
Department of Computer Architecture
and Technology

Arquitectura eficiente de condensación de

información visual dirigida por

procesos atencionales

Efficient architecture to condensate visual information

driven by attention processes

PhD Thesis Dissertation

Maŕıa Sara Granados Cabeza

Granada, October 2012

Editor: Editorial de la Universidad de Granada
Autor: María Sara Granados Cabeza
D.L.: GR 1055-2013
ISBN: 978-84-9028-492-6

Efficient architecture to condensate

visual information driven by

attention processes

Arquitectura eficiente de condensación de información visual

dirigida por procesos atencionales

Presented By

Maŕıa Sara Granados Cabeza

To apply for the

International PhD Degree in Computer and Network Engineering

October 2012

ADVISORS

Javier Dı́az Alonso

Sonia Mota Fernández

Alberto Prieto Espinosa

D. Javier Dı́az Alonso, Da. Sonia Mota Fernández y D. Alberto Prieto
Espinosa, Ayudante Doctor, Ayudante Doctora y Catedrático de Univer-
sidad respectivamente del Departamento de Arquitectura y Tecnoloǵıa de
Computadores de la Universidad de Granada

CERTIFICAN

Que la memoria titulada“Arquitectura eficiente de condensación de infor-
mación visual dirigida por procesos atencionales” ha sido realizada por Da.
Ma Sara Granados Cabeza, bajo nuestra dirección en el Departamento de
Arquitectura y Tecnoloǵıa de Computadores de la Universidad de Granada
para optar al grado de Doctor Internacional en Ingenieŕıa de Computadores
y Redes.

Granada, a 21 de October de 2012

Fdo. Javier Dı́az Alonso, Sonia Mota Fernández, Alberto Prieto Espinosa

Directores de la Tesis

Editor: Editorial de la Universidad de Granada
Autor: Ma Sara Granados Cabeza
D.L: En trámite
ISBN:En trámite

Agradecimientos

Muchas son las personas a las que debo, en mayor o menor medida, esta
tesis doctoral. No sólo me habéis ayudado en los aspectos más técnicos de
ella, sino que me habeis influido tanto dentro como fuera de la investigación;
con el apoyo de todos vosotros he crecido como investigadora, ingeniera y
persona. Por ello, gracias de todo corazón. Esta tesis es posible gracias
a vosotros y cada vez que la mire pensaré en los momentos compartidos y
sonreiré, a pesar del esfuerzo que ha costado.

Por creer en mı́ y saber que conseguiŕıa terminar esta tesis incluso cuando
yo misma dudaba de ello, quiero agradecérselo a mis padres, mis hermanos
(Esther, Jose y Javi), a mi abuela y mi familia en general. Gracias por estar
ah́ı cada d́ıa, para lo que necesite, incluso cuando no sé qué necesito o lo que
me hace falta es no estar. Gracias por entenderme y por quererme a pesar
de ello, sin vosotros no seŕıa nadie.

Quiero agradecérselo especialmente a Manu: por estar ah́ı siempre que lo
he necesitado, por ayudarme con todo lo que ha podido (desde hacer figuras
y etiquetar imágenes hasta hacerme la comida cuando se me olvidaba hasta
que teńıa hambre), por tener fe en mı́ y quererme cada d́ıa.

En los momentos más duros de investigación y escritura de esta tesis,
mis apoyos más cercanos fueron mis directores de tesis, Javi, Sonia y Al-
berto. Es bueno saber que no estás “luchando” sola, que hay alguien detrás
que tiene una idea de por dónde debes seguir, aunque no siempre estés de
acuerdo con ese camino. Muchas gracias por vuestras ideas, comentarios
y correcciones. También me gustaŕıa agradecer a Edu, al que yo siempre
consideraré mi director honoŕıfico, por darme la oportunidad de trabajar en
un proyecto como DRIVSCO y por apoyarme durante todos estos años no
sólo con contratos sino con consejos y ánimos.

De igual forma, quiero agradecer al Departamento de Arquitectura y
Tecnoloǵıa de Computadores en general por el apoyo recibido, y en concreto
a Encarni, Julio, Manolo y Paco, por ayudarme con los papeleos varios
que son ese mal necesario del que no podemos huir. También me gustaŕıa
agradecerle a la Universidad Católica de Lovaina la oportunidad de realizar
una estancia con ellos y en concreto a Marc por acogerme en su departa-

5

6

mento, Nick por ayudarme a encontrar una aplicación concreta para mis
investigaciones y Karl por las cervezas y los buenos ratos.

Conoces a muchas personas cada d́ıa, pero nunca te planteas si llegan
para quedarse o cuánto pueden influirte. A todas esas personas que he ido
conociendo en el camino y que han cambiado mi vida de alguna forma,
gracias por apoyarme en los malos momentos, réır conmigo en los buenos y
estar siempre ah́ı. Esta tesis no habŕıa sido posible sin vosotros.

Gracias a “mis niñas” (Isa, Yami, Noe y Lucy) que han aguantado mis
locuras y devaneos desde hace más de 15 años y por ello se merecen un
monumento... o varios.

Gracias a mis compañeros de facultad que poco a poco han pasado a ser
mis amigos y sin los que el camino hasta aqúı hubiera sido mucho más abur-
rido: Alberto, Delia, Iván, Jesús, Jose Enrique (aka Dpp), Juampa, Laura,
Quique, Pablo (aka Fergu), Sebas y especialmente a Aı́da, por aguantarme
a lo largo y ancho del mundo, y a Dani (aka Atún), por ofrecerse a leer y
buscar las erratas de esta tesis.

Gracias a mis compañeros de despacho que han avanzado estos años
conmigo tanto f́ısicamente -desde Ciencias al CIE y de ah́ı al CITIC- como
pśıquicamente hasta convertirse en amigos e incluso en ejemplos a seguir:
Fran, Jarno, Juanma, Leo, Matteo, Mauricio, Niceto, Raquel, Richard, Sil-
via. Hemos llegado hasta aqúı juntos y poco a poco, ayudándonos, lo con-
seguiremos todos.

Gracias a todos los compañeros, de departamentos amigos o “enemigos”,
e incluso de fuera de la universidad, que han formado parte de mi d́ıa a d́ıa
durante estos años: Ana, Antonio, Belén, Curro, David, Javi A., Javi P.,
Jose Luis, Juanlu, Maŕıa, Migue M., Nieves, Paco, Sandra, Trini, Urquiza.

Gracias para mis nuevos amigos de RTI que me apoyaron e incluso em-
pujaron a poner el punto final a esta tesis: Abhi, Antonio, Edu, Fernando,
Gianpiero, Ken, Secho, Vishal.

Dobles gracias a todos aquellos que no se dejaron engañar por las apari-
encias y quisieron “escarbar” hasta conocerme y aceptarme como soy... o
casi. No voy a repetir nombres, pero sabed que soy mejor persona por
teneros cerca.

Contents

List of Figures xi

List of Tables xv

List of Abbreviations xvii

Abstract 1

Resumen 3

Introducción en Español 5

Motivación . 5

Proyecto Europeo DRIVSCO 8

Condensación frente a Compresión 14

Objetivos Principales . 15

Herramientas y Métodos Utilizados 16

Contenido de la Tesis . 16

1 Introduction 19

1.1 Motivation and Framework 19

1.1.1 European Project DRIVSCO 22

1.1.2 Condensation vs Compression 27

1.2 Main Goals . 28

1.3 Tools and Methods Used . 29

1.4 Dissertation Outline . 29

2 Introduction to Computer Vision 31

vii

viii CONTENTS

2.1 Image Filtering Operations 32

2.1.1 Image Smoothing . 33

2.1.1.1 Mean Filter 34

2.1.1.2 Gaussian Filter 34

2.1.1.3 Median Filter 35

2.1.1.4 Bilateral Filter 35

2.1.1.5 Anisotropic Diffusion 36

2.1.2 Bio-inspired Filtering 37

2.1.2.1 Gabor Filters 37

2.2 Sparse Visual Features . 38

2.2.1 Energy, Orientation and Phase 39

2.2.2 Edges . 42

2.2.2.1 Canny Edge Detector 42

2.2.2.2 Sobel Edge Detector 44

2.2.3 Intrinsic Dimension 46

2.2.4 Local Descriptors . 47

2.2.4.1 SIFT . 47

2.2.4.2 SURF . 49

2.2.4.3 Other Descriptors 50

2.3 Saliency Maps: Attention Processes 51

2.3.1 Bottom-Up Saliency Maps 51

2.4 Dense Visual Features . 53

2.4.1 Disparity . 54

2.4.1.1 Stereo System Problems 55

2.4.1.2 Phase-Based Disparity 56

2.4.2 Optical Flow . 57

2.4.2.1 Phase-Based Optical Flow 57

2.4.2.2 Optical Flow Problems 59

2.5 Multi-Modal Visual Features 59

3 Semidense representation map for visual features 63

3.1 Relevant Points . 65

3.1.1 Structure-Based Selection 65

CONTENTS ix

3.1.1.1 Canny Edge Detector Approach 66

3.1.1.2 Sobel Edge Detector Approach 67

3.1.1.3 Intrinsic Dimension Approach 68

3.1.2 RP Extractor Assessment 68

3.1.3 Integration with Other Sparse Features 70

3.2 Plain or Context Regions . 71

3.2.1 Grid Window Size Ω 72

3.2.2 Filter Selection . 73

3.3 Results and Validation . 75

3.3.1 Semidense Representation Map 75

3.3.2 Inherent Regularization 77

3.4 Conclusions . 81

4 Method Validation: Experimental Results and Applications 85

4.1 Integration of Attention Processes 86

4.1.1 Bottom-Up Attention Processes: Saliency Maps 86

4.1.2 Top-Down Attention Processes: IMOs 88

4.1.2.1 Independently Moving Object Extraction . . 91

4.2 Obstacle Detection on a Driving Scenario 93

4.2.1 Ground-Plane Extraction 94

4.2.1.1 Implementation Details 94

4.2.1.2 GP-Extraction using Semidense Maps 96

4.2.2 Obstacle Detection . 97

4.2.2.1 Implementation Details 98

4.2.2.2 Results using Semidense Maps in Obstacle
Detection . 98

4.3 Conclusions . 101

5 Implementation on reconfigurable hardware 103

5.1 Architecture Design . 105

5.1.1 Communication Protocol 107

5.1.1.1 Grid Transfer 107

5.1.1.2 RP Transfer 108

x CONTENTS

5.2 Implementation Details . 109

5.2.1 Grid Mask Extractor 110

5.2.2 Hysteresis and Non-maximum Filter 110

5.2.3 RP and Grid Extractor 111

5.2.4 Condensation Core . 111

5.2.5 Storage Module . 112

5.2.6 Resource Usage Analysis 113

5.3 Results and Examples . 114

5.3.1 Bandwidth Reduction in DRIVSCO Framework 116

5.3.2 Low-Level Feedback 118

5.4 Conclusions . 120

6 Conclusions 123

6.1 General Discussion . 123

6.2 Future work . 125

6.3 Publications . 126

6.4 Main contributions . 127

Conclusiones en español 129

Discusión General . 129

Trabajo Futuro . 132

Publicaciones . 132

Aportaciones Principales . 133

A Receiver Operating Characteristic Curves 135

B Decondensation 137

B.1 Interpolation Methods . 137

B.1.1 MATLAB-Function-Based Interpolation 137

B.1.2 Replicate Method . 138

B.1.3 Linear Method . 139

B.2 Interpolation Validation . 140

List of Figures

1 Esquema del sistema visual humano 7

2 Sistema de visión de DRIVSCO 10

3 Limitaciones de la conducción por la noche 11

4 Sistema de baja visión de DRIVSCO 12

5 Requisitos de memoria para DRIVSCO 13

6 Requisitos de ancho de banda para DRIVSCO 14

1.1 Human visual pathway . 21

1.2 DRIVSCO Vision system . 23

1.3 Night driving constrains . 24

1.4 DRIVSCO low-level vision system 25

1.5 DRIVSCO memory constrains 26

1.6 DRIVSCO bandwidth constrains 27

2.1 Convolution mask example 33

2.2 Gabor filter bank . 38

2.3 Energy, orientation and phase example 41

2.4 Canny detector example . 44

2.5 Illustration intrinsic dimensionality 46

2.6 SIFT and SURF local descriptors 50

2.7 Itti and Koch saliency extraction model 52

2.8 Saliency map . 53

2.9 Disparity example . 55

2.10 Optical flow example . 58

2.11 Multi-modal descriptor extraction process 60

xi

xii LIST OF FIGURES

3.1 Condensation process example 64

3.2 Relevant points extractor based on Canny edge detector . . . 66

3.3 Non maximum suppression code 67

3.4 Relevant point mask comparison 69

3.5 Relevant-point extractor comparison 70

3.6 Grid extraction scheme . 71

3.7 ROC curves for grid window size 74

3.8 Filter and grid-size comparison 75

3.9 Condensation process including interpolation 77

3.10 Optical flow example . 78

3.11 MSE and condensation ratio of a Optical Flow sequence . . . 78

3.12 Inherent regularization example 80

3.13 Regularization results . 82

4.1 RP extractor using saliency maps 87

4.2 Disparity condensation using saliency maps 89

4.3 Optical flow condensation using saliency maps 90

4.4 IMO extraction algorithm . 92

4.5 IMOs integration in semidense maps 93

4.6 Ground-plane extraction . 96

4.7 Ground-plane output for dense and semidense maps 97

4.8 Obstacle detection . 99

4.9 Comparison dense vs semidense obstacle detection 100

5.1 Integration of condensation modules in the optical-flow ex-
traction system . 106

5.2 Grid storage: List of points 107

5.3 RP storage: AER protocol . 108

5.4 Condensation core architecture 109

5.5 Physical memory distribution. 113

5.6 Integration of condensation modules in the low-level-vision
system . 115

5.7 Bandwidth comparison: dense vs semidense 118

5.8 Attention-feedback example 119

LIST OF FIGURES xiii

A.1 ROC Curve example . 136

B.1 Condensation and Decondensation Process 138

B.2 Interpolation methods . 139

B.3 Interpolation MSE for a disparity sequence 140

B.4 Interpolation methods . 141

B.5 Interpolation MSE for a disparity sequence 142

List of Tables

2.1 Local and Global Disparity Techniques 56

3.1 Grid window sensitivity and specificity 73

3.2 Condensation output. 76

3.3 Low-cost hardware optical flow 79

3.4 Optical flow regularization . 81

4.1 Performance test . 99

5.1 Hardware resources used for the condensation core 114

5.2 Memory requirements . 116

5.3 Bandwidth requirements . 117

xv

List of Abbreviations

a.k.a. Also known as

AAE Average Angular Error

DoG Difference of Gaussians

DRIVSCO European Project “Learning to Emulate Perception-Action
Cycles in a Driving School Scenario”

DSP Digital Signal Processor

FPGA Field Programmable Gate Array

fps Frames per second

FT Fourier Transform

GLOH Gradient location-orientation histogram

GPU Graphic Processing Units

GUI Graphical User Interface

HA High accuracy

HDL Hardware Description Language

Hw/Sw Hybrid Hardware and Software system

IMO Independently Moving Object

LoG Laplacian of Gaussian

MA Medium accuracy

MCU memory control unit

MSE Mean Squared Error

NaN Not a number

xvii

xviii List of Abbreviations

PCA-SIFT Principal Components Analysis applied to SIFT descrip-
tors

ROC Receiver Operating Characteristic

SIFT Scale-Invariant Feature Transform

SLAM Simultaneous Localization and Mapping

SoC System-on-a-Chip

STD Standard deviation

SURF Speeded Up Robust Features

TTC Time To Contact

VHA Very high accuracy

WTA Winner-Take-All

Abstract

This dissertation presents an innovative semidense representation map that
condense visual features into sparser maps, reducing memory, bandwidth
and computing resource requirements. This semidense map, contrary to
existing ones, efficiently includes not only salient-area information, but also
non-salient one which increases versatility and allows us to employ it in
multiple applications.

This dissertation is structured in three parts.

In the first part, we review the state of the art, paying special attention
to dense and sparse visual features. After that, we focus on our novel repre-
sentation. First, we study how sparse features extract relevant information
from the images and which would be our best option as saliency indica-
tor. Then, we focus on the non-salient part of the image, assessing different
filter operations as regularization tools and deciding how many of these non-
salient points we should include. And finally, we efficiently integrate both
kinds of points in a unique representation.

In the second part of this dissertation we assess our semidense represen-
tation map in different scenarios. First we employ it in an attention system
in which we receive and integrate not only top-down signals but also bottom-
up ones, which are not usually included in other systems. This integration
presents our representation as a very well suited framework to incorporate
target-driven information in a vision system. Then, we use a semidense map
as input in a real-world application based on a driving scenario, reducing
execution time while achieving similar results as using the original dense
map.

The third part corresponds to the design and implementation of our
algorithm in a FPGA, incorporating it to a low-level-vision system with
memory, bandwidth and computational resources constrains. Our semidense
maps solves those constrains and allows for the integration of feedback from
mid-/high-level algorithms in real-time. All this without introducing any
penalty in the system.

1

2 Abstract

As conclusion, our results show that our semidense representation map
is versatile (i.e. condenses any dense visual feature), achieves real-time con-
strains, inherently regularizes the input features and integrates feedback
from other stages. All these characteristics make our solution a very use-
ful representation map for any real-time embedded system that processes
images.

Resumen

Esta tesis doctoral presenta un innovador mapa de representación disperso
que condensa caracteŕısticas visuales hasta conseguir una representación más
dispersa, reduciendo los requisitos de memoria, ancho de banda y recursos
computacionales. Este mapa semidenso, al contrario que otros existentes, in-
cluye eficientemente tanto información de zonas salientes como no salientes,
lo cual incrementa la versatilidad y permite su utilización en múltiples apli-
caciones.

Esta tesis doctoral está divida en tres partes.

En la primera parte revisamos el estado del arte, poniendo especial
atención a las caracteŕısticas visuales densas y dispersas. A continuación,
nos centramos en nuestra novedosa representación. Primero estudiamos
cómo las caracteŕısticas dispersas extraen la información relevante de una
imagen y cuál seŕıa la mejor opción como indicador de saliencia en nuestro
mapa de representación. Después nos centramos en la parte no saliente de
la imagen, estudiando los distintos filtros disponibles como herramientas de
regularización y decidiendo qué cantidad de puntos no salientes debeŕıamos
incluir. Y por último integramos eficientemente estos dos tipos de puntos
en una única representación.

En la segunda parte de esta tesis doctoral estudiamos el comportamiento
de nuestro mapa de representación semidenso en distintos escenarios. Primero
lo utilizamos en un sistema atencional en el que recibimos e integramos
señales tanto bottom-up como top-down, estas últimas no son normalmente
incluidas por otros sistemas. Esta integración muestra nuestra representación
como un marco muy adecuado para la incorporación de información dirigida
por objetivos en un sistema de visión. A continuación, hemos utilizado nue-
stro mapa semidenso como entrada a una aplicación real basada en un es-
cenario de conducción de veh́ıculos, reduciendo el tiempo de ejecución a la
vez que obtenemos resultados similares a los conseguidos con el mapa denso
original.

La tercera parte corresponde al diseño e implementación de nuestro al-
goritmo en una FPGA, incorporándolo a un sistema de baja visión con
limitaciones de memoria, ancho de banda y recursos computacionales. Nue-

3

4 Resumen

stro mapa semidenso soluciona estas limitaciones y permite la integración,
en tiempo real, de señales realimentadas procedentes de algoritmos de medio
y alto nivel. Todo esto sin introducir ninguna penalización en el sistema.

Como conclusión, los resultados muestran que nuestro mapa de repre-
sentación semidenso es versátil (es decir, condensa cualquier caracteŕıstica
visual densa), soporta condiciones de tiempo real, regulariza inherentemente
las caracteŕısticas de entrada e integra retroalimentación procedente de otras
etapas de procesamiento. Todas estas caracteŕısticas hacen que nuestra
solución sea una representación muy útil para cualquier sistema empotrado
de tiempo real que procese imágenes.

Introducción

Motivación

La curiosidad es una de las caracteŕısticas más importantes de los seres
humanos. A lo largo de la Historia, los humanos nos hemos maravillado por
el mundo que nos rodean, incluso llegando a luchar para defender nuestros
descubrimientos o nuestras ideas. Fue la curiosidad la que hizo que la Ciencia
avanzara y que pasáramos del descubrimiento del fuego al aterrizaje en la
Luna, de los dibujos de Da Vinci sobre la anatomı́a humana hasta el Proyecto
Genoma Humano. Y la chispa que inicia cualquier Tesis Doctoral es, y
siempre será, la curiosidad.

“¿Cómo funciona el cerebro?” es sólo una de las muchas preguntas que
la humanidad ha tratado de contestar desde el principio de los tiempos. E
incluso hoy en d́ıa, no podemos dar una respuesta clara a esta pregunta. Sin
embargo, podemos emular su comportamiento para desarrollar, por ejemplo,
un cerebelo virtual [50] y utilizarlo para mejorar nuestros conocimientos en
Medicina o Robótica. Nuestro grupo de investigación se centra en descubrir
cómo funcionan el cerebro y la vista humanos, aplicando ese conocimiento en
el área de las Ciencias de la Computación con el fin de mejorar los sistemas
actuales y ayudar a la cura de múltiples enfermedades.

Una de las primeras cosas que descubres cuando trabajas en Visión Ar-
tificial es lo complejo y eficiente que es el sistema visual humano. Desde
el sistema de recepción, la retina, nuestro sistema visual supera cualquier
sistema artificial existente. La retina no sólo captura la intensidad y el
color de la escena, sino que reduce las tareas que deberá realizar el cortex
visual [44] ya que lleva a cabo cierto pre-procesamiento en el plano focal.
Este pre-procesamiento es realizado por los ganglios retinales que extraen
información relacionada con transiciones espacio-temporales para, posteri-
ormente, mandarlo al cortex en forma de impulsos neuronales [12]. Además,
la retina env́ıa estos datos siguiendo un esquema de comunicación dirigido
por eventos (event-driven communication) [14], reduciendo aśı el ancho de
banda que necesita. Por ello, encontramos muchos estudios importantes
que actualmente se dedican a desarrollar un sistema de visión bio-inspirado

5

6 Introducción en Español

capaz de emular el comportamiento de la retina humana y de sustituir a
los sistemas convencionales de captura de imagen (es decir, las cámaras).
En concreto, Boahen [12, 21] ha desarrollado una retina artificial hecha en
silicio que se comporta de manera similar a la retina de los mamı́feros. Al-
gunos investigadores de nuestro grupo han desarrollado entornos de trabajo
que simulan el comportamiento de sensores retinomórficos [55, 34], llegando
incluso a extraer información sobre flujo óptico[4].

A pesar de estas prometedoras investigaciones, para entender completa-
mente el funcionamiento del sistema visual humano, tenemos que ir más allá
de la retina, tenemos que entrar en el cerebro. El cortex visual está localizado
en la parte posterior del cerebro, mas concretamente, en el lóbulo occipital
y se encarga de procesar la información visual. Existen multitud de estu-
dios relacionados con el cortex visual de los primates, intentando entender
cómo interpretamos lo que vemos. En su art́ıculo [47], Logothetis describe
las distintas estructuras que permiten la visión de la siguiente forma:

El sistema visual humano empieza con los ojos y se extiende a
lo largo de diversas estructuras internas del cerebro, hasta lle-
gar a las distintas regiones del cortex visual primario (V1, etc.).
En el quiasma óptico, los nervios ópticos se cruzan, entre otras
razones, para permitir que cada hemisferio del cerebro reciba in-
formación de ambos ojos. Dicha información es filtrada por el
núcleo geniculado lateral, que a su vez está formado por varias
capas de células nerviosas que reaccionan sólo a est́ımulos proce-
dentes del ojo. El cortex temporal inferior se encarga de ver
formas. Algunas células de cada una de estas áreas sólo se ac-
tivan cuando una persona o mono es consciente de un est́ımulo,
no debido al propio est́ımulo.

La Figura 1 muestra tres esquemas de dónde está localizado el cortex
visual, cuáles son sus subdivisiones funcionales y cómo la información es
transferida desde el ojo hasta la primera de esas subdivisiones, el cortex
visual primario o V1.

La mayoŕıa de las neuronas del cortex visual reaccionan ante infor-
mación sobre la orientación lineal de los bordes siguiendo una organización
jerárquica similar a la de un modelo de procesamiento serie, es decir, cuando
las células simples reacciona a un est́ımulo luminoso, las células complejas
reaccionan a la orientación [82]. Las neuronas están organizadas por colum-
nas donde aquellas células que se encuentran en la misma columna posee
los mismos atributos. Usando esta información, muchos investigadores im-
portantes se han centrado en las prótesis neuromórficas. En concreto, nue-
stro grupo de investigación ha formado parte de varios proyectos que pre-
tend́ıan desarrollar prototipos de este tipo de prótesis en el ámbito de la

Motivación 7

Figure 1: Esquema del sistema visual humano, extráıdo del trabajo de Lo-
gothetis [47].

rehabilitación visual, demostrando que las neuro-prótesis corticales (las in-
terfaces con el cortex visual) son factibles para pacientes con ceguera pro-
funda [65, 64].

Otro parámetro a tener en cuenta en el proceso de visión es la atención.
Cuando un jugador de fútbol del equipo contrario se aproxima a la porteŕıa,
el portero se centra en él y todo lo demás se emborrona. Esto se debe a
que la atención del portero se ha centrado en el otro jugador, intentando
calcular a dónde y cuándo va a tirar. Itti y Koch proponen dos procesos
distintos de atención que trabajan simultáneamente [39]. El primero es
un proceso voluntario que posee un criterio de selección que se adapta al
objetivo que perseguimos en cada momento (en nuestro ejemplo, el portero
elige al otro jugador como objetivo). El segundo proceso, sin embargo,
es independiente de la tarea a realizar (bottom-up en inglés), extrayendo
aquella información que resalta intŕınsecamente con respecto a su entorno
[67]. En nuestro ejemplo, el portero sigue procesando la información sobre el
resto de jugadores que se mueven alrededor de la porteŕıa. De esta manera,
si alguno de ellos se aproxima demasiado a la porteŕıa, pueden convertirse
en un objetivo, por ejemplo, si el otro jugador decide pasarles el balón,
provocando una cambio de objetivo dependiente de la atención (top-down en
inglés). No obstante, los sistemas actuales basados en atención no incluyen
este tipo de información top-down porque es más complicada de procesar

8 Introducción en Español

(llegando a ser su proceso de extracción cerca de ocho veces más lento que
en los casos bottom-up [89]).

Todos estos conceptos no sólo se pueden aplicar a la visión humana,
sino que muchos de ellos puede utilizar fácilmente en robótica, escenarios
de conducción, video vigilancia, seguridad, etc. De esta manera reducimos
las barreras entre las distintas disciplinas y creamos un marco perfecto para
colaborar con otros investigadores. Por ello, nuestro grupo ha colaborado
activamente en varios proyectos multidisciplinares europeos y nacionales.
Algunos de ellos son: ECOVISION, CORTIVIS, DINAM-VISION. De he-
cho, el trabajo que presentamos en esta tesis doctoral surgió en el ámbito del
proyecto europeo DRIVSCO [90] (IST-016276-2). Además de DRIVSCO,
esta investigación ha sido financiada mediante el proyecto nacional ARC-
VISION (TEC2010-15396) y la beca de Formación de Personal Universitario
(FPU).

Proyecto Europeo DRIVSCO

DRIVSCO deriva del nombre en inglés del proyecto Learning to Emulate
Perception-Action Cycles in a Driving School Scenario, que significa aprox-
imadamente “Aprendiendo a emular los ciclos percepción-acción en un esce-
nario basado en una autoescuela”. Este proyecto empezó en 2001 y terminó
en 2009. El consorcio estaba formado por varias universidades y compañ́ıas
a lo largo de Europa:

• Universidad Vytautas Magnus, en Lituania.

• Universidad de Granada.

• Hella KGaA, empresa de Alemania.

• Universidad Católica de Leuven, en Bélgica.

• Universidad del Sur de Dinamarca.

• Universidad de Munich, en Alemania.

• Universidad de Göttingen, en Alemania.

• Universidad de Génova, en Italia.

Formar parte de un consorcio internacional facilita la transferencia de
conocimiento, por lo que el principal objetivo de DRVSCO está definido aśı
[90]:

El objetivo principal de DRIVSCO es diseñar, probar e imple-
mentar una estrategia que permita combinar diferentes sistemas

Proyecto Europeo DRIVSCO 9

de aprendizaje adaptativo con sistemas de control convencional.
Partiendo de un sistema basado en una interfaz hombre-máquina
completamente operacional, el proyecto pretende llegar a un sis-
tema autónomo, mejorado a través del aprendizaje, que pueda
actuar de manera proactiva empleando distintos mecanismos pre-
dictivos. DRIVSCO pretende emplear aprendizaje y control basa-
dos en un ciclo cerrado de percepción acción que extrae su infor-
mación tanto de coches como de los conductores; combinando,
por primera vez, técnicas avanzadas de análisis visual de la es-
cena (realizado principalmente en hardware) con mecanismos de
aprendizaje secuencial supervisado con el fin de conseguir un sis-
tema de control semi-autónomo y adaptativo para coches y otros
veh́ıculos. La idea central de este proyecto es que el coche de-
beŕıa aprender a conducir autónomamente simplemente correla-
cionando la información de la escena con las acciones realizadas
por el conductor.

En el contexto de este proyecto, el sistema deberá ser probado
y utilizado en escenarios de visión nocturna empleando para ello
sistemas de visión infrarroja, que es nuestro dominio de la apli-
cación principal y comercialmente más relevante. Aqúı hemos
concebido un sistema que puede aprender a conducir un coche
durante el d́ıa y aplicar las estrategias de control aprendidas de
manera autónoma durante la noche.

Desde un punto de vista más práctico, el principal objetivo de DRIVSCO
era instalar un sistema artificial de visión en un coche y, en vez de infor-
mar al conductor de una situación peligrosa (como por ejemplo un peatón
cruzando en una carretera poco iluminada), predecir cómo actuaŕıa el con-
ductor y reaccionar de manera similar. En la Figura 2a vemos el coche de
pruebas utilizado en DRIVSCO, incluyendo las cámaras y la interfaz gráfica
con el usuario (GUI). El sistema visual humano, aunque es muy fiable du-
rante el d́ıa, no lo es tanto durante la noche. En la Figura 3 podemos ver
cómo durante el d́ıa nuestro sistema es capaz de percibir información proce-
dente de objetos más lejanos. Por la noche, sin embargo, la distancia a
la que percibimos objetos se ve dramáticamente reducida y, por lo tanto,
conducir de noche es mucho más peligroso. En DRIVSCO hemos intentado
reducir la diferencia entre la visión de d́ıa y de noche instalando cámaras
capaces de grabar tanto a la luz del d́ıa como por la noche (es decir, cámaras
infrarrojas). La interfaz gráfica con el usuario permite que éste seleccione
entre diferentes algoritmos: detección de la ĺınea de la carretera, cálculo
del tiempo para el impacto con otros objetos, extracción del plano de la
carretera, etc. tal y como se muestra en la Figura 2 [51].

