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Abstract

Using recent precise hadronic τ -decay data on the V − A spec-
tral function, and general properties of QCD such as analyticity, the
operator product expansion and chiral perturbation theory, we get
accurate values for the QCD chiral order parameters Lr

10(Mρ) and
Cr

87(Mρ). These two low-energy constants appear at order p4 and p6,
respectively, in the chiral perturbation theory expansion of the V −A

correlator. At order p4 we obtain Lr
10(Mρ) = −(5.22 ± 0.06) · 10−3.

Including in the analysis the two-loop (order p6) contributions, we
get Lr

10(Mρ) = −(4.06 ± 0.39) · 10−3 and Cr
87(Mρ) = (4.89 ± 0.19) ·

10−3 GeV−2. In the SU(2) chiral effective theory, the corresponding
low-energy coupling takes the value l5 = 13.30± 0.11 at order p4, and
l5 = 12.24 ± 0.21 at order p6.

http://arXiv.org/abs/0810.0760v2


1 Introduction

The precise hadronic τ -decay data provided in refs. [1–6] are a very impor-
tant source of information, both on perturbative and non-perturbative QCD
parameters. The theoretical analysis of the inclusive τ decay width into
hadrons allows to perform an accurate determination of the QCD coupling
αs(Mτ ) [7–11], which becomes the most precise determination of αs(MZ) af-
ter QCD running. In this case, non-perturbative QCD effects parametrised
by power corrections are strongly suppressed. Another example of the use
of hadronic τ -decay data is the study of SU(3)–breaking corrections to the
strangeness-changing two-point functions [12–16]. The separate measure-
ment of the |∆S| = 0 and |∆S| = 1 tau decay widths provides accurate
determinations of fundamental parameters of the Standard Model, such as
the strange quark mass and the Cabibbo-Kobayashi-Maskawa quark-mixing
|Vus| [16].

Very important phenomenological hadronic matrix elements and non-
perturbative QCD quantities can also be obtained from τ -decay data. Of
special interest is the difference of the vector and axial-vector spectral func-
tions, because in the chiral limit the corresponding V −A correlator is exactly
zero in perturbation theory. The τ -decay measurement of the V − A spec-
tral function has been used to perform [17–19] phenomenological tests of the
so-called Weinberg sum rules (WSRs) [20], to compute the electromagnetic
mass difference between the charged and neutral pions [18], and to determine
several QCD vacuum condensates [21, 22]. From the same spectral function
one can also determine the ∆I = 3/2 contribution of the ∆S = 1 four-quark
operators Q7 and Q8 to ε′K/εK, in the chiral limit [23].

Using chiral perturbation theory (χPT) [24–26], the hadronic τ -decay
data can also be related to order parameters of the spontaneous chiral sym-
metry breaking (SχSB) of QCD [27]. χPT is the effective field theory of QCD
at very low energies; it describes the SχB Nambu-Goldstone boson physics
through an expansion in external momenta and quark masses. The coeffi-
cients of that expansion are related to order parameters of SχSB. At lowest
order (LO), i.e. O(p2), all low-energy observables are described in terms of
the pion decay constant fπ ≃ 92.4 MeV and the light quark condensate.
At next-to-leading order (NLO), O(p4), the SU(3) χPT Lagrangian contains
12 low-energy constants (LECs), Li=1,··· ,10 and H1,2 [26]. At O(p6), 90 (23)
additional parameters Ci=1,··· ,90 appear in the even (odd) intrinsic parity sec-
tor [28]. These LECs are not fixed by symmetry requirements alone and have
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to be determined phenomenologically or using non-perturbative techniques.
The O(p4) Li couplings have been determined in the past to an acceptable
accuracy; a recent compilation can be found in ref. [29]. Much less well
determined are the O(p6) couplings Ci.

There has been a lot of recent activity to determine the chiral LECs from
theory, using as much as possible QCD information [30–39]. This strong
effort is motivated by the precision required in present phenomenological ap-
plications, which makes necessary to include corrections of O(p6). The huge
number of unknown couplings is the major source of theoretical uncertainty.

In this paper we present an accurate determination of the χPT couplings
L10 and C87, using the most recent experimental data on hadronic τ decays
[1]. Previous work on L10 using τ -decay data can be found in refs. [18, 19,
21,40]. Our analysis is the first one which includes the known two-loop χPT
contributions and, therefore, provides also the O(p6) coupling C87.

