EVALUACIÓN EXPERIMENTAL DE LA CONSTANCIA DEL COLOR BAJO FONDOS ADAPTANTES COMPLEJOS

Memoria de Doctorado

JUAN LUIS NIEVES GÓMEZ
Granada, 1996
EVALUACIÓN EXPERIMENTAL DE LA CONSTANCIA DEL COLOR BAJO FONDOS ADAPTANTES COMPLEJOS

por

JUAN LUIS NIEVES GÓMEZ

Visado en Granada,
a 10 de Septiembre de 1996.

DIRECTOR DE LA TESIS

Fdo.: D. Fº Javier Romero Mora
Catedrático de Óptica de la Universidad de Granada

Trabajo presentado para aspirar al grado de:
DOCTOR EN CIENCIAS

Fdo.: Juan Luis Nieves Gómez
Licenciado en Ciencias
(Sección de Físicas)
Antes de comenzar el desarrollo de esta memoria, quisiera agradecer la ayuda y el apoyo recibidos por las muchas personas que me han rodeado durante la realización de la misma.

Gracias en primer lugar, al director del trabajo, doctor Javier Romero Mora, no sólo por su eficiente labor en esta tarea sino también por haberme guiado en todo momento.

A los doctores Enrique Hita Villaverde, Luis Jiménez del Barco y José Antonio García García, sin cuyos consejos y calidad humana todo habría sido más difícil.

A Paco y Javier por ser sufridos observadores durante todo este tiempo.

A mis compañeros y amigos de Departamento, siempre dispuestos a echarme una mano y darme ánimos.

Y sobre todo, a mi mujer, que con su apoyo y aliento me ha soportado durante la realización de este trabajo.
A mis Padres
ÍNDICE

1. INTRODUCCIÓN Y OBJETIVOS 1

2. TEORÍAS Y MODELOS ACTUALES DE CONSTANCIA DEL COLOR 9
 2.1. Formación de la señal de color .. 10
 2.2. Teorías y modelos actuales de constancia del color 13
 2.2.1. Modelos lineales
 2.2.2. Modelos de apariencia del color
 2.2.3. Algoritmos "lightness" o Retinex

3. ANTECEDENTES Y TRABAJOS PRELIMINARES 25
 3.1. Antecedentes históricos ... 26
 3.2. Primeros pasos en la elaboración de una teoría de la constancia del color ... 28
 3.3. Aspectos psicofísicos involucrados en la constancia del color 32
 3.3.1. Estimación subjetiva de los cambios de iluminación
 3.3.2. Apariencia del color y mecanismos de contraste específicos
 3.4. Planteamiento de las experiencias ... 42

4. DISPOSITIVO EXPERIMENTAL 45
 4.1. Sistema productor de estímulos .. 47
 4.1.1. Características generales de los dispositivos CRT Color
 4.1.2. Descripción general del dispositivo experimental
 4.2. Puesta a punto del dispositivo .. 53
 4.2.1. Suposiciones de calibración
 4.2.2. Comportamiento lineal y aditivo de los cañones
 4.2.3. Método de calibración

5. MÉTODO Y DESARROLLO DE LAS SESIONES EXPERIMENTALES 61
 5.1. Parámetros colorimétricos involucrados 61
 5.1.1. Descripción colorimétrica básica
 5.1.2. Simulación de objetos de color: recuperación de la reflectancia espectral
 5.1.3. Elección de iluminantes
 5.1.4. Observadores
 5.2. Método experimental .. 73
 5.2.1. Descripción general del sistema de observación
 5.2.2. Igualaciones asimétricas con fondo adaptante complejo
 5.2.2.1. Configuración espacial
 5.2.2.2. Cromaticidad y luminancia de los estímulos
 5.2.2.3. Parámetros temporales y desarrollo de las sesiones experimentales
Introducción y objetivos

En los últimos años, y como consecuencia del gran avance tecnológico que se ha producido, el desarrollo de modelos matemáticos y algoritmos de Visión Artificial ha adquirido una importancia relevante. Este interés no sólo se ha precipitado desde un punto de vista puramente teórico, sino que también se debe a las implicaciones técnicas que se derivan en el encaje de investigación de tanta actualidad como la Robótica.

Esos hechos hacen que dichos modelos y algoritmos deban ser hoy en día un estudio más profundo de las características diversas que describen el funcionamiento del sistema visual básico, tanto del campo de la Visión en general, como descripción funcional en el sentido desde aspectos como variaciones concernientes a la visión espacial, visión del movimiento, aspectos temporales investigados en la visión, etc., y entre ellos, aquellos a los que estamos más habituados y que es la visión del color. Un análisis de estos aspectos de la Visión permitirá una mejor adscripción de los mismos a las diferentes visión de color.
El estudio del fenómeno de la constancia del color ha adquirido un gran auge en los últimos 10 años, no sólo debido a su interés científico y asociado al conocimiento del sistema visual humano, sino también como aplicación necesaria en el desarrollo de un modelo completo de sistema de visión del color. Nuestro objetivo al realizar este trabajo ha seguido estas directrices y ha intentado revelar algunos aspectos que se derivan del estudio experimental de la constancia del color, motivados por la línea de investigación relativamente reciente en nuestro Departamento y que ha estado dirigida hacia el análisis de algoritmos de reconstrucción de reflectancias y búsqueda de una representación idónea de las mismas. En la presente memoria se continúa esta línea, completando su estudio con una evaluación experimental de la influencia que tiene la iluminación adaptante sobre la apariencia del color percibido en distintos contextos visuales.

En la literatura referente al tema encontramos que a pesar de la proliferación de trabajos que abordan el problema de la constancia del color, la mayoría de ellos van dirigidos hacia la elaboración de modelos teóricos de identificación y reconocimiento automático del color (D'Zmura e Iverson, 1993a; Wandell, 1987; Maloney y Wandell, 1986) más que a la evaluación de la influencia de este fenómeno sobre los mecanismos de la visión del color en humanos. En este sentido, sólo encontramos algunos trabajos donde empieza a plantearse un cambio de enfoque en el análisis derivado de los datos de las experiencias de constancia del color, y que comienza con la utilización, no sólo de espacios de representación clásicos en el campo de la Visión del color y la Colorimetría, caso del CIE-1931, CIE-Luv o sistema Munsell, sino también de otras representaciones que involucran directamente mecanismos de visión del color en etapas tempranas, como son los conos fotorreceptores L, M y S (Arend, 1993; Lucassen y Walraven, 1993; Brainard y Wandell, 1992). La memoria de Doctorado que presentamos aborda la problemática del fenómeno de la constancia del color desde este punto de vista y se plantea el análisis de una serie de carencias que, a este respecto, se encuentran en los trabajos publicados hasta la fecha.

La constancia del color se ha considerado tradicionalmente como un proceso de adaptación cromática extrema, que permite al sistema visual obtener una apariencia estable en el color percibido de los objetos a pesar de posibles cambios en la iluminación bajo la que son observados. En base a este hecho, los modelos y algoritmos de constancia del color...
asumen de manera implícita que la constancia del color es perfecta, lo que lleva a dichos modelos a plantearse la adquisición de una representación estable del color de los objetos con independencia de las condiciones de iluminación. Esta representación está basada en un principio de descuento del iluminante, de modo que para caracterizar el color de los objetos los modelos son capaces siempre de extraer una representación de la función reflectancia espectral que los caracteriza, con independencia de la composición espectral de la luz que ilumine dichos objetos; el conocimiento de esa función de reflectancia y el de la distribución espectral de energía de la luz ambiente, es suficiente para tener definido en todo momento el color de los objetos que componen cualquier escena observada. La capacidad de cada modelo para realizar esta operación y, unido a ella, la bondad en la adquisición de esa representación estable del color, no va ligada al mayor o menor grado de constancia del color que pueda presentar el sistema visual humano, sino que depende únicamente de la eficiencia y limitaciones computacionales del algoritmo utilizado en cada caso. Si bien el descuento total del iluminante y la perfecta constancia del color, pueden ser útiles en sistemas automáticos de análisis y síntesis del color, cualquier algoritmo de Visión Artificial debería tener en cuenta que la constancia del color no es un fenómeno que se presente de manera perfecta en el sistema visual humano.

Dado que apenas hay resultados que tengan en cuenta este hecho, uno de los objetivos que nos hemos marcado en la realización de este trabajo ha sido el de evaluar experimentalmente no sólo el grado de constancia del color que el sistema visual humano presenta, sino además las implicaciones que se derivarían del mismo al considerar un modelo que permita una predicción de los valores de excitación de los mecanismos de visión del color, en función de las condiciones de adaptación luminosas. Para tal fin, se plantearon un conjunto de sesiones experimentales en las que, por medio de igualaciones *asimétricas* por memoria, la apariencia de color de un objeto se igualaba cuando era observado bajo distintas condiciones de iluminación. El dispositivo experimental utilizado y sistema generador de estímulos constaba básicamente de un monitor CRT color, en el que se simularon escenas complejas constituidas por diversos objetos de color, lo que se denominan escenas tipo *Monarián*, y que eran observadas bajo diferentes iluminantes en cada caso.
Por otro lado, entendemos que los resultados derivados de este análisis no deben estar encaminados únicamente a la caracterización colorimétrica de dicha apariencia del color, sino que se debe realizar un estudio adicional que ahorde en los aspectos directamente relacionados con el funcionamiento del sistema humano de visión del color. En consecuencia, otro de los objetivos ha sido relacionar nuestros resultados con los modelos de visión del color actuales, por lo que se extrapoló el análisis de los mismos al espacio de excitación de conos propuesto por Boynton (1986). Como ya se ha comentado, y en conexión con la constancia del color, sólo en algunos trabajos se ha puesto de manifiesto cómo varía la excitación de los mecanismos de visión del color en función de las condiciones de iluminación, aunque siempre considerando sólo los conos fotorreceptores L, M y S; en este sentido, nuestro trabajo ha pretendido ir más allá, considerando etapas superiores en el procesado de la información del color, y en particular las derivadas de los mecanismos oponentes de visión del color: rojo-verde y amarillo-azul.

A diferencia del sistema CIE-1931 (x, y; Y), el espacio de excitación de conos está basado sobre modelos oponentes de visión del color, lo que nos ha permitido evaluar directamente la influencia que tienen las condiciones de iluminación sobre la excitación de cada uno de dichos mecanismos oponentes. Para la utilización de este espacio de representación, el conjunto de objetos de color a igualar no se escogió de forma aleatoria, como ocurre en todos los trabajos referentes al tema, sino que se eligió en un plano de luminancia constante y situando los estímulos sobre líneas de igual excitación de los mecanismos oponentes rojo-verde (L-2M) y amarillo-azul (L+M-S).

En cuanto al método experimental empleado, encontramos que si bien las igualaciones asimétricas de color están asentadas en la literatura del tema, y son un procedimiento habitual y recomendado en este tipo de experiencias, existen diferencias importantes respecto de los tiempos de adaptación y exposición de los estímulos test utilizados por distintos autores. En nuestro caso, se han utilizado tiempos de 1 minuto para los periodos de adaptación intermedios del observador a cada una de las condiciones de iluminación test, y de 10 segundos para la presentación del estímulo cuya apariencia debía ser igualada. Sin embargo, en experiencias de constancia del color similares llegan a utilizarse tiempos de exposición inferiores en algunos casos a 1 segundo (Arend, 1993; Foster, Craven y...
Sale, 1992; Arend, Reeves, Schirillo y Golstein, 1991) o incluso se diseñan secuencias alternantes sin tiempos de adaptación intermedios para evitar la intrusión de componentes de memoria (Craven y Foster, 1992); también es frecuente utilizar visión haploscopica y permitir que el observador realice sus igualaciones basándose en una observación sucesiva de los objetos de referencia y test (Lucassen y Walraven, 1993; Valberg y Lange-Malecki, 1990). A pesar de que los resultados derivados de estas experiencias sugieren rápidos procesos de integración, que permiten al sistema visual adquirir una cierta constancia del color, entendemos que tan cortos periodos de tiempo no se adecúan a la experiencia que los observadores tienen de este fenómeno en su vida cotidiana. Aunque situaciones similares pueden ser frecuentes, como el caso de las entradas o salidas hacia ambientes muy luminosos, zonas de penumbra debidas a las sombras proyectadas por algún obstáculo, etc, el observador suele disponer de un periodo de adaptación mayor, en el que adquiere una representación estable del color percibido de los objetos presentes en la escena. En este sentido, en nuestras sesiones experimentales no sólo se han utilizado iluminantes que reproducen condiciones de iluminación naturales y artificiales, en las que puede desenvolverse habitualmente el observador, sino que además los tiempos más largos empleados permiten conseguir una adaptación completa de éste. La memoria al color, tradicionalmente unida a estudios de discriminación del color, ha jugado también un papel fundamental en la realización de todas las igualaciones, ya que pensamos que aquella es un factor a tener en cuenta en la constancia del color, cuando los observadores obtienen una apariencia estable del color percibido de los objetos en escenas cromáticamente complejas. En este caso, lo que sí se han eliminado son otras fuentes de información de las que los observadores pueden valerse para realizar sus igualaciones, como son la percepción de formas, texturas, etc, considerando sólo figuras geométricas simples.

Todos los objetivos que nos hemos marcado se han reflejado en los diversos capítulos en los que se ha desarrollado esta memoria. En el capítulo 2, que hemos titulado Teorías y modelos actuales de constancia del color, se pone de manifiesto la conexión del fenómeno de la constancia del color con los algoritmos actuales que buscan un reconocimiento automático del color. El capítulo comienza con un estudio del concepto de este fenómeno, para después introducir las distintas teorías que se han desarrollado para la recuperación de
la información asociada al color de los objetos con independencia de las condiciones de iluminación presentes en cualquier escena observada.

El marco donde se desarrolla nuestro trabajo queda reflejado en el siguiente capítulo sobre *Antecedentes y trabajos preliminares*, en el que se expone la problemática actual asociada al fenómeno de la constancia del color evaluada en humanos. Esta revisión bibliográfica abarca desde los primeros estudios a principios de siglo, en los que este fenómeno se considera como un simple proceso de adaptación cromática, hasta los más recientes donde se introducen modelos no lineales para su explicación y contextos visuales más complejos.

Posteriormente, en los capítulos 4 y 5 se exponen de manera detallada las características del dispositivo experimental empleado y del método de medida seguido. En el capítulo titulado *Dispositivo experimental*, se describe el sistema productor de estímulos que se utiliza y consistente en un monitor CRT color, haciendo especial hincapié en su puesta a punto y calibración colorimétrica. Por medio de este dispositivo, se desarrollaron una serie de experiencias de igualaciones de color, utilizando fondos adaptantes constituidos por diversos objetos de color. Este tipo de experiencias realizadas, reflejadas en el capítulo *Método y desarrollo de las sesiones experimentales*, nos permitió disponer de un conjunto amplio de datos con los que poder analizar el fenómeno de la constancia del color para distintos observadores.

En los capítulos 6, sobre el *Análisis y discusión de resultados en el espacio CIE-1931*, y 7, *Análisis y discusión de resultados en el espacio de excitación de conos*, se realiza la discusión de todos los datos obtenidos en las igualaciones realizadas. Como vemos, este análisis se ha dividido en dos capítulos con el fin de clarificar los distintos aspectos que intervienen en la mayor o menor constancia del color alcanzada. Esto nos ha permitido comparar y discutir algunas de las representaciones que a este respecto se han utilizado en trabajos previos, y profundizar sobre las implicaciones que la constancia del color tiene sobre la excitación de los mecanismos de visión del color.

Una vez completada la discusión y estudio anteriores, y como consecuencia directa

6 Evaluación experimental de la constancia del color ...
de ellos, nos planteamos finalmente el análisis de algunos aspectos que podrían intervenir en la adquisición de una representación estable del color percibido de los objetos; el desarrollo de esta cuestión se muestra en el capítulo 8 titulado *Relaciones de contraste*. En este capítulo no se pretende revelar ningún modelo teórico de constancia del color, sino más bien analizar los rasgos diferenciales que habrían de tenerse en cuenta en estos modelos, cuando se considera esta característica del sistema visual humano en función de las respuestas asociadas a los mecanismos oponentes de visión del color.

Finalmente, en el capítulo 9 de *Conclusiones* se resumen una por una las principales aportaciones que se extraen de esta memoria, así como las que pueden quedar abiertas para futuras investigaciones.

El capítulo último de *Bibliografía* cierra la redacción de la memoria, incluyendo las referencias bibliográficas y citas que se han utilizado en el desarrollo de este trabajo.
Teorías y modelos actuales de constancia del color
La percepción que obtenemos del color de los objetos que nos rodean depende de la luz reflejada por los mismos. Sin embargo esta dependencia no es propiedad exclusiva de los objetos, ya que para obtener una percepción completa de éstos es necesario disponer también de una fuente de luz que los ilumine. Las propiedades espectrales de esta fuente se pueden describir en términos de la cantidad de energía que emite en cada longitud de onda (curva de emisión espectral de la fuente); una vez que la luz procedente de las fuentes luminosas alcanza los objetos, parte de ella será absorbida por los mismos y parte reflejada hacia el observador. De esta forma la luz que entra en el ojo está especificada en última instancia tanto por la reflectancia superficial de los objetos como por la distribución de potencia espectral de las fuentes luminosas presentes en la escena. El producto de ambas funciones o señal de color determinará en primera aproximación la cantidad de luz reflejada hacia el observador (figura 2.1). Una vez que esta señal de color alcance su retina, la absorción de luz en los distintos tipos de conos fotorreceptores producirá las señales nerviosas que serán recogidas por el nervio óptico y transportadas hacia las áreas visuales en el córtex cerebral, donde serán interpretadas para la obtención de la sensación de color.

El término constancia del color se ha asociado tradicionalmente a la apariencia invariante del color de una superficie con independencia de los cambios en la composición espectral de la luz que la ilumina. Un cambio en la iluminación de una escena, supone un
Cap. 2: Teorías y modelos actuales de constancia del color

desplazamiento colorimétrico para cada uno de los objetos de color que la componen y por tanto desplazamientos medibles en términos de coordenadas de cromaticidad y luminancia. La respuesta del sistema visual humano ante estos cambios de iluminación es un desplazamiento adaptativo que compensa en cierta medida ese desplazamiento colorimétrico. Esta adaptación posibilita que el sistema visual adquiera una representación estable del color que le permite identificar y reconocer los objetos presentes en la escena a pesar de los cambios que puedan producirse en las condiciones de iluminación.

2.1. FORMACIÓN DE LA SEÑAL DE COLOR

Cualquier sistema de visión artificial del color, teniendo en cuenta el fenómeno de la constancia de color, debe plantearse cómo extraer propiedades espectrales invariantes de la superficie de un objeto a partir de la luz que refleja. La principal dificultad para disponer de un sistema como ése, es que en la luz que nos llega de los objetos existen dos factores confundidos: por un lado, la distribución espectral de la luz ambiente, y por otro, la reflectancia superficial de los objetos de la escena. La completa separación de estos dos factores no puede ser resuelta para cualquiera condiciones de observación; esto lleva a todo algoritmo de constancia de color a utilizar información de la luz reflejada procedente de distintos objetos de la escena.

El punto de partida de todos los algoritmos de este tipo es la función señal de color, definida como el producto de la distribución espectral de la luz ambiente $E'(|\lambda, r)$ y la función reflectancia $S(|\lambda, r)$ en un punto de la superficie:

$$ C^*(|\lambda, r) = S(|\lambda, r) F(k,n,s) E^*(|\lambda, r) $$

(1)

donde el producto $S(|\lambda, r)F(k,n,s)$ es el factor de reflectancia superficial; $S(|\lambda, r)$ es la componente del factor de reflectancia que sólo depende de las propiedades materiales de la
Figura 2.1: Formación de la señal de color; la compresión de esta señal se realiza en la retina mediante la absorción relativa en los tres tipos de conos.

superficie (albedo), mientras que $F(k, n, s)$ es el término que da la dependencia con la geometría de observación (dirección de observación, posición de la fuente y normal de la superficie) tal y como se esquematiza en la figura 2.1. La reflectancia superficial depende de la geometría de observación dado que son múltiples los procesos de interacción luz-materia que se involucran cuando la luz se refleja en las distintas superficies. Aunque el modelo completo que describe todos estos procesos es bastante complejo, existen descripciones simplificadas que tienen en cuenta las propiedades de materiales de las superficies, tal es el caso del modelo de reflexión dicromático (Shafer, 1985). De acuerdo con este modelo, la función reflectancia puede descomponerse en suma de dos contribuciones: una debida a la reflexión en la interfase de la superficie, denominada componente especular, y otra debida a la luz dispersada en el interior del material y que emerge tras diversas reflexiones internas, denominada componente difusa. En la descripción que estamos haciendo, podemos prescindir de la componente especular y considerar sólo la componente difusa, que será la que nos proporcione información sobre las propiedades de la superficie.
Por tanto, si reorganizamos factores en (1), separando las propiedades superficiales de la geometría de observación y definiendo la *irradiancia efectiva* como $E(\lambda, r) = F(k, n, s)E'(\lambda, r)$, la señal de color podemos escribirla en la forma:

$$C(\lambda, r) = S(\lambda, r) E(\lambda, r)$$ \hspace{1cm} (2)$$

Si esta señal de color es recogida por un conjunto de sensores, definidos en distintos anchos de banda, y muestreamos de una manera discreta todas las funciones de la longitud de onda, la señal transmitida quedaría definida según una función de la forma:

$$\rho_k(r) = \sum_n C(\lambda_n, r) R_k(\lambda_n) \Delta \lambda = \sum_n S(\lambda_n, r) E(\lambda_n, r) R_k(\lambda_n) \Delta \lambda$$ \hspace{1cm} (3)$$

donde $R_k(\lambda)$ es la función sensibilidad espectral del sensor k; en caso de considerar el sistema humano de visión del color identificaríamos los sensores con cada uno de los tres tipos de conos fotorreceptores. En forma matricial podríamos escribir finalmente:

$$\rho_s = \Lambda_s \sigma_s$$ \hspace{1cm} (4)$$

La constancia del color requiere pues que la iluminación sea de algún modo descompuesta por un proceso que mida su promedio espacial y/o temporal, y lo compare con los flujos locales en cada uno de los anchos de banda sobre los que se definen los mecanismos receptores. Como veremos a continuación, la manera de realizar este proceso va a depender en cada caso tanto de la aplicación que se quiera dar al análisis como del tipo de modelo aplicado (D’Zmura e Iverson, 1993a; Wandell, 1987).

12 Evaluación experimental de la constancia del color ...
2.2. TEORÍAS Y MODELOS ACTUALES DE CONSTANCIA DEL COLOR

Los algoritmos que describen la constancia de color toman como entrada el conjunto espacial de datos que constituyen el término de la izquierda en la ecuación (4) y, a partir de ellos, recuperan el conjunto espacial de funciones reflectancia descrito por el término de la derecha de la misma, o cualquier otro conjunto de parámetros que sea constante al cambio de iluminación. Así por ejemplo, la constancia del color aplicada en Visión Artificial es entendida simplemente como recuperación de la reflectancia superficial de los objetos y es descrita por los denominados "modelos lineales". Sin embargo, las teorías que intentan describir la constancia del color aplicada al sistema visual humano toman puntos de vista distintos. De un lado, se encuentran aquellas teorías que utilizan un conjunto de atributos psicofísicos para describir la percepción estable del color de los objetos y que podemos englobar dentro de los llamados "modelos de apariencia del color"; de otro lado, teorías que se basan en la normalización de las señales asociadas a cada uno de los tres tipos de fotorreceptores y que configuran lo que se conoce como algoritmos "lightness" o "Retinex". Veamos a continuación estas teorías con más detalle.

2.2.1. Modelos lineales.

Este tipo de modelos considera que los mecanismos que proporcionan constancia del color deben ser capaces de descomponer la señal de color (2) y descontar las propiedades espectrales del iluminante para establecer el color de los objetos en términos de su función de reflectancia. La idea de modelo lineal subyace en la consideración de que no son tan diferentes las reflectancias espectrales de los objetos de color que se encuentran en la naturaleza. La mayoría de estos objetos suelen estar caracterizados por reflectancias espectrales de formas y variaciones suaves en lugar de exhibir estrechos picos; estas características se presentan de forma similar también en las distribuciones espectrales asociadas a distintos iluminantes luz-día. Tales espectros están fuertemente correlacionados y pueden ser representados mediante combinaciones lineales de unas cuantas funciones base (Dannemiller, 1992; Jaaskelainen et al., 1990; Parkkinen et al., 1989; Maloney y
Un modelo lineal de p parámetros se define como un conjunto finito de p vectores base que combinados linealmente permiten describir de manera aproximada distribuciones espectrales de energía, reflectancias o transmittancias espectrales. Cualquier reflectancia spectral $S(\lambda)$, dentro del modelo, queda descrita por un conjunto de m funciones base ortogonales $\mathcal{S} = \{S_1(\lambda), ..., S_m(\lambda)\}$, de modo que dicha reflectancia estará determinada por la proyección de $S(\lambda)$ sobre el subespacio generado por dicha base y vendrá dada por:

$$S(\lambda) = \sum_{j=1}^{m} \sigma_j S_j(\lambda)$$ \hspace{1cm} (5)

donde σ_j es el descriptor o coordenadas de $S(\lambda)$ en la base \mathcal{S}. De igual forma, cualquier distribución spectral de energía $E(\lambda)$ asociada a un iluminante dado, se puede describir por un modelo de lineal de funciones base ortogonales $\mathcal{E} = \{E_1(\lambda), ..., E_n(\lambda)\}$, quedando especificado el iluminante dentro del subespacio generado por la base por la expresión:

$$E(\lambda) = \sum_{i=1}^{n} \epsilon_i E_i(\lambda)$$ \hspace{1cm} (6)

siendo ϵ_i el descriptor o coordenadas que caracterizan a $E(\lambda)$ en la base \mathcal{E} elegida.

Los descriptores σ_j y ϵ_i dependen únicamente de la reflectancia superficial del objeto o distribución spectral de energía del iluminante, respectivamente, de modo que son descriptores constantes dentro del modelo dados por los productos escalares:
\[
\sigma_j = \sum_{\lambda} \langle S(\lambda) \mid S_j(\lambda) \rangle \quad ; \quad j = 1 \ldots m \\
\epsilon_i = \sum_{\lambda} \langle E(\lambda) \mid E_i(\lambda) \rangle \quad ; \quad i = 1 \ldots n
\]

Por tanto, con la elección de unas bases de representación adecuadas y el conocimiento de las funciones \(S(\lambda) \) y \(E(\lambda) \) es posible caracterizar completamente la señal de color \(C(\lambda) \) expresada por el producto (2), y de ahí la señal de salida asociada a cualquier conjunto de sensores de luz. Desde este punto de vista es posible explicar de forma satisfactoria la constancia del color, pues la recuperación de la reflectancia espectral \(S(\lambda) \) por medio de sus coordenadas \(\sigma \) resulta completamente independiente del iluminante utilizado. En última instancia, la base escogida para la representación y el número de vectores que la componen dependerán tanto de la estructura propia que conforman los objetos dentro de una determinada escena, como del número de tipos de receptores independientes de que se dispone (D’Zmura e Iverson, 1994; D’Zmura e Iverson, 1993a, 1993b; Wandell, 1987). La dimensionalidad de la base es dependiente también de la aplicación que se quiera dar al análisis. Así por ejemplo, cuando lo que se quiere obtener es una reproducción lo más exacta posible de la función reflectancia, como es el caso de las aplicaciones en constancia del color donde se desea un descuento completo del iluminante, el número de vectores necesario es siempre superior a seis; sin embargo, si lo que se pretende es conseguir un método de clasificación del color se encuentra que es suficiente por término medio el conocimiento de 4 a 6 vectores para asegurar una correcta reconstrucción de las curvas de reflectancia (García y Beltrán, 1995; Dannemiller, 1992; Parkkinen et al., 1989).

Si bien la implementación de este tipo de modelos en sistemas de visión artificial es directa obteniéndose buenos resultados, no parece que la constancia del color aplicada al sistema

Figura 2.2: Funciones base utilizadas por D’Zmura y Lennie (1986) para describir la reflectancia superficial de los objetos.

Evaluación experimental de la constancia del color ... 15
visual humano se alcance a través de un proceso similar dada la complejidad y multitud de factores que confluyen en el proceso de la visión. Sin embargo, apoyándose en el número de fotorreceptores que durante dicho proceso se involucran en la etapa de fotorrecepción (los tres tipos de conos y los bastones) se han propuesto modelos lineales que intentan explicar la constancia del color utilizando un conjunto pequeño de parámetros, a lo sumo tres o cuatro.

Es de destacar el trabajo de D’Zmura y Lennie (1986), en el que los autores utilizan las tres primeras funciones de la base de Fourier para explicar los mecanismos de la constancia del color (figura 2.2). La suma de estas funciones en la proporción adecuada hace posible describir la luz reflejada por los objetos en cualquiera condiciones de iluminación. Definida formalmente la reflectancia en un punto dado del objeto como la combinación lineal:

\[
S(\lambda) = n_1 S_1(\lambda) + n_2 S_2(\lambda) + n_3 S_3(\lambda)
\]

(8)

los autores introducen tres atributos psicofísicos para caracterizar el color del objeto en ese punto: la saturación, el tono y la claridad. La saturación vendría a ser la contribución de \(S_2(\lambda)\) y \(S_3(\lambda)\) respecto de \(S_1(\lambda)\), definida según la relación \((n_2^2 + n_3^2)^{1/2}\)/\(n_1\); el tono el cociente \(n_3/n_2\); y la claridad, definida en relación con la cantidad \(n_1\) de la componente plana \(S_1(\lambda)\). Los mecanismos del sistema visual para descontar el iluminante y obtener una apariencia estable del color de los objetos se desarrollan según este modelo a través de dos procesos adaptativos: en primer lugar se produciría un cambio en la sensibilidad espectral de los mecanismos fotorreceptores (proceso multiplicativo tipo Von Kries), y en segundo lugar, una transformación lineal de las señales generadas por estos fotorreceptores y que serían combinadas de forma oponente en algún punto de la ruta visual. Estos procesos, unidos al conocimiento de la distribución espectral del iluminante presente en la escena observada, permiten al modelo caracterizar completamente la apariencia del color de un objeto por el simple cálculo de los tres descriptores constantes \(n_i\) asociados a su función reflectancia, y de ahí el conjunto de atributos psicofísicos introducidos.
2.2.2. Modelos de apariencia del color.

El color percibido, tal y como lo define la CIE, se considera como un aspecto de la percepción visual ligado a los objetos o a la luz, y por tanto está relacionado de forma directa con la respuesta sensorial individual asociada a cada observador. La apariencia del color se refiere al aspecto de la percepción visual que permite a ese observador caracterizar el estímulo visual de acuerdo con sus atributos perceptivos (Wyszecki, 1986). El estudio de la apariencia del color, más que en las propiedades físicas de la luz que genera dicha apariencia, se centra pues en la percepción sensorial obtenida por parte de los observadores intentando determinar el color percibido de los objetos en distintas condiciones de iluminación y adaptación cromática.

Es difícil a priori establecer un modelo de apariencia del color si se tiene en cuenta que en la realidad las condiciones de observación y de adaptación, así como la propia escena observada, pueden cambiar de forma continua y aleatoria. Sin embargo, las evidencias experimentales asociadas con la constancia del color indican que, a pesar de esta multitud de situaciones, el sistema visual humano es capaz de adquirir una apariencia del color estable y no sujeta a tanta variabilidad.

En los últimos años se han propuesto distintos modelos para predecir la apariencia del color bajo distintas condiciones de adaptación luminosa (Fairchild, 1991; Billmeyer, 1988; Nayatani et al., 1986, 1982, 1981) así como los efectos que sobre dicha apariencia tienen los fenómenos de contraste simultáneo y el nivel de iluminación (Hunt, 1994, 1991). De entre todos estos modelos vamos a describir el asociado a los trabajos de Hunt, por ser uno de los últimos que más ha sido contrastado con datos fundamentales de la visión del color y su apariencia.

Hunt (1991) define seis atributos psicofísicos para caracterizar el color percibido de los objetos: tono H, colorido M, saturación S, luminosidad Q, claridad J y croma C_b. La especificación de cada uno de estos atributos se realiza por descomposición de la escena en una serie de áreas visuales distintas y siguiendo una serie de etapas largas y tediosas de cálculo. Por simplicidad vamos a resumir sólo las concernientes a la definición de las
magnitudes que nos caracterizan el carácter oponente de la visión del color, emplazándonos para cualquiera otra magnitud al artículo original (Hunt, 1994; 1991).

Una vez caracterizada cada área de la escena por sus coordenadas de cromaticidad y luminancia, y elegido un blanco de referencia en la misma, las etapas del modelo se pueden resumir en las siguientes:

1) Etapa de normalización de las señales de los mecanismos fotorreceptores respecto de un estímulo equienergético, de forma que la respuesta de los conos viene dada por:

\[
\begin{align*}
\rho &= 0,38971X + 0,68898Y - 0,07868Z \\
\gamma &= -0,22981X + 1,18340Y + 0,0464Z \\
\beta &= 1,00000Z
\end{align*}
\]

2) Proceso de adaptación que modifica la respuesta de estos mecanismos según las expresiones:

\[
\begin{align*}
\rho_a &= B_\rho \left[f_\rho(F_\rho F_\rho \rho/\rho_w) + \rho_D \right] + 1 \\
\gamma_a &= B_\gamma \left[f_\gamma(F_\gamma F_\gamma \gamma/\gamma_w) + \gamma_D \right] + 1 \\
\beta_a &= B_\beta \left[f_\beta(F_\beta F_\beta \beta/\beta_w) + \beta_D \right] + 1
\end{align*}
\]

donde se ha definido la función respuesta:

\[
f_n(I) = 40[I^{0.73}/(I^{0.73} + 2)]
\]

Los coeficientes \(B_\rho\), \(B_\gamma\) y \(B_\beta\) representan los factores de blanqueo de conos para altos niveles de iluminación; \(F_\rho\), \(F_\gamma\), \(F_\beta\) y \(F_\ell\) son los factores de adaptación cromática y de luminancia para cada tipo de cono; \(\rho_w\), \(\gamma_w\) y \(\beta_w\) son las señales cono para un estándar de referencia elegido entre los objetos observados; \(\rho_D\), \(\gamma_D\) y \(\beta_D\) coeficientes de corrección que introduce el modelo para asegurar la predicción de acromaticidad.
3) Procesado oponente del color caracterizado por las señales:

\[C_1 = \rho_a - \gamma_a \]
\[C_2 = \gamma_a - \beta_a \]
\[C_3 = \beta_a - \rho_a \]

(12)

4) Caracterización de la señal amarillo-azul \(M_{YB} \) y rojo-verde \(M_{RG} \) por las expresiones:

\[M_{YB} = 100 \left[\frac{1}{2} (C_2 - C_3)/4.5 \right] [e_t(10/13)N_cN_{cb}F_t] \]

(13)

\[M_{RG} = 100 [C_1 - (C_2/11)] [e_t(10/13)N_cN_{cb}] \]

y la acromática total \(A \) como:

\[A = N_{bb} [A_a - 1 + A_s - 0.3 + (1^2 + 0,3^2)^{1/2}] \]

(14)

donde \(A_a \) se refiere a la contribución fotónica de los conos, y \(A_s \) a la escotónica de los bastones (ver Hunt (1991) para más detalles). Como es usual, los valores positivos o negativos asociados a las señales oponentes \(M_{YB} \) y \(M_{RG} \) nos darán idea de la cromaticidad asociada a los estímulos u objetos de color de la escena observada, y la señal \(A \) de la luminosidad o claridad de los mismos.

Tal y como ha demostrado Hunt, la constancia del color puede justificarse en relación con la codificación de las señales (13), si bien, y como simple modelo que es, está lejos aún de describir el procesado de la información del color que el sistema visual humano realmente realiza. En estos modelos de apariencia juega un papel fundamental la elección de un "blanco" o punto neutro de la escena observada; la comparación del resto de estímulos o áreas de la escena con este estímulo de referencia, es lo que finalmente proporciona el color percibido de los objetos. Cualquier teoría completa de la apariencia del color debería pues especificar cómo el sistema visual humano adquiere la información sobre ese punto de referencia o si por el contrario es una etapa de aprendizaje previa a la observación de los objetos. De todas formas, la modificación de estos modelos así como el estudio de sus fallos y aciertos puede ir proporcionando una vía de análisis para fenómenos más complejos.
2.2.3. Algoritmos "lightness" o Retinex.

La teoría más representativa de estos algoritmos es la teoría Retinex formulada por Edwin H. Land (Land, 1986, 1983, 1964; Land y McCann, 1971). Desde el punto de vista de esta teoría el color de los objetos no queda especificado por la composición espectral de la luz que proviene de los mismos. Cuando se observa una escena el sistema visual no puede distinguir, para cada punto de ésta, sensaciones asociadas a la reflectancia espectral de los objetos que la componen de sensaciones asociadas a la iluminación existente. Se puede suponer de este modo que lo que hace el sistema visual no es producir una sensación puntual sino crear patrones de luminancia que permiten la percepción de los objetos a partir de un conjunto global de sensaciones (McCann y Houston, 1983). Según estas consideraciones, los sistemas de visión no utilizan un estímulo físico procedente de un punto dado de la escena para determinar el color, sino que en su lugar toman la información que procede de un receptor, sensible a un ancho de banda espectral prefijado, y la intercomparan para calcular un análogo biológico de la función reflectancia; los algoritmos utilizan tres tipos de receptores, cada uno con sensibilidad a las largas, medias y cortas longitudes de onda respectivamente.

Esos análogos biológicos son denominados lightness, y la comparación entre los tres lightness por separado (uno para cada ancho de banda definido) para cada área en la escena, es la determinante del color. La formación y comparación de estos lightness podría ocurrir en la retina o en el cortex, de ahí la palabra introducida por Land para designar los mecanismos que generan estas imágenes independientes: RETINEX, formada con las palabras "retina" y "córtex".

La formulación última de la teoría Retinex (Land, 1986) se basa sobre tres afirmaciones básicas:

I. "La composición espectral de la luz procedente de un área de una escena, no especifica el color de dicha área."

II. "El color de un área unitaria de la escena está determinado por un trió de números, cada uno calculado sobre un único ancho de banda, que proporcionan
la relación, para dicho intervalo, entre el área unitaria y el resto de áreas unitarias que componen la escena."

III. La tercera de las afirmaciones es el algoritmo Retinex propiamente dicho y consistiría en el cálculo cuantitativo del trío de números o *descriptores lightness*.

A raíz de esta formulación de Land, han surgido distintos algoritmos capaces de obtener dichos valores lightness (Brainard y Wandell, 1986; McCann et al., 1976) aunque en todos ellos subyacen los mismos supuestos básicos asociados al contexto y geometría de observación: la *descomposición espacial* de la señal de color, y la *normalización espectral* de la reflectancia superficial e irradiancia efectiva (Hurlbert, 1986). Sólo imponiendo ligaduras de este tipo será posible resolver la ecuación (3) de forma independiente para los tres canales lightness.

Descomposición Espacial

Se trata de desdoblar la señal, en cada localización espacial, en sus dos componentes. Este paso se lleva a cabo por diferenciación espacial de la señal bajo las suposiciones "lightness" siguientes:

Suposición 1: la escena observada es un Mondrian bidimensional, dividido en estructuras de reflectancia uniforme;
Suposición 2: la irradiancia efectiva varía lentamente y suavemente a través de la escena completa, y es independiente de la posición del observador.

Normalización Espectral

La descomposición espacial no recupera por sí sola la reflectancia superficial de manera exacta, ya que se pierde la constante de integración en la formación final de la señal; debido a esto se introduce una tercera suposición:
Cap. 2: Teorías y modelos actuales de constancia del color

Suposición 3: la reflectancia superficial media en la escena, en cada ancho de banda, es la misma: gris, o bien la media entre los valores de reflectancia superficial más luminosos y los más oscuros.

Las dos primeras suposiciones "lightness" aseguran que el algoritmo separe los cambios espaciales en la irradiancia efectiva a partir de aquellos cambios espaciales en la función reflectancia espectral de una superficie. La tercera suposición proporciona un esquema de normalización que interpreta correctamente los cambios temporales en la distribución espectral de energía del iluminante.

Dadas las suposiciones anteriores, podemos separar cada localización espacial x en la escena, de modo que la ecuación (3) puede escribirse como:

\[\rho^x = \Lambda_E \sigma^x \] \hspace{1cm} (15)

El algoritmo transforma pues el conjunto espacial de las respuestas de los receptores \(\rho_k^x \) (asociadas al receptor tipo k), en un conjunto espacial correspondiente de valores lightness \(l_k^x \). El principio central del algoritmo Retinex es que los valores \(l_k^x \) en el punto x son calculados independientemente para cada tipo k de receptor.

Al observar una escena nuestros ojos realizan movimientos involuntarios que barren toda la escena y que nos permiten obtener información de la misma a través de unos cuantos puntos de fijación. Teniendo en cuenta este hecho psicofísico, el algoritmo estima el conjunto espacial de valores lightness a través del cálculo de una serie de trayectorias sobre la escena observada, que son determinadas de la manera siguiente. Se selecciona un punto de partida \(x_1 \) y, aleatoriamente, otro vecino \(x_2 \); se calcula entonces la diferencia entre los logaritmos de las respuestas de los sensores en las dos posiciones y se añade dicho valor a una variable acumulativa para la posición \(x_2 \). Para indicar que una trayectoria ha cruzado la posición \(x_2 \) se introduce un contador, y se procede iterativamente con la selección aleatoria de un nuevo punto vecino de \(x_2 \). En general, el acumulador de la posición \(x_i \), una vez incrementado el
contador vendrá dado por:

\[
A(x_i) \leftarrow A(x_i) + \log(\rho^x) - \log(\rho^x')
\]

(16)

Después de calcular todas las trayectorias, el valor lightness \(l_k^x \) para el punto \(x \) es el valor medio de las contribuciones a \(A(x) \) de las trayectorias que atravesaron el punto \(x \); cada vez que esto último ocurre, \(A(x) \) se incrementa a través del logaritmo de la relación entre la respuesta del receptor en \(x \) y la del receptor en el punto de inicio. Sea \(N \) el número total de veces que una trayectoria atraviesa el punto \(x \), y sean \(x_j, \ldots, x_N \) los puntos de inicio para las \(N \) trayectorias anteriores, entonces según (16):

\[
l_k^x = \frac{1}{N} \left[\log \left(\frac{\rho_k^x}{\rho_k^{x_j}} \right) + \ldots + \log \left(\frac{\rho_k^x}{\rho_k^{x_N}} \right) \right];
\]

(17)

\[
l_k^x = \log \left[\frac{\rho_k^x}{(\rho_k^{x_j} \ldots \rho_k^{x_N})^{1/N}} \right]
\]

(18)

Esta expresión nos da el valor del lightness asociado al receptor tipo \(k \) y al punto \(x \) de la escena.

De acuerdo con la predicción retinex expresada por la ecuación (18), si el sistema visual humano muestrease radiancias en tres anchos de banda estrechos la constancia del color podría llegar a ser perfecta (Worhey y Brill, 1986), sin embargo, las sensibilidades de los mecanismos fotorreceptores en el sistema visual humano muestran distribuciones espectrales solapadas de forma que no será posible, al menos desde este punto de vista, alcanzar una constancia del color perfecta. En los últimos años se han puesto en práctica distintas versiones del algoritmo retinex, obteniéndose buenos resultados cuando es considerado únicamente como modelo computacional. Sin embargo, como modelo de constancia del color aplicado al sistema visual humano ha sido ampliamente criticado; por
un lado es demasiado sensible a los cambios en la distribución de reflectancias espectrales de los objetos cercanos (Stine y Sparrow, 1989; Brainard y Wandell, 1986), y por otro, no involucra en la visión del color mecanismos oponentes de ningún tipo, tal y como en realidad ocurre en el sistema visual humano. A pesar de esto, la Teoría Retinex es la única teoría psicofísica que ha intentado explicar con mayor o menor éxito la constancia del color en humanos.
Antecedentes y trabajos preliminares
Como ya se ha comentado, cuando la iluminación existente en una escena cambia se produce un desplazamiento colorimétrico asociado a cada uno de los objetos de color que la componen. Esto significa que si, por ejemplo, se utiliza un espectrofotómetro para medir las coordenadas de cromaticidad y factor de luminancia de los objetos en situaciones de iluminación distinta, aquellas habrán variado pudiéndose llegar a la conclusión errónea de que los objetos de la escena han sido cambiados. Sin embargo, esta situación es diferente si es un observador el que está viendo la escena, ya que la respuesta del sistema visual del observador ante esos cambios de iluminación es un desplazamiento adaptativo que modifica el color percibido de dichos objetos. Por tanto, la contancia del color suele considerarse como un fenómeno de adaptación cromática extremo mediante el cual el sistema visual tiende a mantener el color percibido de los objetos con independencia de los cambios de iluminación. A pesar de las similitudes, la contancia del color no puede entenderse sólo como un caso particular de adaptación cromática ya que existen diferencias significativas. Así, los fenómenos de adaptación cromática suelen estar asociados a la observación de escenas simples, requiriéndose de varios segundos o incluso minutos para ser totalmente efectivos; por contra, los fenómenos de constancia del color se alcanzan de forma inmediata y se relacionan fuertemente con la observación de escenas complejas (Brill y West, 1986).
Han sido muchos los autores que desde finales del siglo pasado y hasta nuestros días han intentado dar una explicación a esta propiedad del sistema humano de visión del color. A pesar de todo, y aun hoy, el fenómeno de la constancia del color no es un tema cerrado y quedan todavía muchos aspectos del mismo, tanto fisiológicos como psicofísicos, por aclarar.

3.1. ANTECEDENTES HISTÓRICOS

Uno de los primeros autores que estudió los efectos del fenómeno de la constancia del color fue Helmholtz (1866). Según este autor, la visión de objetos del mismo color bajo distintas condiciones de iluminación nos da una idea sobre el color "correcto" de los mismos, es decir, como juzgaríamos tales objetos si los viésemos bajo luz blanca. Para explicar este fenómeno, lo que más tarde vendría a llamarse principio de Helmholtz o principio de descuento del iluminante, Helmholtz hace referencia a factores psicológicos incoscientes que son los que nos permitirían extraer el color estable que tienen los cuerpos con independencia de la luz que los ilumina. El trabajo más tarde de Ives (1912) volvió a recoger la importancia de esa capacidad asociada a nuestro mecanismo de percepción visual. Ives observó que el ojo era capaz de compensar cambios inducidos en el color de los objetos por las diferentes condiciones de iluminación; comprobó además que esta compensación podría llevarse a cabo por medio de un proceso de adaptación que modificase los valores asociados a las sensaciones visuales que el ojo registraba, en concreto, dividiendo dichas sensaciones por el valor correspondiente a un cierto blanco de referencia. Este cambio de "escala" asociado a distintas sensaciones fue la primera aplicación cuantitativa de la conocida como ley de los coeficientes de Von Kries, formulada unos años antes por Von Kries (1905).

De acuerdo con la ley de Von Kries, cuando el sistema visual se encuentra bajo distintos estados de adaptación, la sensibilidad de los tres mecanismos fotorreceptores varía inversamente con la intensidad con la que son estimulados. De manera simbólica esta ley se puede expresar de la forma:
\[
\alpha' = k_1 \alpha \\
\beta' = k_2 \beta \\
\gamma' = k_3 \gamma
\]

(1)

donde \(\alpha, \beta \) y \(\gamma\) representan las sensibilidades espectrales de los mecanismos fotorreceptores antes del cambio de adaptación, y \(\alpha', \beta' \) y \(\gamma'\) las sensibilidades después de la adaptación a las nuevas condiciones de iluminación. Las ecuaciones (1) no representan sino el conocido fenómeno que ocurre cuando estamos adaptados, por ejemplo, a una iluminación ambiente roja. En esa situación los mecanismos receptores sensibles a las largas longitudes de onda se saturan, aumentado relativamente las sensibilidades a las medias y cortas longitudes de onda, lo que provoca que los objetos de color rojo cambien su apariencia y nos parezcan menos "rojos" de lo que en realidad son. Este cambio en la sensibilidad de los receptores viene expresado por los coeficientes \(k_1, k_2 \) y \(k_3\), que se considera que están inversamente relacionados con la estimulación de los mecanismos \(\alpha, \beta \) y \(\gamma\) en el nuevo estado de adaptación.

Sin embargo no es hasta el trabajo de Helson (1938) cuando el fenómeno de la constancia del color comienza a ser estudiado de una manera más formal. Utilizando como iluminación distribuciones espectrales de ancho de banda estrecho, asociadas a nombres como rojo, verde, amarillo y azul, se pedía a distintos observadores que juzgasen tono, saturación y luminosidad de muestras "no-selectivas" (grises) bajo esa iluminación. Los resultados obtenidos, conocidos como principio de Helson, mostraban que las muestras con reflectancia alta exhibían el tono del iluminante utilizado mientras que las de baja reflectancia tendían a mostrar el tono asociado a la post-imagen observada, es decir, el tono del complementario. Por otro lado, las muestras con valores intermedios de reflectancia parecían acromáticas o mostraban valores de saturación fuertemente reducidos, variando directamente con la reflectancia del fondo. Resultados similares a estos se obtuvieron cuando se realizó un estudio parecido pero utilizando muestras "no-grises" (Judd, 1940; y Helson y Jeffers, 1940).

Helson y colaboradores (1952) volvieron a estudiar la influencia de la iluminación sobre la percepción del color de objetos utilizando muestras de color Munsell y los iluminantes estándar C y A, representativos de la luz-día y de la emisión de una lámpara de
incandescencia. Las observaciones que disintintos sujetos hicieron de las muestras bajo dichas condiciones de iluminación mostraron que existían, en general, importantes diferencias entre el color percibido en cada una de las situaciones. De acuerdo con las experiencias previas, el tono y saturación de un objeto dependía fuertemente de la relación entre su reflectancia y la reflectancia adaptante, entendida ésta como la reflectancia asociada a la media ponderada de todos los objetos presentes en el campo de visión del observador (Judd, 1940). Esas variaciones en la percepción del color de los objetos van asociadas siempre a un desplazamiento colorimétrico en la dirección de la cromaticidad del iluminante adaptante; de este modo el descuento del iluminante podría entenderse como un proceso que involucra la relación entre el objeto de color observado y la percepción de un objeto de color "gris" asociado a la cromaticidad de la iluminación de fondo, y que desempeñaría el papel de la reflectancia adaptante (MacAdam, 1950; Judd, 1960).

Todo este tipo de experiencias puso de manifiesto, por tanto, no sólo la influencia que tiene la iluminación adaptante sobre el color percibido de los objetos, sino también la gran relación existente entre éstos y los objetos de color que componen el resto de la escena observada.

3.2. PRIMEROS PASOS EN LA ELABORACIÓN DE UNA TEORÍA SOBRE LA CONSTANCIA DEL COLOR

La simplicidad de la ley de los coeficientes de Von Kries hizo que rápidamente fuese aceptada como base para comprender la fenomenología de la constancia del color. Sin embargo en esta cualidad del sistema visual humano de asociar apariencias de color estables a los distintos objetos de una escena, se involucraban también aspectos más complejos de la percepción visual como eran procesos de discriminación, identificación de objetos y memoria, y no sólo un cambio en las sensibilidades espectrales de los mecanismos fotorreceptores. En este sentido, la teoría Retinex de Land (1964) se erigió como el primer intento de revelar un modelo completo que explicase la constancia de color que manifiesta el sistema visual humano.

28 Evaluación experimental de la constancia del color ...
Cuando se observa un escena, el color de los objetos que la componen está determinado tanto por la reflectancia espectral de los mismos como por la distribución espectral de la luz que los ilumina. Sin embargo, desde el punto de vista de la teoría Retinex el color de un objeto no queda especificado por la composición de la luz que proviene del mismo sino por un conjunto de tres descriptores que estiman la reflectancia del objeto en relación con la reflectancia asociada a los objetos del fondo (Land, 1986; Land, 1983; Land, 1964; Land y McCann, 1971). Es decir, en lugar de considerar que en la percepción visual de objetos existen tres tipos de fotorreceptores sensibles a las cortas, medias y largas longitudes de onda, que comparan sus respuestas en cada punto de la escena, Land sugiere que cada uno de estos receptores compara la señal luminosa que procede de un punto con la señal promediada procedente de todos los puntos de la escena. A cada uno de esos descriptores se les denomina lightness y podría ser considerado como el análogo psicofísico de la función reflectancia; la comparación del triplete de lightness en todas las áreas del campo visual es la que determina por tanto el color de los objetos observados. La teoría incluye un algoritmo para el cálculo de estos lightness, discutido con más detalle en el capítulo anterior.

McCann y colaboradores realizaron una revisión experimental de las predicciones de la teoría Retinex (McCann et al., 1976), utilizando para ello un conjunto de objetos de color como muestras test y distribuidos espacialmente en lo que se conoce como disposición "Mondrian" (en honor al célebre pintor). El Mondrian estaba iluminado por medio de tres proyectores, cada uno de ancho de banda espectral estrecho centrado en los 450, 530 y 630 nm, respectivamente, y se pedía a los observadores que escogiesen entre muestras del Atlas Munsell aquellas que igualasen distintas áreas de color del Mondrian. En el experimento de control, donde las condiciones de iluminación bajo las que se observaban ambos contextos eran las mismas, los

![Figura 3.1: Composición del Mondrian utilizado por McCann et al. (1978).](image)
observadores no tenían dificultad ninguna para seleccionar una muestra del Atlas que igualase cada área del Mondrian. Después se midió la luz reflejada por una muestra gris del Mondrian (área P en la figura 3.1) y se modificó la iluminación sobre el mismo de modo que, por ejemplo, la muestra azul (área H) reflejase la misma cantidad de luz que la muestra gris bajo las condiciones iniciales. De este modo, si el determinante del color de los objetos fuese la luz reflejada por ellos, la muestra azul bajo las nuevas condiciones e iluminación debería parecer gris. Sin embargo, se comprobó que el cambio de iluminación tenía poca influencia sobre el color percibido, manteniéndose prácticamente constante el tono de la muestra azul; resultados similares se obtuvieron cuando se repitió el experimento pero ajustando la iluminación con otra área del Mondrian.

Todos estos resultados indicaban que existía una pobre correlación entre la radiancia de un área del Mondrian y la correspondiente a la sensación de color producida en el observador. Sin embargo, se encontraba que la correlación entre las igualaciones de los estímulos bajo iluminación de referencia y test era bastanet buena, cuando se consideraba la intercomparación de los tripletes asociados a la denominada "reflectancia integrada". Por medio de un detector cuya respuesta espectral estuviese definida en tres anchos de banda estrechos (cortas, medias y largas longitudes de onda) se puede definir, para cada uno de ellos, la reflectancia integrada como la relación entre la radiancia reflejada por una de las muestras del Mondrian y la radiancia enviada al detector por un blanco elegido como
Primeros pasos en la elaboración de una teoría sobre la constancia del color

estándar entre los objetos de color de la escena:

$$\rho_j^k = \frac{R_j^k}{R_{\text{blanco}}^k}$$ (2)

donde k indica el ancho de banda sobre el que se calcula la reflectancia integrada y j cada uno de los objetos de color del Mondrian observado. Como se observa en la figura 3.2, los resultados obtenidos mostraron que la reflectancia integrada era mucho mejor descriptor de la sensación de color que la simple medida de la radiancia.

De este modo la comparación de los tres descriptores ρ^k en cada punto del campo visual, permite obtener una representación de la apariencia del color de los objetos en un espacio 3-D en el que cada trio de descriptores define una zona de apariencia estable del color. Por tanto, cualquier variación en la distribución espectral de la luz que ilumina una escena determinada no afectará a la posición relativa de los trios de números en ese espacio, es decir que "... un objeto que parece rojo, sea cual sea su localización en el Mondrian, tendrá los mismos tres descriptores que otros objetos que también son rojos, ... y de forma similar para los azules, verdes o amarillos..." (Land, 1986).

A pesar de los logros alcanzados por la teoría Retinex, todavía está lejos de ser un modelo adecuado para describir el sistema humano de visión del color. Si la teoría pretende obtener una descripción constante de la apariencia de los objetos con independencia de la luz que los ilumina, esta descripción debería ser independiente de los objetos de color que componen una escena; sin embargo, el cálculo del trio de descriptores y el correspondiente color asociado, depende fuertemente de los objetos de color que componen la escena elegida (Brainard y Wandell, 1986). La teoría deja abiertos también otros interrogantes, por un lado, la explicación de cómo el sistema visual evalúa realmente esas reflectancias integradas y por otro el hecho de que la descripción final de la apariencia del color de un objeto se haga únicamente en base a esos tres descriptores. El cálculo de los descriptores se realiza de forma independiente en tres anchos de banda distintos, asociado cada uno a la sensibilidad espectral de los tres tipos de fotorreceptores (conos sensibles a las cortas, medias y largas longitudes de onda), lo que entra en clara contradicción con las evidencias fisiológicas sobre la
interacción de tipo oponente que existe entre las señales procedentes de dichos mecanismos fotorreceptores (De Valois y De Valois, 1993; Livingstone y Hubel, 1987; Livingstone y Hubel, 1984).

3.3. ASPECTOS PSICOFÍSICOS INVOLUCRADOS EN LA CONSTANCIA DEL COLOR

3.3.1. Estimación subjetiva de los cambios de iluminación.

Ya hemos visto que el concepto de constancia del color se refiere al caso ideal en el que el sistema visual humano corrige totalmente, los cambios físicos en la luz reflejada procedente de los distintos objetos que componen una escena. Esta corrección, que en la mayoría de los casos es parcial, se lleva a cabo por medio de un desplazamiento adaptativo que cancela el desplazamiento colorimétrico impuesto por el cambio de iluminación y nos permite obtener una percepción invariante del color de los objetos.

Según Arend y Reeves (1986) esa representación perceptual constante del color de los objetos puede llevarse a cabo mediante dos tipos de mecanismos: de carácter adaptativo y de carácter simultáneo. Los mecanismos de adaptación están definidos en términos temporales y ante un cambio en la iluminación provocan una modificación de las sensibilidades espectrales del conjunto de fotorreceptores. Estos mecanismos son localizados espacialmente y no requieren la interacción con distintas partes del campo visual. Por el contrario, los mecanismos de carácter simultáneo se definen en términos de la interacción espacial entre las respuestas de los mecanismos receptores en distintas partes del campo visual. Estos mecanismos simultáneos involucran de forma directa la adaptación espacial y son los responsables de los fenómenos de contraste simultáneo y detección visual de bordes.

Han sido varios los trabajos desarrollados por Arend y colaboradores para intentar desvelar el tipo de mecanismo involucrado en la constancia del color (Arend, 1993; Arend et al., 1991; Arend y Goldstein, 1990; Arend y Goldstein, 1987; Arend y Reeves, 1986). En
estas experiencias se intenta aislar los mecanismos simultáneos responsables de la constancia del color, controlando por un lado el carácter de las decisiones que los observadores toman a la hora de realizar las igualaciones de color bajo disitintos iluminantes, y limitando por otro la adaptación cromática a rápidos procesos de integración en el tiempo, inferiores en algunos casos a 1 s (Craven y Foster, 1992; Foster et al., 1992). Las distintas experiencias se llevaron a cabo pidiendo a los observadores que realizasen dos tipos de igualaciones: unas bajo el modo de color "no-relacionado", y otras bajo el modo "color superficial" percibido.

En las primeras se pedía a los observadores que igualasen en tono, saturación y claridad los objetos de color observados bajo diferentes condiciones de iluminación, intentando aislar en lo posible el color percibido del objeto. Sin embargo, en el segundo tipo de igualaciones se pedía a los observadores que realizasen sus igualaciones teniendo en cuenta el color percibido de los objetos circundantes. En ambas tareas y con el propósito de estudiar la influencia del contraste simultáneo inducido por los objetos de color que componen una escena determinada, se utilizaron dos tipos de configuraciones espaciales, que respondían bien a entornos simples compuestos de un único objeto de color rodeado de un fondo acromático, o bien a entornos complejos tipo Mondrian (figura 3.3).

Tomando como iluminación de referencia el iluminante luz-día D₆₅ y como iluminantes test los asociados a temperaturas de color correlacionadas de 10000 K y 4000 K, los resultados se analizaron comparando el desplazamiento colorimétrico teórico que cada objeto de color sufría al cambiar el iluminante, con la igualación realizada por los distintos observadores (desplazamiento adaptativo). Para ello los autores introducen un índice de constancia del
color que expresa la distancia Euclídea relativa entre los desplazamientos colorimétricos y adaptativos. Referido únicamente a la cromaticidad de las igualaciones realizadas en el espacio CIE-u’v’ este índice viene dado por:

$$I = 1 - \frac{b}{a} ; \text{ con }$$

$$\begin{align*}
 b &= \left((u_0' - u_2')^2 + (v_0' - v_2')^2 \right)^{1/2} \\
 a &= \left((u_1' - u_2')^2 + (v_1' - v_2')^2 \right)^{1/2}
\end{align*}$$

(3)

donde (u’₀, v’₀) son las coordenadas asociadas a la igualación realizada, (u’₁, v’₁) las del estímulo bajo iluminación de referencia y (u’₂, v’₂) las teóricas del estímulo bajo el iluminante test.

