
 

TESIS DOCTORAL 
Notación gráfica para la representación 

de dominios de planificación jerárquica 

orientada al uso comercial 

 

 

Universidad de Granada 

Departamento de Ciencias de la 

Computación e Inteligencia Artificial 

 

 

Autor: Francisco Carlos Palao Reinés. 

Directores: Dr. Luis Castillo Vidal, Dr. Juan Fernandez Olivares. 

 

Granada, Marzo de 2011 



Editor: Editorial de la Universidad de Granada
Autor: Francisco Carlos Palao Reinés
D.L.: GR 3135-2011
ISBN: 978-84-694-3561-8



Notación Gráfica para la representación de dominios de planificación  

jerárquica orientada al uso comercial 

 

2  

 

 

La memoria titulada “Notación Gráfica para la representación de dominios de planificación 

jerárquica orientada al uso comercial” que presenta D. Francisco Carlos Palao Reinés para optar 

al grado de doctor, ha sido realizada dentro del programa de doctorado “Diseño, Análisis y 

Aplicaciones de Sistemas Inteligentes” del Departamento de Ciencias de la Computación e 

Inteligencia Artificial de la Universidad de Granada así como en el seno de la spin-off de la 

IActive Intelligent Solutions bajo la dirección de los Doctores D. Luis Castillo Vidal y D. Juan 

Fernandez Olivares. 

Granada, Marzo de 2010 

 

El Doctorando Los Directores 

 

 

Fdo: Francisco Carlos Palao Reinés Fdo: Luis Castillo Vidal        Fdo: Juan Fernandez Olivares 

 

  



Notación Gráfica para la representación de dominios de planificación  

jerárquica orientada al uso comercial 

 

3  

 

Tesis Doctoral financiada por los siguientes programas: 

• Red Nacional de Planificación, Scheduling y  Razonamiento Temporal, RNPST, TIN2004-

20168E. 

• 2003 – 2006: Proyecto SIADEX. NET033957/1. Proyecto financiado por la Consejería de 

Medio Ambiente de Andalucía para el Desarrollo de un Sistema Inteligente de Ayuda a la 

Toma de Decisiones en Extinción de Incendios Forestales.  

Proyecto desarrollado en el ámbito de la Universidad de Granda. 

• 2007 – 2010: Programa Torres Quevedo. Ministerio de Ciencia e Innovación. 

Proyecto desarrollado en el ámbito de IActive Intelligent Solutions. 

• 2007 – 2011: Proyecto NEOTEC (CDTI). Herramientas para el Desarrollo de Sistemas 

Inteligentes basados en Tecnologías del Conocimiento. 

Proyecto desarrollado en el ámbito de IActive Intelligent Solutions. 

  



Notación Gráfica para la representación de dominios de planificación  

jerárquica orientada al uso comercial 

 

4  

 

Índice 

Agradecimientos ............................................................................................................................ 5 

Contribuciones de la Tesis ............................................................................................................. 6 

I. Memoria ............................................................................................................................. 8 

1. Motivación de la tesis ......................................................................................................... 8 

1.1 Océanos Azules y Océanos Rojos ............................................................................. 8 

1.2 Mercado actual de las tecnologías de automatización de procesos ....................... 9 

1.3 Planificación automática ........................................................................................ 14 

1.4 Un nuevo Océano Azul: Los planificadores automáticos ....................................... 18 

1.5 Objetivos de la tesis ............................................................................................... 19 

1.6 Estructura de la tesis .............................................................................................. 20 

2. Problemática abordada ..................................................................................................... 21 

2.1 Introducción a los planificadores de redes de tareas jerárquicas (HTN) ............... 21 

2.2 Representación de dominios en planificadores HTN ............................................. 25 

2.3 Problemática de la representación de dominios mediante PPDL .......................... 26 

3. Alternativas de Solución.................................................................................................... 27 

4. Solución adoptada ............................................................................................................ 30 

4.1 Descripción de la notación gráfica planteada ........................................................ 32 

4.1.1 Acciones Primitivas (Task) .......................................................................... 35 

4.1.2 Tareas Compuestas y Objetivos (Goal) ....................................................... 36 

4.1.3 Métodos (Methods) .................................................................................... 36 

4.1.4 Representación de redes de tareas ............................................................ 37 

4.1.5 Ejemplo ....................................................................................................... 38 

4.2 IActive Knowledge Studio: Herramienta de desarrollo de sistemas basados en 

planificadores jerárquicos basada en notación EKMN. ......................................... 39 

5. Avances aportados al mercado ......................................................................................... 45 

5.1 Posicionamiento de planificadores jerárquicos en nuevos nichos de mercado .... 45 

5.2 Aumento del uso comercial de planificadores jerárquicos .................................... 48 

5.3 Aplicaciones comerciales desarrolladas con IActive Knowledge Studio ................ 49 

5.3.1 Smartourism: Sistema inteligente para personalizar visitas turísticas ....... 49 

5.3.2 Gestión de emergencias y evacuaciones .................................................... 50 

5.3.3 Business Continuity Planning ...................................................................... 51 

6. Conclusiones y trabajo futuro ........................................................................................... 51 

6.1 Conclusiones .......................................................................................................... 51 

6.2 Trabajo Futuro ....................................................................................................... 53 

II. Publicaciones: Trabajos publicados, aceptados y sometidos, y otros méritos ................... 54 

1. Artículos publicados durante el desarrollo de la tesis ...................................................... 54 

2. Spin-off creadas .............................................................................................................. 190 

2.1 IActive Intelligent Solutions, S.L. .......................................................................... 190 

2.2 Egestia Sistemas Inteligentes de Gestión OnLine, S.L. ......................................... 190 

3. Productos desarrollados ................................................................................................. 191 

3.1 IActive Knowledge Studio .................................................................................... 191 

3.2 IActive Intelligent Decisor .................................................................................... 191 

3.3 Smartourism ........................................................................................................ 191 

3.4 Doolphy ................................................................................................................ 191 

4. Otros méritos .................................................................................................................. 191 

III. Bibliografía...................................................................................................................... 193 

 



Notación Gráfica para la representación de dominios de planificación  

jerárquica orientada al uso comercial 

 

5  

 

Agradecimientos 

Esta tesis no habría podido ser una realidad sin el apoyo y la colaboración que me han dado mis 

directores de tesis, mis compañeros de trabajo desde la Universidad de Granada y desde IActive, 

y por supuesto, mi familia y amigos. 

Agradezco a Luis Castillo y a Juan Fernandez, mis directores de tesis, el sobreesfuerzo que han 

tenido que realizar para dirigir la escritura de esta tesis y compaginarla con mi complicada 

agenda. Y sobre todo, les agradezco que hayan tenido la visión de apoyar una tesis con un 

enfoque de transferencia de tecnología, que no deja de ser un enfoque diferente a las tesis que 

habitualmente suelen escribirse, aunque yo particularmente estoy totalmente convencido de que 

es la mejor manera de maximizar las posibilidades de que los resultados de investigación 

lleguen al mercado y a la sociedad para su beneficio. 

Agradezco a Óscar García, a Tomás Garzón, a Raúl Raya, a Eva Hidalgo y a todo el 

Departamento de Tecnología de IActive el trabajo que realizan en la empresa y que ha hecho 

realidad los planteamientos de esta tesis. 

Agradezco a mis amigos, a los que tanto valoro y aprecio por que siguen tratándome y 

teniéndome tan en cuenta siempre como si nos viésemos a diario, a pesar que nos vemos con 

muy poca frecuencia por mi constante nivel de trabajo. 

Agradezco a mi “abuelucha” Emilia por enseñarme lo importante que es cuidar de los demás y a 

ser una persona prudente y cariñosa. También agradezco a mis abuelos, que desafortunadamente 

ya no están aquí pero que han sido, junto con mis padres, los cimientos de lo que hoy en día soy. 

A mi abuelo Juan por su carácter emprendedor que sé que he heredado, a mi abuela Carmen por 

enseñarme lo importante que es creer ciegamente en algo y a mi abuelo Amadeo por enseñarme 

a tener paciencia mientras pescábamos en la playa y a saber aprovechar las oportunidades. 

Y por último, y más importante, agradezco a mi familia. A mi mujer María del Mar por estar 

siempre cuando la necesito, por su enorme paciencia y por haberme enseñado a querer de 

verdad; a mi padre Francisco por haberme enseñado a ser una persona organizada y luchadora, 

gracias a la educación en el deporte que siempre nos ha transmitido; a mi madre Emilia por 

haberme enseñado a ser una persona cariñosa y respetuosa con los demás; y a mi hermano Jorge 

por haberme enseñado que la familia es lo más importante y que cuando hay problemas, una risa 

siempre te hacer ver las cosas de un modo diferente. Espero poder recompensaros algún día y 

que pronto podamos disfrutar de muchos más momentos en compañía de la familia que, al fin y 

al cabo, es lo más importante en este mundo. 

A todos vosotros y a las personas que por mi (habitual) falta de memoria no haya mencionado, 

GRACIAS. 



Notación Gráfica para la representación de dominios de planificación  

jerárquica orientada al uso comercial 

 

6  

 

Contribuciones de la Tesis 

La tesis desarrollada presenta un proceso de transferencia tecnológica que comienza a 

partir de una necesidad de mercado y es cubierta mediante los resultados de investigación 

básica en el área de Inteligencia Artificial Planning & Scheduling, pasando por las etapas de 

investigación aplicada mediante el desarrollo de prototipos no comerciales y dando como 

resultado aplicaciones posicionadas en el mercado de alto valor añadido que presentan un fuerte 

grado de innovación gracias al avance científico y tecnológico en el que están basadas. 

El proceso de transferencia tecnológica descrito, está ampliamente reconocido con las siglas 

I+D+i (Investigación + Desarrollo + innovación). A continuación se describen las distintas 

aportaciones de la tesis, clasificándolas en las distintas etapas del proceso de I+D+i: 

• Investigación (2003-2007) 

El trabajo de investigación comenzó con el desarrollo de un planificador jerárquico [1] que 

inicialmente fue aplicado para la planificación automática de operaciones de extinción de 

incendios como sistema de ayuda en la toma de decisiones en incendios forestales  en el 

proyecto SIADEX [2].  

Para obtener el rendimiento adecuado del planificador, fue necesario el uso y adaptación de 

técnicas de extracción y representación del conocimiento, de forma que el planificador 

tomase decisiones adecuadas, tal y cómo lo haría un experto en extinción [3].  

También fue necesario dotar al planificador de capacidad de razonamiento temporal difuso 

de manera que permitiese la monitorización de la ejecución del plan, dando respuesta de 

forma flexible a los retrasos y posibles desfases en la ejecución de las tareas del mismo [4].  

Por último, se hizo un especial esfuerzo en la integración del planificador en una arquitectura 

compuesta por servicios web [5], de este modo se facilitó la conexión del planificador en 

distintos entornos [6] y permitió su aplicación a distintos problemas. 

Estos avances, especialmente las capacidades de gestión temporal del planificador, como se 

verá a lo largo de la memoria, fueron claves para desarrollar sofisticadas tecnologías que 

representan un avance considerable en la oferta tecnológica actual del mercado. 

Es importante destacar que, además de los artículos publicados en revista de índice de 

impacto, los capítulos de libro y los artículos en la conferencia más importante a nivel 

internacional en el área (ICAPS), el trabajo desarrollado en el proyecto SIADEX obtuvo el 

primer premio a la aplicación en el congreso ICAPS de 2006 y a la transferencia tecnológica 

en el CEDI 2005. 
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• Desarrollo (2007 - 2010).  

A partir de los resultados de la etapa anterior, tras hacer un análisis de mercado para detectar 

nichos en los que poder posicionar productos comerciales, se creó una spin-off, llamada 

IActive, para transferir al mercado los resultados de investigación desarrollados.  

Tal y cómo se describirá en esta memoria, se planteó el desarrollo de una herramienta que 

permitiera a Ingenieros Informáticos que no tuvieran experiencia previa en el área científica 

de Planificación Automática, desarrollar sistemas basados en el planificador automático 

desarrollado previamente. Para ello fue necesario el desarrollo de una notación gráfica que 

permitiese a los usuarios de la herramienta modelar el conocimiento necesario para la 

adaptación del planificador a distintos entornos y problemas [7].  

El producto desarrollado se denominó IActive Knowledge Studio y, tras menos de un año 

desde su lanzamiento, ha conseguido que el número de usuarios del planificador inteligente 

se haya multiplicado considerablemente y hoy en día sea usado por varias compañías 

privadas que lo están integrando en sus productos para aportar valor añadido a los mismos. 

Durante esta etapa también se han obtenido distintos premios empresariales de reconocido 

prestigio nacional por el valor añadido que presenta la empresa al mercado gracias a la 

investigación previa en la que se basan sus productos. Algunos ejemplos son el prestigioso 

premio “Emprendedor XXI” (2010) otorgado por La Caixa y el premio “Empresas de Base 

Tecnológica” (2011) otorgado por Bancaja. 

• Innovación (Actualidad).  

Se entiende por innovación cualquier cambio o avance en productos existentes o desarrollo 

de nuevos productos que el mercado está dispuesto a adquirir.   

En este sentido, gracias a los productos desarrollados, se ha tenido un resultado en 

innovación real mediante productos y soluciones de alto valor añadido [8] que están siendo 

adquiridas por importantes clientes. Además de la positiva respuesta del mercado y del 

aumento del volumen de negocio de la compañía, importantes analistas de tendencias 

tecnológicas como Gartner han reconocido el importante elemento de innovación que 

caracteriza a los productos y soluciones que desarrolla la empresa [9]. 

Los avances desarrollados por IActive no sólo están permitiendo el incremento de su 

volumen de negocio  sino que también están facilitando la captación de financiación por 

parte de Capital Riesgo. En 2009 la compañía obtuvo una primera ronda de inversión de 

500.000 € y a comienzos de 2011 una segunda de 3 millones de euros para el desarrollo 
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comercial y el posicionamiento en el mercado de sus innovadores productos desarrollados a 

partir de los resultados de investigación que describe esta memoria. 

I. Memoria 

1. Motivación de la tesis 

1.1 Océanos Azules y Océanos Rojos 

El término de Océano Azul[10] hace referencia a los nuevos mercados que son creados, gracias 

a la existencia de un nicho sin cubrir o en áreas que no están explotadas en la  actualidad, y que 

generan oportunidades de crecimiento rentable y sostenido a largo plazo.  

La búsqueda permanente de Océanos Azules es una labor obligatoria y totalmente 

necesaria para la continuidad de cualquier compañía en el mercado. 

De hecho, se denomina Océano Rojo a aquel mercado en el que el nivel de competencia es 

fuerte y la rentabilidad de las compañías posicionadas en él se reduce drástica y continuamente 

ya que conforme el mercado madura, la estrategia que adoptan los distintos competidores es la 

de reducción de precios y minimizar costes.  

Las compañías que se posicionan en mercados maduros tienen un alto riesgo de desaparecer si 

estos se convierten en Océanos Rojos y previamente no han sido capaces de diseñar y ejecutar 

una estrategia que les haya llevado a Océanos Azules. 

 

En la próxima sección analizaremos el mercado relativo a las tecnologías de automatización de 

procesos de negocio y ayuda en la toma de decisiones en empresas.  

Entendemos por tecnologías de automatización de procesos de negocio aquellas que permiten a 

las entidades dar soporte a la coordinación entre las distintas actividades y operaciones, 

relacionadas unas con otras, para cumplir los objetivos establecidos. 

Este tipo de tecnologías están, por norma general, muy asociadas a tecnologías de ayuda a la 

toma de decisiones ya que, éstas últimas, ayudan al personal de las compañías a tomar las 

decisiones adecuadas para, no sólo automatizar los procesos, sino decidir cuál es el proceso más 

adecuado en cada ocasión. 

Océano Rojo
Mercado saturado 

altamente competitivo

Océano Azul
Nuevo nicho de 

Mercado
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1.2 Mercado actual de las tecnologías de automatización de procesos 

A continuación analizaremos el estado actual del mercado, en relación a su oferta, de las 

tecnologías de automatización de procesos de negocio y soporte a la ayuda en la toma de 

decisiones para entornos de gestión empresarial, dejando fuera del entorno competitivo definido 

la oferta en entornos industriales. 

Existen distintas tecnologías de uso comercial para la automatización de procesos y dar soporte 

a la toma de decisiones para la gestión empresarial. Algunas de ellas son capaces de automatizar 

procesos, generando una secuencia de acciones a ejecutar para alcanzar los objetivos planteados. 

Mientras que, otras tecnologías existentes, aunque no generan secuencias de acciones de forma 

automática, sí prestan una ayuda directa al usuario para que él mismo diseñe el proceso 

necesario para alcanzar los objetivos establecidos. 

A continuación se describen las tecnologías del entorno competitivo de automatización de 

procesos de negocio y soporte a la ayuda en la toma de decisiones: 

 

� BPM (Business Process Management): Basada en tecnologías de automatización de 

procesos y workflow [11][12], se ha desarrollado una categoría comercial denominada BPM 

que consiste en una metodología de definición de procesos [13] que cuenta con numerosos 

entornos de modelado y motores de ejecución comerciales [14].  

La metodología BPM cuenta con cuatro fases: 

1) Diseño de los procesos de negocio: En la que se diseñan los procesos que pretenden 

automatizarse. 

2) Modelado de los procesos de negocio: Se modelan mediante una herramienta de 

modelado que permitirá describirlos en la notación BPMN [15]. 

3) Automatización de procesos de negocio: Un motor de ejecución automatiza los 

procesos de negocio y ofrece la secuencia de pasos necesaria para alcanzar los 

objetivos marcados basados en los procesos previamente definidos. 

4) Optimización continua: Tras la ejecución del proceso de negocio o simulación del 

mismo en el entorno de modelado, se modifica el propio proceso para optimizar la 

automatización del mismo. 
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� BRMS (Business Rules Management System): Se han desarrollado motores de reglas [16] 

que hoy en día constituyen una categoría comercial denominada BRMS que consiste en 

componentes software que permiten la automatización de decisiones complejas cuando el 

número de variables a tener en cuenta es alto. Este tipo de sistemas no están destinados a 

sintetizar soluciones, es decir, no ofrecen decisiones compuestas de múltiples acciones. Al 

contrario, están basados en un proceso analítico que devuelve como resultado una única 

acción acompañada de los parámetros necesarios para optimizar el resultado y alcanzar el 

objetivo planteado.  

Actualmente, estos sistemas se están integrando en suites de BPM para dotar a las ramas 

condicionales de los procesos BPMN de una capacidad mayor a la hora de elegir cuál es el 

camino correcto, mediante la evaluación de un gran número de variables y una lógica de 

decisión más compleja, durante la ejecución del proceso. 

 

� BI (Business Intelligence): Basados en tecnologías de minería de datos [17] [18], se ha 

creado una categoría comercial denominada BI que consiste en sistemas que facilitan la 

extracción, procesamiento y conversión de datos a información y conocimiento útil para la 

ayuda en la toma de decisiones. Mediante este tipo de sistemas, los usuarios pueden 

visualizar, normalmente de un modo gráfico mediante la incorporación de gráficas, la 

información procedente de múltiples fuentes lo que la facilita la toma de decisiones. 

 

� Otros sistemas sustitutivos de ayuda a la toma de decisiones para cada entorno: Nos 

encontramos que para cada aplicación o entorno concreto, distintos sistemas software 

podrían facilitar la ayuda en la toma de decisiones a los usuarios. Por ejemplo, en el entorno 

de ayuda en la toma de decisiones para la extinción de incendios forestales, un GIS 

(Geographic Information System) facilita la toma de decisiones mediante la presentación en 

pantalla de toda la información necesaria para la toma de decisiones representada en un 

mapa geográfico. Aunque es el usuario quien tiene que calcular y tomar la decisión desde 

cero, la realidad es que este tipo de sistemas presenta una gran ayuda para realizar dicha 

labor. 
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Con el objetivo de realizar una comparación entre las prestaciones y necesidades que cubre cada 

una de las tecnologías enumeradas, se va a realizar un análisis  de fortalezas y debilidades. 

BPM (Business Process Management) 

Fortalezas Debilidades 

• Ofrece una representación gráfica y concreta de 
los procesos lo que ayuda a definirlos, 
entenderlos y comunicarlos. 

• Al definir el proceso queda una imagen muy 
clara de cómo podría ser la ejecución final del 
sistema ya que contempla ramas condicionales 
y, en definitiva, explicita todos los caminos 
posibles 

• La ejecución se realiza sobre el proceso 
definido con ramas condicionales. 

• Es más intuitivo para el experto de negocio.  
• Suelen estar bien integrados con arquitecturas 

SOA para la ejecución del proceso. 
• Es posible realizar simulaciones sobre el propio 

proceso definido para optimizarlo. 
• Cuentan con muchas herramientas de 

modelado de procesos. 
• Agilidad en tiempo de respuesta para la 

automatización y ejecución del proceso. 

• No maneja adecuadamente entornos con gran 
número de variables ya que aumenta la 
complejidad de los modelos al contemplar 
variables de entorno. 

• No permite el modelado de procesos dinámicos 
ya que aumenta la complejidad de los modelos 
al definir múltiples ramas condicionales 
(código espagueti). 

• Las ejecuciones finales son muy estáticas ya 
que siempre se realizan sobre el esquema 
determinado por el proceso definido 
previamente. 

• Sistema reactivo por pasos. No es capaz de 
seleccionar acciones en base a una 
planificación previa sino que ejecuta y decide 
paso a paso. 

• Los procesos complejos y flexibles los envían a 
los usuarios para que ellos los desempeñen. 
Está orientado a automatizar procesos de 
negocio estáticos.  

• Requieren mucha infraestructura y esfuerzo de 
implantación. 

• No ofrecen información temporal mediante una 
métrica establecida sobre las actividades que 
forman el proceso. 
 

 
BRMS (Business Rules Management System) 

Fortalezas Debilidades 

• Permiten tener en cuenta una gran cantidad de 
variables para automatizar decisiones y 
optimizar su resultado. 

• Se reducen costes ya que extraen la lógica del 
software del código interno y para cambiar el 
comportamiento de los sistemas y no es 
necesario reprogramar las aplicaciones. 

• Facilitan el entendimiento de las acciones 
tomadas, ya que se almacenan todas las 
decisiones tomadas y sus parámetros de forma 
que después puede saberse porqué se tomaron 
estas decisiones. 

• Incluyen entornos de desarrollo para expertos 
de negocio (no tan cercanos como BPM) y para 
técnicos. 

• Eficiencia en tiempo de respuesta. 

• El resultado es limitado a una acción o 
decisión: Son sistemas de ayuda a la toma de 
decisiones que son capaces de tomar una 
decisión concreta en función a multitud de 
parámetros pero no dan como resultado varias 
acciones. 

• Cuando se integran en un BPM, deciden paso a 
paso: no tienen en cuenta las decisiones que 
tomarán más adelante en todo el proceso por lo 
que no aseguran obtener el objetivo global. 
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BI (Business Intelligence) 

Fortalezas Debilidades 

• Son capaces de integrarse con una gran 
cantidad de fuente de datos. 

• Permiten procesar una gran cantidad de datos 
para facilitar su entendimiento. 

• Aportan entornos gráficos para la 
representación de los datos analizados. 

• Existen una gran cantidad de herramientas 
comerciales que dan soporte al desarrollo de 
módulos BI en sistemas software. 

• Eficiencia en el tiempo de respuesta. 

• No generan automáticamente decisiones, ni 
únicas ni compuestas por distintas acciones. 

• Sólo sirven de apoyo en la toma de decisiones 
para obtener información a partir de distintas 
fuentes de datos. 

Una vez analizadas las debilidades y fortalezas de cada una de las tecnologías que hoy en día 

son utilizadas para la automatización de procesos de negocio y ayuda en la toma de decisiones 

en la gestión empresarial, se realizará un análisis competitivo de la oferta tecnológica en 

relación a las capacidades de las distintas tecnologías y partiendo de necesidades del mercado. 

Actualmente, el mercado demanda tecnologías que sean capaces de automatizar procesos en 

entornos dinámicos y muy cambiantes. Hasta día de hoy se ha dado soporte para la 

automatización de procesos estáticos o de gestión de negocio y cada vez más se demandan 

tecnologías que den soporte para actividad relativa a procesos dinámicos, cambiantes y 

dependientes del conocimiento de los trabajadores expertos o Knowledge Workers [19]. 

Peter F Drucker, el padre de la gestión empresarial y gurú de tendencias de mercado, auguraba 

hace unos años la importancia de lo anteriormente comentado: “Knowledge worker productivity 

is the biggest of the 21st century management challenges. In the developed countries it is their 

first survival requirement. In no other way can the developed countries hope to maintain 

themselves, let alone to maintain their leadership and their standards of living.” 

Para realizar el análisis competitivo de la oferta tecnológica se clasificarán las distintas 

tecnologías descritas en función de dos variables: 

• La capacidad de generar decisiones de manera automática. Recordemos que 

algunas de las tecnologías analizadas sólo son útiles como ayuda para la toma de 

decisiones por parte del usuario mientras otras son capaces de generar decisiones 

simples (compuestas por una única acción) o múltiples (compuestas por una serie de 

acciones). 

• La capacidad de adaptación a entornos dinámicos. Entendemos por entornos 

dinámicos en los que se dan alguno de los siguientes factores: 

o En los que el número de variables que condicionan las actividades a realizar o los 

planes de acción para alcanzar los objetivos son muy elevado.  
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o En los que las actividades a realizar o los planes de acción para alcanzar los 

objetivos tienen una gran variabilidad por lo que, dependiendo del estado inicial o 

del objetivo marcado, los planes necesarios pueden ser muy distintos unos de otros. 

A continuación,  se muestra un mapa de posicionamiento competitivo, basado en las 

variables de referencia, que nos ayudará a entender la oferta actual en el mercado. 

 

En relación a la primera variable analizada, tanto los sistemas BRMS como los sistemas BPM 

son capaces de generar automáticamente decisiones, aunque solo los sistemas BPM son capaces 

de generar decisiones compuestas por múltiples acciones (procesos completos). 

Sin embargo, tal y cómo se ha analizado en el análisis de fortalezas y debilidades, los sistemas 

BPM no se adaptan adecuadamente a entornos dinámicos [20]. Veíamos, y del mismo modo se 

refleja en el gráfico anterior, que la unión de sistemas BPM junto con tecnología BRMS permite 

a este tipo de sistemas analizar múltiples variables en sus entornos de ejecución y mejorar sus 

nodos condicionales en los procesos definidos [21]. 

Además, este tipo de sistemas siguen teniendo una carencia importante y es que las decisiones 

tomadas para diseñar el proceso definitivo se realizan en tiempo de ejecución, son sistemas 

reactivos, por lo que pueden no garantizar la resolución del problema en entornos dinámicos que 

requieran de una gran variabilidad en las soluciones, tal y cómo se muestra en el gráfico. 
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Por lo tanto, observamos que los sistemas BPM tan sólo son válidos para automatizar procesos 

previamente predefinidos y que, por consiguiente, tienen carencias a la hora de ser utilizados en 

entornos dinámicos. 

El aumento y la saturación de la oferta de las tecnologías comentadas para la 

automatización de procesos de gestión empresarial y ayuda en la toma de decisiones, crean 

un océano rojo que obliga a la búsqueda de nuevas tecnologías que den soporte a las 

necesidades de mercado aún no satisfechas. 

 

 

En la siguiente sección se realizará una introducción a las tecnologías de planificación 

automática como posible oferta para crear un océano azul en el mercado analizado. 

1.3 Planificación automática 

La planificación automática es el área de la Inteligencia Artificial que trata de construir  planes  

de actuación usando programas  de ordenador llamados planificadores  automáticos.   

Entendemos como plan de actuación el conjunto de acciones necesarias para alcanzar un 

objetivo a partir de una situación inicial. Por lo tanto, un planificador automático será capaz de 

generar el plan de actuación adecuado para lograr el objetivo definido. 
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La planificación  automática  es  un problema complejo debido  a varias   circunstancias: 

• Encontrar un plan es un problema 6P-Completo, o lo que es lo mismo, encontrar una  

secuencia de acciones  se convierte fácilmente, con un número medio de acciones y 

posibilidades entre las mismas, en un problema combinatorio intratable con las técnicas de 

búsqueda clásicas.  

• Dificultad para modelar el conocimiento necesario para la planificación. La planificación 

clásica se centraba en resolver problemas sencillos, tipo puzzle, con un conjunto pequeño 

de acciones y objetos diferentes con los que tratar. En problemas reales, para resolver un 

plan, hay que modelar cientos de acciones y miles de objetos. Y además de la cantidad de 

conocimiento a representar, la variabilidad del mismo también es un problema de 

modelado que es necesario abordar para representar todo el conocimiento necesario para 

poder resolver los problemas planteados [22].  

• La gestión del tiempo, ya que no es únicamente necesario que las acciones se ejecuten en 

un determinado orden, sino   que   se   ejecuten  en   un   instante   de   tiempo   

determinado según las posibles interrelaciones con otras acciones, sincronizaciones de 

inicio y fin, etc..   

• Un planificador  automático generalmente no es  un componente aislado y cerrado, 

sino que forma parte de un  sistema mucho más complejo, en donde  tiene que interactuar 

con otros actores y con fuentes de datos heterogéneas [23], ya sean humanos o programas 

software. 

Para dar soporte a esta problemática, a día de hoy se han desarrollado planificadores 

automáticos que han sido aplicados con éxito en entornos reales, como la robótica [24] 

sistemas de manejo de emergencias (inundaciones [25], operaciones de evacuación y rescate 

[26][27], incendios forestales [28] [2],   sistemas   de  manufacturación  [29],   o incluso   en  

misiones   espaciales  [30] [31] [32].    

 

1. Girar sección 1A x 90°

2. Girar sección 2C x 180°

3. Girar sección 1C x -90°

4. …

5. …

6. …

Situación inicial Plan Objetivo
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Este   éxito   de   la   planificación automática para resolver problemas reales está haciendo 

crecer el interés en el mercado de las tecnologías basadas en planificación automática
1
. 

Esto está motivando a los   investigadores en el área a construir planificadores más amigables, 

que resuelvan un mayor número de problemas, y para  reducir  los  costes  de adaptación e  

implantación,  de ahí   la gran actividad investigadora en el área con la aparición continua de 

nuevas técnicas y teorías. 

Desarrollar un planificador automático específico para cada una de los posibles dominios 

de aplicación de esta tecnología es una labor ardua y costosa. Además cuando quisiéramos  

adaptar  el  planificador  para resolver un  tipo de problema distinto o bien cuando las 

condiciones del dominio para el cual el planificador fue diseñado cambiasen habría que rehacer 

el planificador parcial o completamente. 

Por ello desde los inicios de la planificación se han tratado de desarrollar algoritmos de 

planificación  independientes del dominio  de aplicación. Esta separación requiere que, por 

un lado dispongamos de unos modelos generales que nos permitan almacenar la información del 

contexto con el que estamos trabajando, por otro lado es necesario almacenar el conocimiento 

sobre el tipo de acciones que se podrán emplear en el plan buscado y por último es necesario 

diseñar los algoritmos que operen sobre estas estructuras o lo que es lo mismo, el planificador 

automático. 

A continuación se describen los elementos sobre los que se plantea un problema de 

planificación a un algoritmo de planificación automática. Un planificador automático deberá 

ser capaz de comprender el modelo de representación del conocimiento y ser capaz de razonar 

sobre él, pero sin estar especializado en el dominio en concreto. Un problema de planificación 

se formula en base a tres elementos: 

1. Dominio de planificación: Una descripción del tipo de objetos existentes en el entorno y 

del conjunto de acciones que podemos aplicar sobre ellos. Los objetos del entorno tendrán 

una serie de propiedades y las acciones a aplicar tendrán una serie de efectos sobre los 

objetos y de precondiciones que deberán satisfacerse para poder aplicar las acciones. 

2. Estado Inicial: Una representación del estado inicial en el que se encontrarán los objetos 

del entorno antes de que empecemos la ejecución de nuestro plan. 

3. Objetivo: Una representación de la meta o del objetivo que deseamos cumplir tras la 

ejecución de nuestro plan.  

                                                           
1
 www.siri.com, www.iactivecompany.com  
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Un planificador automático genera el plan para alcanzar el objetivo, partiendo del estado inicial, 

utilizando las acciones y objetos definidos en el dominio. Estas representaciones deben tener 

una sintaxis y una semántica bien definida además de ser lo suficientemente expresivas para 

poder resolver una gran cantidad de problemas en diversos dominios de aplicación. Existe un 

lenguaje considerado estándar en el ámbito de la planificación automática, llamado PDDL   

(Planning   Domain Description Language) [33] 

La investigación en el área de planificación automática, no se reduce exclusivamente  a 

desarrollar teorías y algoritmos  de planificación más eficientes y expresivos, sino que también 

en realizar labores de Ingeniería del Conocimiento con el fin de modelar, adquirir y representar 

el conocimiento del dominio. Además, es también objeto de estudio del área de IC para 

Planificación,  el desarrollo de herramientas que permitan la comprensión del plan resultante y 

facilitar la interacción y comunicación con el mismo por parte de los usuarios. Como se puede 

apreciar en la ilustración anterior, hay varios actores involucrados en el proceso de 

planificación: 

• Expertos: Son las personas que tienen el conocimiento del   entorno  y  las  medidas   a   

tomar   para  alcanzar   los objetivos. A partir de  su experiencia se extrae la  información y 

conocimiento necesarios  para construir  el  dominio de planificación. 

• Ingenieros del Conocimiento: Son personas con un fuerte conocimiento en planificación 

automática y, en particular, en el modelado de dominios que realizan partiendo del 

conocimiento del Experto, mediante un proceso puro de ingeniería del conocimiento. 

• Usuarios   finales.   Son las personas utilizan el planificador automático para resolver un 

problema. En muchas ocasiones los usuarios son los propios expertos que utilizan 

planificadores automáticos para obtener soluciones a problemas que ellos mismos podrían 

resolver, de un modo más rápido y seguro. 

1. Girar sección 1A x 90°

2. Girar sección 2C x 180°

3. Girar sección 1C x -90°

4. …
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1.4 Un nuevo Océano Azul: Los planificadores automáticos 

Al igual que se desarrolló para el resto de tecnologías estudiadas, a continuación se muestra un 

análisis de fortalezas y debilidades de los Planificadores Automáticos para la automatización de 

procesos de negocio y ayuda a la toma de decisiones. 

Planificadores Automáticos 

Fortalezas Debilidades 

• Reducen costes ya que “extraen” la lógica del 
software del código interno y para cambiar el 
comportamiento de los sistemas y no es 
necesario reprogramar las aplicaciones 

• Generación de planes adaptados a entornos 
dinámicos con gran número de variables de 
entrada. 

• Generación de planes muy dinámicos 
adaptados a entornos que requieran gran 
variabilidad en las decisiones tomadas. 

• Crea el proceso en su conjunto centrado en el 
objetivo y no ejecuta paso a paso como un 
BPM. Los planificadores automáticos son 
capaces de generar propuestas de proceso 
(planes) antes de comenzar su ejecución y 
conocer, de antemano, si se cumplirá el 
objetivo definido.  

• Dan soporte a las características de 
razonamiento de los Knowledge worker que no 
cubren los BPM [19]: Generar procesos fiables, 
no repetitivos, que manejen incertidumbre y 
cambiantes durante su ejecución. 

• Son capaces de ofrecer planes con información 
temporal, en cuanto a la duración de las 
actividades, tiempos de inicio y fin. 

• La escritura de los dominios de planificación 
requiere fuertes conocimientos en este tipo de 
tecnologías y de los lenguajes de escritura de 
dominios específicos como PDDL. 

• Optimización de recursos. 
• Incorporación de información en tiempo de 

ejecución del plan. 
• Coste computacional más elevado. 

 

Tras el análisis realizado se observa que, gracias a la capacidad con la que cuentan los 

planificadores automáticos de generar de modo dinámico un plan o proceso para alcanzar un 

objetivo determinado dependiendo de las variables del entorno (situación inicial) [34], los 

planificadores automáticos encuentran un nicho de mercado todavía sin explotar para dar 

soporte a la automatización de procesos en entornos altamente dinámicos. 

Por lo tanto, los planificadores automáticos representan el ingrediente necesario para crear un 

nuevo Océano Azul en el mercado, basado en un proceso de innovación que aportará una 

ventaja competitiva para la automatización de procesos. 

No obstante, la oferta al mercado de este tipo de tecnologías requerirá de herramientas 

comerciales que permitan y faciliten su uso por compañías privadas. En la siguiente sección se 

enumerarán los objetivos planteados en esta tesis en este sentido. 
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1.5 Objetivos de la tesis 

Durante los años de desarrollo de esta tesis, el doctorando ha realizado distintas aportaciones al 

área de la planificación automática mediante el desarrollo de un planificador jerárquico propio 

dotado de capacidades de gestión del tiempo [4], así como en su integración en arquitecturas 

software basadas en servicios web  [35] y en su aplicación a problemas reales [36] [3]. 

No obstante, según lo visto en las secciones anteriores, para hacer llegar todos estos avances al 

mercado se requieren aportaciones adicionales. Para adaptar un planificador automático a un 

nuevo sector o problema determinado, es necesario modelar el dominio partiendo del 

conocimiento de un experto que puede provenir de diversas fuentes (como documentación en 

modo texto o la propia mente del experto) [3] [37].  

Sin embargo, un importante inconveniente, que dificulta la adopción y uso extendido de las 

tecnologías de planificación inteligente, es que hoy en día sólo un reducido número de personas, 

normalmente investigadores en el área de planificación automática, tienen los conocimientos 

necesarios para modelar dominios orientados a resolver problemas de planificación automática 

en distintas áreas de aplicación. 

El objetivo de esta tesis es definir una notación gráfica para representar dominios de 

planificación jerárquica, dado que este tipo de planificadores como se verá en la memoria 

tienen una estructura para representar el conocimiento más intuitiva, que permita no sólo a 

investigadores del área sino también a otros profesionales del sector de la tecnología modelar 

dominios de planificación, de un modo sencillo y de forma parecida a otras notaciones gráficas 

existentes en el mercado [7]. 

Para abordar el objetivo planteado, el trabajo se centrará en el área Knowledge Engineering for 

planning (KEP) que, además de centrarse en los aspectos de modelado, adquisición y 

representación de conocimiento, también se centra en el diseño y desarrollo de las herramientas 

necesarias para la integración y despliegue de planificadores automáticos, cubriendo el ciclo 

completo de vida de un proyecto de ingeniería del software: modelado, adquisición, 

representación, integración, despliegue y validación. 

Gracias al trabajo planteado se romperán las barreras actuales que impiden la adopción y uso 

extendido de las técnicas de Planificación automática, permitiendo el uso de este tipo de 

tecnologías en compañías privadas, aumentando considerablemente el número de usuarios y 

potenciando el uso de planificadores automáticos en el mercado ya que el número de 

personas capaces de modelar dominios de planificación aumentará considerablemente. Además, 

la notación gráfica definida facilitará el modelado de los dominios a aquellas personas que 

actualmente tienen conocimientos sobre el modelado de dominios de planificación. 
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1.6 Estructura de la tesis 

La tesis está dividida en tres bloques, siendo el primero de ellos el principal en el que se 

desarrolla el trabajo, el siguiente consiste en una recopilación de los artículos publicados por el 

doctorando que soportan esta tesis y el último las referencias bibliográficas. 

En el primero de los bloques se sitúa el problema abordado y la solución al mismo, dentro de 

este bloque encontramos cuatro secciones. En la primera sección, dónde nos encontramos ahora, 

se ha realizado un análisis del mercado y se han identificado nuevas necesidades que serán 

abordadas por esta tesis, se ha realizado una introducción a la planificación automática y se ha 

definido el objetivo de la tesis dentro del mercado analizado. En la segunda sección se 

describirá la planificación jerárquica como un tipo especial de planificación y los lenguajes 

actuales para la representación de dominios para este tipo de planificadores. En la tercera 

sección se estudiarán las distintas alternativas que han sido planteadas para alcanzar el objetivo 

de la tesis. Por último, en la cuarta sección se describirá la solución y los avances aportados 

consistentes en la notación gráfica para la representación de dominios de planificación 

jerárquica y un producto comercial denominado IActive Knowledge Studio basado en ella. 
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2. Problemática abordada 

2.1 Introducción a los planificadores de redes de tareas jerárquicas (HTN) 

La planificación de redes de tareas jerárquicas o HTN (Hierarchical  Task Networks) tiene  su 

origen  en  la necesidad de acercar el modelo de representación de acciones a la representación 

con distintos niveles  de  abstracción que el ingeniero del conocimiento utiliza a la hora de 

modelar un dominio. De hecho está demostrado que la expresividad del modelo HTN es mayor 

que la del modelo de STRIPS [36]. 

Aunque los orígenes de la planificación jerárquica son antiguos  [38][39], incluso ya existiendo 

algunas aplicaciones notables [40], como por otro lado ocurre habitualmente en el área de 

planificación, las bases teóricas no fueron establecidas hasta algún tiempo después [41]. Aún así 

todavía hoy en día no hay un modelo común y unificado,   aunque  todos   comparten una  serie  

de  características  muy similares. 

Cada planificador HTN tiene sus propios algoritmos de búsqueda y su propio lenguaje para  la 

descripción de dominios.  Incluso  en  la  IPC2 no hay  todavía una  sección exclusiva   dedicada   

a   planificadores   HTN, sólo se realizó en una ocasión en la AIPS 2002, durante la 3ª IPC.  Ha   

habido,   no   obstante,   esfuerzos   e intentos   notables  para  desarrollar  un  lenguaje  de   

representación de  dominios unificado  [42],   sin  que   hayan  tenido   éxito   debido   

principalmente   a   esta heterogeneidad y complejidad en los sistemas.  

Otra razón por la que los planificadores HTN han tenido tanto éxito es debido a su eficiencia al 

enfrentarse a problemas reales. La expresividad del HTN y la forma en que este modelo realiza 

la búsqueda, permiten que el diseñador del dominio  tenga un mayor  control  sobre el  proceso 

de búsqueda,  pudiendo este optimizar el dominio para evitar realizar búsqueda innecesaria, 

incluyendo en el dominio el conocimiento necesario para guiar correctamente el proceso de 

búsqueda, evitando zonas del espacio de búsqueda que estén prohibidas y forzando a pasar 

por otras zonas según el conocimiento que se dispone sobre el problema.  

El  modelo   de  HTN  que   se   explica   está   basado   en  el  modelo   de  UMCP (Universal  

Method   Composition   Planner) [41] y SHOP2 [43]. En este modelo encontramos los 

siguientes elementos: 

• Acciones   primitivas   u   operadores   primitivos, base u hoja: Los operadores 

primitivos son muy similares a las acciones usadas en el modelo de STRIPS. 

Representan acciones que finalmente son ejecutadas y  producen cambios en el estado 

del mundo (representado internamente en el planificador) y no se pueden descomponer. 

                                                           
2
 International Planning Competition http://ipc.icaps-conference.org/  



Notación Gráfica para la representación de dominios de planificación  

jerárquica orientada al uso comercial 

 

22  

 

• Tareas o acciones compuestas o abstractas: Una   tarea  compuesta representa una 

actividad que puede ser llevada a cabo de varias formas alternativas. La manera de 

representar cada una de estas alternativas está basada en esquemas de descomposición. 

Un esquema de descomposición consiste  básicamente  en un grafo dirigido acíclico 

cuyos nodos representan a su vez tareas abstractas, operadores primitivos, o bien una 

mezcla de ambos y cuyos arcos representan relaciones de orden  

• Métodos: Una   tarea  abstracta puede  tener  varios  esquemas  de reducción 

distintos, que definen la forma en que ésta se sustituye durante el proceso de 

planificación. Para decidir que esquema de reducción es aplicable en cada momento o 

es el más adecuado se introduce el concepto de método, que   establece   una   serie   de   

condiciones   previas   a   la   aplicación   de   la reducción.  

 

Esta forma de organizar el conocimiento procedural en base a tareas de más alto y más bajo 

nivel, es mucho más cercana a la forma de resolver problemas de los seres humanos,  que  

solemos  marcar  una   serie de  tareas  generales  que  es  necesario realizar y las vamos 

refinando conforme vamos definiendo el plan. 

(visitar-museo ?lugar)

Método 1:

(ir-a ?lugar) (comprar-ticket ?lugar) (visita ?lugar)

(ir-a ?lugar)

Método cerca:

(ir-andando ?lugar)

Método lejos-barato:

(ir-a ?parada_bus)

Método lejos-caro:

(coger ?bus)

(pagar-ticket ?bus)

(viajar ?bus)

(parar ?taxi)

(viajar ?taxi)

(pagar-ticket ?taxi)
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Como se ha señalado, el modelo de planificación HTN es similar al modelo de STRIPS  [44] en 

algunos aspectos.  Primero ambos   tienen una representación común del espacio de estados. Por 

otro lado la mayoría de los planificadores HTN también   presuponen un  conocimiento 

completo del   entorno.  Y  finalmente  la representación de los operadores primitivos es similar, 

con unas precondiciones, y unos efectos, que en STRIPS están divididos en una lista de adición 

y una lista de supresión. La principal diferencia radica en qué se considera un objetivo y cómo 

se consigue. Para STRIPS un objetivo es alcanzar un estado meta, en HTN el objetivo es aplicar 

los esquemas de descomposición sobre todas las tareas abstractas de la red de tareas de partida, 

hasta tener una red de tareas válida, únicamente compuesta de operadores primitivos, que será 

finalmente el plan resultante. 

