The acquisition of morphology in a corpus of secondary school EFL learners: a focus on possessive ‘-s’

Elpiniki Atzolidaki

Supervisor: Cristóbal Lozano

Trabajo Fin de Máster (TFM) del Máster de profesorado de educación secundaria obligatoria y bachillerato, formación professional y enseñanza de idiomas

Universidad de Granada

Septiembre 2012
To my parents
Acknowledgements
The present paper is based on a research project conducted as part of the Master’s Degree in Education and Foreign Language Teaching at the University of Granada.

This study owes a lot to the support and collaboration of my supervisor Dr. Cristóbal Lozano. Without his insightful comments, the seminars he organised and the material he facilitated me with, I would not have completed this three-fold project. In the same line, I would like to give special thanks to Dr. Ana Díaz Negrillo for her assistance in elaborating the learner corpus and the tagging scheme used in this study.

Additionally, I gratefully acknowledge the support of my family and friends. Their help, patience and encouragement were vital for the completion of this project.

I am also grateful to the students that participated in this study and to the schools IES Pedro Soto de Rojas, IES Padre Suarez and the Centro de Lenguas Modernas (UGR) for giving me their permission to conduct my research in their premises and for all the help and support of the relevant teachers.

Finally, I would like to thank all those people (professors, fellow students, family, friends) that have been a great source of inspiration in my life.
Table of contents

1. **Introduction** .. 7

2. **Linguistic structures under investigation** .. 9
 2.1 Morphemes in English ... 9
 2.2 The expression of possession in English and in German 11
 2.2.1 Possession in English ... 12
 2.2.2 Possession in German ... 15

3. **Literature review** .. 21
 3.1 Morpheme order studies (MOS) .. 22
 3.1.1 Research on L1 morpheme acquisition order ... 22
 3.1.2 Research in L2 morpheme acquisition order ... 25
 3.1.3 Identification of gaps in the literature ... 36
 3.2 Learner Corpora and Learner Corpus Research .. 40
 3.3 L2 influence on L3 acquisition ... 47

4. **Research Questions and Hypotheses** .. 52
 4.1 Study I: MOS and Learner Corpus in L2 English .. 52
 4.2 Study II: Genitive –s in L2 English ... 54
 4.3 Study III: Possessive structures in L3 German ... 55

5. **The empirical studies** .. 56
 5.1 Method ... 57
 5.1.1 Picture composition task (corpus) ... 58
 5.1.2 Sentence transformation task ... 59
 5.2 Subjects .. 60
 5.3 Materials .. 64
 5.3.1 Questionnaire (learner profile) ... 64
 5.3.2 Placement tests .. 65
 5.3.3 Corpus (Picture Description Task) ... 67
 5.3.4 Experimentally elicited language (Sentence Transformation Task) 68
 5.4 Procedure .. 69
 5.4.1 Data collection .. 69
 5.4.2 Transcription ... 69
 5.4.3 Tagging (editorial tagging scheme) ... 70
 5.4.4 Tagging: morphemes ... 70
 5.4.5 Data scoring .. 77

6. **Results and Discussion** .. 81
 6.1 Morpheme Order Study in L2 English ... 81
 6.2 Genitive –s in L2 English .. 99
 6.3 Possessive structures in L3 German ... 106

7. **Conclusions** .. 117
 7.1 Study I: MOS & Learner Corpus in L2 English .. 117
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>Study II: Genitive –s in L2 English</td>
<td>118</td>
</tr>
<tr>
<td>7.3</td>
<td>Study III: Possessive structures in L3 German</td>
<td>119</td>
</tr>
<tr>
<td>7.4</td>
<td>Limitations of the study</td>
<td>120</td>
</tr>
<tr>
<td>7.5</td>
<td>Avenues for future research</td>
<td>121</td>
</tr>
<tr>
<td>8</td>
<td>References</td>
<td>124</td>
</tr>
<tr>
<td>9</td>
<td>Appendices</td>
<td>132</td>
</tr>
<tr>
<td>9.1</td>
<td>Learner Profile for L2 English and for L3 German</td>
<td>132</td>
</tr>
<tr>
<td>9.2</td>
<td>Proficiency test: L2 English</td>
<td>134</td>
</tr>
<tr>
<td>9.3</td>
<td>Proficiency Level Test: L3 German</td>
<td>139</td>
</tr>
<tr>
<td>9.4</td>
<td>Elicitation of Learner Language: Picture Composition Task</td>
<td>145</td>
</tr>
<tr>
<td>9.5</td>
<td>Experimental Elicitation of Learner Language: Sentence Transformation Task: English & German</td>
<td>147</td>
</tr>
<tr>
<td>9.6</td>
<td>Transcription Template</td>
<td>148</td>
</tr>
<tr>
<td>9.7</td>
<td>Examples</td>
<td>148</td>
</tr>
<tr>
<td>9.7.1</td>
<td>Learner Corpus Transcribed File</td>
<td>148</td>
</tr>
<tr>
<td>9.7.2</td>
<td>Sentence Transformation Transcribed File English</td>
<td>150</td>
</tr>
<tr>
<td>9.7.3</td>
<td>Sentence Transformation Transcribed File German</td>
<td>151</td>
</tr>
<tr>
<td>9.8</td>
<td>UAM Corpus Tool software</td>
<td>153</td>
</tr>
<tr>
<td>9.9</td>
<td>Tagging Manual: Learners’ correction tagging scheme</td>
<td>153</td>
</tr>
<tr>
<td>9.10</td>
<td>Tagging Manual: MOS Project</td>
<td>156</td>
</tr>
<tr>
<td>9.11</td>
<td>Descriptive Statistics</td>
<td>160</td>
</tr>
<tr>
<td>9.11.1</td>
<td>Part I: MOS & Learner Corpus</td>
<td>160</td>
</tr>
<tr>
<td>9.11.1.1</td>
<td>Specific Descriptive Statistics (grouping criterion: proficiency level)</td>
<td>160</td>
</tr>
<tr>
<td>9.11.1.2</td>
<td>General Descriptive Statistics (grouping criterion: none)</td>
<td>217</td>
</tr>
<tr>
<td>9.11.2</td>
<td>Part II: The use of the possessive –s by L2 English learners: an experimentally elicited data study</td>
<td>231</td>
</tr>
<tr>
<td>9.11.3</td>
<td>Part III: The use of the possessive structures by L3 German learners: an experimentally elicited data study</td>
<td>238</td>
</tr>
<tr>
<td>9.11.3.1</td>
<td>The relative frequency of the various possession constructions in German by L1 Spanish learners</td>
<td>238</td>
</tr>
<tr>
<td>9.11.3.2</td>
<td>The relative frequency of the various possession constructions in German by L1 Spanish and L2 English learners</td>
<td>247</td>
</tr>
</tbody>
</table>
Abstract
This paper consists of three separate studies. The principal one is a morpheme order study (MOS) based on our own learner corpus which contains learner language from secondary school students. For this study we were partly based on previous relevant projects, but our research is distinct in two core points. The first relates to the data elicitation instrument (learner corpus) which is a novel and promising approach in the field of second language acquisition research. The second regards the scoring method used in our project in order to establish the accuracy rates for each of the grammatical morphemes at issue. Regarding this, our study’s novelty relies on the combination of the most accurate relevant scoring models that have been previously suggested. Our second study focuses on a specific functor, namely the possessive -s. In this regard we have studied not only the accuracy rates of the aforementioned inflectional possession structure, but also its frequency of use in relation to the other possession forms in English. In keeping with the perceived importance of the data elicitation instrument, we have decided to use two different methods (a learner corpus and an experiment) with our L2 English learners and thus deliver more accurate results. Our final study accounts for the use of the various possession forms in L3 German. This study has two distinct focal points. The first refers to the learners’ preference for one of the possessive forms available in German as seen by our subjects’ corresponding choices. In this regard, we have also compared the frequency of use of each of the possession structures in both L2 English and L3 German. The other point of interest of our third study was the possible influence of our students’ L2 (English) on the acquisition of their L3 (German) as seen by our subjects’ use of the various possessive forms. In all our studies we have classified our subjects according to their proficiency level, which we determined by means of a corresponding test. This is a very distinctive feature of our study since most previous studies on this field have either not considered the subjects’ level of proficiency or they have determined it based on criteria other than an actual proficiency test.
1 Introduction

The description of learners’ language (i.e., their interlanguage) has been of particular interest to second language acquisition research. This interest in language learners’ interlanguage stems from the idea that its analysis may provide researchers with enriching insights into the process of language acquisition in general and second language acquisition in particular.

Ellis (1994) claimed that, by collecting and analysing samples of learner language, SLA researchers can achieve two goals: (a) a description of the subjects’ linguistic systems, i.e. their interlanguages and (b) an explanation of the processes and factors involved in acquiring a foreign language.

Hence interlanguage research is only the first step. If we manage to understand the process of second language acquisition, then we will be able to apply the findings to a variety of practical aspects of language teaching: syllabus design, materials development, task design, and language testing.

Researchers’ focus on the acquisition of morphemes started in the 1970s when they were investigating the “independent grammars assumption” (Cook, 1993). It soon evolved into the so-called “natural order” studies due to the majority of the researchers’ interest in confirming the innatist view of language acquisition. In 1973 Roger Brown observed that when children start learning their first language they omit mainly grammatical rather than lexical morphemes, which eventually appear in their language in subsequent developmental stages. That prompted language acquisition researchers to check whether there is a consistency in the order of L1 and L2 acquisition of grammatical morphemes. A more detailed account of the aforementioned types of morphemes can be found in section 2.1.
The underpinning idea of comparing L1 and L2 morpheme acquisition orders was that if a universal morpheme acquisition order could be established, then the process of acquisition would be proved to be internally driven. Accordingly, it could be argued that second language acquisition is independent of external factors such as the age, the teaching method, the type of exposure (naturalistic vs. instructed) or the L1.

In the same line a number of different theoretical frameworks have been put forth as explanatory patterns. Ellis (1994:44) identifies four major approaches:
1. the study of learners’ errors;
2. the study of developmental patterns;
3. the study of variability;
4. the study of pragmatic features.

In our study we have been guided mainly by the approach that focuses on the study of developmental patterns by investigating the acquisition of morphology (both the correct suppliance of morphemes as well as the errors produced). We do consider that MO studies have to offer the SLA researcher with valuable information regarding the process of second language acquisition. First, because, as Ellis and Barkhuizen (2005) put it, “the descriptive information it provides serves as a basis for testing the validity of different explanations of the order of acquisition” (p.79). Second, because, although the so-called “natural order” approach has received a lot of criticism, many methodologically rigorous studies show sufficiently consistent general findings. Nevertheless, the reason why we consider morpheme order studies to be valuable for SLA research is the general degree of commonalities that previously conducted morpheme studies have shown. This, as Larsen-Freeman and Long (1991) noted, provides strong evidence that interlanguages exhibit common accuracy/acquisition orders.
2 Linguistic structures under investigation

In this chapter we will outline the theoretical background that relates to the various studies of our project. Our principal study, as illustrated in our project’s title, is the acquisition of morphological structures in L2 English. Therefore, in the first section of the present chapter (2.1) we will provide a definition and a brief description of the English morphemes in general and the English grammatical morphemes in particular. However, our project also focuses on the expression of possession in L2 English and L3 German. Hence in section 2.2 we outline the various structures of possession expression in English and in German. Additionally, we describe and exemplify the restrictions that each of these possession structures has. As we will see, the differences in the choice of possessive structures that English and German present will guide us in our research on the influence of the L2 English on the acquisition of the L3 German.

2.1 Morphemes in English

Morphemes are usually defined as the “smallest meaningful constituents of words that can be identified” (Hauselmath, 2002:3). In the same line, every lexical item that “[...] cannot be split into meaningful smaller units” (Cook, 1993:25) is a morpheme. Consequently, morphology contains the rules that concern these minimal meaningful units of a language and the way in which morphemes are combined to make up words. Morphemes may be free or bound. The former can stand on their own (e.g. the word boy), whereas the latter are attached to other items (e.g. the genitive -s in the boy’s book). Bound morphemes are further divided into inflectional and derivational. Regarding nouns, for example, we can say that they allow “[...] various suffix morphemes -called inflections- to be appended to indicate
plurality (dogs), possession (dog’s), and both plurality and possession (dogs’)” (Butters, 2001:325). Bound morphemes are derivational if their use results in the formation of a new word, that is, if “they derive one word from another” (Cook, 1993:25). Quite often appears in the relevant literature a distinction between lexical and grammatical morphemes. Lexical morphemes are also known as “content words” (Cook, 1993:25), e.g. dog, boy, book, whereas grammatical morphemes are also known as functors. Brown (1973) defines the latter as:

[...] forms that do not, in any simple way, make reference. They mark grammatical structures and carry subtle modulatory meanings. The word classes or parts of speech involved (inflections, auxiliary verbs, articles, prepositions, and conjunctions) all have few members and do not readily admit new members (p.75).

Natural order studies are mainly concerned with grammatical morphemes as we mentioned at the beginning of this section. The following table presents a list of the grammatical morphemes under examination in the first study of this paper. Note that each of our studies is presented in detail in chapter 4. In the list presented below each of the morphemes is illustrated by an example.

<table>
<thead>
<tr>
<th>Functor</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Past regular -ed</td>
<td>She smiled.</td>
</tr>
<tr>
<td>Past irregular</td>
<td>Then, she stood up and left.</td>
</tr>
<tr>
<td>Third person singular -s (3SG)</td>
<td>The baby cries.</td>
</tr>
<tr>
<td>Progressive -ing</td>
<td>He is playing the guitar.</td>
</tr>
<tr>
<td>Be copula</td>
<td>She is happy.</td>
</tr>
<tr>
<td>Be auxiliary</td>
<td>He is always eating chocolate.</td>
</tr>
<tr>
<td>Plural</td>
<td>The children were standing still. Then some of the boys and girls left.</td>
</tr>
<tr>
<td>Possessive -s</td>
<td>This is John’s car./ She was shown to the girls’ changing</td>
</tr>
</tbody>
</table>
The room was cold./ An apple is enough./ Men drive fast.

Table 1: List of the nine functors studied in this paper

2.2 The expression of possession in English and in German

As we stated at the beginning of this chapter, in our study we do not only investigate the acquisition of morphology in English, but we also focus on the accuracy rates of the inflectional forms of possession expression in both L2 English and L3 German. For the study of the acquisition of the English morphology by L2 language learners we used exclusively the data found in our learner corpus. On the contrary, the study of the expression of possession in English and in German required the use of additional data that we collected by means of an experimental method. Note that the methods used in our project are presented in detail in chapter 5 that regards our empirical studies and thus includes information about the methods and the materials used for the elicitation and the collection of the data. Naturally, in subsequent chapters we will also be giving more explanation as to the reasons that prompted our special interest on the expression of possession in these two linguistically related languages. But before we start studying the relative frequency with which our language learners used the various possession structures in both English and German, we should present the corresponding systems of possession expression.

Possession is the relation between two entities. Most specifically it is a relational concept that can express the conceptual relations between entities. McGregor (2009) suggests that possession should be defined on grounds of the linguistic factors implied rather than conceptually. In keeping with this proposal we can claim that possession is a relational concept that regards the relationship(s) between the possessum (henceforth PM) and the possessor (henceforth PR) as illustrated in the following examples:
The **PM** refers to what is possessed, whereas the **PR** makes reference to the entity (person, animal, etc.) that possesses the PM. In our examples (1-3), the PM is always “the book”, whereas the PR is always “John” although in (3) the reference is realised by means of the possessive pronoun.

2.2.1 Possession in English

Following McGregor (2009), we can affirm that three types of possessive construction are distinguished: attributive, predicative and external. In the case of **attributive possession**, the PM and the PR form a single NP as shown in the examples (1), (2) & (3) above. Sometimes these constructions are also referred to as adnominal possession. In the **predicative possession** the possessive relation is expressed in the predicate (e.g. John has a book). In the **external possession** constructions the possessive relation is expressed “[...] at the level of a clausal construction as in *The dog bit Cliff on the ankle*” (McGregor, 2009:2). In this study we will be looking at the **attributive possession**.

The attributive possession or possessive NPs have been claimed to (a) be definite (Quirk et al., 1985) and (b) introduce new PM referents into the discourse (Taylor, 1996). Willemse et al. (2009) based on a qualitative and quantitative analysis of a corpus of possessive NPs claim that “[...] many PM referents have a discourse status in between fully given and fully new” (p.13) and thence suggest a continuum-like classification.

Furthermore, within the attributive possession constructions structures like the so-called recursive possessives have been identified. In these multiple possessors can be found in the...
same sequence (e.g.: John’s father’s book). Although the number of recursion is structurally unlimited, it seems that practically no more than two genitives -s are found in a chain since the opposite would be “[…] stylistically objectionable, comic and difficult to comprehend” (Quirk et al., 1985: section 17.118).

For the purposes of this study we should also mention that several studies of the English possession system have identified a number of factors that determine the choice of the possessive construction. Some studies have focused on phonological, pragmatic, syntactic and morphological factors (Hawkins, 1994; Quirk et al., 1985). Other researchers have focused on the cognitive and psychological factors (Taylor, 1989; Heine, 1997; Rosenbach, 2005).

In this regard we present the results of the study by Rosenbach (2005) in Figure 3. This chart shows the relative frequency of the s-genitive and the of-genitive according to four factors related to animacy and weight.

![Figure 3: Relative frequency of the s-genitive and the of-genitive (from Rosenbach, 2005:620).](image-url)
Rosenbach’s (2005) study provides evidence from both a corpus analysis and an experimental study that animacy is a processing factor that influences the grammatical variation and it dominates the syntactic weight. She used a questionnaire based on a short text passage that provided context for both s-genitive and of-genitive constructions that included four conditional factors, two animate and two inanimate. The term “animacy” distinguishes between the animate referents and the inanimate referents. It has been defined as a dominant factor that causes variation between the s-genitive and the of-genitive constructions (Rosenbach, 2005). Her study includes 39 native speakers of American English, but the results are nevertheless interesting. As seen in Figure 3 native speakers of English prefer s-genitive constructions for animate possessors while of-genitive for inanimate possessors.

In our study we do not distinguish between animate and inanimate entities. In order to include this further distinction we would need additional data and time. Nevertheless, we understand that the results of Rosenbach’s (2005) study are important for any further investigation related to the results of the present study. More details are presented in sections 7.4 and 7.5 where we regard the limitations of this paper and suggest possible avenues for future research. What is more, the outcomes of Rosenbach’s (2005) study may not directly relate to our project but they do so inasmuch as they highlight yet another significant difference between the possession systems in English and in German (for the possession system in German see section 2.2.2). Indeed, it is this particular difference in the factors that influence the choice of the possessive form in English and in German that enables us to detect possible influences of the L2 English on the acquisition of L3 German but we will be looking into this in detail in section 6.3.

In the present study we are interested in investigating the use of the synthetic/inflectional vs. the analytic/periphrastic form of attributive possession. We decided to use the possessive
pronouns as a possession construction trigger in our sentence transformation task. That enabled us to check the L2 English learners preferences regarding both the other inflectional form (i.e. the possessive -s) and the periphrastic form (i.e. the prepositional phrase). Examples 4, 5 & 6 illustrate each of the aforementioned possessive forms.

4) This is his car. (inflectional/pronoun)
5) This is my father’s car. (inflectional/possessive -s)
6) This is the car of my father. (periphrastic/prepositional phrase)

2.2.2 Possession in German

It has already been mentioned that our study focuses also on another target language, namely, German. Therefore, we should now turn to the description of the expression of possession in German.

The first relevant point, that we would like to draw the reader’s attention to, is that in German the expression of possession can be realised by four different structures. In English there are three forms of expressing possession, namely the possessive pronoun (ex.5), the possessive -s (ex.6), and the genitive -of (ex.7). The system of possession expression in German includes yet another inflectional form, that is, the genitive case as illustrated in the following example:

8) Das Auto meines Vaters.
 The.nom car.nom my.gen father.gen.

Another major difference is that in German there are certain structural constraints that determine the choice of possessive form. This condition is absent from the English possession form.

1 Note that the students were told to rewrite the sentence using the NP my father instead of the possessive pronoun his. This example is actually taken from our sentence transformation task a full account of which can be found in Appendix 9.5 (A for English and B for German)
system. In English, as we mentioned in section 2.1, the choice of the PR>PM and PM>PR orders and the subsequent use of the equivalent possessive form has been explained on grounds of either phonological, pragmatic, syntactic and morphological factors (Hawkins, 1994; Quirk et al., 1985) or of cognitive and psychological factors (Taylor, 1989; Heine, 1997; Rosenbach, 2005). Rosenbach (2005) for instance claims that it is principally the animacy that prompts the use of a specific order (PR>PM or PM>PR) and thence the use of the equivalent possession form (see section 2.1 for more details on Rosenbach’s study). In keeping with Rosenbach’s (2005) findings we can claim that native speakers would prefer to use the PR>PM order and hence the possessive –s in those cases where the PR is an animate entity. In German, on the contrary, the PR>PM and PM>PR orders are not determined by conceptual factors. In that vein, both the PR>PM and the PM>PR orders are equally used. This difference is illustrated in the examples below.

English 9) My father’s car. PR=animate
 entity → PR>PM order

German 10) Vaters Auto. PR>PM order
 Father.gen car.nom

11) Das Auto meines Vaters. PM>PR order
 The.nom car.nom my.gen father.gen

12) Das Auto von meinem Vater. PM>PR order
 The.nom car.nom of my.dat father.dat

Nevertheless, German, unlike English, does not allow the possessive –s to be attached to any noun. In German the possessive –s is affixed only to proper names and a few kinship terms (Eisenbeiß 2009) as examples 13.1, 14.1 & 14.2 below illustrate. Note that whenever the name ends in “s” an apostrophe is added instead of the possessive –s. This is the only difference between examples 14.1 and 14.2 below.
However if the PR, realised by either a kinship term or a proper name, is modified by an article or any other modifier, then the PM>PR order is required and hence the use of the possessive -s is incorrect. That is to say, if the PR in example number 13 was "my father" instead of "father" then we should use the PM>PR order and hence either the genitive case or the prepositional phrase would be required in order to express possession. Both cases are exemplified below.

13.2) Das Auto meines Vaters.
 The.nom car.nom my.gen father.gen.
 PR: modified kinship term → PM>PR order → genitive case

13.3) Das Auto von meinem Vater.
 The.nom car.nom of my.dat father.dat
 PR: modified kinship term → PM>PR order → prepositional phrase

At this point we would like to foreground that in German articles agree in number, gender and case with the nouns that they accompany. Nouns can also undergo some modification when the possession is expressed by means of the genitive case. Indeed, when the noun has a masculine or a neutral grammatical gender, then the suffix -s/-es is added in the formation of the genitive as seen in example 13.2 above.

Tables 2 and 3 illustrate all the cases of the expression of possession in German that we have described up to here.
1) PR>PM order

<table>
<thead>
<tr>
<th>Possessive -s</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Vaters Auto</td>
<td>PR + possessing -s + PM</td>
</tr>
<tr>
<td>Father’s car</td>
<td>PR: kinship</td>
</tr>
<tr>
<td>b) Marias Schwester</td>
<td>PR + possessing -s + PM</td>
</tr>
<tr>
<td>Maria’s sister</td>
<td>PR: name</td>
</tr>
<tr>
<td>c) Tobias’ Bruder</td>
<td>b) does not end in s →</td>
</tr>
<tr>
<td>Tobia’s brother</td>
<td>possessing -s</td>
</tr>
<tr>
<td></td>
<td>c) ends in s → apostrophe</td>
</tr>
</tbody>
</table>

Table 2: Structural constraints: the use of the possessor -s

2) PM>PR order

<table>
<thead>
<tr>
<th>Genitive Case (GC)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Das Auto meines Vaters.</td>
<td>(a): [PR= masculine → -s/ -es suffix] + [PR = kinship noun + modifier → possessive -s ≠ possible]</td>
</tr>
<tr>
<td>PM Pron:GC PR:GC</td>
<td></td>
</tr>
<tr>
<td>The.nom car.nom my.gen father.gen</td>
<td></td>
</tr>
<tr>
<td>b) Der Computer der Frau.</td>
<td>(b): PR = feminine → no modification applied on the noun.</td>
</tr>
<tr>
<td>PM Def.Art:GC PR:GC</td>
<td></td>
</tr>
<tr>
<td>The.nom computer.nom the.gen woman.gen</td>
<td></td>
</tr>
<tr>
<td>c) Das Fenster eines Autos.</td>
<td>(c): [PR= neutral → -s/ -es suffix] + [PR = common noun→ possessive -s ≠ possible]</td>
</tr>
<tr>
<td>PM Indef.Art:GC PR:GC</td>
<td></td>
</tr>
<tr>
<td>The.nom window.nom a.gen car.gen</td>
<td></td>
</tr>
</tbody>
</table>

P.P.: von + Dat.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Das Auto von meinem Vater.</td>
<td>(a): PR = kinship noun + modifier → possessive -s ≠ possible</td>
</tr>
<tr>
<td>PM + PP= von + NP: mod.=Pron(dat)</td>
<td></td>
</tr>
<tr>
<td>The.nom car.nom of my.dat father.dat</td>
<td></td>
</tr>
<tr>
<td>b) Der Computer von einer Frau</td>
<td></td>
</tr>
<tr>
<td>PM + PP= von + NP: mod=</td>
<td></td>
</tr>
</tbody>
</table>
To **sum up** chapter 2 regards the linguistic features studied in this paper. In the same line, **section 2.1** contains information about the morphemes in general and the **grammatical morphemes** that have been the pivot of our morpheme order study (i.e., the first of the three studies included in this paper). On the other hand, in **section 2.2** we outlined the basic aspects of the **possession expression systems in English and in German**. We understand this theoretical background to be important for two reasons. First, because the second study of this project focuses on the use of the **possessive -s** by L2 English language learners. As we will see in the following section the majority of the morpheme order studies have identified low accuracy rates for the **possessive -s**. This prompted our interest to study further the use of the inflectional form of possession especially because English is an analytic language. In the same line we wished to check the frequency of use of the synthetic (inflectional) possessive forms by learners whose target language is German. We chose German not only because it is a synthetic language, but also because it is also a West Germanic language. That induced the third study of our project in which we check the frequency of use of each of the possessive structures by our L3 German learners. The accurate knowledge of the structural restrictions outlined above is crucial in order to recognise the correct and the incorrect uses of the various possessive forms by our L3 German learners. Additionally, the
theoretical background that we present in section 2.2 enables us to recognise the commonalities, but also to distinguish the differences that the German and the English possession systems present. Indeed, these two systems are different not only in terms of the structures available for the expression of possession, but mainly regarding the way(s) that these forms are used. As we saw in sub-section 2.2.2 in German there are some structural restrictions regarding the choice of each possession form. The latter is a highly important point, as it is the one that defines the area where we actually see the influence of the previously learnt languages (L2 English) on the acquisition of a new foreign language (L3 German). Nevertheless, we will deal in depth with this issue in section 6.3 where we present the relevant results and comment upon their significance and possible explanation.
3 Literature review

This chapter is dedicated on the brief review of some major previous studies relevant to the research lines of our project. The first section focuses on the ones that relate to our principal study, that is, the acquisition of some grammatical morphemes by L2 English language learners. Since this is a historical overview we have decided to also include the two major works that regard the acquisition of morpheme in L1 English. Our decision is justified on the basis that these generated all the subsequent MOS. Furthermore, the L1 morpheme acquisition studies, and especially Brown’s (1973) study, include elements that we have incorporated in our project, such as the use of corpus and the list of functors studied. In keeping with this decision we will start the first section of this chapter with a sub-section on the L1 MOS, which will be followed by a separate sub-section (3.1.2) in which we outline the major findings in relation to the acquisition of morphemes in foreign languages. Nevertheless, since the MOS studies have received a lot of critique we have decided to include an additional sub-section (3.1.3) where we outline the major voices of criticism on the previously conducted MOS. The information found in this sub-section is also vital since it has guided our decisions regarding our data collection instruments and the scoring methods.

Decisions made on methodological issues are crucial and can determine the rigour of a study. In keeping with the perceived importance of the data elicitation method, we recognise the value of authentic learner language in SLA research. In the same vein we have dedicated a separate section within this chapter (3.2) to our principal elicitation instrument, that is, the learner corpus. Note that in section 3.2, except for occasional comments, we do not provide information regarding our own learner corpus. A full account of the latter along with
additional data regarding the instruments used and the procedures followed in the present study can be found in chapter 5.

The final section of chapter 3 regards the main studies on the influence of any previously learnt language on the acquisition of a new foreign language. Section 3.3 thus provides us with a review of the studies that have been conducted in relation to the other focal point of our study, that is, the influence of the L2 on the acquisition of an L3.

3.1 Morpheme order studies (MOS)

3.1.1 Research on L1 morpheme acquisition order

As we said in the introduction, morpheme acquisition research was partly prompted by the debate over behaviourist and nativist theories of language acquisition. The starting point was Brown’s (1973) longitudinal study of three children who were native speakers of American English. Data for two of the children were collected over a five-year period, whereas for the third child the data were collected over a period of one year. At the beginning of Brown’s study, the first two children were 27 months old, whereas the third was only 18 months old. For the analysis of the collected data, Brown studied the subjects’ utterances in order to determine to which extent the grammatical morphemes in question were supplied in contexts where they were required or not. The underpinning idea was that certain contexts, also known as obligatory occasions, i.e. occasions when a native speaker is obliged to use particular morphemes, trigger the use of specific morphemes. The accurate use of the correspondent morpheme was thence seen as an indication of that morpheme’s acquisition. As Brown (1973) put it:

[…] grammatical morphemes are obligatory in certain contexts, and so one can set an acquisition criterion not simply in terms of output, but in terms of output-where-required. Each obligatory context can be regarded as a kind of test item
which the child passes by supplying the required morpheme or fails by supplying none or one that is not correct. This performance measure, the percentage of morphemes supplied in obligatory contexts, should not be dependent on the topic of conversation or the character of the interaction (p.255).

However, suppliance in obligatory contexts is not enough in order to decide whether a morpheme has been acquired or not. Another aspect that has to be taken into account is the level of accuracy of use that a learner must achieve in order to confirm the morpheme’s acquisition. Brown (1973) set the level at 90 percent on the grounds that it constitutes a level close to 100 percent and corresponds to the level achieved by native speakers (Ellis & Barkhuizen, 2005).

Brown’s study revealed a similar order of acquisition for grammatical morphemes in obligatory contexts for all three children although acquisition was not achieved at the same age, which indicates that the route (=order) of acquisition is similar to all children, but there may be variations in their rate (=speed) of acquisition. Table 4 presents the mean order of acquisition of L1 English morphemes according to Brown’s findings. It is important to highlight that Brown (1973) was the first to use corpus data to study the L1 acquisition of morphology. The rest of the studies on L1 and L2 acquisition reviewed below, have used more controlled instruments. In this paper, we have also used L2 corpus data, in line with Brown’s original study on L1.
At around the same period de Villers and de Villers (1973) conducted a cross-sectional study in which they elicited spontaneous L1 speech data using Brown’s 14 functors (see Table 4) and his coding rules to identify obligatory contexts. Speech samples were taken by 21 children aged 16-40 months. However, de Villers and de Villers (1973) did not set their cut-off point for acquisition at the 90% of accuracy. They simply ranked the functors according to the relative accuracy of use in obligatory occasions. Their findings were then compared to the acquisition order found by Brown (1973) for his three subjects. Their cross-sectional study revealed the same order of acquisition and came thus as a response to the critique that Brown (1973) based his conclusions on the observations of just three children.

Table 4: Order of L1 Acquisition of English Morphemes (from Brown, 1973:275)

<table>
<thead>
<tr>
<th>ORDER</th>
<th>MORPHEME</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Present Progressive ‘-ing’</td>
<td>He is eating</td>
</tr>
<tr>
<td>2 & 3</td>
<td>Prepositions ‘in-on’</td>
<td>He is in the park</td>
</tr>
<tr>
<td>4</td>
<td>Plural ‘-s’</td>
<td>Two birds</td>
</tr>
<tr>
<td>5</td>
<td>Past Irregular</td>
<td>He went</td>
</tr>
<tr>
<td>6</td>
<td>Possessive ‘-s’</td>
<td>Daddy’s book</td>
</tr>
<tr>
<td>7</td>
<td>Uncontractible Copula</td>
<td>She is good</td>
</tr>
<tr>
<td>8</td>
<td>Articles</td>
<td>The ice-cream</td>
</tr>
<tr>
<td>9</td>
<td>Past Regular</td>
<td>She looked</td>
</tr>
<tr>
<td>10</td>
<td>Third person singular ‘-s’</td>
<td>She looks</td>
</tr>
<tr>
<td>11</td>
<td>Third person singular irregular</td>
<td>She has</td>
</tr>
<tr>
<td>12</td>
<td>Auxiliary Be</td>
<td>She is walking</td>
</tr>
<tr>
<td>13</td>
<td>Contractible Copula</td>
<td>She’s good</td>
</tr>
<tr>
<td>14</td>
<td>Contractible Auxiliary</td>
<td>She’s walking</td>
</tr>
</tbody>
</table>
3.1.2 Research in L2 morpheme acquisition order

As pointed out in the introduction the interest on morpheme acquisition orders was soon extended to L2 and second language acquisition research (henceforth SLA). As we will see most of the L2 studies in this field have used some variant of the obligatory occasion analysis.

Dulay and Burt (1973; 1974b) conducted two L2 morpheme acquisition studies. In their first study (1973) they studied three groups of L1 Spanish child learners of English. The first group, the ‘East Harlem (New York)’ group, received a bilingual (English and Spanish) education at school, but no formal instruction in English. The second group, the ‘Sacramento (California)’ group received only English education at school and formal instruction in English. The third group, the ‘San Ysidro (Mexico)’ group, crossed the border to attend an English school, but returned home daily where they spoke Spanish. Dulay and Burt focused on the acquisition of eight of the 14 functors proposed by Brown (1973) and found a consistent order across all the groups. Each obligatory context for a functor was scored according to the following schema (from Dulay & Burt, 1973:254):

- No functor supplied=0 (e.g. she’s dance_)
- Misformed functor supplied=0.5 (e.g. she’s dances)
- Correct functor supplied=1.0 (e.g. she’s dancing)

The accuracy score for each functor was then calculated as a ratio of the sum of the scores for each obligatory context for that functor across the whole group. According to this model we could then calculate the accuracy rate for the three examples given above. In this case the total number of examples determined the OC which is hence equal to three. Applying the calculation process described above we end up with the following:
Although each of Dulay and Burt’s (1973) groups showed different rates of accuracy, they all followed the same route. Accordingly, they concluded that L2 morpheme acquisition order is not influenced by exposure to the target language (henceforth TL).

In 1974 Dulay and Burt conducted a second study (1974b) observing two groups of 6-8 year-old children learning English as a second language in the USA. The first group consisted of 60 children native speakers of Spanish and the second consisted of 55 children whose L1 was Cantonese. In this study the authors found a similar developmental pattern for both groups regardless of their L1.

Like most L2 morpheme studies and unlike L1 morpheme studies, Dulay and Burt used controlled tasks. This decision was based on the fact that elicited L2 language is rarely spontaneous. The instrument they used was the Bilingual Syntax Measure (BSM) which is a syntax-based test of L2 proficiency designed for use with young children. The BSM was not designed to test order of acquisition but rather proficiency level. Nevertheless, according to Dulay and Burt (1974b), the value of this method is that the researcher “[...] can look to see how the child forms simple finite clauses (word order, gender, number and case for the pronoun, agreement for the verb, the form of the qualifier, etc)” (p.40). Additionally, the BSM was used as a measure by most researchers and that facilitated comparisons. The instrument consists of some cartoon pictures and questions. These prompts are used to elicit roughly predictable responses that include various obligatory contexts for grammatical morphemes. For instance the researcher may point to a very fat cartoon character and ask: “why is he so fat?” The expected answer is “Because he eats too much/a lot”. Figure 1 exemplifies a case of the BSM. Children’s errors were then placed into three categories: developmental, interference, and unique. Dulay and...
Burt (1974b), based on the fact that the majority of errors fell in the developmental category, hypothesised that second language acquisition is similar to first language acquisition.