Como observamos en la figura 3.4 un valor próximo a la unidad se acercaría a la perfecta constancia del color, mientras que los valores cercanos a cero indicarían una pobre constancia del color. A pesar de que en los dos tipos de tareas exigidas a los observadores se pretendía alcanzar una apariencia estable en el color percibido, los resultados obtenidos mostraban que el grado de perfección de la constancia del color era menor cuando las igualaciones se realizaban bajo el modo de color no-relacionado (Arend et al., 1991). En cambio si el observador realizaba sus igualaciones según el color superficial de los objetos presentes, los desplazamientos adaptativos se dirigían en la dirección del iluminante test, mejorando en este sentido la constancia del color, y la apariencia de los objetos de color de referencia bajo iluminante test tendría a ser más estable (figura 3.5). La comparación de estos resultados respecto de los obtenidos con fondo adaptante simple no mostraba grandes diferencias, si bien se encontraba que para los objetos test aislados se requeriría una mayor pureza colorimétrica para alcanzar el criterio de igualación (Arend, 1993).

Esta significaría que el sistema visual no sólo dispone de procesos de integración rápidos capaces de distinguir entre cambios de iluminación y reflectancia (Foster et al., 1992), sino que también sería...
capaz de adquirir representaciones perceptuales estables de ambos. La caracterización completa de esas representaciones estables del color superficial aún no está clara. Lo que sí parece quedar claro a la luz de estas experiencias, es que la constancia del color no puede estar basada sólo en procesos sensoriales de adaptación más o menos automáticos, ya que dependiendo de las instrucciones que los observadores reciben el grado de perfección de la constancia varía fuertemente (Kuriki y Uchicawa, 1996). Con la finalidad de buscar un criterio de comparación estable y que no dependa de las condiciones de adaptación, en las experiencias últimas de Arend (Arend, 1993) se sigue la misma línea de los experimentos anteriores pero se utilizan en este caso tonos únicos como objetos de referencia. De nuevo los resultados muestran que los desplazamientos adaptativos, aunque dirigidos en la dirección de la constancia, son demasiado pequeños como para asegurar una perfecta constancia del color. Por tanto, una representación estable del color superficial de los objetos no puede estar basada únicamente en la apariencia de la luz que proviene de los mismos, ya que ésta covaría con los cambios de iluminación, incluso para el pequeño rango de iluminantes test utilizado. La propuesta hecha por Arend, y que posteriormente será analizada en nuestro trabajo, es que podría considerarse que "... el color real de una superficie, su color característico o auto-color, es justo la apariencia de la luz que refleja bajo alguna iluminación canónica".

Todas estas experiencias, añadidas a las realizadas en los últimos años por otros autores (Wei y Shevell, 1995; Creutfelt, Lange-Malecki y Breyer, 1990; Blackwell y Buchsbaum, 1988; Brainard y Wandell, 1986), ponen de manifiesto la clara influencia que los objetos de color circundantes ejercen sobre la apariencia del color de los mismos (lo que
se conoce como fenómenos de contraste simultáneo o inducción cromática) y por tanto la configuración espacial del fondo sobre el que se sitúan los objetos de color a igualar. Los resultados experimentales parecen indicar que las teorías que intentan explicar la constancia del color que manifiesta el sistema visual humano, fundamentadas en general sobre los principios de la teoría Retinex, no necesitarían de fondos adaptantes complejos para la adquisición de una adecuada representación de la reflectancia superficial de los objetos (Valberg y Lange-Malecki, 1990).

El estudio de la constancia del color que plantean Valberg y Lange-Malecki (1990) se centra sobre este problema. Si en realidad bajos distintas iluminaciones artificiales existen ya unos desplazamientos colorimétricos importantes, cabe preguntarse entonces cómo es posible alcanzar constancia del color utilizando fondos adaptantes tan complejos como los Mondrian. Si entendemos la luz que nos llega de los objetos como el producto de la curva de emisión espectral del iluminante por la función reflectancia de los mismos, los entornos Mondrian pueden modificar aún más esas condiciones de iluminación, dado que sobre cada objeto de la escena puede estar llegando luz procedente de distintos puntos de la misma. Para comprobar este hecho los autores realizaron igualaciones de color utilizando un fondo Mondrian y otro acromático equivalente. Los resultados encontrados son comparables a los de Arend y Reeves (1986), si bien no existen prácticamente diferencias entre el tipo de fondo adaptante utilizado. La evaluación perceptual de las igualaciones de color obtenidas confirmó asimismo que el sistema visual no es capaz de compensar los desplazamientos colorimétricos inducidos por el cambio de iluminación.

3.3.2. Apariencia del color y mecanismos de contraste específicos.

La proliferación de distintos algoritmos lightness para la determinación de un conjunto de descriptores que caractericen de manera estable la apariencia del color percibido, ha puesto de manifiesto la importancia que tiene el poder evaluar globalmente dicha apariencia en función de los objetos de color que componen la escena observada (Hurlbert, 1986). Desde un punto de vista computacional la apariencia del color y, unida a ella, la constancia del color, quedaría especificada sobre la base del conocimiento tanto de las características
espectrales de las fuentes luminosas presentes en la escena (curva de emisión de espectral de la fuente) como de la función reflectancia asociada a los objetos que en ella se encuentran; el producto de ambas funciones configura la señal de entrada en el ojo de un observador o de un receptor cualquiera dado y determina por tanto el color percibido de los objetos (Maloney y Wandell, 1986). Sin embargo, teniendo en cuenta las evidencias experimentales anteriores que demuestran la no existencia de una perfecta constancia del color, la tarea que el sistema visual humano realiza cuando percibe un determinado objeto con una apariencia estable del color, no puede quedar determinada únicamente por el conocimiento de ambas funciones.

Cuando se observa una escena bajo unas ciertas condiciones de iluminación, el color de un objeto está determinado en una primera etapa por el producto de la distribución espectral de potencia de la fuente luminosa y la reflectancia superficial del objeto; la óptica ocular hace posible que esta señal produzca al incidir sobre un punto de la retina unos valores de excitación de los mecanismos fotorreceptores (conos L, M y S). Sin embargo, el nivel absoluto de excitación de estos mecanismos no especifica la apariencia del color percibido,

Figura 3.6: Desplazamientos adaptativos (área rayada) y colorimétricos (área abierta) encontrados por Lucassen y Walraven (1993).

Evaluación experimental de la constancia del color ... 37
sino que hay que tener en cuenta el nivel de excitación relativo de cada fotorreceptor sobre cada punto de la escena donde se sitúa el objeto. Estos cambios locales serán los que en última instancia determinen la sensación de color asociada al objeto observado (Wei y Shevell, 1995; Foster y Nascimento, 1994; Walraven, Benzschawel, Rogowitz y Lucassen, 1991; Creutfeldt, Lange-Malecki y Breyer, 1990).

En este sentido, el trabajo de Lucassen y Walraven (1993, 1996) aborda el problema de la constancia del color en términos del cálculo de la excitación relativa o contraste asociado a cada uno de los mecanismos fotorreceptores. Para ello simularon un conjunto de 35 objetos de color, dispuestos en forma de cuadrícula sobre un fondo acromático, que eran observados

![Figura 3.7: Valores de Q' predichos en función de los obtenidos, para conos L, M y S (Lucassen y Walraven, 1993).](image)

38 Evaluación experimental de la constancia del color ...
bajo distintas condiciones de iluminación. A diferencia de experiencias similares en constancia del color, el iluminante elegido como estándar no era necesariamente "blanco", sino que podía variarse a voluntad entre un total de 6 iluminantes coloreados con distintos valores de luminancia. Utilizando visión haploscópica, la tarea exigida a los observadores consistía en igualar en tono, saturación y luminosidad el objeto de color central respecto del elegido como estándar. Los resultados de las igualaciones se representaron en el diagrama CIE-1931, junto con las coordenadas de cromaticidad teóricas de los objetos de color bajo iluminación test y estándar.

Como se puede observar en la figura 3.6 para algunas de las condiciones de iluminación utilizadas, la constancia del color se manifiesta en un desplazamiento adaptativo en la dirección de las coordenadas asociadas al iluminante estándar, existiendo una pobre constancia del color cuando el iluminante utilizado era coloreado. Para determinar hasta qué punto varía el grado de la constancia del color de unas condiciones de iluminación a otras, los autores evaluaron también los datos en términos de la excitación de los mecanismos fotorreceptores L, M y S. Si bien para L y M no existía una relación sistemática entre las igualaciones obtenidas y los datos teóricos, sí existía tal relación cuando se calculaba el contraste asociado al cono S en función de los valores teóricos bajo las distintas condiciones de iluminación. Definido este contraste como:

\[C' = \frac{Q'_j}{Q'_w} \quad ; \quad C^m = \frac{Q'_m}{Q'_w} \] \hspace{1cm} (4)

donde \(Q_j \) representa el valor de excitación de S para el objeto de color \(j \) y \(Q_w \) el valor de excitación de S para el fondo circundante, cada uno calculado en las condiciones de iluminación teóricas \(t \) y de igualación \(m \); la perfecta constancia del color se alcanzaría si \(C' = C^m \), es decir, el conjunto de igualaciones sobre una línea recta de pendiente unidad (figura 3.7). A

![Figura 3.8: Comparación de los datos experimentales con los predichos por la teoría Retinex.](image)

Evaluación experimental de la constancia del color ... 39
raíz de estos resultados, para cada uno de los mecanismos fotorreceptores, los autores describen estos datos en términos del contraste de cada objeto en relación con el fondo a través de una dependencia funcional de la forma:

$$(Q_w^r) \log (4,35 C^m) = (Q_w^r) \log (4,35 C'^r)$$

donde $0 < r < 1$ es un parámetro introducido en el ajuste que depende tanto de las condiciones de iluminación como de los propios observadores. Dada la simetría de esta ecuación, el sistema visual humano podría obtener una apariencia estable del color de los objetos en base a la relación entre los valores de excitación de los mecanismos L, M y S expresados por el producto:

$$R^p = (Q_w^p) \log (4,35 C^p) ;$$

$$(R = L, M, S)$$

Los ajustes obtenidos de los datos experimentales mediante este procedimiento mejoran los predicados por la teoría Retinex (figura 3.8), según la cual la apariencia del color queda determinada por un trío de descriptores ρ^x dados por la ecuación (2). La principal diferencia entre la predicción Retinex y el modelo de contraste aplicado, es que en este caso no se obtiene un descriptor invariante pues el contraste local de un estímulo covaría con la iluminación del fondo circundante. Si bien los resultados presentados por Lucassen y Walraven sólo son explicados por un proceso asociado a un tipo específico de mecanismo fotorreceptor, tal y como los mismos autores sugieren esto no significa que no exista un procesado oponente de la información del color, sino que simplemente el tipo de análisis realizado puede estar enmascarándolo.

Hasta hoy en día no existen prácticamente trabajos en relación con el fenómeno de la constancia del color donde se involucre de manera directa el carácter oponente de la visión del color. En este sentido, Worthey (1985) realizó una experiencia de constancia del color proyectando sus datos sobre la base de un modelo de visión del color. En una experiencia análoga a la de McCann et al. (1976), se pedía a los observadores que escogiesen de entre muestras Munsell, aquellas que igualasen en apariencia las distintas áreas de color de ur.
Mondrian sobre el que se variaba la luz incidente. Si la constancia del color fuese perfecta, el observador debería ser capaz de realizar sus igualaciones basándose únicamente en la reflectancia de la superficie observada y no en su cromaticidad.

Los resultados de las igualaciones se analizaron utilizando las señales de tipo oponente rojo-verde \(t \) y amarillo-azul \(d \), y la señal de tipo no-opONENTE \(A \) que producen la sensación visual última, tal y como se definen en el modelo de visión del color de Guth et al. (1980). Estas señales no son sino transformaciones lineales de las señales producidas por los tres tipos de mecanismos fotorreceptores L, M y S, cada uno con sensibilidad espectral en las largas, medias y cortas longitudes de onda.

Las figuras 3.9(a)-(c) muestran los resultados de las igualaciones en función de los estímulos presentados al observador para el canal acromático \(A \) y los canales oponentes \(d \) y \(t \), respectivamente. Según este tipo de representación, existirá perfecta constancia del color si los datos de las igualaciones se distribuyen en líneas rectas horizontales; por el contrario, si las respuestas se obtienen sólo por igualación de valores triestímulo (desplazamientos

Figura 3.9(a): Correlación en el canal acromático \(A \) para las igualaciones obtenidas por Worthey (1985).

Figura 3.9(b): Correlación en el canal amarillo-azul \(d \) para las igualaciones obtenidas por Worthey (1985).
puramente colorimétricos) los datos se agruparán en líneas rectas de pendiente 45° en el origen. Los resultados muestran que la constancia del color se acerca más al caso ideal para la respuesta del canal amarillo-azul, figura 3.9(b), y en menor medida para el canal acromático, figura 3.9(a); sin embargo, para el canal rojo-verde la aproximación a la constancia no es tan buena si bien es mejor que la simple predicción colorimétrica. De este modo y de acuerdo con resultados previos (Worthey, 1982), se concluye que el sistema visual es capaz de descontar sólo determinadas características del iluminante, en particular aquellos cambios en la distribución espectral del mismo que involucren variaciones en la luminancia de los objetos o desplazamientos colorimétricos de éstos en la dirección amarillo-azul.

3.4. PLANTEAMIENTO DE LAS EXPERIENCIAS

A la vista del conjunto de trabajos publicados hasta la fecha sobre el fenómeno de la constancia del color, podemos deducir que las perspectivas bajo las que se han desarrollado responden a motivaciones muy diferentes. Como se ha planteado en la revisión bibliográfica, son pocos los estudios sistemáticos del fenómeno de la constancia del color y que aborden de una manera experimental la medida del cambio o estabilidad de la apariencia del color de los objetos (Lucassen y Walraven, 1993; Brainard y Wandell, 1992; Arend, 1991). Todos los trabajos han estado simple enfocados hacia la elaboración de modelos y algoritmos de identificación del color en visión artificial (Wandell, 1987; Maloney y Wandell, 1986) que tengan en cuenta esa propiedad del sistema visual humano, más que a la obtención de un
conjunto amplio de datos que sean cuantificables mediante modelos que nos permitan entender el fenómeno de la visión del color en escenas cromáticamente complejas.

En este sentido, hemos diseñado una experiencia psicofísica que evalúa la apariencia del color de objetos bajo distintos iluminantes (luz-día y naturales de distinta temperatura de color, y artificiales representativos de lámparas de filamento y fluorescentes) con respecto a uno considerado como estándar. Para este fin utilizamos la pantalla de un monitor CRT color para presentar una escena tipo Mondrian compuesta de un conjunto de 35 estímulos de color; estos estímulos son metámeros que simulan objetos de color observados bajo distintas condiciones de iluminación y cuyas reflectancias las obtendremos a partir de un modelo lineal de representación adecuado. Uno de los estímulos a presentar será el estímulo test y ocupará un área de 2° en el centro de la pantalla. Los estímulos test a analizar (16 en total) se eligirán en un plano de luminancia constante, correspondiente a 22,00 cd/m² o de forma equivalente a 144,62 td de iluminación retiniana, y estarán situados sobre líneas de igual excitación de los mecanismos oponentes de visión del color: canales rojo-verde y amarillo-azul.

El tipo de igualaciones realizado se corresponde con las denominadas igualaciones asimétricas por memoria, en las que la apariencia de un estímulo observado bajo un iluminante estándar (equienergético) se iguala en apariencia cuando el contexto visual corresponde a la misma escena pero iluminada bajo otro iluminante distinto. Las igualaciones de los estímulos las llevarán a cabo 3 observadores con visión normal del color y que previamente serán entrenados en este tipo de tarea.

La representación de los resultados experimentales obtenidos en el espacio CIE-1931 y en el de excitación de conos, nos proporcionará información de la exactitud con la que se presenta dicho fenómeno. Si bien la constancia del color nunca se muestra de manera exacta, no se ha cuantificado dicha desviación sobre leyes matemáticas, exceptuando el intento de Arend y colaboradores. El análisis de los datos cuando no exista cambio de iluminación sobre la escena observada también será indicativo del "error" asociado no sólo a los aspectos de memoria que puedan entrar en juego, sino también a la mayor o menor constancia del color que pueda encontrarse cuando sí exista cambio de iluminante.

Evaluación experimental de la constancia del color ... 43
Por otra parte, y en la medida que sea posible, estos resultados los compararemos con los de otros autores que hayan realizado experiencias similares, lo que nos permitirá verificar la hipótesis ampliamente extendida hoy en día de descuento del iluminante en los fenómenos de constancia del color. Aparte de esta hipótesis, existen otros modelos que habrán de comprobarse en nuestro caso, como son aquellos que explican el fenómeno bien como un proceso adaptativo lineal tipo Von Kries y que se llevaría a cabo a nivel receptoral, o bien como un proceso no lineal, también a nivel receptoral, similar al encontrado en sus experiencias por Lucassen y Walraven (1993).

Finalmente, y como consecuencia de este análisis, podremos plantearnos la modificación de algún algoritmo de visión artificial o la introducción de uno nuevo que tenga en cuenta estos aspectos y evalúe los fenómenos de constancia del color dentro del procesamiento neural de la información del color.
Dispositivo experimental
En los últimos diez años, el mundo de la informática se ha desarrollado sobrecogeedo, casi en un abrir y cerrar de ojos se ha pasado de las lentas y tediosas computadoras de sobremesa a los potentes ordenadores personales y estaciones de trabajo multiusuario. Este avance no sólo ha beneficiado a aquellos usuarios que buscaban en el ordenador una máquina de elevada potencia y rapidez de cálculo, sino también a todos los que veían al ordenador como un posible complemento a determinadas tareas: diseño asistido por ordenador, publicidad, marketing, etc.

Tradicionalmente la obtención de estímulos de color en colorimetría diferencial y estudios de visión del color se ha realizado a través de distintos tipos de colorímetros visuales (tipo Donaldson, Wright, etc.). Estos instrumentos permiten obtener una gran gama de estímulos de color mediante la mezcla aditiva de radiaciones cuasimonocromáticas que han sido seleccionadas previamente bien mediante sistemas de prismas de techo o por interposición de filtros interferenciales (Wyszecki y Stiles, 1982). La utilidad de estos instrumentos está fuera de toda duda por su gran fiabilidad y reproducibilidad en la generación de estímulos, sin embargo presentan la "incomodidad" de ser dispositivos totalmente mecánicos que han sido diseñados para un tipo dado de experiencias. Aunque en la actualidad se les puede dotar de un ordenador que permite cierto grado de automatización, tanto en la realización de medidas como en la toma de los datos de las mismas, su puesta a punto sigue siendo un proceso crítico y lento. Es en este punto donde cobra importancia la utilización de los monitores CRT color (abreviatura del inglés Cathode Ray Tube). Si bien son dispositivos muy limitados todavía en relación a la gama de estímulos de color distintos
disponibles (en el mejor de los casos 16,7 millones de colores, frente a los más de 30 millones que ofrece un colorímetro convencional) su facilidad de manejo a través de programación les da una alta versatilidad a la hora de su puesta a punto y diseño de distintos tipos de experiencias.

En la bibliografía relacionada con la constancia del color, encontramos experiencias desarrolladas con dispositivos ópticos convencionales, en los que se utilizan lámparas y proyectores para crear condiciones de iluminación determinadas bajo las que observar objetos de color reales. Este tipo de montajes lo encontramos incluso en trabajos recientes (Valberg y Lange-Malecki, 1990), sin embargo, es difícil en ellos variar los parámetros experimentales impuestos. En nuestro caso, se hizo imprescindible la utilización de un monitor CRT color debido al carácter propio de las experiencias de constancia del color desarrolladas, en las que tanto la posición como el tamaño de los objetos de color que se presentaban variaban continuamente a lo largo de las sesiones experimentales. Unida a estas variaciones espaciales en la configuración de los estímulos, teníamos también variaciones temporales en las condiciones de iluminación simuladas, de modo que se hacía impracticable el uso de otro tipo de dispositivo experimental.

A continuación describimos tanto el dispositivo utilizado para la presentación de estímulos, como el procedimiento seguido para su completa puesta a punto.

El dispositivo experimental constaba de un monitor CRT, como sistema generador de color, que estaba aislado por una carcasa pintada de negro, lo que permitía al observador una adaptación completa a las condiciones de iluminación impuestas y evitar cualquier luz parasita procedente de alguna otra parte de la cabina de observación. El control de las sesiones experimentales lo ejercía el propio observador por medio de un teclado estándar, con el que podía realizar el tipo de igualación y tarea exigidas.

Dentro del esquema global del dispositivo experimental, el monitor CRT color y el teclado se pueden agrupar en dos categorías: el soporte físico o hardware y el soporte lógico o software. Respecto del soporte físico, es necesario una puesta a punto que se compone de dos etapas, en una primera donde se fijan unas suposiciones de calibración dadas, y en la
segunda donde se aplica propiamente un método de calibración en base a las suposiciones anteriores.

4.1. SISTEMA PRODUCTOR DE ESTÍMULOS

La unidad fundamental en el sistema productor de estímulos era un monitor CRT Color de máscara de sombra. Estudiaremos a continuación no sólo las características de estos dispositivos, sino también los elementos físicos y lógicos que los controlan.

4.1.1. Características generales de los dispositivos CRT Color

Estos dispositivos están compuestos esencialmente de tres CRT que coexisten en el mismo tubo y que producen tres imágenes, una de cada color. Por simplicidad empezaremos estudiando las características de los dispositivos CRT Monocromo.

Su funcionamiento es el mismo que el utilizado en un aparato de televisión en blanco y negro (Foley y Van Dam, 1982), y se basa en la excitación de una capa de fósforo por medio de un haz de electrones acelerados. En la figura 4.1 se puede observar cómo el haz de electrones, una vez que han sido emitidos por el cañón y acelerados a través de un fuerte voltaje, se focaliza sobre la pantalla que está recubierta por una capa de fósforo. Al golpear el haz de electrones en la pantalla, parte de su energía cinética es transferida a los electrones de los átomos de fósforo, pasando éstos a un nivel excitado más energético. Una vez que estos átomos decaen a su nivel fundamental, la energía adquirida es reirradiada en forma de luz (fosforescencia, si es emitida por los electrones más estables) lo que hace posible visualizar un pequeño punto en la pantalla. La intensidad de este punto de luz sigue una distribución de tipo Gaussiano por lo que no tiene bordes nítidos, de ahí que se defina usualmente su tamaño como el diámetro en el cual la intensidad es el 50 % del máximo central.

La observación de ese punto de luz va a depender también en gran medida de la
Figura 4.1: Disposición de las triadas de fósforos en relación con la máscara de sombra y la pantalla del tubo CRT.

La persistencia del fósforo, entendida ésta como el tiempo que tarda la fosforescencia en decaer al 10% de su salida inicial, y que la luz emitida por el mismo decaya exponencialmente con el tiempo. Debido a esto, la imagen debe ser "refrescada" muchas veces por segundo de modo que el observador integre los pulsos de luz que provienen de cada pixel y pueda percibir una imagen estable y sin parpadeos. La frecuencia de refresco vertical se define como el número de veces por segundo que la imagen es redibujada en la pantalla, y suele oscilar en torno a los 60 Hz. Otro parámetro característico es la frecuencia de barrido horizontal que viene a ser el número de líneas por segundo que el dispositivo CRT es capaz de presentar. Respecto de las formas de barrido, existen actualmente dos: el entrelazado y el no entrelazado. En el primero, se muestran las líneas pares y a continuación las impares, una vez que se vuelve a la posición inicial; sin embargo, en el barrido no entrelazado todas las líneas del monitor se muestran en secuencia en toda la pantalla.

Veamos ahora las características de los monitores CRT Color. Tanto los aparatos de televisión como los monitores CRT Color de barrido utilizan el tubo de máscara de sombra (Foley y Van Dam, 1982; Spronson, 1983). En ellos caben destacar dos características básicas: la capa de fósforo y la propia máscara de sombra. La superficie cubierta por la capa
de fósforo está constituida por tríadas de fósforo azul, verde y rojo; estas tríadas son tan pequeñas para el observador que éste las percibe como una mezcla aditiva a una cierta distancia de la pantalla. La máscara de sombra consiste en una placa delgada de metal perforada con numerosos agujeros y situada a corta distancia de la pantalla. Como se observa en la figura 4.2, la máscara está alineada de tal forma que cada uno de los tres haces de electrones sólo alcanza un componente de la tríada de fósforos con lo que se puede conseguir una excitación selectiva de ellos.

A la distancia entre las tríadas se le denomina dot-pitch, y es una gran limitación en cuanto a la resolución y luminosidad del CRT debido a los problemas derivados de la focalización exacta en el centro del agujero de la máscara. Asimismo se limita la calidad de la imagen, pues si los electrones provenientes de un cañón dado no golpean el fósforo de color adecuado se producen pérdidas de saturación en aquella.

Veamos a continuación cuál es el proceso de generación de gráficos en un ordenador. Las entradas a un CRT Color consisten en tres señales, una controlando cada cañón, y que son creadas independientemente por tres canales en el subsistema gráfico del ordenador (Travis, 1991). Los componentes más destacados del proceso son la memoria de pantalla y el controlador de vídeo.

Memoria de pantalla

La memoria de pantalla es una sección de alta velocidad de la memoria del ordenador que contiene la descripción digitalizada de una página de pantalla completa. Dado que a cada
localización en la memoria de pantalla le corresponde un pixel en la pantalla en la misma posición, la resolución espacial de la imagen está determinada por la memoria de pantalla. Para el caso de una memoria de pantalla capaz de representar color y considerando el caso más simple en el que cada cañón sólo pudiera estar encendido o apagado (1 bit de información), el sistema sería capaz de representar 2^3 colores por pixel; la memoria de pantalla sería un plano con tres bits de profundidad, uno por cada cañón. En el caso más general, una memoria de pantalla con N bits por cañón podría obtener para cada pixel un número total de colores igual a 2^{3N} ($2^N \times 2^N \times 2^N$).

- **Controlador de video**

El controlador de video es el que actúa de temporizador para la generación del sincronismo tanto vertical como horizontal. Desde nuestro punto de vista, la función que más nos interesa de él es aquella que realiza como lector de los datos de la memoria de pantalla. Utilizando las direcciones del controlador, decodifica los datos digitales contenidos en aquella y los convierte en valores analógicos (valores DAC, Digital Analog Converter) devolviendo las señales resultantes de cromaticidad y luminancia, junto con las señales de barrido, al monitor CRT.

La utilización de la tabla de consulta del controlador de video es uno de los pasos fundamentales para la Figura 4.3: Representación del uso que hace el controlador de video de los valores almacenados en la tabla de consulta ("Look-up table").
presentación de colores en el monitor CRT, pues de esta forma se evitan los lentos procesos de reescritura de planos de imagen en la memoria de pantalla (un plano por cada bit que controla el cañón). Según esto, el valor que se lee en la memoria de pantalla se utiliza como índice en las tres tablas de consulta, una por cada cañón, y el valor correspondiente a este índice es el que se pasa al DAC y después al cañón correspondiente; un ejemplo de este proceso lo podemos ver en la figura 4.3. De esta forma se ahorra memoria de pantalla y se aceleran los cambios de color. Con este sistema, si M es el número de planos que contiene la memoria de pantalla, el número de colores visualizados simultáneamente en la misma será 2^M, y el número disponible de colores de la paleta de 2^{3N}, donde N es el número de bits de que consta cada entrada en la tabla de consulta de cada cañón.

4.1.2. Descripción general del dispositivo experimental

El hardware utilizado para el desarrollo de las sesiones experimentales estaba constituido por los siguientes elementos:

- Monitor color Samsung modelo CSD5577 de 15", con las siguientes características:
 CRT con pantalla cuadrada y antideslumbramiento;
 Barrido automático de frecuencia entre 30 y 58 KHz en la horizontal;
 Barrido automático de frecuencia entre 50 y 90 Hz en la vertical;
 Compatibilidad total con adaptadores gráficos IBM;
 Resolución máxima de 1024 x 768 puntos por línea (ppl) en modo estándar IBM;
 Dot-pitch de 0,28 mm;
 Entrada de colores analógicos no limitada;

- Unidad Central de Procesamiento (CPU) Compaq Deskpro 486/33M que dispone de los siguientes elementos principales: microprocesador 80486 Intel de 32 bits y velocidad de reloj de 33 MHz, coprocesador compatible 80387 integrado, memoria base RAM de 4 Mbytes y ampliación de 4 Mbytes, y unidad de disco fijo de 118 Mbytes reales.
- Ratón Genius GM-F302 a modo de dispositivo señalador y configurado para su utilización con tres botones de función.

- Tarjeta gráfica o adaptador de video TigaStar, que posee 8 bits por cada canal. Esta tarjeta utiliza el estándar de Arquitectura Gráfica de Texas Instrument (TIGA) basada sobre el microprocesador gráfico TMS32040, que opera tanto en modo VGA compatible como en modo TIGA. Las características de dicha tarjeta son las siguientes:

 Memoria de video VRAM de 1Mbyte;
 Memoria de programación DRAM de 1 Mbyte;
 Velocidad del reloj del microprocesador de 40 MHz;
 Velocidad del microprocesador de 8 millones de instrucciones por segundo;
 Resolución soportada de pantalla desde 640 x 480 ppi hasta 1600 x 1200 ppi;
 Paleta de 16,7 millones de colores;
 Número máximo de colores visualizados en pantalla no superior a 256, dependiendo de la resolución de la misma y del modo de operación;
 Software de instalación que nos permitió trabajar en una resolución de 1152 x 900 ppi con 256 colores simultáneos en pantalla, con frecuencia de barrido vertical de 54 Hz y frecuencia de barrido horizontal de 52 KHz, todo ello en modo no entrelazado;

Unido a este soporte hardware se hace necesario disponer de un soporte lógico o software que nos ayude a controlar cada uno de los elementos citados anteriormente.

El soporte lógico lo componen cada uno de los programas utilizados el desarrollo de las sesiones experimentales, que en nuestro caso se desarrollaron con el lenguaje PASCAL, bajo sistema operativo MS-DOS versión 6.0. Aquí se incluye no sólo el programa que controlaba directamente dichas sesiones, sino también cada uno de los utilizados para la calibración del dispositivo CRT color y aquellos que nos permitían la selección de los estímulos de color.
La necesidad de disponer de un conjunto lo más amplio posible de colores, nos planteó serias dificultades para seleccionar el entorno de programación más adecuado ya que tuvimos que trabajar en el modo TIGA. Esto suponía tener que programar el microprocesador de la tarjeta gráfica mediante el acceso directo a los registros y puertos adecuados, con la dificultad añadida de no disponer del manual de programación del microprocesador gráfico correspondiente. Dado que los compiladores Pascal en entorno del DOS no disponen de librerías gráficas que hagan más fácil la programación de nuestra tarjeta, esto nos hizo optar por trabajar en entorno Windows versión 3.1 y utilizar el compilador de lenguaje Pascal: el Turbo Pascal for Windows versión 1.0. El hecho de utilizar el soporte Windows para desarrollar la programación gráfica permite hacer ésta independiente del dispositivo físico donde se va a desarrollar, es decir, no es necesario establecer el contexto donde se mostrarán los gráficos (VGA, TIGA, etc.). El entorno Windows es ahora el que se encarga de reconocer las capacidades de nuestro dispositivo y elegir o adaptar, en cada caso, las más adecuadas para nuestro sistema.

4.2. PUESTA A PUNTO DEL DISPOSITIVO

Una vez descritas las características generales de los dispositivos CRT Color vamos a analizar el proceso de caracterización colorimétrica de los mismos. Este proceso consiste en la especificación de las coordenadas de cromaticidad y la luminancia de todo estímulo de color presentado en pantalla, lo que conlleva la necesidad de realizar un calibrado del CRT. Este proceso de calibrado consiste en la obtención de una relación entre el espacio de valores DAC asociados a cada pixel de la pantalla, y el espacio perceptual de color donde queremos trabajar.

Una primera etapa de este proceso de caracterización colorimétrica pasa por la determinación de la emisión espectral de los tres fósforos primarios en cualquier punto de la pantalla, lo que permite obtener un número importante de magnitudes colorimétricas asociadas (Spronson, 1983). Ahora bien, aunque las curvas de emisión espectral de los fósforos nos determinan sus cromaticidades, sin embargo esto no es suficiente para una
caracterización exacta del CRT pues dichas cromaticidades cambian con el tiempo. Para evitar esto, sería necesario medir en cada pixel de la pantalla la emisión espectral debida a la excitación de cada uno de los tres fósforos, y repetir este cálculo para cada una de las configuraciones espaciales y de color posibles. Si tenemos en cuenta las resoluciones que puede alcanzar un monitor y las posibilidades de las tarjetas gráficas actuales, el proceso de cálculo sería difícil de llevar a la práctica. Debido a esto se hace necesario asumir una serie de hipótesis de calibración que reduzcan el número de medidas y que modelen el dispositivo CRT a la hora de calibrarlo. El modelo de calibrado consistiría en el establecimiento de una serie de propiedades que caractericen el comportamiento del CRT a través de unas relaciones corroboradas por un número razonable de medidas, (Martínez, 1992).

4.2.1. Suposiciones de calibración

En la descripción colorimétrica del CRT Color no se suelen asumir todas las hipótesis posibles, sino que es usual elegir aquellas más acordes con la fabricación y comportamiento particular de cada CRT. Veamos a continuación las suposiciones de calibración que suelen escogerse, según la propuesta de los trabajos de Cowan y Rowel (1986), Brainard (1989) y Lucassen y Walraven (1990).

- **Independencia del fósforo**

Ya se ha comentado que una de las características de los dispositivos CRT Color es la capa de fósforo, constituida por tríadas de fósforo azul, verde y rojo. Según esto, a través de la suposición de independencia del fósforo o independencia de los cañones (Cowan y Rowel, 1986), es posible imaginar al dispositivo CRT Color como constituido por tres CRT Monocromos independientes y suponer que la luz emitida por cada fósforo depende únicamente de los valores de entrada para dicho fósforo (Brainard, 1989).
La suposición de independencia espacial implica que la luz emitida en una localización dada de la pantalla, sólo depende de los valores de entrada asociados a esa localización.

Constancia de los fósforos

Dado que la luz emitida por el monitor en una localización determinada queda caracterizada por su curva de distribución espectral (señal de color), la suposición de constancia de los fósforos admite que dicha señal de color es siempre combinación lineal de las tres distribuciones espectrales de energía asociadas a los tres tipos de fósforos. Una segunda implicación de esta suposición es que la distribución espectral relativa de energía emitida por los fósforos no varía con la estimulación del fósforo.

Independencia espacial y factor de escala simple

La suposición de independencia espacial implica que la emisión espectral de los fósforos primarios no tiene dependencia con la localización en la pantalla, dependiendo la luz emitida en un punto dado sólo de los valores para dicho punto.

Sin embargo, los monitores CRT no son espacialmente uniformes, de modo que para valores iguales de entrada se producen en la salida valores distintos de intensidad en los distintos puntos de la pantalla. La suposición de factor de escala simple implica que la única diferencia entre las relaciones entrada-salida en un punto dado (x, y) de la pantalla y el centro de la misma, es un factor de escala \(k(x, y) \) que es el mismo para los tres fósforos.

Estabilidad temporal

Se entiende por estabilidad temporal la eliminación de la dependencia con el tiempo de la emisión espectral de los fósforos primarios. Es decir, implícitamente se admite que las medidas asociadas al proceso de calibración mantendrán su validez durante un cierto periodo
de tiempo. Por medio del análisis de diferencias de color es posible evaluar, en ese periodo de tiempo, si se hace necesario o no un calibrado nuevo del sistema.

4.2.2. Comportamiento lineal y aditivo de los cañones

Todas estas suposiciones de calibración no sólo permiten reducir el número de medidas necesario para una completa caracterización colorimétrica del monitor, sino que también van a afectar a los principios de linealidad y aditividad de las leyes de la Colorimetría (Wyszecki y Stiles, 1982).

Desde este punto de vista, existe un relación directa entre el principio de linealidad y la constancia de los fósforos, asegurándose además la aditividad de las leyes colorimétricas si a dicha suposición le añadimos la de independencia del fósforo. Como veremos más adelante al describir el método de calibración utilizado, la comprobación del comportamiento lineal y aditivo de los cañones es fundamental a la hora de fijar un método aceptable de calibrado. Para el caso de la linealidad basta con medir las coordenadas de cromaticidad de cada cañón, para distintos niveles de excitación, y comprobar si se mantienen constantes dentro del error instrumental del aparato de medida. Por otro lado, en el caso de la aditividad se calculan los valores triestímulo con distintos niveles de excitación simultánea de los cañones y se comparan con el resultado de sumar los valores triestímulo, para esos niveles de excitación, asociados a cada cañón pero manteniendo los otros dos a cero. Mediante estos dos tipos de medidas podemos determinar hasta qué punto son válidas dichas suposiciones y su implicación en la elección de un modelo dado de calibrado.

4.2.3. Método de calibración

La elección final del método de calibración se hizo en base a las hipótesis de calibración anteriores y a la utilización del dispositivo experimental desde el punto de vista colorimétrico. En nuestro caso, la utilización del dispositivo consistía en la presentación en pantalla de una serie de estímulos de color caracterizados por unas coordenadas de
cromaticidad y luminancia (x, y; Y) dadas. El método seguido se fundamentó principalmente en la suposición de no aceptación de la consancia de los fósforos, (Jiménez del Barco et al., 1995). Se hizo necesario, por tanto, determinar las relaciones que existían entre el valor DAC de cada uno de los cañones, manteniendo los otros dos a cero, y los valores triestímulo correspondientes.

El calibrado se realizó utilizando un espectrorradiómetro Photo Research Spectrascan PR-704. Con este instrumento las medidas fotométricas absolutas quedan determinadas con un error del 4,1 %, mientras que el margen de error asociado a la medida de las coordenadas de cromaticidad (± 0,003) sólo queda especificado respecto del iluminante A. Las medidas se realizaron seleccionando el campo de 1°, situando el espectrorradiómetro a 1 m de la pantalla y dirigido perpendicularmente sobre el centro de la misma. Se procuró además tomar las medidas manteniendo la línea de visión de los observadores durante las sesiones experimentales.

El primer paso en el calibrado fue fijar unas condiciones estables de funcionamiento del monitor. Para ello, se seleccionaron unos niveles determinados en los mandos de brillo y contraste en base al interés principal de mantener la suposición de independencia de los fósforos (Díaz et al., 1996); durante todo el desarrollo posterior de las experiencias, estos mandos se sellaron para poder mantener la estabilidad deseada de las condiciones experimentales y evitar así una manipulación accidental de los mismos. La elección final de las posiciones de brillo y contraste es siempre una cuestión de compromiso. Por un lado, a medida que aumentan el comportamiento de los cañones rojo, verde y azul es menos aditivo, pero por otro, si se disminuyen mucho dichos niveles, los valores máximos de luminancia para los tres cañones se reducen excesivamente. Estas relaciones, unidas al tipo de experiencia que íbamos a realizar, nos hizo fijar unas posiciones de brillo y contraste tales que el cañón de menor rendimiento (cañón azul) tuviese una luminancia máxima entre 16 y 20 cd/m², es decir valores de luminancia dentro de los niveles pertenecientes al fotópico. La figura 4.4 muestra los valores de la radiancia espectral asociada a cada uno de los cañones del monitor; la medida de esta radiancia de hizo para valores máximos de excitación de los fósforos, manteniendo alternativamente dos de los cañones a valor cero de excitación.
Figura 4.4: Radiancia espectral de cada uno de los cañones del monitor. Las medidas se tomaron para valores máximos de excitación de los fósforos.

El siguiente paso fue comprobar que para esas posiciones de los mandos del monitor, se verificaba el principio de aditividad. Se realizaron distintas medidas de la relación luminancia- valores DAC aplicados a cada cañón para cada uno de los cañones, cuando los otros dos se excitanaban a distintos niveles. Los resultados fueron favorables y, dentro del error instrumental del espectrorradiómetro, coincidieron con lo previsto.

Seguidamente se pasó a determinar los valores triestímulo a intervalos de tres unidades DAC para cada cañón, manteniendo los otros dos a cero. Dado que la tarjeta gráfica que utilizamos era de 8 bits por cañón, la interpolación de valores triestímulo para valores DAC no medidos nos redujo considerablemente el número de medidas, por otra parte innecesarias comprobada la bondad del ajuste. De esta forma, en las situaciones en que se
verifica la independencia de los fósforos, se podrán calcular las coordenadas de cromaticidad \((x, y)\) deseadas a un nivel de luminancia \(Y\) dado mediante las relaciones siguientes:

\[
\begin{align*}
x &= \frac{X(r_{DAC}, g_{DAC}, b_{DAC})}{X(r_{DAC}, g_{DAC}, b_{DAC}) + Y(r_{DAC}, g_{DAC}, b_{DAC}) + Z(r_{DAC}, g_{DAC}, b_{DAC})} \\
y &= \frac{Y(r_{DAC}, g_{DAC}, b_{DAC})}{X(r_{DAC}, g_{DAC}, b_{DAC}) + Y(r_{DAC}, g_{DAC}, b_{DAC}) + Z(r_{DAC}, g_{DAC}, b_{DAC})}
\end{align*}
\]

\(X(r_{DAC}, g_{DAC}, b_{DAC}) = X(r_{DAC}, 0, 0) + X(0, g_{DAC}, 0) + X(0, 0, b_{DAC}) - 2 X(0, 0, 0)\)

\(Y(r_{DAC}, g_{DAC}, b_{DAC}) = Y(r_{DAC}, 0, 0) + Y(0, g_{DAC}, 0) + Y(0, 0, b_{DAC}) - 2 Y(0, 0, 0)\)

\(Z(r_{DAC}, g_{DAC}, b_{DAC}) = Z(r_{DAC}, 0, 0) + Z(0, g_{DAC}, 0) + Z(0, 0, b_{DAC}) - 2 Z(0, 0, 0)\)

donde \((X, Y, Z)\) son los valores triestímulo representados en el espacio CIE-1931. El último sumando de las expresiones (2) se ha introducido como factor de corrección de cero, dada la no nulidad de los valores triestímulo cuando simultáneamente se ponen a cero los tres cañones (Jiménez del Barco et al., 1995).

Finalmente, unimos al proceso de calibrado una comprobación periódica de la estabilidad temporal del mismo. A este respecto hay que decir que antes de cualquier toma de medidas o sesión experimental, se hacía necesario un período de estabilización del monitor durante unos 20 minutos (Martínez, 1992), a partir de los cuales se obtenían valores estables de coordenadas de cromaticidad y luminancia. Como era de esperar, la emisión espectral de los fósforos fue variando con el tiempo y con el uso continuado del monitor, lo que suponía una variación añadida en las coordenadas de cromaticidad de cada uno de los fósforos, como puede observarse en la tabla 4.1. Mediante comprobaciones periódicas se determinaba si dichas variaciones caían o no dentro del error instrumental. Si esto no era así, se procedía a recalibrar por completo el sistema para volver a calcular las relaciones (1)-(2). A lo largo
de todas las sesiones experimentales este recalibrado fue necesario realizarlo cada 6-8 meses aproximadamente.

<table>
<thead>
<tr>
<th>Fecha</th>
<th>ROJO (255,0,0)</th>
<th>VERDE (0,255,0)</th>
<th>AZUL (0,0,255)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mayo 1993</td>
<td>x 0.6030</td>
<td>y 0.3455</td>
<td>Y (cd/m²) 28.89</td>
</tr>
<tr>
<td></td>
<td>0.3082</td>
<td>0.5860</td>
<td>0.1539</td>
</tr>
<tr>
<td>Febrero 1994</td>
<td>x 0.5996</td>
<td>y 0.3458</td>
<td>Y (cd/m²) 30.86</td>
</tr>
<tr>
<td></td>
<td>0.3095</td>
<td>0.5858</td>
<td>0.1548</td>
</tr>
<tr>
<td>Noviembre 1994</td>
<td>x 0.5994</td>
<td>y 0.3455</td>
<td>Y (cd/m²) 30.79</td>
</tr>
<tr>
<td></td>
<td>0.3109</td>
<td>0.5846</td>
<td>0.1555</td>
</tr>
<tr>
<td>Mayo 1995</td>
<td>x 0.5965</td>
<td>y 0.3452</td>
<td>Y (cd/m²) 31.18</td>
</tr>
<tr>
<td></td>
<td>0.3102</td>
<td>0.5842</td>
<td>0.1552</td>
</tr>
</tbody>
</table>

Tabla 4.1: Variación encontrada en las coordenadas de cromaticidad y luminancia de los fósforos durante todo el periodo de medidas.
Método y desarrollo de las sesiones experimentales
5.1. PARÁMETROS COLORIMÉTRICOS INVOLUCRADOS

5.1.1. Descripción colorimétrica básica

En primer lugar necesitamos caracterizar desde un punto de vista colorimétrico los estímulos utilizados dentro de un modelo de visión del color adecuado, para lo que utilizaremos el modelo de Boynton (Boynton, 1986). Aunque en los últimos años se han propuesto otros modelos, entre los que destaca el de De Valois y De Valois (1993) y Guth (1991), ninguno de ellos ha sido suficientemente contrastado con datos y comprobaciones experimentales, por lo que utilizaremos el modelo de Boynton para describir no sólo los estímulos usados sino también los datos experimentales obtenidos.

El modelo de Boynton introduce una representación de los estímulos de color en la que se involucran de forma directa los valores de excitación de los tres tipos de mecanismos fotorreceptores. Esta representación se conoce como espacio de excitación de conos y utiliza los espectros de acción de conos L, M y S derivados por Smith y Pokorny (1975), figura 5.1. Según este modelo, las señales generadas por estos tres tipos de conos se combinan en tres canales distintos: canal de luminancia, canal cromático rojo-verde y canal cromático amarillo-azul. Como puede observarse en la figura 5.2, estos canales quedan especificados en la forma siguiente:
- Canal de luminancia:
definido por la suma L+M;
- Canal rojo-verde "r-g":
alimentado por la diferencia de señales L-2M;
- Canal amarillo-azul "y-b":
alimentado por la combinación de señales L+M-S.

De esta forma, cuando el valor de excitación del cono L supera al valor de 2M el canal rojo-verde dará a su salida un valor positivo y la señal será interpretada, dentro de algún punto de la ruta visual, como sensación asociada al color rojo. Por el contrario, si este canal genera a su salida un valor negativo la señal será interpretada como verde. En la figura 5.2 se observa también la existencia de una contribución de los conos S en la señal rojo-verde, indicada por la línea discontinua, aunque la influencia de esta contribución es tan pequeña que de hecho no se tiene en cuenta a la hora de cuantificar el valor asociado a este canal.

![Diagrama de conexión de canales cromáticos](image)

Figura 5.2: Esquema del modelo de visión del color propuesto por Boynton (1986).

Figura 5.1: Espectro de acción de conos L, M y S derivados por Smith yPokorny (1975).
El canal amarillo-azul compara la señal generada por la excitación del cono S, con signo negativo, con la señal asociada a la suma L+M. De este modo, cuando los conos S son poco estimulados, como es el caso de estímulos espectrales en las largas y medias longitudes de onda, este canal da a su salida un valor positivo y la señal generada se interpreta como sesación asociada al color amarillo. Si en cambio los conos S son altamente estimulados, caso de estímulos espectrales en las cortas longitudes de onda, el canal amarillo-azul generará una señal negativa interpretándose como azul. De esta forma, el tono que finalmente se asignaría a un estímulo de color vendría dado por la comparación relativa entre las señales generadas por los dos canales cromáticos.

Finalmente, el canal de luminancia se considera que no recibe contribución de los conos S y genera su señal a partir de la suma de las señales proporcionadas por los conos L y M.

Los valores asociados a los conos L, M y S se calculan para un estímulo de radiancia spectral R_λ a través de las expresiones:

$$
L = \int_{\nu s} R_\lambda L_\lambda \, d\lambda
$$
$$
M = \int_{\nu s} R_\lambda M_\lambda \, d\lambda
$$
$$
S = \int_{\nu s} R_\lambda S_\lambda \, d\lambda
$$

donde L_λ, M_λ y S_λ son las curvas de sensibilidad espectral de conos propuestas por Smith y Pokorny (1975), y que vienen relacionadas con las funciones de mezcla modificadas por Judd (1951) como:

$$
\begin{pmatrix}
L_\lambda \\
M_\lambda \\
S_\lambda
\end{pmatrix} = \begin{pmatrix}
0,15514 & 0,54321 & -0,03286 \\
-0,15514 & 0,45684 & 0,03286 \\
0 & 0 & 1
\end{pmatrix}\begin{pmatrix}
x'_\lambda \\
y'_\lambda \\
z'_\lambda
\end{pmatrix}
$$

Los valores de excitación de conos o valores triestímulo L, M y S están expresados en

Evaluación experimental de la constancia del color ... 63
unidades de iluminación retiniana (trolands), debiéndose realizar la conversión de cd/m² a trolands por medio de la relació:

\[
\text{troland} = \frac{\pi r^2}{\text{cd/m}^2}
\]

(3)

siendo \(r\) la medida del radio pupilar del observador. Este valor del radio pupilar lo hemos obtenido por medio de la fórmula de DeGroot y Gebaart (Romero et al., 1996), que expresa el valor del diámetro pupilar \(d\) (en mm) en función de la luminancia \(Y\) (en cd/m²) de los estímulos en la forma:

\[
\log d = 0,8558 - 0,000401 [\log(3,1832 Y) + 8,1]^3
\]

(4)

Como ya hemos comentado, la ventaja de utilizar este modelo es que se involucran de forma directa en la representación los valores de excitación de los conos. De esta forma

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figura5.3a.png}
\caption{Figura 5.3(a): Diagrama de cromaticidad CIE-1931 mostrando los estímulos de referencia sobre cada una de las líneas "r-g" e "y-b" seleccionadas.}
\end{figure}
si representamos los valores de excitación de conos S frente a los valores del canal cromático L-2M, para valores constantes del canal de luminancia, son fácilmente interpretables las líneas de igual excitación de S o igual excitación del canal rojo-verde. En las figuras 5.3(a)-(b), puede observarse que las líneas horizontales que representan el lugar de igual excitación de S se corresponden en el diagrama de cromaticidad CIExy con líneas que parten del punto F(1; 0). A lo largo de estas líneas, que denominaremos líneas "r-g", el nivel de excitación del cono S es constante y sólo varía la relación L/M o excitación del canal cromático rojo-verde, aumentado conforme nos acercamos al punto F. Por el contrario, las líneas verticales que representan el lugar de valor constante L-2M se corresponden en el diagrama CIExy con líneas que parten del punto tritán T(0,175; 0). En estas líneas, que denominaremos líneas "y-b", es constante el valor del canal rojo-verde y sólo varía la excitación del cono S, aumentando a medida que nos acercamos al punto tritán.

![Diagrama de cromaticidad CIExy](image)

Figura 5.3(b): Estímulos de referencia e iluminantes test representados en el espacio de excitación de conos propuesto por Boynton (1986).
5.1.2. Simulación de objetos de color: recuperación de la reflectancia espectral

Las experiencias asociadas con fenómenos de constancia del color han sido tradicionalmente diseñadas utilizando objetos de color reales así como fuentes de iluminación también reales. Sin embargo, de unos años a esta parte el avance de la tecnología ha permitido desarrollar métodos nuevos para simular, de forma dinámica, en monitores CRT color los efectos del cambio de iluminación sobre distintos objetos (Travis, 1991).

La simulación de una superficie u objeto de color para su visualización en la pantalla de un monitor, tiene su punto de partida en el cálculo de los valores triestímulo \((X,Y,Z)\) que lo caracterizan. Ahora bien, estos valores vienen determinados tanto por las características del propio objeto, su reflectancia espectral \(S(\lambda)\), como por el tipo de iluminación que recibe, curva de emisión espectral \(E(\lambda)\) del iluminante; ambos factores se encuentran ligados en lo que se denomina señal de color, definida como el producto:

\[
C(\lambda) = S(\lambda)E(\lambda)
\]

(5)

que nos informa sobre la distribución de potencia espectral de la luz reflejada por el objeto.

Si conocemos la función reflectancia \(S(\lambda)\) del objeto y la distribución de potencia \(E(\lambda)\), los valores triestímulo vendrán dados por:

\[
X = \int \bar{x}(\lambda)S(\lambda)E(\lambda)\,d\lambda \\
Y = \int \bar{y}(\lambda)S(\lambda)E(\lambda)\,d\lambda \\
Z = \int \bar{z}(\lambda)S(\lambda)E(\lambda)\,d\lambda
\]

(6)

siendo \(\bar{x}(\lambda)\), \(\bar{y}(\lambda)\), \(\bar{z}(\lambda)\) las funciones de mezcla asociadas al observador patrón CIE-1931.

Por tanto, dado que en las experiencias de constancia del color hay que manejar un amplio conjunto de objetos de color e iluminantes, no disponible en la práctica, se hace necesario utilizar un modelo de predicción que permita simplificar el tratamiento de las múltiples
señales de color generadas por las expresiones (5).

Se han propuesto distintos algoritmos computacionales para la simulación de objetos de color, bien considerando la conversión directa entre la especificación del color en el espacio XYZ y el espacio RGB de primarios del monitor CRT (Glassner, 1989), o bien a través de modelos lineales de pocos parámetros que describen la señal de color en una base determinada (Troost y Weert, 1992). La aplicación del primero de los algoritmos anteriores pasa por el cálculo de una transformación lineal, vía matriz 3x3 construida a partir de las coordenadas de cromaticidad asociadas a los fósforos rojo, verde y azul del monitor. Como ya se comentó en el capítulo dedicado al dispositivo experimental, esto supondría admitir la constancia de dichas coordenadas y las implicaciones que ello conllevaría (Jiménez del Barco et al., 1995). Por tanto, en nuestro caso creemos más correcto seguir el segundo procedimiento eligiendo una base de representación adecuada para la función reflectancia \(S(\lambda) \) y utilizar el método de calibrado propio para la determinación de los valores DAC del estímulo de color metámero del objeto de color simulado.

Veamos con más detalle el proceso seguido. Según vimos en el capítulo 3, cualquier modelo lineal considera que toda función reflectancia puede representarse por medio de combinaciones lineales de "m" vectores base \(S_j \) en la forma:

\[
S(\lambda) = \sum_{j=1}^{m} \sigma_j S_j(\lambda)
\]

(7)

De este modo la función reflectancia queda perfectamente definida sin más que calcular primero el valor de sus coordenadas \(\sigma_j \) en la base elegida, dadas por la expresión:

\[
\sigma_j = [S(\lambda)]^T \ [S_j(\lambda)]
\]

(8)

En los últimos años se han propuesto distintos modelos lineales aplicables a visión artificial que pretenden el reconocimiento automático de objetos a través de su reflectancia. Sin embargo, nuestro propósito al utilizar estos modelos no ha sido el conseguir una representación exacta de una determinada función reflectancia, sino disponer simplemente de

Evaluación experimental de la constancia del color ... 67
un conjunto amplio de superficies de color, reales o no, que nos permitiesen trabajar cómodamente con el cálculo de valores triestímulo dados por las expresiones (6). En este sentido, y por simplicidad, nos fue suficiente con elegir 3 vectores de la base de Parkkinnen (Parkkinnen et al., 1989) para la representación.

En las experiencias de constancia del color que hemos diseñado, conocemos siempre de antemano las coordenadas (x, y) de cromaticidad y el factor de luminancia Y de los objetos de color bajo una iluminación de referencia o estándar. Por tanto, como entrada del algoritmo tomamos el conjunto de los 3 primeros vectores de la base de Parkkinnen, representados en la figura 5.4, y la distribución de potencia espectral del iluminante elegido como estándar; la salida será una de las posibles funciones de reflectancia metámeras asociadas a las coordenadas (x, y; Y) del objeto de color dado bajo dicha iluminación.

Para obtener las coordenadas \(\sigma_i \) sustituimos la ecuación (7) en cada una de las expresiones (6), quedando para un iluminante "i" dado:

\[
\begin{bmatrix}
X_i \\
Y_i \\
Z_i
\end{bmatrix} =
\begin{bmatrix}
\sum \tilde{x}(\lambda)S_1(\lambda)E_i(\lambda)\Delta\lambda \\
\sum \tilde{y}(\lambda)S_1(\lambda)E_i(\lambda)\Delta\lambda \\
\sum \tilde{z}(\lambda)S_1(\lambda)E_i(\lambda)\Delta\lambda
\end{bmatrix} \begin{bmatrix}
\sigma_1 \\
\sigma_2 \\
\sigma_3
\end{bmatrix}
\]

o bien en notación vectorial:

\[
\begin{bmatrix}
X_i \\
Y_i \\
Z_i
\end{bmatrix} =
\begin{bmatrix}
\sum \tilde{x}(\lambda)S_1(\lambda)E_i(\lambda)\Delta\lambda \\
\sum \tilde{y}(\lambda)S_1(\lambda)E_i(\lambda)\Delta\lambda \\
\sum \tilde{z}(\lambda)S_1(\lambda)E_i(\lambda)\Delta\lambda
\end{bmatrix} \begin{bmatrix}
\sigma_1 \\
\sigma_2 \\
\sigma_3
\end{bmatrix}
\]

Figura 5.4: Representación de los tres primeros vectores de la base de Parkkinnen (1989).

68 Evaluación experimental de la constancia del color...
\overline{\pi} = \Lambda_i \overline{\sigma} \quad (10)
donde se ha tomado \(\Delta \lambda = 5 \) nm, en el intervalo de longitudes de onda del espectro visible [400, 700] nm. Puesto que conocemos las coordenadas \((x, y; Y)\) del objeto de color, podemos obtener el vector \(\overline{\pi} \) de valores triestímulo a partir de las expresiones:

\[
\begin{align*}
X &= \frac{x}{y} \\
Y &= Y \\
Z &= \frac{1 - x - y}{y} Y
\end{align*}
\]
(11)

Determinados los valores de \(\overline{\pi} \) y conocida la matriz \(\Lambda_i \) asociada a la señal de color, el vector de coeficientes se obtendrá como:

\[\overline{\sigma} = \Lambda_i^{-1} \overline{\pi} \]
(12)

Finalmente, por medio de la sustitución de los valores de \(\overline{\sigma} \) en (7) obtendremos la función reflectancia buscada.

Todos estos cálculos se realizaron por ordenador mediante un sencillo programa, cuya entrada eran las coordenadas \((x, y; Y)\) de la superficie de color seleccionada y la distribución espectral del iluminante estándar. La salida del programa era la función reflectancia \(S(\lambda) \) reconstruida y la matriz de transformación \(\Lambda_i^{-1} \), cuyos valores para el iluminante equienergético, seleccionado como estándar, resultaron ser:

\[
\Lambda^{-1} = \begin{bmatrix}
0,001056600 & 0,00000016 & 0,00041585 \\
0,001874390 & -0,00118957 & -0,00071004 \\
0,001165040 & -0,00155450 & 0,00039439
\end{bmatrix}
\]
(13)

A partir de aquí y conocida la función \(S(\lambda) \) era directo encontrar las coordenadas de
cromaticidad y factor de luminancia del mismo objeto de color para cualquier otro iluminante.

5.1.3. Elección de iluminantes

Una vez que conocemos la función reflectancia espectral \(S(\lambda) \) de cada uno de los objetos de color, la señal de color quedará completamente especificada si fijamos la distribución espectral de potencia \(E(\lambda) \) del iluminante. Con el fin de disponer de un conjunto variado de condiciones de iluminación que nos permita trabajar con las diferentes apariencias del color que pueden presentar los objetos, se utilizaron los 5 iluminantes descritos a continuación:

Iluminante \(E \), que representa un iluminante equienergético;
Iluminante 10000 K, que representa la radiación del cuerpo negro a temperatura de 10000 K;
Iluminante \(D_{65} \), que representa una fase de luz-día con una temperatura de color correlacionada de 6504 K;
Iluminante \(F_{11} \), que representa un iluminante fluorescente típico (Colorimetry, Publ. CIE n°152, 1986);
Iluminante \(A \), que representa la radiación del cuerpo negro a temperatura de 2856 K y se toma estándar de la emisión espectral de una lámpara de incandescencia a dicha temperatura.

Como iluminación de referencia se decidió utilizar en todas las sesiones experimentales el iluminante equienergético \(E \), dado que éste se corresponde con una iluminación caracterizada por una distribución espectral de potencia plana. Si exceptuamos el iluminante fluorescente \(F_{11} \), el resto de iluminantes ha sido ampliamente utilizado en los distintos trabajos relacionados con la constancia del color y han sido elegidos como representativos de condiciones de iluminación típicas que los observadores pueden encontrarse en sus experiencias cotidianas. Además, con este conjunto de iluminantes se obtienen desplazamientos colorimétricos de magnitud tal que suponen un cambio significativo.
en la apariencia del color de los objetos observados. La elección de los iluminantes de 10000 K, D₆₅ y A nos permitirá comparar nuestros resultados con los de otros autores que han realizado experiencias similares; en cuanto al iluminante F₁₁, creemos que es necesario introducirlo en el estudio dado que hoy en día es muy frecuente el uso de tubos fluorescentes como iluminación en interiores.