Supongamos   el   ejemplo  de   la   figura  anterior  en  el  que   se  muestra   una   tarea 

abstracta para visitar un museo. Esta tarea tiene un único método que establece cual es la red por 

la que sustituimos la tarea abstracta, que está compuesta de tres tareas  que  se realizan en  

secuencia. Primero debemos  desplazarnos al  lugar de visita, después hay que adquirir un ticket 

de entrada y por último realizamos la visita. En el ejemplo también se muestra la estructura de la 

tarea abstracta ir-a, que  dispone   de   tres  posibles  métodos   de   descomposición.  Cada   uno   

de   estos métodos puede llevar una serie de precondiciones asociadas para seleccionar en cada 

momento cual es la descomposición más adecuada. Por ejemplo si el lugar de destino está  a una 

distancia menor  de un umbral predeterminado  se puede  ir andando, en otro caso se puede 

coger un taxi o un autobús. Obsérvese que para coger el autobús previamente hay que 

desplazarse hasta la parada, para lo cual podemos aplicar el mismo método ir-a. Cualquiera del 

resto de tareas que no se muestran   en   el   ejemplo   como   pagar-ticket   o   viajar,   pueden   

ser   otras   tareas abstractas u operadores primitivos. El planificador va construyendo mediante 

la sustitución de tareas abstractas por su correspondiente red de tareas, un árbol de expansión de 

tareas que constituye su espacio de búsqueda, distinto del espacio de búsqueda de los 

planificadores basados en estados que es un grafo de estados con transiciones de uno a otro 

estado, y también del espacio de búsqueda de planes de UCPOP  ya que las tareas  son 

introducidas en el plan candidato siguiendo una filosofía distinta, cuyo espacio de búsqueda es 

un espacio de planes en el que cada acción introduce un refinamiento sucesivo del mismo. El 

árbol de expansión de tareas puede verse como un árbol Y/O donde los nodos O son  las   

distintas  métodos   alternativos   que   tenemos   para   expandir   una   tarea compuesta, y los 

nodos Y serían las distintas tareas codificadas en la red de tareas que es necesario expandir. 

Las tareas abstractas permiten al diseñador de dominios escribir el dominio con diferentes y 

múltiples niveles de abstracción, pudiendo utilizar un enfoque top-down en donde partimos de 

tareas muy abstractas y las vamos especificando cada vez más en tareas de más bajo nivel o bien 
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un enfoque bottom-up en donde partimos de los operadores primitivos y vamos construyendo 

las tareas abstractas que lo asocian. 

Así pues se puede describir un algoritmo de descomposición de tareas HTN muy básico (hacia 

adelante y con estados) de la siguiente forma [41]: 

• Sea εo el estado inicial. 

• D: el dominio de planificación. 

• To: la red de tareas inicial que deseamos descomponer. 

• л: el  plan en  construcción que es una  lista de tareas  primitivas, inicialmente vacío. 

• αi la agenda de tareas pendientes que inicialmente  se construye de la siguiente forma:  

α0 = Ui : (1..n) ti Є T0, y que se   utiliza en la llamada al primer ciclo HTN. 

 

 

Cuando  la expansión de una  tarea abstracta  falla,  porque alguna de  las acciones que 

componen  la red de tareas en la que  se descompone no se puede aplicar, se  produce un 

backtracking  o  vuelta   atrás, en la cual el algoritmo de planificación debe explorar otras   

alternativas (otros  métodos  u otra forma de unificar las variables). El mecanismo de  

bactracking es el que permite al planificador adaptar el plan al estado del entorno, pero al 

mismo tiempo es lo que consume más tiempo y recursos durante la planificación. Todos los 

planificadores jerárquicos y no jerárquicos tratan de encontrar formas de evitar el backtracking, 

pero quizá en los planificadores jerárquicos es más sencillo [45].  
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2.2 Representación de dominios en planificadores HTN 

Un   aspecto  muy   importante   para   cualquier  modelo   de   planificación   es definir cómo el 

algoritmo es informado de la situación en la que se encuentra su entorno y del problema que 

tiene que resolver. La mayoría de los algoritmos de planificación son independientes del 

dominio, es decir, son genéricos y en principio podrían utilizarse en cualquier dominio 

planificación, por lo tanto se hace necesario disponer de un lenguaje de representación de 

dominios que el planificador pueda procesar. 

Existe un lenguaje considerado estándar en el ámbito de la planificación automática, llamado 

PDDL   (Planning   Domain Description Language) [33]. PDDL nace  en 1998 como  lenguaje 

para describir   los problemas de la IPC de ese mismo año. Tiene en su haber dos grandes 

ventajas que lo   han   hecho   tan   usado.   Primera,   es   el   lenguaje   usado   en   la   IPC,   

cualquier planificador  que   quiera   participar   en  esta   competición,   que   por   otro   lado   

es bastante   prestigiosa,   debe   ser   capaz   de   procesarlo. Segunda más importante, al ser 

muchos los autores que colaboraron en su especificación, supo unificar las características 

principales de los lenguajes de los planificadores más importantes en la época. Su base fue el 

lenguaje ADL [46], pero también recogió formalismos de plataformas de planificación como 

PRODIGY  [47]  o SIPE-2  [40] [48], planificadores de orden parcial como UCPOP [49], 

Unpop [50], o jerárquicos como UMCP [41], aunque el modelo jerárquico propuesto en PDDL 

no ha sido muy aceptado como discutiremos más adelante. 

PDDL es un lenguaje muy expresivo, de hecho hay muchos planificadores que   no   pueden   

soportarlo   plenamente,   por   ello   incorpora   un  mecanismo   de requerimientos sobre el 

planificador, como una serie de flags, que el planificador debe soportar para operar sobre el 

dominio. En la versión 1.0 de PDDL [33] su expresividad era muy similar a la de ADL con   la   

incorporación   de   la   posibilidad   de   definir   dominios   jerárquicos. Afortunadamente 

PDDL es un lenguaje vivo que va evolucionando con cada edición de la IPC.  En la edición del 

2002 se presentó una nueva versión del lenguaje la 2.1 [42] que incorporaba importantes 

novedades. PDDL 2.1 se organizaba en 4 niveles con expresividad creciente. En el nivel 1 tenía 

la misma expresividad que PDDL 1.0. En el nivel 2 se incluye una mayor expresividad para el 

tratamiento de expresiones numéricas o fluents. En el nivel 3 se introduce temporización en las 

acciones, con precondiciones y efectos at-start, at-end o overall. El nivel 4 permite la definición 

de acciones con efectos continuos en el tiempo. La última versión oficial de PDDL es la 3.0  

[51] presentada en la IPC del 2006, esta versión recoge la posibilidad de introducir preferencias 

de usuario y restricciones en el dominio de planificación. 
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Existen otras extensiones de PDDL no presentadas en la IPC. Por ejemplo hay otras propuestas 

para dar soporte jerárquico a HTN [52], o la propuesta de un quinto nivel [53] para modelar 

procesos continuos que van cambiando con el paso tiempo los valores numéricos. 

2.3 Problemática de la representación de dominios mediante PPDL 

Para adaptar un planificador automático a un nuevo sector o problema determinado, es necesario 

modelar el dominio partiendo del conocimiento de un experto o de la documentación adecuada.  

Para ello, es necesario utilizar lenguajes textuales de representación de dominios como PDDL 

que requieren de un conocimiento específico muy elevado.  

Normalmente sólo los investigadores en el área de planificación automática con fuertes 

conocimientos en ella, conocen PPDL para modelar dominios de planificación.  

Una de las causas por las que PDDL no es un lenguaje extendido en el mercado es porque, 

como se verá en las soluciones aportadas, no cuentan con una estructura ni nomenclatura que 

siga estándares ni prácticas habituales de mercado. 

Por lo tanto, si se pretende aumentar el uso de planificadores automáticos en el mercado, será 

necesario desarrollar lenguajes de modelado comerciales y herramientas que faciliten la 

representación de dominios de planificación a programadores e ingenieros informáticos que no 

sean necesariamente expertos en Inteligencia Artificial y planificación automática. 
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3. Alternativas de Solución 

Tal y cómo veíamos en la sección anterior y como se observa en la siguiente figura, para adaptar 

un planificador automático a un nuevo sector o problema determinado, es necesario modelar el 

dominio partiendo del conocimiento de un experto o de la documentación adecuada. 

 

Para realizar esta labor, se hacen necesarias herramientas, más o menos sofisticadas, basadas en 

técnicas de representación de la información y el conocimiento que permitan al Ingeniero de 

Conocimiento representar dominios interpretables por el algoritmo de planificación. 

Partiendo de los avances en Lenguajes de Programación y en Ingeniería del Conocimiento, 

podemos plantear distintos enfoques para satisfacer la necesidad identificada: 

a. Utilizar lenguajes textuales de descripción de dominios.   

La comunidad científica en planificación automática ha utilizado desde los años 60 

lenguajes de descripción de dominios. El primero de ellos  fue   el   de   STRIPS [44] . Una 

de las posteriores evoluciones con mayor aceptación, que ya ha sido mencionada en esta 

memoria, fue el lenguaje PDDL [33] que ha sido continuamente evolucionado y adaptado 

para soportar los avances realizados por los algoritmos de planificación automática 

[42][53]. De hecho, una de las aportaciones del trabajo previo a esta tesis fue la evolución 

del lenguaje PDDL para soportar la escritura de dominios jerárquicos HTN-PDDL [54]. 

Esta aportación fue un avance muy importante, como se verá más adelante, para permitir la 

escritura de dominios de planificación jerárquica siguiendo lenguajes estándares y para el 

posterior desarrollo de una notación gráfica. 
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b. Utilizar notación gráfica para describir dominios.  

Durante los años 90 se empieza a trabajar en ontologías para representar planes y facilitar 

el trabajo entre distintos grupos de investigación en el área [55] [56]. A final de la década 

surgen importantes proyectos que intentan consolidar los trabajos previos como es el caso 

de SPAR (Shared Planning and Activity Representation) [57].  

Recientemente, se han desarrollado entornos para soportar parte de las fases del ciclo del 

vida de Ingeniería del conocimiento, como GIPOII [58], orientado al modelado, 

adquisición y representación del conocimiento basado en transciones de objetos, o 

itSIMPLE[59], destinado a facilitar la ingeniería de dominios PDDL no jerárquicos, 

utilizando conceptos estándar de ingeniería del software como: modelado de datos basado 

en UML y de acciones usando diagramas de transición UML. 

Sin embargo, ninguna de estas iniciativas consigue desarrollar un estándar de uso 

comercial con aceptación en el mercado. No obstante, sí que han conseguido prosperar 

algunas iniciativas de otras áreas relacionadas con la planificación y procesos, para 

representación gráfica de sus modelos de información y conocimiento, como es el caso de 

BPMN (Business Process Model and Notation) [15]. Estas iniciativas están avaladas, al 

igual que otras ampliamente conocidas para la representación de modelos de datos como 

UML (Unified Modeling Language) [60], por OMG (Object Management Group) [61]. 

Antes de apostar por un planteamiento concreto para dar solución al problema abordado, 

es necesario que realicemos un análisis de ventajas e inconvenientes de cada una de los 

enfoques estudiados. 

a. Utilizar lenguajes textuales de descripción de dominios.   

Ventajas 

• Este tipo de lenguajes cuenta con una gran expresividad, normalmente basada en 

lógica de predicados. 

• Existen estándares, como PDDL, ampliamente aceptados por la comunidad científica. 

Inconvenientes 

• Requiere de un profundo conocimiento en planificación automática y en lógica de 

predicados de primer orden para la representación de dominios basados en él. 

• Dificulta la comprensión de la estructura de los dominios de planificación al no tener 

ningún apoyo visual de representación gráfica. 

• Como se verá más adelante, la estructura en la que se representa la información y el 

conocimiento de los dominios de planificación en el lenguaje PDDL presenta 

problemas en la integración de los planificadores automáticos con otros sistemas 

software. 
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• Para representar dominios de planificadores jerárquicos no sería valido un estándar de 

planificación como PDDL, sino que habría que utilizar alguna variante como la HTN-

PDDL mencionada anteriormente. 

 

b. Utilizar notación gráfica para describir dominios.   

Ventajas 

• Facilita, mediante la representación gráfica, la comprensión visual de los dominios de 

planificación y ayuda al Ingeniero de Conocimiento a entender el paradigma para 

resolver los problemas que utilizan los planificadores automáticos. 

• Sigue las tendencias del mercado en cuanto a herramientas comerciales para el uso de 

nuevas tecnologías, como es el caso de BPM, que están basadas en notaciones 

gráficas. 

• Existen estándares, como BPMN para la representación de procesos y UML para la 

representación de bases de datos, ampliamente aceptados por el mercado en los que 

pueden basarse este tipo de lenguajes. 

Inconvenientes 

• Complejidad de alcanzar el mismo nivel de expresividad para la definición de 

dominios de planificación que mediante un lenguaje de presentación de dominios. 
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4. Solución adoptada 

Tal y cómo se ha descrito en la memoria hasta el momento, la presente tesis plantea el objetivo 

de llevar al mercado los planificadores jerárquicos para cubrir el nicho detectado y, para ello, es 

preciso dar una respuesta a la barrera existente a la hora de facilitar la representación de 

dominios de planificación al personal técnico de las compañías de software. 

No obstante, los primeros pasos para cubrir esta necesidad de mercado no han estado centrados 

en facilitar la representación de dominios, sino que previamente se han tenido que 

desarrollar avances sobre el área de la planificación automática que realmente den 

cobertura a las necesidades de mercado detectadas. 

En este sentido, el trabajo de investigación comenzó con el desarrollo de un planificador 

jerárquico [1] que fue fundamental para el resto de desarrollos que han soportado esta tesis.  

Las primeras aplicaciones reales del planificador, que validaron la tecnología desarrollada, fue 

un sistema de ayuda a la toma de decisiones en extinción de incendios forestales, denominado 

SIADEX [2] en el que se tuvieron unas primeras experiencias sobre la representación del 

conocimiento experto para la resolución de problemas reales [3].  

Tal y cómo se ha analizado en el estudio de mercado, la capacidad de representación y 

razonamiento temporal es fundamental para dar soporte a dominios de aplicación real. En este 

sentido, también fue necesario dotar al planificador de capacidad de razonamiento temporal 

difuso de manera que permitiese la monitorización de la ejecución del plan teniendo en cuenta 

retrasos y posibles desfases en la ejecución de las tareas del mismo [4].  

Previamente al desarrollo de las herramientas que faciliten el uso de planificadores en entornos 

no-académicos, también se hizo un especial esfuerzo en la integración del planificador en una 

arquitectura compuesta por servicios web [5], ya que son las arquitecturas que hoy en día están 

más extendidas en el entorno comercial, de este modo se facilitó la conexión del planificador en 

distintos entornos [6] y permitir su aplicación a distintos problemas. 

A partir de los avances y el planificador desarrollado, que fueron fundamentales como los 

primeros pasos en el desarrollo de esta tesis, se realizó el análisis de alternativas visto en la 

sección anterior, para el desarrollo de una herramienta que permitiera a Ingenieros Informáticos 

que no tuvieran experiencia previa en el área científica de Planificación Automática, desarrollar 

sistemas basados en el planificador automático desarrollado previamente.  

También se analizaron lenguajes existentes de representación del conocimiento para 

planificación [62] [63] que no han sido adoptados por el mercado, tal y cómo es el objetivo de 

este trabajo, debido a que no estaban basados en estándares comerciales. 
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Atendiendo al objetivo marcado de facilitar el uso comercial de planificadores jerárquicos, 

y tras el análisis desarrollado, se pone de manifiesto la necesidad de desarrollar una notación 

gráfica para la representación de dominios basada en un lenguaje textual para la escritura de 

dominios de planificadores jerárquicos, como es el caso de HTN-PDDL [54].  

 

No obstante, la solución adoptada no estará basada exclusivamente en el desarrollo de una 

notación gráfica para el desarrollo de los dominios de planificación, sino que será necesario un 

planteamiento de solución más sofisticada y completa para facilitar su uso comercial [7]. 

La solución planteada está basada en los siguientes elementos: 

• Definición de una notación gráfica, basada en la notación de representación de procesos 

BPMN ampliamente conocida por el mercado, de los siguientes elementos de los dominios 

de planificación jerárquica HTN-PDDL: 

� Acciones primitivas. 

� Tareas compuestas. 

� Métodos. 

� Objetivos. 

A esta notación gráfica, que será descrita en detalle más adelante, se le ha denominado 

EKM6 (Expert Knowledge Model and Notation). 

• Utilización de la notación gráfica UML ya existente y ampliamente utilizada en el 

mercado, para la representación gráfica de los siguientes elementos de los dominios:  

� Representación de los tipos y modelos de datos utilizados por los elementos anteriores: 

Acciones primitivas, Tareas compuestas, Métodos y Objetivos. 

� Representación de los objetos, pertenecientes a tipos definidos, utilizados en la situación 

inicial del algoritmo de planificación. 

Gracias al uso de UML para representar los objetos utilizados en la situación inicial del 

algoritmo de planificación, facilitamos al planificador automático la conexión e integración 

con Bases de Datos externas de las que obtener dicha información. 

 

 

 

PDDL HTN-PDDL
Notación 
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en HTN-PDDL
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• Utilización de un lenguaje de lógica de predicados que complementa la carencia de 

expresividad de las notaciones gráficas, , continuando la tradición de PDDL y HTN-

PDDL, basado en los lenguajes de programación de objetos como JAVA para hacerlo más 

familiar al Ingeniero de Conocimiento, que permitirá la descripción de los siguientes 

elementos:  

�  Precondiciones, condiciones e información sobre los elementos temporales de las 

Acciones primitivas, Tareas Compuestas y de los Métodos.  

A continuación se ilustran los distintos elementos de la solución planteada: 

 

 En la siguiente sección, se describe con detalle la notación gráfica definida EKMN para la 

representación de dominios de planificación jerárquica. 

4.1 Descripción de la notación gráfica planteada 

En esta sección se describe la notación gráfica planteada, que ha sido denominada EKM6 

(Expert Knowledge Model and 6otation) [7], basada en la notación gráfica de procesos de 

negocio BPMN (Business Process Management and Notation) y desarrollada a partir del 

lenguaje textual de representación de dominios jerárquicos HTN-PDDL. Además, para 

aumentar la expresividad de la notación definida, se ha complementado con un lenguaje de 

lógica de predicados denominado EKL (Expert Knowledge Language) con el que se 

describirán los atributos de cada elemento del dominio de planificación jerárquica. 
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Antes de describir en detalle EKMN, merece la pena aclarar la estructura con la que ha sido 

definido, ya que es distinta a la estructura con la que se plantea un dominio en HTN-PDDL, 

para facilitar, como se verá más adelante, la integración del planificador con otros sistemas,. 

EKM6 distingue los siguientes elementos como inputs al planificador: 

1) Modelo de Conceptos: Serán las estructuras y los tipos de objetos que serán tratados 

por el planificador durante la búsqueda de una solución a un problema dado. Si, por 

ejemplo, el problema tratado es sobre planificación en extinción de incendios, los 

conceptos modelados serán, por ejemplo, “Vehículo aéreo”, “Vehículo terrestre”, 

“Incendio”, etc. 

2) Conocimiento Experto: Serán las posibles tareas a realizar así como su relación entre 

ellas a través de métodos. En un ejemplo de planificación en extinción de incendios, en 

este apartado encontraremos tareas como “Atacar Fuego”, “Desplazar vehículos” con 

sus correspondientes condiciones y efectos y relaciones entre ellas de orden, etc.  

3) Datos del Problema:  

a. Incoming Data: Objetos concretos que, siguiendo una estructura según el 

modelo de conceptos definido, tome como situación inicial el planificador 

automático para alcanzar el objetivo determinado. Estos datos son leídos desde 

una base de datos externa con la que se integrará el planificador y que deberá 

seguir la estructura definida en el modelo de conceptos. 

b. Local Data: Objetos concretos que, siguiendo una estructura según el modelo 

de conceptos definido, tome como situación inicial el planificador automático 

para alcanzar el objetivo determinado. Estos datos son definidos durante la 

escritura del dominio de planificación. Estos objetos, en PDDL, corresponden a 

constantes definidas en el propio dominio y en EKMN se separan de la escritura 

del dominio o, lo que es lo mismo, del conocimiento experto para incluirla en 

un elemento correspondiente a información inicial de entrada. 

c. Incoming Goal: Será el objetivo que, siguiendo la definición dada por el 

conocimiento experto, tome como objetivo el planificador. 

Una vez descrita la estructura con la que serán definidos los dominios de planificación en 

EKMN, a continuación se describe su correspondencia con los elementos de un dominio HTN-

PDDL cuya sintaxis es la siguiente: 

<domain>:  
(define (domain <symbol>) 

 [<types-def>] 
[<constants-def>] 
[<predicates-def>] 
[<functions-def>] 

[<structure-def>*]) 
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• La declaración de tipos en EKMN se realiza con notación UML en el Modelo de Conceptos: 

(:types 
 Animal – object 
 Perro – Animal 
 Gato – Animal 
) 

 

• La declaración de constantes en EKMN se realiza en el Local Data mediante instancias de 

clases definidas previamente en el Concepto de Modelos. 

• La declaración de predicados en EKMN se realiza como atributos de clases o como relación 

entre clases en notación UML dentro del Modelo de Conceptos: 

(:predicates 

    (peso ?a – Animal ?x -number) 

    (persigue ?p – Perro ?g – Gato) 

) 

 

• La declaración de funciones en EKMN se realiza como operaciones de clases en notación 

UML dentro del Modelo de Conceptos: 

(:predicates 

(peso ?x) – float ) 

 

(: functions 

 (get_peso ?x) 

{ 

 import math 

 return (?x1 * 1000) 
}) 

 

 

 

 

 

Persigue
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En cuanto a la estructura principal, a continuación se muestran los distintos elementos 

representados por la notación gráfica EKM6 dentro del Conocimiento Experto, junto con 

los atributos que serán necesarios describir en notación EKL y la denominación comercial con 

el que han sido definidos. 

<structure-def>:  

<action-def>  
| <durative-action-def>  

| <derived-def>  
| <htn-task-def> 

 

4.1.1 Acciones Primitivas (Task) 

A continuación se muestra la descripción BNF de las acciones primitivas en HTN-PDDL: 

<action-def>:(:action <name> 

:parameters (<typed-variable>*) 
[<metags>] 

[<preconditions-def>] 
[<effect-def>]) 

<preconditions-def>:                                                :precondition <goal-def> 
<effect-def>:                                                            :effect <effect> 
<metatags>:                                                             :meta (<tag>*) 

 

La denominación comercial, basada en BPM6, para este elemento es Task. Ya que el 

concepto que representa este elemento en un dominio de planificación jerárquica coincide 

con el concepto que representa en el modelo BPMN. 

6otación Gráfica (EKM6) Atributos HT6-PDDL Atributos EKL 

 

Name Name 

Parameters Parameters 

Precondition Conditions 

Effect Effects 

Temporal constraints Temporal constraints 

Metags Metadata 

 Actors (*) 

Activity  (*) 
(*) Atributos basados en BPMN que han sido añadidos al modelo. 

  

Task
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4.1.2 Tareas Compuestas y Objetivos (Goal) 

A continuación se muestra la descripción BNF de las tareas compuestas en HTN-PDDL: 

<htn-task-def>:  

(:task <name> 
:parameters (<typed-variable>*) 
[<meta-tags>] 
<method-def>) 

<method-def>: 

<method>* 

| (!<method>*) 
<method>: (:method <name> 
[<meta-tags>] 
[<preconditions-def>] 
:tasks <task-network>) 

<task-network>:  

<task-structure> 

| ( ) 
<task-structure>: 

 <task-def> 
| ! task_def 
| \<<dur-constraints> <task-
structure>+\> 
| \<<task-structure>+\> 
| (<dur-constraints> <task-
structure>+) 
| (<task-structure>+) 
| [<dur-constraints> <task-structure>] 
| [<task-structure>] 

La denominación comercial para ambos elementos es la de Goal ya que los objetivos en 

planificación jerárquica son representados, a su vez, por una tarea compuesta. La notación 

gráfica coincidirá con los sub-procesos, formados por varias tareas, de BPM6. 

6otación Gráfica (EKM6) Atributos HT6-PDDL Atributos EKL 

 

Name Name 

Parameters Parameters 

Method list Method list 

4.1.3 Métodos (Methods) 

A continuación se muestra la descripción BNF de los métodos en HTN-PDDL: 

<method>: (:method <name> 
[<meta-tags>] 
[<preconditions-def>] 
:tasks <task-network>) 

Goal
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La denominación comercial para este elemento se mantiene. Ya que el concepto de método 

no existe en BPMN. En cuanto a su representación gráfica, se ha utilizado un elemento 

geométrico básico no existente en BPMN. 

6otación Gráfica (EKM6) Atributos HT6-PDDL Atributos EKL 

 

Name Name 

Parameters Parameters 

Preconditions Conditions 

TaskNetwork  

Como puede observarse, se han eliminado atributos que no son necesarios como la red de 

tareas ya que estos elementos son descritos directamente mediante la notación gráfica. 

4.1.4 Representación de redes de tareas 

A continuación se especifica cómo se representan las redes de tareas en EKMN en relación a 

cómo se hace en HTN-PDDL:  

• Tareas secuenciales: Son aquellas que, en HTN-PDDL, se 

ejecutan en el mismo orden en el que son expresadas y 

pueden agruparse entre paréntesis para forzar su ejecución en 

orden secuencial. En EKMN su ejecución se realiza 

siguiendo el orden abajo-arriba y el camino que marcan las 

flechas que asocian a unas tareas con otras. La representación 

de la figura de la derecha, en HTN-PDDL, se escribiría del 

siguiente modo: ((Tarea_A) (Tarea_B) (Tarea_C)) 
 

• Tareas paralelas: Son aquellas que, en HTN-PDDL, se 

pueden ejecutar en orden diferente en el que son expresadas o 

en paralelo, y son representadas agrupadas entre corchetes. 

En EKMN su ejecución se realiza siguiendo el orden abajo-

arriba y cuando encontramos tareas en paralelo son 

representadas a la misma altura. La representación de la 

figura de la derecha, en HTN-PDDL, se escribiría del 

siguiente modo: ((Tarea_A) [(Tarea_B) (Tarea_C)] 

(Tarea_D)) 

 

  

Tarea A

Tarea B

Tarea C

Tarea A

Tarea B

Tarea D

Tarea C
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4.1.5 Ejemplo 

A continuación se muestra un ejemplo en HTN-PDDL y su representación en EKMN: 

(:task leer_y_moverse 

  :parameters (?quien ?origen ?destino ?texto) 

  ((:method andando 

     :precondition (and (bind ?donde (posicion ?quien)) (<= (distancia ?donde ?destino) (limite_andando ?quien))) 

     :tasks ((leer ?quien ?texto)(caminar ?quien ?origen ?destino))) 

    (:method en_taxi 

     :precondition () 

     :tasks ((coger_taxi ?quien ?taxi) [(leer ?quien ?libro) (ir_en_taxi ?quien ?taxi ?destino)])))) 

 

(:action caminar 

  :parameters (?quien ?origen ?destino ?camino) 

  :precondition (camino ?origen ?destino ?camino) 

  :effect (assign (posicion ?quien) ?destino)) 

 

(:action ir_en_taxi 

  :parameters (?quien ?origen ?destino ?taxi) 

  :precondition (en_taxi ?quien ?taxi) 

  :effect (and (assign (posicion ?quien) ?destino) (not (en_taxi ?quien ?taxi))) 

 

(:action coger_taxi 

  :parameters (?quien ?taxi) 

  :precondition (and (bind ?donde (posicion ?quien)) (bind ?donde (posicion ?taxi))) 

  :effect ((en_taxi ?quien ?taxi))) 

 

(:action leer 

  :parameters (?quien ?texto) 

  :precondition () 

  :effect (assign (leido ?texto ?quien))) 

 

 

Caminar

Leer

Coger_Taxi

Leer Ir_en_Taxi

Leer_y

_moverse
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4.2 IActive Knowledge Studio: Herramienta de desarrollo de sistemas 
basados en planificadores jerárquicos basada en notación EKMN. 

IActive Knowledge Studio es una herramienta software que permite la representación de gráfica 

de dominios mediante EKMN para adaptar e integrar un planificador jerárquico HTN [54], que 

ha sido denominado IActive Decisor, a distintos entornos. 

 

La herramienta IActive Knowledge Studio no sólo ha sido diseñada para facilitar la 

representación de dominios de planificación jerárquica a personal no experto en planificación, 

sino que ha sido diseñada para cubrir todo el ciclo de vida de desarrollo de un sistema basado en 

planificación automática [64] [65].  Existen otras herramientas para la representación de 

dominios de planificación pero, al contrario que el IActive Knowledge Studio, no cubren todo el 

ciclo de vida de desarrollo del sistema [66][59] teniendo en cuenta la fase de integración. 

Las etapas del ciclo de vida de desarrollo de un sistema basado en planificación 

automática son las siguientes: 

• Adquisición del conocimiento: Entrevistas con expertos y análisis de la 

documentación para obtener el know-how necesario para representar en el dominio. 

• Modelado del conocimiento: Representación del dominio de planificación basada en el 

conocimiento adquirido en la etapa previa. 

• Validación del conocimiento: Validar, con la ayuda de un experto mediante la 

ejecución de ejemplos, que el conocimiento modelado es correcto. 

• Integración: Conexión del planificador inteligente con el resto de sistemas software 

con los que deberá de interactuar para cumplir su función en el sistema desarrollado. 

Estas etapas podrán repetirse iterativamente de manera continua para seguir mejorando los 

resultados obtenidos por el planificador inteligente, ya que su integración es posible que se 

detecten nuevos requisitos o errores de modelado, así como para desarrollar nuevas versiones 

del sistema completo. 
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Para dar soporte a estas cuatro fases del ciclo de vida de desarrollo de sistemas basados en 

planificación automática, la herramienta IActive Knowledge Studio cuenta con cuatro entornos 

de trabajo: 

• Entorno de edición: Desde este entorno se pueden representar dominios de planificación 

jerárquica mediante la notación EKMN para describir la estructura de los dominios de 

planificación:  Es decir, es posible modelar el Modelo de Conceptos mediante la notación 

UML y el Conocimiento Experto mediante la notación EKMN, tal y cómo puede 

observarse en las siguientes ilustraciones: 

 

Conocimiento experto (EKMN)

 

Modelo de Conceptos (UML) 
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• Entorno de depuración: Mediante este entorno permite la ejecución paso a paso del 

planificador con un dominio y un problema concretos y hacer un trazado de la ejecución 

del algoritmo de planificación para el dominio y el problema planteados. Esta es una 

herramienta de gran utilidad para que los Ingenieros del Conocimiento puedan desarrollar 

los dominios según las especificaciones marcadas por los expertos. 

 

• Entorno de ejecución: Mediante este entorno se pueden visualizar gráficamente, mediante 

un diagrama de Gantt, los planes resultantes de los problemas planteados después de haber 

realizado una representación del dominio. De este modo, es posible realizar la validación 

con un experto de los planes que se obtienen y, por tanto, del dominio que se está 

modelando.. 
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• Entorno de integración: Mediante este entorno se facilita la integración del planificador 

jerárquico, junto con el dominio representado, en un sistema externo que cumpla con los 

modelos de datos representados en el Modelo de Conceptos. Deste este entorno, se define 

el conjunto de objetos instanciados del Local Data, una estructura de integración de 

entrada en XML mediante un DTD (Document Type Definiton) que definirá la estructura 

con la que deben de facilitarse los datos para el Incoming Data, una estructura de 

integración de entrada en XML mediante un DTD (Document Type Definition) que 

definirá la estrucutra con la que deben de facilitarse los objetivos a resolver para el 

Incoming Goal y una estructura de integración de salida en XML mediante un DTD que 

definirá la estructura, denominada Solution Structure, con la que se facilitarán los planes 

obtenidos por el planificador automático. 

 

 

Detalle de los elementos de integración. 
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En definitiva, gracias al IActive Knowledge Studio no sólo se facilita la representación de 

dominios para planificadores jerárquicos a Ingenieros de Conocimiento de otras compañías, 

sino que también se han aportado avances a la hora de integrar planificadores en otros sistemas 

software e, incluso, facilita la labor de validación de los dominios de planificación con los 

expertos ya que pueden visualizar gráficamente los resultados y hasta comprender la estructura 

básica de los dominios descritos en EKMN. 

 

  

1. Girar sección 1A x 90°

2. Girar sección 2C x 180°

3. Girar sección 1C x -90°

4. …

5. …

6. …

Solución (Plan)

Dominio

Situación 

Inicial

Objetivo

•Descripción 

acciones

•Descripción 

tipo objetos Planificador 

Automático

Ing. de 

Conocimiento

Experto

Conocimiento Experto

Usuario

3.Validar

2. Modelar

4. Integrar

1. Adquisición 

Conocimiento



Notación Gráfica para la representación de dominios de planificación  

jerárquica orientada al uso comercial 

 

45  

 

5. Avances aportados al mercado 

Gracias al diseño de la notación gráfica para la representación de dominios de planificación 

jerárquica EKMN y la herramienta para el modelado de dominios basados en dicha 

notación IActive Knowledge Studio, se han aportado principalmente tres tipos de 

avances al mercado que se listas a continuación y se describirán con más detalle en las 

siguientes secciones: 

1) Posicionamiento de los planificadores jerárquicos en un nuevo nicho de mercado: 

Se ha demostrado con datos la entrada de los planificadores jerárquicos al mercado, 

cubriendo un nuevo nicho de mercado en las tecnologías de automatización de 

procesos y de ayuda a la toma de decisiones. 

2) Aumento del uso comercial de planificadores jerárquicos: Ha aumentado el 

número de Ingenieros Informáticos que es capaz de modelar dominios de planificación 

jerárquica. Tal y cómo se describió al comienzo de este documento, este era el 

objetivo principal del trabajo y, como se detallará más adelante, veremos que el 

número de Ingenieros Informáticos que actualmente utilizan planificadores 

automáticos se ha elevado considerablemente. 

3) Desarrollo de aplicaciones comerciales mediante el IActive Knowledge Studio: Se 

han desarrollado aplicaciones comerciales basadas en el planificador jerárquico 

utilizando el IActive Knowledge Studio que, gracias a la incorporación de técnicas de 

planificación automática, han permitido a las empresas proveedoras de dichas 

aplicaciones conseguir una fuerte diferenciación en el mercado respecto a la 

competencia. 

 

5.1 Posicionamiento de planificadores jerárquicos en nuevos nichos de 
mercado 

Tal y cómo se describió en las motivaciones de la sección inicial de este documento, la 

tecnología en planificación automática cubre la actual necesidad de mercado de dar soporte a la 

automatización de procesos de negocio en entornos dinámicos [65] y también incluyendo 

capacidades de razonamiento temporal que no habían sido cubiertas hasta ahora [4].  

Gracias al desarrollo de la notación gráfica EKMN y a la herramienta IActive Knowledge 

Studio, se permite el acceso y el posicionamiento de los planificadores jerárquicos en el 

mercado dentro de un nuevo Océano Azul o nicho de  mercado.  

Para posicionar adecuadamente a los planificadores jerárquicos dentro del mercado, se ha 

definido la siguiente denominación de mercado: SPM (Smart Process Management) [34]. 
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Según lo descrito anteriormente, a continuación se muestran posibles configuraciones y 

relaciones entre distintas tecnologías para dar soporte a la ayuda en la toma de decisiones para 

la automatización de procesos de negocio en distintos tipos de entornos.  

Automatización de procesos en un entorno no dinámico mediante un BPM: 

 

Automatización de procesos en un entorno dinámico, con múltiples variables  apoyada con 

un BI para procesar la información, mediante un motor BPM complementado con BRMS: 
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Automatización de procesos en un entorno dinámico, con múltiples variables de entorno y 

gran variabilidad en el proceso, apoyada con un BI para procesar la información y con un 

planificador automático para sugerir el proceso adecuado, mediante en un motor BPM 

complementado con BRMS: 

 

Merece la pena aclarar que, aunque los planificadores automáticos puedan integrarse con 

sistemas BI y BPM para satisfacer una necesidad de mercado no cubierta por estos sistemas en 

cuanto a automatización de procesos se refiere, los planificadores automáticos también son 

utilizados por si solos como tecnología de ayuda a la toma de decisiones [2] [8] para dotar a 

las aplicaciones software de la capacidad de generar planes de acciones de forma automática 

que serán ofrecidos al usuario como sugerencia de decisiones en su propia actividad. Algunos 

ejemplos de este tipo de aplicaciones serán vistos en la siguiente sección. 
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5.2 Aumento del uso comercial de planificadores jerárquicos 

Como ha sido descrito en este documento, en el año 2005 se desarrolló un planificador 

jerárquico  propio [2], que fue utilizado por sus creadores y ocasionalmente por algún miembro 

de la comunidad científica en el desarrollo de aplicaciones reales utilizando el lenguaje HTN-

PDDL [54]. En 2009 fue definida la notación gráfica EKMN [7] y en 2010 se desarrolló la 

herramienta IActive Knowledge Studio, que dio soporte a la utilización de dicha notación para 

el modelado de dominios del planificador jerárquico previamente desarrollado.  

A continuación, se pueden observar los datos relativos al uso del planificador jerárquico y, 

como gracias a la definición de la notación gráfica y al desarrollo de la herramienta IActive 

Knowledge Studio, se ha conseguido aumentar la adopción y el uso extendido de las técnicas 

de planificación, ha aumentado considerablemente el uso del planificador no sólo por miembros 

de la comunidad científica sino también por Ingenieros Informáticos de compañías privadas. 

 

6úmero de Usuarios del Planificador Jerárquico 
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Nº Usuarios Planificador Jerárquico 2006 2007 2008 2009 2010 2011 
(*)

 

Ingenieros (Comunidad Científica) 4 5 5 5 9 9 

Ingenieros (Empresas privadas) 0 0 0 0 29 47 

Ingenieros Totales 4 5 5 5 38 56 

(*) Previsión con datos reales desde 28 de febrero de 2011 

 

 

 

5.3 Aplicaciones comerciales desarrolladas con IActive Knowledge Studio  

Desde su lanzamiento al mercado, IActive Knowledge Studio ha sido utilizado para desarrollar 

distintas aplicaciones de ayuda a la toma de decisiones para distintos sectores de actividad. 

Algunas de ellas han sido desarrolladas por la propia compañía IActive y otras de ellas han sido 

desarrolladas mediante otras compañías tecnológicas.  

A continuación se describen dos de las aplicaciones desarrolladas hasta la fecha y que presentan 

como mayor innovación la incorporación de un planificador automático para ayudar en la toma 

de decisiones al usuario. 

5.3.1 Smartourism: Sistema inteligente para personalizar visitas turísticas 

Este sistema ha sido desarrollado directamente por la compañía IActive y consiste en una 

aplicación en entorno web que ayuda al turista a decidir qué visitar y qué hacer durante su 

estancia en la ciudad [8].  
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El sistema está actualmente implantado en el Ayuntamiento de Granada y se 

está trabajando para implantarlo en distintos servicios de turismo pertenecientes 

a otros ayuntamientos y comunidades autónomas. 

5.3.2 Gestión de emergencias y evacuaciones 

Cuando ocurre una gran catástrofe que afecta a un núcleo urbano, como puede ser una 

inundación, terremoto, etc. es necesario actuar con rapidez y seguridad para poner en marcha 

operaciones de evacuación de la población. Basado en el planificador automático, se ha 

desarrollado un sistema que es capaz de generar planes de evacuación de civiles para núcleos 

urbanos teniendo en cuenta los protocolos de evacuación, los recursos disponibles y la 

información del contexto. 
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El sistema se ha desarrollado para la Unidad Militar de Emergencias 

del Ministerio de Defensa de España y ha sido reconocido por la 

prestigiosa analista tecnológica de mercado Gartner [9], como un caso 

de estudio. 

5.3.3 Business Continuity Planning  

Este sistema ha sido desarrollado en colaboración con la consultora tecnológica de 

Ernst&Young y consiste en una aplicación que realiza la automatización de la actuación 

necesaria cuando ocurre algún incidente en los activos tecnológicos de una gran compañía, de 

manera que genera y podría ejecutar, con la ayuda de un BPM, las acciones necesarias para 

minimizar los riesgos y los daños ocurridos por la incidencia así como para que el negocio 

retome su actividad normal en el menor tiempo posible. 

El sistema se está actualmente implantando en Bankinter y, tras su 

finalización, se ofrecerá a otras entidades público y privadas que 

requieran de sistemas de continuidad de negocio para dar mayor 

seguridad a su actividad.  

6. Conclusiones y trabajo futuro 

6.1 Conclusiones  

Durante todo el proceso de transferencia tecnológica descrito en la tesis, se han obtenido las 

siguientes conclusiones que serán de gran utilidad no sólo para el estado del arte del área de 

Planning & Schedulig sino también para futuros procesos de I+D+i: 
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• La tecnologías BPM y de Planificación Automática resuelven problemas de 

automatización diferentes por lo que no son competencia directa sino complementarias. 

Además, las tecnologías de Planificación Automática permiten la creación de un nuevo 

Océano Azul al soportar la generación de procesos en entornos altamente dinámicos [8][20]. 

• A la hora de definir notaciones gráficas para representar el conocimiento, con el 

objetivo de hacerlas llegar y de utilidad para el máximo número de personas, se han de 

seguir estándares conocidos y los nuevos elementos necesarios basarlos en estos estándares. 

Es necesario basarse en estándares de mercado para facilitar el acceso de algoritmos y de 

avances científicos a Ingenieros que desarrollan su actividad en empresas privadas [7]. 

• Al comienzo de la etapa de investigación es útil realizar un estudio de mercado basado 

en necesidades ya que orientará los objetivos y los desarrollos realizados en esta y en las 

siguientes fases de transferencia tecnológica lo que reducirá esfuerzos y aumentará la 

probabilidad de éxito futuro en el mercado. Para este estudio de mercado es muy útil realizar 

un proceso de prototipado rápido que pueda ser validado por usuarios finales reales y cuyo 

feedback pueda ser utilizado dentro de la fase de investigación aplicada. 

En este sentido, para este trabajo ha sido especialmente importante dar respuesta a las 

necesidades de razonamiento temporal [4] y a las de integración en arquitecturas SOA que 

existen dentro del mercado [6]. 

• Al comienzo de la etapa de desarrollo es útil realizar un estudio de competencia, basado 

en productos, para plantear enfoques de innovación en valor basado en características 

diferenciales y no en aumento de prestaciones que deteriore el margen de los productos.  
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6.2 Trabajo Futuro 

Todavía quedan etapas por recorrer para seguir acercando el modelado de dominios a cualquier 

Ingeniero Informático de un modo sencillo, tal y cómo ocurre al trabajar con la mayoría de los 

lenguajes de programación comerciales. 

Para seguir alcanzando este objetivo, el próximo paso es evolucionar el lenguaje EKL (Expert 

Knowledge Language) para que tenga una sintaxis más parecida a los lenguajes actuales 

orientados a objetos. 

Por otro lado, en lo que a los planificadores automáticos respecta, una debilidad que poseen que 

los hace poco eficientes en entornos comerciales es la gran necesidad de información inicial que 

requieren para llevar a cabo el proceso de planificación. Un planificador automático requiere 

recibir como entrada el conjunto de información del contexto inicial para definir un plan que 

alcance el objetivo a partir de dicho contexto. Sin embargo, en muchas ocasiones la información 

está dispersa en distintas bases de datos o, aunque esté en una única base de datos, el coste que 

tiene recoger toda la información inicialmente es demasiado elevado. Por lo tanto, se hace 

necesario evolucionar los algoritmos de planificación para que no requieran toda la información 

de contexto inicialmente. 

En estas dos líneas de trabajo, entre otras, avanzará la compañía IActive junto con el Grupo de 

Investigación Sistemas Inteligentes, siendo estas necesidades de mercado inputs de las próximas 

fases de investigación aplicada que se desarrollen. Lo cual, tal y cómo comentábamos en la 

sección anterior, aportará información útil a las próximas labores de investigación y, con total 

seguridad, aumentará el valor de los resultados obtenidos en el futuro. 
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SIADEX: an interactive knowledge-based planner for
decision support in forest fire fighting
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Abstract. SIADEX is a complex framework that integrates several

AI techniques able to design fighting plans against forest fires. It is

based on four main components, a web server, that centralizes all

the flow of information between the system and the user, the ontol-

ogy server, that is the cornerstone of the architecture as the basis for

knowledge sharing and exchange between all the components, and

the planning and monitoring servers that are offered as intelligent

services through the web server. This perspective also allow to view

SIADEX as a collaborative working environment where it provides

two basic functionalities: the intelligent services offered to the user

(the ontology, planning and monitoring modules) and a middleware

level that interfaces these back-end services to the front-end soft-

ware of the user (a web browser) achieving several valuable goals

like transparent access of the user to a distributed architecture, an

ubiquitous access to the services that allow the mobility of the user

and his/her independence of the access device.

Keywords: planning, knowledge representation, uncertainty man-

agement.

1 Introduction

The management of crisis episodes usually follows a sequence of

stages like that shown in Figure 1, in which several stages of situa-

tion assessment, intervention planning, plan dispatching and execu-

tion and plan execution monitoring are followed up to completely

overcome the crisis. Due to the dinamicity and the many uncertain-

ties of real world, a revision process of the intervention plans might

be carried out, triggering again a new cycle.

Asess Plan ObserveAct

Revision

Figure 1. Lifecycle of crisis management

This cycle usually relies in a chain of decision making stages from

high skilled staff (in charge of assessing the situation, defining the

goals of the intervention, and the strategies to achieve these goals)

to ground operators (in charge of carrying out activities). Nowadays,

1 Dpt. of Computer Science and AI, ETSI Informatica, Universidad de
Granada, Spain email: siadex@decsai.ugr.es

the increasing use of more sofisticated tools and the extensive pres-

ence of computers at every decision making stage, produces an over-

whelming amount of information to be processed by technical staff,

making their job even more stressing and difficult. It is clear in the

literature that the use of decision support systems based on a variety

of artificial intelligence techniques may help to analyze this informa-

tion, track it during the evolution of the episode and even to share

part of the decisions.

