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Resumen 
 

Esta tesis doctoral trata sobre el diseño de nuevas arquitecturas hardware para la visión 

por computador en tiempo real.  Está claramente estructurada en dos partes. La primera 

parte es una revisión de los modelos existentes para la estimación de primitivas 

visuales. Tres primitivas visuales han sido objeto del estudio: características visuales 

locales (fase, energía y orientación), estimación de movimiento y estimación de 

disparidad para sistemas binoculares. En esta parte de la memoria se concluye qué 

aproximaciones presentan un buen compromiso entre consumo de recursos del hardware 

y precisión del modelo, teniendo como objetivo la optimización de estos parámetros 

 La segunda parte de la memoria trata acerca del diseño de estos modelos usando 

caminos de datos específicos. En ella adoptamos técnicas de diseño innovadoras 

basadas en un uso intensivo del paralelismo masivo disponible en dispositivos basados 

en hardware reconfigurable. Hemos realizado un análisis detallado de la profundidad de 

bits  requerida en distintas etapas de computación para optimizar el consumo de 

recursos del sistema. El uso extensivo de la segmentación de cauce de grano fino así 

como la utilización de múltiples unidades escalares permite alcanzar un rendimiento 

final de una estimación por ciclo de reloj del sistema. Esto representa una alta potencia 

computacional que no ha sido alcanzada con anterioridad para modelos de visión de 

bajo nivel. 

 Los resultados muestran que estas técnicas pueden ser utilizadas 

satisfactoriamente en el diseño de circuitos de alto rendimiento para visión por 

computador. Fase, energía, orientación, movimiento y disparidad son procesadas usando 

un único chip FPGA como elemento de cómputo. Esto abre la puerta para nuevos retos 

en el campo de visión por computador en tiempo real gracias al uso de sistemas de 

procesamiento de alto rendimiento.  

 

  



Abstract 
 

This Phd-dissertation focuses on the design process of new hardware architectures for 

real-time computer vision models. This work is clearly structured in two parts.  The 

first one is a review of models which analyzes the different alternatives for computing 

the early vision features. Three main visual primitives are addressed: local image 

features (energy, phase and orientation), motion estimation and disparity for binocular 

systems. This part highlights the main models suitable of hardware implementation, 

taking into account that our goal is to achieve a good accuracy vs. performance/cost 

trade-off.  

 The second part of this dissertation describes the implementation of these 

models into specific datapaths. We adopt innovative design techniques based on the 

intensive utilization of the inherent parallelism available on devices based on 

reconfigurable hardware. We perform a detailed bit-width analysis to effectively adjust 

the required hardware resources. We exploit the fine-grain pipelining and superscalar 

units capabilities of such devices to develop computing circuits that achieve a 

throughput of one feature estimation per clock cycle. This represents an outstanding 

performance for early computer vision models.  

 The results show that this design strategy is very efficient for the hardware 

implementation of high performance computer vision circuits. Phase, energy, 

orientation, motion and disparity estimation are available using just a single FPGA 

device as processing element, which open the doors to new challenges in the field of 

real-time computer vision based on high performance smart processing systems. 

 

 



  

Astratto 
 

Questa tesi di dottorato si occupa del disegno di nuove architetture hardware per la 

visione in tempo reale attraverso un calcolatore. La sua struttura puó essere chiaramente 

divisa in due parti.  

 La prima parte consiste in una rivisitazione dei modelli giá esistenti per la stima 

delle primitive visuali. In particolare si sono studiate tre di queste primitive: 

caratteristiche visuali locali (fase, energia e orientazione), stima di moto e stima della 

disparitá per sistemi binoculari. In questa parte del trattato si giunge alla conclusione di 

quali approssimazioni presentano un buon compromesso tra l'utilizzo di risorse 

hardware e la precisione del modello, tenendo sempre come obiettivo l'ottimizzazione di 

questi parametri.  

 La seconda parte invece si occupa del disegno di questi modelli tramite l'utilizzo 

di specifici datapaths. In essa si adottano tecniche di disegno innovative, basate sull'uso 

intensivo del parallelismo  massivo, disponibile in dispositivi caratterizzati da hardware 

riconfigurabile. Per ottimizzare il consumo di risorse del sistema abbiamo realizzato 

un'analisi dettagliata della profonditá di bit richiesta, attraverso diverse tappe di calcolo. 

L'uso intensivo della segmentazione tramite pipeline a grana fine e l'uso di unitá scalari 

multiple permette di ottenere un risultato finale con la precisone di un ciclo di clock. 

Questo rappresenta di fatto un'alta potenza di calcolo che non é mai stata raggiunta 

prima d'ora in modelli per la visione di basso livello. I risultati mostrano che queste 

tecniche possono  essere usate in maniera soddisfacente anche nel disegno di circuiti di 

alto rendimento per la visione attraverso un calcolatore. Fase, energia, orientazione, 

movimento e disparitá sono processati utilizzando come elemento di calcolo una singola 

FPGA.  

 Possiamo dire infine che tutte queste importanti innovazioni aprono le porte a 

nuovi sviluppi nel campo della visione in tempo reale attraverso il calcolatore, grazie 

all'uso di sistemi di processamento ad alto rendimento.   
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     Capítulo 1 

Introducción 
 
 
 
 
 
 
 
 
 

 
 

En este capítulo de introducción explicamos de forma breve la motivación y los 

objetivos del trabajo. También se describen las distintas contribuciones de esta tesis, 

en el marco de un sistema de visión por computador constituido por diversos 

componentes que han sido desarrollados con circuitos específicos. Este trabajo se ha 

realizado en el marco de dos proyectos Europeos; y dentro de este capítulo 

indicamos cómo los objetivos de este trabajo se relacionan con los objetivos más 

globales de los proyectos de investigación en los que se enmarca. Finalmente 

esquematizamos los contenidos de la presente memoria. 
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1.1. Motivación 

 

Tras varias décadas de investigación en el campo de la visión por computador aún 

estamos muy lejos de entender cómo funciona el sistema visual humano. Muchos 

grupos de investigación se han centrado en la simulación de procesamientos corticales 

de áreas cerebrales concretas (estimación de movimiento, estéreo, color, etc.). Este tipo 

de simulaciones consumen mucho tiempo y han forzado a muchos investigadores a 

desarrollar modelos my simplificados.  

La principal aportación de este trabajo es la implementación de arquitecturas eficientes 

de procesamiento de visión en tiempo real y viene motivada por los siguientes aspectos: 

a. Procesamiento en tiempo real para experimentos con agentes que incluyan 

visión. En la actualidad es claro que simulaciones sencillas off-line no son 

suficientes para entender la forma en que distintas tareas de procesamiento se 

realizan concurrentemente en el cortex visual. Es más, existe una hipótesis fuerte 

de trabajo llamada “embodiment concept” (difícil de traducir) que establece que 

cualquier simulación realista de procesamientos bio-inspirados debe ser probada 

en el marco de alguna tarea concreta también biológicamente plausible. El grado 

de consecución de esta tarea se puede utilizar para  validar las distintas partes 

que contribuyen al éxito del sistema diseñado. Este concepto se basa en la 

hipótesis que establece que la biología ha desarrollado sistemas de unas 

prestaciones impresionantes por medio del proceso evolutivo natural en el que 

los sistemas que perduran son los que optimizan ciertas tareas que mejoran la 

supervivencia individual y la perpetuación de la especie. 

b. Visión activa. El proceso de percepción es activo. Combina capacidades sensori-

motoras de forma integradora. No sólo el sentido del tacto requiere una 

planificación de movimientos y exploración, también la visión se entiende como 

un proceso activo en el que primitivas volutivas dirigen ciertos mecanismos 

(como fijación,  seguimiento suave para estabilización, etc.) que aumentan la 

precisión del sistema. Además se cree que la atención constituye un mecanismo 

eficiente para alcanzar altas prestaciones con recursos limitados. Pero este tipo 

de procesos activos pueden ser estudiados sólo en el marco de ciclos cerrados de 

percepción-acción. Todo ello requiere procesamiento en tiempo real y representa 
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un motivación muy fuerte para el desarrollo de arquitecturas de procesamiento 

visual de altas prestaciones.  

c. Aprender construyendo. Desde un punto de vista de un ingeniero una 

metodología habitual de trabajo es construir sistemas para llegar a conocer a 

fondo cómo funcionan. En el marco de sistemas de visión por computador, 

como ingenieros, tratamos de construir arquitecturas de procesamiento basadas 

en los sistemas biológicos. Esta aproximación es muy interesante ya que nos 

fuerza a enfrentarnos a los mismos objetivos parciales y limitaciones en cuanto a 

recursos de procesamiento reducidos. De acuerdo con el paradigma de la 

Ingeniería Neuromórfica adoptamos una actitud oportunista tratando de emular 

de la biología esquemas de procesamiento que parecen eficientes pero evitamos 

adoptar otras características que están más relacionadas con los tejidos nerviosos 

en los que se basan. Además, al no estar limitados por algunas características de 

las neuronas naturales (como potencia, conductividad, velocidad de conmutación 

y conexiones punto a punto) podemos aprovechar ciertas características 

relevantes de la tecnología electrónica en la que vamos a implementar nuestros 

circuitos como son los altos anchos de banda, la rápida conmutación de estado, 

etc. 

d. Sistemas de visión eficientes para aplicaciones reales. El procesamiento en 

tiempo real al que se refiere esta memoria (fase, magnitud, orientación, 

movimiento y estéreo) es muy interesante para una gran variedad de 

aplicaciones. Por lo tanto, la implementación de arquitecturas de procesamiento 

de altas prestaciones para estas tareas tiene un interés en sí mismo para su 

aplicación directa a problemas reales. 

 

 1.2. Estructura de una máquina visual 

 

La percepción visual es un proceso complejo que transforma señales en conocimiento. 

Aunque no existe un acuerdo general sobre la estructura de este sistema, a nivel 

conceptual podemos dividir la visión en distintas etapas que manejan información de 

distintos niveles de abstracción (mostrado esquemáticamente en la Figura 1.1): 

1. Visión pre-cognitiva. (Visión de bajo nivel). 
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1.1.Muestreo espacio-temporal básico. Esta etapa está compuesta por filtros 

espacio-temporales. Los sistemas biológicos utilizan células cuyos campos 

receptivos proyectan en las retinas. Los modelos visuales artificiales utilizan 

un serie de filtros espacio-temporales básicos de distinto tamaño espacial y 

características temporales (correspondientes a derivadas espacio-temporales 

de distinto orden) que tratan de emular el comportamiento de esas estructuras 

neuronales y campos receptivos.  

1.2.Visión estéreo. Combinación de respuestas de filtros de dos retinas para 

extraer estimaciones de profundidad. 

1.3.Procesamiento de movimiento. Combinación de respuestas de filtros de la 

misma retina para obtener estimaciones de movimiento. 

1.4.Procesamiento de color. Combinación de distintos filtros monocromos para 

codificar de forma fiable y eficiente los colores naturales. 

1.5.Extracción de estructura. Integración de salidas de diferentes filtros 

espaciales para resaltar áreas de la imagen que codifican una cantidad 

significativa de estructura de la imagen. 

2. Visión cognitiva media. Mecanismos de integración que permiten combinar 

eficientemente y de forma constructiva diferentes modalidades visuales 

(movimiento, estéreo, orientación, etc.). En esta etapa diferentes canales de 

información se integran para formar entidades multimodales. Para extraer sólo 

información fiable y descartar características erróneas se utilizan distintos 

mecanismos (integración co-planar, criterios de co-linealidad, etc.).  

 Los mecanismos de segmentación que integran entidades multimodales 

correspondientes a distintos eventos del entorno, por ejemplo efectos de causa 

común como IMOs (Objetos Independientes en Movimiento), movimiento 

propio (egomovimiento), etc. Estos mecanismos de segmentación llevan a una 

escena en la que diferentes elementos se identifican como candidatos a objetos o 

efectos de una causa común (como puede ser egomovimiento) y se relacionan 

con caracterizaciones multimodales que pueden ser estáticas o dirigidas por 

ciertas limitaciones estructurales de modelos como es el caso del movimiento de 

sólidos rígidos. 

3. Visión de alto nivel. Esta es una etapa de muy alto nivel en donde tiene lugar la 

interpretación de la escena por medio de sub-tareas más específicas como son el 
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reconocimiento de objetos, predicción de efectos, comparación con 

escenas/situaciones ya percibidas con anterioridad, etc. 

 

Figura 1.1. Esquema de un sistema de visión con distintos niveles de abstracción.  
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 Es importante resaltar que el procesamiento de las etapas pre-cognitivas 

(extracción de características) es inherentemente denso, es decir, requiere del 

procesamiento de cada píxel de la imagen, mientras que etapas de más alto nivel sólo 

computan entidades discretas (entidades multimodales, objetos, efectos de causa común 

como el egomovimiento, etc.). Los sistemas de visión por computador actuales no son 

capaces de realizar este procesamiento denso de las distintas modalidades en tiempo 

real.  

 Uno de los principales objetivos de este trabajo de tesis es la implementación de 

una arquitectura de procesamiento visual de altas prestaciones capaz de computar en 

tiempo real primitivas de bajo nivel. Esto tiene un gran interés porque las etapas de más 

alto nivel de sistemas de visión complejos (que son inherentemente discretos) se ajustan 

mejor a plataformas basadas en un solo procesador potente mientras que las tareas de 

visión pre-cognitiva se adaptan mejor a un paralelismo de grano fino. Esto se ilustrará 

en los Capítulos del 5 al 7 en los que diseñamos arquitecturas con gran paralelismo 

basadas en un flujo de datos regular para procesamientos de bajo nivel. Más 

concretamente, en este trabajo nos centramos en la implementación de arquitecturas de 

altas prestaciones para movimiento, estéreo y análisis de estructura local (orientación, 

fase y energía).   

 

1.3. De modelos biológicos a sistemas hardware en tiempo real  

 
 
El desarrollo de arquitecturas de procesamiento diseñadas para tareas que los sistemas 

biológicos resuelven con impresionante facilidad puede realizarse tratando de emular a 

estos últimos para de este modo aprovechar estrategias de computación evolucionadas 

por la naturaleza durante millones de años. Pero la adaptación de estas técnicas no es 

directa ya que los principios físicos en los que se basan los tejidos del sistema nervioso 

son muy diferentes de los que utiliza la tecnología electrónica. Además, las 

“tecnologías”  biológica y electrónica tienen diferentes limitaciones que superan con 

estrategias también diferentes. 

 Sin embargo, una “actitud oportunista” que adopte los principios clave en los 

que se basan las impresionantes prestaciones de los sistemas biológicos y utilice 

técnicas propias de la tecnología electrónica para adaptar esas primitivas bio-inspiradas 
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es de gran interés. Esta metodología oportunista debería dar lugar a soluciones 

específicas para tareas individuales y además ayudar a identificar y caracterizar los 

principios funcionales en los que se basan las altas prestaciones de los sistemas 

biológicos. Por ejemplo, los sistemas biológicos utilizan de forma generalizada 

computación masivamente paralela para aprovechar al máximo los lentos procesos 

electro-químicos en los que se basan las transmisiones sinápticas. Por otro lado, aunque 

la tecnología electrónica permite dispositivos más rápidos (más de tres órdenes de 

magnitud en cuanto a capacidad de conmutación), la conectividad posible en la 

tecnología del silicio actual, frenta a la biología, está limitada a patrones 2-D por lo que 

el paralelismo masivo real es imposible a nivel de dispositivos electrónicos. 

 Para adoptar esquemas de procesamiento inspirados en la biología utilizamos 

técnicas como multiplexado temporal. Además desarrollamos elementos de 

computación rápida que abstraen los principios funcionales en los que se basa el sistema 

que emulamos. De esta forma, por ejemplo en estéreo, podemos computar la disparidad 

entre dos imágenes varias veces (con distintas escalas y desplazamientos espaciales) 

para obtener múltiples estimaciones de disparidad que en un sistema biológico se 

extraerían en poblaciones de neuronas diferentes. Tras esto, integramos todas estas 

estimaciones de forma constructiva para conseguir el mejor rendimiento. 

 En esta memoria se ilustran varios ejemplos de esta metodología. Hemos 

desarrollado un sistema para procesar características locales de las imágenes, flujo 

óptico y estéreo, de forma que es capaz de extraer todas ellas con alta resolución 

temporal y espacial. Esto permite el estudio de esquemas de integración en el ámbito de 

tareas de procesamiento en tiempo real. Por ejemplo, esta computación eficiente permite 

incluso el estudio de códigos basados en codificación en poblaciones de neuronas que 

representen un conjunto de estimaciones obtenidas en intervalos de tiempo sucesivos.  

 Convencionalmente, el paralelismo de la mayoría de circuitos diseñados con 

dispositivos de tipo FPGA está restringido por un ancho de banda limitado. Este factor 

es especialmente crítico en los accesos a memoria que representan un importante cuello 

de botella. Por ello hemos diseñado circuitos específicos para la gestión eficiente de los 

recursos de memoria dentro y fuera del chip. Además como el sistema desarrollado en 

este trabajo se ha implementado en un solo dispositivo (sistema en un chip, SoC) el 

acceso a estos valiosos recursos secuenciales se ha diseñado de forma eficiente.  
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Las arquitecturas desarrolladas son escalables; como sobran recursos de computación en 

el dispositivo pueden replicarse unidades funcionales si se precisace un mayor 

paralelismo para aumentar las prestaciones del sistema.  

 

1.4. Marco de este trabajo 

 
Este trabajo se ha desarrollado en el marco de dos proyectos Europeos: 

• ECOVISION: Artificial Vision Systems based on early cognitive cortical 

processing (IST-2001-32114 ), (01-01-2002 hasta 30-12-2004), [ECO06]. 

• DRIVSCO: Learning to emulate perception action cycles in a driving school 

scenario (016276-2) (01-02-2006 hasta 31-01-2009) , [DRI06]. 

 

 En ambos proyectos uno de los principales objetivos es la implementación de 

sistemas de visión por computador en tiempo real debido a su interés para potenciales 

aplicaciones en diversos campos. Es más, en ampos proyectos participa un miembro 

industrial relacionado con la industria automovilística que ha definido aplicaciones 

específicas en las cuales este tipo de sistemas son de gran interés. De hecho, se ha 

realizado un esfuerzo importante durante este periodo de tesis en la validación de esta 

tecnología (visión en tiempo real en FPGAs) para tareas concretas en escenarios reales 

(por ejemplo el seguimiento fiable de vehículos durante maniobras de adelantamiento). 