<table>
<thead>
<tr>
<th></th>
<th>10000K</th>
<th>D₆₅</th>
<th>E</th>
<th>F₁₁</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0,282</td>
<td>0,313</td>
<td>0,333</td>
<td>0,385</td>
<td>0,451</td>
</tr>
<tr>
<td>y</td>
<td>0,289</td>
<td>0,331</td>
<td>0,333</td>
<td>0,371</td>
<td>0,406</td>
</tr>
<tr>
<td>Y (cd/m²)</td>
<td>18,29</td>
<td>18,15</td>
<td>18,77</td>
<td>18,77</td>
<td>18,75</td>
</tr>
</tbody>
</table>

Tabla 5.I(a): Coordenadas de cromaticidad y luminancia de los metámeros utilizados como adaptantes.

Tal y como se observa en la tabla 5.I(a), la cromaticidad asociada a estos iluminantes es muy diferente, variando en el diagrama de cromaticidad desde zonas próximas a los azules, como el de 10000 K, hasta las cercanas a los amarillos-anaranjados, en el caso de los iluminantes F₁₁ y el A. En la tabla 5.I(b) se presentan también las coordenadas de estos iluminantes en el espacio de excitación de conos.

<table>
<thead>
<tr>
<th></th>
<th>10000K</th>
<th>D₆₅</th>
<th>E</th>
<th>F₁₁</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>L+M</td>
<td>125,59</td>
<td>124,85</td>
<td>128,10</td>
<td>128,10</td>
<td>133,19</td>
</tr>
<tr>
<td>S</td>
<td>178,40</td>
<td>128,50</td>
<td>123,37</td>
<td>80,90</td>
<td>45,22</td>
</tr>
<tr>
<td>L-2M</td>
<td>-7,66</td>
<td>-4,24</td>
<td>-0,41</td>
<td>6,19</td>
<td>14,80</td>
</tr>
</tbody>
</table>

Tabla 5.I(b): Coordenadas de los metámeros utilizados como adaptantes, en el espacio de excitación de conos; los valores están expresados en trolands.

Dado que estos iluminantes, por medio del monitor CRT color, se utilizaron como adaptantes, se simularon un conjunto de objetos de color acromáticos con la cromaticidad correspondiente a los iluminantes citados. Para esta tarea se utilizó el procedimiento de
reconstrucción discutido en el apartado anterior, obteniéndose una serie de objetos de color cuya función reflectancia se muestra en la figura 5.5.

![Figura 5.5: Reflectancia relativa de los objetos utilizados como metámeros de la iluminación adaptante.]

5.1.4. Observadores

Todas las sesiones experimentales fueron realizadas por tres observadores, identificados como JR, FP y JH; todos ellos poseen visión normal del color según se deduce de las pruebas previas realizadas con el test de Ishihara y los del Colegio Médico de Tokio y el de Farnsworth D-15.

Dado el propio el carácter de las experiencias realizadas y la dificultad que presenta siempre disponer de un conjunto de personas con completa dedicación a estas sesiones, se decidió utilizar un grupo de observadores que estuviese familiarizado con las medidas experimentales que se realizan en el campo de la visión del color. Si bien en cuanto al número de observadores no existe un mínimo necesario para la realización de este tipo de experiencias, lo que no justifica el número escogido por nosotros, creemos que tres son suficientes para los objetivos que nos hemos marcado, siendo además éste el número usual de observadores utilizado en los estudios de visión del color (Ronchi y Ferrara, 1963).
5.2. MÉTODO EXPERIMENTAL

5.2.1. Descripción general del sistema de observación

Tal y como se esquematiza en la figura 5.6, una cabina de observación cuadrada situada delante del monitor y pintada de negro permitía aislar completamente la pantalla del CRT de posibles luces parásitas; el observador siempre realizaba todas sus igualaciones mediante visión binocular y pupila natural, y se mantuvo siempre su cabeza libre de fijación. La distancia de observación se fijó en 100 cm, de modo que el campo total de observación sustendía un ángulo visual máximo de 14,25° x 11,25°. Todas las sesiones experimentales podían ser controladas por cada observador, aunque en ningún momento se le informaba sobre la propia configuración de la sesión, es decir, cuál era el conjunto de estímulos test, qué tipo de iluminante era el simulado en la adaptación, etc.

Con el tipo de observación llevada a cabo no se iluminaba por tanto de forma uniforme una zona específica de la retina. Si bien los estímulos estándar y test eran presentados en pantalla de manera que siempre iluminaran la misma zona retiniana, en nuestro caso en visión foveal, el propio carácter de las observaciones realizadas permitía al observador en determinados momentos barrer con la mirada toda la pantalla del monitor.

En cuanto al tipo de observación realizada no existe en la bibliografía relacionada con el tema una norma general por la que guiarse, si bien el tipo de experiencia desarrollada entra dentro de lo que se conoce como igualaciones asimétricas de color. Las experiencias desarrolladas están dentro del concepto general de igualación de color, aunque en este caso las igualaciones realizadas se caracterizan por el hecho de que los estímulos...
Cap. 5: Características y desarrollo de las sesiones experimentales

estándar y test se presentan al observador en diferentes contextos visuales (Wyszecki y Stiles, p.282, 1982). El tipo de observación elegida no ha sido un proceso casual dado que en este tipo de experiencias de constancia del color la elección viene marcada bien por el tipo de tarea exigida al observador o por la propia configuración del montaje experimental. Así por ejemplo, en disposiciones experimentales realizadas sin la ayuda de monitores CRT la compleja colocación de las estructuras de color estándar y test hacen más cómodo utilizar visión haploscópica, observándose dichas estructuras con el ojo derecho e izquierdo alternativamente. Nuestra elección de visión binocular estuvo motivada por dos factores principalmente. De un lado evitamos las posibles interacciones intraoculares que podrían ocurrir al observar con cada ojo, aunque no de manera simultánea, escenas distintas. Este hecho podría conducir a diferencias de cromaticidad, no asociadas al fenómeno estudiado, entre el objeto de color estándar observado con un ojo y la igualación que se pide al observador que realice con el otro ojo. Por otro lado, y unido a las características propias de la constancia del color, la visión binocular es la empleada por los observadores en todas sus experiencias cotidianas.

5.2.2. Igualaciones asimétricas con fondo adaptante complejo

5.2.2.1. Configuración espacial de los estímulos

El modo de presentación de los estímulos consistía en una estructura de 35 áreas de color de distintas formas geométricas y dispuestas sin un orden determinado en lo que se conoce como estructura tipo Mondrian, en honor del célebre pintor. El conjunto de estímulos de color eran simulaciones de objetos de color que aparecían como planos y que estaban iluminados por un determinado iluminante, de forma tal que no existiesen sombras o

![Figura 5.7: Configuración espacial de una de las estructuras Mondrian observadas durante las sesiones.](image)
componentes especulares en la imagen final.

El observador a lo largo de una sesión experimental veía, de forma sucesiva, un campo uniforme o fondo adaptante de una determinada cromaticidad y un Mondrian. Una de las posibles configuraciones que estos objetos de color en la pantalla se puede ver en la figura 5.7 y en el Apéndice de esta memoria. El área central del campo visual, de tamaño 1,7°, era el objeto de color test en el que el observador fijaba su atención durante las sesiones. Esta superficie mantenía una posición y tamaño fijos durante todo el desarrollo de la sesión experimental, a diferencia del resto que cambiaba aleatoriamente tanto de forma geométrica como de posición en la pantalla. Esta configuración aleatoria del fondo es importante pues permite independizar las decisiones del observador de otras variables que podrían influir en la apariencia del objeto de color observado. A través de este método nos asegurábamos que el observador evitase en lo posible el realizar sus igualaciones tomando como referencia algún objeto dado de la escena, tal y como ocurre en experiencias de este tipo (Cornelissen y Brenner, 1995; Arend y Reeves, 1986). La aleatoriedad en la posición y forma de los estímulos que configuraban el fondo permitía además evitar tanto los fenómenos de inducción cromática sobre el estímulo de referencia, como la formación de molestias postimágenes durante los periodos de adaptación intermedios.

5.2.2.2. Cromaticidad y luminancia de los estímulos

Los estímulos de color utilizados en las distintas sesiones experimentales simulaban todos ellos objetos de color bajo distintas condiciones de iluminación. El conjunto de estos objetos de color se subdividía en dos tipos, aquellos que configuraban la escena de referencia o estándar y que simulaban objetos de color observados bajo iluminante equienergético, y aquellos otros que formaban cada una de las escenas observadas bajo distintos iluminantes test.

A) Objetos de color estándar:

Estos estímulos se seleccionaron dispuestos sobre líneas de cofusión rojo-verde y
amarillo-azul, con orígenes en los puntos (1; 0) y (0,175; 0), respectivamente, en el diagrama de cromaticidad CIE-1931. Los 16 estímulos estándar seleccionados eran por tanto metámeros de objetos de color bajo una iluminación que denominaremos estándar o equinergética y que corresponde al caso de un iluminante cuya distribución espectral de potencia es totalmente plana.

Las líneas de confusión elegidas quedaban confinadas dentro del triángulo determinado por los primarios rojo, verde y azul de nuestro monitor CRT, con coordenadas de cromaticidad CIExy-1931:

- **ROJO**
 - (0,5995; 0,3455)
- **VERDE**
 - (0,3109; 0,5846)
- **AZUL**
 - (0,1555; 0,0804)

Los estímulos estándar elegidos tenían asociado un valor de luminancia de 22 cd/m², correspondiente a 144,62 td de iluminación retiniana, y se agrupaban según 6 líneas rojo-verde y 4 líneas amarillo-azul, tablas 5.II(a)-(b). Las figuras 5.3(a)-(b) muestran la disposición de las distintas líneas en el sistema de representación CIE-1931 y en el espacio de excitación de conos propuesto por Boynton (1986).

Con la elección de estos 16 estímulos se pretendió abarcar lo más extensamente posible la gama de reproducción de estímulos de color del monitor, teniendo en cuenta siempre que la saturación de aquellos estaría limitada debido a las propias características técnicas del dispositivo CRT. Por otro lado, en la elección de los estímulos se hubo de tener en cuenta que la cromaticidad de los mismos era variable dependiendo de las condiciones de iluminación que se simulaban en cada sesión. Se eligieron un conjunto de estímulos de modo que al variar el iluminante los desplazamientos colorimétricos inducidos estuviesen dentro del triángulo de primarios disponible; de esta forma, modificando el valor DAC de cada primario, los observadores podrían ser capaces siempre de alcanzar un desplazamiento adaptativo de la misma magnitud que el colorimétrico correspondiente.

Los estímulos realmente obtenidos a través del proceso de calibrado diferían en cierta medida de los iniciales, si bien estas diferencias pudo comprobarse que nunca sobrepasaban las 3 Unidades MacAdam de diferencia de color, que es el valor habitualmente utilizado,
como mínimo, al fijar las tolerancias de color. Estas diferencias se pueden observar en las tablas 5.III(a)-(b) donde se representan los valores teóricos y obtenidos para los disinttos estímulos.

B) Objetos de color test:

El conjunto de objetos de color test estaba constituido por los 35 objetos que componen el Mondrian y que eran observados bien bajo iluminación equinergética de referencia o bien bajo alguna de las iluminaciones test simuladas. Estos objetos constituían pues el fondo adaptante sobre el que los observadores memorizaban el estímulo de referencia o sobre el que realizaban la igualación del mismo. El único criterio seguido en la elección de la cromaticidad de estos objetos de color fue que estuviesen repartidos de forma homogénea por todo el diagrama de cromaticidad, simulando así la variedad de estímulos diferentes que habituamente existe en una escena. Al conjunto de objetos seleccionado sólo se le exigió que tuviesen una reflectancia tal que el factor de luminancia promedio de todos ellos, para cada una de las condiciones de iluminación, no superase la luminancia de los estímulos de referencia (22 cd/m²). De esta forma evitamos que el fondo circundante tenga efectos inductivos en las igualaciones que se realizan, teniendo en cuenta además que en este tipo de igualaciones donde interviene de forma directa los aspectos de memoria, es posible que se produzca un aumento de la luminancia del estímulo recordado respecto del inicialmente observado (Romero, Hita y Jiménez del Barco, 1985; Newhall y Burnham, 1957).

En la tabla 5.IV se presentan cada uno de los objetos de color presentes en el Mondrian junto con sus coordenadas de cromaticidad bajo los distintos iluminantes utilizados. En el Apéndice pueden observarse algunas de las configuraciones espaciales que configuraban cada Mondrian, así como la apariencia que presentaban cuando eran reproducidos bajo distintos iluminantes.
<table>
<thead>
<tr>
<th>Ñº</th>
<th>L+M</th>
<th>L-2M</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-g /1</td>
<td>1</td>
<td>144,62</td>
<td>-15,73</td>
</tr>
<tr>
<td>r-g /2</td>
<td>2</td>
<td>144,62</td>
<td>-16,21</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>144,62</td>
<td>-0,46</td>
</tr>
<tr>
<td>r-g /3</td>
<td>3</td>
<td>144,62</td>
<td>-16,12</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>144,62</td>
<td>-0,55</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>144,62</td>
<td>18,80</td>
</tr>
<tr>
<td>r-g /4</td>
<td>5</td>
<td>144,62</td>
<td>-16,21</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>144,62</td>
<td>-0,46</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>144,62</td>
<td>19,16</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>144,62</td>
<td>40,31</td>
</tr>
<tr>
<td>r-g /5</td>
<td>6</td>
<td>144,62</td>
<td>-16,39</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>144,62</td>
<td>-0,40</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>144,62</td>
<td>18,95</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>144,62</td>
<td>40,31</td>
</tr>
<tr>
<td>r-g /6</td>
<td>8</td>
<td>144,61</td>
<td>-16,40</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>144,62</td>
<td>-0,40</td>
</tr>
</tbody>
</table>

Tabla 5.II(a): Coordenadas en el espacio de excitación de conos, según distintas líneas de confusión r-g, de los puntos estándar seleccionados (todos los valores están expresados en td).
<table>
<thead>
<tr>
<th></th>
<th>L+M</th>
<th>L-2M</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>144,62</td>
<td>-15,73</td>
<td>569,50</td>
</tr>
<tr>
<td>2</td>
<td>144,62</td>
<td>-16,21</td>
<td>363,37</td>
</tr>
<tr>
<td>3</td>
<td>144,62</td>
<td>-16,12</td>
<td>258,16</td>
</tr>
<tr>
<td>5</td>
<td>144,62</td>
<td>-16,21</td>
<td>139,23</td>
</tr>
<tr>
<td>6</td>
<td>144,62</td>
<td>-16,39</td>
<td>94,67</td>
</tr>
<tr>
<td>8</td>
<td>144,61</td>
<td>-16,40</td>
<td>35,10</td>
</tr>
<tr>
<td>4</td>
<td>144,62</td>
<td>-0,46</td>
<td>362,10</td>
</tr>
<tr>
<td>7</td>
<td>144,62</td>
<td>-0,55</td>
<td>256,97</td>
</tr>
<tr>
<td>9</td>
<td>144,62</td>
<td>-0,46</td>
<td>139,28</td>
</tr>
<tr>
<td>11</td>
<td>144,62</td>
<td>-0,40</td>
<td>94,58</td>
</tr>
<tr>
<td>13</td>
<td>144,62</td>
<td>-0,40</td>
<td>35,15</td>
</tr>
<tr>
<td>10</td>
<td>144,62</td>
<td>18,80</td>
<td>256,57</td>
</tr>
<tr>
<td>12</td>
<td>144,62</td>
<td>19,16</td>
<td>138,86</td>
</tr>
<tr>
<td>14</td>
<td>144,62</td>
<td>18,95</td>
<td>93,79</td>
</tr>
<tr>
<td>15</td>
<td>144,62</td>
<td>40,31</td>
<td>138,42</td>
</tr>
<tr>
<td>16</td>
<td>144,62</td>
<td>40,31</td>
<td>93,74</td>
</tr>
</tbody>
</table>

Tabla 5.11(b): Coordenadas en el espacio de excitación de conos, según distintas líneas de confusión γ-b, de los puntos estándar seleccionados (todos los valores están expresados en td).
Cap. 5: Características y desarrollo de las sesiones experimentales

<table>
<thead>
<tr>
<th>Puntos estándar teóricos</th>
<th>Puntos estándar encontrados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>0,217</td>
</tr>
<tr>
<td>2</td>
<td>0,233</td>
</tr>
<tr>
<td>3</td>
<td>0,248</td>
</tr>
<tr>
<td>4</td>
<td>0,270</td>
</tr>
<tr>
<td>5</td>
<td>0,276</td>
</tr>
<tr>
<td>6</td>
<td>0,292</td>
</tr>
<tr>
<td>7</td>
<td>0,292</td>
</tr>
<tr>
<td>8</td>
<td>0,325</td>
</tr>
<tr>
<td>9</td>
<td>0,333</td>
</tr>
<tr>
<td>10</td>
<td>0,340</td>
</tr>
<tr>
<td>11</td>
<td>0,357</td>
</tr>
<tr>
<td>12</td>
<td>0,393</td>
</tr>
<tr>
<td>13</td>
<td>0,402</td>
</tr>
<tr>
<td>14</td>
<td>0,422</td>
</tr>
<tr>
<td>15</td>
<td>0,447</td>
</tr>
<tr>
<td>16</td>
<td>0,480</td>
</tr>
</tbody>
</table>

Tabla 5.III(a): Coordenadas de cromaticidad de los puntos estándar teóricos y realmente encontrados mediante calibrado.

80 Evaluación experimental de la constancia del color ...
<table>
<thead>
<tr>
<th>N°</th>
<th>L</th>
<th>M</th>
<th>S</th>
<th>N°</th>
<th>L</th>
<th>M</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>91,17</td>
<td>53,45</td>
<td>569,50</td>
<td>1</td>
<td>90,89</td>
<td>53,28</td>
<td>567,72</td>
</tr>
<tr>
<td>2</td>
<td>91,01</td>
<td>53,61</td>
<td>363,37</td>
<td>2</td>
<td>91,57</td>
<td>53,95</td>
<td>365,63</td>
</tr>
<tr>
<td>3</td>
<td>91,04</td>
<td>53,58</td>
<td>258,16</td>
<td>3</td>
<td>90,50</td>
<td>53,27</td>
<td>256,64</td>
</tr>
<tr>
<td>4</td>
<td>96,26</td>
<td>48,36</td>
<td>362,10</td>
<td>4</td>
<td>96,89</td>
<td>48,68</td>
<td>364,48</td>
</tr>
<tr>
<td>5</td>
<td>91,01</td>
<td>53,61</td>
<td>139,23</td>
<td>5</td>
<td>90,79</td>
<td>53,48</td>
<td>138,89</td>
</tr>
<tr>
<td>6</td>
<td>90,95</td>
<td>53,67</td>
<td>94,67</td>
<td>6</td>
<td>91,53</td>
<td>54,14</td>
<td>95,14</td>
</tr>
<tr>
<td>7</td>
<td>96,23</td>
<td>48,39</td>
<td>256,97</td>
<td>7</td>
<td>96,56</td>
<td>48,56</td>
<td>257,86</td>
</tr>
<tr>
<td>8</td>
<td>90,94</td>
<td>53,67</td>
<td>35,10</td>
<td>8</td>
<td>90,60</td>
<td>53,47</td>
<td>34,96</td>
</tr>
<tr>
<td>9</td>
<td>96,26</td>
<td>48,36</td>
<td>139,28</td>
<td>9</td>
<td>96,73</td>
<td>48,54</td>
<td>140,73</td>
</tr>
<tr>
<td>10</td>
<td>102,68</td>
<td>41,94</td>
<td>256,57</td>
<td>10</td>
<td>102,39</td>
<td>41,98</td>
<td>256,73</td>
</tr>
<tr>
<td>11</td>
<td>96,28</td>
<td>48,34</td>
<td>94,58</td>
<td>11</td>
<td>95,72</td>
<td>47,95</td>
<td>93,59</td>
</tr>
<tr>
<td>12</td>
<td>102,80</td>
<td>41,82</td>
<td>138,86</td>
<td>12</td>
<td>102,52</td>
<td>41,80</td>
<td>137,68</td>
</tr>
<tr>
<td>13</td>
<td>96,28</td>
<td>48,34</td>
<td>35,15</td>
<td>13</td>
<td>96,47</td>
<td>48,40</td>
<td>35,58</td>
</tr>
<tr>
<td>14</td>
<td>102,73</td>
<td>41,89</td>
<td>93,79</td>
<td>14</td>
<td>103,21</td>
<td>42,06</td>
<td>93,14</td>
</tr>
<tr>
<td>15</td>
<td>109,85</td>
<td>34,77</td>
<td>138,42</td>
<td>15</td>
<td>110,11</td>
<td>34,86</td>
<td>138,76</td>
</tr>
<tr>
<td>16</td>
<td>109,85</td>
<td>34,77</td>
<td>93,74</td>
<td>16</td>
<td>109,74</td>
<td>34,73</td>
<td>93,65</td>
</tr>
</tbody>
</table>

Tabla 5.III(b): Valores (L, M, S) de los puntos estándar teóricos y realmente encontrados mediante calibrado. Todos los valores están expresados en trolands, correspondiendo a 22 cd/m² una iluminación retiniana de 144,61 td y un diámetro pupilar de 2,89 mm.
<table>
<thead>
<tr>
<th>N°</th>
<th>x</th>
<th>y</th>
<th>Y</th>
<th>L</th>
<th>M</th>
<th>S</th>
<th>L+M</th>
<th>L-2M</th>
<th>(L+M)-S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,188</td>
<td>0,118</td>
<td>24,31</td>
<td>93,72</td>
<td>62,32</td>
<td>844,93</td>
<td>156,04</td>
<td>-30,92</td>
<td>-688,89</td>
</tr>
<tr>
<td>2</td>
<td>0,201</td>
<td>0,168</td>
<td>23,65</td>
<td>92,84</td>
<td>59,97</td>
<td>538,81</td>
<td>152,81</td>
<td>-27,10</td>
<td>-386,00</td>
</tr>
<tr>
<td>3</td>
<td>0,213</td>
<td>0,214</td>
<td>23,31</td>
<td>92,37</td>
<td>58,76</td>
<td>383,74</td>
<td>151,13</td>
<td>-25,15</td>
<td>-232,61</td>
</tr>
<tr>
<td>4</td>
<td>0,224</td>
<td>0,157</td>
<td>22,71</td>
<td>94,25</td>
<td>53,91</td>
<td>546,31</td>
<td>148,16</td>
<td>-13,57</td>
<td>-398,15</td>
</tr>
<tr>
<td>5</td>
<td>0,239</td>
<td>0,313</td>
<td>22,93</td>
<td>91,88</td>
<td>57,37</td>
<td>204,98</td>
<td>149,25</td>
<td>-22,66</td>
<td>-55,73</td>
</tr>
<tr>
<td>6</td>
<td>0,256</td>
<td>0,380</td>
<td>22,80</td>
<td>91,69</td>
<td>56,91</td>
<td>137,22</td>
<td>148,60</td>
<td>-22,13</td>
<td>11,38</td>
</tr>
<tr>
<td>7</td>
<td>0,242</td>
<td>0,199</td>
<td>22,38</td>
<td>93,83</td>
<td>52,69</td>
<td>388,99</td>
<td>146,52</td>
<td>-11,55</td>
<td>-242,47</td>
</tr>
<tr>
<td>8</td>
<td>0,295</td>
<td>0,533</td>
<td>22,61</td>
<td>91,41</td>
<td>56,26</td>
<td>46,24</td>
<td>147,67</td>
<td>-21,11</td>
<td>101,43</td>
</tr>
<tr>
<td>9</td>
<td>0,281</td>
<td>0,286</td>
<td>22,01</td>
<td>93,52</td>
<td>51,15</td>
<td>209,53</td>
<td>144,67</td>
<td>-8,78</td>
<td>-64,86</td>
</tr>
<tr>
<td>10</td>
<td>0,277</td>
<td>0,181</td>
<td>21,23</td>
<td>95,94</td>
<td>44,81</td>
<td>396,43</td>
<td>140,75</td>
<td>6,32</td>
<td>-255,68</td>
</tr>
<tr>
<td>11</td>
<td>0,306</td>
<td>0,343</td>
<td>21,87</td>
<td>93,35</td>
<td>50,61</td>
<td>141,60</td>
<td>143,96</td>
<td>-7,87</td>
<td>2,36</td>
</tr>
<tr>
<td>12</td>
<td>0,328</td>
<td>0,255</td>
<td>20,85</td>
<td>95,59</td>
<td>43,23</td>
<td>216,25</td>
<td>138,82</td>
<td>9,13</td>
<td>-77,43</td>
</tr>
<tr>
<td>13</td>
<td>0,361</td>
<td>0,469</td>
<td>21,68</td>
<td>93,12</td>
<td>49,90</td>
<td>50,17</td>
<td>143,02</td>
<td>-6,68</td>
<td>92,85</td>
</tr>
<tr>
<td>14</td>
<td>0,360</td>
<td>0,304</td>
<td>20,73</td>
<td>95,41</td>
<td>42,80</td>
<td>146,26</td>
<td>138,21</td>
<td>9,81</td>
<td>-8,05</td>
</tr>
<tr>
<td>15</td>
<td>0,373</td>
<td>0,226</td>
<td>19,60</td>
<td>97,85</td>
<td>34,56</td>
<td>222,70</td>
<td>132,41</td>
<td>28,73</td>
<td>-90,29</td>
</tr>
<tr>
<td>16</td>
<td>0,411</td>
<td>0,266</td>
<td>19,46</td>
<td>97,64</td>
<td>34,05</td>
<td>152,38</td>
<td>131,69</td>
<td>29,54</td>
<td>-20,69</td>
</tr>
</tbody>
</table>

Tabla 5.IV(a): Coordenadas de cromaticidad de los puntos estándar teóricos en el espacio CIE-1931 y en el espacio de excitación de conos, cuando son observados bajo iluminante de 10000 K.
| N | x | y | Y | L | M | S | L+M | L-2M | (L+M)-S |
|---|-------|-------|----|-----|-----|-----|-----|------|---------|---------|
| 1 | 0.204 | 0.149 | 22.71 | 91.13 | 57.04 | 600.32 | 148.17 | -22.95 | -452.15 |
| 2 | 0.220 | 0.209 | 22.63 | 91.34 | 56.42 | 382.43 | 147.76 | -21.50 | -234.67 |
| 3 | 0.234 | 0.260 | 22.57 | 91.42 | 56.04 | 273.91 | 147.46 | -20.66 | -126.45 |
| 4 | 0.253 | 0.197 | 22.09 | 94.47 | 50.60 | 382.55 | 145.07 | -6.73 | -237.48 |
| 5 | 0.262 | 0.360 | 22.52 | 91.62 | 55.59 | 148.81 | 147.21 | -19.56 | -1.60 |
| 6 | 0.277 | 0.420 | 22.51 | 91.61 | 55.56 | 102.55 | 147.17 | -19.51 | 44.62 |
| 7 | 0.274 | 0.244 | 22.05 | 94.59 | 50.28 | 272.41 | 144.87 | -5.97 | -127.54 |
| 8 | 0.310 | 0.539 | 22.48 | 91.70 | 55.32 | 39.98 | 147.02 | -18.94 | 107.04 |
| 9 | 0.314 | 0.332 | 22.00 | 94.76 | 49.86 | 148.08 | 144.62 | -4.96 | -3.46 |
| 10| 0.319 | 0.225 | 21.39 | 98.49 | 43.06 | 272.10 | 141.55 | 12.37 | -130.55 |
| 11| 0.338 | 0.383 | 21.98 | 94.88 | 49.64 | 101.43 | 144.52 | -4.40 | 43.09 |
| 12| 0.373 | 0.301 | 21.34 | 98.83 | 42.47 | 146.47 | 141.30 | 13.89 | -5.17 |
| 13| 0.384 | 0.483 | 21.95 | 94.97 | 49.40 | 38.50 | 144.37 | -3.83 | 105.87 |
| 14| 0.403 | 0.346 | 21.33 | 98.84 | 42.41 | 98.42 | 141.25 | 14.02 | 42.83 |
| 15| 0.428 | 0.272 | 20.62 | 103.15| 34.50 | 144.75 | 137.65 | 34.15 | -7.10 |
| 16| 0.464 | 0.309 | 20.61 | 103.28| 34.31 | 96.73 | 137.59 | 34.66 | 40.86 |

Tabla 5.IV(b): Coordenadas de cromaticidad de los puntos estándar teóricos en el espacio CIE-1931 y en el espacio de excitación de conos, cuando son observados bajo iluminante D₉₅.
N	x	y	Y	L	M	S	L+M	L-2M	
1	0.264	0.174	17.84	82.82	40.39	373.75	123.21	2.04	-250.54
2	0.281	0.253	19.53	86.54	45.51	231.79	132.05	-4.48	-99.74
3	0.296	0.314	20.39	88.59	47.89	162.56	136.48	-7.19	-26.08
4	0.328	0.241	20.11	93.85	41.19	229.61	135.04	11.47	-94.57
5	0.320	0.418	21.33	90.66	50.59	85.48	141.25	-10.52	55.77
6	0.332	0.472	21.68	91.41	51.60	57.48	143.01	-11.79	85.53
7	0.349	0.295	20.95	95.70	43.63	160.86	139.33	8.44	-21.53
8	0.354	0.566	22.15	92.46	52.91	19.98	145.37	-13.36	125.39
9	0.383	0.381	21.89	97.81	46.26	85.94	144.07	5.29	58.13
10	0.404	0.274	21.65	104.58	38.28	160.16	142.86	28.02	-17.30
11	0.401	0.426	22.25	98.62	47.25	57.20	145.87	4.12	88.67
12	0.446	0.346	22.60	106.69	40.92	85.21	147.61	24.85	62.40
13	0.430	0.499	22.71	99.63	48.53	20.44	148.16	2.57	127.72
14	0.465	0.383	22.94	107.21	42.09	57.04	149.30	23.03	92.26
15	0.498	0.317	23.36	115.97	35.41	84.58	151.38	45.15	66.80
16	0.520	0.346	23.71	116.71	36.39	56.91	153.10	43.93	96.19

Tabla 5.IV(c): Coordenadas de cromaticidad de los puntos estándar teóricos en el espacio CIE-1931 y en el espacio de excitación de conos, cuando son observados bajo iluminante F_{11}.
<table>
<thead>
<tr>
<th>N</th>
<th>x</th>
<th>y</th>
<th>Y</th>
<th>L</th>
<th>M</th>
<th>S</th>
<th>L+M</th>
<th>L-2M</th>
<th>(L+M)-S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,339</td>
<td>0,259</td>
<td>19,16</td>
<td>90,41</td>
<td>39,73</td>
<td>192,49</td>
<td>130,14</td>
<td>10,95</td>
<td>-62,35</td>
</tr>
<tr>
<td>2</td>
<td>0,349</td>
<td>0,330</td>
<td>19,63</td>
<td>89,53</td>
<td>43,040</td>
<td>123,77</td>
<td>132,57</td>
<td>3,45</td>
<td>8,80</td>
</tr>
<tr>
<td>3</td>
<td>0,357</td>
<td>0,379</td>
<td>19,91</td>
<td>89,34</td>
<td>44,670</td>
<td>89,91</td>
<td>134,01</td>
<td>0,00</td>
<td>44,10</td>
</tr>
<tr>
<td>4</td>
<td>0,414</td>
<td>0,313</td>
<td>21,46</td>
<td>102,03</td>
<td>39,880</td>
<td>118,54</td>
<td>141,91</td>
<td>22,27</td>
<td>23,37</td>
</tr>
<tr>
<td>5</td>
<td>0,369</td>
<td>0,454</td>
<td>20,20</td>
<td>89,00</td>
<td>46,500</td>
<td>51,09</td>
<td>135,50</td>
<td>-4,00</td>
<td>84,41</td>
</tr>
<tr>
<td>6</td>
<td>0,373</td>
<td>0,489</td>
<td>20,28</td>
<td>88,70</td>
<td>47,210</td>
<td>37,15</td>
<td>135,91</td>
<td>-5,72</td>
<td>98,76</td>
</tr>
<tr>
<td>7</td>
<td>0,428</td>
<td>0,354</td>
<td>21,71</td>
<td>101,66</td>
<td>41,500</td>
<td>84,72</td>
<td>143,16</td>
<td>18,66</td>
<td>58,44</td>
</tr>
<tr>
<td>8</td>
<td>0,382</td>
<td>0,544</td>
<td>20,43</td>
<td>88,58</td>
<td>48,100</td>
<td>18,06</td>
<td>136,68</td>
<td>-7,62</td>
<td>118,62</td>
</tr>
<tr>
<td>9</td>
<td>0,448</td>
<td>0,412</td>
<td>21,99</td>
<td>101,29</td>
<td>43,280</td>
<td>47,39</td>
<td>144,57</td>
<td>14,73</td>
<td>97,18</td>
</tr>
<tr>
<td>10</td>
<td>0,492</td>
<td>0,331</td>
<td>23,95</td>
<td>116,47</td>
<td>37,810</td>
<td>79,09</td>
<td>154,28</td>
<td>40,85</td>
<td>75,19</td>
</tr>
<tr>
<td>11</td>
<td>0,458</td>
<td>0,438</td>
<td>22,10</td>
<td>101,23</td>
<td>43,890</td>
<td>33,29</td>
<td>145,12</td>
<td>13,45</td>
<td>111,63</td>
</tr>
<tr>
<td>12</td>
<td>0,517</td>
<td>0,375</td>
<td>24,25</td>
<td>116,30</td>
<td>39,440</td>
<td>43,15</td>
<td>155,74</td>
<td>37,42</td>
<td>112,59</td>
</tr>
<tr>
<td>13</td>
<td>0,471</td>
<td>0,478</td>
<td>22,24</td>
<td>101,00</td>
<td>44,820</td>
<td>15,08</td>
<td>145,82</td>
<td>11,36</td>
<td>130,74</td>
</tr>
<tr>
<td>14</td>
<td>0,527</td>
<td>0,396</td>
<td>24,32</td>
<td>115,90</td>
<td>40,180</td>
<td>29,25</td>
<td>156,08</td>
<td>35,54</td>
<td>128,63</td>
</tr>
<tr>
<td>15</td>
<td>0,569</td>
<td>0,348</td>
<td>26,69</td>
<td>131,86</td>
<td>35,640</td>
<td>38,35</td>
<td>167,50</td>
<td>60,58</td>
<td>129,15</td>
</tr>
<tr>
<td>16</td>
<td>0,580</td>
<td>0,364</td>
<td>26,78</td>
<td>131,62</td>
<td>36,310</td>
<td>24,85</td>
<td>167,93</td>
<td>59,00</td>
<td>143,08</td>
</tr>
</tbody>
</table>

Tabla 5.IV(d): Coordenadas de cromaticidad de los puntos estándar teóricos en el espacio CIE-1931 y en el espacio de excitación de conos, cuando son observados bajo iluminante A.
5.2.2.3. Parámetros temporales y desarrollo de las sesiones experimentales

Cada sesión experimental comenzaba con un período de 3 minutos de adaptación a la oscuridad seguido de otros 3 minutos de adaptación a un fondo acromático uniforme con la cromaticidad del iluminante equienergético y 18,77 cd/m² de luminancia. El esquema de la figura 5.8 resume la secuencia completa de una de las sesiones. La atención del observador se mantenía con un punto de fijación central de tono rojo y 2x2 píxeles de tamaño, que indicaba justo la posición que ocuparía el centro del estímulo de referencia a igualar. Trancurrido el periodo de adaptación se presentaba al observador durante 10 s el objeto de referencia a igualar sobre un fondo Mondrian iluminado por el iluminante equienergético; durante esos 10 s los observadores debían memorizar tono, saturación y luminosidad del estímulo estándar central. Los posibles efectos de inducción cromática sobre el objeto de referencia, se eliminaban permitiendo a los objetos simulados que componían el Mondrian que cambiasen tanto de forma geométrica como de posición en la pantalla.

Respecto de la elección del tiempo de observación, si bien en tareas de discriminación cromática se considera que 1 s es el tiempo suficiente para la percepción cómoda del estímulo (Hita et al., 1982, 1980), no existe en la bibliografía relacionada con el tema un tiempo que se considere mínimo para la obtención de una percepción y almacenamiento completos de éste en memoria,. En la literatura nos encontramos que incluso con...

Figura 5.8: Esquema sobre la secuencia temporal seguida en cada una de las sesiones experimentales.
Método experimental

tiempos menores a 1 s es posible obtener un juicio completo de apariencia del color del estímulo observado, aunque no parece existir justificación previa ninguna, y ese tiempo de presentación del estímulo queda siempre determinado por el tipo de experiencia a realizar y la tarea exigida a los observadores (Arend, 1993; Craven y Foster, 1992; Arend et al., 1986). En nuestro caso utilizamos periodos de tiempo mucho más largos para permitir una adaptación completa del observador a las condiciones de iluminación; de este modo, tal y como se comprobó en las sesiones previas de entrenamiento, el tiempo de presentación empleado era suficiente para que cada observador memorizase los atributos perceptivos del estímulo.

Una vez transcurrido el tiempo de presentación del estímulo de referencia el observador se adaptaba de nuevo a un fondo acromático durante 1 minuto, aunque en este caso el fondo adaptante tenía la cromaticidad y luminancia de uno de los cinco iluminantes test. En este punto comenzaba la tarea de igualación del observador. Sobre un nuevo fondo Mondrian y bajo las condiciones de iluminación test impuestas, el observador debía igualar en tono, saturación y luminosidad el objeto de referencia previamente observado. La zona de igualación test, de igual tamaño y posición que la de referencia (ver figura 5.6), era inicialmente negra y a través del teclado del ordenador se podía variar de forma continua su cromaticidad y luminancia. Una serie de teclas permitían al observador variar de forma independiente los valores DAC asociados a los cañones rojo, verde y azul del monitor CRT; de este modo por mezcla aditiva se conseguía la igualación requerida. Aunque los observadores no disponían de límite de tiempo para realizar sus igualaciones, se les pedía que no consumiesen más de 60-90 s. Durante la igualación, el conjunto de objetos del fondo que rodeaban al test variaba aleatoriamente su forma y posición, con el fin de evitar fenómenos de contraste cromático inducidos sobre el área a igualar (Brainard y Wandell, 1992).

El tipo de experiencia que hemos diseñado es por tanto similar a lo que Arend y colaboradores (1986) denominan en su trabajo igualaciones de tono (hue-match). A cada uno de los observadores se les pide que realicen una proceso de reconocimiento en lugar de intentar una tarea pura de mantenimiento de la apariencia del color. Durante el proceso de reconocimiento requerido, los observadores debían dejar a un lado las variaciones en las condiciones de iluminación de modo que se descuart totalmente el iluminante presente en.
la escena. De este modo las igualaciones *asimétricas* del color realizadas, tal y como apuntan Brainard y Wandell (1992), no son igualaciones por absorción de fotopigmento asociado a cada uno de los mecanismos fotorreceptores, sino igualaciones establecidas en algún punto de la ruta visual con el fin de corregir las condiciones variables en la iluminación de la escena observada.

Realizada la igualación correspondiente, existía una adaptación durante 1 minuto al fondo equienergético y a partir de ahí comenzaba una nueva sesión. En una sesión completa cada observador realizaba 8 igualaciones de color correspondientes a 8 estímulos de referencia distintos y a un iluminante test, por tanto, la duración total de las sesiones venía a ser de unos 30-35 minutos. En este intervalo de tiempo el observador permanecía pues adaptado completamente a las condiciones de iluminación test un total de 16 minutos, tiempo en el que se incluye el promedio de que cada observador utilizaba para realizar una igualación bajo fondo Mondrian (alrededor de 8 minutos para el total de igualaciones). Los procesos de adaptación empleados fueron por tanto de tipo espacio-temporal, ya que aparecía alternativamente el campo adaptante y el área de observación rodeada del Mondrian, y sólo cuando se realizaba la igualación bajo las condiciones de iluminación test, esa alternancia se rompía. Cada sesión se repitió 5 veces, tomándose el promedio y desviación estándar de éstas como el valor asociado a la igualación correspondiente. En todas las sesiones experimentales la secuencia de presentación de estímulos era seleccionada totalmente al azar y el observador nunca sabía de antemano que condiciones de iluminación eran las presentes en cada caso. Por medio de este proceso nos asegurábamos que las decisiones de los observadores no estaban sujetas a juicios previos sobre los estímulos ya presentados. Dado que se seleccionaron 16 estímulos de referencia y que cada uno de ellos debía ser igualado bajo los 5 iluminantes test seleccionados (incluido el equienergético), se realizaron un total de 400 igualaciones por observador. Todas las sesiones se realizaron a distintas horas del día con el fin de promediar las condiciones psicológicas en las que el observador realizaba sus igualaciones.

Para fijar la fiabilidad del método experimental expuesto, se realizaron distintas sesiones de entrenamiento para cada uno de los observadores. Una vez familiarizados con las condiciones de observación y el tipo de experiencia a realizar, se diseñaron varias experiencias completas aunque sin variación en las condiciones de iluminancia test,
realizándose unas 250 igualesaciones por observador. De este modo los observadores se acostumbraban por un lado a los parámetros temporales impuestos, y por otro, al hecho de que en las igualesaciones de color que realizaban la mezcla aditiva se alcanzaba por variación en los valores DAC de cada uno de los cañones del monitor. Teniendo en cuenta por tanto estas sesiones de entrenamiento, durante todo el periodo de medidas se realizaron en total unas 2000 igualesaciones de color.
Análisis y discusión de resultados en el espacio CIE-1931
6.1. DESPLAZAMIENTOS COLORIMÉTRICOS Y ADAPTATIVOS EN EL ESPACIO CIE-1931

Tal y como hemos discutido con anterioridad, la constancia del color puede considerarse como un proceso adaptativo mediante el cual el sistema visual humano intenta compensar los cambios colorimétricos inducidos en una escena debido al cambio de iluminación. Si bien, como se analizará más adelante, entendemos que una buena constancia del color y por tanto el mantenimiento de una apariencia estable del color no significa una compensación total de esos desplazamientos colorimétricos, es útil introducir un coeficiente que dé idea del grado de constancia del color alcanzado en las igualaciones realizadas; de esta forma podremos comparar nuestros resultados con los de otros autores. En la literatura referente al tema ya se pone de manifiesto la dificultad de esta tarea, pues se trata de resumir en un único número no sólo la información asociada a la cromaticidad de dichas igualaciones, sino también éstas en relación con las coordenadas de cromaticidad teóricas de los estímulos presentados al observador bajo cada una de los iluminantes test utilizados.

El único intento en este sentido ha sido el realizado por Arend et al. (1991). Tal y como expusimos en el capítulo 3 y si recordamos la expresión §3(3), estos autores introducen un índice de constancia del color que evalúa los desplazamientos colorimétricos en relación con los adaptativos que cada observador imponía en sus igualaciones. Los valores de este
coeficiente próximos a la unidad indicarían una buena constancia del color mientras que valores cercanos a cero serían indicativos de una pobre constancia del color (ver figura §3(3.4)). Sin embargo, estos autores utilizan un índice de constancia para cada observador que representa el valor promedio de las igualaciones realizadas bajo los distintos iluminantes. Aunque este índice da idea de la tendencia general hacia la constancia o no del color, los autores no justifican el cálculo de este valor medio ni hasta qué punto cada iluminante afecta por separado a la determinación de dicho índice. Por otro lado, y teniendo en cuenta los resultados que hemos obtenido, a veces los desplazamientos adaptativos alcanzados en las igualaciones son tan grandes y alejados de los teóricos colorimétricos que no tiene mucho sentido especificar un número como indicativo de la buena o mala constancia del color, ya que estos desplazamientos pueden ser incluso "opuestos" en relación a las coordenadas de cromaticidad teóricas de los objetos bajo alguno de los iluminantes test.

Por tanto, hemos modificado el índice para que nos dé idea de la diferencia relativa que existe entre los desplazamientos colorimétricos y adaptativos, pero referidos éstos a las coordenadas de los estímulos observados bajo iluminante equienergético. Este índice de constancia, que denotaremos como IC_{xy}, lo definimos como el cociente:

$$IC_{xy} = \frac{MT}{ME}$$ \hspace{1cm} (1)

donde MT indica la distancia euclídea, referida al espacio donde analicemos los resultados, entre la igualación alcanzada y las coordenadas de cromaticidad teóricas del objeto de color bajo uno de los iluminantes test; y ME la distancia euclídea entre la igualación y las coordenadas de cromaticidad teóricas del objeto de color bajo iluminación equienergética. Como podemos ver en la figura 6.1, valores de IC_{xy} próximos a cero indicarán una buena constancia del color, entendida como compensación del desplazamiento colorimétrico; por el contrario, valores altos del coeficiente indicarán que en sus igualaciones los observadores...
tienden a mantener el mismo tono y saturación, cuanto menor sea ME, que los asociados a los objetos de color bajo iluminante equienergético.

Abordamos en este primer apartado el análisis de los resultados en el espacio CIE-1931, para lo que analizaremos los desplazamientos adaptativos asociados a las distintas igualaciones de color realizadas por los observadores representando los datos en el diagrama de cromaticidad CIExy. Estos resultados se presentan en las figuras 6.2 a 6.4 para los 3 observadores. En dichas figuras los símbolos rellenos (en negro) representan las igualaciones realizadas por los observadores bajo cada una de las condiciones de iluminación simuladas, y los símbolos no rellenos (en blanco) corresponden a las coordenadas teóricas de los objetos de color bajo dicha iluminación; mediante una cruz se representa la igualación que los observadores realizaron sin cambio de iluminante test, es decir, manteniendo el iluminante equienergético durante toda la sesión, mientras que los cuadrados con la cruz interior representan las coordenadas de cromaticidad teóricas de los objetos bajo iluminante equienergético.

El análisis de los resultados los hemos dividido en dos grandes grupos: por un lado, aquellas igualaciones realizadas sin cambio en la iluminación de referencia, y por otro, aquellas otras realizadas cuando sí existía un cambio en la iluminación adaptante. El primer grupo de igualaciones nos proporciona información sobre la influencia que tiene la memoria del color en este tipo de experiencias, mientras que el segundo nos indica hasta qué punto un cambio en el iluminante puede afectar a la apariencia del color percibido.

Para el análisis de estos resultados, hemos separado por comodidad el conjunto de estímulos a igualar por los observadores atendiendo a 4 grupos tonales:

AZULES: estímulos 1, 2 y 4;
VERDES: estímulos 6, 8 y 13;
ROJOS: estímulos 10, 12, 15 y 16;
ACROMÁTICOS: estímulos 3, 5, 7, 9, 11 y 14;
La distribución de estos estímulos en el diagrama de cromaticidad CIExy puede observarse en la figura §5(5.3(a)) presentada en el capítulo 5.

Aparte del estudio de las igualaciones según la tonalidad de los estímulos, analizaremos también con posterioridad cómo son los desplazamientos adaptativos en función de las líneas de confusión sobre las que estén los estímulos de referencia, aunque este análisis tendrá su mayor justificación cuando lo realicemos en el espacio de excitación de conos.

6.1.1. Influencia de la memoria

Veamos en primer lugar la influencia de la memoria sobre la cromaticidad de los estímulos, para lo cual determinaremos el índice de constancia IC_{xy}, que se define en este caso como la distancia euclidiana entre la igualación realizada y el estímulo de partida, y las diferencias relativas en la luminancia asignada en cada una de las igualaciones. El análisis de los datos así obtenidos no sólo nos dará idea de la mayor o menor bondad del método empleado sino que, y quizás lo que es más importante en este caso, nos proporcionará además una medida del "error" asociado al grado de constancia del color que pueda encontrarse cuando las igualaciones se realicen con cualquiera otro iluminante distinto al equienergético; asimismo, estas igualaciones serán indicativas del orden de magnitud que pueden alcanzar los valores del índice introducido.

Las igualaciones obtenidas indican que los estímulos azules tienden a ser menos saturados cuando no existe cambio en la iluminación, dirigiéndose los desplazamientos adaptativos hacia el estímulo equienergético, de coordenadas (0,333; 0,333). Al evaluar el IC_{xy}, vemos en la tabla 6.1 que los valores son inferiores a 0,025 para todos los observadores excepto para JR donde se encuentran diferencias del orden de 0,03 para los estímulos 1 y 2.

Para los estímulos verdes los desplazamientos no están dirigidos hacia el estímulo equienergético sino que tienden a saturarse más, excepto para el 13 (JH) en el que hay modificación de tono pero no demasiado de saturación. Los menores desplazamientos se encuentran para el observador FP (inferiores a 0,02), mientras que los mayores corresponden
<table>
<thead>
<tr>
<th>Grupo</th>
<th>Estímulos</th>
<th>JR</th>
<th></th>
<th>JR</th>
<th></th>
<th>FP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AZUL</td>
<td>1</td>
<td>0,030</td>
<td>0,02</td>
<td>0,017</td>
<td>-0,04</td>
<td>0,015</td>
<td>0,13</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0,027</td>
<td>0,04</td>
<td>0,009</td>
<td>-0,06</td>
<td>0,023</td>
<td>0,21</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0,015</td>
<td>0,04</td>
<td>0,022</td>
<td>-0,00</td>
<td>0,019</td>
<td>0,16</td>
</tr>
<tr>
<td>VERDE</td>
<td>6</td>
<td>0,014</td>
<td>0,25</td>
<td>0,030</td>
<td>0,29</td>
<td>0,015</td>
<td>0,36</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0,025</td>
<td>0,46</td>
<td>0,009</td>
<td>0,42</td>
<td>0,013</td>
<td>0,33</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0,038</td>
<td>0,15</td>
<td>0,025</td>
<td>0,10</td>
<td>0,015</td>
<td>0,42</td>
</tr>
<tr>
<td>ROJO</td>
<td>10</td>
<td>0,018</td>
<td>0,36</td>
<td>0,084</td>
<td>0,18</td>
<td>0,008</td>
<td>0,31</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0,006</td>
<td>0,21</td>
<td>0,003</td>
<td>0,06</td>
<td>0,018</td>
<td>0,16</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0,012</td>
<td>0,36</td>
<td>0,014</td>
<td>0,19</td>
<td>0,015</td>
<td>0,33</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0,021</td>
<td>0,15</td>
<td>0,005</td>
<td>0,15</td>
<td>0,017</td>
<td>0,27</td>
</tr>
<tr>
<td>ACROM.</td>
<td>3</td>
<td>0,033</td>
<td>0,17</td>
<td>0,037</td>
<td>0,02</td>
<td>0,039</td>
<td>0,35</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0,009</td>
<td>0,19</td>
<td>0,024</td>
<td>-0,11</td>
<td>0,028</td>
<td>0,45</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0,021</td>
<td>0,00</td>
<td>0,011</td>
<td>0,04</td>
<td>0,037</td>
<td>0,37</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0,004</td>
<td>0,08</td>
<td>0,023</td>
<td>0,01</td>
<td>0,010</td>
<td>-0,06</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0,023</td>
<td>0,21</td>
<td>0,033</td>
<td>-0,07</td>
<td>0,059</td>
<td>0,31</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0,006</td>
<td>0,09</td>
<td>0,035</td>
<td>0,13</td>
<td>0,007</td>
<td>0,16</td>
</tr>
</tbody>
</table>

Tabla 6.1: Valores del índice de constancia y diferencias relativas en luminancia encontradas cuando no existía cambio de iluminación sobre el Mondrian observado.

a los observadores JR y JH (entre 0,025-0,030).

Los estímulos rojos se desplazan hacia saturaciones mayores con una pequeña modificación del tono. Los desplazamientos son siempre inferiores a 0,02 excepto para JH y el estímulo 10.

En cuanto a los acromáticos, el correspondiente al propio estímulo equiénergético
(número 9) tiende a ser más saturado aunque sin una dirección clara de desplazamiento. Para el resto de estímulos las igualaciones son similares a las asociadas a los tonos más cercanos. Así los estímulos 3 y 7 tienden a ser más saturados en la dirección azul, los 5 y 11 también más saturados pero en la dirección de los verdes, y el 14 saturándose en la dirección rojo-naranja.

Respecto de la influencia sobre la luminancia asignada a los estímulos, hemos evaluado las diferencias relativas entre las igualaciones y el estímulo estándar según la relación:

$$\frac{\Delta Y}{Y} = \frac{Y - Y^E}{Y^E}$$ \hspace{1cm} (2)

donde Y^E representa la luminancia del objeto de color bajo iluminante equienergético (22 cd/m²). En la tabla 6.1 vemos que en general existe un aumento significativo de la luminancia asignada a las igualaciones. Este aumento de luminancia en los estímulos recordados es coherente con lo apuntado por Newhall et al. (1957) en su trabajo, aunque depende en mayor o menor medida tanto del observador como de los estímulos igualados. Si bien estas diferencias son menores para los azules, para los verdes el incremento es importante y en concreto para el estímulo 8 (excepto FP). Para los acromáticos el comportamiento varía mucho entre los observadores, excepto para el estímulo 9 que coincide con el equienergético y en el que las diferencias son mínimas.

Evaluación de diferencias de color en relación con la memoria al color.

Como hemos comentado al comienzo de este epígrafe, estas igualaciones realizadas sin cambio en la iluminación adaptante (iluminante equienergético), nos van a servir a posteriori como medidas indicativas del error asociado al grado de constancia del color encontrado cuando sí existe cambio de iluminante. Para determinar hasta qué punto son significativos los valores que se han expuesto del índice de constancia IC$_{xy}$, vamos a compararlos con los resultados que se obtienen a través del cálculo de las diferencias de color existentes entre cada una de las igualaciones y los estímulos teóricos presentados a cada
observador. El cálculo se ha realizado por medio de las fórmulas de diferencia de color $cdf-G^*$ propuestas por el Departamento de Óptica de esta Universidad (García, 1991; Romero, García, Jiménez del Barco e Hita, 1989), y que han sido obtenidas a partir de los datos experimentales de MacAdam (1943) y los recogidos por dicho autor un año antes, MacAdam (1942). En la aplicación de estas fórmulas, se ha tenido en cuenta cada uno de los 4 grupos tonales en los que hemos dividido los estímulos seleccionados y, de acuerdo a ello, se han aplicado las fórmulas de diferencia de color correspondientes.

Dado que el análisis previo de todas las igualaciones realizadas, parecía no mostrar demasiada dispersión entre estímulos iguales para distintos observadores, decidimos realizar una prueba de análisis de varianza de los datos (ANOVA) para poder contrastar esta hipótesis. El análisis de varianza se realizó para los 16 estímulos estándar por separado (iguales 5 veces cada uno de ellos) y para los 3 observadores, con el fin de determinar si existían diferencias significativas entre las igualaciones realizadas por los observadores para cada uno de los estímulos. Dicho análisis se realizó para los valores medios de las coordenadas de cromaticidad x e y por separado, intentando deducir si dichas medias eran iguales o no, lo que habitualmente se conoce como aceptación o rechazo de la hipótesis nula H_o. El test ANOVA evalúa la medida de la diferencia entre el valor teórico y el experimental encontrado en las igualaciones realizadas por medio de un estadístico; para ello, calcula un valor crítico de este estimador, tal que la probabilidad de que dicho estimador tome un valor mayor que el crítico sea igual a un valor fijado que se denomina nivel de significación α (Montgomery, 1991; Vizmanos y Asensio, 1976). La hipótesis H_o formulada se acapará si la diferencia calculada es menor que el valor que se ha determinado, en caso contrario se rechaza.

Para un nivel de significación α de 0,05, que significa que rechazamos un 5% de las veces la hipótesis nula siendo cierta, el resultado del análisis de varianza indicó que no existían diferencias significativas entre observadores para cada uno de los objetos de color igualados sin cambio de iluminante. En la tabla 6.II se muestran los valores medios calculados para las coordenadas (x, y) de los 16 objetos estándar igualados junto con la desviación estándar asociada, y se presentan también las coordenadas de cromaticidad teóricas de cada unos de los metámeros utilizados como objetos de color bajo iluminación.
equienergética. Los valores obtenidos de la desviación estándar no son excesivamente elevados en general, tomando para la coordenada x un valor máximo de 0,055 (estímulo 10) y para la coordenada y de 0,053 (estímulo 11). Sin embargo, y si exceptuamos estos estímulos en los que los observadores tenían además especial dificultad en igualarlos, los valores están dentro de lo previsible teniendo en cuenta los resultados de las experiencias de discriminación realizadas en nuestro laboratorio (García, 1991). Por tanto, estos valores promedio asociados a las coordenadas de cromaticidad, serán los que utilicemos en cada una de las fórmulas de diferencias de color.

Valores de diferencias de color d_s inferiores a 4 unidades indicarán que los estímulos teóricos y realmente encontrados en la igualación, serán vistos como iguales por la mayoría de los observadores, siempre teniendo en cuenta que este valor está referido a experiencias de discriminación cromática por comparación simultánea. Por otro lado, y si se tiene en cuenta la variabilidad interobservador determinada en el estudio de umbrales de discriminación, cuando el valor de d_s supera las 10 unidades se considera que los estímulos empiezan a ser percibidos como diferentes por la mayoría de los observadores (García, Romero, García-Beltrán y Jiménez, 1993). Sin embargo, hay que tener presente que en las experiencias de discriminación cromática la tarea exigida a los observadores es bastante más crítica y restrictiva que la planteada en nuestras sesiones y en general también en cualquiera otras de constancia del color; por añadidura, en los trabajos previos de constancia del color encontramos que este fenómeno nunca se manifiesta de manera perfecta, por lo que creemos que no es necesario considerar valores tan restrictivos de diferencias de color cuando queramos que éstos sean significativos del error cometido en nuestras igualaciones.

La tabla 6.III muestra los resultados obtenidos de las diferencias en cromaticidad d_s al aplicar las fórmulas de diferencia de color según los grupos tonales. Como era de esperar del análisis anterior, hay una serie de estímulos para los que las diferencias de color son significativamente distintas y relativamente grandes en relación al resto; estos estímulos son el 13 (verde), 10 (rojo), 3 y 11 (acromáticos), para los que se obtienen valores de d_s en torno a 15-22 unidades. Dada la proximidad de los estímulos 3 y 13 a la zona límite que marca el triángulo de primarios utilizado, es lógico pensar en la dificultad que los observadores tenían para igualar dichos estímulos, y que se pone de manifiesto en los valores
más altos de diferencia de color encontrados; sin embargo, la justificación de los valores hallados para los estímulos 10 y 11 no parece tan clara desde este punto de vista, y sólo tenemos el testimonio de los observadores afirmando que efectivamente también les resultaba difícil la igualación de los mismos en cuanto al tono y saturación recordados. Para el resto de estímulos, y teniendo en cuenta el criterio restrictivo que hemos comentado anteriormente, los objetos de color estándar son en general bastante bien reproducidos en las igualaciones realizadas por memoria. Por tanto, y según deducimos de la tabla 6.III, podemos considerar que diferencias relativas en cromaticidad Δx y Δy menores o en torno a 0,024-0,030 indican que los estímulos teóricos y test son vistos como iguales por la mayoría de los observadores; estos valores pueden ser extrapolados como estimadores de una buena o mala constancia del color, de modo que cuando exista cambio de iluminante, consideraremos que por debajo de estos valores los desplazamientos colorimétricos y adaptativos prácticamente serán los mismos y la constancia del color será perfecta. De todas formas no debemos olvidar lo estricto del criterio que estamos teniendo en cuenta, dado que nos basamos en juicios de discriminación cromática. Si recordamos los resultados expuestos en la tabla 6.I sobre los valores del índice de constancia IC_{xy}, vemos que las mayores diferencias de color se corresponden con índices, o de forma análoga en este caso, distancias euclídeas entre el estímulo teórico y realmente observado, de valores comprendidos entre 0,038 y 0,059 (si exceptuamos el más elevado encontrado sólo para JH de 0,084).

