ORACIÓN INAUGURAL.
ORACIÓN INAGUÑAL
LEIDA
POR EL DOCTOR
D. PEDRO BASSAGAÑA
Y BONHOMÉ
CATEDRÁTICO
DE LA FACULTAD DE FARMACIA
EN EL ACTO SOLEMNE DE LA APERTURA
DEL CURSO DE 1875 A 1876
EN LA
UNIVERSIDAD DE GRANADA
ILMO. SEÑOR:

La solemnidad que en el día de hoy celebra esta antigua Universidad literaria, es la que se verifica todos los años en semejante día. Veo reunidos en este santuario de la ciencia, adornados con las insignias académicas á los ilustres doctores, que son los encargados de inculcar á la juventud estudiosa los conocimientos de los diversos ramos del saber humano. Veo igualmente reunido en este sagrado recinto á un público numeroso, que ha acudido para presenciar la inauguración del nuevo curso académico.

Bien desearo yo, que he sido designado para el discurso inaugural en esta festividad científica, poseer sublime eloquencia, y dotes científicas de que carezco, para poder dejar satisfecho á este muy respetable Claustro; pero reconozco mi insuficiencia. Necesito, por lo tanto, de la benevolencia del mismo. La ciencia experimental, que tengo el deber de enseñar, no se presta fácilmente á las galas oratorias propias de otras ciencias. Por todo lo cual, en estilo sencillo he determinado exponer á vuestra elevada consideración, lo que fué la Química desde los tiempos mas remotos, los principales personajes que se han ocupado de ella, y finalmente los progresos científicos e industriales que el hombre ha reportado de aquella ciencia.
Para presentar con la mayor claridad posible el punto que he elegido para ocupar vuestra atención en este solemne acto, me ha parecido conveniente dividir en tres épocas el tiempo transcurrido desde la más remota antigüedad hasta nuestros días, según lo han venido haciendo los historiadores. La primera época llamada antigua comprende desde los primeros tiempos históricos hasta el siglo IX de nuestra Era. La segunda, llamada de la Edad Media, abraza desde el siglo IX hasta el XVI; y la tercera, dicha Moderna ó del Renacimiento, comprende desde el siglo XVI hasta nuestros días.

I.

LAS ARTES Y LA INDUSTRIA PRECEDIERON á LA QUÍMICA.

Tendiendo, Ilmo. Sr., una ojeada detenida á las épocas muy remotas, hasta los primeros siglos de la Era cristiana, no se encuentra ningún autor que nos hable de Química; sin embargo, nos quedamos llenos de admiración al contemplar la multitud de primorosas obras de arte, que se ofrecen á nuestra vista, como también el sin número de sistemas filosóficos, que están en boga. Las necesidades de los pueblos numerosos obligan al hombre á buscar los recursos necesarios para satisfacer aquellas. Esto es lo que han debido hacer los pueblos antiguos. La práctica ha precedido á la teoría. Las artes y la industria son mucho más antiguas que la ciencia, que ha de conciliar la teoría con la práctica.

La cuna de la civilización parece ser el Oriente; ella siguiendo el mismo curso del sol, se ha extendido por el Occidente. Así es que los chinos, los indios, los egipcios y los caldeos, ocupan el primer lugar en las artes y la industria.

Véanse, si nó, esos objetos de la industria humana, extraídos del seno de la tierra, ó de las escavaciones de los antiguos monumentos; ellos nos presentan una prueba evidente del grado de civilización de estos pueblos de Oriente, que después de tantos siglos han desaparecido. Esos bellos esmaltes, esos ricas materias tintoires, esas estatuas de madera y de bronce doradas, esos hermosos vidrios de tan diversos colores, esos instrumentos confeccionados con diversas aleaciones metálicas, todos esos productos artificiales conservados en nuestros gabinetes y museos, se fabricaban en los pueblos de Oriente en una época, en que los de Occidente estaban envueltos por las mas oscuras tinieblas de la barbarie. Se encuentran aún hoy mismo en varias ciudades de Egipto, edificios construidos con ladrillos esmaltados y aposentos decorados con azulejos recogidos en las ruinas de antiguas poblaciones y que por razon de su belleza son preferidos a los que suministra actualmente el arte degenerado de aquel país, como las demás manufacturas (1). Pero los procedimientos empleados por estos pueblos para la obtención de todas esas maravillas, eran simplemente rutinarios, hechos aislados y sin doctrina científica.

La historia nos ha dejado consignado quién fué el primer homicida, pero no nos ha dicho quién fué el que inventó el pan. Este descubrimiento, sin embargo, está muy lejos de ser tan sencillo, como parece; pues ante todo era necesario descubrir los vegetales, esto es las gramíneas que producen los granos alimenticios; y ciertamente esto no debía ser tan fácil, pues que los habitantes del nuevo mundo, de donde nos vino la patata, no conocieron el trigo hasta después de la llegada de los europeos á aquellas lejanas regiones. Conocidas las gramíneas alimenticias, era menester saber mendar los granos, separar el salvado de la harina y formar con ella una masa. Finalmente, ¿cómo se ha podido llegar á

(1) Véase la colección de observaciones ó indagaciones hechas en Egipto durante la expedición de la armada francesa, 2.ª edición, en 8., Paris, 1851, t. IX, pág. 337.
descubrir, que un poco de masa panaria ágría, hace hinchar la masa panaria reciente, y que la masa así preparada, da por la decoccción un pan ligero, sabroso y saludable?

Los griegos, cuya imaginacion sabia embellecerlo todo, atribuían á la Diosa Céres la invencion del trigo y al Dios Baco la del vino; de modo que para los greco-romanos Céres y Baco eran sinónimos de pan y vino. Así es que ha dicho un poeta antiguo: «Sine Cére et Baco Venus friget: sin pan y sin vino Venus tiene frío.» Lo cierto es que el origen del pan y del vino retrocede á los tiempos, en que, según dicen los mitógrafos, los hombres tenían relaciones con los Dioses.

Es realmente una idea muy sencilla expresar un racimo de uvas para beber el zumo azucarado que contiene; esto podia ocurrirese á cualquiera. Pero el zumo de la uva conservado o fermentado tiene un sabor muy distinto de ése que tiene el zumo recientemente exprimido. Ciertamente que era necesario ser muy atrevido para beber un líquido alterado ó corrompido, pues toda fermentación es una alteración. La historia nada nos dice tampoco de quien fué el primero que gustó el vino. Hacer adoptar como bebida el zumo de uva fermentado, nos parece una cosa insignificante, un detalle que no merece conocer al descubridor, ahora que nuestro paladar está acostumbrado al gusto del vino.

Esto nos recuerda la memoria de Permantier (1). La patata era conocida en Europa mas de cien años antes que aquel viniera al mundo; pero solo se cultivaba en un corto número de jardines y se tenía como una planta rara. Es verdad que algunos habían ensayado introducirla como planta alimenticia; pero nadie la quería por el gusto, que se le encontraba parecido al del nabarro. Para vencer este gusto extraño, fué menester habituar al paladar. De modo que para hacer adoptar la patata, que ha llegado á ser un alimento mas necesario que el vino, fué necesaria nada menos que toda la perseverancia de Permantier y la voluntad de Luis XVI, rey de Francia, el cual en una festividad de corte ostentó la flor de la patata en un ojal de su casaca.

De esto se deduce que las artes, la industria y las ciencias están íntimamente ligadas con la civilización; los países mas civilizados son por lo común los mas populosos. La práctica ha precedido á la teoria. Las artes y la industria son, pues, mucho mas antiguas que la ciencia, que debe conciliar la teoria con la practica. A su vez, las artes y la industria son el resultado de las necesidades, que el hombre se crea necesaria ó artificialmente. Las necesidades de la vida material exigen ser satisfechas lo mas pronto. Ante las exigencias del cuerpo, el espíritu renuncia por un momento al instinto de la curiosidad, que se dirige hasta las regiones de lo desconocido. De aqui tantos hechos de una aplicacion inmediata y tan pocas teorías especulativas. En ninguna parte está sometida la existencia del hombre á tantas necesidades como en las grandes ciudades, en los centros populosos, donde se debaten tantos intereses con un ardor apasionado. Así es que los artistas y los filósofos acudían á Thelas, á Memphis, á Athenas y á Roma para instruirse, del mismo modo que en la actualidad acude la juventud estudiosa á las Universidades de las capitales de Europa.

Los chinos conocieron la pólvora desde mucho tiempo; pero la empleaban solamente para los fuegos artificiales; su uso para las armas de fuego es mas reciente; fué introducida de Occidente por los misioneros. Wilkinson dice que la pólvora de los chinos contiene poco mas ó menos las mismas proporciones de nitro, carbon y azufre, que la que se fabrica en Inglaterra y Francia.

El arte de fabricar la porcelana había llegado á un alto grado de perfeccion entre los chinos en época en que la Europa no tenía conocimiento de ella. De sus fronteras se trajeron por primera vez algunos instrumentos de porcelana como muestras, que causaron admiración por su belleza.

(1) Antonio Agustín Permantier nació en Montdidier el 17 de Agosto de 1737 y murió el 18 de Diciembre de 1813 en París.
Bien pronto se buscaron con afán los medios de poseerlos; y al poco tiempo, aquellos preciosos vasos á imitacion de los vasos murrinhos (1) pasaron á constituir el lujo de las mesas de los ricos. Vanas fueron cuantas tentativas se practicaron para imitarlos; hasta que por uno de esos hechos en apariencia casuales, que muchas veces han contribuido al progreso de las ciencias y artes, fué conocida su composicion en Alemania al principio del siglo XVIII. Un quimico alemán (de la Thuringe), llamado Macheleid, haciendo experimentos sobre las combinaciones de las tierras mas propias para formar crisoles, encontró una, que produjo una porcelana semejante á la de China ó del Japon y que era superior en solidez. Pero guardó el secreto de su composicion, y no se tenia idea alguna exacta de ella hasta que Beaumur publicó en 1727 y 1729 sus observaciones sobre el mismo objeto.

El arte de alfarero y vidriero parece igualmente se ejercia en China con perfeccion. Poseian tambien los chinos el arte de preparar barnices y lacas; sabian emplear desde mucho tiempo el plomo, el cobre y el hierro para la preparacion de colores; conocian la elaboracion de piedras preciosas artificiales, aleaciones metalicas, espejos, utensilios de cocina, campanas, etc. etc.

Otros varios descubrimientos, parece haberse tomado tambien de los chinos, tales son la imprenta, la fabricacion del papel, la tinta, cuyo principal ingrediente parece ser el negro de humo. En aquel pais abundan las minas metalicas, singularmente las de hierro, que trabajan con perfeccion, reduciéndolo á laminas, hilos, etc. En una palabra, los chinos estan muy adelantados en la parte practica, pero muy atragados en la teorica.

La India fué tambien la cuna de los pueblos que marchan á la cabeza de la civilizacion. Aquella parte de nuestro planeta ha permanecido, durante muchos años, desconocida de los europeos, lo mismo que ha sucedido con la China. Son bastante recientes los conocimientos que tenemos de aquel pais. Sin embargo, el uso de los metales, su modo de extraccion, el uso de las aleaciones y de las monedas, la preparacion de materias colorantes, singularmente del añil, conocidos desde la mas remota antiguedad en la India, suponen necesariamente conocimientos en Metalurgia y en Quimica. Los indios han sido muy renombrados desde muy antiguo para el temple del hierro. Todos sabemos la superioridad de que gozan el hierro y el acero de la India para la fabricacion de instrumentos cortantes, en especial de esas espadas, que llamadas por los griegos maravillosas, son conocidas entre nosotros con el nombre de laminas damasquinadas.

