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Modelling of traffic accidents injury severity is a complex task. In the last few years the number and variety of

studies that analyse injury severity of traffic accidents have increased considerably. In this paper 19 modelling

techniques used to model injury severity of traffic accidents where at least a 4-wheeled vehicle is involved have been

analysed. The analysis and the comparison between models was performed based on seven criteria (modelling

technique, number of records, number of variables, area type, features, injury level and model fit). In general, it is

not possible to recommend a method that could be identified as the best one. Each modelling technique has its own

limitations and characteristics, awareness of which will help analysts to decide the best method to be used in each

particular modelling problem. However, some general conclusions can be established: in most cases the results of

models’ fits are found to be satisfactory, though not excellent; in the case of data mining models, accuracy improves

with balanced datasets; and no correlation was found to exist between the number of accident records and the

number of analysed variables.

1. Introduction
Road accidents constitute a major public health problem world-

wide, causing around 1.2 million deaths and over 50 million

injuries each year (WHO, 2004). Identifying the main factors that

are related to injury severity of traffic accidents, especially to

fatalities, has therefore been a primary interest to injury severity

analysts. Figure 1 shows that the number of studies about injury

severity of traffic accidents has been increasing with time, with

the largest number in the last five years.

Many techniques have been used to analyse the injury severity of

traffic accidents. The methods that have been used most include

ordered probit models, binary logit models, ordered logit models

and hierarchical logit models. However, in recent years other

types of models have appeared: artificial neural networks,

Bayesian networks, trees and genetic programming.

Knowledge of the advantages and disadvantages of each method

would help safety analysts decide the most appropriate method

for each particular analysis. The scope of this paper is to provide

insight on each of the methods already used to analyse injury

severity of traffic accidents where at least a motorised 4-wheeled

vehicle is involved, excluding traffic accident studies that analyse

injury severity from a medical point of view, or those that discuss

the vehicle design and equipment and their relation to the injury

outcome and those studies that analyse accidents in urban areas

only.

The analysis of the different models is based on the following

aspects: type of modelling technique; number of crashes consid-

ered in the analysis; number of variables used for analysing the

severity; area type of the road (urban, suburban or rural); features

considered in the analysis (basic segment and/or intersection);

type and number of categories for injury levels; and model fit.

This paper is organised as follows. Section 2 briefly describes the

techniques used in the literature to analyse and/or model injury

severity. A discussion of the studies found in literature is

presented in Section 3. Summary and conclusions are given in

Section 4.

2. Modelling techniques
In this section the modelling techniques used to analyse injury

severity of traffic accidents are classified into four groups:

discrete outcome models, data mining techniques, soft computing

techniques and other techniques.

2.1 Discrete-outcome models (DOMs)

DOMs are used to represent probabilities of having an outcome

based on certain factors or characteristics. In general, these
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models cannot be calibrated using standard curve-fitting techni-

ques, such as least squares, because their dependent variable is an

unobserved probability (between 0 and 1) and the observations

are the individual outcomes (either 0 or 1) (Ortúzar and Will-

umsen, 2001).

2.1.1 Logit models (LMs)

A special case of general linear regression is the logistic

regression or logit model, which assumes that the response

variable follows the logit-function. The logistic model is an

approach used to describe the relationship of single or several

independent variables to a binary outcome variable. This model-

ling approach is usually preferred by researchers, since the

logistic function must lie in the range between 0 and 1, and this

is not usually the case with other possible functions (Kleinbaum

and Klein, 2002).

The simplest form of the LM is the binary form, where the

outcome variable is one of two outcomes. The binary logit model

(BLM) and other extensions of it were found to be mostly used

in the literature of accidents injury severity analysis.

A brief description of these extensions is the following (Keele

and Park, 2004; Kleinbaum and Klein, 2002; Ortúzar and Will-

umsen, 2001; Train, 2009; Washington et al., 2011).

1. The multinomial logit model (MNL) is used when the

outcome variable has more than two unordered

categories.

2. The hierarchical logit, nested logit or multi-level logit model

(HL) is used when certain assumptions valid for the MNL are

violated, for example when the outcomes are not independent

or when there are variations among individuals.

3. The mixed logit model (MXL) is a generalised extreme value

(GEV) model where this distribution allows for correlations

over outcomes, and it is a generalisation of the univariate

extreme value distribution that is used for the standard LM.

This model alleviates the three limitations of the standard LM

by allowing for random variation, unrestricted substitution

patterns and correlation in unobserved factors over time.

MXLs are actually the integrals of the standard logit

probabilities over density parameters.

4. The ordered logit model (OLM), also known as the

proportional odds model, has an observed ordinal variable

(Y), where Y is a function of another latent continuous

unmeasured variable (Y*). Values of Y* determine the values

of the resulting Y. Y* has various threshold or cut points,

where the value of Y depends on these thresholds. The

random disturbance or the error term here follows a logistic

distribution (Washington et al., 2011).

5. The heteroskedastic logit model (HKL) is also a GEV model;

however, instead of capturing correlations among outcomes, it

allows the variance of unobserved factors to differ over

outcomes.

6. The heterogeneous model (HM) is used when dealing with

categorical dependent variables. If the variants of the error

term are non-constant, the standard error will be incorrect

and the parameters will be biased and inconsistent. In order

to deal with unequal error variances, the HM is used.

7. Generalised estimating equations (GEEs) are an extension of

the logistic model to handle outcome variables that have

binary correlated outcomes. GEEs take into account the

correlated nature of the outcome.