2 Theoretical Framework

The basic objects of the theoretical analysis are the two-point correlation
functions of the vector and axial-vector quark currents, defined as follows:

Πµν
ij,J (q) ≡ i

∫

d4x eiqx 〈0|T
(

J µ
ij (x)J ν

ij(0)†
)

|0〉

= (−gµνq2 + qµqν) Π
(1)
ij,J (q2) + qµqν Π

(0)
ij,J (q2) .

(1)

Here, we just need the non-strange correlators, i.e. J µ
ij (x) denotes the

Cabibbo-allowed vector or axial-vector currents, V µ
ud(x) = uγµd and Aµ

ud =
uγµγ5d. Moreover, our analysis will concentrate in the difference

Π(s) ≡ Π
(0+1)
ud,V −A(s) = Π

(0+1)
ud,V (s) − Π

(0+1)
ud,A (s)

≡
2f 2

π

s − m2
π

+ Π(s) , (2)

where we have made explicit the contribution of the pion pole to the lon-
gitudinal axial-vector two-point function. We will work in the isospin limit
mu = md where Π

(0)
ud,V (q2) = 0.
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Figure 1: Analytic structure of Π(s).

The correlator Π(s) is analytic in the entire complex s-plane, except for
a cut on the positive real axis which starts at the threshold sth = 4m2

π. Ap-
plying Cauchy’s theorem to the circuit in Fig. 1, one gets the exact relation:

∫ s0

sth

ds sn 1

π
Im Π(s) +

1

2πi

∮

|s|=s0

ds sn Π(s)

= 2f 2
π m2n

π + Res [sn Π(s), s = 0] . (3)

For non-negative values of the integer power n, the pion pole is the only
singularity within the contour and one gets the so-called finite energy sum
rules (FESR), widely used in the literature. When n takes negative values,
the weight factor sn introduces a pole at the origin which gives rise to the
additional contribution in the r.h.s. of the equation, given by the residue of
snΠ(s) at s = 0.

In the chiral limit (mu = md = 0) the correlator Π(s) vanishes identically
to all orders in perturbation theory. For large enough Euclidean values of
s = −Q2 its operator product expansion (OPE), Π(Q2) =

∑

k CV −A
2k /Q2k,

contains only power-suppressed contributions from dimension d = 2k opera-
tors, starting at d = 6. The nonzero up and down quark masses induce tiny
corrections with dimensions two and four, which are negligible at high values
of Q2. Therefore, with n ≥ 0 and s0 large enough so that the OPE can be
applied in the entire circle s = s0, the integral over the spectral function from
sth to s0 is equal to the pion pole term 2f 2

π m2n
π plus the OPE contribution

(−1)nCV −A
2(n+1) generated by the integration along the circle. For n = 0 and

n = 1, CV −A
2(n+1) is zero in the chiral limit and one gets the celebrated first and
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second WSRs [20], respectively.
For negative values of n ≡ −m < 0, the OPE does not give any contri-

bution to the integration along the circle s = s0. One gets then:
∫ s0

sth

ds

sm

1

π
Im Π(s) =

2f 2
π

m2m
π

+
1

(m − 1)!
Π(m−1)(0)

=
1

(m − 1)!
Π

(m−1)
(0) , (4)

where Π
(m−1)

(0) denotes the (m − 1)th derivative of Π(s) at s = 0. The
interest of this relation stems from the fact that at low values of s the cor-
relator can be rigourously calculated within χPT. At present Π(s) is known
to O(p6) [41], in terms of the LECs that we want to determine. The choices
m = 1 and m = 2 allow then us to relate the spectral function measured in
τ decays with the theoretical expressions of Π(0) and Π ′(0), which can be
derived from the results obtained in ref. [41]:

Leff
10 ≡ −

1

8
Π(0)

= Lr
10(µ) +

1

128 π2

[

1 − log

(

µ2

m2
π

)

+
1

3
log

(

m2
K

m2
π

)]

+ 4m2
π (Cr

61 − Cr
12 − Cr

80)(µ)

+ 4
(

2m2
K + m2

π

)

(Cr
62 − Cr

13 − Cr
81)(µ)

− 2 (2µπ + µK) (Lr
9 + 2Lr

10)(µ)