Los monumentos antiguos, fruto del genio y del trabajo del hombre, constituyen la principal fuente de la historia de las ciencias y de las artes, auxiliares poderosos de la civilizacion de los pueblos. A esta fuente es menester añadir los documentos escritos y transmitidos por los historiadores. Pero no dejan de presentarse algunas dificultades graves en el empleo juicioso de estos materiales, por hallarse algunas veces los documentos incompletos, truncados, fingidos ó incomprensibles.

Los egipcios cultivaron tambien las artes y las ciencias, pudiéndose en gran parte aplicar á los egipcios lo que se ha dicho de los chinos: un pueblo numeroso, establecido en las margenes del Nilo, y en una region fértil en producciones de toda clase; pero un pueblo falto de espíritu guerrero, y sin ambicion de conquistas, obligado por la fuerza de la inteligencia y del trabajo, debio necesariamente buscar medios nuevos de vivir, que fuesen desconocidos de las tribus nomadas y de las naciones exclusivamente guereras. A esto forzoso es añadir el influjo de las creencias religiosas, y de las instituciones politicas, que favorecian las investigaciones de lo útil y bueno. Fué durante el reinado de los Faraones que Platón, Pitágoras, Solon y Herodoto recibieron la instruccion. El reinado de los Faraones rara vez disfrutó de

(1) Según Whitaker los vasos murrinhos de los romanos eran vasos de porcelana.
paz duradera: todos los grandes sucesos, que ejercen influencia sobre las artes, el comercio y la política de las naciones, han llevado las guerras a las márgenes del Nilo. Finalmente, a la caída del imperio romano, el Egipto experimentó la suerte común de las demás naciones de este extenso imperio, que se titulaba Orbe de las tierras (Orbis terrarum).

Los fenicios nos presentan igualmente el espectáculo de un pueblo numeroso, establecido en un territorio proporcionalmente muy estrecho. Por lo mismo, el genio del hombre debía suplir la falta de la naturaleza. El territorio de la Fenicia era pequeño, pero sus habitantes eran grandes por su comercio, por su industria y por las artes. Las mercancías de Tiro y Sidón eran buscadas por el mundo entero. Este pueblo esencialmente marino y comerciante, encerrado en estrechos límites por consecuencia de las conquistas de sus vecinos, fue naturalmente obligado a establecer colonias en diferentes países. Así fue que descubrió las Españas, país entonces rico en oro y plata, cuyo valor y usos eran ignorados de sus habitantes. Después de haber los fenicios establecido depósitos en las islas de Rodas y de Chipre, de donde sacaron sus minerales de cobre, franquearon los primeros el mar Mediterráneo y tomaron posesión del Estrecho de Gibraltar, como punto importante para sus colonias y su comercio. Luego dirigieron sus escursiones marítimas hacia el Norte, hasta las Islas Británicas, de donde sacaron estoño, de lo que nos hablan Moisés (1) y Homero (2).

II.

DOCTRINA DE ALGUNOS FILOSOFOS ANTIGUOS
RELACIONADA CON LA QUÍMICA.

Los filósofos de la India admiten cinco elementos que componen la materia y son: la tierra, el agua, el aire, el fuego y el éter, cuya opinión fué admitida durante mucho tiempo entre los alquimistas.

Los filósofos griegos se ocupaban del conocimiento de Dios, del de la Naturaleza y del hombre. Sofocles, que nació en Atenas 470 años antes de la Era Cristiana, comenzó a difundir su doctrina en una época en que la sana doctrina se hallaba muy ataba a consecuencia de los sofismas de sus contrarios; opinaba, que debía principiarse por el estudio de la naturaleza.

La escuela llamada física, que era una de las eleáticas, adoptó los principios de Thales Milet, fundador de la escuela jónica, de origen fenicio; residió algún tiempo en Egipto con intención de iniciarse en la ciencia, de que eran depositarios los sacerdotes de Thebas y de Memphis.

Leucipo, que vivió 100 años después (unos 300 años antes de nuestra Era), se dedicó al estudio del mundo físico y dejó consignadas sus ideas en dos tratados. Pero Demócrito, su discípulo (470 años antes de J. C.) con su escuela produjo una verdadera reacción contra las de Xenofanes y Parménides, sosteniendo de conformidad en parte con los principios de la escuela eleática, que toda producción es aparente, reduciéndose en rigor à la manifestación de alguna cosa, que antes existía. De este principio resulta, que los fenómenos
de generación y destrucción, que presenta el Universo, se reducen a transformaciones (metamorfosis) de la materia, y que la filosofía debe investigar el principio de que estos proceden. Dos hipótesis se les ofrecen para averiguarlo: la primera supone, que existe un principio único, esto es, una sustancia material indeterminada, la cual dotada de cierta energía interna produce esa multitud de transformaciones de la materia ó se modifica ella misma sin cesar. La segunda consiste en admitir una multitud de principios materiales (átomos), que agregándose de varias maneras, y obedeciendo a las leyes del movimiento, producen los fenómenos que observamos.

Demócrito prefirió la segunda hipótesis, esto es, la multitud de principios materiales y su número indefinido. De aquí los átomos constitutivos del Universo, que siendo innumerables y presentando infinita variedad de formas, pueden dar lugar á una prodigiosa variedad de formas secundarias, que resultan de sus agregaciones y separaciones necesarias. Por otra parte los considera dotados de movimiento inherente á su esencia, en virtud del cual se aproximan ó separan unos de otros, explicando de este modo la composición y descomposición de los cuerpos. Y como vagan por el vacío, es fácil dar razón de la posibilidad de estos movimientos atractivos y repulsivos. La Química actual ha confirmado en cierto modo estas ideas, admitiendo la atomicidad para explicar la composición y descomposición de los cuerpos.

Canadas, filósofo indio, enseñó que los átomos tienen propiedades características y que estas son: las que son tantas, cuantos aparecen los fenómenos de la naturaleza: el sonido, dice, procede de los átomos sonoros, la luz de los átomos luminosos, etc. De modo que las agregaciones de los átomos, no son debidas á movimientos mecánicos, sino á íntimas afinidades, que unen los átomos análogos y separan los antipáticos.

No opinaron así los demás filósofos, puesto que Thales supone la existencia de una materia susceptible de toda es-

PECIE DE FORMA Y DE CONSÍGUENTE FLUIDA EN SU PRIMITIVO ESTADO; ASÍ QUE EL AGUA (1) PARA ÉL ES EL ELEMENTO DE TODAS LAS COSAS; PERO, COMO DONDE HAY ORDEN, MOVIMIENTO Y VIDA, NO SE PUEDE DEjar de admitir UN PRINCIPIO ACTIVO, EL CAUDILLLO DE LA ESCUELA JÔNICA ADIENSE UNA ÁNIMA INTELLIGENTE, DISTINTA DE LA MATERIA ACOUSA, QUE DA FORMAS Á ÉSTA Y ESTABLECE LAS LEYES QUE RIGEN EL UNIVERSO.

Anaximenes enseñó después, que el aire es el principio primitivo; mas se ignora como explicaba por este medio las varias formas de los seres que pueblan el Universo.

Anaxagoras reprodujo la idea de Thales, admitiendo, que la materia se compone de elementos, que él llama homeomerías (partes semejantes á homogéneas), no porque fueran semejantes, toda vez que las supone dotadas de partes distintas, sino porque hay semejanza entre esas propiedades y las que observamos en los cuerpos.

Heraclito admitió el fuego como agente universal de todas las cosas. El mundo, dice, es un fuego, que se enciende ó apaga según cierto orden; y de aquí la perpetua variación de todas las cosas y la vida. La formación y destrucción de los cuerpos por el fuego, el movimiento de abajo arriba, la evaporación, el incendio del mundo, el origen de todas las mudanzas por la concordia y discordia y por la oposición de estas cosas, según leyes inmutables, forman los corolarios de su doctrina.

Diógenes de Apolonia (470 años antes de J. C.) considera al aire como elemento fundamental de la naturaleza y lo considera de esencia divina.

Aristóteles, natural de Estagira en Macedonia, que nació 584 años antes que J. C. y murió á los 62 años, pasó á Atenas y se hizo discípulo de Platon, cuya doctrina abandonó por no acomodarse á las hipótesis; y por la misma causa desechó la opinión de la escuela itálica, que suponía en los

(1) Para algunos el agua filosófica de los alquimistas no es el agua de los ríos, sino el mercurio considerado por algunos alquimistas como el elemento constitutivo de los metales.
átomos elementales una forma determinada. Pero reconociendo los cuatro elementos de Empedocles, **tierra, aire, fuego y agua**, los admitió como Platón a más de un quinto elemento, que llamó eléter, el cual es mas movible que el fuego, y de él estaba formado el cielo; así como también hacia derivar del eléter el calor de los animales. Creía, pues, como Empedocles, que los cuerpos provienen de la mezcla de los elementos citados, suponiendo que no pierden las propiedades elementales en su estado de combinación. Así que atribuía á la tierra, elemento mas sólido, la tendencia de los cuerpos á dirigirse hacía un centro común, y al fuego, como mas ligero y por su irradiación le atribuía la tendencia contraria. Hipócrates habia demostrado, que la experiencia es el único medio de llegar á resultados ciertos; y Aristóteles tomó este principio como fundamento de su nueva filosofía. El alma no adquiere conocimiento sin la intervención de los sentidos. *Nihil est intellectu, quod prius non fuerit in sensu.*

III.

ORIGEN Y OBJETO DE LA QUÍMICA EN LA PRIMERA Y SEGUNDA ÉPOCA.

Hermés Trismegiste, que significa tres veces muy grande, pasa por el inventor de las artes en Egipto, y particularmente como inventor de la Química. Se atribuye por la mayoría de los alquimistas á este personaje místico, llamado igualmente Thaat ó Thaut, gran número de escritos sobre las artes, la medicina y la astrología, de los cuales la mayor parte existen aun bajo el nombre de Hermés Trismegiste (1). Pero hay fundados motivos para creer que estos escritos son supuestos; pues que ningún escritor anterior á la Era cristiana hace mención de ellos. Otros atribuyen la invención de las artes á Plutarch ó Vulcano, á quien miran como idéntico á Tubalcano, que según la tradición bíblica (2) trabajó el primero los metales. Zosimo, Eusebio y Sinesius refieren, que había en el templo de Plutarch (Vulcano) en Memfis un sitio destinado para el ejercicio de la ciencia divina ó arte sagrado que no era otra cosa que la Alquimia (3). Así es como los alquimistas acudían á los laboratorios, que se hallaban establecidos en los templos para ocuparse de la gran obra.

Los primeros autores, que hablan de los escritos atribuidos á Hermés, pertenecen casi todos á la famosa escuela de Alejandría, verdadero centro de ciencia y literatura. Por lo cual es probable, que la Alquimia tuvo su origen entre los sábios del Bajo imperio, en el cual las letras y las artes hallaron un seguro refugio en el siglo IV de nuestra Era, contra las agitaciones, que trastornaron entonces todos los grandes estados de Europa. Los primeros escritos sobre Alquimia, procedentes de los autores bizantinos, pertenecen al siglo VII de la Era Cristiana. Para dar más autoridad á sus obras, los autores bizantinos tuvieron el pensamiento de atribuirlas á la pluma misma de Hermés Trismegiste. Así es que la bibliografía alquímica se enriqueció con un considerable número de tratados que fueron falsamente atribuidos á personajes, que pertenecen á épocas muy anteriores.

