,
Independent Component Analysis) [11,12].

Despite current state-of-the-art algorithms being able to cope with classic issues (such as sudden
and gradual illumination changes, moving background objects, repetitive movements, etc.), robustness
is a critical requirement for video analytics. For that reason, many authors have proposed the fusion
of different kinds of features, including intensity, edges and texture information [5,13–17]. However,
these features are captured by the same kind of camera sensor, being thus affected by the same
problems. In addition, due to the complexity of these methods, they require powerful processors to run in
real-time. This makes them not suitable for embedded systems as smart cameras and decentralized
camera networks.

In order to reduce the impact of issues related to camera sensors, we focus on the combined use of
depth and color. Depth is an interesting cue for segmentation that is less affected by the classic color
segmentation issues, such as shadows or highlighted regions. Depth information can be obtained in
real-time by different methods or technologies: stereo-camera setups with disparity estimation
algorithms [18], Time-of-Flight (ToF) cameras [19], Asus Xtion PRO [20] or the Kinect peripheral from
Microsoft [21]. In our approach, we make use of the Kinect sensor, which offers high-resolution depth
information with lower cost than Time-of-Flight cameras. The combination of depth and visual (RGB,
Red-Green-Blue) sensing allows for more robust and accurate object detection.

Depth information has been used in foreground/background segmentation techniques by many
authors [22–28]. Cristani et al. [28] proposes a comprehensive review of background subtraction
techniques, focusing on different sensor channels, including systems based on stereo cameras. Some
of the other works are focused on stereo vision algorithms [22–24], whilst the most recent ones focus
on Time-of-Flight cameras [25–27]. Ivanov et al. [22] proposed an approach that warps one image
of the pair in the other one by using disparity. If corresponding pixels do not match, they belong to a
foreground object or to an occlusion shadow. The method in [22] does not use background subtraction
algorithms. Gordon et al. [23] include disparity in an approximation of a mixture of Gaussians to model
the background. The approach in [23] shares the hypothesis that by combining stereo and color, the
effect of classic segmentation issues can be reduced. However, it fails to provide numerical evaluation
of the quality of the method. Furthermore, the chosen approximation is unimodal, being unable to
perform correctly in the presence of non-static backgrounds. Kolmogorov et al. [24] fused stereo and
color/contrast information to perform background substitution for teleconferencing. The color/contrast
model is composed by two Gaussians, one for the background process and another for the foreground.
For that reason, it is a unimodal approach that suffers from the same issues as the previous work.

Crabb et al. [25], Zhu et al. [26] and Schiller et al. [27] focus on the combination of color and
depth information obtained by low-resolution ToF cameras. Due to this low resolution (160 × 120,
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176× 144 and 204× 204, respectively), efforts must be made to reduce inaccuracies, specially at object
boundaries. In [25,26], foreground probability and likelihood are computed based on depth, and then,
a trimap is generated classifying pixels on: definitely foreground, definitely background or uncertain.
However, these methods are aimed at performing background substitution and are not well-suited for
video surveillance. For example, Crabb et al. [25] requires defining a distance plane in which objects
are accepted as foreground. This plane will not allow one to model scenarios where a foreground object
is behind parts of the background, such as the scenarios belonging to the proposed dataset.

Schiller et al. [27] propose a method based on [23], which takes into account the reliability
of the depth information. Depth maps are obtained by means of a ToF-camera, at a resolution of
204 × 204 pixels. Our approach uses reliability measure provided by the sensor, and depth information
is obtained at much higher resolution, thus directly reducing inaccuracies. Results show that the
proposed background subtraction algorithm and fusion methods allow us to obtain higher quality
foreground masks.