Finalmente, podemos concluir diciendo que a pesar de las condiciones restrictivas que se imponían en las sesiones experimentales, en cuanto a grandes tiempos de adaptación se refiere en comparación con otros trabajos de igual índole, los observadores conceden a la memoria al color un papel fundamental en su tarea, recordando bastante bien tono y saturación de los estímulos utilizados como estándar; respecto de la luminancia, los resultados muestran un relativo aumento de la misma en relación con el estímulo recordado, lo que coincide con lo esperado según trabajos previos de igualación por memoria. Además, no existen diferencias entre observadores cuando las igualaciones se realizan sin cambio de iluminante, lo que nos ha permitido determinar una serie de valores del error asociado a las igualaciones realizadas, y que podremos tomar como estimativo del mayor o menor grado de constancia del color cuando exista cambio en la iluminación presente en la escena observada.
<table>
<thead>
<tr>
<th>Grupo</th>
<th>Estímulos</th>
<th>Coordenada x</th>
<th>Coordenada y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Media</td>
<td>DS</td>
<td>Teórica</td>
</tr>
<tr>
<td>AZUL</td>
<td>1</td>
<td>0,222</td>
<td>0,015</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0,230</td>
<td>0,020</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0,272</td>
<td>0,023</td>
</tr>
<tr>
<td>VERDE</td>
<td>6</td>
<td>0,290</td>
<td>0,024</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0,318</td>
<td>0,005</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0,383</td>
<td>0,022</td>
</tr>
<tr>
<td>ROJO</td>
<td>10</td>
<td>0,385</td>
<td>0,055</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0,397</td>
<td>0,031</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0,447</td>
<td>0,042</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0,479</td>
<td>0,030</td>
</tr>
<tr>
<td>ACROM.</td>
<td>3</td>
<td>0,233</td>
<td>0,016</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0,271</td>
<td>0,018</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0,282</td>
<td>0,034</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0,326</td>
<td>0,017</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0,352</td>
<td>0,028</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0,422</td>
<td>0,034</td>
</tr>
</tbody>
</table>

Tabla 6.II: Valores medios de las coordenadas (x,y) encontrados para los 3 observadores cuando las igualaciones se realizaban sin cambio de iluminación test (igualaciones por memoria); en la tabla se muestran también las desviaciones estándar asociadas (DS) así como los valores teóricos de los estímulos bajo iluminante equienergético. Los datos se agrupan en función de los 4 grupos tonales en los que se incluyen estos estímulos.
<table>
<thead>
<tr>
<th>Grupo</th>
<th>Estímulos</th>
<th>Δx^a</th>
<th>Δy^b</th>
<th>ds</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZUL</td>
<td>1</td>
<td>0,005</td>
<td>0,023</td>
<td>11,22</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0,003</td>
<td>0,004</td>
<td>2,17</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0,002</td>
<td>0,004</td>
<td>1,82</td>
</tr>
<tr>
<td>VERDE</td>
<td>6</td>
<td>0,001</td>
<td>0,014</td>
<td>3,84</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0,007</td>
<td>0,006</td>
<td>5,29</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0,019</td>
<td>0,009</td>
<td>17,53</td>
</tr>
<tr>
<td>ROJO</td>
<td>10</td>
<td>0,024</td>
<td>0,006</td>
<td>22,40</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0,004</td>
<td>0,001</td>
<td>2,59</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0,000</td>
<td>0,004</td>
<td>3,09</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0,001</td>
<td>0,005</td>
<td>3,41</td>
</tr>
<tr>
<td>ACROM.</td>
<td>3</td>
<td>0,015</td>
<td>0,032</td>
<td>14,80</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0,005</td>
<td>0,013</td>
<td>7,84</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0,010</td>
<td>0,018</td>
<td>7,36</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0,007</td>
<td>0,000</td>
<td>5,93</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0,006</td>
<td>0,030</td>
<td>18,98</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0,001</td>
<td>0,013</td>
<td>8,82</td>
</tr>
</tbody>
</table>

$a \quad \Delta x = \left| X_{\text{igualación}} - X_{\text{teórica}} \right|$

$b \quad \Delta y = \left| Y_{\text{igualación}} - Y_{\text{teórica}} \right|$

Tabla 6.III: Diferencias en cromaticidad encontradas respecto de las coordenadas teóricas. Los valores están calculados como promedio para los 3 observadores, tal y como se concluye del análisis de varianza realizado. Los valores de ds se corresponden con las diferencias de color asociadas a cada una de las igualaciones realizadas.
6.1.2. Influencia del iluminante test

Si la constancia del color fuese perfecta, los desplazamientos colorimétricos teóricos debidos al cambio de iluminante deberían ser compensados por los adaptativos asociados a las igualaciones realizadas por cada observador (Arend et al., 1991; Arend y Reeves, 1986). Como se puede observar en las figuras 6.2 a 6.4, si bien para algunos estímulos existe cierta compensación en general, la constancia del color encontrada para todos los observadores es bastante pobre desde este punto de vista. Por tanto, la apariencia del color de los estímulos iguales bajo distintas condiciones de iluminación no se mantiene constante, al menos para el conjunto de iluminantes que hemos simulado. Esto coincide con lo encontrado por otros autores al realizar experiencias similares; tal es el caso de los trabajos de Lucassen y Walraven (1993), Valberg y Lange-Maleck (1990) o el más cercano al nuestro de Arend et al. (1991), donde se encuentra que para las igualaciones en tono existen ciertos desplazamientos compensatorios en la dirección de la constancia del color aunque la constancia del color como tal puede considerarse muy pobre.

Para los estímulos azules, cuando la igualación se realiza bajo adaptación al iluminante de 10000 K (de "cromaticidad" más próxima a estos estímulos azulados) no existe constancia del color, existiendo desplazamientos adaptativos pequeños respecto del colorimétrico que existiría al cambiar de iluminante. Para el iluminante D₆₅ las distancias entre la igualación y el estímulo teórico son similares y sólo JR tiende a un cierto grado de constancia del color para los estímulos 2 y 4. En el caso de los iluminantes F₁₁ y A, los desplazamientos adaptativos tienden a compensar los colorimétricos aunque ni mucho menos existe buena constancia del color. Sin embargo, para estos iluminantes, cuya cromaticidad podríamos considerar "complementaria" a la de los estímulos azules considerados, las igualaciones se dirigen según el sentido del desplazamiento colorimétrico teórico.

Para los estímulos verdes, y en concreto para el estímulo 8 que es el más alejado de todos en relación con las coordenadas de los iluminantes adaptantes, las igualaciones realizadas por los distintos observadores se concentran en torno al valor teórico bajo iluminante equienergético, siendo la distancia MT entre la igualación y las coordenadas teóricas menor para 10000 K y D₆₅, aumentando ligeramente la saturación. En menor medida
ocurre algo similar para el estímulo 13, alcanzándose buena constancia del color para JH y FP con estos iluminantes. Sin embargo las igualaciones para el estímulo 6 (más próximo a la zona de los acromáticos) tienden a seguir la dirección del desplazamiento colorimétrico para JR y JH.

Respecto de los estímulos rojos, de nuevo los desplazamientos adaptativos son mayores para los estímulos cercanos a la cromaticidad de los iluminantes adaptantes, y siguiendo la dirección del desplazamiento colorimétrico. Bajo adaptación a los iluminantes F₁₁ y A, de cromaticidad más parecida a estos estímulos, los desplazamientos son mayores y en la dirección correcta de la constancia del color, algo que no sucede para los iluminantes de 10000 K y D₆₅, bajo los que empeora esta constancia.

Finalmente, para los estímulos acromáticos los menores desplazamientos adaptativos de producen para aquellos estímulos más alejados respecto de los iluminantes adaptantes. Así, bajo iluminante F₁₁ y A los mayores desplazamientos en su dirección son para los estímulos 9, 11 y 14. Se tiende hacia la buena constancia del color para los estímulos 3, 5, 7 y 9 bajo iluminante D₆₅, y para el estímulo 11 en el caso de JR.

Hemos analizado también cómo influyen las condiciones de iluminación test impuestas en la luminancia asignada en cada una de las igualaciones realizadas. Los resultados de este análisis se pueden observar en las figuras 6.5 a 6.7, donde se ha representado el valor de la luminancia de los estímulos en función del iluminante test.

Como se observa en las figuras, para los estímulos verdes existe un aumento en la luminancia que los observadores asignan en todas las adaptaciones, siendo menor cuando se realizan bajo el iluminante de 10000 K. En particular para FP el aumento es generalizado en los tres estímulos, mientras que para JR y JH hay mayores discrepancias.

En los estímulos azules, la variación de la luminancia respecto del valor de referencia es significativamente menor que la que presentan el resto de estímulos estudiados. Para JR y FP las diferencias son pequeñas con aumentos por igual para todos los estímulos, aunque para JH la luminancia oscila en torno a las 22 cd/m² sin grandes diferencias.
Respecto de los estímulos rojos, existe también un incremento en la luminancia asignada con independencia del iluminante utilizado. Las mayores diferencias se encuentran para JR y FP, precisamente en los iluminantes de cromaticidad más parecida a estos estímulos como son el F₁₁ y el A.

Por último, para los estímulos acromáticos es donde existe una mayor diferencia entre observadores. Mientras para JR y FP se encuentra un incremento en general para todos los estímulos de la luminancia, para JH no existe una tendencia clara al aumento o disminución de la misma.

En resumen, los desplazamientos adaptativos como vemos dependen pues de los iluminantes bajo los que los observadores realizaron sus igualaciones, tal y como han encontrado otros autores, produciendo en general un cierto aumento en la saturación de los objetos de color observados. Los grandes desplazamientos colorimétricos son peor compensados en particular cuando el tono del estímulo presentado se considera en cierta medida "complementario" del tono asociado a la iluminación presente en el Mondrian. Sin embargo, la utilización del diagrama de cromaticidad CIExy para la representación de los resultados no permite extraer conclusiones más claras. A pesar de las ventajas que supone elegir los estímulos estándar sobre líneas rojo-verde y amarillo-azul, lo que podría permitir un análisis más riguroso y detallado sobre la influencia de la iluminación sobre la apariencia del color percibido, como veremos a continuación los resultados siguen pareciendo confusos y poco claros respecto de la constancia del color puesta de manifiesto utilizando la representación CIE-1931.
Figura 6.2: (a) Desplazamientos adaptativos, símbolos en negro, obtenidos para el observador JR en el diagrama CIExy (estímulos 1-9). La notación corresponde a: □ Teórico; □ D_{65}; ◯ F_{15}; Δ A; ◊ 10000 K; + E.
Figura 6.2: (b) Desplazamientos adaptativos, símbolos en negro, obtenidos para el observador JR en el diagrama CIExy (estímulos 10-16). La notación corresponde a: □ Teórico; □ D96; ◇ F11; △ A; ◆ 10000 K; + E.
Figura 6.3: (a) Desplazamientos adaptativos, símbolos en negro, obtenidos para el observador JH en el diagrama CIExy (estímulos 1-9). La notación corresponde a: □ Teórico; △ D_65; ○ F_15; △ A; ○ 10000 K; + E.
Figura 6.3: (b) Desplazamientos adaptativos, símbolos en negro, obtenidos para el observador JH en el diagrama \(\text{CIE}xy \) (estímulos 10-16). La notación corresponde a: \(\bullet \) Teórico; \(\square \) \(D_{65} \); \(\diamond \) \(F_{11} \); \(\Delta \) A; \(\Diamond \) 10000 K; + E.

Evaluación experimental de la constancia del color ...
Figura 6.4: (a) Desplazamientos adaptativos, símbolos en negro, obtenidos para el observador FP en el diagrama CIExy (estímulos 1-9). La notación corresponde a: □ Teórico; □ D65; ○ Fi; Δ A; □ 10000 K; + E.

Evaluación experimental de la constancia del color ... 109
Figura 6.4: (b) Desplazamientos adaptativos, símbolos en negro, obtenidos para el observador FP en el diagrama CIExy (estímulos 10-16). La notación corresponde a: \(\bullet \) Teórico; \(\square \) D₉₄; \(\bigcirc \) F₁₁; \(\triangle \) A; \(\diamond \) 10000 K; + E.
Figura 6.5: Valores medios de la luminancia obtenidos en las igualaciones, en función del iluminante test; las líneas discontinuas indican el nivel de luminancia teórico de los objetos de color bajo iluminante equienergético (22 cd/m²). Los datos corresponden al observador JR.
Figura 6.6: Valores medios de la luminancia obtenidos en las igualaciones, en función del iluminante test; las líneas discontinuas indican el nivel de luminancia teórico de los objetos de color bajo iluminante equienergético (22 cd/m²). Los datos corresponden al observador JH.
Figura 6.7: Valores medios de la luminancia obtenidos en las igualaciones, en función del iluminante test; las líneas discontinuas indican el nivel de luminancia teórico de los objetos de color bajo iluminante equienergético (22 cd/m²). Los datos corresponden al observador FP.
6.2. CONSTANCIA DEL COLOR SEGÚN LÍNEAS ROJO-VERDE Y AMARILLO-AZUL EN EL DIAGRAMA CIE\textsubscript{xy}

En este apartado abordamos el análisis de la influencia de cada iluminante test por separado sobre los desplazamientos adaptativos, en función de las distintas líneas rojo-verde y amarillo-azul en las que se seleccionaron los estímulos estándar a igualar. Las figuras 6.8 a 6.10 presentan los resultados obtenidos para los 3 observadores cuando se calcula el índice de constancia IC\textsubscript{xy} tal y como se define según la expresión (1). Por tanto, las gráficas describen cuantitativamente los resultados analizados con anterioridad y expresan la distancia relativa entre la igualación y el estímulo teórico bajo cada uno de los iluminantes por separado.

El índice de constancia se ha calculado a partir de los valores medios de las 5 igualaciones por estímulo realizadas por los observadores; en las tablas 6.IV a 6.VIII se muestran estos valores medios asociados a las coordenadas de cromaticidad (x, y) junto con las desviaciones estándar correspondientes. En este caso se realizó previamente un análisis de varianza con la intención de demostrar si existían o no diferencias significativas entre las medias asociadas a cada una de las igualaciones realizadas por los observadores bajo distintos iluminantes y para cada objeto de color por separado. En todos los casos la hipótesis nula de igualdad entre medias siempre fue rechazada, incluso considerando niveles de significación de 0,01. Dado que el análisis de comparación de medias dos a dos para distintos iluminantes y observadores tampoco mostraba ningún tipo de conclusión definitiva, decidimos por tanto analizar los datos para cada observador e iluminante test por separado. Los valores obtenidos de la desviación estándar son mayores que los encontrados cuando no existía cambio de iluminante, aunque similares para los 3 observadores como puede verse en las tablas 6.IV-VIII. Las mayores diferencias se encuentran para las igualaciones realizadas bajo iluminante de 10000 K (entre 0,086-0,126 para las coordenadas x e y en distintos estímulos), mientras que para el resto de iluminantes se obtienen desviaciones muy parecidas entre 0,055-0,066 para la coordenada x, y algo menores para la coordenada y, entre 0,039-0,063.

Como ya se ha comentado, de manera usual la constancia del color se considera perfecta cuando los desplazamientos adaptativos compensan los colorimétricos inducidos por
el cambio de iluminante, es decir, que en las igualaciones realizadas sea la distancia MT = 0. Ahora bien, ¿qué valor del índice de constancia IC_{xy} introducido es indicativo de este hecho?, y si la distancia MT no es nula, ¿significa esto que no existe constancia del color? Respondiendo a esta última pregunta, en la literatura del tema está claro que la constancia del color nunca se manifiesta de manera perfecta, lo que hace necesario establecer un criterio o intervalo de "confianza" que sea representativo del mayor o menor grado de constancia del color alcanzado. Para introducir este criterio vamos a tener en cuenta los resultados derivados del análisis que se ha hecho de los aspectos de memoria al color involucrados. Recordemos que las unidades de diferencia de color calculadas cuando las igualaciones se realizaban sin cambio de iluminante, nos iban a servir como una medida del error o, si se prefiere, de la tolerancia asociada al grado de constancia del color. Del epígrafe anterior concluimos que en los peores casos, las mayores diferencias se correspondían con valores entre 15 y 22 unidades, de modo que consideraremos que si la distancia entre la igualación y el objeto de color bajo iluminante test lleva asociada valores muy superiores a estos, la constancia del color alcanzada es pobre, mientras que por debajo de 10 unidades podrá considerarse perfecta; como en cualquier criterio de este tipo, en la zona intermedia de valores únicamente podremos decir que existe una buena constancia del color. Por comparación entre los valores del índice de constancia que se muestran en las figuras 6.8 a 6.10, con las diferencias de color que se obtendrían al evaluar las distancias relativas entre la igualación y el objeto de color bajo alguno de los iluminantes test utilizados, podemos decir que los valores de IC_{xy} en torno a 1-2 indicarán una buena constancia del color, y cuanto menor y más próximo a cero sea IC_{xy}, tanto más perfecta será la constancia del color. Entre 2 y 4 la constancia del color la consideraremos pobre, mientras que por encima de 4 habremos de considerar que no existe constancia del color.

Como puede observarse en las gráficas, el índice de constancia varía fuertemente no sólo entre observadores sino también para cada uno de los iluminantes test utilizados. Para los observadores JR y JH la constancia del color tiende a ser buena cuando las igualaciones se realizan con los iluminantes de 10000 K y D_65, mientras que para FP sólo bajo D_65 se encuentran los valores más pequeños de IC_{xy}, aunque sin una tendencia clara a la buena constancia del color. Es en los resultados del observador FP donde se encuentran las mayores discrepancias, con valores de IC_{xy} superiores en general a 2-4, lo que significa que el
observador tiende a realizar sus igualaciones manteniendo invariables el tono y la saturación de los estímulos y con valores que tienden a ser similares a los correspondientes de los objetos de color bajo iluminación equienergética.

Respecto a la distribución de los resultados en las líneas de confusión seleccionadas, en el caso de JR y JH los valores más bajos de IC_{xy} se alcanzan para el iluminante D_{65} y se distribuyen uniformemente en las líneas amarillo-azul (líneas y-b). En estas líneas, donde los estímulos estándar se caracterizan por un valor constante del mecanismo rojo-verde, los valores de IC_{xy} obtenidos son prácticamente los mismos con independencia del valor del cono S de cada uno de los estímulos. Para el iluminante de 10000 K parece existir también cierta uniformidad en cuanto a la variación de IC_{xy} con la estimulación del cono S, aunque el índice de constancia presenta valores mayores en este caso dependiendo de los estímulos considerados. En las líneas rojo-verde (líneas r-g), no parece existir una tendencia clara, encontrándose una pobre constancia del color en concreto para el observador FP, mientras que JR y JH sí muestran valores más bajos del índice para el iluminante D_{65}.

Hemos evaluado también en este apartado la constancia en los valores de luminancia asignados en cada igualación. Para ello hemos utilizado un índice de constancia similar al dado por la expresión (1), pero en lugar de referir las distancias calculadas a la cromaticidad de las igualaciones las referiremos a las diferencias relativas en luminancia. El índice así calculado viene dado por la expresión:

\[IC_{\text{hum}} = \left| \frac{Y - Y^T}{Y - Y^E} \right| \]

(3)

donde Y representa la luminancia asignada en cada igualación realizada, Y^T la luminancia teórica del objeto de color bajo cada iluminante test, e Y^E la luminancia de los objetos bajo iluminante equienergético (22 cd/m²).

Las figuras 6.11 y 6.12 muestran los resultados obtenidos para IC_{hum}, para los 3 observadores y cada iluminante test utilizado, en función de las líneas de confusión seleccionadas. En este caso, las distancias relativas entre la igualación y el estímulo teórico son muy similares para todos los observadores, incluso en las realizadas por cada uno de...
Figura 6.8: Valores del índice de constancia ICₜ obtenidos para el observador JR, en función del iluminante test; los datos se agrupan según líneas de confusión rojo-verde y amarillo-azul.
Figura 6.9: Valores del índice de constancia IC_c obtenidos para el observador JH, en función del iluminante test; los datos se agrupan según líneas de confusión rojo-verde y amarillo-azul.
Figura 6.10: Valores del índice de constancia IC\textsubscript{xy} obtenidos para el observador FP, en función del iluminante test; los datos se agrupan según líneas de confusión rojo-verde y amarillo-azul.
<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>Y</th>
<th>DS x</th>
<th>DS y</th>
<th>DS Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-g/2</td>
<td>2</td>
<td>0.216</td>
<td>0.197</td>
<td>22.76</td>
<td>0.014</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.269</td>
<td>0.199</td>
<td>21.29</td>
<td>0.021</td>
<td>0.019</td>
</tr>
<tr>
<td>r-g/3</td>
<td>3</td>
<td>0.260</td>
<td>0.244</td>
<td>24.34</td>
<td>0.106</td>
<td>0.089</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.280</td>
<td>0.234</td>
<td>22.26</td>
<td>0.026</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.362</td>
<td>0.227</td>
<td>25.86</td>
<td>0.056</td>
<td>0.029</td>
</tr>
<tr>
<td>r-g/4</td>
<td>5</td>
<td>0.265</td>
<td>0.346</td>
<td>26.52</td>
<td>0.009</td>
<td>0.026</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.315</td>
<td>0.322</td>
<td>23.89</td>
<td>0.021</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.359</td>
<td>0.288</td>
<td>24.11</td>
<td>0.035</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.385</td>
<td>0.233</td>
<td>27.59</td>
<td>0.060</td>
<td>0.052</td>
</tr>
<tr>
<td>r-g/5</td>
<td>6</td>
<td>0.278</td>
<td>0.397</td>
<td>25.51</td>
<td>0.010</td>
<td>0.042</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.324</td>
<td>0.363</td>
<td>22.72</td>
<td>0.017</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0.389</td>
<td>0.343</td>
<td>22.60</td>
<td>0.023</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.476</td>
<td>0.293</td>
<td>24.82</td>
<td>0.035</td>
<td>0.014</td>
</tr>
<tr>
<td>r-g/6</td>
<td>8</td>
<td>0.319</td>
<td>0.555</td>
<td>28.65</td>
<td>0.006</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0.370</td>
<td>0.500</td>
<td>20.34</td>
<td>0.030</td>
<td>0.029</td>
</tr>
<tr>
<td>y-b/1</td>
<td>1</td>
<td>0.202</td>
<td>0.149</td>
<td>24.08</td>
<td>0.008</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.216</td>
<td>0.197</td>
<td>22.76</td>
<td>0.014</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.260</td>
<td>0.244</td>
<td>24.34</td>
<td>0.106</td>
<td>0.089</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.265</td>
<td>0.346</td>
<td>26.52</td>
<td>0.009</td>
<td>0.026</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.278</td>
<td>0.397</td>
<td>25.51</td>
<td>0.010</td>
<td>0.042</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.319</td>
<td>0.555</td>
<td>28.65</td>
<td>0.006</td>
<td>0.007</td>
</tr>
<tr>
<td>y-b/2</td>
<td>4</td>
<td>0.269</td>
<td>0.199</td>
<td>21.29</td>
<td>0.021</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.280</td>
<td>0.234</td>
<td>22.26</td>
<td>0.026</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.315</td>
<td>0.322</td>
<td>23.89</td>
<td>0.021</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.324</td>
<td>0.363</td>
<td>22.72</td>
<td>0.017</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0.370</td>
<td>0.500</td>
<td>20.34</td>
<td>0.030</td>
<td>0.029</td>
</tr>
<tr>
<td>y-b/3</td>
<td>10</td>
<td>0.362</td>
<td>0.227</td>
<td>25.86</td>
<td>0.056</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.359</td>
<td>0.288</td>
<td>24.11</td>
<td>0.035</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0.389</td>
<td>0.343</td>
<td>22.60</td>
<td>0.023</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.385</td>
<td>0.233</td>
<td>27.59</td>
<td>0.060</td>
<td>0.052</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.476</td>
<td>0.293</td>
<td>24.82</td>
<td>0.035</td>
<td>0.014</td>
</tr>
</tbody>
</table>

(a)

Tabla 6.4V: Valores medios y desviaciones estándar (DS) de las coordenadas de cromaticidad y luminancia, asociados a las 5 igualaciones realizadas por el observador JR bajo iluminante de 10000 K. Los resultados que se muestran están agrupados según líneas de confusión rojo-verde ("r-g") y amarillo-azul ("y-b").

120 Evaluación experimental de la constancia del color ...
<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>Y</th>
<th>DS x</th>
<th>DS y</th>
<th>DS Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-g//2</td>
<td>2</td>
<td>0.285</td>
<td>0.216</td>
<td>23.01</td>
<td>0.129</td>
<td>0.081</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.286</td>
<td>0.198</td>
<td>25.19</td>
<td>0.034</td>
<td>0.038</td>
</tr>
<tr>
<td>r-g//3</td>
<td>3</td>
<td>0.221</td>
<td>0.234</td>
<td>24.38</td>
<td>0.014</td>
<td>0.041</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.284</td>
<td>0.227</td>
<td>22.61</td>
<td>0.020</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.341</td>
<td>0.226</td>
<td>20.97</td>
<td>0.037</td>
<td>0.032</td>
</tr>
<tr>
<td>r-g//4</td>
<td>5</td>
<td>0.293</td>
<td>0.379</td>
<td>20.76</td>
<td>0.030</td>
<td>0.038</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.314</td>
<td>0.315</td>
<td>22.77</td>
<td>0.021</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.365</td>
<td>0.306</td>
<td>26.85</td>
<td>0.039</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.413</td>
<td>0.250</td>
<td>24.13</td>
<td>0.038</td>
<td>0.025</td>
</tr>
<tr>
<td>r-g//5</td>
<td>6</td>
<td>0.294</td>
<td>0.424</td>
<td>24.55</td>
<td>0.006</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.314</td>
<td>0.385</td>
<td>23.08</td>
<td>0.012</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0.400</td>
<td>0.337</td>
<td>25.98</td>
<td>0.039</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.452</td>
<td>0.298</td>
<td>24.52</td>
<td>0.028</td>
<td>0.028</td>
</tr>
<tr>
<td>r-g//6</td>
<td>8</td>
<td>0.314</td>
<td>0.538</td>
<td>24.80</td>
<td>0.003</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0.356</td>
<td>0.488</td>
<td>20.55</td>
<td>0.026</td>
<td>0.026</td>
</tr>
<tr>
<td>y-b//1</td>
<td>1</td>
<td>0.257</td>
<td>0.174</td>
<td>21.16</td>
<td>0.127</td>
<td>0.106</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.295</td>
<td>0.216</td>
<td>23.01</td>
<td>0.129</td>
<td>0.081</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.221</td>
<td>0.234</td>
<td>24.38</td>
<td>0.014</td>
<td>0.041</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.293</td>
<td>0.379</td>
<td>20.76</td>
<td>0.030</td>
<td>0.038</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.294</td>
<td>0.424</td>
<td>24.55</td>
<td>0.006</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.314</td>
<td>0.538</td>
<td>24.80</td>
<td>0.003</td>
<td>0.011</td>
</tr>
<tr>
<td>y-b//2</td>
<td>4</td>
<td>0.286</td>
<td>0.198</td>
<td>25.19</td>
<td>0.034</td>
<td>0.038</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.284</td>
<td>0.227</td>
<td>22.61</td>
<td>0.020</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.314</td>
<td>0.315</td>
<td>22.77</td>
<td>0.021</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.314</td>
<td>0.385</td>
<td>23.08</td>
<td>0.012</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0.356</td>
<td>0.488</td>
<td>20.55</td>
<td>0.026</td>
<td>0.026</td>
</tr>
<tr>
<td>y-b//3</td>
<td>10</td>
<td>0.341</td>
<td>0.226</td>
<td>20.97</td>
<td>0.037</td>
<td>0.032</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.365</td>
<td>0.306</td>
<td>26.85</td>
<td>0.039</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0.400</td>
<td>0.337</td>
<td>25.98</td>
<td>0.039</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.413</td>
<td>0.250</td>
<td>24.13</td>
<td>0.038</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.452</td>
<td>0.298</td>
<td>24.52</td>
<td>0.028</td>
<td>0.028</td>
</tr>
</tbody>
</table>

Tabla 6.IV (Cont.): Idem para el observador JH bajo iluminante de 10000 K.

Evaluación exprimental de la constancia del color ... 121
Cap. 6: Análisis y discusión de resultados en el espacio CIE-1931

<table>
<thead>
<tr>
<th>r-g/2</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0.220</td>
<td>0.205</td>
<td>24.25</td>
<td>0.013</td>
<td>0.025</td>
</tr>
<tr>
<td>y</td>
<td>0.310</td>
<td>0.193</td>
<td>27.39</td>
<td>0.088</td>
<td>0.054</td>
</tr>
<tr>
<td>Y</td>
<td>0.214</td>
<td>0.226</td>
<td>25.18</td>
<td>0.007</td>
<td>0.023</td>
</tr>
<tr>
<td>DS x</td>
<td>0.304</td>
<td>0.211</td>
<td>30.55</td>
<td>0.054</td>
<td>0.032</td>
</tr>
<tr>
<td>DS y</td>
<td>0.327</td>
<td>0.186</td>
<td>25.23</td>
<td>0.062</td>
<td>0.040</td>
</tr>
<tr>
<td>DS Y</td>
<td>0.261</td>
<td>0.371</td>
<td>25.19</td>
<td>0.010</td>
<td>0.019</td>
</tr>
<tr>
<td>r-g/4</td>
<td>0.313</td>
<td>0.331</td>
<td>21.19</td>
<td>0.013</td>
<td>0.007</td>
</tr>
<tr>
<td>r-g/5</td>
<td>0.367</td>
<td>0.278</td>
<td>23.90</td>
<td>0.028</td>
<td>0.025</td>
</tr>
<tr>
<td>r-g/6</td>
<td>0.422</td>
<td>0.248</td>
<td>28.05</td>
<td>0.021</td>
<td>0.013</td>
</tr>
<tr>
<td>y-b/1</td>
<td>0.316</td>
<td>0.460</td>
<td>21.23</td>
<td>0.030</td>
<td>0.034</td>
</tr>
<tr>
<td>y-b/2</td>
<td>0.339</td>
<td>0.386</td>
<td>25.19</td>
<td>0.013</td>
<td>0.026</td>
</tr>
<tr>
<td>y-b/3</td>
<td>0.423</td>
<td>0.343</td>
<td>25.27</td>
<td>0.038</td>
<td>0.031</td>
</tr>
<tr>
<td>y-b/4</td>
<td>0.485</td>
<td>0.310</td>
<td>21.23</td>
<td>0.015</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>0.318</td>
<td>0.549</td>
<td>24.37</td>
<td>0.003</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>0.381</td>
<td>0.471</td>
<td>27.57</td>
<td>0.030</td>
<td>0.032</td>
</tr>
<tr>
<td></td>
<td>0.207</td>
<td>0.135</td>
<td>23.58</td>
<td>0.016</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>0.220</td>
<td>0.205</td>
<td>24.25</td>
<td>0.013</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>0.214</td>
<td>0.226</td>
<td>25.18</td>
<td>0.007</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>0.261</td>
<td>0.371</td>
<td>25.19</td>
<td>0.010</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>0.316</td>
<td>0.460</td>
<td>21.23</td>
<td>0.030</td>
<td>0.034</td>
</tr>
<tr>
<td></td>
<td>0.318</td>
<td>0.549</td>
<td>24.37</td>
<td>0.003</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>0.310</td>
<td>0.193</td>
<td>27.39</td>
<td>0.086</td>
<td>0.054</td>
</tr>
<tr>
<td></td>
<td>0.304</td>
<td>0.211</td>
<td>30.55</td>
<td>0.054</td>
<td>0.032</td>
</tr>
<tr>
<td></td>
<td>0.313</td>
<td>0.331</td>
<td>21.19</td>
<td>0.013</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>0.339</td>
<td>0.386</td>
<td>25.19</td>
<td>0.013</td>
<td>0.026</td>
</tr>
<tr>
<td></td>
<td>0.381</td>
<td>0.471</td>
<td>27.57</td>
<td>0.030</td>
<td>0.032</td>
</tr>
<tr>
<td></td>
<td>0.327</td>
<td>0.186</td>
<td>25.23</td>
<td>0.062</td>
<td>0.040</td>
</tr>
<tr>
<td></td>
<td>0.367</td>
<td>0.278</td>
<td>23.90</td>
<td>0.028</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>0.423</td>
<td>0.343</td>
<td>25.27</td>
<td>0.038</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td>0.422</td>
<td>0.248</td>
<td>28.05</td>
<td>0.021</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>0.485</td>
<td>0.310</td>
<td>21.23</td>
<td>0.015</td>
<td>0.009</td>
</tr>
</tbody>
</table>

Tabla 6.IV (Cont.): Idem para el observador FP bajo iluminante de 10000 K.

122 Evaluación experimental de la constancia del color ...
<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>Y</th>
<th>DS x</th>
<th>DS y</th>
<th>DS Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-g/2</td>
<td>2</td>
<td>0.215</td>
<td>0.186</td>
<td>23.45</td>
<td>0.017</td>
<td>0.035</td>
</tr>
<tr>
<td>4</td>
<td>0.260</td>
<td>0.192</td>
<td>22.06</td>
<td>0.026</td>
<td>0.032</td>
<td>1.25</td>
</tr>
<tr>
<td>r-g/3</td>
<td>3</td>
<td>0.241</td>
<td>0.258</td>
<td>24.17</td>
<td>0.012</td>
<td>0.019</td>
</tr>
<tr>
<td>7</td>
<td>0.276</td>
<td>0.242</td>
<td>21.32</td>
<td>0.019</td>
<td>0.021</td>
<td>2.42</td>
</tr>
<tr>
<td>10</td>
<td>0.336</td>
<td>0.229</td>
<td>27.65</td>
<td>0.035</td>
<td>0.010</td>
<td>4.14</td>
</tr>
<tr>
<td>r-g/4</td>
<td>5</td>
<td>0.278</td>
<td>0.355</td>
<td>24.73</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>9</td>
<td>0.311</td>
<td>0.336</td>
<td>24.28</td>
<td>0.012</td>
<td>0.019</td>
<td>4.40</td>
</tr>
<tr>
<td>12</td>
<td>0.369</td>
<td>0.291</td>
<td>24.83</td>
<td>0.038</td>
<td>0.020</td>
<td>2.94</td>
</tr>
<tr>
<td>15</td>
<td>0.427</td>
<td>0.268</td>
<td>27.28</td>
<td>0.054</td>
<td>0.044</td>
<td>3.24</td>
</tr>
<tr>
<td>r-g/5</td>
<td>6</td>
<td>0.294</td>
<td>0.445</td>
<td>27.57</td>
<td>0.017</td>
<td>0.035</td>
</tr>
<tr>
<td>11</td>
<td>0.337</td>
<td>0.373</td>
<td>25.06</td>
<td>0.009</td>
<td>0.025</td>
<td>3.94</td>
</tr>
<tr>
<td>14</td>
<td>0.428</td>
<td>0.360</td>
<td>24.73</td>
<td>0.034</td>
<td>0.024</td>
<td>2.49</td>
</tr>
<tr>
<td>16</td>
<td>0.479</td>
<td>0.299</td>
<td>22.09</td>
<td>0.039</td>
<td>0.014</td>
<td>1.70</td>
</tr>
<tr>
<td>r-g/6</td>
<td>8</td>
<td>0.317</td>
<td>0.560</td>
<td>27.63</td>
<td>0.001</td>
<td>0.011</td>
</tr>
<tr>
<td>13</td>
<td>0.372</td>
<td>0.509</td>
<td>24.55</td>
<td>0.026</td>
<td>0.018</td>
<td>1.55</td>
</tr>
<tr>
<td>y-b/1</td>
<td>1</td>
<td>0.232</td>
<td>0.204</td>
<td>22.53</td>
<td>0.015</td>
<td>0.032</td>
</tr>
<tr>
<td>2</td>
<td>0.215</td>
<td>0.186</td>
<td>23.45</td>
<td>0.017</td>
<td>0.035</td>
<td>3.36</td>
</tr>
<tr>
<td>3</td>
<td>0.241</td>
<td>0.258</td>
<td>24.17</td>
<td>0.012</td>
<td>0.019</td>
<td>3.05</td>
</tr>
<tr>
<td>5</td>
<td>0.278</td>
<td>0.355</td>
<td>24.73</td>
<td>0.025</td>
<td>0.025</td>
<td>3.73</td>
</tr>
<tr>
<td>6</td>
<td>0.294</td>
<td>0.445</td>
<td>27.57</td>
<td>0.017</td>
<td>0.035</td>
<td>4.97</td>
</tr>
<tr>
<td>8</td>
<td>0.317</td>
<td>0.560</td>
<td>27.63</td>
<td>0.001</td>
<td>0.011</td>
<td>4.65</td>
</tr>
<tr>
<td>y-b/2</td>
<td>4</td>
<td>0.260</td>
<td>0.192</td>
<td>22.06</td>
<td>0.026</td>
<td>0.032</td>
</tr>
<tr>
<td>7</td>
<td>0.276</td>
<td>0.242</td>
<td>21.32</td>
<td>0.019</td>
<td>0.021</td>
<td>2.42</td>
</tr>
<tr>
<td>9</td>
<td>0.311</td>
<td>0.336</td>
<td>24.28</td>
<td>0.012</td>
<td>0.019</td>
<td>4.40</td>
</tr>
<tr>
<td>11</td>
<td>0.337</td>
<td>0.373</td>
<td>25.06</td>
<td>0.009</td>
<td>0.025</td>
<td>3.94</td>
</tr>
<tr>
<td>13</td>
<td>0.372</td>
<td>0.509</td>
<td>24.55</td>
<td>0.026</td>
<td>0.018</td>
<td>1.55</td>
</tr>
<tr>
<td>y-b/3</td>
<td>10</td>
<td>0.336</td>
<td>0.229</td>
<td>27.65</td>
<td>0.035</td>
<td>0.010</td>
</tr>
<tr>
<td>12</td>
<td>0.369</td>
<td>0.291</td>
<td>24.83</td>
<td>0.038</td>
<td>0.020</td>
<td>2.94</td>
</tr>
<tr>
<td>14</td>
<td>0.428</td>
<td>0.360</td>
<td>24.73</td>
<td>0.034</td>
<td>0.024</td>
<td>2.49</td>
</tr>
<tr>
<td>15</td>
<td>0.427</td>
<td>0.268</td>
<td>27.28</td>
<td>0.054</td>
<td>0.044</td>
<td>3.24</td>
</tr>
<tr>
<td>16</td>
<td>0.479</td>
<td>0.299</td>
<td>22.09</td>
<td>0.039</td>
<td>0.014</td>
<td>1.70</td>
</tr>
</tbody>
</table>

(a)

Tabla 6.V: Valores medios y desviaciones estándar (DS) de las coordenadas de cromatididad y luminancia, asociados a las 5 igualaciones realizadas por el observador JR bajo el iluminante D65. Los resultados que se muestran están agrupados según líneas de confusión rojo-verde ('r-g') y amarillo-azul ('y-b').

Evaluación experimental de la constancia del color ... 123
<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>Y</th>
<th>DS x</th>
<th>DS y</th>
<th>DS Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-g/2</td>
<td>2</td>
<td>0.233</td>
<td>0.204</td>
<td>22.56</td>
<td>0.059</td>
<td>0.058</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.296</td>
<td>0.210</td>
<td>22.10</td>
<td>0.047</td>
<td>0.046</td>
</tr>
<tr>
<td>r-g/3</td>
<td>3</td>
<td>0.233</td>
<td>0.249</td>
<td>22.03</td>
<td>0.016</td>
<td>0.033</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.274</td>
<td>0.223</td>
<td>22.08</td>
<td>0.041</td>
<td>0.052</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.374</td>
<td>0.259</td>
<td>28.56</td>
<td>0.061</td>
<td>0.047</td>
</tr>
<tr>
<td>r-g/4</td>
<td>5</td>
<td>0.278</td>
<td>0.412</td>
<td>20.61</td>
<td>0.012</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.323</td>
<td>0.332</td>
<td>23.88</td>
<td>0.009</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.382</td>
<td>0.300</td>
<td>26.17</td>
<td>0.050</td>
<td>0.040</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.463</td>
<td>0.279</td>
<td>29.21</td>
<td>0.013</td>
<td>0.015</td>
</tr>
<tr>
<td>r-g/5</td>
<td>6</td>
<td>0.300</td>
<td>0.450</td>
<td>24.19</td>
<td>0.007</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.307</td>
<td>0.382</td>
<td>25.39</td>
<td>0.023</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0.451</td>
<td>0.365</td>
<td>23.90</td>
<td>0.041</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.471</td>
<td>0.308</td>
<td>22.80</td>
<td>0.033</td>
<td>0.015</td>
</tr>
<tr>
<td>r-g/6</td>
<td>8</td>
<td>0.321</td>
<td>0.547</td>
<td>26.46</td>
<td>0.007</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0.379</td>
<td>0.484</td>
<td>25.74</td>
<td>0.039</td>
<td>0.038</td>
</tr>
<tr>
<td>y-b/1</td>
<td>1</td>
<td>0.203</td>
<td>0.148</td>
<td>24.33</td>
<td>0.011</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.000</td>
<td>0.000</td>
<td>0.00</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.233</td>
<td>0.249</td>
<td>22.03</td>
<td>0.016</td>
<td>0.033</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.278</td>
<td>0.412</td>
<td>20.61</td>
<td>0.012</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.300</td>
<td>0.450</td>
<td>24.19</td>
<td>0.007</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.321</td>
<td>0.547</td>
<td>26.46</td>
<td>0.007</td>
<td>0.016</td>
</tr>
<tr>
<td>y-b/2</td>
<td>4</td>
<td>0.296</td>
<td>0.210</td>
<td>22.10</td>
<td>0.047</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.274</td>
<td>0.223</td>
<td>22.08</td>
<td>0.041</td>
<td>0.052</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.323</td>
<td>0.332</td>
<td>23.88</td>
<td>0.009</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.307</td>
<td>0.382</td>
<td>25.39</td>
<td>0.023</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0.379</td>
<td>0.484</td>
<td>25.74</td>
<td>0.039</td>
<td>0.038</td>
</tr>
<tr>
<td>y-b/3</td>
<td>10</td>
<td>0.374</td>
<td>0.259</td>
<td>28.56</td>
<td>0.061</td>
<td>0.047</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.382</td>
<td>0.300</td>
<td>26.17</td>
<td>0.050</td>
<td>0.040</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0.451</td>
<td>0.366</td>
<td>23.90</td>
<td>0.041</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.463</td>
<td>0.279</td>
<td>29.21</td>
<td>0.013</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.471</td>
<td>0.308</td>
<td>22.80</td>
<td>0.033</td>
<td>0.015</td>
</tr>
</tbody>
</table>

Tabla 6.V (Cont.): Idem para el observador JH bajo iluminante D50.

124 Evaluación experimental de la constancia del color ...
<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>Y</th>
<th>DS x</th>
<th>DS y</th>
<th>DS Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-g/2</td>
<td>2</td>
<td>0,201</td>
<td>0,164</td>
<td>24,34</td>
<td>0,009</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0,280</td>
<td>0,178</td>
<td>23,17</td>
<td>0,048</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0,229</td>
<td>0,249</td>
<td>27,95</td>
<td>0,017</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0,290</td>
<td>0,207</td>
<td>26,83</td>
<td>0,066</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,337</td>
<td>0,211</td>
<td>28,17</td>
<td>0,054</td>
</tr>
<tr>
<td>r-g/4</td>
<td>5</td>
<td>0,265</td>
<td>0,387</td>
<td>28,71</td>
<td>0,023</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0,332</td>
<td>0,336</td>
<td>24,39</td>
<td>0,024</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0,420</td>
<td>0,300</td>
<td>23,95</td>
<td>0,020</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0,423</td>
<td>0,252</td>
<td>32,07</td>
<td>0,032</td>
</tr>
<tr>
<td>r-g/5</td>
<td>6</td>
<td>0,281</td>
<td>0,441</td>
<td>29,11</td>
<td>0,014</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0,387</td>
<td>0,428</td>
<td>24,87</td>
<td>0,018</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0,465</td>
<td>0,368</td>
<td>21,31</td>
<td>0,028</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0,481</td>
<td>0,304</td>
<td>27,05</td>
<td>0,027</td>
</tr>
<tr>
<td>r-g/6</td>
<td>8</td>
<td>0,315</td>
<td>0,539</td>
<td>32,85</td>
<td>0,012</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0,381</td>
<td>0,491</td>
<td>28,46</td>
<td>0,010</td>
</tr>
<tr>
<td>y-b/1</td>
<td>1</td>
<td>0,275</td>
<td>0,195</td>
<td>19,86</td>
<td>0,119</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0,201</td>
<td>0,164</td>
<td>24,34</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0,229</td>
<td>0,249</td>
<td>27,95</td>
<td>0,017</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0,265</td>
<td>0,387</td>
<td>28,71</td>
<td>0,023</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0,281</td>
<td>0,441</td>
<td>29,11</td>
<td>0,014</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0,315</td>
<td>0,539</td>
<td>32,85</td>
<td>0,012</td>
</tr>
<tr>
<td>y-b/2</td>
<td>4</td>
<td>0,280</td>
<td>0,178</td>
<td>23,17</td>
<td>0,048</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0,290</td>
<td>0,207</td>
<td>26,83</td>
<td>0,066</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0,332</td>
<td>0,336</td>
<td>24,39</td>
<td>0,024</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0,387</td>
<td>0,428</td>
<td>24,87</td>
<td>0,018</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0,381</td>
<td>0,491</td>
<td>29,46</td>
<td>0,010</td>
</tr>
<tr>
<td>y-b/3</td>
<td>10</td>
<td>0,337</td>
<td>0,211</td>
<td>28,17</td>
<td>0,054</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0,420</td>
<td>0,300</td>
<td>23,95</td>
<td>0,020</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0,465</td>
<td>0,368</td>
<td>21,31</td>
<td>0,028</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0,423</td>
<td>0,252</td>
<td>32,07</td>
<td>0,032</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0,481</td>
<td>0,304</td>
<td>27,05</td>
<td>0,027</td>
</tr>
</tbody>
</table>

Tabla 6.V (Cont.): Idem para el observador FP bajo iluminante D65.
<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>Y</th>
<th>DS x</th>
<th>DS y</th>
<th>DS Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-g/2</td>
<td>2</td>
<td>0.244</td>
<td>0.235</td>
<td>22.82</td>
<td>0.004</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.279</td>
<td>0.212</td>
<td>22.87</td>
<td>0.026</td>
<td>0.034</td>
</tr>
<tr>
<td>r-g/3</td>
<td>3</td>
<td>0.235</td>
<td>0.232</td>
<td>25.77</td>
<td>0.024</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.272</td>
<td>0.242</td>
<td>22.03</td>
<td>0.019</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.330</td>
<td>0.215</td>
<td>29.97</td>
<td>0.051</td>
<td>0.042</td>
</tr>
<tr>
<td>r-g/4</td>
<td>5</td>
<td>0.276</td>
<td>0.371</td>
<td>26.27</td>
<td>0.025</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.330</td>
<td>0.336</td>
<td>23.88</td>
<td>0.002</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.392</td>
<td>0.297</td>
<td>26.67</td>
<td>0.024</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.443</td>
<td>0.285</td>
<td>29.99</td>
<td>0.034</td>
<td>0.018</td>
</tr>
<tr>
<td>r-g/5</td>
<td>6</td>
<td>0.284</td>
<td>0.434</td>
<td>27.81</td>
<td>0.024</td>
<td>0.054</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.359</td>
<td>0.406</td>
<td>26.60</td>
<td>0.028</td>
<td>0.047</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0.428</td>
<td>0.343</td>
<td>23.99</td>
<td>0.026</td>
<td>0.041</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>0.462</td>
<td>0.300</td>
<td>25.30</td>
<td>0.039</td>
<td>0.017</td>
</tr>
<tr>
<td>r-g/6</td>
<td>8</td>
<td>0.318</td>
<td>0.564</td>
<td>32.11</td>
<td>0.004</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0.383</td>
<td>0.511</td>
<td>25.24</td>
<td>0.037</td>
<td>0.028</td>
</tr>
<tr>
<td>y-b/1</td>
<td>1</td>
<td>0.222</td>
<td>0.180</td>
<td>21.67</td>
<td>0.022</td>
<td>0.049</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.244</td>
<td>0.235</td>
<td>22.82</td>
<td>0.004</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.235</td>
<td>0.232</td>
<td>25.77</td>
<td>0.024</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.276</td>
<td>0.371</td>
<td>26.27</td>
<td>0.025</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.284</td>
<td>0.434</td>
<td>27.81</td>
<td>0.024</td>
<td>0.054</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.318</td>
<td>0.564</td>
<td>32.11</td>
<td>0.004</td>
<td>0.005</td>
</tr>
<tr>
<td>y-b/2</td>
<td>4</td>
<td>0.279</td>
<td>0.212</td>
<td>22.87</td>
<td>0.026</td>
<td>0.034</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.272</td>
<td>0.242</td>
<td>22.03</td>
<td>0.019</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.330</td>
<td>0.336</td>
<td>23.88</td>
<td>0.002</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.359</td>
<td>0.406</td>
<td>26.60</td>
<td>0.028</td>
<td>0.047</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0.383</td>
<td>0.511</td>
<td>25.24</td>
<td>0.037</td>
<td>0.028</td>
</tr>
<tr>
<td>y-b/3</td>
<td>10</td>
<td>0.330</td>
<td>0.215</td>
<td>29.97</td>
<td>0.051</td>
<td>0.042</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.392</td>
<td>0.297</td>
<td>26.67</td>
<td>0.024</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0.428</td>
<td>0.343</td>
<td>23.99</td>
<td>0.026</td>
<td>0.041</td>
</tr>
<tr>
<td>y-b/4</td>
<td>15</td>
<td>0.443</td>
<td>0.265</td>
<td>29.99</td>
<td>0.034</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.462</td>
<td>0.300</td>
<td>25.30</td>
<td>0.039</td>
<td>0.017</td>
</tr>
</tbody>
</table>

(a)

Tabla 6.VI: Valores medios y desviaciones estándar (DS) de las coordenadas de cromaticidad y luminancia, asociados a las 5 igualaciones realizadas por el observador JR bajo iluminante equienergético. Los resultados que se muestran están agrupados según líneas de confusión rojo-verde ("r-g") y amarillo-azul ("y-b").

126 Evaluación experimental de la constancia del color ...
r-g/2	2	0,233	0,201	20,65	0,024	0,028	3,38
	4	0,274	0,222	21,98	0,030	0,013	3,40
r-g/3	3	0,229	0,231	22,42	0,013	0,030	4,53
	7	0,287	0,237	22,81	0,026	0,018	3,17
	10	0,416	0,265	25,88	0,047	0,026	3,01
r-g/4	5	0,282	0,385	19,58	0,006	0,012	3,17
	9	0,310	0,333	22,25	0,009	0,014	2,39
	12	0,393	0,300	23,27	0,036	0,019	3,35
	15	0,457	0,285	26,22	0,033	0,013	1,55
r-g/5	6	0,308	0,448	28,27	0,028	0,061	6,41
	11	0,326	0,392	20,45	0,020	0,073	4,81
	14	0,416	0,379	24,78	0,019	0,031	2,25
	16	0,478	0,306	25,35	0,024	0,015	2,17
r-g/6	8	0,318	0,545	31,32	0,005	0,028	4,58
	13	0,378	0,470	24,23	0,011	0,025	4,74
y-b/1	1	0,227	0,163	21,07	0,009	0,029	4,95
	2	0,233	0,201	20,65	0,024	0,028	3,38
	3	0,229	0,231	22,42	0,013	0,030	4,53
	5	0,282	0,385	19,58	0,006	0,012	3,17
	6	0,308	0,448	28,27	0,028	0,061	6,41
	8	0,318	0,545	31,32	0,005	0,028	4,58
y-b/2	4	0,274	0,222	21,98	0,030	0,013	3,40
	7	0,287	0,237	22,81	0,026	0,018	3,17
	9	0,310	0,333	22,25	0,009	0,014	2,39
	11	0,326	0,392	20,45	0,020	0,073	4,81
	13	0,378	0,470	24,23	0,011	0,025	4,74
y-b/3	10	0,416	0,265	25,88	0,047	0,026	3,01
	12	0,393	0,300	23,27	0,036	0,019	3,35
	14	0,416	0,379	24,78	0,019	0,031	2,25
y-b/4	15	0,457	0,285	26,22	0,033	0,013	1,55
	16	0,478	0,306	25,35	0,024	0,015	2,17

Tabla 6.VI (Cont.): Idem para el observador JH bajo iluminante equienergético.
<table>
<thead>
<tr>
<th>Observador</th>
<th>x</th>
<th>y</th>
<th>Y</th>
<th>DS x</th>
<th>DS y</th>
<th>DS Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-g/2</td>
<td>2</td>
<td>0.219</td>
<td>0.192</td>
<td>26.64</td>
<td>0.019</td>
<td>0.035</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.265</td>
<td>0.182</td>
<td>25.46</td>
<td>0.016</td>
<td>0.029</td>
</tr>
<tr>
<td>r-g/3</td>
<td>3</td>
<td>0.236</td>
<td>0.225</td>
<td>29.67</td>
<td>0.007</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.285</td>
<td>0.211</td>
<td>30.22</td>
<td>0.051</td>
<td>0.059</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.342</td>
<td>0.223</td>
<td>28.79</td>
<td>0.023</td>
<td>0.023</td>
</tr>
<tr>
<td>r-g/4</td>
<td>5</td>
<td>0.256</td>
<td>0.382</td>
<td>31.93</td>
<td>0.007</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.342</td>
<td>0.330</td>
<td>20.75</td>
<td>0.015</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.405</td>
<td>0.316</td>
<td>25.45</td>
<td>0.037</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.440</td>
<td>0.263</td>
<td>29.33</td>
<td>0.064</td>
<td>0.043</td>
</tr>
<tr>
<td>r-g/5</td>
<td>6</td>
<td>0.278</td>
<td>0.429</td>
<td>29.83</td>
<td>0.007</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.372</td>
<td>0.441</td>
<td>28.90</td>
<td>0.011</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0.423</td>
<td>0.352</td>
<td>25.62</td>
<td>0.054</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.497</td>
<td>0.309</td>
<td>28.03</td>
<td>0.021</td>
<td>0.015</td>
</tr>
<tr>
<td>r-g/6</td>
<td>8</td>
<td>0.318</td>
<td>0.529</td>
<td>29.18</td>
<td>0.007</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0.387</td>
<td>0.480</td>
<td>31.20</td>
<td>0.020</td>
<td>0.030</td>
</tr>
<tr>
<td>y-b/1</td>
<td>1</td>
<td>0.224</td>
<td>0.163</td>
<td>24.86</td>
<td>0.016</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.219</td>
<td>0.192</td>
<td>26.64</td>
<td>0.019</td>
<td>0.035</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.236</td>
<td>0.225</td>
<td>29.67</td>
<td>0.007</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.256</td>
<td>0.382</td>
<td>31.93</td>
<td>0.007</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.278</td>
<td>0.429</td>
<td>29.83</td>
<td>0.007</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.318</td>
<td>0.529</td>
<td>29.18</td>
<td>0.007</td>
<td>0.029</td>
</tr>
<tr>
<td>y-b/2</td>
<td>4</td>
<td>0.265</td>
<td>0.182</td>
<td>25.46</td>
<td>0.016</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.285</td>
<td>0.211</td>
<td>30.22</td>
<td>0.051</td>
<td>0.059</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.342</td>
<td>0.330</td>
<td>20.75</td>
<td>0.015</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.372</td>
<td>0.441</td>
<td>28.90</td>
<td>0.011</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0.387</td>
<td>0.480</td>
<td>31.20</td>
<td>0.020</td>
<td>0.030</td>
</tr>
<tr>
<td>y-b/3</td>
<td>10</td>
<td>0.342</td>
<td>0.223</td>
<td>28.79</td>
<td>0.023</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.405</td>
<td>0.316</td>
<td>25.45</td>
<td>0.037</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0.423</td>
<td>0.352</td>
<td>25.62</td>
<td>0.054</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.440</td>
<td>0.263</td>
<td>29.33</td>
<td>0.064</td>
<td>0.043</td>
</tr>
<tr>
<td>y-b/4</td>
<td>16</td>
<td>0.497</td>
<td>0.309</td>
<td>28.03</td>
<td>0.021</td>
<td>0.015</td>
</tr>
</tbody>
</table>

(c)

Tabla 6.VI (Cont.): Idem para el observador FP bajo iluminante equienergético.

128 Evaluación experimental de la constancia del color ...
<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>Y</th>
<th>DS x</th>
<th>DS y</th>
<th>DS Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-g/2</td>
<td>2</td>
<td>0.255</td>
<td>0.248</td>
<td>22.56</td>
<td>0.024</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.279</td>
<td>0.198</td>
<td>25.06</td>
<td>0.039</td>
<td>0.018</td>
</tr>
<tr>
<td>r-g/3</td>
<td>3</td>
<td>0.252</td>
<td>0.270</td>
<td>24.10</td>
<td>0.008</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.302</td>
<td>0.260</td>
<td>22.63</td>
<td>0.038</td>
<td>0.041</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.408</td>
<td>0.275</td>
<td>27.41</td>
<td>0.065</td>
<td>0.035</td>
</tr>
<tr>
<td>r-g/4</td>
<td>5</td>
<td>0.284</td>
<td>0.387</td>
<td>25.93</td>
<td>0.016</td>
<td>0.051</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.350</td>
<td>0.352</td>
<td>25.18</td>
<td>0.011</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.418</td>
<td>0.322</td>
<td>28.16</td>
<td>0.038</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.434</td>
<td>0.256</td>
<td>31.39</td>
<td>0.033</td>
<td>0.023</td>
</tr>
<tr>
<td>r-g/5</td>
<td>6</td>
<td>0.298</td>
<td>0.465</td>
<td>25.81</td>
<td>0.008</td>
<td>0.047</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.367</td>
<td>0.411</td>
<td>25.64</td>
<td>0.014</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0.470</td>
<td>0.357</td>
<td>27.89</td>
<td>0.044</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.500</td>
<td>0.318</td>
<td>27.56</td>
<td>0.019</td>
<td>0.005</td>
</tr>
<tr>
<td>r-g/6</td>
<td>8</td>
<td>0.329</td>
<td>0.546</td>
<td>24.23</td>
<td>0.009</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0.382</td>
<td>0.501</td>
<td>25.48</td>
<td>0.027</td>
<td>0.020</td>
</tr>
<tr>
<td>y-b/1</td>
<td>1</td>
<td>0.252</td>
<td>0.211</td>
<td>24.26</td>
<td>0.026</td>
<td>0.033</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.255</td>
<td>0.248</td>
<td>22.56</td>
<td>0.024</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.252</td>
<td>0.270</td>
<td>24.10</td>
<td>0.008</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.284</td>
<td>0.387</td>
<td>25.93</td>
<td>0.016</td>
<td>0.051</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.298</td>
<td>0.465</td>
<td>25.81</td>
<td>0.006</td>
<td>0.047</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.329</td>
<td>0.546</td>
<td>24.23</td>
<td>0.009</td>
<td>0.014</td>
</tr>
<tr>
<td>y-b/2</td>
<td>4</td>
<td>0.279</td>
<td>0.198</td>
<td>25.06</td>
<td>0.039</td>
<td>0.055</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.302</td>
<td>0.260</td>
<td>22.63</td>
<td>0.038</td>
<td>0.041</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.350</td>
<td>0.352</td>
<td>25.18</td>
<td>0.011</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.367</td>
<td>0.411</td>
<td>25.64</td>
<td>0.014</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0.392</td>
<td>0.501</td>
<td>25.48</td>
<td>0.027</td>
<td>0.020</td>
</tr>
<tr>
<td>y-b/3</td>
<td>10</td>
<td>0.408</td>
<td>0.275</td>
<td>27.41</td>
<td>0.065</td>
<td>0.035</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.418</td>
<td>0.322</td>
<td>28.16</td>
<td>0.038</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0.470</td>
<td>0.357</td>
<td>27.89</td>
<td>0.044</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.434</td>
<td>0.256</td>
<td>31.39</td>
<td>0.033</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.500</td>
<td>0.318</td>
<td>27.56</td>
<td>0.019</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Tabla 6.VII: Valores medios y desviaciones estándar (DS) de las coordenadas de cromaticidad y luminancia, asociados a las 5 igualaciones realizadas por el observador JR bajo iluminante F10. Los resultados que se muestran están agrupados según líneas de confusión rojo-verde ("r-g") y amarillo-azul ("y-b").
Tabla 6.VII (Cont.): Idem para el observador JH bajo iluminante F_{11}.