Particularly, AI planning techniques have shown to perform very

efficiently in providing technical staff with valuable tentative plans

and strategies either in military domains (operations planning[21], air

campaign design[16] or noncombatant evacuation operations[18]) or

in civil domains (oil spills[3], floods [4] or forest fires[10, 1, 19]).

These AI planning techniques are only the core of complex archi-

tectures that may also involve other AI techniques (like deductive

frameworks, uncertainty propagation, systems modeling, etc) and

their plans might be directly scheduled for real execution or adapted

by hand by technical staff before its execution.

However, for these AI planning techniques to be successful, sev-

eral issues must be seriously taken into account.

• Easy access to knowledge for end users. AI planning techniques

strongly relies in a detailed representation of the knowledge of the

problem and this knowledge must be easily accessible for techni-

cal staff since they will be responsible of using the system, stating

goals, modify plans, etc. The fact is that these people are not re-

quired to know about AI planning techniques or formal represen-

tations, so the access to the knowledge must be transparent for the

end users. Additionally, the mobility of the user should be consid-

ered since technical staff might access from any place and from

any device and platform (laptop, PDA, desktop computer).

• Integration with legacy software and context awareness. Part of

the knowledge required to react to some crisis episodes is not

given by end users, but it is stored in already existing systems in

the host institution like for example geographic information sys-

tems (GIS) or meteorological conditions and forecasts and the cur-

rent state of resources, etc. This implies a large amount of infor-

mation that nobody wants to re-type by hand since it is already

available in electronic format like files and databases. There-

fore, in order to succeed, these systems must have the capability

of accessing these files and databases and translating them into

the knowledge representation framework suitable for AI planning

techniques.

• Explicit support for flexibility and dinamicity. Knowledge of real

world problems is always faulty due to incompleteness or unpre-

dictability. Therefore, any real application of these systems must

explicitly deal with uncertainty in any of its forms.



Figure 2. Overall architecture of SIADEX

In the following, all these questions are sketched explaining the

whole architecture of SIADEX, an intelligent distributed digital as-

sistant that is being developed by the authors for the assisted design

of forest fire fighting in the Andalusian Regional Government for the

Environment.

2 Architecture

The whole architecture of SIADEX is outlined in Figure 2 although it

is not fully developed yet. Nevertheless, most part of the techniques

explained in this section have already been implemented and tested

in previous projects, in industrial settings [6, 8, 9, 12], and now are

being integrated into a unique system.

Figure 2 shows a distributed architecture composed of several

modules (surrounded with a circle) that may run in different ma-

chines so that the load of the processes could be distributed. All

the processes communicate to each other following the XML-RPC

protocol[20], so that visibility is guaranteed in any condition that

supports TCP/IP. The user interface has been designed to give full

accessibility in almost any condition since staff might be accessing

either from their office (with a warm environment, a desktop com-

puter, a broad band connection, etc) or from the countryside (with a

hostile environment, a laptop or a PDA with, possibly, a low band

connection). Therefore, two access methods were designed, one of

them based on web browsing (html and javascript), so that users may

access from almost any computer-based means or any operating sys-

tem with web browsing capabilities (MS Windows, Linux, Palm OS,

Pocket PC). The other one is based on a Java application whose hard-

ware and software requirements are slightly higher. In any case, both

interfaces access to an XML-RPC gateway that connects the most

important modules of SIADEX: the knowledge base BACAREX, the

planner and the monitor.

2.1 The ontology server

The backbone of the architecture is BACAREX, the knowledge base.

It is an ontology of planning objects designed with Protégé 20002

that contains resources (persons, squads, vehicles, facilities, ...), ac-

tivities (transport, water spraying, refueling, ...) and additional data

(GIS information, weather forecasting, ...) what configures a stan-

dalone module: the ontology server.

It is, thus, responsible of providing the knowledge required by the

planning process, but it is also an open platform to a continuous

update and query of the technical staff. The ontology server has a

back-end in MySQL so that the flexibility and efficiency of data stor-

age is guaranteed and multiple users/processes in parallel are also

allowed. It also provides both offline and online access facilities. Of-

fline access is done by the standard Protégé framework, so that the

development team may access the knowledge and carry out mainte-

nance and validity checking operations with full operability. On the

contrary, online access is done through the Protégé API on which

both a Java application and a web access service have been built.

This online access is devoted to staff users that do not have skills

on knowledge representation for planning but may painlessly access

the knowledge in a web browsing fashion by means of a hierarchy

of objects and activities close to their understanding of the prob-

lem. Instances in the ontology server have been extracted from legacy

software and extended to the level of detail required by SIADEX by

plugins and mappers from different applications so that they do not

need to be re-typed again: most information about objects is automat-

ically extracted from databases in Oracle (used by the technical staff

for resource management) and cartographic information (geography,

weather forecasts) is also extracted from Arc Info. This last input is

specially important since staff is more skilled with this type of soft-

ware and even the definition of planning problems (the description of

a crisis episode or the situation assessment) has been adapted to be

2 http://protege.stanford.edu
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introduced by this means.

However, the knowledge stored in the ontology server is not di-

rectly recognizable by the planner module. It only recognizes prob-

lems described in the Planning Domain Description Language PDDL

[15]. In order to do that, a PDDL gateway has been designed to trans-

late the knowledge in the ontology into PDDL format as will be ex-

plained later.

2.2 The planning server

The planning module is able to analyze the knowledge stored in the

ontology server and to design (or redesign) an attack plan. It is cur-

rently under development but it is an extension of two previously

built systems of the same authors [7, 8] with the following features

• It is a hierarchical HTN planner[14, 17] that follows a top-down

procedure for the extraction of plans (first obtains a general plan,

and then it refines it into a more specific plan, and so on until it

obtains a grounded plan). This top-down procedure is adapted to

the own hierarchical structure of the ontology so both modules are

closely related.

• It allows to represent and handle uncertain temporal knowledge

[9] and soft temporal constraints like deadlines, execution times

and durations.

• It is a planning server, that is, it has been designed like a plug and

play module of the architecture so that it may be either easily used

as a standalone planning service through the XML-RPC protocol

or easily updated just by replacing the current planning algorithm

by any PDDL compliant planning algorithm.

• The output of the planning module is a temporal attack plan, that

is, a chronologically ordered sequence of actions where every ac-

tion has a time stamp that refers to the time at which it should be

executed.

• This temporal attack plan might be translated into a fire simulator

called CARDIN [5] and submitted to the evaluation of technical

staff.

2.3 The Monitor module

Once this temporal plan has been accepted for execution, it is super-

vised (observed) in real time by the monitor module that tracks all the

changes produced by the execution of the actions in the plan, the time

they take to execute and it updates the ontology accordingly so that

these changes are publicly available for any query at any time. It is

also able to detect any perturbation in its execution [12] and, follow-

ing the loopback of Figure 1, it asks for a plan repairing (replanning)

and revision procedure. This is one of the most important features of

the system as it allows to respond to the uncertainty in the execution

of a plan in a highly dynamic world. This error recovering procedure

allows two types of repairs to the plan being executed [12]. On the

one hand, it allows autonomous repairs without any intervention of

the technical staff and on the other hand, it allows the technical staff

to interactively redesign a new plan for the newly detected situation

by giving advice to the planner on how to solve some goals.

This distributed architecture positions SIADEX as a collaborative

working environment [11] where the knowledge is shared and ex-

changed between several heterogeneous entities, either human (tech-

nical staff) or programs (the planning server and the monitor) thanks

to the services provided by the web server and the ontology server,

providing several valuable advantages:

• Ubiquity. It currently supports full user mobility since the access

to the web server is platform independent and technical staff may

access either from their offices or from the countryside, either with

a laptop or a PDA with a GPRS connection.

• Context awareness. SIADEX is sensible to the fire scenario in

many different ways since it is able to represent many contex-

tual information that can influence the reasoning process of the

planning module. For example, geographical conditions of the en-

vironment, weather forecast, exact position of resources given by

GPS devices, etc, may be obtained from technical staff, seamlessly

introduced in the ontology server and used by the planning mod-

ule.

• Service oriented architecture. The modularity of the architecture,

as shown in Figure 2, allows for the interoperability of inde-

pendent and heterogeneous processes and their communication

through standard protocols like XML-RPC[20] and PDDL [15] in

a plug a play fashion where every server might be easily replaced

or updated.

• User friendliness. The centralization of the interface through the

web server allows technical staff to interact with the system with

a low training period. All the knowledge available in the system

(classes, instances, actions or plans) are easily handled in a web

browsing fashion.

The following sections give a more detailed overview of some of

these modules.

3 Details of the ontology

As said before, BACAREX is an ontology of planning objects and

activities related to the forest fighting plan in the Andalusian regional

government that has been designed in Protégé 2000 with more than

130 classes and more than 2000 instances only for planning objects

and without taking into account the representation of activities. The

slots stored for every object are both operational (needed by the own

reasoning process of the planner, say the geographic coordinates of

the object) and informational (not needed by the planner but that

may be required by the technical staff during the development of

an episode, say the radio channel of the responsible of a sector). The

most relevant features of this ontology are described in the following.

3.1 The taxonomy of domain objects

The most important part of the ontology is devoted to the fire fighting

resources, which are modeled either as material resources or human

resources (Figure 3). Material resources may be facilities like oper-

ation bases, airports, etc and they represent static objects from the

point of view of the planning process since most of their attributes

will remain unchanged although they are very important like for ex-

ample, the geographic position of an airport, the availability of refu-

eling facilities, etc. The remaining resources, either vehicles or hu-

man workers, are very dynamic since many of their attributes change

rapidly during the execution of plans, for example their geographic

position, their state of availability, the work they are carrying out, etc.

3.2 Legal information about the use of resources

Legal issues about the use of resources are a very important feature

that the planning module has to take into account if one wants the

plans to be of practical use. These legal issues refer mainly to tempo-

ral constraints that must be met and that are fixed by the law or any

type of contracting agreement:
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Figure 3. A UML representation of a simplified part of the ontology of SIADEX

• The maximum duration of the shifts of the squads or the fire di-

rectors (Legal Shifts in Figure 3)

• The periods of availability of resources since the use of some

planes or helicopters is subject to contract and they are only avail-

able during some periods (Contract Availability in Figure 3).

3.3 The fire scenario and situation assessment

Contrary to instances of resources, that remain from one episode to

other, instances of fire scenarios are volatile, that is, they are created

at the beginning of a fire incident, but they disapear as the attack plan

evolves and at the end of the episode. Once a forest fire has been de-

tected, the technical staff proceed by the following steps. Firstly, they

gather all the information of the environment (geography -orientation

of the terrain, slope-, forest fuel, weather forecasts -temperature, hu-

midity, wind speed and direction-) and starts a fire simulation [5] to

predict the behaviour of the fire.

After the simulation, they define the operational units of the forest

fire: the sectors. These are relevant areas of the environment where

the attack will be focused. Every fire scenario may have several sec-

tors and every sector may be composed into operational targets like

fire lines, control lines and spraying areas. Instances of operational

targets are created very dynamically and they might be modified after

every revision cycle (Figure 1). The fire director assigns a numeric

value of threat intensity and a set of tasks to be accomplished in every

operational target. The set of tasks determine the type of resources

that will be needed at every operational target and the intensity of

the threat will be used by the planner to size the number of resources

to be assigned to that target (the larger the intensity the larger the

number of resources) and the set of tasks. Therefore, the state of re-

sources and the definition of the fire scenario constitute the starting

point of the planning module.

3.4 Tasks and operating procedures

Knowledge about tasks and fighting protocols (operating procedures)

are represented in a HTN-style [14, 17], that is, as a hierarchy of

compound tasks, that may be decomposed into simpler tasks, and

primitive tasks, that are non decomposable like that shown in Figure

4. Higher level compound tasks represent strategic activities and low

level primitive tasks represent actions to be performed by any of the

resources. This part of the knowledge base is the most important one

and the most fragile with respect to the performance of the planner

since it encodes the knowledge used by the planner about how to

build plans.

3.5 Constraints

There are many types of constraints that affect to the knowledge

stored in the ontology and that are taken into account by the plan-

ner module. The following presents some of the most relevant con-

straints.

Knowledge constraints

Some constraints have been added to dynamically validate the

knowledge stored in the ontology and for an early detection of in-

consistencies (it must be taken into account that the ontology may

be modified by the monitoring module during the execution of the

plan but also by the technical staff to introduce or modify part of

the knowledge about resources or the episode and this manual pro-

cess might introduce some inconsistencies in the knowledge base that
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Figure 4. Compound tasks, decompositions and primitive tasks. The compound task to transport the brigade brigade JE101 from point p1 to point p2 is
decomposed into simpler tasks: (1) move an available helicopter and the brigade to point p1, once there, board the brigade, move the helicopter to point p2 and
debark the brigade into point p2. The action to board the brigade is primitive and it may not be decomposed further. The action to move the brigade to the

meeting point is compound and might be decomposed further since the brigade might need to find a full terrain vehicle to get to the meeting point.

could produce the planner to fail or to obtain non-sense plans). These

constraints have been designed by using the Protégé PAL Constraints

Language and are checked offline by the development team3 like the

one shown in Figure 5.

(forall ?pt (and (> (UTM_Zone ?pt) 28)

(< (UTM_Zone ?pt) 31)

(> (UTM_X ?pt) 0)

(> (UTM_Y ?pt) 0)))

Figure 5. A PAL constraint in Protégé about the coordinates of objects:
every objects must be situated between Zones 29 and 30 (i.e., the region of
Andalusia) and coordinates X and Y must be defined and greater than zero.

Temporal constraints

These are the most important type of constraints and they mainly

influence the ordering between the actions in a plan. The first source

of temporal constraints is related to the duration of actions, and there-

fore, to the final schedule of the plan. Although the details are ex-

plained in [8] it may be summarized as follows. Every primitive ac-

tion a has a start point start(a) and an end point end(a). All the
effects caused by a occur somewhere between both points at differ-

ent time points

∀e ∈ effects(a), start(a) ≤ start(a) + delay(e) ≤ end(a)

This is represented in the ontology for every primitive task (that is

tasks that are not decomposable). Let us suppose that the effect e of

action a is used to satisfy a requirement of a primitive task b which

has to be executed necessarily at time start(b). Then, the execution
of action a is restricted to be

start(a) ≤ start(b) − delay(e)

The representation of these constraints in the ontology is the ba-

sis of temporal constraint posting and propagation in the planning

module of SIADEX. Other sources of temporal constraints that also

affect the planning process is the use of numeric variables. Let

say that a vehicle v has a cruise speed cruise(v), then the task

a ≡ move(v, p1, p2) to move the vehicle v from point p1 to point

p2 is constrained to be

end(a) − start(a) =
distance(p1, p2)

cruise(v)

3 PAL Constraints may be checked dynamically from the user interface, but
this feature has not been implemented yet.

Other temporal constraints like legal duration of shifts of squads

or the contract availability of aircrafts are easily represented in the

ontology like intervals associated to a certain condition 4 and handled

accordingly by the planning module

Constraints on operating procedures

The capabilities of the resources is not encoded in the own re-

sources, but in the ontology of tasks and operating procedures by

incorporating typed arguments to their representation like in the

PDDL formalism [15]. Let us consider for example a compound

task (drive ?v - vehicle ?p1 ?p2 - GIS Point) to

drive a vehicle ?v from one point to another. This means that

the movement task might be carried out naturally by any instance

of the class vehicle. However one might also have a com-

pound task like (fast drive ?v - aircraft ?p1 ?p2 -

GIS Point) where the movement can only be done by an aircraft

and the remaining vehicles are immediately discarded to perform this

task.

3.6 Representation of uncertainty

The application of AI techniques to crisis management, like to many

real world applications as well, requires an explicit consideration of

uncertainty since knowledge tends to be faulty (due to incomplete-

ness, imprecision or unpredictability) or there may be exogenous

events out of the control of the agents involved in the problem. From

the knowledge representation point of view, uncertainty is considered

in the following terms.

• Temporal uncertainty. It is clear that in a real world problem, most

part of temporal knowledge may not be perfectly known like the

duration of an action, the arrival times of a vehicle or deadlines for

satisfying a certain goal. In our ontology, every temporal reference

like deadlines or makespans are stored as an interval [t1, t2] (Fig-
ure 3) so that precise references may be stored like “exactly t time

units” [t, t] but also some uncertain references like “between t1
and t2 time units” [t1, t2] or “more than t time units” [t, +∞).
Thanks to the use of Temporal Constraint Networks [13, 8] we

are able to handle and propagate successfully uncertain temporal

constraints like these shown before.

• Resource uncertainty. The use of an ontology structured in classes

and subclasses of entities allow us to easily abstract the usage

of resources in the description of actions and protocols without

having to specify completely how that resource should be used.

For example, let us consider the part of an ontology devoted

to vehicles that is shown in Figure 3. A transportation request

4 These constraints are named timed initial conditions in PDDL 2.2.
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for the brigade_JE101 from point1 to point2 by using

truck-101 might be represented like this activity

(move brigade_JE101 truck101 point1 point2)

but if we don’t know exactly the resource that will be used for this

activity, then it might be represented as

(move brigade_JE101 ?v - vehicle point1 point2)

where the variable ?v represents any instance of the class

vehicle, that is, any available vehicle able to transport people.

• Location uncertainty. In optimal conditions, every mobile resource

would be endowed with a GPS device so that its position would

be perfectly known.

In real world this is not always possible so that we must maintain

the track of the location of a resource as precise as we can for

safety and efficiency reasons and not always is possible to locate

a resource in a precise point. In order to do that, the current po-

sitions for some objects in the ontology are described under the

class GIS Location as shown in Figure 3 so that we allow to

specify literals like (current position brigade JE101

?position - GIS Location) where ?position is an

instance of class GIS Location, either a point, a line or

an area. In the case that the position of a resource is per-

fectly known and fixed, like instances of class facility, literals of

the form (current position ?facility ?position

- GIS Point) are used.

4 The planner

The planning module is still under development so we may not show

performance or efficiency data here but it is a planner based on the

HTN paradigm [14] over the ideas previously developed in our non-

hierarchical temporal planner MACHINE [8] and our hybrid hier-

archical planer HYBIS [7]. An HTN planning problem, like most

planning problems, is stated in terms of three components: the initial

state of the world, the set of available actions, that is also known as

the domain of the problem, and the goal.

• The initial state is usually expressed as a conjunction of literals

that represent the set of facts that are known to be true. It may be

obtained by querying the ontology about the main slots of the in-

stances of classes like facilities, human resources, vehicles, water

points, etc. The representation of the initial state is based on the

closed world assumption.

• The domain is also extracted from the ontology, from the knowl-

edge stored in the actions and protocols section. It must be said

that the planner is compliant with the syntax and semantics of

PDDL, the planning domain description language [15] so both the

initial state and the domain must be expressed in this formalism.

In order to do that, a PDDL gateway has been designed so that,

at the beginning of a planning episode, this gateway iterates over

the whole ontology and translate the content of the main instances

into PDDL in a process whose main features are the following

ones:

– Predicates are easily translated since every slot of the ontology

whose content might be relevant for the planning process has

a special slot that contains a template on how to translate the

content of the slot into a PDDL literal. Binary slots of the form

Instance.slot=value are easily translated into PDDL

literals of the form (slot instance value). Non binary

predicates or slots that represent references to other instances

have a similar translation process, and even some of the slots

may produce multiple literals (see Figure 6).

vehicle_code: string

available: boolean

cruise_speed: integer

max_capacity_people: integer

max_capacity_fuel: integer

Ground

Vehicle

(current_position vehicle_code GIS_code) and

(coordinates GIS_code UTM_Zone UTM_X UTM_Y)

current_position

Full terrain

GIS_code: string

UTM_Zone: integer

UTM_X: integer

UTM_Y: integer

GIS_Location

Figure 6. Translation of some references in the ontology

– The classes hierarchy is also translated as a hierarchy of types

in the PDDL domain description.

– Slots that contain numerical values that may change during a

planning episode, mainly numerical resources like the level of

fuel of a vehicle, are declared like fluents in the PDDL domain,

so that the use of arithmetic operations and functions are per-

mitted over them and they allow the planer to reason about the

use of resources.

– The temporal knowledge related to durations and delays of ac-

tivities, like subgoals with deadlines, the maximum makespan

allowed for a plan, durations of actions or any other temporal

constraint defined between actions, is expressed in the formal-

ism described in [8], that extends the expressiveness of the level

3 of PDDL [15] devoted to durative planning actions.

• The goal is defined as a situation assessment of the episode made

up of instances of the ontology that describe the desires of the

technical staff. Then, the goal of a problem is defined in the fol-

lowing terms (by extending the PDDL representation of goals):

– Geographical deployment of the episode (GIS information): sit-

uation of the episode, main fire lines, main focuses, water dis-

charging areas, defense lines (grouped by sectors each of which

has a fighting director that is responsible of it), command area

and waiting areas.

– All the items related to fire fighting activity have a slot that

defines its intensity, that is, a numeric evaluation of the power

of resources that should be devoted to it and that is fixed by

hand by the fire fighting director. From the intensities, the plan-

ner may pre-select several combinations of resources, that are

submitted to the fight director who finally selects one of them.

Later, the planner will select a specific set of instances of re-

sources that fits within the selected combination of resources.

– The fire director also assigns different tasks to be carried out at

each item with fire fighting activity (among the available tasks

in the ontology) and, since every task is preconditioned with

the type of resource that is able to develop it, the planner auto-

matically assigns resources to tasks.

Finally, thanks to the expressive power of using Temporal Con-

straint Networks as the underlying formalism to represent temporal

knowledge, the planner is able to obtain approximate temporal plans,
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that is plans whose timeline is flexible and may be scheduled in sev-

eral different ways to adapt to unexpected delays, but this is discussed

in the following section (for more details, see [8, 9]).

5 Monitoring and Replanning

Up to now, we have described a batch process that starts with the

knowledge stored in the ontology server and ends with the raising of

one (or more) approximate temporal plans ready for execution. This

section briefly describes the modules that allow the closing loopback

shown in Figure 1 and a revision process of plans. These modules

are the monitoring process and the replanning process (the role of

the replanner is also played by the same planning module since it is

an incremental planner able to plan an replan over the same episode

[12]) whose interaction is sketched in Figure 7 and described below.

PLANNER

MONITOR

PLAN
PATCHING

No failure Failure

End of plan

SUCCESS

Planning

Request

Planning

USER

Suggestions

plan

Figure 7. The monitoring user-centered replanning processes

The monitoring algorithm [8, 12] is a real time algorithm that fol-

lows the execution of the temporal plan at the highest level of detail

since temporal plans still represent the time at which every effect of

every action is achieved. It checks that everything executes as pre-

dicted, otherwise, it may detect and, in some cases repair, some of

the problems5. The type of problems and their possible solutions are

the following ones:

• Unexpected delays. These are detected when an action exceeds

the time predicted to achieve one of its effects and there may be

three different situations.

– Local delays. They are delays that only affect locally to an iso-

lated branch of the temporal plan without affecting the remain-

ing actions. In these cases, a new reschedule may be found only

for the actions of the affected branch leaving the remaining

schedule unaltered.

– Global delays. They are more important since they might affect

all of the remaining actions and deadline goals or makespans

might also be affected and hence, a whole new reschedule

might be needed.

– Infeasible delays. When an action aj has been delayed beyond

its limits, then no reschedule is possible and the possibility of

replanning must be considered.

• Execution failures. These situations mean a real fail of execution

of an action and they are very serious since, as a consequence of

5 Clearly, the user may also interrupt the execution of the plan at any moment.

the failure, the cause/effect relationships between actions could

have been damaged and the plan could fail to achieve its goal.

Therefore, they are situations that necessarily imply some replan-

ning decisions to be taken and that may be as easy as re-executing

the failed action or as complex a re-designing a whole branch of

the plan. These execution failures may be due to one of the fol-

lowing reasons:

– Missing condition. A condition that was previously achieved by

the execution of a previous action has disapeared. For example,

a defense line that was open by a bulldozer to protect an area

but that the fire has jumped over it and now the protected area

is threatened.

– Missing effect. An effect of an action under execution would

never be achieved. For example, when an aircraft breaks down

and it is not able to drop a discharge of water that had been

previously scheduled.

– Unexpected condition. A condition that was not previously

known suddenly raises. For example an unforeseen increase in

the speed of the wind that impedes the flight of helicopters.

In any of these cases, the revision and redesign of the failed branch

is carried out in a close interaction between the technical staff and

the planning module in a very interesting “user centered” plan

patching episode [12] like that outlined in Figure 7. Its main fea-

tures are the following ones.

On the one hand, this episode allows the interaction with the user,

that is, during this plan patching episode, the user may edit the

plan and either delete and suggest conditions or actions to reflect

his strategy to resume the execution of the plan or even define a

new assessment of the situation by deleting goals and introducing

new goals for the planner. This is a very important point since in

critic situations, where there may be lives in danger, a completely

automated process is not very realistic and the skills of human

operators could not be substituted. After the patching of the failed

plan, the own planning algorithm is able to regenerate a new plan

adapted to these changes of the user and then submitted again to

the technical staff for consideration until an appropriate solution

is found and scheduled for execution, restarting the loop of Figure

1.

On the other hand, this regeneration process is strongly based on

local changes made on the failed plan, so that no radical changes

are introduced and only the failed branches are redesigned, leav-

ing the remaining of the plan unaltered. This issue is very impor-

tant since otherwise, a global redesign of the plan could produce

dramatic changes on the resources and their tasks and a chaotic

migration from the older plan to the new one that would be unre-

alistic.

In summary, after this replanning episode, the complete cycle of

the crisis management shown in Figure 1 is completely covered by

the architecture of SIADEX.

6 Related work

Regarding general crisis situations SIPE [3] has been used for ob-

taining plans of attack for oil spill threats in the sea. Although its

architecture is very similar to SIADEX, its main drawback is that it

requires end users to have a deep knowledge of planning techniques

either to interact or to provide knowledge for the system.

Another system used in civil crises was that described in [4] where

hybrid hierarchical techniques were developed to obtain plans of re-
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sponse for floods in Germany, but as far as authors know, it does not

have monitoring or replanning capabilities, what impedes severely

its use in real environments.

Specifically in the field of forest fire fighting there are several ap-

proaches in the literature. PHOENIX [10] (1989-1993) is a hierar-

chical multi-agent system that incorporate a distributed, adaptative

and real-time planner, designed to control simulated forest fires. It is

based on a skeletal plan paradigm so there is no generative capabil-

ity, instead, plans are firstly extracted from a library of skeletal plans

and refined for the current episode. The aim of PHOENIX is not to

solve fire extinction problems in real domains, nor assist an expert in

such task, but use the domain simulation for making proofs. Because

of that it has significant weaknesses like little interaction with user

and simple replanning and monitoring techniques.

CHARADE [1] (1992-1995) is an interactive case-based planning

system. Its aim is to assist an expert in situation assessment and first

attack to forest fire. The weaknesses of this system are the lack of a

deliberative process to modify and refine the plan, and the absence

of replanning and monitoring techniques, so that the only generative

capability resides is restricted to the user.

The CARICA [2] (1995-1997) project tried to adapt the CHA-

RADE system to the experts requirements, who wanted a tool for

learning to plan fire forest attacks. Thus the initial application was

reoriented to finally become an environment for testing and learning

to extinct forest fires.

Another work is that presented in [19] where authors explore the

possibility of having a multiagent system based on Case Based Rea-

soning and Constraint Reasoning that allow the retrieval of prede-

fined skeletons of plans and their adaptation to the current situation.

The main drawbacks of these approaches are:

• The lack of deliberative planning techniques able to flexibly gen-

erate new plans for a situation without the requirement of having a

predefined skeleton or library of cases of plans previously stored.

• Nomonitoring of plan execution or replanning techniques to allow

flexibility and responsiveness in the execution of the plan.

• They consider user interaction only at edition level, not allowing

users and the planner to collaborate in the resolution of the same

problem.

• An insufficient treatment of the uncertainty about the temporal and

spatial knowledge or the use of resources.

7 Final Remarks

In summary, this paper has outlined the architecture of SIADEX, an

integrated system in development under a research contract with the

Andalusian Regional Ministry of Environment. It is based on several

AI techniques and it is intended to serve as an intelligent decision

support system for the design of forest fire fighting plans. The main

advantages of SIADEX are straightforward. Firstly, it has been de-

veloped as an easy to use tool for the technical staff of forest fire

fighting, who are not experts in AI techniques, but that may access

the system painlessly through a web service. Secondly, it is interac-

tive, so that it allows the user to suggest part of the solution or to

suggest changes in the design of a plan that would be recognized by

the planner. Thirdly, it is flexible both in the representation of knowl-

edge and in its use, so that many types of uncertainty (temporal, spa-

tial and about resources) are explicitly dealt with at different stages

of the problem, from knowledge representation to plan execution.

This project has just entered its second year of development out

of three years of duration, most part of the architecture (the ontology

server, most part of the interface and the underlying communication

technology, and the monitor module have already been developed,

but the planner is still in development) and it is obtaining a good

feedback from the technical staff. We intend to make a first demon-

stration of the system by the autumn of 2004.
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Abstract

An interleaved integration of the planning and scheduling process is

presented with the idea of including soft temporal constraints in a par-

tial order planner that is being used as the core module of an intelligent

decision support system for the design forest fire fighting plans. These

soft temporal constraints have been defined through fuzzy sets. This rep-

resentation allows us a flexible representation and handling of temporal

information. The scheduler model consists of a fuzzy temporal constraints

network whose main goal is the consistency checking of the network as-

sociated to each partial order plan. Moreover, we present a model of

estimating this consistency, and show the monitoring and rescheduling

capabilities of the system. The resulting approach is able to tackle prob-

lems with ill defined knowledge, to obtain plans that are approximately

consistent and to adapt the execution of plans to unexpected delays.
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1 Introduction

Artificial Intelligence Planning techniques have shown very useful in the reso-
lution of different problems related to logistics and workflow domains, just to
cite a few (Biundo et al., 2003). However, many real world problems require the
inclusion of an implicit representation and handling of time for the plans to be
correctly executed so that some scheduling techniques must be imported into a
planning framework. But on the other hand, many realistic scheduling problems
still require the inclusion of some planning techniques to work properly (Bartk
and Mecl, 2003). The work presented in this paper is based on one of these
interdisciplinary domains devoted to mobile workforce management in crisis sit-
uations: the SIADEX project (de la Asunción et al., 2003; de la Asunción et al.,
2005). Although the techniques being developed in this project are devoted
to the assisted design of forest fire fighting plans, they are general enough so
as to be of application to other crisis management domains either in military
frameworks (operations planning (Wilkins and Desimone, 1994), air campaign
design (Myers, 1999) or noncombatant evacuation operations (noz Avila et al.,
1999)) or in civil frameworks (oil spills (Bienkowski, 1995), floods (Biundo and
Schattenberg, 2001) or forest fires (Avesani et al., 2000; Cohen et al., 1989)). In
these real domains one must consider many different techniques but this paper
focuses on two of them that are particularly relevant.

On the one hand, there is a need to integrate planning and scheduling tech-
niques so that intelligent decision support systems are able not only to reason
about action and changes, but also about time and resources.

On the other hand, in order to solve this kind of problems it is necessary
to consider a flexible representation and handling of time. Temporal planners
(Bacchus and Ady, 2001; Do and Kambhampati, 2001; Haslum and Geffner,
2001; Smith and Weld, 1999) use a rather rigid notion of time in the sense
that time and durations are assigned and compared taking into account only
strict equality. Hence these temporal planners may only be applied to problems
where temporal knowledge is sharply defined and resulting temporal plans have
to be executed exactly in the time line defined by the planner since, otherwise,
the plan will fail. Let us suppose that in a forest fire episode, two fire fighting
brigades are expected to arrive to the waiting area exactly at 10:00 am, but
they arrive at 10:05 am and 10:10 am respectively. Is the plan still valid?

In many real applications the temporal bounds of activities, like deadlines
or durations, are implicitly considered as flexible bounds at some extent, that
is, they are not a rigid matter because of incomplete or vague knowledge or
preferences, unpredictable behaviors or execution errors. Therefore this paper
presents Machine

TF , an extension of a previous work of the authors (Castillo
et al., 2001), based both on the use of an interleaved integration of the planning
and scheduling processes and on the representation and handling of soft tem-
poral constraints. For example, when one makes a plan in order to transport
by truck a fire fighting brigade to a forest fire, one doesn’t know the exact time
needed to activate the members of the brigade, nor the exact time that the
drive takes to complete the route by truck, nor the exact time of arrival at the
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waiting area. Instead, all these temporal constraints are roughly defined, but
these plans can easily be designed by an expert. So this paper explains how to
represent these soft temporal constraints and how to include successfully soft
constraint handling procedures into a planning framework.

Soft constraints have been defined by means of fuzzy sets (D. Dubois and
Prade, 2003), a very expressive formalism to represent imprecision and prefer-
ence of the user when he/she uses soft temporal constraints. Hence, the basic
representation of the temporal knowledge will be a Fuzzy Temporal Constraint
Network (FTCN (Vila and Godo, 1994b; Maŕın et al., 1997)). This also allows
the planner to build plans based on vague temporal constraints of the form:
“the action of driving the truck will take about 100 time units” or “action a

must be delayed more or less between 20 and 30 time units after action b”. This
type of “soft constraints” provide several advantages:

• It is possible to model domains in which temporal knowledge is vaguely
defined and to obtain temporal plans of practical use for these domains.

• It becomes a very interesting approach in time critical problems, like crisis
management, space missions or complex scheduling problems, where exe-
cution times are very tight and perhaps a solution that completely meets
the temporal constraints is not possible and, instead, a relaxation of the
constraints is feasible and an approximate solution could be found.

• A temporal plan built on top of a FTCN is not a single solution, but a
class of possible solutions, i.e., a set of solutions for which the set of actions
is always the same, but their temporal interleaving might slightly change
from each other. In fact, slightly different temporal schedules of the same
set of actions might be obtained by a solution extraction procedure as
explained in the paper. This flexible representation of plans would allow
to adapt to possible delays during the execution of the plan without the
need to re-plan a new sequence: let us suppose that a sequence of actions
has been designed and that it has already started its execution, if an
unexpected delay occurs, it is still possible to obtain a new time line for
the remaining of the plan just by changing to an alternative schedule able
to adapt to the existing delay.

The basic process of Machine
TF is a partial order model in which at every

step the plan being designed by the planner is passed to the scheduler module in
order to determine its consistency. An inconsistent plan is immediately detected,
even prior to complete all its actions, and rejected. In the case of consistent
plans, since the consistency in a FTCN is a degree matter the degree of temporal
consistency is used by the heuristic of the partial order planner in order to search
plans appropriate to the preferences of the user. The problem of an efficient
estimation of the consistency is addressed through the calculus of optimistic
and pessimistic bounds of the consistency.

The paper is organized as follows. It does not discuss the domain of crisis
management (forest fires) in detail, instead, it is focused on the techniques un-
derlying the approach to integrate planning and scheduling and to represent and
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handle soft temporal constraints. For a more general description of SIADEX,
see (de la Asunción et al., 2003; de la Asunción et al., 2005). After giving a
description of the integration of planning and scheduling we have used in sec-
tion 2, we first describe in section 3 how the fuzzy sets are used as a model of
knowledge representation, and then turn in section 4 to the description of the
scheduler process based on the use of FTCN and the problem of estimation of
the consistency for these networks is addressed. Section 5 shows the monitor-
ing and rescheduling capacities of Machine

TF and an example of the process.
Section 6 presents a monitoring example and section 7 concludes.

2 Integration of planning and scheduling

The main goal of this work is the representation and handling of soft temporal
constraints in a partial order planner. Moreover, we are interested in the appli-
cation of the model to real problems, like the assistance to experts in the task
of designing forest fire extinction plans described above in the context of the
SIADEX project. Therefore, a flexible enough handling of time in the complete
process is needed.

Thus, in order to successfully deal with temporal constraints, the planning
algorithm should be extended to cope with some temporal reasoning capabilities
that traditionally belong to scheduling systems like constraint posting and prop-
agation, consistency checking or solution extraction. In the literature, there are
mainly two families of architectures for the integration of planning and schedul-
ing. On the one hand (Figure 1) a planner and a scheduler execute one after
the other in a waterfall model. This model is easier to implement but has many
drawbacks mainly related to backtracking points between both isolated systems.

Instead, we have followed an interleaved integration (Figure 2) where part of
the decisions of the scheduler have been introduced intimately into the planning
engine.

The main idea of this integration model is to allow the collaboration between
the planner and the scheduler in order to search the best plan for the problem.
After every step of the planning engine the current plan under construction is
sent to the scheduler. It checks the temporal consistency of the constraints asso-
ciated to this current plan, and this information is used by the planner to reject
the plan, in the case of inconsistency, or to follow with the refinement of this
plan, in the case of a consistent plan. Therefore, the integration between plan-
ner and scheduler overcomes the backtracking problems of the former approach
so that, for example, an inconsistency of the constraints makes the planner to
backtrack immediately.

Another important point is the inclusion in the partial order planner of
temporal information in the way of soft temporal constraints. Some examples
of these constraints are the statement of a makespan, the duration of actions,
the temporal distance between pair of actions or deadlines goals.

In the next section we propose an extension of the knowledge representation
of our planner Machine (Castillo et al., 2001), a partial order causal link based
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planner (Weld, 1994), able to deal with soft temporal constraints.

3 Extending the knowledge representation

The starting point to be addressed when extending a planning model to account
for new knowledge is its model of actions, that is, the way the planning frame-
work represent changes in the world. Other issues to be defined are the definition
of problems and the definition of plans. In this case, we have extended the basic
model of action of our planner Machine (Castillo et al., 2001) (basically the
same than PDDL 2.1 (Long and Fox, 2003b)), to allow the representation of
fuzzy temporal constraints.

3.1 Representing and handling fuzzy temporal constraints

Planning for real problems is nothing without a valid execution of the plan,
and this often implies the need to deal with temporal constraints if one wants
to obtain a realistic solution. There are several examples in the literature that
have defined approaches to deal with these constraints (Do and Kambhampati,
2001; Haslum and Geffner, 2001; Smith and Weld, 1999), however, in many real
problems, some (or many) of these constraints are not rigidly defined. This lack
of rigidity appears in several different ways.

Let us consider that we have designed a plan to carry a fire fighting brigade
from one location to another including transportation and loading and unload-
ing their tools. Let us suppose that the maximum duration for the unloading
operation is 60 time units and the whole makespan is 240 time units maxi-
mum. A rigid interpretation of temporal constraints would imply a chain of
execution failures if the unloading of tools and material takes 61 time units
and the makespan finally grows up to 243 time units, and also, in the case of
more complex plans, it will surely raise important questions about the causal
correctness of the remaining plan. In real life, and depending on acceptance
criteria, this relative delay could be acceptable if nothing else can be done and
the goal is finally achieved. Perhaps an interval based representation could be
appropriate and we could accept that the duration of the unloading could be
represented like [60− δ1, 60+ δ1] and the makespan like [0, 240+ δ2] where δ1, δ2

depend on acceptance criteria. This interval based representation has been used
in the literature as a valid means to deal with temporal imprecision or temporal
preference in planning systems (Laborie and Ghallab, 1995; Muscettola, 1994),
however it presents some drawbacks that need to be clarified. Let us suppose in
the previous example that δ1 = 2 and δ2 = 4. This would make the execution
of the previous plan acceptable, but it would also allow the planner to accept a
longer plan with a makespan of say 244.

However, this does not reflect exactly the desires of the user when he relaxed
the restrictions. A relaxation of the temporal constraints is not only a widening
of the bounds of the constraint, but also a distribution of his preference. In
the example, he accepts a makespan between 240 and 244 but, and this is the

6



most important, not all of them are equally preferred, the planner should give
priority to plans whose makespan is closer or under 240 time units. At this
point it is clear that an interval based representation is not able to represent
this information and, therefore, it does not seem expressive enough to represent
appropriately the semantics of a relaxation of the constraints in a planning and
scheduling framework.

In order to solve this representation problem, we propose the use of fuzzy
intervals to model the concept of soft temporal constraints in a planning and
scheduling framework as a more expressive formalism able to represent the pref-
erences of the user when he relaxes a temporal constraint, so that the initial
constraint represents what the user desires, with the highest priority, and the
relaxed constraint represents what the user would admit in the case that his
desires cannot be satisfied and giving priority to the values closer to the initial
satisfiability. A fuzzy interval, like that shown in Figure 3.a, is able to repre-
sent this information by means of its membership function µ, i.e., the degree
of satisfaction of a temporal constraint over the time line (Dubois et al., 1993).
Initial satisfiability is represented as the set of values t such that µ(t) = 1, that
is, the strict desires of the user. The soft constraint is represented as the set of
values t such that 0 < µ(t) < 1, i.e., those values that are admissible and that
are ordered in preference to the initial satisfiability, and finally, those values t

such that µ(t) = 0 are not admissible at all, that is, the user cannot admit these
values in any case. Therefore, the preferences of the user regarding a relaxed
and flexible temporal constraint C are perfectly represented by the following
membership function

∀t ∈ T, µC(t) = α

where α ∈ [0, 1] represents the degree of user satisfaction of the constraint C.
This model of soft temporal constraints implies a certain degree of controllabil-
ity of the duration of actions, since during their execution, the executive (human
or computer) may be required to shorten or enlarge its duration to better fit
the overall temporal constraints. However, the model is also subject to the
occurrence of exogenous events that might modify the duration of an action.
Exogenous events are not controllable, that is, they fall outside of the scope of
the executive, but the approach described in this paper is able to monitor these
exogenous changes and to suggest the executive to modify the duration of sub-
sequent actions in order to accommodate to possible delays while maintaining
consistency.

This idea of constraint relaxation is well known in many constraints satis-
faction problems approaches (Dechter, 2003) and it is the main motivation of
this paper for dealing with fuzzy sets. In particular, the remaining of this pa-
per assumes the use of convex trapezoidal fuzzy subsets like the fuzzy subset
F shown in Figure 3.b that will be noted as tuple with their respective points
F = (a, b, c, d). Obviously, this fuzzy notation may also be used to represent
crisp subsets, i.e. subsets with no relaxation at all, for example, the tuple
(b, b, c, c) represents the classic strict interval [b, c].

In particular, the different types of fuzzy temporal constraints that will be
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used are shown in Figures 4, 5 and 6, where in all the cases the value δ encodes
the admissibility limits for each constraint, and it may also be different for each
side of the fuzzy set.

3.2 Actions, preconditions and effects

An action a in Machine
TF is represented taking into account the following

issues.

• It is represented by means of two time points, namely start(a) and end(a).

• An action has effects, that is, changes in its environment and every effect
takes some time to be achieved. This time may not be precisely known,
so it is represented as the fuzzy temporal constraint “about tf time units”
(Figure 4) or “more or less between t1 and t2 time units” (Figure 5)
that must be between start(a) and end(a). This knowledge represents a
flexible constraint where the initial constraint has been relaxed through
a parameter δ. Obviously, if the delay is strictly bounded and the user
doesn’t permit the relaxation then δ = 0.

• An action has preconditions, that is, conditions that have to be made true
by the effect of another action prior to its execution. Since effects take
some time to be achieved this is one of the main source of (soft) temporal
constraint posting between actions. Let us consider that the condition
f of action a is satisfied by the effect f of action b that takes “about
tf time units” to be achieved. Then there must be a (soft) temporal
constraint that enforces start(a) to be “more than tf time units” after
start(b) (Figure 6).

• Actions have a duration that may be either unlimited (although it is cal-
culated during the planning process) or bounded, that is, they may have
a maximum duration (maxbound) allowed specified in terms of “less than
maxbound time units” (Figure 6). All the actions have an minimum du-
ration, that is, the duration required to obtain all its effects.

Then, the domain of a planning problem is the set of actions available to
solve that problem.

Example 1 This example, inspired in zeno problems of the international plan-
ning competition (Penberthy and Weld, 1994; Long and Fox, 2003a), presents
a transport problem in a crisis situation. The problem, depicted in Figure 7
consists in carrying two fire fighting brigades from their respective bases (i.e.,
city-a and and city-b) to the crisis scenario (city-c). In order to do that, a he-
licopter able to transport one brigade must be used. This helicopter has its base
at city-a and must pick up brigade-1 and brigade-2 and carry them to city-c.
The helicopter may fly at two different speeds: a slow speed (named fly) that
takes “more or less” 10000 time units to travel from city-a to city-c and a fast
speed (named zoom) that takes “more or less” 7000 time units. In addition to
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this, brigade-1 must reach city-c before 7500 time units from the begining of the
plan (fuzzy temporal reference (0,0,7500,7600)), but brigade-2 does not have any
deadline.

In this case, the domain representing all possible actions is represented in
Figure 8. The operation of the helicopter is represented as a finite state automa-
ton at the top of the figure, showing all possible states for the helicopter. The
figure also shows the representation of actions fly and refuel with their respective
preconditions and effects.

As can be seen, the helicopter must fly at its maximum speed to meet the
given constraints to reach city-c since flying at the minimum speed would be too
slow to meet the constraint imposed on the transportation of brigade-1. This is
depicted in Figure 9 where the initial part of the plan devoted to carry brigade-1
is shown. There may be seen that the refuelling action may be executed in parallel
with the boarding of the brigade and its equipment and also that the plan finally
ends a bit earlier than required (7200, 7401, 7500, 7600), that is, the earliest
ending time is 7401 time units although, in the case of an unexpected delay, it
could be delayed up to 7500 time units with the highest possibility degree.