Dos eran principalmente los objetos que se proponían los

(1) La tabla de esmeralda (tabula smaragdina) se invocaba como un oráculo por los alquimistas de la edad media. El divino Pimander, que escribió primitivamente en griego (alexandrino) y fue traducido al latín por Ma.ilio Pidaco, encuadra un sentido figurado y lleva un solo eminentemente místico. San Agustín, en su tratado de Civitas Dei, cap. 33, 24 y 28, cita una obra titulada el mismo Hermés con el título de Verbo perfecto. Se la atribuye igualmente otra obra titulada Aedepigisis y otras.

(2) Genesis, IV, 22.

(3) Así es llamaba la Química en los primeros tiempos.
alquimistas en el ejercicio del arte sagrado: buscar el medio de encontrar la piedra filosofal, y hallar el modo de preparar la panacea universal. Por lo primero creían poseer el secreto de convertir los metales viles (1) en oro y plata; y por la segunda obtenían el modo de lograr una vida prolongada. La piedra filosofal era unas veces el mercurio, otras el azufre; para algunos era el arsénico, que blanquea el cobre, para otros era el zinc que lo pone amarillo; para varios en fin, era cierta cosa sobrenatural, que no podía ser elegida sino en ciertas circunstancias especiales. Todos convenían en que la piedra filosofal era una sustancia por la cual se podían convertir los metales viles en oro y plata y procurarse de este modo inmediatamente las riquezas. Pero como las riquezas de nada sirven, si el que las posee no puede disfrutar de ellas por falta de salud, de aquí la necesidad de buscar otra piedra filosofal que se llamaba panacea universal y también elixir filosofal, por el cual pudiesen curarse todas las enfermedades y prolongar la vida más allá del término ordinario. Esta segunda piedra filosofal creyeron algunos haberla encontrado en una tintura mercurial; otros en una tintura de oro (2) ó plata. Lograr la felicidad en el mundo, era el fin que se proponían los que se dedicaban al hallazgo de la piedra filosofal y de la panacea universal.

En la Sociedad greco-romana todas las artes ligadas con la Química eran ejercidas por esclavos, seres que eran considerados por los ciudadanos de Atenas y de Roma, como extraños al género humano. Los que manipulaban la materia para transformarla, eran considerados como indignos de comunicarse con los filósofos. En este estado era muy difícil, casi imposible, hermanar la teoría con la práctica. Con gran perjuicio de la ciencia, el artista guardaba sus secretos y el filósofo sus ideas, en vez de comunicarse y corregirse mutuamente, en lo que consistía el interés de todos. Así fue que la Química se quedó estacionaria, sin adelantar un paso durante muchos siglos.

Según acabamos de manifestar, en los primeros siglos de la Era cristiana hasta la Edad media, la Química se llamaba arte sagrado. Los sacerdotes de Egipto fueron los primeros maestros. En los templos de Tebas y de Memphis era donde se practicaba la ciencia divina ó la ciencia oculta, nombres que también se daban al arte sagrado. Las interpretaciones místicas, que daban al arte sagrado y que dejan entrever sus creencias religiosas, se desprenden de ciertos datos muy sencillos. Uno de ellos era que calentando agua, ésta se convertía á vapor, haciéndose impalpable como el aire, y dejando por residuo un polvo téreo de color blanco. Esto era exacto entonces y lo será siempre. Pero los sacerdotes aseguraban, que el agua se transformaba en tierra y aire; en fin, que la materia se transformaba; de lo cual deducían la posibilidad de la metempsicosis. Se calcinaba plomo ó estaba al contacto del aire, el metal se cambiaba en una suerte de cal (1), y esto indicaba la muerte del metal. Después calentando la cal obtenida con granos de trigo, el operador veía reaparecer el metal con su misma forma y todas sus propiedades. De este hecho deducían que con el concurso del fuego purificador, los granos de trigo poseían la virtud de resucitar, esto es, de revivir el metal incinerado. Los vestigios de esta creencia de los egipcios se encuentran actualmente en la palabra revivificación, empleada como sinónima de desoxidación entre los químicos. Los granos de trigo eran el símbolo de la resurrección é inmortalidad, como parece comprobarlo los saquitos de trigo, que se encuentran junto á las momias de los egipcios.

Se podría presentar una multitud de ejemplos semejantes,

(1) Los alquimistas llamaban metales viles al plomo, estano, antimonio y otros.
(2) La tintura de oro, llamada también oro potable, se vendía muy cara. En tiempo de Luis XIV cada gota de oro potable costaba una Lira. Fors. t. 8. p. 407.
(3) Los antiguos llamaban cales á los óxidos metálicos.
pero los dos, que se acaban de exponer, son suficientes para comprobar la necesidad de hermanar la práctica con la teoría. Efectivamente, si el agua evaporada a sequedad deja un residuo, es porque el agua tiene algunas sales en disolución; y si el plomo y el estaño convertidos en cales (óxidos), calentados con granos de trigo se revivifican, esto sucede porque el carbono de los granos de trigo se apodera del oxígeno del óxido y el metal vuelve a aparecer.

Las interpretaciones místicas, que daban los antiguos a los fenómenos químicos, y la repugnancia, que tenían en hermanar la práctica con la teoría, fueron la causa de que en la primera época la Química científica fuese casi nula. Veamos ahora lo que fue la Química en la segunda época, llamada de la Edad Media.

IV.

LA QUÍMICA EN LA SEGUNDA ÉPOCA Y PRINCIPIO DE LA TERCERA.

En esta época, víctimas las naciones de las guerras intestinas que las deboraban, la Química apenas avanzó un paso hacia el progreso. Los alquimistas, por lo general, conservaron las mismas ideas que habían recibido de sus predecesores respecto á la piedra filosofal y la panacea universal. Los árabes establecieron universidades en diversas capitales, donde se enseñaban las ciencias, tales como se conocían entonces. En esta época siguen los alquimistas en sus trabajos para preparar la piedra filosofal y la panacea universal, sentando las conclusiones más absurdas. Todos están conformes en atribuir a la piedra filosofal la propiedad de trasformar los metales viles en oro y plata. En lo que no están conformes es en la cantidad que es necesario emplear para producir este efecto, pues al paso que unos son muy moderados, otros llegan a un alto grado de exageración. Kunkel (1) el más modesto de todos los alquimistas reconoce, que la piedra filosofal puede convertir en oro solo dos veces su peso de metal extraño; Germspreiser de treinta y cinco veces su peso; Arnaldo de Villanueva (2) le atribuye la propiedad de convertir en oro cien partes de metal impuro; Rogerio Bacon (3) cien mil partes; Isaac el holandés un millón de partes; y Raimundo Lullo (4) es aun más exagerado, pues dice que la piedra filosofal goza de tal propiedad, que no solamente puede cambiar el mercurio en oro, sino que también comunica al oro así formado las propiedades de una segunda piedra filosofal. Finalmente, el alquimista Salmon asegura, que la piedra filosofal puede ejercer su acción sobre cantidades infinitas de metal.

Respecto á la propiedad atribuida á la panacea universal de curar las enfermedades y prolongar la vida más allá del término ordinario, es probable que esta creencia se introdujo entre los alquimistas del Occidente (5), porque se han tomado literalmente las expresiones figuradas y metafóricas de los autores antiguos. Así cuando dice Geber (6) "Tráeme los seis leprosos, que yo los curaré", quiere decir, tráeme los seis metales viles para que yo los trasforme en oro.

(1) Juan Kunkel nació en 1530 en Hamburgo, fue farmaconotario y canónigo de Quimien de Wittensberg: murió en 1726.
(2) Parece ser oriundo de Cataluña, ejerció la Medicina en Barcelona a últimos del siglo XIII. Fue maestro de Raimundo Lullo.
(3) Nació en Lincoln (Inglaterra) el año 1216. Estudió en Oxford á sus veinte años, pero fue expulsado de la Universidad de dicha ciudad, por no admitir las tres cosas de la fideicimiento. Murió en Oxford en 1296 a los 76 años de edad.
(4) Nació en Valladolid en 1232. Despido en caudal, entró en la Orden de frailes franciscanos de San Juan de Dios, escritor de muchas obras sobre Alquimia; murió en 1294.
(5) Según otros Bochart.
(6) Geber, Gheber o Geber y por otro nombre Aben-Moussa-Djefar-al-chep parece ser de origen árabe, aunque algunos le suponen griego converso al islamismo. Vivió en el siglo VIII y murió el año 724; escribió varias obras que son de las más antiguas que se conocen sobre Alquimia.
Basílio Valentin (1) dice tambien, que el que posee esta piedra, jamas será molestado de enfermedades hasta la hora suprema, que le está fijada por el Criador. Si todos los alquimistas hubiesen seguido la opinion del nombrado alquimista, no habrian comprometido su crédito y habria proporcionado a los historiadores ocasión de tributarles homenaje por su veracidad. Léjos de esto, los alquimistas se formaban muchas ilusiones sobre las propiedades de la piedra filosofal y la quinta esencia. Es mas, en un opúsculo publicado por Denis Chase, se describe la manera de usar la piedra filosofal para convertir los pedernales en perlas y rubies. Finalmente, Jules Sperber asegura (2), que la quinta esencia cambia los pedernales en piedras finas, pone el vidrio ductil y hace revivir los árboles muertos.

Veamos ahora los caracteres que los alquimistas atribuyen a la piedra filosofal. Van Helmont (3) dice que ha visto y manejado la piedra filosofal; que tiene el color del azafrán en polvo, que es pesada y brillante como el vidrio en pedazos. Parascenzo (4) nos la presenta sólida, de color de rubi oscuro, trasparente, flexible y frágil como el vidrio. Berigard de Pise, que dice haberla podido observar á su gusto en la trasmutacion, que un desconocido le hizo operar, atribuye á la piedra filosofal el color de la amapola y el color de la sal marina calcinada. Raimundo Lilio la designa algunas veces con el nombre de carbúnculo, que se puede tomar por pequeño carbon ó por escarbúnculo, según la significacion dada á esta palabra por Plinio. Holwetius le atribuye el color del azufre. Finalmente, muchas veces se la halla descrita con el color rojo. ¡Qué propiedades tan distintas! Pero Kalid concilia todas esas contradicciones, diciendo (1) que la piedra filosofal posee todos los colores: es blanca, roja, amarilla, azul celeste y verde.

La Alquimia en los últimos años de la Edad Media se convirtió en mágica y especulacion. Podríamos citar muchos ejemplos en confirmacion de lo que acabamos de exponer; pero será suficiente indicar lo que se lee de Bragadino, griego de nacion, y originario de la isla de Chipre. Suponía ser hijo del conde Marco Antonio Bragadino, Gobernador de Venecia, que fué preso y muerto por los turcos en 1571. Después de haber recorrido parte del Oriente como alquimista, volvió á Italia en 1578 con el nombre supuesto de conde de Mamugnaro. En Italia adquirió pronto gran reputacion como alquimista. Hacia en público trasmutaciones para probar, que él debia á la piedra filosofal el origen de sus riquezas. Mas sus decantados procedimientos para la preparacion de aquel precioso agente, que vendia muy caro á sus engañados admiradores, eran para él un manantial fecundo de fortuna. Hallándose en cierta ocasión en el palacio de Cantarena, hizo una trasmutacion de mercurio en oro, que dejó maravillada á la reunion. Todo su secreto consistia en hacer uso de una amalgama de oro. Los espectadores no dejaron de observar, que el compuesto, que él había colocado en el crisol enrojecido, perdio la mitad de su peso para trasformarse en oro.