DRIVSCO es un proyecto actualmente en curso que tiene como objetivo la 

implementación y validación de estrategias de aprendizaje basadas en información 

visual para el desarrollo de sistemas de ayuda a la conducción en condiciones nocturnas 

(véase por ejemplo el Capítulo 8). Esta tarea requiere movimiento y estéreo procesado 

en tiempo real utilizando hardware específico de altas prestaciones como el presentado 

en esta memoria. Los circuitos desarrollados en este trabajo se utilizan actualmente en el 

consorcio DRIVSCO  para el estudio de mecanismos de integración de información en 

tareas visuales de nivel medio y alto. 

 



Capítulo 1. Introducción                                                                                                 31 

  

 

1.5. Compromiso entre investigación y desarrollo en una tesis 

científica 

 

El trabajo descrito en este documento presenta los resultados de cuatro años dedicados a 

diferentes tareas de investigación en arquitecturas eficientes de procesamiento de 

imágenes. La línea divisoria entre investigación  y desarrollo tecnológico no está 

claramente trazada. De hecho, cualquier acción investigadora requiere de unas tareas de 

desarrollo para realizar los experimentos y extraer resultados. Más concretamente en 

nuestro caso, el diseño del  sistema y la evaluación de su rendimiento requiere un 

considerable trabajo de desarrollo.  

 La tesis tiene objetivos de investigación bien definidos (representados en la 

Figura 1.2) 

• Viabilidad del diseño de circuitos de visión para cálculo de primitivas de la 

imagen (rasgos locales, movimiento y estéreo) en tiempo real.   

• Evaluación de la precisión frente a la eficiencia  y prestaciones de diferentes 

métodos de procesamiento. Hemos utilizado estudios previos que analizaban la 

precisión de las diferentes alternativas para estimación de estéreo o movimiento. 

Por otra parte, para la extracción de los rasgos locales de la imagen (fase, 

orientación y energía) hemos llevado a cabo estudios detallados para ser capaces 

de elegir un enfoque apropiado del tipo de filtrado espacial. Por lo que sabemos, 

no existen hasta ahora en la literatura estudios comparativos sobre las distintas 

alternativas existentes para su cómputo.  

• Implementación de caminos de datos de altas prestaciones para diferentes 

primitivas visuales:  

o Exploración de estrategias de diseño de circuitos para modelos de flujo 

de datos regular.  

o Implementación de segmentación de cauce de grano fino y caminos de 

datos superescalares.  

o Evaluación de la realización de los circuitos propuestos.  
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 El cumplimiento de estos objetivos ha requerido una alta carga de trabajo de 

desarrollo, pero también nos hemos enfrentado a multitud de retos durante la realización 

de esta tesis. Por ejemplo, en lugar de proponer nuevos algoritmos para primitivas de 

visión, hemos implementado circuitos específicos para procesarlas eficientemente. Pero 

la translación de los algoritmos a su implementación hardware en la tecnología 

adecuada requiere la evaluación del modelo propuesto, su simplificación y la medida de 

la degradación del diseño debido a la existencia de recursos limitados (aritmética de 

punto fijo, y profundidad de bits muy restringida, etc...). De hecho, la implementación 

misma puede considerarse como un nuevo modelo cuyas prestaciones y precisión deben 

ser evaluadas convenientemente comparándolas con otros enfoques descritos en la 

literatura. La metodología de trabajo adoptada ha forzado a usar secuencias o imágenes 

de test (tanto sintéticos como reales) para la evaluación de las prestaciones y de la 

precisión de los sistemas diseñados.  

Figura 1.2. Esquema del trabajo desarrollado en la tesis. 
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 En suma, el campo del diseño de sistemas de computación de altas prestaciones 

de computación requiere un gran trabajo de desarrollo no sólo para el diseño específico 

de la arquitectura propuesta, sino también para el estudio de las prestaciones obtenidas 

con secuencias o imágenes de evaluación. No obstante, hay cuestiones específicas que 

representan el objetivo principal de este trabajo: 

a. Los circuitos de visión desarrollados deben considerarse como modelos que se 

comportan de forma similar a las versiones de software, pero que debido a las 

limitaciones de recursos, implican unos compromisos entre potencia de cálculo y 

precisión totalmente diferentes a las respectivas versiones software.  Por tanto, 

los nuevos modelos necesitan ser evaluados y comparados con los demás 

métodos tal y como hemos hecho en el presente trabajo. 

b. En nuestros circuitos computacionales hemos hecho uso amplio de la técnica de 

segmentación de cauce de grano fino para el diseño de diferentes modelos. Esta 

estrategia, aunque conocida, ha sido explotada de una manera innovadora, 

aunque es rara vez adoptada por otros autores. Más aún, mostramos que esta 

estrategia es óptima para un uso eficiente del paralelismo inherente a los 

dispositivos FPGA, permitiendo diseñar arquitecturas de gran potencia de 

cálculo. 

c. Estos dos tópicos han facilitado la amplia publicación de resultados del trabajo 

de investigación, como se detalla  en el capitulo de conclusiones.  

 

1.6. Estrategia de definición de circuitos  

 

La principal contribución de este trabajo puede considerarse el diseño y la evaluación de 

las prestaciones de diferentes sistemas de cómputo de primitivas visuales. Pero el diseño 

de un sistema complejo puede hacerse a diferentes niveles de abstracción y con 

diferentes herramientas de definición. Dada la alta complejidad de los modelos, hemos 

utilizado Handel-C [CEL06c]  como lenguaje de descripción de hardware, porque 

permite la definición de arquitecturas de computación a diferentes niveles de 

abstracción. Además, la comparación con otros lenguajes más comunes, tales como 

VHDL o Verilog, muestra que el aumento del consumo de recursos es moderado pese a 

ser descrito con mayores niveles de abstracción [ORT06b]. Esto nos ha permitido 
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definir los circuitos a nivel de transferencia de registros (RTL), pero con las 

abstracciones pre-definidas en un lenguaje de descripción de mayor nivel de abstracción 

como es Handel-C (por ejemplo, genera la abstracción de una máquina de estados que 

facilita el diseño de los diferentes esquemas de procesamiento serie y paralelo). Más 

aún, el lenguaje de descripción elegido (similar al C estándar) ha facilitado en mucho el 

diseño de los modelos de visión que son descritos usualmente mediante descripciones 

algorítmicas y no RTL. 

 Para la implementación de arquitecturas de procesamiento específicas, hemos 

utilizado dispositivos de hardware reconfigurable (FPGA). No hemos  necesitado 

utilizar su capacidad de reconfiguración dinámica para optimizar la potencia de 

computación en tiempo de ejecución, pero esta tecnología ha facilitado enormemente la 

definición y evaluación de diferentes implementaciones. Siguiendo la ley de Moore, 

este tipo de circuitos integrados mantiene el incremento en términos del número de 

recursos que están disponibles en un solo chip. Más aún, estos dispositivos en la 

actualidad incluyen circuitos muy optimizados (como memorias y multiplicadores 

embebidos, interfaces entrada/salida de gran ancho de banda para comunicaciones, etc.). 

Todo ello facilita e incrementa su interés en un amplio rango de aplicaciones. 

Hemos optado en este trabajo, en lugar de utilizar todas las ventajas de los 

recursos disponibles en una arquitectura dada (como un procesador de uso general), por 

definir arquitecturas de uso específico para tareas específicas, y hemos demostrado que 

sobrepasan claramente las prestaciones de lo procesadores de uso general. Este es un 

resultado destacado, que no puede obtenerse sin el uso intensivo del paralelismo de que 

disponen los dispositivos FPGA. De hecho, al principio del trabajo no estaba claro si los 

sistemas diseñados superarían a las arquitecturas de uso general (como los procesadores 

convencionales) ya que estos tienen frecuencias de reloj casi dos órdenes de magnitud 

mayores que nuestros circuitos. Además, el diseño de circuitos digitales en lógica 

reconfigurable diseñada como dispositivos de uso general, permite aprovechar de todas 

las ventajas del avance continúo de la tecnología de integración de circuitos digitales, en 

lugar de estar sujetos a una arquitectura de computación concreta y con el tiempo 

obsoleta. Todos los circuitos presentados en este trabajo podrán recompilarse (con 

mínimas modificaciones) a los dispositivos FPGA futuros, o chips de bajo coste para 

orientarse a diferentes campos de aplicación.  
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1.7 Metodologías y herramientas de diseño de hardware 

 
El proceso de diseño  hardware de un modelo de visión de computador en alto nivel, 

requiere la superación de varios retos. El modelo ha de ser adecuadamente modificado 

para ser adaptable al hardware. La representación aritmética debe revisarse (la 

representación en punto flotante utilizada en los modelos de software no encaja bien en 

los dispositivos embebidos) y el sistema resultante debería describirse adecuadamente 

para conseguir un buen compromiso entre tiempo dedicado al diseño frente a las 

prestaciones obtenidas del mismo. Después de todo el proceso, el sistema ha de ser 

evaluado para determinar la precisión final, que puede ser significativamente diferente 

de los modelos de software originales. Esto es evaluado específicamente para cada 

circuito desarrollado en los Capítulos 5, 6 y 7. 

 

1.7.1. Motivación y herramientas para análisis de la profundidad de 

bits por palabra de datos 

 

Los sistemas embebidos de altas prestaciones utilizan recursos computacionales 

específicos para cada etapa del proceso en un cauce de datos segmentado. Debido a ello, 

es crucial utilizar circuitos computacionales de bajo coste tanto como sea posible. La 

aritmética de punto flotante demanda grandes recursos de hardware, y por eso, los 

diseñadores usualmente tratan de utilizar aritmética en punto fijo. El análisis de la 

degradación del sistema (cuando se comparan las representaciones en punto flotante y 

punto fijo con determinada precisión) requiere dividir el algoritmo en múltiples 

subetapas con profundidades de bits limitadas y controladas. Como se comenta en 

[MAL06], las estrategias para llevar esto a cabo pueden ser caracterizadas, a grandes 

rasgos, en dos grupos. El primero es una aproximación analítica utilizada por los 

desarrolladores de algoritmos, que analizan los efectos de la longitud finita de palabra 

debido a la aritmética de punto fijo [CHA95], [GRA98]. El otro análisis se basa en las 

técnicas de simulación del número de bits verdaderos (bit-true), usadas por los 

diseñadores de hardware [KED98].  

 Existen trabajos en la literatura reciente de técnicas de compilación automática 

para convertir representaciones en punto flotante a punto fijo [SYN06a],[ SYN06b]. El 

compilador BITWISE [STE00] determina la precisión de todas las entradas, las señales 
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intermedias y de salida, en un diseño de hardware a partir de un programa descrito en C. 

El compilador MATCH [NAY01] desarrolla técnicas de análisis de error y precisión 

para programas en MATLAB. Synopsys tiene una herramienta comercial llamada 

Cocentric Fixed-Point Designer [SYN06b], que convierte punto flotante a punto fijo en 

el marco de un entorno de programación basado en C. Sin embargo, el código generado 

no es sintetizable. Constantinides [CON03] ha desarrollado una herramienta de 

evaluación para afrontar diseños lineales y no lineales. Chang y colaboradores [CHA02] 

han desarrollado una herramienta llamada PRECIS para analizar la precisión con 

MATLAB. También para MATLAB, en [BAN03] se presenta un algoritmo para 

convertir automáticamente de punto flotante a punto fijo utilizando el compilador 

AccelFPGA. Su propuesta necesita una precisión por defecto en constantes y variables, 

especificada por el usuario, que el compilador es incapaz de inferir. En el 2004, Roy y 

otros [ROY04] propusieron algoritmos de automatización para convertir programas 

MATLAB en punto flotante a programas en punto fijo en MATLAB, usando perfiles de 

entrada. Este sistema permite optimizar el área utilizada y las prestaciones del sistema 

frente al error de cuantización. 

 Como se deduce de la discusión previa, la selección del número de bits adecuado 

es un campo de investigación muy activo. Sin embargo, aunque la aritmética en punto 

fijo normalmente se ajusta muy bien a las características de los diseños basados en 

electrónica digital, algunos autores centran su trabajo en reducir área mediante el diseño 

de circuitos de punto flotante personalizados. Por ejemplo, basándose en la idea de que 

en un circuito algunos nodos son más sensibles que otros al proceso de cuantización de 

bits, [GAF02] utiliza técnicas de minimización diferencial para encontrar esos nodos y 

diseñar circuitos flotantes personalizados en cada nodo acorde a su sensibilidad. A 

medio camino entre punto flotante y punto fijo tenemos la aritmética dual. Tal y como 

se describe en [CHU04], esta aproximación presenta un rango dinámico mayor que la 

aritmética en punto fijo manteniendo un consumo de recursos limitado.  

 Debemos considerar que, además del compromiso entre consumo de recursos y 

precisión, el análisis del diseño de sistemas con profundidades de bits limitadas tiene 

otros efectos. Tal y como es mostrado en [CON03], la profundidad de bits tiene un 

efecto decisivo en el consumo de potencia del sistema. Los bits menos significativos 

tienden a conmutar su estado con mucha frecuencia y ello provoca un gran consumo de 

potencia en los circuitos digitales. Una utilización de registros de datos con número de 

bits demasiado alto puede no reportar beneficio en términos de precisión (esto depende 
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de las especificaciones) y a la vez ser el origen de un gran consumo de recursos y 

potencia, lo que es especialmente importante para la migración de FPGAs a circuitos 

VLSI. 

 Desgraciadamente, aunque el número de contribuciones que pretenden solventar 

este problema es considerablemente grande, las mencionadas aportaciones sólo 

solventan parcialmente el problema. La mayoría de los métodos propuestos han sido 

diseñados para el estudio de circuitos concretos como filtros FIR o circuitos tipo 

unidades aritmético-lógicas (ALU). Sistemas completos usan etapas lineales y no 

lineales (como funciones trigonométricas) que requieren un análisis detallado de los 

sistemas debido a las múltiples posibilidades de solución. Además, estas herramientas 

podrían usar el cálculo de probabilidades para analizar el rango dinámico efectivo de los 

datos o incluir consideraciones de diseño tales como consumo de potencia o recursos 

requeridos que incrementarían su utilidad. El diseño completo de los sistemas requeriría 

que, además de las anteriores capacidades, la herramienta fuese capaz de dividir los 

algoritmos en subetapas más sencillas, analizar el tipo de aritmética óptima para cada 

una de ellas y el número de bits para representar los datos. Las herramientas 

presentadas, aunque en esa línea, están aún lejos de conseguir estas funcionalidades.  

 Nosotros hemos desarrollado una herramienta semi-automática basada en 

librerías de MATLAB para conversión de sistemas software con datos en punto flotante 

a aritméticas mas adecuadas para circuitos digitales. Nuestro sistema requiere una 

especificación detallada de las subetapas del sistema y definir los rangos y tipos de 

representación de las distintas variables. A partir de esta entrada, la herramienta realiza 

un extensivo análisis de las diferentes alternativas de diseño y genera las tablas de ruido 

de cuantización basándonos en la comparación con los resultados software en doble 

precisión. Podemos usar la relación entre la energía de la señal y el ruido de 

cuantización  (SQNR) como hemos hecho en el Capítulo 5 pero, la herramienta es 

flexible y permite otras medidas de error. Por ejemplo podemos usar bancos de pruebas 

de imágenes con propiedades conocidas y usar el error de la medida como referencia 

(siempre comparando con los resultados del sistema software). Por ejemplo la 

estimación del error de la orientación o el error angular para el flujo óptico. Ello permite 

incluir los errores de cuantización y la precisión del modelo en el proceso de 

especificación del sistema.  

 Hemos llamado a nuestro software: MCode for DSP Analyzer (analizador de 

código MATLAB para procesamiento digital de las señales). Consiste en una serie de 
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biblioteca de funciones y archivos de ejecución de órdenes que permiten el uso de 

aritméticas en punto fijo y en punto flotante personalizadas. Además, hemos incluido 

funciones para evaluar la degradación de los modelos debido a la cuantización de bits 

usando la SQNR, el error absoluto medio, el error relativo medio, etc.., teniendo 

especial cuidado en funciones periódicas como las trigonométricas en las que se 

necesita funciones de error especiales.  

 El MCode permite, de manera iterativa, explorar la sensibilidad al proceso de 

cuantización de las diferentes subetapas así como evaluar la necesidad de 

representaciones en punto flotante o en punto fijo personalizadas.  Como mostramos en 

el Capítulo 6, si el rango dinámico de las variables es muy alto, una representación 

usando aritmética en punto fijo puede llegar a consumir más recursos que una usando 

flotantes por lo que ambas alternativas son tenidas en cuenta por nuestra herramienta. 

 Una de las diferencias principales de nuestro método es que el proceso de 

estimación de precisión admite la inclusión de umbrales de confianza en la estimación 

de los resultados. El cómputo de la información existente en las imágenes se basa en 

modelos de visión por computador cuyos resultados son aproximados y por tanto un 

valor exacto (como si de una calculadora se tratase) no es posible. Es por ello que las 

propias estimaciones tienen cierto margen de error y, aunque el ruido de cuantización 

debe siempre mantenerse por debajo de estos limites, no tiene sentido que la precisión 

aritmética del sistema supere los límites del modelo mismo. Si tenemos esto en cuenta, 

el uso de medidas de error como la SQNR puede incluir de manera sencilla las 

estimaciones de fiabilidad en los errores del modelo, pesando de esta manera los errores 

de cuantización acorde a la fiabilidad del modelo en esa medida. Esta técnica permite 

optimizar las longitudes de bits en las etapas del sistema a la vez que minimizar el 

consumo de recursos al eliminar lógica superflua. Esta modificación es una importante 

característica diferenciadora con otras herramientas. Gracias a que en el campo de 

aplicación (la visión por computador) las estimaciones de las medidas incluyen 

umbrales de confianza, nosotros hemos podido utilizar esta información en el proceso 

de optimización de bits, permitiendo el diseño de arquitecturas muy eficientes. 