In this work, we propose an adaptation of the Codebook background subtraction algorithm [8], which
fuses depth and color information to segment foreground regions, focused on video analytics. Although
other authors have already studied the inclusion of depth cues in background subtraction models, the
presented work is innovative in different points:

• It uses a high performance and low cost depth sensor, which directly provides accurate and dense
depth estimations.
• It is based on the Codebook model, which has been naturally generalized to integrate depth

estimations. This model offers a good trade-off between accuracy and efficiency and can be
reasonably extended to use more kinds of features [9,29,30]. We propose a novel method to
integrate depth and color information. This technique uses depth cues to bias the segmentation
based on color.
• We provide an extensive qualitative and quantitative study, based on benchmark sequences that are

made available to facilitate future comparisons. This study allows us to quantify the improvement
obtained in different scenarios, which are complicated for color-based techniques, but also for
depth estimation sensors.

The paper is organized as follows. In Section 2, we briefly describe the original Codebook model.
In Section 3, the adaptation of the Codebook model to integrate depth and color information is explained.
We present, in Section 4, the provided dataset, and results are shown and analyzed. Finally, conclusions
and a discussion are presented in Section 5.

2. Codebook Background Subtraction Model

The Codebook algorithm, as proposed by Kim et al. [8], constructs a background model based on a
quantization/clustering method described by Kohonen [31] and Ripley [32]. According to these works,
the background model for each pixel is composed of a codebook consisting of one or more codewords.
A codeword is a data structure that contains information not only about color and brightness, but also
about frequency of access to its contents, allowing one to maintain a trace of use of the codeword.



Sensors 2013, 13 8898

Essentially, the Codebook algorithm consists of three different stages: construction of the initial
codebook, foreground detection and model maintenance. All these stages are properly described in [8].
Therefore, in this work, we describe the basics of the mathematical model and the computation of
codebooks, so that the extension to the usage of depth information can be more easily followed.

2.1. Model Construction

Given a set of N frames, a training sequence, S, is used for each pixel consisting of N RGB
vectors: S = {v1, v2, ...vN}. Initially, each pixel has an associated codebook, represented as
C = {c1, c2, c3, ...cL}, consisting of L codewords. The number of codewords for each pixel may be
different. Each codeword, ci, i = 1...L;, consists of an RGB vector, vi =

(
R̄i, Ḡi, B̄i

)
, and a six-tuple

auxi = 〈I imin, I
i
max, fi, λi, pi, qi〉. The tuple, auxi, contains intensity values and temporal variables as

described below:

• vi =
(
R̄i, Ḡi, B̄i

)
, average value of each color component.

• I imin, I
i
max, minimum and maximum brightness, respectively, of all pixels assigned to codeword, ci.

• fi, the frequency with which codeword ci has been accessed.
• λi, the maximum negative run-length (MNRL), defined as the longest interval of time during which

codeword ci has not been updated.
• p, q, the first and last updating access times of codeword ci.

Some of the values of the codeword (λi, p, q) are only used to deal with the presence of foreground
objects during the construction. Since this mechanism is explained in detail in [8], we focus on the use
of color and brightness variables.

A reduced pseudo-code for the codebook construction stage is given in Algorithm 1.

Algorithm 1: Algorithm for codebook construction
C ← φ

for t = 1→ N do
xt = (R,G,B), I ←

√
R2 +G2 +B2

Find the codeword, cm, in C matching to xt based on two conditions:
(a) colordist(xt, vm) ≤ ε1

(b) brightness (I, 〈Immin, I
m
max〉) = true

if C = φ or there is no match then
{Create new codeword and add it to C}

else
{Update matched codeword}

end if
end for

According to the description of the algorithm, the two conditions, (a) and (b), detailed in Equations (2)
and (4), are satisfied when the values of pixel xt and cm are similar, both in chromaticity and brightness
intensity. In order to deal with global and local illumination changes, color distortion and brightness
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distortion are evaluated independently. When there is an input pixel, xt, and a codeword, ci, with
vi = (R̄i, Ḡi, B̄i):

‖xt‖2 = R2 +G2 +B2

‖vi‖2 = R̄i
2

+ Ḡi
2

+ B̄i
2 (1)