3.3 Problems

Problems are stated like a conjunction of subproblems (literals) that must be
solved, so the planner must design a sequence of actions from the domain that
achieve these subproblems. In the domain of Example 1 a possible goal would
be (at brigade-1 city-c) to find a plan for a trip from city-a to city-c.
However, a problem may also include soft temporal constraints.

• Deadlines. Some of the literals have to be achieved at a given time. Dead-
lines are expressed as a soft constraint in any of the forms shown in Figures
4, 5 or 6. For example the deadline goal

(at brigade-1 city-c) AT (11pm-δ,11pm,11pm,11pm+δ)

might be used to require Brigade-1 to arrive in city-c “more or less at
11 pm”.

• Makespans. The total length of the plan may also be restricted by means
of a soft temporal constraint like any of the ones shown in Figures 4, 5 or
6. An example could be to find a plan with ”approximately less than or
equal to 7500 time units”.

3.4 Plans

Plans are a partially ordered sequence of actions and in Machine
TF they are

deployed over a Fuzzy Simple Temporal Constraint Network.

Definition 1 A FTCN N = 〈X , C〉 is composed of a set of variables X =
{X0, X1, . . . , Xn+1} and a set of fuzzy binary temporal constraints defined be-
tween them C = {Cij | 0 ≤ i, j ≤ n + 1} (Maŕın et al., 1997).
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Every variable Xi is a crisp variable whose domain is the real time scale T .
Variables X0 and Xn+1 are two dummy variables used to represent the beginning
and the end of the network. Every fuzzy binary constraint Cij restricts the
possible relative values of Xi and Xj , i.e., Xj −Xi ≤ Cij . Every constraint Cij

is defined as any of the types shown in Figures 4, 6 or 5 is represented by a
possibility distribution πij over the continuous time scale T . In the framework
of Machine

TF , a FTCN is used to represent a fuzzy temporal plan where every
variable represents the execution time of one of the actions of the plan and every
fuzzy binary temporal constraint is posted during the resolution process every
time that an action solves a subgoal or when actions are reordered to avoid
interferences between them, as will be explained later. Figure 9 shows a soft
temporal plan where the annotations under each action a represent the soft
constraint defined for start(a), i.e., Cstart(a),0 in the FTCN.

4 The scheduler

The scheduler module we used in Figure 2 takes as input a partial plan. This
partial plan is the current plan under construction by the planner, that can
be even an plan with some actions missing, and the main idea is to check the
temporal consistency of this plan. That is, the main goal of the scheduler is
to study if there are solutions to the constraints set associated with the partial
plan. Therefore, in a first step the scheduler generates the FTCN of the partial
plan, analyzes and propagate all the constraints, and finally it gives as output
information about the consistency of such network.

4.1 Fuzzy temporal constraint network concepts

In this process it is very important to take into account the fuzzy representation
of the temporal information we have used. Thus, we can see how in a soft tem-
poral plan, like the one shown in Figure 9, we don’t represent a unique solution
but a set of solutions such that all of them have the same actions, but they
might be scheduled for execution in different orders, all of them consistent with
the FTCN of the temporal plan. This is very important since during the design
of the plan, Machine

TF does not commit to assign a precise execution time for
every action like most temporal planners (Do and Kambhampati, 2001; Haslum
and Geffner, 2001; Smith and Weld, 1999). This excess of commitment would
make the planner to increase the number of backtracks. Instead, Machine

TF

maintains only the consistency of the soft temporal plan without committing to
a crisp solution. Only at the end of the planning process, a ground solution is
found and scheduled for execution.

In other words, a crisp solution to a FTCN is a tuple of crisp values s =
(x0, . . . , xn+1) which represents an assignment of the form Xi = xi, xi ∈ T . In
the framework of Machine

TF , a solution is an schedule of its actions, that is,
an assignment of a crisp execution time for every action of the plan that may
be used to execute the plan in practice. The set of solutions of a FTCN may
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be easily obtained by a solution extraction procedure (Figure 11) and every
solution has a degree of consistency which quantifies how accurate the solution
is with respect to the constraints of the FTCN.

Definition 2 A σ-possible solution of a FTCN N is a tuple s = (x0, x1, . . . , xn+1)
that verifies that πS(s) = σ and

πS(s) = min
0≤i,j≤n+1

πij(xj − xi) (1)

Additionally, the most accurate solution that could be obtained from the set
of solutions to a FTCN is given by the following value α, that may be used as
a measure of the “goodness” of the FTCN (the fuzzy temporal plan).

Definition 3 A FTCN is α-consistent if the set of possible solutions S ⊆ Rn+2

verifies
sup
s∈S

πS(s) = α (2)

Example 2 Table 1 shows a possible solution for the fuzzy plan of Figure 9.
This solution is 1-consistent, meaning that all the constraints have been com-
pletely satisfied.

Table 2 shows an alternative solution of the same plan but now the consis-
tency is 0.73, meaning that some constraints have not been completely verified.
In this case there is only one constraint that is not completely satisfied, and
this one is the constraint between actions OD (Open Debarking) and CD (Close
Debarking). This solution could have been obtained after the happening of some
delay that make impossible the previous solution (in this case it is produced by
a delay of action OD).

The equivalent to the classical (or not fuzzy) situation is the 1-consistency,
or we can say only consistency. The inconsistency is related to the absence of
solutions (α = 0). When the network is 1-consistency then the distribution πS

is normalized, that is, there is at least a solution that completely verifies the
desires of the user, although there may also be solutions with a different and
intermediate consistency value.

In the framework of Machine
TF , the meaning of the value α is a general-

ization of the motivation for using fuzzy sets and it needs a further explanation.
Machine

TF is deterministic, that is, all the plans found are valid to solve the
problem, so the main difference between all possible valid plans is the degree of
satisfaction of the soft temporal constraints α. Those valid plans with the high-
est value, α = 1, are those plans such that there is at least a solution (schedule)
that satisfy completely the desires of the user. On the contrary, those plans
such that 0 < α < 1 are admissible plans, that is, plans that contain at least
one admissible solution (schedule) that doesn’t satisfy the original desires of the
user but they still satisfy the constraints of the user at some degree greater than
0.

11



In this way, the consistency can be considered as a quality measure of the
partial plan since reflects the desires of the user. In order to study the consis-
tency of a network, next we present some previous concept and results described
in (Maŕın et al., 1997).

Definition 4 Two FTCN N and M with the same number of variables are
equivalent if and only if every σ-possible solution of one of them is also a σ-
possible solution of the other, that is,

πN
S (s) = πM

S (s)

where πN
S and πM

S are the distribution associated with the fuzzy sets of the
possible solutions of the FTCN N and M respectively.

An FTCN M is said to be a minimal network if its constraints are minimal,
regarding inclusion, with respect to all its equivalent FTCNs N . The constraints
Mij of the minimal network are obtained by means of an exhaustive propagation
of constraints, through the following expression:

Mij =
n+1
∩

k=0
Lk

ij ,

where Lk
ij is the constraint induced by all the paths of length k that connect

variables Xi and Xj :

Lk
ij = ∩ Ck

io,i1,...,ik
i1 . . . ik−1 ≤ n + 1, i0 = i, ik = j

Ck
io,i1,...,ik

=

k
∑

p=1

Lip−1,ip
.

The network N is inconsistent if and only if its minimal constraint is the
empty distribution, that is π∅(x) = 0 ∀x ∈ R. The network is consistent (or
1-consistent) if and only if the constraints Mij are normalized. The degree of
consistency of the network is calculated by

α = sup
s∈Rn+2

πS(s) = sup
s∈Rn+2

min
0≤i,j≤n+1

πij(xj − xi),

where each πij is associated the minimal constraint between the variables Xi

and Xj .
The minimal network always verifies

Mij ⊆ Mik ⊕ Mkj , i, j, k ≤ n + 1.

This means that a new constraint propagation process would not provide any
additional information on Mij . In our case, the minimal network will be used
to detect the consistency or inconsistency of the network. The algorithm to
calculate the minimal network (see Figure 10) is a fuzzy generalization (Maŕın
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et al., 1997; Vila and Godo, 1994a) of the shortest-path algorithm proposed in
(Dechter et al., 1991).

As the constraints have been defined as trapezoidal fuzzy numbers, we can
easily manipulate them using the well known arithmetic described in (Dubois
and Prade, 1978). Thus, by using normalized trapezoidal fuzzy numbers this
minimization algorithm is executed in polynomial time. The fuzzy operation
required are:

(a, b, c, d) ⊕ (e, f, g, h) = (a + e, b + f, c + g, d + h)

(a, b, c, d) ∩ (e, f, g, h) = (max{a, e}, max{b, f}, min{c, g}, min{d, h}).

Finally, other important concept that we use in the interpretation of the
use of the FTCN in the planning process is the independence between network
variables.

Definition 5 Two variables Xi and Xj belonging to a FTCN N are indepen-
dent if and only if the minimal constraints Mij, Mi0 and M0j verify Mij =
Mi0 ⊕ M0j ∀ i, j.

When the variables are independent then the constraints Mi0 and Mj0 con-
tains all the needed information to make variable assignment without consider
the rest of constraints.

These results will be used in the next subsection to interpret and estimate
the consistency of a network.

4.2 Consistency checking

The main goal of the scheduler module is determining the consistency of the
network associated with the partial plan analyzed by the planner. In the fuzzy
case, the consistency of the network is a degree value. Obviously, a consistency
value α = 0 implies the inconsistency of the network and there are no possible
solutions. In other case, the scheduler returns to the planner a real value between
0 and 1. This value represents the degree in which the desires of the users are
satisfied by the best solution of the network, and therefore it can be interpreted
as a quality measure of the solutions associated with the network. The idea is to
integrate this value in the heuristic function of the search process of the planner.
Therefore, the first step is the calculus of the consistency of the network.

This calculus may seem easy but it poses a difficult question. Given Equation
2, the value of the maximum degree of consistency α of a FTCN might be a
very good source of information for decision making, but up to now, it cannot
be obtained analytically.

In order to obtain the consistency value, we focus on the minimal network
M of the original one. Thus, when all of the fuzzy temporal constraints in the
minimal network are normalized, i.e.,

hgt(πij) = 1
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where
hgt(π) = max

t∈T
π(t),

the degree of consistency α is equal to 1, that is, there is at least one solution
that completely meets the constraints (Maŕın et al., 1997)representing the initial
desires of the user, otherwise 0 ≤ α < 1 and thus, it is not possible to find a
solution that verifies completely all the initial desires of the user but in any case
verifies the soft constraints in a degree. In these cases some search algorithm
like simulated annealing or genetic algorithms could be used to find that value,
but this will degrade severely the performance of Machine

TF since this process
should be launched to evaluate every possible plan being built.

In the framework of Machine
TF , although the value of α is not known, it

may be bounded and used to guide the search of the planning process. Thus,
the idea is to set bounds to the value of the consistency, and to use these bounds
to estimate it.

The algorithm (Maŕın et al., 1997) described in Figure 11 allow us to obtain
solutions for a minimal FTCN once the consistency value is a known value.

In any case, we don’t know the consistency value α, and therefore this proce-
dure cannot be used directly. With the aim of obtaining a pessimistic estimation
of the consistency we propose a greedy algorithm that consists in an iterative
procedure that encapsulates the solution extraction algorithm.

Initially, we take σ = 0, and therefore we work on the support sets1 of the
fuzzy constraints of the minimal network. Following the algorithm of solution
extraction we select a value of the support set for each one of the F sets. The
set F contains in each step the possible values of each variable, taking into
account the own constraints of the variable and the new constraints generated
by the new assignments made by the algorithm. The selection procedure is not
determined in the algorithm, therefore we have checked different possibilities
(to select the minimum value of the support set, the center point of the support
set,...). The best results have been obtained when we select the minimum value
of the mode, i.e., the core set of values of a fuzzy set m(A) = {u, µA(u) = 1}
(Figure 12).

Once this value has been selected for each variable, we have a solution that
can be evaluated through equation 1 obtaining a value σs. Now, we know that
the value of the consistency of the network is equal or greater that σs since the
consistency is the greatest πS for all the possible solutions.

The next step consists in using again the algorithm of solution extraction
but now with σs as new σ parameter. In this case we have selected a random
value of the σs-cut of each F set. Following the same steps as above we obtain a
new solution of the minimal network, and we repeat the process until we obtain
σs = 1 or alternatively during a fixed number of runs. The infeasible solutions
(σs = 0) are rejected, and the remaining ones are used to give a pessimistic
estimation of the consistency:

δl = max
i

πS(soli) i = 1, . . . , k
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where soli are the set of solutions considered by the previous process and k is
the number of runs. Clearly,

δl ≤ α.

On the other hand, let us consider the following value

δu = min
i

hgt(π0i)

for a minimal FTCN. Now, we are going to prove that this value is an optimistic
estimation of the consistency, that is, α ≤ δu.

Proposition 1 The consistency value α is always equal or less than the value
min

i
hgt(π0i), that is, α ≤ δu.

Proof: Let δi = hgt(π0i) the height of the fuzzy number π0i, since π0i are
trapezoidal fuzzy numbers

∃x∗
i | π0i(x

∗
i ) = δi.

We can take as solution

s∗ = (x∗
0, x

∗
1, . . . , x

∗
n+1).

Because of the selection process of each x∗
i

π0i(xi) ≤ π0i(x
∗
i )

for any xi, then

πS(s) = min
i,j

πij(xj − xi) ≤ min
i

π0i(xi) ≤ min
i

π0i(x
∗
i ) = min

i
δi = δu

and therefore
α = sup

s
πS(s) ≤ δu.

Moreover, this result can be improved when the variables are independent.
For each constraint M0i we consider its modal interval defined by

Li = mod(M0i)

corresponding to all the elements of the domain whose membership function is
equal to the height of the fuzzy constraints. We define

L = L0 × L1 × . . . × Ln+1.

When the variables are independent all the element of L are solutions of the
network and the consistency coincide with the value of δu.

Proposition 2 When the variables of the FTCN are all independent then every
element s of L is a δu-possible solution of the network, and

α = δu.
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Proof: For independent variable we know that

Mij = Mi0 ⊕ M0j ,

and therefore
Mij = M0j ⊖ M0i.

By taking a solution
s = (x1, x2, . . . , xn+1) ∈ L

then xi ∈ Li y xj ∈ Lj, and

(xj − xi) ∈ mod(M0j ⊖ M0i)

and
πij(xj − xi) = min{δi, δj}

then
min

i,j
πij(xj , xi) = min{min

i
π0i(xi), min

i6=0,j
πij(xj , xi)} = δu

and obviously taking into account the selection of the elements of the solution

α = δu.

For independent variable the estimation of the consistency is really simple,
since the modal interval of the constraints M0i define completely the set of
solutions. In the general case, the situation is more complex since the rest
of binary constraints need to be taken into account, and the solution can be
obtained outside the set L. In any case, the previous result gives us an interesting
interpretation of the estimation δu. We can say that this is a rather good
estimation since it has been obtained from a simplified model, that is, a model
in which the variables have been considered as independent ones.

In any case, both estimation values δl and δu bounds the unknown value of
α

α ∈ [δl, δu].

Since the exact value of α is unknown, the centroid of this interval is used to
approximate it. This value is then used by Machine

TF as a secondary ranking
criterion during the search process, where the primary ranking criterion is the
heuristic evaluation function of Machine, that has proven to be very useful
in several domains (Castillo et al., 2001). This implies a deeper integration
of planning and scheduling techniques since now the heuristic evaluation that
guides the steps of the planner also takes into account the degree of temporal
consistency in such a way that, given two plans with the same solving power,
Machine

TF will choose that with the higher temporal consistency. Next section
shows how the planner handles all the soft temporal constraints.
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4.3 Handling soft temporal constraints during planning

The main loop of the planning algorithm is a best first search guided by a
ranking function that takes into account the usefulness of the plan being con-
structed (Castillo et al., 2001) and the soft consistency of temporal constraints,
as explained before. At every step, a pending subgoal is selected for its res-
olution so that either a new action or a existing one are used to solve it. In
both cases new soft temporal constraints are posted to ensure a correct ordering
of actions, propagated by means of an all-pairs polynomial algorithm (Figure
10), and the soft temporal consistency of the resulting plan is evaluated and
taken into account for its ranking. Eventually, if some interferences between
concurrent actions is detected, this is corrected by adding new soft temporal
constraints to produce a reordering of the actions that avoids the interference.

Goal Satisfaction Let us suppose that an action a with an effect f that takes
“about tf time units”, solves a precondition of an action b. Then the
following soft temporal constraint

start(b) ≥ start(a) ⊕ (tf − δ, tf , tf , tf + δ)

is posted and propagated (Figure 10). The satisfaction of a subgoal is
recorded in a structure called causal link in order to avoid that no action
that deletes f could overlap in the interval between start(a) and start(b).

Duration of actions For all actions, either with maximum duration maxbound

or not, we first calculate the following values:

durmin(a) = max
f ′ in effects(a)

(tf ′ − δ, tf ′ , tf ′ , tf ′ + δ)

durmax(a) =

{

(−∞,−∞, +∞, +∞) (unspecified)
(maxbound − δ, maxbound, maxbound, maxbound + δ) (bounded)

and next we post and propagate the following constraint:

start(a) ⊕ durmax(a) ≥ end(a) ≥ start(a) ⊕ durmin(a)

Deadline goals For every deadline goal g, with deadline (tmin−δ, tmin, tmax, tmax+
δ), meaning that goal g must be achieved “more or less between times
tmin and tmax”, which has been solved by an action a with its effect f

that takes “about tf time units”, the following soft constraint is posted
and propagated.

start(a) = (tmin − δ, tmin, tmax, tmax + δ) ⊖ (tf − δ, tf , tf , tf + δ)
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Concurrent actions and threats Say that action c with the effect (not f)
that takes “about tnot(f) time units” overlaps with a casual link from
actions a to b with respect to the effect f . Then, the overlapping must
be avoided by reordering the threatening action c by promotion (putting
c after all the effects of b)

start(c) ≥ start(b) ⊕ durmin(b)

or demotion (putting a after the negative effect of c)

start(a) ≥ start(c) ⊕ (tnot(f) − δ, tnot(f), tnot(f), tnot(f) + δ)

With these new capabilities for handling soft temporal constraints, Machine
TF

is able to obtain soft temporal plans like that shown in Figure 9 by means of
the solution extraction procedure shown in Figure 11 and execute the plan.
However, there are some additional features that must be mentioned.

5 Monitoring and rescheduling

One of the advantages of Machine
TF is that the underlying FTCN in a fuzzy

temporal plan may be used to monitor its execution and to reschedule part of the
plan in the case that a delay has occurred during its execution but maintaining
the causal structure of the plan. In the case of Machine

TF there may be three
different types of delays.

1. Local delays. They are delays that only affect locally to an isolated branch
of the temporal plan without affecting the remaining actions. This is the
easiest case since it could not affect deadline goals or makespans which
depend on more global temporal constraints. In these cases, a new resched-
ule may be found only for the actions of the affected branch leaving the
remaining schedule unaltered.

2. Global delays. They are more important since they may affect all of the
remaining actions and deadline goals or makespans might also be affected
and hence, a whole new reschedule might be needed.

3. Infeasible delays. When an action aj has been delayed more than it is
acceptable even taking into account the existence of soft temporal con-
straints,i.e., π0j(delay) = 0, then no reschedule is possible and the possi-
bility of re-planning should be considered.

The algorithm to monitor the execution of fuzzy temporal plans is shown in
Figure 13. It uses the set of actions of the plan still to be executed Π, a set of
already executed actions C and a queue of delayed actions Q, that is, actions
that should have executed before but they are not able to execute because,
for some reason, some of its preconditions have not been achieved yet by their
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producing actions. The variable TIME is used to track the evolution of the
schedule. It works as follows. The monitoring procedure defines a tentative
schedule by obtaining a solution with maximal consistency. If nothing goes
wrong (Q = ∅), every action whose execution time equals to TIME and whose
preconditions have already been satisfied, is executed and the variable TIME

is increased to the earliest execution time of the remaining actions in Π.
However a delay (either with local scope or global scope) might occur at time

TIME, that is, some of the effects of an action might take longer than expected
producing the delay of all of the actions that had been scheduled to time TIME

but that have that missing effect in their preconditions. In this case, delayed ac-
tions are included in the queue Q and variable TIME is continuously increased
by a minimum ∆TIME producing, in every iteration, a re-computation of the
schedule for actions either in Q or Π. This reschedule of the remaining actions
in the plan is needed to propagate the delay of the actions in Q to any future
action that could have any temporal constraint relative to them. This procedure
allows to readapt the schedule to the detected delay. It must be said that, in
the case of delays, since new schedules are being continuously obtained to fit
the delay, the consistency σ of the schedules may decrease due to the violation
of any fuzzy temporal constraint but it will still be acceptable whenever σ > 0.
The extreme case is when the accumulated delay is completely unacceptable and
the consistency of the schedule is 0. This is detected in step 4 when the variable
TIME takes an infeasible value for some action aj such that π0j(TIME) = 0.

This capability for monitoring fuzzy temporal plans is very useful in realistic
domains. One could have argued that this could have also been achieved by
obtaining a rigid temporal plan and executing it in a flexible manner, however
this would pose severe questions on the consistency of the explicit delay of
an action since it might produce unsolvable flaws with respect to future actions
causally dependent of the delayed action or produce any unexpected interference
with the effects of other concurrent actions. In the case of Machine

TF , the
delay of actions in order to flexibly modify a previous schedule is a safe process
since it is based on the fuzzy temporal constraints explicitly included in the
plan, which have been obtained taking into account the existence of threats and
causal relations between actions, as explained in previous sections. Hence, no
feasible delay nor reschedule obtained on the basis of the FTCN of the plan
could produce an unexpected interference between parallel actions, either on
local delays or global delays.

6 An example

The following example shows the monitoring of the plan in Figure 9 and simu-
lates the occurrence of several unexpected delays as well as the corresponding
reschedule of actions. The simulation is shown in Table 3.

The first row is the initial schedule with σ = 1 and it is shown in Figure
14.a). Once the execution starts, four delays have been simulated.

1. The first one (Stop-Refuel) is a local delay that only affects one action.
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The remaining delays are global ones.

2. It may also be seen that the first global delay (ZOOM) only produces a
reschedule of the actions without affecting the consistency (quality) of the
plan (σ = 1, Figure 14.b).

3. However the second global delay (STOP) degrade a little the consistency
of the plan, that is, it produces a delay that does not completely satisfy
the strict makespan, but it might be acceptable in the terms of the fuzzy
temporal constraints represented in the domain (σ = 0.73). It is worth
noting that the solution extraction procedure also suggest reducing the
expected duration of action Close-Debark (CD) in order to maintain the
highest consistency. The duration of action CD encoded in the domain
is the fuzzy subset πOD−CD ≡ (150 200 300 350), its duration in every
previous schedule had been fixed to 200 time units (πOD−CD(200) = 1)
but after this delay, the solution extraction procedure suggests to fix it to
186.6 time units (πOD−CD(186.6) = 0.73).

4. However, this is not finally possible and there is a new delay of action CD

that ends the plan with a consistency of σ = 0.6.

7 Some experiments

This section shows the performance of Machine
TF in several realistic problems

and one problem based on the zeno travel domain shown along the paper. The
description of these problems is as follows.

Problem # 1. It is the problem in the the zeno travel domain, as seen up to
now with fuzzy durations.

Problem # 2. It is a sample problem in the fire fighting scenario.

Problem # 3. Machine
TF is also able to deal with problems from other do-

mains, like manufacturing systems . This third problem is a real-life exam-
ple of batch manufacturing for a dairy products problem (Castillo et al.,
2000; Castillo et al., 2001) with fuzzy due dates. It consists of 48 different
possible actions.

The results of the execution of Machine
TF in these domains are shown in

Table 4. In realistic domains with a complex knowledge representation, run
times do not seem to scale as efficiently as many of the high performance plan-
ners that take part in the International Planning Competition (Long and Fox,
2003a) but, on the other hand, its temporal expressiveness enable it to deal with
realistic problems where these other planners may not succeed, that is, prob-
lems with ill defined temporal knowledge, to obtain approximately consistent
temporal plans and to adapt the execution of these plans to unexpected delays
during the execution.
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8 Final remarks

This paper has outlined Machine
TF , a temporal planner based on the repre-

sentation of fuzzy temporal knowledge able to build fuzzy temporal plans. The
main contributions of Machine

TF are the following.

• It is able to obtain plans in domains in which time is not precisely known.
This is very important in real world problems and mainly with respect to
classic temporal planners and schedulers, which need a rigid representation
of time and, therefore, they lose much of the temporal expressiveness of
these domains.

• It is also able to obtain approximate solutions where exact solutions are
not feasible, given a soft interpretation of temporal constraints. This is
also very important in hard temporal problems since it transforms the
inconsistency in a matter of preference and degrees, more in accordance
with most usual constraints in real life.

• And finally, fuzzy temporal plans obtained provide a flexible time line
for its execution. Given that a fuzzy temporal plan may be scheduled in
different time lines, depending on the solution that has been extracted,
if an unexpected delay occurs (due to an error, a delay in the execution
of an action, etc), a new schedule adapted to the new situation may be
re-extracted without the need to re-plan.

To illustrate the results of these techniques, some examples extracted from
the domain of crisis management have been shown. These examples are inspired
in the work being done by the authors under a research contract with the An-
dalusian Regional Ministry of Environment (de la Asunción et al., 2003; de la
Asunción et al., 2005) devoted to an intelligent decision support system for the
assisted design of forest fire fighting plans.

However there are some open problems that need further work. The first one
is the need to improve the featuring of FTCNs in order to obtain a better esti-
mation of the global consistency α. The second one is related to the monitoring
procedure. As explained before, in the case of delays (Q 6= ∅) the procedure
continuously reschedules the remaining actions propagating the delay along the
existing constraints. This is mainly done by a shortest path algorithm whose
efficiency is O(n3) where n is the number of time points (actions) of the FTCN.
This means that, if the number of actions is very large and the needed temporal
resolution to advance TIME is very small, there might be no time to complete
the propagation. Therefore, a post-processing of the FTCN that could restrict
the propagation of constraints to make the reschedule faster might be used. In
fact, a reformulation like the one in proposed in (Morris and Muscettola, 2000)
defined on TCNs could be adapted to the case of fuzzy constraints to cope with
degrees of consistency and applied to the fuzzy temporal plans of Machine

TF

before the monitoring procedure.
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9 Related work

Machine
TF is a deterministic planner and uncertainty is restricted only to the

time of occurrence of events so it is a classical goal-oriented planner leaving
out of its scope other approaches to handle uncertainty that involve nondeter-
minism and a planning process focused on optimizing a plan utility function
like in MDPs (Blythe, 1999; Bresina et al., 2002). However it still faces a very
important problem in deterministic domains, that is, how to obtain and execute
a plan when part (or the whole) of the temporal knowledge is uncertain.

The need to represent and reason about uncertain temporal knowledge has
been a very active field in the literature devoted to real problems. The ap-
proach presented in this paper is based on the use of possibility distributions
(Zadeh, 1978) to model either uncertainty or imprecision or a preference crite-
rion in same the sense of (Khatib et al., 2001) (in fact fuzzy temporal constraints
are a special case of this approach) and not necessarily related to probabilis-
tic uncertainty like in (Bresina et al., 2002). There are also other approaches
that deal with temporal uncertainty that have been built over STN (Dechter
et al., 1991) like STNUs, simple temporal networks under uncertainty, (Vidal
and Fargier, 1999; Morris and Muscettola, 2000). These approaches are based
on the use of contingent (uncertain) constraints defined on pairs of temporal
points to represent uncertain temporal knowledge. Contingent temporal con-
straints do no explicitly affect the consistency of the STNU, that is still a crisp
result in {0, 1}, although it does affect the schedule of a solution. The duration
of a contingent constraint cannot be predicted before execution, and variables
related to a contingent constraint must be maintained uninstantiated until the
execution of the plan2. In the case of Machine

TF , fuzzy temporal constraints
provide a little more of expressiveness and they define a possibility measure
over these contingent links to represent degrees of uncertainty or preference so
final solutions will also have associated a σ-consistency varying softly in [0, 1].
Although Machine

TF can make predictions, with maximal possibility, on these
contingent links during the monitoring of the plan, there is no way to guarantee
that this prediction will be finally obtained in a σ−consistent real schedule nor
that the final schedule will be σ-consistent, σ > 0.

There are also works on scheduling temporal plans either on STNs (Muscet-
tola et al., 1998) or STNUs (Morris and Muscettola, 2000) but in all of them any
schedule may suddenly change from consistency to inconsistency. In Machine

TF

there are degrees of consistency allowing for approximate plans or schedules
when completely consistent ones are not possible.
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Notes

1The support of a fuzzy set A is the set s(A) = {u, µA(u) > 0}
2This leads to the definition of several types of controllabilities (strong, dynamic and weak)

depending on how one may ensure, before execution, that a consistent solution may be finally
scheduled.
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of control sequences for manufacturing systems based on nonlinear planning
techniques. Artificial Intelligence in Engineering, 4(1):15–30.

Castillo, L., Fdez-Olivares, J., and González, A. (2001). Mixing expresiveness
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Tables

OB CB REFUEL STOP-REFUEL ZOOM STOP OD CD END σ

1 201 1 101 201 7201 7201 7401 7401 1

Table 1: A consistent solution
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OB CB REFUEL STOP-REFUEL ZOOM STOP OD CD END σ

1 201 1 180 300 7340 7340 7526.6 7526.6 0.73

Table 2: A 0.73-consistent solution
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TIME OB CB REFUEL STOP-REFUEL ZOOM STOP OD CD END Detected Delay σ

0 1 201 1 101 201 7201 7201 7401 7401 - 1
100 [1] 201 [1] 101 201 7201 7201 7401 7401 - 1
101 [1] 201 [1] (101) 201 7201 7201 7401 7401 STOP-REFUEL 1
180 [1] 201 [1] [180] 201 7201 7201 7401 7401 - 1
201 [1] [201] [1] [180] (201) 7201 7201 7401 7401 ZOOM 1
300 [1] [201] [1] [180] [300] 7300 7300 7500 7500 - 1
7300 [1] [201] [1] [180] [300] (7300) 7300 7500 7500 STOP 1
7340 [1] [201] [1] [180] [300] [7340] [7340] 7526.6 7526.6 - 0 .73

7526.6 [1] [201] [1] [180] [300] [7340] [7340] (7526.6) 7526 .6 CD 0.73
7540 [1] [201] [1] [180] [300] [7340] [7340] [7540] [7540] - 0 .6

Table 3: An example of the execution of the plan in Figure 9 which simulates
several delays and their corresponding reschedules. Times in [brackets] represent
already executed actions and times in (parentheses) represent delayed actions
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Problem DS PL NE CT

P#1 9 18 28 2.1
P#2 17 19 337 27
P#3 48 40 1913 1619.7

Table 4: Experimental results of Machine
TF in several domains. (DS) Domain

Size: number of possible actions. (PL) Plan length: number of actions included
in the plan. (NE) Search effort: nodes of the search space explored by the
planning algorithm. (CT) CPU time in seconds, running CLISP and Linux on
a Pentium IV 1,6GHz.
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Post constraints
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Planning decisions
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Solution extraction
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EXECUTION
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Figure 1: A batch model of planning and scheduling.
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Figure 2: An integrated model of planning and scheduling
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Figure 3: Two fuzzy temporal intervals
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Figure 6: Two fuzzy temporal constraints representing ”more than t time units”
or ” less that t time units”.

37



CITY−C

CITY−B

CITY−A

Brigade−2

Brigade−1

HELICOPTER

Figure 7: A transport domain inspired in the domain Zeno.
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AGENT HELICOPTER

DEBARKINGNOBOARDBOARDING

Open−Debark

Close−Debark

Close−Board

Open−Board

GROUND

Stop

Fly

FLYING

Zoom

REFUELING

Refuel

Stop−Refuel

NOREFUEL

(:agent helicopter1
(:states (ground flying norefuel refueling

noboard boarding debarking))
(:action fly
:parameters (?city1 ?city2)
:max-duration (6900 7000 7000 7100)
:pre-condition

(and (helicopter-at helicopter1 ?city1)
(refueled helicopter1)
(state helicopter1 ground))

:sim-condition
nil

:effects
(and ((not (helicopter-at helicopter1 ?city1)) (0 0 0 0))

((not (state helicopter1 ground)) (0 0 0 0))
((not (refueled helicopter1)) (6900 7000 7000 7100))
((helicopter-at helicopter1 ?city2)(6900 7000 7000 7100))
((state helicopter1 flying) (0 0 0 0))))

(:action refuel
:parameters nil
:max-duration (75 100 100 225)
:pre-condition

(state helicopter1 norefueling)
:sim-condition

(state helicopter1 ground)
:effects

(and ((not (state helicopter1 norefuel)) (0 0 0 0))
((refueled helicopter1) (75 100 200 225))
((state helicopter1 refueling) (0 0 0 0))))

Figure 8: The structure and part of the domain of the travel domain of Example
1. All the available actions for the helicopter are shown. Note that there are
two modes of flight depending on their speed: a fast flight (zoom), that takes
shorter, and a slow flight (fly), that takes longer.
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Open Boarding
(0,0,400,0)

Close Boarding
(150,201,300,550)

Zoom City−A City−C
(150,201,300,550)

Stop
(7050,7201,7300,7450) (7050,7201,7300,7450)

Open Debarking Close Debarking
(7200,7401,7500,7600)

END
(7200,7401,7500,7600)

(0,0,0,0)
START

Refuel
(0,0,200,475)

Refuel Stop
(75,101,300,550)

Figure 9: A soft temporal plan for part of problem of Example 1 under the
deadline constraint (0,0,7500,7600) for brigade-1 to be at city-c. Every action
is labeled with its respective execution time as a fuzzy temporal reference.
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for k=0 to n+1
for i=0 to n+1

for j=0 to n+1
Mij = Mij ∩ (Mik ⊕ Mkj)

If Mij = π∅ then the network is inconsistent

Figure 10: Constraints propagation
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Algorithm Solution Extraction

let 〈X, M〉 a minimal FTCN and σ ∈ [0, 1], σ < α

X0 = 0
for i=1 to n+1

F =
⋂

j<i

(xj ⊕ Mji)

Select xi such that πF (xi) ≥ σ

Xi = xi

s = (x0, x1, . . . , xn+1)
Return s, πS(s) ≥ σ

Figure 11: Solution extraction
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Figure 12: The minimum value of the mode of a fuzzy set
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1. Initialization

• Given Π = {a0, a1, . . . , an+1} a fuzzy temporal plan

• C = ∅ and Q = ∅

• Initialize TIME

2. Design a possible time line T

• Fix the execution time for every action in C and consider TIME to be the
execution time for every action in Q

• Use the solution extraction procedure to obtain a time line s = {xi|ai ∈ Π ∪ Q}
with a degree of consistency σ = πS(s) given by equation 1 so that action ai is
scheduled to be executed at time xi.

3. Monitoring the execution

(a) If Π and Q are empty then SUCCESS

(b) For every action aj ∈ Π such that xj = TIME

• Extract aj from Π

• If preconds(aj) are true in the environment, then execute aj (C = C∪{aj})

• Otherwise delay aj (Q = Q ∪ {aj})

(c) Advance TIME in ∆TIME

4. If Q 6= ∅ then monitor the queue.

(a) For every action aj ∈ Q

• If π0j(TIME) = 0 then ERROR: TIME OUT

• If preconds(aj) are true in the environment, then extract aj from Q and
execute aj (C = C ∪ {aj})

(b) Go to Step 2

5. Go to Step 3

Figure 13: Monitoring algorithm for fuzzy temporal plans
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END

Close Debarking

Open Debarking

Stop

Zoom City−A City−C

Refuel Stop

Refuel

Close Boarding

Open Boarding

START

1 101 201 7201 7401

END

Close Debarking

Open Debarking

Stop

Zoom City−A City−C

Refuel Stop

Refuel

Close Boarding

Open Boarding

START

1 7300180 7500201 300

(a) (b)

Figure 14: Two different schedules obtained from the plan in Figure 9. (a) The
original schedule with σ = 1. (b) The reschedule after the second delay with
σ = 1
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Abstract. This work introduces SIADEX 1, a planning framework intented to assist

human experts in the design of forest fire fighting plans. Issues about how to engineer

planning knowledge for such a system, how to monitor the execution of fighting plans

and how to patch unfeasible plans are discussed in detail.

1 Introduction

AI planning techniques have shown to perform very efficiently in providing human experts

with valuable tentative plans and strategies either in military [15] or civil [2] domains. These

AI planning techniques are only the core of more complex architectures that may also involve

knowledge management techniques and their plans might be directly scheduled for real exe-

cution or adapted by domain experts before their execution. The proposed system, SIADEX

[7], is a plannig framework that falls into this category of AI planning systems. It is being

developed under a research contract with the Andalusian Regional Government (Regional

Ministry of Environment) [7]. It is conceived as a distributed planning application and it is

intended to assist technical staff in the design of forest fire fighting plans.

Thus, in order to achieve an adequate development of such a system, apart from the de-

velopment of an adequate core planning engine, one has to focus on other planning related

techniques. On the one hand, it is necessary to previously perform a knowledge engineer-

ing process in order to define an operational framework where to model and represent the

knowledge managed by domain experts, planning experts and the own planning engine. In

this sense, we have established a methodology that allows to reach “planner-readable” plan-

ning domain and problems from the knowledge currently managed by experts or knowledge

engineers (planning experts). This methodology assumes that the modeling language (a high-

level language, able to support a user-friendly introduction close to the expert understanding)

is different from the language used by the planner (low-level language).

On the other hand, in order to obtain a useful system able to be applied in the real world,

techniques about the execution and monitoring of temporal plans in a real framework, and

techniques devoted to manage the response to unexpected situations have to be developed.

1This work has been partially supported by the Spanish MCyT under project TIC2002-04146-C05-02 and

the Andalusian Regional Ministry of Environment contract n. NET033957/1



Thus, we also describe a monitoring and replanning process able to (1) reschedule part of a

temporal plan in the case that a delay ocurred during its execution, but maintaining the causal

structure of the plan; and (2) in the case of an unfeasible delay, patch the plan in a human

centered approach.

2 Overall Architecture

The core of the SIADEX architecture, (Figure 1), is a planning server that obtains and serves

temporally extended plans following a hierarchical planning algorithm. The input to the plan-

ning server comes from the ontology server (called BACAREX), that is capable of integrat-

ing and “distilling” knowledge from different formats and sources (legacy GIS and external

databases). It also serves the necessary knowledge (world objects and their properties, world

states, temporal constraints, actions and tasks), represented in a standard (PDDL-compliant)

planning language, in order to generate fire fighting plans: a chronologically ordered sequence

of actions, where every action has a time stamp that refers to the time at which it should be

executed. These plans are executed under the supervision of the monitoring module and a

human operator. The communication between these modules is performed using the XML-

RPC Protocol2, a standard protocol that allows complex data structures to be transmitted,

processed and returned using XML as encoding and HTTP as transport layer.

Figure 1: The architecture of SIADEX

This also allows the user to communicate with the system under a TCP/IP connection

(OS independent), through a personal computer, a laptop or even a PDA device. All these

operations are coordinated by the WebCenter module that interfaces all of the interactions

between SIADEX and the outer world: it receives planning requests by the user (through

the User Interface), and ask the planning server for new plans ; it gathers information on

2XML: Extensible Markup Language http://www.w3.org/XML. XML-RPC: XML Remote Procedure Call

http://www.xmlrpc.com



the execution of the plan, and it launches execution orders, or raises alerts about possible

execution failures to a human operator (upon notification of the monitor).

As can be seen, this architecture aims to be a distributed, stand-alone planning applica-

tion, that implies the development of different planning techniques (hierarchical planning,

plan monitoring and replanning, user interaction) that have to be integrated with time and

resources management (scheduling). In addition, a stand-alone application as SIADEX can-

not be built without developing appropiated planning and scheduling knowledge engineering

techniques. All these issues wil be discussed in the following sections.

3 BACAREX: the knowledge base of SIADEX

BACAREX is an ontology of planning objects conceived as a standalone module. It is, thus,

responsible of providing the knowledge required by the planning process, but it is also an

open platform to a continuous update and query by (domain or planning) experts. The ontol-

ogy has an interface with legacy databases so that the flexibility and efficiency of data storage

is guaranteed and multiple users/processes in parallel are also allowed. It also provides both

offline and online access facilities. Offline access allow planning experts accessing the knowl-

edge and carry out maintenance and validity checking operations with full operability. Online

access is done through a web access service, and it is devoted to domain experts that do not

have skills on knowledge representation for planning but may painlessly access the knowl-

edge in a web browsing fashion by means of a hierarchy of objects and activities close to

their understanding of the problem.

The operating requirements of such a knowledge base, the great amount of knowledge

managed and its different categories, requires to consider methodologies and tools as stan-

dard and planner-independent as possible. We have realized that it is possible to adapt Com-

monKADS [16] to model and represent some parts of the knowledge base (later detailed).

With respect to choosing a modeling language, this depends also on the existence of a tool

for representing and editing the planning knowledge. Although some planning-specific tools

and modeling languages can be found in the literature [13, 15, 17] they are either not planner-

independent [15, 17], or they do not fit to real-world expressiveness requirements [13]. Thus,

for the sake of standarization we have opted for Protégé 3, a widely recognized tool in the

field of knowledge based systems development, and we have defined our planning modeling

language and planning knowledge acquisition and validation process on this framework.

Thus, the knowledge engineering process that we have carried out has lead to the defini-

tion of an ontology of planning knowledge (BACAREX) and a validation process for such

ontology. In addition, different actors in the management of this knowledge have been con-

sidered: the user (usually a domain expert), the knowledge engineer (a planning expert) and

the planner; and different techniques have been developped according to every actor needs

and operating requirements.

3.1 Engineering planning knowledge

In the development of BACAREX (see Figure 2) we have had to faced with the modeling,

representation and management of several categories of knowledge.

3http://protege.stanford.edu. It also allows to easily develop online and offline acces to the knowledge base.
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Figure 2: The modeling, representation and validation process followed in SIADEX

Domain objects. Objects (like geographical points, squads, vehicles, etc.) , their properties

(like coordinates, number of components, avalaibility) and relations between objects (po-

sition, components, etc.) have to be identified, modeled and represented. In addition addi-

tional and relevant data like GIS information or weather forecasting already exists in legacy

databases (Oracle databases for resource management, and GIS like ArcInfo for cartographic

information, are used by technical staff) and they have to be incorporated also as domain

objects. This knowledge is modeled and representend in the domain obects ontology, a part

of the ontology that structures domain objects as a hierarchy of classes and instances. There

are standard methodologies, like CommonKADS, that can be adapted 4 for helping to obtain

that part of the ontology, but this is not the case for others parts.

World and objects states. Dynamic properties and relations between objects (like position

or different states for resources), and their transitions, that are needed to define the dynamics

of the domain, and required by the own planning process, have also to be modeled and repre-

sented. The world and objects states ontology represents the predicates (relations) necessary

to define the domain dynamics, and it also allows the definition of deductive axioms in or-

der to derive other states from logic combinations of more simple predicates. Some relations

(i.e. predicates) can be automatically obtained, from domain objects slots, but there are other

relations that appear to be necessary to represent only when a detailed analysis of actions

requirements and effects is done in the validation stage.

Temporal and resources (scheduling) constraints. Apart from the necessary time repre-

sentation for every dynamic property or relation, there is also information about weather fore-

casting (temperature, humidity and wind speed and direction) with attached time constraints.

In addition, the use of resources is subject to legal temporal regulations, thus one has to con-

sider: periods of availability of resources, legal safety constraints (maximum number of hours

4See [9] for a detailed description about adapting CommonKADS to the development of SIADEX



of flight for aricrafts), and schedule of the shifts of workers, by contracting agreement. The

temporal and resources constraints ontology is devoted to this category of knowledge, and it

associates time constraints (time points or intervals) to properties and relations described in

the previous parts of the overall ontology.

Actuation guidelines and standard operating protocols. This category includes knowl-

edge about the tasks that have to be accomplished in a fire fighting episode. These tasks are

classified as strategy, logistics, attack, deployment and withdrawal procedures. In addition

to this tasks knowlege, heuristics about the use of resources and conditions about the use of

procedures in specificic situations have also to be represented. This knowledge is modeled

and represented in the task ontology , that is defined as a class-hierarchy of tasks where the

representation of tasks follows a HTN standard: tasks may be primitive or compound, every

compound task is associated to a set of methods that represents different ways to accom-

plish a task, and every method is a collection of (primitive or compund) tasks [14]. Tasks

(compound or primitive) are represented with a name, arguments whose types are extracted

from the domain objects ontology, and temporal constraints (a duration, and start and end

time points). Primitive tasks contains preconditions and effects, represented by standard log-

ical expresions. Every method, represented as a (possible unordered) task list, also contains a

precondition that defines their application conditions (useful to encode user heuristics).

Vehicle

Ground Aircraft

Full_Terrain Truck Helicopter

mobilize ?x - Vehicle

notify ?x - Vehicle

activate ?x - Vehicle

move ?x - Vehicle

mobilize ?x -

Ground

mobilize ?x -

Truck

mobilize ?x - Aircraft

mobilize ?x - Helicopter

notify ?x - Helicopter

activate ?x - Vehicle

move ?x - Helicopter

method

�.

<method precondition>

<method precondition>

Generic Task

Partially specified task

Figure 3: Tasks hierarchy with partially specified tasks

Apart from this basic representation, tasks are organized as a class hierarchy following

the idea of an object oriented foundation class. This allows a planning expert to carry out

knowledge management operations as the definition of generic tasks performed on abstract

resources, and the specialization of such generic tasks performed on more concrete resources.

The use of this kind of ontology has several advantages since it allows to maintain tasks even

if they are partially specified. These kind of tasks are useful to describe cases in which the

knowledge elicited (form documents or experts) is not at a sufficient level of detail to be

considered fully operational; but it might be introduced to the planner server in a validation

process in order to be refined by the interaction with domain and planning experts.