 Como principal limitación de esta herramienta hemos de mencionar que el 

proceso a realizar no es suficientemente automático y es necesario un buen 

conocimiento de aquella. Además, la versión actual realiza una búsqueda completa en el 

espacio de las soluciones de trabajo lo cual produce una alta carga computacional. Ello 

implica por parte usuario la restricción sobre el número de bits de los datos de algunas 
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etapas para reducir la dimensionalidad del problema. Como trabajo futuro trataremos de 

automatizar el proceso de diseño, incluyendo técnicas de búsqueda de soluciones 

basadas en técnicas de inteligencia artificial que permitan una exploración eficiente del 

espacio de las posibles soluciones. Además, pretendemos incluir en las funciones de 

coste información sobre el consumo de recursos de las diferentes representaciones, 

consumo de memoria, de potencia, etc, de manera que el problema pueda ser formulado 

como un problema de optimización multi-modal.    

  

1.7.2. Requisitos y especificaciones de los sistemas hardware 

 
En nuestro proceso de diseño hemos intentado el uso de aritmética en punto fijo ya que 

nuestros dispositivos de procesamiento son FPGAs y como hemos comentado en la 

sección anterior, esta aritmética consume menos recursos. Para conseguir diseños 

óptimos, debemos analizar la viabilidad de  cada modelo de visión, así como la potencia 

y los requisitos de área de la misma. Puesto que el número de variables a manejar es 

muy alto, herramientas como el MCode for DSP analyzer simplifican este proceso ya 

que proporcionan la información de la sensibilidad de las diferentes etapas de los 

modelos frente el proceso de cuantización, facilitan las profundidades de bits, métodos 

de escalado, redondeo y tipos de aritmética que mejor se ajustan a nuestras 

especificaciones.  

 El estilo de codificación que usemos para describir nuestros circuitos hardware 

debe ser parametrizable para permitir la exploración de las diferentes alternativas de 

diseño (tipo de representación y profundidad de bits de los elementos del camino de 

datos). Puesto que las arquitecturas utilizadas se basan en descripciones algorítmicas de 

alto nivel, no son adecuadas codificaciones basadas en descripciones RTL usando por 

ejemplo VHDL o Verilog. Aplicaciones como Catapult C Synthesis de Mentor 

[MEN06] admiten la especificación de hardware con este nivel de abstracción pero 

difícilmente permiten el control de bajo nivel que en ocasiones necesitamos. Para 

sistemas de procesamiento de señales (DSPs) existen herramientas basadas en 

conexionado de bloques como System Generator for DSP de Xilinx [XIL06a], 

PixelStreams de Celoxica [CEL06c], el DSP Builder de Altera [ALT06] o el 

Codesimulink [COD06] desarrollado en el Politecnico de Turín. Estas herramientas se 

basan en esquemas de bloques como los utilizados por Simulink que ayudan a 
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simplificar el proceso de diseño del hardware, generando código VHDL o Verilog que 

después es transladado a la tecnología con las herramientas propietarias de los diferentes 

fabricantes. 

 Los objetivos de nuestro sistema vienen propuestos por los proyectos 

ECOVISION [ECO06] y DRIVSCO [DRI06], donde se requiere alta potencia de 

cómputo (como referencia más de 25 cuadros/s para 2 cámaras y resoluciones de 

1000x1000 píxeles). Es por ello que descripciones de nuestros sistemas con alto grado 

de abstracción difícilmente alcanzan los objetivos de diseño. Por otra parte, el diseño a 

bajo nivel, por ejemplo RTL, consume un tiempo muy considerable (aunque permite el 

diseño eficiente de los circuitos) que no podemos permitir en el entorno de los 

mencionados proyectos.  Además, el estudio de las diferentes alternativas de diseño 

requiere repetir la síntesis del sistema modificando los distintos parámetros en 

numerosas ocasiones, lo que consume un gran tiempo de cómputo. Es por ello que 

nuestro trabajo resultan muy atractivas herramientas de síntesis en las que puedan 

programarse ejecuciones por lotes (serie) para el análisis del espacio de soluciones son 

muy atractivas.  

 Basándonos en estos requisitos hemos elegido el sintetizador DK Design Suite 

de la compañía Celoxica [CEL06b]. El lenguaje de especificación utilizado es el  

Handel-C [CEL06c]. Este lenguaje es una solución intermedia que permite 

descripciones con un grado relativamente alto de abstracción pero  que, caso de 

requerirse, permite definir etapas de nuestro sistema a nivel RTL. Además, el motor de 

síntesis proporciona buenos resultados como es mostrado en [ORT06b] y la herramienta 

integra simulación funcional de alto nivel muy útil para visualizar los resultados del 

procesamiento de imágenes. La herramienta genera salida en código Edif a partir del 

cual las herramientas del fabricante generan el fichero de programación de la FPGA; es 

decir, hacen la traslación de la descripción del sistema a la tecnología. 

 Nuestras especificaciones de sistema requieren un grado alto de paralelismo que 

se adapte al sistema descrito y además el uso de arquitecturas fuertemente segmentadas 

para cumplir nuestros objetivos. Para ello debemos ser capaces de producir una 

estimación por cada ciclo de reloj. Por ejemplo, si nuestro sistema estereo es capaz de 

funcionar a 50 MHz, debemos ser capaces de alcanzar 50 millones de estimaciones por 

segundo de disparidades. En esta situación difícilmente podemos intentar la 

compartición de recursos porque los circuitos utilizados requieren de un paralelismo 

masivo para alcanzar nuestras especificaciones (pese a ello hemos analizado cómo esto 
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puede llevarse a cabo en el Capítulo 5 para un dispositivo de estimación de 

movimiento). Este efecto ha sido parcialmente compensado gracias al análisis detallado 

de la profundidad de bits de las diferentes etapas que hemos llevado a cabo para los 

diferentes sistemas. Además, la gran cantidad de recursos que actualmente proporcionan 

los dispositivos de hardware reconfigurable permite que nuestros diseños, aunque 

masivamente paralelos,  mantengan disponible una gran cantidad de recursos del 

sistema. Por último debemos tener en cuenta que las técnicas usadas, en especial el 

diseño de cauces finamente segmentados, tienen otras ventajas aparte del incremento de 

la potencia de cómputo. Como se muestra en [SHE92], [SUT03], el consumo de 

potencia en dispositivos FPGA se reduce gracias a la segmentación del cauce ya que las 

transiciones espureas de los niveles lógicos, responsables de hasta el 70% del consumo 

de potencia de los dispositivos basados en lógica reconfigurable, se reducen 

significativamente. Con ello vemos que aunque el área del sistema aumente, por medio 

de la segmentación de cauce podemos disminuir la potencia total de nuestros sistemas.  

 Nuestra metodología de diseño se beneficia de una fina segmentación del cauce 

más un análisis detallado de la profundidad de bits y tipo de representación de las 

distintas etapas. Ambos métodos han sido descritos como técnicas efectivas para reducir 

el consumo de potencia en dispositivos FPGAs. Como trabajo futuro pretendemos 

cuantificar estos efectos y analizar de qué manera el diseño de sistemas complejos 

finamente segmentados ayuda a disminuir la potencia consumida.  

 

1.8. Contenidos de la tesis 

 

El resto de la presente memoria, que describe el trabajo realizado en esta tesis, ha sido 

estructurada en los diferentes apartados y capítulos que se indican a continuación: 

I. Modelos de visión por computador 

 Capítulo 2: Técnicas de procesamiento de imágenes para estimación de rasgos 

locales: fase, energía y orientación. En este capítulo describimos las diferentes 

aproximaciones basadas en filtros en cuadratura que han sido comúnmente 

utilizadas en el campo de la visión por computador. Con ellos podemos extraer 

la información local relativa a fase, energía y orientación de la imagen. También 

revisamos las diferentes técnicas existentes de interpolación entre filtros 
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orientados que permite estimar la fase y energía presente para cualquier 

orientación [FRE91], [HAG92], [FEL02a], [NES98].  

 Capítulo 3: Modelos de estimación de movimiento. Aquí describimos los 

principios en los que se basan los diferentes métodos de cómputo de flujo 

óptico. Comparamos los compromisos entre precisión y eficiencia de estos 

modelos y concluimos que la aproximación de Lucas y Kanade [LUC81] es 

adecuada para nuestro sistema. Además, analizamos las modificaciones 

propuestas por Brandt [BRA97], cuyo modelo ha sido la base del diseño 

propuesto en la Sección 6.3.  

 Capítulo 4. Modelos de visión estéreo. En este capítulo revisamos brevemente la 

viabilidad y precisión de los métodos de estimación de disparidad presentes en 

la literatura. Ello nos permite destacar una aproximación basada en fase 

[SOL01] que es utilizada en el Capítulo 7 para el diseño nuestro sistema estéreo.  

 

II. Arquitecturas de procesamiento eficientes. Diseño hardware y evaluación de 

prestaciones.  

 Capítulo 5: Arquitectura hardware para cómputo de fase, energía y orientación. 

Diseño de un banco de filtros orientable. En este capítulo proponemos una 

arquitectura eficiente para extraer esas propiedades locales de la imagen. 

También evaluamos cuantitativamente la degradación del modelo debido al 

proceso de cuantificación de bits y el rendimiento final del sistema desarrollado.  

 Capítulo 6: Procesamiento de movimiento: Diseño hardware de una 

arquitectura de alto rendimiento. En este capítulo proponemos un diseño 

eficiente basado en las modificaciones del modelo de Lucas y Kanade [LUC81]. 

Evaluamos las distintas aproximaciones diseñadas basadas en este método, con 

diferentes compromisos entre precisión y consumo de recursos. Cabe destacar la 

versión masivamente paralela con un cauce finamente segmentado cuya potencia 

de cómputo es superior en más de un orden de magnitud a cualquier otro sistema 

descrito en la literatura hasta ahora. En este capítulo hemos realizado también un 

considerable esfuerzo en la evaluación de las arquitecturas. Los diferentes 

sistemas diseñados han sido evaluados usando un banco de pruebas mediante 

secuencias sintéticas de mapa de movimiento conocido. Ello nos ha permitido 

cuantificar la degradación del sistema debido al uso de un número restringido de 

bits y aritmética en punto fijo.   
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 Capítulo 8: Arquitectura de estimación de estéreo de altas prestaciones. Aquí 

describimos un diseño eficiente que proponemos para el cómputo de estéreo 

basado en un modelo de fase. Discutimos el consumo de recursos de diferentes 

aproximaciones que usan diferentes escalas espaciales y finalmente evaluamos 

la pérdida de prestaciones debido a la limitada profundidad de bits disponible en 

las distintas etapas de la arquitectura. 

 Capítulo 8: Ejemplo de aplicación: Sistema de ayuda de cambio de carril 

basado en movimiento para el seguimiento de vehículos. La arquitectura de 

estimación de movimiento descrita en los capítulos anteriores es utilizada aquí 

conjuntamente con un sistema de seguimiento para la detección de 

adelantamientos de vehículos durante la conducción.  

III. Discusión y conclusiones. 

 Capítulo 9: Conclusiones. Es un resumen de las contribuciones originales de 

este trabajo.  
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     Chapter 1 

Introduction 
 
 
 
 
 
 
 
 
 

 
 

We briefly explain the motivation and goals of this work. We frame the main 

contributions of this thesis in the context of a complete computer vision system, 

emphasizing which parts of this complete vision system have been developed in 

specific hardware and why. This work has been developed in the framework of two 

European projects. We briefly mention the purpouses of this work matched with the 

more general aims of the research projects. Finally, we summarize schematically the 

contents of the thesis.  
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1.1. Motivation 

 

After many years of research in the field of computer vision we are still far from 

understanding how the human visual system works. Many research groups have been 

focused on the simulation of specific cortical processing tasks (motion computation, 

stereo computation, colour, etc). These simulations are very time consuming and that 

has forced many researchers to develop simplified models. 

 The main contribution of this work is the implementation of bio-inspired real-

time vision processing datapaths. This is supported by several grounds: 

a. Real-time processing for embodied vision experiments. Nowadays, it has 

become clear that simple off-line simulations are not enough to understand the 

way that different tasks are concurrently performed in the visual cortex. 

Furthermore, there is a strong working hypothesis called “embodiment concept” 

that states any realistic simulation of a biologically inspired processing system 

should be tested in the framework of a certain task. The way that this task is 

achieved can be used to validate the different parts in which is based the success 

of the system. The embodiment concept is based on the hypothesis that biology 

has developed the impressively smart systems in nature through evolution trying 

to optimize certain tasks that improve the individual survival and specie 

perpetuation.  

b. Active vision. The perception process is active. It combines sensori-motor 

capabilities in an integrative manner. Not only haptics but also vision is believed 

to be an active process in which intentional primitives drive certain mechanisms 

(such as fixation, smooth pursuing for stabilization, etc.) that enhance the 

accuracy of the system. Furthermore, it is also believed that attention is a useful 

mechanism in order to achieve very high performance with constrained 

processing resources. But active perception processes can only be studied in the 

framework a perception-action closed-loops. This specifically requires real-time 

processing and represents a strong motivation for developing high performance 

vision processing architectures. 

c. Understanding by building. From an engineering point of view, we only fully 

understand certain mechanisms if we are able to implement them. In the 

framework of computer vision systems, as engineers, trying to build efficient 
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image processing architectures based on biological vision systems is a very 

interesting approach since we face the same limitations as nature also with 

constrained processing resources. According to the “neuromorphic engineering” 

paradigm we adopt an opportunistic attitude in which we try to emulate schemes 

that seem to be efficient in the biological systems and we avoid other features 

that are more intrinsically related with the tissues in which they are based. 

Furthermore, not being limited by some biological restrictions (such as power or 

conductance and switching capability of neuron wiring and connections) we can 

take full advantage of certain outstanding characteristics of electrical 

technology, such as high communication bandwidth, high speed state switching, 

etc.  

d. Smart vision systems in real world applications. Real-time processing of local 

features, motion and stereo is interesting for a wide range of applications in real 

world scenarios. Therefore, the implementation of high-performance computing 

architectures has an interest in itself for solving real world problems. 

 

1.2. Structuring a vision machine 

 

Visual perception is a complex process that transforms (translates) signals (images) into 

cognitive information. Although there is no general agreement about how to structure 

such a complex system, for the sake of clarity, we can split vision in different layers 

dealing with information at diverse abstraction levels (as illustrated in Figure 1.1): 

1. Early cognitive vision. (Low level vision). 

1.1. Basic spatio-temporal sampling. This stage is composed of spatio-temporal 

filters. Biological systems use cells whose receptive fields project onto the 

retinas. The vision models use a set of basic spatio-temporal filters of different 

size and temporal characteristics (corresponding to spatio-temporal derivatives 

of different orders).  

1.2. Stereo vision. Combination of filter responses from the two retinas to extract 

depth estimations.  

1.3. Motion processing. Combination of filter responses of the same retina in order 

to obtain motion estimations.  
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1.4. Color processing. Combination of different monochrome filters to robustly and 

efficiently encode natural colors with opponent cell responses. 

1.5. Structure extraction. Integration of outputs of different spatial filters to enhance 

image areas that encode a significant quantity of image structure.  

2. Middle cognitive vision. Integration mechanism that allows efficiently and 

constructively combining different visual modalities (motion, stereo, orientation, 

etc). At this stage different information channels converge leading to multimodal 

entities. Different mechanisms can be applied at this stage to extract only robust 

information discarding outliers (coplanar integration, collinear criteria, etc). 

Also in middle cognitive vision can be located segmentation mechanisms that 

integrate multimodal entities corresponding to real-world grounds (sources, or 

common cause effects), such as IMOs (Independent Moving Objects), egomotion, 

heading, etc. These segmentation mechanisms lead to a scene in which different 

elements are identified as object candidates or common cause effects (such as 

egomotion) and linked with specific multimodal characterizations that can be static 

or driven by certain structure constraints (such as the rigid object motion).  

3. High level vision. This is a very high processing stage in which scene interpretation 

is performed through more specific sub-tasks, such as object recognition, effects 

prediction, comparison with already perceived scenarios, etc. 

  

 It is important to note that early cognitive vision is inherently dense, i.e. it 

requires processing of each pixel in the scene, while higher level tasks deal with discrete 

entities (multimodal entities, objects, common cause effects such as egomotion, etc). 

Current computer vision systems are not able to extract in real time the low level vision 

primitives (inherently dense) and therefore they are already limited at this processing 

stage.  
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Figure 1.1. Schematic of the vision system structure. 

 

 One of the main motivations for the work of this Thesis is the implementation of 

a high performance vision processing architecture capable of computing in real-time the 

low vision primitives. This is of specific interest because higher vision levels (that are 
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inherently discrete) suit better computing platforms based on a single (and powerful) 

processor while the early cognitive vision highly benefits of a fine-grained parallelism. 

This will be illustrated in chapters 5 to 7 in which we design highly parallel processing 

architectures based on the regular data flow processed at the very early vision stages. 

More concretely, in this work we focus on the implementation of high performance 

computing architectures for motion, stereo and local structure (orientation, phase and 

energy) analysis. 

 

1.3. From biological models to real-time hardware systems 

 
Engineering processing architectures designed for tasks that biological systems solve 

with impressive ease can benefit considerably by mimicking computing strategies 

developed by nature over long periods of evolution. But the adaptation of such 

techniques is not straightforward, since the physical principles upon which biological 

tissues are based are very different from those characteristically used in electronic 

technology. Furthermore, biological and electrical “technologies” face different 

restrictions which are overcome by resorting to different strategies.  

 Nevertheless, an “opportunistic attitude” which takes the key-functional 

principles that contribute to the outstanding performance of biological systems and also 

uses technology-motivated computing techniques to adapt those computing primitives 

must be of considerable interest. This opportunistic approach should on its own merits 

provide a suitable solution to the individual task in question, whilst also helping to 

identify and characterize the functional principles that support the high performance 

observed in biological systems. For example, biological systems widely use massive 

parallel processing to overcome the slow chemical-based principles that support most of 

the computing and transmission principles of neurons. On the other hand, whereas 

electrical technology allows faster devices (more than three orders of magnitude), the 

connectivity allowed by current silicon technology is restricted to 2-D patterns and so 

this massive parallelism becomes impossible to adopt in electronic devices.  

 To be able to adopt biologically inspired processing schemes we use a time-

slicing technique and we develop very fast computing units that abstract the functional 

principles upon which the emulated scheme is based. In this way, for instance, we can 

process in stereo the disparity between two images several times (with different shifts 
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and spatial scales) and thus obtain multiple disparity estimations which in a biological 

system would have been extracted by different populations of neurons. We then 

integrate all these estimations constructively to achieve the best performance. 