+ G2L(µ, s=0) + O(p8) , (5)

Ceff
87 ≡

1

16
Π ′(0)

= Cr
87(µ)+

1

7680 π2

(

1

m2
K

+
2

m2
π

)

−
1

64 π2f 2
π

[

1 − log

(

µ2

m2
π

)

+
1

3
log

(

m2
K

m2
π

)]

Lr
9(µ)

−
1

2
G′

2L(µ, s=0) + O(p8) , (6)

where µi = m2
i log(mi/µ)/(16π2f 2

π).
To a first approximation the effective parameters Leff

10 and Ceff
87 correspond

to the LECs Lr
10(µ) and Cr

87(µ), respectively. At O(p4), the only relevant
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correction is given by the logarithmic terms in the second line of (5), which
cancel the χPT renormalization scale dependence of Lr

10(µ); these contribu-
tions are suppressed by one power of 1/NC with respect to Lr

10(µ), where NC

is the number of quark colours. The rest of lines in (5) contain the O(p6)
corrections: the tree-level contributions from the O(p6) χPT Lagrangian are
given in the third and fourth lines, the term proportional to (Lr

9 + 2Lr
10)(µ)

in the fifth line is the one-loop contribution of the O(p4) χPT Lagrangian,
and the function G2L(µ, s=0) in the last line, which does not depend on any
LEC, contains the proper two-loop contributions.

In Eq. (6) the tree-level contribution is given by Cr
87(µ), whereas the

term proportional to Lr
9(µ) is a one-loop correction, which is suppressed

by one power of 1/NC, and the two-loop contributions are contained in
G′

2L(µ, s) ≡ d
ds

G2L(µ, s). The derivative operation, when acting over the one-
loop contribution to Π(s), generates the terms proportional to inverse powers
of the pion and kaon masses in the second line. For simplicity, we omit the
explicit analytic forms of G2L(µ) and G′

2L(µ), which are very lengthy and
not too enlightening; these two functions contain a 1/N2

C suppression factor
with respect to Lr

10(µ) and Cr
87(µ).

3 Determination of Effective Couplings

We will use the 2005 ALEPH data on semileptonic τ decays [1], which pro-
vides the most recent and precise measurement of the V −A spectral function.
The effective chiral couplings can be directly extracted from the following in-
tegrals over the hadronic spectrum:

− 8 Leff
10 ≡ Π(0) =

1

π

∫ s0

sth

ds

s
Im Π(s) , (7)

16 Ceff
87 ≡ Π ′(0) =

1

π

∫ s0

sth

ds

s2
Im Π(s) . (8)

These relations are exactly satisfied at s0 → ∞. At finite values of s0, they
assume that the OPE approximates well the correlator Π(s) over the entire
complex circle 1 |s| = s0. The OPE is expected to be a valid approximation

1Or equivalently these relations assume that the integrals on the real axis from s0 to
infinite are negligible, what is expected to be true only for high enough values of s0 and
for accidental “duality points”.
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for high-enough values of s0 and away from the real axis. While the kinemat-
ics of τ decay restrict the upper limit of integration to the range s0 ≤ m2

τ , the
main source of theoretical uncertainty in the contour integration originates in
the region close to the point s = s0 in the real axis. Studying the sensitivity
to s0 of the integrals (7) and (8), one can test validity of the OPE and assess
the size of the associated systematic errors.

0.5 1.0 1.5 2.0 2.5 3.0
s0HGeV

2L

-0.010

-0.008

-0.006

-0.004

-0.002

L10
eff

Figure 2: Determinations of Leff
10 at different values of s0. The continuous

lines show the results obtained from Eq. (7). The modified expressions in
Eqs. (9) and (10) give rise to the dashed and dot-dashed lines, respectively.
For clarity, we do not include their corresponding error bands.

In Fig. 2, we plot the value of Leff
10 obtained from Eq. (7) for different

values of s0. The band between the continuous lines shows the corresponding
experimental uncertainties (at one sigma). As expected, the result is far from
an horizontal line at low values of s0, where the applicability of the OPE
is suspect. The oscillatory behaviour stabilises quite fast reaching a rather
stable and flat result at values of s0 between 2 and 3 GeV2. The weight factor
1/s decreases the impact of the high-energy region, minimising the size of
quark-hadron duality violations around s0. This integral appears then to be
much better behaved than the corresponding FESRs with sn (n ≥ 0) weights.