Twenty-five studies of accident injury severity used one or more

of these LMs. These studies are listed in detail in Table 1.
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Figure 1. Case studies by type of model analysed from 1996 to

2011
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Study authors

(publication

year)

Objectives of the study Model

type

No.

records

No.

variables

Area

type

Features Injury

level

No.

injury

levels

Model fit test

Shanker et al.

(1996)

To analyse severity on rural highways HL 1505 21 Rural SEG KABCO 5 r2 ¼ 0.52 (probably

McFadden’s)

Donelson et

al. (1999)

To predict fatality for occupants of light-duty

trucks in single-vehicle rollover crashes

BLM 55 000 11 Mixed SEG K 1 Kendall’s tau (�) coefficient

c statistic ¼ [0.882–0.916] for

all models

concordance ¼ [88.4–85.5%]

for all models

discordance ¼ [6.4–9.8%] for

all models

tied pair of a fatal crash ¼
[4–5.6%] for all models

Krull et al.

(2000)

To explore the effect of rollover crashes for single

vehicles

BLM 59 743 16 Mixed SEG K + A,

B + C + O

2 r2 ¼ 0.147 (McFadden’s)

Abdelwahab

and Abdel-Aty

(2001)

To analyse the injury severity of crashes of

two vehicles that occurred at signalised

intersections

OLM 1168 14 n.a. INT A, C + B,

O

3 Accuracy ¼ 58.9%

Dissanayake

and Lu (2002)

To analyse injury severity of young drivers for

single vehicles–fixed objects crashes

BLM 8382 16 Mixed SEG KABCO 5 Accuracy ¼ 89.2%

Bédard et al.

(2002)

To determine the independent contributions of

driver, vehicle and accidents characteristics on

fatalities in single vehicles–fixed objects crashes

BLM 109 837 12 n.a. n.a. K 1 n.a.

Srinivasan

(2002)

To model injury severity OMXL,

OLM

3492 6 Mixed BOTH KACO 4 OMXL against OLM: �2 . �2

critical (60.86 . 28.86 at 0.05)

for the observed data, �2 . �2

critical (31.92 . 28.86 at 0.05)

for the predictive data

Ouyang et al.

(2002)

To study the simultaneity of injury severity

outcomes in two-vehicles crashes of car–truck

combination

BLM 2986 24 Mixed BOTH A + K,

O + C

2 r2 ¼ 0.172 (probably

McFadden’s)

Khattak and

Rocha (2003)

To study the influence of various vehicles platforms

on rollover single-vehicle crashes and driver injuries

OLM 4552 5 n.a. n.a. AIS 7 r2 ¼ 0.1040 (McFadden’s)

Dissanayake

(2004)

To identify roadway, environmental, vehicle and

driver-related characteristics affecting the injury

severity for single-vehicles crashes by young and

older drivers

BLM n.a. 15 Mixed SEG KABCO 5 n.a.

(continued)
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Study authors

(publication

year)

Objectives of the study Model

type

No.

records

No.

variables

Area

type

Features Injury

level

No.

injury

levels

Model fit test

Wang and

Kockelman

(2005)

To study the effects of various vehicle,

environmental, roadway and occupant

characteristics on the severity of injuries sustained

by vehicle occupants in one- and two-vehicle

crashes

HKL n.a. 25 n.a. SEG KABCO 5 r2 (McFadden’s)

for one vehicle: HOP ¼ 0.237,

OP ¼ 0.235

for two vehicles: HOP ¼ 0.257,

OP ¼ 0.251

Lenguerrand

et al. (2006)

To classify severity of occupant into dead or not

dead for car accidents

GEE,

HL,

BLM

12 030 9 n.a. INT K, not K 2 n.a.

Awadzi et al.

(2008)

To model injury severity of younger and older

drivers

MNL n.a. 18 Mixed BOTH KBO 3 n.a.

Milton et al.

(2008)

To study the variation that the influence of

variables has on injury severity by the roadway

segments

MXL 22 568 26 Mixed BOTH K + A, BO 2 r2 ¼ 0.1145 (calculated

McFadden’s)

Malyshkina

and

Mannering

(2009)

To analyse injury severity of accidents for two

vehicles or fewer

MNL 81 172 16 Mixed SEG KBO 3 p-value for �2 ¼ 0.20–0.50

Schneider et

al. (2009)

To assess driver injury severity resulting from

single-vehicle crashes on rural two-lane highways

in Texas

MNL 10 029 24 Rural SEG ABCO 4 r2 (probably McFadden’s)

for small radius model:

r2 ¼ 0.258

for medium radius model:

r2 ¼ 0.230

for large radius model:

r2 ¼ 0.253

Jung et al.

(2010)

To assess the effects of rainfall on the severity of

single-vehicle crashes on Wisconsin interstate

highways

OLM,

BLM

255 30 n.a. n.a. K + A,

B + C, O

3 Accuracy ¼ 88% for the KA

Accuracy ¼ 68% for the B + C

Haleem and

Abdel-Aty

(2010)

To analyse crash injury severity at three- and four-

legged un-signalised intersections

HL 2043 21 Mixed INT K + A,

B + C + O

2 AIC ¼ 34 040

Jin et al.

(2010)

To analyse the factors affecting right-angle crash

injury severity on four-legged signalised

intersections

OLM 13 218 7 n.a. INT KABCO 5 r2 ¼ 0.0542

Daniels et al.

(2010)

To investigate which factors might explain the

severity of crashes or injuries on roundabouts

HL 1491 7 n.a. INT K + A, K 2 �2 for K + A ¼ 10.88 (DF ¼ 8,

p-value ¼ 0.21)

for K ¼ 4.86 (DF ¼ 6, p-

value ¼ 0.56)
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Paleti et al.