130 Evaluación experimental de la constancia del color ...
<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>Y</th>
<th>DS x</th>
<th>DS y</th>
<th>DS Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-g/2</td>
<td>2</td>
<td>0,239</td>
<td>0,234</td>
<td>26,29</td>
<td>0,024</td>
<td>0,044</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0,29</td>
<td>0,202</td>
<td>25,15</td>
<td>0,027</td>
<td>0,056</td>
</tr>
<tr>
<td>r-g/3</td>
<td>3</td>
<td>0,235</td>
<td>0,248</td>
<td>24,20</td>
<td>0,019</td>
<td>0,014</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0,288</td>
<td>0,236</td>
<td>27,35</td>
<td>0,022</td>
<td>0,031</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,393</td>
<td>0,250</td>
<td>26,54</td>
<td>0,058</td>
<td>0,036</td>
</tr>
<tr>
<td>r-g/4</td>
<td>5</td>
<td>0,287</td>
<td>0,438</td>
<td>30,80</td>
<td>0,035</td>
<td>0,034</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0,363</td>
<td>0,353</td>
<td>24,14</td>
<td>0,013</td>
<td>0,018</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0,409</td>
<td>0,300</td>
<td>23,07</td>
<td>0,011</td>
<td>0,015</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0,464</td>
<td>0,274</td>
<td>32,11</td>
<td>0,034</td>
<td>0,016</td>
</tr>
<tr>
<td>r-g/5</td>
<td>6</td>
<td>0,294</td>
<td>0,469</td>
<td>29,61</td>
<td>0,009</td>
<td>0,025</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0,390</td>
<td>0,428</td>
<td>23,73</td>
<td>0,018</td>
<td>0,022</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0,483</td>
<td>0,380</td>
<td>24,72</td>
<td>0,017</td>
<td>0,009</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0,527</td>
<td>0,323</td>
<td>27,51</td>
<td>0,019</td>
<td>0,026</td>
</tr>
<tr>
<td>r-g/6</td>
<td>8</td>
<td>0,318</td>
<td>0,542</td>
<td>35,38</td>
<td>0,007</td>
<td>0,027</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0,396</td>
<td>0,494</td>
<td>35,42</td>
<td>0,011</td>
<td>0,019</td>
</tr>
<tr>
<td>y-b/1</td>
<td>1</td>
<td>0,222</td>
<td>0,149</td>
<td>25,39</td>
<td>0,033</td>
<td>0,049</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0,239</td>
<td>0,234</td>
<td>26,29</td>
<td>0,024</td>
<td>0,044</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0,235</td>
<td>0,248</td>
<td>24,20</td>
<td>0,019</td>
<td>0,014</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0,287</td>
<td>0,438</td>
<td>30,80</td>
<td>0,035</td>
<td>0,034</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0,294</td>
<td>0,469</td>
<td>29,61</td>
<td>0,009</td>
<td>0,025</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0,318</td>
<td>0,542</td>
<td>35,38</td>
<td>0,007</td>
<td>0,027</td>
</tr>
<tr>
<td>y-b/2</td>
<td>4</td>
<td>0,278</td>
<td>0,202</td>
<td>25,15</td>
<td>0,027</td>
<td>0,056</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0,288</td>
<td>0,236</td>
<td>27,35</td>
<td>0,022</td>
<td>0,031</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0,363</td>
<td>0,353</td>
<td>24,14</td>
<td>0,013</td>
<td>0,018</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0,390</td>
<td>0,429</td>
<td>23,73</td>
<td>0,018</td>
<td>0,022</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0,396</td>
<td>0,494</td>
<td>35,42</td>
<td>0,011</td>
<td>0,019</td>
</tr>
<tr>
<td>y-b/3</td>
<td>10</td>
<td>0,393</td>
<td>0,250</td>
<td>26,54</td>
<td>0,058</td>
<td>0,036</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0,409</td>
<td>0,300</td>
<td>23,07</td>
<td>0,011</td>
<td>0,015</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0,483</td>
<td>0,390</td>
<td>24,72</td>
<td>0,017</td>
<td>0,009</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0,464</td>
<td>0,274</td>
<td>32,11</td>
<td>0,034</td>
<td>0,016</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0,527</td>
<td>0,323</td>
<td>27,51</td>
<td>0,019</td>
<td>0,026</td>
</tr>
</tbody>
</table>

Tabla 6.VII (Cont.): Idem para el observador FP bajo iluminante F₁₁.

Evaluación experimental de la constancia del color ... 131
<table>
<thead>
<tr>
<th>r-g/2</th>
<th>x</th>
<th>y</th>
<th>Y</th>
<th>DS x</th>
<th>DS y</th>
<th>DS Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.271</td>
<td>0.297</td>
<td>24.85</td>
<td>0.026</td>
<td>0.028</td>
<td>1.75</td>
</tr>
<tr>
<td>4</td>
<td>0.299</td>
<td>0.230</td>
<td>25.96</td>
<td>0.046</td>
<td>0.057</td>
<td>2.63</td>
</tr>
<tr>
<td>3</td>
<td>0.293</td>
<td>0.328</td>
<td>24.66</td>
<td>0.008</td>
<td>0.016</td>
<td>2.53</td>
</tr>
<tr>
<td>7</td>
<td>0.316</td>
<td>0.270</td>
<td>25.39</td>
<td>0.023</td>
<td>0.023</td>
<td>2.58</td>
</tr>
<tr>
<td>10</td>
<td>0.392</td>
<td>0.282</td>
<td>30.07</td>
<td>0.006</td>
<td>0.019</td>
<td>3.49</td>
</tr>
<tr>
<td>r-g/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.305</td>
<td>0.420</td>
<td>28.21</td>
<td>0.006</td>
<td>0.025</td>
<td>3.88</td>
</tr>
<tr>
<td>9</td>
<td>0.366</td>
<td>0.370</td>
<td>28.70</td>
<td>0.009</td>
<td>0.024</td>
<td>3.63</td>
</tr>
<tr>
<td>12</td>
<td>0.452</td>
<td>0.324</td>
<td>28.16</td>
<td>0.055</td>
<td>0.015</td>
<td>5.05</td>
</tr>
<tr>
<td>15</td>
<td>0.474</td>
<td>0.283</td>
<td>30.24</td>
<td>0.038</td>
<td>0.022</td>
<td>3.71</td>
</tr>
<tr>
<td>r-g/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.311</td>
<td>0.485</td>
<td>32.69</td>
<td>0.007</td>
<td>0.051</td>
<td>6.79</td>
</tr>
<tr>
<td>11</td>
<td>0.405</td>
<td>0.440</td>
<td>30.23</td>
<td>0.020</td>
<td>0.028</td>
<td>2.74</td>
</tr>
<tr>
<td>14</td>
<td>0.449</td>
<td>0.358</td>
<td>27.45</td>
<td>0.021</td>
<td>0.016</td>
<td>3.27</td>
</tr>
<tr>
<td>16</td>
<td>0.533</td>
<td>0.320</td>
<td>27.96</td>
<td>0.023</td>
<td>0.008</td>
<td>2.73</td>
</tr>
<tr>
<td>r-g/6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.324</td>
<td>0.561</td>
<td>31.38</td>
<td>0.013</td>
<td>0.015</td>
<td>5.43</td>
</tr>
<tr>
<td>13</td>
<td>0.408</td>
<td>0.492</td>
<td>27.26</td>
<td>0.026</td>
<td>0.022</td>
<td>4.38</td>
</tr>
<tr>
<td>y-b/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.296</td>
<td>0.259</td>
<td>24.07</td>
<td>0.015</td>
<td>0.018</td>
<td>3.72</td>
</tr>
<tr>
<td>2</td>
<td>0.271</td>
<td>0.297</td>
<td>24.85</td>
<td>0.026</td>
<td>0.028</td>
<td>1.75</td>
</tr>
<tr>
<td>3</td>
<td>0.293</td>
<td>0.328</td>
<td>24.66</td>
<td>0.008</td>
<td>0.016</td>
<td>2.53</td>
</tr>
<tr>
<td>5</td>
<td>0.305</td>
<td>0.420</td>
<td>28.21</td>
<td>0.006</td>
<td>0.025</td>
<td>3.98</td>
</tr>
<tr>
<td>6</td>
<td>0.311</td>
<td>0.485</td>
<td>32.69</td>
<td>0.007</td>
<td>0.051</td>
<td>6.79</td>
</tr>
<tr>
<td>8</td>
<td>0.324</td>
<td>0.561</td>
<td>31.38</td>
<td>0.013</td>
<td>0.015</td>
<td>5.43</td>
</tr>
<tr>
<td>y-b/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.299</td>
<td>0.230</td>
<td>25.96</td>
<td>0.046</td>
<td>0.057</td>
<td>2.63</td>
</tr>
<tr>
<td>7</td>
<td>0.316</td>
<td>0.270</td>
<td>25.39</td>
<td>0.023</td>
<td>0.023</td>
<td>2.58</td>
</tr>
<tr>
<td>9</td>
<td>0.366</td>
<td>0.370</td>
<td>28.70</td>
<td>0.009</td>
<td>0.024</td>
<td>3.63</td>
</tr>
<tr>
<td>11</td>
<td>0.405</td>
<td>0.440</td>
<td>30.23</td>
<td>0.020</td>
<td>0.028</td>
<td>2.74</td>
</tr>
<tr>
<td>13</td>
<td>0.408</td>
<td>0.492</td>
<td>27.26</td>
<td>0.026</td>
<td>0.022</td>
<td>4.38</td>
</tr>
<tr>
<td>y-b/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.392</td>
<td>0.282</td>
<td>30.07</td>
<td>0.005</td>
<td>0.019</td>
<td>3.49</td>
</tr>
<tr>
<td>12</td>
<td>0.452</td>
<td>0.324</td>
<td>28.16</td>
<td>0.055</td>
<td>0.015</td>
<td>5.05</td>
</tr>
<tr>
<td>14</td>
<td>0.449</td>
<td>0.358</td>
<td>27.45</td>
<td>0.021</td>
<td>0.016</td>
<td>3.27</td>
</tr>
<tr>
<td>y-b/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.474</td>
<td>0.283</td>
<td>30.24</td>
<td>0.038</td>
<td>0.022</td>
<td>3.71</td>
</tr>
<tr>
<td>16</td>
<td>0.533</td>
<td>0.320</td>
<td>27.96</td>
<td>0.023</td>
<td>0.008</td>
<td>2.73</td>
</tr>
</tbody>
</table>

Tabla 6.VIII: Valores medios y desviaciones estándar (DS) de las coordenadas de cromaticidad y luminancia, asociados a las 5 igualaciones realizadas por el observador JR bajo iluminante A. Los resultados que se muestran están agrupados según líneas de confusión rojo-Verde ("r-g") y Amarillo-Azul ("y-b").

132 Evaluación experimental de la constancia del color ...
<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>Y</th>
<th>DS x</th>
<th>DS y</th>
<th>DS Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-g/2</td>
<td>2</td>
<td>0.230</td>
<td>0.205</td>
<td>20.89</td>
<td>0.021</td>
<td>0.035</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.348</td>
<td>0.260</td>
<td>24.11</td>
<td>0.053</td>
<td>0.039</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.271</td>
<td>0.291</td>
<td>23.07</td>
<td>0.019</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.317</td>
<td>0.250</td>
<td>23.49</td>
<td>0.033</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.428</td>
<td>0.287</td>
<td>29.14</td>
<td>0.055</td>
<td>0.035</td>
</tr>
<tr>
<td>r-g/3</td>
<td>5</td>
<td>0.318</td>
<td>0.424</td>
<td>22.27</td>
<td>0.022</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.359</td>
<td>0.363</td>
<td>23.33</td>
<td>0.024</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.442</td>
<td>0.326</td>
<td>24.57</td>
<td>0.026</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.508</td>
<td>0.304</td>
<td>24.52</td>
<td>0.022</td>
<td>0.003</td>
</tr>
<tr>
<td>r-g/4</td>
<td>6</td>
<td>0.334</td>
<td>0.470</td>
<td>26.86</td>
<td>0.025</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.334</td>
<td>0.394</td>
<td>21.44</td>
<td>0.018</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0.461</td>
<td>0.385</td>
<td>28.15</td>
<td>0.021</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.514</td>
<td>0.332</td>
<td>26.04</td>
<td>0.013</td>
<td>0.015</td>
</tr>
<tr>
<td>r-g/5</td>
<td>8</td>
<td>0.319</td>
<td>0.549</td>
<td>30.36</td>
<td>0.004</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0.405</td>
<td>0.467</td>
<td>24.84</td>
<td>0.040</td>
<td>0.029</td>
</tr>
<tr>
<td>y-b/1</td>
<td>1</td>
<td>0.286</td>
<td>0.225</td>
<td>20.12</td>
<td>0.114</td>
<td>0.075</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.230</td>
<td>0.205</td>
<td>20.89</td>
<td>0.021</td>
<td>0.035</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.271</td>
<td>0.291</td>
<td>23.07</td>
<td>0.019</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.318</td>
<td>0.424</td>
<td>22.27</td>
<td>0.022</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.334</td>
<td>0.470</td>
<td>26.86</td>
<td>0.025</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.319</td>
<td>0.549</td>
<td>30.36</td>
<td>0.004</td>
<td>0.010</td>
</tr>
<tr>
<td>y-b/2</td>
<td>4</td>
<td>0.348</td>
<td>0.260</td>
<td>24.11</td>
<td>0.053</td>
<td>0.039</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.317</td>
<td>0.250</td>
<td>23.49</td>
<td>0.033</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.359</td>
<td>0.363</td>
<td>23.33</td>
<td>0.024</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.334</td>
<td>0.394</td>
<td>21.44</td>
<td>0.018</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0.405</td>
<td>0.467</td>
<td>24.84</td>
<td>0.040</td>
<td>0.029</td>
</tr>
<tr>
<td>y-b/3</td>
<td>10</td>
<td>0.428</td>
<td>0.287</td>
<td>29.14</td>
<td>0.055</td>
<td>0.035</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.442</td>
<td>0.326</td>
<td>24.57</td>
<td>0.026</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0.461</td>
<td>0.385</td>
<td>28.15</td>
<td>0.021</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.508</td>
<td>0.304</td>
<td>24.52</td>
<td>0.022</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.514</td>
<td>0.332</td>
<td>26.04</td>
<td>0.013</td>
<td>0.015</td>
</tr>
</tbody>
</table>

Tabla 6.VIII (Cont.): Idem para el observador JH bajo iluminante A.

Evaluación experimental de la constancia del color ... 133
<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>Y</th>
<th>DS x</th>
<th>DS y</th>
<th>DS Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-g/2</td>
<td>2</td>
<td>0,245</td>
<td>0,219</td>
<td>26,71</td>
<td>0,030</td>
<td>0,046</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0,303</td>
<td>0,213</td>
<td>28,14</td>
<td>0,043</td>
<td>0,032</td>
</tr>
<tr>
<td>r-g/3</td>
<td>3</td>
<td>0,256</td>
<td>0,268</td>
<td>22,05</td>
<td>0,027</td>
<td>0,044</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0,310</td>
<td>0,237</td>
<td>30,49</td>
<td>0,045</td>
<td>0,035</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,367</td>
<td>0,234</td>
<td>32,97</td>
<td>0,067</td>
<td>0,051</td>
</tr>
<tr>
<td>r-g/4</td>
<td>5</td>
<td>0,288</td>
<td>0,434</td>
<td>28,56</td>
<td>0,009</td>
<td>0,021</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0,398</td>
<td>0,370</td>
<td>26,42</td>
<td>0,024</td>
<td>0,012</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0,470</td>
<td>0,326</td>
<td>26,35</td>
<td>0,029</td>
<td>0,019</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0,505</td>
<td>0,306</td>
<td>28,58</td>
<td>0,019</td>
<td>0,016</td>
</tr>
<tr>
<td>r-g/5</td>
<td>6</td>
<td>0,313</td>
<td>0,492</td>
<td>28,49</td>
<td>0,021</td>
<td>0,023</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0,415</td>
<td>0,423</td>
<td>24,68</td>
<td>0,009</td>
<td>0,037</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0,495</td>
<td>0,396</td>
<td>27,47</td>
<td>0,029</td>
<td>0,017</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0,541</td>
<td>0,329</td>
<td>28,91</td>
<td>0,016</td>
<td>0,010</td>
</tr>
<tr>
<td>r-g/6</td>
<td>8</td>
<td>0,318</td>
<td>0,553</td>
<td>35,22</td>
<td>0,005</td>
<td>0,015</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0,428</td>
<td>0,480</td>
<td>42,58</td>
<td>0,007</td>
<td>0,006</td>
</tr>
<tr>
<td>γ-b/1</td>
<td>1</td>
<td>0,282</td>
<td>0,192</td>
<td>23,25</td>
<td>0,037</td>
<td>0,044</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0,245</td>
<td>0,219</td>
<td>26,71</td>
<td>0,030</td>
<td>0,046</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0,256</td>
<td>0,269</td>
<td>22,05</td>
<td>0,027</td>
<td>0,044</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0,288</td>
<td>0,434</td>
<td>28,56</td>
<td>0,009</td>
<td>0,021</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0,313</td>
<td>0,492</td>
<td>28,49</td>
<td>0,021</td>
<td>0,023</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0,318</td>
<td>0,553</td>
<td>35,22</td>
<td>0,005</td>
<td>0,015</td>
</tr>
<tr>
<td>γ-b/2</td>
<td>4</td>
<td>0,303</td>
<td>0,213</td>
<td>28,14</td>
<td>0,043</td>
<td>0,032</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0,310</td>
<td>0,237</td>
<td>30,49</td>
<td>0,045</td>
<td>0,035</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0,398</td>
<td>0,370</td>
<td>26,42</td>
<td>0,024</td>
<td>0,012</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0,415</td>
<td>0,423</td>
<td>24,68</td>
<td>0,009</td>
<td>0,037</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0,428</td>
<td>0,480</td>
<td>42,58</td>
<td>0,007</td>
<td>0,006</td>
</tr>
<tr>
<td>γ-b/3</td>
<td>10</td>
<td>0,367</td>
<td>0,234</td>
<td>32,97</td>
<td>0,067</td>
<td>0,051</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0,470</td>
<td>0,326</td>
<td>26,35</td>
<td>0,029</td>
<td>0,019</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0,495</td>
<td>0,396</td>
<td>27,47</td>
<td>0,029</td>
<td>0,017</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0,505</td>
<td>0,306</td>
<td>28,58</td>
<td>0,019</td>
<td>0,016</td>
</tr>
<tr>
<td>γ-b/4</td>
<td>16</td>
<td>0,541</td>
<td>0,329</td>
<td>28,91</td>
<td>0,016</td>
<td>0,010</td>
</tr>
</tbody>
</table>

Tabla 6.VIII (Cont.): Idem para el observador FP bajo iluminante A.

134 Evaluación experimental de la constancia del color ...
Figura 6.11: Valores del índice de constancia IC\textsubscript{um} obtenidos para el observador JR, en función del iluminante test; los datos se agrupan según líneas de confusión rojo-verde y amarillo-azul.
Figura 6.12: Valores del índice de constancia IC lum obtenidos para el observador JH, en función del iluminante test; los datos se agrupan según líneas de confusión rojo-verde y amarillo-azul.
Figura 6.13: Valores del índice de constancia IC lum obtenidos para el observador FP, en función del iluminante test; los datos se agrupan según líneas de confusión rojo-verde y amarillo-azul.
ellos son similares entre condiciones de iluminación distintas. Los resultados indican que la constancia del color referida a este atributo no puede considerarse perfecta, aunque los valores del coeficiente son inferiores a 1-2, según el caso. Sin embargo las diferencias relativas encontradas en luminancia son mucho más homogéneas si las comparamos con las obtenidas en cromaticidad. En concreto, cuando nos movemos en líneas y-b, el valor de IC\textsubscript{lum} oscila siempre en torno a un valor constante de 1, siendo esta constancia más acusada para JR y FP. En las líneas r-g por el contrario, parece que la constancia no es tan clara, y en ellas existe una mayor dependencia con el iluminante; para los iluminantes F\textsubscript{11} y A la constancia en la luminancia es mejor para los estímulos más rojizos, mientras que ocurre lo contrario para los iluminantes D\textsubscript{65} y 10000 K.

Para finalizar, podemos decir que si exceptuamos la homegeidad encontrada en los valores de la constancia en luminancia, los resultados derivados del análisis de los datos en función de las líneas de confusión son poco esclarecedores y no permiten extraer conclusiones generales sobre la influencia que puede tener la excitación de los mecanismos rojo-verde y amarillo-azul en la apariencia estable del color percibido. Si observamos además los resultados de otros autores que han utilizado el sistema CIE\textsubscript{xy} u otros sistemas de representación considerados uniformes, caso del CIE-Luv o sistema Munsell (Arend, 1993; Brabinard y Wandell, 1992; Valberg y Lange-Malecki, 1990), no parecen existir tampoco demasiadas ventajas para realizar un análisis similar. Por tanto, y como veremos en el capítulo siguiente, estas dificultades se podrán soslayar y clarificar al estudiar directamente cómo se ven afectados los mecanismos de visión del color cuando las condiciones de iluminancia varían, utilizando para ello el espacio de excitación de conos.

6.3. DISCUSIÓN

En resumen, si definimos la constancia del color de manera usual como una compensación total del desplazamiento colorimétrico asociado al cambio de iluminación, los resultados muestran claramente que no existe constancia del color perfecta para ninguno de los observadores, exceptuando quizás algunas igualaciones aisladas. En este sentido
estaríamos de acuerdo con la afirmación de Valberg y Lange-Malecki (1990) "... la constancia del color parecer ser un fenómeno no existente ...", pues los desplazamientos adaptativos encontrados no se aproximan a lo que incluso podríamos aceptar como cierto grado de constancia del color. Ahora bien si el fenómeno de la constancia del color no existe a la luz de nuestras experiencias ¿significa esto que en las igualaciones realizadas los observadores no mantenían constante la apariencia del color? Trasladada esta pregunta a cada uno de los observadores que intervenieron en las sesiones experimentales la respuesta fue negativa en todos los casos. De alguna manera esto es bastante lógico, ya que en la tarea que se les exigía a cada uno de ellos tenían, dentro de un margen razonable de tiempo, absoluta libertad para realizar sus igualaciones, de modo que la igualación final no estaba sometida a ningún proceso de azar y siempre resultaba ser la que más satisfacía al propio observador. Por tanto, desde el punto de vista del observador siempre se mantenía constante la apariencia del color de los estímulos igualados, a pesar de que los desplazamientos adaptativos resultantes indicasen lo contrario.

Por otro lado, si bien la constancia del color se ha entendido como una compensación de los desplazamientos coloriméticos inducidos en el color de los objetos por el cambio de iluminante, tal y como exponen Craven y Foster (1992), desde un punto de vista perceptual, los datos obtenidos indicarían que el sistema visual humano es capaz de atribuir correctamente los cambios en la apariencia del color de los objetos aunque ésta varíe o no ante un cambio de iluminación. En nuestro caso no existe una representación perceptual del cambio de iluminación o al menos los observadores no son capaces de extraer ese tipo de información, dado que en los desplazamientos adaptativos encontrados existe, en general, una tendencia a mantener el tono y saturación de los estímulos observados bajo iluminación equienergética. Por tanto, teniendo en cuenta lo apuntado por Arend y Reeves (1986), la constancia en el color percibido de los objetos se alcanzaría a través de esa invariancia en el tono y saturación, con independencia del iluminante bajo el que son observados. En las experiencias realizadas, los parámetros temporales impuestos hacen que los mecanismos de adaptación cromática involucrados jueguen un papel más crítico para la obtención de esa representación estable. El período de tiempo utilizado para alcanzar una adaptación completa del observador a las nuevas condiciones de iluminación (1 minuto), no sólo implica un proceso adaptativo de modificación de las sensibilidades espectrales relativas de los...
mecanismos fotorreceptores, sino que también lleva unido un cambio en la estrategia que los observadores siguen para mantener estable el color percibido. Ante tal periodo de adaptación, los observadores dan más importancia a la memorización de todos los atributos perceptivos del objeto de color observado, que al mantenimiento de la apariencia del mismo, dado que para esta última tarea sería necesario disponer de una representación perceptual de la iluminación presente en la escena.

Se hace necesario, por tanto, analizar si la adquisición de esa apariencia estable del color va ligada a alguno de los mecanismos oponentes involucrados en la visión del color, y si dicha representación perceptual de los cambios de iluminación sobre la escena, lleva implícito un determinado nivel de excitación de los conos fotorreceptores, como consecuencia de los procesos adaptativos puestos en juego.
Análisis y discusión de resultados en el espacio de excitación de conos
ANÁLISIS Y DISCUSIÓN DE RESULTADOS EN EL ESPACIO DE EXCITACIÓN DE CONOS

Sobre la base de los resultados que hemos obtenido anteriormente, cabe replantearse el análisis y representación del concepto mismo de constancia de color aplicado al sistema humano de visión del color. El tipo de representación en el espacio CIE-1931 que se ha utilizado para el estudio de la constancia del color alcanzada, es posible que no sea el más adecuado para tal fin; si bien los resultados encontrados sobre la luminancia asignada en las igualaciones, al igual que en otros trabajos previos, quedan bien asentados en este tipo de espacio no ocurre lo mismo con la información asociada a su cromaticidad, evaluada en función de las coordenadas de cromaticidad x e y. En esta representación no se refleja de manera explícita la influencia del proceso de adaptación en la igualación alcanzada, y por otro lado, la no uniformidad de dicho espacio puede inducir a error en la interpretación de las distancias calculadas entre las igualaciones y los estímulos teóricos. En la literatura del tema de los últimos años es también frecuente encontrar la utilización de distintos espacios de representación para evitar estos problemas, tal es el caso del espacio CIE-Luv o el sistema Munsell (Arend, 1993; Valberg y Lange-Malecki, 1990), en un intento de dar mayor homogeneidad y generalidad a la interpretación de los resultados, en cuanto a desplazamientos adaptativos encontrados; sin embargo, no permiten extraer conclusiones claras sobre la modificación de la respuesta de los mecanismos fotorreceptores debido al cambio de iluminante.
En este apartado abordamos el análisis de los resultados en el espacio de excitación de conos. Dado el carácter psicofísico asociado a la constancia del color, creemos que el estudio del fenómeno en función de la excitación de los mecanismos de visión del color es más intuitivo y puede conducirnos a una mejor comprensión del significado de los desplazamientos adaptativos encontrados. Aunque en la bibliografía del tema nos encontramos con algunos trabajos donde se analiza la influencia del iluminante sobre los valores de excitación de los conos L, M y S (Arend, 1993; Lucassen y Walraven, 1993; Brainard y Wandell, 1992) en ninguno de ellos se tienen en cuenta los procesos de carácter oponente y no oponente involucrados en la visión del color. En este sentido, vamos a analizar por un lado cómo se manifiestan los desplazamientos colorimétricos y adaptativos en el espacio de excitación de conos, lo que nos proporcionará información de la influencia directa que tienen las condiciones de iluminación sobre dichos mecanismos, y por otro, cuál es el efecto de la memoria al color sobre la excitación de cada uno de estos mecanismos por separado.

7.1. INFLUENCIA DE LA MEMORIA

En este apartado presentamos los resultados obtenidos cuando las igualaciones se realizaban sin cambio en el iluminante test y, por tanto, únicamente influenciadas por el periodo de adaptación intermedio y no por las condiciones variables de iluminación. La evaluación de los resultados la haremos para cada mecanismo oponente de visión del color tal y como lo define Boynton en su modelo (Boynton, 1986). Dado que el valor del mecanismo rojo-verde (L-2M) tiene un valor constante sobre cada una de las líneas amarillo-azul (líneas "y-b") seleccionadas, estudiaremos si esa constancia en el valor de L-2M se mantiene o no en las igualaciones realizadas; de igual forma, puesto que los estímulos de partida seleccionados sobre líneas rojo-verde (líneas "r-g") tienen un valor constante de excitación del cono S, podremos determinar también qué ocurre con la constancia en el valor de este mecanismo.

Las figuras 7.1(a)-(c) muestran estos resultados para cada uno de los observadores utilizados en las experiencias. Respecto del mecanismo L-2M vemos que en general no se
mantiene constante su excitación, exceptuando algunas igualaciones para el observador JR. Las desviaciones son mayores en particular para aquellos estímulos de tonalidad más próxima al rojo situados en las líneas y-b/3/4, desplazándose en estos casos el canal hacia valores más positivos. Las diferencias llegan a ser hasta de 20 td para JH y el estímulo 10. En las líneas y-b/1/2 los valores de L-2M tienden a estar por debajo del teórico en cada caso, y dentro de una misma línea, este desplazamiento es mayor a medida que disminuye la excitación del cono S; en este caso las diferencias no son nunca superiores a los 10 td.

Sin embargo, en lo que se refiere al valor de estimulación alcanzado por S en función de las distintas líneas rojo-verde, el mantenimiento de un determinado valor constante depende del nivel de excitación de este mecanismo. Así, para estímulos caracterizados por valores bajos de S, como son los pertenecientes a las líneas r-g/4/5/6, la estimulación de este mecanismo tiende a permanecer constante e independiente del valor de L-2M, con diferencias en torno a los 10-20 td en los peores casos. Esto no ocurre para niveles más altos de estimulación de S (líneas r-g/1/2/3), puesto que se observa un cambio en dichos valores como consecuencia del periodo de adaptación. Este cambio es más acusado en el observador FP que en el resto, si bien no parece existir una tendencia clara en la magnitud de estas variaciones. Sin embargo, las diferencias para estas líneas respecto de los valores teóricos llegan a estar en torno a los 150 td, en especial para JH y FP, mientras que para JR estos altos valores sólo se producen para el estímulo 1.

De acuerdo con resultados previos derivados del análisis de umbrales de discriminación en el espacio de excitación de conos (García, 1991), las mayores diferencias encontradas respecto de la excitación de los conos S eran previsibles. En dicho espacio, se ha comprobado que el umbral de discriminación en el eje S depende del nivel de estimulación de los conos S, aumentando dicho umbral a medida que lo hace la excitación de S. Los mayores umbrales en este sentido se encuentran en torno a los 60 td, para aquellos estímulos caracterizados por el valor más alto de S (374,1 td). En nuestras sesiones los estímulos con un mayor nivel de excitación de S están por encima de ese valor y, como se ha comentado, de manera análoga a estos resultados hemos obtenido que la desviación respecto de los valores teóricos también va aumentando a medida que lo hace S, pasando de 25 td para estímulos caracterizados por un valor bajo de S, hasta los 150 td para los valores más
Figura 7.1(a): Valores de L-2M y S sobre líneas y-b y r-g, respectivamente, obtenidos en las igualaciones por memoria. Los resultados corresponden al observador JR.
Figura 7.1(b): Valores de L-2M y S sobre líneas y-b y r-g, respectivamente, obtenidos en las igualaciones por memoria. Los resultados corresponden al observador JH.
Figura 7.1(c): Valores de L-2M y S sobre líneas y-b y r-g, respectivamente, obtenidos en las igualaciones por memoria. Los resultados corresponden al observador FP.
elevados de S. Teniendo siempre en cuenta las diferencias que existen entre el tipo de igualación simultánea que se realiza en estas tareas de discriminación y la igualación por memoria que aquí se realizaba, creemos que las mayores diferencias encontradas por nosotros (100-150 td) están dentro de lo previsible y no son excesivamene grandes. Respecto de las variaciones encontradas en los valores de estimulación de L-2M, también existe concordancia con lo que se deduce de los estudios de umbrales; se encuentra que la estimulación de este mecanismo está menos afectada que la de S, siendo las diferencias entre los valores teóricos y obtenidos en la igualación menores y sin depender del valor de excitación de S. En discriminación se obtienen umbrales en el eje L-2M en torno a los 6 td, mientras que en nuestro caso se alcanzan los 20 td en el peor de los casos. De nuevo pensamos que estas diferencias en las igualaciones que nuestros observadores realizaban por memoria no son grandes y, más que ser consideradas como estimadoras del método seguido, hay que considerarlas como niveles del "error" o "bondad" asociada a la mayor o menor constancia del color que se encuentre cuando exista cambio de iluminación.

7.2. DESPLAZAMIENTOS COLORÍMETRICOS Y ADAPTATIVOS EN EL ESPACIO DE EXCITACIÓN DE CONOS

De forma análoga a la descripción que hemos realizado de los desplazamientos adaptativos encontrados en el espacio CIE-1931, analizamos ahora dichos desplazamientos en el espacio de excitación de conos. Para ello, representamos los valores de excitación asociados al cono S frente a los valores del mecanismo rojo-verde, expresado como L-2M. En las figuras 7.2 a 7.4 se representan los resultados de las igualaciones para los 3 observadores. En estas gráficas los símbolos no rellenados (en blanco) representan las coordenadas teóricas que los objetos de color tendrían bajo cada uno de los iluminantes test simulados, mientras que los símbolos rellenados (en negro) indican los desplazamientos adaptativos que los observadores realizan afectados por cada una de las condiciones de iluminación; las cruces corresponden a las igualaciones realizadas sin cambio de iluminante y los cuadrados con la cruz interior representan los valores de excitación teóricos de los objetos bajo iluminante equienergético.

Evaluación experimental de la constancia del color ... 147
Como ya hemos comentado, de nuevo si la constancia del color fuese perfecta los desplazamientos adaptativos compensarían el cambio de iluminación, de modo que los símbolos rellenos y no rellenos coincidirían, para cada iluminante, en las gráficas presentadas. Desde este punto de vista, no esperamos encontrar grandes diferencias respecto de los resultados analizados en el espacio CIE-1931, dado que los valores de excitación de S y L-2M son simples transformaciones lineales de los valores triestímulo X, Y y Z, tal y como vimos en el capítulo 5 por las expresiones §5(2). De hecho, observando las figuras vemos que se mantiene la pobre constancia del color ya descrita con anterioridad, tendiendo las igualaciones a concentrarse en torno al estímulo teórico bajo iluminación equienergética.

Sin embargo, en este tipo de representación se observan claramente los efectos de los distintos estados de adaptación luminosa sobre las igualaciones realizadas. Así, cuando indicábamos que los estímulos rojos (números 10, 12, 15 y 16) aparecían más rojos de lo que en realidad son, podemos comprobar ahora que esto se debe a un desplazamiento hacia valores más positivos del mecanismo L-2M. El efecto es más acusado para los estímulos 15 y 16, en los que el desplazamiento es general para cualquiera iluminante test; vemos que en este caso, los iluminantes de tono parecido a estos estímulos (F₁₁ y A) compensan mejor el cambio de iluminación, mientras que para los iluminantes de tono complementario (10000 K y D₆₅) los desplazamientos adaptativos se dirigen en sentido contrario incluso al colorimétrico. Junto a estos grandes desplazamientos adaptativos encontramos también que las diferencias entre el estímulo recordado y el teórico bajo iluminación equienergética son grandes y dirigiéndose hacia las largas longitudes de onda (mayor activación de conos L) junto con el resto de igualaciones.

Por otro lado, a medida que los estímulos de caracterizan por valores bajos de estimulación de S, las igualaciones tienden a ser igualaciones en "tono", sobre todo para los estímulos que desplazan el mecanismo L-2M hacia las medias longitudes de onda (mayor activación de conos M). Sin embargo, para los estímulos azulados (números 1, 2 y 4) de alto valor de S vuelve a encontrarse una mayor influencia de los procesos de adaptación, lográndose desplazamientos adaptativos que intentan en mayor o menor medida compensar los colorimétricos.
Estos resultados indican que los procesos de adaptación que intentan mantener una apariencia estable del color, en el sentido de una compensación total del cambio de iluminación, parecen ser más o menos efectivos en función del nivel de excitación de los mecanismos de visión del color. Esto es especialmente asciuido para el cono S, para el que encontramos que si su nivel de estimulación es bajo el observador realiza sus igualaciones manteniendo constante los atributos perceptivos asociados a los objetos de color respecto de las condiciones de iluminación teóricas (igualaciones en "tono"); por tanto, el observador parece fundamentar su tarea en un proceso de descuento del iluminante mediante el que se reproduce la misma cantidad de luz que la absorbida bajo el iluminante equienergético en cada caso. Mientras que si los niveles de estimulación de S son altos, el observador es capaz de introducir desplazamientos adaptativos mayores que, si bien en algunos de los casos no se corresponden en magnitud y dirección con los colorimétricos, sí dan idea de un cierto grado de constancia del color y de un proceso de adaptación tipo Von Kries; mediante este proceso adaptativo, se modifican las sensibilidades espectrales de los mecanismos fotorreceptores para igualar la apariencia del color percibido.

Respecto del mecanismo L-2M, no parece tan claro que ocurra algo similar aunque los desplazamientos adaptativos sí son mayores cuanto mayor es la activación de los mecanismos sensibles a las largas longitudes de onda. Teniendo en cuenta las curvas de sensibilidad espectral relativa de los mecanismos fotorreceptores, en el grado de solapamiento de estas curvas, en especial para las asociadas a los conos M y L y en menor cuantía para los conos S, podría estar la explicación de la influencia de estos procesos adaptativos y en relación con ellos el mayor o menor grado de constancia del color alcanzado (Worthey y Brill, 1986).

Evaluación de la dispersión y error asociado a las medidas de S y L-2M.

En las tablas 7.1 a 7.5 se muestran los valores medios de excitación de S y L-2M de las 5 igualaciones realizadas por cada observador, en función del iluminante test. En dichas tablas se muestran también los errores medios asociados a estos valores, como consecuencia de la transformación de las coordenadas (x, y; Y) a las correspondientes en el espacio de...
excitación de conos (S, L-2M). Según esto, cada una de las igualaciones realizadas por los observadores quedará especificada por el conjunto de ecuaciones:

\[
\begin{bmatrix}
L + \Delta L \\
M + \Delta M \\
S + \Delta S
\end{bmatrix} = (A_{ij})
\begin{bmatrix}
X + \Delta X \\
Y + \Delta Y \\
Z + \Delta Z
\end{bmatrix}
\]

(1)

donde \((A_{ij})\) representa la matriz de coeficientes numéricos que caracteriza el cambio de coordenadas, y que venía dada por la ecuación §5(2). De este modo, y despreciando el error cometido al pasar de cd/m² a troland, se calcularían los valores de S y L-2M, junto con sus errores debido al proceso de calibrado. Puesto que los valores de estimulación de estos mecanismos se han especificado como promedio de 5 igualaciones, en las tablas 7.I-V se muestran también las desviaciones estándar asociadas tanto a los valores medios de excitación como a cada medida del error.

Se observa que, para cada estímulo y todos los observadores en general, la magnitud de la desviación estándar asociada a los valores de excitación de S es siempre bastante superior a la encontrada para L-2M. Además, el valor de la misma para los conos S depende de su nivel de excitación, disminuyendo a medida que lo hace S; esto no ocurre con L-2M, para el que, si exceptuamos estímulos aislados, los órdenes de magnitud son similares con independencia de la excitación del mecanismo. En el caso de S, la dispersión entre igualaciones depende del iluminante y aumenta para el D_65 y 10000K; esto no se encuentra para el mecanismo rojo-verde. Por otro lado, la magnitud de dispersión entre igualaciones de un mismo estímulo resulta ser siempre mayor que los errores de calibrado asociados.

Como podemos observar también, los errores de mayor cuantía se obtienen para los conos S y, para cada iluminante, aumentan éstos conforme los estímulos se caracterizan por un valor más grande de este mecanismo; los valores menores para los conos S, se encuentran para los iluminantes F_{11} y A, que son aquellos que menos estimulan estos fotorreceptores. Sin embargo, para el mecanismo rojo-verde la magnitud del error es menor que para S y no parece existir dependencia con su excitación; además, la cuantía del error no varía demasiado entre cada una de las condiciones de iluminación.
Figura 7.2: (a) Desplazamientos adaptativos, símbolos en negro, obtenidos para el observador JR en el espacio de excitación de conos (estímulos 1-9). Notación usada: ☼ Teórico; □ D_{06}; ○ F_{11}; Δ A; ◇ 10000 K; + E.

Evaluación experimental de la constancia del color ... 151
Figura 7.2: (b) Desplazamientos adaptativos, símbolos en negro, obtenidos para el observador JR en el espacio de excitación de conos (estímulos 10-16). Notación usada: ☐ Teórico; □ D_w; ○ F_115; △ A; ◀ 10000 K; + E.

152 Evaluación experimental de la constancia del color ...
Figura 7.3: (a) Desplazamientos adaptativos, símbolos en negro, obtenidos para el observador JH en el espacio de excitación de conos (estímulos 1-9). Notación usada: ▼ Teórico; □ D_{50}^0; ○ F_{11}; △ A; ◊ 10000 K; + E.
Figura 7.3: (b) Desplazamientos adaptativos, símbolos en negro, obtenidos para el observador JH en el espacio de excitación de conos (estímulos 10-16). Notación usada: ★ Teórico; □ D_{60}; ○ F_{11}; Δ A; ◇ 10000 K; + E.
Figura 7.4: (a) Desplazamientos adaptativos, símbolos en negro, obtenidos para el observador FP en el espacio de excitación de conos (estímulos 1-9). Notación usada: ★ Teórico; □ D0%; ○ F11; Δ A; ◇ 10000 K; + E.
Figura 7.4: (b) Desplazamientos adaptativos, símbolos en negro, obtenidos para el observador FP en el espacio de excitación de conos (estímulos 10-16). Notación usada: □ Teórico; □ D_{65}; ○ F_{11}; △ A; ◊ 10000 K; + E.
<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>L-2M</th>
<th>DS S</th>
<th>DS L-2M</th>
<th>Err S</th>
<th>Err L-2M</th>
<th>DS Err S</th>
<th>DS Err L-2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-g/2</td>
<td>464.55</td>
<td>-23.92</td>
<td>92.94</td>
<td>5.00</td>
<td>18.51</td>
<td>8.42</td>
<td>3.92</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>418.79</td>
<td>-0.92</td>
<td>104.23</td>
<td>7.37</td>
<td>15.54</td>
<td>7.71</td>
<td>2.09</td>
<td>0.47</td>
</tr>
<tr>
<td>r-g/3</td>
<td>444.40</td>
<td>-26.86</td>
<td>199.98</td>
<td>8.23</td>
<td>16.38</td>
<td>8.78</td>
<td>11.77</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>317.52</td>
<td>-3.50</td>
<td>57.63</td>
<td>6.14</td>
<td>12.38</td>
<td>7.99</td>
<td>0.91</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>279.76</td>
<td>31.18</td>
<td>74.10</td>
<td>20.23</td>
<td>12.11</td>
<td>8.45</td>
<td>3.27</td>
<td>1.38</td>
</tr>
<tr>
<td>r-g/4</td>
<td>191.62</td>
<td>-21.50</td>
<td>17.61</td>
<td>6.06</td>
<td>7.70</td>
<td>9.38</td>
<td>0.98</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>171.29</td>
<td>-4.29</td>
<td>29.25</td>
<td>3.18</td>
<td>5.76</td>
<td>6.78</td>
<td>3.45</td>
<td>3.79</td>
</tr>
<tr>
<td></td>
<td>182.45</td>
<td>13.33</td>
<td>46.68</td>
<td>6.74</td>
<td>7.83</td>
<td>8.27</td>
<td>2.03</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td>254.44</td>
<td>38.44</td>
<td>88.24</td>
<td>5.54</td>
<td>10.31</td>
<td>7.08</td>
<td>8.43</td>
<td>3.99</td>
</tr>
<tr>
<td>r-g/5</td>
<td>123.47</td>
<td>-20.70</td>
<td>20.10</td>
<td>3.07</td>
<td>5.51</td>
<td>9.12</td>
<td>1.37</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>123.75</td>
<td>-5.75</td>
<td>17.70</td>
<td>3.33</td>
<td>5.27</td>
<td>8.18</td>
<td>0.76</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>110.81</td>
<td>11.61</td>
<td>21.47</td>
<td>3.02</td>
<td>4.73</td>
<td>7.90</td>
<td>0.92</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>122.07</td>
<td>45.61</td>
<td>28.12</td>
<td>10.85</td>
<td>5.17</td>
<td>7.98</td>
<td>1.39</td>
<td>0.81</td>
</tr>
<tr>
<td>r-g/6</td>
<td>35.03</td>
<td>-19.79</td>
<td>3.91</td>
<td>3.87</td>
<td>1.63</td>
<td>9.65</td>
<td>0.45</td>
<td>2.87</td>
</tr>
<tr>
<td></td>
<td>34.37</td>
<td>-6.47</td>
<td>7.85</td>
<td>6.29</td>
<td>1.45</td>
<td>7.50</td>
<td>0.33</td>
<td>1.33</td>
</tr>
<tr>
<td>y-b/1</td>
<td>624.00</td>
<td>-24.61</td>
<td>35.27</td>
<td>4.47</td>
<td>27.67</td>
<td>8.82</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>464.55</td>
<td>-23.92</td>
<td>92.94</td>
<td>5.00</td>
<td>18.51</td>
<td>8.42</td>
<td>3.92</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>444.40</td>
<td>-26.86</td>
<td>199.98</td>
<td>8.23</td>
<td>16.38</td>
<td>8.78</td>
<td>11.77</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>191.62</td>
<td>-21.50</td>
<td>17.61</td>
<td>6.06</td>
<td>7.70</td>
<td>9.38</td>
<td>0.98</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>123.47</td>
<td>-20.70</td>
<td>20.10</td>
<td>3.07</td>
<td>5.51</td>
<td>9.12</td>
<td>1.37</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>35.03</td>
<td>-19.79</td>
<td>3.91</td>
<td>3.87</td>
<td>1.63</td>
<td>9.65</td>
<td>0.45</td>
<td>2.87</td>
</tr>
<tr>
<td>y-b/2</td>
<td>418.79</td>
<td>-0.92</td>
<td>104.23</td>
<td>7.37</td>
<td>15.54</td>
<td>7.71</td>
<td>2.09</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>317.52</td>
<td>-3.50</td>
<td>57.63</td>
<td>6.14</td>
<td>12.38</td>
<td>7.99</td>
<td>0.91</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>171.29</td>
<td>-4.29</td>
<td>29.25</td>
<td>3.18</td>
<td>5.76</td>
<td>6.78</td>
<td>3.45</td>
<td>3.79</td>
</tr>
<tr>
<td></td>
<td>123.75</td>
<td>-5.75</td>
<td>17.70</td>
<td>3.33</td>
<td>5.27</td>
<td>8.18</td>
<td>0.76</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>34.37</td>
<td>-6.47</td>
<td>7.85</td>
<td>6.29</td>
<td>1.45</td>
<td>7.50</td>
<td>0.33</td>
<td>1.33</td>
</tr>
<tr>
<td>y-b/3</td>
<td>279.76</td>
<td>31.81</td>
<td>74.10</td>
<td>20.23</td>
<td>12.11</td>
<td>8.45</td>
<td>3.27</td>
<td>1.38</td>
</tr>
<tr>
<td></td>
<td>182.45</td>
<td>13.33</td>
<td>46.68</td>
<td>6.74</td>
<td>7.83</td>
<td>8.27</td>
<td>2.03</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td>110.81</td>
<td>11.61</td>
<td>21.47</td>
<td>3.02</td>
<td>4.73</td>
<td>7.90</td>
<td>0.92</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>245.44</td>
<td>38.44</td>
<td>88.24</td>
<td>5.54</td>
<td>10.31</td>
<td>7.08</td>
<td>8.43</td>
<td>3.99</td>
</tr>
<tr>
<td></td>
<td>122.07</td>
<td>45.61</td>
<td>28.12</td>
<td>10.85</td>
<td>5.17</td>
<td>7.98</td>
<td>1.39</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Tabla 7.1: Valores medios y desviaciones estándar (DS) de S y L-2M, asociados a las 5 igualesción realizadas por el observador JR bajo iluminante de 10000 K; se muestran también los errores medios asociados junto con sus desviaciones estándar. Los resultados están agrupados según líneas de confusión rojo-verde ("r-g") y amarillo-azul ("y-b").

Evaluación experimental de la constancia del color ...

157
<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>L-2M</th>
<th>DS S</th>
<th>DS L-2M</th>
<th>Err S</th>
<th>Err L-2M</th>
<th>DS Err S</th>
<th>DS Err L-2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-g/2</td>
<td>2</td>
<td>505.81</td>
<td>-3.08</td>
<td>171.35</td>
<td>26.90</td>
<td>17.46</td>
<td>8.21</td>
<td>11.56</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>410.52</td>
<td>6.25</td>
<td>132.45</td>
<td>8.09</td>
<td>17.88</td>
<td>8.67</td>
<td>5.92</td>
</tr>
<tr>
<td>r-g/3</td>
<td>3</td>
<td>362.87</td>
<td>-24.49</td>
<td>124.00</td>
<td>3.04</td>
<td>15.68</td>
<td>8.88</td>
<td>5.49</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>301.35</td>
<td>0.80</td>
<td>84.28</td>
<td>4.35</td>
<td>10.66</td>
<td>6.41</td>
<td>6.98</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>255.87</td>
<td>19.72</td>
<td>67.88</td>
<td>9.05</td>
<td>11.08</td>
<td>7.31</td>
<td>2.99</td>
</tr>
<tr>
<td>r-g/4</td>
<td>5</td>
<td>119.36</td>
<td>-13.43</td>
<td>41.21</td>
<td>5.15</td>
<td>5.08</td>
<td>7.75</td>
<td>1.76</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>167.69</td>
<td>-3.36</td>
<td>20.64</td>
<td>4.66</td>
<td>7.17</td>
<td>8.16</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>181.89</td>
<td>12.51</td>
<td>74.41</td>
<td>5.28</td>
<td>7.80</td>
<td>9.02</td>
<td>3.22</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>198.94</td>
<td>40.14</td>
<td>41.76</td>
<td>9.29</td>
<td>8.85</td>
<td>7.91</td>
<td>1.83</td>
</tr>
<tr>
<td>r-g/5</td>
<td>6</td>
<td>101.10</td>
<td>-17.62</td>
<td>12.51</td>
<td>3.31</td>
<td>4.29</td>
<td>8.93</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>114.78</td>
<td>-9.63</td>
<td>31.80</td>
<td>2.67</td>
<td>4.89</td>
<td>8.31</td>
<td>1.36</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>129.24</td>
<td>16.90</td>
<td>37.95</td>
<td>6.25</td>
<td>6.28</td>
<td>6.98</td>
<td>2.87</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>128.12</td>
<td>38.95</td>
<td>36.07</td>
<td>4.40</td>
<td>5.50</td>
<td>8.04</td>
<td>1.56</td>
</tr>
<tr>
<td>r-g/6</td>
<td>8</td>
<td>42.38</td>
<td>-19.70</td>
<td>5.15</td>
<td>1.41</td>
<td>1.79</td>
<td>8.93</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>42.70</td>
<td>-8.38</td>
<td>10.28</td>
<td>5.01</td>
<td>1.81</td>
<td>7.62</td>
<td>0.44</td>
</tr>
<tr>
<td>y-b/1</td>
<td>1</td>
<td>673.65</td>
<td>-11.38</td>
<td>115.21</td>
<td>25.50</td>
<td>25.12</td>
<td>7.84</td>
<td>13.56</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>505.81</td>
<td>-3.08</td>
<td>171.35</td>
<td>26.90</td>
<td>17.46</td>
<td>8.21</td>
<td>11.56</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>362.87</td>
<td>-24.49</td>
<td>124.00</td>
<td>3.04</td>
<td>15.68</td>
<td>8.88</td>
<td>5.49</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>119.36</td>
<td>-13.43</td>
<td>41.21</td>
<td>5.15</td>
<td>5.08</td>
<td>7.75</td>
<td>1.76</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>101.10</td>
<td>-17.62</td>
<td>12.51</td>
<td>3.31</td>
<td>4.29</td>
<td>8.93</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>42.38</td>
<td>-19.70</td>
<td>5.15</td>
<td>1.41</td>
<td>1.79</td>
<td>8.93</td>
<td>0.22</td>
</tr>
<tr>
<td>y-b/2</td>
<td>4</td>
<td>410.52</td>
<td>6.25</td>
<td>132.45</td>
<td>8.09</td>
<td>17.88</td>
<td>8.67</td>
<td>5.92</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>301.35</td>
<td>0.80</td>
<td>84.28</td>
<td>4.35</td>
<td>10.66</td>
<td>6.41</td>
<td>3.82</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>167.69</td>
<td>-3.36</td>
<td>20.64</td>
<td>4.66</td>
<td>7.17</td>
<td>8.16</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>114.78</td>
<td>-9.63</td>
<td>31.80</td>
<td>2.67</td>
<td>4.89</td>
<td>8.31</td>
<td>1.36</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>42.70</td>
<td>-8.38</td>
<td>10.28</td>
<td>5.01</td>
<td>1.81</td>
<td>7.62</td>
<td>0.44</td>
</tr>
<tr>
<td>y-b/3</td>
<td>10</td>
<td>255.87</td>
<td>19.72</td>
<td>67.88</td>
<td>9.05</td>
<td>11.08</td>
<td>7.31</td>
<td>2.99</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>181.89</td>
<td>12.51</td>
<td>74.41</td>
<td>5.28</td>
<td>7.80</td>
<td>9.02</td>
<td>3.22</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>129.24</td>
<td>16.90</td>
<td>37.95</td>
<td>6.25</td>
<td>4.28</td>
<td>6.98</td>
<td>2.87</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>198.94</td>
<td>40.14</td>
<td>41.76</td>
<td>9.29</td>
<td>8.58</td>
<td>7.91</td>
<td>1.83</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>128.12</td>
<td>38.95</td>
<td>36.07</td>
<td>4.40</td>
<td>5.50</td>
<td>8.04</td>
<td>1.56</td>
</tr>
</tbody>
</table>

Tabla 7.1 (Cont.): Idem para el observador JH bajo iluminante de 10000 K.

158 Evaluación experimental de la constancia del color ...
<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>L-2M</th>
<th>DS S</th>
<th>DS L-2M</th>
<th>Err S</th>
<th>Err L-2M</th>
<th>DS Err S</th>
<th>DS Err L-2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-g/2</td>
<td>2</td>
<td>419,72</td>
<td>-22,17</td>
<td>108,09</td>
<td>4,37</td>
<td>18,20</td>
<td>8,80</td>
<td>4,74</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>475,12</td>
<td>14,12</td>
<td>271,66</td>
<td>24,92</td>
<td>20,85</td>
<td>9,12</td>
<td>12,20</td>
</tr>
<tr>
<td>r-g/3</td>
<td>3</td>
<td>373,27</td>
<td>-27,35</td>
<td>40,26</td>
<td>5,56</td>
<td>16,35</td>
<td>9,13</td>
<td>1,95</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>418,46</td>
<td>8,81</td>
<td>78,07</td>
<td>21,06</td>
<td>18,23</td>
<td>9,48</td>
<td>3,50</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>410,82</td>
<td>27,65</td>
<td>163,09</td>
<td>19,10</td>
<td>17,98</td>
<td>8,35</td>
<td>7,34</td>
</tr>
<tr>
<td>r-g/4</td>
<td>5</td>
<td>154,83</td>
<td>-22,42</td>
<td>42,21</td>
<td>5,52</td>
<td>6,59</td>
<td>9,04</td>
<td>1,80</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>145,72</td>
<td>-5,16</td>
<td>19,22</td>
<td>2,85</td>
<td>6,22</td>
<td>7,75</td>
<td>0,82</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>190,18</td>
<td>17,89</td>
<td>40,12</td>
<td>6,91</td>
<td>8,17</td>
<td>8,17</td>
<td>1,74</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>221,05</td>
<td>49,33</td>
<td>53,24</td>
<td>9,27</td>
<td>9,54</td>
<td>8,78</td>
<td>2,31</td>
</tr>
<tr>
<td>r-g/5</td>
<td>6</td>
<td>67,94</td>
<td>-15,13</td>
<td>23,45</td>
<td>5,69</td>
<td>2,88</td>
<td>7,87</td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>110,00</td>
<td>-4,99</td>
<td>19,15</td>
<td>2,61</td>
<td>4,68</td>
<td>8,82</td>
<td>0,82</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>106,84</td>
<td>21,59</td>
<td>31,46</td>
<td>12,32</td>
<td>4,56</td>
<td>8,46</td>
<td>1,35</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>88,10</td>
<td>40,47</td>
<td>12,61</td>
<td>3,43</td>
<td>3,86</td>
<td>7,31</td>
<td>0,62</td>
</tr>
<tr>
<td>r-g/6</td>
<td>8</td>
<td>36,69</td>
<td>-19,25</td>
<td>3,95</td>
<td>3,04</td>
<td>1,55</td>
<td>8,79</td>
<td>0,17</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>53,52</td>
<td>-4,47</td>
<td>21,50</td>
<td>8,01</td>
<td>2,27</td>
<td>9,42</td>
<td>0,91</td>
</tr>
<tr>
<td>y-b/1</td>
<td>1</td>
<td>660,59</td>
<td>-19,35</td>
<td>178,94</td>
<td>5,31</td>
<td>32,12</td>
<td>8,62</td>
<td>10,22</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>419,72</td>
<td>-22,17</td>
<td>108,09</td>
<td>4,37</td>
<td>18,20</td>
<td>8,80</td>
<td>4,74</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>373,27</td>
<td>-27,35</td>
<td>40,26</td>
<td>5,56</td>
<td>16,35</td>
<td>9,13</td>
<td>1,95</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>154,83</td>
<td>-22,42</td>
<td>42,21</td>
<td>5,52</td>
<td>6,59</td>
<td>9,04</td>
<td>1,80</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>67,94</td>
<td>-15,13</td>
<td>23,45</td>
<td>5,69</td>
<td>2,88</td>
<td>7,87</td>
<td>1,00</td>
</tr>
<tr>
<td>y-b/2</td>
<td>4</td>
<td>475,12</td>
<td>14,12</td>
<td>271,66</td>
<td>24,92</td>
<td>20,85</td>
<td>9,12</td>
<td>12,20</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>419,46</td>
<td>8,81</td>
<td>78,07</td>
<td>21,06</td>
<td>18,23</td>
<td>9,48</td>
<td>3,50</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>145,72</td>
<td>-5,16</td>
<td>19,22</td>
<td>2,85</td>
<td>6,22</td>
<td>7,75</td>
<td>0,82</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>110,00</td>
<td>-4,99</td>
<td>19,15</td>
<td>2,61</td>
<td>4,68</td>
<td>8,82</td>
<td>0,82</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>53,52</td>
<td>-4,47</td>
<td>21,50</td>
<td>8,01</td>
<td>2,27</td>
<td>9,42</td>
<td>0,91</td>
</tr>
<tr>
<td>y-b/3</td>
<td>10</td>
<td>410,82</td>
<td>27,65</td>
<td>163,09</td>
<td>19,10</td>
<td>17,98</td>
<td>8,35</td>
<td>7,34</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>190,18</td>
<td>17,89</td>
<td>40,12</td>
<td>6,91</td>
<td>8,17</td>
<td>8,17</td>
<td>1,74</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>106,84</td>
<td>21,59</td>
<td>31,46</td>
<td>12,32</td>
<td>4,56</td>
<td>8,46</td>
<td>1,35</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>221,05</td>
<td>49,33</td>
<td>53,24</td>
<td>9,27</td>
<td>9,54</td>
<td>8,78</td>
<td>2,31</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>88,10</td>
<td>40,47</td>
<td>12,61</td>
<td>3,43</td>
<td>3,86</td>
<td>7,31</td>
<td>0,62</td>
</tr>
</tbody>
</table>

Tabla 7.1 (Cont.): Idem para el observador FP bajo iluminante de 10000 K.

Evaluación experimental de la constancia del color ... 159
Tabla 7.1: Valores medios y desviaciones estándar (DS) de S y L-2M, asociados a las 5 igualaciones realizadas por el observador JR bajo iluminante D65; se muestran también los errores medios asociados junto con sus desviaciones estándar. Los resultados están agrupados según líneas de confusión rojo-verde ("r-g") y amarillo-azul ("y-b").