Though part of this modelling language is inspired by the HTN paradigm, it is important

to notice that it is not a planner-readable language, and that it supports several modelling

operations that are not offered by standard planning languages, but necessary if one want to

develop a real-world planning application. These functionalities include: task organization by



subject (strategy-definition tasks, logistics operations tasks, deployment tasks, attack tasks,

withdrawal tasks, etc.), knowledge inheritance operations (tasks specialization by inheritance

of either methods or precondition and effects) and generic tasks management. This splits

knowledge engineering operations (domain modelling and validation) from proper planning

operations.

3.2 Planner-independent validation

The knowledge stored in BACAREX is not directly recognizable by the planner module. This

is not a drawback, but an added value. This allows to define a planner-independent validation

process, which starts from a translation of the domain modeling and representation language

to a planner-readable language. At present, we have developed some “plugins” that translates

the BACAREX knowledge into the task formalism of SHOP [14] and an extension of PDDL

[12] able to manage hierarchical tasks. Its main features are the following ones:

• Predicates are esaily translated from the world and objects states ontology, and the classes

hierarchy of the domain objects ontology are also translated as a hierarchy of types in

the PDDL domain description. Deductive axioms are translated as derived predicates in

PDDL 2.2.

• Slots in the domain objects ontology that contain numerical values that may change during

a planning episode, mainly numerical resources like the level of fuel of a vehicle, are

declared like fluents in the PDDL domain, so that the use of arithmetic operations and

functions are allowed over them.

• The temporal knowledge related to durations and delays of tasks, like subgoals with dead-

lines, the maximum makespan allowed for a plan, durations of actions or any other tem-

poral constraints defined between actions, are translated into the formalism described in

[4], that extends the expresiveness of the level 3 of PDDL devoted to durative planning

actions. Other temporal constraints in the temporal constraints ontology (like work shifts

or weather forecasting) are translated into timed initial literals in PDDL 2.2.

• Primitive tasks are translated as PDDL 2.2 durative actions (with the time formalism

extended as described in [4]). Compound tasks, their time constraints, and their associated

methods are translated into a hierarchical extension of PDDL (inspired in the SHOP task

formalism). In order to avoid a high branching factor in the planner, only the most specific

tasks (leafs of the task hierarchy) are translated into the planning domain.

The result of the translation process is a planning domain and/or problem ready to use for

a planning engine. This output is used in a validation process based on querys and answers

performed against the planning server. These query and answer transactions are defined over

a XML-RPC protocol that allows to use any planning engine that supports this protocol. That

process allows to detect different kinds of mistakes usually produced in domain modeling

and writing: syntactical bugs, semantical inconsistencies, and partially specified tasks.

4 The Planner

The planning module is still under development so we may not show performance or effi-

ciency data here but it is a planner based on the HTN paradigm [11] over the ideas previously



developed in our nonhierarchical temporal planner MACHINE [4] and our hybrid hierarchi-

cal planer HYBIS [3].

• The initial state is obtained from the world and states ontology by querying the ontology

about the main slots of the instances of clases like facilities, human resources, vehicles,

water points, etc. The domain is also extracted from the ontology, through the translation

process explained above.

• The goal is interactively defined as a situation asessment of the episode made up of in-

stances of the ontology that describe the desires of the technical staff. Then, the goal of

a problem is defined in the following terms (by extending the PDDL representation of

goals):

– Geographical deployment of the episode (GIS information): situation of the episode,

main fire lines, main focuses, water discharging areas, defense lines (grouped by

sectors each of which has a fighting director that is responsible of it), command area

and waiting areas.

– All the items related to fire fighting activity have a slot that defines its intensity,

that is, a numeric evaluation of the power of resources that should be assinged to

it and that is fixed by hand by the fire fighting director. From the intensities, the

planner may pre-select several combinations of resources, that are submitted to the

fight director who finally selects one of them. Later, the planner will select a specific

set of instances of resources that fits within the selected combination of resources.

– The fire director also assigns different tasks to be carried out at each item with fire

fighting activity (among the available tasks in the ontology) and, since every task

is preconditioned with the type of resource that is able to develop it, the planner

automatically assigns resources to tasks.

Finally, thanks to the expressive power of using Temporal Constraints Networks as the

underlying formalism to represent temporal knowledge, the planner is able to obtain approxi-

mate temporal plans, that are plans whose timeline is flexible and may be scheduled in several

different ways to adapt to unexpected delays, but this is discussed in the following section (for

more details, see [4, 5]).

5 Monitoring and Replanning

Up to now, we have described a batch process that starts with the knowledge stored in the

ontology server and ends with the raising of one (or more) approximate temporal plans ready

for execution. This section describes the monitoring process and the replanning process (the

role of the replanner is also played by the same planning module since it is an incremental

planner able to plan an replan over the same episode [10]) whose interaction is sketched in

Figure 4 and described below.

The monitoring algorithm [4, 10] is a real time algorithm that follows the execution of

the temporal plan at the highest level of detail since temporal plans still represent the time

at which every effect of every action is achieved. It checks that everything executes as pre-

dicted, otherwise, it may detect and, in some cases repair, some of the problems5. The type

of problems and their possible solutions are the following ones:

5Clearly, the user may also interrupt the execution of the plan at any moment.
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Unexpected delays. These are detected when an action exceeds the time predicted to achieve

one of its effects. In this case, it must be taken into account that a temporal plan encodes many

temporal constraints between its actions like deadlines, relative constraints and time windows

for execution and that most of these temporal constraints come from the cause/effect relation-

ships between actions in the plan. For example, let us consider that action a1 executes at time

t and it produces an effect e at time t + δe. Let us suppose again that action a2 requires the

effect e to be true before its execution and that it must be executed before the deadline t+δa2
.

This means that action a2 must be necesarilly executed in the time window [t+δe, t+δa2
] and

that any delay in the achievement of the effect e would also delay a2 and even more, it might

put in risk a correct execution of action a2. Therefore, there may be three different situations.

• Local delays. They are delays that only affect locally to an isolated branch of the temporal

plan without affecting the remaining actions. This is the easiest case since it could not

affect deadline goals or makespans which depend on more global temporal constraints. In

these cases, a new reschedule may be found6 only for the actions of the affected branch

leaving the remaining schedule unaltered.

• Global delays. They are more important since they might affect all of the remaining ac-

tions and deadline goals or makespans might also be affected and hence, a whole new

reschedule might be needed.

• Infeasible delays. When an action aj has been delayed beyond its limits, then no resched-

ule is possible and the possibility of replanning should be considered. In the previous

example, if the effect e takes too much time to be achieved (when δe > δa2
) then a tem-

poral inconsistency would rise and the temporal plan would not be valid.

Execution failures. These situations mean a real fail of execution of an action and they

are very serious since, as a consequence of the failure, the cause/effect relationships between

actions could have been damaged and the plan could fail to achieve its goal. Therefore, they

are situations that necesarilly imply some replanning decisions to be taken and that may be

as easy as re-executing the failed action or as complex a re-designing a whole branch of the

plan. These execution failures may be due to one of the following reasons:

6The rescheduling process is decribed in [8] and it consists of propagating the detected delay among all the

actions that have not executed yet and detecting possible inconsistencies in the propagation.



• Missing condition. A condition that was previously achieved by the execution of a previ-

ous action has dissapeared. For example, a defense line that was open by a bulldozer to

protect an area but that the fire has jumped over it and now the protected area is threatened.

• Missing effect. An effect of an action under execution would never be achieved. For ex-

ample, when an aircraft breaks down and it is not able to drop a discharge of water that

had been previously scheduled.

• Unexpected condition. A condition that was not previously known suddenly raises. For

example an unforeseen increase in the speed of the wind that impedes the flight of heli-

copters.

In any of these cases, the revision and redesign of the failed branch is carried out in a close

interaction between the technical staff and the planning module in a “user centered” plan

patching episode [10] like that outlined in Figure 4. Its main features are the following ones.

On the one hand, this episode allows the interaction with the user, that is, during this

plan patching episode, the user may edit the plan and either delete and suggest conditions

or actions to reflect his strategy to resume the execution of the plan or even define a new

assesment of the situation by deleting goals and introducing new goals for the planner. This

is a very important point since in critic situations, where there may be lives in danger, a

completely automated process is not very realistic and the skills of human operators could

not be subtitued. After the patching of the failed plan, the own planning algorithm is able

to regenerate a new plan adapted to these changes of the user and then subbmitted again to

the technical staff for consideration until an appropriate solution is found and scheduled for

execution.

On the other hand, this regeneration process is strongly based on local changes made on

the failed plan, so that no radical changes are introduced and only the failed branches are

redesigned, leaving the remaining of the plan unaltered. This issue is very important since

otherwise, a global redesign of the plan could produce dramatic changes on the resources

and their tasks and a chaotic migration from the older plan to the new one that would be

unrealistic.

6 Final remarks

Specifically in the field of forest fire fighting there are several approaches in the literature.

PHOENIX [6] (1989-1993) or CHARADE [1] (1992-1995) are good examples, but they have

failed in their application as assistants to real fire fighting scenarios. The reasons for these un-

successful approaches are: (1) They have neglected the development of appropiated planning

knowledge engineering techniques; (2)The lack of deliberative planning techniques able to

generate new plans for a situation without the requirement of having a predefined skeleton

or general plan previously stored, monitoring of plan execution and replanning techniques

to allow flexibility and responsiveness in the execution of the plan; (3) They consider user

interaction at edition level, not allowing users and the planner to collaborate in the resolution

of the same problem.

The knowledge modeling and validation process here described has to be considered as a

step forward in the development of a standard tool, based also on a widely recognized repre-

sentation language for engineering planning knowledge. In addition, the temporal reasoning

framework described is devoted to primitive tasks, more work have to be done in order to



fully extend the Temporal Constraint Networks reasoning process to a hierarchical planning

algorithm.
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Abstract. This work presents a middle-ware able to translate OWL-

S web services descriptions into a temporal HTN domain in order to
automatically compose and execute sequences of web service invocations,
including parallel branches and complex synchronizations, based on the
combination of HTN planning and temporal reasoning techniques.

1 Introduction

Semantic web services (SWS) techniques [11] support the way in which already
existing ”syntactic” web services (usually described in WSDL [10]) can be ex-
tended with a semantic layer in order to be automatically discovered, composed
and invoked.The main goal of such representation is to provide a logical frame-
work in order for a software system to be capable of both interpreting SWS

descriptions and, given a service request, reasoning about them in order to au-
tomatically compose and execute a sequence of web service invocations that
provides the resquested service. The main long-term goal of SWS is getting
the Semantic Web in its full potential by semantically annotating both data
and web processes, but there is a short-term goal that is concerned with the
semantic annotation of business web services deployed on service oriented enter-
prise architectures. In this case SWS may help to leverage the Business Process
Management (BPM)[2] life cycle in which business processes (workflow schemes
designed to specify the operation of business web services) of a company are at
present manually composed and orchestrated in order to be executed by stan-
dard commercial BPM engines. The application of SWS techniques may lead
to a more agile and flexible BPM life cycle by automating the composition and
orchestration of business processes while keeping human intervention to a mini-
mum.

Although there are several standard proposals of SWS languages [1], OWL-S

[4] is a language that may serve to this purpose for two reasons: firstly, it al-
lows to represent web services as processes with typed input/output parameters,
preconditions and effects, as well as their data model on the basis of an OWL
ontology. And, second, the core concept of OWL-S is the Process Model : an



OWL ontology that allows to describe both the semantics of web services as a
compositional hierarchy of atomic (that represent already existing WSDL web
services) and composite processes (that represent high-level services), and the
operation of every composite process as a workflow scheme that specifies both
order constraints (by using sequence, unordered, split, and join structs) and
the control flow logic (by using conditional, if-then-else, and iterative, while

and repeat-until control structs) that sub-processes should follow in order to
obtain an executable sequence of web services.

From the point of view of OWL-S, web service composition consists on find-
ing a suitable sequence of atomic processes (that is, web services invocations)
that provides a high-level service-request expressed as a composite process, and
considering the process model as a guideline to be followed by the composi-
tion process. Regarding the automated composition of web services as OWL-S
processes, although several techniques may be applied to this problem [12], AI
Planning and Scheduling (P&S)[7] seems to be the most promising one since
during the last 40 years it has dealt with the development of planning systems
capable of interpreting a planning domain as a set of actions schemes (i.e. a
process model) and reasoning about them in order to compose a suitable plan
(i.e. a sequence of actions) such that its execution reaches a given goal (that
can be seen as a service request) starting from an initial state. Concretely, HTN
planning [5, 3] becomes the most suitable AI P&S technique since it supports
the modeling of planning domains in terms of a compositional hierarchy of tasks
representing compound and primitive tasks by describing how every compound
task may be decomposed into (compound/primitive) sub-tasks and the order
that they must follow, by using different methods, and following a reasoning
process that is guided by the knowledge encoded in the HTN domain.

Therefore, considering this previous discussion, in this work we present a
middle-ware able to both interpret OWL-S web services descriptions, by trans-
lating them into an HTN domain and problem description, and carry out a

reasoning process based on HTN planning techniques in order to automatically
compose a sequence of executable web services. This sequence is obtained by fol-
lowing the workflow scheme defined in the OWL-S process model and provides a
high-level service request introduced as a problem. The cornerstone of this archi-
tecture is SIADEX, an own developed HTN planner [3, 6] that receives as input
an HTN domain automatically translated from an OWL-S process model and a
planning problem representing both, a goal extracted from a high-level service
request, and an initial state extracted from the instances of the OWL-S’ under-
lying OWL data model. In the following section we will describe in detail the
main features of SIADEX that make it suitable in its application to web service
composition as well as its related aspects with the OWL-S Process Model. Then,
a mapping algorithm that translates a OWL-S Process Model into a SIADEX
domain will be illustrated. Finally, the architecture of the middle-ware will be
shown and we will briefly describe a service oriented enterprise application in a
simulated scenario where this middle-ware has been tested in order to interpret
and execute business processes modeled as OWL-S processes.



2 SIADEX in a nutshell

SIADEX is an AI Planning and Scheduling system that uses as its planning
domain and problem description language an HTN extension of the PDDL stan-
dard in such a way that primitive tasks are encoded as PDDL 2.2 level 3 durative
actions (see [3] for details). In addition, methods used to decompose tasks into
sub-tasks include a precondition that must be satisfied by the current world state
in order for the decomposition method to be applicable by the planner. The basic
planning process of SIADEX is a state-based forward HTN planning algorithm
that, starting from the initial state and a goal expressed as a high-level task,
iteratively decomposes that top-level task and its sub-tasks by selecting their
decomposition methods according to the current state and following the order
constraints posed in tasks decomposition schemes as a search-control strategy
(See Figure 1).

(a) (b)

(:derived (vip_user ?u - User)
(and (> (salary ?u) 3000)

(genre ?u F)))
(:task GetPrice
:parameters (?c - Car ?u - User)
(:method is_vip_user
:precondition (vip_user ?u)
:tasks (

(getPrice ?c ?p)
(getDisccount ?c ?d)
(final_price ?p ?d ?f)
(:inline () (price ?c ?u ?f))))

(:method not_vip_user
:precondition (not (vip_user ?u))
:tasks (

(getPrice ?c ?p)
(final_price ?p 0 ?f)
(:inline () (price ?c ?u ?f)))))

(:derived (vat_applied ?p ?v)
{import math
?v = ?p * 1.16
return 1}))

(:durative-action final_price
:parameters(?p ?d ?f - number)
:duration (= ?duration 3)
:condition(and (vat_applied ?p ?v)
:effect(and (assign ?f (- ?v ?d)))))

(:task while-loop
:parameters (?x - Number)
(:method base case
:precondition (and not (> ?x 0))
:tasks ())

(:method loop
:precondition (and (> ?x 0))
:tasks ((do-something ?x)

(:inline ()
(assign ?x (- ?x 1)))

(while-loop ?x))))

Fig. 1. The basics of HTN planning domains in SIADEX’ domain language: (a) A derived literal
inferring whether a given user is or not a vip user and a compound task with two different methods

of decomposition, describing how to compute the price of a car depending on the profile of a g iven
user. The decomposition method uses an inline task to assert in the current state the price of the car
for that user . (b) A primitive action that computes a final-price with discount, it is preconditioned
with a derived literal that infers, by using a Python script, the VAT applied to a price. The task
while-loop exploits the capability of recursive decompositions in order to describe repetit ive tasks.

This process makes possible to know the current state of the world at ev-
ery step in the planning process and, concretely, when preconditions of both
methods and primitive actions are evaluated, what allows to incorporate sig-
nificant inferencing and reasoning power as well as the ability to call external
programs (that in this case might be web services) to infer new knowledge by
requesting information to external sources. For this purpose, SIADEX uses two
mechanisms: on the one hand, deductive inference tasks of the form (:inline

<p> <c>) that may be fired, in the context of a decomposition scheme, when
the logical expression <p>(condition) is satisfied by the current state , providing



additional bindings for variables or asserting/retracting literals into the current
state, depending on the logical expression described in <c>(consequent); on the
other hand, abductive inference rules represented as PDDL 2.2 derived literals of
the form (:derived <lit> <expr>), that allow to satisfy a literal <lit>when
it is not present in the current state by evaluating the expression <expr>that
may be either a logical expression or a Python script that both binds its inputs
with variables of that literal and returns information that might be bound to
some of the variables of <literal>.This one is a crucial capability since, as it
will be detailed in the following sections, supports the way in which SIADEX
interacts with external web services.

Furthermore, the domain description language of SIADEX and the planning
algorithm support to explicitly represent and manage time and concurrency in
both compound and primitive tasks, thanks to the handling of metric time over
a Simple Temporal Network (See [3] for more details). This temporal representa-
tion provides enough expressivity power to represent OWL-S workflow schemes
such as sequence, unorder, split and join. Finally, the search control strategy fol-
lowed by SIADEX allows to represent other patterns like conditional or iterative
control constructs, giving support to fully represent an OWL-S process model.
This will be seen in next section where the translation process from OWL-S to
the domain description language of SIADEX is illustrated.

3 Mapping an OWL-S process model into a SIADEX

domain

Mapping Overview.The translation process first maps the OWL data model
into the PDDL data model by translating OWL classes, properties and instances
into PDDL types, predicates and objects, respectively 3.Then it maps the OWL-
S process model into a SIADEX HTN domain that represents the operation of
both atomic and composite processes as primitive tasks and task decomposition
schemes, respectively. Atomic processes are mapped as PDDL durative actions
(see below) and the workflow pattern of every composite process is mapped into
a method-based task decomposition scheme that expresses the operational se-
mantics of the control structs found in that composite process. In that section it
will be shown how the mapping process exploits (1) the order between sub-tasks
in order to represent sequence and unordered control structs, (2) the manage-
ment of temporal constraints to represent split, join and split-join of processes,
and (3) the search control used to decompose tasks in order to represent condi-
tional structs and the possibility of describing recursive decompositions as the
basis to represent iterative control structs. However, firstly we will start by illus-
trating how to map an atomic OWL-S process into primitive actions managed
by SIADEX.

Atomic processes as PDDL durative actions.The header of an atomic
process (i.e. its name, input and output properties, See Figure 2 ) is directly

3 Space limitations prevents detailing this ontology mapping process, although a sim-
ilar one on a frame-based ontology is described in [6]



mapped into the header of a PDDL durative-action with typed parameters (these
types correspond to classes of the OWL data model). This is also the case for pre-
conditions/effects, since there is also a direct correspondence between expressions
inside preconditions and effects of any atomic process and preconditions/effects
of PDDL actions4.

This direct translation works for world-altering only atomic processes (i.e.
only alter internal states in processes) and that don’t need to manage ex-
ternal information. However, atomic processes might be associated to WSDL
information-providing web services in such a way that atomic process’ outputs
might be filled with information sent back by the web service once it has been
invoked. This real need reveals as a key issue the management of information
gathering at planning (i.e. composition) time since a considerable part of the
knowledge needed by SIADEX to reason about methods and primitive actions’
preconditions might not be contained either in the initial or the current state,
but accessible from external information sources. In this case it becomes neces-

<process:AtomicProcess rdf:ID="#GetPrice">
<process:hasInput rdf:resource="#CarModel"/>
<process:hasInput rdf:resource="#User_Car"/>
<process:hasOutput rdf:resource="#Price"/>
<process:hasPrecondition rdf:resource="#AlwaysTrue"/>
<process:hasEffect> Price(User_Car Price) />
</process:AtomicProcess>

Fig. 2. An OWL-S atomic process that returns the price of a car

sary to represent in the SIADEX domain both, the atomic process structure and
the web service invocation, since it will be needed to obtain information at plan-
ning time. This is done by translating the correspondence (defined in the Service

Grounding) between the atomic process and the WSDL service as an inference
rule represented as a derived literal. This inference rule has the general form
(:derived <header> <call>) where <header> is a literal automatically gen-
erated from the header of the atomic process (that corresponds with the ”header”
of the WSDL web service) and <call> is a Python script (also automatically
generated) that invokes the web service by passing the input parameters of the
composite process and provides a bind for the output parameters with the infor-
mation sent-back by the web service. Finally, the literal <header> is added to
the preconditions of the PDDL action in order to be evaluated when the action is
applied in the planning process. The example shows how the correspondence be-

(:derived (d_getPrice ?m ?c ?p)
{i1 = ?m
i2 = ?c
<invoke wsdl#getPrice i1 i2 o1>
?p = o1})

(:durative-action ActiongetPrice
:parameters (?m - Model ?c - Car ?p - Number)
:precondition (d_getPrice ?m ?c ?p)
:effect (Price ?c ?p))

Fig. 3. The correspondence between the atomic process GetPrice and the web service
wsdl#GetPrice described as a primitive action and a derived literal, respectively

4 We have used the Protege OWL-S tab plug-in for editing OWL-S process models.
This tab allows to represent preconditions an effects in several formats like SWRL
or KIF. We have chosen to represent them as strings with the KIF format, a similar
representation to the one of PDDL.



tween the atomic process getPrice(input:Model input:Car output:Price)

and it associated WSDL web service is translated into a derived literal which
is added to the preconditions of the action ActionGetPrice corresponding tho
the atomic process. This representation allows, on the one hand, to bind the
variable ?p (for price) with a value coming from an external source through a
web service invocation and, on the other hand, when the action is applied to the
current state, to incorporate this binding at planning time when asserting the
effect of the action in the current state.

Composite processes and management of time-order constraints.The
translation algorithm maps every OWL-S composite process and its sub-processes
into a SIADEX task decomposition scheme where sub-tasks (corresponding to
sub-processes) are structured in methods depending on the control structure
that is modeled in the composite process. This is done in two steps: firstly, pro-
cess parameters are mapped into task parameters as in atomic processes, process
preconditions are added to the preconditions of every method of the correspond-
ing task and, since HTN domain descriptions do not allow to explicitly describe
effects in a tasks, process’ effects are mapped into an in-line inference task of
the form (:inline () <consequent>) where () stands for an empty condition
part (representing a condition that is always true) and the consequent contains
the logical expression of the effects of that composite process. This allows to as-
sert, at planning time, the effects (if any) of the translated composite process in
the current state. The second step considers the control struct of the composite
process making a distinction between control structs that define the execution
order between processes (sequencing, unordering, splitting or join), and those
that define the control flow logic of processes (conditional an iterative ones.)
(:task Purchase

:parameters (?m - CarModel ?user_car - Car)
(:method
:precondition ()
:tasks ((getAvailability ?m)

[(getPrice ?m ?user_car ?p)
(getDiscount ?m ?user_car ?d)]

(bookCar ?m ?user_car)
(payCar ?user_car))))

Fig. 4. The decomposition scheme of action Purchase and its associated plan imple-
menting a split-joint construct

In the former case the translation process generates one single method that
expresses such control structures by describing order constraints between its
component sub-tasks. For this purpose SIADEX allows sub-tasks in a method
to be either sequenced, and then their signature appears between parentheses
(T1,T2) , or splitted, appearing between braces [T1,T2]. Furthermore, an appro-
priate combination of these syntactics forms may result in split, join or split-join
control structs. For example, the decomposition method of task purchase (?m -

Model ?user car - Car) in Figure 4 specifies that, in a plan for the compo-
sition of web services, in order to purchase a car of a model, before to invoke
booking and paying web services, it is firstly necessary getting the availability
of cars of that model and, concurrently, obtaining the price and discount of that
model.



Current state-based forward planners (HTN and non-HTN, like SHOP2[5]
or OWLSXPLan[8]) with application to web service composition lack of the
required expressivity for representing web services execution paths as the one
shown in the previous example. The reason is that these planners return plans
as a totally ordered sequence of actions and, as opposed to them, SIADEX is
capable of obtaining plans with true parallel branches of execution due to the
handling of metric time over a Simple Temporal Network (STN). At planning
time, SIADEX deploys its partially generated plan over a STN that associates
a pair of start and end time-points to either every compound or primitive task.
All the time points and constraints of the STN are posted and propagated auto-
matically, observing the order constraints defined in the decomposition scheme,
every time that a compound or primitive task is added to the plan. Therefore,
the control construct initially modeled in OWL-S contains implicit temporal
constraints that, when translated, are automatically explicited and managed by
SIADEX. This is a clear advantage of SIADEX with respect to other approaches,
since despite OWL-S does not support time-related information in processes,
the planning process of SIADEX is aware of these temporal constraints between
processes, and capable of automatically manage and infer them from qualitative
order relations like those above illustrated.

Conditional and iterative control constructs are translated into task decom-
position schemes that exploit the main search control technique of SIADEX.
Briefly, a composite process p that contains a conditional struct if c then

p1 else p2 is translated into a task decomposition scheme (:task p (:method

:precondition c :tasks (p1 )) (:method :precondition (not c) :tasks

(p2))) describing that if c holds in the current state then decompose the task
p1 else decompose the task p2. A composite process p that contains an itera-
tive struct while c p1 is translated into a task decomposition scheme (:task p

(:method :precondition (not c) :tasks ()) (:method :precondition c

:tasks (p1 p ))), describing that the task p1 should be repeatedly performed
(and so recursively decomposed ) while c holds in the current state.

Finally, it is important to recall that given an OWL-S process model and
its associated service grounding the translation process 5 above described allows
to automatically generate a planning domain represented as a hierarchical ex-
tension of PDDL2.2, capable of representing information providing actions by
invoking external web services, which is fully ready to use (without human in-
tervention) by SIADEX in order to solve problems of web services composition.
On the basis of this translation process we have also developed an architecture
for the dynamical composition and execution of semantic web services described
in OWL-S, that is shown in the next section.



Fig. 5. A middle-ware where an HTN planner (SIADEX) plays the role of a web
services composer for the automated composition of OWL-S semantic web services

4 Middle-ware for the composition and execution of web

services

Figure 5 shows the architecture of the middle-ware here presented able to both
interpret OWL-S web services descriptions, by translating them into an HTN
domain as explained in the previous section, and carry out a reasoning pro-

cess based on HTN planning techniques in order to automatically compose and
execute a sequence of executable web services. This sequence is obtained by fol-
lowing the workflow scheme defined in the OWL-S process model and provides
a high-level service request introduced as a problem. The proposed architecture
has the following components: a Translator that maps an initial service-request
(through a java interface) into both, an HTN goal (represented as a high-level
task that is an instance of a composite process already modeled in OWL-S), and
an initial state which is made from OWL instances of the OWL-S data model
(any way, most of the information needed to planning resides in external sources
and recall that the planner can access to it by means of web services invoca-
tions). The problem together with the translated OWL-S process model are sent
to the Web Services Composer(SIADEX), the cornerstone of this architec-
ture, in order to start the composition (planning) process. Then the planner
makes use of the knowledge encoded in the domain (representing the OWL-S
process model) as a guide to find a sequence of temporally annotated primitive
actions that represents a suitable composition (with possibly parallel branches)
of atomic processes. This sequence is sent to the Monitor that is in charge of
both scheduling the execution of atomic processes according to their temporal
information and sending execution orders to the Executive. This module is in
charge of executing web services invocations (requested at either planning or

5 The sources and java .jar files can be downloaded from
http://decsai.ugr.es/˜faro/OwlsTranslator



plan execution time) and sending back the information. At planning time, the
requested information may result in a fail when the web service requested is not
available or the information returned gets a precondition unsatisfied. In that
case SIADEX performs a backtracking process that may lead to select a differ-
ent web service (thus carrying out a form of web service discovery) or even a
completely different way to compose the high-level service (if so encoded in the
OWL-S process model). At execution time, the execution of a web service might
raise an exception the notification of which is sent to the Monitor that raises
a Re-planning process. This module is in charge of manage the uncertainty
when executing web services and at present is in development, but it is being
designed in order to fastly, locally repair the composed sequence. Any way, at
present and in case of an exception is raised, the Monitor informs to the user that
the service requested is unfeasible and a new composition episode is initiated.

This middle-ware has been tested in the framework of a geographically dis-
tributed, service oriented enterprise application devoted to car sales. In this sim-
ulated scenario the above described middle-ware plays the role of a semantically
extended Business Process Engine that bridges the gap between business pro-
cess modeling and web services execution phases, by automatically interpreting,
composing and enacting them. Furthermore, apart from this application we have
developed a standalone Protéǵe plug-in (called ProblemEditor 6) in order to lo-
cally edit, visualize and test HTN planning problems and domains automatically
extracted from an OWL-S process model.

5 Related Work

Regarding the application of AI P&S to the composition of OWL-S web ser-
vices in [5] can be found a translation process from OWL-S to SHOP2 domains
that inspired the work here presented. Nevertheless, SHOP2 authors neglect the
management of temporal constraints what prevents to translate fully OWL-S
process models containing split and join constructs, what limits its real applica-
tion to web composition problems as the ones here faced by SIADEX. Further-
more, in [3] we show a detailed experimentation proving that SIADEX clearly
outperforms SHOP2. OWLSXPlan [8] is a planner that faces the composition of
OWL-S service profiles with non-HTN planning techniques what makes impossi-
ble to interpret full OWL-S process models (indeed it is focused on automatically
discovering and composing non-hierarchical OWL-S service profiles already pub-
lished in the web, a different approach to the one here presented). Authors of
OWLSXPlan recognize that, due to the absence of temporal reasoning, control
structs like unordered sequence are not realizable. Recall that, apart from its
time performance, the main advantage of SIADEX is the capability of making
explicit the management of implicit temporal constraints found in every OWL-
S process model, allowing to represent parallel branches of execution as well
as complex synchronization mechanisms. Finally [9] translates OWL-S process

6 This plug-in and the complete OWL-S model can be downloaded from
http://decsai.ugr.es/˜faro/OwlsTranslator



models into conditional web services sequences ready to be interpreted by stan-
dard workflow engines what allows to manage the uncertainty at execution time
by establishing conditional courses of execution. However this approach has a
high computational cost that might be reduced with the alternative approach
here presented that allows both to incorporate and manage external information
at planning time and to fast and dynamically repair a sequence that raises an
execution exception.

6 Conclusions

In this work we present three significative advances regarding web services com-
position and its relation with AI Planning and business process management:
first, we have introduced a novel and fully automated translation process from
OWL-S process models to a hierarchical extension of the PDDL standard that
allows a temporal HTN planner to automatically compose and execute OWL-S
web services. Secondly, plans obtained represent sequences of web services in-
vocations including parallel and synchronization mechanisms what makes the
middle-ware here presented to be considered as an important step forward in
the application of AI Planning techniques to real SWS composition problems.
Finally, a full application has been developed where business processes are mod-
eled as OWL-S processes that are used to automatically compose and orchestrate
business web services of a simulated virtual enterprise. At present we are work-
ing in the management of execution exceptions based on an HTN plan repairing
process.
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planning technology together. Experiences in SIADEX. In Proc. ICAPS, 2006.
7. Ghallab M., Nau D., and Traverso P. Automated Planning: Theory and Practice.

Elsevier, 2004.
8. Klusch M., Gerber A., and Schmidt M. Semantic web service composition planning

with owl-sxplan. In Int. AAAI Fall Symp. on Agents and Semantic Web, 2005.
9. Traverso P. and Pistore M. Automated composition of semantic web services into

executable processes. In International Semantic Web Conference, 2004.
10. Graham S., Davis D., and al. Building Web Services with Java. 2005.
11. McIlraith S.A., Son T.C., and Zeng H. Semantic web services. IEEE Intelligent

Systems, 2(16):46–53, 2001.
12. Charif Y and Sabouret N. An overview of semantic web services composition

approaches. In ”Proc. Int. Workshop on Context for Web Services”, 2005.
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Abstract. This paper describes the SIADEX project (Assisted Design of Forest Fire

Fighting Plans by means of Artificial Intelligence Techniques), which is being devel-

oped under a research contract with the Andalusian Regional Government. First we

give an overview of SIADEX and previous works on this subject. Then, we describe

the development methodology we are following, the SIADEX framework, the knowl-

edge base of SIADEX (named BACAREX) and the planning and replanning model

we are using. Finally, conclusions are shown.

1 Introduction.

Forest fires constitute one of the biggest threats for natural spaces preservation, and so imply

a big worry for any public Administration. Last years, Andalusian public Administration

has carried out a big effort on improving the efficacy of the resources devoted to forest fire

fighting, leading to the creation of the Andalusian Forest Fire Plan (INFOCA Plan).

We have to confront with a dynamic domain, where decisions must be updated frequently.

Plan design time is crucial and all operations have important temporal constraints. Also, the

environment is unpredictable and uncertain.

There are several previous intelligent planning applications to forest fire domain. PHOENIX

[5] (1989-1993) and CHARADE [6] (1992-1995) are good examples, but they failed in their

application as assistants in real fire extinction episodes. The reasons for these unsuccessful ap-

proaches are: (1) The lack of deliberative planning techniques, monitoring of plan execution

and replanning techniques; (2) They consider user interaction at edition level, not allowing

plans assisted design.

The main goal of our project is to develop a system, based on intelligent planning tech-

niques, for the assisted design of forest fire fighting plans (hereafter, SIADEX [3]). SIADEX

will improve the current manual process of fire extinction plans design. Also, SIADEX must

not be understood as a substitution of the technical staff, but as a tool that improves the skills

of an extinction expert, assisting him in an interactive design process of extinction plans. The

development of SIADEX will lead to a tool which can be used in two different ways:

• As a virtual learning environment for forest fire extinction. Thus technical staff can ac-

quire skills and experiences in strategies design for forest fire extinction.

∗Department of Computer Science and Artificial Intelligence. E.T.S. Ingenierı́a Informática. University of

Granada (Spain).



Figure 1: General overview of SIADEX Architecture.

• As a real fire extinction intelligent decision support system (IDSS) based on AI planning

techniques. Thus experts can take design decisions of the operation plan from different

proposals the system shows him, in function of the knowledge stored in it.

2 The SIADEX Development Methodology.

One of the main issues that we thought carefully before we started the SIADEX project was

about the work methodology we had to use to develop our system.

It is well known that there is not an unified and world-wide accepted methodology for

developing a planning system. Planning research is a relatively young field. We find a lack of

standardized methodologies and tools that may help us to do the task.

So we based our development strategy in a well known and widely used methodology as

CommonKADS [1], that is used to develop knowledge base systems (KBS). CommonKADS

is a compendium of general models, concepts, methods and techniques that can be adapted

easily to the process of developing a planning system.

For the project management, we have to develop our system in three phases. In the first

phase we have to accomplish the knowledge base (BACAREX) that holds all the information

about the domain we are working on (forest fire fighting). In the second phase we will develop

the planner itself (SIADEX). And finally, in the last phase, we will develop the interface with

other systems including human experts. At the end of each phase we will obtain a different

product (see Figure 1) fully functional. We are now at the second stage. One of our main

objectives is to maintain each of the modules as independent as we can for the others, so we

can reuse the work previously done in other projects with minimum changes. We used, for

each module, the life-cycle model proposed in CommonKADS.

3 The SIADEX Framework/Architecture.

Here we present a general overview of SIADEX architecture. We can see the architecture

like an interconnected but independent distributed multi-agent system, where each element



covers a specific task, that serves as support for the rest of the modules (see Figure 1). The

communication between the modules is performed using an API based on the XML-RPC

Protocol1. We will describe now the main characteristics and functionality of each module:

• Planning Agent: It is the core of the SIADEX architecture, it’s a generative planner that

obtains extended plans following hierarchical planning techniques. The planning server

receives the world description, the initial situation and the goal and gives back a solution.

• Ontology Agent: It serves to the planning agent the world description and the initial situ-

ation of objects and resources, and the procedural knowledge needed to build the plan.

• Interface to external databases and applications (World Interface): It gives to the planning

agent possible information that is not available in the ontology, like cartographic maps or

weather forecasts. It gives the possibility to plug-in other intelligent agents.

• User Interface: The user will have the possibility to communicate with the system through

a TCP/IP connection. The overall system is designed to be OS independent, thus the user

can use a personal computer, a laptop or even a PDA device.

• Monitor: The plans are then executed under the supervision of the Monitor. The moni-

tor alerts a human operator about the events that are going to happen. The operator can

confirm the execution of an operation or its fail. Under faulty conditions it can launch a

replanning process to present alternatives for repairing the plan.

• WebCenter: All the system is coordinated by the WebCenter module. It coordinates all

of the interactions between SIADEX and the external world: (1) Receives planning re-

quests by the user; (2) Ask the planner for new or repaired plans; (3) Upon notification of

the monitoring module, it launches execution orders to the human operator; (4) Gathers

information on the execution of the plan by indirect observation of a human operator or

by direct gathering and translates them into the Monitor; (5) Raises alerts about possible

execution failures upon notification of the Monitor or upon direct user request.

4 BACAREX: The SIADEX Ontology.

BACAREX is the SIADEX subsystem that maintains the ontology that hold all the informa-

tion that SIADEX needs to prepare plans, for example, information about resources that could

be used during the forest fire extinction. The architecture had to be as modular as possible, so

it can be reused and flexible. Thus we have to maintain the ontology format and implemen-

tation independent. BACAREX architecture has been designed in a client/server fashion (see

Figure 1). Its main characteristics are:

• The knowledge must be accessed from any place, any platform, any OS. This was done

thanks to the BACAREX/SIADEX distributed architecture. The client application sends

and receives the information through an Internet service. The language for writing the

client software can be any that supports XML-RPC protocol.

1XML-RPC: XML Remote Procedure Call http://www.xmlrpc.com



• PDDL Compliant. It is important to observe that SIADEX receives the world information

in PDDL format [10]. We design a PDDL Gateway capable of transforming the ontology

representation into PDDL. This guarantees that any planner that is PDDL compliant can

be plugged into the system without the necessity of changing the Ontology.

• The ontology needs to be accessible, not only for the researches, but for the final users

too. Then a set of tools that provides a friendly user-interface is needed. We developed a

web-interface for the final-users. Within this web the users can query, navigate, insert and

update the concepts covered by the ontology in a visual fashion.

• Common knowledge. The information is centralized, therefore there will not be data-

inconsistence problems.

• Possibility to port the ontology knowledge to a standard Web-Semantic language (e.g.

OWL or XML), and merge with other ontologies, using external specialized plug-ins.

• Quick access, because the knowledge is stored in a relational database.

We searched for a language that allows to represent hierarchies of objects, tasks and its

associated properties among complex relations between them. We decided to take OWL as

our target language. After some experiments we noticed some important conclusions. Be-

cause this type of languages evolve and change very quickly: first, the tools developed to give

support to this languages usually are under development and are not well tested. This is a

big risk for the research of a project. And second, if you write your ontology in one of these

languages, you might have the chance that your ontology became technologically obsolete

in a short term. So from our point of view is more important to use a widely used and sta-

ble tool. We found this tool in Protégé[9]. Protégé is an open-source ontology editor and a

knowledge-base editor that has an easy GUI. It has a plugin-based architecture, so you can

add complex visualization tools or capabilities for importing/exporting into other ontology

representation languages (like OWL). So, at last, our ontology is not written in OWL (but it

might be). In fact, for efficiency reasons, it is stored into a relational MySQL database.

We didn’t use Protégé itself as a way of access for the final users for a couple of reasons

(see Figure 1). First, our experts wanted a more adapted easy-to-use GUI. Second, we need

a distributed work architecture, and the capacities of Protégé of working in server-mode are

currently under development. We used the API of Protégé to develop a web-access application

for the final users.

5 A Planning and Replanning Approach.

In classical planning, the planner assumes to know everything in the world. This type of

planners usually doesn’t fit well in many real-life problems [4]. In our case, while the plan

is executed we have to monitor that the assumed conditions still hold, and that the actions

have been carried out correctly. The planning and monitoring processes have to be executed

interleavedly, or even concurrently when the plan is so complex that we begin the execution

before it has been completely instantiated. The planning system needs to respond in a short

period of time to a faulty condition, even repairing the current plan or also launching a parallel

new planning process to solve it.



Figure 2: The mixed-initiative planning and replanning loop in SIADEX

The monitoring module of SIADEX is based on a temporal scheduling and rescheduling

policy over temporal plans [8] so that actions in a plan are continuously being selected for

execution following the best temporal ordering, their execution is monitored and possible

faults are detected (Figure 2). When a fault is detected its impact is calculated, and a replan-

ning episode starts in which the user may interact with SIADEX, making some suggestions

(delete or add actions by hand, add or delete goals or literals). These suggestions are pro-

cessed by the planning algorithm and new interactions are requested to the user until a valid

plan is obtained, that is scheduled again for its execution and monitoring.

The environment is dangerous, there are risks to lose resources or even human lives. So

the experts are rather reluctant for an autonomous process to take the control over all the

planning decisions. Also they have expertise knowledge that the planner lacks. We had to

elaborate a planner system that can collaborate with the experts, and assist them not as an

autonomous closed system but in a mixed-initiative [2] way. Thus the experts get involved

in the planning process: they share, propose, reject and discuss decisions and objectives with

the system in order to achieve a common goal.

Human experts tend to organize his knowledge at different abstraction layers, working

better from a strategic, generic, high-level point of view of the problem. The system have to

take advantage of that, doing a hierarchical decomposition of the knowledge, and allowing

the user to express goals and tasks at different levels. Thus the planner will be based on HTN

(Hierarchical Task Network) planning. The language that the system will use for reading

domain and problem specifications is PDDL. We’ll use the last PDDL version available,

that is, PDDL 2.2 [10]. However, at this moment, PDDL partially supports part of the HTN

formalism, so it will be necessary to extend it to fully support this new feature.

Another important point is the negotiation process between experts and the planning sys-

tem. We have to find a way in that human and machine can communicate easily. SIADEX

will have a graphical interface (GUI), from where the user can easily interact with the system.

This GUI will allow the user to: (1) Allocate or remove all the resources in a map graphically;

(2) Control the monitoring process, and explain the causes of possible plan fails; (3) Set the

objectives and tasks at different abstraction layers; (4) Dialogue with the system in order to

find a consensual plan; (5) Modify or repair the obtained plan; (6) Make query or explanation

requests to the system; (7) Load data for other applications, send the commnads, etc.

At last we will present the sequence of stages about the way in which the user and the

system will collaborate:



1. Inform the system about the current situation.

2. Discuss the global strategy (divide the fire into sectors, set high-level tasks that have to be

accomplished for every sector, etc).

3. The system obtains a set of plans for a selectable time-horizon period. The user can then

choose one of then, ask for other alternatives or suggest possible plan modifications. The

plan can also be simulated using some tools [7].

The monitor controls the correct execution of plans. In case of fail or due to an expert

requirement the process can be restarted.

6 Conclusions and Future Work.

In this paper we have described the SIADEX project. As we have seen, SIADEX is an ongo-

ing system, based on intelligent planning techniques, aimed to assist an expert in the task of

designing forest fire extinction plans. Also, it can be used as a virtual learning environment for

forest fire extinction. We have described the methodology we are following, the architecture

of SIADEX, its knowledge base (BACAREX) and the planning and replanning techniques

we are using. At this moment BACAREX has been fully developed and the planner and the

graphical user interface are still under development.
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Abstract

In this paper we analyze the lessons learned during
three projects that are being developed between our re-
search group and our spin-off IActive Intelligent Solu-
tions. These projects are based on the deployment of
AI planning technology in three different business en-
vironments with a different degree of maturity in ICT.
In these three cases we will focus on how to extract do-
main and problem files and how to integrate action plans
with existing information services on the end-user side
in order to facilitate the integration of P&S technology
with legacy software and end-users work environment.

Introduction

Artificial Intelligence Planning research community has al-
ways kept an eye out for applying its technology to real
world problems and reach an industry level deployment
comparable to that of other disciplines like neural networks,
genetic algorithms or fuzzy logic, just to mention some of
them. Despite being a relative old discipline, at least older
than most of those mentioned before, planning technology
has some very good examples of applications but it does not
seem to be mature enough to lead an enterprise-wide de-
ployment and to be part of the whole enterprise or business
jigsaw puzzle.

There may seem to be many reasons behind this lack of
success like the need for efficient planning algorithms, the
need for enhanced underlying reasoning processes (uncer-
tainty, time, resources, ...), the need to deal with exogenous
events or sensing operations among others. These are some
of the lines that are being pursued from the own research
community to bridge this well known gap. Although all
of these problems focus on the inner part of the planning
piece of Figure 1, and this is an important effort to drive this
technology forward, there are other important questions that
should also be addressed with regards to insert the planning
piece into the whole puzzle. Both categories of problems are
very important, but papers that fall on the former type seem
to dominate in mainstream conferences. Here, we intend to

∗This work has been partially supported under the research con-
tract NET033957/1 with the Andalusian Regional Ministry of En-
vironment and the CICYT Project TIN2005-08945-C06-02
Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Figure 1: The enterprise-level (business-level) integration
puzzle

share some of the interfacing issues of the second type that
we have learned from our past and current experience that
started in our research group and is now being undertaken at
our spin-off IActive Intelligent Solutions1.