 We illustrate here several examples of such approaches. We have developed a 

system for processing local image features, optical flow and disparity estimation that are 

able to extract all these modalities at frame rates with large image resolution. This 

allows the exploration of integration schemes in the framework of real-time processing 

tasks. For example, this fast computation allows neural population coding based on the 

set of estimations obtained on multiple time slots.  

 Conventionally, parallel processing of different circuits is limited due to the 

limited transmission bandwidth. Especially significant are the constraints deriving from 

the external memory access; which is usually one of the important bottlenecks for 

FPGA processing capability, but due to the on-chip system management of external and 

internal memory, and since the described architecture consists of one single processing 

unit, with the whole system implemented on the same device (as a System-on-a-Chip, 

SoC), the access control is carefully designed and this bandwidth limitation is 

overcome. Furthermore, the proposed scheme is scalable; since we are plenty of 

available computing resources on the same chip and depending on the image features 

selected, two or more processing units can be used, if further parallelism is needed, to 

increase the frame-rate, extract more estimations to enlarge the population or increase 

the spatial resolution.  

 

1.4. Framework of this work 

 

This work has been developed in the framework of two European Projects: 

• ECOVISION: Artificial Vision Systems based on early cognitive cortical 

processing (IST-2001-32114 ), (01-01-2002 till 30-12-2004), [ECO06]. 

• DRIVSCO: Learning to emulate perception action cycles in a driving school 

scenario (016276-2) (01-02-2006 till 31-01-2009) , [DRI06]. 

 

 In both projects, one of the main goals is the implementation of real-time 

computer vision systems, in order to open the door to all the potential applications of 

such schemes. Furthermore, in both projects participates an industrial partner related 



52                                                                         Multimodal bio-inspired vision system 
 

with the automobile industry that has defined specific potential applications in which 

such vision systems would be of great interest. In fact, a significant effort has been done 

along this work to validate this technology (real-time vision system in FPGA) for 

specific tasks in real world scenarios (for instance, car tracking in overtaking scenarios). 

DRIVSCO is an ongoing project that aims the implementation and validation of vision-

based learning strategies to assist driving in night scenarios (see for instance Chapter 8). 

This requires motion and stereo in real-time processed in specific hardware due to its 

high computational load. 

The vision circuits presented in this work are currently used in the European 

Consortium (DRIVSCO) to explore information integration mechanisms in middle and 

high level vision. Furthermore, this technology is of crucial importance to evaluate 

perception-action close loops. 

 

1.5. A complete work with a good research vs. development 

trade off 

 

The work described in this document presents the results of four years dedicated to 

analyze different vision primitives and their interrelation. There is not a very well 

defined border line to clearly distinguish between development and research tasks. In 

fact any research action requires of development tasks in the experiments and results 

extraction processes. More concretely, in our case the system design and its 

performance evaluation requires considerable development workloads. 

 

The PhD work has well defined research objectives (working process represented at 

figure 1.2): 

• Evaluation of the feasibility of specific circuits to extract vision modalities (local 

image features, motion and stereo) in real-time.  

• Evaluation of the accuracy vs. efficiency of the different approaches. There were 

studies about different motion and stereo schemes and we have used these 

results. On the other hand, for the local image features extraction (phase, 

orientation and energy) we have carried out a serious study in order to be able to 
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choose a proper spatial-filter approach. To the best of our knowledge no 

comparative study about the different alternatives has been done before. 

• Implementation of high performance datapaths for the different visual 

modalities:  

o Exploration of circuit design strategies for regular data flow models.  

o Implementation of fine grain pipelined and superscalar datapaths. 

o Evaluation of the performance of the proposed circuits. 

 

 The achievement of these goals has required a high development load. There are 

relevant topics that have been faced during this work. For instance, instead of proposing 

new algorithms for visual modalities we have implemented specific circuits to process 

them efficiently. But this requires the evaluation of the aimed model, its simplification 

and the evaluation of the accuracy with constrained computational circuits (fixed point 

arithmetic and restricted bit-width). In fact, the implementation can be considered a new 

model whose performance and accuracy needs to be properly evaluated comparing it 

with other approaches described in the literature. The adopted working methodology 

has forced to use benchmarking sequences or images (synthetic and real ones) for the 

evaluation of the performance and accuracy of the designed systems. 

 Summarizing, the field of high performance computing architectures requires 

high development loads not only towards the specific design to the proposed 

architecture but also when evaluating the obtained performance with benchmark 

sequences or images. Nevertheless, there are specific issues that represent the main 

research trends of this work: 

d. The developed vision circuits can be considered as models that behave similarly 

to their software versions but due to their precision constraints lead to 

completely different computation speed versus accuracy trade off. Therefore, the 

implementations need to be evaluated and compared with other models and 

implementations as has been done in this dissertation. 

e. The extensive use of deep pipelined superscalar computing architectures for the 

design of the different models is a quite new and innovative strategy seldom 

adopted by other authors. Furthermore, this strategy is the one that allows an 

efficient use of the inherent parallelism of the FPGA devices in order to obtain 

outstanding performance rates. 
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 These two topics have facilitated the wide publication of the results of the 

research work as it is pointed out in the discussion chapter. 

 

 
Figure 1.2. Schematic of the work described in the Thesis. 

  

1.6. Circuit definition strategy 

 

The main contribution of this work can be considered the designed system and its 

performance evaluation. But the design of a complex system can be done at different 

abstraction levels and with different definition tools. Given the high complexity of the 

aim models we have used Handel-C [CEL06c] as hardware description language (HDL) 

because it allows the definition of the computing architecture at different levels of 

abstraction without paying a high cost when comparing it with other circuit description 
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languages [ORT06b]. We have defined the circuits at a register transfer level (RTL) but 

with the abstractions provided by Handel-C (for instance the baseline state machine that 

allows efficiently testing different parallel processing schemes). Furthermore, the 

chosen description language (similar to standard C) has highly facilitated the 

implementation of vision models that are usually described as algorithms.  

 For the implementation of specific processing architectures we have used 

reconfigurable hardware (FPGA) devices. We have not used their dynamic 

reconfiguration capability to optimize the computation power in working time but this 

technology has highly facilitated the definition and test of different implementations. 

Furthermore, following Moore’s law this technology keeps advancing in terms of 

number of resources that are allocated on a single chip and also because the devices 

already include highly optimized circuits (such as embedded memory resources, 

multipliers or high bandwidth I/O channels) of interest for a wide range of applications.  

 In this work, instead of trying to take full advantage of the available computing 

resources of a given architecture (such as a general purpose single processor), we have 

defined specific purpose computing architectures for specific tasks and we have shown 

that they clearly outperform the approaches based on general purpose processors. This 

is an outstanding result that cannot be obtained without the intensive use of the 

parallelism available at FPGA devices. In fact, it was not clear at the beginning of the 

work that the designed systems would outperform general purpose architectures (such 

as conventional processors) that run at clock frequencies almost two orders of 

magnitude higher than our circuits. Nevertheless, by designing specific purpose 

processing architectures with general purpose digital circuitry we can take full 

advantage of the continuous advances of digital technology instead of being stacked 

with a concrete computing architecture. All the circuits presented in this work can be 

recompiled (with only a moderate adaptation workload) to the future FPGA devices or 

low cost chips in order to address different application fields. 

 

1.7 Hardware design tools and methodologies 

 
The process of implementing on hardware a high level computer vision model requires 

several challenges to achieve success. The model has to be properly modified to be 

hardware friendly. Arithmetic representation needs to be revised (floating point 
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representation used on software models do not fit well embedded devices) and the 

resulting system should be described on a proper way to achieve a good designing time 

versus hardware performance/consumption trade-off. After the whole process, the 

system requires to be evaluated to determine the final accuracy which can be 

significantly different of the original software models. This is specifically addressed for 

each developed circuit in Chapters 5, 6 and 7. 

 

1.7.1. Motivation and tools for bit-width analysis 

 

High performance embedded systems use specific computational resources for each 

pipelined processing stage. Therefore, it is crucial to use low cost computational circuits 

whenever is possible.  Floating point arithmetic demand large hardware resources and 

thus, designers usually try to use fixed point arithmetic. The analysis of the system 

degradation (when comparing floating point with fixed point representations with a 

target precision) requires splitting the algorithm into multiple substages with limited and 

controlled bit-widths. As commented in [MAL06] the strategies can be roughly 

categorized into two groups. The first one is an analytical approach used by algorithm 

developers who analyze finite word length effects due to fixed-point arithmetic 

[CHA95], [GRA98]. The other approach is based on bit-true simulation techniques used 

by hardware designers [KED98].  

 There has been some work in the recent literature on automated compiler 

techniques for conversion of floating point representations to fixed point representations 

[SYN06a],[ SYN06b]. The BITWISE compiler [STE00] determines the precision of all 

inputs, intermediate and output signals in a synthesized hardware design from a C 

program description. The MATCH compiler [NAY01] develops precision and error 

analysis techniques for MATLAB programs. Synopsys has a commercial tool called the 

Cocentric Fixed-Point Designer [SYN06b], which automatically converts floating point 

computations to fixed point within a C compilation framework. However, the code 

generated is not synthesizable. Constantinides [CON03] has developed a design tool to 

tackle both linear and nonlinear designs. Chang et al. [CHA02] have developed a tool 

called PRECIS for precision analysis in MATLAB. An algorithm for automating the 

conversion of floating point MATLAB to fixed point MATLAB was presented in 

[BAN03] using the AccelFPGA compiler. Their approach needs the default precision of 
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variables and constants specified by the user which the compiler is unable to infer. In 

2004, Roy et al. [ROY04] proposed automated algorithms to convert floating-point 

MATLAB programs into fixed point MATLAB programs using input profiling. The 

work is used to trade-off area and performance with respect to the quantization error.  

 As can be deduced from the previous discussion, proper bit-width selection is an 

active research area. Nevertheless, though hardware friendly, fixed point arithmetic are 

not always the best choice. Some contributions try to reduce the resources required 

using floating point representation based on a custom bit-width. For instance, based on 

the idea that some circuit nodes have a higher sensitivity to quantization noise than 

others and using differentiation techniques to find these nodes, in [GAF02] it was 

presented a mathematical formulation to customize floating point representation at each 

circuit node. A mixed alternative is the utilization of Dual fixed point arithmetic. As 

commented in [CHU04], this approach is an intermediate solution between floating point 

representation and fixed point in terms of dynamic range and arithmetic precision with a 

more affordable hardware cost.  

 There are other side consequences of choosing a proper arithmetic representation 

that go beyond hardware resources consumption vs. accuracy trade-off. As mentioned in 

[CON03], a proper bit-width design has significant importance in terms of power 

consumption. Low significant bits tend to switch their state very frequently and this 

shall be avoided if it does not drive any information. Due to that, the smart elimination 

of low significant bits allows decreasing the frequency of meaningless bit switching, 

reducing the switching power which is important in embedded systems and also for the 

migration to VLSI devices.   

 Unfortunately, although there are a large number of significant contributions, 

this problem is still only partially solved. Most of the previous methods are designed for 

the analysis of well defined circuits’ substages such as FIR filters or well defined 

arithmetic operations such as Arithmetic-Logic Units (ALU). Complex designs use 

linear and non linear arithmetic operations and require more extensive analysis. 

Statistics probability can be also included in the analysis to evaluate the effective 

dynamic range of the variables. Other considerations such as power consumption can be 

involved on the design decision process. The whole system analysis requires splitting 

the system on simple substages, studying the required arithmetic representation at each 

of them and determining their bit-width which is still far beyond the possibilities of 

current tools.  
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 Similarly to the methodology presented in [ROY04] we have developed a semi-

automatic tool for bit-width analysis on the MATLAB environment. Our methods 

require manually dividing the model on substages and fixing the data range and 

arithmetic type of the main variables. Then, the tools make an extensive analysis of the 

different alternatives and generate the quantization noise data based on the comparison 

with the software approach using double floating point representation. As in Chapter 5, 

we can use the SQNR to evaluate the software versus hardware model degradation. 

Nevertheless, our method is very flexible and the error metrics can be defined in 

different ways, as the similarity to some real values. For example, for orientation 

estimation the error metric can be simply defined as the difference between the 

computed angle and the real angle of each pixel of a synthetic image or for optical flow 

the angular error measure can be defined as the difference between the computed and 

the real motion of each point. In these cases, synthetic sequences with known ground 

truth are required and the quantization error is included in the model error.  

 Our software is called MCode for DSP Analyzer. It consists on a set of libraries 

that allow making computations with fixed point or floating point data representation 

with customized bit-widths. These libraries also include functions to evaluate the 

degradation based on the SQNR as well as other common error metrics as the maximum 

error value, relative error, taking special attention to periodic functions such as the 

trigonometric ones. On an iterative way, we can explore which substages have higher 

quantization sensibility or which of them do not benefit of large bit-widths. We can also 

test the utilization of customized floating point representations and evaluate how well 

they fit the design requirements. As shown in Chapter 6, at some critical stages where 

the required data range is large, floating point representation becomes more hardware 

friendly than the equivalent fixed point data format.  

 An important difference with other approaches is the inclusion on the 

optimization process of some confidence information about the data computed. Our 

image features have been computed based on computer vision models which only 

represent approximate results. They are not analytical solutions of any equation and 

estimation errors are intrinsically assumed into the models. Therefore, these 

computations have some degree of uncertainty and, although quantization errors should 

be always kept below this level, there is no sense in increasing the accuracy further than 

this value. Keeping that in mind, we consider that SQNR is a good accuracy metric 

which easily can be combined with a confidence parameter of our vision features. This 
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combination allows to measure quantization error only for reliable data outputs, which 

effectively allows reducing bit-widths at the different stages and the hardware area of 

our implementations. This is a significant difference from previous approximations that 

relay on our field of application (computer vision) and includes information about the 

model uncertainty on the bit-width analysis. 

 As drawback, our tools still require significant user expertise and are not 

automatic enough. At the present stage, the dimensionality of the problem makes 

unviable an extensive search of bit-widths configurations in the whole solutions space. 

This is the reason for manual data range introduction which is required to constraint the 

problem. Future work will try to make this process fully automatic improving this tool 

by using artificial intelligent methods to reduce the problem dimensionality. 

Furthermore, we also plan to include metrics for different valuable estimations such as 

hardware resources consumption, data-throughput, etc; which allows defining the 

problem as a multi-objective searching approach, maximizing accuracy and minimizing 

area and/or memory, power consumption, etc.  

 

1.7.2. Hardware system specifications and tools 

 
Taking into account our target technology (FPGAs) we have tried to use fixed point 

data representation with constrained bit-widths as described on the previous section. In 

order to evaluate the implementation feasibility, we need to focus on hardware 

resources and system performance as goals to optimize. The large number of parameters 

to consider in a hardware implementation makes necessary to constraint the problem to 

achieve a solution at a reasonable design time. The MCode for DSP Analyzer determine 

stages more sensible to quantization noise and provides the data bit-width relations, 

scaling methods, rounding techniques and other relations that effectively help the 

hardware design process. 

 Nevertheless, the parameters space (bit-width and arithmetic representation of 

each datapath element) exploration makes necessary a hardware coding style that allows 

full model parameters specification. The very high algorithm nature of the approaches 

discussed in this Thesis makes necessary a higher level of abstraction than standard 

RTL codes such as the VHDL or Verilog can achieve. Applications such as Catapult C 

Synthesis of Mentor [MEN06] are supposed to achieve this abstraction level but the low 
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level system design is still not solved. For DSP design there are some box-connection 

based tools such as System Generator for DSP of Xilinx [XIL06a], PixelStreams of 

Celoxica [CEL06c], the DSP Builder of Altera [ALT06] or the Codesimulink [COD06] 

developed at the Politecnico di Torino. They are based on Simulink-like working 

methods to simplify the hardware system description. After boxes connection and 

parameterization, the system finally generates VHDL or Verilog code to be synthesized. 

 In our system a remarkable performance is required for the addressed 

applications on the framework of the projects ECOVISION [ECO06] and DRIVSCO 

[DRI06] (as reference, more than 25 fps with two cameras and images of resolution 

1000x1000 pixels). This makes that very high level system specification tools hardly 

achieve the target specifications. The designing time is a very valuable factor since 

different visual modalities and systems are developed. We also need to consider the 

designing parameter exploration. For this task a HDL and a design tool capable to run 

on batch mode is a valuable option, specially taking into account that synthesis process 

is a very time consuming task.  

 We have chosen the DK synthesizer of Celoxica [CEL06b] that fits these 

requirements. The HDL is Handel-C [CEL06c] which allows easy description of 

algorithmic systems but the coding style also allows a RTL description to achieve high 

performance. The synthesis engine produces good results [ORT06b] and the functional 

simulation is integrated on the environment. DK (design environment) output is an Edif 

code which is the input to proprietary place and route tool. 

 The system specifications require a high parallelism system description and 

coding style which motivates the use of a fine grain pipelined architecture with 

parallelism growing across the different stages to achieve the maximum system 

throughput. Our goal is to obtain one pixel output per clock cycle (a computing system 

running at 50 MHz should be able to achieve 50 millions estimations per second).  As 

consequence, the main drawback of this high performance requirement consists on high 

hardware resources utilization because resources sharing is not possible (though it has 

been explored in Chapter 5 in the context of an Optical flow processing architecture).  

Nevertheless, this is partially compensated by the optimized bit-width design 

methodology. Furthermore, the large hardware resources available on current FPGAs 

devices make possible the designed system and still leaving a large amount of resources 

on the same chip for other purposes (such as sensor and computer interfacing). 

Furthermore, the fine pipeline architecture produces other benefits than high 
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performance. As shown in [SHE92], [SUT03], the power consumption of FPGA 

devices is reduced when large pipelines are utilized because it significantly reduces the 

circuit glitches. They can be responsible of up to 70% of the power consumption of this 

kind of devices. Therefore fine grain pipeline techniques effectively helps reducing 

power.  

 Our design methodology benefits from a carefully designed data bit-width and 

arithmetic in addition to the fine pipeline architecture. Both methods have been 

highlighted as effective techniques for power consumption reduction. Future work will 

try to quantify the benefits of these techniques analyzing also the effect of the fine 

pipelined datapaths on the power consumption issue. 