〈xt, vi〉2 =
(
R̄iR + ḠiG+ B̄iB

)2
The color distortion, δ, can be calculated by Equation (2):

p2 = ‖xt‖2cos2θ =
〈xt, vi〉2

‖xt‖2
(2)

colordist (xt, vi) = δ =

√
‖xt‖2 − p2

In order to allow for adaptation to brightness changes, Imin and Imax are stored in the codeword
information. Brightness is allowed to vary in a certain range, [Ilow, Ihi], defined as:

Ilow = αImax (3)

Ihi = min

{
βImax,

Imin

α

}
Typically, α is in the interval, [0.4, 0.8], and β is in the interval, [1.1, 1.5]. The brightness function is

defined in Equation (4).

brightness (I, 〈Imin, Imax〉) =

true ifIlow ≤ ‖xt‖ ≤ Ihi

false otherwise
(4)

During the foreground detection stage, color and brightness distortions between each input pixel and
the model are computed. Subsequently, the pixel is matched against a codeword based on the two
conditions, and it is classified in the foreground or background according to Equation (5):

BGS(x) =


BG if (colordist (xt, vi) < ε) ∧

brightness (I, 〈Imin, Imax〉)

FG otherwise

(5)

3. Depth-Extended Codebook: DECB

The fusion of background subtraction models with stereo models for disparity computation has
been previously studied by Gordon et al. [23], improving the performance obtained by each separate
technique. In [23] a four-channel background subtraction algorithm based on a unimodal mixture of
Gaussians [4] is proposed.

In our contribution, we have studied the integration of depth information with RGB values based
on the Codebook model [8]. Our approach consists of an update of the model proposed by
Gordon et al., although in our case, a four-channel (R,G,B, Z) codebook has been used. The inclusion
of depth information in our model is performed in two different ways: the first one considers depth as
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the fourth channel of the codebook, which has an independent mechanism from color and brightness;
the second one biases the distance in chromaticity associated to a pixel according to the depth distance.

Our approach to RGB-D (RGB and Depth) background subtraction is the generalization of the
Codebook model proposed by Kim et al. [8], described in Section 2, to work with depth values as a
fourth channel. The Depth-Extended Codebook works by enhancing the matching conditions between
an input pixel value and a codeword. In the original algorithm, the pixel value matches the codeword if
both color and brightness distortions are below a threshold Equations (2) and (4). Our approach includes
additional conditions based on depth. Since depth information is one-dimensional, we have considered
the evaluation of matching between the pixel value and the background model using a method similar to
the brightness condition.

Dlow = αDDmax (6)

Dhi = min

{
βDDmax,

Dmin

αD

}
In Equation (7), we obtain a range of values, [Dlow, Dhi], which represents the depth change allowed

for input values. Dlow and Dhi are computed from Dmin and Dmax, which are the minimum and
maximum depth values for a codeword. These two values are added to the six-tuple described in the
original model (Section 2.1). αD and βD define the threshold in the depth distortion, being typically αD

between 0.4 and 0.7 and βD between 1.1 and 1.5. The logical disparity function is defined as follows:

disparity (D, 〈Dmin, Dmax〉) =


true if ¬V alid(D) ∨

(Dlow ≤ D ∧

D ≤ Dhi)

false otherwise

(7)

When color, brightness and disparity distortions have been computed, the algorithm matches the
current pixel value with the appropriate codeword based on these conditions.

Our approach aims to improve the robustness of the color-based algorithm to shadows, highlighted
regions and sudden lighting changes. Depth computation sensors are more robust to lighting artifacts
and shadows than passive sensors, such as cameras, since they work at the infrared range without
interferences with visible light. For that reason, instead of simply considering depth as an independent
fourth channel, deeper dependence between RGB and depth has been studied.

The most straightforward method to remove shadows and highlighted regions will be not considering
color distortion if the pixel is the background according to depth information. However, Figure 1 shows
a scenario where this approach would produce misdetections, due to the presence of foreground objects
with similar depth to the background.
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Figure 1. Example of complicated scenario for RGB-D methods: presence of shadows and
flat foreground objects. Foreground objects are correctly detected by color-based algorithms,
while they are misdetected by depth-based ones, since the objects are too close to the wall to
be discernible. (a) Original frame; (b) RGB Detection; (c) Depth Detection.