Por su experiencia en SoC (siglas del término inglés System-on-a-Chip) y
Visión Artificial, nuestro grupo se encargó del diseño e implementación de un

10 Introducción en Español

a. Sistema de visión de DRIVSCO

b. Interfaz gráfica de salida de DRIVSCO

Figure 2: Sistema de visión de DRIVSCO. a) muestra las cámaras y el
monitor de visualización instalados en el coche de pruebas. b) muestra la
interfaz gráfica de salida donde vemos señalada la opción de detección de la
ĺınea de la carretera.

sistema h́ıbrido hardware-software (Hw/Sw) que extrae distintas primitivas
visuales (tanto dispersas, por ejemplo la enerǵıa y la fase; como densas,
por ejemplo estéreo y flujo óptico) en tiempo real tal y como se muestra
en la Figura 4. Además, es necesario que este SoC combine las primitivas
extráıdas y la información enviada por niveles superiores. Por otro lado,
las primitivas visuales extráıdas por medio de hardware son más ruidosas
que las obtenidas en software, principalmente debido a las limitaciones en
la precisión en punto flotante y la memoria. Por lo tanto, todo el proceso se
beneficiaŕıa de un paso de regularización capaz de suavizar, aunque sólo sea

Proyecto Europeo DRIVSCO 11

Figure 3: Limitaciones de la conducción por la noche. A) muestra una
situación de conducción diurna. B) ejemplifica el aprendizaje realizado en
DRIVSCO que correlaciona los eventos visuales en el instante t0 y las ac-
ciones del conductor en el instante t1. C) muestra una situación de con-
ducción nocturna. EN t0 el conductor no ha visto la curva todav́ıa. D)
ejemplifica el comportamiento del sistema de visión nocturna de infrarrojos,
permitiendo que el sistema DRIVSCO “vea” la curva. Tras haber aprendido
la correcta acción durante el d́ıa, el sistema DRIVSCO será capaz de ayudar
al conductor.

parcialmente, dicho ruido [86]. Además de este co-diseño Hw/Sw, Pauwels
y otros desarrollaron una solución basada en procesadores gráficos (GPU,
siglas en inglés del término) [63]. No obstante, esta solución no puede ser
empotrada en un SoC y, por lo tanto, sólo es útil como comparación.

En resumen, DRIVSCO necesitaba integrar distintas caracteŕısticas o
primitivas visuales de manera eficiente y apta para ser implementada en
hardware, a la vez que las regularizaba para suavizar el ruido. Sin embargo,
estos requisitos no son los únicos a los que hay que enfrentarse ya que los
SoCs normalmente tienen memoria y ancho de banda limitados.

En la Figura 4 podemos ver cómo nuestro sistema recibe pares de imágenes
(izquierda y derecha), analizando la escena a partir de ellas. Este análisis
consiste en extraer diversas caracteŕısticas visuales utilizando como entrada
las imágenes capturadas. En la figura también mostramos el número de
bits por ṕıxel que necesita cada una de estas caracteŕısticas (hasta 24 en
el caso del movimiento). De hecho, para extraer algunas de estas carac-
teŕısticas, nuestro sistema necesita almacenar en memoria varias máscaras
de convolución1 y, en algunos casos, varias imágenes (como por ejemplo para

1Estas máscaras se explican en la sección 2.1

12 Introducción en Español

Figure 4: Sistema de baja visión de DRIVSCO. Dos cámaras estéreo cap-
turan la escena y la env́ıa al sistema de baja visión que se encuentra em-
potrado en una plataforma de co-procesado basada en FPGAs. El sistema
de baja visión extrae varias caracteŕısticas visuales: enerǵıa (energy), ori-
entación (orientation), fase (phase), movimiento (motion) y disparidad (dis-
parity); y las env́ıa a un ordenador (PC) a través de una interfaz de comu-
nicación (flecha roja)

el flujo óptico). Si sumamos todo esto nos damos cuenta de la cantidad de
memoria que necesitamos. Además, una vez calculadas estas caracteŕısticas,
tendremos que mandarlas al co-procesador (el PC en nuestro caso) en el que
se extraerán caracteŕısticas de más alto nivel. Vamos a hacer algunas cuentas
con números reales para que queden más claras las restricciones de nuestro
sistema.

Memoria Asumiendo que todas las caracteŕısticas pueden ser extráıdas por
el SoC, lo cual no es un problema trivial [86], necesitaŕıamos almace-
nar: varias imágenes (hasta un máximo de 5 para el flujo óptico2);
las caracteŕısticas calculadas3, cada una de las cuales es extráıda uti-
lizando una aproximación multi-escala [75]; y varios filtros4 utilizados
durante este proceso. La Figura 5 muestra estos requisitos de memoria

2Más detalles en la sección 2.4.2
3Explicadas en el caṕıtulo 2
4Explicados en la sección 2.1

Proyecto Europeo DRIVSCO 13

Figure 5: Requisitos de memoria para DRIVSCO considerando tres resolu-
ciones de imagen: muy alta (VHA con 1024x1024 ṕıxeles) en azul, alta (HA
con 800x600) en rojo y media (MA con 512x512) en verde.

de nuestro sistema si utilizamos cuatro (4) escalas y consideramos tres
resoluciones de imagen: media (512x512), alta (800x600) y muy alta
(1024x1024). Podemos ver cómo necesitaŕıamos más de 100MB para
almacenar estas imágenes y caracteŕısticas, mientras que los sistemas
hardware normalmente tienen menos de 50MB disponibles [93].

Ancho de banda. De igual forma, si asumimos que todas estas carac-
teŕısticas deben ser enviadas al co-procesador, podŕıamos calcular el
ancho de banda que necesitamos en DRIVSCO. En la Figura 6 ve-
mos el ancho de banda necesario para nuestro sistema si utilizamos las
mismas resoluciones y escalas que en el caso de la memoria.

De estos requisitos podemos deducir que la integración de las carac-
teŕısticas visuales precisa de algún tipo de compresión o condensación (en
la sección siguiente discutimos la diferencia entre estos dos términos). Por
otra parte, la mayoŕıa de los algoritmos de medio y alto nivel no necesitan
un mapa denso para trabajar, sino que normalmente realizan una selección
previa de los puntos más interesantes [53]. Por lo tanto, la mejor solución
seŕıa una que integrara, regularizara y seleccionara las caracteŕısticas antes
de mandarlas a niveles superiores, imitando el comportamiento del sistema
visual humano.

Otro problema a tener en cuenta es si el coprocesador será capaz de
procesar esta cantidad de datos. El proceso de recibir dichos datos y aplicar
sobre ellos los distintos algoritmos para extraer caracteŕısticas de más alto
nivel no es trivial y requiere cálculos complejos y gran cantidad de memoria,

14 Introducción en Español

Figure 6: Requisitos de ancho de banda para DRIVSCO considerando tres
resoluciones de imagen: muy alta (VHA con 1024x1024 ṕıxeles) en azul, alta
(HA con 800x600) en rojo y media (MA con 512x512) en verde.

no pudiendo ser asumida por procesadores empotrados. De hecho, esta carga
de trabajo puede llegar a ser excesiva incluso para muchos procesadores
estándar.

Condensación frente a Compresión

Hemos estado hablando de lo eficiente que es el sistema visual humano y de
lo útil que seŕıa imitarlo. Sin embargo, desde un punto de vista práctico,
el principal problema de nuestro problema son las restricciones de memoria,
ancho de banda y capacidad computacional. ¿Seŕıa suficiente con comprimir
las imágenes?

La mayoŕıa de las técnicas de compresión utilizan niveles de color o
grises y redundancias espacio-temporales en la información como bases de
reducción. Cuando comprimimos sin pérdidas, los datos se agrupan teniendo
en cuenta el nivel de gris o color, de manera que ocupan menos espacio en
memoria; si la compresión es con pérdidas, el número de bits asociados a cada
ṕıxel se reduce y sus valores son agrupados utilizando técnicas estad́ısticas
[78]. Sin embargo, estas técnicas se basan simplemente en la información de
color/gris de la imagen, que no es suficiente si lo que queremos es integrar
la realimentación procedente de los algoritmos de más alto nivel.

Frente a este método basado puramente en la compresión, nuestro obje-
tivo es satisfacer los requisitos de memoria y ancho de banda a la vez que
compensamos las estimaciones ruidosas regularizando las caracteŕısticas vi-
suales. En la literatura encontramos algunas soluciones que aplican com-

Condensación frente a Compresión 15

prensión para regularizar imágenes [60]. Sin embargo, estas soluciones pre-
cisan gran cantidad de procesamiento eminentemente iterativo, que no es
muy apropiado para nuestro sistema, ya sobrecargado de por śı. Esto nos
lleva a otro de nuestros problemas: la carga de trabajo. Nuestra propuesta
tiene que reducir la carga computacional del coprocesador de manera que
estos algoritmos de alto nivel puedan ser integrados en un sistema empo-
trado.

Por lo tanto, nuestra mejor opción no es simplemente comprimir, sino
condensar, es decir, seleccionar aquellas zonas de la imagen que son más rel-
evantes para nuestro sistema dependiendo de la tarea que estemos realizando
en cada momento. Nuestro algoritmo de condensación deberá encargarse no
sólo de almacenar y enviar la información con el mı́nimo de recursos posi-
ble, sino que además deberá seleccionar los datos más importantes. Junto
con las propiedades antes mencionadas, nuestro algoritmo de condensación
es capaz de preservar y regularizar las zonas planas de las caracteŕısticas
visuales. Además, hemos prestado especial atención en permitir la fusión
información visual, facilitando la realimentación de información [72].

Objetivos Principales

De los párrafos anteriores podemos extraer los siguientes requisitos que com-
ponen nuestros objetivos principales:

Condensación. Necesitamos reducir los requisitos de memoria y ancho de
banda, aśı como la posterior carga computacional, extrayendo para
ello la información relevante de las caracteŕısticas visuales densas y
almacenándola eficientemente.

Versatilidad. Debemos condensar cualquier caracteŕıstica visual que nue-
stro sistema de visión pueda extraer.

Implementable en hardware. El algoritmo de condensación que diseñemos
debe incluirse como un módulo hardware en nuestro sistema empo-
trado de visión, por lo que debemos tener en cuenta los requisitos de
tiempo real que esto conlleva.

Realimentación. Vamos a recibir realimentación desde niveles superiores
de procesamiento (atención entre otros), por lo que nuestro módulo
debe ser capaz de incorporarlos en el proceso de condensación.

Representación eficiente. Los niveles superiores de procesamiento van a
recibir nuestra salida condensada como entrada. Por lo tanto, esta
salida debe ser fácil de utilizar por dichos niveles.

16 Introducción en Español

Recuperación de la información. Dado que no sabemos a priori qué in-
formación va a ser más importante para los niveles superiores de proce-
samiento, debemos almacenar suficientes datos como para recuperar
cualquier detalle que puedan necesitar.

En esta tesis doctoral presentamos, explicamos y probamos nuestra solución
para satisfacer estos requisitos: un mapa de representación semidenso que
condensa caracteŕısticas visuales densas en una representación más dispersa
a la vez que mantiene la mayoŕıa de la información contenida originalmente.
Esta representación reduce las necesidades de memoria y ancho de banda y
además disminuye la carga computacional.

Herramientas y Métodos Utilizados

Los algoritmos presentados en esta tesis doctoral han sido implementados,
inicialmente, en el entorno de programación MATLAB. Hemos elegido MAT-
LAB porque favorece una implementación rápida de los algoritmos, aśı como
su posterior análisis. De esta forma hemos sido capaces de probar distintas
soluciones para nuestro problema, ampliando la versatilidad de la versión
final. Además, MATLAB proporciona gran cantidad de funciones para la
visualización de imágenes y otros resultados. Otro punto a favor es que
muchos de los algoritmos de alto nivel que utilizarán caracteŕısticas visuales
condensadas están implementados en MATLAB.

No podemos olvidarnos de nuestro proyecto, DRIVSCO. El algoritmo
tiene que ser implementado en un lenguaje de descripción hardware para que
podamos sintetizarlo e integrarlo en nuestro SoC. Por lo tanto hemos elegido
Handel-C y el entorno de programación de Mentor Graphics (anteriormente
conocido como Celoxica) para implementar la versión hardware de nuestro
algoritmo. Dentro de los lenguajes de descripción hardware, Handel-C es
un lenguaje de alto nivel, utilizado principalmente para la programación de
FPGAs, que incluye la mayoŕıa de las caracteŕısticas comunes del lenguaje C
junto a un conjunto de instrucciones, tipos de datos y sentencias de control
diseñadas para la implementación en hardware, poniendo especial énfasis en
las sentencias de paralelización. La diferencia entre Handel-C y otros lengua-
jes de descripción hardware es el nivel de abstracción. Handel-C facilita un
mayor nivel de abstracción a la hora de definir los circuitos complejos [35],
acelerando el ciclo de diseño/implementación.

Contenido de la Tesis

Vamos a continuar esta tesis doctoral con una pequeña introducción a los
principales algoritmos de Visión Artificial que hemos usado durante nuestra

Contenido de la Tesis 17

investigación. Por lo tanto, el caṕıtulo 2 explica operadores de filtrado, car-
acteŕısticas visuales densas y dispersas, sistemas atencionales y descriptores
multi-modales (la solución más prometedora existente en la literatura para
resolver nuestro problema). En el caṕıtulo 3 estudiamos por qué ninguna de
las opciones existente satisface todos nuestros requisitos y presentamos nues-
tra solución: un mapa de representación semidenso. Este caṕıtulo incluye
además distintos métodos para obtener nuestro mapa semidenso, resultados
usando secuencias conocidas (benchmarks en inglés) y un estudio de las ca-
pacidades inherentes de regularización. En el caṕıtulo 4 mostramos el resul-
tado de utilizar nuestro mapa semidenso en varias aplicaciones reales, desde
sistemas atencionales (top-down y bottom-up) a escenarios de conducción
(con ejemplos de deteción de la carretera y de objetos). En el caṕıtulo 5
nos centramos en la implementación de nuestro algoritmo de condensación
en hardware espećıfico, es decir, en la FPGA, incluyendo resultados de con-
sumo de recursos, rendimiento e integración con el sistema de visión de
DRIVSCO. Finalmente, el caṕıtulo 6 resumen las principales aportaciones
de nuestra investigación y sugiere varias ĺıneas de trabajo futuro.

Chapter 1

Introduction

1.1 Motivation and Framework

Curiosity is one of the main characteristics of human beings. All over the
History, people have wondered about the world, even fighting to defend
their discoveries and opinions. It was curiosity what propelled Science from
the discovery of fire to the landing on the Moon, from Da Vinci’s human
anatomy drawings to the Human Genome Project. And the spark of any
PhD dissertation is, and will always be, curiosity.

“How does brain work?” is just one of the many questions mankind
has tried to answer since the beginning of time. And even today we cannot
give a straightforward answer to it. We can, however, emulate its behavior;
developing, for instance, a virtual cerebellum [50] and using it to improve
Medicine or Robotics. Our research group focuses on applying human brain
and vision knowledge into Computer Science, improving the current systems
and achieving results that could help existing diseases.

One of the first things you realize when working on Computer Vision
is how complex and efficient human visual system is. From the reception
system, the retina, our visual system overcomes current robotic systems.
The retina not only grabs intensity and color but also reduces the visual
cortex workload [44], taking advantage of significant focal-plane processing.
This reduction is mainly due to the preprocessing performed by the retinal
ganglions which extract directly spatio-temporal transition related informa-
tion and transfer it using neural spikes [12]. Moreover, the retinal system
shrinks data bandwidth because of its event-driven communication scheme
[14]. Therefore, some important research efforts are currently concentrated
on the development of bio-inspired vision systems that will provide an alter-
native to the conventional sensors (i.e. cameras) and grabbing systems. In
particular, Boahen’s artificial retina [12, 21] mimics mammal retina on a sil-

19

20 Chapter 1. Introduction

icon chip. Some of our group inputs in this field are several frameworks that
allow to work with retinomorphic sensors [55, 34], e.g. extracting optical
flow [4].

Regardless of these research lines, to completely understand how the
human visual system works, we need to go beyond the retina, we need to
get into the brain. The visual cortex, which is located in the occipital lobe,
in the back of the brain, is responsible for processing visual information.
Many books and papers study how primate cortex works, how we interpret
what we see. In his article [47] Logothetis describes the structures for seeing
this way:

Human visual pathway begins with the eyes and extends
through several interior brain structures before ascending to the
various regions of the primary visual cortex (V1, and so on). At
the optic chiasm, the optic nerves cross over partially so that
each hemisphere of the brain receives input from both eyes. The
information is filtered by the lateral geniculate nucleus, which
consists of layers of nerve cells that each respond only to stim-
uli from one eye. The inferior temporal cortex is important for
seeing forms. Some cells from each area are active only when a
person or monkey becomes conscious of a given stimulus.

Fig. 1.1 shows three simple schemes of where the visual cortex is located,
which are its functional subdivisions and how the information is transfer
from the eye to the first of them, the primary visual cortex or V1.

Most of the visual cortex neurons respond to linear edge orientation in
a hierarchical organization following a serial processing model, i.e. as the
simple cells react to light stimulus, the complex ones respond to orientation
parameters [82]. Neurons are organized in a columnar architecture where
the ones in the same column have the same attributes. Based on this idea,
many important researchers are focused on neuromorphic prosthesis. In
particular, our research group has been part of several projects that aim to
develop prototypes in the field of visual rehabilitation and demonstrate the
feasibility of a cortical neuro-prosthesis (interfaced with the visual cortex)
as an aid to deep blind people [65, 64].

Another parameter to consider in the vision process is the attention.
When a soccer player from the opposite team gets close to the goal, the
goalie focuses on him and everything else blurs. This is because the goalie
attention is focused on the other player, trying to calculate where and when
he is going to shoot. Itti and Koch propose that there are two processes of
attention working simultaneously [39]. The first one is a voluntary process
whose selection criteria change depending on the target application (in our
example, the goalie chooses the other player as target). The second one, on

1.1. Motivation and Framework 21

Figure 1.1: Logothetis [47] schema of the human visual pathway.

the other hand, is a task-independent process driven in a bottom-up way
that extracts intrinsically salient information from the context [67]. In our
example, the goalie is still processing information about the other players
moving around the goal. If any of them get too close they might become a
target, triggered by a top-down decision (such as detecting that the player
with the ball looking for somebody to pass it). Current attention-based
systems, however, do not usually include top-down information because it is
a complicate process (its extraction process is circa eight times slower than
bottom-up one [89]).

All of these concepts are not limited to human vision, they can eas-
ily be applied to practical scenarios such as robotics, driving scenarios,
video surveillance, security, etc. Hence, we thin the boundaries between
disciplines and provide the perfect framework to explore the possibilities
of our research. Thus, our group has actively joined several European
and National multi-disciplinary projects. Some of them are: ECOVISION,
CORTIVIS, DINAM-VISION. In fact, the work presented in this disser-
tation came out at the European Project DRIVSCO [90] (IST-016276-2).
Apart from DRIVSCO, this research have also been funded by the national
project ARC-VISION (TEC2010-15396).

22 Chapter 1. Introduction

1.1.1 European Project DRIVSCO

DRIVSCO stands for Learning to Emulate Perception-Action Cycles in a
Driving School Scenario, and it was a project that started in 2001 and
finished in 2009. The consorcium involved several universities and companies
around Europe:

• Vytautas Magnus University, Lithuania.

• University of Granada, Spain.

• Hella KGaA, Germany.

• Katholieke Universiteit Leuven, Belgium.

• University of Southern Denmark.

• Westfälische Wilhems-University Münster, Germany

• Georg-August-University, Germany.

• University of Genoa, Italy.

Being part of an international consortium facilitates knowledge sharing,
therefore, the main goal of DRIVSCO was defined in [90] as follows:

The main goal of DRIVSCO is to devise, test and implement
a strategy of how to combine adaptive learning mechanisms with
conventional control, starting with a fully operational human-
machine interfaced control system and arriving at a strongly
improved, largely autonomous system after learning, that will
act in a proactive way using different predictive mechanisms.
DRIVSCO seeks to employ closed loop perception-action learn-
ing and control to cars and their drivers; combining for the
first time advanced (largely hardware based) visual scene analysis
techniques with supervised sequence learning mechanisms into a
semi-autonomous and adaptive control system for cars and other
vehicles. The central idea of this project is that the car should
learn to drive autonomously from correlating scene information
with the actions of the driver.

In the context of this project this system shall be tested and
applied in night-vision scenarios with infra-red illumination, which
is our main and commercially very relevant application domain.
Here we envision a system that can learn to drive a car dur-
ing daylight and apply the learned control strategies in an au-
tonomous way to the system and augmented field of infrared
night-vision.

1.1. Motivation and Framework 23

a. DRIVSCO Vision System

b. DRIVSCO GUI output

Figure 1.2: DRIVSCO Vision system. a) shows the cameras and the monitor
installed in the test car. b) shows the GUI output when using the road lane
tracking option.

From a more practical point of view, the main goal of DRIVSCO was to in-
stall an artificial vision system in a car and, instead of informing the driver
of a dangerous situation (such as a crossing pedestrian in a poorly lighted
road), predict how driver would act and react as he would do. Fig. 1.2a
shows the test car used in DRIVSCO, including the cameras and the Graph-
ical User Interface (GUI) . The human visual system, although very accurate
during the day light, is very unreliable at night. In Figure 1.3 we can see
how during the day our visual system is able to perceive information from
farther objects. At night, however, our perception distance is dramatically
reduced and, therefore, driving at night is more dangerous. In DRIVSCO

24 Chapter 1. Introduction

framework we try to reduce this difference between day and night vision by
installing cameras able to record at both, daylight and night (i.e. infrared
cameras). The GUI allows the user to select different algorithms: lane de-
tection, ground-plane extraction, time to contact (TTC), etc. (as Fig. 1.2b
shows) [51].

Figure 1.3: Night driving constrains. A) shows the daylight driving situa-
tion. B) depicts what the DRIVSCO system will do, namely learning the
correlation between visual events at t0 and driver actions at t1. C) shows
the night driving situation. At t0 the driver does not yet see the curve. D)
depicts the IR night-vision situation where the DRIVSCO system already
”sees” the curve. After having learned the correct action planning during
daylight the DRIVSCO system will be able to help the driver.

Due to its experience on System-on-a-Chip (SoC) and computer vision,
our group was on charged of designing and implementing a hybrid hardware-
software (Hw/Sw) system that extracts different visual cues (sparse, like
energy and phase; and dense, like stereo and optical flow) on real-time as
shown in Figure 1.4. Moreover, the SoC needed to combine its extracted
cues and the middle-level information. Hardware obtained cues are noisier
than software ones -mainly due to the float-point precision and memory
constrains-, hence the whole process would benefit from a regularization step
able to smooth some of that noise [86]. In addition to Hw/Sw co-design,
Pauwels et al. developed a GPU-based solution to DRIVSCO problem [63].
This solution, however, cannot be embedded in a SoC and was only useful
for comparison purposes.

In short, DRIVSCO needed a hardware-friendly efficient way to integrate
different features or cues whilst regularizing them to smooth the noise. These

1.1. Motivation and Framework 25

Figure 1.4: DRIVSCO low-level vision system. Two stereo cameras capture
the scene and send it to the low-level-vision engine embedded in a FPGA
based co-processor device. This engine extracts several features (energy,
orientation, phase, motion and disparity) and sends them to a PC through
a communication interface (red arrow)

requirements, however, were also limited by the memory and bandwidth
constrains typical of any SoC.

In Figure 1.4 we can see how our system receives left-right image pairs
and analyses the scene. This analysis consists on extracting several features
using those input images. Each feature, however, needs to be stored in
memory. As shown in the figure, these features need several bits per pixel
to be represented (up to 24). Moreover, to extract them, our system needs
to keep in memory several convolution masks1 and, sometimes, multiple
frames (such as when extracting optical flow). If we sum everything up, we
need a big amount of memory. In addition, we need to transfer all extracted
features back to the co-processing engine (a PC in our case) so higher-level
features can be extracted. Let us make some actual numbers to provide a
better idea of our system constrains.

Memory. Assuming all features are extracted by the SoC, which is not a
trivial problem [85], we would need to store: several frames (up to

1See section 2.1

26 Chapter 1. Introduction

Figure 1.5: DRIVSCO memory constrains for three different image resolu-
tions: VHA (1024x1024) in blue, HA (800x600) in red and MA (512x512)
in green.

5 for the optical flow2) of the current stereo images; the calculated
features3 (energy, phase, orientation, disparity and optical flow), each
of which is extracted using a multi-scale approach [75]; and several
filters used in this process4. Fig. 1.5 shows the memory requirements
of our system if we consider three different image resolutions: middle
(512x512), high (800x600) and very high (1024x1024) for a 4-scale
approach. As we can see, we would need up to 100 MB to store the
images and features of our system. The hardware systems, however,
typically have less than 50MB [93].

Bandwidth Similarly, if we assume we would need all the features to be
transfered to higher-level stages of our system, we could calculate the
bandwidth needs of DRIVSCO. Fig. 1.6 shows the bandwidth con-
strains we confront in our system for the same three input image res-
olutions and scales.

Seeing these constrains, we came to the conclusion that the integration
step must include some kind of compression or condensation (see section
1.1.2 for details about the difference between these two concepts). Moreover,
the majority of these mid- and high-level algorithms do not need a dense
map to work; in fact, they usually perform a selection of interesting points
[53]. Thus, the best solution would be one that integrates, regularizes and

2See section 2.4.2 for further details
3See chapter 2
4See section 2.1

1.1. Motivation and Framework 27

Figure 1.6: DRIVSCO bandwidth constrains for three different image reso-
lutions: VHA (1024x1024) in blue, HA (800x600) in red and MA (512x512)
in green.

selects the features before sending them to higher levels, just like the human
visual system does.

Another important question is whether the co-processor will be able to
handle so many data. Receiving and understanding (i.e. applying algo-
rithms to extract higher-level features) all these features is fraught with
complex computations and memory requirements that cannot be assumed
by embedded processors. In fact, this workload will be excessive for many
standard processors.

1.1.2 Condensation vs Compression

We have been talking about how efficient human visual system is and how
nice it would be to emulate it. From a practical point of view, however,
the main problem of our system are memory, bandwidth and workload con-
strains. Could we just solve it using a compression module?

Common compression techniques use color or gray levels and spatio-
temporal information redundancy as reduction bases. When information is
compressed without loss the data are grouped by taking into account gray or
color levels, so they take up less space in the memory for transmission tasks;
if there is any loss the number of bits associated to each pixel are reduced
and their values are grouped on a statistical basis [78]. Nevertheless, these
techniques merely take heed of the color/gray characteristics of the image,
which is not enough if we want to integrate high-level-vision feedback.

28 Chapter 1. Introduction

Contrary to this purely compression method, we aim to fulfill mem-
ory and bandwidth requirements, whilst compensating for noisy estimations
by locally regularizing the visual features obtained. We can find some ap-
proaches to a recovery algorithm that use a compressed input to regularize
images [60]. These solutions, however, require a massive iterative processing
that cannot be handled in our system. What drives us to another of our
system problems: workload. Our approach has to reduce the co-processor
computational requirements to allow embedded solutions to extract higher-
level features.

Our best option is, therefore, not to compress, but to condense (i.e.
select those areas that are relevant to our system depending on the cur-
rent task). Our condensation algorithm is not only focused on sending and
storing information at a minimum cost in terms of computational/hardware
resources, but also selecting the most relevant data. Moreover, our conden-
sation approach preserves plain areas and regularizes dense visual features.
In addition, our algorithm allows the fusion of different vision information,
facilitating a signal-to-symbol loop [72].

1.2 Main Goals

From the previous paragraphs we extract the following requirements that
compose our main goals:

Condensation. We need to reduce memory and bandwidth requirements,
as well as the ulterior computational load, by extracting relevant in-
formation from dense visual features and storing it efficiently.

Versatile. Our solution must condense any dense visual feature extracted
by our vision system.

Hardware-friendly. We need to include our condensation module in an
embedded solution, therefore it must be implemented following real-
time constrains.

Feedback from higher levels. Attention and other information will be
sent from higher levels and our module has to incorporate them in the
condensation process.

Efficient representation. Higher stages of the vision system receive our
condensed output as input. Our output, therefore, has to be easy to
handle and facilitate feedback information from those higher stages.

Information recovery. Since we do not know a priori which information
is needed by higher stages, we have to store enough data to recover
anything they might need.

1.3. Tools and Methods Used 29

In this dissertation we present, explain and test our approach to fulfill
these goals: a semidense representation map that condenses dense visual
features into a sparser map, keeping most of the information they contain.
This representation reduces memory and bandwidth whilst diminishing com-
putational load.

1.3 Tools and Methods Used

The algorithms presented in this dissertation have been implemented in
MATLAB in their first approach. We have chosen MATLAB because it
allows for a quick implementation and testing of algorithms. This way, we
have been able to test several solutions to our problem, adding versatility to
the final version of our algorithm. Furthermore, MATLAB provides a perfect
environment for visualizing images and other results. In addition, many of
the mid-/high-level algorithms that would use our semidense representation
map are implemented in MATLAB.

We cannot forget, however, DRIVSCO framework. Our algorithm needed
to be implemented in a Hardware Description Language (HDL) in order to
synthesize it and integrate it in our SoC. Thus, we have used Handel-C lan-
guage and Mentor Graphics (previously known as Celoxica) programming
environment to implement a functional version of our algorithm. Handel-C
is a high level HDL, mainly used for FPGA programming, that includes all
common C language features and a set of statements, types and expressions
to control hardware instantiation, focusing on parallelism. The difference
between Handel-C and other HDLs is the abstraction level. Handel-C fa-
cilitates a higher abstraction level when defining custom datapaths [35],
speeding up design-implement cycle of complex algorithms, such as com-
puter vision ones.

1.4 Dissertation Outline

We want to continue this dissertation with a short introduction to the main
computer vision algorithms that we have used in our research. Hence, chap-
ter 2 presents filtering operators, sparse and dense visual features, attention
processes, and multi-modal descriptors (the most promising option to solve
our problem within existing methods). In chapter 3 we justify why the ex-
isting options do not fulfill our requirements and present our solution: a
semidense representation map. This chapter also includes different methods
to obtain our semidense map, some benchmark examples and a study of
its inherent regularizing capabilities. Chapter 4 presents several real-world
applications of our innovative map: from attention systems (top-down and

30 Chapter 1. Introduction

bottom-up) to driving scenarios (ground-plane and obstacle detection). In
chapter 5 we discuss and explain the implementation of our condensation
algorithm in specific hardware, i.e. in an FPGA, including resource con-
sumption, performance and integration with DRIVSCO vision system. Fi-
nally, chapter 6 sums up the main contributions of our research and suggest
future work.

Chapter 2

Introduction to Computer

Vision

Before moving forward explaining our condensation algorithm, there are
a few concepts about computer vision we would like to clarify. A wide
explanation of each of them is out of discussion, although we want to present
an outline. Hence, this chapter does not pretend to be a detailed explanation
of visual features, edge extractors or filters. Many books can be found to
extend the concepts and algorithms introduced here [22, 41, 87], but we
include the description of the main ones used in our research.