 

1.8. Content of this thesis 

 

This work has been structured in the following parts and chapters: 

I. Computer Vision Models 

 Chapter 2: Image processing methods for computing the local image features: 

phase, orientation and energy. Here we describe the different quadrature filters 

commonly used on the literature for computing three basic local images features: 

orientation, phase and energy, furthermore we evaluate the interpolation 

methods to estimate the feature at the right orientation [FRE91], [HAG92], 

[FEL02a], [NES98].  

 Chapter 3: Motion processing models. Here are described the principles in 

which different motion estimation models are based. We compare the accuracy 

versus efficiency of the different approaches and we conclude that the Lucas & 

Kanade (L&K) algorithm [LUC81] is a very good option. Furthermore, we 

choose a modified version of the original L&K approach [BRA97] whose 

hardware implementation is described in Chapter 6.  

 Chapter 4: Stereo vision processing models. In this chapter we briefly review 

the different stereo models evaluating their accuracy and feasibility in specific 

hardware. The main objective of this study is to arrive at a specific well defined 

model in which we will focus in Chapter 7. We choose a phase-based hardware 

friendly model [SOL01]. 
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II. Efficient processing architectures. Hardware implementation and performance 

evaluation. 

 Chapter 5: Hardware architecture for phase, orientation and energy 

computation. Hardware implementation of a high performance steerable filter 

bank for phase, energy an orientation computation. In this part we specifically 

describe an efficient computing architecture to extract these signals. We also 

evaluate qualitatively the accuracy versus efficiency trade-off of the approach.  

 Chapter 6: Motion processing: Hardware implementation of a high performance 

computing architecture. In this chapter we describe an efficient processing 

architecture for the modified L&K model. Different versions of the system are 

described and evaluated characterized with different accuracy versus hardware 

resources trade-offs. Particularly we present a superpipelined and superscalar 

processing architecture that outperforms any previous motion estimation system 

(described in the literature) by more than one order of magnitude. This chapter 

represents also a considerable effort in the evaluation of the presented 

processing architectures. For this purpose, we benchmark different approaches 

with sequences on known motion ground-truth in order to evaluate degradation 

of the model due to the use of fix point arithmetic with a restricted number of 

bits.  

 Chapter 7: High Performance stereo computing architecture. This chapter 

focuses on the efficient implementation of a phase-based stereo model. We 

discuss the hardware cost of diverse approaches with different filter lengths. 

Finally, we evaluate qualitatively the accuracy loss due to the limited precision 

operations at different stages of the computing architecture. 

 Chapter 8: Application example: Lane change decision aid system based on 

motion-driven car tracking. In this section we apply the optical flow computing 

architecture for detection of overtaking vehicles as application example.  

III. Discussion and conclusions. 

 Chapter 9: Conclusions. This is a summary of the main original contributions of 

this work. 
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computing the local image features: 

phase, orientation and energy 
 

 

 

 

 

 

This chapter describes the different quadrature filters commonly used on the 

literature for computing three basic local images features: orientation, phase and 

magnitude. The methods based on Isotropic analytic filters (Monogenic Signals), 

Gabor filters and Gaussian derivatives are discussed in terms of accuracy and 

efficiency. Furthermore, for approaches where only a discrete number of oriented 

filters are presented, the interpolation methods to estimate the feature at the right 

orientation are evaluated. In this chapter we find that the second order Gaussian 

derivative is a good trade-off between accuracy and computing resources to be 

implemented on customized hardware. 
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2.1. Introduction 
The analysis of image features such as colour, edges, corners, phase, orientation or 

contrast provides significant clues in the process of image understanding. They are used 

as base for higher level task such as object segmentation, object recognition, texture 

analysis, motion and stereo processing, image enhancement and restoration or special 

effects [GON02], [GRA95], [SON98]. 

 We will focus on three basic image properties, phase, energy and orientation. 

They have been extensively used on computer vision [KRÜ02], [KRÜ04] and, as we 

will see, they can be obtained from the same set of image operations. 

 These features are low level primitives that can be extracted through convolution 

based operations with a set of spatial filters. In this chapter we describe the three more 

extended filter types used for this purpose and we make accuracy vs. efficiency study to 

define the best option at this low level stage (for extracting these low level features).  

 This chapter deeply focuses in the signal processing theory for computer vision. 

Very specific concepts are discussed and some previous knowledge on this material is 

required. Sections 2.1 to 2.3 are included as review and link to the discussed signal 

processing concepts, improving the chapter completeness. Nevertheless, our main 

contributions appear on Section 2.4 and depending on the reader interest, previous 

sections could be skipped. We encourage to the readers to focus on that section and just 

use previous sections for consulting further details.  

 

2.1.1. Local orientation 

 

The analysis of local orientation has received a considerable amount of attention in the 

literature over the past decade [GRA78], [BIG91], [PER92], [KAS87], [FRE91], 

[RAO91]. It is an early vision feature that encodes the geometric information of the 

image. The common assumption on computer vision is that sufficiently small image 

regions can be characterized as local one-dimensional signal, e.g., in terms of lines or 

edges. For natural images this assumption is usually correct except at specific points, 

e.g., corners, line junctions or crossings and textured regions. However, the size of the 

regions that have to be in order to appear as one-dimensional varies both between 

images and within an image. Also, in practice a local region is never exactly one-
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dimensional but can be approximated as such. Image regions which are in fact one-

dimensional are also referred to as simple or intrinsic one-dimensional (i1D), [KRÜ03].  

 There are a wide variety of algorithms for the estimation of local orientation, 

with a wide range of applications from the simplest case of 2D orientation (which we 

are addressing here) up to the more complex cases of multiple simultaneous orientations 

and junction analysis [MIC94] or even multi-dimensional orientation [ADE85], 

[HAG92], [AND92], [WES94], where time can be taken into account.  

 Orientation has an ambiguity in the representation of local orientation coming 

from the 2 possible directions, for each orientation because it is a 180º periodic 

measurement, i.e. a line between two points has no given direction, but has a well-

defined orientation, which can be defined in [0, π[ or in [π,2 π[. That is to say, the two 

complex numbers reiθ and reiθ+π represent the same orientation. Averaging of these two 

vectors, however, will result in total cancellation. At first, it may seem that simply 

restricting the allowable orientation estimation values to a particular interval would 

eliminate this problem but this ambiguity can be solved in a proper way using the 

following methods:  

1. The double angle representation: Proposed by G. H. Granlund in [GRA78], is to 

simply double the angle of each orientation estimate. While doubling the angle is 

unattractive for visualization purposes, mathematically it provides us with a 

meaningful representation for averaging, differentiation, and other related 

operations. The angle is of course halved for visualization purposes.   

2. The tensor representation: it is a generalization defined for arbitrary dimensions of 

the image data [GRA95].  It applications include curvature estimation and tensor 

field controlled image and image sequence enhancement. 

  

 Related with these representations, a number of methods have been proposed for 

computing or estimating an orientation representation from image data [WIK06]. These 

include: 

1. Quadrature filter based methods [FRE91], [KNU83], [HAG94].  

2. Gradient based methods [KAS87]. 

3. The structure tensor [GRA95]. 

4. The Energy tensor [LAR05]. 

5. The Boundary tensor [KÖT06]. 

6. Local polynomial approximation [FAR99]. 
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 Nevertheless this classification is arbitrary and several of them could be 

considered belonging to different types (for example, the method of Haglund [HAG92] 

define a structure tensor based on quadrature filters and therefore can be classified as 

type 1 or 2.  

 From all of these approaches, concerning that our goal is the efficient hardware 

architecture design; we will focus on quadrature filter based methods, basically 

motivated by the following reasons:  

1. They allow the computation of local orientation based on convolution with a set 

of kernels. This operation is hardware-friendly and can be efficiently 

implemented on digital hardware.  

2. We can share the information coming from the filtered set of images to extract 

other valuable information, such as local phase and energy (see next section).  

3. Quadrature-filter based methods can be readily extended to handle instances of 

multiple simultaneous orientations, as occuring at the intersection of lines and 

corners.  

 

2.1.2. Phase and energy 

 

Fourier transform of the image allows recovering the signal spectrum which can be used 

for enhancing or restoring the image. We assume that the signal is stationary (signals 

which are constant in their statistical parameters over time, e.g. sinewaves). If the signal 

is non-stationary, any abrupt change of the signal will be spread over the whole 

frequency axis and the spatial position of the discontinuity will be impossible to retain 

from the Fourier coefficients. The Fourier transform is apparently not sufficient for 

analyzing such signals. The Short Time Fourier Transform, or Windowed Fourier 

transform, is one way to modify the Fourier transform for better performance on non-

stationary signals, allowing extending this concept for the characterization of local 

features. It has been widely used on bioinspired computer vision models [SIM98]. 

Using a bank of bandpass quadrature filters tuned to different orientations and spatial 

scales, the image can be convolved and, we can obtain a set of outputs for these filters. 

This filter bank should be designed to cover homogeneously the frequency domain as 
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showed on Figure 2.1. On that way, the filter responses encode the frequency context of 

the image. 

 
Figure 2.1. Bandpass filters covering different spatial frequencies and orientations (figures adapted from 

[GET06]. Left image represents the different filters spatial scales based on scaling by 2 of the main filter. 

The x-axe represents the normalized frequency values (f/fNyquist). Right image shows a polar 

representation of these scales across different orientations, using a logarithmic splitting of the frequency 

domain. Uniform coverage of the frequency domain allows properly decomposing the image signal on 

this domain and extracting multivalued local phase and energy information. 

 

Quadrature filter is a complex filter that allows decomposing each output as phase and 

magnitude. If we note h(x,k) for a complex filter tuned to a spatial frequency k0 then:  

);();();( 000 kxjskxckxh +=  (2.1) 

Where c and s respectively represent the even and odd components of the filters, 

fulfilling the condition that the even and odd filters are Hilbert transforms of each other. 

The convolution with the image I(x) is expressed by equation (2.2): 
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Where ρ(x) denotes its amplitude (that we will also note as magnitude and energy to its 

square value), φ(x) is the phase and the components C(x) and S(x) will represent 

respectively the responses of the even and odd filter. Whereas the local amplitude is a 

measure for the local contrast of a structure, the local phase describes the structure or 

shape of the signal [OPP81] allowing splitting luminance and structural information. 

 Phase information has been widely used at the literature. As it is manifest on the 

literature [FLE93], phase information is more stable against change on contrast, scale, 

or orientation. It can be used to interpret the kind of contrast transition at its maximum 

[KOV99], e.g., a phase of π/2 corresponds to a dark–bright edge, while a phase of 0 

corresponds to a bright line on dark background. It has been applied to numerous 

applications, specially for motion [FLE90], [FLE92], [GAU02], and stereo processing 
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[SOL01], [COZ97], [FLE91] , [SAN88]. Furthermore, the phase-based approaches 

extract subpixel information without requiring extra-processing or feature localization 

which makes simpler the computation of these primitives (as explained on Chapter 4). 

 

2.1.3 Local features interrelation 

 

The orientation encodes the geometric information of the local signal while the phase 

can be used to differentiate between diverse image structures ignoring orientation 

differences. Energy (or equivalently its square root, the magnitude) keeps the 

information about the local luminance and contrast (which is a valuable parameter on 

the estimation of confidence parameters for our features).  

 As commented, the estimation of the local phase and the local energy is an 

important step in many signal and image processing tasks. A second crucial task in 

image processing is the estimation of the local orientation. In most cases, the energy and 

phase are computed using a set of filters with some predefined orientation. Each 

complex filter is composed by an odd an even component, where one is the Hilbert 

transform of the other. Because local phase and energy information are intrinsically 1-

dimensional features, the preferred orientation is necessary for its computation unless 

some spherical filter is used [FEL01].  

 If these features are not computed at their corresponding orientation, our 

estimation will be suboptimal and will not reflect the right values. It makes necessary a 

proper covering of the orientation space in order to obtain accurate estimations for these 

features. Furthermore, taking that under consideration, if the signal presented at an 

image position is not 1-D as happens in corners, junctions or textures, these features can 

be multi-valued and complex analysis will be required. 

 

2.2. Quadrature filters approaches for local phase, energy and 

orientation estimation 

 

In the previous analysis we review the different methods for computing the local 

orientation and its relation with the phase and energy. We mentioned the large number 
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of applications that may use these features. The main limitation is the high computing 

power necessary for image processing of such features which reduces the applications 

fields. This motivates the development of customized hardware to address this problem.  

 From the previous Section 2.1 we conclude that quadrature filters are the best 

option for a real-time hardware system for the following reasons:  

1. Quadrature filters are based on convolutions which are hardware friendly 

operations. 

2. There are substantial contributions about these approaches which mean that this 

approach is mature enough for hardware implementation. Furthermore, there are 

a considerable number of applications that use this preliminary stage as input, 

allowing resources sharing on our processing architecture.  

3. Quadrature filters represents a biological approach that models cells of the visual 

cortex [DEA91]. It can drive future experiments and be used as model for 

testing neural computation models.  

  Three different quadrature filters set will be considered for our study, Steerable 

filters based on Gaussian derivatives, Gabor filters and the isotropic analytic filters such 

as the Monogenic signal transform. We will study their accuracy, robustness and 

implementation feasibility as well as resources consumption in order to decide which 

filter fits better our system architecture.  

 

2.2.1. Generic filter implementation considerations 

 

There are several generic filter considerations that we want to highlight before come 

into details of the different approaches. Given a bandpass filter of peak frequency f0 and 

Banwdith β (defined at the cut-off frequency corresponding to half of the base-band 

amplitude spectrum), we should consider:  

1. Nyquist sampling condition: Using pixels as units, the sampling period is 1 pixel, 

which corresponds to a 1 pixel-1 sampling frequency. The maximum bandwidth of 

the filter to avoid aliasing is 0.5 pixels-1. Taking this into account, given β the filter 

bandwidth, the maximum peak frequency of the filter f0 can be derived from the 

following equation: 

5.00 <+ βf  (2.3) 
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It is worthy to mention that, since all the filters considered in this section are not 

bandlimited, some aliasing will occur regardless of the sampling density. In other 

words, by setting a filter bandwidth we decide how much aliasing we tolerate. 

2. Multiscale frequency space coverage. The distance between neighboring frequency 

“channels” is determined by the spatial frequency bandwidth. A efficient 

implementation that covers different spatial scales is proposed by [BUR83]. 

Because this representation based on scaling factors power of two (logarithmic 

coverage), the minimum bandwidth to cover the frequency domain without empty 

areas is:  

β >=f0/3 (2.4) 

3. Uniform orientation coverage condition (only for oriented filters such as Gabor or 

Gaussian derivatives). Because we should cover the 2-D frequency domain for 

different orientations, we need to consider a minimum number of oriented filters. 

This number depends on the filter bandwidth and is related with the desired 

orientation filter sensibility. According to [FLE90], we can estimate the desired 

bandwidth using:  

βπ 22 0 ∗<= norientatioNf  (2.5) 

and define the orientation bandwidth Bθ in the frequency domain as (cf. [ BOV90]): 

)/(tan 1
peakfB βθ

−=  (2.6) 

 Spatial frequency bandwidths are constant in octaves, and orientation 

bandwidths are constant in degrees, but there is freedom to choose the absolute 

magnitudes of these bandwidths (provided that they respect condition 1). 

4. The spatial extent of the filter should not exceed the number of taps. Because the 

filters we consider have infinite extension, the condition to fulfill is that we keep at 

least the 95% of the energy of the filter.   

5. DC removal. Gabor even filters has a significant DC response. Gaussian derivatives 

do not have it but, due to the sampling and windowing operations, they also can be 

affected. This does not happen for Monogenic filters because the even component is 

composed by differences of Poissons that can scaled after sampling to eliminate the 

DC component. For the Gaussian derivatives and Gabor filters, several approaches 

are possible. For example:  

• Convolve the image with a kernel: I-Imean where the mean value is computed on 

a square window of size half of the filter [DIA05a], [DIA05b]. 
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• Numerical optimization to removal this component as [NES98].  

 

2.2.2. Gabor filters approach 

 
Widely used on the literature, Gabor filters are defined by harmonic functions 

modulated by a Gaussian distribution. Their main property is that they minimized the 

spatio-frequency uncertainty. An efficient filter implementation could be finding on 

[NES98] or [DIA06i]. Note that they are not separable filters but can be computed as 

sum of separable filters as described on [NES98]. 

 Shown below in Figure 2.2 are the resulting Gabor filters at 8 different 

orientations. 

 
Figure 2.2. Example of a Gabor filters bank at 8 different orientations. First row shows the even filter and 

second row the odd filter. Each oriented quadrature filter is composed by this two filters, represented by 

columns. 

 

 The bandwidth used in [NES98] equals f0/3 or 1 octave, which is the smallest 

one to properly cover scale space. In [NES98], only 4 orientations are supported but it 

can be extended as in [DIA06i] to 8 orientations. By exploiting the symmetry, all 8 even 

and odd filters can be constructed on the basis of 24 1-D convolutions (lower than the 

32 theoretically needed because some of then can be reused). The main limitation of this 

approach is that if more orientations need to be considered, the number of convolutions 

grows exponentially and therefore the computing resources. For this approach, using a 

filters bank properly sampled in the frequency domain, features computations can be 

done accurately using different interpolation functions. This is described on Section 2.3.  
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2.2.1.2 Filter implementation 

 

Basic equation for Gabor complex filters is given by equation 2.7, with f0 the peak 

frequency, θ the main orientation and σ the Gaussian variance.  

( ){ })()cos(2exp)(exp),,( 02

22
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⎧ +−=  (2.7) 

 Basically, the Gabor filters are a Gaussian multiplied by a sinusoidal function. 

The spatial window extension is approximately [-2σ, 2σ], which has be considered to 

determine the number of taps for the filter and corresponding computing resources. We 

also need to consider the Variance-bandwidth relation. The bandwidth of the Gabor 

filters is equal to the bandwidth of its associate Gaussian. This is:  
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 As in [NES98], we will consider a Gabor filter with f0 =fNyquist/2 and 11 taps. 

The corresponding bandwidth makes necessary to use at least 8 orientations  according 

to equation (2.5) and therefore as commented on [DRI06] 24 1-D separable convolution 

are required.  