Figure 1: Example from the Bilingual Syntax Measure (from Dulay and Burt, 1974b:37-53)

Bailey et al. (1974) generalised the results of Dulay and Burt’s studies to adults learning an L2 and found a similar order of acquisition for the same set of English morphemes. They studied 73 adults of distinct L1 backgrounds, 33 were native speakers of Spanish and 40 had different first languages (Greek, Persian, Turkish, etc.). They also used the BSM as elicitation method. The developmental patterns of both groups correlated significantly among them and with the patterns found in children learners of L2 English in Dulay and Burt’s studies. Krashen (1977) suggested later that it was possible to group certain morphemes together on the basis of accuracy and create thus an acquisition hierarchy as shown in Figure 2. This organisational pattern states that the order of acquisition will progress from one group to the other, but makes no comment in relation to the acquisition order of the morphemes within each group.
In 1975 Fathman carried out a cross-sectional study in order to investigate the relationship between age on one hand and rate as well as order of acquisition of English structures on the other. She studied 140 children aged 6-15 years, who had been in the USA for less than three years (70 had been there for one year, 40 for two years and 30 for three years) and had all been immersed in the verbal environment of the school. Fathman (1975) introduced the Second Language Oral Production English (SLOPE) test, which has twenty sections (each involving three items) designed to test 20 different grammatical phenomena (article, negation, wh-questions, etc.). The test usually consisted of two pictures and one question. For example, in order to elicit plural -s the researcher points to a picture of a boy and says “Here is a boy”, then to a picture of two boys and asks “Here are two … ?”. Both the SLOPE test and the BSM aim to the production of spontaneous language related to the L2 acquisition of grammatical knowledge. Fathman (1975) divided her subjects into two age groups (6-10 & 11-15 years) and then observed the changes between these two groups in terms of rate and order of acquisition of 20 morpheme categories or syntactic patterns.
Additionally, her subjects described orally a composite picture for which they were rated for correctness of grammar, pronunciation and general fluency. Fathman (1975), based on the results of her study, concluded that L2 acquisition process changes with the age in terms of success in learning, with the younger children showing higher pronunciation abilities and the older children higher morphological and syntactic abilities. In terms of order of acquisition the study revealed no changes and thence Fathman (1975) affirmed that L2 acquisition order remains constant.

Perkins and Larsen-Freeman (1975) performed a cross-sectional study of adults using multiple tasks in order to check the validity of the single task-based studies and found that the order of acquisition was similar to that of previous single-task studies. Indeed, they found significant correlations between the morpheme sequences produced by adult learners in the two oral production tasks and the morpheme sequences produced by child learners in Dulay and Burt’s study. For the written task there were some differences such as a rise in the rank order of plural -s and third person -s. However, Ellis (1994) points out that these can be explained by the production conditions in the sense that speaking and writing are influenced by different sociolinguistic and psycholinguistic conditions, and they thence do not imply a different morpheme acquisition order. Additionally, Perkins and Larsen-Freeman (1975) investigated L2 acquisition in relation to the type of instruction. According to their study’s results, when learners were exposed to naturalistic input, formal language instruction did not seem to affect accuracy orders. As Perkins and Larsen-Freeman (1975) put it: “[…] instruction does not radically alter order of acquisition” (p.241).

In 1978 Andersen altered slightly the principal subject of morpheme order research by focusing on the investigation of the

Note that in this paper we will be using morpheme order and MO interchangeably. In the same line we use the acronym MOS when making reference to a Morpheme Order Study.
actual explanation of the “natural order” that previous studies had shown in both the L1 and the L2 morpheme acquisition. Unlike the explanations that had been proposed until then, mainly based on a nativist assumption, Andersen tried to account for the accuracy profiles of L2 learners in relation to the acquisition of underlying syntactic knowledge. He divided the data on the acquisition of English grammatical morphemes into two syntactic classes: verb-related morphemes and noun-related morphemes and analysed the accuracy rates accordingly. Although he based his data collection on the SOC model introduced by Brown (1973), he analysed the results using the implicational scale as scoring method. This technique is based on the idea that “[…] if a learner is accurate on a ‘difficult’ morpheme, she will also perform accurately on some ‘easier’ morpheme […] the reverse is not necessarily the case” (Hawkins, 2001:47). Andersen (1978) noted that the degree of difficulty could depend on the underlying syntactic properties of the morphemes, rather than on the actual morphemes. Said in other words, Andersen (1978) argued that in order to use accurately a morpheme the L2 student must have previously acquired the underlying property of that specific morpheme. That is, the L2 learner must fully understand not only what a specific morpheme stands for, but also comprehend its underlying syntactic properties as such. In the same line, in order to accurately use the structure “be + V-ing” the L2 learner must have previously acquired what this morpheme represents, i.e. the progressive aspect and hence the difference between progressive and non-progressive (e.g. Mary is reading vs. Mary reads).

Makino (1979) attempted a morpheme order study with English learners in Japan in order to test the acquisition order hypothesis for EFL learners. He tested 777 adolescents using fill-in-the blank tests and stratified the data according to the subjects’ grade level, English textbook used and location of the school (urban or rural). The order of acquisition correlated significantly with the orders obtained in most of the studies that had looked at ESL learners and thus supported the
hypothesis that all L2 learners follow the same route in terms of morpheme acquisition despite the learning environment.

Pica (1983) investigated the effects of formal classroom instruction on one hand and the influence of learning in a naturalistic environment on the other. The subjects of her study formed three groups. The first consisted of classroom-instructed adults, the second was formed by a group of adults who lived in an English-speaking environment in the absence of formal instruction and the third was a ‘mixed’ group that received both classroom instruction and input from native speakers in a naturalistic environment. All three groups had the same L1, namely Spanish. Ellis and Barkhuizen (2005) argue that Pica’s study is “methodologically more sophisticated [...] in that she examined learners’ oversuppliance [...] through a target-like use analysis as well as suppliance in obligatory contexts” (p.87). Pica (1983) concluded that “different conditions of exposure to L2 English do not significantly alter the accuracy order in which grammatical morphemes are produced” (p.465). Conditions of exposure, however, do influence the learners’ interlanguages. Pica found that learners with instructed exposure oversupplied morphemes in non-obligatory, and hence inappropriate, contexts. By contrast it was omission errors that were higher among those with naturalistic exposure. That indicates that different conditions of L2 exposure affect learners’ hypotheses about the target language and their strategies for using it (Pica, 1983:495).

Lightbown (1983) in an attempt to determine what factors may affect the order of acquisition performed a study in which she investigated frequency as putative determinant. She looked at the relationship between the frequency of appearance of certain forms in the classroom and the frequency of their accurate use. Her subjects were instructed learners of English in Quebec aged between 11 and 17 years. They were asked to perform an oral task

3 More details regarding the Suppliance in Obligatory Context (SOC) and the Target Like Use (TLU) are provided in section 3.1.3.
twice in two consecutive years. The results suggested that there is no direct relationship between input frequency and the accurate use of the morphemes.

After Andersen’s (1978) study, most researchers were looking to establish not only a descriptive but also a solid explanatory model. That tendency is especially prominent in the studies conducted after the 1980s. As mentioned above, some explanation of the observed phenomena regarding order of acquisition had been previously attempted as well. For example Brown (1973), following a nativist perspective, argued that “some factor or some set of factors caused these grammatical morphemes to evolve in an approximately consistent order in these children” (p.272). In the same vein, during the 1970s a series of putative determinants have been suggested by L1 and L2 researchers including the following: (a) perceptual salience (Larsen-Freeman, 1976), (b) morphophonological regularity, (c) syntactic complexity, (d) frequency (Larsen-Freeman, 1976), (e) semantic complexity (Larsen-Freeman, 1976; Andersen, 1978), (f) native language transfer (Andersen, 1978), (g) individual variances (Andersen, 1978).

Ellis and Barkhuizen (2005) recognize two key studies in this account after the change of the researchers’ focal point from description to explanation. The first is the study by Zobl and Liceras (1994) and the second is the one conducted by Goldschneider and DeKeyser (2001).

Zobl and Liceras (1994) observe that L1 acquisition order is characterized by nominal categories preceding verbal categories, whereas L2 acquisition order is cross-categorical. They suggested that this is explained by abstract cognitive-linguistic principles. Indeed, they argue that the Nominal → Verbal pattern observed in L1 acquisition stems from the gradual maturation of functional categories in young children. Thence the difference in L1 and L2 acquisition patterns can be
explained by the fact that functional categories are already available from the beginning in L2 learning.

In keeping with this preference to find an explanation based on purely linguistic criteria, Hawkins (2001) has studied the patterns of acquisition order following the division between verb-related and noun-related morphemes put forth by Andersen (1978). Hawkins (2001) in his interpretation of Andersen’s (1978) results argues that the scale of difficulty of the verb-related morphemes exhibit the addition of the following syntactic properties:

\[
\text{Copula } \rightarrow \text{ aspect (±progressive)} \rightarrow \text{tense (±past)} \rightarrow \text{subject-verb agreement (±3rd person singular)} \quad \text{(Hawkins, 2001:48).}
\]

Hawkins (2001) claims that this result is interesting mainly because it poses certain questions the answer to which may help our understanding of L2 morpheme acquisition patterns. As he put it “Why should a copular construction (John’s hungry [...]) become established in the mental grammar more accurately, apparently, than an aspectual one (John is cooking) [...]” (Hawkins, 2001:48). He also suggested a working theory, called “modulated structure building” (2001:73), which includes insights from two theories known as “minimal trees” and “full transfer/full access”. According to this model learners’ initial L2 grammars consist of lexical projections like VP, NP, AP, PP and these have the structural properties of their L1 grammars (i.e. the position of the head, complement and specifier are initially determined by the L1). Initial L2 grammars consist of lexical projections only in principle since restructuring towards the L2 may be very rapid. Functional projections are established later than lexical projections (i.e. the establishment of English inflection and its projection IP appear after a VP-only stage). Finally, it is only once functional categories are established in the L2 grammar that the influence of L1 functional categories becomes evident. For example in initial stages L1 verb-subject agreement pattern is not relevant “because learners are not at the point
of development where they need to have a representation for specifier-head agreement” (Hawkins, 2001:74). But, as soon as they reach that point their L1 becomes influential and hence Spanish learners have an asset and indeed produce more accurately specifier-head agreement than Japanese students whose L1 does not have such agreement as the study by Stauble (1984) confirms. That is why Hawkins calls his structure building pattern ‘modulated’, because it “is influenced by properties of the L1 at the relevant point in the construction of a grammar and not before” (Hawkins, 2001:74). The influence of the L1 on the acquisition of the TL has been criticised, as we will see later.

Goldschneider and DeKeyser (2001) carried out a meta-analysis of all the accuracy results obtained for oral production data in twelve studies involving 924 learners. They then suggested that the L2 acquisition order pattern can be explained by a combination of five putative determinants (i.e. functors features): perceptual salience, semantic complexity, morphophonological regularity, syntactic category and frequency. Other external factors such as L1 transfer could also be influential but their multiple-regression study did not allow them to take it into consideration. Goldschneider and DeKeyser highlight that only a combination of variables can account for the “natural order” and remark that the revision of these 12 studies concludes that the commonalities in their findings cannot be ignored. Additionally their study suggests that “L2 acquisition is the product of an interaction between the learner’s internal mechanisms and the input” (Ellis & Barkhuizen, 2005:77). As Hawkins and Lozano (2006) put it: “The picture of SLA that emerges is one of a complex interaction among innate knowledge, previous knowledge from the L1, and input from the L2” (p.73).

In 2006 Muñoz carried out a cross-sectional study in order to check the effects of the age of onset, i.e. the age in which the subjects started learning the L2, the amount of exposure to the
target language and the **proficiency** levels on both the order and rate of acquisition of English as a foreign language. She studied 6 groups of instructed learners of English who were asked to perform two oral tasks, a picture-elicited story and a semi-structured interview. Table 5 shows the composition in terms of onset age, time of exposure to the L2, test age and number of participants.

<table>
<thead>
<tr>
<th>Time 1 200 h</th>
<th>Group AAO = 8</th>
<th>Group BAO = 11</th>
<th>Group DAO = 18+</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1</td>
<td>B1</td>
<td>D1</td>
</tr>
<tr>
<td></td>
<td>AT = 10;9</td>
<td>AT = 12;9</td>
<td>AT = 28;9</td>
</tr>
<tr>
<td></td>
<td>N = 30</td>
<td>N = 30</td>
<td>N = 20</td>
</tr>
<tr>
<td>Time 2 416 h</td>
<td>–</td>
<td>–</td>
<td>D2</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>–</td>
<td>AT = 30;4</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>–</td>
<td>N = 15</td>
</tr>
<tr>
<td>Time 3 726 h</td>
<td>A3</td>
<td>B3</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>AT = 16;9</td>
<td>AT = 17;9</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>N = 30</td>
<td>N = 30</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 5: Groups’ composition (Muñoz, 2006:116)

Muñoz (2006) performed an **Obligatory Occasion analysis** of the data and scored the responses following Pica’s (1983) guidelines (2 points for the suppliance of the correct functor, 1 point for each incorrect functor supplied and 0 points when no morpheme was supplied). The results of her study confirmed the findings of earlier “natural sequence” studies in three points (Muñoz, 2006: 121-123): (a) that a **similar route** is to be found independently of learner’s age, although the age seems to **influence** the **rate of acquisition** since older learners showed higher rates of accuracy in the use of morphological functors especially in initial stages of language acquisition, (b) that **proficiency level** plays a bigger role than first language and (c) learning context does not affect accuracy orders as much as proficiency level does, at least not until the learners have progressed beyond the very elementary levels of proficiency. As she put it “foreign language learners present accuracy orders that approach the average order once they have had a certain amount of exposure to the target language and have progressed beyond the very elementary levels of proficiency” (Muñoz, 2006:123). Proficiency has been proved influential in the acquisition of derivational morphology too. Muñoz’s finding is
thus in keeping with other studies (Lardiere, 1995; Lardiere & Schwartz, 1997 cited in Muñoz 2006) which argue that L1 affects the acquisition of derivational morphology “in early L2 development, but this influence disappears with proficiency” (Hawkins & Lozano, 2006:71).

3.1.3 Identification of gaps in the literature

Morpheme order studies have been questioned in relation to some methodological presuppositions and techniques.

A fundamental point of the overall critique relates to the basic assumption of morpheme studies that accuracy equals acquisition. It has been argued that, from a conceptual point of view, accuracy cannot be equated with acquisition. That is, suppliance of a morpheme does not imply necessarily that the morpheme has been acquired. As this is a two-fold criticism we will present its points separately.

The first inadequacy seems to stem from the incapability of the SOC to take into consideration a number of data that are also significant in terms of language acquisition. The fact that the learner uses a morpheme correctly in an obligatory context does not imply that the learner has acquired that particular morpheme because the subject may as well incorrectly overuse it in other occasions. That led scholars to establish the concept of target-like use (henceforth TLU) which implies a weighted scoring as well. TLU takes into account correct suppliance in both obligatory contexts and non-obligatory context. Researchers can thus account not only for the correct uses (TLU) but also for the incorrect uses, i.e. the non target-like uses (henceforth NTLU). The NTLU includes the cases of underuse, misuse, and overuse and thus enables the researcher to tag and analyse a greater variety of morpheme uses. Therefore, scholars can draw a more complete image of the process of grammatical morpheme acquisition.
At this point we would like to give an example to illustrate the difference between the SOC and the TLU models in terms of the results obtained. Suppose that we wish to measure the accurate use of the progressive -ing morpheme in the following text:

Following Brown’s SOC model we should check for the correct suppliance of the -ing in obligatory context, which is only one in our example, and then divide the number of the correct suppliance by the number of the obligatory contexts, which is, again, just one in our example (i.e., 1:1). We would then have to conclude that the accuracy rate for the progressive -ing morpheme obtained by this (hypothetical) L2 learner is (1:1) x 100 = 100%. According to this accuracy rate we would be bound to affirm that our hypothetical L2 learner has acquired the progressive -ing. However, the learner’s actual production clearly indicates the contrary.

The TLU model, on the contrary, enables us to take into account the remaining two cases where our hypothetical student has used the -ing. These instances reveal an incorrect use of the morpheme in question since they represent non-obligatory contexts for the progressive -ing. So, following the TLU model we would divide the number of correct suppliance of the -ing in obligatory context by the sum of the total number of OC and the number of NTLU cases, i.e. the incorrect use in non-obligatory contexts. On these grounds we would conclude that the accurate rate of the progressive -ing is [1:(1+2)] x 100 = 33%.

Clearly the difference between the results produced by Brown’s (1973) SOC and Pica’s (1983) TLU models is highly significant. Considering the huge influence of the scoring method on the actual results, as reflected in our example, along with the

4 This example is totally invented.
rationale behind the TLU we have decided to use this model in the analysis of our data.

Resuming our account of the critiques of the first MO studies, we should say that the central point of morpheme studies fails to cover phenomena proper of the acquisition development of certain morphemes. Indeed, the first morpheme studies disregarded the fact that some morphemes display a U-shape pattern of development. That is particularly observed with the acquisition of regular and irregular past in English. At the initial stages of irregular past acquisition, learners go through an early stage in which they use the forms of the irregular past correctly. Based on the suppliance in obligatory context condition, the researcher should conclude that by that moment the learner has acquired the irregular past forms. However, such assumption would be wrong as we now know that right after that initial stage of correct use learners experience a stage of over-generalized –ed forms, during which they replace the supposedly previously acquired past irregular forms with the past regular morpheme. That is, at the beginning of the acquisition of the past irregular morpheme our hypothetical L2 learner would produce a sentence like “Yesterday I went to school”. In the immediately following stage, nonetheless, the same hypothetical L2 learner would regularise the past tense of the verb “to go” and hence produce the incorrect sentence “Yesterday I goed to school”. Obviously longitudinal studies do not face the danger of not accounting for these developmental stages since they are based on data that refer to and reflect each subject’s acquisition process for longer periods. Cases like over-generalisation are thus evident in this type of studies. Cross-sectional studies, on the other hand, can easily leave the aforementioned phenomenon unaccounted for. However, if their subjects are grouped according to their level of proficiency and the accuracy rates calculated separately for each group, then the developmental stages we described above become evident in cross-sectional studies as well. As Ellis and Barkhuizen (2005) put it, grouping on the
basis of the subjects’ proficiency level “[...] will enable researchers to investigate proficiency as a covariate of accuracy order and to identify which morphemes display a lower level of accuracy at higher levels of proficiency” (p.78). In line with this suggestion we have decided to group our subjects on the basis of their proficiency level and give thus a more accurate and complete image of the accuracy orders displayed for each morpheme at each level. We give a full account of this procedure as well as of the way we measured our subjects’ proficiency level in section 5.3.2.

Another criticism relates to the small number of morphemes that have been investigated in most morpheme order studies. Most morpheme studies have followed Brown’s (1973) methodological guidelines and thence have investigated the whole or part of his list of functors. Ellis and Barkhuizen (2005) argue that the set of morphemes could be expanded but that would depend on whether the instrument used could ensure “a sufficient number of obligatory contexts for each morpheme” (p.78).

In the same line, both the SOC and the TLU studies have been criticized for focusing mainly on the grammatical morphemes and “thus ignoring the functional use of the language” (Muñoz, 2006:109). Along this line of thought another critique on natural order studies was developed. According to this, MOS should not extend the implications found for a set of morphemes to acquisition in general. We would like to point out that a study based on corpus data, presents certain advantages in this respect since it provides the researchers with additional information and hence enables them not only to regard the functional nature of language but also to extend their study to the other aspects of acquisition (e.g. regarding the stylistic aspects of language use).

Additionally, some categories include various disparate features such as case features, features of the verb phrase, features of the noun-phrase, etc. For example, all morpheme studies place
indefinite and definite articles in the same category when they do not constitute discrete features but rather cluster of forms. Nevertheless, this problem can be overcome though a methodological adaptation in order to group the morphemes on grounds of a specific principle. J.D. Brown (1983) suggested that morphemes should be classified into open and bound classes. Andersen (1978) distinguished into verb-related and noun-related classes and demonstrated thus an implicational ordering within each class as explained in the previous section.

Finally, morpheme order studies and their results have been questioned in terms of their validity since most natural order studies were cross-sectional and used the BSM (Bilingual Syntax Measure) as data elicitation instrument. Larsen-Freeman (1975), for example, believed that the sequence was an artefact of the BSM. Indeed, Rosansky’s longitudinal study (1976) shows that the relative accuracy that has been obtained in cross-sectional studies does not predict the sequence of acquisition for groups of individuals. Krashen (1978), on the contrary, argued that spontaneous language will always reveal the order of acquisition, whereas language elicited by means of controlled activities such as discrete-point grammar tests, in which learners’ formal knowledge is tapped, will show the order of learning, which according to Krashen will be different to the order of acquisition. We should mention, however, that data obtained from children (Fathman, 1975; Kjarsgaard, 1979) and adults (Krashen, Sferlazza, Feldman, & Fathman, 1976) showed that for structures present in both the SLOPE and BSM a similar order was found despite the differences in the task and scoring method.

3.2 Learner Corpora and Learner Corpus Research

As we saw, Morpheme Order Studies were criticised on the grounds that their findings were based on very few samples of L2 learner language elicited in many cases through very controlled means. Recently the use of corpus known as learner corpus has been introduced in the SLA research providing thus a more ample
database of language produced by L2 learners. In that sense, we understand that learner corpora represent a very useful instrument of data collection. Additionally, learner corpora contain authentic L2 production which presents a twofold advantage. First, it reflects more accurately the acquisition process. Second it enables the researcher to account for other aspects of the language such as the functional or the pragmatic. In line with this thought we have decided to compile our own learner corpus, a detailed analysis of which can be found in chapter 5. In this section we will limit ourselves to the review of language corpus in general and learner corpora in particular.

Before proceeding with the actual description of the learner corpus, we should define what a language corpus is. According to McEnery (2003) a language corpus is:

a well-organized collection of data, collected within the boundaries of a sampling frame designed to allow the exploration of a certain linguistic feature (or set of features) via the collected data (p.449).

The term learner corpus was first used for Longman’s learner dictionaries, in which the information on EFL learners’ common mistakes was provided, based upon the Longman Learners’ Corpus. In 1990 a project called the International Corpus of Learner English (ICLE) was launched as part of the ICE (International Corpus of English) in order to collect L2 data (Granger, 1998 cited in Tono, 2000:124-125).

Learner corpora are defined by Granger (2008) as “[…] electronic collections of texts produced by language learners” (p. 259). Hence learner corpora differ from language corpora in that the data come from foreign language learners. It is important to highlight that the learner language included in the learner corpora reflects language learnt in instructional environments, not in naturalistic ones. That is, the learners do not live in a
country where the target language is spoken. However, further classification in relation to the speakers involved and the type of data they produce is not only possible but also necessary.

Regarding the status of the learners involved two comments can be made. First, language learners whose linguistic performance is included in learner corpora are foreign language learners. That, apart from the implications outlined in the previous paragraph, also means that the data included in English learner corpora cannot come from speakers that belong to Kachru’s (1985) outer circle (e.g. India or Nigeria where English has achieved the status of official language and/or language of education or administration). Secondly, the distinction made sometimes between learner corpora and ELF (English as a Lingua Franca) corpora is based on the “[…] researchers’ orientation towards the data and the purposes they intend the corpora to serve” (Seidlhofer, 2004:224). That is, if the subjects are still in the process of learning then the researcher’s focus will be the progress of the speaker’s interlanguage and the gap that needs to be filled in order for the learner to become proficient speaker. On the contrary, if the subject is a proficient non-native speaker of English then the focus will be more on how they are able to communicate (Seidlhofer, 2004).

In terms of the learner data the most distinguishing feature that has been put forth by Sinclair (1996) is authenticity in the sense that they represent material gathered from the genuine communication of people. This feature raises a problem for learner corpus data as learners do not often use a foreign language in their genuine communication with other people. In order to overcome this obstacle, Granger (2008:261) suggests we should include in learner corpora only the learner production data that display a medium degree of naturalness such as that produced by picture description, summary or translation. In

5 Since our corpus is a learner corpus and hence the data collected represent by definition language acquired in instructional environments, we will be using L2 and FL interchangeably in the chapters dedicated to the analysis of our data, the discussion and the conclusion. The same is true for the terms L2 learner and FL learner.
keeping with the importance of natural language for SLA research and following Granger’s advice we have decided to compile our learner corpus based on language elicited by means of a picture description task. More information is provided in sections 5.1.1 and 5.3.3.

According to Granger (2008: 261-263), learner corpora can be divided in various types according to the underpinning criteria one uses for their typology. On these grounds learner corpora can be:

i. **Commercial or academic**

Commercial learner corpora are started by major publishing companies, whereas academic learner corpora are compiled in educational settings. In that sense, our learner corpus is academic.

ii. **Big or small**

Learner corpora that contain millions of words are naturally considered big and they do present an asset regarding representativeness of the data. However, small learner corpora that contain thousands or hundreds of words also are valuable. As pointed out by Granger (2008) "[a] detailed longitudinal study of one single learner is of great value if the focus is on individual language development" (p.262). The learner corpus used in our study is relatively small but it is our own learner corpus and this has other advantages such as the learner profile that we have included for each of our subjects and which gives us additional information (e.g. the learner’s mother tongue, the hours of tuition received, additional FL spoken etc.; for more details please refer to sections 5.1.1 and 5.3.3.).

iii. **English or non-English**

English learner corpus is by far the largest collection of learner corpora nowadays. Only the International Corpus of Learner English (ICLE) contains 2.5 millions of words and covers learners from 11 different mother tongue backgrounds.
iv. Writing vs. speech
There are more written than spoken learner corpora. This is not surprising if we take into account that the major difficulties of “[...] collecting and transcribing speech is multiplied by a factor of 10 in the case of learner data [...]” (Granger, 2008:263). In our study we have also opted for the written learner corpus, because we consider that it has certain advantages. First, it enables the researcher to collect a considerably larger amount of data in less time. Second, oral samples are not always clear for all the participants or in every environment. Finally, written corpora have an advantage bearing on the learner reaction to the means of data collection. As Ellis and Barkhuizen (2005) put it “[...] the presence of a cassette recorder may induce self-consciousness in learner’s speech, thus making it less likely that the resulting samples will reflect their vernacular style” (p.27).

v. Longitudinal or cross-sectional
According to Granger the majority of learner corpora that focus on interlanguage are cross-sectional, that is, they contain data collected by various learners at a single point in time. Genuine longitudinal corpora, i.e. data from the same learners collected over time, are very difficult to compile. Therefore, researchers prefer the so-called quasi-longitudinal corpora that contain data gathered at a single point in time but from learners of different proficiency levels. In the same line we have opted for the compilation of a quasi-longitudinal corpus insofar as we have included language produced by learners of different proficiency levels (see section 5.2 for more details on the synthesis of our subjects).

vi. Immediate vs. delayed pedagogical use
Corpora compiled for delayed pedagogical use are not used directly as teaching/learning materials. They rather provide us with insights into learners’ interlanguage and/or into the pedagogical tools used, which are thought to benefit similar-
type future learners. Learner corpora for immediate pedagogical use are, on the contrary, used directly by the learners who produced them.

Although the use of learner corpora in SLA and language teaching is quite recent, there are several reasons that explain researchers’ growing interest in this field. Below we present the ones that we consider central and which justify our decision to compile and use our own learner corpus for the first part of our project that regards the morpheme accuracy rates obtained by our L2 English learners.

i. Learner corpora respond to the necessity of obtaining quantitative data in SLA (McEnery and Wilson, 1996:18). According to Granger (2009:16) one of the main assets of learner corpora is that it provides the SLA research with a much wider empirical basis. Additionally, by being systematic, and thus include data collected according to a number of criteria, learner corpora allow for diversified material (Díaz Negrillo, 2007:85). Therefore learner corpora, i.e. large systematically compiled databases of learners’ language production, can be established as representative and thus support generalisations.

ii. Learner corpora contain basically authentic language and hence contextualised discourse. On one hand, this feature enables researchers to observe various aspects of learners’ interlanguage (Granger, 2009:16). On the other hand, as Housen (2002) remarks, learner corpora make it possible to “empirically validate previous research findings obtained from smaller transcripts, as well as to test explanatory hypotheses about pace-setting factors in SLA” (p.108).

iii. Learner corpora are computerised and the amount of data available in machine-readable forms increases every year. That facilitates researchers’ studies in many ways. First, it provides them with great amount of learner language data as seen by the fact that the CHILDES corpus is used in 3200 research
papers (Lozano & Mendikoetxea, forthcoming 2012). Secondly, computerization not only makes it possible for the researchers to manage large amounts of data, but it also provides them with tools of analysis. As Tono (2000) put it:

The use of learner corpora opens up the possibility of filling the gap between small-scale, tightly controlled experimental research and large-scale, but impressionistic, survey-questionnaire type research (p. 132).

In line with this idea we have decided to found the principal study of our project on our own learner corpus. This has provided us with larger amounts of learner language, which, as Granger (2009:16) has claimed, provided us with a solid empirical base on which we observed the acquisition process of certain morpho-syntactic features. The fact that the elicitation method was systematically designed enabled us, as Díaz-Negrillo (2007:85) points out, to reach conclusions that we can claim valid for a relatively large amount of L2 learners. The importance of founding our research on authentic language has been emphasized many times in the previous section. We shall, therefore, simply repeat here that authentic language offers us insights into the learners actual interlanguage the description of which is crucial for SLA research in that they “[...] provide the evidence by which theories of L2 can be developed and tested” (Ellis and Barkhuizen, 2005:21). In this paper we have used our learner corpus to check the morpheme acquisition orders suggested by some previous MO studies. In the same line, we have tried to check the influence of the data collection method on the learner language by comparing the results of our corpus to the ones obtained by means of a controlled activity bearing on the possessive –s. In sections 5.1 and 5.4 we provide more information regarding the controlled data elicitation method used in our project.
3.3 L2 influence on L3 acquisition

At the beginning of this chapter we stated that we aim to review the major studies previously conducted in relation to every study of our project. Therefore, in section 3.1 we outlined the outcomes of some major MO studies and in section 3.2 we described the main characteristics of learner corpora emphasizing its importance as an instrument for SLA research. In the same line of thought, we have decided to devote the last section of chapter 3 to the review of the major findings regarding the influence of any previously learnt language on the acquisition of a new foreign language. As pointed out at the end of chapter 2, the last study of our project regards the influence of L2 English on the acquisition of the expression of possession in L3 German. Our initial idea was to check the accuracy rates of the synthetic possessive forms in German by learners of German as a foreign language and then compare it to the corresponding accuracy rates of the possessive –s by L2 learners of English. However, the results of our study indicated a possible influence of the English system of possession on the acquisition of the German expression of possession in those subjects that had learnt English as an L2 and were currently learning German as an L3. On these grounds we decided to investigate further on the effects of L2 on L3 acquisition. Therefore we would like to provide more information in relation to this area of research before proceeding with the presentation and analysis of our corresponding findings (section 6.3). In the present section we will present some previously conducted studies in this field as well as the three major explanatory models that have been put forth.

The influence that second or other background languages exert on the acquisition of a new target language is a very recent area of research. However, various studies have been conducted up to now, which have prompted the formulation of three major relevant models: the Cumulative Enhancement Model (CEM) (Flynn et al.,
The Typological Primacy Model (TPM) (Rothman, 2010) and the L2 Status Factor Hypothesis (LSFH) (Bardel and Falk, 2007).

The CEM (Flynn et al., 2004) suggests that all previously learnt languages can influence L3 acquisition. It claims that in principle the L1 is the primary source of transfer. The L2 will have an influential role only if the feature in scope (i.e. the feature to be acquired) is not present in the L1. This model takes only syntactic overlap into consideration, that is, transfer is seen as a facilitating factor in TL acquisition. Hence the CEM suggests that language acquisition is a cumulative process according to which the learner can decide to use not only one, but all, previously acquired languages in L3 acquisition.

The TPM (Rothman, 2010) suggests that (psycho)typology determines whether the L1 or the L2 will be transferred in L3 acquisition. The term (psycho)typology can refer either to the proximity of the languages involved based on genetic relatedness, to a typological similarity of a particular structure, or to the learner’s perception regarding languages’ similarity. If a learner perceives the one or the other language to be “closer” to the L3, this particular language will be transferred. The difference between this hypothesis and the CEM is that the former recognises the possibility of non target-like use structures resulting from this transfer process, whereas, the CEM, as we said, assumes that the transfer is facilitating.

The LSFH (Bardel and Falk, 2007) claims that in an L3 acquisition process the primary source of transfer is always the L2 regardless of the similarity, actual or assumed, between the L2 and the L3. The L2 status hypothesis is based on the study conducted by Williams and Hammarberg (1998) regarding L3 acquisition of the lexicon. They claimed that there is a general tendency to activate a previously learnt language, rather than to activate the L1 in the acquisition of a third, which they called L2 status factor. In 2007 Bardel and Falk conducted a
study in which they found that Williams and Hammarberg’s observations in SLA coincided with their findings regarding the acquisition of L3 syntax and thence proposed the LSFH as an explanatory factor to the findings.

These hypotheses emerged as a response to the findings of various studies that revealed an L2 influence on the acquisition of an L3. The first of these studies focused mainly on lexical transfer (e.g. Hammarberg, 1998) but then the scholars’ interest extended to the syntax as well. Some of the major studies of syntactic transfer are outlined below.

The first study that looked on the acquisition of L3 syntax was that conducted by Zobl (1992). In this study Zobl found that multilinguals have broader, in the sense on non-restrictive, IL grammars than monolinguals. In the judgement tests he made he found that multilinguals accept more marked constructions and ungrammatical sentences, since they are being less restrictive in a new language.

Klein (1995) conducted a relevant study in which she tried to address the question of whether multilinguals are different to monolinguals in foreign language acquisition. She investigated the acquisition of English verbs and their prepositional complements as well as the acquisition of preposition stranding. In relation to this she compared a group of 17 L2 English learners with a group of multilingual L3/L4 English learners with various language backgrounds. She also used a group of 15 native speakers of English as a control group. This study confirmed Klein’s initial hypothesis that multilinguals would acquire the preposition stranding structure faster, even though a similar structure did not exist in their L1 or their L2. This finding hence suggests that multilinguals are probably going through a less conservative learning procedure benefiting from their higher metalinguistic awareness. As Klein (1995) said, multilinguals have an “enhanced lexical knowledge which may help
to trigger parameter-setting and this propels Mls [multilinguals] further along the path of acquisition” (p.450).

Dentler (2000) also studied the acquisition of L3 syntax. She investigated the impact of L2 syntax in L3 German by focusing on the production of German main clauses by L1 Swedish and L2 English speakers. Her study’s results show that the participants did not apply the V2 rule correctly in L3 German, although this is a feature that German shares with the participants’ L1 but not with their L2. Dentler (2000) did not explain this phenomenon on the basis of L2 transfer but she rather sees it as an indication of a certain acquisition order followed by all subjects confirming thus Pienemann’s (1998) Processability Theory. This, however, does not imply that her study’s results do not indicate an L2 transfer.

Flynn et al. (2004) presented a study of the acquisition of relative clauses by L2 English learners with different L1, Spanish and Japanese chosen precisely due to the typological distance that characterises these two native languages. Spanish is a head-initial language and in that sense it is similar to English. Japanese, on the other hand, is a head-final language. Their findings showed that L1 Japanese learners of English performed better than L1 Spanish learners of English. The scholars thence claimed that "both 'determining' and experience with the consequences of the parametric value of this grammatical principle is necessary in acquisition in terms of the development of a language-specific grammar” (Flynn et al. 2004:8). That is, they argue that Japanese L1 speakers act just like monolingual English children. Since they have no previous experience with head-initial languages, they only have to set the correct parametric value for the English L1 or L2. They then compared these findings to others resulting from L3 acquisition studies. They found that “when the L2 is still ‘in progress’, its influence on L3 acquisition is not the same as it is when L2 and L3 are sequential” (Flynn et al., 2004:14).
Indeed, the importance of the TL and the L2 proficiency level has been suggested by other scholars as well. Williams and Hammarberg (1998) showed that high proficiency in the L2 will enable this language to influence the acquisition of a new language. However, low proficiency in a background language has also been claimed to be a factor (De Angelis, 2005b). It is generally assumed that the lower the proficiency level in the TL the more the background languages will exert influences in order to solve communicative problems (Ringbom 1987).