Los alquimistas ponian especial cuidado en ocultar los procedimientos de que se valian para preparar la tan decantada piedra filosofal; asi es que la exposicion de sus procedimientos esta hecha con misterio y enigmas, las mas veces dificiles de descifrar. Y con razón, pues el que hubiese tenido la suerte de poseer este maravilloso secreto, hubiera tenido buen cuidado de guardarlo para sí.

(1) Alquimista que vivió al principio del siglo XV. Según algunos fue menaje de la Orden de San Benito en Erfurt (Provincia).
(2) En su Inaugur.
(3) Juan Basila Van Helmont nació en Bruselas en 1577 y murió el 26 de Diciembre de 1644. Demostró la existencia de los gases.
(4) Aurelio Felipe Theodoro Bombast, de Ronnenheim, llamado Parascenzo, nació en 1493 en Einsieden, centro de Sobueva (Sobuy). Y murió el 1 de Septiembre de 1541 en el hospital de Salisburgo á los 48 años de edad. En 1502 el Senado de Basileia le nombró Catedrático de Grecia y de Fisica. Hacia sus explicationes en alemán con gran escándalo de los demas profesores que explicaban en latín. En la primera lección que dio, á presencia de sus discípulos hizo quemar las obras de Hipocrates, Galeno y Avestuna, diciendo que su nombre, su barba y sus zapatos habian mas que todos los médicos de la antigüedad.

(1) En su tratado de «Tres palabras.»
Las principales obras de los alquimistas llevan los títulos siguientes: *Apocalipsis químico; Las doce llaves de la filosofía*, de Basilio Valentin; *El espejo de los secretos; El meollo de la Alquimia*, de Rogerio Bacon; *La clavicula, de Raimundo Lullo; El dese o deseado*, de Nicolás Flamel; *El rosario filosófico y La flor de las flores*, de Arnaldo de Villanueva; *El libro de la luz*, de J. Roqueadale; *El verdadero tesoro de la vida humana*, de Sonec; *La luz saliendo de las tinieblas y La entrada abierta al palacio cerrado del Rey*, de Philalete; *La antigua guerra de los caballeros o El triunfo hermético*, de Th. Northon; *La turba de los filósofos o La asamblea de los discípulos de Pitágoras*, de Morieu; *El tratado del cielo y de la tierra*, de V. Lavinus; *El libro de las doce puertas*, de G. Ripley; *El Toison de Oro*, de Trismosin; *La llave de la sabiduría*, de Alfonso X, rey de Castilla; *El brillo de la trompeta; La tintura física; La tintura del sol y de la luna; Tintura de las piedras preciosas*, etc.

La doctrina de los alquimistas tenía también su teoría. En atención a que los metales en el seno de la tierra se hallan en diferentes estados, creyeron muchos, que los metales viles pasan por una especie de gradación al estado de oro. De otra parte, las modificaciones que experimentan dichos cuerpos por efecto de un gran número de reacciones químicas, fueron consideradas como índices de trasmutaciones. Así el cobre expuesto a los vapores arsenicales, adquiere el color blanco; fundido con zinc, resulta de color amarillo de oro, etc. Estos cambios de colores fueron apreciados en cierta época como trasmutaciones parciales. Mas tarde se reconoció, que el cambio de color de un metal no era efecto de una trasmutación; pero al propio tiempo se descubrieron otros fenómenos, que á su vez mal interpretados, vinieron á suministrar un nuevo apoyo á los fabricantes de oro. Entre estos fenómenos ocupan el principal lugar las precipitaciones metálicas. Efectivamente, si se sumerge una lámina de cobre en una disolución de una sal de plata, aquella se cubre de una capa de plata; el hierro suspendido en una disolución de sal de cobre, se cubre de una capa de este metal; las disoluciones de las sales de mercurio blanquean un gran número de metales, dándoles el aspecto de la plata, etc.

Estas precipitaciones fueron apreciadas como verdaderas trasmutaciones metálicas parciales, que el arte podia perfeccionar. Nadie habia comprendido hasta los primeros años del siglo XVII, que el vitriolo azul es un compuesto de cobre, y que una disolución de esta sal, no es otra cosa que cobre disuelto. Así fue que el depósito de cobre, que se obtiene sumergiendo una lámina de hierro en aquella disolución, ha sido presentado por Paracelso y Libavio como prueba irreposable de la trasmutación del hierro en cobre.

Pero si bien es verdad que los alquimistas de esta época fueron víctimas de infinitas decepciones, no puede negarse, que fueron los autores del método experimental y de haber hecho algunos descubrimientos importantes. Ya en el siglo VIII el alquimista árabe Geber puso en practica las reglas de la escuela experimental, que Galileo y Bacon debían promulgar ocho siglos despues. Las obras de Geber, tituladas *La suma perfeccion y El tratado de los hornos*, encierran descripciones de procedimientos y operaciones enteramente conformes con los usados en la actualidad. Geber, uno de los escritores mas antiguos de la escuela hermética, ha dado el primero descripciones muy precisas de nuestros metales usuales, tales como el mercurio, la plata, el plomo, el cobre y el hierro; asimismo ha dejado descripciones bastante exactas del arsénico y el azufre, el agua régia y el oro. En la misma obra se hallan descritos por primera vez varios compuestos químicos, que despues de muchos siglos están en uso en los laboratorios y en las Farmacias, tales como la piedra infenal, el sublimado corrosivo, el precipitado rojo, el hígado de azufre, el magisterio de azufre, y otros. En el siglo IX el árabe Rhasés (1) descubrió el agua de vida, que

(1) Llamoase tambien Rabes, nacio en 949 y murió en 998. Escribió varias obras sobre Alquimia.
es nuestro alcohol, y propone varias preparaciones farmacéuticas, de que forma parte aquel líquido. Entre los com-
postos, que propone el mismo alquimista, se pueden citar el oropimiente, el rejaglar, el borraj, algunas combinaciones
de hierro y cobre con el azufre, ciertas sales de mercurio y muchos compuestos arsenicales. Todos sus esfuerzos se di-
rigian a que los estudios se hicieran por la vía experimental.
«El arte secreto de la Química, dice, es mas bien posible,» que imposible. Sus misterios no se revelan sino á fuerza de
«trabajo y tenacidad; pero, ¡qué triunfo, cuando el hombre
»puede levantar una punta del velo con que se oculta la
«naturaleza!»
Á Alberto el Grande (1) se le debe el modo de copelar la
plata y el oro; la preparacion de la potasa por la cal, tal
como se practica actualmente; este alquimista describe la
composicion y la preparacion del cinabrio.
Rogerio Bacon, uno de los alquimistas ingleses mas sabios,
ademas de muchos descubrimientos fisicos, nos dio el pro-
cedimiento para purificar el nitro y describio sus proprieda-
des. Llamó tambien la atencion sobre la accion del aire en la
combustion.
Raimundo Lulio, cuyo genio se ejercito en todos los ramos
de los conocimientos humanos y que expuso en su libro Ars
magna un vasto sistema filosofico, reasumiendo los prin-
cipios enciclopédicos de la ciencia de su tiempo, no podia de-
jar de legar á los quimicos sus buenos recuerdos. Descubrió
el agua fuerte; perfecciono y describio con esmero diversos
compuestos, que en la actualidad estan en uso en Quimica,
tales como el carbonato de potasa, el espíritu de vino recti-
ficado, varias esencias y el mercurio dulce.
Basilio Valentin, alquimista alemán, describe el antimo-
nio y varios de sus compuestos en la obra titulada Currus

*triumphalis antimonii. En esta obra está descrita la prepa-
racion del espíritu de sal (ácido clorhídrico) por el mismo
procedimiento que se sigue actualmente; explica tambien el
modo de obtener el agua de vida (alcohol) destilando el vino
ó la cerveza y la rectificacion del producto, redestilándolo
sobre carbonato potásico. En su tratado sobre las sales ex-
plica varias reacciones relativas á estos compuestos; describe
la preparacion y las propiedades explosivas del oro fulmi-
nante. Se le puede considerar como el descubridor del úter
sulfúrico, que preparaba destilando una mezcla de espíritu
de vino y ácido sulfúrico.

Eck de Sulzbach (1) que vivió en el siglo XV, entrevió la
existencia del oxígeno, que fué demostrada mas tarde en el
siglo XVIII por el célebre Priestley.

Paracelso, que dijo á conocer el zinc, ha gozado de reputa-
tion bien merecida, introduciendo en la materia médica
el uso de compuestos quimicos suministrados por los meta-
les. A la antigua terapéutica de los galenistas sobrecargada
de preparaciones muy complicadas y comunmente inertes,
sustituyó los medicamentos suministrados por la Quimica, y
fué el primero que emprendió el camino de las aplicaciones
de esta ciencia á la Filosofía y á la Patología.

V.

LA QUÍMICA EN LA TERCERA ÉPOCA.

Al principio de esta época empieza la Quimica á acentuar-
se en sentido científico, al paso que la Alquimia entra en el
periodo de su decadencia.

(1) Nació en Lautingen en 1210. Fue fraile de Sta. Domingo de Colonia y después Obispo de
Baztán. Fue maestro de Sta. Teresa de Ávila, y maestro de Sta. Teresa de Ávila, Tuvo gran fama de mágico. Murió en 1280 á la
edad de 87 años.
Entre los químicos que en esta época mas contribuyeron á que progresara aquella ciencia, necesario es nombrar á Van-Helmont, que fue el primero que llamó la atención de los químicos sobre el estudio de los gases, hecho capital, sobre el que mas adelante debían fundarse las teorías de la Química positiva.

Asimismo, es digno de mencion Roberto Boyle (1) que reconociendo muy efectivamente el método experimental, en virtud del cual él y Guerike descubrieron la presión de la atmósfera, el vacío y con el auxilio de las primeras máquinas para hacerlo, á la conclusión del siglo XVII abrieron nuevo campo á las investigaciones de Rodolfo Glauberó (2), que á pesar de haber creído como Van-Helmont en la posibilidad de la trasmutación de los metales, descubrió varias sales alcalinas, entre las cuales se halla su sal admirable, ó hizo observar la conveniencia de aprovechar el residuo (caput mortuum) de varias operaciones químicas. Asimismo fué el que distinguió la cal de la magnesia, que se habían confundido hasta entonces.

Otro de los célebres alquimistas fué Juan Rey (3) que en la misma época demostró, que los metales aumentaban de peso durante la calcinación; sin que sea menos digno de ser nombrado Nicolás Lefebre (4) demostrador de Química en el jardín de plantas del Rey de Francia, que dió instrucciones precisas sobre las vasijas que deben emplearse en las operaciones, modo de aplicar el calor y manera de hacer la destilación.