(2010)

To capture the moderating effect of aggressive

driving behaviour while assessing the influence of

a comprehensive set of variables on injury severity

HKL 6950 15 n.a. n.a. KABCO 5 r2 ¼ 0.1188 (calculated

McFadden’s)

Quddus et al.

(2010)

To explore the relationship between the severity

of road crashes and the level of traffic congestion

using disaggregated crash records and a measure

of traffic congestion while controlling for other

contributory factors

OLM,

HM

3998 17 n.a. SEG KAC 3 r2 (McFadden’s)

r2 ¼ 0.096 for the OLM

r2 ¼ 0.099 for the HM

Dupont et al.

(2010)

To predict the chances for occupants involved in

traffic accidents to end among the survivors given

that the accident was fatal and to examine the

features of the road users or of the vehicles that

are positively or negatively associated with survival

chances risk factor

BLM 1296 14 n.a. BOTH K 1 n.a.

Peek-Asa et

al. (2010)

To identify driver and crash characteristics

associated with increased odds of fatal or severe

injury among urban and rural crashes

BLM 87 185 12 Mixed BOTH KA 2 n.a.

Kononen et

al. (2011)

To predict the probability that a crash-involved

vehicle will contain one or more occupants with

serious or incapacitating injuries

BLM n.a. 7 n.a. n.a. A 1 Sensitivity ¼ 40%

Specificity ¼ 98%

ROC area ¼ 0.84

n.a., data not available; KABCO (K ¼ killed, A ¼ incapacitating, B ¼ non-incapacitating, C ¼ possible injury, O ¼ no injury); AIS (0 ¼ no injury, 1 ¼minor, 2 ¼moderate, 3 ¼ serious, 4 ¼ severe,
5 ¼ critical; 6 ¼ unsurvivable); SEG, basic segment only; INT, intersection only; BOTH, intersection + segments.
Probably McFadden’s: r2 value was given in the study, and was found to apply to McFadden’s formula; calculated McFadden’s: r2 value was not given, but was calculated using log-likelihoods
given in the study

Table 1. Studies that analyse injury severity of traffic accidents using logit models
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2.1.2 Probit models (PMs)

PMs deal with the three limitations of LM: they can handle

random variation; they allow any pattern of substitution; and they

are applicable to panel data with temporally correlated errors

(Train, 2009).

The most used type of PM in the analysis of accident severity is

the ordered probit model (OPM). The OPM is a generalisation of

the PM to the case of more than two outcomes of an ordinal

dependent variable. If the model cannot be estimated using the

ordinary least squares, it is usually estimated using the maximum

likelihood (Train, 2009).

Other PMs used are the following.

j Heteroskedastic probit model (HOP): this is used when the

error terms are not homoskedastic and their variance may be

parametrised as a function of covariates. HOPs offers more

flexibility than OPMs, since they capture the effect of the

independent variables on the variance or uncertainty in the

outcome (Lemp et al., 2011).

j Bayesian ordered probit model (BOP): this is an extension of

the Bayesian inference into the OPM, in which the

parameters to be estimated are assumed to follow certain

prior distributions. Based on the data, the likelihood function

is used to update the prior distribution and obtain the

posterior distribution (Xie et al., 2009).

Fourteen studies of accident injury severity used one or more of

these PMs. These studies are listed in detail in Table 2.

2.2 Data-mining techniques

Data mining is defined as the process of discovering patterns in

data. The patterns discovered must be meaningful in that they

lead to some advantages (Witten and Frank, 2005). Many data-

mining techniques are being used in different fields of science,

economy, engineering and so on. Decision trees and Bayesian

networks have been also used to analyse the injury severity of

traffic accidents.

2.2.1 Decision trees

Decision trees are non-linear predictive models that use the tree

to represent the recursive partition. Within the literature of

accident injury severity studies, two types have been used (see

Table 3).

1. Classification and regression trees (CART): this procedure

constructs binary trees, in which each internal node has

exactly two outgoing edges. CART can consider

misclassification costs in the tree induction. It also enables

users to provide prior probability distribution. An important

feature of CART is its ability to generate regression trees,

where the leaf predicts a real number and not a class (Rokach

and Maimon, 2008).

2. Chi-squared automatic interaction detection (CHAID): this is

a procedure used to generate decision trees. For each input

variable, CHAID finds the pair of values that is least

significantly different with respect to the target variable

(Rokach and Maimon, 2008).

2.2.2 Bayesian networks (BNs)

BNs are graphical models of interactions among a set of

variables, where the variables are represented as nodes of a graph

and the interactions as directed links between the nodes. Any pair

of unconnected/nonadjacent nodes of such a graph indicates

(conditional) independence between the variables represented by

these nodes under particular circumstances (Mittal and Kassim,

2007).

Two studies were found to use BNs to analyse injury severity of

accidents (see Table 3).

2.3 Soft computing techniques

Soft computing is a mix of distinct methods that in one way or

another cooperate in their fundamentals. The principal objective

of soft computing is to exploit the tolerance for imprecision and

uncertainty in order to achieve manageability, robustness and

solutions at low cost (Zadeh, 1994).

2.3.1 Artificial neural networks (ANNs)

A neural network is an interconnected assembly of simple

processing elements, units or nodes. The processing ability of the

network is contained in the inter-unit connection strengths, or

weights, obtained by a process of adaptation to, or learning from,

a set of training patterns (Gurney, 1997). Neural networks are

composed of neurons, which in turn are composed of a number

of inputs, and each input comes with a connection that has a

weight and a threshold value.