In the previous chapter we have used the term feature to refer low-
level visual primitives (such as the ones extracted by DRIVSCO system and
shown in Figure 1.4). A more general definition of feature could be the one
proposed by Trucco[87]:

Image features (a.k.a visual features) are local, meaningful,
detectable parts of the image.

From this definition, we deduce that an edge or a corner are features, as
well as the disparity computed for a pixel in a stereo system. As previously
mentioned, one of the main characteristics of our semidense map is that it
condenses visual features, instead of images.

Vision features are usually obtained by applying filtering operations to an
input image (as we explain in section 2.1). The extracted feature is usually
represented as a map as big as the input image. This map can be dense, if
almost every pixel has a valid value, or sparse, if only few of them have a valid
value. From now on we use “dense feature” to refer to those features that
present a dense representation map and, similarly, we use “sparse feature”
to refer to those ones with a sparse map. The main goal of our condensation
algorithm is to translate these “dense features” into a sparser representation.

31

32 Chapter 2. Introduction to Computer Vision

In this chapter we introduce both kinds of features. First we include a quick
sum-up of useful sparse features: energy, orientation, phase, edges, and local
descriptors. Then, we introduce the main dense features extracted in the
DRIVSCO system: disparity and optical flow.

In the literature we do not find many options to reduce dense features
into sparse representations. In section 2.5 we introduce multi-modal descrip-
tors, which are the most promising solution to our problem.

Another characteristic we want to include in our system is the capacity
of integrating attention information in a traditional vision system. This
attention is obtained thanks to saliency maps that are anything but sparse
features. Due to their importance in our system, they deserve a independent
subsection in this chapter.

As we already mentioned, most of these features are extracted using a
filtering operation, so let us start explaining these operations.

2.1 Image Filtering Operations

In signal processing, a filter is a method to reduce or remove unwanted
components of a signal. Depending on their use and implementation, we
find different kinds of filters such as low- and high-pass, linear or non-linear,
etc. In image processing, filters are mainly used to suppress either the
high frequencies in the image, i.e. smoothing (see section 2.1.1), or the low
frequencies. For simplicity we focus on linear filtering in this introduction,
although some non-linear filters are also mentioned.

An image can be filtered either in the frequency domain or in the spatial
domain. The first involves transforming the image into the frequency do-
main, multiplying it with the frequency filter function and re-transforming
the result into the spatial domain. The filter function is shaped so as to
attenuate some frequencies and enhance others. For example, a simple low-
pass function is 1 for frequencies smaller than the cut-off frequency and 0
for all others.

The corresponding process in the spatial domain is to convolve the
input image f(i, j) with the filter function g(i, j), obtaining h(i, j). Since
digital images are discrete, we can define the convolution as follows:

h(i, j) = g(i, j) ⋆ f(i, j) =
n∑

k=1

m∑

l=1

g(k, l)f(i− k, j − l) (2.1)

Contrary to frequency domain where most of the filtering operations are
linear, in spatial domain implementing non-linear filters is quite common.

2.1. Image Filtering Operations 33

Figure 2.1: Convolution mask example. We apply a 3x3 convolution mask
to an image to extract the average value of an element, i.e. we apply a mean
filter using a convolution mask

In this case, (2.1) cannot be used as it is, and we need to define some kind
of non-linear operator based on the same idea.

Many filters define a convolution kernel or convolution mask of a
given size (also called window or neighborhood) and reduce the convolution
to a ‘shift and multiply’ operation, where we shift the mask over the image
and multiply its value with the corresponding pixel values of the image.
In (2.1), the size of the convolution mask would be mxn. Fig. 2.1 shows
an example of the convolution when using a convolution mask. Various
standard masks exist for specific applications, where the size and the form
of the kernel determine the characteristics of the operation [57].

Different steps of our contributions are based on filters, therefore, in
next subsections we explain those we used more frequently. Again, this
explanation is far from being complete, and we encourage the reader to
follow the references for more details.

2.1.1 Image Smoothing

In computer vision, noise may refer to any entity, in images, data
or intermediate results, that is not interesting for the purposes
of the main computation [87].

34 Chapter 2. Introduction to Computer Vision

There are different kinds of noise, such as white, Gaussian, salt and pep-
per, etc. Smoothing filters are generally used to reduce the noise in an
image. These filters, however, can potentially remove some of the infor-
mation in the image, losing some of the image detail. For example, step
changes will be blurred into gradual changes, and the ability to accurately
localize an edge will be sacrificed [41], such as when using a mean filter (see
subsection 2.1.1.1). A spatially varying filter can adjust the weights so that
more smoothing is done in a relatively uniform area of the image, and little
smoothing is done across sharp changes in the image. In addition, the size of
the neighborhood controls the amount of filtering. A larger neighborhood,
corresponding to a larger convolution mask, will result in a greater degree of
filtering. As a trade-off for greater amounts of noise reduction, larger filters
also result in a loss of image detail [22].

2.1.1.1 Mean Filter

This is one of the simplest examples of a linear smoothing filter. The goal
is to obtain, for each point, the average of its neighborhood. For a nxn
neighborhood N with a total of M pixels, we can rewrite (2.1) as follows:

h(i, j) =
1

M

∑

(k,l)∈N

f(k, l). (2.2)

Figure 2.1 shows an example of how to apply this filter using a convolu-
tion mask. The main limitations of this filter are [87]:

• Signal frequencies shared with noise are lost. This implies sharp vari-
ations are softened and, therefore, image is blurred.

• Impulsive noise, such as salt-and-pepper, is attenuated but not re-
moved.

2.1.1.2 Gaussian Filter

A Gaussian blur (a.k.a. Gaussian smoothing) is a particular case of the
averaging filter, in which the kernel is a 2-D Gaussian, as in:

g(i, j) = e−
i2+j2

2σ2 (2.3)

where σ determines the width of the Gaussian. A larger σ implies a greater
smoothing. The main advantage of this filter is its separability. It means
that convolving an image with a 2-D Gaussian kernel is the same as con-
volving first all the rows, then all the columns wit a 1-D Gaussian having
the same standard deviation σ. Thanks to this property, the complexity

2.1. Image Filtering Operations 35

increases linearly with the mask size, instead of quadratically, making the
Gaussian filters very likely for a specific hardware implementation. Thus,
we can rewrite 2.1 as follows:

h(i, j) =
m∑

k=1

e−
k2

2σ2

{
n∑

l=1

e−
l2

2σ2 f(i− k, j − l)

}

︸ ︷︷ ︸
vertical convolution

. (2.4)

This filter is not appropriate for attenuating impulsive noise or working
on neighborhoods with edges as the mean one was. Nevertheless, it is useful
to reduce noise following a normal distribution where mean filter finds more
trouble. This is mainly due to the distribution of weights in the convolution
mask which are bigger in the center and, therefore, adapt better to that
kind of noise, reducing blurring effect. If our images present both kinds of
noise, we could solve it by using a non-linear or a more complex filter such
as bilateral one.

2.1.1.3 Median Filter

This is the simplest example of a non-linear filter. Contrary to mean and
Gaussian filters, this one suppresses impulsive noise and preserve the sharp
variations of the image. The median filter runs through the feature pixel
by pixel, replacing each pixel with the median of a window centered in that
pixel [91]. The following pseudo code explains its behavior for an image I:

edge_x := (window_width / 2) rounded down

edge_y := (window height / 2) rounded down

for i = edge_x to (I_width - edge_x)

for j = edge_y to (I_height - edge_y)

allocate neighborhood[window_width][window_height]

for k = 0 to window_width

for l = 0 to window_height

neighborhood[k][l] := I[i+k-edge_x][j+l-edge_y]

sort all entries in neighborhood[][]

median_filter_output[i][j] :=

neighborhood[window_width / 2][window_height / 2]

2.1.1.4 Bilateral Filter

Another way to reduce the noise preserving the edges is using a combination
of different linear filters. Bilateral filter is a normalized convolution in which
the weighting for each pixel p is determined by the spatial distance from the
center pixel c, as well as its relative difference in intensity [83]. By this, the

36 Chapter 2. Introduction to Computer Vision

edges are preserved whilst smoothing the noise. In the literature [91] the
spatial and intensity weighting functions f and g are typically Gaussian.
The bilateral filter is defined as:

Hc =

∑
p∈N f(p− c)g(Ip − Ic)Ip∑
p∈N f(p− c)g(Ip − Ic)

(2.5)

where I is the input image, H the output filtered image, and N the
neighborhood centered in c [91]. Note that the weights depend not only on
Euclidean distance but also on the radiometric differences (differences in the
range, e.g. color intensity). This preserves sharp edges by systematically
looping through each pixel and according weights to the adjacent pixels
accordingly.

Bilateral filtering has been widely used in literature [83, 91, 3]. As we
have mentioned, it smooths plain regions and reduces impulse and normal
noises, while preserving edges. These are characteristics that any vision
system will benefit from. Optimizing the filter output (i.e. adapting a
bilateral filter to remove the noise of our images), however, is not as easy as
it would be with a simpler filter.

2.1.1.5 Anisotropic Diffusion

The goal of this “filter” is also to reduce the noise preserving the significant
parts of the image. The process is a bit more complicated than the ones
already described. The idea is to create a scale-space, i.e. a parameterized
family of successively more and more blurred images. Each of the result-
ing images in this family are given as a convolution between the image and
a 2D-Gaussian filter, where the width of the filter increases with the pa-
rameter. This process is a linear and space-invariant transformation of the
original image. In the anisotropic diffusion, however, each of the images of
the created family is a combination between the original image and a filter
that depends on the local content of the original image. As a consequence,
anisotropic diffusion is a non-linear and space-variant transformation of the
original image. Perona and Malik [66] defined it, for an image I, as:

∂I

∂t
= div(c(x, y, t)∇I = ∇c · ∇I + c(x, y, t)∆I (2.6)

where ∆ denotes the Laplacian1, ∇ denotes the gradient, div(...) is the di-
vergence operator, and c(x, y, t) is the diffusion coefficient. c(x, y, t) controls
the rate of diffusion and is usually chosen as a function of the image gradient

1Laplacian operator is a differential operator given by the divergence of the gradient
of a function on Euclidean space [80]

2.1. Image Filtering Operations 37

so as to preserve edges in the image. Perona and Malik also proposed two
functions for the diffusion coefficient:

c(‖∇I‖) = e−(‖∇I‖/K)2 (2.7)

and

c(‖∇I‖) = 1

1 +
(
‖∇I‖
K

)2 (2.8)

Where the constant K controls the sensitivity to edges and is usually
chosen experimentally or as a function of the noise in the image.

Anisotropic diffusion is an iterative process: each time we apply this
operator, the information is diffused. The more times we apply the operator,
the more spread data are and, likewise, errors reduced. This means we can
control our smoothing process by applying this operator a variable number
of times. Nevertheless, this approach is too complicated to be implemented
in an embedded system.

2.1.2 Bio-inspired Filtering

Our filtering operations are growing in complexity, becoming too compli-
cated to be handled by our system. We need to find an approach that
allows us to remove the error without losing important information (such as
edges) and as simple as possible so we can implement it in diverse platforms.

If we focus on our visual system, we find the receptive fields of the
neurons of the primary visual cortex (V1) group following a very handy
pattern. They have an ON-center band that responds positively to light
flanked by two OFF side bands that respond to darkness. This pattern
responds especially well to rays of light that are oriented in a particular
direction. The cells whose receptive fields thus respond to light with a
specific orientation are called simple cells [47].

In literature we find oriented filters that emulate simple cells behavior.
Here we present Gabor filters as an example of them.

2.1.2.1 Gabor Filters

Gabor filters are linear filters widely used for feature detection. An inter-
esting characteristic is their similarity with the human visual system, as
they model the simple cells of the visual cortex. These filters are basically
a Gaussian kernel modulated by a sinusoidal plane wave. Let us define the

38 Chapter 2. Introduction to Computer Vision

1-D Gabor filter in the spatial domain to better understand this:

G(x− x0) = e
−(x−x0)

2

2σ2 · eiω0(x−x0), (2.9)

where x0 is the spatial location of the filter, and ω0 is the frequency of the
harmonic component which will be the central spatial frequency of the power
spectrum [76]. The Fourier Transform (FT) has the same functional form:

g(ω − ω0) = e
−(ω−ω0)

2

2τ2 · eix0(ω−ω0), (2.10)

where σ and τ are the spatial half-width and spatial frequency half-bandwidth
of the filter, and the product στ is 1. This is the theoretical minimum for
all complex valued linear filters [30]. The real (even) and imaginary (odd)
components of the filter are given by:

Geven(x− x0) = e
−(x−x0)

2

2σ2 · cos(ω0(x− x0)), (2.11)

Godd(x− x0) = e
−(x−x0)

2

2σ2 · sin(ω0(x− x0)). (2.12)

And, therefore, we can define a set of Gabor filters with different frequencies
and orientations as the one shown in Fig. 2.2.

Figure 2.2: Example of a 8-orientation Gabor filter bank. First row shows
the even filters and second row the odd filter for each orientation.

This kind of sets is very helpful for extracting useful features. In fact,
just by combining the odd and even responses of Gabor filters we obtain
magnitude and orientation of an image [75], which are the base to extract
more complex features such as disparity, edges, etc.

2.2 Sparse Visual Features

Filters are not only useful to reduce the noise in an image or feature, but
also provide a way to enhance their meaningful parts. By meaningful parts
we understand all parts of the image that are associated to scene elements,
such as edges, corners, surfaces, etc. There are many algorithms in the

2.2. Sparse Visual Features 39

literature [54, 48, 9, 70] focused on extracting descriptors, i.e. describing
a sparse representation of an image by selecting some of those meaningful
parts. Most of them, however, involve at least one filtering step.

The visual cortex, as we have already mentioned, has evolved effectively
to cope with visual information. This efficiency is critical for our survival,
therefore, natural systems has discovered coding strategies for representing
visual information [47]. Just like the simple cells capture oriented informa-
tion (as explained in section 2.1.2.1), other visual cortex cells reduce all the
environment information into sparse representations, removing redundant
and non-relevant data. This reduction allows our brain to handle important
information with a higher priority. These representations, however, contain
enough information for our brain to recover any detail we might need [82].

In computer vision literature, we find several sparse visual features.
Some of them aim to emulate the visual cortex, processing the scene and
extracting useful information such as phase, orientation and energy. Other
algorithms, on the other hand, just point which areas of the image are more
likely to contain important information. Edge detectors and intrinsic dimen-
sion are example of this. More complex descriptors, such as SIFT, aim to
define invariant sparse features to characterize a scene and facilitate object
recognition and matching.

Our condensation algorithm uses sparse visual features to provide rele-
vant information to our semidense representation map. Moreover, our rep-
resentation map is the perfect framework to easily integrate several of these
features as we explain in section 3.1.

2.2.1 Energy, Orientation and Phase

Based just on their response to even and odd Gabor filters, images can be
characterized by local features such as energy (a.k.a. magnitude), orienta-
tion and phase. At this point, energy refers to the change in the intensity
of the image, i.e. the boundaries of the image (see section 2.2.2 for details).
As previously mentioned, oriented filters, such as Gabor, efficiently extract
orientation information. Nevertheless, if we just consider 8 oriented filters
(as the ones in Fig. 2.2), is likely that the local orientation of some objects
do not fit this discrete number of orientations. This is why we need to inter-
polate filter outputs to estimate a more accurate orientation. Phase, on the
other hand, has been proved to be robust to scene variations in contrast and
brightness, as well as small affine distortions [84]. Local phase also requires
an interpolation process similar to the one followed by the orientation to
estimate a more accurate feature.

Different methods can be used to extract these sparse features. If we use
an oriented filter hi whose angle is defined as angle = i ⋆ π/N , we extract

40 Chapter 2. Introduction to Computer Vision

real(ci) and imaginary (si) response:

hi = ci + jsi. (2.13)

Using them, we define the magnitude Ei and the phase Pi as:

Ei = c2i + s2i (2.14)

Pi = arg(ci, si) (2.15)

After applying the 8 oriented filters in each point, we calculate the fi-
nal energy, phase and orientation of that point using one of the following
methods:

i Winner-take-all (WTA). For each pixel we take the phase, energy and
orientation of the filter with maximum energy.

Elocal = Emax Plocal = Pmax θlocal = θmax (2.16)

ii Weighted-average:

Elocal =
∑

i

EN
i Plocal =

∑
i PiEi∑
iEi

θlocal =
∑

i

θiEi∑
iEi

(2.17)

where all angles are properly shifted for avoiding angle wrapping effects.

iii Tensor-based method. Based on a local tensor that projects the different
orientations, information can be computed as follows (where j stands for
the complex unit):

Elocal =
∑

i

EN
i (2.18)

θlocal =
1

2
arg

(
∑

i

4

3

√
c2i + s2i exp(j2θi)

)
(2.19)

Plocal = arctan
(s
c

)
(2.20)

c =
∑

i

ci cos
2 θi − θlocal (2.21)

s =
∑

i

si · sign cos(θi − θlocal) · cos2(θi − θlocal) (2.22)

In DRIVSCO framework we based our approach on iii because it is in-
dependent from filtering stage (Gabor) and it achieves a high accuracy.

2.2. Sparse Visual Features 41

(a) Original image (b) Energy

(c) Orientation (d) Phase

Figure 2.3: (b) Energy, (c) orientation and (d) phase extracted from (a)
using [25]

However, a hardware simplification was made and magnitude and phase are
calculated as follows:

Elocal =

√∑N
θ=1Eθ

N
(2.23)

Plocal = atan2(
∑

θ

Cθ,
∑

θ

Sθ) (2.24)

Where N is the number of different θ orientations and Eθ is the energy
calculated for the orientation θ:

Eθ = C2
θ + S2

θ (2.25)

Local orientation is calculated starting from mean energy along orientations:

θlocal =
1

2
atan22(

∑

θ

Eθ sin 2θ,
∑

θ

Eθ cos 2θ) (2.26)

In Figure 2.3 we can see an example of these sparse visual features ex-
tracted using the DRIVSCO algorithm [85] from Middlebury benchmark
image venus [79].

2atan2 computes the arctangent of y / x given y and x, but with a range of (−π, π]

42 Chapter 2. Introduction to Computer Vision

2.2.2 Edges

Edges are pixels around which the image values undergo a sharp variation
[87]. However, we prefer to consider edges as a connected chain of those
sharp variations, i.e. boundaries between regions of an image. Defined like
this, edges are pretty similar to magnitude. The main difference between
them is that edges entail an ulterior selection process. Hence, we can un-
derstand magnitude as a first step in edge detection.

A more general definition describes edge detection as a two-step process.
First we extract the discontinuities using magnitude (i.e. Gabor filters),
derivatives of a Gaussian, convolution masks, etc. Then, we select those
points that we consider more promising as edges by thresholding, edge thin-
ning, or even non-linear methods. The output of an edge detector is a binary
map where each pixel is marked as either an edge pixel or a non-edge pixel.

This sparse visual feature is pretty handy in computer vision, as we can
use it to segment the image, detect objects, calibrate a camera, analyze the
motion in a sequence, etc.

One of the main problems when detecting edges is the noise. As noise
can cause intensity variations, a noisy input could cause false positives in
the output. This is why most of the algorithms that detect edges need to
perform a smoothing step. Smoothing, as we have already mentioned, can
potentially remove discontinuities, and therefore, edges.

There are multiple algorithm that detect edges: Canny, Sobel, Prewitt,
Robert Cross, etc. However, we are going to focus on the first two: Canny,
the most used one, based on Gaussian filters, and Sobel, based on applying
small separable convolution masks to the vertical and horizontal compo-
nents.

2.2.2.1 Canny Edge Detector

Canny’s [16] aim was to discover the optimal edge detection algorithm, i.e.
an algorithm fulfilling these characteristics:

• Good detection: the algorithm should minimize the number of false
positives detected, whilst marking as many real edges in the image as
possible.

• Good localization: edges marked should be as close as possible to the
edge in the real image.

• Single response: A given edge in the image should only be marked
once, i.e. minimize the number of local maxima around the true edge
created by the noise.

2.2. Sparse Visual Features 43

To satisfy these requirements Canny used the calculus of variations,
defining a function that optimized them. This function, however, can be
approximated by the first derivative of a Gaussian with only a slight error
from the original output [87]. Nevertheless, this trade-off solution introduces
some noise in the localization and single response requirements. Hence we
need to introduce some steps to solve this noise: nonmaximum suppression
and thresholding.

Noise reduction and Boundary Detection The Canny edge detector
is susceptible to noise present on input images, so to begin with, the input
image is convolved with a Gaussian filter. The result is a slightly blurred
version of the original which is not affected by a single noisy pixel to any
significant degree.

Once reduced the error, we need to extract the edges of the image. An
edge in an image may point in a variety of directions, so the Canny algo-
rithm uses four filters to detect horizontal, vertical and diagonal edges in
the blurred image. Another approach could be to compute the gradient
of the image evaluating the first derivative in the horizontal direction (Gx)
and the vertical direction (Gy). From this the edge gradient magnitude and
direction can be determined:

G =
√

Gx
2 +Gy

2 (2.27)

Θ = arctan

(
Gy

Gx

)
. (2.28)

The edge direction angle is rounded to one of four angles representing
vertical, horizontal and the two diagonals (0, 45, 90 and 135 degrees for
example).

In our low-level vision system, however, we do not need gradient as we
already computed orientation and magnitude of the image intensity using
Gabor filters (as explained in section 2.2.1).

Nonmaximum suppression In this step, we compare the strength (G) of
the current point with its neighbors. At this step we only consider neighbors
those points following the same direction as current point, i.e. a maximum
of two neighbors. If current point’s magnitude is smaller than at least one
of this two neighbors, we consider it was not a maximum and we suppress
it by changing it magnitude to 0.

Thresholding with Hysteresis The output from the nonmaximum sup-
pression step still contains the local maxima created by noise and back-
ground regions. Large intensity gradients are more likely to correspond to

44 Chapter 2. Introduction to Computer Vision

(a) Edge detection (b) Canny edge detector output

Figure 2.4: Canny detector applied to Middlebury’s venus image (Fig.
2.3(a)). (a) shows the edges detected filtering the image. (b) shows the
result after applying non-maximum suppression and hysteresis thresholding
to (a).

edges than small intensity gradients. Nevertheless, it is in most cases im-
possible to specify a threshold at which a given intensity gradient switches
from corresponding to an edge into not doing so. Therefore Canny uses
thresholding with hysteresis.

We can assume that important edges should be along continuous curves
in the image. Thus if we follow a faint section of a given line, we can discard
a few noisy pixels that do not constitute a line but have produced large
gradients.Thresholding with hysteresis requires two thresholds: high and
low. The high threshold marks out the points most likely to be part of an
edge. Starting from these, using the directional information derived earlier,
edges can be traced through the image. While tracing an edge, we apply
the lower threshold, allowing us to trace faint sections of edges as long as
we find a starting point.

In Figure 2.4 we can see an example of Canny edge detector using venus
sequence. We can see the output from the first stage of the algorithm (Fig.
2.4(a)), i.e. after the noise/enhacing step. We can also see the final binary
map corresponding to the algorithm output (Fig. 2.4(b)).

2.2.2.2 Sobel Edge Detector

Mathematically less accurate than Canny, this edge detector is based on
Sobel’s discrete differentiation operator that computes an approximation
of the gradient of the image intensity function. This operator, although
inaccurate, is of sufficient quality to be of practical use in many applications.

2.2. Sparse Visual Features 45

At each point in the image, the result of the Sobel operator is either
the corresponding gradient vector or the norm of this vector. This opera-
tor is based on convolving the image with a small, separable, and integer
valued filter in horizontal and vertical direction and is therefore relatively
inexpensive in terms of computations. On the other hand, the gradient
approximation which it produces is relatively crude, in particular for high
frequency variations in the image.

The operator approximates the derivatives using two 3 × 3 convolution
kernels, one for horizontal changes and one for vertical, and applying them
to the original image I. If we define Gx and Gy as the horizontal and vertical
derivative approximations, the computations are as follows:

Gx =



−1 0 +1
−2 0 +2
−1 0 +1


 ⋆ I and Gy =



−1 −2 −1
0 0 0

+1 +2 +1


 ⋆ I. (2.29)

The x-coordinate is here defined as increasing in the ”right”-direction,
and the y-coordinate is defined as increasing in the ”down”-direction. At
each point in the image, the resulting gradient approximations can be com-
bined to give the gradient magnitude and orientation, using 2.27.

Several improvements to this algorithm are found in literature, such as
Logarithmic Image Processing (LIP-Sobel)[43] or Parameterized LIP (PLIP-
Sobel)[92], that increase Sobel’s robustness to local intensity changes.

In fact, LIP-Sobel implementation is very handy in real-world scenes
where there are multiple situations with different brightness ranges (such
as dusk or dawn)[56]. This model defines a logarithmic space where image
intensity can be completely represented by a gray-level function f̃ . The ob-
tained values are real numbers within the range [0,M), where M is positive
(for instance, in 8-bit gray-scale images M is 255). In the linear space to
convolve an area A such as:

A =



f1 f2 f3
f4 f5 f6
f7 f8 f9


 (2.30)

we use the convolution mask Gx defined in (2.29) (and similarly with Gy).
In the logarithmic space, on the other hand, we apply the operator L defined
as follows [56]:

L = M −M

(
f̃3f̃6

2
f̃9

f̃1f̃4
2
f̃7

)
(2.31)

where f̃i = M − f .

LIP-Sobel edge detection is robust to small local intensity changes in
the image, working better than the linear Sobel operator in real-world con-
ditions.

46 Chapter 2. Introduction to Computer Vision

Figure 2.5: Illustration intrinsic dimensionality. In the image on the left,
three neighborhoods with different intrinsic dimensionalities are indicated.
The other three images show the local spectra of these neighborhoods, from
left to right: i0D, i1D, and i2D. Figure extracted from [45].

2.2.3 Intrinsic Dimension

Not only edges present sharp variations but also corners (or junctions) and
textures. However, when interpreting these areas there are some concepts
that might not be applicable for all of them. For example, the idea of
orientation does make sense for edges but not for a junction or most tex-
tures. Hence, before we apply concepts like orientation or position, we
want to classify image patches according to their junction-ness, edge-ness
or homogeneous-ness. The intrinsic dimension has proven to be a suitable
descriptor in this context. Homogeneous image patches have an intrinsic
dimension of zero (i0D), edge-like structures are intrinsically 1-dimensional
(i1D) while junctions and most textures have an intrinsic dimension of two
(i2D)[45].

Krüger and Felsberg [45] define the intrinsic dimension (a.k.a. intrinsic
dimensionality) based on the spectrum of the image. In figure 2.5 we can
see how:

• if the spectrum is concentrated in a point, the image patch has an
intrinsic dimensionality of null (i0D),

• if the spectrum is concentrated in a line, the image patch has an in-
trinsic dimensionality of one (i1D), and

• otherwise the image patch has an intrinsic dimensionality of two (i2D).

Each of these three cases can be characterized more vividly. Constant
image patches correspond to i0D patches. Edges, lines, and sinusoid-like
textures obtained by projecting 1D functions correspond to i1D patches.
All other structures like corners, junctions, complex textures, and noise
correspond to i2D patches.

2.2. Sparse Visual Features 47

Nevertheless, a classification like this, based on a local image patch with-
out taking the context into account, always faces the problem of the high
degree of ambiguity of visual information [52]. Taking into account this, [45]
assess confidences instead of binary decisions.

Hence, image structure can be classified only by extracting its spectrum
and matching the different regions as previously mentioned. The spectrum
of the image can be extracted using oriented Gabor filters (see section 2.1.2.1
for details).

2.2.4 Local Descriptors

Although useful, previously mentioned sparse features are not enough on
real-world sequences. On those sequences we need features at least partially
invariant to illumination, 3D projective transforms, and common object vari-
ations. These features must also be sufficiently distinctive to identify specific
objects among many alternatives [48]. Moreover, mid- and high-level visual
feature extraction, such as object recognition, could benefit from sparse fea-
tures unaffected by nearby clutter or partial occlusion. This is why local
photometric descriptors are computed for interest regions.

As a general rule, local descriptors extract interest points, similarly to
the previous algorithms. The most valuable property of an interest point
detector is its repeatability, i.e. whether it reliably finds the same interest
points under different viewing conditions [9]. Next, the neighborhood of
every interest point is represented by a feature vector, the descriptor. This
descriptor has to be distinctive and, at the same time, robust to noise,
detection errors, and geometric and photometric deformations.

The evaluation of the descriptors is performed in the context of matching
and recognition of the same scene or object observed under different viewing
conditions [54]. The best descriptors are those that are invariant to noise
and to changes in scale, rotation and brightness. We present here some
well-known descriptors.

2.2.4.1 SIFT

Lowe’s patented method [48] can robustly identify objects even among clut-
ter and under partial occlusion, because his scale-invariant feature transform
(SIFT) descriptor is invariant to uniform scaling, orientation, and partially
invariant to affine distortion and illumination changes. This approach is
based on a model of the behavior of complex cells in the cerebral cortex of
mammalian vision.

As many other local descriptors, SIFT was initially designed to solve
object recognition and matching problems. SIFT key points (a.k.a. inter-

48 Chapter 2. Introduction to Computer Vision

est points) of objects are first extracted from a set of reference images and
stored in a database. An object is recognized in a new image by individually
comparing each feature from the new image to this database and finding
candidate matching features based on Euclidean distance of their feature
vectors. From the full set of matches, subsets of keypoints that agree on the
object and its location, scale, and orientation in the new image are identified
to filter out good matches. Each cluster of 3 or more features that agree on
an object and its pose is then subject to further detailed model verification
and subsequently outliers are discarded. Finally the probability that a par-
ticular set of features indicates the presence of an object is computed, given
the accuracy of fit and number of probable false matches. Object matches
that pass all these tests can be identified as correct with high confidence
[48].

The main stages of SIFT algorithm are the followings:

• Key localization or detection. To achieve rotation invariance and
a high level of efficiency, Lowe selects key locations at maxima and
minima of a difference of Gaussian function applied in scale space.
This is a computationally efficient approximation of the Laplacian of
Gaussian (LoG). This can be computed very efficiently by building
an image pyramid with resampling between each level. Specifically, a
DoG image D (x, y, σ) is given by

D (x, y, σ) = L (x, y, kiσ)− L (x, y, kjσ) , (2.32)

where L (x, y, kσ) is the convolution of the original image I (x, y) with
the Gaussian blur G (x, y, kσ) at scale kσ, i.e.,

L (x, y, kσ) = G (x, y, kσ) ∗ I (x, y) (2.33)

Hence a DoG image between scales kiσ and kjσ is just the difference
of the Gaussian-blurred images at those scales.