Contribuyeron también en la misma época á los progresos de la Química Cristóbal Glaser (5) sucesor de Lefebre, como demostrador de Química en el jardín de plantas, con el des-

cubrimiento del nitrato de plata fundido y en cilindros; Homberg (1) notable por su alumbre pirofórico; Lemery (2) por su volcán artificial; Ettmüller (5) que descubrió varias preparaciones de antimonio; Meitriel d’Element, que fué el que enseñó á recoger los gases; Boherhabe, Hales, Pott, Angel Sala, Juan Bautista Porta, Patero autor del Antiético; Adriano Minsiht, que dió noticias importantes sobre el tártraro emético, Olaus Borrichius, autor de la célebre obra de Ortu et progressu Chimie. Seignette, farmacéutico de la Rochela, el cual descubrió el doble tartarato de potasa y sosa, que lleva su nombre; Cassius que descubrió el precipitado llamado Púrpura de Cassius; Brandt (6) que descubrió el fósforo, haciendo una investigación para hallar la piedra filosofal; Botticher (5) que encerrado en una fortaleza halló el secreto de preparar la porcelana. Finalmente, Becher, que recopiló los hechos esparcidos en la ciencia, haciendo un ensayo de teoría para la explicación de los fenómenos, preparando la revolución científica, que poco tiempo después fué desarrollada por el ilustre Georges-Ernest Stahl médico del rey de Prusia (6).

Después de tantos errores cometidos durante más de quince siglos, llegaron por fin los alquimistas á convencernos, que la piedra filosofal era una ilusión, una quimera. Sin embargo, tantos trabajos hechos con el fin de hallar la piedra filosofal, no fueron del todo perdidos para la ciencia. Buscando la piedra filosofal y la panacea universal, se hicieron im-

(1) Nació en Batavia el 8 de Enero de 1616 y murió en Londres el 30 de Diciembre de 1691.
(2) Nació en Bussen en 1611; murió en 1702.
(3) Nació en Liége en 1614 y murió en 1680.
(4) Nació en 1654 y murió en 1756.
(5) Nació en Schafft el 4 de Febrero de 1662; como alquimista rebelde fue encerrado en la fortaleza de Kembergl donde en 1704 descubrió la manera de obtener la porcelana y murió en 1719.
(6) Nació en Anspach en 1660. Estudió la Medicina en la Universidad de Leipzig en 1687 fué agregado como médico á la corte del duque de Saxe Weimar. Después fué catedrático de Medicina en la Universidad de Halle. En 1714 fué nombrado primer médico del rey de Prusia, padre de Federico el Grande, cuyo cargo desempeñó hasta su muerte ocurrida en 1752.
portantes descubrimientos, sobre los cuales ha podido cons-tituirse la Química propiamente tal en la tercera época.

La alquimia en los últimos años de la segunda época y principios de la tercera tuvo muchos contrarios. Entre ellos se cuentan un físico de Ferrara, llamado Pierre le bon, de Lombardía (1), Thomas Eraste (2), J. Etiner (3), Nicolás Lemery, Bergman (en 1756), Geoffroy (en 1772), y otros. En-tonces los partidarios de la alquimia redoblaron sus esfuer-zos para sostener sus aberraciones. Uno de los más famosos fué Georges-Ernest-Stahl. Este alquimista atribuía al fuego lo que Juan Rey atribuía al aire: es el autor de la célebre teoría del flogisto. Según él, había dos suertes de fuego, esto es, el fuego libre y el combinado. Decía, que todos los cuerpos combustibles encierran en sí mismos un principio de combustibilidad; su combinación con el fuego les hace combus-tibles. Al fuego fijado de esta manera es a lo que Stahl llama flogisto ó principio combustible. Este principio, en estado de combinación, no es apreciado por nuestros sen-tidos, hasta el momento en que se separa del cuerpo con quien estaba combinado. Entonces, dicho principio (flogisto) vuelve á recobrar todas las propiedades ordinarias del fuego, acompañado de calórico y luz. Cuanto más combustible ó inflamable es un cuerpo, tanto más rico es en flogisto. El carbon, los aceites, las grasas, el azufre, el fósforo, etc. son los cuerpos que contienen mayor cantidad de flogisto, y por consiguiente son los más propios para comunicarlo á los que no lo contienen. Tal es la teoría de Stahl, que por más de un siglo dominó en la ciencia (4).

Veamos ahora como Stahl hacia aplicación de su teoría. ¿Qué es un metal? Es, dice Stahl, un cuerpo compuesto de flogisto y una materia térrea particular llamada cal, que no

(1) En 1532 publicó una obra titulada Margerita priscina.
(2) En 1772 publicó una obra titulada Explicatio.
(3) Escribió dos obras contra la Alquimia en 1718; murió en 1744.
(4) Stahl expuso su teoría en un libro en el cual muy raro que publicó en aleman con el título de Simple res pensamientos, Halle 1618.

debido confundirse con la cal común. El flogisto es siempre el mismo, al paso que la materia térrea varía según la nat-turaleza del metal. Cuando un metal se calcina, se des-prende el flogisto y queda la cal. ¿Quieres devolver á esta cal todas las propiedades que caracterizan un metal? De-vuelve á esta cal el flogisto que le falta y lo tendréis otra vez en estado de metal. De este modo recobrando la cal de hierro su flogisto, se tiene el hierro, el pompholix tomando el suyo, se tendrá el metal zinc y así de otros. ¿Y cómo se conseguirá fijar el flogisto á estas cales? Calentándolas con carbón, con grasas ó con otras materias ricas en flogisto, y que lo abandonen fácilmente. Pero se dirá tal vez, ¿no conocía Stahl el aumento de peso que adquieren los metales por la calcinación? Lo conocía, pero decía: Yo sé muy bien que los metales aumentan de peso por la calcinación; pero, este hecho lejos de debilitar mi teoría, por el contrario, la corroboraba; siendo el flogisto más ligero que el aire, tiende á elevar el cuerpo con el cual se combina y hacerle perder una parte de su peso; este cuerpo, pues, pesa más después de haber perdido su flogisto. Así, según la teoría de Stahl, el flogisto hacía el oficio de un globo aereostático lleno de hidrógeno, lo que es una ilusión. En virtud de esta teoría, cuando se descubrió el hidrógeno, los discípulos de Stahl lo tomaron por el flogisto. Entonces no se tenían conocimientos exactos de los gases; pero, después que al descubrimiento del hidrógeno, se añadió el del oxígeno y el del nitrogenero, la teoría del flogisto estuvo cada vez más difícil de sostener. Cada nuevo descubrimiento que se hacía, añadía nuevas dificultades á aquella teoría, sucediendo con la teoría de Stahl lo que con la de Plutomeo. El progreso humano en su marcha irresistible concluye por derrubar todos los edificios fundados en falsos cimientos. Esto sucedió con la teoría de Stahl. A últimos del siglo XVIII los químicos estaban divi-didos respecto á dicha teoría: unos la admitían, al paso que otros se habían declarado sus contrarios. Uno de los que mas contribuyeron á echar por tierra la teoría de Stahl, fue
Lavoisier (1) con la teoría llamada del dualismo. Este illustre químico abre una nueva era para la Química. Los hechos sobre el aumento de peso de los metales durante la calcinación (combustión) comprobados por él en una serie de experiencias repetidas, puestos en claro por una discusión brillante, constituyen en sus manos un arma victoriosa contra la teoría del flogisto y pasan a ser la piedra fundamental de un nuevo sistema. La combustión, según dicho químico, no es una descomposición, sino una combinación de cierto elemento del aire con el cuerpo combustible. Este aumento de peso, y este aumento representa precisamente el peso del cuerpo gaseoso que se ha fijado.

Priestley (2) en 1774 descubre un gas eminentemente inflamable (oxígeno) contenido en el aire, y este descubrimiento da nueva fuerza a la teoría de Lavoisier. Desde esta época queda demostrado el papel que hace el aire en la combustión. En vano se esfuerzan Cavendish, Priestley y el gran Scheele (3) últimos defensores del flogisto en sostener la teoría de Stahl, modificándola y admitiendo, que el papel del aire consiste en quitar el flogisto a los cuerpos combustibles. Un gas, dice Priestley, es tanto más propio para entretener la combustión, en cuanto contiene menos flogisto; el aire contiene poco; el gas eminentemente comburente,

(1) Antoine-Laurent Lavoisier nació en París el 26 de Agosto de 1743. Fue uno de los primeros en adoptar el método de los azufres para analizar gases. Descubrió el oxígeno en 1774. Participó en la Revolución Francesa y murió en la guillotina el 8 de Mayo de 1794.

(2) Joseph Priestley nació el 16 de Marzo de 1733 en Nuestra, cerca de Leeds, en Inglaterra. Aprendió el latín, el griego y el hebreo. Se interesó por el estudio de las sustancias químicas. Fue el primero en describir el oxígeno en 1774.

(3) Carl Wilhelm Scheele nació el 10 de Diciembre de 1742 en Stralsund, hoy parte de Alemania. Descubrió el oxígeno en 1774, y su nombre se conoce en la tabla periódica como el de Oxígeno.
ples é indestructibles en la actualidad, que ellos se imponen como axiomas. Si alguna cosa puede rivalizar con los descubrimientos de este gran químico, es el método que consiste en aplicar la balanza a todos los fenómenos químicos, que nadie antes que él había puesto en práctica. Cavendish, Bergman y Margraf habían hecho análisis cuantitativos y ninguno de ellos había pensado hacer aplicación del estudio de las relaciones ponderales a la solución de una cuestión teórica. Lavoisier tuvo esta idea, suyos son la gloria y el mérito de este hecho. El método que inauguró es el mejor en Química: no solo no ha sido reemplazado, pero no se comprende que pueda serlo.

Lavoisier dio a conocer el gran papel que el oxígeno ejerce en los ácidos, en los óxidos y en las sales; haciendo aplicación de los mismos principios a los demás compuestos, y de esto resultó en 1775 una teoría general enteramente opuesta á la de Stahl hasta entonces dominante. Sin embargo, la lucha fué terrible entre los defensores de una y otra teoría, y los mismos que después más contribuyeron á hacer hambrolear la teoría del flogisto, fueron al fin sus más obstinados partidarios. Scheele murió en 1784 á la edad de 45 años, si no partidario convencido de la idea misma del flogisto, al menos defensor acérrimo de la palabra. En este mismo año (1784) en que la nueva doctrina había subyugado en Francia los talentos más privilegiados, Berthollet (1) á la cabeza, Cavendish (2) publicó una exposición detallada y una defensa ingeniosa de la teoría del flogisto. Mas tarde, sin adhírersen á las nuevas doctrinas, dejó de hacer oposición. Priestley al contrario, no cesó jamás, murió en 1804 cerca de Susquehannah, habiendo llevado al Nuevo mundo su genio inquieto y su obstinación. Para Lavoisier, muerto en la flor de su vida y lleno de actividad, fué una satisfacción ver el triunfo de sus ideas. En 1794, el día en que el hacha revolucionaria puso fin á su existencia, su teoría era aceptada por la mayoría de los químicos, y los pocos contrarios, que aun se esforzaban en levantar la voz en contra, tardaron muy poco en ver derrumbarse por completo un sistema enteramente desacreditado.

Lavoisier presentó á la Academia varias memorias, haciendo ver en una de ellas, que el aumento de peso de los metales durante la calcinación, así como el que adquieren el azufre y el fósforo cuando arden en el aire, es debido á la absorción de una parte del aire por aquellos. En otra memoria demostró, que en la calcinación de los metales y en la combustión no es el aire el que es absorbido, sino solo uno de sus elementos, el oxígeno, que fué denominado por él, aire vital ó aire eminentemente propio para la respiración y la combustión. Preparó ese gas por el mismo procedimiento que había seguido Priestley, esto es, por el óxido mercúrico; demostró que éste está compuesto de mercurio y oxígeno, y dedujo por analogía, que todos los compuestos llamados cales, tenían la misma composición.