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>L-2M</th>
<th>DS S</th>
<th>DS L-2M</th>
<th>Err S</th>
<th>Err L-2M</th>
<th>DS Err S</th>
<th>DS Err L-2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-g/2</td>
<td>2</td>
<td>354,08</td>
<td>-18,93</td>
<td>86,51</td>
<td>1,23</td>
<td>21,38</td>
<td>8,61</td>
<td>9,16</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>316,67</td>
<td>-5,07</td>
<td>47,62</td>
<td>4,97</td>
<td>17,71</td>
<td>7,97</td>
<td>6,03</td>
</tr>
<tr>
<td>r-g/3</td>
<td>3</td>
<td>356,01</td>
<td>-22,24</td>
<td>117,40</td>
<td>5,42</td>
<td>7,53</td>
<td>5,25</td>
<td>7,15</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>302,23</td>
<td>-5,26</td>
<td>56,89</td>
<td>4,58</td>
<td>11,77</td>
<td>7,78</td>
<td>2,69</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>270,04</td>
<td>14,11</td>
<td>47,18</td>
<td>11,02</td>
<td>13,48</td>
<td>9,10</td>
<td>2,38</td>
</tr>
<tr>
<td>r-g/4</td>
<td>5</td>
<td>147,17</td>
<td>-15,20</td>
<td>14,27</td>
<td>6,13</td>
<td>6,74</td>
<td>8,66</td>
<td>1,37</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>155,97</td>
<td>-6,38</td>
<td>8,02</td>
<td>1,61</td>
<td>6,66</td>
<td>8,59</td>
<td>0,34</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>171,32</td>
<td>18,51</td>
<td>51,39</td>
<td>11,35</td>
<td>7,65</td>
<td>8,43</td>
<td>1,60</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>149,72</td>
<td>48,71</td>
<td>33,45</td>
<td>6,04</td>
<td>6,87</td>
<td>6,97</td>
<td>5,51</td>
</tr>
<tr>
<td>r-g/5</td>
<td>6</td>
<td>97,51</td>
<td>-20,21</td>
<td>20,56</td>
<td>5,54</td>
<td>4,14</td>
<td>9,64</td>
<td>0,88</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>106,72</td>
<td>-4,79</td>
<td>26,29</td>
<td>1,91</td>
<td>5,05</td>
<td>8,77</td>
<td>0,62</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>87,84</td>
<td>20,81</td>
<td>15,27</td>
<td>10,43</td>
<td>3,80</td>
<td>8,36</td>
<td>0,71</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>97,67</td>
<td>45,23</td>
<td>16,77</td>
<td>7,27</td>
<td>4,48</td>
<td>7,33</td>
<td>1,35</td>
</tr>
<tr>
<td>r-g/6</td>
<td>8</td>
<td>36,49</td>
<td>-21,83</td>
<td>4,27</td>
<td>3,12</td>
<td>1,54</td>
<td>9,68</td>
<td>0,18</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>37,54</td>
<td>-9,83</td>
<td>4,38</td>
<td>6,59</td>
<td>1,52</td>
<td>8,70</td>
<td>0,18</td>
</tr>
<tr>
<td>y-b/1</td>
<td>1</td>
<td>346,46</td>
<td>-16,98</td>
<td>63,85</td>
<td>3,35</td>
<td>17,29</td>
<td>8,27</td>
<td>5,00</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>354,08</td>
<td>-18,93</td>
<td>86,51</td>
<td>1,23</td>
<td>21,38</td>
<td>8,61</td>
<td>9,16</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>356,01</td>
<td>-22,24</td>
<td>117,40</td>
<td>5,42</td>
<td>7,53</td>
<td>5,25</td>
<td>7,15</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>147,17</td>
<td>-15,20</td>
<td>14,27</td>
<td>6,13</td>
<td>6,74</td>
<td>8,43</td>
<td>1,60</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>97,51</td>
<td>-20,21</td>
<td>20,56</td>
<td>5,54</td>
<td>4,14</td>
<td>9,64</td>
<td>0,88</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>36,49</td>
<td>-21,83</td>
<td>4,27</td>
<td>3,12</td>
<td>1,54</td>
<td>9,68</td>
<td>0,18</td>
</tr>
<tr>
<td>y-b/2</td>
<td>4</td>
<td>316,67</td>
<td>-5,07</td>
<td>47,62</td>
<td>4,97</td>
<td>17,71</td>
<td>7,97</td>
<td>6,03</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>302,23</td>
<td>-5,26</td>
<td>56,89</td>
<td>4,58</td>
<td>11,77</td>
<td>7,78</td>
<td>2,69</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>155,97</td>
<td>-6,38</td>
<td>8,02</td>
<td>1,61</td>
<td>6,66</td>
<td>8,59</td>
<td>0,34</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>106,72</td>
<td>-4,79</td>
<td>26,29</td>
<td>1,91</td>
<td>5,05</td>
<td>8,77</td>
<td>0,62</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>37,54</td>
<td>-9,83</td>
<td>4,38</td>
<td>6,59</td>
<td>1,52</td>
<td>8,70</td>
<td>0,18</td>
</tr>
<tr>
<td>y-b/3</td>
<td>10</td>
<td>270,04</td>
<td>14,11</td>
<td>47,18</td>
<td>11,02</td>
<td>13,48</td>
<td>9,10</td>
<td>2,38</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>171,32</td>
<td>18,51</td>
<td>51,39</td>
<td>11,35</td>
<td>7,65</td>
<td>8,43</td>
<td>1,60</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>87,84</td>
<td>20,81</td>
<td>15,27</td>
<td>10,43</td>
<td>3,80</td>
<td>8,36</td>
<td>0,71</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>149,72</td>
<td>48,71</td>
<td>33,45</td>
<td>6,04</td>
<td>6,87</td>
<td>6,97</td>
<td>5,51</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>97,67</td>
<td>45,23</td>
<td>16,77</td>
<td>7,27</td>
<td>4,48</td>
<td>7,33</td>
<td>1,35</td>
</tr>
</tbody>
</table>

(a)

160 Evaluación experimental de la constancia del color...
<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
<td>L-2M</td>
<td>DS S</td>
<td>DS L-2M</td>
<td>Err S</td>
<td>Err L-2M</td>
<td>DS Err S</td>
<td>DS Err L-2M</td>
</tr>
<tr>
<td>r-g/2</td>
<td>2</td>
<td>374,31</td>
<td>-16,72</td>
<td>158,92</td>
<td>12,87</td>
<td>14,37</td>
<td>6,64</td>
<td>9,96</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>353,93</td>
<td>3,55</td>
<td>126,22</td>
<td>9,97</td>
<td>12,01</td>
<td>6,26</td>
<td>8,88</td>
</tr>
<tr>
<td>r-g/3</td>
<td>8</td>
<td>361,02</td>
<td>-21,87</td>
<td>136,38</td>
<td>6,22</td>
<td>12,48</td>
<td>8,18</td>
<td>2,27</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>358,33</td>
<td>-3,84</td>
<td>49,66</td>
<td>4,58</td>
<td>10,93</td>
<td>6,36</td>
<td>6,79</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>262,49</td>
<td>19,32</td>
<td>103,83</td>
<td>10,68</td>
<td>10,49</td>
<td>9,17</td>
<td>4,31</td>
</tr>
<tr>
<td>r-g/4</td>
<td>5</td>
<td>116,30</td>
<td>-17,94</td>
<td>33,01</td>
<td>1,57</td>
<td>4,26</td>
<td>7,76</td>
<td>0,73</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>151,44</td>
<td>-2,67</td>
<td>15,95</td>
<td>2,87</td>
<td>6,54</td>
<td>8,45</td>
<td>0,68</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>163,33</td>
<td>21,99</td>
<td>52,55</td>
<td>9,29</td>
<td>7,01</td>
<td>8,70</td>
<td>2,28</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>142,63</td>
<td>49,80</td>
<td>41,79</td>
<td>9,36</td>
<td>6,78</td>
<td>9,03</td>
<td>0,81</td>
</tr>
<tr>
<td>r-g/5</td>
<td>6</td>
<td>90,02</td>
<td>-18,54</td>
<td>21,29</td>
<td>2,71</td>
<td>3,54</td>
<td>8,72</td>
<td>0,52</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>127,11</td>
<td>-11,57</td>
<td>28,68</td>
<td>6,01</td>
<td>5,41</td>
<td>8,95</td>
<td>1,23</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>73,40</td>
<td>23,43</td>
<td>18,80</td>
<td>9,23</td>
<td>3,13</td>
<td>8,09</td>
<td>0,80</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>98,78</td>
<td>37,23</td>
<td>32,87</td>
<td>6,21</td>
<td>4,43</td>
<td>7,58</td>
<td>1,14</td>
</tr>
<tr>
<td>r-g/6</td>
<td>8</td>
<td>38,81</td>
<td>-19,18</td>
<td>6,11</td>
<td>2,00</td>
<td>1,65</td>
<td>9,36</td>
<td>0,26</td>
</tr>
<tr>
<td>y-b/1</td>
<td>1</td>
<td>594,61</td>
<td>-22,59</td>
<td>103,46</td>
<td>7,98</td>
<td>27,99</td>
<td>8,83</td>
<td>3,81</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>374,31</td>
<td>-16,72</td>
<td>158,92</td>
<td>12,87</td>
<td>14,37</td>
<td>6,64</td>
<td>9,96</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>361,02</td>
<td>-21,87</td>
<td>136,38</td>
<td>6,22</td>
<td>12,48</td>
<td>8,18</td>
<td>2,27</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>116,30</td>
<td>-17,94</td>
<td>33,01</td>
<td>1,57</td>
<td>4,26</td>
<td>7,76</td>
<td>0,73</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>90,02</td>
<td>-18,54</td>
<td>21,29</td>
<td>2,71</td>
<td>3,54</td>
<td>8,72</td>
<td>0,52</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>38,81</td>
<td>-19,18</td>
<td>6,11</td>
<td>2,00</td>
<td>1,65</td>
<td>9,36</td>
<td>0,26</td>
</tr>
<tr>
<td>y-b/2</td>
<td>4</td>
<td>353,93</td>
<td>3,55</td>
<td>126,22</td>
<td>9,97</td>
<td>12,01</td>
<td>6,26</td>
<td>8,88</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>358,33</td>
<td>-3,84</td>
<td>49,66</td>
<td>4,58</td>
<td>10,93</td>
<td>6,36</td>
<td>6,79</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>151,44</td>
<td>-2,67</td>
<td>15,95</td>
<td>2,87</td>
<td>6,54</td>
<td>8,45</td>
<td>0,68</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>127,11</td>
<td>-11,57</td>
<td>28,68</td>
<td>6,01</td>
<td>5,41</td>
<td>8,95</td>
<td>1,23</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>44,08</td>
<td>-5,17</td>
<td>9,84</td>
<td>9,85</td>
<td>1,87</td>
<td>8,95</td>
<td>0,42</td>
</tr>
<tr>
<td>y-b/3</td>
<td>10</td>
<td>262,49</td>
<td>19,32</td>
<td>103,83</td>
<td>10,68</td>
<td>10,49</td>
<td>9,17</td>
<td>4,31</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>163,33</td>
<td>21,99</td>
<td>52,55</td>
<td>9,29</td>
<td>7,01</td>
<td>8,70</td>
<td>2,28</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>73,40</td>
<td>23,43</td>
<td>18,80</td>
<td>9,23</td>
<td>3,13</td>
<td>8,09</td>
<td>0,80</td>
</tr>
<tr>
<td>y-b/4</td>
<td>15</td>
<td>142,93</td>
<td>49,80</td>
<td>41,79</td>
<td>9,36</td>
<td>6,78</td>
<td>9,03</td>
<td>0,81</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>98,78</td>
<td>37,23</td>
<td>32,87</td>
<td>6,21</td>
<td>4,43</td>
<td>7,58</td>
<td>1,14</td>
</tr>
</tbody>
</table>

Tabla 7.11 (Cont.): Idem para el observador JH bajo iluminante D65.

Evaluación experimental de la constancia del color ... 161
<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>L-2M</th>
<th>DS S</th>
<th>DS L-2M</th>
<th>Err S</th>
<th>Err L-2M</th>
<th>DS Err S</th>
<th>DS Err L-2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-g/2</td>
<td>2</td>
<td>544.60</td>
<td>-25.78</td>
<td>93.92</td>
<td>5.54</td>
<td>20.01</td>
<td>7.11</td>
<td>11.69</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>425.53</td>
<td>4.81</td>
<td>106.81</td>
<td>15.60</td>
<td>15.40</td>
<td>6.50</td>
<td>9.72</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>367.84</td>
<td>-25.48</td>
<td>153.00</td>
<td>6.71</td>
<td>15.88</td>
<td>9.83</td>
<td>6.77</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>268.63</td>
<td>6.94</td>
<td>110.95</td>
<td>23.08</td>
<td>16.11</td>
<td>7.25</td>
<td>15.70</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>332.34</td>
<td>32.36</td>
<td>67.63</td>
<td>5.77</td>
<td>12.76</td>
<td>7.33</td>
<td>8.63</td>
</tr>
<tr>
<td>r-g/4</td>
<td>5</td>
<td>154.27</td>
<td>-24.60</td>
<td>36.71</td>
<td>5.63</td>
<td>6.56</td>
<td>9.99</td>
<td>1.58</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>149.55</td>
<td>-2.01</td>
<td>41.80</td>
<td>6.65</td>
<td>6.38</td>
<td>8.53</td>
<td>1.78</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>139.82</td>
<td>30.78</td>
<td>17.90</td>
<td>3.89</td>
<td>4.68</td>
<td>6.41</td>
<td>2.73</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>241.89</td>
<td>52.42</td>
<td>87.88</td>
<td>10.09</td>
<td>10.44</td>
<td>9.74</td>
<td>3.81</td>
</tr>
<tr>
<td>r-g/5</td>
<td>6</td>
<td>107.90</td>
<td>-24.00</td>
<td>20.98</td>
<td>5.56</td>
<td>4.58</td>
<td>10.05</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>61.34</td>
<td>0.74</td>
<td>14.66</td>
<td>5.16</td>
<td>2.83</td>
<td>8.65</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>72.59</td>
<td>26.23</td>
<td>33.13</td>
<td>10.14</td>
<td>2.68</td>
<td>7.35</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>119.54</td>
<td>49.39</td>
<td>48.36</td>
<td>11.49</td>
<td>4.99</td>
<td>8.35</td>
<td>1.90</td>
</tr>
<tr>
<td>r-g/6</td>
<td>8</td>
<td>52.69</td>
<td>-24.31</td>
<td>25.60</td>
<td>7.96</td>
<td>2.23</td>
<td>10.95</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>45.47</td>
<td>-5.96</td>
<td>7.57</td>
<td>2.16</td>
<td>1.55</td>
<td>7.96</td>
<td>0.92</td>
</tr>
<tr>
<td>y-b/1</td>
<td>1</td>
<td>530.08</td>
<td>-5.91</td>
<td>132.71</td>
<td>18.86</td>
<td>18.80</td>
<td>7.37</td>
<td>10.67</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>544.60</td>
<td>-25.78</td>
<td>93.92</td>
<td>5.54</td>
<td>20.01</td>
<td>7.11</td>
<td>11.69</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>367.84</td>
<td>-25.48</td>
<td>153.00</td>
<td>6.71</td>
<td>15.88</td>
<td>9.83</td>
<td>6.77</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>154.27</td>
<td>-24.60</td>
<td>36.71</td>
<td>5.63</td>
<td>6.56</td>
<td>9.99</td>
<td>1.58</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>107.90</td>
<td>-24.00</td>
<td>20.98</td>
<td>5.56</td>
<td>4.58</td>
<td>10.05</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>52.69</td>
<td>-24.31</td>
<td>25.60</td>
<td>7.96</td>
<td>2.23</td>
<td>10.95</td>
<td>1.08</td>
</tr>
<tr>
<td>y-b/2</td>
<td>4</td>
<td>425.53</td>
<td>4.81</td>
<td>106.81</td>
<td>15.60</td>
<td>15.40</td>
<td>6.50</td>
<td>9.72</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>268.63</td>
<td>6.94</td>
<td>110.95</td>
<td>23.08</td>
<td>16.11</td>
<td>7.25</td>
<td>15.70</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>149.55</td>
<td>-2.01</td>
<td>41.80</td>
<td>6.65</td>
<td>6.38</td>
<td>8.53</td>
<td>1.78</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>61.34</td>
<td>0.74</td>
<td>14.66</td>
<td>5.16</td>
<td>2.83</td>
<td>8.65</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>45.47</td>
<td>-5.96</td>
<td>7.57</td>
<td>2.16</td>
<td>1.55</td>
<td>7.96</td>
<td>0.92</td>
</tr>
<tr>
<td>y-b/3</td>
<td>10</td>
<td>332.34</td>
<td>32.36</td>
<td>67.63</td>
<td>5.77</td>
<td>12.76</td>
<td>7.33</td>
<td>8.63</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>139.82</td>
<td>30.78</td>
<td>17.90</td>
<td>3.89</td>
<td>4.68</td>
<td>6.41</td>
<td>2.73</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>72.59</td>
<td>26.23</td>
<td>33.13</td>
<td>10.14</td>
<td>2.68</td>
<td>7.35</td>
<td>0.99</td>
</tr>
<tr>
<td>y-b/4</td>
<td>15</td>
<td>241.89</td>
<td>52.42</td>
<td>87.88</td>
<td>10.09</td>
<td>10.44</td>
<td>9.74</td>
<td>3.81</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>119.54</td>
<td>49.39</td>
<td>48.36</td>
<td>11.49</td>
<td>4.99</td>
<td>8.35</td>
<td>1.90</td>
</tr>
</tbody>
</table>

(c)

Tabla 7.11 (Cont.): Idem para el observador FP bajo iluminante D65.

162 Evaluación experimental de la constancia del color ...
<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>L-2M</th>
<th>DS S</th>
<th>DS L-2M</th>
<th>Err S</th>
<th>Err L-2M</th>
<th>DS Err S</th>
<th>DS Err L-2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-g/2</td>
<td>2</td>
<td>314.71</td>
<td>-15.53</td>
<td>10.92</td>
<td>1.52</td>
<td>10.80</td>
<td>6.68</td>
<td>6.06</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>338.37</td>
<td>1.97</td>
<td>98.62</td>
<td>2.66</td>
<td>15.32</td>
<td>8.13</td>
<td>4.77</td>
</tr>
<tr>
<td>r-g/3</td>
<td>3</td>
<td>277.10</td>
<td>-16.78</td>
<td>53.98</td>
<td>6.43</td>
<td>12.96</td>
<td>7.36</td>
<td>8.73</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>268.03</td>
<td>-3.60</td>
<td>15.67</td>
<td>4.10</td>
<td>11.94</td>
<td>8.00</td>
<td>0.94</td>
</tr>
<tr>
<td>r-g/4</td>
<td>5</td>
<td>149.73</td>
<td>-19.14</td>
<td>27.10</td>
<td>4.97</td>
<td>6.49</td>
<td>9.31</td>
<td>1.14</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>143.03</td>
<td>-1.86</td>
<td>4.78</td>
<td>1.27</td>
<td>5.04</td>
<td>6.75</td>
<td>2.83</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>160.16</td>
<td>22.02</td>
<td>30.05</td>
<td>6.37</td>
<td>5.76</td>
<td>7.06</td>
<td>3.39</td>
</tr>
<tr>
<td>r-g/5</td>
<td>15</td>
<td>157.94</td>
<td>51.33</td>
<td>37.11</td>
<td>6.93</td>
<td>6.74</td>
<td>7.40</td>
<td>4.36</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>88.09</td>
<td>-18.03</td>
<td>17.94</td>
<td>3.97</td>
<td>4.98</td>
<td>9.67</td>
<td>3.02</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>103.09</td>
<td>-1.87</td>
<td>18.64</td>
<td>3.02</td>
<td>3.19</td>
<td>7.32</td>
<td>2.11</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>115.82</td>
<td>21.62</td>
<td>32.62</td>
<td>1.87</td>
<td>3.44</td>
<td>6.51</td>
<td>2.34</td>
</tr>
<tr>
<td>r-g/6</td>
<td>16</td>
<td>103.74</td>
<td>38.78</td>
<td>11.54</td>
<td>13.95</td>
<td>5.28</td>
<td>8.18</td>
<td>1.53</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>38.55</td>
<td>-23.37</td>
<td>1.87</td>
<td>1.37</td>
<td>1.65</td>
<td>10.86</td>
<td>0.08</td>
</tr>
<tr>
<td>y-b/1</td>
<td>1</td>
<td>399.45</td>
<td>-15.00</td>
<td>73.73</td>
<td>2.66</td>
<td>22.35</td>
<td>8.06</td>
<td>13.41</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>314.71</td>
<td>-15.53</td>
<td>10.92</td>
<td>1.52</td>
<td>10.80</td>
<td>6.68</td>
<td>6.06</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>277.10</td>
<td>-16.78</td>
<td>53.98</td>
<td>6.43</td>
<td>12.96</td>
<td>7.36</td>
<td>8.73</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>149.73</td>
<td>-19.14</td>
<td>27.10</td>
<td>4.97</td>
<td>6.49</td>
<td>9.31</td>
<td>1.14</td>
</tr>
<tr>
<td>y-b/2</td>
<td>6</td>
<td>88.09</td>
<td>-18.03</td>
<td>17.94</td>
<td>3.97</td>
<td>4.98</td>
<td>9.67</td>
<td>3.02</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>38.55</td>
<td>-23.37</td>
<td>1.87</td>
<td>1.37</td>
<td>1.65</td>
<td>10.86</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>336.37</td>
<td>1.97</td>
<td>96.22</td>
<td>2.66</td>
<td>15.32</td>
<td>8.13</td>
<td>4.77</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>268.03</td>
<td>-3.60</td>
<td>15.67</td>
<td>4.10</td>
<td>11.94</td>
<td>8.00</td>
<td>0.94</td>
</tr>
<tr>
<td>y-b/3</td>
<td>9</td>
<td>143.03</td>
<td>-1.86</td>
<td>4.78</td>
<td>1.27</td>
<td>5.04</td>
<td>6.75</td>
<td>2.83</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>103.09</td>
<td>-1.87</td>
<td>18.64</td>
<td>3.02</td>
<td>3.19</td>
<td>7.32</td>
<td>2.11</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>31.49</td>
<td>-8.78</td>
<td>2.64</td>
<td>8.12</td>
<td>1.08</td>
<td>7.05</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>330.68</td>
<td>16.58</td>
<td>138.86</td>
<td>5.71</td>
<td>13.27</td>
<td>7.71</td>
<td>8.89</td>
</tr>
<tr>
<td>y-b/4</td>
<td>12</td>
<td>160.16</td>
<td>22.02</td>
<td>30.05</td>
<td>6.37</td>
<td>5.76</td>
<td>7.06</td>
<td>3.39</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>115.82</td>
<td>21.62</td>
<td>32.62</td>
<td>1.87</td>
<td>3.44</td>
<td>6.51</td>
<td>2.34</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>157.94</td>
<td>51.33</td>
<td>37.11</td>
<td>6.93</td>
<td>6.74</td>
<td>7.40</td>
<td>4.36</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>103.74</td>
<td>38.78</td>
<td>11.54</td>
<td>13.95</td>
<td>5.28</td>
<td>8.18</td>
<td>1.53</td>
</tr>
</tbody>
</table>

Tabla 7.III: Valores medios y desviaciones estándar (DS) de S y L-2M, asociados a las 5 igualaciones realizadas por el observador JR bajo iluminante E; se muestran también los errores medios asociados junto con sus desviaciones estándar. Los resultados están agrupados según líneas de confusión rojo-verde ("r-g") y amarillo-azul ("y-b").

Evaluación experimental de la constancia del color ...

163
<table>
<thead>
<tr>
<th>S</th>
<th>L-2M</th>
<th>DS S</th>
<th>DS L-2M</th>
<th>Err S</th>
<th>Err L-2M</th>
<th>DS Err S</th>
<th>DS Err L-2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-g/2</td>
<td>371,93</td>
<td>-14,56</td>
<td>74,06</td>
<td>9,65</td>
<td>16,15</td>
<td>7,72</td>
<td>3,31</td>
</tr>
<tr>
<td>4</td>
<td>312,31</td>
<td>-2,07</td>
<td>52,70</td>
<td>10,75</td>
<td>13,50</td>
<td>7,91</td>
<td>2,31</td>
</tr>
<tr>
<td>r-g/3</td>
<td>315,11</td>
<td>-18,42</td>
<td>67,15</td>
<td>4,07</td>
<td>14,21</td>
<td>8,26</td>
<td>3,00</td>
</tr>
<tr>
<td>7</td>
<td>283,80</td>
<td>-0,32</td>
<td>34,91</td>
<td>8,44</td>
<td>12,24</td>
<td>8,12</td>
<td>1,53</td>
</tr>
<tr>
<td>10</td>
<td>190,71</td>
<td>37,99</td>
<td>58,38</td>
<td>10,36</td>
<td>8,21</td>
<td>8,40</td>
<td>2,54</td>
</tr>
<tr>
<td>r-g/4</td>
<td>110,46</td>
<td>-11,45</td>
<td>16,59</td>
<td>7,76</td>
<td>4,70</td>
<td>7,43</td>
<td>0,71</td>
</tr>
<tr>
<td>9</td>
<td>150,88</td>
<td>-6,13</td>
<td>20,19</td>
<td>1,20</td>
<td>6,44</td>
<td>8,05</td>
<td>0,87</td>
</tr>
<tr>
<td>12</td>
<td>148,61</td>
<td>20,09</td>
<td>38,39</td>
<td>6,62</td>
<td>6,37</td>
<td>7,96</td>
<td>1,65</td>
</tr>
<tr>
<td>15</td>
<td>142,52</td>
<td>48,29</td>
<td>25,59</td>
<td>5,37</td>
<td>6,12</td>
<td>8,39</td>
<td>1,11</td>
</tr>
<tr>
<td>r-g/5</td>
<td>94,30</td>
<td>-18,03</td>
<td>24,85</td>
<td>4,75</td>
<td>4,03</td>
<td>9,78</td>
<td>1,87</td>
</tr>
<tr>
<td>11</td>
<td>95,45</td>
<td>-6,96</td>
<td>26,29</td>
<td>8,43</td>
<td>4,08</td>
<td>7,54</td>
<td>1,13</td>
</tr>
<tr>
<td>14</td>
<td>82,49</td>
<td>14,07</td>
<td>16,58</td>
<td>6,18</td>
<td>3,51</td>
<td>8,46</td>
<td>0,71</td>
</tr>
<tr>
<td>16</td>
<td>108,56</td>
<td>45,36</td>
<td>13,83</td>
<td>7,28</td>
<td>4,65</td>
<td>8,17</td>
<td>0,60</td>
</tr>
<tr>
<td>r-g/6</td>
<td>46,84</td>
<td>-23,02</td>
<td>15,21</td>
<td>2,36</td>
<td>1,98</td>
<td>10,63</td>
<td>0,65</td>
</tr>
<tr>
<td>13</td>
<td>47,80</td>
<td>-4,30</td>
<td>5,32</td>
<td>4,07</td>
<td>2,03</td>
<td>8,54</td>
<td>0,23</td>
</tr>
<tr>
<td>y-b/1</td>
<td>533,10</td>
<td>-5,30</td>
<td>118,97</td>
<td>16,24</td>
<td>21,82</td>
<td>7,78</td>
<td>5,10</td>
</tr>
<tr>
<td>2</td>
<td>371,93</td>
<td>-14,56</td>
<td>74,06</td>
<td>9,65</td>
<td>16,15</td>
<td>7,72</td>
<td>3,31</td>
</tr>
<tr>
<td>3</td>
<td>315,11</td>
<td>-18,42</td>
<td>67,15</td>
<td>4,07</td>
<td>14,21</td>
<td>8,26</td>
<td>3,00</td>
</tr>
<tr>
<td>5</td>
<td>110,46</td>
<td>-11,45</td>
<td>16,59</td>
<td>7,76</td>
<td>4,70</td>
<td>7,43</td>
<td>0,71</td>
</tr>
<tr>
<td>6</td>
<td>94,30</td>
<td>-19,03</td>
<td>24,85</td>
<td>4,75</td>
<td>4,03</td>
<td>9,78</td>
<td>1,87</td>
</tr>
<tr>
<td>8</td>
<td>46,84</td>
<td>-23,02</td>
<td>15,21</td>
<td>2,36</td>
<td>1,98</td>
<td>10,63</td>
<td>0,65</td>
</tr>
<tr>
<td>y-b/2</td>
<td>312,31</td>
<td>-2,07</td>
<td>52,70</td>
<td>10,75</td>
<td>13,50</td>
<td>7,91</td>
<td>2,31</td>
</tr>
<tr>
<td>7</td>
<td>283,80</td>
<td>-0,32</td>
<td>34,91</td>
<td>8,44</td>
<td>12,24</td>
<td>8,12</td>
<td>1,53</td>
</tr>
<tr>
<td>9</td>
<td>150,88</td>
<td>-6,13</td>
<td>20,19</td>
<td>1,20</td>
<td>6,44</td>
<td>8,05</td>
<td>0,87</td>
</tr>
<tr>
<td>11</td>
<td>95,45</td>
<td>-6,96</td>
<td>26,29</td>
<td>8,43</td>
<td>4,08</td>
<td>7,54</td>
<td>1,13</td>
</tr>
<tr>
<td>13</td>
<td>47,80</td>
<td>-4,30</td>
<td>5,32</td>
<td>4,07</td>
<td>2,03</td>
<td>8,54</td>
<td>0,23</td>
</tr>
<tr>
<td>y-b/3</td>
<td>190,71</td>
<td>37,99</td>
<td>58,38</td>
<td>10,36</td>
<td>8,21</td>
<td>8,40</td>
<td>2,54</td>
</tr>
<tr>
<td>12</td>
<td>148,61</td>
<td>20,09</td>
<td>38,39</td>
<td>6,62</td>
<td>6,37</td>
<td>7,96</td>
<td>1,65</td>
</tr>
<tr>
<td>14</td>
<td>82,49</td>
<td>14,07</td>
<td>16,58</td>
<td>6,18</td>
<td>3,51</td>
<td>8,46</td>
<td>0,71</td>
</tr>
<tr>
<td>y-b/4</td>
<td>142,52</td>
<td>48,29</td>
<td>25,59</td>
<td>5,37</td>
<td>6,12</td>
<td>8,39</td>
<td>1,11</td>
</tr>
<tr>
<td>16</td>
<td>108,56</td>
<td>45,36</td>
<td>13,83</td>
<td>7,28</td>
<td>4,65</td>
<td>8,17</td>
<td>0,60</td>
</tr>
</tbody>
</table>

Tabla 7.III (Cont.): Idem para el observador JH bajo iluminante E.

164 Evaluación experimental de la constancia del color ...
<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>L-2M</th>
<th>DS S</th>
<th>DS L-2M</th>
<th>Err S</th>
<th>Err L-2M</th>
<th>DS Err S</th>
<th>DS Err L-2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-g/2</td>
<td>2</td>
<td>486,69</td>
<td>-22,36</td>
<td>156,19</td>
<td>5,87</td>
<td>22,09</td>
<td>9,47</td>
<td>6,67</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>453,73</td>
<td>0,06</td>
<td>103,83</td>
<td>4,67</td>
<td>20,84</td>
<td>8,81</td>
<td>4,90</td>
</tr>
<tr>
<td>r-g/3</td>
<td>3</td>
<td>381,25</td>
<td>-21,33</td>
<td>105,41</td>
<td>5,52</td>
<td>10,61</td>
<td>6,06</td>
<td>10,56</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>243,92</td>
<td>4,20</td>
<td>93,23</td>
<td>11,64</td>
<td>21,82</td>
<td>9,99</td>
<td>15,10</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>333,28</td>
<td>25,70</td>
<td>83,54</td>
<td>8,30</td>
<td>14,43</td>
<td>9,30</td>
<td>3,65</td>
</tr>
<tr>
<td>r-g/4</td>
<td>5</td>
<td>170,96</td>
<td>-28,33</td>
<td>37,89</td>
<td>7,71</td>
<td>7,27</td>
<td>10,77</td>
<td>1,61</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>132,61</td>
<td>2,06</td>
<td>18,29</td>
<td>2,44</td>
<td>4,51</td>
<td>6,02</td>
<td>2,64</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>136,19</td>
<td>22,30</td>
<td>23,72</td>
<td>10,12</td>
<td>5,83</td>
<td>8,52</td>
<td>1,02</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>244,31</td>
<td>48,15</td>
<td>134,98</td>
<td>8,66</td>
<td>7,27</td>
<td>7,27</td>
<td>6,33</td>
</tr>
<tr>
<td>r-g/5</td>
<td>6</td>
<td>118,38</td>
<td>-24,41</td>
<td>21,66</td>
<td>7,05</td>
<td>5,02</td>
<td>10,22</td>
<td>0,92</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>71,60</td>
<td>-3,38</td>
<td>9,65</td>
<td>2,76</td>
<td>3,04</td>
<td>9,74</td>
<td>0,41</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>99,47</td>
<td>19,73</td>
<td>32,21</td>
<td>11,43</td>
<td>4,24</td>
<td>8,59</td>
<td>1,38</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>110,20</td>
<td>53,00</td>
<td>31,41</td>
<td>7,22</td>
<td>3,65</td>
<td>6,98</td>
<td>2,42</td>
</tr>
<tr>
<td>r-g/6</td>
<td>8</td>
<td>48,68</td>
<td>-21,07</td>
<td>10,59</td>
<td>5,24</td>
<td>2,10</td>
<td>10,04</td>
<td>0,45</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>50,44</td>
<td>-4,12</td>
<td>16,09</td>
<td>5,59</td>
<td>2,14</td>
<td>10,35</td>
<td>0,68</td>
</tr>
<tr>
<td>y-b/1</td>
<td>1</td>
<td>493,51</td>
<td>-13,76</td>
<td>138,69</td>
<td>4,36</td>
<td>25,63</td>
<td>8,86</td>
<td>8,70</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>486,69</td>
<td>-22,36</td>
<td>156,19</td>
<td>5,87</td>
<td>22,09</td>
<td>9,47</td>
<td>6,67</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>381,25</td>
<td>-21,33</td>
<td>105,41</td>
<td>5,52</td>
<td>10,61</td>
<td>6,06</td>
<td>10,56</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>170,96</td>
<td>-28,33</td>
<td>37,89</td>
<td>7,71</td>
<td>7,27</td>
<td>10,77</td>
<td>1,61</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>118,38</td>
<td>-24,41</td>
<td>21,66</td>
<td>7,05</td>
<td>5,02</td>
<td>10,22</td>
<td>0,92</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>48,68</td>
<td>-21,07</td>
<td>10,59</td>
<td>5,24</td>
<td>2,10</td>
<td>10,04</td>
<td>0,45</td>
</tr>
<tr>
<td>y-b/2</td>
<td>4</td>
<td>453,73</td>
<td>0,06</td>
<td>103,83</td>
<td>4,67</td>
<td>20,84</td>
<td>8,81</td>
<td>4,90</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>243,92</td>
<td>4,20</td>
<td>93,23</td>
<td>11,64</td>
<td>21,82</td>
<td>9,99</td>
<td>15,10</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>132,61</td>
<td>2,06</td>
<td>18,29</td>
<td>2,44</td>
<td>4,51</td>
<td>6,02</td>
<td>2,64</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>71,60</td>
<td>-3,38</td>
<td>9,65</td>
<td>2,76</td>
<td>3,04</td>
<td>9,74</td>
<td>0,41</td>
</tr>
<tr>
<td>y-b/3</td>
<td>10</td>
<td>333,28</td>
<td>25,70</td>
<td>83,54</td>
<td>8,30</td>
<td>14,43</td>
<td>9,30</td>
<td>3,65</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>136,19</td>
<td>22,30</td>
<td>23,72</td>
<td>10,12</td>
<td>5,83</td>
<td>8,52</td>
<td>1,02</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>99,47</td>
<td>19,73</td>
<td>32,21</td>
<td>11,43</td>
<td>4,24</td>
<td>8,59</td>
<td>1,38</td>
</tr>
<tr>
<td>y-b/4</td>
<td>15</td>
<td>244,31</td>
<td>48,15</td>
<td>134,98</td>
<td>8,66</td>
<td>7,27</td>
<td>7,27</td>
<td>8,33</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>110,20</td>
<td>53,00</td>
<td>31,41</td>
<td>7,22</td>
<td>3,65</td>
<td>6,98</td>
<td>2,42</td>
</tr>
</tbody>
</table>

Tabla 7.111 (Cont.): Idem para el observador FP bajo iluminante E.

Evaluación experimental de la constancia del color ... 165
Cap. 7: Análisis y discusión de resultados en el espacio de excitación de conos

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>L-2M</th>
<th>DS S</th>
<th>DS L-2M</th>
<th>Err S</th>
<th>Err L-2M</th>
<th>DS Err S</th>
<th>DS Err L-2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-g/2</td>
<td>2</td>
<td>276.94</td>
<td>-12.43</td>
<td>40.34</td>
<td>5.50</td>
<td>9.75</td>
<td>6.59</td>
<td>5.70</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>317.26</td>
<td>4.54</td>
<td>71.04</td>
<td>5.77</td>
<td>20.29</td>
<td>8.87</td>
<td>13.86</td>
</tr>
<tr>
<td>r-g/3</td>
<td>3</td>
<td>272.53</td>
<td>-17.98</td>
<td>41.70</td>
<td>3.02</td>
<td>9.06</td>
<td>6.96</td>
<td>5.32</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>243.06</td>
<td>0.38</td>
<td>65.62</td>
<td>5.54</td>
<td>10.46</td>
<td>8.07</td>
<td>2.85</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>230.04</td>
<td>27.25</td>
<td>72.41</td>
<td>11.51</td>
<td>6.67</td>
<td>7.08</td>
<td>4.67</td>
</tr>
<tr>
<td>r-g/4</td>
<td>5</td>
<td>135.14</td>
<td>-17.06</td>
<td>43.30</td>
<td>4.56</td>
<td>4.73</td>
<td>7.36</td>
<td>3.21</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>131.92</td>
<td>1.54</td>
<td>28.54</td>
<td>1.79</td>
<td>5.63</td>
<td>8.74</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>134.71</td>
<td>26.72</td>
<td>29.28</td>
<td>9.54</td>
<td>5.76</td>
<td>9.16</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>171.11</td>
<td>53.90</td>
<td>42.93</td>
<td>9.85</td>
<td>9.62</td>
<td>9.56</td>
<td>3.28</td>
</tr>
<tr>
<td>r-g/5</td>
<td>6</td>
<td>81.58</td>
<td>-19.69</td>
<td>22.27</td>
<td>4.40</td>
<td>3.46</td>
<td>9.19</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>84.22</td>
<td>-1.05</td>
<td>8.82</td>
<td>1.65</td>
<td>3.58</td>
<td>8.89</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>85.13</td>
<td>27.11</td>
<td>20.88</td>
<td>4.17</td>
<td>3.44</td>
<td>8.98</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>92.71</td>
<td>51.71</td>
<td>9.10</td>
<td>10.25</td>
<td>3.97</td>
<td>8.85</td>
<td>0.39</td>
</tr>
<tr>
<td>r-g/6</td>
<td>8</td>
<td>35.89</td>
<td>-19.03</td>
<td>3.71</td>
<td>4.61</td>
<td>1.45</td>
<td>8.73</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>32.99</td>
<td>-4.01</td>
<td>1.48</td>
<td>6.40</td>
<td>1.40</td>
<td>8.89</td>
<td>0.06</td>
</tr>
<tr>
<td>y-b/1</td>
<td>1</td>
<td>300.10</td>
<td>-12.11</td>
<td>39.76</td>
<td>7.62</td>
<td>16.92</td>
<td>8.65</td>
<td>5.26</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>276.94</td>
<td>-12.43</td>
<td>40.34</td>
<td>5.50</td>
<td>9.75</td>
<td>6.59</td>
<td>5.70</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>272.53</td>
<td>-17.98</td>
<td>41.70</td>
<td>3.02</td>
<td>9.06</td>
<td>6.96</td>
<td>5.32</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>135.14</td>
<td>-17.06</td>
<td>43.30</td>
<td>4.56</td>
<td>4.73</td>
<td>7.36</td>
<td>3.21</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>81.58</td>
<td>-19.69</td>
<td>22.27</td>
<td>4.40</td>
<td>3.46</td>
<td>9.19</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>35.89</td>
<td>-19.03</td>
<td>3.71</td>
<td>4.61</td>
<td>1.45</td>
<td>8.73</td>
<td>0.18</td>
</tr>
<tr>
<td>y-b/2</td>
<td>4</td>
<td>317.26</td>
<td>4.54</td>
<td>71.04</td>
<td>5.77</td>
<td>20.29</td>
<td>8.67</td>
<td>13.86</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>243.06</td>
<td>0.38</td>
<td>65.62</td>
<td>5.54</td>
<td>10.46</td>
<td>8.07</td>
<td>2.85</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>131.92</td>
<td>1.54</td>
<td>28.54</td>
<td>1.79</td>
<td>5.63</td>
<td>8.74</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>84.22</td>
<td>-1.05</td>
<td>8.82</td>
<td>1.65</td>
<td>3.58</td>
<td>8.89</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>32.99</td>
<td>-4.01</td>
<td>1.48</td>
<td>6.40</td>
<td>1.40</td>
<td>8.89</td>
<td>0.06</td>
</tr>
<tr>
<td>y-b/3</td>
<td>10</td>
<td>230.04</td>
<td>27.25</td>
<td>72.41</td>
<td>11.51</td>
<td>6.67</td>
<td>7.08</td>
<td>4.67</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>134.71</td>
<td>26.72</td>
<td>28.28</td>
<td>9.54</td>
<td>5.76</td>
<td>9.16</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>85.13</td>
<td>27.11</td>
<td>20.88</td>
<td>4.17</td>
<td>3.44</td>
<td>8.98</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>171.11</td>
<td>53.90</td>
<td>42.93</td>
<td>9.85</td>
<td>9.62</td>
<td>9.56</td>
<td>3.28</td>
</tr>
<tr>
<td>y-b/4</td>
<td>16</td>
<td>92.71</td>
<td>51.71</td>
<td>9.10</td>
<td>10.25</td>
<td>3.97</td>
<td>8.65</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>97.67</td>
<td>45.23</td>
<td>16.77</td>
<td>7.27</td>
<td>4.48</td>
<td>7.33</td>
<td>1.35</td>
</tr>
</tbody>
</table>

Tabla 7.IV: Valores medios y desviaciones estándar (DS) de S y L-2M, asociados a las 5 igualesciones realizadas por el observador JR bajo iluminante F₁₆; se muestran también los errores medios asociados junto con sus desviaciones estándar. Los resultados están agrupados según líneas de confusión rojo-verde ("r-g") y amarillo-azul ("y-b").

166 Evaluación experimental de la constancia del color ...
<table>
<thead>
<tr>
<th>r-gl/2</th>
<th>S</th>
<th>L-2M</th>
<th>DS S</th>
<th>DS L-2M</th>
<th>Err S</th>
<th>Err L-2M</th>
<th>DS Err S</th>
<th>DS_Err L-2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>357.27</td>
<td>-18.19</td>
<td>40.47</td>
<td>4.72</td>
<td>15.45</td>
<td>8.38</td>
<td>1.70</td>
<td>2.33</td>
</tr>
<tr>
<td>7</td>
<td>292.53</td>
<td>-20.25</td>
<td>52.40</td>
<td>7.82</td>
<td>10.21</td>
<td>7.18</td>
<td>6.12</td>
<td>4.39</td>
</tr>
<tr>
<td>10</td>
<td>255.73</td>
<td>1.56</td>
<td>54.89</td>
<td>5.72</td>
<td>11.03</td>
<td>7.58</td>
<td>2.38</td>
<td>0.92</td>
</tr>
<tr>
<td>12</td>
<td>166.21</td>
<td>37.71</td>
<td>83.04</td>
<td>14.30</td>
<td>7.15</td>
<td>4.21</td>
<td>1.32</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>104.31</td>
<td>-17.09</td>
<td>25.25</td>
<td>3.95</td>
<td>4.43</td>
<td>9.22</td>
<td>1.08</td>
<td>1.21</td>
</tr>
<tr>
<td>16</td>
<td>123.61</td>
<td>-0.74</td>
<td>16.02</td>
<td>1.45</td>
<td>5.28</td>
<td>7.22</td>
<td>0.69</td>
<td>0.68</td>
</tr>
<tr>
<td>10</td>
<td>109.65</td>
<td>21.14</td>
<td>40.53</td>
<td>4.67</td>
<td>4.69</td>
<td>7.86</td>
<td>1.74</td>
<td>0.84</td>
</tr>
<tr>
<td>15</td>
<td>131.10</td>
<td>55.60</td>
<td>21.79</td>
<td>9.42</td>
<td>5.63</td>
<td>8.73</td>
<td>0.95</td>
<td>0.83</td>
</tr>
<tr>
<td>r-gl/5</td>
<td>6</td>
<td>81.78</td>
<td>-15.56</td>
<td>31.84</td>
<td>4.12</td>
<td>3.47</td>
<td>9.32</td>
<td>1.35</td>
</tr>
<tr>
<td>11</td>
<td>107.63</td>
<td>-5.20</td>
<td>19.53</td>
<td>2.20</td>
<td>4.58</td>
<td>7.58</td>
<td>0.84</td>
<td>0.49</td>
</tr>
<tr>
<td>14</td>
<td>70.29</td>
<td>18.52</td>
<td>18.67</td>
<td>5.91</td>
<td>2.99</td>
<td>8.17</td>
<td>0.79</td>
<td>1.02</td>
</tr>
<tr>
<td>16</td>
<td>102.70</td>
<td>43.65</td>
<td>26.99</td>
<td>12.20</td>
<td>4.40</td>
<td>8.38</td>
<td>1.16</td>
<td>0.60</td>
</tr>
<tr>
<td>r-gl/6</td>
<td>8</td>
<td>39.93</td>
<td>-20.35</td>
<td>5.85</td>
<td>4.89</td>
<td>1.69</td>
<td>9.91</td>
<td>0.25</td>
</tr>
<tr>
<td>13</td>
<td>45.99</td>
<td>-3.68</td>
<td>12.17</td>
<td>3.80</td>
<td>1.95</td>
<td>7.69</td>
<td>0.52</td>
<td>1.09</td>
</tr>
<tr>
<td>y-b/1</td>
<td>1</td>
<td>420.87</td>
<td>-12.92</td>
<td>18.36</td>
<td>4.14</td>
<td>19.70</td>
<td>7.35</td>
<td>3.26</td>
</tr>
<tr>
<td>2</td>
<td>357.27</td>
<td>-18.19</td>
<td>40.47</td>
<td>4.72</td>
<td>15.45</td>
<td>8.38</td>
<td>1.70</td>
<td>2.33</td>
</tr>
<tr>
<td>3</td>
<td>292.53</td>
<td>-20.25</td>
<td>52.40</td>
<td>7.82</td>
<td>10.21</td>
<td>7.18</td>
<td>6.12</td>
<td>4.39</td>
</tr>
<tr>
<td>5</td>
<td>104.31</td>
<td>-17.09</td>
<td>25.25</td>
<td>3.95</td>
<td>4.43</td>
<td>9.22</td>
<td>1.08</td>
<td>1.21</td>
</tr>
<tr>
<td>6</td>
<td>81.78</td>
<td>-15.56</td>
<td>31.84</td>
<td>4.12</td>
<td>3.47</td>
<td>9.32</td>
<td>1.35</td>
<td>1.59</td>
</tr>
<tr>
<td>8</td>
<td>39.93</td>
<td>-20.35</td>
<td>5.85</td>
<td>4.99</td>
<td>1.69</td>
<td>9.91</td>
<td>0.25</td>
<td>1.88</td>
</tr>
<tr>
<td>y-b/2</td>
<td>4</td>
<td>293.56</td>
<td>2.95</td>
<td>95.27</td>
<td>6.42</td>
<td>12.73</td>
<td>7.15</td>
<td>4.21</td>
</tr>
<tr>
<td>7</td>
<td>255.73</td>
<td>1.56</td>
<td>54.89</td>
<td>5.72</td>
<td>11.03</td>
<td>7.58</td>
<td>2.38</td>
<td>0.92</td>
</tr>
<tr>
<td>9</td>
<td>123.61</td>
<td>-0.74</td>
<td>16.02</td>
<td>1.45</td>
<td>5.28</td>
<td>7.22</td>
<td>0.69</td>
<td>0.68</td>
</tr>
<tr>
<td>11</td>
<td>107.63</td>
<td>-5.20</td>
<td>19.53</td>
<td>2.20</td>
<td>4.58</td>
<td>7.58</td>
<td>0.84</td>
<td>0.49</td>
</tr>
<tr>
<td>13</td>
<td>45.99</td>
<td>-3.68</td>
<td>12.17</td>
<td>3.80</td>
<td>1.95</td>
<td>7.69</td>
<td>0.52</td>
<td>1.09</td>
</tr>
<tr>
<td>y-b/3</td>
<td>10</td>
<td>166.21</td>
<td>37.71</td>
<td>83.04</td>
<td>14.30</td>
<td>7.15</td>
<td>8.02</td>
<td>3.59</td>
</tr>
<tr>
<td>12</td>
<td>109.65</td>
<td>21.14</td>
<td>40.53</td>
<td>4.67</td>
<td>4.69</td>
<td>7.86</td>
<td>1.74</td>
<td>0.84</td>
</tr>
<tr>
<td>14</td>
<td>70.29</td>
<td>18.52</td>
<td>18.67</td>
<td>5.91</td>
<td>2.99</td>
<td>8.17</td>
<td>0.79</td>
<td>1.02</td>
</tr>
<tr>
<td>15</td>
<td>131.10</td>
<td>55.60</td>
<td>21.79</td>
<td>9.42</td>
<td>5.63</td>
<td>8.73</td>
<td>0.95</td>
<td>0.83</td>
</tr>
<tr>
<td>16</td>
<td>102.70</td>
<td>43.65</td>
<td>26.99</td>
<td>12.20</td>
<td>4.40</td>
<td>8.38</td>
<td>1.16</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Tabla 7.4V (Cont.): Idem para el observador JH bajo iluminante F11.

Evaluación experimental de la constancia del color ... 167
<table>
<thead>
<tr>
<th>r-g/2</th>
<th>2</th>
<th>368,88</th>
<th>19,72</th>
<th>125,61</th>
<th>7,59</th>
<th>15,95</th>
<th>9,31</th>
<th>5,57</th>
<th>1,22</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-g/3</td>
<td>3</td>
<td>311,05</td>
<td>21,39</td>
<td>58,69</td>
<td>7,46</td>
<td>10,66</td>
<td>7,01</td>
<td>6,47</td>
<td>4,16</td>
</tr>
<tr>
<td>r-g/4</td>
<td>5</td>
<td>116,73</td>
<td>24,15</td>
<td>39,44</td>
<td>7,54</td>
<td>4,95</td>
<td>10,52</td>
<td>1,68</td>
<td>1,30</td>
</tr>
<tr>
<td>r-g/5</td>
<td>6</td>
<td>118,02</td>
<td>4,54</td>
<td>9,79</td>
<td>1,79</td>
<td>5,03</td>
<td>8,39</td>
<td>0,42</td>
<td>1,48</td>
</tr>
<tr>
<td>r-g/6</td>
<td>8</td>
<td>139,58</td>
<td>24,81</td>
<td>17,26</td>
<td>2,37</td>
<td>5,98</td>
<td>7,85</td>
<td>0,75</td>
<td>0,32</td>
</tr>
<tr>
<td>y-b/1</td>
<td>1</td>
<td>178,80</td>
<td>59,97</td>
<td>57,11</td>
<td>4,84</td>
<td>7,69</td>
<td>9,66</td>
<td>2,46</td>
<td>1,52</td>
</tr>
<tr>
<td>y-b/2</td>
<td>4</td>
<td>87,94</td>
<td>22,94</td>
<td>5,87</td>
<td>3,95</td>
<td>3,72</td>
<td>10,20</td>
<td>0,25</td>
<td>1,25</td>
</tr>
<tr>
<td>y-b/3</td>
<td>10</td>
<td>52,66</td>
<td>25,19</td>
<td>18,61</td>
<td>5,68</td>
<td>2,22</td>
<td>11,62</td>
<td>0,79</td>
<td>2,16</td>
</tr>
<tr>
<td>y-b/4</td>
<td>15</td>
<td>433,34</td>
<td>3,21</td>
<td>215,41</td>
<td>9,23</td>
<td>18,95</td>
<td>8,70</td>
<td>9,72</td>
<td>0,67</td>
</tr>
</tbody>
</table>

Tabla 7.4 (Cont.): Idem para el observador FP bajo iluminante F11.

168 Evaluación experimental de la constancia del color ...
<table>
<thead>
<tr>
<th>s</th>
<th>L-2M</th>
<th>Ds S</th>
<th>Ds L-2M</th>
<th>Err S</th>
<th>Err L-2M</th>
<th>Ds Err S</th>
<th>Ds Err L-2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-g/2 2</td>
<td>217,69</td>
<td>-12,88</td>
<td>45,14</td>
<td>5,28</td>
<td>7,68</td>
<td>7,09</td>
<td>4,68</td>
</tr>
<tr>
<td>4</td>
<td>281,34</td>
<td>7,82</td>
<td>96,38</td>
<td>8,06</td>
<td>15,53</td>
<td>8,90</td>
<td>8,49</td>
</tr>
<tr>
<td>r-g/3 3</td>
<td>185,76</td>
<td>-11,54</td>
<td>30,96</td>
<td>2,99</td>
<td>6,01</td>
<td>7,01</td>
<td>3,48</td>
</tr>
<tr>
<td>7</td>
<td>239,28</td>
<td>3,39</td>
<td>54,11</td>
<td>4,76</td>
<td>10,28</td>
<td>8,76</td>
<td>2,35</td>
</tr>
<tr>
<td>10</td>
<td>209,45</td>
<td>27,62</td>
<td>39,76</td>
<td>7,23</td>
<td>7,06</td>
<td>7,68</td>
<td>4,29</td>
</tr>
<tr>
<td>r-g/4 5</td>
<td>110,32</td>
<td>-16,69</td>
<td>12,51</td>
<td>2,37</td>
<td>4,68</td>
<td>9,77</td>
<td>0,54</td>
</tr>
<tr>
<td>9</td>
<td>122,81</td>
<td>3,82</td>
<td>26,57</td>
<td>2,00</td>
<td>5,23</td>
<td>9,61</td>
<td>1,14</td>
</tr>
<tr>
<td>12</td>
<td>114,18</td>
<td>37,07</td>
<td>35,17</td>
<td>18,87</td>
<td>4,89</td>
<td>9,00</td>
<td>1,51</td>
</tr>
<tr>
<td>15</td>
<td>152,88</td>
<td>58,53</td>
<td>51,59</td>
<td>12,38</td>
<td>6,57</td>
<td>9,23</td>
<td>2,24</td>
</tr>
<tr>
<td>r-g/5 6</td>
<td>78,93</td>
<td>-21,74</td>
<td>25,71</td>
<td>5,24</td>
<td>3,38</td>
<td>10,94</td>
<td>1,09</td>
</tr>
<tr>
<td>11</td>
<td>65,29</td>
<td>1,85</td>
<td>17,56</td>
<td>3,38</td>
<td>2,66</td>
<td>10,00</td>
<td>0,78</td>
</tr>
<tr>
<td>14</td>
<td>87,94</td>
<td>27,53</td>
<td>13,38</td>
<td>7,55</td>
<td>3,75</td>
<td>8,96</td>
<td>0,58</td>
</tr>
<tr>
<td>16</td>
<td>76,13</td>
<td>61,47</td>
<td>15,99</td>
<td>9,28</td>
<td>3,26</td>
<td>8,62</td>
<td>0,69</td>
</tr>
<tr>
<td>r-g/6 8</td>
<td>37,45</td>
<td>-22,56</td>
<td>2,75</td>
<td>4,97</td>
<td>1,27</td>
<td>8,51</td>
<td>0,72</td>
</tr>
<tr>
<td>13</td>
<td>33,16</td>
<td>-0,42</td>
<td>3,05</td>
<td>7,27</td>
<td>1,40</td>
<td>9,29</td>
<td>0,13</td>
</tr>
<tr>
<td>y-b/1 1</td>
<td>247,58</td>
<td>-2,83</td>
<td>66,26</td>
<td>3,01</td>
<td>11,09</td>
<td>8,47</td>
<td>2,72</td>
</tr>
<tr>
<td>2</td>
<td>217,69</td>
<td>-12,88</td>
<td>45,14</td>
<td>5,28</td>
<td>7,68</td>
<td>7,09</td>
<td>4,68</td>
</tr>
<tr>
<td>3</td>
<td>185,76</td>
<td>-11,54</td>
<td>30,96</td>
<td>2,99</td>
<td>6,01</td>
<td>7,01</td>
<td>3,48</td>
</tr>
<tr>
<td>5</td>
<td>110,32</td>
<td>-16,69</td>
<td>12,51</td>
<td>2,37</td>
<td>4,68</td>
<td>9,77</td>
<td>0,54</td>
</tr>
<tr>
<td>6</td>
<td>79,93</td>
<td>-21,74</td>
<td>25,71</td>
<td>5,24</td>
<td>3,38</td>
<td>10,94</td>
<td>1,09</td>
</tr>
<tr>
<td>8</td>
<td>37,45</td>
<td>-22,56</td>
<td>2,75</td>
<td>4,97</td>
<td>1,27</td>
<td>8,51</td>
<td>0,72</td>
</tr>
<tr>
<td>y-b/2 4</td>
<td>281,34</td>
<td>7,82</td>
<td>96,38</td>
<td>8,05</td>
<td>15,53</td>
<td>8,90</td>
<td>8,49</td>
</tr>
<tr>
<td>7</td>
<td>239,28</td>
<td>3,39</td>
<td>54,11</td>
<td>4,76</td>
<td>10,28</td>
<td>8,76</td>
<td>2,35</td>
</tr>
<tr>
<td>9</td>
<td>122,81</td>
<td>3,82</td>
<td>26,57</td>
<td>2,00</td>
<td>5,23</td>
<td>9,61</td>
<td>1,14</td>
</tr>
<tr>
<td>11</td>
<td>65,29</td>
<td>1,85</td>
<td>17,56</td>
<td>3,38</td>
<td>2,66</td>
<td>10,00</td>
<td>0,78</td>
</tr>
<tr>
<td>13</td>
<td>33,16</td>
<td>-0,42</td>
<td>3,05</td>
<td>7,27</td>
<td>1,40</td>
<td>9,29</td>
<td>0,13</td>
</tr>
<tr>
<td>y-b/3 10</td>
<td>209,45</td>
<td>27,62</td>
<td>39,76</td>
<td>7,23</td>
<td>7,06</td>
<td>7,68</td>
<td>4,29</td>
</tr>
<tr>
<td>12</td>
<td>114,18</td>
<td>37,07</td>
<td>35,17</td>
<td>18,87</td>
<td>4,89</td>
<td>9,00</td>
<td>1,51</td>
</tr>
<tr>
<td>14</td>
<td>87,94</td>
<td>27,53</td>
<td>13,38</td>
<td>7,55</td>
<td>3,75</td>
<td>8,96</td>
<td>0,58</td>
</tr>
<tr>
<td>y-b/4 15</td>
<td>152,88</td>
<td>58,53</td>
<td>51,59</td>
<td>12,38</td>
<td>6,57</td>
<td>9,23</td>
<td>2,24</td>
</tr>
<tr>
<td>16</td>
<td>76,13</td>
<td>61,47</td>
<td>15,99</td>
<td>9,28</td>
<td>3,26</td>
<td>8,62</td>
<td>0,69</td>
</tr>
<tr>
<td>16</td>
<td>97,87</td>
<td>45,23</td>
<td>16,77</td>
<td>7,27</td>
<td>4,48</td>
<td>7,33</td>
<td>1,35</td>
</tr>
</tbody>
</table>

Tabla 7.V: Valores medios y desviaciones estándar (DS) de S y L-2M, asociados a las 5 igualaciones realizadas por el observador JR bajo iluminante A; se muestran también los errores medios asociados junto con sus desviaciones estándar. Los resultados están agrupados según líneas de confusión rojo-verde ("r-g") y amarillo-azul ("y-b").

Evaluación experimental de la constancia del color ... 169
<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>L-2M</th>
<th>DS S</th>
<th>DS L-2M</th>
<th>Err S</th>
<th>Err L-2M</th>
<th>DS Err S</th>
<th>DS Err L-2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-g/2</td>
<td>2</td>
<td>376,13</td>
<td>-16,44</td>
<td>124,68</td>
<td>5,01</td>
<td>16,34</td>
<td>7,79</td>
<td>5,53</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>226,26</td>
<td>15,36</td>
<td>72,55</td>
<td>12,08</td>
<td>9,75</td>
<td>8,23</td>
<td>3,16</td>
</tr>
<tr>
<td>r-g/3</td>
<td>3</td>
<td>221,51</td>
<td>-12,85</td>
<td>56,40</td>
<td>4,75</td>
<td>9,50</td>
<td>8,37</td>
<td>2,45</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>250,23</td>
<td>7,74</td>
<td>30,81</td>
<td>10,31</td>
<td>10,78</td>
<td>8,18</td>
<td>1,35</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>192,82</td>
<td>37,82</td>
<td>86,40</td>
<td>13,81</td>
<td>7,44</td>
<td>9,19</td>
<td>3,17</td>
</tr>
<tr>
<td>r-g/4</td>
<td>5</td>
<td>86,23</td>
<td>-11,84</td>
<td>9,90</td>
<td>5,66</td>
<td>3,66</td>
<td>8,14</td>
<td>0,42</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>110,89</td>
<td>2,36</td>
<td>8,94</td>
<td>5,58</td>
<td>4,73</td>
<td>8,23</td>
<td>0,38</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>108,95</td>
<td>29,50</td>
<td>32,47</td>
<td>7,22</td>
<td>4,66</td>
<td>8,18</td>
<td>1,39</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>91,60</td>
<td>53,89</td>
<td>5,32</td>
<td>12,02</td>
<td>3,93</td>
<td>7,82</td>
<td>0,23</td>
</tr>
<tr>
<td>r-g/5</td>
<td>6</td>
<td>67,48</td>
<td>-13,26</td>
<td>14,48</td>
<td>5,36</td>
<td>2,86</td>
<td>9,35</td>
<td>0,61</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>93,89</td>
<td>-5,88</td>
<td>12,08</td>
<td>4,96</td>
<td>3,99</td>
<td>7,81</td>
<td>0,52</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>66,99</td>
<td>24,63</td>
<td>15,93</td>
<td>3,20</td>
<td>2,85</td>
<td>9,16</td>
<td>0,68</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>74,16</td>
<td>49,18</td>
<td>21,67</td>
<td>4,65</td>
<td>3,17</td>
<td>8,29</td>
<td>0,93</td>
</tr>
<tr>
<td>r-g/6</td>
<td>8</td>
<td>42,62</td>
<td>-22,57</td>
<td>5,07</td>
<td>3,68</td>
<td>1,80</td>
<td>10,38</td>
<td>0,21</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>40,19</td>
<td>1,58</td>
<td>7,52</td>
<td>9,34</td>
<td>1,70</td>
<td>8,61</td>
<td>0,32</td>
</tr>
<tr>
<td>y-b/1</td>
<td>1</td>
<td>393,77</td>
<td>-3,75</td>
<td>81,10</td>
<td>20,48</td>
<td>13,63</td>
<td>7,42</td>
<td>6,95</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>376,13</td>
<td>-16,44</td>
<td>124,68</td>
<td>5,01</td>
<td>16,34</td>
<td>7,79</td>
<td>5,53</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>221,51</td>
<td>-12,65</td>
<td>56,40</td>
<td>4,75</td>
<td>9,50</td>
<td>8,37</td>
<td>2,45</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>86,23</td>
<td>-11,84</td>
<td>9,90</td>
<td>5,66</td>
<td>3,66</td>
<td>8,14</td>
<td>0,42</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>67,48</td>
<td>-13,26</td>
<td>14,48</td>
<td>5,36</td>
<td>2,86</td>
<td>9,35</td>
<td>0,61</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>42,62</td>
<td>-22,57</td>
<td>5,07</td>
<td>3,68</td>
<td>1,80</td>
<td>10,38</td>
<td>0,21</td>
</tr>
<tr>
<td>y-b/2</td>
<td>4</td>
<td>226,26</td>
<td>15,36</td>
<td>72,55</td>
<td>12,08</td>
<td>9,75</td>
<td>8,23</td>
<td>3,16</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>250,23</td>
<td>7,74</td>
<td>30,81</td>
<td>10,31</td>
<td>10,78</td>
<td>8,18</td>
<td>1,35</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>110,89</td>
<td>2,36</td>
<td>8,94</td>
<td>5,58</td>
<td>4,73</td>
<td>8,23</td>
<td>0,38</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>93,89</td>
<td>-5,88</td>
<td>12,08</td>
<td>4,96</td>
<td>3,99</td>
<td>7,81</td>
<td>0,52</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>40,19</td>
<td>1,58</td>
<td>7,52</td>
<td>9,34</td>
<td>1,70</td>
<td>8,61</td>
<td>0,32</td>
</tr>
<tr>
<td>y-b/3</td>
<td>10</td>
<td>192,82</td>
<td>37,82</td>
<td>86,40</td>
<td>13,81</td>
<td>7,44</td>
<td>9,19</td>
<td>3,17</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>108,95</td>
<td>29,50</td>
<td>32,47</td>
<td>7,22</td>
<td>4,66</td>
<td>8,18</td>
<td>1,39</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>66,99</td>
<td>24,63</td>
<td>15,93</td>
<td>3,20</td>
<td>2,85</td>
<td>9,16</td>
<td>0,68</td>
</tr>
<tr>
<td>y-b/4</td>
<td>15</td>
<td>91,60</td>
<td>53,39</td>
<td>5,32</td>
<td>12,02</td>
<td>3,93</td>
<td>7,82</td>
<td>0,23</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>74,16</td>
<td>49,18</td>
<td>21,67</td>
<td>4,65</td>
<td>3,17</td>
<td>8,29</td>
<td>0,93</td>
</tr>
</tbody>
</table>

Tabla 7.V (Cont.): Idem para el observador JH bajo iluminante A.