• SIFT key stability. To characterize the image at each key location,
the smoothed image L at each level of the pyramid is processed to
extract image gradients and orientations. At each pixel, Ai,j , the
image gradient magnitude, Mi,j , and orientation, θi,j , are computed
using pixel differences:

M (i, j) =

√
(L (x+ 1, y)− L (x− 1, y))2 + (L (x, y + 1)− L (x, y − 1))2

(2.34)

θ (x, y) = tan−1

(
L (x, y + 1)− L (x, y − 1)

L (x+ 1, y)− L (x− 1, y)

)
(2.35)

2.2. Sparse Visual Features 49

Each key location is assigned a canonical orientation so that the im-
age descriptors are invariant to rotation. In order to make this as
stable as possible against lighting or contrast changes, the orientation
is determined by the peak in a histogram of local image gradient ori-
entations, i.e. the descriptor is normalized by the square root of the
sum of squared components.

• SIFT descriptor is a 3D histogram of gradient locations and orien-
tations. First a set of orientation histograms are created on 4x4 pixel
neighborhoods with 8 bins each. These histograms are computed from
magnitude and orientation values of samples in a 16 x 16 region around
the key point such that each histogram contains samples from a 4 x
4 subregion of the original neighborhood region. The magnitudes are
further weighted by a Gaussian function with σ equal to one half the
width of the descriptor window. The descriptor then becomes a vec-
tor of all the values of these histograms. Since there are 4 x 4 = 16
histograms each with 8 bins the vector has 128 elements.

Due to its stability and invariance, this descriptor is useful to detect not
only objects, but also any other feature based on relevant points. Therefore,
these descriptors have been widely used in robot localization and mapping,
3D scene modeling and tracking, etc [54].

2.2.4.2 SURF

The good performance of SIFT made it the base of many other descriptors.
SURF (Speeded Up Robust Features) is one of them.

The differences between SURF and SIFT are the region detector and the
descriptor. On one hand, instead of using Lowe’s DoG approximation to
LoG, SURF defines a Hessian matrix based detector, called ’Fast-Hessian’
detector. The descriptor, on the other hand, describes a distribution of
Haar-wavelet responses within the interest point neighborhood. Moreover,
only 64 dimensions are used, reducing the time for feature computation
and matching, and increasing simultaneously the robustness. In addition,
SURF includes a new indexing step based on the sign of the Laplacian,
which increases not only the matching speed, but also the robustness of the
descriptor.

Figure 2.6 compares these two algorithms’ outputs3 in a driving scenario
image, extracted from [8].

3Descriptors extracted using L.Rubio and F.Naveros code.

50 Chapter 2. Introduction to Computer Vision

(a) SIFT Local Descriptors (b) SURF Local Descriptors

Figure 2.6: SIFT and SURF local descriptors obtained using a real-world
image (resolution 1280x1024). The number of points obtained by SIFT is
2511 while SURF extracts 2057.

2.2.4.3 Other Descriptors

In [54] we find a sum-up of other SIFT based descriptors:

Principal Components Analysis applied to SIFT (PCA-SIFT) is a
vector of image gradients in x and y direction computed within the
support region. The gradient region is sampled at 39 x 39 locations,
therefore,the vector is of dimension 3,042. The dimension is reduced
to 36 with principal components analysis [42].

Gradient location-orientation histogram (GLOH) is an extension of
the SIFT descriptor designed to increase its robustness and distinc-
tiveness. It computes the SIFT descriptor for a log-polar location grid
with three bins in radial direction (the radius set to 6, 11, and 15) and
8 in angular direction, which results in 17 location bins. The gradient
orientations are quantized in 16 bins. This gives a 272 bin histogram.
The size of this descriptor is reduced with PCA.

Shape context is similar to the SIFT descriptor, but is based on edges.
Shape context is a 3D histogram of edge point locations and orienta-
tions. Edges are extracted by the Canny detector (see section 2.2.2).
Location is quantized into nine bins of a log-polar coordinate system
with the radius set to 6, 11, and 15 and orientation quantized into four
bins (horizontal, vertical, and two diagonals). We therefore obtain a
36 dimensional descriptor. Many implementations also weight a point
contribution to the histogram with the gradient magnitude.

2.3. Saliency Maps: Attention Processes 51

2.3 Saliency Maps: Attention Processes

Saliency maps are based on primate visual system. Primates have a re-
markable ability to interpret complex scenes in real time, despite the limited
speed of the neuronal hardware available for such tasks. Intermediate and
higher visual processes appear to select a subset of the available sensory
information before further processing, most likely to reduce the complexity
of scene analysis. This selection is implemented in the form of a spatially
circumscribed region of the visual field, the so-called ’́focus of attentioń’,
which scans the scene both in a rapid, bottom-up, saliency-driven, and task-
independent manner as well as in a slower, top-down, volition-controlled, and
task-dependent manner [38].

Itti and Koch proposed this bottom-up and top-down duality in the vi-
sual cortex processing [39]. They also suggested that the bottom-up process
extracts those stimuli that are intrinsically salient in a context, obtaining
bottom-up saliency maps. The second process is voluntary, it means it has
a selection criteria that changes depending on the target application. This
top-down process is as a feedback from higher stages of the visual system
and confers it a high power. Nevertheless, it is approximately slower than
the first one (circa 8x) [89]. Due to this property, this process is usually
avoided for the most efficient implementations [67].

Their algorithm extracts a saliency value for each point of the image.
Thus, to obtain a sparse feature from a saliency map, we just fix a threshold
and only compute the most salient points. This approach, therefore, has
been proved biologically accurate and can dramatically reduce the workload
as is demonstrated in human visual system [38], but less interesting areas are
usually ignored. Moreover, their implementation does not take into account
top-down information.

2.3.1 Bottom-Up Saliency Maps

Figure 2.7 shows how the bottom-up saliency maps are extracted in [67].

First, low-level-vision features (color channels tuned to red, green, blue
and yellow hues, orientation and magnitude) are extracted from the original
color image at several spatial scales (i.e. Gaussian pyramids), using linear
filtering.

Then, each feature is computed in a center-surround structure akin to
visual receptive fields. Center-surround operations are implemented in the
model as differences between a fine and a coarse scale for a given feature.
This way seven types of features, for which wide evidence exists in mam-
malian visual systems, are computed: one encodes on/off image intensity

52 Chapter 2. Introduction to Computer Vision

Figure 2.7: Itti and Koch saliency extraction model [67]. Visual features are
computed using linear filtering at eight spatial scales, followed by center-
surround differences, which compute local spatial contrast in each feature
dimension for a total of 42 maps. An iterative lateral inhibition scheme
instantiates competition for salience within each feature map. After compe-
tition, feature maps are combined into a single ‘conspicuity map’ for each
feature type. The three conspicuity maps then are summed into the unique
topographic saliency map. The WTA module detects the most salient lo-
cation and directs attention towards it. An inhibition-of-return mechanism
transiently suppresses this location in the saliency map, such that attention
is autonomously directed to the next most salient image location. Image
extracted from [40].

contrast, two encode for red/green and blue/yellow double-opponent chan-
nels and four encode for local orientation contrast [67].

From these features, we need to extract a unique saliency map. Each
feature map is first normalized (between 0 and 1). Then, each map M is
iteratively convolved by a large 2-D DoG filter, the original image is added
to the result, and negative results are set to zero after each iteration:

M← |M+M ⋆ DoG− Cinh|≥0 (2.36)

2.4. Dense Visual Features 53

(a) Input image (b) Saliency Map

Figure 2.8: Saliency map of a driving scenario image. The saliency of the
points is represented using a color scale. Most salient points are marked in
red and less interesting areas are dark blue.

where DoG is the 2D difference of Gaussian filter described above, ||≥0 dis-
cards negative values, and Cinh is a constant inhibitory term that introduces
a small bias towards slowly suppressing regions that typically correspond to
extended regions of uniform textures, which we would not consider salient.
This process is iteratively repeated several times, and then we obtain three
different conspicuity maps: one for intensity, one for color and one for ori-
entation (see Fig. 2.7).

Finally, these three conspicuity maps are summed into an unique saliency
map. Following aWTA approach, the most salient stimuli are then sent to be
processed and then inhibited using a return signal. This process is repeated
for all the points in the saliency map under a given threshold.

Figure 2.8 shows the saliency map output of a real-world image. In this
representation, the most salient stimuli are marked with red or yellow. Less
important areas are represented in dark blue. We could use a threshold to
obtain a sparse saliency map. If we compare figures 2.6 and 2.8, we see
how we obtain different information, but the most salient parts are always
represented.

Sparse features, although useful to extract other higher level features,
are not enough to achieve a complete understanding of the scene. This
understanding will benefit from denser features.

2.4 Dense Visual Features

The goal of dense visual features is to provide information for each point of
the image, no matter whether they are redundant. These features, contrary
to sparse ones, are considered better when they obtain a denser representa-

54 Chapter 2. Introduction to Computer Vision

tion. In the framework of these dissertation, disparity and optical flow are
considered.

2.4.1 Disparity

Known as disparity, depth, stereoscopy (or just stereo), this visual feature
calculates the distance of various points in the scene relative to the position
of the camera. This task is useful at several levels in computer vision, from
calibrating a camera system to providing information to TTC algorithms,
for instance.

A common method for extracting such depth information from intensity
images, such as the ones we are studying, is to acquire a pair of images
using two cameras displaced from each other by a known distance. As
an alternative, two or more images taken from a moving camera can also
be used to compute depth information. In contrast to intensity images,
images in which the value at each pixel is a function of the distance of the
corresponding point in the scene from the sensor are called range images.
Range images, however, are out of the scope of this dissertation [41].

In the literature we find many ways to extract disparity information from
intensity images. DRIVSCO system, as shown in figure 1.2, captures the
scene using two cameras separated a known distance. This is why we are
focus on this approach. Even within this approach several algorithms can
be found. In [25], Dı́az analyzes different techniques to compute disparity
using this approach. Table 2.1 includes a sum-up of his analysis. Local
techniques are those that estimate disparity at a point by comparing a small
region around that point in an image with a series of small regions extracted
from the other image. Global ones, on the other hand, try to compute the
disparity field based on prior assumptions [73].

When working on real camera systems, input images contain distortions
due to the capturing system. This is why the images must first be corrected
for distortions, such as barrel distortion. Then we need to project the image
back to a common plane to allow comparison of the image pairs, known as
image rectification [73].

As this chapter is merely an introduction, we present local-phase-based
technique as an example of disparity extraction method and we assume in-
put images are rectified. We are focusing on this approach because it is
hardware-friendly (since it is local) and robust to intensity changes, a very
useful trait when working in a real-world scenario. In fact, those characteris-
tics make this technique perfect to be implemented in DRIVSCO framework.
However, before moving to the example, let us point out the main problems
of the stereo systems.

2.4. Dense Visual Features 55

(a) Left Image (b) Right Image

(c) Ground Truth (d) Disparity

Figure 2.9: Disparity example. (a) and (b) are the left and right original
images from Middlebury’s ’́venuś’ sequence. (d) is the disparity calculated
using [73] where warm colors codify closer objects and cold colors, farther
objects.

Figure 2.9 shows an example of a pair of images from Middlebury bench-
mark [79], the disparity calculated using Ralli et al. algorithm [73] and the
real stereo information of the scene (ground-truth). Warm colors (like red
or orange) codify closer objects while cold colors encode farther objects.

2.4.1.1 Stereo System Problems

A stereo system must solve two problems [87]:

Correspondance Determine which item in the left eye corresponds to
which item in the right eye. Moreover, some parts of the image are
only visible with one eye.

Reconstruction Our brain interprets the scene thanks to the disparity
map between corresponding items. If the geometry of the scene is
known, our brain translate the disparity map into a 3-D reconstruction.

56 Chapter 2. Introduction to Computer Vision

Technique Description

Local Methods

Region-Based
Matching

Search for maximum match score or minimum
error over a small region, typically using variants
of crosscorrelation or robust rank metrics.

Differential Minimize a functional, typically the sum of
squared differences, over a small region.

Energy- or Phase-
Based

Analyze the image on the Fourier domain focus-
ing on the energy or phase of the signal after
convolving with quadrature filters.

Feature Matching Match specific features rather than intensities
themselves.

Global Methods

Dynamic Program-
ming

Determine the disparity surface for a scanline
as the best path between two sequences of or-
dered features. Typically, order is defined by
the epipolar ordering constraint.

Global optimization Determine the disparity surface as energy mini-
mization process.

Table 2.1: Local and Global Disparity Techniques

2.4.1.2 Phase-Based Disparity

As already mentioned, phase-based algorithms rely on structure information
instead of intensity. This is why this approach is unbiased to luminance
changes and behaves better against affine transformations (for instance due
to different camera perspectives) [25].

As a general approximation, a mono-scale phase-based algorithm follows
these steps:

1. Even (C) and odd (S) filtering of left and right images (we could use
Gabor filters as in section 2.1.2.1).

2. For each orientation, compute the phase difference using (2.37) and
apply a thresholding operation.

3. Chose of final disparity estimation between different orientations (for
instance, median value).

For oriented filters, the phase difference has to be projected on the epipo-
lar line. Since we assume rectified images, this is equal to the horizontal [63].

2.4. Dense Visual Features 57

For a filter at orientation θq, the disparity is obtained as follows:

δq(x) =

[
φL
q (x)− φR(x)q

]
2π

ω0cosθq
(2.37)

where φL
q and φR

q are the left and right image phases, []2φ depicts reduction
to the]− π;π] interval, and ω0 represents the filter peak frequency.

2.4.2 Optical Flow

Horn and Schunck [37] defined optical flow as follows: ”The optical flow is a
velocity field in the image which transforms one image into the next image
in a sequence. As such it is not uniquely determined. The motion field, on
the other hand, is a purely geometric concept, without any ambiguity it is
the projection into the image of three-dimensional motion vectors.”

As we did in the disparity section, we focus on a phase-based approach
to solve this problem. Finally we introduce the problems found when com-
puting optical flow.

2.4.2.1 Phase-Based Optical Flow

Starting with the convolution output (from several oriented filters), we cal-
culate the phase for each orientation. Then we extract the temporal phase
gradient in time t for every orientation θ and location x, noted as φθ(x, t),
through a linear least-squares fit:

φθ(x, t) ≈ cθ(x) + φt,θ(x)t (2.38)

A simple unwrapping technique is used to cope with the periodicity of the
phase.

Next, for each orientation θ a component velocity is computed directly
from φt,θ(x):

vc,θ(x) =
−φt,θ(x)

2π(f2
x,θ + f2

y,θ)
(fx,θ, fy,θ) (2.39)

Where fx,θ and fy,θ are the spatial frequency values at θ orientation. If we
assume phase linearity, we can translate the sum of squared frequency values
to a constant characteristic which is the peak frequency of the filter used.
Note that the spatial phase gradient is substituted by the radial frequency
vector.

The reliability of each component velocity at each orientation θ is mea-
sured by the Mean Squared Error (MSE):

MSE =
∑

t

(∆φθ(x, t))
2

n
, (2.40)

58 Chapter 2. Introduction to Computer Vision

where n is the number of frames and ∆φθ(x, t) = (cθ(x)+φt,θ(x)t)−φθ(x, t).
Please note that, for uniform motions (no acceleration), the flow computa-
tion benefits of the use of a large number of temporal frames. Unfortunately,
real-time and (accessible) memory constraints reduce this number to few
frames, using typically 3-5 frames [84]. Using this information, we discard
those orientations that are not reliable, i.e. that are under a given threshold.

Finally, if a minimal number of reliable component velocities are ob-
tained, an estimate of the full velocity v∗ is computed for each pixel:

v∗(x) = argminv(x)

∑

θ∈O(x)

(
‖vc,θ(x)‖ − v(x)T

vc,θ(x)

‖vc,θ(x)‖

)2

(2.41)

Where O(x) is the set of orientations at which the valid component velocities
have been obtained for pixel x. For those points without enough reliable
oriantations, the optical flow vector or a tag indicating non valid data is
generated.

Figure 2.10: Optical flow example. Left column shows one of the three
frames of Middlebury’s ’́yosemité’ (top) and ’́diverging treé’ sequences used
as input images. The central column represents the ground truth of the
optical flow. Left column shows the optical flow calculated using [6].

Figure 2.10 shows an example the optical flow computation for Middle-
bury sequences [79]. This optical flow has been calculated using Barranco
et al. algorithm [6, 5] and compared to the ground-truth (central column).

As we did with the disparity, we are going to point out the main problems
we have to handle when extracting optical flow.

2.5. Multi-Modal Visual Features 59

2.4.2.2 Optical Flow Problems

As with the stereo, motion computation presents the correspondence and
reconstruction problems (see section 2.4.1.1 for details). In addition, optical
flow presents other problems, such as aperture.

Aperture problem Since we extract the optical flow of a point considering
a limited region, inspired by the V1 cells in the visual cortex [47], we
can only detect a 1D motion: the velocity component perpendicular
to the local line feature inside its receptive field. This means that if
we only see a portion of an object, we cannot detect the true motion
of the 2D object directly from its many local motions.

Aperture problem is usually solved by using a larger window in a local
method or employing a global approach that take into account the whole
image.

2.5 Multi-Modal Visual Features

Now that we have studied the features extracted in our system, it is the
moment to introduce the existing solutions to our memory, bandwidth and
performance problems. In fact, very few approaches handle visual features
instead of images. In literature we find multi-modal descriptors that use
a sparse representation to condense several visual features into an unique
descriptor.

A large amount of evidence suggests that the human visual system pro-
cesses a number of visual features in its first cortical stages [47, 44, 10]. In
[70], Pugeault et al. suggest a representation to bundle the different features
in one visual descriptor which can be interpreted as a functional abstraction
of a specific repetitive pattern at the first stage of cortical visual [46]. This
representation, that they call multi-modal descriptor, has been used in a
number of applications such as the learning of object representations [69],
pose estimation [23], motion estimation, and vision based grasping [68].

This multi-modal representation is based on image structures, it accu-
mulates edge information in terms of an abstracted representation by local
multi-modal descriptors covering geometric and appearance. Thus, we un-
derstand it as a condensed sparse representation, i.e. only a few descriptors
are transfered to higher level, but those points contain information concern-
ing several visual features.

The extraction process of this multi-modal descriptor can be summarized
as follows (a more detailed description can be found in [69, 46, 70]):

60 Chapter 2. Introduction to Computer Vision

Figure 2.11: Multi-modal descriptor extraction process. (A) Original images
(left and right); (B) extraction of 2D-primitives; and (C) stereo reconstruc-
tion of 3D-primitives. Image from [69]

1. Their system receives a stereo-pair of images obtained from a precali-
brated stereo rig as shown in Figure 2.11A.

2. The left and right images are then processed independently in the low-
level vision layer extracting: magnitude, orientation, phase, color, and
optical flow.

3. For each pixel, its local flow is represented by its color: the hue4 indi-
cates the orientation of the flow vector and the intensity, the magnitude
of the flow (where black stands for zero flow).

4. The local signal is classified using the intrinsic dimension (see section
2.2.3) computed for each pixel in the image. This way we extract a
confidence value about the image structure

5. Pixel-wise information provided by early vision is combined in a sparse,
condensed set of feature vectors called 2D-primitives (Figure 2.11B).

6. 2D-primitives are then matched across the two stereo-views and corre-
spondences allow for the reconstruction of 3D-primitives that extend
the primitive representation into 3D space (Figure 2.11C). This rep-
resentation is then provided to higher levels.

4The quality of a color as determined by its dominant wavelength

2.5. Multi-Modal Visual Features 61

Despite of all the advantages of this descriptor (see [69]), the main disad-
vantage of this sparse visual feature, as all the others studied in this chapter,
is that plain regions (i.e. low textured areas) are ignored.

Chapter 3

Semidense representation

map for visual features

Sparse visual features introduced in the previous chapter look like the perfect
solution to our bandwidth and memory problems. Let us check if they fulfill
all our goals:

Condensation. All of them will dramatically reduce our memory and band-
width requirements. For instance, local descriptors extract less than
1% of the original image points as relevant, as shown in Fig. 2.6. Even
edges or saliency maps will provide a good reduction.

Versatile. Except multi-modal descriptor, sparse features receive intensity
images as input. This means they are not prepared to handle dense
visual features. However, we could use them as a mask and apply it
to condense any dense visual feature.

Hardware-friendly. Most of these algorithms are designed and imple-
mented to be used in a software system and, therefore, they need
several iterations to complete their calculations. Only those based
only in filtering operations, such as energy, orientation, phase and edge
detectors, have a straightforward implementation in hardware [25].

Feedback from higher levels. Multi-modal descriptors have successfully
included feedback information to improve their behavior [69]. Al-
though attention systems include top-bottom targets in their design,
not many of them include those kind of signals in their representations
[89].

Efficient representation. Our most promising options (local and multi-
modal descriptors) are too complicated to be handled by mid- and

63

64 Chapter 3. Semidense representation map for visual features

high-level algorithm without changing those algorithm or including a
translation module.

Information recovery. These options do not include enough plain-region
information, in fact, most of them include none.

All options and constrains considered, none of these sparse visual fea-
tures satisfies all the requirements of our system. We need to design and
implement our own representation map.

Contrary to sparse and dense approaches, we have designed a semidense
representation map combining them. Figure 3.1 shows an example of the
semidense representation map achieved from a disparity input. It also shows
how it can receive top-down information from higher levels. As we can see,
our innovative map is mainly composed of two different parts: relevant
points (RPs) containing salient information, and a filter-based subsampling
grid, integrating plain region data at a minimum cost [33].

Figure 3.1: Condensation process example. Condensed disparity map size
is around 6% of the original. We have used a Canny-based extractor for the
salient areas and 9x9 bilateral-based extractor for the plain regions.

In the first part, one or several of the sparse features previously men-
tioned is used to detect salient regions, that we call relevant points (RPs).
In section 3.1 we explain in detail this process, using a edge-based relevance
detector as example, and how to integrate it with other sparse features.

In the second part of our algorithm, ’context’ information is extracted.
Instead of sending only the RPs (as other descriptors typically do), we apply
a filter to the dense feature we are condensing and subsample a regular grid

3.1. Relevant Points 65

of that context information. The filtering process regularizes and spreads the
information contained in the dense feature. In the grid extraction (section
3.2) we assess different filters and grid sizes.

Section 3.3 includes some tests using real-world sequences to test the
regularization capacity of our semidense representation map.

3.1 Relevant Points

The process followed to extract these points starts by using an enhancing
signal to select salient areas in the image. Then, we use those selected points
as a mask and extract RPs from a dense visual feature.

As a general rule, our condensation algorithm can use any method that
selects a branch of salient points in an image as the ones described in chap-
ter 2. For vision algorithms, however, the early cognitive features of an
image are based on its local structure, which is related to front-end vision.
Structure information allows us to discard entire regions that lack interest
and center our attention (and processing power) on the relevant parts in
order to transfer them. Most of the sparse feature extractors we have men-
tioned follows this idea. This is why, instead of employing a more complicate
algorithm that requires more complex computations, we have chosen a sim-
pler method based on structure detection. In fact, structure information is
usually applied in applications such as vehicle navigation, 3D scene/object
reconstruction and robotic grasping.

We have designed this salience-based part of our representation so it
is ready to integrate several sparse features at the same time. In fact, it
is ready to receive feedback data from low-,mid- or high-level stages of our
system, i.e. top-down targets, and integrate them with our RP mask. In the
following sections we introduce a structure-based RP extractor and how to
integrate different sparse signals. Section 4.1.1, on the other hand, introduce
saliency-map-based RP extraction, while sections 4.1.2 and 4 shows a real-
world example of signal integration.

3.1.1 Structure-Based Selection

In chapter 2 we have studied several structure-based sparse features that
we could use as base to our condensation algorithm. Since we are looking
for a real-time hardware-friendly approach, we focus on edge detectors and
intrinsic dimension.

66 Chapter 3. Semidense representation map for visual features

Figure 3.2: Relevant points extractor based on Canny edge detector. The
scheme shows the main steps of the RP extractor using Canny non-maximum
suppression and hysteresis thresholding. Bottom part corresponds to a real-
world example of this process, from the original images to the final edge
mask.

3.1.1.1 Canny Edge Detector Approach

Gabor filters are used to extract local energy in our vision system (as shown
in Fig.1.4). Our algorithm re-utilizes their outputs and uses magnitude as
main salience detector. Obtained edges, however, are too thick. This is
why, as explained in section 2.2.2.1, we apply non-maximum suppression
and hysteresis to further reduce the representative data. Since our resources
are limited, we do not use gradient orientation. Our solution employs local
orientation calculated by our system to compute the non-maximum suppres-
sion. We establish four orientations:

• Orientation 1: angles within one of these two groups [0, 22.5) or [157.5, 180).

• Orientation 2: angles within [22.5, 67.5).

• Orientation 3: angles within [67.5, 112.5).

• Orientation 4: angles within [112.5, 157.5).

Our relevant point algorithm based on Canny edge detector is shown in
Figure 3.2 as well as an example output when used on a real-world sequence
(bottom left images). In Figure 3.4, we compare it with the other methods
assessed. The main steps of this process are the followings:

1. Apply image magnitude a given threshold. Store it in Edges.

3.1. Relevant Points 67

2. Associate each pixel one of the four ”gradient orientation”. Store it in
ImgO.

3. Discard those pixels that are not a maximum. Figure 3.3 shows the
MATLAB code for this step.

4. Apply hysteresis thresholding using a given threshold.

Figure 3.3: Non maximum suppression code implemented in MATLAB.

Threshold used could be fixed or vary to adapt to the intensity changes
in the scene as explained in the hardware implementation (see section 5.2).

3.1.1.2 Sobel Edge Detector Approach

Our system has a convolution module available that we can easily adjust
to apply Sobel’s kernels (see equation (2.29)). Since Sobel-based edges are
usually thinner than the ones obtained by Canny detector, no farther pro-
cessing is needed [56]. Nevertheless, we could use the same non-maximum
suppression and thresholding to obtain even thinner edges. In Figure 3.4,
we compare it with the other methods assessed.

68 Chapter 3. Semidense representation map for visual features

3.1.1.3 Intrinsic Dimension Approach

Three differentiated masks are obtained in this this approach: i0D, i1D
and i2D. They can also be calculated using Gabor filters to emulate image
gradient. This algorithm’s steps can be summed up as follows:

1. Extract image gradient using oriented Gabor filters.

2. Calculate gradient squared magnitude using soft-thresholding [26].

3. Apply local averaging to the soft-thresholded magnitude.

4. Create the three masks using averaged magnitude and angle informa-
tion.

The complexity of this option, as we can see, is bigger than the previous ap-
proaches and its implementation in real-time is more challenging. In Figure
3.4, we compare i1D and i2D outputs with the other methods assessed.

3.1.2 RP Extractor Assessment

We have assessed these three options (Canny, LIP-Sobel and intrinsic di-
mension) as enhancing signals to show the versatility of our algorithm. In
Figure 3.4 we show the RP mask for each of the assessed options, using as
input the same image as in Figure 3.1. As previously mentioned, these point
selectors can be considered bottom-up saliency enhancers [67].

To evaluate the accuracy and the condensation capacity of our semidense
map, we have used as input the disparity obtained from several Middlebury
benchmark sequences [79]: Tsukuba, Venus, Teddy and Cones. The dense
disparity has been obtained using Ralli et al. algorithm [73]. We have also
followed Middlebury accuracy measurement convention, called ’bad point
error’. A bad point is a point whose error is above a given threshold (typ-
ically 1 pixel of disparity extraction) [79]. Hence, ’bad point error’ is the
percentage of bad points in our representation.

Figure 3.5 shows the behavior of our algorithm for each of these RP
extractors and sequences. The condensation columns (labelled as ’Cond.’)
correspond to the percentage of the original disparity we are actually using.
We can see that the error for the majority of the sequences is bigger than the
original one. This is because we select a few points from the most complex
areas of the image (edges and corners). At a first glance, LIP Sobel extractor
performs better reduction (although its error is bigger). The number of
point extracted by this algorithm, however, is too small and they would
result insufficient for most of the higher-level algorithms.

3.1. Relevant Points 69

(a) Canny edge detector (b) Lip-Sobel edge detector

(c) Intrinsic Dimension 1 (id1) (d) Intrinsic Dimension 2 (id2)

Figure 3.4: Relevant point mask for the different structure-based extractors
assessed. We have used Middlebury [79] sequence ’Venus’ to graphically
compare them.

Moreover, Figure 3.5 shows how the condensation percentage depends
on the sequence: more textured images profit from id2 advantages, while
simpler ones work better with the edge detectors (Canny and Lip-Sobel). It
also depends on the ulterior high-level application. Thus, several of these
extractors can be combined whenever necessary, providing a more versatile
approach. Since one of our goals is to obtain a hardware-friendly solution,
we have selected Canny as a trade-off approach. Although edges are prone to
larger disparity estimation errors, this approach’s increase is quite limited.
In addition, Canny uses a threshold that is really useful to control intensity
variations, providing an easy way to adapt to changing environments.

In our software implementation, this step output is basically a binary
matrix containing ’1’ if the point is relevant or ’0’ otherwise. After inte-
grating this mask with the plain-region grid, we transfer our RPs using a
bio-inspired approach: an event-driven communication protocol similar to
[13] (more details can be found in section 5.1.1).

70 Chapter 3. Semidense representation map for visual features

Figure 3.5: Relevant-point extractor comparison. ’Bad point error’ means
the percentage of points whose absolute error is above a given threshold,
that is, over 1 in this example; this measurement has been widely used [79].
’Cond.’ is the percentage of the condensed disparity points compared to
dense ones.

3.1.3 Integration with Other Sparse Features

Although we have used a structure-based RP extractor, our model is pre-
pared to receive any other sparse visual feature as bottom-up signal. We
might want to add the new signal to our extractor or replace the RP extrac-
tor completely.

On one hand, integrating a sparse feature consists on transforming the
new feature into a binary matrix that follows the same scheme as our repre-
sentation. This way, we can just add (binary AND) them to obtain a single
mask. Note that this process can also be used to inhibit regions or points
by sending a mask that contains ’0’ in the areas to suppress. We have suc-
cessfully used this approach to integrate not only several low-level features
(section 5.3.2) but also mid- and high-level ones (section 4.2).

On the other hand, if we want to replace our RP extractor by another
one, the simplest solution is to replace this module by the sparse feature
extractor and transform it into a binary matrix. Some of those feature

3.2. Plain or Context Regions 71

descriptors, however, provide more information than just the salient point
position. If we wanted to include that information, a bigger adaptation
would be needed.

3.2 Plain or Context Regions

In contrast to sparse features, our semidense representation map also in-
cludes plain-region information (i.e. i0D regions according to intrinsic di-
mensionality, as explained in section 2.2.3 and [45]). This operation is the
key that allows higher-level stages to evaluate the scene as accurately as
using a dense map. Our algorithm extracts representative points using an
homogeneous grid to select the points’ coordinates. This grid is combined
with the RPs to obtain our final semidense representation map (as shown
in Figure 3.1).

To obtain this regular grid, we apply locally (in a window Ω) a filter
to the dense feature and select a representative element of that window,
following a regular pattern. An scheme of this process is shown in Figure
3.6. Formally, the grid extraction process can be defined as follow:

∀c/c ∈ S, Vc = fΩ(c) (3.1)

where c is a grid point, S is the set of grid points and fΩ is a filter locally
applied in a window Ω centered in c.