Hacia ya tiempo que se sabía, que calentando cales metálicas con carbon, se obtenían los metales, y se desprendía un gas que se llamaba aire fijo (ácido carbónico). Lavoisier sospechó que este gas estaba constituido por carbono y aire vital. Admitió además, que este aire vital es uno de los elementos del salitre, que entretiene vivamente la combustión del carbon con desprendimiento de aire fijo (ácido carbónico). La composición de este gas fué después definitivamente establecida por síntesis, demostrando, que en la combustión del diamante (carbono puro), el único producto de esta combustión es aire fijo, que posteriormente fué llamado ácido carbónico. Sus experiencias sobre la composición de los ácidos fueron continuadas en 1777 por el estudio del ácido fosfórico, demostrando, que este ácido resultante de la combustión del fósforo, es efecto de la unión de este cuerpo con el aire vital, y que el aumento de peso del fósforo es debido

[(1) Claudio Luis Berthollet nació en Tullibore (Sobaya) el 8 de Noviembre de 1748 y murió en Atenas el 4 de Diciembre de 1822.]

[(2) Henry Cavendish nació en Nisa el 10 de Noviembre de 1731 y murió en Londres el 8 de Febrero de 1810.]
a la absorción de la quinta parte del aire. Varias otras experiencias le demostraron, que de los dos principios de que consta el aire, uno solo, el oxígeno, es capaz de entretener la combustión. Demostró también, que el ácido sulfúrico se diferenciaba del sulfuroso en que aquel tiene un equivalente mas de oxígeno que este. Señaló igualmente las mismas relaciones de composición respecto al ácido nítrico y el óxido nítrico, que acababa de descubrir, manifiestando, que entre dichos dos compuestos había uno intermedio, el vapor rutilante, que resulta de la absorción del oxígeno por el óxido nítrico. Todos estos trabajos demuestran el papel importante que ejerce este aire eminentemente propio para la combustión y la respiración, que él llamó por primera vez oxígeno en una memoria que publicó en 1778.

Mas tarde, después del estudio de los óxidos pasó al de las sales, considerando que los óxidos son necesarios para la constitución de las sales, en lo que se equivocó, si bien poco después reconoció que hay sales (las haloides) de que no forman parte los óxidos. Así es que dio la definición de las sales, diciendo que eran compuestos resultantes de la unión de un ácido con un óxido.

Guiton de Morveau (1) se dedicó también a los trabajos químicos. Demostró en sus lecciones públicas los inconvenientes de la nomenclatura, si es que tal podía llamarse un lenguaje sin reglas y sin claridad, una colección de palabras caprichosas y sinónimos molestos. En 1782 propuso nuevas denominaciones, que aun cuando por de pronto no fueron aceptadas, llevaron el germen de una verdadera nomenclatura. El objeto de Guiton de Morveau era que el nombre de la sustancia indicase la composición de la misma. Esta indicación halló un poderoso apoyo en Lavoisier, cuya influencia preponderante entonces, hizo que en 1787 los dos químicos expresados con la no menos importante coopera-

ción de Berthollet (2) y Fourcroy (3) establecieron la nueva nomenclatura.

A fines del siglo XVIII por analogía se había considerado, que los álcalis, las tierras alcalinas y las tierras eran verdaderos óxidos, pues se había observado que se combinaban con los ácidos; pero nadie había logrado aún la separación de los radicales metálicos de aquellos compuestos. Desde 1790 se habían hecho un sin número de tentativas, siempre infructuosas para aislárlos, lo que había desanimado á los químicos, hasta tal punto, que, cuando el eminente químico inglés H. Davy (4) anunció al principio de este siglo, que había obtenido los radicales de los álcalis por medio de la pila descubierta por Volta en 1800, causó una verdadera sorpresa. Estas experiencias fueron repetidas poco después por Gay-Lussac (5) y Thenard, quienes habían tenido dudas sobre la verdad anunciada por el químico inglés. Los nombrados químicos no solo confirmaron las experiencias de Davy, sino que ensayararon después obtener los radicales alcalinos exponiendo los álcalis potasa y sosa á una alta temperatura en contacto del hierro, cuyas experiencias fueron coronadas por un brillante resultado.

Algunas tierras alcalinas tales como la alumina y la magnesia, que resistieron á las experiencias, á que habían sido sometidas la potasa y la sosa, fueron después reducidas también por Mr. Woehler, exponiendo los cloruros amibridos de dichas tierras obtenidos por Oersted, á la acción simultánea del carbon y del cloro al rojo. De este modo fue obtenido el aluminio, que en estos últimos años ha llegado á ser un precioso metal de uso casi común y muy importante en manos de Mr. H. Sainte-Claire Deville.

(1) Nació el 1 de Enero de 1737 en Dijon y murió el 2 de Enero de 1814.

(2) Antonio Francisco Fourcroy nació en París el 16 de Enero de 1772. Fue Catedrático de Química en el Jardín del Rey, murió el 6 de Diciembre de 1852.

(3) Humphry Davy nació el 17 de Diciembre de 1778 en Poonahr, pequeña villa del condado de Carmoakshie (Inglaterra). A los 16 años se dedicó a la farmacia de Bingham. Murió en Genova el 29 de Mayo de 1829 a la edad de 51 años.

(4) José Luis Gay-Lussac fue discípulo de la escuela política.
La teoría de Lavoisier ha sido, sin embargo, algo defectuosa. Este ilustre químico había admitido al principio, que todos los ácidos contenían oxígeno, al que consideró como principio acidificante. Berthollet demostró en 1789 que el sulfuro hídrico y el cianhídrico, que no contienen oxígeno, estaban dotados de propiedades ácidas. Además, el ácido muriático (clorhídrico), cuya composición fue reconocida más tarde, hacía también excepción a la regla establecida por Lavoisier. Estos hechos fueron considerados al principio como excepción a la teoría hasta entonces admitida.

Davy poco después anunció otra teoría sobre las sales, que fue apoyada por Dulong; pero fue rechazada por sus contemporáneos como contraria a las ideas reinantes, esto es, a la teoría dualística.

En la época en que Lavoisier estableció las bases de la Química, Wenzel, químico alemán, se ocupaba en practicar algunas análisis para aclarar las nociones que se tenían entonces sobre la composición de las sales. Demostró, que dos sales neutras pueden formar por un cambio de ácidos y de bases, otras dos sales también neutras, lo que sorprendió extraordinariamente a los químicos de aquel tiempo. De esto se dedujo la ley de los equivalentes químicos, que veinte años después fue desarrollada por Richter. Las consecuencias teóricas que se deducen de los trabajos de Wenzel y que entrañan una gran importancia, apenas fueron tomadas en consideración, y los descubrimientos del químico de Freiber, completados por Richter, cayeron bien pronto en un profundo olvido: la hora del triunfo de Wenzel y Richter no había llegado.

Al principio de este siglo aparece en la escena científica uno de los químicos más grandes. Este fue Dalton, químico inglés, en Manchester. Este químico dirigió sus trabajos sobre los dos gases formados por el carbón y el hidrógeno, y de los experimentos que hizo, dedujo, que cuando un cuerpo es susceptible de combinarse con otro en varias proporciones, considerado el peso de uno de ellos como constante, los pesos del otro varían según los números 1 ÷ 2, 1 ÷ 3, 1 ÷ 4, 1 ÷ 5, etc. Tal es la ley de proporciones múltiples de Dalton. Tan grande descubrimiento completó felizmente los de Wenzel y Richter.

Berthollet practicó experimentos profundos sobre la afinidad. Demostró que todos los cuerpos poseen diversos grados de afinidad para los demás; pero esta fuerza química está modificada por otras fuerzas físicas, tales como la elasticidad, la cohesión, el calor, etc. que pueden modificarla profundamente. De estos trabajos se dedujeron las leyes de afinidad y las causas modificantes de la misma de Berthollet.

La ley de las proporciones múltiples salió al fin triunfante, y habiendo sido confirmada por análisis practicadas por Wenzel, Richter, Prut, Dalton y Stas, ha sido universalmente aceptada como fundamental en Química.

La relación en volúmenes según los cuales el oxígeno y el hidrógeno se combinan para formar agua, no había sido fijada con exactitud por los químicos; estos estaban discutidos bajo este punto de vista. Gay-Lussac demostró en 1808 en unión de A. de Humboldt, que los dos gases se combinan en la relación exacta de un volúmen del primero y dos volúmenes del segundo. Generalizando esta observación, demostró en 1809, que existe una relación simple no solo entre los volúmenes de los dos gases que se combinan, sino también entre la suma de los volúmenes de los gases combinados y el volumen que ocupa el cuerpo resultante tomado en estado gaseoso. Así dos volúmenes de hidrógeno se combinan con uno de oxígeno para formar dos volúmenes de vapor de agua, y así de otros cuerpos. De esto se deduce, que el descubrimiento de Gay-Lussac, además de haber sido una poderosa confirmación de la ley de las proporciones definidas, ha suministrado un eficaz apoyo a la teoría atómica, demostrando, que las densidades de los gases ofrecen un medio de determinación o de contrapregunta de los pesos atómicos.

La doctrina química de Lavoisier fue después continuada.
por Berzelius (1). Este gran químico publicó al principio del presente siglo varios trabajos, estableciendo la base sólida de la teoría atómica por medio de determinaciones exactas de muchos pesos atómicos, formando además una nomenclatura mas exacta aún que la establecida por los químicos franceses. Lo que llena de admiración en estos trabajos es la exactitud de los hechos observados y el rigor consecuente de las deducciones, no menos que el brillo y la profundidad de ideas. Elevó los métodos de análisis química a un grado de perfección a que no había llegado hasta entonces. Publicó una tabla de pesos atómicos, que son á la vez más completas y mas exactas. Es además autor de un sistema de notación química, propio para indicar la composición de los cuerpos.

La teoría atómica y los progresos del análisis proporcionaron a Berzelius desarrollar aquella y precisarla; fijó primero los equivalentes de los principios ácidos orgánicos, esto es, el grandor relativo de sus moléculas, determinando las cantidades respectivas de estos ácidos, que se unen á un equivalente de oxído de plomo ó de plata. La análisis orgánica, cuyo principio había sido indicado por Gay-Lussac y Thenard y cuyos procedimientos acababan de ser perfeccionados por Mr. Chevreul, le enseñó las proporciones de los elementos en los diferentes ácidos y por consiguiente el número de átomos elementales de sus equivalentes ó moléculas.

En esta misma época Mr. Dumas (2) y Boullay publicaron sobre los éteres compuestos un trabajo importante, que hace época en la ciencia. Demostraron, que estos cuerpos contienen los elementos de un ácido unido precisamente á dos vo-

(1) Jáime Berzelius nació en 1779 en Wafzornunda en la Gothic occidental y murió en Stockholm en 1848. Su vida fue enteramente consagrada á la Química. Conquistó la autoridad y los honores que puede obtener un ácido. Obtuvo títulos de noblesas y académicos, postuló alrededor de la asistencia y el Estado, con gran fortuna. Aunque esto, no le retroajo á dedicarse á la Química.