The complexity for computing K separable convolutions using a kernel of N taps is:  

Osep(K,N)=K*N multiplications + K* N-1 additions (2.9) 

 This means that the Gabor filter bank, using 24 total filters (odd and even) of 11 

taps requires 264 multiplications and 240 additions. 

 

2.2.2 Gaussian derivatives approach 

 

Widely used on the literature, [KOE87], [BLO96], [DIA03], [MOT05], Gaussian 

derivatives allow the computation of any particular orientation based on a basic set of 

separable kernels, this property is usually referenced as stereability [FRE91]. The 

kernels have to be properly weighted to get the desired oriented kernel. Quadrature 

filters are computed using the Hilbert transform of the Gaussian derivative as described 

in [FRE91]. A key factor for its design is the derivative order, since the tuning 

frequency and bandwidth depend on this parameter. Figure 2.3 illustrates the effect of 

using different derivative orders and its relation with the Gabor filters. 
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(a) (b) 
Figure 2.3. Comparison of Gabor (green), Gaussian derivatives (blue) and cosine (red) functions tuned to 

the same peak frequency. (a) Gaussian derivative of order 2 is close to Gabor filters but the difference is 

not negligible. (b) Gaussian derivative of order 4. This time the similarity is larger and the filter is very 

close to the Gabor approach. Note that the number of waves increase according to the Gaussian derivative 

order, corresponding to higher orientation selectivity. 

  

 The main property of Gaussian derivatives is that we can compute the exact 

response at any orientation using a linear combination of these filters outputs. The base 

set for the case of Gaussian derivatives of second order is shown on Figure 2.4.  

 

     
Figure 2.4. Second order Gaussian derivatives separable base set. The three first filters (from left to right) 

are the Gaussian derivatives and their Hilbert transforms are the four filters showed on their right. With 

this set of filters, we can estimate the output at any orientation just combining linearly the base set output. 

This allows building oriented quadrature filters banks as shows in Figure 2.3 but at any possible 

orientation. 

 

2.2.2.1 Filter implementation 

 

The well known equations of a 1-D Gaussian g and its derivatives are: 
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 This equation indicates that the nth derivative of a Gaussian can be written as the 

product of a polynomial (generalized Hermite polynomial) by the original Gaussian. In 

the frequency domain Equation (2.10) can be expressed as: 
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where G is the Fourier transform of g and ω the frequency on rad/pixels. Because we 

focus on phase-based approaches, we need the quadrature pair of these filters. It can be 

obtained using its Hilbert transform [FRE91].  

 An important difference compared with Gabor filter can be extracted from 

equation (2.11). It can be derived that, given a predefined filter orientation, the spectrum 

distribution around the peak frequency is not 2-D symmetric (differently to Gabor 

approach). Gaussian derivatives present wider orientation bandwidth on the direction 

normal to the filter main axe resulting then in a broad tuning for local orientation.  

 The basic parameters to consider for these filters in their design process are:  

1. Spatial window extension [-2σ, 2σ], where σ2 stands for the variance. 

2. Variance-bandwidth relation. From [KOE87] we get the asymptotic bandwidth 

can be computed as: 

σπ
β

24
1→  (2.12) 

3. Its peak frequency f0 is computed by derivation in the frequency domain as in 

[BLO96]:  

20 2
1

σπ
nf =  (2.13) 

 If we desire to design a filter similar to the previous described Gabor filter, it 

means that we use f0 =fNyquist/2, fourth order Gaussian derivatives and also 11 taps. The 

steerability property allows deciding the filter orientation based on the image stimulus 

or just getting a set of oriented filters for predefined orientations. Both alternatives can 

be considered. Concerning the derivative order, we will study the properties of the 2 and 

4 orders in Sections 2.3 and 2.4. The number of kernels to compute the oriented output 

of the filters k, depend on their derivative order n. We need k’=2n+3 separable 2-D 

kernels or k=4n+6 1-D kernels. The complexity for computing these convolutions is, 

according to equation (2.9): 

• n=2, k=14, 153 multiplications + 140 additions. 

• n=3, k=18, 198 multiplications + 180 additions. 

• n=4, k=22, 242 multiplications + 220 additions. 

 

 The conclusion is that, depending on the derivative order we can significantly 

reduce the resources consumption compared with Gabor filter if low derivative order is 
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utilized but we need to check the accuracy in order to test our primitives. We address 

this point on Section 2.4.   

 

2.2.3 Monogenic signals 

 
This transform is based on a nobel generalization of the 1-D concept of phase for 2-D 

signals [FEL01], based on the Riesz transform, which is used as generalization of the 

Hilbert transform. The monogenic signal performs a split of identity, i.e., it orthogonally 

divides the signal into energetic information (indicating the likelihood of the presence 

of a structure), its orientation and its structure (expressed in the phase). Orientation is 

used as disambiguation information to extend the 1-D concept of phase.  

 The image is convolved with three 2-D non-separable filters which are spherical 

quadrature filters, allowing the estimation of the phase and energy of the signal for the 

main orientation (which it is also extracted). Because only the information of the main 

direction is provided, this approach is only recommended for 1-D signals as edges or 

lines.  

 At this point is important to introduce the concept of intrinsic dimensionality 

[FEL02a]. It is possible to analyze the local image structure and determine if it 

represents a 1-D feature such as an edge or line or a 2-D feature such as a corner or 

features presented on textures. This concept can be even extended to a continuous 

probabilistic formulation as proposed in [KRÜ03] and computed using on the 

monogenic signals.  

 The main advantage of the monogenic signals is that, thanks to using spherical 

quadrature filters, we always obtain the predominant orientation features. It is as well its 

main limitation, when we have 2-D structure, the multiple features existing at each 

orientation can be used on applications such as texture segmentation [DUN95] or 

transparent motion discrimination [SIM98]. These applications are lost using the 

monogenic signal approach in which these features are not extracted.  
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2.2.3.1 Filter Implementation  

 

The monogenic signal allows computing spherical quadrature filters from 1-D 

quadrature filters as described on [FEL01].  We will use this transform applied to the 

Difference of Poissons (DOP) functions as in [FEL01], [FEL02a]. The three resulting 

functions for the kernels are:  

 

a. Radial filters (with even symmetry with respect the to origin): 
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Where s1 and s2 represent the poles of the Poisson functions, he represents the signal on 

the spatial domain and He its Fourier transform. They fix their spatial extension and 

bandwidth. 

 

b. X-Y filters (real and imaginary parts with odd symmetry) 
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c. Systems relations for filter design. 

1. Filter poles relation. According to [FEL02a], we take s2=2•s1. 

2. Spatial window extension [-s2, s2] for windowing. 

3. Peak frequency:  

( ) ⎟
⎠
⎞

⎜
⎝
⎛

−
=

1
2

12
0 ln

2
1

s
s

ss
f

π
 (2.16) 

4. Poisson bandwidth: 
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5. DOP bandwidth (using s2=2•s1):  
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 The DOP based filters requires not separables 2-D convolutions. Computing K 

non separable 2-D convolutions of N taps has a complexity: 

Ono-sep(K,N)=K*N2 multiplications + K*( N2-1) additions (2.19) 

 It means that the computing resources for this approach using a 11x11 taps filter 

implementation requires 363 multiplications and 360 additions. It is then the more 

expensive approach and, its implementation only can be justified for the sake of 

accuracy.  

 

2.3. Features interpolation from a set of oriented filters 

 

The previous stages describe several quadrature filters types. From them, there are 

several methods to compute the local image features phase, orientation and energy.  

 The monogenic signal extracts directly this information for the main orientation 

using the equations:  

22
oelocal IIE +=  (2.20) 

( ) )mod(arg πθ olocal I=  (2.21) 

{ }( ) ( ) { } θθζζ sin)(cos)(,arg 00 ∗+∗=+∗= IimagIrealIIiIIsignP ooeolocal  (2.22) 

 Where we note Elocal, θlocal and Plocal the magnitude, orientation and phase 

computed from the monogenic signal.  

 If we consider 8 oriented filters (computing using Gabor or Gaussian 

Derivatives), is likely that the local orientation of some features do not fit this discrete 

number of orientations. Under this circumstance, we require to interpolate the feature 

values computed from this set of outputs in order to estimate the filter output at the 

proper signal orientation. Different methods can be used. We note Ei and Pi to the 

magnitude and phase of the filter oriented with angle=i*π/N and noted by hi. This filter 

is expressed by:  

,iii jsch +=  (2.23) 

And the primitives features are computed with this filter orientation and computed as:  

1. Filter energy     22 ][][ iii scE +=           (2.24) 

2. Filter phase    ),arg( iii scP =          (2.25) 



78                                                                         Multimodal bio-inspired vision system 
 

 

 If only the main orientation information is required (1-D local signals), we can 

apply several strategies to interpolate the primitives from this multivalued set:  

i. Winner- take-all. We will take for each pixel the phase, energy and orientation 

of the filter with maximum energy. 

maxmaxmax ElocalElocallocal PPEE θθ ===  (2.26) 

ii. Weighted-average: (we consider linear case, though the energy can be power to 

different orders). 
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where all angles are properly shifted for avoiding angle wrapping effects. 

iii. Tensor-based method [HAG92]. Based on a local tensor that projects the 

different orientations, information can be computed as follows:  
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iv. Energy Fourier series expansion for Gaussian derivatives based approach. As 

described on [FRE91], using the nth Gaussian derivative Gn and its Hilbert 

transform Hn as band pass filter oriented to the angle θ, we have that the 

energy at this orientation is expressed by: 

22 ][][)( θθθ nnn HGE +=  (2.29) 

Writing these functions using the separable basic filter outputs, this equation can 

be expressed as a Fourier series in angle and described as:  

termsorderhighsenCCCEn +++= )2()2cos()( 321 θθθ  (2.30) 

 Note that values of coefficients Ci can be found on [FRE91] for n=2 case. 

From equation (2.28), local orientation is computed based on the lowest 

frequency term as:  
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 The energy is estimated using equation (2.29) and the phase using (2.25) 

taking into account that, for n even, ci is Gn and Hn is si and the opposite for odd 

values of n.  

 

2.4. Quantitative analysis of the accuracy for feature 

estimation of the presented approaches.  

 
In Section 2.2 we study the computing complexity of the different filters and conclude 

that Gaussian derivatives with low derivative order are the less computational load 

approach and monogenic signal the most expensive one. Section 2.3 shows the 

underlying equations and methods that we can use to estimate the local image features 

from each filter type. Now we are going to evaluate the accuracy of the different 

approaches using the equations presented on previous section.  

 Comparing the different approaches is a hard task to do due to the large number 

of variables to consider for filtering design. Furthermore, the parameter choice can 

significantly bias the results, possibly leading to wrong conclusions. Because of that, we 

will focus on a most affordable task; we will use some fixed filter parameters that 

exploit each signal type properties. For instance, Gabor and 4-order Gaussian 

derivatives allow very fine filter tuning capabilities and orientation selectivity. As in 

[NES98], our designed filter will have a peak frequency of f0=0.25 pixels-1 and 

bandwidth β= f0/3=0.083 pixels-1
. Monogenic signals and second order Gaussian 

derivatives have broad bandwidth and therefore, peak frequency should be lower to 

fulfil equation (2.3). We use f0=0.21 pixels-1 and bandwidth β= 0.1 pixels-1 for the 

Second order Gaussian derivative as in [FRE91]. For the Monogenic signal, the design 

values are S1=1 and S2=2, which gives us the higher frequency filter based on this 

approach. It gives a peak frequency of f0=0.11 pixels-1 and mean bandwidth β= 0.14 

pixels-1 (bandwidth curve is not symmetric and therefore we only provide its mean 

value). All these values have been computed using the equations described on Section 

2.2. 

 In order to test the different approaches, we use two different kinds of signals. 

First, a set of synthetic sinusoidal gratings with different orientations and spatial scales 

is used. For this stimulus image features are known and we can numerically test the 
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accuracy of the filters. Second, we also have used real images to get some qualitative 

results.  

 From the sinusoidal gratings set, the experimental energy values of the different 

filters responses across the scales is represented on Figure 2.5 (note that these are the 

experimental results, which consider for example quantization problems or finite spatial 

kernel size). It confirms our numerical bandwidth values and shows that for our design, 

Gabor filters have the narrowest bandwidth and Monogenic signal the widest one.  

 

  
(a) (b) 

  
(c) (d) 

Figure 2.5. Normalized energy distribution across the spatial frequency scales, experimental results using a 

sinusoidal gratins test (x-axe use units on pixels-1) for the Monogenic signal (a), Second order Gaussian 

derivatives (b), Fourth order Gaussian derivatives (c) and Gabor filters (d). Filters bandwidth decrease from 

(a) to (d).   

 

 Our goal is to compare the different alternatives accuracy taking into account on 

their hardware implementation feasibility. We have three features to evaluate but we 

will focus on the local orientation estimation accuracy. Local energy is valuable as 

reference to discriminate areas with low or high contrast and therefore, its numerical 

value is not important but rather its relative value compared with closer areas or with 
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respect the whole image. Because of that, there is not reason for evaluating numerically 

this feature between filters types in this context. Local orientation is necessary to 

compute phase and therefore, error or bias on its estimation significantly can degrade 

the phase accuracy.  The phase information is related with the filter shape and therefore 

numerical evaluation is quite complex and far away from the presented analysis. It has 

more sense on an application specific context as in [DIAZ06i] where the phase coming 

from different filters is used for optical flow and stereo disparity computation. Given 

the previous discussion we focus on orientation selectivity to decide between the 

different approaches.  

 In the Figure 2.6 we measure the mean error vs. sinusoidal grating spatial scale. 

Data outputs are unthresholded and therefore, large errors are not significant if the filter 

energy value is close to zero. For approaches that need of filter responses interpolation, 

the tree methods presented in section 2.3, Winner-take-all, weighted-average and 

Haglund tensor are compared. Several conclusions can be extracted from these figures.  

1. The best interpolation method is the Haglund approach. It produces the smaller 

error on the filter frequency band. 

2. All the filters have high accuracy for orientation estimation, less that 1º of error.  

3. The filters that cover the wider range areuses of the Monogenic signals and the 

second order Gaussian derivatives. This confirms the theoretical analysis in 

Section 2.2 relative to its bandwidths. 

4. For the second order Gaussian derivatives, Haglund tensor approach and the 

Freeman Fourier series expansion produce equivalent results.  

 

  
(a.1) (a.2) (a.3) 
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(b.1) (b.2) (b.3) 

 
(c) (d) (e) 

Figure 2.6. Mean orientation error measured for each grating spatial frequency. We have used sinusoidal 

gratings as input, oriented to 64 different angles and with spatial scales from 0.5 pixels-1 to 0.0078 pixels-1. 

Note that, for the sake of clarity, we use different y-axe scales but error values are quite different for the 

different approaches.(a) Gabor filters are computed at 8 orientations and three interpolation methods are 

used: (a.1) Winner take all (WTA), (a.2) Weighted average (WA) and (a.3) Haglund approach. (b) The same 

methods are utilized using the Fourth order Gaussian derivatives. (c) Monogenic signal results. (d) Second 

order Gaussian derivatives, orientation computed using the Freeman and Adelson approach [FRE91]. (e) 

Second order Gaussian derivatives, orientation computed using eight oriented filter and the Haglund 

[HAG94] interpolation method. 

 

 We also have measure the different filter behaviours against several noise types 

(multiplicative, Gaussian white noise and salt and pepper). As expected, the error grows 

approximately linear by all the approaches and therefore, robusness to noise will not 

drive and affect significantly the decision between the different filters.   

 The error presented at each orientation and scale is showed in Figure 2.7, using 

Haglund interpolation filter approach when required. There are 32 different scales from 

0.5 to 0.0078 pixels-1 that makes difficult to use colors legends to mark each case. 

Therefore, they are only used for qualitative error hints, where large error is presented at 

scales far away from the filter tuning peak frequency.  Smooth error curves descend 

indicating gratings from high to lower spatial frequencies. For the filter tuning 

frequency, error is close to 0 and therefore it is not visible on the graphics. These figures 

also show error curves with flat responses or multiple narrow peaks. It happens when 
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we pass from the tuning scale to coarse scales where the filter response confidence is 

quite low (energy is close to 0) but this reponses can be easily filtered using energy 

thresholds. 

  
(a) (b) 

  
 

(c) (d) 
Figure 2.7. Error evolution across the different stimulus orientations. We have used sinusoidal gratings 

as input, oriented to 64 different angles and with spatial scales from 0.5 pixels-1 to 0.0078 pixels-1. 

Each spatial frequency filter output is represented on a different colour (there are 32 curves). (a) 

Monogenic signals results, error decreases with the spatial frequency in each plot. For low spatial 

frequencies, the filter provides quite accurate orientation estimations but it gets worse with high 

frequency gratings. (b) Second order Gaussian derivatives. There is a frequency range where the filter 

properly matches the stimulus orientation. For low frequency patterns, the error increases as 

represented on black lines at the bottom of the plot. (c) Fourth order Gaussian derivatives and (d) 

Gabor filters have a small bandwidth. Thus, in this case stimulus with spatial contexts far from the 

filter tuning frequency are prone to high orientation errors. Graphics (b), (c) and (d) use the Haglund 

approach for computing orientations based on a set of 8 oriented quadrature filters. Note that results 

are unthresholded. Large errors appear in zones of almost zero energy but this feature can easily be 

used as confidence parameter for tuning the filter to the best spatial scale. 

 

 The qualitative results of features computation for images in Figure 2.8 are 

illustrated on Figures 2.9, 2.10 and 2.11. Three examples are shown: 

1. Synthetic spiral image (Figure 2.8.a) that covers all the orientation as well as 

different spatial scales. Results presented in Figure 2.9. 
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2. Forward view of a road (Figure 2.8.b) with a well defined structure that allows 

easy identifications of the image features. Two different image scales are 

shown, the original one and the image reduced by a factor 4 in Figure 2.10.  

3. Finally, real image of a house is used. We focus on the details of a circular 

skylight (Figure 2.8.c) and the extracted primitives are computed and shown in 

Figure 2.11.  

 

 
                (a)                                 (b)                                                 (c) 

Figure 2.8. Original images used for qualitative evaluation of the different approaches. 
 