The number of points in S is determined by the size of the window Ω.
Their relative position, however, could vary: we could select a squared or
hexagonal grid, for instance. Hence, there are two main elements to assess:
Ω, the grid window size; and fΩ, the filter applied.

Figure 3.6: Grid extraction scheme. A) original image example; B) grid
windows used in the condensation process (hexagonal to reduce distances
between grid points); C) the black points represent the grid points extracted
from the minor-relevance areas and the red line represents the relevant points
in that area.

72 Chapter 3. Semidense representation map for visual features

Before studying Ω and fΩ, let us focus on the grid shape, i.e. the rela-
tive position of points contained in S. We have decided to fix it, following
an hexagonal pattern, as shown in Figure 3.6. This distribution, contrary
to a squared one, reduces the Euclidean distance between grid points. In
fact, compound eyes of many insect are distributed following this hexagonal
pattern [56]. Nevertheless a more complex grid shape, such an adaptative
one could be designed (see future work in section 6.2).

3.2.1 Grid Window Size Ω

As we deduce from (3.1), Ω depends on the image size and on the final num-
ber of non-relevant points we want to obtain (size of S). A 5x5 grid window
extracts around 4% of the dense feature points; a 7x7 one, around 2%; and
a 9x9 one, around 1,2%. Moreover, S size determines the number of sub-
sampling operations we will need to perform. A bigger grid size, however,
could produce insufficient points and result useless for higher-level stages.
Nevertheless, it is important to notice that the original dense feature may
be non-dense, for instance there is no disparity information available when
a region has no texture. Thus, some of the grid points will be NaN (not
a number), whenever the majority of the points in the window are NaN .
Since dense maps present NaN points, their presence in our semidense rep-
resentation is expected and should not affect higher-stage algorithm. Our
main concern, however, is wheter we are marking too many points as NaN
and therefore loosing too many data.

We need a way to measure whether we are losing too much information
due to the condensation process or not. We have used Receiver Operating
Characteristic (ROC) curves to assess different Ω values [94]. Appendix
A explains these curves, including specificity and sensitivity equations. In
this case we label true positive those points that keep an actual value, true
negative points that being NaN in the dense features are kept as NaN ,
false positive points that being NaN in the original are given a value in the
condensed one, and false negative points having a value that are marked as
NaN when condensed (i.e. points we loose when condensing).

Apart from considering NaN values, we have marked as invalid those
condensed points too noisy to be considered as correct. Hence, we have
calculated the disparity of a test sequence, then we have condensed it using
different grid widows and median filter (see next section for further details).
Finally we have calculated the difference between original and condensed
values and the standard deviation (std). This way, if the difference is bigger
than a given threshold we consider that point invalid. Formally this process
can be defined as follows:

|Original Disp− Condensed Disp| ≤ std/i, (3.2)

3.2. Plain or Context Regions 73

3x3 Window 13x13 Window 23x23 Window 33x33 Window

2-9 Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.

Std / 1 0.9521 0.7460 0.8170 0.6685 0.8069 0.6485 0.6702 0.5655
Std / 2 0.4774 0.4507 0.3047 0.4215 0.3075 0.4210 0.2438 0.3742
Std / 3 0.3183 0.4465 0.1744 0.4129 0.1950 0.4132 0.1414 0.3629
Std / 4 0.2437 0.4452 0.1251 0.4104 0.1350 0.4099 0.1004 0.3593
Std / 5 0.1920 0.4444 0.1003 0.4093 0.1007 0.4083 0.0724 0.3570
Std / 6 0.1551 0.4439 0.0826 0.4085 0.0854 0.4076 0.0592 0.3560
Std / 7 0.1269 0.4436 0.0741 0.4081 0.0753 0.4071 0.0520 0.3554
Std / 8 0.1118 0.4434 0.0673 0.4078 0.0649 0.4067 0.0460 0.3550
Std / 9 0.0996 0.4432 0.0608 0.4076 0.0590 0.4064 0.0416 0.3547
Std / 10 0.0891 0.4431 0.0559 0.4074 0.0543 0.4062 0.0379 0.3544

Table 3.1: Grid window sensitivity (Sens.) and specificity (Spec.) for dif-
ferent grid widow sizes calculated using (3.2)

where i = [1, 10].

Table 3.1 shows an example of this process using a few of the assessed
window sizes. Using these data (and similar ones calculated for other win-
dow sizes) we have generated several ROC curves shown in Figure 3.7. In
3.7(b) we see how smaller sizes provide a better behavior. Although we have
assessed big window sizes, Figure 3.7(d) shows how the bigger the grid, the
worse the curve. For smaller sizes (Figure 3.7(c)), however, most of the
options are good enough.

3.2.2 Filter Selection

We use a filter instead of simply sub-sampling so that existing errors are
smoothed and information is spread throughout the feature [3]. When work-
ing on real-time applications, features are noisier, therefore, a smoothing
step produces evident improvements [86]. This process can be considered a
regularization step. We have matched filter size and grid size to achieve a
simpler implementation.

We can see that fΩ depends on the input feature noise and the image
size. To reduce this noise, we have assessed median and bilateral filters,
anisotropic diffusion, and subsampling (i.e. no filtering, just selecting one
point per window). Figure 3.8 compares these filters when used to extract
the representative value of the grid. We have also assessed several filter
window sizes: 5x5, 7x7 and 9x9. We use Middlebury sequences and error
measurement as in Figure 3.5.

We can see that, once again, the final results depend on the sequence, but
also that a bigger grid window usually produces a higher error. Even though
we are using a very accurate disparity [73] and a regularization step is not

74 Chapter 3. Semidense representation map for visual features

(a) ROC curves behavior (b) Grid window size: general view

(c) Small grid window sizes (d) Big grid window sizes

Figure 3.7: Grid window size comparison using ROC curves. (a) shows how
to interpret ROC behavior. (b) compares different window size. (c) focuses
on the smaller sizes while (d), on the bigger ones.

essential, we can see how the error is slightly reduced when using bilateral
(Tsukuba and Venus) or median (Teddy) filtering. This regularization is
more evident when noisy or less accurate primitives are used, as in real-time
implementations that have to meet real-time constraints [1, 86] (see section
3.3.2).

From figures 3.5 and 3.8 we determine that every application requires
customized configurations. Nevertheless, a 5x5 hexagonal grid using bilat-
eral filter achieves great results as a general rule. Moreover, there is a very
profitable advantage when using the bilateral filter: it preserves edges. This
is very important since we are already extracting the edge information in
the previous stage of our algorithm. If we use a median filter, for instance,
we would include this information again, adding inaccurate data to our rep-
resentation.

3.3. Results and Validation 75

Figure 3.8: Filter and grid-size comparison. The error used corresponds to
the percentage of points whose absolute error compared to ground truth is
above a given threshold, that is, over 1 in this example [79].

3.3 Results and Validation

So far, we have studied how to extract salient information using RP extractor
and how to keep the less salient one by using a regular grid. Now we need to
translate those separate processes into an unique representation, a semidense
representation map.

3.3.1 Semidense Representation Map

The final step of our condensation algorithm is to combine and transfer
efficiently the points extracted, relevant and non-relevant. Since grid points
have fixed positions, when transferring our semidense representation map,
we do not need to include their coordinates; it is enough to provide a binary
mask or a simple algorithm to the higher-level stages. By this, we only need
to transfer the list of feature values. A special case are those grid positions
where we find a RP. These positions’ feature value would be marked as NaN,
and hence ignored by other algorithms. Relevant points, however, have no
pre-fixed positions. Therefore we represent them as the feature value and

76 Chapter 3. Semidense representation map for visual features

its coordinates within the image (in section 5.1.1 we explain this transfer
process in detail).

Although this is not a compression algorithm, our condensation process
reduces the amount of data to be transferred between co-processors. Instead
of sending a whole image, we send 10% of the original map for a grid size of
5x5 (this percentage depends on the sequence spatial structure). Table 3.2
shows the ’bad point’ error for the previously assessed sequences (used to
obtain Fig. 3.8 and 3.5). As we can see, the error is slightly bigger than the
original one. This increase, however, is worth it for many algorithms due to
bandwidth, workload, and computating resources reduction. As previously
mentioned, when using dense features from real-time systems, the filtering
steps is pretty useful to reduce the error as we prove in the next section.

Sequence Tsukuba Venus Teddy Cones

% Bad point error (original) 7,5 5,11 20,72 17,59
% Bad point error (condensed) 8,31 5,32 25,7 19,29
% Condensed 7,98 8,13 8,54 10,81

Table 3.2: Condensation output.

Many high-level algorithms work with sparse representation maps; there-
fore they could receive this semidense map as input, reducing the amount
of data to be transferred between stages and allowing feedback from higher-
levels. We successfully tested these semidense maps as an input of high-level
algorithms with encouraging results (see section 4 for farther details).

Other high-level algorithms, however, are prepared to receive a dense fea-
ture (see section 4.2.2.2), thus our representation would imply some changes
in their implementation. A simple module can be implemented to translate
our semidense map to a representation containing as many point as the dense
feature by filling the non-defined points with a NaN value. In addition, we
have implemented a straightforward interpolation module that recovers a
dense map from a semidense one. Appendix B explains the different options
assessed to interpolate a dense map using our semidense one as input.

In addition, as an example of this process, we include here Figure 3.9
that shows how we recover the dense map by interpolating condensed dis-
parity. The interpolation method used is a simple one: linear. In short,
we spread the grid point information in its neighborhood, weighted by the
distance. This process acts as a regularization mechanism producing more
homogeneous fields which could improve the field accuracy when working
with noisy features (a capability we explore in next section).

Our semidense representation map is versatile, which means we can con-
dense different dense features. Figure 3.10 shows an optical flow example,

3.3. Results and Validation 77

Figure 3.9: Condensation process including interpolation. Using the input
images (top left), dense disparity (bottom-left) is extracted using [86]. After
condensing it, we recover a dense map using simple calculations.

calculated for a real-world sequence, as well as its condensation and interpo-
lation. This example is just a frame of a 300-frame sequences. In addition,
we also present the MSE (comparing original and interpolated) and con-
densation ratio achieved for the whole sequence (Figure 3.11(a) and 3.11(b)
respectively). Again, read Appendix B for farther details about interpola-
tion techniques.

We tested our condensation method with several sequences as the exam-
ple above, extracting different visual features and leading to final condensed
representations requiring 7-15% of the original image size. Note that the
de-condensation process allows us to recover the original data density with
only small errors. These errors, however, have been proved to be more than
just degradation in many cases, as we explain in next section.

3.3.2 Inherent Regularization

As we have seen in Fig. 3.9 and 3.11, the difference between original visual
feature and de-condensed one has an error (for instance MSE: 1.2611 in
the former figure). Nevertheless, this difference cannot be interpreted as
degradation of the results (due to the condensation), but as a regularization.

78 Chapter 3. Semidense representation map for visual features

Figure 3.10: Using the original image and optical flow (first row), we extract
our semidense map and we recover a dense representation by applying a
simple interpolation method

(a) MSE error per component (Vx and
Vy)

(b) Condensation ratio

Figure 3.11: (a) MSE and (b) condensation ratio of a real-world sequence
when extracting, condensing and decondensing optical flow. (a) shows the
error between the original dense feature and the interpolated one for each
velocity component.

Currently, a large amount of papers about visual feature regularization
can be found [17, 31, 49], but none of them focus on achieving an effi-
cient algorithm that fits in a hardware implementation and at the same
time reduces transfer load. Our semidense representation map provides this

3.3. Results and Validation 79

regularization as an inherent quality, joining hardware and regularization
effectively.

To evaluate the regularization capabilities of our condensation algorithm
we applied it to an optical-flow field computed with a FPGA device. We
used several Middlebury benchmark sequences whose ground truth is known
[2]. The raw hardware engines obtained a low-cost dense map. Then we con-
densed and decondensed it using our proposed approach. Finally we com-
pared these three maps (low-cost hardware, condensed and interpolated)
with the ground-truth ones, obtaining the error of each of them. This ex-
ample is of special interest for low-cost hardware implementations in which
the results provided by the hardware engines are noisier (due to computation
precision constraints or model simplifications) as in Table 3.3.

Yosemite with clouds Yosemite without clouds
AAE STD Density AAE STD Density

Low-cost hardware based 18,6 18,62 99,53 15,65 16,67 99,4
Condensed 16,1 16,62 11,13 13,83 15,13 11,08

Interpolated 14,71 14,96 99,53 11,91 13,25 99,4

Table 3.3: Low-cost hardware optical flow condensed and decondensed (in-
terpolated). A significant improvement in accuracy can be seen when con-
densing a low-cost hardware engine for front-end estimate extraction.

Table 3.3 shows the results of using the synthetic Yosemite sequence
to obtain a low-cost hardware version of the optic-flow extractor. It also
shows the condensation error when using Canny-based RP extractor and
3x3 median-filter grid. In addition we have decondensed the semidense map
using a linear interpolation method. The density shown highlights the com-
pression achieved by the condensation algorithm. The measurement used
is the average angular error (AAE) and its standard deviation (STD) as
suggested by [2]. The angular error (AE) between a flow vector (u, v) and
the ground-truth flow (uGT , vGT) is the angle in 3D space between (u, v, 1.0)
and (uGT , vGT , 1.0). The AE can be computed by taking the scalar product
of the vectors, dividing by the product of their lengths, and then taking the
inverse cosine:

AE = cos−1


 1.0 + u× uGT + v × vGT
√
1.0 + u2 + v2

√
1.0 + u2GT + v2GT


 . (3.3)

Therefore, from Table 3.3 we deduce that our semidense representation gains
in accuracy as well as the interpolated map derived from it (see Appendix
B).

Figure 3.12 shows Yosemite sequence and the different optical flows cal-
culated in table 3.3. To compare our output with other algorithms, we also

80 Chapter 3. Semidense representation map for visual features

show Chessa et al. affine-based regularization [17] when applied to the orig-
inal noisy feature (Fig. 3.12(d)). Although our algorithm performance is
better using a 5x5 window size (as shown in Fig. 3.7), to fairly compare
the two approaches, we fixed the same window size (3x3) and we did not
extract RP. This figure corroborates the previous table, showing condensa-
tion and de-condensation outputs and their accuracy gain. Moreover, we
can see that our solution not only outperforms affine-based one but also
requires less computational workload. Therefore, it may be concluded that
our algorithm has inherent regularization capabilities.

(a) Yosemite original image (b) Optic-flow ground truth

(c) Noisy optical flow (d) Affine-based regularization

(e) Condensed optical flow (f) Decondensed optical flow

Figure 3.12: Inherent regularization example. Using a low-cost hardware
implementation, we have extracted (c) from Middlebury Yosemite sequence
(a). (d) is an example of Chessa et al. regularized output [17] for (c). (e)
shows our condensed output extracting no RPs and a 3x3 median-based
grid. (f) shows decondensed (e) using linear approach.

Table 3.4 shows a more accurate hardware implementation of the optic-
flow extractor [85] for several Middlebury sequences and how the conden-
sation process works on them. Apart from the Yosemite sequence, we used

3.4. Conclusions 81

the non-synthetic benchmark sequences Hydrangea and Rubber Whale, fre-
quently used in computer vision [79]. As can be seen in these tables, the
behavior of our condensation scheme is very interesting when a noisy input
is provided (Table 3.3), but it can also reduce the error slightly when less
noisy inputs are used (Table 3.4). In fact, we can see a worsening in one of
the condensed cases, Hydrangea. This is due to the image complexity: more
complex images has a higher number of RP and therefore, the regularizing
capacities of our algorithm are diminished. After interpolating it, however,
we see how the error is smaller than the hardware one. A similar behavior
was obtained for the disparity field.

Yosemite with clouds Yosemite without clouds
AAE STD Density AAE STD Density

Hardware based 11,98 15,07 78,52 7,92 6,93 92,02
Condensed 11,67 15,25 12,6 7,79 7,1 15,03

Interpolated 11,28 13,98 78,52 7,33 6,47 92,02

Rubber Whale Hydrangea
AAE STD Density AAE STD Density

Hardware based 22,36 21,96 78,93 51,84 43,38 86,81
Condensed 20,47 20,21 13,38 47,41 42,00 12,41

Interpolated 21,53 19,95 78,93 51,82 41,42 86,81

Table 3.4: An improvement in accuracy can be seen when using a more
accurate hardware engine as optic-flow extraction module [85]. Therefore the
gain in accuracy of the condensation/interpolation process is very low in this
case because regularization is explicitly carried out during a previous stage
(embedded in the hardware extraction engine, which in this case includes
median filters)

Figure 3.13 compares Tables 3.3 and 3.4. We have represented the AAE
and its standard deviation. In the figure we can see how the condensed
output error is less or equal than the original one, proving the regularization
capacity of our semidense representation map.

From this analysis, it is clear that our semidense map not only preserves
visual feature information and allows recovering it without error increase,
but also regularizes noisy features without workload increment.

3.4 Conclusions

We have obtained a new semidense representation map that translate dense
visual feature (such as optical flow or disparity) to a sparser representation.
This semidense map is composed of two different kinds of points: relevant
ones, which are obtained by bottom-up selection over the original image

82 Chapter 3. Semidense representation map for visual features

Figure 3.13: Regularization results from Tables 3.3 and 3.4.

(e.g., a Canny edge detector [16] or saliency maps [39]); and context ones,
which are extracted by filtering the original feature (e.g., applying a bilat-
eral filter [83]) and selecting a regular grid of points. The latter is a very
important contribution of this new representation since other non-dense rep-
resentations do not include non-salient information [54]. This information,
despite of its name, can be useful in some algorithms such as ground-plane
extraction, as shown in section 4.2.

We have assessed different extractors for both, salient and non-salient
regions. For that we have compared the behavior of several structure-based
RP extractors and different filters for non-salient areas to explore the pos-
sibilities of our condensation algorithm. We conclude that our semidense
map response depends on the image structure and, therefore, we can modify
the extraction process so it adapts easier to its ulterior application. Thus,
we achieve better results when working on known situations (very textured
sequences, driving scenarios,). Nevertheless, a trade-off configuration would
be to use a Canny-based relevance extractor and a 5x5 bilateral-based grid.

Simplicity and versatility are the main advantages of this map: it reduces
any dense visual feature to a map whose size is around 10% of the original
one (using grid window of 5x5 pixels), with minimal error and workload.

Since the non-salient extraction is based on filtering, our condensation al-
gorithm inherently performs a regularization that helps to improve accuracy
(mainly in low-cost hardware-based feature extraction engines). To prove
this, we have compared our condensation/decondensation process to an ex-
isting regularization algorithm, outperforming it. Moreover, since low-level
features obtained from hardware implementations are noisier than the ones
achieved by software ones [63], many higher-level algorithms include a reg-

3.4. Conclusions 83

ularization step. Our semidense map, however, inherently regularize these
features, freeing them from this step and improving their performance.

At the beginning of these chapter we summed up the different goals of
our representation. Let us check if we fulfill all of them:

Condensation. Our semidense map obtain around a 10% of the original
map. Moreover, we can reduce bandwidth and memory requirements
as much as we want by modifing RP extractor threshold and grid
window size.

Versatile. We have assessed our algorithm with the main dense features
of our system, i.e. disparity and optical flow. Other features (such as
color) can easily be condensed.

Hardware-friendly. We reuse our system filters in both steps of our algo-
rithm. In chapter 5 we present its implementation in a FPGA.

Feedback from higher levels. Our RP extractor is ready to receive higher-
level signals as feedback and integrate them in the semidense map.

Efficient representation. We have obtained a simple representation that
can be directly used by mid- and high-level algorithms as proved in
next chapter.

Information recovery. We include information from not only salient re-
gions but also plain ones. We have developed a simple interpolation
method to recover a dense map with slight error.

In summary, our condensation algorithm translates dense representation
maps into a semidense representation that can easily be handled by standard
processors for further computing by higher level modules. Therefore the
main goal of the next chapter is to integrate this representation map in
mid- and high-level vision stages. This idea will reduce data flow through
the system and free the higher processing stages from having to analyze the
whole image.

Chapter 4

Method Validation:

Experimental Results and

Applications

So far we have a condensation algorithm that translates dense representa-
tion maps into a semidense one, requiring 7-15% of the original image size.
We have tested this algorithm using different visual features (as input and
relevance enhancers) and filtering operations. Notwithstanding the previ-
ous examples, we still have to assess its actual performance in real-world
situations, i.e. we need to integrate it in a real application and evaluate its
output, execution time and functionality.

In chapter 5 we assess bandwidth and memory reductions achieved by
our condensation algorithm when included in a hardware system (see section
5.3). Nevertheless, our aim in this chapter is to prove that our semidense
representation map can be used as input in higher processing stages on a
standard processor. As we have mentioned, many mid- and high-level al-
gorithms are usually based on sparse approaches [70]. In current systems,
however, they usually receive dense maps. This means that either these al-
gorithms perform a selection process as a first step or they process the entire
dense map. Any of these approaches entails an unnecessary increment in
their workload. Moreover, low-level features obtained from hardware imple-
mentations are noisier than the ones achieved by software ones [63]. Hence,
mid-/high-level algorithms should perform a regularization step before doing
any computation. This, again, increases their workload unnecessarily.

Working with our semidense map not only reduces input errors thanks to
regularization (as explained in section 3.3.2), but also higher-level workload
and execution time since we send them the minimum information they need
to achieve their goals. This reduction has been successfully assessed in a

85

86 Chapter 4. Method Validation: Experimental Results and Applications

driving scenario where we used condensed disparity to extract the ground
plane of a road and detect obstacles using that plane [32] (see sections 4.2.1
and 4.2.2).

Before moving to that example, however, we want to focus on another
of our goals: integrate attention processes in a traditional vision system.
In the next section we show how relevant points can be extracted using
saliency maps (as the ones explained in section 2.3) and therefore include
bottom-up attention in our system. Moreover, within our driving scenario
application, we generate top-down attention signals -such as Independently
Moving Objects (IMOs) or TTC- and send them back to our condensation
algorithm (see section 4.1.2).

4.1 Integration of Attention Processes

As we explained in chapter 2, Itti et al. [39] difference two kinds of at-
tention processes: bottom-up and top-down. Their definition states that
bottom-up selection is target-independent and based on the image saliency.
Although the algorithms assessed in the previous section as RP extractor
follow a bottom-up approach, we introduce here saliency maps as bottom-up
attention process, i.e. as relevance indicators in our condensation algorithm.

On the other hand, top-down signals are generated by higher levels and
give more priority to some areas due to their importance in a given applica-
tion, i.e. they are target driven. In a changing scenario, such as our driving
one, adapting to different situations is critical and therefore one of our goals
was to integrate this kind of signals in our system. This approach, however,
is not followed by many algorithms due to its slowness [89] extracting and
integrating that information. Nevertheless, we have successfully included
top-down processes (such as feedback from higher levels) in our condensa-
tion algorithm without additional latency or workload, improving algorithms
accuracy whilst reducing bandwidth constrains.

4.1.1 Bottom-Up Attention Processes: Saliency Maps

Instead of using a structure-based RP extractor, we are employing saliency
maps obtained from the input images as relevance indicators. As we have
described in chapter 3, our semidense representation map is able to integrate
as RP extractor any signal that selects salient points in the image and,
therefore, saliency maps are a logical option we want to assess [40].

We present in this section a saliency-based approach, although a hybrid
solution that includes both kinds of RPs (structure- and saliency-based ones)
could be implemented. These saliency maps are calculated using Barranco

4.1. Integration of Attention Processes 87

et al. code [5]. In short, using low-level vision features (color -3 hues-,
orientation and magnitud), they calculate a branch of features in several
scales. Then they apply DoG iteratively until they obtain three different
conspicuity maps: one for intensity, one for color and one for orientation.
Finally, they are summed into an unique saliency map. In section 2.3 we
explain this process in detail.

Although Itti et al. approach sends only the most salient stimuli to
higher levels [67], we are going to create a saliency map as big as the original
image and represent each stimuli by its saliency value. In Figure 4.1(b) we
see the saliency map we receive as input in our RP extractor1.

(a) Original input image (b) Original Saliency map

(c) Zero-threshold RP extractor (d) RP mask extracted

Figure 4.1: RP extractor using saliency maps. (b) shows the saliency map
extracted from (a) red areas represent the most salient areas. (c) shows the
binary mask extracted from (b) using all the information provided. (d) is
the result of applying a threshold to (c)

As we can see, this map present some points with high saliency (red
in Figure 4.1(b)) surrounded by smaller saliency areas (blueish colors). If
we use all those points as RPs, we would have redundant information as
shown in Figure 4.1(c). This behavior is similar to the one we solved in
Canny edge detector (see section 2.2.2.1). In that case, we thinned the
energy applying non-maximum suppression and thresholding based on the

1Original saliency map extracted using Barranco et al. [5] implementation of Itti et al.
algorithm

88 Chapter 4. Method Validation: Experimental Results and Applications

orientation. Nevertheless, if we want to repeat that process here, we need
to extract some structure-based features. Since we want to avoid using
any additional structure information (such as orientation or magnitude), we
cannot apply non-maximum suppression. Hence, we use a threshold to thin
the saliency “bolbs” and discard the less salient areas. Figure 4.1(d) shows
a saliency-based RP mask after the thresholding process.

We have tested this saliency-based condensation in disparity and optical
flow sequences. In Figure 4.2 we see the disparity calculated using Barranco
et al. algorithm [7, 5] and its condensed version. We have condensed that
disparity using saliency-based RP extractor (i.e. Fig. 4.1 final mask) and a
9x9 bilateral-based grid, obtaining Fig. 4.2(b). Semidense map final size is
4.21% of the original image size. We have assessed this for several frames of
different sequences achieving similar results.

In Figure 4.3 we can see the output of the optical flow calculated using [6,
5]. This optical-flow representation, however, is a subsampled version of the
original one. We are showing only 1 of every 10 points so the representation
is easier to understand. Figure 4.3(b) shows semidense optical flow using
saliency maps as RP extractor and a 9x9 median-based grid. Again, we
have subsampled the optical-flow representation, showing only one of every
5 points.

These examples show that saliency maps work as good as structure-based
algorithms (such as the ones assessed in section 3.1) as relevance indicators.
In fact, this implementation introduces color information (used to extract
the saliency maps) into our system that otherwise was ignored. Moreover
using our semidense representation, attention can be integrated in any vision
system. This integration requires minimal changes in the vision algorithms,
mainly due to the presence of non-relevant information in the semidense
map as explained in sections 3.2 and 4.2.1.

Now that we have bottom-up attention introduced in our system, we are
going to include target-driven one, i.e. top-down attention.

4.1.2 Top-Down Attention Processes: IMOs

As we explained in the previous section, we introduce top-down attention
in our system using feedback signals from higher-level algorithms. In this
section we illustrate this idea in a driving scenario.

Top-down attention signals are very handy in real-world applications.
They are useful to adapt system priorities to changing conditions and fa-
cilitate reactions in real-time constrains. In our driving scenario we find
several mid-/high-level features that provide top-down information. For in-
stance, when we drive in a city, information from pedestrians walking on

4.1. Integration of Attention Processes 89

(a) Original disparity

(b) Semidense disparity

Figure 4.2: Disparity condensation using saliency maps. We obtain disparity
information (a) using [7, 5] algorithm and then condense it using 4.1 saliency
map as RP extractor and a 9x9 bilateral-based grid for the plain areas,
obtaining the semidense map (b) (we have dilated the semidense map to
improve printing quality).

90 Chapter 4. Method Validation: Experimental Results and Applications

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250

300

350

400

450

(a) Original optical flow

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250

300

350

400

450

(b) Semidense optical flow

Figure 4.3: Optical flow condensation using saliency maps. We obtain op-
tical flow (a) using [6, 5] algorithm and then condense it using 4.1 saliency
map as RP extractor and a 9x9 median-based grid for the plain areas, ob-
taining the semidense map (b). Both images are subsampled to facilitate
visualization. (a) shows only 1 point of every 10 while (b) shows 1 of every
5.

4.1. Integration of Attention Processes 91

the sidewalk is usually less relevant than the one from the road. However,
if all of a sudden one of those pedestrians starts crossing the street a few
meters from our car, our priorities change. The pedestrian will become part
of our interest area and our brain will process it with a higher priority [39].
Similarly, if the car going ahead of us breaks suddenly, our system should re-
ceive that information as soon as possible. If we are able to integrate these
kinds of information into our system, we would create a signal-to-symbol
loop, improving its response. Hence, our goal in this section is to integrate
top-down attention signals in our system at run-time, using semidense map
as framework.

As a example of this top-down information integration we are going to
use Independently Moving Objects (IMOs). We understand that an IMO is
a blob that indicates the presence of an object that is moving in a different
direction than the rest of the scene [62]. In next section we introduce several
approaches to IMO extraction problem. Then we select and explain one of
them, IMO extraction based on optical-flow information and egomotion.

4.1.2.1 Independently Moving Object Extraction

Several approaches toward the IMO-extraction problem can be found in lit-
erature [27, 58, 62, 71]. Some of them are based on navigation information,
such as Simultaneous Localization and Mapping (SLAM) approaches -that
create a map of the environment and keep track of a robot in it [27]- and
visual odometry ones -that estimate egomotion2, tracking a large number
of features over a small number of frames [58]-. Other approaches has in-
corporate appearance-based object detection to the IMO extraction [28]. In
addition, based on visual features, we find approaches that detect indepen-
dent motion by removing a global component due to egomotion (as in the
flow-parsing approach) and methods that identify clusters of consistent (3D
rigid) motion [62, 71].

In this example we use Pauwels et al. algorithm [62]. This approach is
based on same low-level-vision features that our low-level-vision system. In
Figure 4.4 we can see a scheme of how it works. It receives left and right
images and extracts edges, disparity and optical flow. Then, it computes
the egomotion of the scene based on disparity and optical flow. Finally,
extracts the scene general movement from the optical-flow fields, obtaining
those object that moves independently.

Hence, using this approach, we obtain the IMOs in a scene, translate
them to top-down signals and integrate them in the system through our
semidense map. In Figure 4.5 we can see how the IMO information is inte-

2Egomotion refers to estimating a camera’s motion relative to a rigid scene.

92 Chapter 4. Method Validation: Experimental Results and Applications

Figure 4.4: Scheme Pauwels et al. IMO-extraction algorithm. We can see
how it uses Gabor pyramid, disparity and optical flow as our low-level-vision
does. Image extracted from [62].

grated as RPs, i.e. we sent those points relative to moving objects without
condensation and at a higher priority.

In our application we cannot obtain the IMOs of the current frame as
fast as our real-time system would need. Pauwels et al. algorithm computes
640x512 resolution images at 21 frames per second (fps) [62], while our
system processes more than 49 fps for that resolution (see section 5.3). Hence
we integrate IMO information from frame N in the semidense map of frame
N +1. This one-frame top-down integration latency is affordable due to the
inherent temporal coherence of the sequence. In other words, since we are
processing at 49 fps a blob can change its shape or position, but is not likely
that an object only appears in one frame. If it does, it is likely to be an
error3.

Once condensed, the semidense map could be used, for instance, to com-
pute the TTC. This way we would include IMO information without any
further computations and using just a small percentage of the original points.
This approach reduces computational load (specially important on embed-
ded devices) and bandwidth (sections 4.2.2 and 5.3 include an analysis of
these reductions).