(2) Mr. Dumas nació en Aliis en 1800. A los 20 años publicó con Benedicto Precoct sus experiencias sobre la sangre. Pasó á París en 1811 donde se entregó enteramente á los experimentos químicos y pronto publicó trabajos importantes.

lúmenes de gas oleífero (carburo hidróico) y de un volúmen de vapor de agua, esto es, á los elementos del éter; atribuían al gas oleífero un papel análogo, hasta cierto punto, al del amoníaco y comparaban los éteres á las sales amoniacales. Esta fué la primera vez que en Química orgánica se agrupaba una serie de fenómenos análogos por la teoría, y que los hechos relativos á la formación, á la composición y á las metamorfosis de una clase entera de cuerpos recibía una interpretación simple con la ayuda de fórmulas y ecuaciones simples.

A esta teoría sobre los éteres, algunos años después opuso Berzelius otra. Comparándolos á las sales, admitía la existencia de un oxido orgánico, que era el éter. Este estaba constituido, según él, por un radical formado de cuatro átomos de carbono y diez de hidrógeno. El radical del éter, que Liebig llamó etilo, está unido á un átomo de oxígeno. Este radical puede unirse al cloro y á otros cuerpos simples, formando así cloruros, yoduros y otros compuestos binarios.

En esta época los químicos no estaban conformes sobre la naturaleza de los radicales orgánicos. Unos, como Berzelius, excluían al oxígeno; otros admitían que podía formar parte de aquellos. Esta última opinión recibió un poderoso apoyo con el trabajo que se publicó en 1829 por dos jóvenes químicos llamados Liebig y Woehler. Estudiando estos dos químicos la esencia de almendras amargas, descubrieron cierto número de compuestos, que presentaban relaciones de semejanza con dicha esencia de un lado, y de otro con un ácido, que se había obtenido del benjú (el ácido benzóico). Estas relaciones han sido explicadas por la hipótesis de un radical común existente en todos esos cuerpos, formado de oxígeno, hidrógeno y carbono, llamado benzilo. Habiendo esta hipótesis sido admitida primero por Berzelius, este químico la desechó después. Pero veinte años mas tarde la admitió nuevamente, según se deduce de las bellas concepciones de Williamson y Gerhardt sobre la constitución de los ácidos. Mr. Dumas, auxiliado en sus trabajos por Laurent y
Gerhardt estableció la nueva escuela francesa, a la que se opuso Berzelius desde los primeros momentos. Dumas fue el jefe de dicha escuela durante mucho tiempo. De esta discordancia se originó una polémica entre el defensor de la teoría dualística y electro-química y los expresados químicos, cuya polémica no ha dejado de producir inmensos beneficios para la ciencia.

Los descubrimientos de Mr. Dumas datan de 1834. En esta época estudió la acción del cloro sobre diversas materias orgánicas. Investigando la acción de aquel cuerpo halógeno sobre la cera, el gran químico observó, que la cera perdía hidrógeno y ganaba, por cada volumen de este gas eliminado, otro igual de cloro. Hizo una observación análoga respecto a la acción del cloro sobre la esencia de trementina, sobre el licor de los holandeses, y más tarde sobre el alcohol. Como consecuencia de las experiencias que acababa de practicar, en 15 de Enero de 1834 leyó en la academia una memoria en la que se expresó así: «el cloro posee el poder «singular de apoderarse del hidrógeno de ciertos cuerpos y de reemplazarlo átomo por átomo.» De esto resultó la ley de las sustituciones o metalépsis.

Laurent (1) y Gerhardt (2) fueron adversarios de la teoría dualística. El primero de estos químicos se ocupó en sus primeros trabajos en determinar la composición de la nafalta, que había extraído de la brea de hulla. De los trabajos que practicó, dedujo la confirmación de la teoría de las sustituciones, de Dumas.

Gerhardt, compañero inseparable de Laurent, después de haber pasado la juventud algo agitada, se dedicó al estudio de la Química bajo los auspicios de Mr. Liebig, que residía en Giesen, donde gozando su maestro de muy justa fama y atrayendo allá jóvenes sabios de todos los países, estableció una escuela justamente célebre. Desde los primeros pasos Gerhardt manifestó un extraordinario talento. El 5 de Septiembre de 1842 leyó en la Academia una memoria titulada Experiencias sobre la clasificación química de las sustancias orgánicas, en la que desenvolvió ideas nuevas e importantes sobre los equivalentes del carbono, del hidrógeno y del oxígeno. Mas tarde desarrolló dichas ideas en un trabajo más luminoso. Probó que cuando una reacción orgánica da lugar á la formación de agua ó de ácido carbónico, la proporción de estos cuerpos jamás corresponde á un equivalente y a dos equivalentes ó á un múltiplo de dos. Gerhardt extrañaba estos hechos, que indicaban, según él, alguna falta cometida bien fuese en la determinación del grandor molecular de las sustancias orgánicas, bien consistiese en los equivalentes del ácido carbónico y del agua ó en los del carbono y oxígeno. En efecto, no podía comprender que en ninguna reacción de la química orgánica no se formase una sola molécula de agua ó de ácido carbónico. Porque, una de dos cosas ó H₂O y CO₂ representan un solo equivalente ó representan dos; en el primer caso será menester doblar las fórmulas de la Química mineral con el fin de ponerlas en armonía con las fórmulas orgánicas. En el segundo, al contrario, será necesario reducir á la mitad todas las fórmulas orgánicas. Esto es lo que opina Gerhardt que debe hacerse. Estas fórmulas orgánicas, que él reduce así, son las fórmulas atómicas de Berzelius. Lo mismo que este químico, considera que el agua está formada de dos átomos de hidrógeno y uno de oxígeno, y así respecto del carbono y del nitrógeno, que son los elementos ordinarios de los compuestos orgánicos. A imi-
tación de los químicos ingleses, compara estos pesos atómicos con el hidrógeno tomado por unidad. Finalmente, después de muchos y interesantes trabajos, Gerhardt considera a todos los compuestos químicos constituidos según la teoría unitaria, no designando los compuestos por fórmulas racionales, sino por las unitarias, estableciendo los tipos.

Posteriormente los trabajos del químico inglés Williamson han venido a dar mas fuerza a las ideas de Gerhardt, quien las generalizó admitiendo los cuatro tipos agua, hidrógeno, ácido clorhídrico y amoniaco con su bello descubrimiento de los ácidos anhidros, que llama anhidridos, a los cuales considera como derivados del tipo agua, cuyos dos átomos de hidrógeno están sustituidos en su totalidad por radicales ácidos.

Actualmente parece nos encontramos en un estado análogo al en que se hallaba la química en tiempo de Lavoisier, cuando este gran químico estableció las bases de la Química, oponiéndose a la teoría del fogisto, de Stahl, que había dominado en la ciencia por espacio de muchos años. Las teorías modernas admitidas por Gerhardt, Laurent, Williamson, Kekulé, Wurtz, Berthelot y otros, van abriendose paso en oposición á la teoría dualística ó electroquímica. No hay lucha, que sepamos, entre los partidarios de una y otra.

Expuestas, Ilmo. Sr., á grandes rasgos las visitudes por las cuales ha pasado la Química desde los tiempos antiguos con el arte sagrado y la obra divina, la piedra filosofal y la panacea universal de los alquimistas, hasta Lavoisier, que, puede decirse, estableció las verdaderas bases, sobre las cuales debía fundarse aquella ciencia, como también las modificaciones, que ha experimentado en nuestro siglo, me parece conveniente hacer una ligera reseña de los descubrimientos químicos principales, que han tenido lugar en la tercera época y en su mayor número desde últimos del siglo pasado hasta nuestros días.

--- 44 ---

VI.

PROGRESOS QUÍMICOS ARTÍSTICOS Ñ INDUSTRIALES DE LA TERCERA ÉPOCA.

El alquimista Brand, comerciante arruinado de Hamburgo, haciendo investigaciones en 1669 para hallar la piedra filosofal, descubrió el fósforo, cuyo descubrimiento ha sido muy importante para la nueva industria de cerillas fosfóricas que se ha establecido y otras muchas aplicaciones.

Diesbach, fabricante de colores y Dipple, farmacéutico, en 1704 descubrieron casualmente en Berlín el azúl de Prusia.

Scheele, farmacéutico sueco, en 1772 descubrió el ácido cianhídrico, en 1774 el cloro, en 1779 la glicerina, que llamó principio dulce de los aceites, en 1780 el ácido lático, en 1784 el ácido cítrico y el oxálico, y en 1785 el ácido málico.

Berthollet, en 1784, descubrió la acción decolorante del cloro, y Ch. Tennant, en 1798 aplicó la solución del cloro en agua de cal para el blanqueo de las telas de cañamo y lino y en 1799 fué descubierto y aplicado al blanqueo de las mismas telas, el cloruro de cal (hipoclorito de cal), desde cuya época los prados, que hasta entonces habían servido para tender las telas á fin de que se blanquearan por los rayos solares, pudieron entregarse á la agricultura.

Deiman, Paets van Troostwyk, Boudt y Lanwerenburg, químicos holandeses, en 1793 descubrieron el hidrógeno bicarbonado, que es la base del gas del alumbrado.

Murdoch, en 1792, mostró públicamente en Inglaterra las
ventajas del alumbrado por el gas de la ulla, y en 1805 se hizo en Inglaterra el ensayo del alumbrado por el gas hidrógeno bicarbonado en la fábrica de hilados de algodón de MM. Philips y Lee en Manchester.

En 1798 se estableció el alumbrado por el gas en las fábricas de MM. Boulton, Watt y compañía de Soho, en Birmingham.

En 1815 se formó la primera compañía para el alumbrado público de Londres por el mismo gas.

D. Antonio Ullóa, español, publicó en 1748 las primeras noticias del platino, precioso metal, que por sus singulares propiedades y especialmente por su infusibilidad a las temperaturas de nuestras fraguas y al de no ser atacado por ninguno de los ácidos aislados, se ha hecho muy útil en las fábricas para la concentración del ácido sulfúrico y para otras muchas operaciones químicas delicadas.

Lamphardius, en 1796, descubrió el sulfido carbónico, cuya obtención se ha hecho industrial en estos últimos años, en razón al gran consumo que se hace actualmente de este artículo.

Goadyear, en 1859, descubrió la volcanización del cahu chue en América.

El Dr. William Montgomerie, en 1842, se dedicó a extender el uso de la gutapérdura, que sumergida en el agua caliente es susceptible de ablandarse y de recibir cualquier forma.

Derosne, en 1803, obtuvo la narcotina, que es el primer alcaloíde que se conoció; desde cuya época los químicos se dedicaron con entusiasmo a esta clase de investigaciones.

Sertuerno, en 1804, confirmó el descubrimiento de Derosne y en 1817 obtuvo la morfina, precioso alcalóide, dotado de virtud calmante en alto grado.

Pelletier y Magendie, en 1817, obtuvieron la emetina.

El mismo Pelletier y Cavendic, en 1820, obtuvieron la quinina y en 1821 la cinconina, alcaloides, que dotados de virtud febrífuga, son actualmente objeto de fabricación en

grande escala por sus importantísimas aplicaciones a la Medicina.

Los mismos químicos, en 1818, descubrieron la estricnina y en 1819 la brucina, alcaloides en extremo venenosos, al mismo tiempo que preciosos medicamentos. Los mismos químicos, poco después obtuvieron la veratrina.

Gieske, en 1827, descubrió la conicina.

Robiquet, en 1852, obtuvo la codeina, alcalóide de gran importancia, por sus propiedades narcóticas muy energéticas que le constituyen un precioso medicamento.

MM. Géiger, Hess y Mein, farmacéutico, en 1853 obtuvieron la atropina, preciose alcalóide que está dotado de la singular propiedad de dilatar la pupila.