In 2007, Bardel and Falk conducted an empirical study in which they compared two groups of learners’ acquisition of negation placement. They used both longitudinal Swedish data collected in the Netherlands and cross-sectional data collected in Sweden. The L3 Swedish as well as the L3 Dutch learners were at the very initial stage of L3 acquisition. They focused on the negation placement which depends on whether or not the finite verb raises up to the second place in the main clause (the V2 property). One group of learners (the English L2 group) had an L1 with V2 and an L2 without V2, and the other group (the Dutch/German L2 group) had an L1 without V2 and an L2 with V2. They found that the group with the L2 that had the V2 property correctly placed the negation post-verbally from the very initial stages.
4 Research Questions and Hypotheses

Our study is divided in three main parts according to the language at issue and the principal data elicitation method used. We should, therefore, formulate separately our hypotheses and questions that relate to each of these studies. First, we will present the research questions for the acquisition of morphology in a corpus of L2 English collected in an EFL secondary school (study 1). Then, we will focus on a particular morpheme: the expression of possession L2 English via the genitive –s morpheme vs. the analytic PP structure (study 2) and in L3 German via the genitive –s morpheme, the genitive case and the analytic PP structure (study 3).

4.1 Study I: MOS and Learner Corpus in L2 English

Q1. Our first question concerns the proficiency as an explanatory factor for the observed development of morphology in L2 English, that is, whether low and high proficient learners will display different accuracy orders as previous studies have shown (Muñoz, 2006).

Our first hypothesis is that accuracy does not imply acquisition of the corresponding functor. Evidence from different studies proves that some functors’ development does not display a linear evolution and hence accuracy at one stage does not imply that the same accuracy rates will be obtained in subsequent stages. That is, accuracy does not equate acquisition. If grouping our subjects according to their level of proficiency enables us to observe more phenomena of the acquisition process as Ellis and Barkhuizen (2005) have argued, then we will be able to study the different developmental stages of certain
morphemes (such as the regular past and the irregular past) and thus confirm that we should not assume acquisition has taken place on grounds of the accuracy rates achieved.

Our second hypothesis is that the accuracy orders will display a similar route for all proficiency levels. In relation to this we also argue that our findings will correlate with other EFL findings.

Q2. The second question we wish to answer through the analysis of our learner corpus from a MO perspective is whether Hawkins’ (2001) pattern bearing on the difficulty of the morphemes can stand as an explanatory model of our study’s findings. Therefore, as we will see in a subsequent section (5.4.4) we also organized our morphemes in verb-related and noun-related classes. Regarding this question we will be examining only the verb-related functors.

Our third hypothesis, therefore, is that the accuracy orders revealed in our study regarding the verb-related functors will have a pattern similar to the one suggested by Hawkins (2001) and Andersen (1978). In that vein, the development of the verb-related morphology in L2 English will depend on the difficulty of the underlying grammatical structures of each morpheme. However, we do expect to find some variation within the aforementioned sequence among our groups in accordance with our first hypothesis that regards the subjects’ proficiency level. We furthermore argue that this deviation from Hawkins’ developmental pattern will appear in relation to the past tense morphemes, that is, it will be influenced by the non-linear development that their acquisition exhibits. See section 3.1.3 for a discussion on this issue.

6 A presentation and brief analysis of this pattern is presented in section 3.1.2.
4.2 Study II: Genitive -s in L2 English

Q1. The first question we wish to investigate in this section regards the influence of the data elicitation instrument on the research’s results. In the same line, we will be checking Krashen’s (1978) claim that the instrument influences the results and that the accuracy orders displayed in each case will be different according to whether the data come from naturally produced (corpus) or experimentally elicited language. Therefore we will compare the accuracy rates of the possessive -s obtained by the subjects that participated in our picture composition task (corpus) on the one hand and in the sentence transformation task (experiment) on the other. In this respect we will be using the SOC scores since it is acquisition we wish to check and hence we have to include both the TLU and the NTLU instances. Note that we do not calculate the SOC according to Brown’s model, i.e. based only on the OC. More details regarding the model adopted in this study in order to calculate the accuracy rates is presented in the following chapter (section 5.4.5). When investigating the frequency, on the other hand, we shall compare the TLU and the NTLU scores in order to isolate and thus separate the use of the inflectional (TLU) and the periphrastic (NTLU) possession forms. We analyse in detail our tagging schemes for each of our three studies in chapter 5. Although our scoring model is structured on the basis of the TLU model, we call the total accuracy scores SOC instead of TLU in order to distinguish between the total accuracy rates, which contain both the TLU and the NTLU cases, and the actual TLU instances. Both the SOC and the TLU are used in comparisons in the analysis of the accuracy rates and the frequency of use respectively.

Our first hypothesis stems directly from our first question and regards the actual influence of the data collection instrument on the accuracy rates of the possessive -s. Following Krashen’s idea that experimentally elicited data reflect the learnt but not necessarily the acquired knowledge, we expect to find that the possessive -s has been
more accurately used in our sentence transformation (experiment) than in the picture description (corpus) task.

Our second hypothesis refers to the relative frequency of the possessive -s in English. We believe that our L2 English learners will show a clear preference towards the use of the periphrastic form confirming thus the findings of previous MOS (Bailey et al., 1974; Larsen-Freeman, 1975; Rosansky, 1976) that rank the inflectional form among the last functors to be acquired.

4.3 Study III: Possessive structures in L3 German

Q1. The main question of this study contemplates the relative frequency of each of the possessive forms (i.e., periphrastic as well as inflectional) in our L3 German learners’ language. In the same line we wish to compare the corresponding results with the ones obtained for our L2 English learners.

In relation to our previously posed question we cannot form a hypothesis. MO studies previously conducted bearing on the acquisition of L2 English morphology claim that the route is similar regardless of the subject’s L1 (see section 3.1.2). However, research on the acquisition of the possessive construction in German/Dutch by L2 learners claim that in initial stages students tend to rely on their L1 expression of possession (Van de Craats et al., 2000; Matteini, 2007; Matteini, 2009).

Therefore, our hypothesis for this study regards only the effect that the subjects’ L2 exerts on their acquisition of the L3. In keeping with previous studies on this field (see section 3.3 for more details) our hypothesis predicts that L3 German acquisition is influenced by the learners’ L2 English, especially in initial proficiency levels.

7 Please note that the comparison is possible due to the similarities between the German and the Dutch systems of expressing possession.
5 The empirical studies

In this chapter we present the details of our empirical studies. In keeping with the perceived importance of the methodology we have decided to begin by introducing the two methods that we have adopted in this paper. Initially we provide information about the various types of method available. Then we discuss our own methodological options on which we dedicate two separate sub-sections (5.1.1 and 5.1.2).

In section 5.2 we analyse our subjects' composition first according to the educational institution in which they learn the TL (i.e., either English or German) and then in terms of their proficiency level.

The following section of this chapter regards the materials used in our empirical studies. In order to achieve clarity in their presentation we have decided to create one sub-section for each of the data elicitation instruments. In the same line, sub-section 5.3.1 refers to the format we used in order to create a learner's profile including thus useful information such as mother tongue, time of exposure to the TL, other FL spoken, etc. In sub-section 5.3.2 we present the placement tests used for the classification of our subjects' proficiency level in both English and German. In the final two sub-sections we describe and analyse the compilation of both our picture description task (corpus) and our sentence transformation task (experiment).

The final section of chapter 5 relates the actual procedures followed for the three studies of our project. Accordingly, we describe how we proceeded with the collection (5.4.1) and the transcription (5.4.2) of our data. After completing these stages we processed our data using an editorial tagging scheme which we present in sub-section 5.4.3. The actual tagging of the morphemes at issue is presented in the following sub-section
(5.4.4) Note that within this sub-section we distinguish three parts in keeping with the three studies of our project. Accordingly, each of these parts contains the detailed description of the tagging scheme that corresponds to every study. Finally, in sub-section 5.4.5 we introduce the calculation model used for the scoring of our data.

5.1 Method

First we should mention that our study is cross-sectional and that it focuses on the accuracy order of nine functors presented in sub-section 5.4.4 as well as on the relative frequency of the functors that relate to the expression of possession in both English and German.

In order to obtain samples of language from L2 learners, researchers can use different methods. Learner language production varies due to both internal and external factors. Research has shown that the order of acquisition of different grammatical structures can vary according to the kind of task used to elicit learners’ language. Although some of the first MO studies reached similar conclusions regardless of the method used (see section 3.1), other studies support the hypothesis that the outcomes regarding the accuracy of use are influenced by the elicitation instrument. Indeed, Ellis (1987) found that the accuracy order of two past tense morphemes varied depending on how the data were collected.

In keeping with the perceived relationship between elicitation task and learner language we can distinguish three types of learner language samples corresponding to the three principal methods for collecting data.

The first method is the least controlled one and consists of obtaining samples of language produced in a real-life situation in order to satisfy some communicative need. The other two methods involve elicitation that, following Corder (1976), can
be distinguished in clinical and experimental. Figure 4 displays the three types of learner language.

![Figure 4: Three types of sample of learner language (from Ellis and Barkhuizen, 2005:23)](image)

The difference between clinical and experimental elicitation “matches the distinction between task and exercise”. (Ellis & Barkhuizen, 2005:23) Corder (1976) argued that the clinical elicitation is suitable for those studies that do not have a previously well-formed hypothesis and therefore intends to gather data of any sort from the participants. Experimental elicitation, on the other hand, is highly controlled because the researcher wishes to check the usage of a specific linguistic form. Experimentally elicited samples result in a constrained constructed response (Norris & Ortega, 2001), that is to say, in a short L2 segment.

In our case study we have opted for the use of two methods, ranging from less control (picture composition task: corpus) to more control (sentence transformation task: experiment). In the following sections (5.1.1 & 5.1.2) we provide a detailed description of the aforementioned methodologies.

5.1.1 Picture composition task (corpus)

The first method used was a picture composition task which represents clinical elicitation and enabled us to compile our own learner corpus. In fact, picture composition task is very close to naturally occurring samples of language. The only
difference between them is that the former is collected specifically for the purpose of the research. Additionally, picture composition tasks aim to the elicitation of a general, rather than a focused, sample of learner language. This further distinction is very important since the “learner’s orientation to the elicitation task can have a profound effect on the language used” (Ellis and Barkhuizen, 2005:31).

The process we followed was to show the learners the picture composition (see Appendix 9.4) and ask them to write the story in their own words while they were in class. That is to say, our corpus did not result from a take-home composition task as we wanted the language used to be as authentic as possible. Students were allowed 30-45 minutes to complete the task and were provided with the entire series of pictures along with a reduced word-list that included mainly nouns they may not know. Our decision to give our subjects plenty of time is justified by the fact that we did not want them to feel stressed which would obstruct their concentration and probably distort their language. On the other hand, our choice to give learners a reduced list of relevant words was based on our previous decision in relation to the nature of the elicitation task. That is, the task should not be cognitively demanding in order to facilitate the production of authentic learner language. By giving our subjects a list of words we may have influenced the authenticity of the learner language but only in terms of lexical items, which obviously does not influence our research that focuses on functors.

5.1.2 Sentence transformation task

The second method was a controlled task, namely, a sentence transformation task intending to elicit the use of possessive -s in the case of L2 English learners and the equivalent synthetic forms for the expression of possession in the case of L3 German learners. Ellis & Barkhuizen (2005:37) include this type of experimental elicitation in the so-called discrete-points tests with the traditional language exercise format.
Our decision to use two methods one of which is very controlled is justified by the fact that the possessive \textit{-s} is not easily elicited in naturally occurring samples. Additionally, it allowed us to check Krashen’s argument that discrete-point tests trigger the learners’ \textit{formal linguistic knowledge} that results from the L2 learning process. If Krashen was correct, then the accuracy rates for the possessive \textit{-s} will be different, and indeed significantly higher, from those found in our corpus analysis. Since the latter is authentic and thus to a high degree spontaneous language, it should show a morpheme accuracy order determined by unconscious acquisition as Krashen (1978) has argued.

\textbf{5.2 Subjects}

As we mentioned before, our study is cross-sectional and, as such, it includes a large number of subjects. For both parts of our study a total of \textbf{400 examples of learner language} were collected.

For the compilation of our learner corpus a total of \textbf{95 secondary education students} from the High School \textit{IES Pedro Soto de Rojas} (Granada, Spain) participated in the study.

In the second part of our study consisting of the experimentally elicited data a total of \textbf{305 FL learners} took part. Out of the total of 305 students \textbf{256} were \textit{secondary education students} from the High School \textit{IES Pedro Soto de Rojas} (Granada, Spain) and had \textit{English} as a foreign language whereas \textbf{7}, also \textit{secondary education}, students were learning \textit{German} as an L3 at the High School \textit{IES Padre Suarez} (Granada, Spain). Due to the scarcity of L3 German learners, we also used samples collected from the language centre \textit{Centro de Lenguas Modernas} (CLM) in Granada, Spain. Therefore, \textbf{42} subjects were \textbf{not secondary education} students. This, however, did not influence our study since we grouped our subjects not according to age but on the basis of their proficiency level which was determined by means of proficiency tests. The process is fully explained in section
5.3.2 and our L3 German learners’ classification in terms of proficiency level is presented in table 6.

Additionally, a learner’s profile was administered. It included information regarding age, gender, L1, proficiency level, etc. following the example that we provide in Appendix 9.1, has been compiled for all our subjects.

The participants were all volunteers who were informed about the objectives of the study from the very beginning.

Table 6 shows the composition of our subjects in terms of their proficiency level in L2 English. We then supply a chart of the aforementioned subjects’ synthesis in Figure 5. As we can see the majority of the subjects in both parts of our research project (always in relation to L2 English) have a pre-intermediate or an intermediate level. Only few have reached the upper-intermediate level whereas just a minority is still at the elementary level. We should also mention that the age range of our L2 English learners was 11-18 years. In terms of educational level we included students from the 2ºESO to 1ºBachillerato.

<table>
<thead>
<tr>
<th></th>
<th>Learner Corpus</th>
<th>Experimentally Elicited Data: Possessive -s</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementary</td>
<td>5</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>Pre-Intermediate</td>
<td>43</td>
<td>106</td>
<td>149</td>
</tr>
<tr>
<td>Intermediate</td>
<td>39</td>
<td>101</td>
<td>140</td>
</tr>
<tr>
<td>Upper-Intermediate</td>
<td>8</td>
<td>31</td>
<td>39</td>
</tr>
</tbody>
</table>

Table 6: Distribution of L2 English subjects
Table 7 shows our subjects’ distribution according to their proficiency level in L3 German. The chart of the same is presented in Figure 6, where we can observe that the majority of our subjects are at the elementary level. The pre-intermediate and the intermediate levels have almost the same number of students. Finally, we have managed to find only a few students at the upper-intermediate level. We would like to underline that, although some of our subjects come from a high school whereas the rest come from a language centre, a comparison of the final data is possible because in both cases the learning environment is instructional.

<table>
<thead>
<tr>
<th></th>
<th>IES Padre Suarez</th>
<th>CLM</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementary</td>
<td>3</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>Pre-Intermediate</td>
<td>4</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>Intermediate</td>
<td>0</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Upper-Intermediate</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 7: Distribution of subjects in L3 German
Figure 6: Distribution of the number of subjects per proficiency level in L3 German

Finally Table 8 and Figure 7 show the distribution of our subjects according to their proficiency level in both L2 English and L3 German.

<table>
<thead>
<tr>
<th>Subjects' Composition L2 English & L3 German</th>
<th>German</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementary</td>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td>Pre-Intermediate</td>
<td>13</td>
<td>149</td>
</tr>
<tr>
<td>Intermediate</td>
<td>12</td>
<td>140</td>
</tr>
<tr>
<td>Upper-Intermediate</td>
<td>4</td>
<td>39</td>
</tr>
</tbody>
</table>

Table 8: Distribution of subjects in L2 English and L3 German

Figure 7: Distribution of our subjects' proficiency level in L2 English and L3 German.
5.3 Materials

In our case study we have used various types of data elicitation instruments.

5.3.1 Questionnaire (learner profile)

Learner language is influenced by a wide variety of linguistic, situational and psycholinguistic factors. Indeed, one of the critiques of the cross-sectional SLA studies is that “there is often no detailed information about the learners themselves and the linguistic environment in which production was elicited” (Gass, 2001:33). In that line of thought, we decided to include additional information regarding our subjects. Although Figure 8 shows the major variables that need to be controlled when compiling a learner corpus as traced by Granger (2008:264), we used it as a guideline for the collection of our experimentally elicited data as well. The underpinning idea of this two-part table is the distinction put forth by Ellis (1994:49) between learner variables and task variables. In our case study we have tried to incorporate as many of these variables as possible by creating a quite detailed learner’s profile based on a questionnaire, a sample of which can be found in Appendix 9.1.

![Figure 8: Learner Corpus Design (from Granger, 2008:264)](image-url)
In the compilation of our **learner profile** we have been based on the **learner variables** as outlined in Figure 8. Indeed, we have included both the General and the TL-specific variables. Our subjects were asked to provide information about their age and **gender**. The variable **region** was not explicitly included in our learner profile since all our subjects were residents of Granada, Spain. Regarding the variable **mother tongue** the students had to explicitly state their mother tongue, their mother’s native language, their father’s mother tongue, as well as the language spoken at home. In relation to the **learning context** and the **exposure to the TL** we asked our subjects to provide all the relevant information in. That is, whether they have been in a country where the TL is spoken (and if yes, where and for how long), if they take part in a bilingual programme (and if yes, since when, for which subjects and how many hours per week), and finally whether they receive additional tuition on the TL or if they do other activities in the TL (e.g. watching films, reading books, etc.). Our subjects were also asked to state whether they speak or not other **foreign languages** and which. Finally, bearing on the subjects’ **proficiency level** not only we conducted a **placement test**, but we also asked our students to give us their opinion regarding their proficiency level in each of the four areas (i.e. listening, reading, speaking and writing).

5.3.2 Placement tests

Granger (2008:264) mentions that of all the L2-specific learner variables, the **proficiency level** is the most important but also the most difficult to establish. Indeed, until now no L2 English learner corpus includes a proficiency test. Even the ICLE created by Granger et al. (see section 3.2) is a corpus that includes data from low advanced L2 English learners. In our learner corpus we have incorporated not only the learner profile described above but also a **proficiency test**. Accordingly, our learner corpus contains four sub-corpora according to the proficiency level (ranging from elementary to upper-intermediate).
We would like to emphasize that our decision to test our subjects’ proficiency level helped us overcome the inconsistency provoked by the fact that “one researcher’s advanced category may correspond to another’s intermediate category” (Gass, 2001:37). Additionally, it allowed us to classify the subjects into different groups according to their level of proficiency and thus observe other phenomena within the SLA process such as the **U-shape developmental pattern** that certain morphemes present.

Our subjects’ proficiency level was decided on grounds of each student’s results on a placement test that we distributed before proceeding with the elicitation process.

In relation to **L2 English placement test**, we used the written placement test of the English Unlimited Test published by Cambridge University Press in 2010. This consists of 120 multiple-choice questions, 20 at each level from Starter to Advanced (covering CEF levels A1 to C1). We used the first 100 questions since it was a test given out to secondary education students, that is, we excluded CEF level C1. However, no student reached the upper limits of the upper-intermediate level. Students were asked to start at the beginning of the written test and stop when the questions became too difficult. We allowed 45 minutes for the test. A sample of the adapted placement test along with the teacher’s guide can be found in Appendix 9.2.

Let us consider now the **L3 German proficiency test**. In order to check the proficiency level in German of the secondary education students of the High School “IES Padre Suarez” we adapted the placement test provided by the centre of modern languages (Escuela Oficial de Idiomas) in the Basque Country. Following the guidelines given out by the Escuela Oficial de Idiomas (henceforth EOI) we considered that a proficiency level was reached when the student had made at least 19 correct choices out of the 24 for each level. In keeping with our decision to conduct only a written test in English we excluded the reading
part that was originally found in the placement test of the aforementioned centre of modern languages. A sample of this can be found in Appendix 9.3. We did not apply that test to the students of the language centre Centro de Lenguas Modernas in Granada since the subjects are already grouped on the basis of a placement test compiled according to the Common European Framework of Reference for Languages (CEFR) by the Centro de Lenguas Modernas (henceforth CLM) in Granada. Although our L3 German subjects’ proficiency level is defined on the basis of two different tests we consider that their classification is comparable and hence reliable for two reasons. First because the placement test of the EOI that we used with the students of the High School IES Padre Suarez and the placement test used by the CLM are compiled on the basis of the CEFR guidelines and thus share a common theoretical framework. Second because both the EOI and the CLM are certified FL examination centres.

5.3.3 Corpus (Picture Description Task)

According to Corder (1976), clinical elicitation suits best a generally formed hypothesis. Since our first aim is to check the accuracy order that previous L2 morpheme acquisition studies have put forth, we considered a clinically elicited language sample to be the most adequate option. As described in sub-section 5.1.1, our corpus was compiled on the basis of a picture composition task a sample of which can be found in Appendix 9.4. This sample is an adaptation of the elicitation task titled “Frog, where are you?” originally created by Mayer (1969). We decided to use a version of this picture composition task mainly because it has been used in other learner corpus based studies (e.g. CHILDES), as well as in one of the key studies on morpheme acquisition in L2 English (Muñoz 2006), which we reviewed above (sub-section 3.1.2).

Up to this point we have presented various reasons that support the usefulness of learner corpora even when they consist of raw data, that is to say, learner language with no added linguistic annotation. However, it is even more useful when it contains
extra information. **Annotation**, both grammatical and error, is a highly challenging and time-consuming process and hence researchers may choose to use the ready-made annotating tools. However, as Granger (2008) points out, these tools have been created on the basis of L1 corpora and “[…] there is no guarantee that they will perform as accurately when confronted with learner data” (p.265). In our attempt to deliver as reliable data as possible we have done all the grammatical annotation **manually**. The process is described in sub-section 5.4.4 where we outline the procedures of the present study.

5.3.4 Experimentally elicited language (Sentence Transformation Task)

The second question we wished to give answer to regards the so-called **Anglo-Saxon genitive**. Most previous studies have placed its accurate use, and thus assumed acquisition, at very low levels. We wanted to check the validity of this previously given position and also compare it to the expression of the genitive by means of the inflectional possession structures in another West Germanic language, namely in German.

Since the **elicitation** of the possessive -s is very **difficult** and we could not assure its use in our corpus, we decided to use an **experimental elicitation** as well. This instrument consists of 6 sentences that the students should transform in order to express possession. Note that in the given sentences the possession was expressed by means of the **possessive pronouns**. We used the **sentence transformation test** instead of the fill-in-the-blank questions that have been used in the study conducted by Wagner (2005) regarding the acquisition of the possessive -s because we considered that the latter actually leads the learner to use either the possessive -s or nothing. But it does not give the subject the option of selection between the synthetic form, i.e. the possessive -s, and the analytic form, that is, the **prepositional phrase** (introduced by the preposition of). We considered that the learner’s choice between these two forms is significant in terms of acquisition of the inflectional
possessive form. We used the same sentences in both English and German. A sample of them can be found in Appendix 9.5.

Furthermore, the combination of both clinically and experimentally elicited data gave us some insight regarding the influence of the instrument on the results of morpheme studies and thus a way to check Krashen’s hypothesis in relation to the elicitation of learned vs. acquired L2 knowledge. Note that this combination is justified since it has been recently argued that combining corpus and experimental data always provides better insights into the nature of interlanguage grammars (Gilquin & Gries 2009; Lozano & Mendikoetxea, forthcoming 2013; Mendikoetxea & Lozano, forthcoming 2013).

5.4 Procedure

5.4.1 Data collection

First we asked the subjects of our study to complete the learner profile. The following step was to carry out the placement tests which we then corrected and scored according to the guidelines of their creators as explained in section 5.3.2 and exemplified in Appendices 9.2 & 9.3. At the same time we asked the learners to complete the sentence transformation task. Then we did the picture composition task (corpus) for 95 secondary education students (from 2º ESO to 1º Bachillerato).

5.4.2 Transcription

After having collected the data, we typed each sentence transformation test and each composition in plain text format in order to avoid automatic corrections of the students’ errors that “Word documents” usually perform. A sample of a transcribed file can be found in Appendix 9.6. In the same text we also included all the learner variables (see section 5.3.1), that is, the information found in the learner’s profile regarding age, nationality, L1, etc. as well as the subject’s proficiency level according to the placement test. Appendices 9.7.1, 9.7.2 and 9.7.3 contain examples of transcribed files that we then used to
compile our learner corpus and our sentence transformation task database for both English and German.

5.4.3 Tagging (editorial tagging scheme)

An editorial tagging scheme was used to code the learners’ editions of their own writing. That is, we also coded rewritten material whether legible or illegible. In the first case we used the code $_RWR_ (the rewritten element). In the second case the code was $_RWU_¿. The tagging scheme for the learner’s corrections is shown in Appendix 9.9. Table 9 shows the data that we included in each transcribed file name along with an example. From this the researcher can obtain information regarding the proficiency level that the specific student obtained in the placement test, the course in which the subject is at the moment of the data collection, the subject’s age, the researcher’s identification and the subject’s initial. Accordingly, in our example below we can immediately see that our subject is at the upper-intermediate level, attends the 4ESO course and is 15 years old.

<table>
<thead>
<tr>
<th>PlacementTest_Course_Age_Institution_Researcher’s initials_student’s initials.txt</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2_4ESO_15_PSR_EAT_IAC.txt</td>
</tr>
</tbody>
</table>

Table 9: Transcribed file name

5.4.4 Tagging: morphemes

After having transcribed all the texts, we used the UAM Corpus Tool software in order to code the data, i.e., to tag the morphemes. An example of the UAM Corpus Tool can be found in Appendix 9.8. In relation to the learner corpus we should mention that we tagged a set of morphemes based on the list found in previous morpheme studies. Table 10 presents the list of the morphemes investigated in the present study.
Based on one of the first MOS’ critiques regarding the shortcomings of the SOC method, we decided to include in our tagging scheme not only the SOC (Suppliance in Obligatory Context) but also the SNOC (Suppliance in Non-Obligatory Context). Therefore both the Target-Like Use and the Non-Target-Like Use of each of the aforementioned morphemes have been examined. That enabled us to account also for the cases of incorrect use of the morphemes by the learners (that is, underuse, misuse and overuse, whose differences will be explained later) and thus trace a more complete picture of the actual accuracy rates. Our analysis of the subjects’ performance in relation to the nine morphemes shown in Table 10 involved the following steps:

1. Identification of the obligatory contexts for the use of each of these morphemes and
2. identification of the cases of target-like-use and non-target-like-use of each morpheme for each learner.

Part I: Tagging scheme in the MOS Learner Corpus

In Table 11 we present the tagging scheme in UAM Corpus Tool for progressive -ing as used in the MO study. Following this pattern, the use of a morpheme can be classified as either target-like, which corresponds to Brown’s (1973) idea of suppliance in

| past reg: past_reg |
| past irreg: past_irreg |
| 3rd sing -s: 3sg |
| prog -ing: ing |
| copula BE: be_cop |
| aux BE: be_aux |
| plural: plu |
| art (a/the): art |
| possessive: pos |

V-related

N-related

obligatory contexts, or **non-target-like**. Within the latter we further distinguish between **underuse**, that corresponds to the lack of suppliance, **misuse**, which may be a **misselection** (the use of an incorrect morpheme instead of the target morpheme in the obligatory context) or a **misrealisation** (the erroneous realisation of the morpheme required in a obligatory context), and **overuse**, which corresponds to what is also known as SNOC (suppliance in non-obligatory context). Through this scheme we could trace a more complete and hence more accurate image of each learner’s interlanguage. The aforementioned categories are exemplified for **progressive -ing** in Table 12. Examples of the tagging scheme described above for each of the investigated morphemes can be found in Appendix 9.10.

<table>
<thead>
<tr>
<th>OC: Progr. -ing (She is reading)</th>
<th>S: Supplied form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target-like Use (TLU)</td>
<td>She is reading</td>
</tr>
<tr>
<td>(correct form supplied)</td>
<td></td>
</tr>
<tr>
<td>Non-target-like Use</td>
<td>Underuse</td>
</tr>
<tr>
<td></td>
<td>(no form supplied)</td>
</tr>
<tr>
<td>Misuse</td>
<td>Misselection</td>
</tr>
<tr>
<td></td>
<td>(form exists)</td>
</tr>
<tr>
<td>Misrealisation</td>
<td>(form doesn’t exist)</td>
</tr>
</tbody>
</table>

Table 11: Tagset for UAM Corpus Tool_MOS

<table>
<thead>
<tr>
<th>OC: 3rd Sing (She reads a lot)</th>
<th>SNOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overuse</td>
<td></td>
</tr>
<tr>
<td>(correct form supplied in NOC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>She reading a lot.</td>
</tr>
</tbody>
</table>

Table 12: Tagging scheme for progressive -ing
The data elicited through the sentence transformation task were also introduced in the UAM Corpus Tool in which we tagged it according to the rationale presented below.

Part II: Tagging scheme in the Possession Expression and the Experimentally Elicited Data in L2 English

All the cases that require a possession construction were considered as obligatory contexts (OC). This in English can be expressed by means of both the possessive -s and the prepositional phrase introduced by the preposition 'of' (see discussion in section 2.2.1).

We decided to use the UAM tool for the tagging of the possessive -s for our experimentally elicited data as well. Although the latter do not present a corpus, we opted for the use of the corpus-software for various reasons. First and foremost, because we decided to maintain the formatting and thus facilitate the process of the tagging and the analysis for the researcher. Second, because it allowed us to introduce the additional data from the learner profile and create a separate file for each student but within the same project. Finally, because the UAM Corpus Tool gives the researcher the opportunity to add extra tagging schemes at any time and thus investigate other aspects and then contrast the elements studied.

For the purposes of our study we called TLU the use of the possessive -s and “NTLU: misuse: misselection” the use of the prepositional phrase. This decision is justified by the fact that we investigate the accuracy rates for the possessive -s only and not for the possession construction in general. Hence if the use of the possessive -s is the TLU then anything else should be classified as NTLU. We specifically tagged the PP as “NTLU: misuse: misselection” so that we could also take into consideration the accuracy rates of the PP. We wish to clarify that our tagging scheme does not imply that the students have not acquired the possession construction in English. It rather indicates the preference of our subjects towards the use of
either the analytic (PP) or the synthetic (pos. -s) form of the attributive construction.

In Table 13 we present the tagging scheme used for the tagging of the possessive -s in our L2 English collected by means of the sentence transformation task (experiment). Note that each of the categories that appear in it is illustrated in the examples presented in Table 14.

<table>
<thead>
<tr>
<th>OC: Possessive -s (My father’s car)</th>
<th>S: Supplied form</th>
</tr>
</thead>
</table>
| **Target-like Use**
(correct form supplied) | My father’s car |
| **Non-target-like Use**
(no form supplied) | Blank |
| **Underuse**
(no form supplied) | No ‘/’s |
| | The boys’ shoes. |
| | My father’s car. |
| **Misuse**
(incorrect form supplied) | Misselection
(form exists) |
| | The car of my father. |
| **Misrealisation**
(form does not exist) | Misrealisation
(form does not exist) |
| | The boys’ shoes. |
| **Wrong-unclassified**
(no form supplied) | |
| | The shoes boys. |

Table 14: Morpheme tagging scheme for the expression of possession in L2 English
Part III: Tagging scheme in the Possession Expression and the Experimentally Elicited Data in L3 German

In keeping with our choice regarding the tagging scheme in English, we decided to call TLU the use of the synthetic possessive forms in German. That is, both the possessive -s and the genitive case have been tagged as TLU. Our tagging scheme is presented in table 15 below. Accordingly, each of the tagging categories included is exemplified in table 16. The NTLU is further divided into three categories. We called the first underuse to follow the model we used in our learner corpus study. This category marks the lack of use of any possession construction, either synthetic or analytic, in the identified OC. Under the label misuse we have distinguished three subcategories.

(i) The first is called misselection and includes, just like in the case of L2 English, the use of the PP instead of the genitive case. But in German, as we mentioned in section 2.2.2, the use of one of the three forms of attributive possession has specific structural constraints. Therefore, in German, unlike English, we recognise yet another case of misselection, that is, the ungrammatical use of the possessive -s in the cases where a PP or a genitive case is required. The same label (i.e., NTLU: misuse: misselection: possessive -s) has been attributed also to the cases where the learner has opted for the PR>PM instead of the PM>PR order (see section 2.2.2 for the significance of these orders in the possession system of German), even if the student has not added the suffix “-s”.

(ii) The second subcategory of misuse includes the two cases of misrealisation, that is the wrong realisation of the possessive -s in German (i.e., -’s) and the wrong genitive form.

(iii) The last subcategory of misuse was called wrong-unclassified and includes some exceptional cases that do not fit any other tag.
The final category of the NTLU is called **overuse** (also known as **SNOC**), that contains the cases of correct use of the possession construction in incorrect contexts.

Table 15 presents the tagging scheme in UAM Corpus Tool for the possession in L3 German. As mentioned above, each of the categories is exemplified in Table 16.

<table>
<thead>
<tr>
<th>OC: Possessive -s (My father’s car)</th>
<th>S: Supplied form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target-like Use (correct form supplied)</td>
<td>-s-possessor construction</td>
</tr>
<tr>
<td>-s-possessor construction</td>
<td>Marias Schwester</td>
</tr>
<tr>
<td>Lit: Maria’s sister.nom</td>
<td></td>
</tr>
<tr>
<td>Genitive case</td>
<td>Der Computer der Frau</td>
</tr>
<tr>
<td>Lit: The.nom computer.nom the.gen woman.gen</td>
<td></td>
</tr>
<tr>
<td>Non-target-like Use</td>
<td>Underuse (no form supplied)</td>
</tr>
<tr>
<td>Blank</td>
<td>Maria Schwester.</td>
</tr>
<tr>
<td>Lit: Maria sister.nom</td>
<td></td>
</tr>
<tr>
<td>Misuse (incorrect form supplied)</td>
<td>Misselection (form exists)</td>
</tr>
<tr>
<td>PP</td>
<td>Der Computer von der Frau.</td>
</tr>
<tr>
<td>Lit: The.nom computer.nom of the.dat woman.dat</td>
<td></td>
</tr>
<tr>
<td>Pos -s</td>
<td>Kinders</td>
</tr>
<tr>
<td>Misrealisation</td>
<td>‘s</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>(form does not exist)</td>
<td>Maria’s Schwester.</td>
</tr>
<tr>
<td></td>
<td>Lit: Maria’s sister.nom.</td>
</tr>
</tbody>
</table>

Table 16: Morpheme tagging scheme for the expression of possession in L3 German

5.4.5 Data scoring

In order to score our data we followed the guidelines suggested by both Dulay & Burt (1973) and Pica (1983), that is, we combined the scoring of each suppliance suggested by Dulay and Burt (1973) and the TLU model put forth by Pica (1983). The former implied a weighted scoring according to the following schema:

- **0 points**: No suppliance
 (he walk__ yesterday) (two child__)
- **0.5 points**: Wrong morpheme supplied
 (he walks yesterday) (two childs)
- **1 point**: Correct suppliance
 (he walked yesterday) (two children)
This was used in the calculation of the supply in obligatory context (SOC) and enabled us to include in the accuracy rates the cases of both underuse and misuse. The latter was included because its presence indicates that the student recognises the context as an obligatory one although he/she fails to make the correct choice. In our understanding this implies that the student has initiated the process of acquisition of that particular morpheme and in any case it indicates that his/her interlanguage is undergoing some change, which we consider important to account for.