With this example of attention integration, we have proved that our
system can receive and integrate top-down information without any modifi-
cation or additional workload. Our next step, therefore, is to assess our semi-
dense map in a complete real-world application: obstacle detection based
on ground plane extraction.

3otherwise, please contact NASA, UFO division, as soon as possible.

4.2. Obstacle Detection on a Driving Scenario 93

Figure 4.5: IMOs integration in semidense maps. We have included the
IMOs calculated using Pauwels et al. algorithm in our semidense represen-
tation as RPs.

4.2 Obstacle Detection on a Driving Scenario

Within DRISVCO framework we can find many high-level algorithms that
could benefit from our semidense representation map: TTC [15], affine-
based regularization [17], egomotion [62] and so. Most of these algorithms
has difficulties to be implemented in hardware due to their memory and
computational requirements [63]. Hence, using a semidense representation
map could be a solution to their integration on embedded systems.

In this section we present one of them, an algorithm to extract the ground
plane and use it to detect obstacles [19]. First we are going to focus on the
ground-plane detection algorithm. The main goal in that case is to show how
non-relevant areas are important to some algorithms and how our semidense
map provides a differentiating quality by including a regular grid. With this
example we show the limitations of sparse representations and prove that
our solution solves them whilst providing a solution as accurate as a dense
map.

94 Chapter 4. Method Validation: Experimental Results and Applications

Then, we move to the obstacle detection algorithm, using the ground-
plane extracted in the previous step. This way we show that even higher-
levels algorithm benefit from our semidense map.

4.2.1 Ground-Plane Extraction

The ground plane on a road scenario is quite useful when detecting obstacles,
whether on robotics applications or on driving ones. Just by looking at its
name, it is clear ground-plane extraction is based on plain regions of the
image and, therefore, a perfect candidate to test our semidense map. Let us
start with a formal definition of the ground plane and how to implement a
ground-plane extractor using Chumerin et al. algorithm4 [19].

4.2.1.1 Implementation Details

As a general rule, we can denote disparity map as a set D = {(xi, yi, δi)}i,
where δi is disparity of the image pixel (xi, yi). A plane Π in 3D world
coordinate system attached to the nodal point of the left camera can be
defined by:

Π : aX + bY + cZ + d = 0 (4.1)

Without loss of generality we assume that a2 + b2 + c2 = 1, otherwise
one can divide coefficients a, b, c by

√
a2 + b2 + c2. In this case vector n =

(a, b, c)T represents the normal unity vector of the plane Π and coefficient
d represents the distance from the camera nodal point to the plane (to
avoid front-parallelism of Π, we assume that b > 0). Using simple algebraic
manipulations it is easy to show, that each disparity map element (x, y, δ),
corresponding to the point (X,Y, Z) of the ground plane Π also satisfy a
linear model:

∆ δ = αx+ βy + γ, (4.2)

where x, y are pixel coordinates in the frame coordinate system, δ is
disparity of the pixel (x, y) and coefficients α, β and γ can derived as:





α = −aL/d,
β = −bL/d,
γ = −cL/d.

(4.3)

4Thanks to N. Chumerin for the algorithm and images

4.2. Obstacle Detection on a Driving Scenario 95

Where L is the baseline length. The inverse mapping from the disparity
domain to 3D world domain is also possible :





a = −α/
√

α2 + β2 + (γ/f)2,

b = −β/
√
α2 + β2 + (γ/f)2,

c = −γ/(f
√

α2 + β2 + (γ/f)2),

d = −L/
√
α2 + β2 + (γ/f)2.

(4.4)

From the last two equations (4.3, 4.4) follows that the estimation of the
ground plane model (4.1) parameters is equivalent to the estimation of the
disparity plane model (4.2) parameters and vice versa. That is why we can
use the disparity map D to fit the disparity plane model (4.2) and then
convert it to the desired ground plane model (4.1) using (4.4).

If we apply directly the conventional linear regression methods (e.g., least
squares) to the disparity plane fitting problem, we can obtain inaccurate
results, because the basic assumptions of these methods are not always met:

1. The noise distribution of the estimated disparity is unknown, while it
is expected to be Gaussian with zero mean.

2. There are always a lot of outliers in the disparity map.

Robust regression extends classic regression methods making them less sen-
sitive to the outliers or other small deviations from the model assumptions.
Among popular methods of robust regression (e.g., Iteratively Reweighted
Least-Squares (IRLS) [36], Least Median of Squares Regression (LMedS)
[74], Random Sample Consensus (RANSAC) [29]) Chumerin et al. choose
IRLS due to its speed and low computational complexity.

In Figure 4.6 we can see a typical driving scenario. In this example, the
dense disparity is obtained using a phase-based algorithm [63]. As a prepro-
cessing step before the robust linear regression Chumerin et al. intersect the
disparity map (Figure 4.6b) with a heuristically designed predefined ground
mask (Figure 4.6c). By this step, they filter out the majority of the pixels
which do not belong to the ground plane and are outliers in the disparity
plane model. Then the data from the masked disparity map (see figure 4.6d)
are used by IRLS to estimate the desired disparity plane model parameters
[19].

Finally, the algorithm considers the ground plane estimated correctly if
the following conditions are met:

{
‖nt − n0‖ < θ0,
‖nt − nt−1‖ < θ1,

(4.5)

Where nk is the normal vector of the ground plane for kth frame, n0 is
normal vector of the canonical ground plane.

96 Chapter 4. Method Validation: Experimental Results and Applications

a) Original image b) Disparity map

c) Predefined road mask d) Intersection between b) and c)

Figure 4.6: Ground-plane extraction scheme. The color in b) and d) indi-
cates magnitude of the disparity: red - large, blue - small. Image extracted
from [19]

4.2.1.2 GP-Extraction using Semidense Maps

In [28], Ess et al. developed a system that integrates depth and appearance
information for robust pedestrian detection and simultaneous ground-plane
estimation from video streams. Nevertheless, this approach uses a dense
map and its workload is excessive for its implementation on a real time
application (such as on embedded automotive processors). On the other
hand, Santana et al. introduced saliency maps to speed up ground plane
and obstacle detection on an off-road scenario [77]. Their solution, however,
omit non-relevant regions and top-bottom attention information.

Our approach condenses the disparity and use its semidense map as
input to the algorithm previously explained. Figure 4.7 compares the dense
(original), the semidense (condensed) and the sparse (only RP) approaches.
It uses three different measurements: the distance to the ground plane, the
azimuth and the zenith.

Figure 4.7 shows how the sparse representation (green dotted line), which
is actually a Canny edge detector, has difficulties to extract the ground plane
since the algorithm needs information from the non-relevant regions. Other
sparse methods would have this very same problem. On the other hand, the
grid points (magenta dashed line) are extracted by a bilateral filter approach

4.2. Obstacle Detection on a Driving Scenario 97

Figure 4.7: Ground-plane output for dense and semidense maps.

(5× 5 window) and show a much better behavior: their response is similar
to the dense map one. The semidense map (red line) smooths some of the
noise introduced by the RPs, but cannot match the performance of the grid.
These details can be better seen in the zoomed area of Figure 4.7.

This example proves how “non-relevant” regions can be important de-
pending on the application. The versatility of our algorithm is really handy
in this kind of applications; since we know beforehand that the ground-
plane extractor works better when working only with the grid information,
we could inhibit the RPs and avoid processing them. In this stage, we could
also add the information from the previous frame as enhancing trigger to
the RP extractor; this way, we would include top-down information to our
process (as shown in seciton 4.1.2).

4.2.2 Obstacle Detection

We find in literature several algorithms to detect obstacles. Chumerin et al.
based on ground-plane to obtain the elevation information and, therefore,
detect the obstacles in the scene5 [19].

5Thanks to N. Chumerin for the algorithm and images

98 Chapter 4. Method Validation: Experimental Results and Applications

4.2.2.1 Implementation Details

Once they extract the ground plane, Chumerin et al. use it to calculate the
elevation of the points in the scene, and, this way, detect the obstacles. For
each element (x, y, δ) of disparity map D they define the elevation as the
distance from each point P (X,Y, Z) in 3D to the ground plane Π. Based
on the classic formula of the distance from a point to a plane and assuming
a2 + b2 + c2 = 1, the elevation e(x, y) can be estimated as:

e(x, y) =
|aX + bY + cZ + d|√

a2 + b2 + c2
= |(ax+ by + f)L/δ + d| . (4.6)

Following this definition it is possible to estimate elevation for each el-
ement of the disparity map, and consequently generate the elevation map.
An example of elevation map is shown in Figure 4.8c.

The most straightforward application of the elevation map is obstacle
segmentation. Indeed, any pixel with positive elevation could be classi-
fied/marked as an obstacle. In order to reduce the amount of misclassifi-
cations in the above mentioned obstacle segmentation procedure (e.g., due
to non-planarity of the ground surface), Chumerin et al. propose to mark a
pixel as an obstacle only if its elevation is larger than some positive thresh-
old. In their simulations they use a threshold equivalent to elevation of 0.3
m. An example of obstacle map is depicted in Figure 4.8d. Since this a real
sequence, there is no ground truth information for it. We have manually
marked them, as shown in Figure 4.8f, using a MATLAB tool (Figure 4.8e)
[18].

4.2.2.2 Results using Semidense Maps in Obstacle Detection

Using the semidense disparity and the ground plane obtained in section 4.2.1,
we improve the performance of this obstacle detection algorithm since the
algorithm would need to process less than a 10% of the initial data. Figure
4.9 compares the output of the obstacle detection algorithm using dense
(Fig. 4.9(c)) and semidense (Fig. 4.9(c)) maps. These obstacle masks are
obtained using the information from the ground plane previously mentioned,
which is represented here as a blue line, and the elevation maps calculated
using (4.6) (Fig. 4.9(a) and 4.9(b)). Finally, we represent the original input
image, the ground plane and the obstacle mask in one figure for both cases:
dense (Fig. 4.9(e)) and semidense (Fig. 4.9(f)). We can see how both
outputs are equivalent.

We have also assessed the performance improvement of our representa-
tion map for different driving sequences. Using a PC with an Intel Core
2 Duo T6400 at 2.00 GHz processor and 4 GB of RAM memory, we have

4.2. Obstacle Detection on a Driving Scenario 99

a) Original image b) Disparity map c) Elevation map

d) Detected obstacles e) Labeled image f) Obstacle ground truth

Figure 4.8: Result of the elevation map (c) and the obstacle map (d) esti-
mation for the original frame (a) based on the disparity map (b).

assessed the obstacle detection algorithm for three real sequences. Each se-
quence is composed of images of 320x256 pixels. Disparity computing time
has not been included in the measurements. Table 4.1 shows the difference
of execution time (in seconds) for the ground-plane and obstacle detection
algorithms with and without condensing the dense feature. As we can see
in the table, we have reduced the memory consumption (semidense maps
under 9% of the originals) and the execution time (ground-plane extraction,
for instance, is around 10 times faster). These results show clearly how our
representation map suits better for embedded systems than a dense one.

Sequence Original dense map Semidense map

Name #frames Ground pl. Obstacle Ground pl. Obstacle % Conden

Seq. 1 284 7.886 s 23.418 s 0.693 s 18.769 s 8.105

Seq. 2 362 7.754 s 42.053 s 0.807 s 28.973 s 7.912

Seq. 3 550 13.429 s 58.199 s 0.970 s 38.145 s 7.513

Table 4.1: Performance test. ’Ground pl.’ corresponds to the ground plane
algorithm; ’Obstacle’, to the obstacle detection algorithm; and ’% Conden-
sation’, to the percentage of points of the original feature we are actually
using in the semidense approach.

As we can see in Table 4.1, the execution-time reduction achieved by the
ground-plane algorithm is bigger than the obstacle detection one. This is

100 Chapter 4. Method Validation: Experimental Results and Applications

(a) Dense elevation map (b) Semidense elevation map

(c) Dense obstacle mask (d) Semidense obstacle mask

(e) Dense output: Obstacles + ground
plane

(f) Semidense output: Obstacles +
ground plane

Figure 4.9: Comparison dense vs semidense obstacle detection. Using the
equation (4.6), we extract the elevation maps: (a) and (b). Based on them
and on the ground-plane information, obstacle masks are extracted: (c)
and (d). (e) and (f) represent the final output of the algorithm, combining
obstacle masks and ground plane (blue line).

4.3. Conclusions 101

because the latter one is not optimized to work with non-dense maps. Thus,
the method do not take advantage of our semidense map. Although we
could modify the algorithm to use our map as an input, a faster and easier
approach would be to interpolate the semidense map as shown in Figure
3.10. This versatility makes our map easy to integrate in current vision
systems, although minor modifications might be requiered.

4.3 Conclusions

In this chapter we have shown many of the features we wanted to include in
our semidense representation (see section 3.4 for details).

First, we have shown its versatility using saliency maps as RP-extractor.
The obtained results are similar to the ones achieved by the structure-based
approaches presented in section 3.1.1.

Second we have successfully integrated feedback from higher levels, i.e.
top-down attention signals (in this example IMO information), to our semi-
dense representation map without workload increment. This functionality
has not been explode in many applications [89], while our semidense map
performs it without any modification or performance detriment. This inte-
gration capability allows for creating a signal-to-symbol loop in our system
[72].

Finally, we have used our semidense representation in a real-world appli-
cation, obtaining a similar response as using dense maps and dramatically
reducing the execution time (up to 10 times faster). This real-world applica-
tion consists on two steps: ground-plane extraction and obstacle detection.
We have successfully used a semidense disparty in both steps of the appli-
cation.

Another remarkable achievement of this chapter is the corroboration of
the importance of the “plain-regions”. Some algorithms, such as the ground-
plane extraction one, employ those regions to extract information. Hence, as
we have advanced, those regions are relevant for many algorithm and should
not be ignored. Our semidense representation map has proved to be a very
good solution for this kind of algorithms since it preserves the plain-region
information.

Chapter 5

Implementation on

reconfigurable hardware

In the previous chapters we have presented several examples of visual fea-
tures extracted using software implementations of different algorithms. These
implementations are fast to develop and easy to modify. This is why, for
research purposes, we use those kinds of implementations to validate our
methods. These solutions are usually implemented using high-level lan-
guages and executed in conventional general purpose processors. The pro-
cessing power of these machines has grown up very quickly (following the
Moore’s law). Moreover, many programming languages are available, al-
lowing the researchers to implement different approaches in short time. In
our research, for instance, we have used MATLAB environment that in-
cludes several imaging libraries that have eased our design and reduced our
implementation time.

Nevertheless, if we need to achieve real-time requirements, we cannot
rely just on general purpose processors. We could adapt our algorithm to
a specific processor, generating an optimized version of it and performing a
better response [1]. Due to the versatility of our algorithm, we would need
to adapt each RP extractor and grid filter, or select the best fitting one and
optimize it. This approach, however, is time consuming and its optimization
varies from one processor to another. Moreover, any solution based on a
general purpose processor require more memory and power-consumption
than any embedded system could afford.

Another possible solution is to employ a specific hardware accelerators
such as Graphic Processing Units (GPU). These units have been designed to
handle matrix-like data, so they work efficiently with images. The solutions
based on GPU are generally implemented using a C-like environment with
specific tools for parallel such as CUDA [59] that vary depending from the

103

104 Chapter 5. Implementation on reconfigurable hardware

hardware platform. GPUs have improved very fast mainly due to the game
industry, evolving to better solutions in terms of parallelism and memory
access speed. In fact, some of the applications executed using these platforms
achieve real-time requirements [63]. The solutions implemented in these
platforms, however, depends on a high-computational functions that also
require big quantities of memory to execute. Hence, the energy consumed
by these processing units is too high for a SoC.

If we are planning to develop a SoC, the previous options are not suited,
a better fitting option is a digital signal processor (DSP). DSPs are special-
ized microprocessors with an architecture optimized for the fast operational
needs of digital signal processing, whilst keeping the energy-consumption
from rising. The main problem is the DSP are optimized for specific simple
operations. Although our condensation algorithm is simple enough to be im-
plemented using DSPs, if we want to implement a complete low-level-vision
system, we need a more powerful approach [11].

Another low-power-consumption approach that works very well with em-
bedded applications is a FPGA. FPGAs main advantages are their parallel-
processing capacities and their real-time speed [25, 84]. On the other hand,
the main disadvantages of FPGAs are: limited on-chip memory, slow imple-
mentation time and high time-to-market. The limited-memory problem is
the main goal of our condensation algorithm and, as can be seen in section
5.3, we have successfully solved it. In addition, many FPGA processing
boards currently include co-processors (such as DSPs or even GPUs) that
efficiently performs specific operations. This combination speeds up FPGA
implementation time and performance. Therefore, FPGA approach seems
to be the best option to develop an on-chip low-level-vision system that
extracts, condenses and transfers several visual features (such as energy,
orientation or optical flow). Moreover, this solution low-power-consumption
facilitates its integration in a SoC (such as robots, vehicles or medical low-
vision devices).

In this chapter we present the hardware implementation of our con-
densation algorithm and its integration in DRIVSCO FPGA solution [85].
First we introduce the architecture of our condensation core and the differ-
ent submodules it is divided on. This condensation core is the adaption of
our condensation algorithm to an embedded system as this one [33]. Then,
we present the communication protocol designed to efficiently transfer data
between the FPGA and the co-processor. After that we explain in detail
the different submodules of our core and the resource consumption of the
system. Finally we present some results of our hardware implementation:
the memory and bandwidth reduction in the system and the integration in
real-time of feedback signals. These results shows how this hardware imple-
mentation keeps the properties achieved by the software models presented

5.1. Architecture Design 105

in previous chapters whilst taking advantage of the embedded capabilities
of the FPGA devices.

5.1 Architecture Design

Our vision system comprises a low-level-vision feature extractor and a con-
densation step that integrates them, whilst reducing the transfer bandwidth.
The condensation system works as an independent core in an FPGA device,
concretely a XircaV4 platform from Seven Solutions [81]. This platform
includes a Virtex4 XC4VFX100, with 94,896 logic cells and 4 ZBT SRAM
memory blocks with 8 MB each (a total of 32 MB on-board) [93]. Tomasi
et al. [85] feature-extraction architecture follows a fine-grain pipeline struc-
ture capable of processing one pixel per clock cycle, using intensively the
potential parallelism available in FPGA.

This vision system, as we showed in Figure 1.4 in chapter 1, generates
several sparse features and two different dense visual features: optical flow
and disparity information. This means we need to condense those two dense
features at the same time. Hence, we have to focus on designing an scalable
architecture.

In Figure 5.1 we present an simplification of this low-level-vision system
that extracts optical flow, energy and orientation. On the other hand, sec-
tion 5.3 includes Figure 5.6 that represents Tomasi et al. complete system.
Although in section 5.3 we explain in detail the latter of these figures, we
include this simplification here to give the reader a general idea of how the
condensation core is connected to the low-level-vision system as well as the
hierarchy of the different submodules that compose our core.

The Memory Controller Unit [88] and the interface with the PCIe were
developed using VHDL, the low-level-vision system and the condensation
modules were implemented using the high level Handel-C language. This
tool allows us a simpler algorithmic description without a significant loss of
performances [61]. The implementations and integrations of the complete
system were carried out using the Xilinx ISE Design Suite and the DK
Design Suite for Handel-C [93].

Figure 5.1 shows how we have divided our condensation algorithm in
several submodules (represented as red boxes). Hence, our condensation core
follows a multi-scalar fine-grain pipeline, i.e. it is composed of several stages
that allow us to execute multiple instructions at the same time and each of
those stages is composed of several units working in parallel. Thanks to this
architecture, each submodule processes one pixel per clock cycle and ensures
correct interconnection to the other cores of our system. Once condensed,
the semidense visual features are packed in an efficient way, ready to be

106 Chapter 5. Implementation on reconfigurable hardware

Figure 5.1: Integration of condensation modules (in red) in a optical-flow
extraction system. Optical-flow extraction core is represented by a dotted
box and for simplicity we assume it processes optical flow (OF), energy and
orientation (E&O). We also include connections with Memory Control Unit
(MCU) and a scheme of how we storage condensed information.

sent to the PC using a PCI Express interface. This interface uses share
memory, so our condensed data must be stored in it as shown in the figure.
In following sections we explain in detail each of these submodules.

As we have already mentioned, our condensation module receives infor-
mation as feedback from other stages of the system (as shown in chapter 4).
Hence, we have designed it to receive a mask of external feedback signals
(see arrows from the co-processor in Figure 5.1).

5.1. Architecture Design 107

5.1.1 Communication Protocol

Using our semidense map, the amount of data to transfer is highly reduced.
Nevertheless, we still have to send it to upper-processing-levels efficiently.
We assume that our two kinds of data (grid and RPs) can be sent using
different methods in order to achieve the best result available. In this section
we establish different communication schemes for both, grid data and RPs.

5.1.1.1 Grid Transfer

Since the grid extracted is regular (see section 3.2) and we fix its window
size at the beginning of our system (see Figure 5.1), we know beforehand
the positions of each grid point. Therefore, we could benefit from this infor-
mation and avoid sending data we could easily calculate in the co-processor.
We have studied two different options: sending just the grid values, and
sending the grid values plus a binary mask.

On one hand, we could transfer a list of grid-point-data, without sending
explicit address or position information. In fact, we could concatenate two
grid values in on register, assuming a 32-bit register and a visual-feature
bitwidth of up to 16 bits. In Figure 5.2 we can see a scheme of this solution.
The main disadvantage of this approach is the grid size and position are
hard-coded and, in case they vary, we would need to re-implement some or
our cores and functions.

Figure 5.2: Example of how grid points can be stored without including
their addresses, just concatenating their values

On the other hand, we could solve this problem if we storage and send,
not only the grid values, but also a binary matrix indicating their position.
This way, using a small amount of memory, we would have a more ver-
satile storage. The binary matrix could be calculated by the higher-level
algorithms or, to provide even more versatility, send it whenever it changes

108 Chapter 5. Implementation on reconfigurable hardware

Figure 5.3: Example of how RPs can be stored and transfered using a AER
protocol similar to the one defined by Boahen et al. [13].

(typically only once, when generated). This is why we have chosen this
option.

5.1.1.2 RP Transfer

Since RP are extracted following a non-regular distribution (see section 3.1
for details), we cannot know beforehand their positions. In this case we have
considered two options: AER protocol or binary matrix plus list of data.

On one hand, we could follow Boahen et al. bio-inspared approach [13]
and use a address-event representation (AER) protocol. This protocol con-
sists on transferring a register per each datum containing it address (row and
column number) and its value. Figure 5.3 shows a scheme of this apporach.
This option, therefore, would use a complete memory word per each RP. We
have tested this option in our driving scenario, where structure-based RP
are between 1-4% of the original image size. With these percentages, this
approach is the best option, achieving an efficient and bio-inspired commu-
nication protocol. Moreover, this option would allow us to assign priority
to the different RP and transfer first the most salient parts.

On the other hand, more complex input images (such as more textured
ones) would not benefit so much from this AER protocol. Hence, our second
approach is to use the same scheme as the grid points. Since our RPs are
nothing but a binary mask similar to the one extracted by edge detectors
(see section 2.2.2), we could store this mask in memory and transfer it along
with a list of RP values for those positions. However, this approach is not
efficient for percentages under 4% and does not allow priority transfer.

5.2. Implementation Details 109

Since our condensation core is going to be integrated in DRIVSCO frame-
work (where images usually have less than a 4% of RPs), we have decided to
use AER protocol. In addition, this approach facilitates a priority classifi-
cation very useful for some of the high-level algorithms of our project (such
as TTC and IMOs).

5.2 Implementation Details

We need to integrate our condensation core in the low-level-vision system.
The available resources in the FPGA, however, are limited. Hence, we need
to design each of the submodules of our core taking into account the filters
and modules available in our system so we can reuse as many as possible.
For instance, although bilateral filter was the best option when extracting
the plain-region information (see section 3.2), we are going to apply median
filters as the ones used in the vision system to reuse the ones used by the
low-level-vision system. All these simplification details are explained in this
section.

Figure 5.4: Condensation core architecture. Each box corresponds to a
submodule in our architecture. Each module is implemented following a
multi-scalar pipeline, where the numbers in brackets represent the number of
stages (first component) and the number of scalar units (second component)
of that module.

We have summed up the condensation core architecture in Figure 5.4.
We have included different submodules as boxes. The first submodule, grid

110 Chapter 5. Implementation on reconfigurable hardware

mask extractor, is usually executed once, when we initialized the system
(see section 5.1.1 for details about its use). The other modules, enclosed
in a dotted square, compose the loop of our system. We can also see some
multiboxes. They represent submodules that need more than one instance to
condense several features. As we mentioned, we follow a fine-grain pipeline
approach, so we also include information about the number of stages and
scalar units of each submodule (numbers in brackets in Figure 5.4). In the
following subsections we explain in detail these submodules.

5.2.1 Grid Mask Extractor

Once we know the input image size and the window size of our grid, we can
calculate the positions of the grid points (see more details in section 3.2.1).
Thus, we just need to calculate once which points belong to the grid: when
we initialize the system. Moreover, since the positions of the grid points
are fixed, we do not need to explicitly store them (as explained in section
5.1.1). This is why this module stores in embedded memory a binary mask
containing ‘1’ for those positions of the image belonging to the grid and ‘0’
in other case (as shown in Figure 5.6).

Nevertheless, this stored mask can be changed when needed, even at run
time, adding flexibility to our system. For instance, we could adjust our
grid window size in real time, this way we could use a 5x5 window and,
whenever we need more (or less) data, rearrange it to send a 3x3 (or 9x9)
one. This configuration allows us to easily control the bandwidth at run
time (see future work in section 6.2).

In section 5.2.3 we explain how to use this mask to generate the semi-
dense map. As shown in Figure 5.4, the number of units working in parallel
in this function is 4, i.e. 2 stages per each feature in our system (disparity
and optical flow).

5.2.2 Hysteresis and Non-maximum Filter

As mentioned in section 3.1.1, we receive as inputs energy and orientation
extracted in previous stages of the vision system. The energy received,
however, need a non-maximum suppression step so we remove redundant
information and therefore obtain thinner edges (as explained that section).

Comparing current pixel orientation (i.e. its gradient) and its neighbor-
hood ones, we decide whether this pixel is a local maximum or not. Then,
we apply the hysteresis process using thresholds (high and low) that adapt
dynamically. For this, we maintain historic information (i.e. a histogram)
of the current feature frame and, once computed its last pixel, we use that
information to calculate the new thresholds. This way, our thresholds use

5.2. Implementation Details 111

previous image information to adapt to a changing environment. This one-
image threshold estimation latency is affordable due to the inherent temporal
coherence of the sequence.

This module’s output is a bit which is ‘1’ if the point is really a maximum,
and therefore a RP, or ‘0’ if its been marked as non-relevant. As shown in
Figure 5.4, this submodule is composed of 12 stages, and we need 3 scalar
units (one for disparity and two for the optical flow velocity components,
Vx and Vy), i.e. a total of 36 units of our pipeline working in parallel.

5.2.3 RP and Grid Extractor

At the beginning of this submodule we read 4 bits corresponding to 4 indi-
cators: calculated-RP (received from the previous module), calculated-grid
(read from embedded memory and calculated by “Grid extractor”), and
feedback-RP and feedback-grid (sent by the co-processor). If no feedback
information is available, the latter values will be ‘0’.

Using these bits, this module sends as output a 14-bit register. The first
bit -called ‘isRP’ in Figure 5.4- is ‘1’ if the point is a RP (no matter if it
was selected as RP by the previous submodule or by a feedback signal).
The second bit -called ‘isGrid’ in Figure 5.4- is ‘1’ if its a grid point (again,
independently of who marked it as grid). Finally, the last 12 bits contains
the feature value for that pixel (assuming its bitwidth is 12 bits).

As we can see in Figure 5.4 we need two instances of this module, one
for disparity and another one for optical flow. This way, we can receive
independent feedback for each of the features. The module is composed of
15 units (5 stages · 3 scalar units) working in parallel. As we mentioned,
the whole system process two instances of those scalar units, although the
number of stages is the same, i.e. the whole system has a total of 30 units
(5 · (3 · 2)).

5.2.4 Condensation Core

This module is on charge of extracting the non-salient information, as shown
in Figure 5.4. It applies a 5x5 median filter to each grid point (see sections
2.1.1.3 and 3.2.2 for details). Due to the FPGA parallel nature, we apply this
filter to each feature pixel and then concatenate the grid indicator received
from the previous submodule.

As output, this module has two registers: one containing the input fea-
ture (unchanged) and a bit indicating whether it is a RP, and another one
containing the median feature value and a bit indicating whether it is a grid
point.

112 Chapter 5. Implementation on reconfigurable hardware

In this module we need four scalar units because we are deciding or ex-
tracting four values: median filter of the dense feature, input value transfer,
one bit indicating whether this point is a RP, and one bit indicating whether
it is a grid point. In addition, as shown in Figure 5.4, it is also necessary
to have several instances of this module. Figure 5.6 shows how this instan-
tiation is done for the optical flow, using two of this submodules. In the
whole system, however, we need to triple the number of scalar units so we
can condense the disparity and the two optical flow components (Vx and
Vy) [1]. Hence, since the module has 9 stages with 4 scalar units, i.e. 36
units working in parallel, and our system has a total of 108 units (9 · (4 ·3)).

5.2.5 Storage Module

Since the communication with the PC is done through shared memory, this
module sends to the memory control unit (MCU) [88] the RP or grid values,
that are then stored in the RAM cells. We have used a hybrid “regular and
event-driven” scheme that stores data in two different areas of the mem-
ory (see Figure 5.5). The storage place and way will depend on data type
(relevant or grid point).

On the one hand, the event-driven part of the protocol stores the relevant
points following an AER scheme [13], as explained in section 5.1.1. This
means the relevant points are stored directly; one relevant point per 32-
bit-memory address as each of them contains explicitly its address (row
and column, using 10 bits each) and its feature value (using 12 bits). The
memory (and therefore the bandwidth) needed depends on the number of
relevant points.

On the other hand, the grid data are regular, this means bandwidth
requirements are low and constant due to the sub-sampling applied. Two
grid data values are packed together before being stored in the memory (see
section 5.1.1), since each one requires 12 bits and a register (and memory
word length) has 32 bits. As the grid definition is fixed, we explicitly avoid
storing their addresses because this would be redundant.

An special case are those points with double representation: RP and grid
point. Since we do not want to include redundant information in our map,
we need store them either as RP or as grid point. Since we consider RP
more important than grid ones, we discard the latter. However, as we are
storing grid points without including their coordinates (x and y), we cannot
omit any value. An easy solution to this inconvenience is to substitute the
calculated grid value with NaN . This way, the point will be discarded in
higher levels.

5.2. Implementation Details 113

Following this protocol, instead of storing and transmitting a dense fea-
ture with the same resolution as the original image, we only need the infor-
mation of the relevant points and a regular grid.

The final memory organization is shown in Figure 5.5. As we can see, the
regular information has a limited storage space and the relevant points’ space
is only restricted by the RAM size. This Figure also provides an example of
memory use for a 512x512 image assuming 2% of relevant points.