There are several possible strategies to estimate the central value for Leff
10

and the unavoidable theoretical uncertainties. One is to give the predictions
fixing s0 at the so-called “duality points”, where the first and second WSRs
happen to be satisfied. Owing to the oscillatory behaviour of the WSRs
results, this happens at two different values of s0. At the highest “duality
point”, which is obviously the more reliable, we obtain Leff

10 = −(6.45±0.09) ·
10−3, where the quoted error only includes the experimental uncertainty.
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Being very conservative, one could also take into account the first “duality
point”; performing a weighted average of both results, we get Leff

10 = −(6.50±
0.13) · 10−3, where the uncertainty covers the values obtained at the two
“duality points”.

Assuming that the integral (7) oscillates around his asymptotic value
with decreasing oscillations, one can get another estimate performing an
average between the maxima and minima of the successive oscillations. This
procedure gives a value Leff

10 = −(6.5±0.2) ·10−3, that is perfectly compatible
with the previous results based on the “duality points”. Our last method
of estimating the quark-hadron duality violation uses appropriate oscillating
functions defined in [42] which mimic the real quark-hadron oscillations above
the data. These functions are defined such that they match the data at
approximately 3 GeV2, go to zero with decreasing oscillations and satisfy the
first and second WSRs. We find in this way Leff

10 = −(6.50 ± 0.12) · 10−3,
where the error spans the range generated by the different functions used.
This result agrees well with our previous estimates.

We can take advantage of the WSRs to construct modified sum rules with
weight factors proportional to (1 − s/s0), in order to suppress numerically
the role of the suspect region around s ∼ s0 [8]:

− 8 Leff
10 =

1

π

∫ s0

sth

ds

s

(

1 −
s

s0

)

Im Π(s) + ∆1(s0) ,

(9)

=
1

π

∫ s0

sth

ds

s

(

1 −
s

s0

)2

Im Π(s)

+ 2∆1(s0) − ∆2(s0) . (10)

The factors ∆1(s0) =
(

2f 2
π + CV −A

2

)

/s0 and ∆2(s0) =
(

2f 2
πm2

π − CV −A
4

)

/s2
0

are small corrections dominated by the f 2
π term, since CV −A

2,4 vanish in the
chiral limit. The sum rule (10) has been previously used in refs. [21, 40].

The dashed and dot-dashed lines in Fig. 2 show the results obtained from
Eqs. (9) and (10), respectively. As already found in refs. [21,40], the modified
weight factors minimise the theoretical uncertainties in a very sizeable way,
giving rise to very stable results over a quite wide range of s0 values. One gets
then Leff

10 = −(6.51±0.06)·10−3 using Eq. (9), and Leff
10 = −(6.45±0.06)·10−3

from Eq. (10).
Taking into account all the previous discussion, we quote as our final
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result:
Leff

10 = −(6.48 ± 0.06) · 10−3 . (11)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
s0HGeV

2L

0.002

0.004

0.006

0.008

0.010

0.012

C87
effHGeV

-2L

Figure 3: Determinations of Ceff
87 at different values of s0. The continuous

lines show the results obtained from Eq. (8). The modified expressions in
Eqs. (12) and (13) give rise to the dashed and dot-dashed lines, respectively.
For clarity, we do not include their corresponding error bands.

We have made a completely analogous analysis to determine the effective
coupling Ceff

87 . The results are shown in Fig. 3. The continuous lines, obtained
from Eq. (8), are much more stable than the corresponding results for Leff

10 ,
owing to the 1/s2 factor in the integrand. The discontinuous and dotted lines
correspond to the results obtained from the modified sum rules:

16 Ceff
87 =

1

π

∫ s0

sth

ds

s2

(

1 −
s2

s2
0

)

Im Π(s) +
∆1

s0

, (12)

=
1

π

∫ s0

sth

ds

s2

(

1 −
s

s0

)2 (

1 + 2
s

s0

)

Im Π(s)

+
3∆1 − 2∆2

s0
. (13)

The agreement among the different estimates is quite remarkable. We quote
as our final conservative result,

Ceff
87 = (8.18 ± 0.14) · 10−3 GeV−2 . (14)
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4 Determination of Lr
10 and Cr