A number of ANN types have been used by researchers of

accident severity analysis (see Table 3).

j Multi-layer perceptron ANN (MLP): this usually consists of

three layers – input layer, hidden layer and output layer. The

connections in an MLP are feed-forward type in which they

are allowed from an index to layers of a higher index. To

train an MLP, the back-propagation algorithm is used

(Rumelhart et al., 1986).

j Fuzzy Artmap ANN (Artmap): this is based on adaptive

resonance theory. It is a clustering algorithm that maps a set

of input vectors to a set of clusters. Models built by fuzzy

Artmap have fast, stable learning in response to binary input

patterns (Carpenter et al., 1992).

2.3.2 Evolutionary algorithms (EAs)

EAs mimic natural evolution in order to optimise a solution to a

problem (Brameier and Banzhaf, 2007). These algorithms exploit

differential fitness advantages in a population of solutions to

gradually improve the state of that population.
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Genetic programming (GP) is defined as any direct evolution or

breeding of computer programs for the purpose of inductive

learning. Unlike other EAs, GP can complete missing parts of an

existing model.

Linear genetic programming (LGP) is a GP variant that evolves

sequences of instructions from an imperative programming lan-

guage or from a machine language. Linear refers to the structure

of the imperative program representation, where the nodes do not

have to be linearly listed nor need the method itself be linear.

Das and Abdel-Aty (2010) used LGP to classify injury severity

according to the accident type in order to find the geometric and

environmental factors that are related to this classification (see

Table 3).

2.4 Generalised linear models (GLMs)

The log-linear model (LLM) is one of the specialised cases of

GLMs for Poisson-distributed data. In log-linear models, there is no

distinction between independent and dependent variables; all

variables are treated as response variables. Chen and Jovanis (2000)

used LLMs to identify significant variables that contribute to the

occurrence of a specific injury severity for bus drivers (see Table 3).

3. Discussion
Figure 1 shows the different models that have been used in the

field of traffic accident injury severity analysis. The most used

are the logit and probit models, followed by other models.

However, Tables 1, 2 and 3 show that there is a large dispersion

in the principal magnitudes used for the models.

It should be taken into account that the following sections are not

intended to make a comparison among different modelling

techniques or different studies; the sections are presented as

guidance for analysts, since a comparison is not possible due to

the differences that exist in data sources, study objectives and

certain conditions that might apply to a given study but not to

others.

3.1 Number of records considered in the analysis

The number of records considered in the analysis ranges between

255 and 622 432. However, four extreme outliers were identified

(Montgomery and Runger, 2003). Table 4 shows the statistical

analysis results without extreme outliers.

Table 4 shows that the number of records (without extreme

outliers) for all the studies ranges between 255 and 81 172, with a

median value of 3955. PMs present the lowest median, with 3136

crashes, followed by LMs with 4552 records. The other models

present the highest median (4713) for the number of records

considered in the analysis.

All the values are very similar and no significant statistical

difference was observed between the three groups (logit, probit

and others) based on the Mann–Whitney U test.

3.2 Number of variables for analysing severity

The number of variables used in the modelling of injury severity

ranges between 5 and 58. However, one extreme outlier was

identified, which was not considered in the statistical analysis.

Table 4 shows that the number of variables (without extreme

outliers) for all the studies ranges between 5 and 36, with a

median value of 15. PMs present the highest median with 16

variables, followed by LMs with 15 variables. The other models

present the lowest median (14) for the number of variables used

for analysing severity.

All the values are very similar and no significant statistical

difference was observed between the three groups (logit, probit

and others) based on the Mann–Whitney U test.

No correlation was found to exist between the number of

variables for analysing severity and the number of records consid-

ered in the analysis.

3.3 Focus of the study

There is a relatively high dispersion in the type of roadway

segment analysed. Figure 2 shows that 14 studies analysed only

basic segments, 9 studies analysed only intersections and 13

studies analysed both intersections and roadway segments in the

same study. However, Moore et al. (2010) recommend that

intersections and road segments should not be analysed together,

since the factors related to accidents occurring on intersections

are different from those occurring on roadway segments.

Regarding the area type in which the roadway or the intersection

exists, only six studies analyse rural areas, while 22 studies mixed

the data for rural, urban and/or suburban highways, keeping in

mind that the characteristics of the roadways and intersections

differ significantly between urban and rural areas.

3.4 Type and number of categories for injury levels

The definition of the injury severity might refer to the emphasis

of the study (Krull et al., 2000), either for convenience (Ouyang

et al., 2002) or because of the small counts of certain categories

with respect to other categories (Peek-Asa et al., 2010).

Most of the studies used the KABCO scale, which is the scale

used in police observed accident records (Morgan, 2009). Others

have combined one or more categories into one.

Table 4 shows that the number of injury levels for all the studies

ranges between 1 and 7, with a median value of 3. In this case no

extreme outliers were identified. PMs present the highest median,

with 5 levels, followed by LMs with 3 levels. The other models

present the lowest median (2) for the number of injury levels.

In this case, significant statistical differences were observed

(p , 0.05), based on the Mann–Whitney U test, between the
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Study authors

(publication

year)

Objectives of the study Model

type

No.

records

No.

variables

Area

type

Features Injury

level

No.

injury

levels

Model fit test

Renski et al.