170 Evaluación experimental de la constancia del color ...
<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>L-2M</th>
<th>DS S</th>
<th>DS L-2M</th>
<th>Err S</th>
<th>Err L-2M</th>
<th>DS Err</th>
<th>DS Err L-2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-gl2</td>
<td>2</td>
<td>410.86</td>
<td>-15.78</td>
<td>141.14</td>
<td>6.91</td>
<td>17.83</td>
<td>9.38</td>
<td>6.30</td>
</tr>
<tr>
<td>4</td>
<td>374.04</td>
<td>11.18</td>
<td>63.64</td>
<td>14.44</td>
<td>16.22</td>
<td>9.33</td>
<td>2.81</td>
<td>1.60</td>
</tr>
<tr>
<td>r-gl3</td>
<td>3</td>
<td>245.84</td>
<td>-14.53</td>
<td>67.55</td>
<td>4.24</td>
<td>10.57</td>
<td>8.08</td>
<td>2.94</td>
</tr>
<tr>
<td>7</td>
<td>355.16</td>
<td>7.45</td>
<td>138.46</td>
<td>11.31</td>
<td>15.35</td>
<td>9.99</td>
<td>6.04</td>
<td>1.67</td>
</tr>
<tr>
<td>10</td>
<td>361.08</td>
<td>32.87</td>
<td>243.55</td>
<td>11.82</td>
<td>15.70</td>
<td>10.20</td>
<td>10.78</td>
<td>2.50</td>
</tr>
<tr>
<td>r-gl4</td>
<td>5</td>
<td>105.89</td>
<td>-21.86</td>
<td>21.02</td>
<td>8.35</td>
<td>4.49</td>
<td>9.84</td>
<td>0.89</td>
</tr>
<tr>
<td>9</td>
<td>99.80</td>
<td>11.49</td>
<td>28.38</td>
<td>5.30</td>
<td>4.25</td>
<td>8.87</td>
<td>1.21</td>
<td>1.90</td>
</tr>
<tr>
<td>12</td>
<td>100.24</td>
<td>39.09</td>
<td>31.57</td>
<td>6.58</td>
<td>4.29</td>
<td>8.52</td>
<td>1.36</td>
<td>0.80</td>
</tr>
<tr>
<td>15</td>
<td>104.40</td>
<td>58.10</td>
<td>26.05</td>
<td>14.77</td>
<td>4.48</td>
<td>8.79</td>
<td>1.12</td>
<td>1.32</td>
</tr>
<tr>
<td>r-gl5</td>
<td>6</td>
<td>68.04</td>
<td>-19.73</td>
<td>16.25</td>
<td>5.09</td>
<td>2.88</td>
<td>9.87</td>
<td>0.89</td>
</tr>
<tr>
<td>11</td>
<td>58.21</td>
<td>7.54</td>
<td>14.79</td>
<td>3.76</td>
<td>2.47</td>
<td>8.49</td>
<td>0.63</td>
<td>1.49</td>
</tr>
<tr>
<td>14</td>
<td>44.28</td>
<td>31.20</td>
<td>13.53</td>
<td>6.46</td>
<td>1.88</td>
<td>8.91</td>
<td>0.58</td>
<td>1.05</td>
</tr>
<tr>
<td>16</td>
<td>67.89</td>
<td>62.41</td>
<td>18.11</td>
<td>8.67</td>
<td>2.91</td>
<td>8.84</td>
<td>0.78</td>
<td>1.05</td>
</tr>
<tr>
<td>r-gl6</td>
<td>8</td>
<td>46.33</td>
<td>-25.58</td>
<td>10.94</td>
<td>5.50</td>
<td>1.96</td>
<td>11.59</td>
<td>0.46</td>
</tr>
<tr>
<td>13</td>
<td>43.49</td>
<td>6.08</td>
<td>7.49</td>
<td>2.47</td>
<td>1.84</td>
<td>12.84</td>
<td>0.32</td>
<td>2.86</td>
</tr>
<tr>
<td>y-b/1</td>
<td>1</td>
<td>439.68</td>
<td>-3.92</td>
<td>183.44</td>
<td>8.95</td>
<td>19.21</td>
<td>8.29</td>
<td>8.19</td>
</tr>
<tr>
<td>2</td>
<td>410.86</td>
<td>-15.78</td>
<td>141.14</td>
<td>6.91</td>
<td>17.83</td>
<td>9.38</td>
<td>6.30</td>
<td>0.41</td>
</tr>
<tr>
<td>3</td>
<td>245.84</td>
<td>-14.53</td>
<td>67.55</td>
<td>4.24</td>
<td>10.57</td>
<td>8.08</td>
<td>2.94</td>
<td>1.61</td>
</tr>
<tr>
<td>5</td>
<td>105.89</td>
<td>-21.86</td>
<td>21.02</td>
<td>8.35</td>
<td>4.49</td>
<td>9.84</td>
<td>0.89</td>
<td>2.67</td>
</tr>
<tr>
<td>6</td>
<td>68.04</td>
<td>-19.73</td>
<td>16.25</td>
<td>5.09</td>
<td>2.88</td>
<td>9.87</td>
<td>0.69</td>
<td>1.14</td>
</tr>
<tr>
<td>8</td>
<td>46.33</td>
<td>-25.58</td>
<td>10.94</td>
<td>5.50</td>
<td>1.96</td>
<td>11.59</td>
<td>0.46</td>
<td>2.13</td>
</tr>
<tr>
<td>y-b/2</td>
<td>4</td>
<td>374.04</td>
<td>11.18</td>
<td>63.64</td>
<td>14.44</td>
<td>16.22</td>
<td>9.33</td>
<td>2.81</td>
</tr>
<tr>
<td>7</td>
<td>355.16</td>
<td>7.45</td>
<td>138.46</td>
<td>11.31</td>
<td>15.35</td>
<td>9.99</td>
<td>6.04</td>
<td>1.67</td>
</tr>
<tr>
<td>9</td>
<td>99.80</td>
<td>11.49</td>
<td>28.38</td>
<td>5.30</td>
<td>4.29</td>
<td>8.52</td>
<td>1.36</td>
<td>0.80</td>
</tr>
<tr>
<td>11</td>
<td>58.21</td>
<td>7.54</td>
<td>14.79</td>
<td>3.76</td>
<td>2.47</td>
<td>8.49</td>
<td>0.63</td>
<td>1.49</td>
</tr>
<tr>
<td>13</td>
<td>43.49</td>
<td>6.08</td>
<td>7.49</td>
<td>2.47</td>
<td>1.84</td>
<td>12.84</td>
<td>0.32</td>
<td>2.86</td>
</tr>
<tr>
<td>y-b/3</td>
<td>10</td>
<td>361.08</td>
<td>32.87</td>
<td>243.55</td>
<td>11.82</td>
<td>15.70</td>
<td>10.20</td>
<td>10.78</td>
</tr>
<tr>
<td>12</td>
<td>100.24</td>
<td>39.09</td>
<td>31.57</td>
<td>6.58</td>
<td>4.29</td>
<td>8.52</td>
<td>1.36</td>
<td>0.80</td>
</tr>
<tr>
<td>14</td>
<td>44.28</td>
<td>31.20</td>
<td>13.53</td>
<td>6.64</td>
<td>1.88</td>
<td>8.91</td>
<td>0.58</td>
<td>1.05</td>
</tr>
<tr>
<td>y-b/4</td>
<td>15</td>
<td>104.40</td>
<td>59.10</td>
<td>26.05</td>
<td>14.77</td>
<td>4.48</td>
<td>8.79</td>
<td>1.12</td>
</tr>
<tr>
<td>16</td>
<td>67.89</td>
<td>62.41</td>
<td>18.11</td>
<td>8.67</td>
<td>2.91</td>
<td>8.84</td>
<td>0.78</td>
<td>1.05</td>
</tr>
</tbody>
</table>

Tabla 7.V (Cont.): Idem para el observador FP bajo iluminante A.

Evaluación experimental de la constancia del color... 171
7.3. INFLUENCIA DEL ILUMINANTE EN LA EXCITACIÓN DE LOS MECANISMOS DE VISIÓN DEL COLOR

Como ya se ha comentado, ante los cambios de iluminación que pueden producirse en una escena el sistema visual humano es capaz de desarrollar un proceso adaptativo que de alguna forma compensa los cambios colorimétricos inducidos en el color de los objetos. Ese proceso adaptativo es, en esencia, un caso extremo de adaptación cromática y conlleva, por tanto, una modificación en el nivel de respuesta de los mecanismos fotorreceptores y, en relación directa con ellos, del nivel de excitación de los mecanismos de visión del color. Cabe plantearse pues si el proceso de adaptación afecta a estos mecanismos por igual o por el contrario es un proceso local asociado a algún mecanismo de visión del color en particular.

Desde este punto de vista, vamos a analizar cuál es la influencia de las condiciones de iluminación en los valores de excitación de los mecanismos oponentes involucrados en la visión del color. Para ello representaremos los valores de estos mecanismos en función del iluminante bajo el que se realizan las igualaciones. Este tipo de análisis nos va a permitir determinar el tipo de tarea sobre la que los observadores basan sus igualaciones. Es decir, el observador en su intento de mantener una apariencia estable del color, puede que alcance ésta por medio de una reproducción de la misma cantidad de luz que sería absorbida teóricamente por cada mecanismo fotorreceptor bajo las condiciones de iluminación test impuestas. Aunque también, desde otro punto de vista, podemos considerar que esa apariencia estable en el color percibido de los objetos puede estar basada en alguna función reflectancia inferida por el observador que no depende de las condiciones variables de iluminación. Esta última hipótesis de trabajo tendría su fundamento en un concepto similar a lo que McCann et al. (1976) denominan reflectancia integrada y estaría basada en un principio de descuento del iluminante.

A continuación presentamos los resultados obtenidos para las igualaciones realizadas, en función de los valores de excitación constante de S o L-2M de los estímulos inicialmente observados bajo iluminación equienergética.
7.3.1. Excitación del mecanismo Rojo-Verde

Analizamos cómo varía la excitación del mecanismo L-2M para estímulos estándar que mantienen constante la excitación del cono S, es decir, estímulos situados sobre las 5 líneas rojo-verde estudiadas (líneas "r-g"). De cómo sea el nivel de excitación de L-2M dependerá la constancia del color alcanzada en este mecanismo; si la constancia del color fuese perfecta, los desplazamientos adaptativos compensarían los colorimétricos. Ahora bien, desde el punto de vista del descuento total del iluminante, podríamos plantearnos si el canal sería excitado de igual forma cualquiera que fuesen las condiciones de iluminación bajo las que se realizan las igualaciones. Por tanto, si presentamos en una gráfica los valores de L-2M obtenidos en función del iluminante test, esto supondría la presencia de líneas horizontales de pendiente nula en dicha gráfica.

Para evaluar hasta que punto existe realmente una constancia en la excitación del mecanismo L-2M, hemos calculado el valor medio de dicha excitación para todos los iluminantes utilizados, así como la desviación estándar asociada a dicho nivel medio. Este valor medio nos dará una idea de la tendencia central del mecanismo rojo-verde en cada igualación, mientras que la desviación estándar nos proporcionará una medida de la dispersión de dichas igualaciones. Unos valores altos de esta dispersión indicarán un alejamiento mayor de la tendencia central y, por tanto, una menor constancia en la excitación del mecanismo L-2M y una mayor dependencia con las condiciones de iluminación.

En las figuras 7.5(a)-(c) se presentan los valores de L-2M obtenidos en función del iluminante test para los 3 observadores. Como podemos observar, la influencia del iluminante en la excitación de L-2M parece ser bastante similar cuando nos movemos a lo largo de las líneas r-g/4/5/6, si bien en esta última las diferencias entre observadores es más acusada. Estas líneas corresponden a valores intermedios de excitación del cono S (138,95 y 94,19 td) y en ellas la excitación del mecanismo rojo-verde tiende a permanecer constante con independencia de las condiciones de adaptación luminosa. Respecto de las líneas r-g/1/2/3 las diferencias entre observadores son algo mayores y aumenta la desviación de la constancia para los estímulos 4 y 10.
Cap. 7: Análisis y discusión de resultados en el espacio de excitación de conos

Figura 7.5(a): Valores medios de L-2M evaluados sobre líneas rojo-verde en función del iluminante test. Los datos corresponden al observador JR.

174 Evaluación experimental de la constancia del color ...
Figura 7.5(b): Valores medios de L-2M evaluados sobre líneas rojo-verde en función del iluminante test. Los datos corresponden al observador JH.
Figura 7.5(c): Valores medios de L-2M evaluados sobre líneas rojo-verde en función del iluminante test. Los datos corresponden al observador FP.

Evaluación experimental de la constancia del color ...
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th></th>
<th></th>
<th>2</th>
<th>4</th>
<th>3</th>
<th>7</th>
<th>10</th>
<th>5</th>
<th>9</th>
<th>12</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000K</td>
<td>-24,61</td>
<td>1</td>
<td></td>
<td>-23,82</td>
<td>-0,92</td>
<td>-26,86</td>
<td>-3,50</td>
<td>31,81</td>
<td>21,50</td>
<td>-4,29</td>
<td>13,33</td>
<td>38,44</td>
</tr>
<tr>
<td>D65</td>
<td>-16,98</td>
<td></td>
<td>-18,93</td>
<td>-5,07</td>
<td>-22,24</td>
<td>-5,26</td>
<td>16,58</td>
<td>16,58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>-15,00</td>
<td></td>
<td>-15,53</td>
<td>1,87</td>
<td>-18,78</td>
<td>-3,80</td>
<td>14,11</td>
<td>14,11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>-12,11</td>
<td></td>
<td>-12,43</td>
<td>4,54</td>
<td>-17,98</td>
<td>0,38</td>
<td>27,25</td>
<td>27,25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-2,83</td>
<td></td>
<td>-12,88</td>
<td>7,82</td>
<td>-11,54</td>
<td>3,39</td>
<td>27,62</td>
<td>27,62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>-14,30</td>
<td></td>
<td>-16,74</td>
<td>1,87</td>
<td>-19,08</td>
<td>-1,72</td>
<td>23,48</td>
<td>23,48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>7,91</td>
<td></td>
<td>4,78</td>
<td>4,96</td>
<td>5,70</td>
<td>3,53</td>
<td>7,68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th></th>
<th>5</th>
<th>6</th>
<th>11</th>
<th>14</th>
<th>16</th>
<th>8</th>
<th>13</th>
<th>10</th>
<th>17</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000K</td>
<td></td>
<td></td>
<td>-21,50</td>
<td>-4,29</td>
<td>-20,70</td>
<td>-5,75</td>
<td>11,61</td>
<td>45,61</td>
<td>-20,70</td>
<td>-5,75</td>
<td>11,61</td>
<td>45,61</td>
</tr>
<tr>
<td>D65</td>
<td></td>
<td></td>
<td>-15,20</td>
<td>-6,38</td>
<td>-20,21</td>
<td>-4,79</td>
<td>20,81</td>
<td>45,23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td>-18,14</td>
<td>-1,86</td>
<td>-18,03</td>
<td>-1,87</td>
<td>21,62</td>
<td>38,78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td></td>
<td></td>
<td>-17,06</td>
<td>1,54</td>
<td>-19,69</td>
<td>-1,05</td>
<td>27,11</td>
<td>51,71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td>-16,69</td>
<td>3,82</td>
<td>-21,74</td>
<td>1,85</td>
<td>27,53</td>
<td>61,47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td></td>
<td></td>
<td>-17,52</td>
<td>-1,43</td>
<td>-20,07</td>
<td>-2,32</td>
<td>21,74</td>
<td>48,56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td></td>
<td></td>
<td>2,45</td>
<td>4,16</td>
<td>1,37</td>
<td>3,04</td>
<td>6,44</td>
<td>8,55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 7.6c (a) Valores de L-2M en función del iluminante test y agrupados según líneas r-g; se muestran también los valores obtenidos para cada estímulo junto con su desviación estándar DS. Los datos corresponden al observador JR.

Evaluación experimental de la constancia del color ... 177
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10000K</td>
<td>-11.38</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D65</td>
<td>-22.59</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>-5.30</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>-12.92</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-3.75</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>-11.19</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>7.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000K</td>
<td>-2.08</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D65</td>
<td>-16.72</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>-14.58</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>-18.19</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-16.44</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>-13.80</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>6.13</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000K</td>
<td>-24.49</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D65</td>
<td>-21.87</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>-18.42</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>-20.25</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-12.65</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>-19.54</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>4.45</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000K</td>
<td>-13.43</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D65</td>
<td>-17.94</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>-11.45</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>-17.09</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-11.84</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>-14.35</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>2.99</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000K</td>
<td>-17.82</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D65</td>
<td>-18.54</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>-19.03</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>-15.56</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-13.25</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>-16.80</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>2.38</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000K</td>
<td>-19.70</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D65</td>
<td>-19.18</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>-23.02</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>-20.35</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-22.57</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>-20.96</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>1.73</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 7.VI (Cont.): (b) Idem para el observador JH.

178 Evaluación experimental de la constancia del color ...
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>D65</td>
<td>-5.91</td>
<td>-25.76</td>
<td>-25.48</td>
<td>-24.60</td>
<td>-24.00</td>
<td>-24.31</td>
</tr>
<tr>
<td>Media</td>
<td>-10.78</td>
<td>-21.16</td>
<td>-22.01</td>
<td>-22.01</td>
<td>-21.25</td>
<td>-23.08</td>
</tr>
<tr>
<td>DS</td>
<td>6.19</td>
<td>6.68</td>
<td>5.54</td>
<td>5.38</td>
<td>4.60</td>
<td>2.78</td>
</tr>
</tbody>
</table>

Tabla 7.VI (Cont.): (c) Idem para el observador FP.

Evaluación experimental de la constancia del color ... 179
Las tablas 7.VI resumen estos resultados y, como se puede observar, la dispersión dentro de una misma línea r-g tiende a ser mayor para aquellos estímulos caracterizados por un valor más alto de L-2M, oscilando entre los 6-9 td; estos estímulos son en concreto los de tonalidad roja (números 10, 12, 15 y 16). En cuanto a las líneas r-g/1/2/3, que son aquellas en las que los estímulos se caracterizan por una estimulación mayor del cono S, por un lado las diferencias entre observadores son grandes y por otro se encuentran dispersiones algo mayores respecto de una tendencia central (4-10 td), en particular para la línea de mayor valor de S (estímulo 1). Si recordamos el orden de magnitud de las diferencias encontradas al realizar las igualaciones por memoria, las variaciones de L-2M estaban en torno a los 10 td, de modo que podemos considerar aceptables las desviaciones estándar determinadas respecto de una posible tendencia central.

En resumen, esto nos indica que cuando el mecanismo rojo-verde es excitado por luces de alto contenido en longitudes de onda largas, tiende a existir un mecanismo de adaptación cromática tipo Von Kries. Es decir, cuando los estímulos se igualan bajo un iluminante de cromaticidad parecida a ellos, como es el iluminante F_{11} o el A, la sensibilidad de los conos L se inhibe y los estímulos aparecen con tonalidad más rojiza. Ocurre el contrario cuando estos estímulos se igualan bajo un iluminante de cromaticidad complementaria, como es el de 10000 K; en ese caso, la igualación se alcanza para valores de L-2M muy próximos a los iniciales bajo iluminación equienergética. Sin embargo, este mecanismo de adaptación no se manifiesta tan claramente para estímulos estándar e iluminantes test que no estimulan demasiado los conos L, como son los estímulos azulados y el iluminante de 10000 K. Además, hemos encontrado que ante el cambio de iluminante el nivel de excitación del mecanismo rojo-verde no parece depender de los valores de estimulación de S, dado que, si bien existen diferencias entre observadores, la tendencia central es similar para diferentes valores de S.

7.3.2. Excitación del mecanismo S

Analizamos en este caso cómo varía la excitación del mecanismo S para estímulos estándar que mantienen constante la excitación del mecanismo L-2M, es decir, estímulos
situidos sobre las 4 líneas amarillo-azul estudiadas (líneas "y-b"). Igual que en el apartado anterior, dependiendo de cómo sea el nivel de excitación alcanzado por S en cada una de las igualaciones realizadas, así será el grado de constancia asociado a este mecanismo.

En las figuras 7.6(a)-(c) se representan los valores de S obtenidos en función del iluminante test bajo el que se realizaba la igualación. En primer lugar observamos que para los 3 observadores la dependencia de la excitación de este mecanismo con el iluminante es mayor que para el mecanismo rojo-verde. En todos los casos no existe una tendencia de S a estar excitado de igual forma con independencia de la iluminación, exceptuando aquellas igualaciones realizadas para estímulos estándar caracterizados por valores bajos de estimulación del cono S (94,20 y 35,13 td). Estos valores se corresponden con los estímulos de tono verde y rojo-anaranjado, y para ellos las líneas en las figuras tienden a ser horizontales indicando una constancia en la estimulación de S.

Como observamos en las tablas 7.VII, la dispersión respecto de un posible valor medio de excitación es bastante superior a la encontrada para el mecanismo L-2M. En general, supera siempre los 15 td y llega hasta los 145 td para aquellos estímulos estándar caracterizados por un alto valor de S. En este caso, teniendo en cuenta que los resultados de las igualaciones por memoria podían ser indicativos del error cometido por cada uno de los observadores, hay que recordar que aquellos dependían del nivel de excitación de este tipo de conos. En los peores casos, para estímulos caracterizados por valores altos del cono S, se obtenían diferencias respecto de los valores teóricos en torno a los 100 td, mientras que para los estímulos de valores más bajos de S, éstas sólo estaban alrededor de los 25 td. Por tanto, sólo para los estímulos 6, 8, 11, 13, 14 y 16 puede considerarse que la excitación de S es prácticamente constante e independiente del iluminante para todos los observadores, presentando valores de dispersión pequeños, aunque para el estímulo 14 sea algo superior a 25 td en el caso de JH y FP.

Finalmente, podemos concluir que todos estos resultados indican de nuevo la existencia de un mecanismo de adaptación cromática tipo Von Kries, que se pone de manifiesto más fuertemente para los altos valores de estimulación del cono S. De esta forma,
cuando la igualación se realiza para los estímulos azulados (números 1, 2, 3, 4 y 7) bajo el iluminante de 10000 K, de cromaticidad más próxima a estos estímulos, el observador requiere de una mayor estimulación de S para mantener la apariencia del color. Es decir, cuando el observador se adapta a una iluminación de este tipo se inhibe la respuesta de los conos S, aumentando la sensibilidad relativa de los conos sensibles a las medias y largas longitudes de onda. Por el contrario, cuando se realiza la igualación de estos estímulos bajo una iluminación de cromaticidad complementaria a ellos, como es el caso del iluminante A, aquella se alcanza con valores menores de excitación de S.

Por otro lado, a medida que los estímulos a igualar están caracterizados por valores más bajos del cono S, la apariencia estable del color tiende a alcanzarse por medio del mantenimiento de un nivel constante en la excitación de este mecanismo. En estos casos el proceso adaptativo es distinto, dado que la respuesta asociada a los conos S parece que es independiente de los cambios inducidos por los distintos iluminantes en los periodos de adaptación luminosa intermedios sufridos por el observador. De alguna manera el sistema visual reproduce la "misma" cantidad de luz responsable de unos valores determinados de excitación de los conos S, con independencia del iluminante bajo el que se realiza la igualación. Sabemos que la luz que entra en el ojo viene caracterizada por la señal de color como el producto de la función reflectancia superficial y la distribución espectral de energía del iluminante, de modo que al hablar de la misma cantidad de luz no nos referimos a una igualdad cuantitativa o funcional, sino a una distribución de energía tal que produce la misma excitación o respuesta de los mecanismos fotorreceptores S sea cual sea el iluminante presente en la escena. Quizás la explicación de este hecho haya que buscarla, tal y como apunta Arend (1993), en la existencia de una iluminación canónica o propia que sería la que permite al observador descontar la iluminación ambiente y adquirir una representación estable del color de las superficies.
Figura 7.6(a): Valores medios de S evaluados sobre líneas amarillo-azul en función del iluminante test. Los datos corresponden al observador JR.

Evaluación exprimental de la constancia del color ... 183
Figura 7.6(b): Valores medios de S evaluados sobre líneas amarillo-azul en función del iluminante test. Los datos corresponden al observador JH.
Figura 7.6(c): Valores medios de S evaluados sobre líneas amarillo-azul en función del iluminante test. Los datos corresponden al observador FP.
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000K</td>
<td>624,00</td>
<td>464,55</td>
<td>444,40</td>
<td>191,62</td>
<td>123,47</td>
<td>35,03</td>
</tr>
<tr>
<td>D65</td>
<td>346,46</td>
<td>354,08</td>
<td>356,01</td>
<td>147,17</td>
<td>97,51</td>
<td>36,49</td>
</tr>
<tr>
<td>E</td>
<td>399,45</td>
<td>314,71</td>
<td>277,10</td>
<td>149,73</td>
<td>88,09</td>
<td>38,55</td>
</tr>
<tr>
<td>F11</td>
<td>300,10</td>
<td>276,94</td>
<td>272,53</td>
<td>135,14</td>
<td>81,58</td>
<td>35,89</td>
</tr>
<tr>
<td>A</td>
<td>247,58</td>
<td>217,89</td>
<td>185,76</td>
<td>110,32</td>
<td>79,93</td>
<td>37,45</td>
</tr>
<tr>
<td>Media</td>
<td>383,52</td>
<td>325,59</td>
<td>307,16</td>
<td>146,80</td>
<td>94,12</td>
<td>36,68</td>
</tr>
<tr>
<td>DS</td>
<td>145,68</td>
<td>92,53</td>
<td>97,55</td>
<td>29,51</td>
<td>17,80</td>
<td>1,37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000K</td>
<td>419,79</td>
<td>317,52</td>
<td>171,29</td>
<td>123,75</td>
<td>34,37</td>
</tr>
<tr>
<td>D65</td>
<td>316,67</td>
<td>302,23</td>
<td>155,97</td>
<td>106,72</td>
<td>37,54</td>
</tr>
<tr>
<td>E</td>
<td>336,37</td>
<td>268,03</td>
<td>143,03</td>
<td>103,09</td>
<td>31,49</td>
</tr>
<tr>
<td>F11</td>
<td>317,26</td>
<td>243,06</td>
<td>131,92</td>
<td>84,22</td>
<td>32,99</td>
</tr>
<tr>
<td>A</td>
<td>281,34</td>
<td>239,28</td>
<td>122,81</td>
<td>65,29</td>
<td>33,16</td>
</tr>
<tr>
<td>Media</td>
<td>334,29</td>
<td>274,02</td>
<td>145,01</td>
<td>96,61</td>
<td>33,91</td>
</tr>
<tr>
<td>DS</td>
<td>51,76</td>
<td>34,96</td>
<td>19,23</td>
<td>22,45</td>
<td>2,27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>12</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000K</td>
<td>279,76</td>
<td>182,45</td>
<td>110,81</td>
</tr>
<tr>
<td>D65</td>
<td>270,04</td>
<td>171,32</td>
<td>87,84</td>
</tr>
<tr>
<td>E</td>
<td>330,68</td>
<td>160,16</td>
<td>115,82</td>
</tr>
<tr>
<td>F11</td>
<td>230,04</td>
<td>134,71</td>
<td>85,13</td>
</tr>
<tr>
<td>A</td>
<td>209,45</td>
<td>114,18</td>
<td>87,94</td>
</tr>
<tr>
<td>Media</td>
<td>263,99</td>
<td>152,56</td>
<td>97,51</td>
</tr>
<tr>
<td>DS</td>
<td>47,06</td>
<td>27,82</td>
<td>14,58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000K</td>
<td>245,44</td>
<td>122,07</td>
</tr>
<tr>
<td>D65</td>
<td>149,72</td>
<td>97,67</td>
</tr>
<tr>
<td>E</td>
<td>157,94</td>
<td>103,74</td>
</tr>
<tr>
<td>F11</td>
<td>171,11</td>
<td>92,71</td>
</tr>
<tr>
<td>A</td>
<td>152,88</td>
<td>76,13</td>
</tr>
<tr>
<td>Media</td>
<td>175,41</td>
<td>98,47</td>
</tr>
<tr>
<td>DS</td>
<td>39,99</td>
<td>16,72</td>
</tr>
</tbody>
</table>

Tabla 7.VII: (a) Valores de S en función del iluminante test y agrupados según líneas y-b; se muestran también los valores obtenidos para cada estímulo junto con su desviación estándar DS. Los datos corresponden al observador JR.

186 Evaluación experimental de la constancia del color ...
<table>
<thead>
<tr>
<th>y-b/1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000K</td>
<td>673,65</td>
<td>505,81</td>
<td>362,87</td>
<td>119,36</td>
<td>101,10</td>
<td>42,38</td>
</tr>
<tr>
<td>D65</td>
<td>594,61</td>
<td>374,31</td>
<td>361,02</td>
<td>116,30</td>
<td>90,02</td>
<td>38,81</td>
</tr>
<tr>
<td>E</td>
<td>533,10</td>
<td>371,93</td>
<td>315,11</td>
<td>110,46</td>
<td>94,30</td>
<td>46,84</td>
</tr>
<tr>
<td>F11</td>
<td>420,87</td>
<td>357,27</td>
<td>292,53</td>
<td>104,31</td>
<td>81,78</td>
<td>39,93</td>
</tr>
<tr>
<td>A</td>
<td>393,77</td>
<td>376,13</td>
<td>221,51</td>
<td>86,23</td>
<td>67,48</td>
<td>42,62</td>
</tr>
<tr>
<td>Media</td>
<td>523,20</td>
<td>397,09</td>
<td>310,61</td>
<td>107,33</td>
<td>86,94</td>
<td>42,11</td>
</tr>
<tr>
<td>DS</td>
<td>117,32</td>
<td>61,23</td>
<td>58,22</td>
<td>13,13</td>
<td>12,94</td>
<td>3,10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y-b/2</th>
<th>4</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000K</td>
<td>410,52</td>
<td>301,35</td>
<td>167,69</td>
<td>114,78</td>
<td>42,70</td>
</tr>
<tr>
<td>D65</td>
<td>353,93</td>
<td>358,33</td>
<td>151,44</td>
<td>127,11</td>
<td>44,08</td>
</tr>
<tr>
<td>E</td>
<td>312,31</td>
<td>283,80</td>
<td>150,88</td>
<td>95,45</td>
<td>47,80</td>
</tr>
<tr>
<td>F11</td>
<td>293,56</td>
<td>255,73</td>
<td>123,61</td>
<td>107,63</td>
<td>45,99</td>
</tr>
<tr>
<td>A</td>
<td>226,26</td>
<td>250,23</td>
<td>110,89</td>
<td>93,89</td>
<td>40,19</td>
</tr>
<tr>
<td>Media</td>
<td>319,32</td>
<td>289,89</td>
<td>140,90</td>
<td>107,77</td>
<td>44,15</td>
</tr>
<tr>
<td>DS</td>
<td>68,72</td>
<td>43,57</td>
<td>23,06</td>
<td>13,85</td>
<td>2,94</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y-b/3</th>
<th>10</th>
<th>12</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000K</td>
<td>255,87</td>
<td>181,89</td>
<td>129,24</td>
</tr>
<tr>
<td>D65</td>
<td>262,49</td>
<td>163,33</td>
<td>73,40</td>
</tr>
<tr>
<td>E</td>
<td>190,71</td>
<td>148,81</td>
<td>82,49</td>
</tr>
<tr>
<td>F11</td>
<td>166,21</td>
<td>109,65</td>
<td>70,29</td>
</tr>
<tr>
<td>A</td>
<td>192,82</td>
<td>108,95</td>
<td>66,99</td>
</tr>
<tr>
<td>Media</td>
<td>213,62</td>
<td>142,49</td>
<td>84,48</td>
</tr>
<tr>
<td>DS</td>
<td>42,95</td>
<td>32,51</td>
<td>25,68</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y-b/4</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000K</td>
<td>198,94</td>
<td>128,12</td>
</tr>
<tr>
<td>D65</td>
<td>142,93</td>
<td>98,78</td>
</tr>
<tr>
<td>E</td>
<td>142,52</td>
<td>108,56</td>
</tr>
<tr>
<td>F11</td>
<td>131,10</td>
<td>102,70</td>
</tr>
<tr>
<td>A</td>
<td>91,60</td>
<td>74,16</td>
</tr>
<tr>
<td>Media</td>
<td>141,42</td>
<td>102,47</td>
</tr>
<tr>
<td>DS</td>
<td>38,41</td>
<td>19,43</td>
</tr>
</tbody>
</table>

Tabla 7.VII (Cont.): (b) Idem para el observador JH.
Cap. 7: Análisis y discusión de resultados en el espacio de excitación de conos

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000K</td>
<td>660,59</td>
<td>418,72</td>
<td>373,27</td>
<td>154,83</td>
<td>67,94</td>
<td>36,99</td>
</tr>
<tr>
<td>D65</td>
<td>530,08</td>
<td>544,60</td>
<td>367,84</td>
<td>154,27</td>
<td>107,90</td>
<td>52,69</td>
</tr>
<tr>
<td>E</td>
<td>493,51</td>
<td>486,69</td>
<td>381,25</td>
<td>170,96</td>
<td>118,38</td>
<td>49,88</td>
</tr>
<tr>
<td>F11</td>
<td>542,79</td>
<td>368,88</td>
<td>311,05</td>
<td>118,73</td>
<td>87,94</td>
<td>52,66</td>
</tr>
<tr>
<td>A</td>
<td>439,68</td>
<td>410,86</td>
<td>245,84</td>
<td>105,89</td>
<td>68,04</td>
<td>46,33</td>
</tr>
<tr>
<td>Media</td>
<td>533,33</td>
<td>446,15</td>
<td>335,85</td>
<td>140,54</td>
<td>90,04</td>
<td>47,61</td>
</tr>
<tr>
<td>DS</td>
<td>81,63</td>
<td>69,37</td>
<td>57,45</td>
<td>27,77</td>
<td>22,91</td>
<td>6,64</td>
</tr>
<tr>
<td></td>
<td>y-b/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000K</td>
<td>475,12</td>
<td>419,46</td>
<td>145,72</td>
<td>110,00</td>
<td>53,52</td>
<td></td>
</tr>
<tr>
<td>D65</td>
<td>425,53</td>
<td>268,63</td>
<td>149,55</td>
<td>61,34</td>
<td>45,47</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>453,73</td>
<td>243,92</td>
<td>132,61</td>
<td>71,60</td>
<td>50,44</td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>433,34</td>
<td>333,96</td>
<td>118,02</td>
<td>62,97</td>
<td>43,74</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>374,04</td>
<td>355,16</td>
<td>98,80</td>
<td>58,21</td>
<td>43,49</td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>432,35</td>
<td>324,23</td>
<td>129,14</td>
<td>72,82</td>
<td>47,33</td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>37,86</td>
<td>70,11</td>
<td>20,54</td>
<td>21,37</td>
<td>4,45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y-b/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000K</td>
<td>410,82</td>
<td>190,18</td>
<td>106,84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D65</td>
<td>332,34</td>
<td>139,82</td>
<td>72,59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>333,28</td>
<td>136,19</td>
<td>98,47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>227,67</td>
<td>139,58</td>
<td>49,35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>361,08</td>
<td>100,24</td>
<td>44,28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>333,04</td>
<td>141,20</td>
<td>74,50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>66,97</td>
<td>32,04</td>
<td>28,37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>y-b/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000K</td>
<td>221,05</td>
<td>89,10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D65</td>
<td>241,89</td>
<td>119,54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>244,31</td>
<td>110,20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>178,80</td>
<td>80,57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>104,40</td>
<td>67,89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>198,09</td>
<td>93,46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>58,59</td>
<td>21,21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 7.VII (Cont.): (c) Idem para el observador FP.

188 Evaluación experimental de la constancia del color ...
7.4. INFLUENCIA DEL ILUMINANTE EN EL NIVEL DE EXCITACIÓN CONSTANTE DE LOS MECANISMOS ROJO-VERDE Y AMARILLO-AZUL

En el apartado anterior hemos descrito hasta qué punto la iluminación adaptante afecta a las igualaciones realizadas por los observadores, analizando cómo varía el nivel de excitación de los mecanismos de visión del color en función de aquella. Desde un punto de vista puramente colorimétrico, el cambio de iluminante impondría en cada uno de los objetos que componen la escena observada un cambio en la señal de color asociada y, por tanto, una modificación en la distribución espectral de energía de la luz que va a entrar en el ojo para excitar cada uno de los conos fotorreceptores. Ahora bien, cabe plantearse si la apariencia más o menos estable que se alcanza en el color percibido de los objetos, puede estar asociada al mantenimiento de un cierto nivel de excitación de dichos mecanismos de visión del color con independencia del iluminante utilizado en cada caso.

Para tal fin, vamos a analizar cómo el iluminante bajo el que se realizan las igualaciones afecta al nivel de excitación constante de cada uno de los mecanismos oponentes de visión del color por separado. Es decir, en este caso nos interesa no describir cuál es la variación en la excitación de los mecanismos L-2M y S, cuando se mantiene constante uno u otro de manera alternativa, sino por el contrario determinar si las líneas de excitación constante rojo-verde y amarillo-azul sobre las que seleccionábamos los diferentes objetos de color siguen siendo tales a pesar del cambio de iluminación impuesto.

7.4.1. Mecanismo Rojo-Verde

Analizamos en primer lugar cómo varía el valor asociado al mecanismo L-2M cuando se realizan igualaciones, bajo distintas condiciones de iluminación, de estímulos caracterizados por un valor de L-2M constante, es decir, estímulos de partida sobre líneas amarillo-azul (líneas "y-b").

Las figuras 7.7(a)-(c) muestran los resultados para los 3 observadores y cada una de las 4 líneas amarillo-azul estudiadas; la línea horizontal continua indica el valor de excitación
constante del mecanismo rojo-verde para cada una de las líneas y-b. Si recordamos los valores teóricos asociados a L-2M cuando los objetos de color estándar se reproducen bajo distintos iluminantes, mostrados en las tablas §5(5.IV), el cambio de iluminante induce un desplazamiento colorimétrico que se traduce en una variación importante en el valor del mecanismo rojo-verde, y cuya cuantía depende además de las condiciones de iluminación test impuestas. Sin embargo y como podemos observar en estas figuras, a pesar del cambio de iluminante, los desplazamientos adaptativos encontrados son mucho menores y no parece existir una tendencia a romper el nivel constante de excitación de L-2M. Aunque las líneas en las gráficas no son totalmente horizontales, las diferencias respecto del valor teórico de excitación asociado a cada una de las líneas y-b son pequeñas y siempre menores de 20 td.

En las tablas 7.VIII, se muestran los valores medios asociados al mecanismo rojo-verde en función de los iluminantes test y las líneas y-b de L-2M constante; los valores medios para cada estímulo así como las desviaciones estándar asociadas, nos darán una idea de la tendencia central del mecanismo rojo-verde a mantenerse constante. Para los 3 observadores se encuentra que el valor de L-2M en las líneas y-b/3 e y-b/4 (estímulos rojo-anaranjados) está por encima del correspondiente a la iluminación equienergética, por tanto, la señal asociada a este canal se hace más "positiva" y los estímulos aparecen en la igualación más rojos de lo que en realidad son. Este efecto es algo más acusado para los iluminantes F₁₁ y A.

La tendencia en los valores alcanzados por L-2M para las líneas y-b/1 e y-b/2 parece ser distinta, teniendo hacia valores más negativos respecto de los correspondientes al iluminante equienergético, si bien depende de los estímulos y del iluminante. Hay algunas igualescencias en estas líneas para los observadores JH y FP, que no siguen esa tendencia; en concreto, son las correspondientes a los estímulos 1, 2, 4 y 7 (estímulos de tono azul y azul-verde) que presentan una mayor excitación del cono S. Para estos estímulos el canal se desplaza hacia valores más positivos.

Finalmente, hay que decir que aunque no podemos afirmar que la excitación del mecanismo rojo-verde se mantenga totalmente constante e independiente del iluminante test, es de destacar la poca variación encontrada. El hecho de que las diferencias en torno al nivel
Figura 7.7(a): Valores medios de L-2M evaluados sobre líneas amarillo-azul en función del iluminante test; las líneas horizontales continuas muestran los valores teóricos de excitación de cada línea. Los datos corresponden al observador JR.
Figura 7.7(b): Valores medios de L-2M evaluados sobre líneas amarillo-azul en función del iluminante test; las líneas horizontales continuas muestran los valores teóricos de excitación de cada línea. Los datos corresponden al observador JH.

192 Evaluación experimental de la constancia del color ...
Influencia del iluminante en la excitación de los mecanismos...

Figura 7.7(c): Valores medios de L-2M evaluados sobre líneas amarillo-azul en función del iluminante test; las líneas horizontales continuas muestran los valores teóricos de excitación de cada línea. Los datos corresponden al observador FP.

Evaluación experimental de la constancia del color ... 193
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>y-b/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000K</td>
<td>-24,61</td>
<td>-23,92</td>
<td>-26,86</td>
<td>-21,50</td>
<td>-20,70</td>
<td>-19,79</td>
<td>-16,18</td>
</tr>
<tr>
<td>D65</td>
<td>-16,98</td>
<td>-18,93</td>
<td>-22,24</td>
<td>-15,20</td>
<td>-20,21</td>
<td>-21,83</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>-15,00</td>
<td>-15,53</td>
<td>-16,78</td>
<td>-19,14</td>
<td>-18,03</td>
<td>-23,37</td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>-12,11</td>
<td>-12,43</td>
<td>-17,98</td>
<td>-17,08</td>
<td>-19,69</td>
<td>-19,03</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-2,83</td>
<td>-12,88</td>
<td>-11,54</td>
<td>-16,69</td>
<td>-21,74</td>
<td>-22,56</td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>-14,30</td>
<td>-16,74</td>
<td>-19,08</td>
<td>-17,92</td>
<td>-20,07</td>
<td>-21,32</td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>7,91</td>
<td>4,78</td>
<td>5,78</td>
<td>2,45</td>
<td>1,37</td>
<td>1,84</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td></td>
<td></td>
<td>y-b/2</td>
</tr>
<tr>
<td>10000K</td>
<td>-0,92</td>
<td>-3,50</td>
<td>-4,29</td>
<td>-5,75</td>
<td>-6,47</td>
<td>-0,46</td>
<td></td>
</tr>
<tr>
<td>D65</td>
<td>-5,07</td>
<td>-5,26</td>
<td>-6,38</td>
<td>-4,79</td>
<td>-9,83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>1,97</td>
<td>-3,60</td>
<td>-1,86</td>
<td>-1,87</td>
<td>-8,78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>4,54</td>
<td>0,38</td>
<td>1,54</td>
<td>-1,05</td>
<td>-4,01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>7,82</td>
<td>3,39</td>
<td>3,82</td>
<td>1,85</td>
<td>-0,42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>1,67</td>
<td>-1,72</td>
<td>-1,43</td>
<td>-2,32</td>
<td>-5,90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>4,96</td>
<td>3,53</td>
<td>4,16</td>
<td>3,04</td>
<td>3,80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>12</td>
<td>14</td>
<td></td>
<td></td>
<td>y-b/3</td>
<td></td>
</tr>
<tr>
<td>10000K</td>
<td>31,81</td>
<td>13,33</td>
<td>11,61</td>
<td>18,97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D65</td>
<td>14,11</td>
<td>18,51</td>
<td>20,81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>16,58</td>
<td>22,02</td>
<td>21,62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>27,25</td>
<td>26,72</td>
<td>27,11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>27,62</td>
<td>37,07</td>
<td>27,53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>23,48</td>
<td>23,53</td>
<td>21,74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>7,68</td>
<td>9,01</td>
<td>6,44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>y-b/4</td>
<td></td>
</tr>
<tr>
<td>10000K</td>
<td>38,44</td>
<td>45,61</td>
<td>40,31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D65</td>
<td>48,71</td>
<td>45,23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>51,33</td>
<td>38,76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>53,90</td>
<td>51,71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>58,53</td>
<td>61,47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>50,18</td>
<td>48,56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>7,50</td>
<td>8,55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 7.VIII: (a) Valores de L-2M en función del iluminante test y agrupados según líneas y-b; se muestran también los valores obtenidos para cada estímulo y el teórico de cada línea. Los datos corresponden al observador JR.
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>y-b/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000K</td>
<td>-11,38</td>
<td>-3,08</td>
<td>-24,49</td>
<td>-13,43</td>
<td>-17,62</td>
<td>-19,70</td>
<td>-16,18</td>
</tr>
<tr>
<td>D65</td>
<td>-22,59</td>
<td>-16,72</td>
<td>-21,87</td>
<td>-17,94</td>
<td>-18,54</td>
<td>-19,18</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>-5,30</td>
<td>-14,56</td>
<td>-18,42</td>
<td>-11,45</td>
<td>-19,03</td>
<td>-23,02</td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>-12,92</td>
<td>-18,19</td>
<td>-20,25</td>
<td>-17,09</td>
<td>-15,56</td>
<td>-20,35</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-3,75</td>
<td>-16,44</td>
<td>-12,85</td>
<td>-11,84</td>
<td>-13,26</td>
<td>-22,57</td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>-11,19</td>
<td>-13,80</td>
<td>-19,54</td>
<td>-14,35</td>
<td>-16,80</td>
<td>-20,96</td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>7,47</td>
<td>6,13</td>
<td>4,45</td>
<td>2,98</td>
<td>2,38</td>
<td>1,73</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>y-b/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000K</td>
<td>6,25</td>
<td>0,80</td>
<td>-3,36</td>
<td>-9,83</td>
<td>-8,38</td>
<td>-0,45</td>
<td></td>
</tr>
<tr>
<td>D65</td>
<td>3,56</td>
<td>-3,84</td>
<td>-2,67</td>
<td>-11,57</td>
<td>-5,17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>-2,07</td>
<td>-0,32</td>
<td>-6,13</td>
<td>-6,96</td>
<td>-4,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>2,95</td>
<td>1,56</td>
<td>0,74</td>
<td>5,20</td>
<td>3,68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>15,36</td>
<td>7,74</td>
<td>2,36</td>
<td>5,88</td>
<td>1,58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>5,21</td>
<td>1,19</td>
<td>2,11</td>
<td>-7,85</td>
<td>-3,99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>6,42</td>
<td>4,21</td>
<td>3,16</td>
<td>2,88</td>
<td>3,60</td>
<td>y-b/3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18,97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000K</td>
<td>19,72</td>
<td>12,51</td>
<td>16,90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D65</td>
<td>19,32</td>
<td>21,89</td>
<td>23,43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>37,99</td>
<td>20,09</td>
<td>14,07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>37,71</td>
<td>21,14</td>
<td>18,52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>37,82</td>
<td>28,50</td>
<td>24,83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>30,51</td>
<td>21,05</td>
<td>19,51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>10,04</td>
<td>6,05</td>
<td>4,44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td></td>
<td>y-b/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000K</td>
<td>40,14</td>
<td>38,95</td>
<td>40,31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D65</td>
<td>49,80</td>
<td>37,23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>48,29</td>
<td>45,36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>55,60</td>
<td>43,65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>53,89</td>
<td>49,18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>49,54</td>
<td>42,87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>6,03</td>
<td>4,84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 7.VIII (Cont.): (b) Idem para el observador JH.
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>y-b/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>D65</td>
<td>-5,91</td>
<td>-25,78</td>
<td>-25,48</td>
<td>-24,60</td>
<td>-24,00</td>
<td>-24,31</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>-13,76</td>
<td>-22,36</td>
<td>-21,33</td>
<td>-28,33</td>
<td>-24,41</td>
<td>-21,07</td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>-10,94</td>
<td>-19,72</td>
<td>-21,39</td>
<td>-24,15</td>
<td>-22,94</td>
<td>-25,19</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-3,92</td>
<td>-15,78</td>
<td>-14,53</td>
<td>-21,86</td>
<td>-19,73</td>
<td>-25,58</td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>-10,78</td>
<td>-21,16</td>
<td>-22,01</td>
<td>-24,27</td>
<td>-21,25</td>
<td>-23,08</td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>6,19</td>
<td>3,70</td>
<td>4,93</td>
<td>2,54</td>
<td>3,88</td>
<td>2,78</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>y-b/2</td>
<td></td>
</tr>
<tr>
<td>10000K</td>
<td>14,12</td>
<td>8,81</td>
<td>-5,16</td>
<td>-4,99</td>
<td>-4,47</td>
<td>0,45</td>
<td></td>
</tr>
<tr>
<td>D65</td>
<td>4,81</td>
<td>6,94</td>
<td>-2,01</td>
<td>0,74</td>
<td>1,95</td>
<td>5,96</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0,06</td>
<td>4,20</td>
<td>2,06</td>
<td>3,38</td>
<td>4,12</td>
<td>5,16</td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>3,21</td>
<td>0,30</td>
<td>4,54</td>
<td>1,95</td>
<td>4,16</td>
<td>6,08</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>11,18</td>
<td>7,45</td>
<td>11,49</td>
<td>7,54</td>
<td>6,08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>6,88</td>
<td>5,54</td>
<td>2,18</td>
<td>0,37</td>
<td>2,53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>5,81</td>
<td>3,38</td>
<td>6,40</td>
<td>4,92</td>
<td>4,87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>12</td>
<td>14</td>
<td>y-b/3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000K</td>
<td>27,65</td>
<td>17,89</td>
<td>21,59</td>
<td>18,97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D65</td>
<td>32,36</td>
<td>30,78</td>
<td>26,23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>25,70</td>
<td>22,30</td>
<td>19,73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>35,40</td>
<td>24,81</td>
<td>27,60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>32,87</td>
<td>39,09</td>
<td>31,20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>30,80</td>
<td>26,98</td>
<td>25,27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>4,00</td>
<td>8,22</td>
<td>4,63</td>
<td></td>
<td></td>
<td>y-b/4</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40,31</td>
</tr>
<tr>
<td>10000K</td>
<td>49,33</td>
<td>40,47</td>
<td>40,47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D65</td>
<td>52,42</td>
<td>49,39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>48,15</td>
<td>53,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>59,97</td>
<td>57,90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>59,10</td>
<td>62,41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>53,79</td>
<td>52,63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>5,47</td>
<td>8,40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 7.VIII (Cont.): (c) Idem para el observador FP.
de excitación constante sean relativamente pequeñas, a lo sumo unos 20 td, y que las desviaciones estándar también lo sean (menores a 10 td) nos hace pensar que estos desplazamientos adaptativos no son parte de un proceso tipo Von Kries, dado que éste llevaría asociado unos desplazamientos mayores debido a la modificación de las sensibilidades espectrales de los mecanismos fotorreceptores.

7.4.2. Mecanismo Amarillo-Azul

En este caso analizamos la variación del valor asociado al mecanismo amarillo-azul por medio del análisis de los valores del cono S cuando se realizan igualaciones, bajo distintas condiciones de iluminación, de estímulos caracterizados por un valor de S constante, es decir, estímulos de partida sobre líneas rojo-verde (líneas "r-g").

Las figuras 7.8(a)-(c) muestran los resultados obtenidos para los 3 observadores y cada una de las 5 líneas rojo-verde estudiadas; la línea horizontal continua indica el valor de excitación constante de S para cada una de las líneas r-g.

La excitación del cono S prácticamente se mantiene constante para estímulos en la línea r-g/6, correspondiente a un valor bajo de estimulación de S (35,12 td), aunque para los observadores JH y FP esta línea de S constante se desplaza hacia valores mayores de excitación alrededor de los 42-47 td. En las tablas 7.IX, vemos que la dispersión de las igualaciones respecto de una tendencia central en esta línea es bastante pequeña, algo que no ocurre para las demás líneas rojo-verde. El resto de líneas r-g de excitación constante de S, no se mantienen como tales y existe una dependencia en mayor o menor grado con las condiciones de iluminación. Dentro de una misma línea r-g la dispersión entre igualaciones es menor para estímulos que desplazan el canal L-2M hacia las largas longitudes de onda.

De nuevo se pone de manifiesto la existencia de un proceso adaptativo que actuaría dependiendo del nivel de excitación del cono S. Esto se puede ver más claramente en las líneas r-g/2/3, de altos valores de S (257,23 y 362,74 td), para las que no sólo hay una mayor dependencia con el iluminante sino que también la dispersión respecto de una
determinada excitación media es mayor. Una igualación realizada bajo iluminante de 10000 K inhibe para estos estímulos la sensibilidad relativa de los conos S y, por tanto, es necesaria una mayor estimulación de éstos para mantener la apariencia estable en la igualación del color.

A la vista de todos estos resultados, podemos decir que los cambios de iluminación afectan de modo distinto a las respuestas asociadas a los mecanismos L-2M y S. Mientras que para el primero el nivel de excitación constante tiende a ser tal, con independencia del iluminante bajo el que se realizan las igualaciones, no encontramos lo mismo para los conos S. La respuesta de éstos es menos uniforme y se obtiene una mayor o menor constancia en la excitación, dependiendo del nivel de estimulación de los mismos. De este modo, cuando los estímulos a igualar se caracterizan por valores pequeños de excitación de S, es cuando el nivel de estimulación de estos conos tiende a mantenerse constante e independiente del iluminante, mientras que para estímulos caracterizados por valores mayores de S esa constancia se rompe. En este último caso, los datos obtenidos coinciden con lo previsto por un proceso adaptativo tipo Von Kries, es decir, que la respuesta de los mecanismos fotorreceptores se inhibirá o no en función de la modificación que imponga el estado de adaptación luminosa en sus curvas de sensibilidad espectral.
Figura 7.8(a): Valores medios de S evaluados sobre líneas rojo-verde en función del iluminante test; las líneas horizontales continuas muestran los valores teóricos de excitación de cada línea. Los datos corresponden al observador JR.
Cap. 7: Análisis y discusión de resultados en el espacio de excitación de conos

Figura 7.8(b): Valores medios de S evaluados sobre líneas rojo-verde en función del iluminante test; las líneas horizontales continuas muestran los valores teóricos de excitación de cada línea. Los datos corresponden al observador JH.

Evaluación experimental de la constancia del color ...
Figura 7.8(c): Valores medios de S evaluados sobre líneas rojo-verde en función del iluminante test; las líneas horizontales continuas muestran los valores teóricos de excitación de cada línea. Los datos corresponden al observador FP.
Tabla 7.IX: (a) Valores de S en función del iluminante test y agrupados según líneas r-g; se muestran también los valores obtenidos para cada estímulo y el teórico de cada línea. Los datos corresponden al observador JR.

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>4</td>
<td></td>
<td>2</td>
<td>7</td>
<td>10</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>1000K</td>
<td>624,00</td>
<td>568,50</td>
<td></td>
<td>464,55</td>
<td>418,79</td>
<td>362,74</td>
<td></td>
<td>444,40</td>
</tr>
<tr>
<td>D65</td>
<td>346,46</td>
<td></td>
<td></td>
<td>354,08</td>
<td>316,67</td>
<td></td>
<td></td>
<td>356,01</td>
</tr>
<tr>
<td>E</td>
<td>395,45</td>
<td></td>
<td></td>
<td>314,71</td>
<td>336,57</td>
<td></td>
<td></td>
<td>277,10</td>
</tr>
<tr>
<td>F11</td>
<td></td>
<td></td>
<td></td>
<td>276,84</td>
<td>317,26</td>
<td></td>
<td></td>
<td>272,53</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>217,69</td>
<td>281,34</td>
<td></td>
<td></td>
<td>185,76</td>
</tr>
<tr>
<td>Media</td>
<td></td>
<td></td>
<td></td>
<td>325,59</td>
<td>334,29</td>
<td></td>
<td></td>
<td>307,16</td>
</tr>
<tr>
<td>DS</td>
<td></td>
<td></td>
<td></td>
<td>92,53</td>
<td>51,76</td>
<td></td>
<td></td>
<td>97,55</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>191,62</td>
<td>171,29</td>
<td>182,45</td>
<td>245,44</td>
<td>147,17</td>
</tr>
<tr>
<td>D65</td>
<td></td>
<td></td>
<td></td>
<td>149,73</td>
<td>143,03</td>
<td>160,16</td>
<td>157,94</td>
<td>135,14</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td>110,32</td>
<td>122,81</td>
<td>114,18</td>
<td>152,88</td>
<td>148,80</td>
</tr>
<tr>
<td>F11</td>
<td></td>
<td></td>
<td></td>
<td>28,51</td>
<td>19,23</td>
<td>27,82</td>
<td>39,99</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>123,47</td>
<td>123,75</td>
<td>110,81</td>
<td>122,07</td>
<td>97,51</td>
</tr>
<tr>
<td>Media</td>
<td></td>
<td></td>
<td></td>
<td>83,51</td>
<td>96,61</td>
<td>87,51</td>
<td>98,47</td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td></td>
<td></td>
<td></td>
<td>42,45</td>
<td>30,37</td>
<td>35,13</td>
<td>35,13</td>
<td></td>
</tr>
</tbody>
</table>

202 Evaluación experimental de la constancia del color ...
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>r-gl/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000K</td>
<td>673.65</td>
<td>569.50</td>
</tr>
<tr>
<td>D65</td>
<td>594.61</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>533.10</td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>420.87</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>393.77</td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>523.20</td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>117.32</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>4</th>
<th>r-gl/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000K</td>
<td>505.81</td>
<td>410.52</td>
<td>362.74</td>
</tr>
<tr>
<td>D65</td>
<td>374.31</td>
<td>353.93</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>371.93</td>
<td>312.31</td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>357.27</td>
<td>293.56</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>376.13</td>
<td>228.26</td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>397.09</td>
<td>318.32</td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>61.23</td>
<td>68.72</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>7</th>
<th>10</th>
<th>r-gl/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000K</td>
<td>362.87</td>
<td>301.35</td>
<td>255.67</td>
<td>257.23</td>
</tr>
<tr>
<td>D65</td>
<td>361.02</td>
<td>358.33</td>
<td>262.49</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>315.11</td>
<td>283.80</td>
<td>190.71</td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>292.53</td>
<td>256.73</td>
<td>166.21</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>221.51</td>
<td>250.23</td>
<td>192.82</td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>310.61</td>
<td>289.89</td>
<td>213.62</td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>58.22</td>
<td>43.57</td>
<td>42.95</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>9</th>
<th>12</th>
<th>15</th>
<th>r-gl/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000K</td>
<td>119.36</td>
<td>167.69</td>
<td>181.89</td>
<td>198.94</td>
<td>138.95</td>
</tr>
<tr>
<td>D65</td>
<td>116.30</td>
<td>151.44</td>
<td>163.33</td>
<td>142.93</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>110.46</td>
<td>150.88</td>
<td>148.61</td>
<td>142.52</td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>104.31</td>
<td>123.61</td>
<td>109.05</td>
<td>131.10</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>86.23</td>
<td>110.89</td>
<td>108.95</td>
<td>91.80</td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>107.33</td>
<td>140.90</td>
<td>142.49</td>
<td>141.42</td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>13.13</td>
<td>23.06</td>
<td>32.51</td>
<td>38.41</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>11</th>
<th>14</th>
<th>16</th>
<th>r-gl/5</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000K</td>
<td>101.10</td>
<td>114.78</td>
<td>129.24</td>
<td>128.12</td>
<td>94.20</td>
</tr>
<tr>
<td>D65</td>
<td>90.02</td>
<td>127.11</td>
<td>73.40</td>
<td>98.78</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>94.30</td>
<td>95.45</td>
<td>82.49</td>
<td>108.56</td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>81.78</td>
<td>107.53</td>
<td>70.29</td>
<td>102.70</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>67.48</td>
<td>93.89</td>
<td>66.99</td>
<td>74.16</td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>86.94</td>
<td>107.77</td>
<td>84.48</td>
<td>102.47</td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>12.94</td>
<td>13.85</td>
<td>25.68</td>
<td>19.43</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>13</th>
<th>r-gl/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000K</td>
<td>42.38</td>
<td>42.70</td>
<td>35.13</td>
</tr>
<tr>
<td>D65</td>
<td>38.81</td>
<td>44.08</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>46.64</td>
<td>47.80</td>
<td></td>
</tr>
<tr>
<td>F11</td>
<td>39.93</td>
<td>45.99</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>42.62</td>
<td>40.19</td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>42.11</td>
<td>44.15</td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>3.10</td>
<td>2.94</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 7.IX (Cont.): (b) Idem para el observador JH.