87

The χPT coupling Lr
10(µ) can be obtained from Leff

10 , using the relation (5). At
O(p4) the determination is straightforward, since one only needs to subtract
from Leff

10 the term
[

1 − log (µ2/m2
π) + 1

3
log (m2

K/m2
π)

]

/(128π2). Taking µ =
Mρ as the reference value for the χPT renormalization scale, one gets

Lr
10(Mρ) = −(5.22 ± 0.06) · 10−3 . (15)

At order p6, the numerical relation is more subtle because it gets small
corrections from other LECs. It is useful to classify the O(p6) contribu-
tions through their ordering within the 1/NC expansion. The tree-level term
4m2

π(Cr
61 − Cr

12 − Cr
80)(Mρ), which is the only O(p6) correction in the large–

NC limit, is numerically small because it appears suppressed by a factor
m2

π. The three relevant couplings have been determined phenomenologically
with a moderate accuracy: Cr

61(Mρ) = (1.24 ± 0.44) · 10−3 GeV−2 [34] (from

Π
(0+1)
ud,V (0) − Π

(0+1)
us,V (0)), Cr

12(Mρ) = (0.4 ± 6.3) · 10−5 GeV−2 [43] (from the

Kπ scalar form factor) and Cr
80(Mρ) = (2.1 ± 0.5) · 10−3 GeV−2 [44] (from

a1/K1 mass and width differences). These determinations agree reasonably
well with published meson-exchange estimates [35, 41] and lead to a total
contribution 4m2

π(Cr
61 −Cr

12 −Cr
80)(Mρ) = −(6.7± 5.2) · 10−5. The scale de-

pendence of this combination of O(p6) couplings [28] between µ = 0.6 GeV
and µ = 1.1 GeV is within its quoted uncertainty.

At NLO in 1/NC we need to consider the tree-level contribution pro-
portional to the combination of LECs (Cr

62 − Cr
13 − Cr

81)(Mρ). We are not
aware of any published estimate of these 1/NC suppressed couplings, be-
yond the trivial statement that they don’t get any tree-level contribution
from resonance exchange [35]. We will adopt the conservative range |Cr

62 −
Cr

13 − Cr
81|(Mρ) ≤ |Cr

61 − Cr
12 − Cr

80|(Mρ)/3, which gives a contribution
4(2m2

K +m2
π)(Cr

62−Cr
13−Cr

81)(Mρ) = (0.0±5.8) ·10−4. The scale dependence
between µ = 0.6 GeV and µ = 1.1 GeV of this combination of O(p6) cou-
plings [28] is within its quoted uncertainty. The uncertainty on this term will
dominate our final error on the Lr

10(Mρ) determination. At the same NLO
in 1/NC, there is also a one-loop correction proportional to Lr

9(Mρ); using
the O(p6) determination Lr

9(Mρ) = (5.93±0.43) · 10−3 [45], this contribution
can be estimated to be 2(2µπ + µK) Lr

9(Mρ) = −(1.56± 0.11) · 10−3. Finally,
the 1/N2

C suppressed two-loop function which collects the non-analytic con-
tributions takes the value G2L(Mρ) = −0.524 · 10−3, one order of magnitude
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smaller than Leff
10 , but still eight times larger than the uncertainty quoted for

Leff
10 in (11). Taking all these contributions into account, we finally get the

wanted O(p6) result:

Lr
10(Mρ) = −(4.06 ± 0.04Leff

10
± 0.39LECs) · 10−3

= −(4.06 ± 0.39) · 10−3 , (16)

where the uncertainty has been split into its two main components. The
final error is completely dominated by our ignorance on the 1/NC suppressed
LECs of O(p6).

The determination of Cr
87 from Ceff

87 does not involve any unknown LEC.
The relation (6) contains a one-loop correction of size −(3.15 ± 0.13) · 10−3,
which only depends on Lr

9(Mρ) and the pion and kaon masses, and small non-
analytic two-loop contributions collected in the term G′

2L(Mρ) = −0.277 ·
10−3 GeV−2. In spite of its 1/NC suppression, the one-loop correction is very
sizeable, decreasing the final value of the O(p6) LEC:

Cr
87(Mρ) = (4.89 ± 0.19) · 10−3 GeV−2 . (17)

5 SU(2) χPT

Up to now, we have discussed the LECs of the usual SU(3) χPT. It turns use-
ful to consider also the effective low-energy theory with only two flavours of
light quarks. In some cases, this allows to perform high-accuracy phenomeno-
logical determinations of the corresponding LECs at NLO. Moreover, recent
lattice calculations with two dynamical quarks are already able to obtain the
SU(2) LECs with sufficient accuracy and this is an important check for them.