More specifically, when working with the picture composition task we decided to tag the use of past regular/past irregular or 3rd person singular -s according to the student’s initial choice regarding the use of past or present for the narration of the story. So, if the student started narrating using the present tense and then changed to the past tense, we tagged the use of the past as “NTLU: misuse: misselection”. To illustrate this we present a short extract from our corpus:

FILE_NAME: B1_2ESO_14_PSR_EAT_APL.txt

This story begins $_RWU_¿ at the night $_RWU_¿ in Ben’s house. Ben is seven years old and he has got a frog and a dog. [...] And he decided to find the frog, because he was sad and alone. [...]

In this regard we also find what Muñoz (2006) observed in her study, that is, students “with higher levels of proficiency tended to narrate the story but often mixing tenses” (p.116). This can be seen in the following section where we present the features of the NTLU for past and present for all proficiency levels.

In our attempt to be as accurate as possible we decided to distinguish between the use of the indefinite vs. definite article, although both are included in one category. Therefore, we tag as “NTLU: misuse: misselection” the use of the definite article when the indefinite article should have been provided, and vice versa.
Pica’s (1983:474) proposal refers to the general calculation pattern, also known as TLU (Target-Like Use), which “penalises” the cases of overuse by including them in the denominator.

\[
\text{TLU} = \frac{\text{SOC}}{\text{OC} + \text{SNOC}}
\]

Thence, after having calculated the suppliance of each morpheme in the corresponding obligatory context following Dulay and Burt’s model, we proceeded with calculating the level of target-like use (TLU) for each morpheme. Note that for the purposes of this study we will be calling SOC the final score achieved after having applied the aforementioned calculation processes proposed by Dulay and Burt (1973) and Pica (1983). When we make reference to Brown’s (1973) SOC model that will be always accompanied by Brown’s name. In the same line, we will be using the term TLU when we study the relative frequency of the morpheme at issue and hence the cases of misuse are not included. As described in section 4.2, we have decided to use this distinction because we will be studying accuracy rates in relation to the acquisition process, as well as accuracy rates in relation to the frequency of use in which we cannot include neither the cases of misuse, which are included in the weighted scoring proposed by Dulay and Burt (1973), nor the cases of overuse, which represent the SNOC in Pica’s model.

That is, we ended up with two accuracy indices for measuring the accuracy rates obtained for each morpheme: SOC and TLU. In our study the first is calculated on the basis of the following pattern:

\[
\text{SOC} = \frac{\text{weighted scoring (according to the model of Dulay & Burt)} \times 100}{\text{OC} + \text{SNOC}}
\]
The TLU scores indicate the rates of target-like use instances as defined in our tagging schemes in section 5.4.4. In Appendix 9.11 we present in detail the descriptive statistics for each morpheme in all three studies of our project. The aforementioned accuracy indices, i.e. the SOC and the TLU, are also presented there.

Since we had already grouped our subjects according to their proficiency level, we did not calculate a target-like use score for each student but rather for each level. The same process was then followed for the experimentally elicited data in L2 English as well as in L3 German.
6 Results and Discussion

In this section we will present the outcomes of our study and comment on them. That is, we have decided to present the results together with the discussion so as to facilitate the reader’s task, given that presenting the results for the three studies, plus a separate section with the implications of each study, would be too distracting.

Consequently, we have divided this chapter in three parts according to the instrument used for the data elicitation and the subjects’ L2/L3. In the first part we make reference to the results of our learner corpus study and thence comment on our subjects’ accuracy rates and the corresponding morpheme orders. In the second section we present the results of the possessive –s accuracy rates in L2 English for all proficiency levels. In the final section we present the results of our project that deals with the accuracy rates of each of the three investigated forms of possession constructions in L3 German.

6.1 Morpheme Order Study in L2 English

In order to explore the progression followed by subjects with different proficiency levels, comparisons are made between the accuracy rates obtained by each of the following groups: elementary, pre-intermediate, intermediate and upper-intermediate. Table 17 shows the accuracy rates and the corresponding rank for each morpheme obtained by each proficiency-level group. The accuracy rates are determined on the basis of our SOC formula as described in section 5.4.5 and are thus indicative of the acquisition level for each morpheme obtained by our subjects. Although accuracy does not equate
acquisition, we consider that our accuracy rates can be indicative of the latter because we do take into account the cases of misuse, underuse and overuse. Additionally, since we have calculated the accuracy rates for each proficiency level, we are able to check the acquisition process for those morphemes that do not present a linear developmental pattern. For more details regarding the aforementioned features see our discussion in section 3.1.3. Based on the accuracy rates we have determined the rank that each morpheme occupies in each proficiency level. The rank simply indicates that the accuracy rates obtained for one morpheme by one proficiency group are higher (or lower) than the accuracy rates obtained for another morpheme by the same proficiency group. It is in the same way that Brown (1973) defined the mean order of acquisition of L1 English morphemes presented in Table 4 (section 3.1.1). The same is true for the results of every previously conducted MOS bearing on L2/FL English (section 3.1.2). In our study we have found, for example, that our pre-intermediate group obtained higher accuracy rates for the be_copula morpheme than for the be_auxiliary morpheme. According to the percentages obtained the former is ranked in the first position whereas the second in the seventh (see Table 17 below). Note that whenever a "tie", i.e. two identical values, appeared in the data, a joined rank appears in Table 17. This represents the average of the ranks that they would otherwise occupy. Regarding the information displayed in Table 17, we would like to foreground that the empty slots do not imply absence of data, but rather reflect our decision to exclude the cases where our samples were less than 10 (OC>10) according to the criteria followed in previous studies (Muñoz, 2006; Goldschneider & DeKeyser, 2001), given that a group production of a morpheme lower than 10 is not sufficient data to reach a definite conclusion. Apart from table 17, for a detailed description of the accuracy rates for each morpheme by each of the four proficiency-level groups the reader is referred to Appendix 9.11.1. Note that these are also divided according to the proficiency level of the group studied. Additionally, each
of these descriptions contains a chart of the relation between TLU and NTLU (as defined in section 5.4.4) for every morpheme.

<table>
<thead>
<tr>
<th>FUNCTOR</th>
<th>SOC</th>
<th>Rank</th>
<th>SOC</th>
<th>Rank</th>
<th>SOC</th>
<th>Rank</th>
<th>SOC</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART</td>
<td>63.63</td>
<td>1</td>
<td>84.05</td>
<td>2</td>
<td>91.74</td>
<td>2</td>
<td>96.53</td>
<td>2</td>
</tr>
<tr>
<td>PAST_IRREG</td>
<td>44.44</td>
<td>2</td>
<td>55.27</td>
<td>5</td>
<td>71.29</td>
<td>6</td>
<td>88.8</td>
<td>4,5</td>
</tr>
<tr>
<td>PAST_REG</td>
<td>38.46</td>
<td>3</td>
<td>57.18</td>
<td>4</td>
<td>70.79</td>
<td>7</td>
<td>88.8</td>
<td>4,5</td>
</tr>
<tr>
<td>3SG</td>
<td>5.5</td>
<td>4</td>
<td>21.86</td>
<td>9</td>
<td>17.9</td>
<td>9</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>BE_COP</td>
<td>-</td>
<td>-</td>
<td>92.46</td>
<td>1</td>
<td>95.67</td>
<td>1</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>ING</td>
<td>-</td>
<td>-</td>
<td>46.55</td>
<td>8</td>
<td>82.05</td>
<td>4</td>
<td>94.11</td>
<td>3</td>
</tr>
<tr>
<td>BE_AUX</td>
<td>-</td>
<td>-</td>
<td>47.25</td>
<td>7</td>
<td>79.23</td>
<td>5</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>POS</td>
<td>-</td>
<td>-</td>
<td>48.61</td>
<td>6</td>
<td>58.57</td>
<td>8</td>
<td>54.54</td>
<td>6</td>
</tr>
<tr>
<td>PLU</td>
<td>-</td>
<td>-</td>
<td>67.36</td>
<td>3</td>
<td>86.04</td>
<td>3</td>
<td>84.09</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 17: SOC (accuracy rate) and rank orders for each proficiency level: El (elementary), PI (pre-intermediate), I (intermediate), UI (upper intermediate)

In the above table we can observe how the accuracy order for each morpheme (rank) changes according to the proficiency level. In that respect our study’s results agree with Muñoz’s (2006) findings that confirmed the influence of the proficiency level on the order of acquisition. In order to check Muñoz’s (2006) claim that the accuracy orders of the foreign learners approach the average order “once they have progressed beyond the very elementary levels of proficiency” (p.123), we have compared the ranks achieved by each group to the ones achieved by the sum of all our subjects irrespective of their proficiency level. The results of this comparison are presented in Tables 18(a) and 18(b). The latter displays the SOC and rank orders for each group sorted by functor.

<table>
<thead>
<tr>
<th>FUNCTOR</th>
<th>All groups SOC</th>
<th>All groups Rank</th>
<th>Elem Rank</th>
<th>Pre-Int Rank</th>
<th>Int Rank</th>
<th>Upper-Int Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART</td>
<td>87.6</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>PAST_IRREG</td>
<td>73.7</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>4,5</td>
</tr>
<tr>
<td>PAST_REG</td>
<td>67.81</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>4,5</td>
</tr>
<tr>
<td>3SG</td>
<td>19.96</td>
<td>9</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>
In Table 18(b) we can see that the be-copula morpheme comes first for all groups except for the Elementary Level group for which we had not enough examples and hence excluded it from our study. The article and the 3SG morphemes on the other hand seem to be stable in all groups, including the generic one (i.e., the group in which no distinction on grounds of the subjects' proficiency level was made). Past regular and past irregular appear simultaneously and occupy close positions in all groups. We will consider these two morphemes in detail below, but we wish to make a comment here bearing on the influence of the proficiency level. If we check the ranks occupied by past irregular and past regular in the generic group, we see that the former presents higher accuracy rates. This, however, can be misleading since the regular and the irregular morphology of the past tense in English interchange in a way their positions in
the different proficiency levels as our other groups' rates reveal.

We can, therefore, claim that Tables 18(a) and 18(b) show the influence that the proficiency level exerts on the rank orders. Apart from our comment on the regular past and the irregular past ranks, we can also appreciate that there is a difference between the accuracy rates obtained by all our subjects (i.e., if we do not group them by proficiency level) and the corresponding rates obtained by the proficiency-level groups. Indeed, only the be-copula, the article and the 3SG functors are ranked in similar positions by all proficiency-level groups and by the generic group. Note that although the 3SG morpheme is ranked fourth (4) in our Elementary Group, it is still the morpheme with the least accuracy rates. To that observation we would like to add that there seems to be a high correlation between the average order, as presented by the results of our generic group, and the ones achieved by the more advanced students especially those that belong to the intermediate level. We cannot consider the total number of subjects as an influential factor here, mainly because both the pre-intermediate and the upper-intermediate groups include an equally high number of participants as shown in Table 6 (section 5.2). In that line we can argue that our study confirms Muñoz's claim that the **average order appears beyond the elementary level**.

Perhaps a more interesting conclusion can be reached through the observation of the data shown in Tables 17 & 18 regarding the **U-shape development** of the past irregular morpheme. Obviously, this observation can be made only when the proficiency level is taken into account, proving thus the relevant criticism of the first MO studies right. This, as we already mentioned, was related to the central assumption of Brown's (1973) SOC model that when a morpheme is being accurately used then it is also acquired (see sections 3.1.1 and 3.1.3). In relation to this developmental pattern Ellis and Barkhuizen (2005) say that
when learners acquire English past irregular they frequently pass through an early stage of acquisition where they use some irregular forms correctly only to replace these later on with overgeneralised -ed forms [...] (p.77)

The results of our study yield a similar pattern. Indeed, in the elementary level the SOC percentage of the past regular morpheme is lower than that of the past irregular morpheme. In the following stage (pre-intermediate) the regular morphology surpasses the SOC percentage of the past irregular morpheme, only to fall back to a lower rank in the intermediate level. In the upper-intermediate level the differences are nil; indeed the percentage is exactly the same for both morphemes. The movement we just described can be appreciated in the Figure 9.

![Developmental Patterns: Past_reg & Past_irreg](image)

Figure 9: U-shape movement of the past irregular morpheme as seen by the comparison of the past regular and the past irregular accuracy rates.

Another interesting finding that results from our MOS project regards the morpheme accuracy orders for each proficiency level. We will not call it acquisition, as we just described that accuracy does not necessarily imply acquisition. We shall repeat, however, that the similarities in the route followed can be indicative of the acquisition order at each proficiency level.

8 Note that we refer to the SOC percentages calculated according to our scoring formula which includes Dulay and Burt’s (1973) weighted scoring and uses Pica’s (1983) TLU model. For more details we refer the reader to our section 5.4.5.
since we count with a large number of learner language data (corpus) and we have taken into account features that most of the first MO studies ignored (such as the cases of underuse, misuse and overuse or the subjects’ proficiency level). If we observe the accuracy rates for each of our four groups (i.e. from Elementary to Upper-Intermediate) in Table 17 we can see that there are certain commonalities in the development of the morpheme accuracy orders obtained by each proficiency group. This similar way of development is perhaps easier to appreciate in the chart displayed in Figure 10.

![Figure 10: Accuracy order for each group (note that n ≥ 10)](image)

In the above figure we can appreciate that the development of the morphemes’ accuracy is similar for all four groups. There are differences in the rates obtained but in terms of the route followed the pattern displayed by each group is similar. We wish thus to repeat here the quote by Larsen-Freeman and Long (1991) where they affirmed that the observed similarities can not be ignored since they imply that “There is something moving in the bushes” (p.92).

The only significant differences are to be found in relation to the past irregular and the past regular morphemes on one hand and the progressive -ing and be auxiliary morphemes on the other. The former is explained by the U-shape developmental pattern as described above. The latter, however, requires our attention. In
relation to the progressive -ing and the be_auxiliary morphemes we only have data for the three more advanced groups, that is, the pre-intermediate (PI), the intermediate (I) and the upper-intermediate (UI). The last two groups exhibit the same accuracy order. In other words, at the intermediate and upper-intermediate levels students seem to use more accurately the progressive -ing and be auxiliary morphemes than the past irregular and the past regular morphemes. On the contrary, students at the pre-intermediate level seem to use more accurately the past irregular and the past regular morphemes than the progressive -ing and be auxiliary. So, we could say that, in relation to these four morphemes, the pre-intermediate group follows the route: "past_reg" → "past_irreg" → "be_aux" → "-ing", the intermediate group follows the route "be_aux" → "-ing" → "past_irreg" → "past_reg" and the upper-intermediate group follow the route: "-ing" → "be_aux" → "past_reg"/"past_irreg". Table 19 displays the routes described for each group.

<table>
<thead>
<tr>
<th>Level</th>
<th>Morpheme</th>
<th>Morpheme</th>
<th>Morpheme</th>
<th>Morpheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>past_reg</td>
<td>past_irreg</td>
<td>be_aux</td>
<td>Progr_ing</td>
</tr>
<tr>
<td>I</td>
<td>be_aux</td>
<td>progr_ing</td>
<td>past_irreg</td>
<td>past_reg</td>
</tr>
<tr>
<td>UI</td>
<td>Progr_ing</td>
<td>Be_aux</td>
<td>past_irreg/reg</td>
<td></td>
</tr>
</tbody>
</table>

Table 19: Route of accuracy obtained in four morphemes (past_reg, past_irreg, be_aux, progr_ing)

If we add to that route the accuracy rates of the copula be and the 3SG, then we can create a table exhibiting the accuracy order for all the verb-related morphemes studied in our project.

<table>
<thead>
<tr>
<th>Level</th>
<th>Morpheme</th>
<th>Morpheme</th>
<th>Morpheme</th>
<th>Morpheme</th>
<th>Morpheme</th>
<th>Morpheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>Cop_be</td>
<td>Past_Reg</td>
<td>Past_Irreg</td>
<td>Be_aux</td>
<td>Progr_Ing</td>
<td>3SG</td>
</tr>
<tr>
<td>I</td>
<td>Cop_be</td>
<td>Be_aux</td>
<td>Progr_Ing</td>
<td>Past_Irreg</td>
<td>Past_reg</td>
<td>3SG</td>
</tr>
<tr>
<td>UI</td>
<td>Cop_be</td>
<td>Progr_Ing</td>
<td>Be_aux</td>
<td>Past_irreg/reg</td>
<td>3SG</td>
<td></td>
</tr>
</tbody>
</table>

Table 20: Route of accuracy of the verb-related morphemes
If we transcribe the route shown in Table 20 according to the *syntactic properties* of each of the morphemes we will end up having the following schema:

(1) PI: Copula → tense (±past) → aspect (±progressive) → subject-verb agreement (±3rd person singular)
(2) I/UI: Copula → aspect (±progressive) → tense (±past) → subject-verb agreement (±3rd person singular)

The second pattern clearly fits to the schema proposed by Hawkins (2001) and Andersen (1978). The first, however, is slightly different, exhibiting higher accuracy levels in the use of the tense (±past) in comparison to the accurate use of the aspect (±progressive). *Two explanations* could be suggested for this phenomenon. The first would argue that the pattern displayed above by the students of the pre-intermediate level is due to the fact that our data elicitation task implied the telling of a story and thus directed the students towards the use of the past tense morphemes. Although we do admit that the instrument drastically influences the results, we do not consider this explanation to be very solid for two reasons. First, because the aforementioned accuracy rates are calculated as percentages after we assured that for each of the morphemes the minimum number of samples would be equal or higher than 10 and thence the assumed difference caused by the number of OC for each morpheme would immediately vanish. Second, because the same instrument was used with all our groups and yet the intermediate and the upper-intermediate level groups exhibit a different pattern. Therefore, the first option, although rational, cannot stand alone as an explanatory model of the described difference in route between the pre-intermediate group on the one hand and the intermediate and the upper-intermediate groups on the other.

We believe that our second explanation can more adequately account for this variance in route. It is related to the actual process of L2 acquisition. In that sense the aforementioned difference could be explained by the fact that in *initial stages*
L2 students produce output based on rote memory of individual words containing the past tense morpheme, that is, they learn the past forms as chunks. But when their IL goes through a restructuring period to accommodate additional features related to the expression of the past tense they incorrectly omit it. The same was argued by Lightbown (1983) in relation to the accurate use of the progressive morpheme. This idea proves Andersen’s (1978) and Hawkins’ (2001) claim right. Since the underlying syntactic properties related to the tense (±past) are more difficult than the ones found in the aspect (±progressive), as soon as the learner passes the stage of the memorization the accuracy order is reversed and fits the pattern proposed by Hawkins (2001) and Andersen (1978) and found in our study for the intermediate and the upper-intermediate levels.

This claim is also supported by the dual-system model suggested by Ullman (2001; 2005) in relation to the use of declarative and the procedural memory system in language acquisition. The former “[...] underlies the mental lexicon, whereas the procedural system subserves aspects of the mental grammar” (Ullman, 2001:718). His study shows that the forms of the irregular past are stored in the declarative memory, whereas the composition of regular forms is subserved by the procedural memory. Obviously, this does not imply that the declarative memory is not in use, but rather that the composition of the regular forms requires the activation of the memory system responsible for the mental grammar, i.e. the procedural memory. Ullman’s model is supported by the U-shape pattern that the acquisition of the past irregular follows. The latter indicates that in initial stages students memorize, using their declarative memories, and are therefore more accurate in the production of the irregular forms, whereas in higher proficiency levels this is reversed because students proceed in the actual manipulation of the language by means of the procedural memory system. In that higher stage the aspect (±progressive) based on a more regular and thus easier set of rules, displays high accuracy rates, whereas the tense (±past) based on a more complex and hence difficult set of rules
exhibits low accuracy rates. On the contrary, in initial stages the use of the aspect and the tense morphemes rely on the use of the declarative memory and on which of the morphemes the student has best memorized.

If this rationale is right then the elementary group should display a similar pattern. As we mentioned before, we have decided to exclude the rates for those morphemes of which the overall number of samples was lower than 10 (n<10). At the elementary level these also included the use of the morphemes related to the aspect. However, we will present them in the following Table (No 21) and the corresponding chart (Figure 11) in order to see the elementary students’ performance in relation to the verb-related morphemes.

<table>
<thead>
<tr>
<th>Functor</th>
<th>Gr:El</th>
<th>Gr:PI</th>
<th>Gr:I</th>
<th>Gr:UI</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE_COP</td>
<td>75</td>
<td>92,46</td>
<td>95,67</td>
<td>100</td>
</tr>
<tr>
<td>PAST_IRREG</td>
<td>44,44</td>
<td>55,27</td>
<td>71,29</td>
<td>88,8</td>
</tr>
<tr>
<td>PAST_REG</td>
<td>38,46</td>
<td>57,18</td>
<td>70,79</td>
<td>88,8</td>
</tr>
<tr>
<td>ING</td>
<td>33,3</td>
<td>46,55</td>
<td>82,05</td>
<td>94,11</td>
</tr>
<tr>
<td>BE_AUX</td>
<td>33,3</td>
<td>47,25</td>
<td>79,23</td>
<td>100</td>
</tr>
<tr>
<td>3SG</td>
<td>5,5</td>
<td>21,86</td>
<td>17,9</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 21: Accuracy rates (SOC) of the verb-related morphemes obtained by all four groups

![Figure 11: Accuracy rates (SOC) of the verb-related morphemes obtained by all four groups](image-url)
Indeed, as we can see in Table 21 and in its chart (fig. 11), the very initial stages, namely the elementary and the pre-intermediate display the same route regarding the use of the verb-related morphemes as shown in the SOC scores. The same is true for the two higher levels, that is, the intermediate and the upper-intermediate. Hence we can affirm that Hawkins’ (2001) schema works in higher proficiency levels since it is there that students actually proceed in the composition of linguistic forms. In former stages, Hawkins’ (2001) pattern is observed only partly due to the extended use of the declarative memory system, which disregards the actual difficulty of each morpheme based on the underlying structural properties.

Salience could account for the perceived “preference” of the students to memorize irregular past first, then regular past and finally the aspect. Note that this was one of the variables predicting accuracy in MO studies that Goldschneider and DeKeyser (2001) included in their meta-analysis as mentioned in section 3.1.2. In their study salience is defined as the ease with which a morpheme is perceived. They state that the perceptual salience of the morphemes reviewed in their meta-analysis was calculated on the basis of “[…] the number of phones, the presence/absence of a vowel in the surface form, and the total relative sonority of the functor” (Goldschneider and DeKeyser, 2005:23). They also mention “stressed/unstressed and serial position” (Goldschneider and DeKeyser, 2005:23) as possible subfactors composing the score of perceptual salience, but they do not include them in their study. In our study we do not determine the score of perceptual salience for each of the aforementioned morphemes but we understand that they all share these factors. It may be true that progressive –ing and past –ed are placed at the end and that gives them an asset in comparison to the irregular past morpheme as argued by Slobin (1971, cited by Goldschneider and DeKeyser, 2005:22). Nevertheless, irregular past is stressed and that could counterbalance the effect of serial position exhibited by the progressive –ing and the past regular. In order to conclude regarding the role of perceptual
salience on the accuracy rates obtained for each of the verb-related morphemes at issue, we need to determine the score of the perceptual salience according each of the aforementioned subfactors. We consider that this surpasses the limits of the present paper, and hence would have to deal with it in a separate study. Another possible explanation is classroom input, in that in initial stages most of the classroom talk relates to what students did, saw, etc., and thus provides the learners with more opportunities not only to receive input in relation to the past tense morphemes but also to use them and hence memorize them. That would partly correspond to what Goldschneider and DeKeyser call frequency in the input which is defined as “[...] the number of times a given structure occurs in speech addressed to the learner” (Goldschneider and DeKeyser, 2001:29). In the same line, the irregular past morpheme is more likely to receive frequent teacher feedback. This would probably correspond to the “other factors that cause some parts of the input to become salient” as Dulay and Burt suggested (1978, cited by Goldschneider and DeKeyser, 2001:22). We do agree with Goldschneider and DeKeyser (2001) in that a combination of factors is responsible for the accuracy rates in each morpheme obtained by L2/FL students (see section 3.1.2 for more details), but, as we mentioned above, the determination and study of each of the proposed factors exceeds the scope of this paper.

Additional morpheme order analysis: our study compared to previous research

In the first part of the present sub-section we have presented and commented only on our study’s results. We would like to compare our learner corpus-based study to the findings of previous morpheme order studies. For this purpose we will use the studies by Muñoz (2006), Lightbown (1983), Dulay and Burt (1974) and Krashen et al. (1977). The last two are included as representative of the first MO studies in ESL contexts. The other two are included because they are both MO studies of EFL and in that aspect they share a fundamental element with our
study. Additionally, our study and Muñoz’s study also share the distinction between proficiency levels and the subjects’ L1 (Spanish).

The following table includes the results of each of these studies as well as of our study. We should remind here that Muñoz’s groups A1, B1, D1, D2, A3 & B3 were constructed on the basis of the onset age and their proficiency level according to the hours they had been exposed to English.

<table>
<thead>
<tr>
<th>FUNCTOR</th>
<th>Krashen's rank</th>
<th>Dulay & Burt's rank</th>
<th>Lightbown's rank</th>
<th>Muñoz's A1 rank</th>
<th>Muñoz's B1 rank</th>
<th>Elem rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>ING</td>
<td>1</td>
<td>3</td>
<td>3,5</td>
<td>3</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>PLU</td>
<td>2</td>
<td>8</td>
<td>3,5</td>
<td>1</td>
<td>1,5</td>
<td>-</td>
</tr>
<tr>
<td>BE_COP</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1,5</td>
<td>-</td>
</tr>
<tr>
<td>BE_AUX</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>-</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>ART</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>PAST_IRREG</td>
<td>6</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>PAST_REG</td>
<td>7</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>3SG</td>
<td>8</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>POS</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FUNCTOR</th>
<th>Muñoz's A3 rank</th>
<th>Muñoz's D1 rank</th>
<th>Muñoz's B3 rank</th>
<th>Muñoz's D2 rank</th>
<th>Pre-inter rank</th>
<th>Inter rank</th>
<th>Upper-inter rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>ING</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>PLU</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>BE_COP</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>BE_AUX</td>
<td>3</td>
<td>4</td>
<td>3,5</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>ART</td>
<td>4</td>
<td>3</td>
<td>3,5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>PAST_IRREG</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>4,5</td>
</tr>
<tr>
<td>PAST_REG</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>4,5</td>
</tr>
<tr>
<td>3SG</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>POS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 22: Comparison of rank orders for all our proficiency level groups, Muñoz’s groups, Lightbown’s group and Krashen’s average order.
Comparison between Muñoz’s (2006) data and our data:

At first it seems that our accuracy orders are very different from the findings of the other studies. Nonetheless, a more careful examination of the data reveals a correlation especially between the accuracy rates of our pre-intermediate to upper-intermediate groups and those found in Muñoz’s A3, B3, and D2 groups. There are only a few differences, like the order for the be_auxiliary in which our groups and Muñoz’s groups do not correlate, or the rank of the progressive -ing functor in our pre-intermediate group which is different, but the rest of the groups do correlate.

The upper-intermediate group in our case also shows orders different to those of Muñoz’s high proficiency level group. Two explanations could be offered for such a divergence. The first is the small number of upper-intermediate items that we have obtained in our study. The second explanation is that Muñoz (2006) determines the proficiency level of her subjects on the basis of the hours of exposure to the target language according to which the most proficient group has been exposed to English during 726 hours. This could correspond to our intermediate group. Indeed, Muñoz (2006) presents three proficiency levels starting from the elementary one. Therefore, we can assume that there is a correspondence, in terms of proficiency level, between Muñoz’s (2006) groups and our groups as seen in Table 23. The chart of the accuracy rates for each proficiency correspondence displayed in Table 23 is seen in Figure 12.

<table>
<thead>
<tr>
<th>Muñoz’s (2006) groups</th>
<th>Our groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1, B1, D1: 200h of exposure to the target language</td>
<td>Elementary Group (El)</td>
</tr>
<tr>
<td></td>
<td>Elementary level scored in the placement test</td>
</tr>
<tr>
<td>D2: 416h of exposure to the target language</td>
<td>Pre-intermediate Group (PI)</td>
</tr>
<tr>
<td></td>
<td>Pre-intermediate level achieved in the placement test</td>
</tr>
<tr>
<td>A3, B3: 726h of exposure to the target language</td>
<td>Intermediate Group (I)</td>
</tr>
<tr>
<td></td>
<td>Intermediate level scored in</td>
</tr>
</tbody>
</table>
Table 23: A comparison of our subjects’ composition and the one found in Muñoz’s (2006) study

<table>
<thead>
<tr>
<th>Gr:PI/D2</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>ING</td>
<td>D2</td>
<td>Gr:PI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLU</td>
<td></td>
</tr>
<tr>
<td>BE COP</td>
<td></td>
</tr>
<tr>
<td>BE AUX</td>
<td></td>
</tr>
<tr>
<td>ART</td>
<td></td>
</tr>
<tr>
<td>PAST IRREG</td>
<td></td>
</tr>
<tr>
<td>PAST REG</td>
<td></td>
</tr>
<tr>
<td>3SG</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gr:I/A3/B3</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>ING</td>
<td>A3</td>
<td>B3</td>
<td>Gr: I rank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLU</td>
<td></td>
</tr>
<tr>
<td>BE COP</td>
<td></td>
</tr>
<tr>
<td>BE AUX</td>
<td></td>
</tr>
<tr>
<td>ART</td>
<td></td>
</tr>
<tr>
<td>PAST IRREG</td>
<td></td>
</tr>
<tr>
<td>PAST REG</td>
<td></td>
</tr>
<tr>
<td>3SG</td>
<td></td>
</tr>
</tbody>
</table>

Figure 12: Comparison of the accuracy rates obtained by the pre-intermediate and the intermediate groups in Muñoz’s study and in our project.

In Figure 12 we can better appreciate the commonalities in the orders that each group exhibits. There are differences in the actual rates obtained but in general the routes are similar. Note that our upper-intermediate group had no equivalent in Muñoz’s study, since we brought Muñoz’s groups together on the basis of the hours of exposure to the target language. Additionally, we do not present a comparison between our
elementary group and Muñoz’s A1, B1 and D1 groups because in every case there are many rates that have been excluded (due to the “n≥10” condition followed in both studies) so an actual chart is impossible. Furthermore, we have already proved, as Muñoz did before, that proficiency level is highly influential and the average rates appear beyond the very initial stages.

We could therefore say that our study does correlate with the results of the other EFL study that grouped the subjects according to proficiency level. Any differences found could be explained by the fact that we have not grouped our subjects according to the onset age, which could have influenced the final data. Additionally, the difference displayed in relation to certain verb-related morphemes among our pre-intermediate group and Muñoz’s D2 group could probably have been caused by the difference on the two groups’ age of onset as well as age of testing. For more details we refer the reader to section 5.2 where we present the subjects of our learner corpus as well as to the relevant discussion previously displayed (section 6.1).

Another explanatory factor could be the data collection method: oral in Muñoz’s study and written in our case. Differences between previous studies (see for example Perkins & Larsen-Freeman vs. Dulay & Burt, section 3.1.2) have been explained in a similar way based on the fact that speaking and writing are influenced by different sociolinguistic and psycholinguistic conditions (Ellis: 1994).

Comparison between Lightbown’s (1983) data and our data:

A first comparison of our findings with Lightbown’s rank would yield a sole correlation between her group’s orders and our elementary group’s orders for just two functors. On the other hand, these are the only two functors with data that are common in both studies. That is, the only two functors common in the data for our elementary group and in Lightbown’s study are the article and the 3SG. For both groups (i.e., our elementary group and Lightbown’s group) the article morpheme comes first in rank, whereas the 3SG morpheme comes last. Indeed, further examination
of Lightbown’s findings in relation to our other groups’ orders leads to the conclusion that there is no correlation. This could be explained by the fact that Lightbown’s group consists only of Grade 6 learners but no further distinction is made with regard to the subjects’ proficiency level.

Comparison between Dulay & Burt’s (1974) and Krashen’s (1977a) data and our data:

In relation to the correspondence between our orders and those suggested by the first MO studies as seen by Dulay & Burt’s and Krashen’s example, we should say that our findings do not generally support the order suggested by these scholars. It is true that regarding some functors we do find similarities in the accuracy rates, but that cannot be regarded as significant of the overall order suggested. In that sense, we disagree with Wagner’s (2005) claim that her study provides evidence that “the acquisition order of the grammatical morphemes by English as a Foreign Language learners is similar to the order of English as a Second Language learners” (p.34). Wagner compares her findings with those put forth in the study of Dulay and Burt (1974) and she indeed finds a significant correlation between the two studies’ findings. But that correlation regards only 3 out of the 9 morphemes investigated by Dulay and Burt. Hence, even though there is a significant correlation regarding these 3 morphemes, we disagree with her decision to extend said relationship to the accuracy order of the grammatical morphemes in EFL as the aforementioned quote suggests. Indeed, we also find commonalities between our findings and the ones suggested by Dulay and Burt (1974b) regarding three morphemes (3SG, Art, Pos). Furthermore, we could say that there is a relative correlation between our findings and the order suggested by Krashen (1977a) as displayed in Figure 2. We say that there is a relative correlation because again there are similarities in relation to some morphemes only. We shall, however, say that the difference between the average orders proposed by Krashen and Dulay and Burt, on the one hand, and our orders, on the other hand, can probably be explained by the fact that their study was
an ESL study whereas ours was an EFL study. The proficiency level does not seem to be influential since, if we compare Krashen’s average order (Table 22) and the orders of our general group for which we have not taken into account the subjects’ proficiency level (Table 18a), we see that there is still no correlation except maybe for the case of the 3SG functor. Another possible explanation could be the influence of the data elicitation instrument or even the scoring method. Indeed, Pica’s (1983) calculation model (included in our study’s scoring) gives lower scores than those achieved by Brown’s (1973) model (used in the other two studies). For more details regarding Brown’s (1973), Pica’s (1983) and our calculation model see section 5.4.5. In relation to the influence of the scoring method on the accuracy rates and thus the morpheme orders obtained we refer the reader to our discussion in section 3.1.3.

Let us focus now in more detail on the results regarding the genitive –s morpheme in the L2 English sentence transformation task.

6.2 Genitive –s in L2 English

Before presenting the results of our second study, we would like to remind that the majority of our findings regarding the accuracy rates of the possessive –s have resulted from our sentence transformation task and hence represent experimentally elicited data (see sections 5.1, 5.1.1 & 5.1.2 for a discussion of corpus vs. experimental data). Recall that the idea of using an elicitation task like this was justified by the low rates of genitive –s produced in the corpus, due to the nature of the corpus task. In this section, we shall present the results of our experimentally elicited data and then compare them to the corresponding findings from our learner corpus.

In relation to the use of the possessive –s morpheme we wish to investigate two issues:

(i) The first is Krashen’s (1978) claim that discrete-point grammar tests, in which learners’ formal
knowledge is appointed, will show the order of learning, whereas the naturally produced language will be displaying different order of acquisition (that is, different according to Krashen). If his claim is right then the SOC rates for the possessive -s in our learner corpus will be significantly different from those obtained in our sentence transformation task.

(ii) The second question relates to the L2 learner preference for the analytic form of expressing the possession, that is to say, the use of the PP construction. This preference is assumed by the fact that in the first MO studies the synthetic form of possession, i.e. the possessive -s, occupies one of the last position in their morpheme acquisition orders.

Note that regarding the first question we will be comparing the SOC scores since we wish to check the acquisition order, whereas the TLU scores will be contrasted to the NTLU rates in relation to our second question, where we will be studying the frequency rates (for more details regarding this distinction please check section 5.4.5).

Question 1 (Will different methods yield different SOC rates?).

Table 24 displays the accuracy rates of the possessive -s obtained by all our groups in the sentence transformation task. A detailed description of the TLU and NTLU rates along with their chart and a full account of the NTLU types are displayed in Appendix 9.11.2.
Based on the data presented in the table above we can affirm that the accuracy orders for the possessive -s are very high in the three groups that correspond to higher proficiency levels. In that sense, Muñoz’s (2006) claim that the proficiency level is “a stronger determinant factor” (p.122) is confirmed also by the results of our experimentally elicited data. However, if we wish to check the influence of the instrument on the actual results and hence study Krashen’s hypothesis on the learning/acquisition distinction we should compare the results displayed in Table 24 to the relevant accuracy rates obtained by our subjects that participated in the learner corpus study. Table 25 shows the corresponding contrast.