 Monogenic signals  

(a.1) (a.2) (a.3) 
Magnitude Orientation Phase

 

Magnitude Orientation Phase

 

Magnitude Orientation Phase

 
 Gabor filters  

(b.1) (b.2) (b.3) 
Magnitude Orientation Phase

 

Magnitude Orientation Phase Magnitude Orientation Phase

 
Four order Gaussian derivatives 

(c.1) (c.2) (c.3) 
Magnitude Orientation Phase

 

Magnitude Orientation Phase Magnitude Orientation Phase

 
Second order Gaussian derivatives 

(d.1) (d.2) (d.3) 
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Magnitude Orientation Phase Magnitude Orientation Phase Magnitude Orientation Phase

 
Figure 2.9. Orientation estimation for the image in Figure 2.8.a, using unthresholding results. Row (a) 

represents the results for the Monogenic signals, row (b) results of the Gabor filters, row (c) the fourth order 

Gaussian derivatives and (d) output from the second order Gaussian derivatives. Each column represent one 

scale, column 1 is the fine scale, column 2 represents a image resolution divided by 2 and column 3 represents 

the image with original resolution divided by 4. The results show that high resolution images are properly tuned 

only at the centre for the fourth order Gaussian derivatives and Gabor filters. The tuning region grows for lower 

resolution areas because the peak frequency is better tuned at these scales, as can be seen from the energy 

response images. Note that second order Gaussian derivatives and Monogenic signals, thanks to the wider 

bandwidth, allow the primitives computation at larger areas. An orientation frame is utilized for these images 

encoding with colours the different orientations. Note that we use the direction normal to the line (the filter axe) 

as orientation direction for the colormap. 

 

(a.1) 

 

(a.2) 

 

(b.1) 

(b.2) 
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(c.1) 

 

(c.2) 

 

(d.1) 

 

(d.2) 

 
                          Energy                               Orientation                                  Phase 
Figure 2.10. Image features computed the for road scene in Figure 2.8.b with a energy confidence threshold 

of 5e-3 times the maximum output. We use the previous filters: (a) Monogenic signals, (b) Gabor filters, (c) 

Fourth order Gaussian derivatives and (d) Second order Gaussian derivatives. For each filter, the image is 

computed at 2 scales, the original one and other resolution divided by four which is represented by the 

subindices x.1 and x.2 where x stand for a, b, c or d.   
 

 

(a) 
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(b) 

 

(c) 

 

(d) 

 
                          Energy                               Orientation                                  Phase 
Figure 2.11. Image features computed for the circular skylight of Figure 2.8.c. We use the same filters: (a) 

Monogenic signals, (b) Gabor filters, (c) Fourth order Gaussian derivatives and (d) Second order Gaussian 

derivatives. We can appreciate that the phase information blur from (a) with the higher value to (b) and (c) 

with the lower value. A trade-off between these alternatives is represented by the (d) case based on the 

second order Gaussian derivatives.  

 

2.4. Conclusions 

From the previous analysis we conclude that the filters responses have high accuracy for 

spatial scales close to their peak frequency. The qualitative analysis gives us some 

qualitative hints for the evaluation of the different approaches. First, note that the 

bandwidth of the different approaches has a critical effect on feature computation at 

each scale. Multiscale approaches can benefit from narrow tuning filter but, for general 

applications with only one scale, this is a significant drawback. On [DIA06i], a 

multiscale algorithm for optical flow and stereo computation highlight the Gabor filter 

as the filter approach which produces the higher accuracy maps compared with the other 
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alternatives. From our study, a monoscale approach benefits from a wider bandwidth. 

We conclude that, second order Gaussian derivatives are the best option because:  

1. They require the minimum number of resources. Only seven 2-D separable 

convolutions are required. 

2. They are a good trade-off between spatial resolution and spatial scales range. Fine 

resolution is extracted compared to Monogenic signals although is coarser than 

Gabor or higher order Gaussian derivatives. 

3. Their orientation accuracy is quite high (less than one degree of error) and therefore 

it fulfils the requirements of most applications.  

4. Arbitrary orientations can be computed from the basic set of filters just changing the 

filters interpolation coefficients because they are Steerable filters.  

 

 Several interpolation methods have been presented for these filters but the 

Freeman and the Haglund approaches show the best performance. Hardware complexity 

of both methods is similar and the accuracy differences are negligible. This motivates 

the implementation of the Haglund approach because in the future, if narrow tuning 

becomes necessary, the filter base can be changed to Gabor or higher order derivatives 

without changing the interpolation scheme. It is also a valuable factor to implement this 

filter base because most of the computing circuits can be reutilized although changing 

the filter parameters will be necessary. 

 Furthermore, as significantly different to the Monogenic signal, these filters 

provide mutivalue responses at each orientation that open the utilization of these results 

for texture segmentation, intrinsic dimension analysis or other 2-D image structure as 

corners or junctions.  
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       Chapter 3 

Motion Processing Models 
 
 
 
 
 
 
 
 
 

 
 

This chapter focuses on motion or optic flow processing models. It briefly reviews 

the different alternatives and based on comparative studies in the literature 

concludes that the Lucas & Kanade algorithm is an approach with a good accuracy 

vs efficiency trade off. The chapter describes the model and also explains several 

modifications (proposed in the literature) that enhance its accuracy with a low cost 

in computational load. 



90                                                                         Multimodal bio-inspired vision system 
 

3.1. Introduction 

 

Horn and Schunck [HOR93] defined optical flow as follows: 

“The optical flow is a velocity field in the image which transforms one image into the 

next image in a sequence. As such it is not uniquely determined … The motion field, on 

the other hand, is a purely geometric concept, without any ambiguity- it is the 

projection into the image of three-dimensional motion vectors.” 

 Once that this slight difference between the two concepts “optical flow” and 

“motion field” is clarified it can be noted that the objective of extracting optical flow 

through mathematical methods is usually to recover the actual motion field of the scene. 

Therefore, in order to evaluate the performance of different algorithms we shall 

correlate the obtained optical flow with the ground-truth motion field. But this is only 

possible in synthetic sequences. Nevertheless, simple sequences such as regular 

repetitions of specific patterns (for instance a simple sine representation) may not be 

sufficient to evaluate the accuracy of a concrete algorithm given the complexity of 

natural scenes (mainly a wide range of spatio-temporal frequencies). This has motivated 

that many works evaluate different algorithms with complex synthetic sequences as 

benchmarks, see for example the test images available at [CVH06]. In these synthetic 

sequences the true 2-D motion field can be accessed and this facilitates the 

quantification of the model performance. Nevertheless, it must be taken into account 

that these sequences are clean (without any noise) and therefore the performance 

estimations obtained with these sequences will hardly be achieved with real sequences 

in which a wide variety of noise sources and luminance artefacts are present 

 There are many methods to extract optical flow but most of them can be 

structured in four functional stages: 

A. Prefiltering and smoothing in order to extract image structure and enhance the 

signal-to-noise ratio.   

B. Extraction of basic primitives (such as spatiotemporal derivatives or local 

correlation surfaces). 

C. Integration of these primitives to produce a 2-D flow field. This step often 

involves assumptions about smoothness that are not always fulfilled.  

D. Extraction of the subset of reliable measurements by thresholding the 2-D flow 

field with local confidence measurements.  
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Results are usually represented as shown in Figure 3.1 with a arrows map (Figure 

3.1.b) or using a colormap for module an other for direction (Figures 3.1.c and 

3.1.d).  

 

 
(a) (b) 

 
(c) (d) 

Figure 3.1. Two different optical flow representations. (a) Front-view driving 

vehicle scene. (b) Optical flow represented as arrow vectors scaled to indicate 

local pixels speed and direction. (c) and (d), Optical flow results encoded using 

a colormap. The velocities module uses a gray-scale as illustrated  in c. Lighter 

colors indicate fast movements. In (d), the colormap encoding the velocity 

direction according to image frame colors. Note that closer objects due to the 

perspective look to move faster than remote objects.   

 

3.2. Confidence measure of the optical flow estimation 

 

Most of optical flow schemes provide one estimation per pixel. Nevertheless, there are 

regions in the images which are more problematic (prone to erroneous estimations) due 
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to their spatio-temporal pattern; for instance, areas with singularities in their spatio-

temporal components, or regions without any structure. In order to avoid a global 

increment of the error in a given scene, the optical flow fields are filtered with specific 

thresholds (that may depend on the spatio-temporal structure of the neighbourhood of 

the estimation pixel). Different optical flow algorithms use different confidence 

measures to enhance their accuracy keeping the maximum estimation density. In fact, a 

fair comparison between different optical flow approaches shall include the accuracy vs 

density trade-offs [BAR94].  

 Each algorithm benefits of its specific confidence measure, in fact the accurate 

choice of confidence measure and threshold significantly improves the performance. 

There are many confidence measures to predict the quality of optical flow estimates. Of 

course they depend on the optical flow method to which is applied. For instance if the 

optical flow is computed using differential methods the confidence measure is usually 

based solely on the matrix of spatial derivatives of intensity (therefore trying to reject 

estimations with low spatial structure). But there are many specific confidence 

measures such as the ones based on eigenvalues [BAR94], [SIM91], [JAH93], the 

determinant [BRA97], the condition number [SOB91] and the spatial gradient 

[BAR94]. In fact, Bainbridge-Smith and Lane [BAI96] specifically address the 

comparison of different confidence measure estimates concluding that the methods 

based on the inverse minimum eigenvalue provide a good combination of simplicity 

and performance.  

 

3.3. Evaluation of optical flow models. Error metrics 

 

A fair comparison between different optical flow algorithms requires a well defined 

error metric. But on the other hand, as commented in [MCC01], trying to summarize 

the performance of over a million flow vectors with a single number is a difficult task. 

It is further complicated if we try to define a general error metric not dependent of 

specific application tasks.  

 There are many of them proposed in the literature [BAR94], [FLE95], [GAL98]. 

The following expressions are examples of error metrics widely used: 

a. Angular difference between the correct and estimated flow vectors. 
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( )ecErrorAngular ˆˆcos 1 ⋅= −  (3.1) 

Where c is the correct motion vector, e is the estimated optical flow vector and ^ 

denotes vector normalization. This error measurement has been widely used in the 

literature and therefore it is appropriate to compare our results with previous works. 

This measurement can be used with high- and low-velocity modules with the same 

estimators but with some bias. A more detailed explanation of this can be found in 

[BAR94]. 

 

b. Average magnitude difference between the correct and estimated flow vectors for 

each pixel.  

ecDifferenceofMagnitude −=  (3.2) 

 

c. Average error normal to the gradient. 

( ) ⊥⋅−= gecGradienttoNormalError ˆ  (3.3) 

Where ( ) ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂= yx

y
Iyx

x
Ig ,,, and ⊥ĝ  denotes the vector perpendicular to ĝ . 

This error metric measures how efficiently each algorithm compensates to the aperture 

problem, which is a very significant error source in optical flow models.  

 

3.4. Comparative study of different optical flow models 

 

Before comparing different optical flow methods, it should be noted that since we try to 

compute an approximation of the 2-D motion field (a projection of the 3-D velocities) 

only from spatiotemporal patterns of image intensity, some authors claim that only 

qualitative estimations can be given [VER87] or that in fact the measurement of optical 

flow is an ill-posed problem [ALO92]. Nevertheless, it is usually assumed that accurate 

motion estimations can be given if relative errors (due to projection artifacts, such as 

occlusion effects and other 2-D inherent errors, besides intensity variations) are bellow 

10% [BAR90], [BAR94]. 

 There are comparative studies of different optical flow algorithms [MCC01], 

[BAR94], [LIU98]. Among them one of the most widely referenced is the work done by 
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Barron et al. [BAR94] which compares a wide variety of approaches. We will flollow 

this comparative study reviewing several techniques. 

 The differences between approaches rely in the mathematical model and how 

neighborhood pixels information is used to drive the information of central pixel. In 

optical flow we should assume several well known situations illustrated in Figure 3.2. 

The main problems to solve, aperture problem and blank wall problem are 

schematically depicted in Figures 3.2.a and 3.2.c. 

 
Figure 3.2. Several pixel areas configuration to compute optical flow. (a) Our local window has only 

information on an edge (1-D structure) and therefore only normal flow can be recovered. It is known as 

aperture problem. (b) For a corner pixel, 2-D motion field can be computed. (c) In bland areas no 

structure  is present and there is not any vector field information. This is called the blank wall problem.  

 

3.4.1. Differential Techniques  

 

Differential techniques compute velocity from spatiotemporal derivatives of image 

intensity or filtered versions of the image (using low-pas or band-pass filters). Most of 

them use first-order derivatives and are based on image translation [FEN79], [HOR81], 

[NAG83], [LUC81] that is:  

( ) ( )0,, vtxItxI −=  (3.4) 

Where v=(vx,vy)T and x stands for spatial vector of two components. From an 

assumption that intensity is conserved, i.e. ( ) 0, =dttxdI , the gradient constraint 

equation can be derived:  

( ) ( ) 0,, =+⋅∇ txIvtxI t  (3.5) 
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Where ( )txI t ,  denotes the partial time derivative of ( )txI , , ( ) ( ) ( )( )Tyx txItxItxI ,,,, =∇ , and 

vI ⋅∇ denotes scalar product. Expression (3.5) represents a single linear equation with 

two unknown components. Therefore, further constraints are necessary to extract the 

two velocity components.  

 Some authors have used second-order derivatives [NAG83], [NAG87], 

[TRE84], [URA88] or even higher derivatives orders [JOH99]. But the inclusion of 

second-order spatial derivatives means that first-order deformations of intensity (e.g. 

rotation or dilation) should not be present, which represents a very strong restriction.  

 Another way to obtain further constraints for expression (3.5) is combining local 

estimates through space and time [BAI97]. One method that can be applied for this 

purpose is fitting the measurements in each neighbourhood for instance using least-

squares minimization or a Hough transform [FEN79], [KEA87], [LUC81], [SIN90], 

[WAX85]. Another approach uses global smoothness constraints (regularization) in 

which the velocity field is calculated as the minimum of a functional defined over the 

image [HOR81], [NAG83], [NAG87]. 

 The use of differential techniques requires that ( )txI ,  must be differentiable. 

This means the temporal smoothing is required to avoid aliasing and the numerical 

differentiation must be done carefully. Gradient-based models work with high accuracy 

in frameworks in which the intensity is nearly linear, with velocities less than 1 

pixel/frame. Among the differential or gradient techniques Barron et al. [BAR94] 

includes four approaches in the comparative study:  

• Horn and Schunk model (H&S) [HOR81]. 

• Lucas and Kanade (L&K) approach [LUC81]. 

• Nagel (NAGEL) method [NAG83], [NAG87], [NAG86]. 

• Uras, Girosi, Verri adn Torre (URAS) model [URA88]. 

 

 Differential methods also have been extended including color information 

[AND03] and their limitation to luminance changes also has been addressed [KIM05]. 

Multiscale approaches with warping techniques (coarse to fine scales) can be used to 

avoid achieve more accurate estimations in the presence of large movements. This is 

usually solved on the framework of multiscale approaches [BUR83] to deal with this 

problem. This idea is illustrated in Figure 3.3. For example Simoncelli et. al [SIM99] 

uses probability distribution of optical flow and an extended Kalman filtering across 
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spatial scales to improve the range and accuracy of the optical flow base on multiscale 

with warping scheme. In a different way, Weber and Malik [WEB95] combines the 

information extracted across scales based on confidence parameters. 

 
Figure 3.3. Multiscale concept. An image is reduced several times using lowpass filtering and 

subsampling to get an image pyramid, usually scaling sizes by 2. Motion speed is reduced at each scale 

until it can be considered small enough for the optical flow computing method. The velocity information 

can be combined across scales or we can use it iteratively to warp the image from coarse to fine scales, 

reducing the motion range and avoiding models limitations.  
  

3.4.2. Region-Based Matching 

 

Due to noise, aliasing in the image acquisition process and other factors that reduce the 

quality of the original images, accurate numerical differentiation may be impractical. In 

this case, region-based matching ([ANA89], [CAM97], [SIN92a]) become a very valid 

option. These approaches define velocity v as the shift d=(dx, dy) that yields the best fit 

between image regions at different times (along a sequence). Therefore, these 

approaches require “distance measure” (such as the sum-of-squared difference, SSD) 

which needs to be minimized (as estimation of maximum similarity): 

( ) ( ) ( )( ) ( )( )[ ] ( ) ( )[ ]21
2

212,1 ,,,; dxIxWjidxIjixIjiWdxSSD
n

nj

n

ni

+∗=++−+×= ∑ ∑
−= −=

 (3.6) 

where W denotes a discrete 2-D window function, and d=(dx,dy) takes on integer values. 

This approach is similar to the differential-based techniques, since the difference in 

equation (3.6) can be viewed as a window-weighted average of the first-order 

approximation of the temporal derivative of I(x,t). 
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The comparative study of Barron et al. [BAR94] includes two region-based algorithms: 

• Anadan model [ANA87], [ANA89]. 

• Singh model. A two stage matching approach [SIN90], [SIN92b]. 

 

3.4.3. Energy-Based Methods 

 

This class of methods is based on the output energy of velocity-tuned filters [ADE86], 

[BIG91], [HAG92], [HEE88], [GRZ90], [SIM98], [DIA03], [ROS04]. They are also 

called frequency-based methods because they require the design of velocity-tuned 

filters in the Fourier domain [ADE85], [FLE92], [WAT83]. The Fourier transform of a 

translating 2-D pattern (3.4) is the following: 

( ) ( ) ( )kvkIkI T+= ωδω 0
ˆ,(ˆ  (3.7) 

where ( )kÎ  is the Fourier transform of ( )0,xI , ( )kδ  is a Dirac delta function, ω denotes 

temporal frequency, and ( )yx kkk ,=  denotes spatial frequency. Interestingly, it has been 

shown that certain energy-based methods are equivalent to correlation-based methods 

[ADE85], [SAN85] and to the gradient-based approach of Lucas and Kanade [ADE86], 

[SIM93]. 

 The comparative study of Barron et al. includes only the model proposed by 

Heeger [HEE87], [HEE88]. 

 

3.4.4. Phase-Based Techniques 

 

The name of this class of methods comes from the velocity definition in terms of phase 

behaviours of band-pass filter outputs [FLE90], [FLE92], [GAU02], [WAX88]. The 

comparative study of Barron et al. [BAR94] includes two phased-based methods: 

• Waxman, Wu and Bergholm [WAX88].  

• Fleet and Jepson [FLE90]. 