In SU(2) χPT, there are ten LECs, li=1,..7 and h1,2,3, at O(p4) (NLO)
[25]. Using the O(p6) relation between lr5(µ) and Lr

10(µ), recently obtained
in ref. [46], and the definition of the invariant couplings li adopted in [25],

10



we get

l5 = −192π2 Leff
10 + 1 + log

(

mK

m̂K

)

+ 768 π2 m2
π(Cr

61 + Cr
62 − Cr

12 − Cr
13 − Cr

80 − Cr
81)(µ)

+ 1536 π2(m2
K − m̂2

K)(Cr
62 − Cr

13 − Cr
81)(µ)

− 384 π2(2µπ + µK − µ̂K)(Lr
9 + 2Lr

10)(µ)

− xK

[

−
67

48
+

21

16
ρ1 +

5

8
log

(

4

3

)

−
17

4
log

(

µ2

m̂2
K

)

+
3

4
log2

(

µ2

m̂2
K

)]

+ 192 π2 G2L(µ) + O(p8) , (18)

where m̂2
K = m2

K −m2
π/2 is the kaon mass squared in the limit mu = md = 0,

xK = m̂2
K/(16π2f 2

π), µ̂K = m̂2
K log(m̂K/µ)/(16π2f 2

π) and ρ1 ≃ 1.41602.
The first line contains the O(p4) contributions; the determination of l5

at this order is then straightforward. The full O(p6) result, with the differ-
ent tree-level, one-loop and two-loop corrections, is given in the other lines.
Following the same procedure as in the SU(3) case, we get the results

l5 =

{

13.30 ± 0.11 , O(p4),

12.24 ± 0.21 , O(p6).
(19)

6 Summary

Using the most recent hadronic τ -decay data [1] on the V −A spectral func-
tion, and general properties of QCD such as analyticity, the OPE and χPT,
we have determined very accurately the chiral LECs Lr

10(Mρ) and Cr
87(Mρ).

Performing an O(p4) analysis, we obtain

Lr
10(Mρ) = −(5.22 ± 0.06) · 10−3 , (20)

while a more elaborate study, including the O(p6) χPT corrections provides
the values:

Lr
10(Mρ) = −(4.06 ± 0.04Leff

10
± 0.39LECs) · 10−3

= −(4.06 ± 0.39) · 10−3 , (21)
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and
Cr

87(Mρ) = (4.89 ± 0.19) · 10−3 GeV−2 . (22)

Our error estimate includes a careful analysis of the theoretical uncertain-
ties associated with the use of the OPE in the dangerous region close to the
physical cut. Moreover, in (21) we have explicitly separated the error into its
two main components, showing that our present ignorance on the 1/NC sup-
pressed LECs dominates the final uncertainty of the Lr

10(Mρ) determination
at O(p6).

Several determinations of L10 have been performed before [18, 19, 40],
using the older 1998 ALEPH data [2, 3]. In ref [18] the result Lr

10(Mρ) =
−(5.13 ± 0.19) · 10−3 was obtained to O(p4), through a simultaneous fit of
this parameter and the OPE corrections of dimensions six and eight to several
spectral moments of the hadronic distribution. This determination is in good
agreement with our O(p4) result (20). Our quoted uncertainty has an smaller
experimental contribution and includes a better assessment of the theoretical
uncertainties. The value Leff

10 = (−5.8 ± 0.2) · 10−3 (3.2 σ smaller than ours)
was extracted from τ data in ref. [19] using the first “duality point” of the
WSRs. The difference comes from underestimated theoretical uncertainties
in this reference, as can be easily seen by choosing instead the second duality
point or varying slightly the value of the first duality point. In fact the same
reference [19] (see Eq. (10) therein) presents also a different estimate of Leff

10

that is in very good agreement with our result. In ref. [40] both Leff
10 and Ceff

87

were determined, in good agreement with our findings which use the most
recent 2005 data. An updated value of Leff

10 , using the 2005 data, has also
been given in ref. [21].