Figure 5.5: Physical memory distribution. For a 512x512 image, assuming
2% of relevant points, the regular grid-based information is stored in the
first 15.8 KB of the memory and the RPs space is located in the following
70.8KB. For the example image used, the data sent to the upper levels is
around 86.6 KB instead of the 576KB needed without condensation.

5.2.6 Resource Usage Analysis

The resources used by our condensation core are indicated in Table 5.1. We
have not only included the consumption for one generic dense visual feature
but also the resource need to condense all the dense features of our low-level-
vision system, i.e. disparity and optical flow. It is interesting to compare
these two cases. If we just condense disparity information, our system needs
8% of the system resources. However, since we have designed our core to be
scalable, adding optical flow condensation requires just 12% of slices, instead
of 24% needed to generate three complete instances of the whole core. This
is because we only double the RP and Grid Extractor scalar units (just
1% increase) and triple the Condensation core ones (4% increase). Note
also that instead of the 194 RAM modules expected (64 · 2 + 22 · 3 = 194)
the hardware synthesis tool optimized the final architecture, simplifying it
and sharing some resources by finally reducing the total embedded memory
utilization.

As a comparative note, a single JPEG core [20] implemented in this
architecture needs 17% of the slices available per dense feature, i.e. 51% for

114 Chapter 5. Implementation on reconfigurable hardware

Submodule Slices DSP Block RAM Freq.
(Out of 84352) (Out of 160) (Out of 376) (MHz)

Grid Extractor 82 (1%) 0 1 177
Hysteresis and non-maximum 1848 (4%) 0 9 87
RP and Grid Extractor 297 (1%) 0 64 131
Condensation Core 1105 (2%) 16 22 92

Condensation module 3432 (8%) 16 95 90
(1 feature)

Condensation module 5357 (12%) 48 139 59
(2 features)

Table 5.1: Use of hardware resources for each submodule in a reconfigurable
platform with a Virtex-4 FX100.

our whole system, which means that our system not only performs a smarter
analysis of visual features, but also consumes less resources.

5.3 Results and Examples

Before moving to the results achieved by our condensation core, we want
to explain in detail how we have included our condensation core in the low-
level-vision system.

It is out of the scope of this dissertation to explain the details of how
the low-level-vision system is implemented. A complete explanation of this
system, including energy, orientation, phase, disparity and optical flow ex-
tractors, can be found in [84]. Figure 5.6, on the other hand, shows an
scheme of how we have integrated our condensation core in that vision sys-
tem. This image is similar to Figure 5.1, but including disparity extraction
core to the low-level-vision system.

In Figure 5.6 we have represented condensation core modules in red. We
can see how Grid extractor is called as soon as the image size is known.
From then on, grid mask is read from memory (using a FIFO). For each
image, Hysteresis and non-maximum suppression receives energy and orien-
tation to extract RPs while the dense feature is directly received by RP and
Grid Extractor. In this submodule, signals from higher level are integrated,
transferring RP and grid indicators to the next level. If required, this sub-
module also divide the dense feature in simpler components, such as Vx and
Vy components. We can see how the next submodules, Condensation Core,
convolve each component and send to Storage the visual feature (disparity,
Vx or Vy components in this example), a register indicating whether it is
a RP, the convolved feature, and a register indicating whether it is a grid
point. Finally, this submodule selects the corresponding value and transfers
it to memory.

5.3. Results and Examples 115

Figure 5.6: Integration of condensation modules (in red) in DRIVSCO low-
level-vision system. Low-level vision is represented by a dotted box and
for simplicity we assume it only processes disparity (D), optical flow (OF),
energy and orientation (E&O). We also include connections with Memory
Control Unit (MCU) and a scheme of how we storage condensed information.

It is important to check whether our condensation core is able to main-
tain the whole system throughput. Since our system processes one pixel
per cycle and our core frequency is 90 MHz when condensing one feature
(as shown in Table 5.1), we deduce that we can process 90 Megapixels per
second. If our input image resolution is VHA, i.e. 1024x1024 pixels, we
need to process 1 Megapixels. Hence, our condensation module can process
90 frames per second (fps). On the other hand, if we are condensing dis-
parity and optical flow, our system processes 59 fps. This speed, however,
is limited by the low-level-feature extractor. In fact, [85] states that the
whole system frequency is 49 MHz. From this we conclude that our con-
densation system does not introduce any delay or frequency penalty in our
vision system. Moreover, in section 3.3.2 we presented the inherent regular-
ization capabilities of our algorithm. These capabilities are very handy in
this low-cost hardware implementation as we showed in Figure 3.3.2.

116 Chapter 5. Implementation on reconfigurable hardware

Now that we know our condensation core does not include any delay and
is able to condense in real-time the different visual features of the system,
let us check if it solves the bandwidth constrains of our system (introduced
in chapter 1), while keeping the feedback capabilities presented in chapter
4.

5.3.1 Bandwidth Reduction in DRIVSCO Framework

Although in chapter 1 we introduce the bandwidth requirements of our
system, a more detailed studied is needed to fully understand the results
achieved by our condensation algorithm.

As a rule, our low-level-system receives two input images, of which max-
imum resolution is 1024x1024 pixels, and we extract features known as local
contrast descriptors (LCDs) [24]. These LCDs are energy, phase and ori-
entation and need 8 bits per pixel. We also extract visual primitives such
as optical flow [1] and disparity [86], using phase-based multi-scale models
[75]. Each of these primitives requires 12 bits per component, meaning that
the optical flow needs 24 bits (x and y velocity components) per pixel while
disparity (depth estimation) needs 12 bits per pixel. As multi-scale mod-
els, each of them need also several scales to be computed per frame, so our
system must store up to 8 different resolutions. Moreover, optical flow calcu-
lation requires storing a temporal window of 3 frames. After computing all
this, the FPGA sends the results (optical flow, disparity and LCDs) to the
co-processor. [85] explain in detail how we implement this system. Tables
5.2 and 5.3 show a summary of the memory and bandwidth requirements of
our system.

Memory Requirements (MB)
Input Pyramid Optical flow Disparity Features Whole System

VHA 8 6 3 23,98 88,92
HA 3,4 2,75 1,37 9,72 36,95
MA 2 1,25 0,625 5,31 19,8

Table 5.2: Memory requirements for different input resolutions: VHA
(very high accuracy) (1024x1024), HA (high accuracy) (800x600) and MA
(medium accuracy) (512x512). Input pyramid used in some primitive extrac-
tion engines (such as optical flow) includes several input images at different
resolutions to build multi-scale models. Optical flow, disparity and features
are results of our low-level-vision system, referred to here as the “whole
system”, and require 24, 12 and 8x3 bits per pixel respectively.

In Table 5.2 we show original memory requirements of our low-level-
vision system introduced in Figure 1.5. If we compare those requirements
with the memory needs of our condensed approach in Figure 5.5, we can see

5.3. Results and Examples 117

how we reduce it dramatically. This reduction allow the vision system to
store more scales or more optical-flow frames, improving its ouputs [63, 75].

Bandwidth Requirements (MB/s)
Optical flow Disparity Features Whole System

VHA 78,6 39,3 235,1 432,3
HA 36 18 95,6 185,6
MA 16,4 8,2 52,2 96,4

Table 5.3: Bandwidth requirements for different input resolutions: VHA
(very high accuracy) (1024x1024), HA (high accuracy) (800x600) and MA
(medium accuracy) (512x512). The conditions are similar to Table 5.2.

Bandwidth requirements introduced in Table 5.3, that would be unim-
portant in a standard processor, are critical in our system. Since we have an
FPGA device with a 1-lane PCIe interface to connect with the PC, there is
a bottleneck in this communication. To clarify this constrain, we include in
Figure 5.7(a) the bandwidth requirements of DRIVSCO system (this graph
is the same as Figure1.6). The total bandwidth requirement of the system
for a standard SVGA resolution (i.e. HA resolution) is over 185 MB/s. Al-
though multilane PCIe solutions would be used, the constraints of current
multicore processors will prevent them from managing such a data flow [1].

Using our condensation core, we reduce the transfer load as shown in
Figure 5.7(b). We can see that the bandwidth requirements become dra-
matically reduced using our condensation scheme in actual sequences. We
have used a 5x5 grid, which means that 4% of the original image is sent as
regular data, and around 2% sent as relevant points. It is interesting to com-
pare Figure 5.7(a) and 5.7(b), whence the bandwidth needed for the whole
system on a SVGA resolution (800x600) is reduced from over 185 MB/s to
less than 20MB/s.

From these figures and tables we conclude that our condensation core
reduces memory and transfer loads, allowing the vision system to perform,
store and transfer data in real-time. Furthermore, due to the communi-
cation and workload reductions, our approach reduces power consumption.
Although the DRIVSCO setup presented here assumes we are sending the
condensed data to a commodity processor, the final on-board system could
use an embedded soft-processor (if a more complex FPGA is used) or to
a external DSP to post-process these data. Both options are valid as ve-
hicular solutions and compatible with our hardware implementation of the
condensation algorithm.

118 Chapter 5. Implementation on reconfigurable hardware

(a) Original bandwidth requirements

(b) Bandwidth requirements using semidense maps

Figure 5.7: Bandwidth comparison between original dense features and
semidense ones for three different resolutions: VHA (very high accuracy)
(1024x1024), HA (high accuracy) (800x600) and MA (medium accuracy)
(512x512).

Finally, we need to assess whether the other capabilities of our semidense
map (such as attention and feedback integration) are kept in this hardware
implementation.

5.3.2 Low-Level Feedback

As we studied in section 4.1, when we drive in a city, the information from
the pedestrians walking on the sidewalk is usually less relevant than the one
from the road. However, if all of a sudden one of those pedestrians starts

5.3. Results and Examples 119

crossing the street, our priorities change. The pedestrian will become part
of our interest area and our brain will process it with a higher priority [39].

In chapter 4 we applied our semidense representation map to different
applications, helping the driver to react in a changing driving scenario (see
section 1.1.1). Our goal here is to prove that this capacity is still present
in our hardware implementation and we can integrate it in real-time. Our
vision system, however, calculates too much information to process it in real
time. For instance, we extract optical flow cues of not only other objects
in the road, but also the rest of objects in the image: pedestrians on the
pavement, trees, houses, etc. In fact, to compute mid- and high-level features
such as TTC [15] and IMOs [62] (see section 4.1.2), background information
is useless. Based on this idea, we have used our semidense representation
map to integrate optical flow and disparity, using the latter to filter those
areas too far to be processed by the mentioned algorithms.

Figure 5.8: Attention feedback example. Real-time execution of our visions
system using condensed disparity to inhibit background areas from the dense
optic fields.

We use this simple example to illustrate how an attention process can
lead our low-level-vision system, removing less-relevant areas and enhancing
interesting ones. In Figure 5.8 we can see how a camera moves as if it were

120 Chapter 5. Implementation on reconfigurable hardware

a robot checking the scene, while a static person is in our way, close enough
to become an obstacle to avoid. In the non-attention optical flow (upper-
right image) we detect background information, too far to be interesting for
our TTC algorithm. Thus, after extracting disparity and optical flow using
our system-on-chip (SoC) [84], we use our condensation core to condense
the disparity. Then, we use this condensed disparity as attention signal and
easily integrate it in the optical flow’s RP and Grid Extractor submodule
(see Figure 5.6). This way, as we condense the optical flow, we inhibit far
areas, sending just the important optic fields.

Although this inhibition could be done in higher-level algorithms, doing
it on chip avoids sending unnecessary information, and, therefore, improves
even more our bandwidth reduction. In fact, it is not necessary to con-
dense the optical flow since the reduction achieved by this inhibition is good
enough. For instance, the condensed optical flow is around 8% of the origi-
nal one; using the disparity feedback, however, we can discard useless areas
(those that are further), sending to higher levels just 2.48% of the original
one, i.e. 30% of the codensed flow. This way we reduce even more the
bandwidth needed by our system whilst integrating low-level features on
real-time. And, if we need to, we can always condense the attention optical
flow. A smaller amount of optical-flow information implies a reduction in
the computational workload and allows embedded processors to compute
high-level algorithms (such as TTC) in real-time.

5.4 Conclusions

We have designed a hardware architecture to integrate our condensation
algorithm in DRIVSCO low-level-vision system, condensing the obtained
visual features in real-time. We have implemented our condensation core
as a fine-grain pipeline architecture which is grouped in specific functional
modules. All pipeline stages work in parallel, processing one pixel per clock
cycle. This is why our low-level-vision system maintains its high perfor-
mances after including the condensation core.

As indicated in Table 5.1, the hardware resource requirements indi-
cate that the condensation system can be integrated in an image-processing
scheme at affordable hardware cost. Working at 90 MHz (59MHz if we con-
dense several features) and computing one pixel per clock cycle, this module
can process 90 fps of 1024x1024 image resolution (or 59 fps if we condense
several features). These results prove that our core does not introduce any
delay in our low-level-vision system that works at 49 fps [85].The main ad-
vantages of this core are: real-time frequency, scalability and feedback from
other stages.

5.4. Conclusions 121

We have used a hybrid ’regular and event-driven’ protocol. Thus, we
have developed a communication protocol that sends information with two
different priorities in the framework of low-level to mid-level communication.
This protocol manages to increase data transmission efficiency between the
FPGA, which extracts the low-level-vision features, and the PC, which uses
them for high-level processing tasks, without losing any important informa-
tion (as shown in Figure 5.7). Therefore, the FPGA acts as a co-processor
platform when the system needs to extract low-level-vision features. More-
over, our semidense map reduces the computational workload (as showed
in the previous chapter), cutting down the execution time and facilitating
the use of embedded processors, instead of external ones (such as a PC or a
DSP).

This feedback is achieved due to the integration of low-, mid- and high-
level signals in the condensation process. Furthermore, we have employed
disparity information obtained by our system as attention signal, using it to
test the feedback capabilities of our system. Moreover, our semidense map
facilitates a feasible framework to implement higher-level algorithm in an
embedded processor.

Chapter 6

Conclusions and Future work

This dissertation presents our contributions to the areas of computer vision
and image representation. In this chapter we present a general discussion of
the motivation problem and our solution. We also include some highlights
of our future work. Then, we include the publications derived from our work
and, finally, a summary of the main contributions achieved.

6.1 General Discussion

Local descriptors (such as SIFT, SURF or multi-modal ones) provide a se-
lection of the most interesting points of the image, reducing the amount of
data that mid-/high-level-vision algorithms need to process. However, most
of these descriptors work with images, while higher-level algorithms usually
employ visual features (such as disparity and optical flow) as inputs. Never-
theless, even those descriptors that extract information from visual features
(such as multi-modal ones) ignore the plain regions. These regions, although
less salient, also contain information that can be important depending on
the algorithm (for instance, ground-plane extractor). From this we can con-
clude that computer vision is lacking a hybrid method that reduces dense
visual feature to a sparser representation while keeping information from
plain regions.

In this dissertation we present our solution to fulfill this need. We have
designed, implemented and assessed an innovative hybrid representation
map that integrates salient points, that we call relevant points, and plain
regions, that we represent using a regular grid. We have called it semidense
representation map, and the process to obtain it, condensation.

Relevant points (RPs) are obtained by an enhancing signal applied over
the original image. In fact, we can use any sparse visual feature that selects
salient points in the image. We have focused on structure-based selectors,

123

124 Chapter 6. Conclusions

such as Canny’s edge detector. On the other hand, to extract information
from the plain regions, we filter the original feature and select a regular grid
of points. This grid is a very important contribution of this new represen-
tation since, as we have mentioned, other non-dense representations do not
include the non-relevant information.

We have assessed different extractors for both relevant and non-relevant
regions to explore the possibilities of our condensation algorithm. We con-
clude that our semidense map response depends on the image structure and,
therefore, we can modify the extraction process so it adapts to its ulterior
application. Thus, we achieve better results when working on known situa-
tions (very textured sequences, driving scenarios, ...).

Simplicity and versatility are two of the main advantages of this map:
it reduces any dense visual feature to a map whose size is around 10% of
the original one (using grid window of 5x5 pixels), with minimal error and
workload.

Moreover, our representation map is a very well suited framework to
easily integrate several sparse features. In fact, we have evaluated saliency
maps as relevance indicator, incorporating our semidense representation map
into an attention system. Furthermore, we have included top-down attention
to our semidense map integrating IMO information in it.

This incorporation of top-down information is another important con-
tribution of our semidense map. We have designed it so we can naturally
receive and integrate feedback information from low-, mid- and high-level
stages of a vision system, without any additional cost (in time or computa-
tional resources).

We have also assessed its performance when used as input in a ground-
plane extraction algorithm based on disparity information. This algorithm
uses non-relevant regions to determine the road of the sequence, taking
advantage of the innovative part of our semidense map. The results are
qualitative and quantitative similar as using a dense input, with remarkable
memory and CPU workload reduction. This application shows the restric-
tions of sparse representations, useless when extracting the ground plane.
Moreover, we have employed the extracted ground-plane as input in an ob-
stacle detection algorithm with similar results. This application is a good
example of how the improvements of our semidense map not only affect to
the mid-level algorithms that use it as an input; but also influence the higher-
level stages of the process, reducing bandwidth, memory and workload all
over the system.

Our approach can be used in many other applications. For instance, we
have assessed our algorithm as a bandwidth and memory reduction tool on
a real-time application to communicate an FPGA with a PC using a PCI

6.2. Future work 125

interface. The simplicity of our algorithm allows for its implementation in
specific hardware and its use with real-time constraints. Hence, we have
designed a hardware architecture to integrate our condensation algorithm
in a actual low-level-vision system, within the framework of the European
project DRIVSCO. We have implemented our condensation core as a fine-
grain pipeline architecture which is grouped in specific functional modules.
All pipeline stages work in parallel, processing one pixel per clock cycle.
This is why our low-level-vision system maintains its high performances
after including the condensation core. In fact, to condense one feature, our
core works at 90 MHz and computes one pixel per clock cycle, processing
90 fps of 1024x1024 image resolution. The main advantages of this core are:
real-time frequency, scalability and feedback from other stages.

Real-time applications produce simplified versions of visual features and,
therefore, higher-level algorithms would benefit from a regularizing stage.
Our semidense map inherently regularizes visual features when condensing
them, due to the filter applied to the non-relevant regions. This way, we
have developed an efficient way to regularize visual features in real-time,
while freeing higher-level algorithms from doing it.

We have paid special attention to the evaluation of each of the aspects
mentioned in this section. We have used benchmark and real-world se-
quences to compare dense maps with our semidense approach, provided as
tables and graphs in this dissertation.

In summary, this condensation scheme can be understood as being a
processing stage along the vision datapath that translates dense represen-
tation maps into a semidense representation that can easily be handled by
standard and embedded processors for further computing by higher level
modules. Therefore the main motivation of this condensation is to provide
an appropriate representation format for mid- and high-level vision stages.

6.2 Future work

As future work, we consider two different aspects: include other feedback
signals in our semidense representation map and apply it to new applications.

Although we have already assessed several features as relevance extrac-
tors, we would like to carry out a complete study of how to integrate several
of them at the same time to improve the robustness of our solution. More-
over, we want to evaluate how to combine our semidense map with the
multi-modal descriptors. We also intend to explore how to integrate signals
such as TTC estimations as top-down attention signals. On the other hand,
we will also explore mechanisms to dynamically adapt the grid to further
optimize bandwidth requirements and regularization capabilities of our con-

126 Chapter 6. Conclusions

densation algorithm, developing an adaptive grid. Furthermore, we would
like to explore a bio-inspired version of this adaption, designing a fovea-
like grid that uses a smaller window size for those regions that are more
promising depending on the application.

As future applications, we will use our semidense representation map
as input in several vision algorithms such as TTC in a driving scenario,
tracking in a video surveillance application, and efficient communication
and integration of multi-cameras.

6.3 Publications

The published (or submitted) works related to this research are the follow-
ings:

International Journals with Scientific Impact:

• F. Barranco, M. Tomasi, J. Dı́az, S. Granados and E. Ros, Hierarchi-
cal Architecture for Motion and Depth Estimations based on Color
Cues. [Journal of Real-Time Image Processing, IN PRESS, DOI:
10.1007/s11554-012-0294-1, 2012.

• S. Granados, F.Barranco, S. Mota, and J. Diaz. On-chip semidense
representation map for dense visual features driven by attention pro-
cesses. [SUBMITTED TO -under minor review-] Journal on Real-
Time Image Processing. Special Issue on Real-Time Image Processing
in Embedded Systems, 2012.

• S. Granados, N. Chumerin, S. Mota, and J. Diaz. Obstacle detec-
tion using semidense representation maps. [SUBMITTED TO -under
major review-] Journal of Visual Communication and Image Repre-
sentation, 2012.

International Conference:

• S. Granados, E. Ros, R. Rodŕıguez, and Javier Dı́az. Visual processing
platform based on artificial retinas. In Proceedings of the 9th interna-
tional work conference on Artificial neural networks, IWANN 07, San
Sebastian, Spain, pages 506-513, 2007.

National Conferences:

• S. Granados, S. Mota, E. Ros, and J. Dı́az, Condensación de primiti-
vas visuales de bajo nivel para aplicaciones de procesamiento en tiempo
real. JCRA 2008, Madrid (Spain), pages 207-214, 2008, BEST CON-
FERENCE PAPER AWARD.

6.4. Main contributions 127

• F. Barranco, M. Tomasi, M. Vanegas, S. Granados, J. Dı́az, En-
torno software para visualización y configuración de procesamiento de
imágenes en tiempo real con plataformas reconfigurables. JCRA 2009.
Alcalá de Henares (Spain), pages 327-336, 2009.

• S. Granados, F. Barranco, J. Dı́az, S. Mota and E. Ros, Condensación
de primitivas visuales de bajo nivel para aplicaciones atencionales.
Congreso Español de Informática (CEDI 2010), X JCRA. Valencia
(Spain), pages 199-206, 2010.

6.4 Main contributions

We include here a sum-up of the main contributions achieved in this disser-
tation:

• We have designed a semidense representation map that condense dense
visual features into a sparser representation with a minimal loose of
information. This innovative map is composed of two different kinds
of points: relevant ones and plain-region ones, providing information
of salient and non-salient parts of the image. This hybrid approach
fills a need in Computer Vision, where only salient parts were taken
into account.

• We have assessed several sparse features as relevance indicators, from
structure-based features (such as edge detectors) to salency maps. We
have evaluate their performances to extract the most salient parts of
the image, using benchmark and real-world sequences.

• We have evaluated several filtering operators when extracting plain-
region information. Once filtered, we create a regular grid that selects
one point within a window. Hence, we have assessed several filters and
different grid-window sizes using benchmark and real-world sequences.

• We have proved the regularizing capabilities of our semidense repre-
sentation map comparing it with existing regularization methods.

• We have employed semidense maps to condense multiple visual fea-
tures. We have also used the obtained semidense maps as input in
multiple real-world applications achieving remarkable improvements
in bandwidth, memory and processing performance.

• We have designed and implemented a hardware architecture to inte-
grate our condensation algorithm in a actual low-level-vision system
that works on a FPGA. This architecture follows a fine-grain pipeline
design, where all stages work in parallel, processing one pixel per

128 Chapter 6. Conclusions

clock cycle. We have evaluated this architecture, reducing memory
and bandwidth while maintains the system high performances.

• We have created a very well suited framework to integrate several
sparse features, efficiently combining them. Moreover, this framework
creates a signal-to-symbol loop since our semidense representation map
receives feedback from low-/mid-/high-level algorithms and integrates
them in an unique representation without additional cost. We have
also evaluated this feedback integration for the two implementations
of our algorithm: software and hardware.

Conclusiones y Trabajo

Futuro

Esta tesis doctoral muestra nuestras aportaciones a las áreas de visión arti-
ficial y representación de imágenes. En este caṕıtulo presentamos una dis-
cusión general de la motivación del problema y nuestra solución. También
incluimos algunas sugerencias como trabajo futuro. A continuación enu-
meramos las publicaciones derivadas de nuestro trabajo y, por último, un
resumen de las principales aportaciones.

Discusión General

Los descriptores locales (como SIFT, SURF o los multi-modales) proporcio-
nan una selección de los puntos más interesantes de la imagen, reduciendo la
cantidad de datos que los algoritmos de medio y alto nivel necesitan procesar.
Sin embargo, la mayoŕıa de estos descriptores trabaja con imágenes, mien-
tras que los algoritmos de alto nivel suelen utilizar como entradas las carac-
teŕısticas visuales (como la disparidad o el flujo óptico). No obstante, incluso
aquellos descriptores que extraen información a partir de caracteŕısticas vi-
suales (como los descriptores multimodales) ignoran las zonas planas. Estas
regiones, aunque menos salientes, también contienen información que puede
ser importante para algunos algoritmos (como por ejemplo el de extracción
del plano de la carretera). Podemos concluir que en visión artificial es nece-
sario un método h́ıbrido que reduzca las caracteŕısticas visuales densas en
una representación más dispersa que mantengan la información de las re-
giones planas.

En esta tesis doctoral presentamos nuestra solución para suplir esa necesi-
dad. Hemos diseñado, implementado y validado un innovador mapa de
representación h́ıbrido que integra puntos salientes, que llamamos puntos
relevantes, y zonas “planas”, que representamos por medio de una rejilla
regular. Lo hemos llamado mapa de representación semidenso y al proceso
de obtención condensación.

129

130 Conclusiones

Los puntos relevantes (RP, siglas del nombre en inglés) se obtienen por
medio de una señal que resalta aquellas partes de la imagen más impor-
tantes. De hecho, podemos utilizar cualquier caracteŕıstica visual dispersa
que seleccione puntos salientes de la imagen. Nos hemos centrado en aque-
llas señales que se basan en la estructura de la imagen, como por ejemplo
el detector de bordes de Canny. Por otro lado, para extraer la información
del as zonas planas, filtramos la caracteŕıstica original y seleccionamos una
rejilla regular de puntos. Esta rejilla es una aportación muy importante de
esta nueva representación ya que, como ya hemos mencionado, el resto de
representaciones no densas no suelen incluir información de las zonas menos
relevantes.

Hemos probado varios extractores para ambos tipos de puntos: rele-
vantes y no relevantes con el fin de encontrar el que mejor resultado diera.
Podemos concluir que la respuesta de nuestro mapa semidenso depende de
la estructura de la imagen y, por lo tanto, podemos modificar el proceso de
extracción de manera que se adapte a la aplicación concreta que va a recibir
el mapa. De esta manera, conseguiremos mejores resultados cuando traba-
jemos con situaciones conocidas (secuencias con muchas texturas, escenarios
de conducción,...).

Sencillez y versatilidad son dos de las ventajas más importantes de este
mapa de representación: reduce cualquier caracteŕıstica visual densa a un
mapa cuyo tamaño es alrededor de un 10% del tamaño original (usando
una rejilla de ventana 5x5 ṕıxeles) y todo ello con mı́nimo error y carga
computacional.

Además, nuestro mapa de representación es un marco muy adecuado
para integrar fácilmente varias caracteŕısticas visuales dispersas. De he-
cho, hemos evaluado los mapas de saliencia como indicadores de relevancia,
incorporando nuestro mapa semidenso a un sistema atencional. E incluso
hemos incorporado señales atencionales top-down a nuestro mapa semidenso
al integrar las señales de objetos en movimiento en él.

Esta incorporación de atención dependiente de la tarea a realizar (es
decir, top-down) es otra de las principales aportaciones de nuestro mapa
semidenso. Lo hemos diseñado de tal manera que recibe e integra las señales
de realimentación de bajo, medio y alto nivel de manera natural y sin ningún
coste adicional (en tiempo o en recursos computacionales).

Otra de las aplicaciones en las que lo hemos probado el rendimiento de
nuestro mapa ha sido en el ámbito de un algoritmo que extrae el plano de
la carretera utilizando información de disparidad para ello. Este algoritmo
utiliza las regiones no relevantes de la imagen para calcular cuál es la car-
retera de una sección de conducción, de manera que se aprovecha de la parte
más innovadora de nuestro mapa semidenso. Los resultandos obtenidos son
cualitativa y cuantitativamente similares a los obtenidos utilizando un mapa

Discusión General 131

denso, aunque la memoria y la carga computacional se ven muy reducidas.
Esta aplicación nos demuestra las limitaciones de las caracteŕısticas disper-
sas, incapaces de extraer el plano de la carretera. Además, hemos empleado
el plano calculado como entrada a un algoritmo de detección de obstáculos
con resultados similares a los anteriores. Esta segunda aplicación es un buen
ejemplo de cómo las mejoras en ancho de banda, memoria y carga computa-
cional aportadas por nuestro mapa semidenso se difunden a lo largo de todo
el proceso, afectando tanto a los algoritmos de medio nivel como a los de
más alto nivel que se basan en ellos.

Nuestra solución puede ser utilizada en otras aplicaciones. Por ejemplo,
hemos evaluado nuestro algoritmo como herramienta para la reducción del
ancho de banda y la memoria en una aplicación de tiempo real que necesita
comunicar una FPGA con un PC a través de una interfaz PCI. La sencillez
de nuestro algoritmo permite su implementación en hardware espećıfico y su
uso bajo condiciones de tiempo real. Por ello, hemos diseñado una arquitec-
tura hardware que integra nuestro algoritmo de condensación en un sistema
real de baja visión desarrollado en el marco del proyecto europeo DRIVSCO.
Hemos implementado nuestro módulo de condensación siguiendo una arqui-
tectura con segmentación fina del cauce de datos, lo que permite procesar un
ṕıxel por ciclo, coincidiendo aśı con el modo de funcionamiento del resto del
sistema y facilitando su incorporación al mismo. Nuestro módulo de conden-
sación para una única caracteŕıstica trabaja a una frecuencia de 90 MHz,
lo que nos permite procesar 90 imágenes de resolución 1024x1024 ṕıxeles
por segundo. De esta manera mantenemos el alto rendimiento del sistema.
Las principales ventajas de este módulo son: funcionamiento en tiempo-real,
escalabilidad y realimentación de otras etapas del procesamiento.

Las aplicaciones de tiempo real suelen producir versiones simplificadas de
las caracteŕısticas visuales y, por lo tanto, los algoritmos de más alto nivel se
veŕıan beneficiadas si incluimos algún tipo de regularización antes de pasarle
las caracteŕısticas visuales. Nuestro mapa semidense regulariza inherente-
mente estas caracteŕısticas visuales al condensarlas debido al filtro que se
aplica a las zonas no relevantes. Por lo tanto hemos desarrollado un método
eficiente para regularizar primitivas visuales en tiempo real, liberando a las
aplicaciones de de más alto nivel de hacerlo.

Hemos prestado especial atención a la evaluación de cada uno de los
aspectos mencionados en esta sección, comparando los resultados densos
y semidensos obtenidos utilizando imágenes reales e imágenes de bancos de
prueba (benchmarks) y proporcionando dichos resultados en tablas y gráficas
a lo largo de esta tesis.

En resumen, el esquema de condensación puede ser entendido como una
etapa más de un sistema de visión que traduce mapas de representación
densos en una representación semidensa más fácil de utilizar por las etapas

132 Conclusiones

superiores tanto en procesadores estándar como empotrados. Por lo tanto,
la principal motivación de esta condensación es proporcionar un formato
de representación adecuado para las etapas bajas, medias y altas de dicho
sistema de visión.