Evaluación experimental de la constancia del color ... 203
Tabla 7.IX (Cont.): (c) Idem para el observador FP.

204 Evaluación experimental de la constancia del color ...
Relaciones de contraste
8.1. MECANISMOS DE CONTRASTE ESPECÍFICOS

Abordamos en este apartado el análisis de los resultados obtenidos cuando se considera la excitación de los mecanismos fotorreceptores en función del contraste con el fondo adaptante. Como ya se ha apuntado en la revisión bibliográfica, el sistema visual podría obtener una la apariencia estable del color de los objetos no sólo por medio de un proceso adaptativo que compense el cambio de iluminación, sino también a través de una representación estable del contraste de dichos objetos respecto del fondo en el que son observados. Este contraste vendría determinado para cada uno de los mecanismos fotorreceptores (conos L, M y S) como la relación entre la excitación de estos mecanismos y la asociada al fondo adaptante; por tanto, en cada punto de la escena observada tendríamos definido una relación de contraste, en función además de las condiciones de iluminación impuestas sobre la escena. Un observador puede encontrarse en su vida diaria con multitud de condiciones de iluminación distintas ya sean de origen natural, como es el caso de la luz de cielo en días despejados, nublados, atardeceres, etc., o bien de origen artificial, como el alumbrado de calle o de interior, sombras y penumbras debidas a objetos circundantes, etc.; sin embargo, resultados previos parecen indicar que dichas relaciones de contraste mantienen una cierta estabilidad en sus valores lo que podría ser indicativo de una nueva perspectiva para la obtención de la constancia del color (Foster y Nascimento, 1994).

Estas relaciones de contraste las encontramos de manera implícita en otras formulaciones del problema de la constancia del color. El ejemplo más directo está en las
teorías Retinex, donde el cálculo del trío de descriptores (expresado por la ecuación §2(18)) para un objeto determinado de un escena pasa por la evaluación de la señal de distintos mecanismos receptores, calculada respecto de las señales generadas por los objetos que lo rodean; de igual forma, en los modelos de apariencia es necesario la elección de un "blanco" de referencia en la escena que determina los atributos perceptivos del color de los objetos observados. En definitiva, se trata de un problema ya clásico como es el del cambio de factor de "escala" y que podemos encontrarlo en las formulaciones originales de las teorías de adaptación cromática (Ives, 1912; Von Kries, 1905).

Para abordar el análisis desde este punto de vista, hemos llevado a cabo un procedimiento análogo al seguido por Lucassen y Walraven (1993), calculando el contraste asociado a los tres tipos de mecanismos fotorreceptores para cada una de las igualaciones realizadas por los observadores. Este contraste quedará referido respecto de los objetos de color que rodean el área central sobre la que los observadores realizaban sus igualaciones; en función de los estímulos que componen el Mondrian evaluamos el contraste según las expresiones:

\[
C_{k,\text{Ref}}^{j} = \frac{q_{k,\text{Ref}}^{j}}{Q_{f,\text{Ref}}} ; \quad C_{k,\text{lg}}^{j} = \frac{q_{k,\text{lg}}^{j}}{Q_{f,\text{lg}}} \tag{1}
\]

donde \(C_{k,\text{Ref}}^{j}\) representa el contraste teórico de los objetos de color estándar a igualar, y \(C_{k,\text{lg}}^{j}\) el contraste obtenido para cada una de las igualaciones. La notación que se ha utilizado es la siguiente:

- \(k\) conos L, M, S;
- \(j\) objeto de color estándar a igualar \(j = 1,\ldots,16\);
- \(f\) fondo Mondrian;
- \(\text{Ref}\) iluminante de referencia (equienergético);
- \(\text{lg}\) iluminante test \(10000\,\text{K},\, D_{65},\, E,\, F_{1},\, A\);
- \(q_{k,\text{Ref}}^{j}\) valor de excitación de los conos \(k\) para el objeto de color \(j\) bajo iluminación de referencia;
- \(q_{k,\text{lg}}^{j}\) valor de excitación de los conos \(k\) para el objeto de color \(j\) bajo iluminación test;

206 Evaluación experimental de la constancia del color ...

\[Q_{k, \text{Ref}}^f \] valor promedio de excitación de los conos k para el Mondrian bajo iluminación de referencia;

\[Q_{k, \text{Ig}}^f \] valor promedio de excitación de los conos k para el Mondrian bajo iluminación test;

Si suponemos que cada uno de los objetos de color que componen el Mondrian constituye un área unitaria de color, el fondo que rodea el área a igualar producirá un valor de excitación promedio sobre cada uno de los mecanismos fotorreceptores L, M y S; además, dado que la forma y posición de dichos objetos variaba aleatoriamente, este valor promedio lo vamos a calcular como media geométrica de las excitaciones producidas por los objetos de color que lo constituían bajo cada una de las condiciones de iluminación simuladas (Brainard y Wandell, 1986). El Mondrian estaba compuesto por 35 objetos de color, uno de los cuales era un acromático con la cromaticidad correspondiente al iluminante que servía de adaptación, por lo que los valores promedio se determinan como los productos siguientes:

\[
Q_{k, \text{Ref}}^f = \left[q_{k, \text{Ref}}^a \prod_{i=1}^{34} q_{k, \text{Ref}}^{a,i} \right]^{1/35}
\]

\[
Q_{k, \text{Ig}}^f = \left[q_{k, \text{Ig}}^a \prod_{i=1}^{34} q_{k, \text{Ig}}^{a,i} \right]^{1/35}
\]

donde \(q_{k, \text{Ref}}^a \) y \(q_{k, \text{Ig}}^a \) representan los valores de excitación de los conos k asociados a la adaptación previa. En la tabla 8.I se presentan los resultados del cálculo de los valores de contraste teóricos asociados a los 16 estímulos utilizados como referencia y que eran observados bajo iluminación equienergética.

Si representamos en una gráfica los valores del contraste teórico \(C_{k, \text{Ref}}^i \) y del contraste \(C_{k, \text{Ig}}^i \) realmente obtenido en las igualaciones, la perfecta constancia del color supondría obtener una serie de puntos sobre una la línea de pendiente unidad en el origen. De (1) se deduce que esta línea está caracterizada por unos valores de L, M y S tales que se verifica la condición:

Evaluación experimental de la constancia del color... 207
Esta expresión indica que la apariencia estable del color de los objetos se alcanza por medio de un proceso adaptativo tipo Von Kries, en el que las condiciones de adaptación luminosa modifican las sensibilidades espectrales de los mecanismos fotorreceptores de forma inversa a como son estimulados. Este proceso es lineal y queda caracterizado mediante los
Figura 8.1: Relaciones de contraste asociadas al cono L para el observador JR y distintos iluminantes test.
coeficientes Von Kries c_k, que en la formulación usual y para una escena observada cualquiera, quedan definidos por medio de la elección de objetos de color de la misma que sean perfectamente difusores y con la cromaticidad del iluminante utilizado como adaptante en cada paso.

Desde este punto de vista, en primer lugar vamos a analizar los resultados asociados a los conos S puesto que en los datos obtenidos de la representación del contraste para L y M se encontró una gran dispersión que no hacía posible ningún tipo de análisis; sirva como ejemplo de ello las figuras 8.1, donde se muestran los resultados para el cono L y el observador JR. Esta gran dispersión es una posible consecuencia, como apuntan Lucassen y Walraven (1993), del grado de solapamiento que muestran las curvas de sensibilidad espectral asociadas a estos conos. Debido a esto, en segundo lugar nos plantearemos si esta dispersión es menor cuando los resultados de las igualaciones se analizan en un estadio superior, considerando en lugar de las señales L y M por separado el contraste asociado al mecanismo rojo-verde, definido como L-2M, y el asociado al amarillo-azul, definido como L+M-S.

8.2. AJUSTE DE RESULTADOS: MODELOS DE PREDICCIÓN

Una vez que el análisis previo de los resultados asociados de los valores de estos contrastes nos muestra la forma global de la distribución de las igualaciones, nos planteamos si es posible ajustar estos datos a algún tipo de curva de regresión. En general, si suponemos un conjunto de variables dependientes (y_1,y_2,y_3,\ldots) resultado de la medida experimental de un conjunto de variables independientes (x_1,x_2,x_3,\ldots), la relación entre estas variables se puede caracterizar por un modelo matemático o ecuación de regresión. El modelo de regresión se ajusta a un conjunto de datos muestrales de modo que es posible obtener un conjunto de funciones matemáticas que representan al modelo teórico:
\[y_1 = f_1(x_1, x_2, x_3, \ldots; p_1, p_2, p_3, \ldots) \]
\[y_2 = f_2(x_1, x_2, x_3, \ldots; p_1, p_2, p_3, \ldots) \]
\[y_3 = f_3(x_1, x_2, x_3, \ldots; p_1, p_2, p_3, \ldots) \]
\[\ldots \]

donde \((p_1, p_2, p_3, \ldots)\) representan uno o más parámetros de los que depende el modelo. La finalidad del procedimiento de regresión será encontrar aquellos valores de los parámetros \(p\) que mejor describan los datos obtenidos.

8.2.1. Resultados asociados a los conos S

En un primer paso se intentó un ajuste sencillo a través de un modelo de regresión lineal del tipo \(y = ax + b\); sin embargo, y como podría esperarse al observar la forma de la distribución de los datos experimentales, los resultados no fueron satisfactorios y los coeficientes de regresión nunca superaron valores de 0,80. Dado que el ajuste a través de una regresión polinómica tampoco mejoraba los resultados, decidimos utilizar un método de ajuste no lineal utilizando una función del tipo:

\[y = ax^b + c \]

en la que \((a, b, c)\) representan los parámetros de los que depende el modelo.

La forma usual de definir el mejor ajuste en este tipo de modelos, es elegir los parámetros de forma tal que los cuadrados de las desviaciones de las curvas teóricas a partir de los datos experimentales, para un rango de variables independientes, sea un mínimo (Draper y Smith, 1981, p.458-517); este proceso equivale a minimizar la función:

\[\chi^2(p_1, p_2, \ldots) = \frac{1}{n - p} \sum_i \sum_j w_{ji} [y_{ij} - f(x_{1i}, x_{2i}, \ldots; p_1, p_2, \ldots)]^2 \]
donde y_{ij} son los valores medidos de la variable dependiente y_j correspondientes a los valores de las variables independientes $x_1=x_{i1}$, $x_2=x_{i2}$, ..., n^{eff} el número total de datos experimentales utilizados en el ajuste, siendo la diferencia ($n^{\text{eff}}-p$) lo que se conoce como el número de grados de libertad del modelo; y w_{ij} los pesos, si los hubiere, asociados a cada uno de los datos medidos.

En nuestro caso sólo existe una variable independiente y otra dependiente, y por tanto la expresión matemática del modelo queda de la forma:

$$y = f(x_1;p_1,p_2,p_3,\ldots)$$ \hspace{1cm} \text{(7)}$$

y la función (4) se simplifica quedando como:

$$\chi^2(p_1,p_2,\ldots) = \frac{1}{n^{\text{eff}}-p} \sum_i w_i [y_i - f(x_1;p_1,p_2,\ldots)]^2$$ \hspace{1cm} \text{(8)}$$

El procedimiento que hemos seguido para minimizar la expresión (4) está basado en el algoritmo de Levenberg-Marquardt que es uno de los más usados en los ajustes por mínimos cuadrados no lineales. El algoritmo minimiza la función $\chi^2(p_1,p_2,\ldots)$ a partir de unos valores iniciales de los parámetros p y, por medio de una serie de pasos iterativos, se van calculando las derivadas parciales $f'_j = \left[\frac{\partial f_j}{\partial p_1}, \frac{\partial f_j}{\partial p_2}, \ldots \right]$ para todos los valores de las variables de entrada; cuanto más próximo a cero sea el valor obtenido de χ^2, mejor será el ajuste de los resultados. El algoritmo también proporciona una estimación de la dependencia ρ_i asociada a cada uno de los parámetros utilizados en el ajuste; la dependencia para el parámetro i-ésimo está definida como:

$$\rho_i = 1 - \frac{1}{C_{ii}C_{ii}^{-1}}$$ \hspace{1cm} \text{(9)}$$

donde C_{ii} es el elemento de la matriz de varianza-covarianza (Draper y Smith, 1981, p.82-83). Cuanto más próximos a la unidad sean los valores que tome este coeficiente, más fuerte será la dependencia encontrada.
Las figuras 8.2(a)-(c) resumen los resultados obtenidos para el contraste asociado a los conos \(S \) y cada una de las condiciones de iluminación simuladas. El ajuste no lineal de los datos así como la predicción lineal tipo Von Kries, se representan en estas figuras como líneas continuas y discontinuas, respectivamente; los valores numéricos de los parámetros \((a, b, c)\) para cada uno de estos ajustes se muestran en la tabla 8.II. Para todos los

<table>
<thead>
<tr>
<th>Observador JR</th>
<th>(y = a x^b + c)</th>
<th>(\rho_i)</th>
<th>(\chi^2)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000 K</td>
<td>0,9991</td>
<td>0,2166</td>
<td>1,59</td>
<td>0,65</td>
<td>-0,57</td>
<td></td>
</tr>
<tr>
<td>D_{e5}</td>
<td>0,9980</td>
<td>0,2673</td>
<td>4,64</td>
<td>0,26</td>
<td>-3,30</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0,9992</td>
<td>0,2030</td>
<td>2,76</td>
<td>0,40</td>
<td>-1,54</td>
<td></td>
</tr>
<tr>
<td>F\textsubscript{11}</td>
<td>0,9981</td>
<td>0,4802</td>
<td>6,33</td>
<td>0,27</td>
<td>-4,34</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0,9980</td>
<td>1,7690</td>
<td>10,66</td>
<td>0,25</td>
<td>-7,37</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observador JH</th>
<th>(y = a x^b + c)</th>
<th>(\rho_i)</th>
<th>(\chi^2)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000 K</td>
<td>0,9993</td>
<td>0,2515</td>
<td>0,93</td>
<td>0,97</td>
<td>-0,04</td>
<td></td>
</tr>
<tr>
<td>D_{e5}</td>
<td>0,9982</td>
<td>0,4823</td>
<td>1,48</td>
<td>0,84</td>
<td>-0,30</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0,9992</td>
<td>0,1974</td>
<td>1,00</td>
<td>0,95</td>
<td>0,03</td>
<td></td>
</tr>
<tr>
<td>F\textsubscript{11}</td>
<td>0,9971</td>
<td>0,5927</td>
<td>2,11</td>
<td>0,78</td>
<td>-0,36</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0,9970</td>
<td>2,7921</td>
<td>3,43</td>
<td>0,83</td>
<td>-0,56</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observador FP</th>
<th>(y = a x^b + c)</th>
<th>(\rho_i)</th>
<th>(\chi^2)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000 K</td>
<td>0,9990</td>
<td>0,2166</td>
<td>1,59</td>
<td>0,65</td>
<td>-0,57</td>
<td></td>
</tr>
<tr>
<td>D_{e5}</td>
<td>0,9980</td>
<td>0,2673</td>
<td>4,34</td>
<td>0,26</td>
<td>-3,30</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0,9994</td>
<td>0,2030</td>
<td>2,76</td>
<td>0,40</td>
<td>-1,54</td>
<td></td>
</tr>
<tr>
<td>F\textsubscript{11}</td>
<td>0,9990</td>
<td>0,4802</td>
<td>6,33</td>
<td>0,27</td>
<td>-4,34</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0,9980</td>
<td>1,7690</td>
<td>10,66</td>
<td>0,25</td>
<td>-7,37</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 8.II: Parámetros \((a, b, c)\) obtenidos en el ajuste del mecanismo \(S \) para los 3 observadores, en función de cada uno los iluminantes test utilizados.
Figura 8.2(a): Valores del contraste teórico para los conos S en función del asociado a cada una de las igualaciones e iluminantes test; los resultados corresponden al observador JR.

214 Evaluación experimental de la constancia del color ...
Figura 8.2(b): Valores del contraste teórico para los conos S en función del asociado a cada una de las igualaciones e iluminantes test; los resultados corresponden al observador JH.
Figura 8.2(c): Valores del contraste teórico para los conos S en función del asociado a cada una de las igualaciones e iluminantes test; los resultados corresponden al observador FP.
observadores e iluminantes utilizados, encontramos que sólo existe cierto grado de constancia del color cuando se presentan estímulos caracterizados por un valor bajo del contraste, si bien este comportamiento es distinto para el iluminante A, para el que existe una mayor dispersión en los contrastes asociados. Los estímulos de menor contraste, como puede observarse de la tabla 8.1, se corresponden con los acromáticos y los de tono verde y rojo, para los que la excitación de S es menor. En general, vemos que todos los puntos en dichas gráficas tienden a quedar por encima de la línea a trazos, lo que indica que el contraste que perciben los observadores para este mecanismo es superior al teórico que tendrían bajo iluminación equienergética.

Es difícil justificar a priori esta no linealidad encontrada en el comportamiento de los conos S, más aun cuando no existe una forma funcional sencilla que relacione los valores de excitación de dichos conos con las condiciones de iluminación y adaptación presentes durante las igualaciones. Además, los resultados tampoco han podido ser extrapolados para la predicción de valores asociados a los conos L y M, tal y como han propuesto otros autores que encuentran la misma dependencia funcional para los 3 tipos de conos (Lucassen y Walraven, 1993); si recordamos la expresión §3(b), esta forma funcional es común para los conos L, M, S y sólo depende de las condiciones de iluminación del fondo circundante. Si bien esta homogeneidad en el comportamiento de los mecanismos fotorreceptores puede ser útil para alcanzar un cierto grado de constancia del color, dentro del esquema de un algoritmo de visión tipo modelo lineal o Retinex, no está justificada desde un punto de vista neurofisiológico. Dejando a un lado la mayor o menor sencillez de los modelos, las señales de los conos S son procesadas por células nerviosas de características morfológicas distintas a aquellas que recogen las que provienen de los conos L y M (Dacey y Lee, 1994; Mariani, 1984) y, por tanto, puede estar justificado el comportamiento distinto que hemos encontrado para los conos S en relación con éstos últimos L y M, más si cabe al tener en cuenta los factores temporales de adaptación más críticos fijados en nuestras experiencias.

Teniendo en cuenta estos resultados hay que plantearse si esta no linealidad es inherente a este tipo de experiencia, afectando por igual a todo el procesado de la información del color, o por el contrario la linealidad subyace en algún punto de la ruta visual, y que por tanto estaría enmascarada por el modelo de análisis que se ha realizado en

Evaluación experimental de la constancia del color ... 217
etapas tan tempranas de la visión (fotorrecepción por los 3 tipos de conos). Además, la no linealidad es un factor no deseable si se quiere implementar un algoritmo de constancia del color sobre la base de estos resultados, más aún si añadimos la falta de dependencia aparente con el iluminante utilizado; aplicado a cualquier sistema de visión artificial esto sería tremendamente ineficiente debido a la multitud de condiciones de iluminación distintas que pueden presentarse en la vida diaria. En base a todos estos factores nos planteamos en los siguientes apartados el análisis de los datos obtenidos cuando se caracterizan las igualaciones a través de los valores de excitación de los mecanismos oponentes rojo-verde y amarillo-azul.

8.2.2. Resultados asociados al mecanismo rojo-verde

Como ya hemos comentado, al representar los datos asociados a los conos L y M por separado en función de los valores teóricos podemos afirmar que no existía ninguna relación sistemática entre ellos, por lo menos desde el punto de vista del contraste para cada uno de dichos mecanismos. Por tanto, nos planteamos si alguna relación podría encontrarse al calcular el contraste cuando se considera éste evaluado en un nivel superior del procesado de la información del color. Para ello hemos calculado el contraste asociado al mecanismo rojo-verde cuando se evalúa el valor de L-2M obtenido en la igualación respecto del fondo Mondrian en el que se realizaba aquella. En este caso, el valor promedio de excitación del fondo se ha determinado primero para L y M por separado, a través de las expresiones (2), y luego se ha calculado el valor final L-2M que es el que aparecerá en el denominador de las ecuaciones (1).

En las figuras 8.3(a)-(c) se representa el contraste $C^t_{k,lg}$ en función del teórico $C^t_{k,Ref}$, tal y como han definido en (1) pero considerando que el mecanismo tipo k es en este caso el mecanismo rojo-verde o canal L-2M. De nuevo, las líneas discontinuas representarían un proceso adaptativo tipo Von Kries y por tanto lineal; como puede observarse, los datos sólo se agrupan en torno de esta línea para algunos de los iluminantes test, en concreto para el propio equienergético y con más uniformidad para el iluminante F_{11}. Este comportamiento se produce para los 3 observadores, siendo las diferencias entre ellos mucho menos acusadas que las encontradas en el análisis asociado a los conos S; teniendo en cuenta cómo se ha
definido el canal rojo-verde, esto puede ser debido a que las posibles diferencias queden enmascaradas en algún punto de la ruta visual debido al grado de solapamiento entre las curvas de sensibilidad espectral de los conos L y M.

Dada la distribución punto a punto que presentan los datos, utilizamos para el ajuste de los mismos un modelo lineal del tipo:

\[y = a + bx \]

<table>
<thead>
<tr>
<th>Observador JR</th>
<th>(\rho)</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000 K</td>
<td>0.9362</td>
<td>-2.40</td>
<td>7.18</td>
</tr>
<tr>
<td>D3s</td>
<td>0.9567</td>
<td>-0.59</td>
<td>0.17</td>
</tr>
<tr>
<td>E</td>
<td>0.9591</td>
<td>-0.09</td>
<td>1.11</td>
</tr>
<tr>
<td>F11</td>
<td>0.9634</td>
<td>0.19</td>
<td>0.89</td>
</tr>
<tr>
<td>A</td>
<td>0.9485</td>
<td>0.25</td>
<td>0.58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observador JH</th>
<th>(\rho)</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000 K</td>
<td>0.9316</td>
<td>-1.32</td>
<td>6.27</td>
</tr>
<tr>
<td>D3s</td>
<td>0.9448</td>
<td>-0.41</td>
<td>2.23</td>
</tr>
<tr>
<td>E</td>
<td>0.9327</td>
<td>-0.01</td>
<td>1.16</td>
</tr>
<tr>
<td>F11</td>
<td>0.9458</td>
<td>0.07</td>
<td>0.87</td>
</tr>
<tr>
<td>A</td>
<td>0.9332</td>
<td>0.22</td>
<td>0.53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observador FP</th>
<th>(\rho)</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000 K</td>
<td>0.9542</td>
<td>-1.97</td>
<td>7.22</td>
</tr>
<tr>
<td>D3s</td>
<td>0.9582</td>
<td>-0.19</td>
<td>2.63</td>
</tr>
<tr>
<td>E</td>
<td>0.9626</td>
<td>-0.12</td>
<td>1.27</td>
</tr>
<tr>
<td>F11</td>
<td>0.9644</td>
<td>0.00</td>
<td>1.05</td>
</tr>
<tr>
<td>A</td>
<td>0.9552</td>
<td>0.30</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Tabla 8.III: Parámetros (a, b) obtenidos en el ajuste del mecanismo L-2M para los 3 observadores, en función de cada uno los iluminantes test utilizados.
Figura 8.3(a): Valores del contraste teórico para el mecanismo L-2M en función del asociado a cada una de las igualaciones e iluminantes test; los resultados corresponden al observador JR.

220 Evaluación experimental de la constancia del color...
Figura 8.3(b): Valores del contraste teórico para el mecanismo L-2M en función del asociado a cada una de las igualaciones e iluminantes test; los resultados corresponden al observador JH.
Figura 8.3(c): Valores del contraste teórico para el mecanismo L-2M en función del asociado a cada una de las igualaciones e iluminantes test; los resultados corresponden al observador FP.
\[y = a + bx \] \hspace{1cm} (10)

donde los parámetros \(a \), \(b \) toman los valores que se muestran en la tabla 8. III para cada una de las condiciones de iluminación impuestas. Los resultados de este ajuste se han representado en las figuras 8.3(a)-(c) con líneas continuas en cada caso.

De las figuras podemos deducir que el proceso lineal tipo Von Kries se pone de manifiesto para las condiciones de iluminación que más estimulan el mecanismo rojo-verde, como son las correspondientes a los iluminantes \(F_{11} \) y A. En el caso del iluminante de 10000 K, de cromaticidad más próxima a la zona de los azules, se produce sin embargo un fuerte alejamiento de los datos respecto de ese tipo de linealidad, si exceptuamos aquellos estímulos de referencia que se caracterizan por un valor del contraste próximo a cero (canal L-2M equilibrado, que correspondía a los estímulos situados en la línea amarillo-azul y-b/2). Este alejamiento se produce siempre sobre rectas de pendiente positiva, de modo que los estímulos que desplazan el canal rojo-verde hacia valores más positivos (estímulos rojos) tienden a ser percibidos en la igualación con un mayor contraste respecto del Mondrian utilizado como fondo adaptante; ocurre lo contrario con aquellos estímulos que desplazan el canal hacia valores más negativos, en ese caso, el contraste obtenido en la igualación es menor y siempre por debajo del correspondiente al que se obtendría en una adaptación lineal tipo Von Kries.

De estos ajustes también pueden extraerse dos características adicionales que son comunes en todos ellos y que nos van a servir para expresar los resultados de una manera global sólo función de las condiciones de iluminación. Por un lado, las rectas de regresión encontradas tienen pendiente positiva, alcanzando su valor máximo para el iluminante de 10000 K. Por otro lado, todas las rectas cortan a la línea discontinua de pendiente unidad en los puntos \(y = x = w \) de valores próximos a cero y que, además, alcanzan valores muy similares tanto entre observadores como para cada uno de los iluminantes utilizados. De este modo, la recta de regresión expresada en (10) se puede escribir como:
\[y - w = b(x - w) \]

(11)

donde el valor de \(w \) se calcularía en cada caso según el cociente:

\[w = \frac{a}{1 - b} \]

(12)

Todos los valores de \(w \) encontrados para cada iluminante test varían poco y son muy similares entre observadores, por lo que podemos tomar el valor medio que resulta ser de 0,49. Identificando los correspondientes términos y según la notación que venimos siguiendo, la expresión (11) quedaría entonces para el mecanismo rojo-verde \(RG \) como:

\[C_{RG,Ig}^{i} - 0,49 = b(C_{RG,Ref}^{i} - 0,49) \]

(13)

donde todavía el valor de la pendiente \(b \) depende tanto del observador como del iluminante presente en la igualación.

Sin embargo, es posible parametrizar el valor de la pendiente \(b \) si expresamos éste en función de las condiciones de iluminación presentes antes y durante la igualación, referidas al valor de L-2M. En la figura 8.4 se presentan los valores de \(b \) respecto del cociente \(RG_{Ig}^{a}/RG_{Ig}^{f} \), donde \(RG_{Ig}^{a} \) representa el valor del mecanismo rojo-verde asociado a la adaptación previa y \(RG_{Ig}^{f} \) el valor promedio de dicho mecanismo para el fondo Mondrian; como puede observarse en la tabla 8.IV, se encuentra que existe una relación lineal entre ambos y que varía poco entre observadores. De este modo, el valor de la pendiente \(b \) lo podemos expresar como una función promedio en la forma:

<table>
<thead>
<tr>
<th>(b = b_1 + b_2 x)</th>
<th>(\rho)</th>
<th>(b_1)</th>
<th>(b_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JR</td>
<td>0,9974</td>
<td>1,37</td>
<td>-1,23</td>
</tr>
<tr>
<td>JH</td>
<td>0,9992</td>
<td>1,26</td>
<td>-1,06</td>
</tr>
<tr>
<td>FP</td>
<td>0,9984</td>
<td>1,45</td>
<td>-1,22</td>
</tr>
<tr>
<td>Media</td>
<td></td>
<td>1,36</td>
<td>-1,17</td>
</tr>
</tbody>
</table>

Tabla 8.IV: Valores ajustados del parámetro \(b \) para el mecanismo rojo-verde.
\[\bar{b} = 1,36 - 1,17 \frac{RG_{Ig}^a}{RG_{Ig}^f} \]

(14)

Finalmente, teniendo en cuenta las expresiones (13)-(14) el contraste percibido en el mecanismo L-2M queda especificado de manera general como:

\[C_{RG.Ig}^j = \bar{b}(C_{RG,Ref}^j - 0,49) - 0,49 \]

(15)

A partir de esta expresión y teniendo en cuenta la definición (1) del término de contraste, la predicción del modelo para el valor de excitación RG del mecanismo rojo-verde vendrá dada por:

\[RG_{Ig}^j = \left[1,36 RG_{Ig}^f - 1,17 RG_{Ig}^a\right] \frac{RG_{Ref}^j}{RG_{Ref}^f} - 0,18 RG_{Ig}^f + 0,57 RG_{Ig}^a \]

(16)

Figura 8.4: Valores del parámetro b, para el mecanismo rojo-verde, en función de las condiciones de adaptación luminosas.

Evaluación experimental de la constancia del color ... 225
Esta expresión puede simplificarse dado que en ella encontramos una forma funcional común a los tres sumandos y que sólo depende del valor del mecanismo rojo-verde asociado a las condiciones de adaptación. Dejando a un lado los valores numéricos constantes encontrados, la ecuación (16) puede ponerse en la forma:

\[
RG_{lg}' = RG_{lg}^a \left[A \prod_{i=1}^{34} RG_{lg}^{f,i} + B \right] \frac{RG_{Ref}^f}{RG_{Ref}^l} + RG_{lg}^C \left[C \prod_{i=1}^{34} RG_{lg}^{f,i} + D \right]; \tag{17}
\]

\((A, B, C, D \text{ ctes})\)

Los parámetros entre corchetes dependen sólo del fondo adaptante en el que realiza la igualación; si designamos por \(u_p\) y \(v_p\) estos parámetros, podemos definir una función \(f_p(x)\), dependiente sólo de los valores \(RG_{lg}^a/\left. RG_{lg}^f\right|_g\) que describen la adaptación del observador al fondo, como:

\[
f_p(x) = t(u_p x + v_p); \quad (p = 1, 2) \tag{18}
\]

\[
t = RG_{lg}^a
\]

de modo que el valor de excitación del mecanismo rojo-verde para cualquier objeto de color \(j\) bajo las condiciones de iluminación \(I_g\), vendrá dado por:

\[
RG_{lg}' = f_1(x) \frac{RG_{Ref}^f}{RG_{Ref}^l} + f_2(x) \tag{19}
\]

8.2.3. Resultados asociados al mecanismo amarillo-azul

En este apartado abordamos un análisis similar al realizado anteriormente para el mecanismo oponente rojo-verde, pero considerando el contraste asociado a la excitación del
mecanismo amarillo-azul; este mecanismo, según el modelo de Boynton, estaba definido como la suma L+M-S. A diferencia de lo que ocurriría para el mecanismo rojo-verde, en el que no existía ninguna relación sistemática entre las señales por separado de los mecanismos fotorreceptores de los que se alimenta (conos L y M), en el caso del mecanismo amarillo-azul ya encontramos que era posible describir la excitación de los conos S de una manera no lineal en función de las condiciones de iluminación. Cabe plantearse sin embargo, si esa no linealidad encontrada, en especial para valores altos de excitación de S, sigue presente en niveles superiores del procesado de la información del color, o por el contrario el tipo de dependencia cambia como consecuencia de la intrusión en esta señal de los otros mecanismos fotorreceptores.

Dado que en términos del contraste que hemos definido L y M no exhibían relación sistemática alguna, la introducción del término L+M en la definición del mecanismo amarillo-azul parece ser más un simple término de ruido que debería modificar el tipo de respuesta asociada a los conos S y de ahí la propia señal L+M-S. Sin embargo, como vamos a mostrar a continuación, no sólo se sigue encontrando una relación entre las igualaciones realizadas cuando se analizan los valores de este mecanismo, sino que además dicha relación es ahora lineal.

En las figuras 8.5(a)-(c) se representan los valores del contraste $C'_{k,1g}$ en función de los teóricos $C'_{k,Ref}$, pero considerando en la definición dada por (1) que el mecanismo tipo k es el mecanismo amarillo-azul YB. Las líneas discontinuas representan un proceso adaptativo lineal tipo Von Kries y, como se puede observar, sólo cuando no existe cambio en la iluminación presente en el Mondrian, los datos para los 3 observadores se agrupan en torno de esta línea. De nuevo encontramos que en la distribución de los datos, las diferencias entre los observadores son mucho menos acusadas que las existentes al analizar el contraste en los conos S por separado. Las líneas continuas en las figuras representan en cada caso el ajuste de los datos encontrado para los iluminantes test utilizados. El modelo de ajuste que hemos empleado, al igual que para el mecanismo rojo-verde, ha sido lineal y caracterizado por una expresión del tipo (10); los resultados de este análisis se muestran en la tabla 8.V para cada una de las condiciones de iluminación test. Se puede comprobar que los coeficientes de regresión toman valores más bajos que los obtenidos para el canal L-2M y, dependiendo del

Evaluación experimental de la constancia del color ... 227
iluminante, los ajustes sólo tienen cuenta entre el 80-90 % (ρ^2) de la varianza de los datos. Si bien puede resultar algo pobre la correlación encontrada creemos que no es suficiente para desochar el tipo de análisis realizado, en base a resultados previos de otros autores (Lucassen y Walraven, 1993) donde los ajustes incorporan entre el 90-95 % de la varianza total, y que debería ampliarse el rango posible de contrastes medido así como las condiciones de adaptación luminosas.

<table>
<thead>
<tr>
<th>Observador JR</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = a + bx$</td>
<td>ρ</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>10000 K</td>
<td>0,9485</td>
<td>0,82</td>
<td>-0,56</td>
</tr>
<tr>
<td>D65</td>
<td>0,9000</td>
<td>0,70</td>
<td>1,51</td>
</tr>
<tr>
<td>E</td>
<td>0,9361</td>
<td>0,58</td>
<td>0,78</td>
</tr>
<tr>
<td>F11</td>
<td>0,8917</td>
<td>0,52</td>
<td>0,23</td>
</tr>
<tr>
<td>A</td>
<td>0,8888</td>
<td>0,66</td>
<td>0,11</td>
</tr>
</tbody>
</table>

| Observador JH |
|---|---|---|
| 10000 K | 0,9207 | 0,67 | -0,60 |
| D65 | 0,9152 | 0,03 | 2,07 |
| E | 0,9484 | 0,00 | 1,17 |
| F11 | 0,9143 | 0,42 | 0,27 |
| A | 0,9031 | 0,47 | 0,16 |

| Observador FP |
|---|---|---|
| 10000 K | 0,9209 | 0,46 | -0,61 |
| D65 | 0,9228 | 0,45 | 2,11 |
| E | 0,9135 | 0,00 | 1,30 |
| F11 | 0,9211 | 0,55 | 0,35 |
| A | 0,9025 | 0,65 | 0,20 |

Tabla 8.V: Parámetros (a, b) obtenidos en el ajuste del mecanismo amarillo-azul para los 3 observadores, en función de cada uno los iluminantes test utilizados.

Evaluación experimental de la constancia del color ...
Figura 8.5(a): Valores del contraste teórico para el mecanismo L+M+S en función del asociado a cada una de las igualaciones e iluminantes test; los resultados corresponden al observador JR.
Figura 8.5(b): Valores del contraste teórico para el mecanismo L+M+S en función del asociado a cada una de las igualaciones e iluminantes test; los resultados corresponden al observador JH.
Figura 8.5(c): Valores del contraste teórico para el mecanismo L+M+S en función del asociado a cada una de las igualaciones e iluminantes test; los resultados corresponden al observador FP.
De las figuras, vemos que para aquellas condiciones de iluminación que más estimulan este canal hacia valores positivos (iluminantes F₁₁ y A) el contraste percibido es casi constante, lo que se correspondería con líneas contínuas de pendiente nula en las figuras, siendo independiente de los estímulos que son igualados. En este caso, los resultados asociados a los iluminantes que menos estimulan el canal amarillo-azul (iluminantes D₅₀ y equienergético) son los que más se aproximan a la linealidad tipo Von Kries, mientras que el mayor alejamiento se produce para el iluminante de 10000 K, que es el que lleva asociado una mayor estimulación de los conos S.

En este caso, encontramos que todos los valores de la ordenada en el origen varían poco para cada uno de los observadores y entre condiciones de iluminación distintas. Las diferencias entre medias dos a dos para los observadores no son significativas, siendo el valor promedio para el parámetro \(a \) de 0,46. Además, de nuevo, los valores de la pendiente \(b \) también se pueden parametrizar en función de la iluminación adaptante antes y durante las igualaciones, de manera análoga a como se hizo en el apartado anterior. En la figura 8.6 se presentan los valores de \(b \) en este caso respecto del cociente \(\frac{YB_{1g}^a}{YB_{1g}^f} \) entre la excitación del mecanismo amarillo-azul asociada a la adaptación previa y el valor promedio correspondiente al fondo Mondrian; como puede observar existe una relación lineal entre ambos parámetros (tabla 8.6VI), pudiéndose expresar \(b \) como la función:

\[
\bar{b} = 1.39 - 1.42 \frac{YB_{1g}^a}{YB_{1g}^f}
\]

Tabla 8.VI: Valores ajustados del parámetro \(b \) para el mecanismo amarillo-azul.

<table>
<thead>
<tr>
<th></th>
<th>(b = b_1 + b_2x)</th>
<th>(\rho)</th>
<th>(b_1)</th>
<th>(b_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JR</td>
<td>0.9903</td>
<td>1.11</td>
<td>-1.17</td>
<td></td>
</tr>
<tr>
<td>JH</td>
<td>0.9968</td>
<td>1.54</td>
<td>-1.56</td>
<td></td>
</tr>
<tr>
<td>FP</td>
<td>0.9990</td>
<td>1.52</td>
<td>-1.54</td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td></td>
<td>1.39</td>
<td>-1.42</td>
<td></td>
</tr>
</tbody>
</table>

Teniendo en cuenta estos resultados y la forma lineal del modelo dada por (10), el contraste asociado al canal L+M-S quedará especificado según:

Evaluación experimental de la constancia del color...
\[C_{YB,Ig} = 0,46 + b C_{YB,Ref} \] (21)

Por tanto, la predicción del modelo para el valor de excitación del mecanismo amarillo-azul YB vendrá dada por:

\[YB^i_{ig} = \left[1,39 YB^i_{ig} - 1,42 YB^a_{ig} \right] \frac{YB^i_{Ref}}{YB^i_{Ref}} - 0,47 YB^i_{ig} \] (22)

La forma funcional de esta expresión es la misma que la mostrada por (16) para el mecanismo rojo-verde y puede simplificarse agrupando términos que dependen sólo de las condiciones de adaptación. Podemos definir una función \(g_p(x) \) análoga a la expresada en (18)

Figura 8.5: Valores del parámetro b, para el mecanismo amarillo-azul, en función de las condiciones de adaptación luminosas.

Evaluación experimental de la constancia del color ... 233
pero específicamente para el mecanismo amarillo-azul, de modo que el valor de excitación de este mecanismo para cualquier objeto de color j bajo iluminante \(I_g \), quedará finalmente en la forma general:

\[
YB_{I_g}^j = g_1(x) \frac{YB_{Ref}^j}{YB_{Ref}^j} + g_2(x)
\]

(23)

8.2.4. Modelo de predicción y teoría Retinex

El modelo de predicción que hemos desarrollado queda especificado por las ecuaciones (13) y (23) que expresan los valores de excitación de los mecanismos rojo-verde (RG) y amarillo-azul (YB), respectivamente, necesarios para igualar la apariencia del color del objeto j bajo distintas condiciones de iluminación. De forma general estas ecuaciones pueden resumirse en la forma:

\[
q_{k,I_g}^j = h_1(x) \frac{q_{k,Ref}^j}{Q_{k,Ref}^j} + h_2(x)
\]

(24)

\((k = \text{RG, YB})\)

Si recordamos la formulación de la ley de los coeficientes de Von Kries, expresada por la ecuación (3), vemos que el modelo propuesto mantiene cierta similitud funcional con dicha ley, aunque el coeficiente \(c_k \) que allí aparecía deja de ser único. En nuestro caso, las condiciones de adaptación luminosas quedan determinadas por dos coeficientes \(h_1(x) \) y \(h_2(x) \), dependientes de los valores de excitación del fondo adaptante antes y durante la igualación; si bien, y de manera análoga a (3), \(h_1(x) \) afecta multiplicativamente al valor de excitación del mecanismo considerado antes del cambio de iluminante, el factor aditivo \(h_2(x) \) que aparece en nuestro modelo no es explicado por la ley Von Kries.

Estas diferencias pueden observarse más claramente en las figuras 8.7 y 8.8, donde se han representado las predicciones para el valor de excitación del mecanismo rojo-verde...
y amarillo-azul sobre la base de nuestro modelo y de acuerdo con lo predicho por la teoría Retinex. Tal y como se expuso en el capítulo 2, la teoría Retinex asume implícitamente un proceso adaptativo tipo Von Kries para la obtención de una perfecta constancia del color. Desde el punto de vista de esta teoría, es posible alcanzar una apariencia estable del color a través del cálculo de un trío de descriptores \(d_k^j \) para cada uno de los mecanismos fotorreceptores considerados y objetos de color en la escena, que vienen expresados como:

\[
 d_k^j = \log \frac{q_k^j}{Q_k^j} \quad ; \quad (k=L,M,S)
\]

(25)

donde \(q_k^j \) es el valor de excitación de los conos k asociado al objeto de color j, y \(Q_k^j \) el valor de excitación promedio de dicho mecanismo para los objetos del fondo adaptante. Para poder comparar la predicció de la teoría Retinex con los resultados de nuestro ajuste debemos calcular los valores de excitación predichos para los mecanismos oponentes rojo-verde y amarillo-azul. Puesto que el proceso adaptativo expresado por la ecuación (25) queda definido de manera independiente para cada uno de los mecanismos fotorreceptores, este cálculo hay que realizarlo determinando primero cada uno de los descriptores \(d_k^j \) para los conos L, M y S por separado, y especificando después cada mecanismo oponente como resultado de las operaciones L-2M y L+M-S. Por tanto, la predicció Retinex se obtendrá como resultado de igualar el conjunto de descriptores bajo cada una de las condiciones de iluminación, es decir:

\[
 d_{k,lg}^j = d_{k,rg}^j \quad ; \quad (k=L,M,S)
\]

(26)

que teniendo en cuenta (25), se transforma para los mecanismos rojo-verde RG y amarillo-azul YB en la expresión final:
\[RG: \quad q_{R,ig}^j = \frac{Q_{L,ig}^j}{Q_{L,Ref}^j} q_{L,Ref}^j - 2 \frac{Q_{M,ig}^j}{Q_{M,Ref}^j} q_{M,Ref}^j \]
\[YB: \quad q_{Y,ig}^j = \frac{Q_{L,ig}^j}{Q_{L,Ref}^j} q_{L,Ref}^j + \frac{Q_{M,ig}^j}{Q_{M,Ref}^j} q_{M,Ref}^j - \frac{Q_{S,ig}^j}{Q_{S,Ref}^j} q_{S,Ref}^j \]

En las figuras 8.7(a)-(b) se muestran los resultados obtenidos para el mecanismo rojo-verde según la teoría Retinex y el modelo propuesto; la línea discontinua de pendiente unidad en el origen representa el proceso lineal tipo Von Kries. Como se observa, la dispersión de los datos es mayor según la predicción Retinex, especialmente para las igualaciones realizadas bajo iluminante A. Sin embargo, la predicción asociada al modelo propuesto consigue que las igualaciones sean prácticamente independientes de las condiciones de iluminación, aunque para estímulos que desplazan la señal L-2M hacia valores más positivos (tonos rojos) la predicción del modelo se hace más ineficiente respecto del iluminante A y equienergético. En cuanto a este último, la teoría Retinex no logra explicar las igualaciones alcanzadas cuando no existe cambio de iluminante en la escena (igualación por memoria) dado que en ese caso el modelo fuerza a los datos a tomar valores sobre la misma línea discontinua teórica.

Las figuras 8.8(a)-(b) presentan los resultados obtenidos para el mecanismo amarillo-azul en función de la predicción Retinex y del modelo propuesto. En este caso, ambos modelos muestran discrepancias cuando intentan agrupar los datos en torno a la línea discontinua, siendo la dispersión respecto de ella bastante acusada cuando los estímulos se caracterizan por altos valores de excitación de S (canal L+M-S desplazado hacia valores muy negativos). A pesar de ello, nuestro modelo es más eficiente que el Retinex para explicar el descuento del iluminante, sobre todo respecto de los iluminantes de 10000 K, D_65 y E, y en menor medida para los F_11 y A.

Este comportamiento es un rasgo diferencial entre los mecanismos oponentes rojo-verde y amarillo-azul, dado que el grado de descuento del iluminante para el mecanismo RG
Figura 8.7: Predicción Retinex (a) y del modelo propuesto (b) para explicar los valores de excitación del mecanismo rojo-verde.
Figura 8.8: Predicción Retinex (a) y del modelo propuesto (b) para explicar los valores de excitación del mecanismo amarillo-azul.

Evaluación experimental de la constancia del color ...
no dependía del nivel de excitación de ninguno de los mecanismos fotorreceptores que lo alimentan. En cambio, para el mecanismo YB tal dependencia sí parece existir con los conos S y se derivaría del comportamiento no lineal encontrado al realizar el análisis de los resultados asociados a los conos S por separado.

8.3. DISCUSIÓN

A través de las sesiones experimentales que hemos desarrollado, se ha tratado de determinar cómo se pone de manifiesto la apariencia estable del color que el sistema visual humano parece alcanzar. Dado el carácter de las igualaciones realizadas (igualaciones asimétricas), ante un cambio de iluminación los observadores obtenían dicha apariencia estable por medio de una estimación de la reflectancia superficial de los objetos observados. Tal y como exponen Brainard y Wandell (1992), estos cambios de iluminación pueden ser compensados mediante una transformación lineal asociada a la absorción para cada uno de los mecanismos fotorreceptores; estas igualaciones asimétricas son por tanto igualaciones realizadas en algún punto de la ruta visual para corregir el cambio de iluminante, y se llevarían a cabo por comparación entre las absorciones relativas de los mecanismos fotorreceptores que han sido producidas por los diferentes contextos visuales.

Tradicionalmente, la ley de los coeficientes de Von Kries ha resuelto este problema por medio de un proceso adaptativo lineal que modifica, por separado, las sensibilidades espectrales de los fotorreceptores (conos L, M, S) y que, dadas sus características, tendría lugar en etapas tempranas de la visión. En nuestro caso, hemos evaluado la validez de esta hipótesis considerando el contraste asociado a cada uno de los mecanismos fotorreceptores, e identificando los factores de escala o coeficientes Von Kries con los valores de excitación cono relativos al fondo en el que se realizaba la igualación (ver ecuación (1)). Los resultados que hemos obtenido indican la existencia de un proceso no lineal que explica la relación entre las igualaciones y los datos teóricos; la predicción lineal tipo Von Kries sólo se alcanzaba para los conos S, cuando el nivel de excitación de los mismos era bajo. La desviación
encontrada del modelo de predicción respecto del propuesto por otros autores que han realizado experiencias similares (Lucassen y Walraven, 1993), puede ser debida a las condiciones de adaptación luminosas más severas que se han impuesto en nuestro caso, y donde los aspectos de memoria juegan un papel relevante. Estas diferencias y el tipo de no linealidad encontrado para altos valores de S especialmente, pueden tener su origen asimismo en el aislamiento que los conos S tienen respecto de los L y M (con sensibilidades espectrales solapadas) y que hace que las variaciones en las condiciones de iluminación afecten de forma más crítica a los conos S.

Debido al grado de solapamiento que presentan las curvas de sensibilidad spectral de los conos L y M, las absorciones relativas entre éstos mecanismos muestran una fuerte correlación. Esta correlación es ineficiente para el procesado visual de la información spectral y una forma de evitar este inconveniente consistiría en transformar linealmente las sensibilidades espectrales de los conos; este proceso se llevaría a cabo antes de alcanzar estas señales las áreas visuales de la corteza cerebral, lo que haría más efectiva la transmisión de la información del color por las neuronas responsables (Wandell, 1995, p.324-326). Si esto es realmente así, no podemos saberlo o al menos no es posible ponerlo de manifiesto con el tipo de experiencias que hemos desarrollado. Por ello, la alternativa que hemos planteado no está referida únicamente a una etapa tan temprana del proceso visual (conos L, M y S), sino que se ha realizado un análisis de los datos en etapas superiores, donde hemos involucrado los mecanismos oponentes de la visión del color: mecanismo rojo-verde, caracterizado por la señal L-2M, y el mecanismo amarillo-azul, caracterizado por la señal L+M-S.

De esta forma, hemos encontrado que la distribución de las igualaciones es más uniforme cuando se evalúan directamente las señales generadas por estos mecanismos oponentes. El ajuste de los datos nos ha permitido introducir un modelo lineal que predice bastante bien los cambios de iluminación. Esta linealidad es deseable si queremos aplicar los resultados del modelo propuesto a un algoritmo de visión que sea eficiente para descontar los cambios de iluminación. Desde este punto de vista, la predicción expresada por las ecuaciones (19) y (23) se muestra más útil que la teoría Retinex para alcanzar una apariencia estable del color por medio de un descuento del iluminante presente en la escena observada. Por otro lado, se han puesto de manifiesto diferencias entre los resultados asociados al
mecanismo rojo-verde y amarillo-azul; este último parece ser menos eficaz para transmitir un perfecta constancia del color, dependiendo el grado de la misma del nivel de excitación de los conos fotorreceptores que alimentan la señal generada por el canal YB, en especial de los conos S.

A pesar de la no linealidad manifestada por las igualaciones respecto de la excitación de los conos S, este comportamiento parece ser de algún modo atenuado cuando se considera en niveles superiores del procesado de la información visual; desde el punto de vista del modelo de Boynton de visión del color no parece existir razón para ello, dado que en la definición del canal YB no se incluye ningún coeficiente multiplicativo que modifique de forma específica la contribución de los conos S, respecto de los L o M. Sin embargo en modelos de visión del color más recientes se ha reconsiderado este aspecto en la definición de YB, de modo que los resultados que hemos obtenido podrían apoyar el hecho de que el papel relevante en el mecanismo amarillo-azul esté soportado más por las señales generadas por los conos L y M, que por la asociada a los conos S (De Valois y De Valois, 1993). Sin embargo, el modelo propuesto, a igual que la teoría Retinex, presentan algunas discrepancias para ciertos iluminantes cuando se evalúa la señal L+M-S; debería entonces realizarse un estudio más específico para estos iluminantes y ampliarse las condiciones de iluminación distintas, con el fin de comprobar si el modelo propuesto realmente falla en este aspecto o por el contrario estas diferencias son inherentes al comportamiento de la señales generadas por el mecanismo amarillo-azul, haciendo a éste diferente del rojo-verde respecto de la constancia del color.
Conclusiones
Las principales aportaciones y conclusiones que se extraen de esta memoria de doctorado se pueden resumir en los siguientes apartados:

1.- Dado el creciente interés y la importancia que ha alcanzado la inclusión del fenómeno de la constancia del color dentro de los algoritmos de Visión Artificial y reconocimiento automático del color, se ha diseñado una experiencia psicofísica con el fin de evaluar el grado de constancia del color que muestra el sistema visual humano. Para ello, se ha puesto a punto y calibrado un monitor CRT color que ha permitido a 3 observadores realizar iguales amonos asimétricas de 16 objetos de color observados en distintos contextos visuales y bajo adaptación a 5 iluminantes diferentes.

2.- En primer lugar se ha realizado, en el espacio CIE-1931, un análisis de la influencia que tienen los aspectos de la memoria al color en el tipo de experiencia desarrollada, encontrándose que, si bien existe un relativo aumento en la luminancia asignada, el tono y saturación de los estímulos recordados son bastante bien reproducidos por cada uno de los observadores. Por otro lado, en este tipo de igualaciones donde no existe cambio de iluminante, no se encuentran diferencias significativas entre observadores, lo que nos ha permitido tomar estas igualaciones como estimadoras del error asociado al grado de constancia del color cuando sí exista cambio en la iluminación adaptante.
Cap. 9: Conclusiones

3.- Si se considera la constancia del color como una compensación total de los desplazamientos colorimétricos inducidos por el cambio de iluminante, el análisis de los datos en el espacio CIE-1931 muestra que la constancia del color es bastante pobre. En particular, los grandes desplazamientos colorimétricos son peor compensados cuando el tono del estímulo observado se considera complementario del asociado a la iluminación presente en la escena. En general, existe un aumento de la luminancia asignada en las igualaciones respecto del valor tomado como referencia (22 cd/m²), siendo esta variación menos acusada para los estímulos considerados como Azules.

4.- Los desplazamientos adaptativos encontrados se han cuantificado según un índice de constancia del color y de acuerdo con líneas de confusión rojo-verde y amarillo-azul seleccionadas en el diagrama CIExy. Si bien el grado de constancia del color, al igual que la variación relativa en luminancia, parece que presentan menos variabilidad para estímulos situados según las líneas amarillo-azul, el análisis en el espacio CIE-1931 se hace difícil y no es concluyente a este respecto, dado que dicho espacio no recoge la excitación efectiva de los estímulos sobre los distintos mecanismos fotorreceptores, ni sobre las etapas superiores del procesado de la información del color que se derivan de ellos.

5.- El tiempo de adaptación empleado (1 minuto), frente a los menores utilizados por otros autores, creemos que se adecúa más a la experiencia que los observadores tienen del fenómeno de la constancia del color en su vida cotidiana, permitiendo una mejor adaptación de aquellos a los iluminantes test utilizados. Este hecho, unido a los resultados obtenidos, muestra que los observadores dan más importancia a la memorización de todos los atributos perceptivos del objeto de color observado, que al mantenimiento estricto de la apariencia del mismo, referida ésta al color percibido del objeto con cada iluminante. En este sentido, nuestros resultados coinciden con los derivados de los trabajos de Arend y colaboradores a partir de las igualaciones que ellos denominan por color "no-relacionado" o igualaciones en "tono" (Arend y Reeves, 1986; Arend et al., 1991).
6.- Respecto del análisis en el espacio de excitación de conos, se ha evaluado primero la influencia de la memoria sobre el nivel de excitación de los mecanismos L-2M y S, cuando se mantienen uno u otro constantes de manera alternativa. En general, el mecanismo L-2M no mantiene totalmente constante su excitación aunque en ninguno de los casos las diferencias son superiores a los 20 td; la estimulación de L-2M tiende a estar por debajo del valor teórico asignado en cada caso, si bien esta tendencia se invierte para aquellos estímulos de tonalidad más próxima al rojo. Sin embargo, las discrepancias encontradas en el nivel de excitación de S han sido mayores. Se ha obtenido que la desviación respecto de los valores teóricos constantes va aumentando a medida que lo hace S; para estímulos caracterizados por valores bajos de S las diferencias son sólo de 25 td, mientras que para aquellos estímulos con mayor valor de S estas diferencias suben hasta los 150 td.

7.- Del análisis de los desplazamientos colorimétricos y adaptativos en el espacio de excitación de conos, se deduce que los procesos de adaptación de los que se vale el sistema visual humano son más o menos efectivos en función del nivel de excitación de los mecanismos de visión del color. Para los conos S se encuentra que si su nivel de estimulación es bajo, los observadores tienden a realizar igualaciones en "tono" fundamentando su tarea en un proceso de descuento del iluminante mediante el cual se reproduce la misma cantidad de luz absorbida bajo el iluminante de referencia; mientras que si el nivel de estimulación de S es alto, los desplazamientos adaptativos tienden a compensar los colorimétricos, en mayor o menor grado, por medio de lo que sería un proceso de adaptación tipo Von Kries. En cuanto al mecanismo L-2M, no parece claro que ocurra algo similar, encontrándose desplazamientos adaptativos algo mayores cuanto mayor es la activación de los conos sesibles a las largas longitudes de onda.

8.- Se ha realizado un análisis de la influencia del iluminante en la excitación de los mecanismos de visión del color por separado, encontrándose que los conos S son bastante más sensibles a las variaciones de las condiciones de iluminación que el mecanismo L-2M. Ante un cambio de iluminante, los conos S responden con dos tipos de procesos adaptativos diferentes: para valores bajos de excitación de S, la
resposta de estos mecanismos fotorreceptores es independiente de los cambios inducidos por los distintos iluminantes, mientras que a medida que crece el nivel de estimulación de S, se pone de manifiesto un proceso de adaptación tipo Von Kries que modifica la sensibilidad espectral de este mecanismo de manera inversa a como es excitado. Sin embargo, para el mecanismo L-2M las variaciones encontradas son menos importantes, lo que indicaría su menor sensibilidad y dependencia con dichos cambios de iluminación.

9.- Los resultados anteriores se han confirmado al analizar el efecto del cambio de iluminante en las líneas de igual excitación de S y L-2M seleccionadas. Se encuentra que las condiciones de adaptación luminosas hacen que las líneas de confusión rojo-verde dejen de ser tales dependiendo del nivel de estimulación de los conos S; si bien para valores bajos de éstos el iluminante no afecta al nivel de excitación constante de estas líneas, manteniéndose su orientación, para valores más altos de S se rompe esa constancia en función de cómo las condiciones de iluminación modifican la sensibilidad espectral de los conos S. En cuanto a las líneas amarillo-azul, parecen estar menos afectadas por el cambio de iluminante no dependiendo el nivel de excitación constante de L-2M en cada una de ellas de la estimulación de S.

10.- La posibilidad de que la apariencia estable del color de los objetos no sea sólo consecuencia de un proceso adaptativo tipo Von Kries que modifica las sensibilidades de los mecanismos fotorreceptores ha sido también analizada, considerando una representación del contraste de dichos objetos respecto del fondo en el que son observados. Los datos muestran una desviación respecto de un proceso adaptativo lineal tipo Von Kries, resultando que si bien para los conos S se encuentra una relación no lineal entre los valores teóricos de excitación de este mecanismo y los encontrados en las igualaciones, no se encuentra una correlación similar entre los datos asociados a los conos L y M.

11.- Dado que esa no linealidad es un factor no deseable para cualquier algoritmo eficiente de constancia del color se realizó un análisis de los datos en un estadio superior del

246 Evaluación experimental de la constancia del color ...
proceso de la visión del color, considerando las relaciones de contraste asociadas a los mecanismos oponentes rojo-verde (L-2M) y amarillo-azul (L+M-S). Se han encontrado formas funcionales lineales semejantes para expresar los valores de excitación de estos mecanismos que son necesarios para igualar la apariencia del color de un objeto en distintas condiciones de iluminación. Estas formas funcionales incluyen no sólo una factor de escala que modifica la señal de cada mecanismo de visión del color según las condiciones de adaptación luminosas, sino también un término aditivo que no es explicado por la ley Von Kries.

12.- El modelo propuesto para la predicción de los valores de excitación de los mecanismos rojo-verde y amarillo-azul se ha comparado con el derivado de la teoría Retinex. Los resultados asociados a nuestro modelo mejoran la predicción Retinex y resulta ser más eficiente para alcanzar la apariencia estable del color por medio del descuento del iluminante, en especial para el mecanismo L-2M. Finalmente, se han puesto de manifiesto diferencias entre los datos asociados al mecanismo rojo-verde y amarillo-azul, dado que el grado de constancia del color que puede transmitir este último parece depender del nivel de excitación de los conos S que lo alimentan.

AREND, L.E., REEVES, A., SCHIRILLO, J. y GOLDSTEIN, R., "Simultaneous color

NAYATANI, Y., TAKAHAMA, K., SOBAGAKI, H., "Prediction of color appearance

SPRONSON, W.N., Colour science in television and displays systems, Adam Hilger, Bristol, 1983.

Bibliografía

Apéndice
A continuación se muestran dos ejemplos de estructuras Mondrian utilizadas en las sesiones experimentales tal y como eran presentadas a los observadores. Cada una de las escenas está compuesta por los mismos objetos de color aunque en cada caso están reproducidos bajo condiciones de iluminación diferentes; el primero de los Mondrian corresponde a la iluminación de referencia (iluminante equienergético), y el segundo se ha reproducido bajo iluminante A. En estos ejemplos puede observarse claramente cómo el cambio de iluminación impone, sobre cada uno de los objetos que componen la escena, una serie de desplazamientos colorimétricos que se traducen en una variación de cromaticidad y luminancia para cada objeto del Mondrian.