(1999)

To analyse effect of speed limit on occupant injury

in single-vehicle crashes. Excluding pedestrian,

bicyclist or motorcycle crashes

OPM 2729 7 Mixed SEG KABCO 5 r2 ¼ 0.116 (probably

McFadden’s)

Khattak

(2001)

To analyse the effect of information and vehicle

technology on injury severity in rear-end crashes in

two and three vehicles crashes

OPM 3912 36 Mixed SEG KABCO 5 r2 (McFadden’s)

r2¼ 0.0319, 0.0671, 0.0660

for drivers 1, 2, 3 respectively

Kockelman

and Kweon

(2002)

To analyse the injury severity of all crashes, two-

vehicles crashes, single-vehicle crashes

OPM n.a. 13 n.a. n.a. KACO 4 r2 ¼ (0.0451–0.0868)

(McFadden’s)

Khattak et al.

(2002)

To isolate factors that contribute to injuries to

older drivers involved in crashes

OPM 17 045 16 Mixed BOTH KABC 4 r2 ¼ 0.057 (probably

McFadden’s)

Abdel-Aty and

Abdelwahab

(2004)

To investigate the viability and potential benefits

of using the ANN in predicting driver injury severity

conditioned on the premise that a crash has

occurred

OPM 7891 12 Mixed SEG K + A,

BCO

2 Accuracy ¼ 61.7%

Abdel-Aty and

Keller (2005)

To analyse crashes’ injury severity on signalised

intersections, where the ordinal probit model was

used to find the expected injury severity level

OPM 21 371 34 n.a. INT KABCO 5 r2 ¼ 0.24 (calculated

McFadden’s)

Oh (2006) To establish a statistical relationship correlating

crash severity with weather, traffic manoeuvres

and specific roadway geometrics at four-legged

signalised intersections in rural areas. Four models

were built: single-vehicle, two-vehicle, three- or

more vehicle, multiple-vehicle

OPM 449 16 Rural INT KACO 4 r2 ¼ 0.176 for all crashes

model

r2 ¼ 0.480 for three or more

vehicles

r2 ¼ 0.197 for two vehicles

r2¼ 0.378 for single vehicle

Gårder (2006) To analyse the statistical association between

head-on crash severity and potential causal factors

OPM 3136 7 Rural SEG KABCO 5 n.a.

Gray et al.

(2008)

To study accidents for young male drivers OPM 622 431 13 Mixed BOTH KACO 4 LL ¼ �33 665.05 for London

model

LL ¼ �267 706.85 for UK

Xie et al.

(2009)

To analyse the relationship between accident injury

severity and factors such as driver’s characteristics,

vehicle type and roadway conditions

OPM,

BOP

76 994 14 n.a. INT KABCO 5 Accuracy:

for BOP for small data

size ¼ [55–68%]

for OP for small data

size ¼ [58–68%]

for BOP for predicted rest of

the data ¼ [61.8–65.4%]

for OP for predicted rest of the

data ¼ [59.9–62.9%]
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Wang et al.

(2009)

To identify factors contributing to injury severity at

freeway diverge areas and to evaluate impacts of

the factors

OPM 10 946 17 n.a. INT KABCO 5 r2 ¼ 0.0273

Haleem and

Abdel-Aty

(2010)

To analyse crash injury severity at three- and four-

legged un-signalised intersections

OPM,

PM

2043 21 Mixed INT For the

OPM:

KABCO

For the

PM:

K + A,

BCO

5, 2 AIC ¼ 17 091 (OPM + 3-

legged)

AIC ¼ 9423 (OPM + 4-legged)

AIC ¼ 3804 (PM + 3-legged)

AIC ¼ 2100 (PM + 4-legged)

Lemp et al.

(2011)

To study the impact of vehicle, occupant, driver

and environmental characteristics on injury

outcomes for those involved in crashes with heavy-

duty trucks

OPM,

HOP

1849 27 Mixed n.a. KABCO 5 LL:

for OPM ¼ �1993

for HOP ¼ �1896

Zhu and

Srinivasan

(2011)

To analyse the empirical factors affecting injury

severity of large trucks. Two measures of severity

were used: PAR, determined from police accident

reports; RES, determined by researchers

OPM 953 28 Mixed BOTH KA, B + C 2 r2:

for PAR model ¼ 0.1780

for RES model ¼ 0.1827

n.a., data not available; KABCO (K ¼ killed, A ¼ incapacitating, B ¼ non-incapacitating, C ¼ possible injury, O ¼ no injury); SEG, basic segment only; INT, intersection only; BOTH,
intersection + segments.
Probably McFadden’s: r2 value was given in the study, and was found to apply to McFadden’s formula; Calculated McFadden’s: r2 value was not given, but was calculated using log-likelihoods
given in the study

Table 2. Studies that analyse injury severity of traffic accidents using probit models
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Study authors

(publication year)

Objectives of the study Model

type

No. records No.

variables

Area

type

Features Injury

level

No.

injury

levels

Model fit test

Trees

Council and

Stewart (1996)

To analyse severity of accident of single vehicles with

fixed objects (for occupants)

Cart n.a. 7 Mixed BOTH KBO 3 n.a.

Chen and Jovanis

(2000)

To identify significant variables that contribute to the

occurrence of a specific injury severity for bus drivers

Chaid 408 24 Rural BOTH KB 2 n.a.

Chang and Wang

(2006)

To model the injury severity of an individual involved

in a traffic accident

Cart 26 831 14 Mixed BOTH KBO 3 Accuracy:

for fatal (0%)

for injury (94%)

for no injury (68%)

Bayesian networks

Simoncic (2004) To model two-car accident injury severity BN 17 558 12 Mixed n.a. K + A, other 2 n.a.

De Oña et al.