(a) (b) (c)

Our approach consists of modifying the condition around color distortion to consider depth when
color distortion is between two thresholds, ε1 and ε2. This second threshold, ε2, is fixed to 1.6ε1. Thus, a
pixel is classified as foreground or background, as in Equation (8):

BGS(x) =



BG if (colordist(x, cm) ≤ ε1∨

(ε1 < colordist(x, cm) ≤ ε2 ∧ disparity (D, 〈Dmin, Dmax〉))) ∧

brightness (I, 〈Imin, Imax〉)∧

disparity (D, 〈Dmin, Dmax〉)

FG otherwise

(8)

According to Equation (7), the condition, disparity (D, 〈Dmin, Dmax〉), is true if the depth value of
the pixel obtained by the active sensor is invalid. Therefore, when the depth value is invalid, the condition
required in Equation (8) depends entirely on colordist (xt, vi) and brightness (I, 〈Imin, Imax〉), relying
on the color-based background model for the foreground/background classification.

Equation (8) can be interpreted in the following way: if an input pixel is considered to be foreground,
but it is close enough to the threshold, the classification will take into account the knowledge about the
depth value for that pixel.

This modification will produce less foreground pixels than the 4D codebook without biasing the
color threshold, most of the removed pixels being false positives in the original model. Section 4
shows the experiments performed and the results obtained with both RGB-D algorithms, as well as
the color-based codebook.

4. Experiments and Results

This section describes the experiments performed to test the proposed methods and compare them
with the original Codebook algorithm. We explain the dataset and metrics used to evaluate different
approaches and the parameter settings for our method. Furthermore, a quantitative and qualitative
analysis of the results is performed.
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4.1. Dataset and Metrics

In order to evaluate objectively these algorithms by means of a quantitative analysis, we require the
use of a dataset with ground truth segmentation. There are different benchmarks used for evaluation of
background models [33,34], but they do not have available information about depth. On the other hand,
there are benchmarks focused on the use of depth to recognize human activities [35]. However, this kind
of benchmark does not provide ground truth for background subtraction models, but a set of different
categories of activities to classify into. Thus, since we are focused on the use of consumer depth sensors,
we have recorded and manually segmented some sequences by using Kinect [21], although any kind of
active sensor would have been appropriate, too (ASUS Xtion PRO [20] or ToF-cameras [19]). Data from
Kinect have been obtained by using OpenCV [36] and OpenNI drivers [37]. The recorded sequences
have been publicly available at [38]. The sequences are the following:

• ChairBox: a person enters the field of view and leaves a box on a chair. There are flickering lights,
as well as areas where depth cannot be obtained by infrared active sensors.
• Wall: a flat object (paper sheet) appears close to a wall, creating shadows and highlighted regions.

The main difficulties are the similarity of depth between foreground and background and the
change of lighting.
• Shelves: a person enters the scene and puts two objects on shelves. There are changes of exposure,

as well as difficult depth estimation.
• Hallway: sequence recorded aiming at a hallway. There are reflections, complicated lighting,

objects similar to the background and sudden illumination changes.

In order to evaluate background subtraction models, relative measures have been calculated based
on true and false positives and negatives (TP, FP, TN, FN). These measures are widely used in the
literature [2,39] and are defined as follows: recall is the true positive rate, R = TP/(TP + FN);
precision is the ratio between the number of correctly detected pixels and the total number of pixels
marked as foreground, P = TP/(TP+FP ); finally, one accuracy metric, F1, which combines precision
and recall to evaluate the quality of the segmentation. The F1 measure is defined as follows:

F1 = 2 · P ·R
P +R

(9)

This measure offers a trade-off between the ability of an algorithm to detect foreground and
background pixels. This allows for the general evaluation of the robustness of the algorithm. In
general, the higher the value of this estimator, the better the performance, although it usually requires an
additional qualitative analysis to explain the numerical results.