The main issue: knowledge integration

One of the most distinguishing features of planning technol-
ogy is that it is a knowledge-intensive task, that is, planning
a solution to a problem in a human-centered environment
implies taking into account a lot of knowledge about the
problem being solved. This knowledge comes from many
different and, mostly, heterogeneous sources and it must be
“prepared” somehow to the PDDL (Edelkamp & Hoffmann
2004) input gateway (or similar) to our state of the art plan-
ning engines in the form of problem and domain files. In
addition to this, the solution plan must also be processed to
fit into the structure of the whole puzzle. Therefore we must
analyze how these inputs and outputs of our planning algo-
rithms impact into the remaining components of the puzzle
and try to reduce this impact as a way to ensure (part of) the
success of the planning technology.

In our very modest point of view, the integration of AI
planning technology into any existing enterprise or business
environment must take into account the following points:

• Technology is an enabling factor of change, not the

1http://www.iactive.es



change itself. That is, the integration of new technol-
ogy should not produce a change for the environment to
adapt to it, instead, technology should adapt to the exist-
ing business environment. This is very important because
business stakeholders (decision makers, actors and man-
agers) are not intended to know about planning domain
languages, nor logical predicates nor any other formalism
planning researchers are used to deal with. So there must
be a mapping between the language that business stake-
holders are used to deal and the language that our planners
handle. This mapping is not only a matter of translation
but it may also imply a hard work on knowledge extrac-
tion and validation.

• Technology must be as transparent as possible. Business
environments are plenty of software for their daily work
and we do not foresee the planning engine to be a stan-
dalone application by itself. Instead, we do foresee a plan-
ning engine as something as a “plug and play module” or
a “helper application” for legacy software so end users
may have access to planning technology from and to their
everyday applications.

The combination of these two points is, therefore, an im-
portant issue to get planning technology integrated into the
whole business puzzle. They are not exclusive of AI plan-
ning technology, but it is also shared with other mature
AI technology. However, planning technology strongly de-
pends on the representation of operational knowledge2 and
this knowledge is not easily available in a explicit form in
these environments, so its integration appears to be more dif-
ficult. In a increasing number of cases, business stakeholders
are starting to pay more attention to business process model-
ing and management so that they use different languages to
represent their operative knowledge and to execute and mon-
itor their business processes. In the best situation, extracting
the operative knowledege required for the planner becomes
easier and less costly. Easier because all the processes are al-
ready modeled and described by the own end user so a plan-
ning domain expert only needs to query these models and
translate the required details into a planning domain descrip-
tion language like PDDL. And less costly because, if this
translation process could be done automatically, any main-
tenance change on the business rules or processes made by
the end users, are immediately translated into the planning
domain without the intervention of planning domain experts.

In the forthcoming sections we discuss how the consider-
ation of these points have affected to three different projects.
In all of them there was a need to integrate AI planning tech-
niques but none of their end users was supposed to know
about these techniques nor artificial intelligence in general,
so the integration of the planning piece in their correspond-
ing business puzzle was a subtle issue.

2Operational knowledge must be understood as the knowledge
about how to get things done, as opposite, or at least different, to
descriptive knowledge about how things are.

First case of study: crisis management in

Andalusia

In (Fdez-Olivares et al. 2006) we were (and in fact we still
are) engaged in the application of planning techniques to
help fire directors to define a forest fire fighting plan in An-
dalusia (Spain), it fully covers the stages of preparedness
and response and it might be generalized to any other crisis
situation. End users are fire directors, in charge of making
the main decisions and driving all the operations during the
episode, and technical and administrative staff in their chain
of command, who are responsible of launching execution
orders, monitoring the execution of the plan and updating
administrative information.

The problem

The description of the initial state of the problem must con-
tain an exhaustive description of all the fire fighting re-
sources in Andalusia. This implies the representation of
large amount of information about facilities (32), brigades
(341), pumping vehicles (94), spraying helicopters (27), etc.
The goal of the problem must be described in terms of the
geographical deployment of operational areas and the target
operations. The main issue here is that the planner needs
this information and this information is being queried and
updated daily by human operators as well, who are not in-
tended to know anything about PDDL nor other planning
formalisms. Obviously, there must be a common represen-
tation, accessible both by human users and by the planner
with the following features:

• It must be rich enough to represent all the knowledge re-
quired for the planner.

• It must be easily accessible by human operators to query
and update daily operations, with no training effort on any
additional language.

• It must be easily accessible by the planner to extract the
required knowledge into a PDDL problem file.

Figure 2: Integration of the first case on crisis situations

The representation chosen was an underlying ontology
designed in Protégé3 with a MySQL back-end to support an
efficient and concurrent access to the information. On top of

3http://protege.stanford.edu



this ontology we built a web service with a clearly defined
API. This web service may be used either from a web por-
tal (so that administrative staff easily query and update the
knowledge in the ontology through any web browser, see
Figure 3) or from an existing GIS application4 (so that tech-
nical staff may easily introduce the geographical layout and
target areas of the goal, see Figure 4)

Figure 3: Access to the knowledge base through a web
browser for administrative purposes

Figure 4: Access to the knowledge base through ArcMap for
technical purposes

The domain

The current degree of maturity on ICT of the forest fire
fighting service in Andalusia does not allow them to have
formalized their fire fighting protocols in any well known
process language like OWL-S or XPDL. Instead, they only
have training and working documents that explain these pro-
tocols. Therefore, we decided to encode the domain by hand

4ArcMap by ESRI http://www.esri.com

for our HTN planner, as an HTN extension of PDDL 2.2
(Castillo et al. 2006), and keep it away from administra-
tive and technical staff so that only a planning expert may
update and modify it. We were not happy with this deci-
sion because neither administrative or technical staff may
have access to the fire fighting protocols encoding and thus,
their independence (and therefore the transparency of plan-
ning technology) was severely reduced. This was manda-
tory since, currently, administrative and technical staff are
not expected to be introduced in process description lan-
guages. However, Andalusian administration is introducing
these languages gradually at all the levels of the adminis-
tration and we foresee that, in a near future, forest fighting
technical staff will be skilled enough to formalize and repre-
sent their fighting protocols in some of these languages and
then, the adoption of our planning technology will be much
more transparent, as it is shown in the next cases of study.

The plan

Finally, the planner has been integrated as an additional tool-
bar of the ArcGIS suite so that it is called just by clicking
a button on their everyday desktop. The plan obtained by
our planner is also introduced in the whole business puz-
zle of the technical and administrative staff. Our planner is
able to obtain the plan in an enhanced XML format that in-
cludes, all the temporal constrains (direct and inferred con-
strains), binding of variables and annotations gathered dur-
ing the search process. This allows us to translate this XML
plan into other formalisms like a chronogram for the GIS
platform, a MS Excel file, a Gantt chart or a proprietary for-
mat of the technical staff (Figure 5).

Figure 5: A proprietary format for plan visualization

As may be seen, introducing the plan into the legacy soft-
ware infrastructure is the easiest task given our enhanced
XML representation of the plan.

In summary, planning technology has been introduced
silently, integrated with the regular working environment of
the administrative and technical staff (web browsing, GIS



software, spreadsheets and Gantt editors). The unique draw-
back is that technical staff cannot modify the domain by
themselves but through our intervention. This is a matter of
the maturity of the forest fire fighting field and it is expected
to change in the near future with the adoption of standard
business process modeling languages.

Second case of study: learner centered design
This second case focus on the distance learning field, partic-
ularly in what is known as learner centered design. In this
case, the introduction of planning technologies allows us to
define customized learning paths for a given course. That
is, the goal is the arrangement of the resources associated to
the course taking into account the goals selected by the in-
structor and the own needs, features and constraints of every
student, so that every student in the same course will have
its own learning path to the goals.

Figure 6: General view of a Learning Management System

A Learning Management System (LMS) is composed of
several related databases (Figure 6):

• The learning objects repository contains all the ed-
ucational resources (documents, videos, photographs,
schemes, etc) that could be linked to make up a course.
Every learning object is labeled by means of an exten-
sive set of standard metadata (IMS-GLC 2007) so that the
instructor may describe the main features of the learning
object and its adequacy to different student profiles.

• The user profiles database contains extensive information
about each student: personal data, preferences, learning
style, academic history, his/her hardware/software plat-
form and others. It follows the IMS-LIP standard (IMS-
GLC 2007).

• The learning objectives are specified by the instructor for
each course, so all the students of the same course are
intended to reach the same goals.

• The learning design database contains a timed sequence
of learning objects that each student must follow to reach
the course’ goals adapted to his/her own features. It fol-
lows the IMS-LD specification (IMS-GLC 2007).

The goal of a LMS is to serve as a framework for the defini-
tion of a course and for the student to follow that course in a
distance learning setting.

The introduction of planning techniques in this environ-
ment may be described by the following steps (Figure 7:

Figure 7: Integration of AI planning into the ILIAS Learning
Management System

1. The learning objects repository is labeled using a exten-
sive set of standard metadata, mainly a specific subset
of metadata that encode the structure and dependence of
the learning objects (for more details see (Castillo et al.
2007)).

2. (Dotted lines) The instructor explores the repository and
define the learning objectives of a given course.

3. (Dashed lines) Our system explore the different databases
of users profiles, learning objects and learning objectives
and generate the necessary PDDL 2.2 (Edelkamp & Hoff-
mann 2004) files for our HTN planner to run. The planner
is executed and a customized learning plan is obtained for
every student registered at the same course.

4. (Dotted/dashed lines) The learning plan is translated into
a form playable or understandable by the LMS, usually
under the IMS-LD specification.

5. The plan is executed (or played) by the student to follow
the course adapted to its own features and needs.

The problem and the domain

This case of study provides a more formal framework for
inserting planning technology since the standards used for
labeling metadata and user profiles provide a great amount
of knowledge (Figure 8) that can be exploited to extract de-
scriptive and operational knowledge for the planner. In par-
ticular in (Castillo et al. 2007) we show that this knowledge
is rich enough so as to automatically extract the problem
and the domain files for a HTN planner from a SOAP inter-
face (W3C 2007) provided by the web services of the IL-
IAS LMS (ILIAS 2007), a well known platform for distance
learning.

These metadata are introduced directly from the LMS
(Figure 9) and they all belong to the standards commonly
used in distance learning, so there is no additional impact on
end users (instructors).



Figure 8: An exhaustive labeling of learning objects (com-
pound objects in light shadow and simple objects in darker
shadow) showing ordering, dependence and composition re-
lations. It also shows that every simple object may be la-
beled with other features like its language, its hardware and
software requirements, its degree of difficulty and its option-
ality amongst other

Figure 9: All the metadata and profiles are introduced
through the standard web interface of the LMS

The plan

The HTN domain and problem files, which are automati-
cally extracted from the LMS, are fed into the planner and
a plan is obtained for every student registered in the same
course. Although each plan might be different, all of them
will allow students to reach the same goals, but taking into
account the special features of each student. Finally, this
plan is inserted back into the LMS to be played in the form
of a IMS-LD compliant file.

In summary, the cost of introducing planning techniques
in this business environment is dramatically reduced and
the technology is fully transparent to end users (instructors).
The effort made by the instructor to encode the metadata of
the learning objects, something that can be considered usual
in any LMS, is enough for obtaining the most subtle part of
the planning piece: the problem and the domain files. Later
on, the plan is easily inserted in the LMS platform with no
additional cost. This means that, if end users are skilled on

some high level formalism for their daily work and this for-
malism is able to encode some descriptive and/or operative
knowledge useful for the planner, then we can extract prob-
lem and domain knowledge directly from these formalisms
without having to depend on others (planning experts) nor
having to learn a different formalism. The following case
follows this argumentation and introduces a third case of
study in which end users are skilled in a process description
language.

Third case: semantic web services composition

Semantic web services techniques support the way in which
already existing syntactic web services can be extended with
a semantic layer in order to be automatically discovered,
composed and invoked. The main goal of this third case
of study is to provide a logical framework for an HTN plan-
ner to be capable of both interpreting SWS descriptions and,
given a high level service request, reasoning about them in
order to automatically compose and execute a sequence of
web services that provides the service requested (see (Fdez-
Olivares et al. 2007) for more details). There are several
standard proposals for SWS but OWL-S (Martin et al. 2003)
is a very good choice to this purpose for the following rea-
sons. On the one hand, OWL-S process model allows to
represent web services as processes with typed input/output
parameters, preconditions and effects and a compositional
hierarchy of atomic and compound processes. And, on the
other hand, it is based on a data model built on top of
an OWL ontology consisting of classes, properties and in-
stances. Therefore, our goal, in this case, is translating the
OWL-S process and data models into an HTN extension of
PDDL 2.2 domain and problem files, call the planner and
obtain a plan as a timed sequence of actions that could be
used as an executable sequence of web services to give a
response to the high level service request.

Figure 10: Our system has been embedded into an OWL and
OWL-S editor environment as Protégé



The problem and the domain

The translation process first maps the OWL data model into
the PDDL data model by translating OWL classes, prop-
erties and instances into PDDL types, predicates and ob-
jects, respectively.Then it maps the OWLS process model
into an HTN domain that represents the operation of both
atomic and composite processes as primitive tasks and task
decomposition schemes, respectively. Atomic processes are
mapped as PDDL durative actions and the workflow pattern
of every composite process is mapped into a method-based
task decomposition scheme that expresses the operational
semantics of the control structures found in that composite
process.

The plan

The planner makes use of the knowledge encoded in the do-
main (representing the OWL-S process model) as a guide
to find a sequence of temporally annotated primitive actions
that represents a suitable composition (with possibly paral-
lel branches) of atomic processes. This sequence is sent to
a Monitor module that is in charge of both scheduling the
execution of atomic processes according to their temporal
information and sending execution orders to an Executive
module. This module is in charge of executing web services
invocations and sending back the information.

Figure 11: The integration of our HTN planner into a web
service composition based business environment

In summary, this last example has also shown how a plan-
ning engine may be seamless integrated into environments
with a strong underlying formalization of processes. In this
case, it is a web service composition based environment and
domain experts are supposed to have skills on process design
languages like OWL-S (in the case of other languages, the
procedure would be similar). The point is that their business
models written in OWL-S are rich enough so as to extract
valid PDDL domain and problem files, so the introduction of
planning technology is fully transparent for these end users
and it may be fully embedded into their existing working
environments.

The way forward

After these three cases, we have learned two important
lessons that might be considered complementary. On the

one hand, there is a common issue about the integration
of AI planning technology into existing business environ-
ments, what imply the need to share the information between
end users and the planner. AI planning needs much knowl-
edge and most part of it is dynamic, it depends on end-users
databases and not only the user but also the planner may
modify this knowledge, so there must be a common repre-
sentation of the knowledge or, at least, a gateway to get the
knowledge from and to the available sources. No one will
accept to replicate their data or re-type it by hand as the in-
put to the planner. The planner must adapt to the existing
structure of the data and get what it needs wherever it is.
In most cases, the sources of knowledge are very heteroge-
neous since end users may have its information distributed
on different platforms, operating systems or database sys-
tems. This also implies that the target environment must be
either based on, or ready to adopt, a service oriented archi-
tecture (SOA) based on the extensive use of web services, in
order to enable this interoperability of different platforms
and to grant access to the whole set of data available in the
enterprise. In the case that the target environment is not
adapted to a SOA, the planning module might be a catalyst
for the introduction of such technologies since it is the main
interested part in having a common access to the whole en-
terprise data (Fdez-Olivares et al. 2006).

On the other hand, and very related to this, it is the ques-
tion about the level of automation of the workflow manage-
ment at the target business environment. In the case that
this business environment has automated (or is automating)
its operational processes within what is known as Business
Process Management (BPM) (Fischer 2007) that takes into
account resources, employees, applications, documents and
the own organization, the application of AI planning tech-
nology seems to be less costly. It would also be less in-
dependent of third party planning experts, since all of the
knowledge needed to encode domain and problems for the
planner may be extracted from their BPM suites (like in
cases 2 and 3 before). This is becoming particularly good
since most relevant enterprises are currently engaged in a
process of automation of their operational business pro-
cesses by using standard languages like OWL-S but mostly
XPDL and BPEL (Fischer 2007) and there is a clear map-
ping between these languages and our planning domain de-
scription languages like PDDL either for plain or HTN do-
mains (Castillo et al. 2007; Fdez-Olivares et al. 2007;
Sirin et al. 2004). Since BPM suites integrate business
analysts, technical developers and business managers, they
can modify their business rules by themselves and the plan-
ning domain will be automatically updated, without the in-
tervention of external planning experts and thus, increasing
the transparency of this technology. Even more, these BPM
suites are strongly based on the use of an underlying SOA,
what provides the best context for a seamless and deep inte-
gration of AI planning technology. In the case that the target
environment is not aware of this BPM technologies, the im-
plantation of AI planning would be more difficult since busi-
ness experts will still depend on planning experts to mod-
ify planning domains as soon as their business rules change
(like the first case in this paper).



In any case it is worth to recall that these issues of trans-
parency and integration of AI planning technology are a key
factor to implement and deploy our technology, that is, we
must seamlessly integrate with end users data, but also with
their business rules, so that we do not induce a change on the
enterprise before the adoption of our technology but reduce
the impact that this technology might have after adopting
our technology.
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Abstract

The new trend on software development is oriented to
web services running in collaborative environments. In-
telligent planning techniques are very useful to compose
complex calls to these web services. However, there are
still some issues that need to be improved to use plan-
ning and scheduling techniques in dynamic and collab-
orative contexts like the web service environment. This
paper proposes some extensions to our planning system
for using it to compose web service calls.

Introduction

This research extends the SIADEX environment, which is
a planning system oriented to assist the command technical
staff for decision support in forest fire fighting operations.
The system is composed of different components communi-
cating each other and working together through the Internet.
These components are implemented as web service: they
are pieces of software that make themselves available over
the Internet and uses standard XML messaging system. The
World Wide Web is turning into a new paradigm called the
Collaborative Web (Pallot, Prinz, & Schaffers 2005) where
not only documents are connected through the network but
collaborative services as well. The SIADEX project has
some different web services working together for a common
goal (Figure 1). One web service to store the knowledge of
the problem; another to make the planning process; and a
third monitors the plan execution. The planning web service
works with the SIADEX planner that has been developed
by us and is a forward state-based HTN temporal planner
(Castillo et al. 2006). Moreover there is a user interface
where technical staff can introduce the problem to solve it,
see the plan generated by the planner and follow the execu-
tion.

To achieve a correct system performance we need to call
the different web services in the correct order and time. In
order to do that we have developed a central server that syn-
chronizes all the component of the architecture. This cen-
tral server has been called the InfoCenter. The InfoCen-
ter is based on a publish/subscribe architecture (Carzaniga,
Rosenblum, & Wolf 2001) (PSA) that works as follows.
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Each web service or user interface can publish information
in the central server (InfoCenter) and also can subscribe to
the information (published by others web services or clients)
that they want. For instance, when the technical staff pub-
lishes the problem, the InfoCenter send it to the planner web
service that is subscribed to it.

At the present, our architecture is very simple because
only a web service of each kind is available and no exter-
nal web services can connect to the InfoCenter to make the
system more complete. Therefore the InfoCenter can easily
compose calls to the web services to achieve the requests,
the execution and the monitoring of the plans.

Now, we want to extend the system not only to assist
the technical staff for decision support in forest fire fighting
but also for e-business, e-tourism and workflow applications
among others. Therefore we need to extend the system with
new web services, some of them different than the current
ones and another with similar capabilities. The current PSA
presents some lacks that impede the extension of the sys-
tem. For instance, the InfoCenter can not choose what web
service is the correct one (or optimal one) when there are
more than one web services that offer the same functional-
ity. Furthermore, the PSA is purely reactive because it only
make web service calls when receive a publication and it is
not able to compose sequences of web services with a longer
time horizon.

In order to extend the system architecture we are going to
use planning techniques into the InfoCenter, as well some
frameworks to use planning techniques for web services
composition have been purposed (Madhusudan & Uttams-
ingh 2006; Mithum, desJardins, & Finin 2003) but there is
still a lot of issues to solve to fulfill our InfoCenter require-
ments. We are thinking of using our own planner, SIADEX,
to use it inside the InfoCenter. However, we need to im-
prove it for some reasons. Firstly, the web services envi-
ronment is a very dynamic context. Therefore, the state
of web services (the domain) and the requests of the users
(the goal) can change during the execution of calls to web
services. And our planner can not check domain and state
changes during planning time. Secondly, there could be a
large number of web services with similar capabilities and
the InfoCenter have to evaluate them to decide which one is
the best to achieve its goals. And thirdly, we are thinking
in an architecture oriented to the Collaborative Web, so our



intelligent InfoCenter need to communicate with others in-
telligent servers in order to access trough them to resources
that are not directly connected to it. So, the planner needs to
be extended with distributed planning skills and to be able
to understand web services standard languages.

In this work we present our system SIADEX as a frame-
work that will be extended with novel ideas to give solutions
to all these problems.

The SIADEX architecture

SIADEX is a system being developed under a research con-
tract with the Andalusian Regional Ministry of environment.
Its objective is to assist the command technical staff in the
design, dispatching and progress of forest fire fighting plans.
It is composed of different, domain independent web ser-
vices (Figure 1), that offers different services, that are dis-
tributed and communicate with each other using XML-RPC
standard protocols.

• SIADEX Planner: Is a planning web service that can be
called by XML-RPC protocol. SIADEX is a forward
state-based HTN temporal planner (Castillo et al. 2006).
It uses its own hierarchical extension of PDDL 2.2 level
3 language, that makes it very expressive. It also has the
capability to include embedded Python scripts in the do-
main definition, that allows us to implement external calls
at planning time.

• BACAREX: Is an ontology web service that stores the
knowledge related to the planning domain. In our case its
stores information about the forest fire fighting domain in
Andalusia (Spain). BACAREX is also capable of gener-
ating domain and problem files that are processed by our
planning web service.

• Monitor service: This web service splits the plan into sev-
eral pieces and sends every piece to the person in charge
of executing it. These parts of the plan will be presented
to the user using any portable electronic device. The
monitor controls the plan executions attending the depen-
dences between tasks and its possible delays (Castillo et
al. 2006).

• User interfaces: We have provided GUI capabilities to the
planning system for the expert. The GUI is built on top
of the ArcView GIS tool (ESRI). This GUI is totally do-
main dependent and oriented toward the interaction with
the forest fire technical staff. We have also developed a
web interface to monitor the execution of the plan with
any available web browser.

• InfoCenter: It is the central component of our architec-
ture. All the web services that we saw above are con-
nected to the InfoCenter and collaborate each other by
passing messages through it. The InfoCenter has been
developed as a publish/subscribe architecture (PSA) in
which the others web services can subscribe to the infor-
mation that they want and publish the information that
they have to share with others web services. The PSA
works correctly in small environments like this with a few
web services but it is purely reactive. And we want to

extend this architecture to larger and more dynamic en-
vironments where we would need a deliberative server
able to compound sequences of calls to web services. To
achieve this we are thinking on extending the InfoCenter
with planning techniques that we need to develop and are
explained below.

Composing Web Services and SIADEX

There is an interchange of information between all the web
services described above during a planning episode to as-
sist the technical staff for decision support. In this section
we show how this interchange of information is done at the
present and how would be done in the future supporting
larger environments of web services.

Present operation between web services

The InfoCenter is the Broker Server in our PSA . Each web
service or user interface can publish information in the cen-
tral server (InfoCenter) and also can subscribe to the infor-
mation (published by others web services or clients) that
they want. The basic cycle of the present architecture is:

1. The user interface publishes the goal of the planning
problem defined by the technical staff and the InfoCen-
ter sends it to the ontology web service that is subscribed
to all new information about the world state and the new
goals.

2. The ontology web service BACAREX publishes the do-
main and the problem translated into PDDL from the
ontology knowledge and the InfoCenter sends it to the
SIADEX Planner that is subscribed to all the domains and
problems in PDDL generated.

3. The SIADEX Planner publishes the plan generated and
the broker server sends it to the Monitor because it is sub-
scribed to new plans.

4. The Monitor publishes the actions that have to be exe-
cuted at each time and the InfoCenter sends it to the tech-
nical staff in charge of doing it.

5. Until the plan is completely executed, the technical staff
send (public) confirmations about actions completed to
the InfoCenter and the Monitor, that is subscribed to new
events of the actions, publics new actions if it corre-
sponds. BACAREX is also subscribed to the new events
of the actions in order to update the world state in the on-
tology.

The cycle shown above can be carried out with the present
PSA that implements the InfoCenter. However, if we had
more web services connected and some of them offer the
same or similar functionalities, we would need to make more
complex compositions of web services that we can not make
now. At the moment, the InfoCenter can not choose what
web service is the correct one (or optimal one) when there
are more web services that offer the same functionality. Fur-
thermore, the PSA is purely reactive because it only make
web service calls when receive a publication and it is not
able to compose sequences of web services with a longer
time horizon. Note that it is not only a selection problem



Figure 1: General overview of SIADEX Architecture.

to pick the best web service, we need to make a sequence
of calls to web services to know if the goal can be achieved
with the available web services. We want to keep the easy
connectivity and scalability of our current PSA but in a de-
liberative way. In order to do that, we will extend the Info-
Center or Broker Server with intelligent planning techniques
like we describe below.

Future operation between web services

In the last section we have seen that we need to compose
complex calls to web services in dynamic and larger envi-
ronments. In order to do that we need to improve some fea-
tures of our own SIADEX planner to use it in the InfoCenter.
The features with which we need to extend our planner are
shown in this section.

Continuous revision of the state and the goal. A great
advantage of our PSA is the high response capabilities to
the environment changes. So, it has to be supported by the
planner. The set of services available could be constantly
changing as online or offline status while we are execut-
ing the sequence of calls to web services. In addition the
user could change his goals at execution time. Therefore the
planning process needs to be continually check for changes
in the domain, in the state or in the goals (Giunchiglia &
Traverso 1999; Madhusudan & Uttamsingh 2006) during the
execution of web services. We can achieve this using the em-
bedded Python scripts in the domain definition to implement
external calls at planning time. There are two kinds of calls
to extern web services. Firstly, calls to ensure a complete
solution by checking that the web service is available. Sec-
ondly, calls to ensure a sound solution by checking that the
web service behavior is the correct one.

Automated generation of domains and heuristics. As
new web services are connected or disconnected to the Info-
Center the domain knowledge changes and the planner need
to know it to compose the sequences of calls to web services
(plans). We need to make an ontology inside the InfoCen-
ter that stores the web service information (the domain) and

define an automatically process that translates the ontology
knowledge into the PDDL readable by the planner (Sirin et
al. 2004). In addition, this web service has to be evaluated
to make optimal plans. We need to implement automated
heuristics generations (Zimmerman & Kambhampati 2003).
To judge the optimality of the plans we need to evaluate the
web services by using metrics about the network behavior
(response time, transfer rating) and the final user preferences
(it could be the price of a product, the duration of a trip, etc).

Distributed planning capabilities. As we have said in the
Introduction section, Internet is turning into a new paradigm
named the ”Collaborative Web” where services collaborate
between them. Therefore the InfoCenter has to be able to
share with other intelligent servers its plans (or part of them)
or to ask others intelligent servers for plans (or part of them).
In order to do that we need to consider all the work done in
collaborative planning environments (desJardins & Wolver-
ton 1999). Furthermore, the InfoCenter has to be able to
understand standard web service description languages such
as WSDL and to generate plan outputs as web service flows
with standard specifications such as BEPEL4WS or OWL-S.

Concluding remarks

We have described a new approach in the SIADEX planning
system architecture in order to prepare it for the new trends
on web services environments. The main challenges faced at
planning time are in dynamic conditions and the need to col-
laborate with others web services architectures. We present
an extension of our planner to check the completeness and
soundless of the solutions in these environments and to be
able to communicate with others web services architectures.
All the changes proposed are about the central component
of the architecture: the InfoCenter. That is the one in charge
to compose the sequences of calls to web services with the
new planning techniques that will be developed. These se-
quences of calls to web services have to be formulated in
standards specifications such as BPEL4WS or OWL-S.
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Bringing Users and Planning Technology Together. Experiences in SIADEX

Abstract

This work describes the solutions adopted to the problems
tackled during the development of SIADEX, an intelligent
planning and scheduling application where users play a cen-
tral role. The system is being developed under a research con-
tract with the Andalusian Regional Ministry of Environment
(Spain) and integrates planning and scheduling techniques in
a service oriented architecture devoted to support decisions
on crisis intervention planning.

Introduction

A largely pursued objective in Intelligent Planning and
Scheduling is to make it widely used, bringing its com-
plex techniques nearer to users of the technology, by helping
them to solve common, everyday problems. Very recent suc-
cessful AI Planning systems have been developed (Bresina
et al. ; Ruml, Do, & Fromherz 2005; Nau et al. 2005) in
domains where highly skilled staff (in both domain knowl-
edge and computer knowledge) use the applications to solve
problems on highly technological domains. As opposite to
these successful systems, this work describes the solutions
adopted to the problems tackled during the development of
SIADEX, an intelligent planning and scheduling application
where users (which are non AI experts) play a central role,
and that has been integrated into their familiar working en-
vironment in order to solve their everyday problems about
decision making. The system is being developed under a
research contract with the Andalusian Regional Ministry of
Environment and integrates planning and scheduling tech-
niques in a service oriented architecture devoted to support
decisions on crisis intervention planning.

The current domain application of SIADEX is forest fire
fighting, where experts need to obtain valuable tentative fire
attack plans, composed of a sequence of timed fighting op-
erations, before making the most suitable decisions when
defining the strategy to fight a forest fire. Therefore, in or-
der to cover this need, the system obtain temporal fire attack
plans, providing support to monitor their execution, and al-
lowing to revise experts decisions by re-defining the strategy
(if needed) by a continuous interaction with the user in every
stage of the crisis episode.
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In order to understand the problems to be faced while de-
velopping such a system, we will start by introducing the de-
cision making process presently followed by technical staff.

Decision making in crisis intervention

planning

The management of crisis episodes such as forest fire fight-
ing usually follows a sequence of stages like that shown in
Figure 1, in which several stages of situation assessment, in-
tervention planning, plan dispatching and execution and plan
execution monitoring are followed up to completely over-
come the crisis. Due to the dynamics and the many uncer-
tainties of real world, a revision process of the intervention
plans might be carried out, triggering again a new cycle.

Asess Plan ObserveAct

Revision

Figure 1: Life cycle of crisis management

This cycle usually relies in a chain of decision making
stages from high skilled staff (in charge of assessing the sit-
uation, defining the strategic goals of the intervention, and
the procedures to achieve these goals) to ground operators
(in charge of carrying out operational activities that materi-
alize procedures).

Technical staff related to SIADEX implement this life-
cycle in the following steps: first, once a fire arises and its
geographical initial point is identified, all the information
about the fire local environment is gathered (geographical
information such as orientation of the terrain, slope and ac-
cess routes for fight means, forest fuel, and weather forecasts
for the next hours such as temperature, humidity and wind
speed and direction). This information, together with the
output of a simulation of the fire spread, is used to roughly
assess the best strategy to fight the fire in a given time hori-
zon (usually no more than 12 hours).

The strategy consists in defining a fire scenario including
both the definition of a group of operational geographical ar-
eas (called sectors) where the attack will be focused, and the



statement of high-level fighting procedures to be performed
at every sector. Experts also assign fighting means (such
as terrestrial, aerial and human means) to these procedures,
with no more information than the provided by their own,
personal expertise. At present, the only guide at their dis-
posal is provided by ”standard operating procedures” (called
by technical staff ”fighting protocols”), a specification at dif-
ferent levels of detail about what decisions have to be made
and which tasks have to be carried out under these deci-
sions. Protocols are then used to make subsequent decisions
about what operational fighting activities (such as mobiliza-
tion or deployment) should be carried out by assigned fight-
ing means.

Thus, apart from the environmental information, and in
order to make the best decisions on the strategy, experts
must consider further crucial information (most of which is
not yet available) about means such as current geographi-
cal positions, availability, fighting capacity (in order to de-
termine the most appropriate ones regarding distance to the
fire, experience, etc.), expected times of arrival to the fire,
work shifts of the fighting brigades, periods of availability
of aerial means, scheduled aerial water discharges, reser-
voir points to recharge both terrestrial and aerial means,
etc. Considering the large amount of fighting means 1 and
the short time response required decision making becomes
much harder and, in order to make an anticipated analysis of
the consequences of their decisions, experts need to have a
completely detailed attack plan composed of a sequence of
timely programmed fighting activities of the assigned means
in the strategy.

At present, technical staff only have at their disposal some
tools to record and manage the overwhelming amount of in-
formation gathered from the environment2, but no tool is
used to allow experts to evaluate their decisions about the
best strategy to be defined by offering valuable tentative at-
tack plans. Furthermore, due to the dynamics and uncer-
tainty of the environment where the operations are executed,
strategies and subsequent attack plans are revised every cer-
tain interval of time according to the evolution of the fire.
Therefore, it becomes also necessary to allow experts to re-
vise their decisions once a given plan is accepted, according
to the life-cycle of Figure 1.

SIADEX is being developed in order to cover these needs
and, therefore, it has been designed as a planning and
scheduling system that obtain attack plans, providing sup-
port to monitor their execution, and allowing to revise ex-
perts decisions by re-defining the strategy (if needed) by a
continuous interaction with the user in every stage of the
crisis episode. The development of such a system intro-
duces some challenges to current state of the art planning
techniques that will be summarized next.

1At present, means devoted in Andalusia to forest fire fighting
amount about 300 squads (grouping about 3000 people), 200 ter-
restrial vehicles (devoted either to transport or fire suppression) and
30 aicrafts

2Most of them based on ArcView (ESRI ), a GIS application
intensively used by technical staff

Problems to be faced

With respect to Intelligent Planning and Scheduling tech-
niques, and regarding the above explained decision making
life-cycle, temporal reasoning becomes one of the key as-
pects, as the system has to obtain temporal plans as a se-
quence of timed fighting activities, taking into account that
top-level goals are constrained by deadlines (recall that ex-
perts define high-level procedures under a given time hori-
zon). Additionally, in order to be suitable for validation
and execution by technical staff, plans must follow standard
fighting protocols, that is, the planning process should obtain
plans by making decisions as if they were made by human
experts. This has led us to develop a domain independent
HTN planning system able to accept a hierarchical domain
description based on the fighting protocols and perform a
reasoning process that decomposes top-level tasks into sub-
tasks, following the guidelines encoded in the domain. The
novelty of our HTN planner, with respect to Intelli gen Plan-
ning and Scheduling techniques, is two-fold: on the one
hand, it accepts HTN domains based on a hierarchical ex-
tension of the PDDL standard and, on the other hand it inte-
grates temporal reasoning on tasks at every level of detail in
the task hierarchy, using Temporal Constraint Networks as
the underlying temporal representation formalism.

Furthermore, scalability and time processing require-
ments have also to be considered: fire attack plans range
from one hundred fighting operations performed by about
ten fighting means (in small extinction episodes), to sev-
eral hundred actions and tens (or few hundred) of means in-
volved. As the system has to provide several tentative plans,
the planning process should allow to obtain several plans in
a short time in order to be evaluated by experts, that will be
able then to define the most suitable strategy to be followed.
As will be shown, maintaining the causal structure in the
plan allows to obtain an efficient HTN temporal planner that
outperforms execution times of SHOP (Nau et al. 2001), an
HTN planner widely used in several practical applications
(Nau et al. 2005).

Considering the dynamics of the domain as well as the
revision requirements, it is necessary to adopt a solution to
the management of uncertainty in the execution of the plan.
We have designed a plan execution and monitoring process,
integrated with the output of the deterministic planner, in
order to provide support to ex cution failures that raise a
later plan revision process.

With respect to the integration of AI Planning technology
in a real application, the SIADEX planning life-cycle must
be seamlessly integrated and coupled with current staff’s
workflow and decision making life-cycle, a strong practical
requirement that affects decisively the success of the appli-
cation. This requirement has led us to design an architec-
ture that integrates the planning process within the famil-
iar working environment of technical staff, thus enhancing
the role of end-users. Furthermore, although users are not
expected to have a background knowledge on AI, they re-
quire to affect the knowledge of the planner, and the archi-
tecture must offer solutions to this issue and to the following
ones: flexible knowledge management an integration, since
the system must represent and provide access to the large



amount of data coming from heterogeneous sources of in-
formation and needed to make decisions, support for ubiq-
uitous access of end-users, since the system is operated in a
hostile and distributed environment and most of the inputs
come from (and most of the outputs are directed to) end-
users located at different places, and integration with legacy
software, since the planning process income as well as the
outcome must be redirected to legacy software so that end
users may painlessly understand, process and deliver activ-
ity plans.

The rest of this work is devoted to first describe the ar-
chitecture of the system, and then to explain the different
stages of the planning process life-cycle successfully inte-
grated into experts decision making life-cycle.

The architecture

Figure 2: The architecture of SIADEX

SIADEX has been developed as a general, service-
oriented architecture (Figure 2) to support decisions on crisis
management episodes such as forest fire fighting. Its main
components, implemented as web services, are the knowl-
edge base (named BACAREX), that stores in Protege ((Na-
tional Library of Medicine )) all the knowledge that would
be useful for the planning engine, and the planning module
(named SIADEX), the core of the architecture in charge of
building fire fighting plans.

The planning algorithm and its knowledge representation
are built as two independent servers (the ontology server and
the planning server respectively) that provide services under
a TCP/IP connection (OS independent) and can be accessed
from any device with internet connectivity (a desktop com-
puter, a laptop or a PDA). The architecture also includes
a plan execution and monitoring web service in charge of
tracking all the changes produced by the execution of the

actions in a fire fighting plan. All the communication be-
tween the modules of the architecture is performed using
the XML-RPC Protocol3.

The system interface is composed of several front-ends,
plugged into the legacy software that conforms the famil-
iar working environment of technical staff, devoted to sup-
port interaction in every stage of the decision making pro-
cess. Considering the decision making life-cycle above de-
scribed, the process followed by experts when making deci-
sions supported by SIADEX includes the following summa-
rized steps:

Problem description In this step the fire fighting scenario
is introduced by the technical staff through an user-
friendly interface implemented as a software plug-in of
the ArcView GIS (ESRI ).

Knowledge integration The scenario introduced is stored
in BACAREX and then integrated with the remaining
of the knowledge needed by the planning process, such
as standard protocols, fighting resources and other envi-
ronmental information. Therefore, knowledge about re-
sources and fire scenario share the same representation,
and all this information is visible to other users by means
of a web browsing facility.

Requesting a plan Once the scenario is integrated into the
knowledge base, and when requested by the user, the
planning engine is called and a plan is obtained. The plan-
ning engine is not able to read the domain and the problem
stored in Protege, therefore a PDDL Gateway has been
implemented that translates problem and domain into an
HTN extension of PDDL 2.2 level 3 (Edelkamp & Hoff-
mann 2004).

Displaying the plan The plan obtained is delivered in
XML format and may be displayed in a number of “user-
friendly” alternatives like Microsoft Excel, in the form of
a chronogram, or Microsoft Project in the form of a Gantt
chart.

Plan execution and monitoring The plan may be
launched for execution, distributed amongst all the
technical staff with some responsibility in the fire fighting
episode, and concurrently monitored.

Next sections describe in detail every stage of the process
so far explained.

Problem description

Taking into account the description of the decision making
cycle performed by fighting experts, this step starts after
the environmental information has been gathered and the
fire simulation is performed. This information is currently
recorded and managed using ArcView (ESRI ), a GIS ap-
plication intensively used by technical staff. Hence, trying
to maintain the integration with legacy software and aimed
to provide a user friendly interface, we have developed an
interface implemented as a plug-in of Arcview, devoted to
visually introduce the information about the fire scenario.

3XML-RPC: XML Remote Procedure Call
http://www.xmlrpc.com



Through this interface, and after the simulation, the fire di-
rector defines in an effortless way (using basic drawing tools
over a geographical map) the operational units of the forest
fire: the sectors. These are relevant areas of the environ-
ment where the attack will be focused (see Figure 3). Every
fire scenario may have several sectors and every sector may
be composed into operational targets like fire lines, control
lines and spraying areas.

Sector2

Sector1

Sector3

Control Line1

Spraying

Area 1

Waiting

Area

Spraying

Area 3

Spraying

Area 2

Figure 3: A simulated fire scenario with three sectors. Every sec-
tor contains a spraying area, Sector3 contains a control line. A
waiting area, close to the fire, is also shown. Sectors, spraying
areas and the control line are considered operational targets, the
waiting area is devoted to logistics and intendence operations.

Once the sectorization has been defined, the fire director
establishes the strategy to be carried out in the scenario. The
strategy is defined as a set of top-level tasks to be accom-
plished at every operational target, a time window of activ-
ity associated to every task, and the amount of resources to
be assigned to such tasks (see Figure 4). At present, and
following the guidelines of technical staff, the amount of re-
sources to be assigned is defined as three integer values: the
number of human resources (squads), the number of aerial
vehicles and the number of ground vehicles. These values
are interpreted as a measure of the fire threat intensity and
the planner is in charge of determining the instances of re-
sources to be concretely assigned to every task.

The information introduced in this step is sent to the on-
tology server that is involved in the following step devoted to
integrate the fire scenario with the remaining of the contents
stored in the knowledge base.

Integrating knowledge

The ontology server is in charge of performing all the pro-
cesses related to knowledge integration. It contains an on-
tology that has been designed with Protégé 2000 4 that sup-
ports the integration and management of several categories

4with more than 130 classes and more than 2000 instances only
for planning objects and without taking into account the represen-
tation of activities

Time Window

Threat Intensity

Attack procedure

Type of attack

Reinforcement

Figure 4: A description of the strategy to be carried out in Sec-
tor1 described as a top-level task including the following informa-
tion: perform a direct attack, on the operational target Sector1,
using a combination of procedures with water and fire retardants,
and reinforced by aerial and terrestrial vehicles; in order to miti-
gate the fire with an intensity of 2 terrestrial vehicles, 3 squads
and 1 aircraft; within an activity window of 20 hours (start date:
19/04/2005 22:00, end date: 20/04/05 18:00).

of knowledge, including fighting resources, geographical in-
formation and fighting protocols. It also provides several
knowledge interfaces depending on the requester needs. De-
tails about the knowledge stored and the interfaces provided
are explained in the following.

Categories of knowledge

The most important part of the ontology is devoted to fire
fighting means which are modeled either as material re-
sources or human resources (Figure 5). Material resources
may be facilities like operation bases, airports, etc and they
represent static objects since most of their attributes will re-
main unchanged although they are very important like for
example, the geographic position of an airport, the avail-
ability of refueling and water recharging facilities, etc. The
remaining resources, either vehicles or human workers, are
very dynamic since many of their attributes (also called op-
erational slots) change during the execution of plans, for ex-
ample their geographic position, their state of availability,
the work they are carrying out, etc.

Temporal knowledge is also represented in the ontology.
The main source of such category of knowledge comes, on
the one hand, from legal issues (such as the maximum du-
ration of the shifts of the squads or the fire directors, Legal
Shifts in Figure 5), or periods of availability of contracted
for aerial resources (Contract Availability in Figure 5). On
the other hand, as previously seen the strategy defined in the
fire scenario contains top-level tasks to be accomplished in
a given operational area, between a time window described
as start and end dates that constraint all the low level fire-
fighting operations to be carried out as part of the strategy.
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Figure 5: A UML representation of a simplified part of the ontology of SIADEX

Therefore, this temporal information is also represented.
Geographical and environmental information, such as the

sectorization of a fire scenario or weather forecasts, is also
stored since decisions made by experts following the fight-
ing protocols depend on this crucial information.

Finally, another part of the knowledge base is devoted
to represent knowledge about operational tasks and fighting
protocols. These standard operating procedures are directly
represented as a hierarchy of tasks following an HTN do-
main description, and details an examples about this repre-
sentation are shown in a later section.

Knowledge interfaces

The ontology server also provides different services depend-
ing on the requester needs:

• From the user point of view it provides a common place
to easily query browse and update the information, as
it integrates in a single model heterogeneous knowledge
coming from different sources such as GIS or external re-
source management data bases (extracted by plug-ins and
mappers). It also provides both offline and on-line access
facilities. Offline access is done by the standard Protégé
framework, so that the development team may access the
knowledge and carry out maintenance and validity check-
ing operations with full operability. On the contrary, on-
line access is done through the Protégé API on which a
web access service has been built. This on-line access is
devoted to staff users that do not have skills on knowledge

representation for planning but may painlessly access the
knowledge in a web browsing fashion by means of a hier-
archy of objects and activities close to their understanding
of the problem.

• From the point of view of the plan execution and monitor-
ing service, the ontology is used to maintain updated the
situation of means and resources as fighting operations are
executed during the plan progress.

• From the planning server point of view the ontology is
used to obtain the problem and the domain. As seen above
the domain is directly represented in an HTN formalism.
With respect to the problem, it is composed of, on the one
hand, the initial state represented in the ontology as both,
the values of operational slots of means and resources in-
stances, and the information about the geographical de-
ployment of the fire. On the other hand, the top-level
goal, that is obtained by querying the information about
the top-level tasks introduced in the strategy.

This last knowledge interface is indeed a process that car-
ries out the translation of the problem defined by the user
from the ontology representation to the representation used
by the planner. This process is triggered when the user re-
quests the planning services, the next step after storing the
information of the scenario.



Requesting planning services
When requested by the user, the planning server gets the
domain and problem representation sent by the ontology
server and triggers the planning process on these inputs. The
planning algorithm implemented in this server is based on
an HTN algorithm that integrates temporal reasoning using
Simple Temporal Networks as the underlying temporal rep-
resentation mechanism. This section describes the most rel-
evant details of the planning process and the domain and
problems representation used in SIADEX, explaining the
reasons that lead us to adopt this solution. Finally, the trans-
lation process that extracts the problem from the ontology to
the planner is outlined.