(2011)

To classify crashes according to their injury severity BN 1536 18 Rural SEG K + A, C 2 Accuracy ¼ 60%

Sensitivity ¼ 73%

Specificity ¼ 45%

ROC area ¼ 61%

Neural networks

Abdelwahab and

Abdel-Aty (2001)

To analyse the injury severity of crashes of two

vehicles that occurred at signalised intersections

MLP,

Fuzzy

Artmap

1168 14 n.a. INT A, B + C, O 3 Accuracy ¼ 65.6%

Abdel-Aty and

Abdelwahab (2004)

To investigate the viability and potential benefits of

using the ANN in predicting driver injury severity

conditioned on the premise that a crash has occurred

MLP,

Fuzzy

Artmap

7891 12 Mixed SEG K + A, BCO 2 Accuracy:

for MLP ¼ 73.5%

for fuzzy Artmap

40.6%

Delen et al. (2006) To model the potentially non-linear relationships

between the injury severity levels and accident-related

factors

MLP 30 358 13 n.a. n.a. KABCO 5 Accuracy ¼ 40.73%

Linear genetic programming

Das and Abdel-Aty

(2010)

To understand the relationship of geometric and

environmental factors with injury-related crashes as

well as with severe crashes

LGP 104 952 58 mixed BOTH B + O,

A + C

2 Accuracy ¼ 60.4%

Others

Chen and Jovanis

(2000)

To identify significant variables that contribute to the

occurrence of a specific injury severity for bus drivers

LLM 408 24 Rural BOTH KB 2 R2 ¼ 0.95

n.a., data not available; KABCO (K ¼ killed, A ¼ incapacitating, B ¼ non-incapacitating, C ¼ possible injury, O ¼ no injury); SEG, basic segment only; INT, intersection only; BOTH,
intersection + segments.

Table 3. Studies that analyse injury severity of traffic accidents using other techniques
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number of injury levels considered in the probit models with

respect to the other two types of models (logit and others).

3.5 Model fit

In general, the statistical tests used to validate the performance of

the model vary with the study. These tests indicate whether the

model fits the data adequately or not, but they do not permit

comparison of the results of one study with another.

In the following, descriptions of the fit parameters used for the

analysed models are presented.

3.5.1 R-squared

R-squared (R2) is a statistic that is generated in ordinary least-

squares (OLS) regression that is often used as a goodness-of-fit

measure. Its value ranges between 0 and 1, where 1 indicates a

high level of explanation of the variance by the regression model

and zero indicates a low level of explanation (Bruin, 2006).

Chen and Jovanis (2000) used R2 to test LLM fit (see Table 3).

The results indicated that the log-linear model fitted the data very

well (R2 ¼ 0.95).

3.5.2 Pseudo R-square

When analysing data with a logistic regression, an equivalent

statistic to R2 does not exist. The model estimates from a logistic

regression are maximum-likelihood estimates arrived at through

an iterative process. However, to evaluate the goodness-of-fit of

logistic models, several pseudo R-squareds (r2) have been devel-

oped (McFadden, adjusted McFadden, Efron’s, Cox and Snell,

Negelkerke, Cragg and Uhler’s, McKelvey and Zavoina, Count,

adjusted count, etc.). These look like R2 in the sense that they are

on a similar scale, ranging from 0 to 1 (though some r2 never

achieve 0 or 1) with higher values indicating better model fit

(Bruin, 2006).

In this survey (see Tables 1, 2 and 3) several studies used a r2 to

test the fit of their models. Others studies supplied the log-

likelihood (LL) of the model. Thus, when information about LL

No. of accident

records

No. of

variables

No. of injury

levels

All studies

Max. 81 172 36 7

Min. 255 5 1

Median 3955 15 3

Logit studies

Max. 81 172 30 7

Min. 255 5 1

Median 4552 15 3a

Probit studies

Max. 76 994 36 5

Min. 449 7 2

Median 3136 16 5b

Other studies

Max. 30 358 24 5

Min. 408 7 2

Median 4713 14 2a

a,b Values with different superscript letters differ statistically
significantly (p , 0.05), based on Mann–Whitney U test.

Table 4. Maximum, minimum and median for number of accident

records, number of variables and number of injury levels
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Figure 2. Number of case studies according to the focus of the

study
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was available, the McFadden r2 was calculated in order to

homogenise the model fit results.

However, Bruin (2006) indicated that r2 cannot be interpreted

independently or compared across datasets; a r2 only has mean-

ing when compared to another r2 of the same type, on the same

data, predicting the same outcome. Thus, it is only possible to

indicate whether the results of a study are within the satisfactory

range for such parameters for model fit. As indicated by

McFadden (1979), the satisfactory range for the McFadden’s r2

lies between 0.2 and 0.4.

Most of the models in this paper that use McFadden’s r2 present

values below 0.2. However, there are five studies that present

values over 0.2: Shanker et al. (1996) (r2 ¼ 0.52), Wang and

Kockelman (2005) (r2 ¼ 0.235–0.257), Abdel-Aty and Keller

(2005) (r2 ¼ 0.24), Oh (2006) (r2 ¼ 0.378–0.480) and Schneider

et al. (2009) (r2 ¼ 0.23–0.258).

3.5.3 Accuracy

Accuracy measures the percentage of cases in the accident data

correctly predicted by the model. Therefore, accuracy is obtained

at the case-specific level, that is, cases that are correctly classified

as fatal or non-fatal according to their observed injury experience

(Saccomanno et al., 1996).

Most of the studies used this parameter to test the capability of

their models to correctly classify the injury severity to a specific

level (see Tables 1, 2 and 3). The global accuracy range lies

between 0.41 and 0.89. The highest global accuracy achieved was

for a BLM model built by Dissanayake and Lu (2002) and the

lowest was obtained by Abdel-Aty and Abdelwahab (2004) when

they constructed a fuzzy Artmap ANN model.