4.2. Parameter Settings

The proposed approach consists of several parameters that define its behavior. Since we want to
evaluate the overall performance of the algorithms, we have chosen a unique set of parameters that gives
good enough results on the complete dataset. Table 1 shows the values of these parameters:
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Table 1. Parameters selected for the proposed approaches.

Parameter Value Parameter Value

ε1 10 ε2 1.6ε1

α 0.75 β 1.3
αD 0.75 βD 1.25
tT rain 50 TH 40
Tadd 100 Tdelete 100

4.3. Performance Evaluation

By using the previously mentioned sequences, six different approaches have been studied and
evaluated. These approaches are the following ones: a 4D version of MOG based on the implementation
proposed by Schiller et al. [27] (MOG4D), the Pixel-Based Adaptive Segmenter [40] (PBAS), the
original color-based Codebook (CB), the Codebook based only on depth (CB1D), the 4D Codebook
(CB4D) without bias over color threshold and the Depth-Extended Codebook (DECB). The tested
version of MOG4D differs slightly from that proposed by Schiller et al. [27], since we cannot use
the amplitude image provided by the ToF-camera. For that reason, the fusion of color and range has
been performed according to Gordon et al. [23], as a disjunction of the previous results.

The experiments performed on Codebook-based approaches involve only the segmentation stage,
without morphological filtering. We have decided to avoid any post-processing stage to evaluate the
capabilities of the algorithms by themselves, although raw results can be easily improved by these
simple operators. In addition, morphological filtering can be applied after segmentation in any moment.
Nevertheless, the MOG4D approach includes morphological filtering, as in the approach proposed by
Gordon et al. [23], in order to remove small isolated foreground points caused by noise.

Figure 2 and Table 2 show the quantitative results obtained in the ChairBox sequence. Table 2 shows
F1 values resultant from the five approaches on the evaluation frames, the mean and standard deviation.
Figure 2 shows the gain on F1 obtained by the three RGB-D algorithms (MOG4D, CB4D and DECB)
and the Pixel-Based Adaptive Segmenter [40] (PBAS) over the color-based one (CB). All RGB-D
approaches get improvements against CB, obtaining higher F1 values despite the good performance
of the color-based method. This good performance explains why the gain is moderate, since the gain
is limited by 1/FCB

1 , where FCB
1 is the F1 value obtained by the CB algorithm (for example, when

FCB
1 = 0.845, gain ≤ 1.183). PBAS obtains worse results than CB, because of misdetections in the

darkest regions of the image. The graph shows that The Depth-Extended Codebook obtains the best
results in all tests, whilst MOG4D gets more moderate results than the Codebook-based approaches.
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Figure 2. F1 gain over standard (color-based) CB obtained from the test, ChairBox.

Table 2. Segmentation evaluation for sequence, ChairBox. The table shows F1 results for the
five studied approaches on four different evaluation frames, the mean and standard deviation
on the entire sequence.

ChairBox Evaluation Frame Global
Approach 278 286 328 356 µ σ

DECB 0.937 0.928 0.876 0.914 0.914 0.027
CB4D 0.936 0.907 0.819 0.882 0.886 0.050

CB 0.921 0.845 0.784 0.837 0.847 0.057
CB1D 0.904 0.904 0.800 0.808 0.854 0.058

MOG4D 0.883 0.865 0.795 0.859 0.851 0.038
PBAS 0.858 0.749 0.693 0.736 0.759 0.070

Figure 3 shows the segmentation produced by the five approaches. In general, the CB4D algorithm
improves over CB and CB1D by using depth and color, but DECB reduces the amount of noise generated
by both algorithms (specially noticeable on the last two frames).

The second sequence, Wall, is especially complicated for the depth-based algorithm, due to similar
depth between foreground objects and background. This is shown in Figure 4, where MOG4D obtains
worse results than CB in all tests, whilst the Depth-Extended Codebook obtains slightly worse results
than CB in one frame. This can be explained by checking Figure 5, where, in the first frame, the CB1D
approach is unable to detect the object, thus misleading the 4D Codebook. However, despite being based
on useless data, DECB gets F1 = 0.9 (Table 3), showing that it is fairly robust to difficult situations.
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Figure 3. Results obtained from the test, ChairBox. 4D version of Mixture of Gaussians
(MOG4D) includes a morphological opening stage, whilst Codebook-based approaches do
not perform it, producing, then, more noise, due to isolated pixels. Most of this noise is
filtered by the Depth-Extended Codebook (DECB) by means of the fusion method.