HTN and temporal reasoning

As previously noted, in order to be validated by experts,
plans obtained must follow standard operating procedures
and, therefore, fighting protocols should be encoded in the
domain description in order for the planner to make them
operational. Standard PDDL actions as well as PDDL 2.2
level 3 durative actions (Edelkamp & Hoffmann 2004) pro-
vide enough expressivity to describe operational, lowest-
level fighting activities (mainly due to the use of fluents to
support resource reasoning, and the use of temporal con-
straints such as action duration as shown in Figure 6), but
durative-actions are not expressive enough to represent high-
level processes such as those specified in fighting protocols.
Protocols are a process specification at different levels of de-
tail that also includes constraints on the order of tasks to be
carried out. This kind of specification is best suited by the
HTN (Nau et al. 2001; Erol, Hendler, & Nau 1994) for-
malism, where planning domains are designed in terms of a
hierarchy of tasks representing compound and atomic activi-
ties (called compound tasks and primitive tasks or operators
respectively). In such hierarchical domains, it is possible to
describe how every compound task may be decomposed into
different subtasks and the order that subtasks must follow, by
using different methods.

(:durative-action move

:Parameters (?g - Group ?v - Vehicle ?p1 ?p2 - GIS_Location)

:duration (= ?duration (/ (distance ?p1 ?p2) (cruise ?v)))

:condition (and (current_position ?v ?p1)

(current_position ?g ?p1))

:Effect (and (not (current_position ?v ?p1))

(not (current_position ?g ?p1)

(current_position ?v ?p2)

(current_position ?g ?p2)

(decrease (current_autonomy ?v) ?duration))

Figure 6: A PDDL durative action representing the movement of
a human group transported by a vehicle. Temporal (duration of the
transport) and resource constraints (the autonomy of the vehicle
decreases) have proved to be expressive enough in this practical
application.

Motivated by the lack of expressivity found in PDDL
durative-actions, we have developed an HTN extension of
the PDDL standard in such a way that hierarchical domains
in SIADEX encode primitive operators as PDDL 2.2 level
3 durative actions (Edelkamp & Hoffmann 2004) . In addi-
tion, basic issues of compound tasks included in our repre-
sentation are inspired by the domain description language

of SHOP (Nau et al. 2001), where the methods used to
decompose tasks into subtasks include a precondition that
must be satisfied by the world state in order for the method
to be applicable by the planner. Therefore, the basic algo-
rithm of our planner follows the HTN paradigm of SHOP: it
is a state-based forward HTN planning algorithm that uses
an ordered task decomposition search-control strategy. Thus
tasks are decomposed according to the order in which they
will be executed and methods are selected considering the
current state.

But this is only the basics of SIADEX, and further ex-
tensions has been introduced to the basic representation
for tasks above described, as well as in the planning algo-
rithm, in order to overcome some recognized weaknesses
of state-based forward planners (either HTN-based, like
SHOP, or not) regarding practical applications. Usually this
category of planners return plans as a totally ordered se-
quence of actions but, in many real world applications such
as forest fire fighting, activities may be executed concur-
rently, and a total order of activities is not very appropriate
for practical reasons. The domain description language of
SIADEX and the planning algorithm support to explicitly
represent and manage time and concurrency in both com-
pound and primitive tasks (increasing the expressiveness of
the planner), thanks to the handling of metric time over
a Simple Temporal Network (See (Castillo et al. 2005b;
2005a)) for more details.

This is a novel representation that provides a great ex-
pressivity power in order to support two fundamental re-
quirements of experts: on the one hand, the representation
of deadline top-level goals, as required in the top-level tasks
formulation shown in the problem description in Figure 4;
on the other hand, it must also be possible to define com-
plex control structures required by the representation of pro-
tocols such as sequencing, splitting and synchronization of
high-level processes. Both issues are described next.

Deadline goals

As shown in the section devoted to present the problem de-
scription process, the earliest stage of decision making re-
quires to pose one or more metric temporal constraints over
both the start and the end of a top-level task. Furthermore,
the underlying aim of a user while imposing constraints to
such top-level task is that its component subtasks also inherit
them. SIADEX allows to post deadline constraints, and to
inherit them in the case of subtasks of a given task, on ei-
ther the start, the end (or both) time points of any task either
primitive or not. Any task has two special variables associ-
ated to it: ?start and ?end that represent its start and end
time points, and some constraints (basically <=, =, >=)
may be posted to them. In order to do that, when describing
a decomposition method, any subtask may be preceded by a
logical expression that defines the desired deadline.

Deadline goals are easily encoded in the STN of a tempo-
ral plan as absolute constraints with respect to the absolute
start point of the STN. They may also appear in the top-level
goal and they are very useful for defining time windows of
activity like the one shown in the example of Figure 4. The



top-goal formulated following this example is shown in Fig-
ure 7.

(define (problem FireOne)

(:domain encoded-protocols)

(= :time-start "19/4/2005 17:0:0")

(= :time-unit :minutes)

(:objects

...

(is-part-of Fire Sector1)

(is-part-of Fire Sector2)

... )

(:tasks-goal

:tasks (and (>= ?start 300) (= ?end 1500)) (attack Fire Sector1)

))

Figure 7: An example of a problem described following the HTN
extension of PDDL where some information about the start time
of the fire is included, as well as the top-level goal, that is formu-
lated in terms of an instance of a top-level task (attack ?f -

GIS Fire ?s - GIS Sector) with a deadline. According to
the example of Figure 4 the attack to Sector1 starts 5 hours after
the beginning of the fire and must end 20 hours later.

(:TASK attack

:PARAMETERS (?f - GIS_fire ?s - GIS_Sector)

(:METHOD not-reinforced

:PRECONDITION (not (reinforced-attack ?s))

:TASKS ((Select_Means ?f ?s)

(Mobilize_Deploy_All_Groups ?f ?s)))

(:METHOD reinforced

:PRECONDITION (reinforced-attack ?s)

:TASKS ((Select_Means ?f ?s)

[ (Mobilize_Deploy_All_Groups ?f ?s)

(Mobilize_Deploy_All_Aerial ?f ?s)

(Mobilize_Deploy_All_Terrestrial ?f ?s)]))

Figure 8: An HTN task implementing a standard operating proce-
dure to attack a sector ?s in a forest fire ?f. The doctrine establishes
that, in case of not being a reinforced attack, first select appropri-
ated human means, then deploy and mobilize them. In case of re-
inforced attack, first select means, then deploy every human, aerial
and terrstrial mean selected.

Ordering constraints and synchronization between
tasks

A natural description need for standard operating procedures
such as fighting protocols used by technical staff is given
by the use of different control structures for sequencing,
splitting and synchronizing processes, included in almost
all languages devoted to process specification such as work-
flow languages (OWL-S 2003; BPEL ). As shown in Fig-
ure 8, domain descriptions in SIADEX also allow to specify
such control structures between the subtasks of a method.
Tasks might be either sequenced, and then their signature
appears between parentheses (T1,T2) , or splitted, ap-
pearing between braces [T1,T2]. For example, the second
method of Figure 8 specifies that human, aerial and terres-
trial means should be concurrently (if possible) mobilized
and deployed after being selected and assigned to a sector.
However, these order structures represent qualitative order
constrains that are necessary but not sufficient in order to
allow practical execution of concurrent tasks since, in prac-
tical applications, synchronization between tasks is needed.

This can be done in SIADEX due to the quantitative, tempo-
ral constraints included in the STN of a temporal plan that
are not only extracted from the order relations between task,
but also from the causal structure allowing to manage timed
causal links (See for more details (Castillo et al. 2005b;
2005a)). For example, as subtasks of the top-level task of
Figure 8 inherit the temporal constraints posed in the prob-
lem (see in Figure 7 ), the method reinforced shown in Fig-
ure 8 represents a split-join struct as all the splitted subtasks
must end at the same time that the top-level task.

Once the basic issues about the planner and the domain
representation has been explained, next we will the describe
how the problem, initially stored in the ontology server, is
translated into a problem representation understandable by
the planner.

Getting the problem

The initial state of the problems managed by SIADEX main-
tains basically the same representation that in the PDDL
standard, and it is expressed as a conjunction of literals that
represent the set of facts that are known to be true. It may be
obtained by querying the ontology about the main slots of
the instances of classes like facilities, human resources, ve-
hicles, water points, etc. This process is crucial when trying
to maintain the planning knowledge as transparent as possi-
ble to end-users. In order to do that, a PDDL gateway has
been designed so that, at the beginning of a planning episode
and when requested by the user, this gateway iterates over
the whole ontology and translates the content of the main
instances into PDDL in a process whose main features are
the following ones:

• The classes hierarchy of the ontology is translated as a
hierarchy of types in the PDDL domain description. As
illustrated above, the parameters of compound and primi-
tive tasks are typed regarding this translated hierarchy of
types.

• Predicates are easily translated since every operational
slot of the ontology (that is, whose content might be rel-
evant for the planning process) has a special template on
how to translate the content of the slot into a PDDL literal.
Binary slots of the form Instance.slot=value

are easily translated into PDDL literals of the form
(slot instance value). Non binary predicates
or slots that represent references to other instances have
a similar translation process, and even some of the slots
may produce multiple literals (see Figure 9). .

• Slots that contain numerical values that may change dur-
ing a planning episode, mainly numerical resources like
the current autonomy of a vehicle, are declared like flu-
ents in the PDDL domain, so that the use of arithmetic
operations and functions are permitted over them and they
allow the planner to reason about the use of resources.

• Slots representing temporal knowledge (like shifts of
workers) or environmental information (like weather fore-
casts of day/night events) are translated into PDDL 2.2
timed initial literals.



vehicle_code: string

available: boolean

cruise_speed: integer

max_capacity_people: integer

max_capacity_fuel: integer

Ground

Vehicle

(current_position vehicle_code GIS_code) and

(coordinates GIS_code UTM_Zone UTM_X UTM_Y)

current_position

Full terrain

GIS_code: string

UTM_Zone: integer

UTM_X: integer

UTM_Y: integer

GIS_Location

Figure 9: Translation of some references in the ontology

The top-level goal is also extracted from the ontology using
the knowledge stored in the initial step of problem descrip-
tion. As shown in a previous example of this section, and
considering the goal formulation of Figure 7, the top-level
goal is composed of the top-level tasks defined by the user,
and the time window defined by the user is translated as tem-
poral constraints on this task. In addition, considering that
the geographical deployment of the fire episode is stored as
instances into the ontology, and that the slots of the instances
are also considered as operational, the information about the
sectorization is also translated as part of the initial state.

In addition, as also shown in Figure 7, every top-level task
defined as part of the strategy contains information about the
numeric evaluation of the power of resources that should be
assigned to it and that is fixed by hand by the fire fighting di-
rector. From these values, the planner may pre-select several
combinations of resources, that are submitted to the fight di-
rector who finally selects one of them. Later, the planner,
and following standard protocols, will select a specific set
of instances of fighting resources that fits within the selected
combination.

Finally, thanks to the expressive power of using Temporal
Constraint Networks as the underlying formalism to repre-
sent temporal knowledge, the planner is able to obtain tem-
poral attack plans, that is plans whose actions are executed
in a time line that is flexibly constrained to the time windows
established in the definition of the goal. These plans are also
suitable for being evaluated by users, as they are generated
by following standard procedures encoded in the domain de-
scription, that has been proved to be expressive enough to
describe complex ordering and synchronization mechanisms
between tasks. The plans so obtained are served by the plan-
ning server in order to be visualized, analyzed and, if ac-
cepted, monitored, as is discussed in the following section
(for more details, see (Castillo, Fdez-Olivares, & González
2002; de la Asunción et al. 2004)).

Plan visualization and monitoring

Plans obtained may be displayed in a number of “user-
friendly” alternatives like Microsoft Excel, in the form of
a chronogram, or Microsoft Project in the form of a Gantt
chart (see Figure 10). These interfaces are used by expert
in order to evaluate the suitability of the decisions made
when defining the strategy in the problem description stage.

If a plan is evaluated and accepted by the fire director, it
is dispatched for execution, and distributed amongst all the
technical staff with some responsibility in the fire fighting
episode, and concurrently monitored.

Figure 10: Gantt chart output

Plan execution and monitoring is also implemented as a
web service and incorporates a web interface. Through this
interface experts might supervise in real time the execution
of the plan, and track all the changes produced by the execu-
tion of the actions in the plan, the time they take to execute
and it updates the ontology accordingly so that these changes
are publicly available for any query at any time.

The monitoring algorithm (de la Asunción et al. 2004;
2005) is a real time algorithm that follows the execution of
the temporal plan at the highest level of detail since temporal
plans, as they are represented on top of a STN, still represent
flexibly (by means of an interval of time) the time at which
every effect of every action is achieved. As explained above
it is possible to check that everything executes as predicted,
otherwise, it is possible to detect and, in some cases repair,
some of the problems without the need of starting a new
planning episode5. The type of problems and their possible
solutions are the following ones:local delays (they only af-
fect to an isolated branch of the plan, and thus, a new local
reschedule may be found only for that branch), global de-
lays (they might affect all the remaining actions of the plan,
and a whole new reschedule might be needed), and infea-
sible delays (no reschedule is possible, and a new planning
episode considered). Finally, experts may also detect some
perturbation in the execution of a plan and, in this case, a
new cycle of decision making supported by SIADEX might
be started

A short note on efficiency

Just to give an idea of the performance of SIADEX, we
include here a short comparison in the ZENO domain
of the International Planning Competition 2002 (Long &

5Clearly, the user may also interrupt the execution of the plan
at any moment.



Figure 11: Performance of SHOP2 and SIADEX in zeno-
travel time problems. Y-Axis represents computation time
in seconds and X-Axis represents the set of test problems.

Fox 2003). Figure 11 shows the CPU times of SIADEX
and SHOP2 (Nau et al. 2003) running on the same ma-
chine and operating system, solving all the hard instances
(time+numeric) of this domain, and it may be seen that
SIADEX outperforms SHOP2 quite clearly.

Additionally, two other experiments are shown. Figures
12.a) and b) show the performance of SIADEX solving two
real problems, named INFOCA-1 and INFOCA-2. The X-
Axis shows the number of actions in the resulting temporal
plan and the Y-Axis shows CPU time in seconds. In or-
der to give a measure about the kind of real problems we
are talking about it must be said that the size of the ini-
tial state is about 14000 literals, translated from about more
than 130 classes and more than 2000 instances. At present
the domain contains about 107 tasks, 121 methods, and 55
durative-actions 6.

Related work

Regarding general crisis situations SIPE (Bienkowski 1995)
has been used for obtaining plans of attack for oil spill
threats in the sea. Although its architecture is very similar
to SIADEX, its main drawback is that it requires end users
to have a deep knowledge of planning techniques either to
interact or to provide knowledge for the system.

Another system used in civil crises was that described
in (Biundo & Schattenberg 2001) where hybrid hierarchi-
cal techniques were developed to obtain plans of response
for floods in Germany, but as far as authors know, it does
not have monitoring or temporal reasoning integrated with
HTN, what impedes severely its use in real environments.

Specifically in the field of forest fire fighting there are
several approaches in the literature: PHOENIX (Cohen et
al. 1989) (1989-1993) , CHARADE (Avesani, Perini, &
Ricci 2000) (1992-1995), CARICA (Avesani, Perinni, &
Ricci 1997) (1995-1997) or the work presented in (Rollon
et al. 2003). However, they have failed in their applica-
tion as assistants to real fire fighting scenarios. The reasons
for these unsuccessful approaches are: (1) They have ne-
glected the development of appropriated knowledge integra-

6Please consult http://siadex.ugr.es for more details on this real
application

(a)

(b)

Figure 12: Performance of SHOP2 and SIADEX in zeno-
travel time problems. Y-Axis represents computation time
in seconds and X-Axis represents the set of test problems.

tion techniques, considering user interaction at edition level,
not allowing users to affect the knowledge of the planner;
(2)The lack of deliberative planning techniques able to flex-
ibly generate new plans for a situation without the require-
ment of having a predefined skeleton or general plan pre-
viously stored; (3) None of these systems integrates HTN
reasoning with temporal reasoning, what provides a great
expressivity in order to encode fighting protocols; (4) Ab-
sence of plan execution and monitoring techniques to allow
flexibility and responsiveness in the execution of the plan.

Conclusions and Lessons Learned

In this work we have described the solutions adopted to the
problems tackled during the development of SIADEX, an
intelligent planning and scheduling application where users
play a central role. SIADEX obtains temporal fire attack
plans in a very time-efficient planning process, providing
support to monitor their execution, and allowing to revise
experts decisions by re-defining the strategy (if needed) by
a continuous interaction with the user in every stage of the
crisis episode.

The main lesson learned from the development of
SIADEX is that, in order to be widely used, planning tech-
nology has to be developed assigning to users a central role,
trying to bring the technology near to the user. This means
that in order to provide solutions to the real, common prob-
lems of non AI expert users planning and scheduling pro-
cesses must be part of a wider, overall architecture integrated
in legacy software, such as the one presented here, allow-



ing an easy to learn interaction process in every stage of
the planning life-cycle. As users in forest fire fighting usu-
ally work in different kinds of (even hostile) environments,
during the development of the arquitecture of SIADEX we
have had to solve two additional problems: how to integrate
a large amount of heterogeneous knowledge coming from
different sources, and how to provide ubiquitous and con-
current access to users.

But the central role of the users not only affect to outside
issues of planning and scheduling. This work also shows
that, as plans must be finally evaluated by experts, they must
follow standard fighting protocols and, thus, the planning
process should obtain plans by making decisions as if they
were made by human experts. This has led us to develop
new techniques, extendindg current state of the art plan-
ning and scheduling techniques. The novelty of the plan-
ner we have developed, with respect to Intelligent Planning
and Scheduling techniques, is two-fold: on the one hand, it
accepts HTN domains based on a hierarchical extension of
the PDDL standard and, on the other hand it integrates tem-
poral reasoning on tasks at every level of detail in the task
hierarchy, using Temporal Constraint Networks as the un-
derlying temporal representation formalism. This provides
support for two fundamental requirements of experts: on the
one hand, the representation of deadline top-level goals, as
required in the top-level tasks formulation when defining the
fire scenario; on the other hand, it must also be possible to
define complex control structures required by the representa-
tion of protocols such as sequencing, splitting and synchro-
nization of high-level processes.

Furthermore, due to the reponse times demanded by users
in their decision making cycle, time processing requirements
have been also considered, and we have shown that our plan-
ner is extremely efficient regarding the type of planning and
scheduling real problems to be solved (hundred of actions
managing tens, even hundred of fighting resources).

This project is presently at a 75% of development and
there are still pending issues, the most important is, the def-
inition of a plan repairing and replanning process based on
mixed initiative techniques. At present we are centering our
efforts in this ongoing work.
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Abstract

This paper presents some enhancements in the temporal
reasoning of a Hierarchical Task Network (HTN) plan-
ner, named SIADEX, that, up to authors knowledge, no
other HTN planner has. These new features include
a sound partial order metric structure, deadlines, tem-
poral landmarking or synchronization capabilities built
on top of a Simple Temporal Network and an efficient
constraint propagation engine boosted by exploiting the
causal structure of plans.

Introduction

The achievement of an efficient and expressive handling of
time is still a pending task for most HTN planners. This
issue becomes even harder if the planner follows a state-
based forward paradigm like SHOP (Nau et al. 2003) or
SIADEX (de la Asunción et al. 2005) since, despite being a
very fast HTN planning paradigm, it does not easily allow to
obtain plans with timed concurrent branches. From a prac-
tical point of view, real world applications need the plans
to have the possibility of executing several activities at the
same time. Furthermore, real applications usually require
complex synchronization mechanisms between the activities
of the plan for a successful execution. And last, but not least,
temporal knowledge has to be efficiently handled so as to
allow a fast response of the planning system. This paper ex-
plains how the HTN planner SIADEX has been extended to
cope with all these requirements thanks to the use of Simple
Temporal Networks (STN) (Dechter, Meiri, & Pearl 1991).
STNs have been widely used as the underlying represen-
tation of temporal constraints in planning and scheduling
frameworks like in Mapgen (Ai-Chang et al. 2004), Mexar
(Oddi et al. 2002), PASSAT (Myers et al. 2002), Ixtet (La-
borie & Ghallab 1995) or OPlan (Tate, Drabble, & Kirby
1994); since they provide a very expressive power to rep-
resent a variety of temporal constraints and a flexible exe-
cution of plans with flexible timelines. All these approaches
use temporal constraints of different nature to represent their

∗This work has been partially supported under the research con-
tract NET033957/1 with the Andalusian Regional Ministry of En-
vironment and the CICYT Project TIC2002-04146-C05-02
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

own temporal knowledge. The main contribution of this pa-
per is based on how temporal constraints are extracted and
propagated in a HTN framework:

• Any temporal constraint, either precedence constraints or
deadlines, defined on an abstract task, or between several
of them, are implicitly inherited by its constituent sub-
tasks.

• Abstract tasks and primitive actions may generate tem-
poral landmarks on their start or end points to achieve
complex synchronization schemas between them, either
between tasks or between actions and tasks.

• PDDL 2.2 timed initial (Edelkamp & Hoffmann 2004) lit-
erals are easily represented in a STN framework and they
are used as backtracking points that serve as anchorage
points for tasks and actions.

• Despite being an HTN planner, the causal rationale of
primitive actions is recorded and used to propagate ac-
curate temporal constraints between them.

• Since HTN planners are used in many real applications
with tight response times, the propagation algorithms de-
fined for STN, although polynomial, still produce a con-
siderable overload when handling large temporal plans in
the order of hundreds or thousands of actions. Therefore,
this paper also proposes a modification of a well known
propagation algorithm named PC-2 (Dechter 2003) to
boost its performance thanks to the information extracted
from the causal structure of the plan, obtaining excellent
results.

These contributions have raised in the framework of ap-
plication of SIADEX devoted to forest fire fighting planning
(Fdez-Olivares et al. 2006) due to the need to obtain plans
with complex temporal requirements like the synchroniza-
tion of several teams of workers, the existence of temporal
windows of activity, precedence constraints due to the use
of shared resources or dealing with timed exogenous events.
However, they are very common needs for other real prob-
lems and therefore of general interest for other application
areas.
The paper is structured as follows. Next section out-

lines SIADEX, an HTN state-based forward planner. Then,
we will present the main extensions to SIADEX to cope
with the most important representational issues of time in



(:task travel-to

:parameters (?destination)

(:method Fly

:precondition (flight ?destination)

:tasks ((go-to-an-airport)

(take-a-flight-to ?destination)))

(:method Drive

:precondition (not (flight ?destination))

:tasks ((take-my-car)

(drive-to ?destination))))

(a)
(:durative-action drive-to

:parameters(?destination)

:duration (= ?duration

(/ (distance ?current ?destination)

(average-speed my-car)))

:condition(and (current-position ?current)

(available my-car))

:effect(and (current-position ?destination)

(not (current-position ?current))))

(b)

Figure 1: The basics of HTN planning domains in SIADEX’
domain language: (a) A compound task with two different
methods of decomposition. (b) A primitive action.

a HTN framework. Later, we introduce the use of dead-
lines and their inheritance from tasks to actions and present
a very simple improvement in temporal constraints propa-
gation that achieves great experimental results in different
domains. Last section relates this approach with the existing
literature.

Description of SIADEX

SIADEX is a state-based forward HTN planner with the
same foundations than SHOP (Nau et al. 2003). Before go-
ing into the details, some introductory notions are explained
first.

HTN planning foundations

HTN planning domains are designed in terms of a hierarchy
of compositional activities. Lowest level activities, named
actions or primitive operators, are non-decomposable activ-
ities which basically encode changes in the environment of
the problem. In SIADEX, these primitive operators are rep-
resented as PDDL 2.2 level 3 durative actions (Edelkamp &
Hoffmann 2004) (Figure 1.b). PDDL is the standard plan-
ning domain description language and it is the basis of most
well known planners. On the other hand, high level activi-
ties, named tasks, are compound actions that may be decom-
posed into lower level activities. Depending on the problem
at hand, every task may be decomposed following differ-
ent schemas, or methods, into different sets of sub-activities.
These sub-activities may be either tasks, which could be fur-
ther decomposed, or just actions (Figure 1.a).

Tasks and their, possibly multiple, decompositions encode
domain dependent rules for obtaining a plan, that can only
be composed of primitive actions. Other HTN features are

• Set A, the agenda of remaining tasks to be done, to the set of high level tasks

specified in the goal.

• Set Π = ∅, the plan.

• Set S, the current state of the problem, to be the set of literals in the initial state.

1. Repeat whileA 6= ∅

(a) Extract a task t fromA

(b) if t is a primitive action, then

i. If S satisfies t preconditions then

A. Apply t to the state, S = S + additions(t) − deletions(t)

B. Insert t in the plan, Π = Π + {t}

C. Propagate-Temporal-Constraints(Π)

ii. Else FAIL

(c) if t is a compound action, then

i. If there is no more decomposition methods for t then FAIL

ii. Choose one of its decomposition methods of twhose preconditions are true

in S and map t into its set of subtasks {t1, t2, . . .}

iii. Insert {t1, t2, . . .} inA.

2. SUCCESS: the plan is stored in Π.

Figure 2: A rough outline of an HTN planning algorithm
showing the point at which temporal constraints are propa-
gated (step 1(b)iC).

the following ones:

• The initial state is a set of literals that describe the facts
that are true at the beginning of the problem.

• Unlike non HTN planners, goals are not specified as a
well formed formula that must be made true by the plan-
ner from the initial state. Instead, goals are described as a
partially ordered set of tasks that need to be carried out.

• The main planning algorithm (Figure 2) takes the set of
tasks to be achieved, explores the space of possible de-
compositions replacing a given task by its component ac-
tivities, until the set of tasks is transformed into a set of
primitive actions that make up the plan.

Including inference capabilities in SIADEX

HTN planning approaches have a very rich knowledge repre-
sentation that may arise in a variety of forms, from methods
preconditioning and control of the search (Nau et al. 2003),
ontology based representation of planning objects (Gil &
Blythe 2000; Fdez-Olivares et al. 2006) or knowledge-
intensive planning procedures (Wilkins & desJardins 2001).
In our case we use two augmented inference capabilities that
allows the planner to infer new knowledge, either by abduc-
tion or deduction, over the current state of the problem at
every planning step.
Regarding the use of deductive inference, SIADEX pro-

vides inference tasks that may be fired when needed in a task
decomposition scheme. The effect of these inference tasks is
that they may produce binding of variables and assert/retract
new literals into the current state. The form of these deduc-
tive inference rules is
(:inline <precondition> <consequents>)

where both precondition and consequent are logical expres-
sions, what means that when <precondition> is true in



(:task travel-to

:parameters (?destination)

(:method Fly

:precondition (flight ?destination)

:tasks ((go-to-an-airport)

(:inline (and (current-position ?airport)

(has-wifi-hotspot ?airport))

(enabled-wifi))

(take-a-flight-to ?destination))) ... )

Figure 3: Including deductive rules in the expansion of a
high level task

the current state, the effects of the <consequent> are ap-
plied to the current state, allowing to assert or retract new
literals. Let us consider the task description shown in Figure
3. We may see that the deductive inference rule allows the
planner to include a new literal in the state (enabled-wifi)
whenever the departure airport has a wi-fi hot-spot.

This might be seen as a conditional effect of some previ-
ous action but there are some differences that have to be clar-
ified. Firstly, the activities in the decomposition which pre-
cede the inference rule may not be primitive actions, there-
fore, it is not always possible to encode them as conditional
effects since high level tasks are not allowed to have effects.
And secondly, the problem of the context of firing has to be
considered, that is, if we encode every possible deducible
consequence of a primitive action as sequence of exhaus-
tive conditional effects, then we might be leading to a very
well known problem in planning, the ramification problem
(McIlraith 2000), and to an overload of the deductive pro-
cess and unifications with the current state. Therefore, the
inclusion of an inference rule into the decomposition of a
high level task provides the context in which this inference
is necessary and therefore, it will only fire at that moment.

Although the use of deductive inference has also appeared
in the literature (Wilkins 1988), the use of abductive infer-
ence is becoming more widely used in the form of axioms
(Nau et al. 2003) or derived literals, in terms of PDDL 2.2
(Edelkamp & Hoffmann 2004). These are abductive rules
which appear in the form of a Horn clause and that allow to
satisfy a given condition when this condition is not present
in the current state, but it might be inferred by a set of infer-
ence rules of the form
(:derived <literal> <logical expression>)

meaning that <literal> is true in the current state when
the literals in <logical expression> are also true in
the current state. Both deductive and abductive inference
rules are extensively used to incorporate additional knowl-
edge to the planning domain while maintaining actions and
tasks representations as simple as possible. This is par-
ticularly true in real-world planning problems like forest
fire fighting plans design, the main application of SIADEX
so far. In these cases, planning knowledge usually comes
from very different sources, not always related to causality
and therefore not very appropriate to encode in the causal
structure of actions preconditions and effects. Another of
the main purposes of these rules is to allow a process of
temporal landmarking over the temporal representation of

SIADEX that enrich the set of temporal constraints that may
be encoded in a planning problem.

Temporal enhancements of SIADEX

One of the main drawbacks of state-based forward planners
(HTN and non-HTN) is that they usually return plans as a
total order sequence of activities, that is, a chain of actions.

Π = {a1, a2, . . . , an}

If the planner is based on states, then, this sequence of
actions also induces a sequence of states.

INITIAL + s1 + s2 + s3 + . . . + sn

where si is the state that results from the execution of ac-
tion ai over the state si−1. However, in many real world
applications, several activities may be carried out in parallel
and a total order of activities is not very appropriate for prac-
tical reasons. In order to obtain plans with parallel branches,
SIADEX uses several techniques: the definition of qualita-
tive partial order relationships in the domain, the inference
of new metric temporal constraints from the causal struc-
ture of the plan, the definition of deadline goals and com-
plex synchronization schemas. These techniques are based
on the inference capabilities explained before and the han-
dling of metric time over a STN. A STN (Dechter, Meiri, &
Pearl 1991) is a structure (X, D, C) such that X is the set
of temporal points, D is the domain of every variable and C
is the set of all the temporal constraints posted. In our case,
a plan is deployed over a STN following a simple schema,
every action ai ∈ Π owns two time points start(ai) and
end(ai). Besides actions, every task ti that had been ex-
panded in the plan Π generates two time points start(ti)
and end(ti) which bound the time points of its subactivities.
There is an additional time point TR which represents the
absolute temporal reference at the beginning of a plan. All
the time points share the same domain [0,∞) and the con-
straints in C are posted and propagated at planning time in
a two-steps refinement process. First, once an abstract task
is decomposed into subtasks, low detail qualitative temporal
constraints are introduced in the plan to arrange subtasks ac-
cording to their order relation expressed in the domain. This
could be seen as the plan’s temporal skeleton. Later, once
their sub-actions are being included definitely in the plan,
more precise temporal constraints are added to encode the
causal relationships between every final action in the plan.

First step: introducing qualitative orderings

One of the main sources of temporal constraints between
the actions of the plan comes from the order in which the
subtasks of a given task appear in its decomposition. In this
way, SIADEX’ domains may impose three different types of
qualitative ordering constraints in every decomposition.

Sequences They appear between parentheses (T1,T2),
and they are a set of subtasks that must execute in the
same order than the decomposition, that is, first T1 and
then T2. Please note that any possible subtask of T1 and
T2 inherit these relations too, so that the imposed order-
ing is maintained even through their decompositions.



T5

T2

T3 T4

T1

(a) (b)

Figure 4: A graphical representation of the partial order
decomposition given by (T1 [T2 (T3 T4)] T5) (left
hand side) and the plan representation found by SIADEX
(right hand side)

Unordered They appear between braces [T1,T2], and
they are a set of subtasks that are not ordered in their de-
composition, that is, either T1 or T2 could execute first.

Permutations They appear between angles <T1,T2>, and
they are set of subtasks that must execute in any of the
total orders given by any of their permutations, that is, first
T1 and then T2 or vice versa. In these cases, the choice
of the best permutation takes part in the search process of
the planner. Please note that any possible subtask of T1
and T2 also inherit these relations.

For example, a method that decompose the task t into
(T1 [T2 (T3 T4)] T5) represents a partially ordered
decomposition depicted in Figure 4.a) and the plan obtained
by SIADEX is shown in Figure 4.b).

These qualitative temporal constraints are posted as
[0,∞) between the start and end points of the respective ac-
tions in the STN.

Second step: introducing quantitative orderings
from causal links

The qualitative orderings seen before allow to encode rel-
atively simple order relations that are the main sources of
partial ordering in the final plan. But there is an additional
source of ordering information that is very useful for encod-
ing more accurate metric temporal constraints: the causal
structure of actions. This section explains how to enhance
the representation of states with temporally annotated liter-
als, and how to exploit the existence of causal links between
primitive activities to encode sharply defined metric tempo-
ral constraints between them, providing a more precise, but
complementary, source of temporal constraints than these
qualitative orderings.

All the literals lkj in the effects of every action aj have a

delay ∆tkj by which they are achieved after the execution of

their corresponding action. This delay ∆tkj may range from
0 (the effect is achieved at the beginning of aj) or the dura-
tion of aj (it is achieved at the end). This is a generalization
of PDDL 2.2 at-start and at-end effects

(:durative action a
...
:effects (at ∆tkj (literal))

We may have “at start” effects, leaving ∆tkj = 0, or “at

end” effects, in this case ∆tkj = duration(aj) or any other
intermediate value.

SIADEX uses the information about delayed effects to
represent states as a temporally annotated extension of clas-
sical states, where every literal is timestamped with the time
by which it is achieved with respect to the action that pro-
duced it. Therefore, given a total order sequence of actions
and its induced sequence of states

Π = a1, a2, . . . , an → INITIAL+s1 +s2 +s3 + . . .+sn

every state si is given by si = {< lkj , aj,j≤i, ∆tkj >},

that is, a set of literals lkj coming either from the effects

of some previous action aj (lkj ∈ effects(aj)) or from
the initial state (in this case the literal would have the form
< lk

0
, 0, 0 >). This means that literal lkj was introduced in

the state si ∆tkj time units after the execution of aj given

by the time point start(aj). Then, a temporally annotated
state allows to know which action, if any, produced that lit-
eral amongst the preceding actions and at which time they
were achieved.

This information is particularly useful during the planning
phase for two different reasons.

Firstly, they allow to propagate accurate temporal con-
straints between actions (Figure 2, step 1(b)iC). For ev-
ery literal in the preconditions of an action ai that matches
a temporally annotated literal < lkj , aj , ∆tkj >∈ si−1 we
record a temporal causal link and use this information to post
a temporal constraint, given by [∆tkj ,∞), between the pro-
ducing action, i.e. start(aj), and the consumer action, i.e.
start(ai). This means that the consumer action start(ai)
must wait at least ∆tkj time units after start(aj), that is, the

time needed for aj to produce the desired effect lkj . There-
fore, a temporal causal link allows to propagate temporal
constrains due to the causal structure of the plan and taking
into account the delays of the effects of supporting actions,
and adds specific temporal constraints to the qualitative tem-
poral constraints included formerly.

And secondly they allow to unfold the total order se-
quence of actions into a partially ordered plan where actions
only depend of those other actions that produce any of the
literals needed to satisfy their preconditions and are inde-
pendent of the others. To ensure a correct causal structure
of the plan within this unfolding operation, a simple pro-
tection mechanism, similar to threat removal operations in
partial order planning (Weld 1994), adds some additional
constraints. When an action ai is included in the plan, and
ai deletes a literal l

k
j , an empty causal link is added such that

orders ai after any other action ak, k < i already present in
the plan that depends on the same literal (has a non-empty
causal link). Resulting temporal plans are not required to
have a total order structure, in fact, they only have the mini-
mum required temporal constraints to ensure a correct causal
structure, which may be a total order or not depending on the
causal structure of the plan.



Temporally extended goals

The process explained so far was mainly devoted to unfold
the total order relation in which actions are obtained (see
Figure 2) into a partial order plan that only records the causal
structure of the plan, as a least commitment unfolding strat-
egy (Figure 4.b). However, some real problems require the
posting of more complex temporal constraints between the
actions of a plan that not always have a cause-effect rela-
tionship. In this section, two additional enhancements are
presented devoted, on one hand side, to deadline goals, that
is, goals that must be achieved at a certain time, and in the
other hand, complex synchronization schemas to allow ac-
tions to interact along the time.

Deadline goals

A deadline activity (either a task or an action) is an ac-
tivity that may have defined one or more metric temporal
constraints over its start or its end or both. Furthermore,
in the case of tasks, SIADEX also allows to post deadline
constraints on the start or the end of an activity (or both).
Any sub-activity (either task or action) has two special vari-
ables associated to it: ?start and ?end that represent its
start and end time points, and some constraints (basically
<=, =, >=) may be posted to them. In order to do that,
when any activity appears in the decomposition of a higher
level task, it may be preceded by a logical expression that de-
fines the desired deadline, either simple or compound, as it
is shown in Figure 5. It shows that task A has no deadlines in
its decomposition but task A’ has a deadline that states that
its subaction A2 must start after 3 time units and end before
5 time units from the beginning of the plan. Deadline goals
are easily encoded in the STN of a temporal plan as abso-
lute constraints with respect to the reference time point TR,
the absolute start point of a STN. They may also appear in
the top level goal and they are very useful for defining time
windows of activity, that is, sets of activities that must be ex-
ecuted within a given temporal interval, or timed trajectories
of goals, i.e., sequences of goals that may be achieved one
after the other like a recipe.

Time points of subtasks of any task with deadlines are
embraced by the time points of the task, this means that, in
practice, subtasks inherit the deadlines. For example, Figure
6 shows how the deadlines defined over task A2 in Figure
5 constraint the timepoints of its subactions a21 and a22.
In this example, this inheritance process also has an useful
collateral effect. Since the makespan of task A2 is restricted
to be within [3, 5] time units, this enforces the planner to
look only for valid decompositions of A2 that meet these
constraints, or in other words, any possible decomposition
of A2 that takes longer than 2 time units would produce a
inconsistency in the STN and, thus, would make the plan-
ner to backtrack. Therefore, posting deadlines either on top
level tasks or on intermediate tasks, would lead to a simple
optimization of the makespan either of the whole plan or of
isolated branches of it.

(:task A

:parameters ()

(:method A

:precondition ()

:tasks ((A1)

(A2))))

(:task A’

:parameters ()

(:method A’

:precondition ()

:tasks ((A1)

((and (>= ?start 3)(<= ?end 5)) (A2)))))

(:task A2

:parameters ()

(:method A2

:precondition ()

:tasks ((a21)

(a22))))

Figure 5: Task A has no deadlines in its decomposition, just
that A2 must appear after A1. Task A’ has deadlines in its
decomposition stating that subtask A2 must appear after A1
but A2 must start after 3 time units and end before 5 time
units since the beginning of the plan.

oo[3,    )

[0,5]

start(A2) start(a21)end(A1)start(A1)TR end(a21) start(a22) end(a22) end(A2)

Figure 6: A task with deadlines imposes its constraints to its
subtasks.

Temporal landmarking and complex
synchronizations

SIADEX is also able to record the start and end of any activ-
ity and to recover these records in order to define complex
synchronizations schemas between either tasks or actions as
relative deadlines with respect to other activities. The first
step is the definition, by assertion, of the temporal landmarks
that signal the start and the end of either a task (Figure 7.a)
or an action (Figure 7.b). These landmarks are treated as
PDDL fluents but they are associated to the time points of
the temporal constraints network and, therefore, fully opera-
tional for posting constraints between them in the underlying
STN.

These landmarks are asserted in the current state, and later
on, they may be recovered and posted as deadlines to other
tasks in order to synchronize two or more activities. For
example, Figure 8 shows the constraints needed to specify
that action b must start exactly at the same time point than
task A2.

In particular, thanks to the expressive power of tempo-
ral constraints networks and to the mechanism explained so
far, a planning domain designer may explicitly encode in
a problem’s domain all of the different orderings included
in Allen’s algebra (Allen 1983) between two or more tasks,
between two or more actions or between tasks and actions.
Table 1 shows how these relations may be encoded between
task A2, composed of actions a21 and action a22 with a



(:task A2

:parameters ()

(:method A2

:precondition ()

:tasks ((:inline ()

(and (assign (start A2) ?start)

(assign (end A2) ?end)))

(a21)

(a22))))
(a)

(:durative-action b

:parameters()

:duration (= ?duration 1)

:condition()

:effect(and (assign (start b) ?start)

(assign (end b) ?end)))

(b)

Figure 7: Generating temporal landmarks both for a task
(a) and for an action (b). These landmarks are treated as
fluents but they really represent time points of the underlying
Simple Temporal Network underlying the plan, enabling the
posting of additional constraints over them.

(:task A3

:parameters ()

(:method A3

:precondition (...)

:tasks (((= ?start (start A2)) (b)))))

Figure 8: Recovering a temporal landmark in order to define
a synchronization scheme in which action b starts exactly at
the same time that task A2

duration of 1 time unit each, and action b with a duration of
5 time units. These constraints posted on start and end points
of tasks are also inherited by its corresponding subtasks.

Timed initial literals

Timed initial literals, as defined in PDDL 2.2 (Edelkamp
& Hoffmann 2004) are also easily supported by SIADEX
to represent timed exogenous events, that is, events
that are produced (and possibly repeated) along the
timeline outside of the control of the planner. In fact,
SIADEX uses a generalization of timed initial literals
to allow them to appear regularly along the timeline.
Timed initial literals in SIADEX appear either like
(between <time1> and <time2> <literal>)
to represent that <literal> is true from time
point <time1> to time point <time2>, or

(between <time1> and <time2>
and every <shift> <literal>)

to represent that <literal> appear regularly at intervals
given by <shift> along an infinite timeline. For example

(between "8:00:00" and "20:00:00"
and every "24:00:00" (daytime))

(between "22:00:00" and "8:00:00"
and every "24:00:00" (nighttime))

represents that the literal (daytime) is true between
a time point fixed at “8:00” and the time point fixed at

“20:00” and that this is repeated every 24 hours. The literal
(nighttime) behaves similarly.

These intervals in which a literal is true are represented
as a temporal skeleton underlying the temporal plan as fixed
time points with an absolute temporal reference to TR, the
time point that fixes the absolute beginning of the STN.
Since they may appear several times along the timeline, they
also represent a choice point and, therefore, a backtracking
point during the satisfaction of the preconditions of an action
(either “at-start” or “over-all”) (Figure 9).

start(a1)

start(a2)

end(a1)

end(a2)

start(a3) end(a3)

22:00

nighttime daytime daytimenighttime

literals

timed initial
daytime

(:durative−action a2

   ...

   :condition (over all (daytime))  

TR

8:00 22:00 8:00 22:00 8:00

temporal plan

(between "8:00:00" and "20:00:00" and every "24:00:00" (daytime))

(between "22:00:00" and "8:00:00" and every "24:00:00" (nighttime))

{
first choice

second choice

Figure 9: Timed initial literals deployed over a STN and its
relation with a temporal plan. Precondition (daytime) of
action a2 may have multiple satisfiers amongst the timed
initial literals.

Boosting constraint propagation

The constraint propagation engine used in SIADEX is the
algorithm PC-2 (Dechter 2003) that is sketched in Figure
10. This is an incremental propagation method, very useful
in planning problems, where constraints are posted increas-
ingly as the problem is being solved. Propagation is needed
in SIADEX for two reasons. The main one is to check the
consistency of the underlying STN and the other one is to
schedule actions along the timeline. Although it is a very
efficient algorithm (it is O(|X|3) where X is the set of time
points of the underlying STN) it still requires a high com-
putational effort in large plans in the order of hundreds or
thousands of actions. This overload comes from step 4c in
Figure 10, where, once a constraint has been modified, all
the time points and their connections with the just modified
constraint are revised. The fact is that many of these revi-
sions could not be necessary if the involved time points are
causally independent and, therefore, their relation would not
affect the final solution.

It is well known that the use of additional knowledge may
speed up constraint propagation with structural information
able to prune unnecessary propagation effort (Yorke-Smith
2005). Furthermore, cause-effect relationships between its
actions or the plan rationale (Wilkins 1988), is a source of
structural information that might be used to improve the effi-
ciency of the underlying search processes in planning prob-
lems (Helmert 2004). Therefore, we propose a simple, but
effective, improvement of PC-2 to reduce unnecessary con-



Allen’s relation SIADEX encoding SIADEX output

A2  BEFORE  b

A2

b ((> ?start (end A2)) b)

A2

b

A2  MEETS  b

((= ?start (end A2)) b)

A2

b

A2  OVERLAPS  b

(and (> ?start (start A2))
(< ?start (end A2))
(> ?end (end A2)) b)

b

A2  DURING  b

A2

(and (< ?start (start A2))
(> ?end (end A2)) b)

b

A2  STARTS  b

A2

((= ?start (start A2)) b)

b

A2  FINISHES  b

A2

((= ?end (end A2)) b)

b

A2  EQUAL  b

A2

(and (= ?start (start A2))
(= ?end (end A2)) b)

Table 1: Encoding all Allen’s relations between task A2 and action b. In all the cases action b has a duration of 5 time units
except in the equal relation, whose duration is 2 time units.