The results presented by Dissanayake and Lu (2002) indicate

that the number of accidents classified under each severity level

was homogeneous along all the levels. On the other hand, the

lowest accuracy obtained for a specific level (fatal accidents)

with a Cart model was practically zero (Chang and Wang,

2006). The authors referred this result to the fact that their

dataset was imbalanced, such that the fatal accidents accounted

only for about 0.4% of the whole sample used to build the

model.

Delen et al. (2006) also obtained relatively low accuracy results

(40.7%) for their model (MLP ANN). They explained their

results by a multi-class classification problem. A possible

solution would be reducing the multi-class problem into a series

of binary classification problems. Applying such a solution, the

complete dataset was separated into eight subsets with binary

output variables, in which a top-down (more serious injury

against the less serious injuries) and a bottom-up model (less

serious injury against more serious injuries) were built. The

method applied by Delen et al. (2006) could be compared to

that applied by Dissanayake and Lu (2002) where, after devel-

oping two formats of binary logistic models (top-down and a

bottom-up format with four models in each), they found that the

method of selecting the models’ format did not drastically affect

model reliability; however, they chose to use the top-down

format in their analysis since it achieved better model accuracies

(73.4–98.0%).

3.5.4 Other measures

Other measures used to test the model fit are Akaike information

criterion (AIC), log-likelihood (LL), chi-squared (�2) and Kendall

rank correlation coefficient (Kendall’s tau (�) coefficient).

The likelihood is the probability of the data given the parameter

estimates. The goal of a model is to find values for the

parameters (coefficients) that maximise the value of the like-

lihood function. Many procedures use the log-likelihood because

it is easier to work with (Bruin, 2006). Two studies used the LL

as the fit test. However, only Lemp et al. (2011) used it to

compare two models (OPM against HOP).

The Akaike information criterion is used only once (Haleem and

Abdel-Aty, 2010) to select a model from a set of models. The

chosen model is the one that minimises the Kullback–Leibler

distance between the model and the truth (low AIC and high LL

indicate good fit). AIC is a criterion that seeks a model that has a

good fit to the truth with few parameters (Burham and Anderson,

2002).

The �2 test is used to verify whether a sample of data came from

a population with a specific distribution. �2 is applied to binned

data. However, the value of the �2 statistic is dependent on how

the data are binned. Another disadvantage of �2 is that it requires

a sufficient sample size in order for the �2 approximation to be

valid (NIST/Sematech, 2003). Three studies (Daniels et al., 2010;

Malyshkina and Mannering, 2009; Srinivasan, 2002) were found

to use �2 as the model goodness-of-fit test.

Only Donelson et al. (1999) used Kendall’s tau (�) coefficient,

which is a statistic used to measure the association between two

quantities. A � test is a non-parametric hypothesis test that uses

the coefficient to test for statistical dependence (Kruskal, 1958).

The results indicated that the BLM fitted the data used.

3.6 Modelling techniques

The use of modelling techniques varied with time; thus DOMs

continued to be dominant. From 2001 new methods started to be

applied in the analysis of injury severity, such as neural networks,

Bayesian networks and most recently genetic algorithms.

Table 5 shows the frequency of usage of each model. In this

survey, 19 modelling techniques used to model injury severity of

traffic accidents, applied in 58 case studies, have been analysed.

The most used techniques are the DOM (46 cases), highlighting

the BLM, OLM and OPM models over all the others. These three

models were used in more than 54% of the cases.
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3.6.1 Logit models

Table 5 shows that the most-used logit models are BLMs

followed by OLMs, while the least used types were MXL, GEE

and OMXL (ordered mixed logit models).

The frequent use of BLMs to analyse accident severity might

refer to the fact that most of the studies used the outcome

variable as binary (Delen et al., 2006; Dissanayake and Lu, 2002;

Jung et al., 2010). This refers to the fact that BLM is easily

interpretable.

A restriction of OLMs is that regression parameters have to be

the same for different accident severity levels, called proportional

odds. However, it is not always clear whether the distances

between accident severity levels are equal, and hence it is

arbitrary to assume that all coefficients of ordered probability

models are the same (Jung et al., 2010).

Moreover, Srinivasan (2002) stated that the primary restriction of

the ordered models comes from the assumption of deterministic

thresholds that are often identical across all observations for each

ordinal outcome level. Also, it is assumed that the outcome is

homogeneous and independent of exogenous variables. In addi-

tion, these models disregard possible correlations across the

thresholds of different outcomes.

Consequently, these assumptions could lead to significant bias

and inconsistency in ordered outcome models. Therefore, Sriniva-

san (2002) used an OMXL, where she compared OMXL to OLM

using a �2 test. The results indicated that the �2 test rejected the

restrictive OLM.

Lenguerrand et al. (2006) compared different models (BLM, HL

and GEE). HLs were found to be more suitable for problems with

correlated data than BLM and GEE, and for clusters and sub-

clusters, since BLM and GEE models both underestimate para-

meters and confidence intervals. Thus, they recommended the use

of HLs when the number of vehicles per accident or the number

of occupants per accident is high.

3.6.2 Probit models

The most frequently used probit model is the OPM (see Table 5).

OPMs have been used to model injury severity of accidents on

roadways and intersections. Some researchers have used models

that combined accidents occurring at intersections with accidents

off intersections (Gray et al., 2008; Xie et al., 2009; Zhu and

Srinivasan, 2011).