Sensors 2013, 13 8906

Figure 4. F1 gain over CB obtained from the test, Wall.

Figure 5. Results obtained from the test, Wall.
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Table 3. Segmentation evaluation for sequence, Wall. The table shows F1 results for the five
studied approaches on five different evaluation frames, the mean and standard deviation on
the entire sequence.

Wall Evaluation Frame Global
Approach 74 93 134 168 199 µ σ

DECB 0.900 0.966 0.912 0.957 0.952 0.938 0.029
CB4D 0.939 0.843 0.901 0.857 0.800 0.868 0.054

CB 0.942 0.850 0.910 0.851 0.664 0.843 0.108
CB1D 0.006 0.927 0.314 0.919 0.806 0.595 0.414

MOG4D 0.860 0.406 0.699 0.734 0.435 0.627 0.198
PBAS 0.808 0.395 0.684 0.654 0.476 0.604 0.166

In addition, it gets much better results on every other frame, reaching gain values over 40%. The
last two frames in Figure 5 show the reasons of this gain, which are proficient noise reduction and a
complete shadow suppression by using depth values.

In the third sequence, Shelves, the main difficulty is related to changes of lighting and exposure that
produce many false positives on the entire image. This can be seen in Table 4 with the decrease of F1

obtained by the CB approach, as well as in Figure 6, with the big amount of noise on the furniture. PBAS
does work on each channel separately, not dividing color and brightness, being thus prone to errors in
the presence of global illumination changes and cast shadows. In addition, PBAS adapts more slowly to
false positives, since it updates foreground pixels with less probability.

Table 4. Segmentation evaluation for sequence, Shelves. The table shows F1 results for the
five studied approaches on five different evaluation frames, the mean and standard deviation
on the entire sequence.

Shelves Evaluation Frame Global
Approach 197 212 299 364 418 µ σ

DECB 0.926 0.909 0.622 0.876 0.909 0.848 0.128
CB4D 0.855 0.681 0.365 0.819 0.837 0.711 0.205

CB 0.818 0.655 0.380 0.804 0.838 0.699 0.192
CB1D 0.897 0.942 0.595 0.863 0.876 0.835 0.137

MOG4D 0.927 0.892 0.154 0.862 0.937 0.754 0.337
PBAS 0.771 0.405 0.155 0.775 0.807 0.583 0.291



Sensors 2013, 13 8908

Figure 6. Results obtained from the test, Shelves.

Depth is a more stable cue, although there are regions too close to the sensor to be estimated, as well
as foreground objects too close to the background. Figure 7 shows that the DECB algorithm obtains
much better results by using depth and color combined, since each different input can overcome the
weakness of the other. MOG4D gets very good results in four frames, although it is prone to errors,
due to noise in frame 299. In this graph, gain values between 10% and more than 60% are obtained
by DECB in all tests of the sequence, proving that the proposed method is much more robust than the
original one based only on color cues.
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Figure 7. F1 gain over CB obtained from the test, Shelves.

Figure 8 and Table 5 show the results for the last sequence, Hallway. This sequence being especially
complicated, due to the amount of difficulties, F1 values for the CB algorithm are quite low, which allows
for higher possible gain values (higher improvement), as seen in Figure 8. According to this graph, both
CB4D and DECB approaches offer improvement over the original algorithm, but the latter gets much
greater gain values (up to 120% in one test). MOG4D and PBAS show good results in most of the
frames, but perform worse than the others in the presence of sudden illumination changes.

Figure 8. F1 gain over CB obtained from the test, Hallway.
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Table 5. Segmentation evaluation for sequence, Hallway. The table shows F1 results for
the five studied approaches on seven different evaluation frames, the mean and standard
deviation on the entire sequence.