• Propagate-Temporal-Constraints-PC2(Π)

1. Let Π = {a1, a2, . . . , an} be a temporal plan and R =
(X, D, C) a Simple Temporal Network on top of which
Π is built, such that X is the set of temporal points
(given by start and end points of all of the actions in
Π), D is the domain of every variable, that is, [0, +∞),
and C is the set of all the temporal constraints posted
in Π

2. Let (i, j) the time points affected by the last posted con-
straint in C.

3. Let Q ← {(i, k, j), 1 ≤ i < j ≤ |X|, 1 ≤ k ≤
|X|, k 6= i, k 6= j}

4. while Q 6= ∅

(a) Select and delete a tuple (i,j,k) from Q

(b) Cij = Revise(i, j, k)
(c) if Cij has changed after the call to Revise(.) then

foreach l, 1 ≤ l ≤ |X|, l 6= i, l 6= j

i. Q← Q ∪ {(l, i, j)(l, j, i), }

• Revise(i,j,k)

1. Cij = Cij ∩ (Cik ◦ Ckj)

Figure 10: The incremental algorithm PC2 for constraint
propagation in STNs

P1 P2 P3 P4 P5 P6 P7 P8

Sequential 8 11 12 14 19 22 27 32
Parallel 40 55 60 70 95 110 135 160

Table 2: Experiments “Sequential” and “Parallel” and the
sizes of plans, that is, the number of actions obtained for
every problem instance out of 8 different problems.

straints propagations by exploiting the causal structure of the
plan and to boost its performance.

Algorithm PC-2 propagates constraints between all of the
actions in a plan, causally dependent or not. This produces
a large amount of information that is mostly unnecessary
regarding the final solution of a problem. In a general con-
straint satisfaction framework, this process is enough to en-
sure a correct propagation of constraints and to detect in-
consistencies. However, taking into account that it is being
used in a planning framework, the completeness of the al-
gorithm only depends on a correct constraint propagation
through actions that have an explicit temporal relation, that
is, they have a cause-effect relationship or that have a dead-
line or a landmark between them. Thus, a new propagation
schema is proposed, named PC2-CL (Figure 11), that ex-
tends PC2 with an analysis of the causal structure of the plan
to eliminate unnecessary propagations. In order to do that,
step 4(c)i only includes in the propagation queue Q those
time points belonging to an action that have an explicit tem-
poral constraint either because there is a causal link with the
action involved in the new constraint Cij or because there is
a deadline or a landmark between them.



• Propagate-Temporal-Constraints-PC2-CL(Π)

1. Let Π be a temporal plan and R = (X, D, C) its Sim-
ple Temporal Network

2. Let (i, j) the time points affected by the last posted con-
straint in C.

3. Let Q ← {(i, k, j), 1 ≤ i < j ≤ |X|, 1 ≤ k ≤
|X|, k 6= i, k 6= j}

4. while Q 6= ∅

(a) Select and delete a tuple (i,j,k) from Q

(b) Cij = Revise(i, j, k)
(c) if Cij has changed after the call to Revise(.) then

foreach l, 1 ≤ l ≤ |X|, l 6= i, l 6= j

i. if l belongs to an action with a causal link towards
the action that owns either i or j or l is a time point
with a deadline or landmark associated to i or j then
Q← Q ∪ {(l, i, j)(l, j, i), }

Figure 11: The modified version of PC2 that accounts for
the existence of causal links

This extension obviously implies less propagations and a
lower number of calls to the procedure Revise(.) and, given
that the representation of a list of temporal causal links is
very simple, it is not expected to produce a computational
overload. What is clear is that the whole improvement de-
pends largely on the density of causal links, i.e., the greater
the number of causal links the lower the gain. In addition
to this, PC2-CL is provably correct since making use of the
temporal causal links, it is guaranteed that constraints are
propagated only to those actions that are affected by a cause-
effect relationship or have an explicit constraint and not to
unnecessary independent actions.

Some experiments

In order to empirically check the efficiency of SIADEX with
PC2-CL four different experiments are performed. Two of
them, named “Sequential” and “Parallel” are extracted from
a domain of electronic tourism in which a planner is used
to find plans of visit adapted to the preferences of a certain
tourist (Fernández, Sebastiá, & Fdez-Olivares 2004). The
third one, named “Infoca”, is extracted from (Fdez-Olivares
et al. 2006) and it consists of the application of a planner
to the design of real forest fire fighting plans in Andalusia
(Spain). The last experiment, named “Zeno”, is framed in
the Zeno domain of the 2002 international Planning Com-
petition (Fox & Long 2002) and is performed over the hard
instances of temporal and numeric problems. The size of the
plans obtained for every experiments are shown in Tables 2,
3 and 4.

The experimental results of Figure 12 show much less
propagation effort in PC2-CL measured as the number of
calls to theRevise(.) procedure. And, additionally, in terms
of CPU time (Figure 13), PC2-CL is much faster in all the
experiments except some instances of the “Sequential” do-
main in which, since the time is very low and plans are very
small, the time devoted to check causal links might exceed

P1 P2 P3 P4 P5 P6 P7 P8
55 92 98 106 114 122 130 167

P9 P10 P11 P12 P13 P14 P15 P16
200 233 241 248 268 306 339 372

Table 3: Experiment “Infoca” and the sizes of plans, that is,
the number of actions obtained for every problem instance
out of 16 different problems.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

73 107 156 171 272 296 297 318 373 245

P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

237 240 262 255 298 290 287 304 277 284

Table 4: Experiment “Zeno” and the sizes of plans, that is,
the number of actions obtained for every problem instance
out of 20 different problems extracted from the hard in-
stances of temporal and numeric problems in IPC 2002 (Fox
& Long 2002).

the benefit of using PC2-CL, achieving thus a worse perfor-
mance. However, in the remaining cases, the real example of
“Infoca” and the hard temporal problems of “Zeno” PC2-CL
outperforms PC2.
And just to give a relative idea of the overall performance

of SIADEX, Figure 14 shows a comparison of the CPU time
needed by SIADEX and SHOP2 (Nau et al. 2003), the best
known HTN planner to date1 to solve all the Zeno problems.

Related work

The use of STNs in planning frameworks is not new and
has also been widely addressed in the literature. In a hier-
archical planning setting, one of the earlier works is OPlan
(Tate, Drabble, & Kirby 1994) in which many of the tem-
poral constraints have to be explicitly encoded in the STN.
SIADEX also encodes these constraints but only those that
depend on high level goals (like deadlines or landmarks) are
explicit and the remaining ones are implicitly encoded in the
causal structure of the plan without an additional effort of
the domain modeler to make them explicit. SHOP (Nau et
al. 2003) does not use STNs but temporal constraints have
also to be explicitly encoded amongst the effects and pre-
conditions of operators in the Multi-Timeline Preprocessing
scheme (MTP), requiring an important effort to write tempo-
ral domains. However, the use of causal links, either empty
or not, to propagate constraints between actions and pro-
tect the achievements of literals in the current state seems
to be fully equivalent to MTP. The main difference is that
SHOP with MTP produces a unique schedule that coincides
with the schedule of SIADEX’ STN with the earliest exe-
cution time for every action, but SIADEX is able to handle

1Both planners running on the same machine, a Pentium IV 3
GHz, 1GB Ram. SIADEX is compiled from C++ and SHOP2 is
written in Lisp running on Allegro CL. SIADEX was running a
translation of the same domain used by SHOP2 in the IPC 2002
(Fox & Long 2002) with an equivalent HTN expressive power and
the same constraints.



deadlines and landmarks and to obtain different schedules
according to other criteria (i.e., latest execution time). Ixtet
(Laborie &Ghallab 1995) also uses STNs with an equivalent
expressive power and temporal cause effect relationships are
encoded by means of two simple predicates named events
(that represent an instantaneous change of the world) and
assertions (that represent the persistence of some attributes
along the timeline).
On the other hand, the use of different sources of knowl-

edge to restrict temporal constraint propagation to a subnet-
work of the former STN in order to obtain a better perfor-
mance has also been studied like in Ixtet (Ghallab & Vidal
1995) or in PASSAT (Yorke-Smith 2005). These works and
the one presented in this paper may have different perfor-
mance results on the same tests and a comparative study
might be useful, but it is worth noting that the approach
in (Yorke-Smith 2005), in which constraints are propagated
taking into account the HTN structure of the plan, is par-
ticularly relevant since it is an orthogonal approach to this
one and it seems that they might be combined to obtain even
more efficient results.

Conclusions

In summary, this paper has presented several valuable tem-
poral extensions of an HTN planner that allow to cope with
a very rich temporal knowledge representation like tempo-
ral causal dependencies, deadlines, temporal landmarks or
synchronization schemas and timed initial literals. These
capabilities have been found to be of extreme necessity
during the application of SIADEX to the research contract
NET033957 with the Andalusian Regional Ministry of Envi-
ronment for the assisted design of forest fighting plans (de la
Asunción et al. 2005; Fdez-Olivares et al. 2006) and, up to
author’s knowledge, no other HTN planner has these capa-
bilities for handling temporal constraints. In addition to this
temporal expressive power, SIADEX also shows an excel-
lent performance compared to other well known HTN plan-
ner like SHOP.
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Figure 12: Number of calls to the procedure Revise(.) in
PC2 versus PC2-CL for all the instances of every problem.

Figure 13: Compared CPU time in PC2 and PC2-CL in all
the instances of the problems.

Figure 14: Compared CPU time between SIADEX and
SHOP2 in the hard instances of ZENO (temporal+numeric).
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Abstract

SIADEX is an integrated framework to support deci-
sion making during crisis episodes by providing real-
istic temporally annotated plans of action. The main
component of SIADEX is a forward state-based HTN
temporal planner.

Introduction

The design of plans of activity for crisis situations is a
very sensitive field of application for mature AI planning
and scheduling techniques (Allen et al. 1995; Myers 1999;
Biundo & Schattenberg 2001; Avesani, Perini, & Ricci
2000). However, a successful approach requires a subtle in-
tegration of several research and development issues like

• Integration of several technologies. These systems are not
usually a monolithic approach, but a composition of tech-
nologies that integrate with each other with different func-
tionalities like planning (to determine the appropriate set
of activities), scheduling (to handle time and resources),
pathfinding (to find optimal movement plans in complex
networks), etc.

• Enhancing the role of end-users. End users of these sys-
tems are not expected to have a background knowledge on
AI, therefore the system must use user-friendly interfaces
in order for end-users to establish goals, to understand
what the system does and what the system is demanding
without having to use a technical language like a planning
domain description language or a constraint programming
language.

• Flexible knowledge representation. The system must rep-
resent a large amount of data coming from heterogenous
sources of information like GPS locations of resources,
facilities, legal issues that constraint the activities (for ex-
ample, contracting conditions or durations of shifts), ex-
ogenous events (i.e., meteo conditions, day and night pe-
riods), and many more. Even more, although this might
seem simple it is a very important issue, the system must
access to all this information on-line, that is, extracting
it from legacy databases and translating them into known
planning and scheduling domain description languages.

∗This work is being funded by the Andalusian Regional Min-
istry of the Environment, under research contract NET033957

• Support of distributed and concurrent access of end-users.
Usually, these systems are operated in hostile environ-
ments like a forest fire, natural disasters scenarios, etc,
and most of the inputs come from (and most of the outputs
are directed to) end-users located at these places. These
systems are too complex as to be installed and run on
small devices with limited computation capability like a
laptop or a PDA, therefore providing a centralized high-
capability computing facility with full connectivity and
accessibility to end users is a valuable feature.

• Integration with legacy software. Not only the income but
also the outcome must be redirected to legacy software
so that end users may painlessly understand, process and
deliver activity plans. In this case a user-friendly output
to GIS or project management and monitoring is strongly
required.

• Quick response. Last, but not least, the system must be
very efficient so that it obtains a response in an acceptable
time with respect to the own latency time of the crisis sit-
uation (that may range from minutes to hours).

The architecture of SIADEX

SIADEX is an open problem solving architecture based on
the intensive use of web services to implement most of its
capabilities (Figure 1). Its main components are the knowl-
edge base (named BACAREX), that stores in Protege ((Na-
tional Library of Medicine )) all the knowledge that would
be useful for the planning engine, and the planning module
(named SIADEX), the core of the architecture in charge of
building fire fighting plans.
The planning algorithm and its knowledge representation

are built as two independent modules, which are accessi-
ble from any device with internet connectivity (a desktop
computer, a laptop or a PDA). This allow users to query or
modify the state of the world by using almost any existing
web browser or by using a well known GIS software (ESRI
), recall that during a crisis episode most of the objects and
resources are associated have geographical properties (see
Figure 2). In the same way, temporal plans designed by
SIADEX may be downloaded into some project manage-
ment software in the form of Gantt charts (see Figure 3) or
any other software commonly used by technical staff. The
basic process is as follows.



Figure 1: Architecture of SIADEX

Describing the problem The fire fighting scenario is intro-
duced by the technical staff consisting of the targets ar-
eas, the general attack procedures and an estimation of
the number of resources to be used. This may be done
by the web browsing utility or, much more easily, by the
ArcView GIS software plugin (ESRI ).

Storing the scenario The fire fighting scenario is stored
in Protege format in BACAREX. Therefore, knowledge
about resources and fire scenario share the same repre-
sentation. All this information is visible to other users
by means of the web browsing facility, although only
the knowledge about the problem may be accessed (the
knowledge about the domain, tasks and actions, is only
visibile for the development team).

Requesting a plan The planning engine is not able to read
the domain and the problem stored in Protege, therefore
a PDDL Gateway has been implemented that translate
problem and domain into PDDL 2.2 level 3 (Edelkamp &
Hoffmann 2004). After that, the planning engine is called
and a plan is obtained (or not).

Displaying the plan The plan obtained may be displayed
in a number of “user-friendly” alternatives like Microsoft
Excel, in the form of a chronogram, or Microsoft Project
in the form of a Gantt chart (see Figure 3).

Plan execution and monitoring (in development) The
plan may be launched for execution, distributed amognst
all the technical staff with some resposibility in the fire
fighting episode, and concurrently monitored.

Domain knowledge

The knowledge about the planning objects (places, facili-
ties, task forces, resources, etc) is stored in an ontology of
the problem represented in Protégé, an ontology editor and

Figure 2: The ArcView plugin

Figure 3: Gantt chart output

knowledge acquisition tool (National Library of Medicine ).
A web browsing tool has been designed so that end users
may easily access to the hierarchy of objects, to query or
modify their properties, without having to know anything
related to knowledge representation1. This hierarchy of ob-
jects also supports the definition of the goal scenario (geo-
graphical targets, goal tasks, etc) either from a web browser
or from a GIS software. Once a plan is requested by the user,
the knowledge stored in this knowledge base is then trans-
lated into PDDL 2.2 level 3 (Edelkamp & Hoffmann 2004),
with support for timed initial literals and derived predicates,
following the next outline:

• Classes of the ontology are translated into a hierarchy of
PDDL types.

• Instances are translated as typed planning objects (only
the slots relevant for the planning process are translated).

• The domain is stored directly in the form of tasks, meth-

1The development team may also use the standard Protégé shell
to run knowledge consistency checking and validation.



ods and actions compliant with PDDL 2.2 level 3, so it
does not need to be translated.

• Other constraints of the problems are also translated ac-
cordingly like maximun legal duration of shifts (fluent),
day/night events (timed initial literals), activity windows
over the scenario (deadline goals), etc.

The planner

The planning module is a forward state-based HTN planning
algorithm with the following features:

• Primitive actions are fully compliant with PDDL 2.2 with
durative actions and numeric capabilities (Figure 4).

• It makes use of an extension of PDDL to represent timed
HTN tasks and methods.

• SIADEX’s domains also embed some functionalities to
control and prune the search in order to make the planning
process more efficient.

• SIADEX also supports the use of external functions calls
by embedding Python scripts in the domain definition, to
access external sources of information or perform com-
plex computations during the planning process (Figure 5).

(:durative-action Refuel_Plane

:parameters (?a - Aircraft ?p - Refueling_Point)

:prettyprint "?start > Aircraft ?a starts refueling

at ?p. Finishing at ?end"

:duration (= ?duration (refueling_time ?a))

:condition (and

(in_fire ?a ?fire)

(over all (daylight ?fire))

(GIS ?p ?gis)

(current_position ?a ?gis))

:effect (and

(state ?a refuelling)

(at end (assign (current_autonomy ?a)

(max_autonomy ?a))))

)

Figure 4: PDDL 2.2 level 3 primitive actions

Temporal and resource reasoning

One of the most important features of SIADEX is that
it allows a powerful handling of temporal knowledge.
SIADEX’s plans are built on top of a temporal constraint
network (Dechter, Meiri, & Pearl 1991) that records tem-
poral and causal dependencies between actions so that, al-
though it is a state based process, plans may have a partial
order structure with temporal references either qualitative or
numeric. This allows SIADEX to obtain very flexible sched-
ules (N. Policella 2004) that might be redesigned during the
execution of the plan to adapt to unforeseen delays without
the need to replan. In addition to this, SIADEX also sup-
ports the definition of constraints on the makespan of the
plan and deadline goals over primitive and compound tasks

(:functions

(distance ?x1 ?y1 ?x2 ?y2)

{

import math

return math.sqrt ( (?x2 - ?x1) *

(?x2 -?x1) +

(?y2 - ?y1) *

(?y2 - ?y1))

}

...

Figure 5: Embedded python in the domain

(in the case of compound tasks, deadline goals are inherited
by its component tasks).
Since SIADEX handles numerical objects like PDDL flu-

ents (that can also be dynamically linked to external Python
calls) it achieves a basic handling of numeric resources.
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Abstract

SIADEX is an integrated framework to support deci-
sion making during crisis episodes by providing real-
istic temporally annotated plans of action. The main
component of SIADEX is a forward state-based HTN
temporal planner.

Introduction

The design of plans of activity for crisis situations is a
very sensitive field of application for mature AI planning
and scheduling techniques (Allen et al. 1995; Myers 1999;
Biundo & Schattenberg 2001; Avesani, Perini, & Ricci
2000). However, a successful approach requires a subtle in-
tegration of several research and development issues like

• Integration of several technologies. These systems are not
usually a monolithic approach, but a composition of tech-
nologies that integrate with each other with different func-
tionalities like planning (to determine the appropriate set
of activities), scheduling (to handle time and resources),
pathfinding (to find optimal movement plans in complex
networks), etc.

• Enhancing the role of end-users. End users of these sys-
tems are not expected to have a background knowledge on
AI, therefore the system must use user-friendly interfaces
in order for end-users to establish goals, to understand
what the system does and what the system is demanding
without having to use a technical language like a planning
domain description language or a constraint programming
language.

• Flexible knowledge representation. The system must rep-
resent a large amount of data coming from heterogenous
sources of information like GPS locations of resources,
facilities, legal issues that constraint the activities (for ex-
ample, contracting conditions or durations of shifts), ex-
ogenous events (i.e., meteo conditions, day and night pe-
riods), and many more. Even more, although this might
seem simple it is a very important issue, the system must
access to all this information on-line, that is, extracting
it from legacy databases and translating them into known
planning and scheduling domain description languages.

∗This work is being funded by the Andalusian Regional Min-
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• Support of distributed and concurrent access of end-users.
Usually, these systems are operated in hostile environ-
ments like a forest fire, natural disasters scenarios, etc,
and most of the inputs come from (and most of the outputs
are directed to) end-users located at these places. These
systems are too complex as to be installed and run on
small devices with limited computation capability like a
laptop or a PDA, therefore providing a centralized high-
capability computing facility with full connectivity and
accessibility to end users is a valuable feature.

• Integration with legacy software. Not only the income but
also the outcome must be redirected to legacy software
so that end users may painlessly understand, process and
deliver activity plans. In this case a user-friendly output
to GIS or project management and monitoring is strongly
required.

• Quick response. Last, but not least, the system must be
very efficient so that it obtains a response in an acceptable
time with respect to the own latency time of the crisis sit-
uation (that may range from minutes to hours).

The architecture of SIADEX

SIADEX is an open problem solving architecture based on
the intensive use of web services to implement most of its
capabilities (Figure 1). Its main components are the knowl-
edge base (named BACAREX), that stores in Protege ((Na-
tional Library of Medicine )) all the knowledge that would
be useful for the planning engine, and the planning module
(named SIADEX), the core of the architecture in charge of
building fire fighting plans.
The planning algorithm and its knowledge representation

are built as two independent modules, which are accessi-
ble from any device with internet connectivity (a desktop
computer, a laptop or a PDA). This allow users to query or
modify the state of the world by using almost any existing
web browser or by using a well known GIS software (ESRI
), recall that during a crisis episode most of the objects and
resources are associated have geographical properties (see
Figure 2). In the same way, temporal plans designed by
SIADEX may be downloaded into some project manage-
ment software in the form of Gantt charts (see Figure 3) or
any other software commonly used by technical staff. The
basic process is as follows.



Figure 1: Architecture of SIADEX

Describing the problem The fire fighting scenario is intro-
duced by the technical staff consisting of the targets ar-
eas, the general attack procedures and an estimation of
the number of resources to be used. This may be done
by the web browsing utility or, much more easily, by the
ArcView GIS software plugin (ESRI ).

Storing the scenario The fire fighting scenario is stored
in Protege format in BACAREX. Therefore, knowledge
about resources and fire scenario share the same repre-
sentation. All this information is visible to other users
by means of the web browsing facility, although only
the knowledge about the problem may be accessed (the
knowledge about the domain, tasks and actions, is only
visibile for the development team).

Requesting a plan The planning engine is not able to read
the domain and the problem stored in Protege, therefore
a PDDL Gateway has been implemented that translate
problem and domain into PDDL 2.2 level 3 (Edelkamp &
Hoffmann 2004). After that, the planning engine is called
and a plan is obtained (or not).

Displaying the plan The plan obtained may be displayed
in a number of “user-friendly” alternatives like Microsoft
Excel, in the form of a chronogram, or Microsoft Project
in the form of a Gantt chart (see Figure 3).

Plan execution and monitoring (in development) The
plan may be launched for execution, distributed amognst
all the technical staff with some resposibility in the fire
fighting episode, and concurrently monitored.

Domain knowledge

The knowledge about the planning objects (places, facili-
ties, task forces, resources, etc) is stored in an ontology of
the problem represented in Protégé, an ontology editor and

Figure 2: The ArcView plugin

Figure 3: Gantt chart output

knowledge acquisition tool (National Library of Medicine ).
A web browsing tool has been designed so that end users
may easily access to the hierarchy of objects, to query or
modify their properties, without having to know anything
related to knowledge representation1. This hierarchy of ob-
jects also supports the definition of the goal scenario (geo-
graphical targets, goal tasks, etc) either from a web browser
or from a GIS software. Once a plan is requested by the user,
the knowledge stored in this knowledge base is then trans-
lated into PDDL 2.2 level 3 (Edelkamp & Hoffmann 2004),
with support for timed initial literals and derived predicates,
following the next outline:

• Classes of the ontology are translated into a hierarchy of
PDDL types.

• Instances are translated as typed planning objects (only
the slots relevant for the planning process are translated).

• The domain is stored directly in the form of tasks, meth-

1The development team may also use the standard Protégé shell
to run knowledge consistency checking and validation.



ods and actions compliant with PDDL 2.2 level 3, so it
does not need to be translated.

• Other constraints of the problems are also translated ac-
cordingly like maximun legal duration of shifts (fluent),
day/night events (timed initial literals), activity windows
over the scenario (deadline goals), etc.

The planner

The planning module is a forward state-based HTN planning
algorithm with the following features:

• Primitive actions are fully compliant with PDDL 2.2 with
durative actions and numeric capabilities (Figure 4).

• It makes use of an extension of PDDL to represent timed
HTN tasks and methods.

• SIADEX’s domains also embed some functionalities to
control and prune the search in order to make the planning
process more efficient.

• SIADEX also supports the use of external functions calls
by embedding Python scripts in the domain definition, to
access external sources of information or perform com-
plex computations during the planning process (Figure 5).

(:durative-action Refuel_Plane

:parameters (?a - Aircraft ?p - Refueling_Point)

:prettyprint "?start > Aircraft ?a starts refueling

at ?p. Finishing at ?end"

:duration (= ?duration (refueling_time ?a))

:condition (and

(in_fire ?a ?fire)

(over all (daylight ?fire))

(GIS ?p ?gis)

(current_position ?a ?gis))

:effect (and

(state ?a refuelling)

(at end (assign (current_autonomy ?a)

(max_autonomy ?a))))

)

Figure 4: PDDL 2.2 level 3 primitive actions

Temporal and resource reasoning

One of the most important features of SIADEX is that
it allows a powerful handling of temporal knowledge.
SIADEX’s plans are built on top of a temporal constraint
network (Dechter, Meiri, & Pearl 1991) that records tem-
poral and causal dependencies between actions so that, al-
though it is a state based process, plans may have a partial
order structure with temporal references either qualitative or
numeric. This allows SIADEX to obtain very flexible sched-
ules (N. Policella 2004) that might be redesigned during the
execution of the plan to adapt to unforeseen delays without
the need to replan. In addition to this, SIADEX also sup-
ports the definition of constraints on the makespan of the
plan and deadline goals over primitive and compound tasks

(:functions

(distance ?x1 ?y1 ?x2 ?y2)

{

import math

return math.sqrt ( (?x2 - ?x1) *

(?x2 -?x1) +

(?y2 - ?y1) *

(?y2 - ?y1))

}

...

Figure 5: Embedded python in the domain

(in the case of compound tasks, deadline goals are inherited
by its component tasks).
Since SIADEX handles numerical objects like PDDL flu-

ents (that can also be dynamically linked to external Python
calls) it achieves a basic handling of numeric resources.
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Abstract. This paper presents the replanning capabilities in the SIADEX plan-

ning framework[6], which are based in the chronological order of generation of

actions during the planning stage. This is a local replanning strategy since the

replanning of an action only affects to older actions in the search tree and newer

actions (actions that were generated after the replanned action) are maintained

unaltered. This process is intended to regenerate the plan taking into account the

the chronological steps given to obtain the current plan in a mixed initiative ap-

proach with the collaboration of a human expert.

1 Introduction

Planning for real world problems is becoming a need to bridge the gap between theory

and practice in the AI Planning community. However this task is full of difficulties that

arise from many different sources but one of the most important ones is the uncertainty

of the knowledge being used to obtain plans. In this sense, the available knowledge is

usually faulty so, there may be knowledge that is only partially known (incomplete-

ness), uncertain knowledge about the effects of an action in its environment (nonde-

terminism) or knowledge that may not be perfectly known, mainly different types of

metric knowledge (imprecision).

There are only two approaches to overcome this uncertainty: a preventive one and a

palliative one. Preventive approaches for handling uncertain knowledge in AI planning

frameworks try to foresee this uncertainty during the planning process and before the

execution of the final plan. Therefore one may find different approaches that build alter-

native, conditional, branches to foresee any possible contingency during the execution

of a plan [7, 11, 3], approaches that take into account the probability of every possi-

ble outcome of an action and build different strategies to react upon the detection of

unexpected effects [2] or approaches that bound the imprecision of part of the knowl-

edge and obtain plans adapted to these boundaries [8, 5]. These approaches might be

called “off-line” approaches since they separate the stages of planning and execution as

different, sequential phases of the resolution of a problem like a batch process.

On the other hand, palliative approaches make a simplifying assumption that every-

thing will go as expected so plans are obtained deterministically and, in the case that



something could go wrong during the execution, the planner might be invoked again to

design a subplan for the new contingency. Therefore, these approaches might be called

“online” approaches since they may interleave several planning and execution stages

during the resolution of the same problem. Basically one may find approaches for con-

tinual planning [9, 10], that interleave the design and execution of pieces of a plan until

the complete problem is solved, or replanning approaches [13, 1] that redesign and re-

place a piece of a plan after a failure has been detected. In these approaches there are

three main issues to be solved. The first one is detecting the source of the failure, the

second one is delimiting the impact of the failure and the third one is redesigning the

part of the plan that has failed.

The framework presented in this paper follows this last replanning approach and

gives a solution for the second and third issues but taking into account that the planner

is continuously being monitored and validated by a human operator. In this sense, the

replanning capabilities of SIADEX must be human centered, that is, they only produce

a local redesign of the part of the plan that has failed maintaining the remaining of

the plan unaltered. Global replanning is only carried out if the impact of the failure is

very deep, and when even the goal of the plan could be put in danger. This replanning

strategy is based on the chronological order of generation of actions and it affects either

older actions or newer actions that causally depend on the part that has failed. The

remaining actions in the plan are maintained unaltered.

2 The SIADEX framework

SIADEX is a planning framework that is being developed under a research contract

with the Andalusian Regional Government (Regional Ministry of Environment) [6]. It

is intended to assist technical staff in the design of forest fire fighting plans but the

ideas presented in this paper are domain independent and they might be applied to any

mixed initiative replanning framework. The core of the SIADEX architecture, Figure

1.a), is a generative planner that obtains extended plans following a classical partial

order causal link based planning algorithm [12] outlined in Figure 1.b). This algorithm

will be explained later. These plans are then executed under the supervision of the mon-

itoring module and a human operator. This is coordinated by the InfoCenter module

that interfaces all of the interactions between SIADEX and the outer world:

– Receives planning requests by the user (through the User Interface).

– Ask the planner for new plans.

– Upon notification of the monitoring module, it launches execution orders to the hu-

man operator (through the User Interface) or to external agents (through the World

Interface)

– Gathers information on the execution of the plan by indirect observation of a human

operator (through the User Interface) or by direct gathering (through the World

Interface) and translates them into the Monitor.

– Raises alerts about possible execution failures upon notification of the Monitor or

upon direct user request.



SIADEX(Π ,O, L, A, D)

1. If A is empty ReturnΠ ,O, L
2. Goal Selection: Extract (l, a, t) from A
3. Action Selection: Select an action a′ to solve

(l, a, t) such that either
(a) a′ ∈ Π (Reuse an action)

(b) a′ ∈ D (Insert a new action)

(c) Return FAIL

4. Update

(a) L = L ∪ (a′, l, a, NOW ())
(b) O = O ∪ a′ < a

(c) Π = Π ∪ a′

(d) ∀l ∈ Preconditions(a′),A = A ∪
(l, a′,∞)

5. Solve causal interferences: if an action at threat-

ens a causal link (ap, l, ac, t) then either
(a) O = O ∪ at < ap

(b) O = O ∪ ac < at

(c) Return FAIL

6. Recursively call SIADEX(Π ,O, L, A, D)

(a) (b)

Fig. 1. The architecture of SIADEX and the generation of chronologically extended plans. Π

stands for a set of actions, i.e., the plan, O is an order relation over Π , L is the plan rationale, A
is the agenda of pending subgoals to be solved, andD is the set of actions schemas in the problem

domain

Asmay be seen this architecture assumes that the execution of a previously designed

plan in a dynamic world might not go as expected so it includes two different levels of

response to this dynamicity. The first level is the monitoring module, that allows to trace

the execution of the plan, detect possible failures and determine the possible impact

of the failure. This is explained in sections 2.1 and 3. After the failure of an action

has been detected, a mixed-initiative replanning episode is launched. The interaction

is coordinated through InfoCenter and it may be as simple as re-executing the failed

action (if this is feasible taking into account the temporal constraints in the problem) or

as complex as deleting the remaining plan and redesigning a new one. This is explained

in section 5. In any case, the new plan is monitored again in a continuous loop that ends

with the successful execution of a plan.

2.1 Generation of chronologically extended plans

These extended plans obtained in SIADEX (Figure 1.b) contain a temporally ordered

sequence of actions Π and the plan rationale L. The plan rationale records the cause-
effect relationships between actions in the plan as well as the chronological point in the

resolution process at which every relationship was included. Thus, every record in L is

a tuple (ap, l, ac, t) that means that at time stamp t, action ap ∈ Π was used to solve



the precondition l of action ac ∈ Π . These records are named causal links. Taking

into account that the planning algorithm follows a backwards search process, the age

of an action a ∈ Π in the plan, that is, the chronological point at which the action was

included is given by τ(a) = min
(a,l,a′,t)∈L

t.

The agendaA that contains the pending subgoals to be solved is also annotated with

time stamps. A goal (l, a, t) in the agenda is a precondition l of an action a that is to be

solved. If t = ∞ then the goal is being newly generated, otherwise t 6= ∞ means that

it is a goal being replanned and it was originally solved at time stamp t.

For monitoring purposes only the plan Π , the temporal constraints defined over the

actions O and the plan rationale L are needed. The time stamp t in every record of the

plan rationale is only used for replanning.

3 Monitoring in dynamic environments

The monitoring module of SIADEX is based on a temporal scheduling and rescheduling

policy over temporal plans [5] so that actions in a plan are continuously being selected

for execution following the best temporal ordering, their execution is monitored and

possible faults are detected (Figure 2). When a fault is detected its impact is calculated,

and a replanning episode starts in which the user may interact with SIADEX, making

some suggestions (delete or add actions by hand, add or delete goals or literals). These

suggestions are processed by the planning algorithm and new interactions are requested

to the user until a valid plan is obtained, that is scheduled again for its execution and

monitoring.

PLANNER

MONITOR

PLAN
PATCHING

No failure Failure

End of plan

SUCCESS

Planning

Request

Planning

USER

Suggestions

extended plan

Fig. 2. The mixed-initiative planning and replanning loop in SIADEX

In order to correctly monitor the execution of a plan, SIADEX is based on two main

constructs, the Currently Known Horizon (CKH) and the Current Planning Horizon

(CPH). CKH Is the current state of the world since the initial state of the problem

along actions have been completely executed. Initially CKH is the initial state of the



problem. CPH is a prediction about the next changes to come in the near future. The

monitoring procedure is shown in Figure 3.

1. Let us consider

– X The set of actions already executed

– Π The set of actions that are to be executed

– Q The queue of actions that are currently under execution

2. Initially X = ∅, Q = ∅ and Π = the plan, CKH = Initial − State, CPH = ∅
3. Loop

(a) Extract from Π the next actions to be executed and insert them into Q

(b) Insert all of their effects in CPH

(c) If a literal in CPH has been achieved in the real world, move it from CPH to CKH

(d) If an action has achieved all its effects, move it fromQ to X
(e) If an action inQ cannot achieve some of its effects or a literal inCKH has been deleted

then return FAILURE

(f) If Π = Q = ∅ then return SUCCESS

Fig. 3. The monitoring steps

Initially, CPH is empty and every time a action is launched for its execution, all its

effects are included in CPH . Every effect takes a different time to be achieved [4, 5]

so the execution is continuously monitored and, once an effect has been achieved in the

real world, it is moved from CPH to CKH .

If everything goes well, all of the actions are correctly executed, CKH contains

the description of a goal state and CPH is empty. However, a plan may fail at some

point in its execution. The source of this failure may be either a missing condition, i.e.,

a literal that suddenly dissapears from CKH , or a missing effect, that is a literal that

cannot be removed from CPH . A missing condition may be due to an external event

that deletes a previously achieved effect or an initial condition. A missing effect may

be due to the failure of an action (or the agent that executes it) so that part of its effect

cannot be achieved.

Both cases produce a missing literal that, taking into account the plan rationale L,
might invalidate the causal dependencies of a set of actions. So, after the detection of

the failure, the next step is determining its impact in the causal structure of the plan.

This is done by function DeleteLiteral(l) shown in Figure 4. Additionally, during the

monitoring of the plan, new unexpected literals might arise. In these cases function

AddLiteral(l) is easily used.

Function DeleteLiteral(l) carries out three main activities. On the one hand, it start

to regenerate the part of the plan rationale that had been altered by the deletion of l.

In order to do so, it includes in the agenda A a new replanning subgoal for every al-

tered causal link. These subgoals are not new subgoals but subgoals to be re-satisfied.

Therefore they will have a time stamp t 6= ∞. Secondly, every action with a missing

precondition due to the deletion of l is labeled as OPEN . These actions cannot be

executed without re-satisfying the missing precondition. And finally, every action that



DeleteLiteral(l) AddLiteral(l)

1. If 6 ∃(a, l, a′, t) ∈ L do nothing

2. Otherwise ∀(a, l, a′, t) ∈ L do

(a) Remove (a, l, a′, t) from L
(b) Add (l, a′, t) to A
(c) Label a′ as OPEN

(d) ∀(a′, l′, a′′) ∈ L
i. Label a′′ as UNSTABLE

1. CKH = CKH ∪ l

Fig. 4. Two functions that may be used after the detection of a failure.

depends directly or indirectly on an OPEN action is labeled as UNSTABLE mean-

ing that their preconditions are fully satisfied but that there may be some supporting

action with a missing precondition.

4 User centered plan patching

This labeling of the action in the plan determines the future impact of the missing

condition detected by the monitoring module. The decision to be taken is not easy,

and it is left to the judgment of the human operator. The most conservative decision is

to re-execute the failed action. The most aggressive decision is to purge the plan, that

is, the deletion of all OPEN actions and all UNSTABLE actions and replan them

completely. All of these possibilities may be carried out through InfoCenter in a plan

patching stage that is driven under the control of a human operator (Figure 2). This

transition in the loop of planning and replanning may be carried out in two different

ways (depending on the problem domain).

– The execution of the plan is fully stopped. Then CPH and CKH are immediately

stopped until the plan patching ends and the (possibly new) plan may continue its

execution. This corresponds with a batch replanning system.

– The execution of the plan is not stopped and every action that were not altered by

the failure is continued. Then CPH and CKH continue changing while there is

any executable action not labeled asOPEN either as UNSTABLE. This schema

corresponds with an asincronous replanning system.

In any case, these are the suggestions that may be made by the human operator.

DeleteAction(a) This suggestion deletes the desired action a (only if it has not been

executed yet), it deletes all of its effects in the plan, and recursively deletes all

of the actions that were included explicitly to solve any precondition of a1. So

this suggestion deletes the causal structure supporting a that is no longer needed,

labels as UNSTABLE the actions that causally depend on a, and generates some

replanning goals.

1 These are actions newer than a in the chronological order. Actions older than a are not deleted

since they were introduced for other purpose and they were later reused by a during the plan-

ning process.



DeleteAction(a)

1. Only if a ∈ Q ∪ Π

2. Remove a from Q or Π

3. ∀l ∈ effects(a) DeleteLiteral(l)
4. ∀(a′, l, a, t) ∈ L

(a) Remove (a′, l, a, t) from L
(b) If a′ ∈ Q ∪ Π

i. If τ(a′) > τ(a) DeleteAction(a′)

AddAction(a) This suggestion creates a set P of patches of the user that contains ac-

tions explicitly added by the user. These actions will be eventually reused later by

the planner during the replanning stage.

AddAction(a)

1. P = P ∪ a

DeleteGoal(g) This suggestion is very strong. It deletes all of the actions that were ex-

clusively added to solve that goal and generate a replanning subgoal and, possibly,

many replanning subgoals.

DeleteGoal(g)

1. Let (a, g, END, t) the causal link that records the satisfaction of the goal g by

means of the action a.

2. DeleteAction(a)

3. Insert (g, END, t) in A

Addgoal(g) This action simply adds a new primary goal to the agenda.

AddGoal(g)

1. A = A ∪ (g, END,∞)

5 Local replanning in SIADEX

After the plan patching stage, the plan contains a damaged causal structure, with many

open conditions still to be re-solved, some actions are new and others have dissapeared.

The replanning episode has to regenerate the missing pieces of the plan to obtain a

complete, valid plan. In order to do this, instead of replanning completely the missing

actions, a local replanning procedure is carried out taking into account the time stamps

in the newly generated replanning subgoals. This is a very close procedure to a human

revision of a plan since a global redesign of a plan is only carried out if it is strictly



necessary given that the execution of a completely new plan may be very costly in

terms of reconfiguration of the agents and actuators in the real world. In this sense,

local redesigns of a globally valid plan are more preferred. However, in the case that a

local replanning is infeasible, a global replanning must be carried out.

Instead of using a specialized replanning algorithm, the original algorithm in Figure

1.b) was redesigned so that it is able to work in a purely generative episode and also in

a replanning episode. The main additions are

– It is able to replan over a plan that is being executed, taking into account the exis-

tence of already executed actions and CKH .

– It reuses and extends the remaining plan rationale L.
– It is able to include the actions suggested by the user in P although, due to the

search process these actions might be finally rejected.

– The role of the time stamp in the causal structure is increased to provide a local

replanning capability.

– In the case of a backtracking during a local replanning (steps 3e and 5c), all of

the actions newer than the current problem being replaned are deleted triggering a

global replanning process.

Therefore, during a generative episodeQ = P = CKH = ∅ and all of the goals in
A are of the form (l, a,∞). On the other hand, during a replanning episode Q, P and

CKH may be non empty, and goals in A may have a time stamp different than∞

6 Concluding remarks

This paper has shown the replanning capabilities of SIADEX, a system being developed

under a research contract with the Andalusian Regional Government to assist technical

staff in the design of forest fire fighting plans. Although this a very specific domain, the

techniques shown in the paper are domain independent and they might be applied to any

domain. These techniques are based on a local replanning capability with the following

features

– It is a local replanning procedure since it does not produce a global replanning pro-

cess if it is not necessary, so only the neighborhood of the failed action is replanned.

– It is a mixed initiative approach in which the user is informed of the existence and

the impact of the failure and he/she is able to patch the plan by adding/deleting

either actions or goals.

– It might be used to start a planning process either from scratch or from initial sug-

gestions of the user and regenerating a plan over them. This is because this process

is inherently the same to replanning so that the interaction with the user may be

even closer.

On the opposite hand, it must be said that these techniques are not complete since

after a failure in the execution, only the plan rationale is deleted and regenerated. Order-

ing and binding constraints posted by failed actions are not deleted neither regenerated

though they are being studied for a more comprehensive replanning procedure in the

SIADEX project.



SIADEX-R(Π ,Q, P , O, L, A, D, CKH)

1. If A is empty ReturnΠ ,O, L
2. Goal Selection: Extract (l, a, t) from A
3. Action Selection: Select an action a′ to solve (l, a, t) such that either is a new action or a

previously existing action with a time stamp older than the goala.

(a) a′ ∈ X and l ∈ CKH Reuse an already executed action whose effects are still in

CKH

(b) a′ ∈ P Reuse an action suggested by the user

(c) a′ ∈ Q ∪ Π and τ(a′) < t Reuse an action still to be executed. This corresponds to

a delay in the execution of a that was originally scheduled to be executed before, but,

due to the failure it is still possible to execute it later reusing part of the existing plan

rationale.

(d) a′ ∈ D
(e) Return FAIL and

i. ∀a ∈ Π ∪Q such that τ(a) > t DeleteAction(a)

4. Update

(a) if t = ∞ (new goal) L = L ∪ (a′, l, a, NOW ())
otherwise (replanning goal)

i. L = L ∪ (a′, l, a, t)
ii. Increase in 1 time unit the time stamp of every goal (l, a, t′) ∈ A and every causal

link (a1, l, a2, t
′) such that t < t′

(b) O = O ∪ a′ < a

(c) Π = Π ∪ a′

(d) ∀l ∈ Preconditions(a′),A = A ∪ (l, a′, t + 1)
5. Solve causal interferencesb: if an action at threatens a causal link (ap, l, ac, t) then either

(a) O = O ∪ at < ap

(b) O = O ∪ ac < at

(c) Return FAIL and

i. ∀a ∈ Π ∪Q such that τ(a) > t DeleteAction(a)

6. Recursively call SIADEX-R(Π ,Q, P , O, L, A, D, CKH)

a For newly generated goals (with time stamp∞) every action is a possible one. For replanning

goals with a time stamp t only actions whose time stamp is lower are considered, that is,

actions that were previously generated in the search tree. Newer actions, i.e., actions that were

generated later in the search tree are not considered.
b This step does not consider time stamps since interferences may appear between actions and

causal links of any age.

Fig. 5. The planning and replanning algorithm of SIADEX
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2. Spin-off creadas 

2.1  IActive Intelligent Solutions, S.L. 

 

Compañía fundada en 2006 para transferir los avances científicos en Inteligencia Artificial 

gestados en la Universidad de Granada al mercado. La compañía está especializada en el 

desarrollo de sistemas inteligentes a medida basados en planificación automática así como en el 

suministro de esta tecnología a otras compañías para que la integren en sus productos 

dotándolos de valor añadido. Actualmente trabajan más de 30 personas en la compañía. 

2.2  Egestia Sistemas Inteligentes de Gestión OnLine, S.L. 

 

Compañía fundada en 2009 para desarrollar aplicaciones en Internet de gestión empresarial con 

un modelo de negocio SaaS basadas en tecnologías en Inteligencia Artificial. Actualmente 

trabajan 9 personas en la compañía. 
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3. Productos desarrollados 

3.1   IActive Knowledge Studio 

 

Herramienta de desarrollo de sistemas basados en planificación automática que permite el 

modelado de dominios en notación EKMN y la integración del planificador inteligente en 

sistemas mediante XML. 

 

3.2  IActive Intelligent Decisor 

 

Planificador jerárquico automático desarrollado sobre tecnología JAVA. 

 

3.3  Smartourism 

 

Solución basada en planificación automática que permite la personalización de visitas turísticas 

basándose en el tiempo disponible, los recursos económicos y las preferencias de los turistas. 

 

3.4  Doolphy 

 

Aplicación web para la gestión de proyectos a través de Internet que permite la planificación 

automática de proyectos basada en un planificador automático. 
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4. Otros méritos 

A continuación se enumeran los premios obtenidos, tanto a nivel científico como a nivel 

empresarial en relación y como resultado del trabajo de la tesis. 

· 2004: Mejor proyecto final de carrera Ingeniería Informática. Un entorno web para la 

planificación heurística. Universidad de Granada. 

· 2005: Premio al mejor trabajo en Transferencia Tecnológica en Inteligencia Artificial. I 

Congreso Español en Informática. Jornadas TTIA. 

· 2006: Best Application Paper Award. ICAPS 2006 Conference, Cumbria (United 

Kingdoms). 

· 2008: Primer premio certamen de Creación de Empresas. Confederación de 

Empresarios de Andalucía. 

· 2009: Primer premio empresa Tecnológica Salón Mi Empresa. Madrid. 

· 2010: Primer premio Emprendedor XXI Andalucía. La Caixa. 

· 2011: Primer premio Jóvenes Emprendedores Empresa de Base Tecnológica. Bancaja. 
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