Our determinations of Lr
10(µ) and Cr

87(µ) at µ = Mρ agree within errors
with the large–NC estimates based on lowest-meson dominance [31,36,41,47]:

L10 = −
F 2

V

4M2
V

+
F 2

A

4M2
A

≈ −
3f 2

π

8M2
V

≈ −5.4 · 10−3 ,

(23)

C87 =
F 2

V

8M4
V

−
F 2

A

8M4
A

≈
7f 2

π

32M4
V

≈ 5.3 · 10−3 GeV−2 .

(24)

Eq. (22) is also in good agreement with the result of ref. [38] for C87 based on
Padé Approximants. These predictions, however, are unable to fix the scale
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dependence which is of higher-order in 1/NC . More recently, the resonance
chiral theory Lagrangian [36, 48] has been used to analyse the correlator
Π(s) at NLO order in the 1/NC expansion [39]. Matching the effective field
theory description with the short-distance QCD behaviour, the two LECs
are determined, keeping full control of their µ dependence. The theoretically
predicted values Lr

10(Mρ) = −(4.4±0.9)·10−3 and Cr
87(Mρ) = (3.6±1.3)·10−3

GeV−2 [39] are in perfect agreement with our determinations, although less
precise. A recent lattice estimate [49] finds Lr

10(Mρ) = −(5.2± 0.5) · 10−3 at
O(p4), which is also in good agreement with our O(p4) result in (20).

A recent reanalysis of the decay π+ → e+νγ [44], using new experimental
data, has provided quite accurate values for the combination of O(p4) LECs
L9 + L10. To O(p4) one finds Lr

9(Mρ) + Lr
10(Mρ) = (1.32± 0.14) · 10−3, while

the O(p6) result Lr
9(Mρ) + Lr

10(Mρ) = (1.44 ± 0.08) · 10−3 is slightly more
precise [44]. Combining these numbers with our results for Lr

10(Mρ), one
obtains

Lr
9(Mρ) =

{

(6.54 ± 0.15) · 10−3 , O(p4),

(5.50 ± 0.40) · 10−3 , O(p6),
(25)

in perfect agreement with the O(p4) result Lr
9(Mρ) = (6.9 ± 0.7) · 10−3 of

ref. [29] and the O(p6) result Lr
9(Mρ) = (5.93± 0.43) · 10−3 of ref. [45]. This

last comparison represents an indirect check (in fact the only possible one
for the moment) of our O(p6) result for L10.

We have also determined the corresponding LEC of L10 in the SU(2)
effective theory, both at LO and NLO:

l5 =

{

13.30 ± 0.11 , O(p4),

12.24 ± 0.21 , O(p6).
(26)

¿From a phenomenological analysis of the radiative decay π → lνγ within
SU(2) χPT, the authors of ref. [50] obtained l6 − l5 = 2.57 ± 0.35 at O(p4),
and l6−l5 = 2.98±0.33 at O(p6). Using these results and our determinations
for l5 in (26), one gets

l6 =

{

15.87 ± 0.37 , O(p4),

15.22 ± 0.39 , O(p6).
(27)

At O(p4) the comparison of these estimates of SU(2) LECs with previous
results is straightforward, since they are proportional to the corresponding

13



SU(3) couplings, that we have already discussed. Our determination of l5 is
the first one obtained at O(p6), whereas for l6 ref. [51] finds l6 = 16.0±0.5±
0.7, where the last error is purely theoretical, in good agreement with ours,
although less precise.
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and J. Kambor, Phys. Rev. D 61 (2000) 114025.

[35] V. Cirigliano et al., JHEP 04 (2005) 006.

[36] V. Cirigliano el al., Nucl. Phys. B 753 (2006) 139; Phys. Lett. B 596
(2004) 96.

16



[37] I. Rosell, J.J. Sanz-Cillero and A. Pich, JHEP 01 (2007) 039.

[38] P. Masjuan and S. Peris, Phys. Lett. B 663 (2008) 61; JHEP 05 (2007)
040.

[39] A. Pich, I. Rosell and J.J. Sanz-Cillero, JHEP 07 (2008) 014.

[40] C.A. Domı́nguez and K. Schilcher, Phys. Lett. B 581 (2004) 193; ibid.
B 448 (1999) 93.

[41] G. Amorós, J. Bijnens and P. Talavera, Nucl. Phys. B 568 (2000) 319.
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