Trabajo Futuro

Como trabajo futuro, nos planteamos dos ĺıneas diferentes: incluir otras
señales como realimentación en nuestro sistema de representación y emplear
los mapas semidensos en nuevas aplicaciones.

Aunque hasta el momento hemos probado diversas caracteŕısticas como
extractores de relevancia, nos gustaŕıa realizar un estudio exhaustivo de
cómo integrar varias de ellas a la vez para mejorar la robustez de nuestra
solución. Además, queremos evaluar cómo combinar nuestro mapa semi-
denso con los descriptores multi-modales. También pretendemos explorar
las mejoras que supondŕıan el incorporar señales más alto nivel (como TTC),
utilizándolas como señales atencionales top-down. Por otro lado, también
queremos estudiar mecanismos para adaptar dinámicamente la rejilla, es de-
cir, obtener una rejilla adaptativa capaz de mejorar aún más los requisitos de
ancho de banda y las capacidades de regularización de nuestro algoritmo de
condensación. Dentro de las distintas opciones de generar una rejilla adap-
tativa, nos gustaŕıa estudiar una versión bio-inspirada: diseñar una rejilla
que se comporte como la fóvea y que utilice un tamaño de ventana menor
para las zonas más interesantes de la imagen (según la aplicación).

Como futuras aplicaciones, queremos utilizar nuestro mapa de repre-
sentación semidenso como entrada a diversos algoritmos de visión como el del
cálculo del tiempo de choque en un escenario de conducción, el seguimiento
de objetos en una aplicación de video-vigilancia o la integración de múltiples
cámaras.

Publicaciones

Los trabajos relacionados con esta tesis doctoral publicados o en proceso de
revisión son los siguientes:

Revistas Internacionales con Índice de Impacto:

• F. Barranco, M. Tomasi, J. Dı́az, S. Granados and E. Ros, Hierar-
chical Architecture for Motion and Depth Estimations based on Color
Cues. Journal of Real-Time Image Processing, 2012, IN PRESS, DOI:
10.1007/s11554-012-0294-1.

Aportaciones Principales 133

• S. Granados, F.Barranco, S. Mota, and J. Diaz. On-chip semidense
representation map for dense visual features driven by attention pro-
cesses. [SUBMITTED TO -under minor review-] Journal on Real-
Time Image Processing. Special Issue on Real-Time Image Processing
in Embedded Systems, 2012.

• S. Granados, N. Chumerin, S. Mota, and J. Diaz. Obstacle detec-
tion using semidense representation maps. [SUBMITTED TO -under
major review-] Journal of Visual Communication and Image Repre-
sentation, 2012.

Conferencias Internacionales:

• S. Granados, E. Ros, R. Rodŕıguez, and Javier Dı́az. Visual processing
platform based on artificial retinas. In Proceedings of the 9th interna-
tional work conference on Artificial neural networks, IWANN 07, San
Sebastian, Spain, pages 506-513, 2007.

Conferencias Nacionales:

• S. Granados, S. Mota, E. Ros, and J. Dı́az, Condensación de primiti-
vas visuales de bajo nivel para aplicaciones de procesamiento en tiempo
real. JCRA 2008, Madrid (Spain), pages 207-214, 2008, BEST CON-
FERENCE PAPER AWARD.

• F. Barranco, M. Tomasi, M. Vanegas, S. Granados, J. Dı́az, En-
torno software para visualización y configuración de procesamiento de
imágenes en tiempo real con plataformas reconfigurables. JCRA 2009.
Alcalá de Henares (Spain), pages 327-336, 2009.

• S. Granados, F. Barranco, J. Dı́az, S. Mota and E. Ros, Condensación
de primitivas visuales de bajo nivel para aplicaciones atencionales.
Congreso Español de Informática (CEDI 2010), X JCRA. Valencia
(Spain), pages 199-206, 2010.

Aportaciones Principales

En esta sección incluimos un resumen de las principales aportaciones con-
seguidas en esta tesis doctoral:

• Hemos diseñado un mapa de representación semidenso que condensa
caracteŕısticas visuales densas en una representación más dispersa con
una pérdida de información mı́nima. Este innovador mapa está for-
mado por dos tipos de puntos distintos: relevantes y de zonas planas,

134 Conclusiones

proporcionando información de las partes salientes y no salientes de
la imagen. Esta solución h́ıbrida satisface una necesidad en el ámbito
de la visión artificial, en el que sólo se teńıan en cuenta las partes
salientes.

• Hemos estudiado el comportamiento de varias caracteŕısticas visuales
dispersas como indicadores de relevancia, desde caracteŕısticas basadas
en la información estructural de la imagen (como los detectores de
bordes) hasta mapas de saliencia. Hemos evaluado su rendimiento a
la hora de extraer los puntos más relevantes de la imagen utilizando
imágenes reales y benchmarks.

• Hemos estudiado distintos filtros como extractores de información de
las zonas planas. Para ello, una vez filtrada la imagen, hemos creado
una rejilla regular seleccionando un punto en cada ventana de dicha
rejilla. Por lo tanto, hemos evaluado varios filtros y distintos tamaños
de ventana de rejilla tanto en imágenes reales como en benchmarks.

• Hemos demostrado las capacidades regularizadoras de nuestro mapa de
reprsentación semidenso, comparándolo con métodos de regularización
existentes.

• Hemos utilizado mapas dispersos para condensar distintas caracteŕısticas
visuales. Además, hemos utilizado los mapas dispersos obtenidos como
entradas en varias aplicaciones reales consiguiendo mejoras impor-
tantes en el ancho de banda, la memoria y la carga computacional.

• Hemos diseñado e implementado una arquitectura hardware que in-
tegra nuestro algoritmo de condensación en un sistema real de baja
visión que funciona en una FPGA. Esta arquitectura sigue una seg-
mentación fina del cauce de datos donde todas las etapas se ejecutan
en paralelo, procesando un ṕıxel por ciclo de reloj. Hemos evaluado
esta arquitectura, reduciendo la memoria y el ancho de banda a la vez
que mantiene el alto rendimiento del sistema.

• Hemos creado un marco muy adecuado para integrar varias carac-
teŕısticas visuales dispersas, combinándolas eficientemente. Además,
este marco crea un ciclo de realimentación que permite que nuestro
mapa disperso incorpore información procedente de algoritmos de bajo,
medio y alto nivel en una única representación sin coste adicional.
Hemos evaluado esta realimentación en las dos implementaciones de
nuestro algoritmo: software y hardware.

Appendix A

Receiver Operating

Characteristic Curves

A Receiver Operating Characteristic (ROC) curve is a graphical represen-
tation of the trade off between the false negative and false positive rates for
every possible cut off. Equivalently, the ROC curve is the representation
of the trade-offs between sensitivity and specificity [94]. They describe how
well a test discriminates between cases with and without a certain condi-
tion. In our case we want to decide if we are losing information, i.e. if we are
marking as NaN points that contained a valid value in the original sequence
and vice versa.

Sensitivity The proportion of true positives or the proportion of cases
correctly identified by the test as meeting a certain condition (e.g.
in our example, the proportion of valid points that remained in the
semidense representation map).

Specificity The proportion of true negatives or the proportion of cases
correctly identified by the test as not meeting a certain condition (e.g.
in our example, the proportion of NaN that were marked as NaN in
the semidense map).

This means that we need to transform our problem into a binary clas-
sification one, in which the outcomes are labeled either as positive (p) or
negative (n). There are four possible outcomes from a binary classifier. If
the outcome from a prediction is p and the actual value is also p, then it is
called a true positive (TP); however if the actual value is n then it is said to
be a false positive (FP). Conversely, a true negative (TN) has occurred when
both the prediction outcome and the actual value are n, and false negative
(FN) is when the prediction outcome is n while the actual value is p.

135

136 Chapter A. Receiver Operating Characteristic Curves

Figure A.1: ROC Curve typical values.

From that, we can calculate the sensitivity or true positive rate (TPR)
as TPR = TP/P = TP/(TP+FN) and specificity (SPC) SPC = TN/N =
TN/(FP + TN) = 1− FPR, where FPR represents false positive rate.

By tradition, the plot shows Sensitivity on the Y axis and 1-Specificity
on the X axis. Figure A.1 shows how signals are classified depending on
their plot.

ROC analysis provides tools to select possibly optimal models and to
discard suboptimal ones independently from (and prior to specifying) the
cost context or the class distribution. ROC analysis is related in a direct
and natural way to cost/benefit analysis of diagnostic decision making. They
have been widely used in signal detection, medicine, and machine learning.

Appendix B

Decondensation

A complete information recovery is also important. For instance, some well
known algorithms are not ready (or are not able) to work with sparse or
semidense representation maps, therefore, we need a way to move from our
representation to a dense one. For that reason, we have assessed different
methods to interpolate a semidense map. We also include here some example
of real-world sequences condensed and ’́decondensed́’ together with the error
produced in the process. Figure B.1 shows the whole condensation process
including the interpolation step.

B.1 Interpolation Methods

Three different methods to interpolate a semidense map have been assessed.

B.1.1 MATLAB-Function-Based Interpolation

Using MATLAB functions we have designed an interpolation method. The
algorithm to follow is:

1. Using meshgrid, we generate two vectors containing all the pixel co-
ordinates.

2. After reshaping them properly, we replace the NaN in the condensed
image with an empty vector.

3. Function griddata is the appropriate to decondense our image, so we
use it including the parameter ”nearest” that will replicate the nearest
value to interpolate it.

Figure B.2(b) shows original, condensed and interpolated maps obtained
using this method. The decondensed map is less dense than the original

137

138 Chapter B. Decondensation

Figure B.1: Condensation process including interpolation. Using the input
images (top left), dense disparity (bottom-left) is extracted using [86]. After
condensing it, we recover a dense map using simple calculations.

one. This means this solution loses information and therefore it can be
improved.

B.1.2 Replicate Method

Although the MATLAB approach achieves a less dense solution than ex-
pected, it provides a good idea for improvement: replication. This second
approach uses the replication idea as follows:

1. For each pixel in the image:

(a) If it is not a local maximum:

i. Choose the closer pixel (with distance < 5) containing a value
(different of NaN).

Even if a quite simple method, it achieves better qualitative results than the
previous one as shown in figure B.2(c).

B.1. Interpolation Methods 139

B.1.3 Linear Method

After testing the replicate method, we considered using linear distance be-
tween the points to ponder the values in order to improve the result. So, in
this case, the algorithm is:

1. For each pixel in the image:

(a) If it is not a local maximum:

i. For each pixel close to it (distance ¡ 5) with a value (different
of NaN):

A. Multiply distance inverse and disparity value of that pixel.

ii. Add all the calculated values and associate to the current
point.

This algorithm is not as simple as the replicate one, but it provides an
improved decondensed output as shown in figure B.2(d).

(a) Original dense feature (b) MATLAB-based method

(c) Replication method (d) Linear method

Figure B.2: Comparison between different interpolation methods to recover
a dense map from a semidense one. The semidense map can be found in
Figure B.1.

140 Chapter B. Decondensation

B.2 Interpolation Validation

Although our qualitative results are quite representative, we have measured
the mean squared error (MSE) produced by this interpolation process. Note
that we are using real-world sequences in which the ground truth does not
exist. This means that the error produced could very likely correspond to a
regularization (see section 3.3.2. Figure B.3(a) shows the MSE error between
original and interpolated disparity for a 20-frame sequence. On the other
hand, Figure B.3(b) corresponds to the condensation ratio achieved by our
algorithm, i.e. condensedsize/originalsize. In fact, Fig. B.2 corresponds
to one of the frames of this sequence.

(a) Mean Squared Error (b) Condensation Ratio

Figure B.3: (a) MSE between the original disparity and the interpolated
one using linear approach. (b) Final condensation ratio for each frame of
the sequence.

As we have already establish, ours is a general purpose condensation
scheme so, in order to prove it, we have use it to condense and decondense
optical flows as well. Figure B.4 shows an example of optical flow conden-
sation and decondensation for the driving sequence using [85].

In Figure B.5 we obtain the MSE of each velocity component of the
optical flow as well as the condensation ratio of the sequence. Not only the
error produced is not high, but also it could mean regularization instead of
actual error.

B.2. Interpolation Validation 141

(a) Original Optical Flow (b) Original Optical Flow Module

(c) Condensed Optical Flow (d) Condensed Optical Flow Mod-
ule

(e) Interpolated Optical Flow (f) Interpolated Optical Flow Module

Figure B.4: Comparison between different interpolation methods to recover
a dense map from a semidense one. The semidense map can be found in
Figure B.1.

142 Chapter B. Decondensation

(a) Mean Squared Error (b) Condensation Ratio

Figure B.5: (a) MSE of each component between the original optical flow
and the interpolated one using linear approach. (b) Final condensation ratio
for each frame of the sequence.

Bibliography

[1] M. Anguita, J. Diaz, E. Ros, and F.J. Fernandez-Baldomero. Opti-
mization strategies for high-performance computing of optical-flow in
general-purpose processors. Circuits and Systems for Video Technology,
IEEE Transactions on, 19(10):1475 –1488, oct. 2009.

[2] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M.J. Black, and
R. Szeliski. A database and evaluation methodology for optical flow.
Int. J. Comput. Vision, 92(1):1–31, March 2011.

[3] D. Barash. Bilateral filtering and anisotropic difusion: Towards a uni-
fied viewpoint. In Michael Kerckhove, editor, Scale-Space and Morphol-
ogy in Computer Vision, volume 2106 of Lecture Notes in Computer
Science, pages 273–280. Springer Berlin / Heidelberg, 2006.

[4] F. Barranco, J. Dı́az, E. Ros, and B. Del Pino. Visual system based on
artificial retina for motion detection. Trans. Sys. Man Cyber. Part B,
39:752–762, June 2009.

[5] F. Barranco, M. Tomasi, J. Dı́az, S. Granados, and E. Ros. Hierarchi-
cal architecture for motion and depth estimations based on color cues.
Journal on Real-Time Image Processing, 2012.

[6] F. Barranco, M. Tomasi, J. Diaz, M. Vanegas, and E. Ros. Paral-
lel architecture for hierarchical optical flow estimation based on fpga.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
PP(99):1 –10, 2011.

[7] F. Barranco, M. Tomasi, J. Diaz, M. Vanegas, and E. Ros. Fpga-based
low-cost architecture for the extraction of visual primitives on real time.
submitted to Digital Signal Processing (in peer review), 2012.

[8] E. Baseski, L. Baunegaard With Jensen, N. Pugeault, F. Pilz,
K. Pauwels, M. M. Van Hulle, F. Wörgötter, and N. Krüger. Road
interpretation for driver assistance based on an early cognitive vision
system. In VISAPP (1), pages 496–505, 2009.

143

144 Bibliography

[9] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust
features (surf). Comput. Vis. Image Underst., 110:346–359, June 2008.

[10] A. Benoit, A. Caplier, B. Durette, and J. Herault. Using human visual
system modeling for bio-inspired low level image processing. Computer
Vision and Image Understanding, 114(7):758 – 773, 2010.

[11] D.C.M. Bilsby, R.L. Walke, and R.W.M. Smith. Comparison of a pro-
grammable dsp and a fpga for real-time multiscale convolution. IEE
Seminar Digests, 1998(197):4–4, 1998.

[12] K. Boahen. A retinomorphic chip with parallel pathways: Encoding
on, off, increasing, and decreasing visual signals. Journal of Analog
Integrated Circuits and Signal Processing, 30(2):121–135, 2002.

[13] K. Boahen. A burst-mode word-serial address-event link-i: Transmitter
design. IEEE Trans. Circuits Systems I, Reg. Papers, pages 1269–1280,
2004.

[14] K.A. Boahen. A burst-mode word-serial address-event link-ii: receiver
design. Circuits and Systems I: Regular Papers, IEEE Transactions on,
51(7):1281 – 1291, july 2004.

[15] T. Camus. Calculating time-to-contact using real-time quantized op-
tical flow. In National Institute of Standards and Technology NISTIR
5609, 1995.

[16] J. Canny. A computational approach to edge detection. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on, PAMI-8(6):679
–698, nov. 1986.

[17] M. Chessa, F. Solari, S. P. Sabatini, and G. M. Bisio. Motion interpre-
tation using adjustable linear models. In BMVC, 2008.

[18] N. Chumerin. mylabel: Matlab graphical tool.
http://sites.google.com/site/chumerin/projects/mylabel, 2008.

[19] N. Chumerin. From Multi-Channel Vision Towards Active Exploration.
PhD thesis, K.U.Leuven, 2011.

[20] Open Cores: JPEG Hardware core. http://opencores.org/project,jpeg.
online, 2012.

[21] E. Culurciello, R. Etienne-Cummings, and K.A. Boahen. A biomorphic
digital image sensor. Solid-State Circuits, IEEE Journal of, 38(2):281
– 294, feb 2003.

[22] E.R. Davies. Machine Vision: Theory, Algorithms and Practicalities,
Third Edition. Morgan Kaufmann Publishers, 2004.

Bibliography 145

[23] R. Detry, N. Pugeault, and J.H. Piater. A probabilistic framework for
3d visual object representation. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 31(10):1790 –1803, oct. 2009.

[24] J. Diaz, E. Ros, S. Mota, and R. Carrillo. Image processing archi-
tecture for local features computation. In Reconfigurable Computing:
Architectures, Tools and Applications, volume 4419 of Lecture Notes in
Computer Science, pages 259–270. Springer Berlin / Heidelberg, 2007.

[25] J. Dı́az Alonso. Multimodal bio-inspired vision system. High perfor-
mance motion and stereo processing architecture. PhD thesis, Univer-
sity of Granada, 2006.

[26] D.L. Donoho. De-noising by soft-thresholding. Information Theory,
IEEE Transactions on, 41(3):613 –627, may 1995.

[27] H. Durrant-Whyte and T. Bailey. Simultaneous localization and map-
ping: part i. Robotics Automation Magazine, IEEE, 13(2):99 –110, june
2006.

[28] A. Ess, B. Leibe, and L. Van Gool. Depth and appearance for mobile
scene analysis. In Computer Vision, 2007. ICCV 2007. IEEE 11th
International Conference on, pages 1 –8, oct. 2007.

[29] Martin A. Fischler and Robert C. Bolles. Random sample consensus:
a paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM, 24:381–395, June 1981.

[30] D. Gabor. Theory of communication. Electrical Engineers - Part I:
General, Journal of the Institution of, 94(73), january 1947.

[31] J. Gai and R.L. Stevenson. Optical flow estimation with p-harmonic
regularization. In Image Processing (ICIP), 2010 17th IEEE Interna-
tional Conference on, pages 1969 –1972, 2010.

[32] S. Granados, N. Chumerin, S. Mota, and J. Diaz. Obstacle detection
using semidense representation maps. [SUBMITTED TO] Journal of
Visual Communication and Image Representation, 2012.

[33] S. Granados, F.Barranco, S. Mota, and J. Diaz. On-chip semidense rep-
resentation map for dense visual features driven by attention processes.
[SUBMITTED TO] Journal on Real-Time Image Processing. Special
Issue on Real-Time Image Processing in Embedded Systems, 2012.

[34] S. Granados, E. Ros, R. Rodŕıguez, and Javier Dı́az. Visual processing
platform based on artificial retinas. In Proceedings of the 9th interna-
tional work conference on Artificial neural networks, IWANN’07, pages
506–513, Berlin, Heidelberg, 2007. Springer-Verlag.

146 Bibliography

[35] Mentor Graphics. Handel-c synthesis methodology.
http://www.mentor.com/products/fpga/handel-c/, 2011.

[36] P.W. Holland and R.E. Welsch. Robust regression using iteratively
reweighted least-squares. Communications in Statistics - Theory and
Methods, 6(9):813–827, 1977.

[37] B.K.P. Horn and B.G. Schunck. Determining optical flow. Technical
report, Cambridge, MA, USA, 1980.

[38] L. Itti, N. Dhavale, and F. Pighin. Realistic avatar eye and head anima-
tion using a neurobiological model of visual attention. In B. Bosacchi,
D. B. Fogel, and J. C. Bezdek, editors, Proc. SPIE 48th Annual Inter-
national Symposium on Optical Science and Technology, volume 5200,
pages 64–78, Bellingham, WA, Aug 2003. SPIE Press.

[39] L. Itti and C. Koch. Computational modelling of visual attention.
Nature Reviews Neuroscience, 2(3):194–203, Mar 2001.

[40] Laurent Itti and Christof Koch. A saliency-based search mechanism
for overt and covert shifts of visual attention. Vision Research, 40(10-
12):1489–1506, 2000.

[41] R. Jain, R. Kasturi, and B. G. Schunck. Machine Vision. McGraw-Hill,
1995.

[42] I.T. Jolliffe. Principal Component Analysis. Springer Verlag, 1986.

[43] M. Jourlin and J.C. Pinoli. A model for logarithmic image processing.
Journal of Microscopy, 149(1):21–35, 1988.

[44] H. Kolb and L.E. Lipetz. The anatomical basis for colour vision in the
vertebrate retina. Vision and Visual Dysfunction. The Perception of
colour, 6:128–145, 1991.

[45] N. Kruger and M. Felsberg. A continuous formulation of intrinsic di-
mension. In Proceedings of the British Machine Vision Conference,
2003.

[46] N. Krüger, M. Lappe, and F. Wörgötter. Biologically motivated multi-
modal processing of visual primitives. The Interdisciplinary Journal
OF Artificial Intelligence and the Simulation of Behaviour, 1(4):2004,
2003.

[47] N. Logothetis. Vision: A Window into Consciousness, volume 16. Sci-
entific American, 2006.

[48] D.G. Lowe. Distinctive image features from scale-invariant keypoints.
Int. J. Comput. Vision, 60:91–110, November 2004.

Bibliography 147

[49] M.R. Luettgen, W. Clem Karl, and A.S. Willsky. Efficient multiscale
regularization with applications to the computation of optical flow. Im-
age Processing, IEEE Transactions on, 3(1):41 –64, jan 1994.

[50] N.R. Luque, J.A. Garrido, R.R. Carrillo, O.J.M.D. Coenen, and
E. Ros. Cerebellarlike corrective model inference engine for manipu-
lation tasks. IEEE Transactions on Systems, Man, and Cybernetics,
Part B, 41(5):1299–1312, 2011.

[51] I. Markelic, A. Kjaer-Nielsen, K. Pauwels, L.B.W. Jensen, N. Chumerin,
A. Vidugiriene, M. Tamosiunaite, A. Rotter, M. Van Hulle, N. Kruger,
and F. Worgotter. The driving school system: Learning basic driving
skills from a teacher in a real car. Intelligent Transportation Systems,
IEEE Transactions on, 12(4):1135 –1146, dec. 2011.

[52] D. Marr and E. Hildreth. Theory of edge detection. Proceedings of the
Royal Society of London. Series B. Biological Sciences, 207(1167):187–
217, 1980.

[53] K. Mikolajczyk, B. Leibe, and B. Schiele. Local features for object
class recognition. In Computer Vision, 2005. ICCV 2005. Tenth IEEE
International Conference on, volume 2, pages 1792 –1799 Vol. 2, oct.
2005.

[54] K. Mikolajczyk and C. Schmid. A performance evaluation of local de-
scriptors. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 27(10):1615 –1630, oct. 2005.

[55] C.A. Morillas, S.F. Romero, A. Mart́ınez, F.J. Pelayo, E. Ros, and
E. Fernández. A design framework to model retinas. Biosystems, 87(2-
3):156–163, 2007.

[56] Sonia Mota Fernández. Circuitos bio-inspirados para la evaluación de
movimiento en tiempo real y sus aplicaciones. PhD thesis, University
of Granada, 2007.

[57] M. Nagao and T. Matsuyama. Edge preserving smoothing. Computer
Graphics and Image Processing, 9(4):394 – 407, 1979.

[58] D. Nister, O. Naroditsky, and J. Bergen. Visual odometry for ground
vehicle applications. Journal of Field Robotics, 23:2006, 2006.

[59] NVIDIA. Webpage about cuda computing platform
http://www.nvidia.com/object/cuda home new.html. online, 2012.

[60] R. Oktem. Regularization-based error concealment in jpeg 2000 coding
scheme. Signal Processing Letters, IEEE, 14(12):956 –959, dec. 2007.

148 Bibliography

[61] E.M. Ortigosa, A. Cañas, E. Ros, P. Mart́ınez-Ortigosa, S. Mota, and
J. Dı́az. Hardware description of multi-layer perceptrons with different
abstraction levels. Microprocessors and Microsystems, 30(7):435–444,
2006.

[62] K. Pauwels, N. Kruger, M. Lappe, F. Worgotter, and M.M. Van Hulle.
A cortical architecture on parallel hardware for motion processing in
real time. Journal of Vision, 10(10), 2010.

[63] K. Pauwels, M. Tomasi, J. Diaz Alonso, E. Ros, and M. Van Hulle.
A comparison of fpga and gpu for real-time phase-based optical flow,
stereo, and local image features. Computers, IEEE Transactions on,
PP(99):1, 2011.

[64] F.J. Pelayo, A. Martinez, S. Romero, C.A. Morillas, E. Ros, and E. Fer-
nandez. Cortical visual neuro-prosthesis for the blind: retina-like soft-
ware/hardware preprocessor. In Neural Engineering, 2003. Conference
Proceedings. First International IEEE EMBS Conference on, pages 150
– 153, march 2003.

[65] F.J. Pelayo, S. Romero, C.A. Morillas, A. Mart́ınez, E. Ros, and
E. Fernández. Translating image sequences into spike patterns for corti-
cal neuro-stimulation. Neurocomputing, 58-60(0):885 – 892, 2004. Com-
putational Neuroscience: Trends in Research 2004.

[66] P. Perona and J. Malik. Scale-space and edge detection using
anisotropic diffusion. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 12(7):629 –639, jul 1990.

[67] R. J. Peters, A. Iyer, C. Koch, and L. Itti. Components of bottom-
up gaze allocation in natural scenes. In Proc. Vision Science Society
Annual Meeting (VSS05), May 2005.

[68] M. Popovic, D. Kraft, L. Bodenhagen, E. Baseski, N. Pugeault,
D. Kragic, T. Asfour, and N. Krüger. A strategy for grasping un-
known objects based on co-planarity and colour information. Robotics
and Autonomous Systems, 58(5):551 – 565, 2010.

[69] N. Pugeault and N. Krüger. Temporal accumulation of oriented vi-
sual features. J. Visual Communication and Image Representation,
22(2):153–163, 2011.

[70] N. Pugeault, F. Wörgötter, and N. Krüger. Visual primitives: Local,
condensed, semantically rich visual descriptors and their applications
in robotics. I. J. Humanoid Robotics, 7(3):379–405, 2010.

Bibliography 149

[71] Nicolas Pugeault, Karl Pauwels, Marc M. Van Hulle, Florian Pilz, and
Norbert Krüger. A three-level architecture for model-free detection
and tracking of independently moving objects. In VISAPP (1), pages
237–244, 2010.

[72] J. Ralli, J. Dı́az, S. Kalkan, N. Krüger, and E. Ros. Disparity disam-
biguation by fusion of signal- and symbolic-level information. Machine
Vision and Applications, 23:65–77, 2012.

[73] J. Ralli, J. Dı́az, and E. Ros. A method for sparse disparity densification
using voting mask propagation. Journal of Visual Communication and
Image Representation, 21(1):67 – 74, 2010.

[74] P.J. Rousseeuw. Least median of squares regression. Journal of the
American Statistical Association, 79(388):pp. 871–880, 1984.

[75] S.P. Sabatini, G. Gastaldi, F. Solari, K. Pauwels, M.M. Van Hulle,
J. Diaz, E. Ros, N. Pugeault, and N. Krüger. A compact harmonic
code for early vision based on anisotropic frequency channels. Comput.
Vis. Image Underst., 114:681–699, June 2010.

[76] T. Sanger. Stereo disparity computation using gabor filters. Biological
Cybernetics, 59:405–418, 1988. 10.1007/BF00336114.

[77] Pedro Santana, Magno Guedes, Lúıs Correia, and José Barata.
Saliency-based obstacle detection and ground-plane estimation for off-
road vehicles. In Proceedings of the 7th International Conference on
Computer Vision Systems: Computer Vision Systems, ICVS ’09, pages
275–284, Berlin, Heidelberg, 2009. Springer-Verlag.

[78] K. Sayood. Introduction to data compression. Morgan Kaufmann Pub-
lishers Inc., 2000.

[79] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms. International Journal of
Computer Vision, 47:7–42, April 2002.

[80] M.A. Shubin. Encyclopedia of Mathematics, chapter Laplace operator.
Springer, 2001.

[81] Seven Solutions. http://www.sevensols.com. online, 2012.

[82] L Stryer. Visual excitation and recovery. Journal of Biological Chem-
istry, 266(17):10711–10714, 1991.

[83] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color im-
ages. In Computer Vision, 1998. Sixth International Conference on,
pages 839 –846, jan 1998.

150 Bibliography

[84] M. Tomasi. Pyramidal architecture for stereo vision and motion es-
timation in real-time FPGA-based devices. PhD thesis, University of
Granada, 2010.

[85] M. Tomasi, M. Vanegas, F. Barranco, J. Diaz, and E. Ros. Massive
parallel-hardware architecture for multi-scale stereo, optical flow and
image-structure computation. Circuits and Systems for Video Technol-
ogy, IEEE Transactions on, PP(99):1, 2011.

[86] M. Tomasi, M. Vanegas, F. Barranco, J. Diaz, and E. Ros. Real-time
architecture for a robust multi-scale stereo engine on fpga. Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, PP(99):1 –
12, 2011.

[87] E. Trucco and A. Verri. Introductory Techniques for 3-D Computer
Vision. Prentice Hall PTR, 1998.

[88] Mauricio Vanegas, Matteo Tomasi, Javier Dı́az, and Eduardo Ros Vi-
dal. Multi-port abstraction layer for fpga intensive memory exploitation
applications. Journal of Systems Architecture - Embedded Systems De-
sign, 56(9):442–451, 2010.

[89] Dirk Walther, Ueli Rutishauser, Christof Koch, and Pietro Perona. Se-
lective visual attention enables learning and recognition of multiple ob-
jects in cluttered scenes. Computer Vision and Image Understanding,
100(1-2):41–63, 2005.

[90] Drivsco Webpage. DRIVSCO European Project.
http://www.pspc.dibe.unige.it/∼drivsco/.

[91] Ben Weiss. Fast median and bilateral filtering. ACM Trans. Graph.,
25:519–526, July 2006.

[92] E.J. Wharton, K. Panetta, and S.S. Agaian. Logarithmic edge detection
with applications. In Systems, Man and Cybernetics, 2007. ISIC. IEEE
International Conference on, pages 3346 –3351, oct. 2007.

[93] Xilinx. http://www.xilinx.com. online, 2012.

[94] M. H. Zweig and G. Campbell. Receiver-operating characteristic (roc)
plots: a fundamental evaluation tool in clinical medicine. Clinical
Chemistry, 39(4):561–577, 1993.