As we can observe in the above table the accuracy rates obtained by the participants of the sentence transformation task surpass the results obtained by the learner corpus groups. Since the SOC rates and the corresponding difference are calculated as a percentage we consider that the difference is significant in all cases. The least significant difference is to be found among the learners of the pre-intermediate level, but mainly due to the
low accuracy rates found in the experimentally elicited data. This could be explained by the plateau effect (Richards, 2008) in SLA. Indeed, that seems to be the right explanation in this case since it is only in the transition from the elementary to the pre-intermediate level that the progress rate seems to be significantly low. The difference in accuracy rates between the intermediate and the upper-intermediate group is also low, but this is due to high accuracy scores in both cases (>90%).

Going back to the comparison of the data elicited by means of the two different tasks and the relevant question we posed in the beginning regarding the influence of the research instrument on the results we can affirm that there is a clear correlation and that Krashen’s claim is right. That is to say, it seems that discrete-point grammar tasks indeed trigger the subjects’ learnt rules, i.e. formal knowledge, and hence the accuracy rates obtained are significantly higher than those found in naturally produced language.

Question 2 (Will rates for the analytic genitive PP be higher than for the synthetic -s morpheme?).

Before dealing with the second issue we wished to investigate, that is, the choice of the L2 English learners between the analytic and the synthetic forms in order to express possession in English, we should repeat our initial hypothesis. According to this L2 English learners will exhibit a clear preference for the analytic form especially in the initial stages.

In order to (dis)confirm this hypothesis, we should compare not only the TLU and NTLU rates but also the types of NTLU found in each proficiency level. We remind here that we have tagged the use of the analytic possession construction (i.e. the PP) as “NTLU: misuse: misselection” in order to be able to identify it and thus make the comparison. Recall that this does not imply low rates of accuracy in the use of the possession structure in general. These rates are represented by the SOC, as shown in Table 24. The following table (no. 26) displays the TLU and the
NTLU rates obtained by the students that participated in our sentence transformation task. In Figure 13 we can see the chart of these results.

<table>
<thead>
<tr>
<th>Group</th>
<th>TLU</th>
<th>NTLU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gr: El</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>Gr: PI</td>
<td>58,6</td>
<td>41,4</td>
</tr>
<tr>
<td>Gr: I</td>
<td>83,3</td>
<td>16,7</td>
</tr>
<tr>
<td>Gr: UI</td>
<td>89,2</td>
<td>10,8</td>
</tr>
</tbody>
</table>

Table 26: TLU and NTLU rates in the use of the possessive –s by L2 learners of English (sentence transformation task)

As we can see the accurate use of the possessive –s (i.e., TLU) correlates with the learner’s proficiency level. That is, the higher the student’s proficiency level the more accurate the use of the possessive –s. We should remind here that we constructed our sentence transformation task in such a way that both the synthetic (–s possessor) and the analytic (PP) forms could be used. That enabled us to secure equal possibilities of use for each of the forms and thus diminish the possible effects of the instrument used. For more details we refer the reader to the corresponding section (5.3.4).

However, in order to determine whether this correlation also displays a preference of the high proficiency students for the
synthetic genitive -s form (as seen in the TLU rates) and the opposite tendency of the low proficiency learners, we should further analyse the data. Indeed, if we observe the types of NTLU we can see that the majority of NTLU cases exhibited by all four groups do not belong to what we classified as PP. The results are shown in Table 27.

<table>
<thead>
<tr>
<th></th>
<th>Gr:El</th>
<th>Gr:PI</th>
<th>Gr:I</th>
<th>Gr:UI</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTLU_Type</td>
<td>75%</td>
<td>41,4%</td>
<td>16,7%</td>
<td>10,8%</td>
</tr>
<tr>
<td>(n=81)</td>
<td>(n=263)</td>
<td>(n=101)</td>
<td>(n=20)</td>
<td></td>
</tr>
<tr>
<td>Underuse</td>
<td>77,8%</td>
<td>35,9%</td>
<td>18,8%</td>
<td>75%</td>
</tr>
<tr>
<td>Misuse</td>
<td>22,2%</td>
<td>64,1%</td>
<td>81,2%</td>
<td>25%</td>
</tr>
<tr>
<td>Overuse</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Misuse_Type</td>
<td>N=18</td>
<td>N=118</td>
<td>N=82</td>
<td>N=5</td>
</tr>
<tr>
<td>Misselection</td>
<td>22,2%</td>
<td>28%</td>
<td>34,1%</td>
<td>0%</td>
</tr>
<tr>
<td>Misrealisation</td>
<td>27,8%</td>
<td>34,7%</td>
<td>41,5%</td>
<td>60%</td>
</tr>
<tr>
<td>Wrong-unclassified</td>
<td>50%</td>
<td>37,3%</td>
<td>24,4%</td>
<td>40%</td>
</tr>
</tbody>
</table>

Table 27: NTLU types of the genitive -s

<table>
<thead>
<tr>
<th>Group</th>
<th>TLU</th>
<th>NTLU: PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gr:El</td>
<td>25%</td>
<td>2,7%</td>
</tr>
<tr>
<td>Gr:PI</td>
<td>58,6%</td>
<td>12,54%</td>
</tr>
<tr>
<td>Gr:I</td>
<td>83,3%</td>
<td>27,72%</td>
</tr>
<tr>
<td>Gr:UI</td>
<td>89,2%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Table 28: Relative frequency of the possessive -s and the PP as possession expressions

The data in Tables 27 and 28 clearly show that the misselection type, that is, the use of the periphrastic possession structure (PP) is significantly low.

According to these data we should say that our hypothesis is disconfirmed, that is, learners at all levels show a clear preference for the synthetic (genitive -s) form of the possession structure in English. In the same line we can argue that the low accuracy rates observed in the initial proficiency
level groups are not due to the students’ preference for the use of the analytic form for the expression of possession.

The last comment we would like to make here regards the relation between our findings and Rosenbach’s (2005) study, i.e., we want to contrast L2 English learners vs. English natives on the use of the synthetic genitive -s morpheme vs. the possessive PP analytic structure. In Figure 3 above we showed Rosenbach’s (2005) findings on the frequency of the genitive -s among native speakers of English. According to that, native speakers prefer the use of the genitive -s when the possessor is an animated entity. In our study’s task all possessors were animated entities and the students showed a clear preference for the use of the possessive -s. That tendency cannot be explained by an L1 transfer hypothesis. The subjects of our study were native speakers of Spanish which displays a different possession structure. In Spanish one can express possession either by means of the possessive pronouns (e.g. He leído todos sus libros), which would be the synthetic form, or through a prepositional phrase (e.g. Este es el coche de María), which would obviously reflect the analytic form. English, on the other hand, has two synthetic forms. One is the possessive -s which has no equivalent in the Spanish possessive system. The other, that is, the possessive pronouns, is found in both the English and the Spanish system of possession. However, as we already mentioned in sections 2.2.1 and 5.3.4, possessive pronouns were included in the given sentences. Hence the only common possession form that was still available for the students to use in the task was the periphrastic form (i.e., the prepositional phrase). But we saw that the students preferred the use of the synthetic possessive -s instead. Therefore the L1 transfer explanation is rejected in this case. Nonetheless, we cannot suggest that the possessor’s characteristic as an animated entity is what triggered the use of the genitive -s by our learners of L2 English. We can say that our findings imply such a correlation, but in order to make a positive statement in this regard we should check the whole spectrum of possibilities and thus
include also inanimate entities and distinguish between neutral and long/short. As we mentioned in section 2.2.1, we did not include a similar distinction in our study, but we consider that our findings could be used in a future research that would also contain data in relation to inanimate and neutral or long/short possessors. Regarding this issue we refer the reader to the relevant discussion presented in sections 7.4 and 7.5.

After having analysed the expression of possession in L2 English, we shall move to our 3rd study: the expression of possession in L3 German via the genitive -s morpheme and via other structures. Recall that a full account of the German system of possession is given in section 2.2.2.

6.3 Possessive structures in L3 German

In this section we wish to explore the use of each of the possession structures in German by students who learn German as a third language. As we mentioned in section 2.2.2 in German there are structural restrictions as to which type of possession structure one can use. Furthermore, in German there are four ways of expressing possession. The first is, as in English and Spanish, the possessive pronouns (e.g. Das ist sein Auto; lit.: This is his car). In keeping with our choice in the case of English, we decided to include the possessive pronouns in the given sentences of the transformation task in German. This enabled us to follow a similar tagging scheme in English and in German and thus allowed us to make comparisons. Additionally, it helped us check whether there is or not an L2 English influence on the acquisition of the L3 German possession system, but to this we will return later.

Before proceeding to the presentation of our findings, we should mention our principal aims:

(i) First we wish to check the general preferences of the L3 German learners in relation to the synthetic and the analytic forms for expressing possession.
Then we would like to compare these results to the relative frequency of the possessive -s and the PP in L2 English (see study no. 2 in the previous section).

Finally, we intend to determine whether there is or not an influence of the L2 English on the acquisition of the L3 German.

The majority of our subjects (77.6%), were learning English as an L2. The remaining 22.4% either did not mention any other L2 or mentioned that they were learning a different L2. In most of these cases, that is, at least regarding the young subjects of the remaining 22.4%, we believe that they have gone through the process of learning English as a foreign language, at school for example. Nevertheless, since we cannot know whether they meant that they are not currently learning or that they have never learnt English as foreign language, we decided to exclude these samples from the last subsection of our third study.

In order to study the tendencies in the use of the synthetic and the periphrastic possession structures by L3 German learners, we should compare the TLU and the “NTLU: misuse: misselection” accuracy rates for each proficiency level. Table 29 displays the relevant information as resulted from the analysis of our raw data. These represent the accuracy rates of the two synthetic forms of possession in German, i.e. the possessive -s and the genitive case, as well as the accuracy rates of the periphrastic form, that is, the PP. Note that the percentage has been calculated on the basis the total number of OC that appeared in each group. A detailed description of the TLU and NTLU rates along with their chart and a full account of the NTLU types are displayed in Appendix 9.11.3.1.
The third column in Table 29 presents the accuracy rates of the NTLU, the “NTLU:misuse”, the “NTLU:misuse:misselection”, and finally the “NTLU:misuse:misselection:PP”. So, for example, in the case of the elementary level group, these data mean that in relation to all the obligatory contexts (OC) for the expression of possession, the students of the elementary group presented a 94,2% of NTLU, out of which the 85,8% were cases of misuse. That is, the remaining 14,2% represents other types of NTLU such as underuse or the so-called SNOC. Then, the 89,7% out of this 85,8% of “NTLU:misuse” reflects the misselection type which includes both the use of the PP and the use of the possessive -s in contexts where a different possession form was required (for more details on our tagging scheme for L3 German see section 5.4.4 part 3). We decided not to tag this as a case of SNOC because these reflect OC for a possession structure. The mistake lies in the choice of the particular form of possession expression (possessive -s) in those occasions where the corresponding structural restrictions allow the use of either the genitive case or the PP. If we had included it in the SNOC we would have erroneously distorted the calculation of the SOC, which we will be using for the L2 English (study no. 2 above) and L3 German (this study, no. 3) comparison later. Finally, the 40,2% of the misselection cases represents the use of the PP.
This is the full analysis of the percentages presented in Appendix 9.11.3.1. Note that displaying just the 40.2% of the PP use would be misleading since it is not estimated on the basis of the total number of possession expression OC. However, since it is difficult to reach a conclusion from these percentages, we have transformed the PP use percentage into a rate based on the overall OC. The rates were calculated following the aforementioned process for every group and therefore represent the percentage of PP occurrences in the corresponding obligatory contexts. We present the results in the following table.

<table>
<thead>
<tr>
<th>Group</th>
<th>TLU: genitive ‘s & genitive case (in %)</th>
<th>NTLU: PP (in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementary Gr:El</td>
<td>5,8</td>
<td>29,16</td>
</tr>
<tr>
<td>Pre-intermediate Gr:PI</td>
<td>14,1</td>
<td>35,89</td>
</tr>
<tr>
<td>Intermediate Gr:I</td>
<td>12,7</td>
<td>50,70</td>
</tr>
<tr>
<td>Upper-intermediate Gr:UI</td>
<td>41,7</td>
<td>20,83</td>
</tr>
</tbody>
</table>

Table 30: Relative frequency of the genitive –s, the genitive case and the PP in the L3 German learners’ language

In Table 30 we can see that in general the accurate use of the PP has not obtained very high rates, as they are 50% or below. Nevertheless, these rates are still higher than the equivalent rates of the TLU. Only the upper-intermediate group obtained higher accuracy rates in the use of the synthetic forms of possession expression (genitive –s and genitive case). Yet, the difference between the use of the synthetic and the analytic forms at this level is significantly lower than the corresponding difference in the other three levels. This can be clearly appreciated in Figure 14.
Based on the accuracy rates obtained for the s-genitive and the genitive case on the one hand, and those obtained for the of-genitive on the other, we can claim that in general the L3 learners of German show a preference for the use of the analytic form. However, explaining this preference on grounds of an L1 transfer would be a mistake for two reasons. First, because the of-genitive structure may be part of the possession expressions in our subjects’ L1 Spanish, but it also forms part of their L2 English. This implies that L1 transfer cannot account for the L3 German data here. Second, because the overall percentage of the periphrastic form of possessive expression is low in our data. Additionally, the preference shown in Figure 14 is determined only in relation to the TLU cases, but that does not mean that the PP is the learners’ first choice when it comes to possession expression in German. The remaining percentages in each level represent the cases where the genitive -s has been used incorrectly. We shall deal with these rates later when we will be examining the influence of the L2 English on the L3 German.

We should now pass to our second question that refers to the comparison of relative frequency of the synthetic and the analytic forms of possession in both L2 English and L3 German. We have decided to use the experimentally elicited L2 English data (see study no. 2 in the previous section) in order to avoid...
possible interferences of the instrument. In the following table we present the data for both the L2 English and the L3 German.

<table>
<thead>
<tr>
<th>Group</th>
<th>L2_Eng</th>
<th>L3_Ger</th>
<th>L2_Eng</th>
<th>L3_Ger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gr:E</td>
<td>25</td>
<td>5,80</td>
<td>3,7</td>
<td>29,16</td>
</tr>
<tr>
<td>Gr:PI</td>
<td>58,6</td>
<td>14,10</td>
<td>5,1</td>
<td>35,89</td>
</tr>
<tr>
<td>Gr:I</td>
<td>83,3</td>
<td>12,70</td>
<td>4,6</td>
<td>50,7</td>
</tr>
<tr>
<td>Gr:UI</td>
<td>89,2</td>
<td>41,70</td>
<td>0</td>
<td>20,83</td>
</tr>
</tbody>
</table>

Table 31: Accuracy rates for the use of the synthetic and the analytic forms of possession expression in L2 English and L3 German

Based on the data displayed in Table 31 we can argue that the use of the synthetic form (genitive morphology) is more extended among the learners of L2 English than among the learners of L3 German. In the same line, the use of the periphrastic form (PP structure) in L2 English displays very low rates. In comparison to this, the use of the PP made by L3 learners of German is significantly higher. That could probably be explained by the fact that in English there are no structural restrictions and thus the achievement of the TLU of the genitive -s is much easier for the learners. On the contrary, the various structural restrictions posed in the use of each of the possession forms in German probably has a negative interference in students’ accuracy rates.

Before we set about checking whether there is or not an L2 influence on L3 acquisition, we should clarify where this influence, if it exists, should appear. As we mentioned in section 2.2.1, English has two ways of expressing possession, namely the synthetic and the analytic. The former is constructed by means of the possessive pronouns or the genitive -s. The analytic form is constructed by means of the prepositional phrase. In German, on the other hand, there are also two ways of expressing possession, that is, the inflectional and the
periphrastic. The inflectional possession expression in German includes the possessive pronouns, the genitive -s and the genitive case. The latter is the only formal feature that English lacks. Furthermore, in German the use of the genitive -s is restricted in those cases where the possessor is expressed by means of either a proper name or a kinship term (see section 2.2.2 for more details). English, on the contrary, does not pose such restrictions to the use of the possessive -s. As we saw briefly in section 2.2.1 various factors have been suggested as a possible explanation of the native speakers’ tendency to use one possessive form over the other. But there are no rules that allow or prohibit the use of each of the possessive forms except for the relative order of the possessor and the possessum (i.e., the PR>PM or the PM>PR). For more details in this respect we refer the reader to our sections 2.2, 2.2.1 and 2.2.2. So, the only differences in the possession expression systems in English and in German are the two extra features described above that we find in the German possession. These are the genitive case and the structural restrictions regarding the choice of the possession form. In relation to the first, we could say that the use of other possession structures in those occasions where the genitive case is required would imply an influence of the L2 English. Nonetheless, this is not a sound assumption, since all the OC for the genitive case in German are also the OC for the PP (see section 2.2.2). Therefore, the only area where we can look for a possible influence is the use of the genitive -s in those structures where either a genitive case or a PP is allowed. As we explained when we described our tagging process, we called these cases “NTLU: misuse: misselection: possessive -s” in order to distinguish them from the cases where a genitive -s was the correct choice.

Before presenting our results we should highlight that we have included in our task the OC for all the forms of the possession expression. Additionally, we have excluded, as we said in the beginning of this subsection, those samples where the subjects did not expressively said that they were or had been at some
point in their lives learning English. The relevant results of the remaining samples are displayed in the following table. The whole description of the statistic features for this sub-group of L3 German learners can be found in Appendix 9.11.3.2.

<table>
<thead>
<tr>
<th>Group</th>
<th>gen_s</th>
<th>gen-case</th>
<th>PP</th>
<th>Pos. -s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gr:El</td>
<td>5,3</td>
<td>0</td>
<td>28,07</td>
<td>43,85</td>
</tr>
<tr>
<td>Gr:PI</td>
<td>7,5</td>
<td>7,5</td>
<td>28,78</td>
<td>28,78</td>
</tr>
<tr>
<td>Gr:I</td>
<td>6,25</td>
<td>8,3</td>
<td>35,41</td>
<td>27,08</td>
</tr>
<tr>
<td>Gr:UI</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 32: Relative frequency of the genitive –s, the genitive case, the of-genitive and the misused possessive –s in the language of L3 German learners with L2 English

In the above table we can see that the accurate use of the three forms of possession expression (i.e., the genitive –s, the genitive case, and the PP) correlates with the proficiency level. In the same vein, we observe that the use of the PP is lower than the wrong use of the possessive –s at the elementary level. The same rates are equal in the pre-intermediate level, and in the intermediate level the use of the PP is higher than the inaccurate use of the possessive –s.

However, what we find even more interesting, is the fact that the rates of the inaccurate use (i.e. the use in the wrong contexts) of the possessive –s is significantly higher not only compared to the accuracy rates for each of the synthetic forms, i.e. the genitive –s and the genitive case, but also in relation to the overall TLU rates for both synthetic forms. That is, the genitive –s morpheme is most frequently used by our L3 German learners in the wrong contexts (i.e., wrong according to the structural restrictions imposed in German). That can only be explained by the influence of their L2 English where these structural restrictions do not exist and hence the use of the possessive –s would not be wrong in the corresponding contexts. Indeed, this tendency of the wrong use of the genitive –s
correlates negatively with the proficiency level. That is, the
less proficient the student the higher the L2 influence.

Our results correspond to the findings of previous studies on
the role of the L2 in the acquisition of the L3 syntax that we
presented in section 3.3. Additionally, our findings confirm our
initial hypothesis that there will be an L2 influence especially
in initial stages. In that aspect, we agree with the hypothesis
put forth by Ringbom (1987) that claimed that background
languages exert a high influence when the L3 proficiency level
is low (see section 3.3).

The L1 transfer cannot explain these data since in our subjects’
L1 the genitive-s feature does not exist. The fact that their L2
does not restrict the use of the genitive -s in those cases
where the PR=proper name/kinship term explains the learners’
tendency to incorrectly extend the use of the genitive -s
without considering the possessor. Accordingly, we argue that
the Cumulative Enhancement Model (CEM, Flynn et al. 2004) is not
supported by our study. The CEM suggests that all previously
learnt languages can be transferred in the L3 acquisition, when
there is a structural overlap in two of the languages involved.
In our case there is a structural overlap between the possession
expression systems in L1 Spanish and L3 German on the one hand
and L2 English and L3 German on the other hand. However, as we
commented above based on the data displayed in Table 31, the use
of the structural overlap between L2 English and L3 German, i.e.
the genitive -s, is more extended than the structural overlap
found in L1 Spanish and L3 German, i.e. the PP. To that we
should add that the PP as a possession expression is actually
common in all three languages. Even so, our subjects did not
seem to prefer that structure, but rather the one that was
shared only by the L2 and the L3.

The Typological Primacy Model (TPM, Rothman, 2010) states that
according to economy of acquisition the most similar,
typologically, language becomes the source for transfer,
independently of the language being an L1 or an L2. Based on our data we could argue in favour of this model since English is a Germanic language and seems to be the source of influence. However, we believe that such an assumption would be erroneous for two reasons. The first reason why a confirmation of the TPM would be inaccurate if based on our study’s results is the special case that English presents as a language. English is indeed a Germanic language, but it is also one that has been extensively influenced by Romance languages especially in terms of its lexicon. Now, if we consider that in initial stages learners do not apply rules but rather assimilate chunks of language, as the declarative/procedural model suggests and our findings confirm (for more details see section 6.1), then we can argue that in these initial stages learners do not conceive the morphosyntactic similarities between two languages simply because they do not analyse the target language’s morphological and syntactic properties. Additionally, in our case, similarities in language can be found between our subjects’ L1 and L3 as well as between our subjects’ L2 and L3. Yet only the L2 influence seems to be particularly high in initial stages. Second, and most importantly, we cannot accept the TPM as an explanatory model of our study’s results because our data do not contrast various L1s and L2s which are, typologically speaking, similar or dissimilar to our L3 German. In that sense, our study lacks data in order to reach a clear conclusion in relation to the TPM model. Therefore, we should not argue in favour or against the TPM model on the grounds of this study.

The final hypothesis that has been proposed in relation to the L2 transfer in the acquisition of an L3 is known as the L2 status hypothesis (Williams and Hammarberg, 1998). The underpinning idea is that in L3 acquisition there is an L2 transfer due to the subject’s “[…] desire to suppress L1 as being ‘non-foreign’ and to rely rather on an orientation towards a prior L2 as a strategy to approach the L3” (Hammarberg, 2001:36-37). We believe that this model can be proposed as the explanatory factor of our L3 German learners’ extended use of
the genitive -s in non-obligatory for these possession structure contexts. Indeed, this model is the only that manages to account for our L3 German subjects’ preference for the genitive -s even though the PP was common in all three languages (L1_Spanish, L2_English, L3_German).
7 Conclusions

After having presented our data and commented on the results of each of our three studies, we shall now introduce the conclusions that can be reached regarding the studies’ questions and hypotheses presented in section 4. In this chapter we will also proceed with the distinction of three sections each of which corresponds to one of our project’s studies. In this line of thought, section 7.1 deals with the questions and hypotheses of our first study that regards the morphemes’ accuracy rates obtained by our L2 English subjects in our picture description task (corpus). Accordingly, section 7.2 presents our conclusions in relation to the use of the possessive –s as revealed by our data from both the learner corpus and the experimentally elicited learner language (sentence transformation task). Finally, in section 7.3 we regard the importance and the implications of the use of the various possessive structures in German by our L3 German learners.

7.1 Study I: MOS & Learner Corpus in L2 English

In relation to our first question, which referred to the possibility that the proficiency level can stand as an explanatory factor for the development of morphology in L2 English, our study provides evidence that the proficiency level is in general a covariate of accuracy order. In the same line, we can argue that the average order of accuracy appears after the very initial stages of proficiency. In this respect we agree with Muñoz’s (2006) findings.

Our first hypothesis was that accuracy in use would not imply acquisition of the corresponding functor. In order to confirm that we needed to show that there are functors for which the accuracy rates are lower in higher proficiency levels. This
hypothesis was confirmed, since the grouping of our subjects on the basis of their proficiency level enabled us to successfully observe the U-shape pattern of development of the past irregular functor.

Our second hypothesis was that we would find a similar pattern of morphemes accuracy order for each proficiency level. This hypothesis was also confirmed as shown in Figure 10 (section 6.1). Additionally, our findings are similar to those suggested by Muñoz (2006) for those subjects that had a proficiency level beyond the elementary one. Our findings do not conform to Dulay and Burt’s (1974) and Krashen’s (1977) average orders, although they do display some similarities.

Our second question contemplated the possible explanatory value that Andersen’s (1978) and Hawkins’ (2001) pattern could have for the results of our study in relation to the verb-related morphemes. In that respect, our study confirms that Andersen’s (1978) and Hawkins’ (2001) pattern can explain the development of the verb-related morphemes studied in our project. In the same line, we can argue that our third hypothesis was confirmed. The slight difference in order found in our pre-intermediate group in comparison to Hawkins’ (2001) pattern is explained by the SLA process and the function of the subjects’ interlanguage (IL).

7.2 Study II: Genitive -s in L2 English

In relation to this project we formulated one question and two hypotheses. The question we posed in this respect was the influence of the data elicitation method on the results. Accordingly, we wished to check the validity of Krashen’s claim that naturally occurred language will display the order of acquisition which will be different to the order of learning. The latter, following Krashen, should appear in tasks that trigger the subject’s formal knowledge, such as the discrete-point grammar tests. Indeed, our findings yield a clear influence of the research instrument on the final results. They also confirm the claim that the accuracy orders found in
learners’ language elicited naturally will be different to the corresponding orders found in experimentally elicited learner language. In that vein, our first hypothesis that the accuracy rates for the possessive -s obtained through our corpus task would be lower than the corresponding rates found in the data collected through our experiment (sentence transformation task) is confirmed. This, we believe, could imply that Krashen’s distinction between acquisition and learning is supported.

Our second hypothesis regarding the relative frequency of the genitive -s by L2 English learners was that they would show a clear preference towards the use of the analytic form (PP) especially in initial stages, over the synthetic form (genitive -s morpheme). Our data disconfirmed this hypothesis, since they display high rates of use of the synthetic possession expression, that is, of the possessive -s. In the same vein, we find a correlation between our L2 English learners’ relevant choice and the native speakers’ preference as suggested by Rosenbach (2005). However, we would need more data in order to confirm such correspondence. On the other hand, our study’s data provide some evidence that L1 transfer cannot stand alone as an explanatory model of the SLA/FLA processes.

7.3 Study III: Possessive structures in L3 German

In this part we formulated one hypothesis and one question. The latter relates to the relative frequency of the inflectional and the periphrastic forms of possession expression in both L2 English and L3 German. Based on the comparison of our data we were prompted to say that the synthetic form of possession expression is used more often by L2 English learners, whereas the analytic form of possession expression is used more often by L3 German learners. Indeed, what we found was that the analytic form was used more often than the synthetic forms in the corresponding OC.
Bearing on our hypothesis for this study, we should repeat our initial claim that the use of the possession expressions by L3 German learners would display an L2 English influence especially in initial stages. Indeed, this hypothesis was confirmed by our data. The highest frequency rates were achieved in relation to the use of the genitive –s but in wrong contexts, according to the structural restrictions of the German possessive system, which reveals an L2 English transfer, since in the English system of possession allows these restrictions do not exist. The lack of structural restrictions that is found in English was reproduced in the samples of our subjects’ L3 German. The model that we consider most likely to account for this phenomenon is the so-called L2 status hypothesis. The Typological Primacy Model (TPM), although we believe that is not a valid explanatory model for our findings due to the reasons we exposed in section 6.3, cannot actually be rejected since in our study we have not included various and typologically distant background languages.

7.4 Limitations of the study

We hold that this study could be improved in various aspects. First, the participation of more students, especially from the elementary and upper-intermediate proficiency levels, would have allowed for a more precise description of the morpheme accuracy orders in each proficiency level. In the same vein it would have enabled us to compare our MOS results with previous studies that include data from younger learners.

Time limitations prevented us from considering additional information such as the subjects’ onset age and the actual exposure to the target language. These are data that we have in our possession since relevant questions were included in our learner’s profiles. However, we did not manage to take this information into consideration when we grouped our participants. Therefore we had to consider only the proficiency level when we separated our subjects into different groups.
Additionally, we would like to have tested our students’ proficiency level based on an oral test as well. When we were correcting the written tests we came across some cases in which two students were put in the same level although one was just two points above the minimum required for that level, whereas the other was just two points below the minimum required for the next level. We therefore believe that an oral test would have clarified these edge cases.

Furthermore, our study would have been improved if we had included extra means of data elicitation. We believe that a recording of spontaneous conversations would have enabled us not only to make more accurate comparisons between our data and the findings of previous studies, but also to investigate the differences between completely naturally produced and clinically elicited language.

In relation to the frequency of use of the genitive –s in English we suggest that further study should be conducted including all other types of possessors. That would make possible a comparison between L2 English learners’ use of the various possession forms and native speakers’ relevant preferences. Furthermore, although we tried to limit the instrument’s influence on our results, a different elicitation task that would result in more authentic language would be desirable, provided that it would ensure a sufficient number of OC for the genitive –s.

Finally, we would like to have been able to include more information on the influence of various background languages on the acquisition of a new foreign language. For this we should have collected data of various and typologically distant first and second/foreign languages and then compare the learners’ results in the production of L3 language.

7.5 Avenues for future research
In this final section we would like to suggest some possible lines for future research according to the findings but also the limitations of the present studies.

In the same line, we would argue that future MO studies should be conducted taking into consideration additional information with regard to the subjects’ background. In our study we have regarded the subjects’ proficiency level, but we consider that it is possible and desirable to further analyse our data as to include the subjects’ onset age, exposure to TL and other relevant information found in our learner profiles.

Additionally, we believe that, for a better understanding of the morpheme acquisition process, future research should include various data elicitations instruments, which we did in our study, but only in relation to one of the functors at issue, namely the genitive -s.

Regarding the study of the developmental pattern of individual morphemes, the genitive -s in our case, we understand that further research should be carried out including additional elicitation tasks designed for the production of the functor under examination. This, as we mentioned in the previous section, is a highly demanding activity since it should aim to the designing of an instrument that would ensure not only that the specific morpheme is used in sufficient occasions, but also that the learner language produced will be as natural as possible.

Perhaps a more realistic future project regarding the use of the various possessive forms by L2 English learners can be proposed, in which various types of possessors (e.g., animate vs. inanimate, etc.) would be included. This would allow the researcher to study L2 English learners’ preferences and compare them to the corresponding ones shown by L1 English speakers. In our understanding this type of comparison would provide us with some enriching insights bearing on the relation between the L1 and the foreign language (FL) acquisition processes.
Finally, we consider that further research should be conducted in the direction of the influence that background FL may exert on the acquisition of a new target language. This field of research is relatively new and, although a number of relevant studies have already been conducted, we understand that there is still much to be discovered. Nevertheless, it is of particular interest for the SLA research since it can indeed provide us with useful information and thus shed light on the actual process of language acquisition. In line with this thought, we trust that the introduction of learner corpora in this type of research would provide the SLA researcher with important information regarding the various aspects of language (e.g. the strategies adopted bearing on the functional use of language, the acquisition of FL pragmatics, etc.), and hence enable us to obtain a more holistic view of foreign language acquisition.
8 References

Andersen, R.W. 1978. 'An implicational model for second language research.' Language Learning, 28: 221-282.

Goldschneider, J. and R. DeKeyser 2001. 'Explaining the “Natural Order of L2 Morpheme Acquisition” in English: A meta-

Krashen, S. 1977. 'Some issues relating to the monitor model.' in Brown, Yorio and Crymes (eds.), TESOL’ 77: 144-158. TESOL, Washington, DC.

Rothman, J. 2010. 'On the typological economy of syntactic transfer: word order and high/low attachment preference in relative clause interpretations in L3 Brazilian

Tono, Y. 2003. 'Learner corpora: design, development and applications' in Archer, Rayson, Wilson and McEnery (eds.), 800-809.

9 Appendices

9.1 Learner Profile for L2 English and for L3 German

Fecha: ______________

INFORMACIÓN PERSONAL

- TUS INICIALES: __ __TU NICK: _______ EDAD: __ SEXO: Hombre __ Mujer __
- CURSO: __ 1ºESO __ 2ºESO __ 3ºESO __ 4ºESO __ 1ºBach. __ 2ºBach. __
- PCPI __ Grado administrativo __ Otro: __________
- INSTITUTO DONDE ESTÁS ESTUDIANDO: __

INFORMACIÓN LINGÜÍSTICA

- Lengua materna: __ español __ otra (indicar): __
- Lenguas maternas de tu padre: __ español __ otra (indicar): __
- Lenguas maternas de tu madre: __ español __ otra (indicar): __
- Lenguas que hablas en casa: __ español __ otras (indicar): __
- Edad a la que empezaste a aprender inglés: ___
- ¿Cuál crees tú que es tu nivel de inglés?

<table>
<thead>
<tr>
<th>SPEAKING:</th>
<th>LISTENING:</th>
<th>READING:</th>
<th>WRITING:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principiante alto (A2)</td>
<td>Principiante alto (A2)</td>
<td>Principiante alto (A2)</td>
<td>Principiante alto (A2)</td>
</tr>
<tr>
<td>Intermedio bajo (B1)</td>
<td>Intermedio bajo (B1)</td>
<td>Intermedio bajo (B1)</td>
<td>Intermedio bajo (B1)</td>
</tr>
<tr>
<td>Intermedio alto (B2)</td>
<td>Intermedio alto (B2)</td>
<td>Intermedio alto (B2)</td>
<td>Intermedio alto (B2)</td>
</tr>
<tr>
<td>Avanzado bajo (C1)</td>
<td>Avanzado bajo (C1)</td>
<td>Avanzado bajo (C1)</td>
<td>Avanzado bajo (C1)</td>
</tr>
<tr>
<td>Avanzado alto (C2)</td>
<td>Avanzado alto (C2)</td>
<td>Avanzado alto (C2)</td>
<td>Avanzado alto (C2)</td>
</tr>
</tbody>
</table>

- ¿Estás aprendiendo otro idioma además del inglés? __ Sí __ No __
- Si tu respuesta es Sí, ¿Cuál? __
- Nota del curso pasado (a rellenar por el profesor de inglés): ___

EXPOSICIÓN LINGÜÍSTICA

- ¿Has hecho alguna estancia en un país de habla inglesa? __ Sí __ No __
 - Si tu respuesta es Sí, ¿dónde? __
 - ¿Cuántas semanas o meses estuviste allí? __
- ¿Has estudiado o estudias inglés fuera del instituto? __ Sí __ No __
 - Si has contestado Sí, ¿en qué año y cuánto tiempo (semanas/meses)? __

- ¿Haces algo fuera del colegio relacionado con el inglés? (ej: ver películas en inglés, leer internet en inglés, etc.) __ Sí __ No __
 - Específica: __

- ¿Estás en algún programa de bilingüismo en el Instituto? __ Sí __ No __
 - Si tu respuesta es Sí, ¿en qué curso empezaste el bilingüismo? __
 - ¿Qué asignaturas bilingües tienes? ___
 - ¿Cuántas horas semanales de inglés tienes en esas asignaturas? __

- Consentimiento: __ marca aquí para dar el consentimiento de que tus datos sean usados con fines de investigación sobre el aprendizaje del inglés. Esto NO es un examen. Todos tus datos serán anónimos y tratados confidencialmente. Gracias por tu colaboración.
Fecha: ____________________________

INFORMACIÓN PERSONAL

- TUS INICIALES: __________ - TU NICK: __________ - EDAD: __________ - SEXO: □ Hombre □ Mujer
- CURSO: □ 1ºESO □ 2ºESO □ 3ºESO □ 4ºESO □ 1ºBachi. □ 2ºBachi. □ PCPI □ Grado administrativo □ Otro: __________
- Centro DONDE ESTÁS ESTUDIANDO: __

INFORMACIÓN LINGÜÍSTICA

- Lengua materna: □ español □ otra (indicar): __________
- Lengua materna de tu padre: □ español □ otra (indicar): __________
- Lengua materna de tu madre: □ español □ otra (indicar): __________
- Lengua(s) que hablas en casa: □ español □ otras (indicar): __________
- Edad a la que empezaste a aprender alemán: __________
- ¿Cuál crees tú que es tu nivel de alemán?