Hallway Evaluation Frame Global
Approach 120 258 308 363 435 524 565 µ σ

DECB 0.782 0.888 0.930 0.844 0.905 0.385 0.745 0.783 0.187
CB4D 0.606 0.701 0.835 0.629 0.675 0.222 0.653 0.617 0.190

CB 0.598 0.625 0.802 0.565 0.593 0.174 0.529 0.555 0.189
CB1D 0.791 0.939 0.791 0.630 0.801 0.693 0.744 0.770 0.097

MOG4D 0.424 0.875 0.875 0.744 0.732 0.128 0.221 0.571 0.311
PBAS 0.730 0.768 0.812 0.752 0.754 0.126 0.322 0.609 0.270

Figure 9. Results obtained from the test, Hallway.
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By checking Figure 9, more detailed qualitative analysis can be performed. In general, it is shown that
the DECB algorithm gets an important noise reduction, as well as almost total shadow suppression. In
addition, the presence of objects with similar color to the background is complicated for the CB approach,
but solved with the usage of depth information. This also happens on the fifth frame, with reflections on
the floor that are detected correctly by the CB1D and DECB approaches. The most complicated frame
in this sequence, that is, the sixth evaluation frame, includes sudden illumination changes. A directional
light is turned on, producing changes in a big region of the image. Since the CB1D approach is based
only on depth obtained by infrared sensors from the depth camera, it does not suffer from this lighting
change. For that reason, despite the CB and CB4D approaches having a considerable amount of false
positives, DECB minimizes this amount, thus being more robust than the other methods.

Finally, Figure 10 shows the average F1 obtained by each approach in each sequence of the entire
benchmark, while error bars show the standard deviation. According to this figure, the Depth-Extended
Codebook (DECB) shows the best results on every sequence, and the standard deviation associated with
this approach is lower than any other, which is a sign of its robustness. Only in one case, the CB1D
algorithm has lower standard deviation, because of the change of illumination in the Hallway sequence,
but even in this case, the Depth-Extended Codebook outperforms the other algorithm.

Figure 10. Average F1 obtained from the entire benchmark, including error bars showing
the standard deviation (along each benchmark sequence).

5. Conclusions

In this work, we have analyzed the fusion of depth and color to perform background subtraction.
Depth information has been obtained by means of a consumer depth sensor, which allows for high-
resolution depth maps at a lower cost than Time-of-Flight cameras. In addition, since depth is obtained
by using infrared structured light instead of image processing, both signals are complementary and can
be used to tackle classical issues of background subtraction algorithms.
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We propose an adaptation of the Codebook algorithm [8] to use depth, as well as color. The
Codebook algorithm is an advanced multimodal method that offers good trade-off between accuracy and
efficiency, which makes it a very appropriate approach for implementation on embedded systems and
smart cameras. Furthermore, it is robust to dynamic background and gradual scene changes. The use of
depth enables proficient shadow suppression, as well as reduction of noise, due to sudden illumination
changes. In addition, it minimizes the impact of camouflage (foreground objects with color similar
to background).

We have studied two different approaches that differ in the depth integration method: the first
one simply considers depth as a fourth channel of the background model, while the second one
adds a joint RGB-D fusion method. Qualitative and quantitative analysis have been performed by
using a complete dataset recorded with Kinect, which is made publicly available at [38]. Results
show a considerable improvement on accuracy and robustness when using depth and color combined,
since the proposed approach outperforms the other methods in almost every test. This is especially
relevant taking into account that the chosen sequences are complicated and present typical cases where
background subtraction methods fail. Therefore, our methods clearly increase the robustness of this
segmentation stage.

Regarding computational costs, the selected model is efficient, since the costs associated with
depth estimation are removed by the use of active sensors. In addition, the color-based algorithm
has been previously implemented in real-time on FPGA (Field-Programmable Gate Array) [9], the
Depth-Extended Codebook being suitable for embedded systems and smart cameras.

Future work will include use of depth in other video surveillance tasks, such as tracking, calibration
and multi-camera setups.
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