Runge, en 1820, descubrió la cafeína.

Garden, en 1820, descubrió la naftalina, que después ha sido estudiada por varios químicos, en particular por Laurent, de cuyos trabajos ha resultado una nueva industria; pues además de obtenerse con ella velas, mediante varias reacciones químicas, da lugar a una infinidad de preciosas materias colorantes, derivadas de la misma naftalina.

Robiquet y Collin, en 1836, descubrieron en la gran za el purpurino, que mediante ciertas reacciones químicas, da lugar a la producción de materias colorantes bastante sólidas; poco después y en el mismo año los mismos químicos obtuvieron de la misma granza el alizarino, que suministra también bellos colores.

Faraday, en 1825, descubrió la benzina; poco después Mitzcherlich descubrió la nitrobencina; y Mr. Collas, farmacéutico de París, la preparó por primera vez industrialmente. Por su olor agradable de almendras amargas, se emplea como aroma en lugar de la esencia de almendras amargas; y por la acción de varios reactivos se transforma en anilina, preciosa materia colorante.

Perkin, en 1856, descubrió la anilina, que actualmente es la base de una industria nueva y floreciente. Por la acción de varios reactivos sobre la anilina, se produce un gran nú-
mero de preciosas materias colorantes, con las cuales se ha enriquecido la tintorería.

Wöhler, en 1827, obtuvo el metal aluminio en polvo y en 1846 lo obtuvo en glóbulos y Mr. Deville, en 1834, lo obtuvo en barras en el laboratorio de la Escuela normal de Paris y después continuó obteniéndolo así en Javel, de cuyo laboratorio procedían las barras de aluminio y varios objetos de lujo del mismo metal, que figuraron en la exposición universal de Paris en 1835.

Balart, en 1844, obtuvo el amileno, que se usó como anestésico; pero que por los graves inconvenientes que presenta ha sido abandonado.

Liebig, en 1852, descubrió el cloral, precioso medicamento moderno de importantes aplicaciones médicas.

Soubeiran, farmacéutico (1) en Francia, Liebig, en Alemania y Mr. Samuel Guthrie, en Nueva York, casi simultáneamente, en 1831, descubrieron el cloroformo, medicamento de gran importancia por los inmensos servicios que está prestando a la medicina como anestésico.

La obtención del ácido sulfúrico, que fue descubierto por Rhasés en el siglo IX (2), ha llegado en nuestros días a un alto grado de perfección. En las fábricas bien montadas la cantidad de ácido sulfúrico que produce el azufre llega casi a ser la que indica la teoría. Gay-Lussac ha perfeccionado esta fabricación, añadiendo a las cinco cámaras de plomo una sexta, que contiene coke empapado de ácido sulfúrico, por cuyo ingenioso medio los productos nitratos que se escapan de la quinta cámara son absorbidos por dicho coke, evitando por este medio, que dichos productos, que son siempre corrosivos, destruyan la vegetación. Tratando después dicho coke empapado de ácido sulfúrico y de productos nitratos con agua amoniacal de las fábricas del gas del alumbrado, se obtiene un producto cargado de nitrógeno, muy útil para emplearlo como abono de las tierras.

Graham, en 1830, ha dado el fundamento de la dialisis. Este descubrimiento es muy importante principalmente para el análisis. Siendo cristalizable (cristaloides) la mayor parte de las sustancias venenosas, por medio de la dialisis se pueden aislar de las sustancias no cristalizables (coloides).

Se ha atribuido por algunos autores el descubrimiento de la pólvora al monje benedictino Fray Bertholdo Schwars, que vivió al principio del siglo XIV; pero esto no parece exacto, puesto que la mezcla de azufre, nitrógeno y carbon, que constituyen la pólvora, se usaba mucho antes por los chinos, de los que pasó a Oriente. Formaba parte de los fuegos griegos que en el siglo VIII empleaban los árabes en sus festividades. Se hizo uso de la pólvora en el arte de la guerra el año 1546 en la batalla de Crecy, en que aparecieron por primera vez la pólvora y los cañones en los campos de batalla.

Berthollet, a últimos del siglo pasado, descubrió el clorato de potasa, que se intentó hacerlo entrar en la confección de la pólvora.

Schenbein, en 1846, descubrió la piroxilina o algodon pólvora, que se creyó en un principio podría sustituir á la pólvora ordinaria.

Noel, en 1865, ha descubierto la dinamita, que es un polvo inerte empapado de nitroglicerina, cuerpo explosivo que ofrece menos riesgo y mas ventaja que la pólvora, á la que sustituye en los barrotes, porque produce mayor cantidad de gases y por consiguiente mayor fuerza destructora en las rocas en que se aplica.

Posteriormente, los químicos Neumeyer y Klein han inventado una pólvora que llaman no explosiva, porque arde simplemente al aire, y únicamente desarrolla su fuerza ex-

(1) Eugenio Soubeiran nació en París el 25 de Mayo de 1797. En 1823 pasó a Montpellier, donde empezó la práctica de la Farmacia bajo la dirección del Sr. Fonti. A los tres años volvió a París, donde completó los estudios que le faltaban para obtener el título de farmacéutico de primera clase. Ya farmacéutico, obtuvo por oposición la plaza de farmacéutico mayor del Hospital de la Prud'homme. En 1832 fue nombrado farmacéutico jefe de la Farmacia central. En 1844 el Gobierno le encomendó la cátedra de Farmacia experimental, que se acaba de crear. En 1846 la Facultad de Medicina de París le nombró catedrático de Farmacología. Publicó un tratado de Farmacia teórico-práctico del que se han hecho varias ediciones. Murió en París el 17 de Noviembre de 1888.

(2) Segun algunos, el ácido sulfúrico fue descubierto por Batillio Valentin hacia el fin del siglo XIV.
plosiva cuando se la inflama colocada en sitios cerrados y comprimida.
Howard, en 1800, descubrió el fulminato de mercurio, cuyo descubrimiento ha modificado ventajosamente el arte de la guerra con la fabricación de los cartuchos metálicos. Sabida de todos es la ventaja de los fusiles Chasepots y Remingtons.
Schoenvein, en 1840, preparó por primera vez el ozono, cuerpo dotado de propiedades enérgicamente desinfectantes y que está llamado a ejercer un papel importantísimo en los casos de epidemias.
En estos últimos años se ha perfeccionado el arte de conservar las materias orgánicas. Siendo el oxígeno el principal agente destructor de dichas materias privadas de vida, Mr. Appert ha descubierto el procedimiento, por el cual, sin emplear antisépticos, se conservan las materias orgánicas puestas en latas ó botellas perfectamente cerradas, de las que ha sido extraído el aire. Y respecto á la conservación de animales y sus partes ó órganos, Sucquet, Gannal, Chausier, Boudet, Trauchina, Goadby y Brunetti nos han dado los procedimientos para conseguirlo. Así que en la exposición universal de París en 1867, estaban expuestos al público diversos órganos humanos, que al perfecto estado de conservación reunían la flexibilidad y blandura naturales.
El arte de producir imágenes durables por acción de la luz data de los primeros años de este siglo. El físico Charles obtuvo hacia 1785 copias por medio del papel impregnado de sal de plata; pero no supo fijar ésta prueba, que de otra parte era negativa. En 1802 Wedwood y Davy obtuvieron el mismo resultado, no logrando fijar la impresión luminosa. Los mismos probaron reproducir la imagen por la cámara oscura; pero, por la poca sensibilidad de sus preparaciones no pudieron obtener un resultado satisfactorio. Niepce y Daguerre tropezaron por mucho tiempo con las mismas dificultades. Niepce, cuyos trabajos datan desde 1813 dió el primer procedimiento fotográfico completo, actualmente olvidado, la heliografía, por medio del cual en 1826 fijó copias positivas en la cámara oscura; pero se necesitaba tanto tiempo, que era imposible sacar copias de seres animados. Para que la prueba sobre lámina de plata fuese mas negra, Niepce pensó exponer aquella á los vapores de yodo. Daguerre se aprovechó de esta idea y fundó su procedimiento daguerreotipo, que ha caído en un profundo olvido, desde que Talbot fundó su procedimiento fotográfico sobre el papel llamado calotipia. Niepce de San Víctor, sobrino del inventor de la heliografía, en 1848 descubrió el procedimiento fotográfico sobre albúmina. Finalmente, la sustitución de la albúmina por el colodion, innovación debida á Legray y Fry y Scott Archer, ha sido la causa del desarrollo considerable que el arte fotográfico ha recibido en nuestros días.
Mr. Jacobi, físico ruso, en 1837 descubrió la galvanoplastia, y el 7 de Octubre de 1838 presentó á la Academia de San Petersbourg una placa de cobre, que ofrecía en relieve la impresión exacta de los dibujos grabados sobre la placa original.
La industria de la fabricación del papel ha recibido notables adelantos en estos últimos años. Mr. Robert fué el que dió la idea de la fabricación del papel continuo, y los primeros ensayos de dicha fabricación fueron hechos en Essônes por Mr. Didot; pero estos ensayos no tuvieron un resultado satisfactorio hasta que los hijos de Mr. Didot asociados á Mr. Gambli y gracias al concurso de Doukin, ingeniero mecánico, hicieron triunfar la máquina continua en la fábrica de Mr. Foudriner en Dartford. Después de 1805 se obtuvieron resultados satisfactorios de esta nueva industria en Inglaterra. En 1811 funcionó la primera máquina de papel continuo en Francia, en San Roque cerca de Anet. Hace ya algunos años que esta nueva industria se halla también establecida en España. Actualmente se fabrica papel continuo con esparto, paja y madera.
La aplicación del vapor de agua como fuerza motriz ha recibido también en estos últimos años un grado superior de
perfeccion. Su aplicación a los vehículos marítimos y terrestres ha acortado infinitamente las distancias; y en cuanto a los vehículos marítimos movidos por dicho vapor, además de llevar gran velocidad, pueden preseñadir del viento, tan necesario a las embarcaciones de vela.

¿Y qué diremos del maravilloso telégrafo, una de las más grandes conquistas del siglo actual? Puede decirse con orgullo, que con este descubrimiento el hombre ha puesto el rayo en sus manos. Es efectivamente grandioso, que dos amigos separados por millares de leguas puedan estar en conversación familiar y íntima como si estuviesen juntos. La electricidad y el vapor aplicados al telégrafo, ferrocarriles, y vehículos marítimos respectivamente, serán con el tiempo los conductores de la civilización a todas partes, hasta que moralizados los pueblos, pueda establecerse la verdadera fraternidad universal del género humano.

Habria terminado, Ilmo. Sr., mi cometido; pero estando reunida en este sagrado recinto la juventud estudiosa, que ha acudido presurosamente al llamamiento que todos los años en igual día le dirige la Universidad, incurriría en una omission injustificada si dejara de dirigirle algunas breves palabras.

Vosotros, jóvenes estudiosos, que volveís con afán al regazo de esta cariñosa madre, con el objeto de que incule en vuestro ánimo e infiltré en vuestra joven inteligencia las luces de la sana doctrina, acordaos, que sois la esperanza de la patria, cuyos destinos regiréis algún día: no defraudéis por lo tanto sus justos deseos. Sed, pues, estudiosos y aplicados, para que en su día, después de ver cumplidas vuestras legítimas aspiraciones, podáis contribuir á que nuestra desgraciada patria alcance paz, moralidad, civilización y progreso.

HE DICHO.