 Sprechiren:
 □ Principiante bajo (A1) □ Principiante alto (A2) □ Intermedio bajo (B1) □ Intermedio alto (B2) □ Avanzado bajo (C1) □ Avanzado alto (C2)

 Hören:
 □ Principiante bajo (A1) □ Principiante alto (A2) □ Intermedio bajo (B1) □ Intermedio alto (B2) □ Avanzado bajo (C1) □ Avanzado alto (C2)

 Lesen:
 □ Principiante bajo (A1) □ Principiante alto (A2) □ Intermedio bajo (B1) □ Intermedio alto (B2) □ Avanzado bajo (C1) □ Avanzado alto (C2)

 Schreiben:
 □ Principiante bajo (A1) □ Principiante alto (A2) □ Intermedio bajo (B1) □ Intermedio alto (B2) □ Avanzado bajo (C1) □ Avanzado alto (C2)

- ¿Estás aprendiendo otro idioma ademáes del alemán? □ Sí □ No
 Si tu respuesta es Sí, ¿Cuál? __________

- Nota del curso pasado (a rellenar por el profesor de alemán): __________

EXPOSICIÓN LINGÜÍSTICA

- ¿Has hecho alguna estancia en un país de habla alemana? □ Sí □ No
 Si tu respuesta es Sí, ¿dónde? __________
 ¿Cuándo? __________
 ¿Cuántas semanas o meses estuviste allí? __________

- ¿Has estudiado o estudias alemán fuera del instituto? □ Sí □ No
 Si has contestado Sí, ¿en qué año y cuánto tiempo (semanas/meses)?
 Note that this question was included only in the learner profile given to the secondary education students of IES Padre Suarez

- ¿Haces algo fuera del colegio relacionado con el alemán? (ej: ver películas en alemán, leer internet en alemán, etc.) □ Sí □ No
 Especifica: __

- Consentimiento: □ marca aquí para dar el consentimiento de que tus datos sean usados con fines de investigación sobre el aprendizaje del inglés. Esto NO es un examen. Todos tus datos serán anónimos y tratados confidencialmente. Gracias por tu colaboración.

133
9.2 Proficiency test: L2 English

Written test

Choose the best answer for each question.
Stop when the questions become too difficult.
Spend no more than 40 minutes on the test.

1. Where ______ from?
 A you are B you C are you
 I'm from Russia.

2. We have ______ house in Moscow.
 A any B a C an
 A any

3. I have two ______, a boy and a girl.
 A sons B daughters C children
 A sons

4. I work in a ______. I'm a doctor.
 A hospital B hotel C supermarket
 A hospital

5. This is my brother. ______ name's Paul.
 A Her B His C He's
 A Her

6. ______ five people in my family.
 A They are B There is C There are
 A They are

7. I get up ______? o'clock in the morning.
 A for B at C in
 A for

8. I like apples, but I ______ bananas.
 A don't like B like C do like
 A don't like

9. Excuse me, ______ speak French?
 A do you B you do C you
 A do you

10. How much are ______ shoes?
 A this B these C that
 A this

11. Where are my glasses?
 They're ______ the table.
 A at B on C in
 A at

12. My sister ______ tennis very well.
 A plays B play C playing
 A plays

13. I usually go to work ______ train.
 A on B with C by
 A on

14. I don't see my parents very often ______ they live in South Africa.
 A so B but C because
 A so

15. Rosio stayed ______ home yesterday afternoon.
 A in B at C to
 A in

16. Last night I ______ to the cinema.
 A went B did go C was
 A went

17. The ______ is quite expensive but the food there is excellent.
 A film B restaurant C book
 A film

18. Do you want to listen to music or ______ TV?
 A see B look C watch
 A see

19. ______ were you at the weekend?
 A When B Where C What
 A When

20. ______ you have a good time at the party?
 Yes, it was fun.
 A Did B Were C Had
 A Did

21. Are you ______ English teacher?
 A Maria B Marias' C Maria's
 A Maria

22. Bob will meet ______ at the airport.
 A us B we C our
 A us

23. I'm going to a concert tonight. ______ you like to come?
 A Do B Are C Would
 A Do
24. __________ use your dictionary?
 Sure. Here you are.
 A Could I B Could you C Do I

25. I like this apartment but the __________ is too expensive for me.
 A money B rent C cost

26. Excuse me, how do I __________ to the bus station?
 A come B get C arrive

27. Do you sell stamps?
 Yes, we do. How __________ do you want?
 A any B many C much

28. Sorry I’m so late.
 That’s __________.
 A OK B great C right

29. I’d like __________ milk in my coffee, please.
 A some B any C a

30. __________ a bus stop near my flat.
 A It’s B Here’s C There’s

31. Is this a good time to talk?
 Sorry, no. I __________ dinner.
 A cook B am cooking C cooking

32. I think cycling is more dangerous __________ driving.
 A as B like C than

33. We __________ going to the theatre next Saturday.
 A will B do C are

34. __________ meet for coffee some time soon.
 A Let’s B Do you C Shall they

35. Kamal has got a holiday home near __________ sea.
 A a B the C some

36. If you’ve got a headache, you __________ go home.
 A should B did C had

37. __________ ever been to New York?
 A Have you B Are you C Did you

38. I only get about five hours’ sleep a night.
 That’s not __________.
 A enough B lot C too much

39. Did Amina finish the report?
 No. She __________ it tomorrow.
 A finishes B is going to finish C finished

40. Paula __________ loves working with children.
 A very B really C much

41. Is Ottawa the capital of Canada?
 I think __________.
 A is B yes C so D right

42. We never __________ a television when I was a child.
 A have had B hadn’t C had D didn’t have

43. We paid the restaurant bill __________ credit card.
 A to B with C on D by

44. The last time I __________ Joanna was in Paris.
 A have seen B saw C see D was seeing

45. If you __________ money from a friend, you should always pay it back promptly.
 A borrow B earn C spend D lend

46. Can I make myself a cup of coffee?
 Of course. You __________ to ask.
 A haven’t B mustn’t C needn’t D don’t have

47. I __________ a lot of sport in my free time.
 A do B practise C make D exercise

48. __________ anywhere interesting recently?
 A Do you go B Have you been C Are you going D Will you go
49 It's Walter's birthday on Friday. He _________ be 30, I think.
A should B can C will D shall

50 Learning the piano isn't as difficult _________ learning the violin.
A like B so C than D as

51 If the weather _________ bad tomorrow, we can go to a museum.
A will be B was C is D would be

52 About a billion cans of Coca-Cola _________ drunk around the world every day.
A is B are C was D were

53 My mum's not very well. Oh, _________
A it doesn't matter B I do apologise C sorry to hear that D not bad, thanks.

54 Hans isn't here. He _________ to see his grandmother. He'll be back tomorrow.
A has gone B had been C has been D had gone

55 Would you mind changing my appointment? _________ time on Friday is fine.
A Next B All the C Every D Any

56 When I was a child, I _________ climb the wall and jump into our neighbours' garden.
A would B did C have D used

57 Have you finished _________ the wall yet?
A paint B to paint C painting D painted

58 Can you help me? I've tried _________ hotel in the city and can't find a room.
A many B any C every D all

59 Luna used to find work boring _________ she became a nurse.
A unless B until C if D since

60 If I _________ closer to my office, I could walk to work.
A lived B would live C had lived D live

61 I _________ outside the cinema when suddenly a police car arrived.
A stood B was standing C have stood D am standing

62 Shall we go to The Riceboat for dinner?
It _________ be fully booked. They're sometimes busy on a Monday.
A will B may C can D must

63 We've _________ come back from a trip to India. It was amazing.
A already B yet C just D only

64 I've got to be at work in 5 minutes.
Don't worry, I _________ you a lift if you want.
A give B am giving C 'll give D 'm going to give

65 My doctor advised me _________ more exercise.
A take B taking C having taken D to take

66 I couldn't _________ up with the noise in the city, so we moved to the countryside.
A put B live C set D take

67 There's no name on this dictionary.
It _________ be mine then. Mine's got my name on the front.
A might not B mustn't C won't D can't

68 Julia _________ married since she was 20.
A is B was C has been D is being

69 Don't worry if I _________ late tonight. I'm going to the gym after work.
A am B will be C would be D was

70 I've got a terrible headache, and it won't go away.
Have you tried _________ some aspirin?
A to take B take C took D taking

71 Boxing is a sport _________ requires a lot of speed and fitness.
A it B that C what D where

72 Jon _________ working on this project for a couple of months so he hasn't made much progress yet.
A is only B has only been C was only D had only been

73 I was wondering _________ I could ask you some questions.
Sure, go ahead.
A what B if C that D how
74 What clothes should I pack for a trip to Boston?
 Well, it depends __________ the time of year that you go.
 A on B with C up D to

75 I’ve finished this salad and I’m still hungry. I __________ ordered something more filling.
 A must have B would have C should have D may have

76 Do you ever ask your neighbours to do favours __________ you?
 A for B to C with D about

77 Some married couples seem to get more __________ over time.
 A alike B same C like D equal

78 I don’t know how much this card costs. The price label’s __________ off.
 A gone B taken C done D come

79 Bon got the job because he __________ a very good impression at his interview.
 A made B did C put D took

80 Salsa music always __________ me of my trip to Cuba.
 A remembers B realises C recognises D reminds

81 I __________ to be picking Tom up at all the station but I’ve lost my keys.
 A am supposed B am requested C am intended D am obliged

82 How about going to Colours nightclub?
 There’s no __________ I’m going there. It’s awful!
 A hope B way C time D opportunity

83 By the age of 15, I __________ not to go to university.
 A had decided B decided C have decided D was deciding

84 I’m afraid your car __________ repaired before next week.
 A hasn’t been B wasn’t C wouldn’t be D can’t be

85 The amount of organically grown food on sale has __________ enormously in recent years.
 A raised B lifted C increased D built

86 Can you believe it? A woman has been __________ into the computer of her online virtual husband.
 A accused B suspended C arrested D suspected

87 You may borrow my laptop __________ you promise to look after it.
 A unless B in case C as long as D although

88 It’s a huge painting. It __________ taken ages to complete.
 A must have B can’t have C should have D won’t have

89 Pierre tends to put __________ dealing with problems, rather than dealing with them immediately.
 A down B off C over D away

90 If the taxi hadn’t stopped for us, we __________ standing in the rain.
 A were still B would still be C are still D will still be

91 My mother’s Italian, so __________ the language has been quite easy for me.
 A to learn B learn C having learned D learning

92 __________ I had the talent, I still wouldn’t want to be a movie star.
 A In case B Even if C Provided that D However much

93 The factory workers threatened __________ on strike if they didn’t get a pay rise.
 A going B go C that they go D to have gone

94 I was about to go to sleep when it __________ to me where the missing keys might be.
 A remembered B happened C appeared D occurred

95 There’s going to be a new department at work. They’ve asked me to __________ it up.
 A take B set C put D bring

96 If the film is a __________ success, the director will get most of the credit.
 A big B high C large D good

97 By the end of today’s seminar I will __________ to each of you individually.
 A speak B have spoken C be speaking D have been speaking

98 This is a photo of my little sister __________ ice cream on the beach.
 A eat B eating C was eating D have been eating

99 Our students take their responsibilities very __________.
 A considerably B thoroughly C seriously D strongly

100 Pia was __________ delighted with the birthday present.
 A very B completely C fairly D absolutely
Teacher’s guide

This placement test is designed to help teachers decide at which level of English Unlimited new students should be placed.

The test contains:
- 120 written multiple-choice questions, 20 at each level from Starter to Advanced (covering CEF levels A1 to C1). The questions focus on the language taught across the six levels of English Unlimited.
- an oral placement test, designed to be used in conjunction with the written test. The questions in this test are linked to the goals in the English Unlimited coursebooks, which in turn are based on the CEF ‘can-do’ statements. The oral test is designed to be flexible. This should allow teachers to get an overview of students’ speaking ability in order to ‘fine-tune’ their assessment of the correct level at which to place students.
- keys and tables for interpreting scores.

Written test procedure

1. Ask the student to start at the beginning of the written test and stop when the questions become too difficult. Allow 30–40 minutes for the test.
2. Mark the test and use the table below to place the student provisionally at one of the six levels of English Unlimited.
3. Use the oral placement test to confirm or adjust this placement (see Oral test procedure below).

<table>
<thead>
<tr>
<th>Written test score</th>
<th>Starter</th>
<th>Elementary</th>
<th>Pre-intermediate</th>
<th>Intermediate</th>
<th>Upper Intermediate</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–15</td>
<td>16–35</td>
<td>36–55</td>
<td>56–75</td>
<td>76–95</td>
<td>96+</td>
<td></td>
</tr>
</tbody>
</table>
9.3 Proficiency Level Test: L3 German

Prueba de Nivel de Alemán Nivel Básico 1 Al
Grammatik- und Wortschatztest

1.- Tobias kommt _______________ Berlin.
a) von b) aus c) in
das Modell: "Tobias kommt aus Berlin.

2.- Am Morgen fahre ich mit _________ Bus.
a) der b) den c) dem

3.- Das Kind ________ Tobias.
a) heiβt b) bin c) heis

das Modell: "Das Kind heißt Tobias.

4.- Mein Mann ________ in Berlin.
a) arbeitet b) wohnst c) arbeitet

das Modell: "Mein Mann wohnt in Berlin.

5.- Wir reisen oft _________ Bahn.
a) bei b) mit c) mit der

das Modell: "Wir reisen oft mit der Bahn.

a) keinen b) nicht c) kein

das Modell: "Morgens trinke ich kein Kaffee.

7.- Tobias ________ immer sehr schnell.
a) spreche b) spreche c) spricht

das Modell: "Tobias spricht immer sehr schnell.

8.- Sonntags _________ ich um 9.30 ________
a) stehe/- b) aufstehe/- c) stehe/auf

9.- Jeden Tag haben wir vier _________ Unterricht.
a) Uhren b) Stunden c) Stunde

das Modell: "Jeden Tag haben wir vier Stunden Unterricht.

10.- Auf dem Tisch gibt es drei _________.
a) Buch b) Bücher c) Heft

das Modell: "Auf dem Tisch gibt es drei Bücher.

11.- Am Wochenende ____________
a) ich nicht lerne b) lerne ich nicht c) nicht ich lerne

das Modell: "Am Wochenende lerne ich nicht.

12.- Heute habe ich ________________.
a) nicht Zeit b) Zeit nicht c) keine Zeit

das Modell: "Heute habe ich keine Zeit.

13.- _______________ du nach Hause?
a) Kommt b) Kommst c) Kommen

das Modell: "Kommst du nach Hause?

14.- _______________ Sie bitte!
a) Wartet b) Warten c) Warte

das Modell: "Warte Sie bitte!

15. Ich versteh dich nicht. _________ bitte lauter!
a) Sprichst du b) Sprechen Sie c) Sprich

das Modell: "Sprichst du bitte lauter?

16.- Lekeitio liegt _________ Meer.
a) an b) am c) ans

das Modell: "Lekeitio liegt ans Meer.

17.- _________ August fahren wir nach Deutschland.
a) Am b) Im c) –

das Modell: "Im August fahren wir nach Deutschland.

18.- Ich bin _________1983 geboren.
a) in b) am c) –

das Modell: "Ich bin 1983 geboren.

19.- Das Bild hängt an _________ Wand.
a) die b) das c) der

das Modell: "Das Bild hängt an der Wand.

20.- Ich habe _________ Brief bekommen.
a) dein b) deinen c) deiner

das Modell: "Ich habe deinen Brief bekommen.

21.- Maria hat schon _________ Prüfung gemacht.
a) seine b) ihre c) deine

das Modell: "Maria hat ihre Prüfung gemacht.

22.- Ich _________ in die Stadt gelaufen.
a) habe b) bin c) ist

das Modell: "Ich bin in die Stadt gelaufen.

23.- Tobias hat Pasta ________________
a) kochen b) gekocht c) kocht

das Modell: "Tobias hat gekocht Pasta.

24.- Wir haben unsere Bücher ____________
a) vergisst b) vergesst c) vergessen

das Modell: "Wir haben unsere Bücher vergessen.

25.- Ich muss zum Arzt ________________
a) gehen b) gegangen c) geht

das Modell: "Ich muss zum Arzt gehen."
26.- Hier ________ man nicht rauchen. Es ist verboten.
a) muss b) kann c) darf
27.- Komm zu mir, ________________.
a) wenn du willst! b) wenn willst du! c) wenn du will!

Prueba de Nivel de Alemán Nivel Básico 2 A2

Grammatik- und Wortschatztest

1.- Hans ________ eigentlich Ingenieur werden. Aber er ist Mechaniker geworden.
a) möchte b) wollte c) will
2.- Die Chefin hat mit _____ Sekretärin gesprochen.
a) ihrer b) ihrem c) seiner
3.- Ich möchte in einem Land leben, __________ schöne Landschaften hat.
a) der b) den c) das
a) magst b) sollst c) willst
5.- Heute Morgen haben wir ______ von unseren Kollegen in der Firma verabschiedet.
a) uns b) einander c) es
6.- Beate ist ein bisschen größer ______ ihre Zwillingschwester.
a) ob b) wie c) als
7.- Peter hat die Prüfung bestanden. ______ feiern wir heute eine Party bei ihm.
a) Denn b) Deshalb c) Obwohl
8.- Die Frau mit dem ______ Kleid ist die Schwester von Frank.
a) roten b) rotem c) rotes
a) Wenn b) Wann c) Als
10.- Du, ich brauche deinen Wagen. Würdest du ______ leihen?.
a) er mir b) mir es c) ihn mir
11.- In ______ Monat fahre ich nach Berlin.
a) ein b) einen c) einem
12.- ______ ich keine Zigaretten mehr rauche, atme ich viel besser.
a) Als b) Nach c) Seit
13.- Sie haben ______ beim Tanzen kennen gelernt.
a) sich b) ihr c) ihnen
14.- Ich habe meinen Laptop mitgebracht, ______ du den Text lesen kannst.
a) deshalb b) denn c) damit
15.- Mein Vater interessiert sich sehr ______ Politik.
a) an b) für c) von
16.- Ich muss mit dem Arzt einen Termin ________ .
a) vereinbaren b) verbinden c) verbleiben
17.- Ich habe mich sehr _____ deine Einladung gefreut.
a) vor b) mit c) über
18.- Ich weiß nicht, ______ Peter meine E-mail bekommen hat.
a) wenn b) dass c) ob
19.- Ich habe meine Brille auf den Tisch __________, und jetzt ist sie nicht mehr da.
 a) gelegen b) gelegt c) gelogen
20.- ________ Wochenende haben wir Zeit uns zu erholen.
 a) Am b) An c) An die
21.- Der Freund, ________ ich heute nach Bochum reisen wollte, hat einen Unfall gehabt.
 a) den b) von dem c) mit dem
22.- ________ ich mit der Arbeit fertig bin, gehe ich zu meinen Freunden.
 a) Als b) Wenn c) Wann
23.- ________ weiß, warum er uns so belogen hat.
 a) Alle b) Keiner c) Jeden
24.- Gestern ________ ich keine billige Eintrittskarte für die Oper besorgen.
 a) konnte b) mochte c) sollte
25.- Die Lehrerin hat das Kind gelobt, ________ es hat eine sehr schöne Geschichte geschrieben.
 a) damit b) deshalb c) denn
26.- Das Wochenende haben wir ________ dem Land verbracht.
 a) auf b) in c) an
27.- Ist ________ in Ordnung? Du siehst müde aus.
 a) alle b) alles c) etwas
28.- Das Auto ________ vom Mechaniker repariert.
 a) hat b) bin c) wird
29.- ________ Sie mir bitte sagen, wo ich meinen Laptop anschließen kann?
 a) Konnten b) Könnten c) Hätten

Prueba de Nivel de Alemán Nivel Intermedio 1 B1.1
Grammatik- und Wortschatztest
1. - Karl, ………. Freundin im siebten Monat schwanger ist, hat gestern seine Arbeit verloren.
 a) deren b) seine c) dessen
2. - „Ich bin sehr ………. deiner Meinung interessiert.“
 a) an b) für c) von
3. - Eine Woche ………. er seinen Führerschein gemacht hatte, hatte er bereits seinen ersten Unfall.
 a) seitdem b) nachdem c) seit
4. - Sie versucht es immer wieder auf ………. Weise, aber dieses Mal wird es nicht funktionieren.
 a) ihrer b) derselben c) dieselbe
5. - „Lass die Tasche ruhig liegen. Du ………. sie nicht wegzuräumen."
 a) brauchst b) musst c) verstehst
6. - „Kannst du mir mal sagen, ………. du Angst hast?“
 a) vor wen b) wovor c) was
7. - „Ich bin wütend ………. Klaus, weil er nicht mit mir ausgehen will.“
 a) wegen b) für c) auf
8. - „………. ich enttäuscht von ihm bin, bin ich doch seine Freundin."
 a) Trotzdem b) Deswegen c) Obwohl
9. - ………. einer Arbeit im väterlichen Betrieb wählte er einen Lehrberuf bei der Stadtverwaltung.
10. - „Wenn sie noch nicht hier sind, dann sind sie bestimmt wieder den Weg gefahren.“
 a) weitesten b) größten c) stundenlangen
11. - „Er ist wieder einmal zu spät gekommen, wir ohne ihn anfangen mussten.“
 a) warum b) zumal c) so dass
12. - „Das ist der Kollege, ich dir erzählt habe.“
 a) von dem b) über den c) wovon
13. - Letzten Sommer in Hamburg hat María Deutsch gesprochen.“
 a) viel b) viele c) mehrere
 a) Je / desto b) Zwar / aber c) Sowohl / als auch
15. - Es ist Herbst, da verlieren die Bäume ihre
 a) Äste b) Büsche c) Blätter
 a) Eltern b) Große c) Erwachsene
17. - Die Sekretärin klebte den Brief zu und warf ihn in
 a) die Mailbox b) den Briefkasten c) die Post
 a) Schreiber b) Laser c) Drucker
19. - Zum Kaffee essen die Müllers gerne ein Stück
 a) Brötchen b) Teigware c) Kuchen
20. - "Ich war schon in Lateinamerika und Asien." - "Dann bist du aber schon viel"
 a) gefahren b) gegangen c) gereist
 a) Fahrräder b) Fußgänger c) LKWs
 a) lagern b) speichern c) liegen
 a) Bekanntem b) Bekannten c) Bekannte
24. - Der Postbote konnte den Brief nicht zustellen, weil Herr Braun die falsch notiert hatte.
 a) Bankleitzahl b) Postleitzahl c) Postnummer
25. - In der Eile hatte Peter ganz vergessen, einzupacken. Jetzt musste er so ins Bett gehen.
 a) den Schlafanzug b) das Schlafhemd c) die Nachthose
 a) Blutlauf b) Blutsystem c) Kreislauf
27. - Um endlich eine nette Partnerin zu finden, hat Klaus in der Sektion "Lonely Hearts" seiner Lokalzeitung aufgegeben.
 a) eine Werbung b) eine Anzeige c) einen Hinweis
28. - Petra möchte ihrer Mutter beim Tischdecken helfen und hat schon einmal die aus der Schublade geholt.
 a) Dosenöffner b) Bestecke c) Kochlöffel

Prueba de Nivel de Alemán Nivel Intermedio 2 B1.2

Grammatik- und Wortschatztest

1- Sich ______ das Wetter zu ärgern, hat überhaupt keinen Sinn.
 a) auf b) an c) über

2- Er ______ das Essen seiner Frau mit dem seiner Mutter.
 a) vergeht b) vergibt c) vergleicht

3- Ich habe ______ in dieser Sache getäuscht.
 a) mich b) mir c) es

4- ______ eines Maschinenschadens kam die U-Bahn heute Morgen verspätet an.
 a) Trotz b) Während c) Wegen

5- Es ist verboten einen Wagen ______ .
 a) zu überholen b) überholen c) überzuholen

6- ______ sie den Chef sprechen konnte, war schon die Kündigung eingetroffen.
 a) Bevor b) Wenn c) Nachdem

7- Die Arbeitslosigkeit müsste ________ .
 a) bekämpfen b) bekämpft werden c) bekämpft worden

8- Nur wenige Menschen haben einen so guten Geruchssinn, ______ sie vermuten.
 a) wie b) als c) da

9- ______ sie den ganzen Tag arbeitet, hat sie immer noch Zeit für ihre alte Tante.
 a) Dennoch b) Deshalb c) Obwohl

10- Sie dürfen nicht alles durch eine ______ Brille sehen.
 a) rosa b) rote c) schwarze

11- Die ______ Zeitung berichtet von einer ganz aktuellen Entwicklung.
 a) heutliche b) heutige c) heutzutage

12- Wenn Sie einen ______ suchen, rufen Sie uns umgehend an.
 a) Beschäftigung b) Nebenjob c) Stelle

13- Auch mit deiner Hilfe hätte ich nichts ________ .
 a) gemacht können b) machen gekonnt c) machen können.

14- Der Opernsänger lernt Deutsch, _____ er interessiert sich für deutsche Komponisten.
 a) denn b) da c) darum

15- Wir müssen uns ______ Klima anpassen.
 a) an das b) an den c) am

16- Im verlassenen Dorf sind Häuser ________ .
 a) vertragen b) verfallen c) verzogen

17- Die Studentin hat ein Stipendium ________, um in Deutschland ihre Doktorarbeit schreiben zu können.
 a) beantragt b) beworben c) bestellt

18- Die Studenten, ________ die Prüfung gut gelungen ist, sind zufrieden.
 a) denen b) die c) dessen

19- ______ diesem Wetter bleiben wir lieber zu Hause.
20- Ein Angestellter, der nicht pünktlich ist, ___________.
a) werde entlassen b) wäre entlassen c) wird entlassen
21- Die ________ des Fußballspiele beginnt um 19:00 Uhr.
a) Niederlassung b) Übertragung c) Veröffentlichung
22- Hätte ich _____ eine größere Wohnung!
a) ja b) mal c) bloß
23- Das Buch soll ein _______ Publikum erreichen können.
a) weites b) breites c) braves
24- _______ der Computer kaputt ging, hatte ich nur die Hälfte meiner Arbeit gespeichert.
a) Wenn b) Wann c) Als
25- Er konnte eine vom Lehrer _________ Frage nicht beantworten.
a) gestellte b) gestellten c) gestellter
26- _________ ihrer Mühe hat sie keine guten Ergebnisse bekommen.
a) Infolge b) Trotz c) Dank
27- Die Teilnahme _____ der Demo war gefährlich.
a) auf b) in c) an
28- Er ist eine sehr _________ Person, die immer bereit zu helfen ist.
a) hilfsbedürftige b) hilflose c) hilfsbereite
9.4 Elicitation of Learner Language: Picture Composition Task

Glossary: Dog (perro), frog (rana), boy (niño), bed (cama), vase (vaso), floor (suelo), look at (mirar a), smell (oler), day (día), night (noche), sleep (dormir), escape (escañar), worried (preocupado), look for (buscar), shout (gritar), forest (bosque), bee (abeja), rock (roca), hold (sostener), branch (rama), deer (ciervo), drop (caer), push (empujar), fall (caer), river (rio), water (agua), trunk (tronco), find (encontrar), family (familia), leave (dejar), hand (mano) and wave goodbye (decir adiós).
Pictures reproduced by Mayer (1969), with permission of the author/artist and publisher.
9.5 Experimental Elicitation of Learner Language: Sentence Transformation Task: English & German

Rewrite the sentences below replacing the underlined words with the words in brackets.

A. English:

1. This is his car. (my father)

2. Her sister fell off the swing. (Maria)

3. Their shoes are in the locker. (boys)

4. Their toys were left out in the rain. (children)

5. Her computer was broken. (woman)

6. His truck was dirty. (man)

B. German:

1. Das ist sein Auto. (mein Vater)

2. Ihre Schwester fiel von der Schaukel. (Maria)

3. Ihre Schuhe sind im Schrank. (Jungen)

4. Ihre Spielzeuge blieben im Regen draußen liegen. (Kinder)

5. Ihr Computer/Rechner war kaputt. (Frau)

6. Sein LKW war schmutzig/dreckig. (Mann)
9.6 Transcription Template

FILE_NAME:
LEVEL:
INITIALS:
NICK:
AGE:
SEX:
COURSE:
SCHOOL:
L1:
FATHERS_L1:
MOTHERS_L2:
LANGUAGE_AT_HOME:
AGE_EXPOSURE:
SPEAKING_SELF:
LISTENING_SELF:
READING_SELF:
WRITING_SELF:
OTHER_LANGUAGE:
WHICH_LANG:
ENGLISH_MARK_LAST_YEAR:
STAY_ABROAD:
WHERE_STAY?:
WHEN_STAY?:
MONTHS_STAY:
EXTRAMURAL_INSTRUCTION:
WHEN_EXTRAMURAL:
MONTHS_EXTRAMURAL:
ADDITIONAL_EXTRAMURAL:
WHICH_ADDITIONAL_EXTRAMURAL:
BILINGUAL_PROGRAM:
WHEN_BILINGUAL_PROGRAM:
BILINGUAL_SUBJECTS:
BILINGUAL_EXTRA_HOURS_SUBJECTS:
COMPOSITION:

9.7 Examples

9.7.1 Learner Corpus Transcribed File

FILE_NAME: B2_4ESO_15_PSR_EAT_IAC.txt
LEVEL: Upper-Intermediate
INITIALS: IAC
NICK: Iván
AGE: 15
SEX: Hombre
COURSE: 4ºESO
SCHOOL: IES Pedro Soto de Rojas
L1: Español
FATHERS_L1: Español
MOTHERS_L2: Español
LANGUAGE_AT_HOME: Español
AGE_EXPOSURE: 6
SPEAKING_SELF: B2
LISTENING_SELF: B1
READING_SELF: B1
WRITING_SELF: B1
One night a boy was having some fun with his pets in his bedroom. These pets were a frog and a dog. The frog was in a bottle and the dog was looking at the frog while standing next to the boy. When the boy fell asleep the frog got out of the bottle and went out of the bedroom. The frog escaped during the night so the boy didn’t feel anything and he continued sleeping even the dog which was sleeping with him knew that the frog was escaping. Early in the morning, the boy woke up and saw an empty bottle in front of his bed, then he understood that the frog have escaped and he needed to look for it if he didn’t want to lose it. Next, the boy and the dog ran to the forest and tried to find the frog, both of them love it so much so they were ready to do everything to find it. They were looking for the frog in all the places of the forest, the boy started searching at the some trees while the dog was helping him looking at other different trees. The boy went climbed a little rock and called his frog as loud as he could. After that, he saw that he was not keeping a tree
holding a branch to maintain his equilibrium, he was holding a deer! Then, the deer pushed him down the mountain and the boy dropped with his dog. The boy and the dog fell in the water, but they didn't suffer any injury or hurt. They returned to look for the frog pulling a trunk that they found next to them. When they got on the trunk, they could see a family of little frogs where the dog were looking for was. The boy caught his frog and then, all of them went back home. The boy and his dog felt very happy and they waved goodbye to the frog family.

9.7.2 Sentence Transformation Transcribed File English

FILE_NAME: B1_IBACH_17_PSR_EAT_MRV.txt
LEVEL: INTERMEDIATE (70)
INITIALS: MRV
NICK:
AGE: 17
SEX: MUJER
COURSE: 1ºBACHILLERATO
SCHOOL: IES Pedro Soto de Rojas
L1: Español
FATHERS_L1: Español
MOTHERS_L2: Español
LANGUAGE_AT_HOME: Español
AGE_EXPOSURE: 7
SPEAKING_SELF: A2
LISTENING_SELF: B1
READING_SELF: A2
WRITING_SELF: A2
OTHER_LANGUAGE: Yes
WHICH_LANG: Francés
ENGLISH_MARK_LAST_YEAR:
STAY_ABROAD: INGLATERRA
WHERE_STAY?: 2011
WHEN_STAY?: DOS SEMANAS
MONTHS_STAY:
EXTRAMURAL_INSTRUCTION: SÍ
WHEN_EXTRAMURAL:DURANTE LOS ÚLTIMOS AÑOS DE PRIMARIA
MONTHS_EXTRAMURAL:
ADDITIONAL_EXTRAMURAL: SÍ
WHICH_ADDITIONAL_EXTRAMURAL: ACTIVIDADES EXTRAESCOLARES EN INGLÉS
BILINGUAL_PROGRAM: no
WHEN_BILINGUAL_PROGRAM:
BILINGUAL_SUBJECTS:
BILINGUAL_EXTRA_HOURS_SUBJECTS:
COMPOSITION:
 1. This is his car (my father): This is my father's car.
 2. Her sister fell off the swing (Maria): Maria's sister fell off the swing
 3. Their shoes are in the locker (boys): Boys' shoes are in the locker
 4. Their toys were left out in the rain (children): Children's toys were left out in the rain.
 5. Her computer was broken (woman): Woman's computer was broken.
 6. His truck was dirty (man): Man's truck was dirty.