OPMs proved to be a good choice for modelling injury

severity of accidents. Even when compared with other models

such as the BOP, the OPM still performed as well (Xie et

al., 2009). BOP and OPM produced similar results for large

data size; the authors recommended using BOPs for smaller

data sizes, as they can produce more reasonable parameter

estimation and better prediction performance. In contrast,

when comparing OPMs with HOPs, the HOP was preferred

over the OPM in terms of log-likelihoods (Lemp et al.,

2011).

Haleem and Abdel-Aty (2010) used OPM, PM and HL methods

to analyse accident injury severity at intersections. The results

indicated that the PM fits the data better than the OPM.

3.6.3 Other modelling techniques

Cart procedures were used by Council and Stewart (1996) and

Chang and Wang (2006) to model the injury severity of accidents.

The results presented by Chang and Wang (2006) indicated that

Cart can effectively handle multi-collinearity problems, and they

could handle the outliers that exist in the data by isolating them

into a node.

However, Chang and Wang (2006) indicated that one of the

problems with applying Cart methods is that they do not provide

confidence intervals for the risk factors (splitters) and predictions.

Also, there is difficulty in applying the sensitivity analysis, which

does not permit examination of the marginal effects of the

predictors on the response variable. In addition the Cart models

are unstable; the structure and the accuracy alter if different

strategies are followed to create learning and test sets.

BNs were used by Simoncic (2004) and De Oña et al. (2011) to

model injury severity of accidents. The work presented by

Simoncic (2004) based the conclusion upon a single network,

which was not validated using a test set. De Oña et al. (2011)

Type of model Family of models Model Frequency

Discrete model Logit models BLM 11

OLM 6

HL 4

MNL 3

HKL 2

MXL 1

GEE 1

OMXL 1

Probit models OPM 14

BOP 1

HOP 1

PM 1

Other models Decision trees CART 2

CHAID 1

Bayesian networks BN 2

Artificial neural networks MLP 3

Fuzzy

Artmap

2

Evolutionary algorithms LGP 1

Log-linear models LLM 1

Table 5. Frequency of usage of each model
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built several BNs to model injury severity of accidents. These

networks were compared to each others in terms of complexity,

accuracy, sensitivity and specificity. Each of the networks was

validated using a test set.

MLP and fuzzy Artmap ANNs have been compared twice to

analysis of injury severity on road segments and on intersections

(Abdel-Aty and Abdelwahab, 2004; Abdelwahab and Abdel-Aty,

2001). Both studies indicated that MLP ANN performance is

superior to fuzzy Artmap ANN. Delen et al. (2006) also used

MLP ANN to model injury severity on roadways. They used more

injury levels and their results (in terms of accuracy) were worse

than those of previous studies (Abdel-Aty and Abdelwahab,

2004; Abdelwahab and Abdel-Aty, 2001).

Abdelwahab and Abdel-Aty (2001) compared the performance of

MLP ANN and fuzzy Artmap ANN with the performance of

OLM. Their results indicated that the best in terms of accuracy

was the MLP ANN followed by OLM, and finally by fuzzy

Artmap. Thus, OLM was superior in performance with respect to

certain types of ANNs. Abdel-Aty and Abdelwahab (2004) used

MLP ANN, fuzzy Artmap ANN and OPM. The results once again

showed the superiority of MLP ANN over all the other techni-

ques, but this time OPM did not perform better than the fuzzy

Artmap.

4. Summary and conclusion
This review of several studies on models used in the modelling of

traffic accident injury severity indicates that each method has its

advantages and disadvantages. Many modelling techniques have

been in use to analyse the injury severity of accidents. The most-

used models are the logit and probit. However, in recent years,

methods based on data-mining techniques, as well as other

models based on soft computing techniques, have appeared.

Within the discrete outcome models, the most used are OPM,

BLM and OLM. BLMs are commonly used when the study uses

a binary variable for severity. When the severity is ordered

(killed, severe injury, slight injury, possible injury or property

damage only), OPMs and OLMs are commonly used.

There is a large diversity in the number of accident records and

the number of variables used. However, no significant statistical

difference was found between logit, probit and other models. The

number of records and the number of variables are found to be

mostly dependent upon the availability of data.

Most of the studies use the KABCO scale or a modification.

Based on the studies analysed, the probit models use a higher

number of injury levels (5) than the logit models (3 levels) or the

rest of the models (2 levels). In this case, significant statistical

differences were observed (p , 0.05) between the probit models

and the other types of models.

The model fit results are satisfactory in most cases (e.g. global

accuracy in the range 0.41–0.89; McFadden’s pseudo R-square

values between 0.2 and 0.4), although some exceptional results

can be observed (e.g. Chen and Jovanis (2000) obtained

R2 ¼ 0.95), while others were not so satisfactory (e.g. many

studies with McFadden’s pseudo R-square below 0.2).

Different factors affect the accuracy obtained by data mining and

soft computing models, such as the balance of cases among the

different categories that lie under the injury severity levels. If the

numbers of observed cases classified among the different levels

do not differ greatly, this identifies a balanced dataset; and

accuracy would improve since the classification will not be biased

towards a specific injury severity level.

In general, it is not possible to identify which is the best method

to use. Use of a given model might be suitable under certain

circumstances, but not under others. Many examples are available

in the literature (Lenguerrand et al., 2006; Xie et al., 2009). This

is probably one of the main reasons why, in recent years, the

number of studies that analyse injury severity of traffic accidents

has greatly increased. Documentation of the characteristics and

limitations of each modelling technique will help analysts to

decide the best method to use in each particular modelling

problem.
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