9.7.3 Sentence Transformation Transcribed File German
FILE_NAME: A2.2_2BACH_17_PS_EAT_NVCG.txt
LEVEL: A2.2
INITIALS: NVCG
NICK:
AGE: 17
SEX: MUJER
COURSE: 2ºBACH
SCHOOL: IES PADRE SUAREZ
L1: ESPAÑOL
FATHERS_L1: ESPAÑOL
MOTHERS_L2: ESPAÑOL
LANGUAGE_AT_HOME: ESPAÑOL
Das ist sein auto (mein Vater): Das ist das Auto meinem Vater

2. Ihre Schwester fiel von der Schaukel (Maria): Maria's Schwester fiel von der Schaukel

3. Ihre Schuhe sind im Schrank (Jungen): Die Schuhe den Jungen sind im Schrank

5. Ihr Computer war kaputt. (Frau): Der Computer der Frau war kaputt.
9.8 UAM Corpus Tool software

When extramural: No
Months extramural: No
Additional extramural: Yes
Which additional extramural: Reading scientific articles
Bilingual program: Yes
When bilingual program: 2010
Bilingual subjects: Social sciences, maths
Bilingual extra hours subjects: 6
Composition: A boy called Charles was in his bedroom with his pets: a dog cat was sleeping when his frog escaped from its glass. The next day, Charles & his worried. They went to the forest to search it very quickly. Firstly, they saw in a tree searched behind a rock but it wasn’t there. There, there was an enormous bear. Afterwards, they left from the water and they saw a trunk on the land. Behind it, the three arrived home very happy. Charles never forget this accident and now he

9.9 Tagging Manual: Learners’ correction tagging scheme

Rewriting unreadable: [the student edits by rewriting; the original formulation is illegible]

Examples:

and ___ always she offered ___ alcohol. She was a

Finally, I ___ believe that I’m going to live a good experience ___

___ rewriting unreadable
<table>
<thead>
<tr>
<th>Rewriting readable: [the student edits by rewriting; the original formulation is legible]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>[...] bad cooker $_RWR_and$ so that I ate always pizza, fastfood... [...]</td>
</tr>
<tr>
<td>$_RWR_word$ rewriting readable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reallocation: [the student edits by reallocating units]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>[...] the knowledge of a foreign will $_NLoc_be$ always $_OLoc_be$ something useful.</td>
</tr>
<tr>
<td>Two tags are needed here: one for the old location and the other the new location. The word that is reallocated occurs after BOTH tags.</td>
</tr>
<tr>
<td>$_OLoc_word$ old location</td>
</tr>
<tr>
<td>$_NLoc_word$ new location</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Late insertion: [the student edits by inserting new units]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>[...] the importance which British Monarchy has $_Ins_in$ $_Ins_UK$ doesn’t exist in Spain [...]</td>
</tr>
<tr>
<td>$_Ins_word$ insertion</td>
</tr>
</tbody>
</table>
Unreadable: [the student’s writing is unintelligible]

Example:

\[\underline{UNR} \] unreadable
9.10 Tagging Manual: MOS Project

Morpheme tagging scheme for Past regular

<table>
<thead>
<tr>
<th>OC: Past reg (Peter walked yesterday)</th>
<th>S: Supplied form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target-like Use (correct form supplied)</td>
<td>Peter walked yesterday</td>
</tr>
<tr>
<td>Non-target-like Use</td>
<td>Underuse</td>
</tr>
<tr>
<td>Misuse</td>
<td>Misselction (form exists)</td>
</tr>
<tr>
<td>Misrealisation (form does not exist)</td>
<td>n/a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OC: ing (Peter is walked [–walking])</th>
<th>SNOCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overuse (correct form supplied but in NOC)</td>
<td>Peter is walked</td>
</tr>
</tbody>
</table>

Morpheme tagging scheme for Past Irregular

<table>
<thead>
<tr>
<th>OC: Past irreg (Peter stole yesterday)</th>
<th>S: Supplied form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target-like Use (correct form supplied)</td>
<td>Peter stole yesterday</td>
</tr>
<tr>
<td>Non-target-like Use</td>
<td>Underuse (no form supplied)</td>
</tr>
<tr>
<td>Misuse (incorrect form supplied)</td>
<td>Misselction (form exists)</td>
</tr>
<tr>
<td>Misrealisation (form does not exist)</td>
<td>Peter stealed yesterday</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OC: 3rd sing (Peter never stole [–steals])</th>
<th>SNOCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overuse (correct form supplied but in NOC)</td>
<td>Peter never stole</td>
</tr>
</tbody>
</table>
Morpheme tagging scheme for Third person singular -s

<table>
<thead>
<tr>
<th>OC: 3rd sing (He has a friend) / (He never eats pasta)</th>
<th>S: Supplied form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target-like Use</td>
<td></td>
</tr>
<tr>
<td>(correct form supplied)</td>
<td>He has a friend / He never eats</td>
</tr>
<tr>
<td>Non-target-like Use</td>
<td></td>
</tr>
<tr>
<td>Underuse (no form supplied)</td>
<td>He have_a friend / He never eat_</td>
</tr>
<tr>
<td>Misuse (incorrect form supplied)</td>
<td></td>
</tr>
<tr>
<td>Misselection (form exists)</td>
<td>He had a friend / He never eating</td>
</tr>
<tr>
<td>Misrealisation (form does not exist)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OC: Past irreg (He has a problem [had] yesterday)</th>
<th>SNOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overuse (correct form supplied but in NOC)</td>
<td>He has a problem yesterday</td>
</tr>
</tbody>
</table>

Morpheme tagging scheme for Present progressive -ing

<table>
<thead>
<tr>
<th>OC: Progressive (Peter is swimming)</th>
<th>S: Supplied form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target-like Use</td>
<td></td>
</tr>
<tr>
<td>(correct form supplied)</td>
<td>Peter is swimming</td>
</tr>
<tr>
<td>Non-target-like Use</td>
<td></td>
</tr>
<tr>
<td>Underuse (no form supplied)</td>
<td>Peter is swim__</td>
</tr>
<tr>
<td>Misuse (incorrect form supplied)</td>
<td></td>
</tr>
<tr>
<td>Misselection (form exists)</td>
<td>Peter is swim__</td>
</tr>
<tr>
<td>Misrealisation (form does not exist)</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OC: 3rd sing (Peter swimming [swims] every day)</th>
<th>SNOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overuse (correct form supplied but in NOC)</td>
<td>swimming</td>
</tr>
</tbody>
</table>
Morpheme tagging scheme for Copula *Be*

<table>
<thead>
<tr>
<th>OC: Copula (Peter is happy)</th>
<th>S: Supplied form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target-like Use</td>
<td></td>
</tr>
<tr>
<td>(correct form supplied)</td>
<td>Peter is happy</td>
</tr>
<tr>
<td>Non-target-like Use</td>
<td></td>
</tr>
<tr>
<td>Underuse (no form supplied)</td>
<td>Peter ___ happy</td>
</tr>
<tr>
<td>Misuse (incorrect form supplied)</td>
<td>Peter be happy</td>
</tr>
<tr>
<td>Misselection (form exists)</td>
<td></td>
</tr>
<tr>
<td>Misrealisation (form does not exist)</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OC: 3rd sing HAVE (Peter is a house [=has])</th>
<th>SNOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overuse (correct form supplied but in NOC)</td>
<td>Peter is</td>
</tr>
</tbody>
</table>

Morpheme tagging scheme for Auxiliar *Be*

<table>
<thead>
<tr>
<th>OC: Aux BE (Peter is swimming)</th>
<th>S: Supplied form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target-like Use</td>
<td></td>
</tr>
<tr>
<td>(correct form supplied)</td>
<td>Peter is swimming</td>
</tr>
<tr>
<td>Non-target-like Use</td>
<td></td>
</tr>
<tr>
<td>Underuse (no form supplied)</td>
<td>Peter ___ swimming</td>
</tr>
<tr>
<td>Misuse (incorrect form supplied)</td>
<td></td>
</tr>
<tr>
<td>Misselection (form exists)</td>
<td>Peter be swimming</td>
</tr>
<tr>
<td>Misrealisation (form does not exist)</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OC: aux HAVE (Peter is left [=has])</th>
<th>SNOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overuse (correct form supplied but in NOC)</td>
<td>Peter is left</td>
</tr>
</tbody>
</table>
Morpheme tagging scheme for Indefinite article

<table>
<thead>
<tr>
<th>OC: Indefinite article (A friend of mine came)</th>
<th>S: Supplied form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target-like Use</td>
<td></td>
</tr>
<tr>
<td>(correct form supplied)</td>
<td>A friend of mine</td>
</tr>
<tr>
<td>Non-target-like Use</td>
<td></td>
</tr>
<tr>
<td>Underuse</td>
<td></td>
</tr>
<tr>
<td>(no form supplied)</td>
<td>_ friend of mine</td>
</tr>
<tr>
<td>Misuse</td>
<td></td>
</tr>
<tr>
<td>(incorrect form supplied)</td>
<td>The friend of mine</td>
</tr>
<tr>
<td>Misselection</td>
<td></td>
</tr>
<tr>
<td>(form exists)</td>
<td></td>
</tr>
<tr>
<td>Misrealisation</td>
<td></td>
</tr>
<tr>
<td>(form does not exist)</td>
<td></td>
</tr>
</tbody>
</table>

Morpheme tagging scheme for Possessive -s

<table>
<thead>
<tr>
<th>OC: Possessive (My mum’s car)</th>
<th>S: Supplied form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target-like Use</td>
<td></td>
</tr>
<tr>
<td>(correct form supplied)</td>
<td>mum’s car</td>
</tr>
<tr>
<td>Non-target-like Use</td>
<td></td>
</tr>
<tr>
<td>Underuse</td>
<td></td>
</tr>
<tr>
<td>(no form supplied)</td>
<td>mum_ car</td>
</tr>
<tr>
<td>Misuse</td>
<td></td>
</tr>
<tr>
<td>(incorrect form supplied)</td>
<td></td>
</tr>
<tr>
<td>Misselection</td>
<td></td>
</tr>
<tr>
<td>(form exists)</td>
<td></td>
</tr>
<tr>
<td>Misrealisation</td>
<td></td>
</tr>
<tr>
<td>(form does not exist)</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

CO: Plural (Kid’s like toys [Kids like toys])

<table>
<thead>
<tr>
<th>OC: Plural (Kid’s like toys [−Kids like toys])</th>
<th>SNOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overuse</td>
<td></td>
</tr>
<tr>
<td>(correct form supplied but in NOC)</td>
<td></td>
</tr>
<tr>
<td>SNOC</td>
<td>Kid’s like toys</td>
</tr>
</tbody>
</table>
9.11 Descriptive Statistics

9.11.1 Part I: MOS & Learner Corpus

9.11.1.1 Specific Descriptive Statistics (grouping criterion: proficiency level)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAST_REG-TYPE</td>
<td></td>
<td>$N=13$</td>
</tr>
<tr>
<td>Category</td>
<td>Percentage</td>
<td>Count</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>target_like_use</td>
<td>23.1%</td>
<td>3</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>76.9%</td>
<td>10</td>
</tr>
</tbody>
</table>

NON_TARGETLIKEUSE-TYPE

<table>
<thead>
<tr>
<th>Type</th>
<th>Percentage</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>underuse</td>
<td>60.0%</td>
<td>6</td>
</tr>
<tr>
<td>misuse</td>
<td>40.0%</td>
<td>4</td>
</tr>
<tr>
<td>overuse (snoc)</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>unclassified</td>
<td>0.0%</td>
<td>0</td>
</tr>
</tbody>
</table>

MISUSE-TYPE

<table>
<thead>
<tr>
<th>Type</th>
<th>Percentage</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>misselection</td>
<td>25.0%</td>
<td>1</td>
</tr>
<tr>
<td>misrealisation</td>
<td>75.0%</td>
<td>3</td>
</tr>
</tbody>
</table>
SCORE: $[\text{SOC} \div (\text{OC} + \text{SNOC})] \times 100$

SOC = underuse (0 points)

misuse (0,5 points)

target_like_use (1 point)

SOC_past_reg_elem: $(6 \times 0) + (4 \times 0,5) + (3 \times 1) = 5$

OC_past_reg_elem: 13

SNOC_past_reg_elem: 0

Score_past_reg_elem: $5 \div (13 + 0) \times 100 = 38,46\%$

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAST_IRREG_TYPE</td>
<td></td>
<td>N=16</td>
</tr>
</tbody>
</table>
target_like_use 43.8% 7

non_target_like_use 56.2% 9

NON_TARGETLIKE_USE-TYPE N=9
underuse 55.6% 5
misuse 22.2% 2
overuse(snoc) 22.2% 2
unclassified 0.0% 0

MISUSE-TYPE N=2
misselection 0.0% 0
misrealisation 100.0% 2

SCORE: \[\text{SOC} \div (\text{OC}+\text{SNOC})\] \times 100
SOC = underuse (0 points)
misuse (0.5 points)
target_like_use (1 point)

SOC_past_irreg_elem: \((5 \times 0) + (2 \times 0.5) + (7 \times 1) = 8\)
OC_past_irreg_elem: \(= 16\)
SNOC_past_irreg_elem: \(= 2\)
Score_past_irreg_elem: \(\frac{8}{16+2} \times 100 = 44.44\%\)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>3SG_TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>target_like_use</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>100.0%</td>
<td>15</td>
</tr>
</tbody>
</table>

NON_TARGETLIKE_USE-TYPE		
underuse	86.7\%	13
misuse	13.3\%	2
overuse(snoc) 0.0% 0
unclassified 0.0% 0
MISUSE-TYPE N=2
misselection 0.0% 0
misrealisation 100.0% 2

SCORE: \[\text{SOC} \div (\text{OC} + \text{SNOC}) \] \times 100
SOC = underuse (0 points)
misuse (0.5 points)
target_like_use (1 point)
SOC_3SG_elementary: \((13\times0) + (2 \times 0.5) + (0\times 1) = 1\)
OC_3SG_elementary: 15
SNOC_3SG_elementary: 0
Score_3SG_elem: \(1 \div (15+3) \times 100 = 5.5\%\)

Feature Percent N

ING_TYPE N=5
<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>target_like_use</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>100.0%</td>
<td>5</td>
</tr>
</tbody>
</table>

NON_TARGETLIKEUSE-TYPE

- underuse: 0.0% (0)
- misuse: 80.0% (4)
- overuse(snoc): 20.0% (1)
- unclassified: 0.0% (0)

MISUSE-TYPE

- misselection: 0.0% (0)
- misrealisation: 100.0% (4)

SCORE: \[\text{SOC} = \frac{0 + 0.5 + 1}{0 + 4 + 1} \] × 100
SOC_ING_elementary: $ (0 \times 0) + (4 \times 0.5) + (0 \times 1) = 2 $
OC_ING_elementary: 5
SNOC_ING_elementary: 1
Score_ING_elem: $ \frac{2}{(5+1)} \times 100 = 33.3\% $

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE_COP_TYPE</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

target_like_use	50.0%	4
non_target_like_use	50.0%	4

NON_TARGET_LIKE_USE-TYPE	N=4	
underuse	0.0%	0
misuse	100.0%	4
overuse(snoc)	0.0%	0
unclassified	0.0%	0
MISUSE-TYPE: N=4
misselection: 0.0% 0
misrealisation: 100.0% 4

SCORE: \[\frac{\text{SOC}}{\text{OC+SNOC}} \times 100 \]
SOC =
- underuse (0 points)
- misuse (0.5 points)
- target_like_use (1 point)
SOC_BE_COP_elementary: \((0 \times 0) + (4 \times 0.5) + (4 \times 1) = 6\)
OC_BE_COP_elementary: 8
SNOC_BE_COP_elementary: 0
Score_BE_COP_elem: \(\frac{6}{(8+0)} \times 100 = 75\% \)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE_AUX_TYPE</td>
<td></td>
<td>N=7</td>
</tr>
</tbody>
</table>
target_like_use 42.9% 3

non_target_like_use 57.1% 4

NON_TARGETLIKE_USE-TYPE N=4
- underuse 50.0% 2
- misuse 0.0% 0
- overuse (snoc) 50.0% 2
- unclassified 0.0% 0

MISUSE-TYPE N=0
- missetection 0.0% 0
- misrealisation 0.0% 0

SCORE: \[
\frac{\text{SOC} \div (\text{OC+SNOC})}{100}
\]

\[
\text{SOC} = \begin{align*}
\text{underuse} & \text{ (0 points)} \\
\text{misuse} & \text{ (0,5 points)} \\
\text{target_like_use} & \text{ (1 point)}
\end{align*}
\]
SOC_BE_AUX_elementary: \((2 \times 0) + (0 \times 0,5) + (3 \times 1) = 3 \)
OC_BE_AUX_elementary: 7
SNOC_BE_AUX_elementary: 2
Score_BE_AUX_elem: \(3 \div (7+2) \times 100 = 33.3\% \)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLU_TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>target_like_use</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>100.0%</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NON_TARGETLIKE_USE-TYPE</th>
<th>N=5</th>
</tr>
</thead>
<tbody>
<tr>
<td>underuse</td>
<td>80.0%</td>
</tr>
<tr>
<td>misuse</td>
<td>0.0%</td>
</tr>
<tr>
<td>overuse(snoc)</td>
<td>20.0%</td>
</tr>
</tbody>
</table>
unclassified 0.0% 0
MISUSE-TYPE N=0
misselection 0.0% 0
misrealisation 0.0% 0

SCORE: \[\frac{SOC}{OC+SNOC} \] \times 100
SOC = underuse (0 points)
misuse (0.5 points)
target_like_use (1 point)
SOC_PLU_elementary: \((4 \times 0) + (0 \times 0.5) + (0 \times 1) = 0 \)
OC_PLU_elementary: 5
SNOC_PLU_elementary: 1
Score_PLU_elem: \(\frac{0}{5+1} \times 100 = 0\% \)

Feature Percent N

ART_TYPE

N=60
target_like_use

- 56.7% (34)

non_target_like_use

- 43.3% (26)

NON_TARGETLIKE_USE-TYPE

- underuse: 15.4% (4)
- misuse: 61.5% (16)
- overuse (snoc): 23.1% (6)
- unclassified: 0.0% (0)

MISUSE-TYPE

- N=16
- misselection: 93.8% (15)
- misrealisation: 6.2% (1)

SCORE: \[
\frac{\text{SOC}}{\text{(OC+SNOC)}} \times 100
\]

- SOC = underuse (0 points)
- misuse (0.5 points)
- target_like_use (1 point)
SOC_ART_elementary: \((4\times 0) + (16\times 0.5) + (34\times 1) = 42\)
OC_ART_elementary: 60
SNOC_ART_elementary: 6
Score_ART_elem: \(42 \div (60+6) \times 100 = 63.63\%\)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS_TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>target_like_use</td>
<td>16.7%</td>
<td>1</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>83.3%</td>
<td>5</td>
</tr>
<tr>
<td>NON_TARGET_LIKE_USE-TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>underuse</td>
<td>40.0%</td>
<td>2</td>
</tr>
<tr>
<td>misuse</td>
<td>40.0%</td>
<td>2</td>
</tr>
<tr>
<td>overuse(snoc)</td>
<td>20.0%</td>
<td>1</td>
</tr>
</tbody>
</table>
unclassified 0.0% 0
MISUSE-TYPE N=2
misselection 50.0% 1
misrealisation 50.0% 1

SCORE: \[\frac{SOC}{OC+SNOC} \] × 100

SOC = underuse (0 points)
misuse (0,5 points)
target_like_use (1 point)

SOC_POS_elementary: \((2\times0) + (2\times0,5) + (1\times1) = 2 \)
OC_POS_elementary: 6
SNOC_POS_elementary: 1
Score_POS_elem: \(\frac{2}{(6+1)} \times 100 = 28,57\% \)
Project: MOS: Pre-Intermediate Level

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAST_REG-TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>target_like_use</td>
<td>59.2%</td>
<td>87</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>40.8%</td>
<td>60</td>
</tr>
</tbody>
</table>

NON_TARGETLIKE_USE-TYPE

<table>
<thead>
<tr>
<th>Use Type</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>underuse</td>
<td>61.7%</td>
<td>37</td>
</tr>
<tr>
<td>misuse</td>
<td>15.0%</td>
<td>9</td>
</tr>
<tr>
<td>overuse (snoc)</td>
<td>21.7%</td>
<td>13</td>
</tr>
<tr>
<td>unclassified</td>
<td>1.7%</td>
<td>1</td>
</tr>
</tbody>
</table>
MISUSE-TYPE

<table>
<thead>
<tr>
<th></th>
<th>N=9</th>
</tr>
</thead>
<tbody>
<tr>
<td>misselection</td>
<td>33.3% 3</td>
</tr>
<tr>
<td>misrealisation</td>
<td>66.7% 6</td>
</tr>
</tbody>
</table>

SCORE: \[\frac{SOC}{OC+SNOC}\] × 100

- **SOC**: underuse (0 points)
- **SOC**: misuse (0.5 points)
- **SOC**: target_like_use (1 point)

SOC_past_reg_pre-intermediate: \((37 \times 0) + (9 \times 0.5) + (87 \times 1) = 91.5\)

OC_past_reg_pre-intermediate: 147

SNOC_past_reg_pre-intermediate: 13

Score_past_reg_pre-inter: \(91.5 \div (147+13) \times 100 = 57.18\%\)

Feature Percent N

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N=148</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAST_IRREG-TYPE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
target_like_use 52.7% 78

target_like_use

non_target_like_use 47.3% 70

non_target_like_use

NON_TARGETLIKE_USE-TYPE N=70
underuse 50.0% 35
misuse 31.4% 22
overuse(snoc) 18.6% 13
unclassified 0.0% 0
MISUSE-TYPE N=22
misselection 4.5% 1
misrealisation 95.5% 21

SCORE: \[
\text{SOC} = \frac{\text{underuse} (0 \text{ points}) + \text{misuse} (0.5 \text{ points}) + \text{target_like_use} (1 \text{ point})}{\text{OC} + \text{SNOC}} \times 100
\]
SOC_past_irreg_pre-intermediate: \((35 \times 0) + (22 \times 0.5) + (78 \times 1) = 89\)
OC_past_irreg_pre-intermediate: \(148\)
SNOC_past_irreg_pre-intermediate: \(13\)
Score_past_irreg_pre-inter: \(89 \div (148+13) \times 100 = 55.27 \%\)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{3SG_TYPE}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>target_like_use</td>
<td>11.8%</td>
<td>25</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>88.2%</td>
<td>187</td>
</tr>
<tr>
<td>NON_TARGET_LIKE_USE_TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>underuse</td>
<td>74.9%</td>
<td>140</td>
</tr>
<tr>
<td>misuse</td>
<td>23.5%</td>
<td>44</td>
</tr>
<tr>
<td>overuse(snoc)</td>
<td>1.6%</td>
<td>3</td>
</tr>
</tbody>
</table>

[Link to pie chart showing distribution of 3SG_TLU/NTLU_pre-inter]
unclassified 0.0% 0
MISUSE-TYPE N=44
misselection 68.2% 30
misrealisation 31.8% 14

SCORE: \[\text{SOC} \div (\text{OC} + \text{SNOC})\] \times 100
SOC = underuse (0 points)
misuse (0.5 points)
target_like_use (1 point)
SOC_3SG_pre-intermediate: (140 \times 0) + (44 \times 0.5) + (25 \times 1) = 47
OC_3SG_pre-intermediate: 212
SNOC_3SG_pre-intermediate: 3
Score_3SG_pre-inter: 47 \div (212+3) \times 100 = 21.86%
target_like_use 45.9% 34
non_target_like_use 54.1% 40

NON_TARGETLIKE_USE-TYPE N=40
underuse 35.0% 14
misuse 32.5% 13
overuse(snoc) 32.5% 13
unclassified 0.0% 0
MISUSE-TYPE N=13
misselection 7.7% 1
misrealisation 92.3% 12

SCORE: \([SOC \div (OC+SNOC)] \times 100\)
SOC = underuse (0 points)
misuse (0.5 points)
target_like_use (1 point)
SOC_ING_pre-intermediate: \((14 \times 0) + (13 \times 0.5) + (34 \times 1) = 40.5\)
OC_ING_pre-intermediate: \(74\)
SNOC_ING_pre-intermediate: \(13\)
Score_ING_pre-inter: \(40.5 \div (74 + 13) \times 100 = 46.55\%\)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE_COP_TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>target_like_use</td>
<td>89.0%</td>
<td>65</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>11.0%</td>
<td>8</td>
</tr>
<tr>
<td>NON_TARGET LIKE_USE-TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>underuse</td>
<td>37.5%</td>
<td>3</td>
</tr>
<tr>
<td>misuse</td>
<td>62.5%</td>
<td>5</td>
</tr>
<tr>
<td>overuse (snoc)</td>
<td>0.0%</td>
<td>0</td>
</tr>
</tbody>
</table>
unclassified
0.0% 0
MISUSE-TYPE
N=5
misselection
0.0% 0
misrealisation
100.0% 5

SCORE: \[\frac{SOC}{OC+SNOC} \times 100 \]
SOC = underuse (0 points)
misuse (0.5 points)
target_like_use (1 point)
SOC_BE_COP_pre-intermediate: \((3 \times 0) + (5 \times 0.5) + (65 \times 1) = 67.5 \)
OC_BE_COP_pre-intermediate: 73
SNOC_BE_COP_pre-intermediate: 0
Score_BE_COP_pre-inter: \(67.5 \div (73+0) \times 100 = 92.46\% \)

Feature Percent N

BE_AUX_TYPE N=70
target_like_use 58.6% 41

non_target_like_use 41.4% 29

NON_TARGET LIKE USE-TYPE N=29
underuse 13.8% 4
misuse 13.8% 4
overuse(snoc) 72.4% 21
unclassified 0.0% 0
MISUSE-TYPE N=4
misselection 0.0% 0
misrealisation 100.0% 4

SCORE: \[\frac{\text{SOC}}{(\text{OC}+\text{SNOC})} \] × 100
SOC = underuse (0 points)
misuse (0,5 points)
target_like_use (1 point)
\[
\text{SOC_BE_AUX_pre-intermediate: } (4 \times 0) + (4 \times 0.5) + (41 \times 1) = 43
\]
\[
\text{OC_BE_AUX_pre-intermediate: } 70
\]
\[
\text{SNOC_BE_AUX_pre-intermediate: } 21
\]
\[
\text{Score_BE_AUX_pre-inter: } \frac{43}{70+21} \times 100 = 47.25\%
\]

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLU_TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>target_like_use</td>
<td>76.2%</td>
<td>48</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>23.8%</td>
<td>15</td>
</tr>
<tr>
<td>NON_TARGET_LIKE_USE_TYPE</td>
<td>N=15</td>
<td></td>
</tr>
<tr>
<td>underuse</td>
<td>33.3%</td>
<td>5</td>
</tr>
<tr>
<td>misuse</td>
<td>6.7%</td>
<td>1</td>
</tr>
<tr>
<td>overuse(snoc)</td>
<td>60.0%</td>
<td>9</td>
</tr>
<tr>
<td>unclassified</td>
<td>0.0%</td>
<td>0</td>
</tr>
</tbody>
</table>
MISUSE-TYPE

<table>
<thead>
<tr>
<th></th>
<th>N=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>misselection</td>
<td>0.0%</td>
</tr>
<tr>
<td>misrealisation</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

SCORE: \[\frac{\text{SOC}}{(\text{OC} + \text{SNOC})} \times 100 \]

SOC =
- underuse (0 points)
- misuse (0.5 points)
- target_like_use (1 point)

SOC_{PLU_pre-intermediate}: \((5 \times 0) + (1 \times 0.5) + (48 \times 1) = 48.5 \)

OC_{PLU_pre-intermediate}: 63

SNOC_{PLU_pre-intermediate}: 9

Score_{PLU_pre-inter}: \(48.5 \div (63 + 9) \times 100 = 67.36\% \)

Feature Percent N

| ART_TYPE | N=628 |
target_like_use 80.4% 505

non_target_like_use 19.6% 123

NON_TARGETLIKE_USE-TYPE N=123
underuse 23.6% 29
misuse 61.8% 76
overuse(snoc) 14.6% 18
unclassified 0.0% 0

MISUSE-TYPE N=76
misselection 89.5% 68
misrealisation 10.5% 8

SCORE: \([SOC \div (OC+SNOC)] \times 100 \)
SOC = underuse (0 points)
misuse (0.5 points)
target_like_use (1 point)
SOC_ART_pre-intermediate: \((29 \times 0) + (76 \times 0,5) + (505 \times 1) = 543 \)

OC_ART_pre-intermediate: 628

SNOC_ART_pre-intermediate: 18

Score_ART_pre-inter: \(543 \div (628+18) \times 100 = 84,05\% \)

Feature	Percent	N

POS_TYPE

| target_like_use | 16.1% | 5 |
| non_target_like_use | 83.9% | 26 |

NON_TARGET_LIKE_USE-TYPE

underuse	0.0%	0
misuse	96.2%	25
overuse(snoc)	3.8%	1
unclassified 0.0% 0
MISUSE-TYPE N=25
misselection 76.0% 19
misrealisation 24.0% 6

SCORE: \[\frac{SOC}{OC+SNOC} \times 100 \]

SOC = underuse (0 points)
misuse (0.5 points)
target_like_use (1 point)

SOC_POS_pre-intermediate: \((0 \times 0) + (25 \times 0.5) + (5 \times 1) = 17.5\)
OC_POS_pre-intermediate: 31
SNOC_POS_pre-intermediate: 5
Score_POS_pre-inter: \(17.5 \div (31+5) \times 100 = 48.61\%\)
Project: Intermediate Level

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAST_REG-TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>target_like_use</td>
<td>72.4%</td>
<td>157</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>27.6%</td>
<td>60</td>
</tr>
<tr>
<td>NON_TARGET_LIKE_USE-TYPE</td>
<td>N=60</td>
<td></td>
</tr>
<tr>
<td>underuse</td>
<td>73.3%</td>
<td>44</td>
</tr>
<tr>
<td>misuse</td>
<td>10.0%</td>
<td>6</td>
</tr>
<tr>
<td>overuse(snoc)</td>
<td>15.0%</td>
<td>9</td>
</tr>
<tr>
<td>unclassified</td>
<td>1.7%</td>
<td>1</td>
</tr>
<tr>
<td>MISUSE-TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
misselection 16.7% 1
misrealisation 83.3% 5

SCORE: \(\frac{SOC}{(OC+SNOC)} \times 100 \)

SOC = underuse (0 points)
misuse (0,5 points)
target_like_use (1 point)

SOC_past_reg_intermediate: \((44\times0) + (6 \times 0,5) + (157\times1) = 160 \)
OC_past_reg_intermediate: 217
SNOC_past_reg_intermediate: 9
Score_past_reg_inter: \(\frac{160}{(217+9)} \times 100 = 70,79\% \)

Feature Percent N

\textbf{PAST_IRREG_TYPE} N=255
target_like_use 67.5% 172

non_target_like_use 32.5% 83

NON_TARGET LIKE_USE-TYPE N=83
underuse 51.8% 43
misuse 37.3% 31
overuse(snoc) 9.6% 8
unclassified 1.2% 1

MISUSE-TYPE
misselection
misrealisation

SCORE: \[\frac{SOC}{(OC+SNOC)} \times 100 \]
SOC = underuse (0 points)
misuse (0,5 points)
target_like_use (1 point)
SOC_past_irreg_intermediate: \((43 \times 0) + (31 \times 0,5) + (172 \times 1) = 187,5 \)
OC_past_irreg_intermediate: 255
SNOC_past_irreg_intermediate: 8
Score_past_irreg_inter: \[\frac{187.5}{(255+8)} \times 100 = 71.29\% \]

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>3SG_TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>target_like_use</td>
<td>17.8%</td>
<td>13</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>82.2%</td>
<td>60</td>
</tr>
<tr>
<td>NON_TARGETLIKEUSE-TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>underuse</td>
<td>81.7%</td>
<td>49</td>
</tr>
<tr>
<td>misuse</td>
<td>5.0%</td>
<td>3</td>
</tr>
<tr>
<td>overuse(snoc)</td>
<td>13.3%</td>
<td>8</td>
</tr>
<tr>
<td>unclassified</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>MISUSE-TYPE</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
misselection 66.7% 2
misrealisation 33.3% 1

SCORE: \[\frac{SOC}{(OC+SNOC)} \times 100 \]

SOC = underuse (0 points)
misuse (0.5 points)
target_like_use (1 point)

SOC_{3SG_intermediate}: \((49 \times 0) + (3 \times 0.5) + (13 \times 1) = 14.5\)
OC_{3SG_intermediate}: 73
SNOC_{3SG_intermediate}: 8
Score_{3SG_inter}: \(14.5 ÷ (73+8) \times 100 = 17.9\)

Feature Percent N
ING_TYPE

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>target_like_use</td>
<td>84.9%</td>
<td>62</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>15.1%</td>
<td>11</td>
</tr>
</tbody>
</table>

NON_TARGETLIKE_USE-TYPE

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>underuse</td>
<td>18.2%</td>
<td>2</td>
</tr>
<tr>
<td>misuse</td>
<td>36.4%</td>
<td>4</td>
</tr>
<tr>
<td>overuse (snoc)</td>
<td>45.5%</td>
<td>5</td>
</tr>
<tr>
<td>unclassified</td>
<td>0.0%</td>
<td>0</td>
</tr>
</tbody>
</table>

MISUSE-TYPE

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>misselection</td>
<td>50.0%</td>
<td>2</td>
</tr>
<tr>
<td>misrealisation</td>
<td>50.0%</td>
<td>2</td>
</tr>
</tbody>
</table>

SCORE: \[
\text{SOC} = \frac{\text{underuse} (0 \text{ points})}{\text{other categories}} \times 100
\]
misuse (0.5 points)
target_like_use (1 point)

\[
\text{SOC}_{\text{ING}}_{\text{Intermediate}}: \quad (2 \times 0) + (4 \times 0.5) + (6 \times 1) = 64 \\
\text{OC}_{\text{ING}}_{\text{Intermediate}}: \quad 73 \\
\text{SNOC}_{\text{ING}}_{\text{Intermediate}}: \quad 5 \\
\]

\[
\text{Score}_{\text{ING}}_{\text{Inter}}: \quad \frac{64}{73+5} \times 100 = 82.05\%
\]

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE_COP_TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>target_like_use</td>
<td>91.4%</td>
<td>74</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>8.6%</td>
<td>7</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{NON_TARGET_LIKE_USE_TYPE} & \quad \text{N=7} \\
\text{underuse} & \quad 0.0\% \quad 0 \\
\text{misuse} & \quad 100.0\% \quad 7 \\
\end{align*}
\]
overuse (snoc) 0.0% 0
unclassified 0.0% 0
MISUSE-TYPE N=7
misselection 0.0% 0
misrealisation 100.0% 7

SCORE: \[\frac{SOC}{(OC+SNOC)}\] \times 100
SOC = underuse (0 points)
misuse (0,5 points)
target_like_use (1 point)
SOC_BE_COP_intermediate: (0\times0) + (7\times 0,5) + (74\times 1) = 77,5
OC_BE_COP_intermediate: 81
SNOC_BE_COP_intermediate: 0
Score_BE_COP_inter: 77,5 \div (81+0) \times 100 = 95,67%

Feature Percent N

BE_AUX_TYPE

N=59
target_like_use 86.4% 51

non_target_like_use 13.6% 8

NON_TARGETLIKEUSE-TYPE N=8
underuse 12.5% 1
misuse 12.5% 1
overuse(snoc) 75.0% 6
unclassified 0.0% 0
MISUSE-TYPE N=1
misselection 0.0% 0
misrealisation 100.0% 1

SCORE: \[\text{SOC} = \frac{\text{underuse} (0 \text{ points}) \times 100}{(\text{OC}+\text{SNOC})} + \text{misuse} (0.5 \text{ points}) + \text{target_like_use} (1 \text{ point})\]

SOC_BE_AUX_intermediate: \((1 \times 0) + (1 \times 0.5) + (51 \times 1) = 51.5\)
OC_BE_AUX_intermediate: 59
SNOC_BE_AUX_intermediate: 6
Score_BE_AUX_inter: $51.5 \div (59+6) \times 100=79.23\%$

Feature Percent N

PLU_TYPE

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>target_like_use</td>
<td>88.0%</td>
<td>73</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>12.0%</td>
<td>10</td>
</tr>
</tbody>
</table>

NON_TARGET_LIKE_USE-TYPE

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>underuse</td>
<td>50.0%</td>
<td>5</td>
</tr>
<tr>
<td>misuse</td>
<td>20.0%</td>
<td>2</td>
</tr>
<tr>
<td>overuse(snoc)</td>
<td>30.0%</td>
<td>3</td>
</tr>
<tr>
<td>unclassified</td>
<td>0.0%</td>
<td>0</td>
</tr>
</tbody>
</table>

MISUSE-TYPE

<table>
<thead>
<tr>
<th>Feature</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=2</td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td>Percent</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>misselection</td>
<td>0.0%</td>
</tr>
<tr>
<td>misrealisation</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

\[
\text{SCORE: } \left[\frac{\text{SOC}}{\text{(OC+SNOC)}} \right] \times 100
\]

\[
\text{SOC} = \text{underuse (0 points)}
\]
\[
\text{misuse (0,5 points)}
\]
\[
\text{target_like_use (1 point)}
\]

\[
\text{SOC}_{\text{PLU_intermediate}}: (5 \times 0) + (2 \times 0,5) + (73 \times 1) = 74
\]

\[
\text{OC}_{\text{PLU_intermediate}}: 83
\]

\[
\text{SNOC}_{\text{PLU_intermediate}}: 3
\]

\[
74 \div (83+3) \times 100 = 86.04\%
\]
ART_TYPE

<table>
<thead>
<tr>
<th>Type</th>
<th>Percentage</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>target_like_use</td>
<td>91.2%</td>
<td>582</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>8.8%</td>
<td>56</td>
</tr>
<tr>
<td>NON_TARGETLIKEUSE-TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>underuse</td>
<td>7.1%</td>
<td>4</td>
</tr>
<tr>
<td>misuse</td>
<td>64.3%</td>
<td>36</td>
</tr>
<tr>
<td>overuse (snoc)</td>
<td>28.6%</td>
<td>16</td>
</tr>
<tr>
<td>unclassified</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>MISUSE-TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>misselection</td>
<td>94.4%</td>
<td>34</td>
</tr>
<tr>
<td>misrealisation</td>
<td>5.6%</td>
<td>2</td>
</tr>
</tbody>
</table>

Score:

\[
\text{Score} = \left(\frac{\text{underuse}}{\text{overuse} + \text{snoc}} \right) \times 100
\]

\[
\text{SOC} = \text{underuse} \quad (0 \text{ points})
\]
misuse (0.5 points)
target_like_use (1 point)

SOC_ART_intermediate: \(4\times0) + (36\times0,5) + (582\times1) = 600\)
OC_ART_intermediate: 638
SNOC_ART_intermediate: 16
Score_ART_inter: 600 \(\div (638+16) \times 100 = 91.74\%\)

Unit: POS:pos

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>target_like_use</td>
<td>39.4%</td>
<td>13</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>60.6%</td>
<td>20</td>
</tr>
</tbody>
</table>

POS-TYPE

\(N=33\)
NON_TARGETLIKE_USE-TYPE N=20

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>underuse</td>
<td>15.0%</td>
<td>3</td>
</tr>
<tr>
<td>misuse</td>
<td>75.0%</td>
<td>15</td>
</tr>
<tr>
<td>overuse(snoc)</td>
<td>10.0%</td>
<td>2</td>
</tr>
</tbody>
</table>

SCORE: \[\left(\frac{SOC}{OC+SNOC} \right) \times 100 \]

SOC = underuse (0 points)
 misuse (0.5 points)

 target_like_use (1 point)

SOC_POS_intermediate: \((3 \times 0) + (15 \times 0.5) + (13 \times 1) = 20.5 \)

OC_POS_intermediate: 33

SNOC_POS_intermediate: 2

Score_POS_inter: \(20.5 \div (33+2) \times 100 = 58.57\% \)
Project:

MOS: Upper Intermediate Level

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAST_REG-TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>target_like_use</td>
<td>90.8%</td>
<td>59</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>9.2%</td>
<td>6</td>
</tr>
<tr>
<td>NON_TARGET_LIKE_USE-TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>underuse</td>
<td>50.0%</td>
<td>3</td>
</tr>
<tr>
<td>misuse</td>
<td>16.7%</td>
<td>1</td>
</tr>
<tr>
<td>overuse (snoc)</td>
<td>33.3%</td>
<td>2</td>
</tr>
<tr>
<td>unclassified</td>
<td>33.3%</td>
<td>2</td>
</tr>
<tr>
<td>MISUSE-TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N=6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
misselection
100.0% 1
misrealisation
0.0% 0

SCORE: \[\text{SOC} \div (\text{OC}+\text{SNOC}) \] \times 100

\begin{align*}
\text{SOC} &= \text{underuse} (0 \text{ points}) \\
&\quad + \text{misuse} (0.5 \text{ points}) \\
&\quad + \text{target_like_use} (1 \text{ point})
\end{align*}

\begin{align*}
\text{SOC_past_reg_upper-intermediate} &\colon (3 \times 0) + (1 \times 0.5) + (59 \times 1) = 59.5 \\
\text{OC_past_reg_upper-intermediate} &\colon 65 \\
\text{SNOC_past_reg_upper-intermediate} &\colon 2 \\
\text{Score_past_reg_upper-inter} &\colon 59.5 \div (65+2) \times 100 = 88.8\%
\end{align*}

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAST_IRREG_TYPE</td>
<td></td>
<td>N=65</td>
</tr>
</tbody>
</table>
target_like_use 89.2% 58

non_target_like_use 10.8% 7

NON_TARGETLIKE_USE-TYPE
underuse 28.6% 2
misuse 42.9% 3
overuse(snoc) 28.6% 2
unclassified 0.0% 0
MISUSE-TYPE
misselection 0.0% 0
misrealisation 100.0% 3

SCORE: \[\frac{SOC}{OC+SNOC}\] × 100
SOC = underuse (0 points)
misuse (0,5 points)
target_like_use (1 point)
SOC_past_irreg_upper- (2×0) + (3×0,5) + (58 × 1) = 59,5
intermediate:

OC_past_irreg_upper-intermediate: 65
SNOC_past_irreg_upper-intermediate: 2
Score_past_irreg_upper-inter: 59.5 ÷ (65+2) × 100 = 88.80%

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>3SG_TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>target_like_use</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>100.0%</td>
<td>1</td>
</tr>
<tr>
<td>NON_TARGETLIKE_USE-TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>underuse</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>misuse</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>overuse (snoc)</td>
<td>100.0%</td>
<td>1</td>
</tr>
<tr>
<td>unclassified</td>
<td>0.0%</td>
<td>0</td>
</tr>
</tbody>
</table>
MISUSE-TYPE

misselection 0.0% 0
misrealisation 0.0% 0

SCORE: \[\frac{SOC}{OC+SNOC}\] \times 100

SOC =

underuse (0 points)
misuse (0,5 points)
target_like_use (1 point)

SOC_3SG_upper-intermediate: \((0\times0) + (0 \times 0,5) + (0\times1) = 0\)
OC_3SG_upper-intermediate: 1
SNOC_3SG_upper-intermediate: 1
Score_3SG_upper-inter: \(0 \div (1+1) \times 100=0 \%\)

Feature Percent N

ING_TYPE N=33
target_like_use 97.0% 32

non_target_like_use 3.0% 1

NON_TARGETLIKEUSE-TYPE N=1
underuse 0.0% 0
misuse 0.0% 0
overuse(snoc) 100.0% 1
unclassified 0.0% 0

MISUSE-TYPE N=0
misselection 0.0% 0
misrealisation 0.0% 0

SCORE: \[\frac{\text{SOC}}{\text{OC+SNOC}} \times 100 \]
SOC = underuse (0 points)
misuse (0.5 points)
target_like_use (1 point)
SOC_ING_upper-intermediate: \((0 \times 0) + (0 \times 0.5) + (32 \times 1) = 32 \)
OC_ING_upper-intermediate: 33
SNOC_ING_upper-intermediate: 1
Score_ING_upper-inter: \[\frac{32}{33+1} \times 100 = 94.11\%

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textbf{BE_COP_TYPE}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>target_like_use</td>
<td>100.0%</td>
<td>20</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>\textbf{NON_TARGET_LIKE_USE-TYPE}</td>
<td>N=0</td>
<td></td>
</tr>
<tr>
<td>underuse</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>misuse</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>overuse(snoc)</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>unclassified</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>\textbf{MISUSE-TYPE}</td>
<td>N=0</td>
<td></td>
</tr>
</tbody>
</table>
misselection 0.0% 0
misrealisation 0.0% 0

SCORE: \[\frac{\text{SOC}}{\text{OC}+\text{SNOC}} \] \times 100

SOC = underuse (0 points)
 misuse (0.5 points)
 target_like_use (1 point)

SOC_{BE_COP_upper-intermediate}: \((0\times0) + (0\times0.5) + (20\times1) = 20 \)
OC_{BE_COP_upper-intermediate}: 20
SNOC_{BE_COP_upper-intermediate}: 0
Score_{BE_COP_upper-inter}: \(\frac{20}{(20+0)} \times 100 = 100\% \)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE_AUX_TYPE</td>
<td></td>
<td>N=28</td>
</tr>
<tr>
<td>Category</td>
<td>Percentage</td>
<td>Value</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>target_like_use</td>
<td>100.0%</td>
<td>28</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>0.0%</td>
<td>0</td>
</tr>
</tbody>
</table>

NON_TARGETLIKE_USE-TYPE

- underuse: 0.0% 0
- misuse: 0.0% 0
- overuse(snoc): 0.0% 0
- unclassified: 0.0% 0

MISUSE-TYPE

- misselection: 0.0% 0
- misrealisation: 0.0% 0

SCORE: \([\text{SOC} \div (\text{OC} + \text{SNOC})] \times 100\)

- SOC = underuse (0 points)
- misuse (0.5 points)
- target_like_use (1 point)

SOC_BE_AUX_upper-intermediate:

\((0 \times 0) + (0 \times 0.5) + (28 \times 1) = 28\)
OC_BE_AUX_upper-intermediate: 28
SNOC_BE_AUX_upper-intermediate: 6
Score_BE_AUX_upper-inter: \(\frac{28}{(28+0)} \times 100 = 100\%\)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLU_TYPE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N=22

| target_like_use | 81.8% | 18 |
| non_target_like_use | 18.2% | 4 |

NON_TARGET LIKE USE-TYPE

underuse	75.0%	3
misuse	25.0%	1
overuse (snoc)	0.0%	0
unclassified	0.0%	0

MISUSE-TYPE

| | | N=1 |

misselection 0.0% 0
misrealisation 100.0% 1

SCORE: \[\frac{SOC}{OC+SNOC} \times 100 \]

SOC = underuse (0 points)
 misuse (0,5 points)
 target_like_use (1 point)

SOC PLU_upper-intermediate: \((3 \times 0) + (1 \times 0,5) + (18 \times 1) = 18,5\)
OC PLU_upper-intermediate: 22
SNOC PLU_upper-intermediate: 0
Score PLU_upper-inter: \(18,5 \div (22+0) \times 100 = 84,09\%\)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART_TYPE</td>
<td></td>
<td>N=129</td>
</tr>
</tbody>
</table>
target_like_use 95.3% 123

non_target_like_use 4.7% 6

NON_TARGET_LIKE_USE-TYPE N=6
underuse 0.0% 0
misuse 83.3% 5
overuse(snoc) 16.7% 1
unclassified 0.0% 0

MISUSE-TYPE N=5
misselection 100.0% 5
misrealisation 0.0% 0

SCORE: \[\frac{SOC}{(OC+SNOC)}\] × 100

SOC = underuse (0 points)
misuse (0,5 points)
target_like_use (1 point)

SOC_ART_upper-intermediate: \((0\times0) + (5\times0,5) + (123\times1) = 125,5\)
OC_ART_upper-intermediate: 129
SNOC_ART_upper-intermediate: 1
Score_ART_upper-inter: $125.5 \div (129+1) \times 100 = 96.53\%$

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature Percent N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POS_TYPE</td>
<td></td>
<td>N=10</td>
</tr>
<tr>
<td>target_like_use</td>
<td>40.0%</td>
<td>4</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>60.0%</td>
<td>6</td>
</tr>
</tbody>
</table>

NON_TARGETLIKE_USE-TYPE

<table>
<thead>
<tr>
<th>Use</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>underuse</td>
<td>16.7%</td>
<td>1</td>
</tr>
<tr>
<td>misuse</td>
<td>66.7%</td>
<td>4</td>
</tr>
<tr>
<td>overuse (snoc)</td>
<td>16.7%</td>
<td>1</td>
</tr>
<tr>
<td>unclassified</td>
<td>0.0%</td>
<td>0</td>
</tr>
</tbody>
</table>

MISUSE-TYPE

<table>
<thead>
<tr>
<th>Use</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=4</td>
<td></td>
</tr>
</tbody>
</table>
misselection 25.0% 1
misrealisation 75.0% 3

SCORE: \[\frac{SOC}{(OC+SNOC)} \times 100 \]

- SOC = underuse (0 points)
- misuse (0.5 points)
- target_like_use (1 point)

SOC_POS_upper-intermediate: \((1 \times 0) + (4 \times 0.5) + (4 \times 1) = 6 \)
OC_POS_upper-intermediate: 10
SNOC_POS_upper-intermediate: 1
Score_POS_upper-inter: \(6 \div (10+1) \times 100 = 54.54\% \)
General Descriptive Statistics (grouping criterion: none)

Descriptive Statistics: Features

Project: MOS: ALL PROFICIENCY LEVELS

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAST_REG-TYPE</td>
<td></td>
<td>N=442</td>
</tr>
<tr>
<td>target_like_use</td>
<td>69.2%</td>
<td>306</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>30.8%</td>
<td>136</td>
</tr>
</tbody>
</table>

NON_TARGET LIKE USE-TYPE
N=136
underuse 66.2% 90
misuse 14.7% 20
overuse(snoc) 17.6% 24
unclassified 1.5% 2

MISUSE-TYPE N=20
 misselection 30.0% 6
 misrealisation 70.0% 14

SCORE: \[\frac{SOC}{OC+SNOC} \times 100 \]

SOC = underuse (0 points)
misuse (0.5 points)
target_like_use (1 point)

SOC_past_reg: (90\times0) + (20 \times 0.5) + (306 \times 1) = 316
OC_past_reg: 442
SNOC_past_reg: 24
Score_past_reg: 316 \div (442+24) \times 100 = 67.81%

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAST_IRREG-TYPE</td>
<td></td>
<td>N=478</td>
</tr>
</tbody>
</table>

218
target_like_use 65.7% 314

non_target_like_use 34.3% 164

NON_TARGETLIKE_USE-TYPE
underuse 51.2% 84
misuse 34.1% 56
overuse(snoc) 14.6% 24
unclassified 0.0% 0

MISUSE-TYPE
misselection 10.7% 6
misrealisation 89.3% 50

SCORE: \[\frac{SOC}{(OC+SNOC)}\times 100\]
SOC = underuse (0 points)
misuse (0,5 points)
target_like_use (1 point)
SOC_past_irreg: \((84\times0) + (56 \times 0,5) + (314 \times 1) = 370\)
OC_past_irreg: 478
SNOC_past_irreg: 24
Score_past_irreg: \(\frac{370}{(478+24)} \times 100 = 73.70\% \)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>target_like_use</td>
<td>12.6%</td>
<td>38</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>87.4%</td>
<td>263</td>
</tr>
<tr>
<td>NON_TARGETLIKE_USE-TYPE</td>
<td>N=263</td>
<td></td>
</tr>
<tr>
<td>underuse</td>
<td>76.8%</td>
<td>202</td>
</tr>
<tr>
<td>misuse</td>
<td>18.6%</td>
<td>49</td>
</tr>
<tr>
<td>overuse (snoc)</td>
<td>4.6%</td>
<td>12</td>
</tr>
<tr>
<td>unclassified</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>MISUSE-TYPE</td>
<td>N=49</td>
<td></td>
</tr>
<tr>
<td>miselection</td>
<td>65.3%</td>
<td>32</td>
</tr>
<tr>
<td>misrealisation</td>
<td>34.7%</td>
<td>17</td>
</tr>
</tbody>
</table>

SCORE: \(\frac{\text{SOC}}{(\text{OC} + \text{SNOC})} \times 100 \\
\text{SOC} = \text{underuse} (0 \text{ points})\\n\text{misuse} (0,5 \text{ points})\\ntarget_like_use (1 \text{ point})

\[
\text{SOC}_{3\text{sg}}: (202 \times 0) + (49 \times 0,5) + (38 \times 1) = 62,5
\]

\[
\text{OC}_{3\text{sg}}: 301
\]

\[
\text{SNOC}_{3\text{sg}}: 12
\]

\[
\text{Score}_{3\text{sg}}: \frac{62,5}{(301+12)} \times 100 = 19,96\%
\]

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>ING-TYPE</td>
<td>(N=185)</td>
<td></td>
</tr>
</tbody>
</table>
target_like_use 69.2% 128

non_target_like_use 30.8% 57

NON_TARGETLIKE_USE-TYPE N=57
- underuse 28.1% 16
- misuse 36.8% 21
- overuse(snoc) 35.1% 20
- unclassified 0.0% 0

MISUSE-TYPE N=21
- misselection 14.3% 3
- misrealisation 85.7% 18

SCORE: \[(SOC \div (OC+SNOC)) \times 100\]

\[SOC = \text{underuse} \times 0 \text{ points} \]
\[\text{misuse} \times 0.5 \text{ points} \]
\[\text{target_like_use} \times 1 \text{ point} \]

SOC_ing: \[(16 \times 0) + (21 \times 0.5) + (128 \times 1) = 138.5\]

OC_ing: 185
SNOC_ing:
- 20

Score-ing:
- $\frac{138.5}{(185+20)} \times 100 = 67.56\%$

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE_COP-TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>target_like_use</td>
<td>89.6%</td>
<td>163</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>10.4%</td>
<td>19</td>
</tr>
<tr>
<td>NON_TARGETLIKE_USE-TYPE</td>
<td>N=19</td>
<td></td>
</tr>
<tr>
<td>underuse</td>
<td>15.8%</td>
<td>3</td>
</tr>
<tr>
<td>misuse</td>
<td>84.2%</td>
<td>16</td>
</tr>
<tr>
<td>overuse(snoc)</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>unclassified</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>MISUSE-TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N=16</td>
</tr>
</tbody>
</table>
misselection 0.0% 0
misrealisation 100.0% 16

SCORE: \[\frac{SOC}{(OC+SNOC)} \] \times 100

SOC = underuse (0 points)
 misuse (0,5 points)
 target_like_use (1 point)

SOC_be_cop: \((3 \times 0) + (16 \times 0,5) + (163 \times 1) = 171 \)
OC_be_cop: 182
SNOC_be_cop: 0
Score_be_cop: \(\frac{171}{(182+0)} \times 100 = 93,95\% \)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE_AUX-TYPE</td>
<td></td>
<td>N=164</td>
</tr>
</tbody>
</table>
target_like_use 75.0% 123

non_target_like_use 25.0% 41

NON_TARGETLIKE_USE-TYPE N=41
- underuse 17.1% 7
- misuse 12.2% 5
- overuse(snoc) 70.7% 29
- unclassified 0.0% 0

MISUSE-TYPE N=5
- misselection 0.0% 0
- misrealisation 100.0% 5

SCORE: \[
\left[\frac{\text{SOC}}{\text{OC} + \text{SNOC}} \right] \times 100
\]

SOC = underuse (0 points)
- misuse (0,5 points)
- target_like_use (1 point)

SOC_be_aux: \[
(7 \times 0) + (5 \times 0,5) + (123 \times 1) = 125,5
\]

OC_be_aux: 164
SNOC_be_aux: 29
Score_be_aux: \(\frac{125.5}{164+29} \times 100 = 65.02\% \)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLU-TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>target_like_use</td>
<td>80.3%</td>
<td>139</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>19.7%</td>
<td>34</td>
</tr>
<tr>
<td>NON_TARGET_LIKE_USE-TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>underuse</td>
<td>50.0%</td>
<td>17</td>
</tr>
<tr>
<td>misuse</td>
<td>11.8%</td>
<td>4</td>
</tr>
<tr>
<td>overuse (snoc)</td>
<td>38.2%</td>
<td>13</td>
</tr>
<tr>
<td>unclassified</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>MISUSE-TYPE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
misselection 0.0% 0
misrealisation 100.0% 4

SCORE: \[\frac{SOC}{OC+SNOC} \] × 100

SOC = underuse (0 points)
misuse (0.5 points)
target_like_use (1 point)

SOC_plu: (17×0) + (4 × 0.5) + (139 × 1) = 141
OC_plu: 173
SNOC_plu: 13
Score_plu: 141 ÷ (173+13) × 100 = 75.80%

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART-TYPE</td>
<td></td>
<td>N=1455</td>
</tr>
</tbody>
</table>
target_like_use 85.5% 1244

non_target_like_use 14.5% 211

NON_TARGET_LIKE_USE-TYPE N=211
 underuse 17.5% 37
 misuse 63.0% 133
 overuse(snoc) 19.4% 41
 unclassified 0.0% 0

MISUSE-TYPE N=133
 misselection 91.7% 122
 misrealisation 8.3% 11

SCORE: \[\frac{SOC}{(OC+SNOC)}\] × 100
SOC = underuse (0 points)
 misuse (0.5 points)
 target_like_use (1 point)

SOC_{art}: \((37 \times 0) + (133 \times 0.5) + (1244 \times 1) = 1310.5\)
OC_{art}: 1455
SNOC_art: 41
Score_art: \[1310.5 \div (1455+41) \times 100 = 87.60\%\]

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS-TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>target_like_use</td>
<td>27.5%</td>
<td>22</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>72.5%</td>
<td>58</td>
</tr>
</tbody>
</table>

NON_TARGETLIKEUSE-TYPE N=58
underuse	10.3\%	6
misuse	81.0\%	47
overuse(snoc)	8.6\%	5
unclassified	0.0\%	0

MISUSE-TYPE N=47
misselection 70.2% 33
misrealisation 29.8% 14

SCORE: \[\frac{SOC}{(OC + SNOC)} \times 100 \]

SOC = underuse (0 points)
 misuse (0,5 points)
 target_like_use (1 point)

SOC_pos: \((6 \times 0) + (47 \times 0,5) + (22 \times 1) = 45,5\)
OC_pos: 80
SNOC_pos: 5

Score_pos: \(45,5 \div (80+5) \times 100 = 53,52\%\)
9.11.2 Part II: The use of the possessive –s by L2 English learners: an experimentally elicited data study

Descriptive Statistics: Features

<table>
<thead>
<tr>
<th>Project</th>
<th>possessive –s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementary Level</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS-TYPE</td>
<td>N=108</td>
<td></td>
</tr>
</tbody>
</table>
target_like_use | 25.0% | 27
non_target_like_use | 75.0% | 81

NON_TARGETLIKE_USE-TYPE | N=81
underuse | 77.8% | 63
misuse | 22.2% | 18
overuse-(snoc) | 0.0% | 0

UNDERUSE-TYPE | N=63
blank | 41.3% | 26
no-’/’s | 58.7% | 37

MISUSE-TYPE | N=18
misselection | 22.2% | 4
misrealisation | 27.8% | 5
wrong-unclassified | 50.0% | 9

SCORE: \[\text{SOC} ÷ (\text{OC+SNOC})\] × 100
SOC = underuse (0 points)
misuse (0,5 points)
target_like_use (1 point)

SOC_POS_elementary:
OC_POS_elementary: 81
SNOC_POS_elementary: 0

Score_POS_elem:

Pre-intermediate Level

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS-TYPE</td>
<td>N=636</td>
<td></td>
</tr>
<tr>
<td>target_like_use</td>
<td>58.6%</td>
<td>373</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>41.4%</td>
<td>263</td>
</tr>
</tbody>
</table>
NON_TARGET_LIKE_USE-TYPE

<table>
<thead>
<tr>
<th>Category</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>underuse</td>
<td>55.1%</td>
<td>145</td>
</tr>
<tr>
<td>misuse</td>
<td>44.9%</td>
<td>118</td>
</tr>
<tr>
<td>overuse-(snoc)</td>
<td>0.0%</td>
<td>0</td>
</tr>
</tbody>
</table>

UNDERUSE-TYPE

<table>
<thead>
<tr>
<th>Category</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>blank</td>
<td>35.9%</td>
<td>52</td>
</tr>
<tr>
<td>no-'/-'s</td>
<td>64.1%</td>
<td>93</td>
</tr>
</tbody>
</table>

MISUSE-TYPE

<table>
<thead>
<tr>
<th>Category</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>misselection</td>
<td>28.0%</td>
<td>33</td>
</tr>
<tr>
<td>misrealisation</td>
<td>34.7%</td>
<td>41</td>
</tr>
<tr>
<td>wrong-unclassified</td>
<td>37.3%</td>
<td>44</td>
</tr>
</tbody>
</table>

SCORE: \[
\frac{SOC}{(OC+SNOC)} \times 100
\]

- **SOC** = underuse (0 points)
 - misuse (0,5 points)
 - target_like_use (1 point)

SOC_POS_pre-intermediate: \((145 \times 0) + (118 \times 0,5) + (373 \times 1) \)=432

OC_POS_pre-intermediate: 636

SNOC_POS_pre-intermediate: 0

Score_POS_pre-inter: \(\frac{432}{(636+0)} \times 100=67,92\%\)

Intermediate Level

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
</table>

234
POS-TYPE

<table>
<thead>
<tr>
<th>Use Type</th>
<th>N</th>
<th>Percentage</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>target_like_use</td>
<td>505</td>
<td>83.3%</td>
<td></td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>101</td>
<td>16.7%</td>
<td></td>
</tr>
</tbody>
</table>

NON_TARGETLIKE_USE-TYPE

<table>
<thead>
<tr>
<th>Use Type</th>
<th>N</th>
<th>Percentage</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>underuse</td>
<td>19</td>
<td>18.8%</td>
<td></td>
</tr>
<tr>
<td>misuse</td>
<td>82</td>
<td>81.2%</td>
<td></td>
</tr>
<tr>
<td>overuse-(snoc)</td>
<td>0</td>
<td>0.0%</td>
<td></td>
</tr>
</tbody>
</table>

UNDERUSE-TYPE

<table>
<thead>
<tr>
<th>Use Type</th>
<th>N</th>
<th>Percentage</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>blank</td>
<td>4</td>
<td>21.1%</td>
<td></td>
</tr>
<tr>
<td>no-'/-'s</td>
<td>15</td>
<td>78.9%</td>
<td></td>
</tr>
</tbody>
</table>

MISUSE-TYPE

<table>
<thead>
<tr>
<th>Use Type</th>
<th>N</th>
<th>Percentage</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>misselection</td>
<td>28</td>
<td>34.1%</td>
<td></td>
</tr>
<tr>
<td>misrealisation</td>
<td>34</td>
<td>41.5%</td>
<td></td>
</tr>
<tr>
<td>wrong-unclassified</td>
<td>20</td>
<td>24.4%</td>
<td></td>
</tr>
</tbody>
</table>
SCORE: \[\frac{SOC}{(OC+SNOC)} \times 100 \]

SOC = underuse (0 points)
 misuse (0.5 points)
 target_like_use (1 point)

SOC_POS_intermediate: \((19 \times 0) + (82 \times 0.5) + (505 \times 1) = 546\)
OC_POS_intermediate: 606
SNOC_POS_intermediate: 0

Score_POS_inter: \(546 \div (606+0) \times 100 = 90.09\%

Upper-intermediate Level

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS-TYPE</td>
<td>N=186</td>
<td></td>
</tr>
</tbody>
</table>
target_like_use

non_target_like_use

NON_TARGETLIKE_USE-TYPE

underuse 75.0% 15
misuse 25.0% 5
overuse-(snoc) 0.0% 0

UNDERUSE-TYPE

blank 40.0% 6
no-’/’s 60.0% 9

MISUSE-TYPE

misselection 0.0% 0
misrealisation 60.0% 3
wrong-unclassified 40.0% 2

SCORE: \[\text{SOC} \div (\text{OC}+\text{SNOC})\] \times 100
SOC = underuse (0 points)
Part III: The use of the possessive structures by L3 German learners: an experimentally elicited data study

9.11.3.1 The relative frequency of the various possession constructions in German by L1 Spanish learners

Descriptive Statistics: Features

<table>
<thead>
<tr>
<th>genitive_ Project</th>
<th>German</th>
</tr>
</thead>
</table>

Elementary Level
<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS-TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N=120</td>
<td></td>
</tr>
<tr>
<td>target_like_use</td>
<td>5.8%</td>
<td>7</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>94.2%</td>
<td>113</td>
</tr>
<tr>
<td>TARGETLIKE_USE-TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-s-possessor-construction</td>
<td>100.0%</td>
<td>7</td>
</tr>
<tr>
<td>genitive-case</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>NON_TARGETLIKE_USE-TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>underuse</td>
<td>14.2%</td>
<td>16</td>
</tr>
<tr>
<td>misuse</td>
<td>85.8%</td>
<td>97</td>
</tr>
<tr>
<td>overuse-(snoc)</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>UNDERUSE-TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>blank</td>
<td>100.0%</td>
<td>16</td>
</tr>
<tr>
<td>MISUSE-TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
misselection 89.7% 87
misrealisation 2.1% 2
wrong-unclassified 8.2% 8

MISSELECTION-TYPE N=87

pp 40.2% 35
possessive--s 59.8% 52

MISREALISATION-TYPE N=2

's 100.0% 2
wrong-genitive-form 0.0% 0

SCORE: \[\frac{SOC}{(OC+SNOC)} \times 100 \]
SOC = underuse (0 points)
 misuse (0,5 points)
 target_like_use (1 point)
SOC_Pos Elem_German: \((16 \times 0) + (97 \times 0.5) + (7 \times 1) \) = 55.5
OC_Pos Elem_German: 120
SNOC_Pos Elem_German 0
Score_POS_elem_G: 55.5 ÷ (120+0) × 100 = 46.25%

Pre-intermediate Level

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
</table>

POS-TYPE N=78
target_like_use
11
14.1%

non_target_like_use
67
85.9%

TARGETLIKEUSE-TYPE
N=11
-s-possessor-construction
6
54.5%
genitive-case
5
45.5%

NONTARGETLIKEUSE-TYPE
N=67
underuse
11
16.4%
misuse
56
83.6%
overuse-(snoc)
0
0%

UNDERUSE-TYPE
N=11
blank
11
100.0%

MISUSE-TYPE
N=56
misselection
47
83.9%
misrealisation
9
16.1%
wrong-unclassified
0
0%

MISSELECTION-TYPE
N=47
pp
28
59.6%
possessive--s 40.4% 19
MISREALISATION-TYPE N=9
's 44.4% 4
wrong-genitive-form 55.6% 5

SCORE: \(\frac{\text{SOC}}{(\text{OC} + \text{SNOC})} \times 100 \)
SOC = underuse (0 points)
 misuse (0.5 points)
 target_like_use (1 point)
SOC_Pos_pre-inter_German: \((11 \times 0) + (56 \times 0.5) + (11 \times 1) = 39 \)
OC_POS_pre-inter_German: 78
SNOC_POS_pre-inter_German 0
Score_POS_pre-inter_G: \(\frac{39}{(78+0)} \times 100 = 50\% \)

Intermediate Level

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
</table>

POS-TYPE N=71
243

target_like_use 12.7% 9

non_target_like_use 87.3% 62

TARGET LIKE USE-TYPE
- s-possessor-costruction 44.4% 4
 genitive-case 55.6% 5

NON TARGET LIKE USE-TYPE N=62
 underuse 14.5% 9
 misuse 85.5% 53
 overuse-(snoc) 0.0% 0

UNDERUSE-TYPE N=9
 blank 100.0% 9

MISUSE-TYPE N=53
 misselection 96.2% 51
 misrealisation 1.9% 1
 wrong-unclassified 1.9% 1

MISSELECTION-TYPE N=51
 pp 70.6% 36
possessive--s 29.4% 15
MISREALISATION-TYPE N=1
's 0.0% 0
wrong-genitive-form 100.0% 1

SCORE: \[\text{SOC} \div (\text{OC} + \text{SNOC})\] \times 100
SOC = underuse (0 points)
misuse (0.5 points)
target_like_use (1 point)

SOC_Pos_inter_German: \((9 \times 0) + (53 \times 0.5) + (9 \times 1) = 35,5\)
OC_POS_inter_German: 71
SNOC_POS_inter_German 0
Score_POS_inter_G: \(\frac{35.5}{71+0} \times 100 = 50\%\)

Upper-intermediate Level

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
</table>

POS-TYPE

N=24
<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>N</th>
<th>Percentage</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target-like use</td>
<td></td>
<td></td>
<td>41.7%</td>
<td>10</td>
</tr>
<tr>
<td>Non-target-like use</td>
<td></td>
<td></td>
<td>58.3%</td>
<td>14</td>
</tr>
<tr>
<td>Target-like use-Type</td>
<td>N=10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-s-possessor-construction</td>
<td></td>
<td></td>
<td>10.0%</td>
<td>1</td>
</tr>
<tr>
<td>Genitive-case</td>
<td></td>
<td></td>
<td>90.0%</td>
<td>9</td>
</tr>
<tr>
<td>Non-target-like use-Type</td>
<td>N=14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underuse</td>
<td></td>
<td></td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>Misuse</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>14</td>
</tr>
<tr>
<td>Overuse-(snoc)</td>
<td></td>
<td></td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>Underuse-Type</td>
<td>N=0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank</td>
<td></td>
<td></td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>Misuse-Type</td>
<td>N=14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Misselection</td>
<td></td>
<td></td>
<td>50.0%</td>
<td>7</td>
</tr>
<tr>
<td>Misrealisation</td>
<td></td>
<td></td>
<td>28.6%</td>
<td>4</td>
</tr>
<tr>
<td>Wrong-unclassified</td>
<td></td>
<td></td>
<td>21.4%</td>
<td>3</td>
</tr>
<tr>
<td>Misselection-Type</td>
<td>N=7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP</td>
<td></td>
<td></td>
<td>71.4%</td>
<td>5</td>
</tr>
</tbody>
</table>
possessive--s 28.6% 2
MISREALISATION-TYPE N=4
's 25.0% 1
wrong-genitive-form 75.0% 3

SCORE: \[\frac{SOC}{(OC+SNOC)} \times 100\]
SOC = underuse (0 points)
misuse (0,5 points)
target_like_use (1 point)
SOC_Pos_upper-inter_German: \[(0 \times 0) + (14 \times 0.5) + (10 \times 1) = 17\]
OC_POS_upper-inter_German: 24
SNOC_POS_upper-inter_German: 0
Score_POS_upper-inter_G: \[\frac{17}{(24+0)} \times 100 = 70.83\%\]
9.11.3.2 The relative frequency of the various possession constructions in German by L1 Spanish and L2 English learners

Descriptive Statistics: Features

Project: Genitive German_L1 Spanish_L2 English Elementary Level

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS-TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>target_like_use</td>
<td>5.3%</td>
<td>6</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>94.7%</td>
<td>108</td>
</tr>
<tr>
<td>TARGETLIKEUSE-TYPE N=6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-s-possessor-construction</td>
<td>100.0%</td>
<td>6</td>
</tr>
<tr>
<td>genitive-case</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>NONTARGETLIKEUSE-TYPE N=108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>underuse</td>
<td>14.8%</td>
<td>16</td>
</tr>
<tr>
<td>misuse</td>
<td>85.2%</td>
<td>92</td>
</tr>
<tr>
<td>overuse-(snoc)</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>UNDERUSE-TYPE N=16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>blank</td>
<td>100.0%</td>
<td>16</td>
</tr>
<tr>
<td>MISUSE-TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pre-intermediate Level

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS-TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>target_like_use</td>
<td>15.2%</td>
<td>10</td>
</tr>
<tr>
<td>non_target_like_use</td>
<td>84.8%</td>
<td>56</td>
</tr>
<tr>
<td>TARGET LIKE USE-TYPE</td>
<td>N=10</td>
<td></td>
</tr>
<tr>
<td>-s-possessor-costruction</td>
<td>50.0%</td>
<td>5</td>
</tr>
<tr>
<td>genitive-case</td>
<td>50.0%</td>
<td>5</td>
</tr>
<tr>
<td>NON_TARGET LIKE USE-TYPE</td>
<td>N=56</td>
<td></td>
</tr>
<tr>
<td>underuse</td>
<td>16.1%</td>
<td>9</td>
</tr>
<tr>
<td>misuse</td>
<td>83.9%</td>
<td>47</td>
</tr>
<tr>
<td>overuse-(snoc)</td>
<td>0.0%</td>
<td>0</td>
</tr>
</tbody>
</table>
UNDERUSE-TYPE

blank

100.0%

9

MISUSE-TYPE

misselection

80.9%

38

misrealisation

19.1%

9

wrong-unclassified

0.0%

0

MISSELECTION-TYPE

pp

50.0%

19

possessive--s

50.0%

19

MISREALISATION-TYPE

's

44.4%

4

wrong-genitive-form

55.6%

5

Intermediate Level

Feature Percent N

POS-TYPE

target_like_use

14.6%

7

non_target_like_use

85.4%

41

TARGET_LIKE_USE-TYPE

N=7

-s-possessor-costruction

42.9%

3

genitive-case

57.1%

4

NON_TARGET_LIKE_USE-TYPE

underuse

22.0%

9
UNDERUSE-TYPE

<table>
<thead>
<tr>
<th>Type</th>
<th>Percentage</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>blank</td>
<td>100.0%</td>
<td>9</td>
</tr>
</tbody>
</table>

MISUSE-TYPE

<table>
<thead>
<tr>
<th>Type</th>
<th>Percentage</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>misuse</td>
<td>78.0%</td>
<td>32</td>
</tr>
<tr>
<td>overuse-(snoc)</td>
<td>0.0%</td>
<td>0</td>
</tr>
</tbody>
</table>

MISUSE-TYPE (N=32)

<table>
<thead>
<tr>
<th>Type</th>
<th>Percentage</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>missetection</td>
<td>93.8%</td>
<td>30</td>
</tr>
<tr>
<td>misrealisation</td>
<td>3.1%</td>
<td>1</td>
</tr>
<tr>
<td>wrong-unclassified</td>
<td>3.1%</td>
<td>1</td>
</tr>
</tbody>
</table>

MISSELECTION-TYPE (N=30)

<table>
<thead>
<tr>
<th>Type</th>
<th>Percentage</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp</td>
<td>56.7%</td>
<td>17</td>
</tr>
<tr>
<td>possessive--s</td>
<td>43.3%</td>
<td>13</td>
</tr>
</tbody>
</table>

MISREALISATION-TYPE (N=1)

<table>
<thead>
<tr>
<th>Type</th>
<th>Percentage</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>'s</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>wrong-genitive-form</td>
<td>100.0%</td>
<td>1</td>
</tr>
</tbody>
</table>