 

 Note that for some of these models, see for example [FLE90], [FLE92] and 

[GAU02], the use a first order Taylor expansion of the phase in a very similar way than 

gradient models as [LUC81]. This manifest that the difference between some gradient 
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and phase models rely in that gradient uses the luminance (energy) of the signal whilst 

phase model use the phase information.   

 The comparative study done by Barron et al. [BAR94] uses a set of synthetic 

sequences with known ground-truth for the performance evaluation of the different 

approaches under consideration. These sequences are available in [VIS06] and have 

been widely used to evaluate other approaches. The confidence measured used for each 

approach is proven to be crucial for obtaining reliable (accurate) estimations. Therefore, 

certain approaches with appropriated confidence measures achieve very high 

performance if the unreliable estimations are discarded effectively.  

 The conclusions of the comparative study highlighted differential techniques 

and phased-based methods as the most reliable models for estimating optic flow. 

Concretely, the first-order local differential method of Lucas and Kanade [LUC81], 

[LUC84] and the local phase-based method of Fleet and Jepson [FLE90] were shown as 

the best methods. Only these methods performed well over all the image sequences 

tested by Barron et al. [BAR94]. It was reported the importance of very good 

confidence measures for these methods (as the size of the smallest eigenvalue of the 

normal equations (left expression in (3.10) in the framework of the Lucas and Kanade 

model). It was also reported the importance of accurate numerical differentiation and 

spatiotemporal smoothing. In particular, some degree of spatiotemporal presmoothing 

to remove small amounts of temporal aliasing and spatial discontinuities are shown to 

be very relevant improvements for most of the original algorithms. Finally, most of the 

implementations considered in this study involved only one scale of filtering and would 

significantly improve with multiscale implementations. This is true of most techniques, 

including the ones that achieved the best results (already using a single scale), such as 

Lucas and Kanade [LUC81], [LUC84] and the phase-based approach of Fleet and 

Jepson [FLE90], [FLE92]. 

 

3.4.5 Other approaches 

 

There are other approaches which are difficult to classify in the previous types. For 

example, Nestares et. al [NES01] uses an 3-D directionally oriented bandpass to reduce 

speed over channels and combine them on a reliable way. These methods combine the 
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ideas from energy models, such as [SIM98] with a differential method such as in 

[SIM99]. 

 On [BRU05a] the advantages of local and global differential techniques are 

combined to achieve high optical flow accuracy, avoiding the over-smoothed optical 

flows produced by global methods but solving the local constraint inherent to local 

approaches. There are also modifications [BRU05b], where a varational method is used 

to speed up the optical flow in standard processors achieving near real-time 

performance. 

 In [GIA97] they present an interesting method. Using a feed-forward scheme, 

images are warping based in previous optical flow estimations to enlarge the algorithm 

velocity range. This method solves the limitation of gradient optical flow approaches 

without requiring multiscale techniques, which are complex to implement in 

customized hardware devices. 

 Finally, a variation of [NAG86] based on an anisotropic diffusion method with a 

diffusion tensor has also been proposed by Alvarez et. al [ALV00]. This method creates 

flow fields with 100 % density over the entire image domain and it can recover 

displacement fields that are far beyond the typical one-pixel limits which are 

characteristic for many of the differential methods commented before.   

 

3.5. Accuracy vs. Efficiency 

 

There are many potential application fields in which optical flow is of high interest. But 

in order to be used, the estimations need to be computed and delivered efficiently (with 

short response time). Nevertheless, if we make up a new algorithm that is very simple 

and gives optic flow estimations very fast, it will only have interest if it also accurate 

enough to allow a subsequent interpretation of the results. Therefore, both accuracy and 

efficiency are important as far as real world applications are concerned. There are 

specific studies such as [LIU98] that address the evaluation of accuracy vs. efficiency 

(AE) trade-offs of different optic flow approaches. These studies conclude that the 

L&K approach achieves high accuracy at different densities and requires affordable 

computing resources. The study indicates other simpler approaches that are easier to be 

implemented in real-time but at the cost of achieving lower accuracy. But in our 

research work, since we have implemented specific processing datapaths we address the 
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implementation of a high accuracy model (L&K) taking advantage of dedicated 

computing resources. In [BAI97] this method is also compared with other differential 

approaches (using for example higher derivative order) and concludes that the least 

squares fitting with first order derivatives of L&K present the best results. Finally, 

McCane [MCC01] also give L&K a good score and conclude that the computational 

power required by this approach is affordable. This has prompted later researchers to 

focus on the L&K algorithm [BAK04].  

 

3.6. Description of the Lucas & Kanade model 

 

Although the original algorithm was proposed as a method to estimate the disparity map 

in stereo-pair images [LUC81], we have applied Barron’s description of the L&K 

algorithm to optical-flow computation [BAR94]. We have implemented different 

versions (see Chapter 6) with several modifications to improve the accuracy of the 

original model and the feasibility of its hardware implementation.  

 In the following equations we describe briefly the computations upon which the 

L&K approach is based. A detailed description of the L&K model is provided in 

[BAR94], [LUC81].   

 The algorithm belongs to gradient-based techniques characterized by a gradient 

search performed on extracted spatial and temporal derivatives. Upon the assumption of 

constant luminance values through time, the first-order gradient constraint equation 

(3.8) is obtained as: 

( ) ( ) ( ) 0,,,,, =+⋅∇ tyxIvvtyxI tyxxy  (3.8) 

 This equation only allows us to estimate velocity in the direction of maximum 

gradient, i.e. in the normal direction of moving surfaces. To overcome this limitation 

the L&K method constructs a flow estimation based on the first-order derivatives of the 

image. By least-square fitting, the model extracts an estimation of motion based on the 

hypothesis of similarity of velocity values in the neighborhood of a central pixel. This is 

described mathematically by expression (3.9): 

( ) ( ) ( )[ ]∑
Ω∈

+⋅∇
x

tyxxy tyxIvvtyxIxW 22 ,,,,,)(min  (3.9) 

where W(x) weights the constraints with values near the centre of the spatial 

neighborhood Ω. 
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The known solution to this problem is expressed in equations (3.10) to (3.12).  

[ ] bWAAWAv TT rr 212 −
=  (3.10) 
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 An inherent limitation to these models appears in blank wall or aperture 

problem situations. In these cases the problem has no solution (matrix ATW2A is not 

invertible) and the model cannot provide any estimation of motion. To overcome this 

we have added a small constant, α, to the matrix diagonal, as suggested in [SIM91], 

which allows us to estimate the normal velocity field in situations where 2-D velocity 

cannot be extracted due to the lack of contrast information. In summary, we have to 

compute the 2x2 matrix of equation (3.11), its inverse, and the 2x1 matrix indicated in 

equation (3.12) and the velocity values using equation (3.10). The value of α is set to 

zero in the original model [LUC81], [BAR94], in fact not even defined in the original 

model. 

 Before computing the image derivatives in the matrix elements of equation 

(3.11), the images are pre-processed by Gaussian smoothing, which reduces image 

noise and generates a higher correlation between adjacent pixels. Typically, Gaussian 

space-time filters of 2 pixels variance plus a temporal derivative of 5 pixels are used. 

All the temporal operations require storage of 15 images for the entire process. This is 

hardly affordable in embedded hardware systems; therefore, as indicated in [FLE95], an 

alternative tactic can be implemented by using IIR temporal recursive smoothing and 

derivative filters. In this way the temporal storage requirement is reduced to 3 frames 

and the computation time improved at a cost of only slightly reduced accuracy. The 

temporal filter can be computed as follows in the next subsection. 

 

3.6.1. IIR filters for the L&K algorithm 
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Let us consider a separable space-time smoothing filter. After the spatial filtering 

operation we can use a causal temporal filter based on a truncated exponential.  
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where τ is the time constant of the filter. The temporal derivative of the images can be 

calculated using this filter. The digital filter equations described in [FLE95] are: 
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where we store and update: w(t-1), w(t-2), y(t-1). The parameters q and r are calculated 

from τ according to equation (3.15): 
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 Finally, the smoothed temporal image and its derivative are computed with 

equation (3.16): 
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 The design strategy (IIR vs. FIR temporal filters) relay on the number of taps 

required for some specific environments and tasks because difference in hardware 

resources is not very significant (thought memory availability could be critical). If low 

frame rate cameras are used, we need to filter temporal high frequency information to 

avoid aliasing and therefore a larger number of taps is required, making the IIR 

approach a better option (external memory resources are not augmented). Nevertheless, 

it means that the motion and light conditions should be continuous and this is not 

always a realistic situation. Therefore, we consider that the use of high frame-rate 

cameras with FIR filters is a better choice if these sensors are available. It provides 

higher accuracy and can be used on more generic environments. In Chapter 6 both 

implementations are described and compare their accuracy with a benchmark synthetic 

sequence. 

 

3.6.2. Improved gradient-based optical flow estimation. Modified Lukas & Kanade 

algorithm 
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The previous sections present the L&K model as a good candidate for real-time optical 

flow computation. The L&K algorithm belongs to gradient-based techniques which 

means that the estimation of pixel velocities is based on image derivatives and the 

assumption of constant luminance over a temporal window is required.  

 Most of the literature works utilize the derivative kernels and model parameters 

presented in [BAR94] but, as J. Brandt described in [BRA97], they are suitable of 

significant improvement. We encourage the reading of that work for the correct 

understanding of such modifications. To summarize, the processing stages developed in 

our system (also explained in Section are the following:  

1. Pre-filtering with a separable kernel of 3x3x3, P=[1, 2, 1]/4 The utilization of 

this small smoothing kernel allow high optical flow estimation density because it 

does not reject the high frequency terms and at the same time also contributes as 

anti-aliasing filter.  

2. Complementary derivative kernels (2-D smoothing and 1-D derivation for each 

axe derivative) as designed by Simoncelli [SIM94]. These kernels increase the 

computation architecture complexity compared with other approaches [DIA04, 

DIA06] but significantly improve the accuracy of the system [BRA97]. In terms 

of performance, they represent a computation load increment of a factor of 3 but 

this is not a problem when designing customized hardware because it can be 

implemented in the pipeline structure without throughput degradation. 

3. The image derivatives Ix, Iy and It (subscript stands for axe direction derivative) 

are cross-multiplied to get the five products Ix·Ix, Iy·Iy, Ix·Iy, Ix·It, and Iy·It and 

then are locally weighted on a neighborhood area Ω. The weighing operation is 

implemented as separable convolution operations over the derivatives products 

using the 2-D spatial central-weighting separable kernel [0.0625, 0.25, 0.375, 

0.25, 0.0625]. 

4. Finally, the weighted image derivatives products are combined to get each pixel 

velocity estimation [BAR94].  

  

 The overall support of the system is 11x11x7 pixels using the parameters 

described above, thus just 7 images storage is required which is feasible on systems 

embedded on a single chip. This makes this approach affordable in specific hardware, 

even without adopting the alternative IIR temporal filters proposed by Fleet et al. 
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[FLE95], and it achieves higher accuracy when using restricted fixed-point bit-width to 

compute the filter values.  
 

Table 3.1. Accuracy evaluation of different implementations of the L&K model using the Yosemite flow-

through synthetic sequence with known ground truth. The error measure is described in [FLE92]. Note 

that the confidence thresholds are slightly different for each version to arrive at similar optical flow 

densities. The threshold parameter used is the product of eigen-values because it is hardware friendly and 

it gives a good error discrimination sensibility [BRA97]. 

Sequence Average Error (º) Standard deviation (º) Density (%) 

Standard L&K implementation 

(from [BAR94], using 

minimum eigenvalue as 

confidence parameter) 

4,28 11,41 35,1 

Standard L&K implementation 

(using eigenvalues product as 

confidence parameter) 

4,57 12,77 36,44 

L&K using IIR temporal 

filters suchs as described on 

[FLE95] 

6.4716 13.0057 36,46 

Improved L&K 

(based on [BRA97]) 
3.3757 8.9263 36,44 

  

 In Chapter 6 are described different hardware implementations of the L&K 

model at different accuracy vs. efficiency trade offs. In the most accurate one we adopt 

the first two modifications of the original L&K implementation that improve the motion 

accuracy as well as the density of the flow, as can be seen on Table 3.1. Furthermore, 

for the spatial integration of constraints we have used the spatial kernel [0.0625, 0.25, 

0.375, 0.25, 0.0625] instead of the [0.2, 0.2, 0.2, 0.2, 0.2] commented by [BRA97] 

because enhance the accuracy. The overall support of the algorithm is reduced from 

19x19x15 pixels [BAR94] to 11x11x7 pixels with Brandt modifications [BRA97], thus 

just 7 images storage is required. In other implementations (see Chapter 6) we use the 

Fleet et al. [FLE95] IIR temporal filter which requires only 3 images storage. The 

drawback of that approach is that IIR filters produce lower accuracy in the estimated 

optical flow and need higher fixed-point bit-width to compute filter values. The 7 
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images storage requirement of the modified L&K model is less than half of the previous 

Barron approach [BAR94] and feasible on embedded systems. 

 All the accuracy tests commented above are conditioned by the used reliability 

test parameter. The equations to estimate the pixels velocities are often under-

determined or ill-conditioned because the gradient direction does not vary sufficiently 

within the integration neighbourhood. Several measures can be used to detect these 

situations [BAI96]. According to the results from Brandt [BRA97] we use the product 

of the eigenvalues of the matrix of equation (3.10) since it provides similar results than 

the well known minimum eigenvalue criteria from Barron et al. [BAR94]. Furthermore, 

it is more hardware-friendly because it corresponds to the determinant of equation 

(3.10) already computed in the motion estimation datapath (see Chapter 6 for hardware 

implementation description). 

  

3.7. Conclusions 

 

In this Chapter we have defined optic flow and briefly revised different alternative to 

compute it. This represents a summary of comparative studies about the different optic 

flow methods evaluating their accuracy and efficiency (computational requirements). 

This chapter represents an review of the state of the art in optic flow methods, with the 

goal of selecting a candidate model to be implemented in real-time designing specific 

purpose processing datapath (as will be described in Chapter 6). 

 The final conclusion of this chapter is that although there are different optic flow 

methods that achieve high accuracy ([BRU05a], [ALU00], [FLE90, FLE92]), 

concretely the model of Lucas & Kanade represents a very good candidate for several 

reasons: a) this approach achieves high accuracy, b) it has an efficient and well defined 

confidence measure easy to extract from temporal variables required by the model (no 

extra computation required for this purpose) and c) it requires affordable computing 

resources. 
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This chapter briefly reviews different techniques used in computer vision for stereo 

disparity estimation. We describe briefly the camera calibration process and also 

how to use stereo for 3D reconstruction but the main contribution of this chapter is 

the comparative discussion of different image correspondence methods for stereo 

disparity estimation. We use this analysis to choose a proper hardware friendly 

stereo processing model based on local phase shift. This is the approach in which is 

focused Chapter 7 for designing a real-time stereo-vision hardware architecture.  

Here we explain the main motivations and the characteristics of this model. We 

describe the algorithms in which it is based and the main advantages of this model 

with respect to other ones described in the literature. 
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4.1. Introduction  

 

The problem of determining 3-dimensional structure of a scene from two or more 

images taken from distinct viewpoints is addressed on this chapter. Extraction of three-

dimensional scene structure has been an intense area of research for decades, with an 

extensive literature available such as computer vision books [FAU93], [TRU98], 

[FAU01], [HAR04] and comparative studies about the different topics involved, for 

example different image correspondence techniques are addressed in [BRO92], 

[ASC93], [SCH02], [BRO03] and camera calibration in [ZHA98], [HEM03], [SAL02], 

[ARM03].  Stereopsis is useful in many visual domains such as autonomous navigation, 

three-dimensional reconstruction, active tracking or face recognition [TSA05], [ZIY00], 

[BER98], [OIS03]. 

 This is information with strong biological fundaments. This task is accomplished 

in the visual cortex by a specialized receptive field structure [DEA91]. Significant 

studies have shown that a substantial proportion of neurons in the striate and extrastriate 

cortex of monkeys have stereoscopic properties; that is, they respond differentially to 

binocular stimuli, thus providing cues for stereoscopic depth perception ([HUB62], 

[BAR67], [DEA98]).  

 We will focus on the case of two cameras, which is called binocular stereo 

vision or binocular stereopsis. The fundamental basis for stereo is the fact that a single 

three-dimensional physical location projects to an unique pair of image locations in two 

observing cameras, as illustrated in Figure 4.1.  As a result, given two camera images, if 

it is possible to locate the image locations that correspond to the same physical point in 

space, then it is possible to determine its three-dimensional location. 

 

 
Figure 4. 1. Binocular scene geometry: The projection of a spatial point A into the left and right images is 

depicted by points A’ and A’’, respectively. 
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 The primary problems to be solved in computational stereo are camera 

calibration, image pair correspondence and scene reconstruction:  

1. Camera Calibration is the process of determining camera system external 

geometry (the relative positions and orientations of each camera) and internal 

geometry (focal lengths, optical centers and lens distortions).  Accurate 

estimates of this geometry are necessary in order to relate image information 

(expressed in pixels) to an external world coordinate system.   

2. The image pair correspondence consists on determining the locations in each 

camera image that are the projection of the same physical point in space. This 

vector displacement field that we compute is called disparity map. Therefore, 

our goal is given two images, and from the information contained in them, we 

must compute the disparities field.  No general solution to the correspondence 

problem exists, due to ambiguous matches (e.g., due to occlusion, specularities, 

or lack of texture). Thus, a variety of constraints (e.g., epipolar geometry) and 

assumptions (e.g., image brightness constancy and surface smoothness) are 

commonly exploited to make the problem tractable.   

3. The scene reconstruction problem consists of determining 3-dimensional 

structure from a disparity map, based on known camera geometry.  Based on the 

parameters extracted during the calibration camera stage and using the disparity 

field computed using the image correspondence techniques, for each point of the 

space we can compute its depth in the three dimensional space. This process is 

called triangulation. 

 

 These topics are further explained on section 4.2. The relations between optical 

flow and stereo computation should also be taken into consideration. Both methods are 

based on the correspondence between images and that is the reason that several authors 

look for generic techniques feasible to be used on both vision modalities [VAL96]. 

Nevertheless, the goals and problems to solve are quite different. On one hand, for 

optical flow we are interested on extracting motion information with high accuracy. 

This can be done properly if the time dimension is properly sampled. The movements 

usually involve small image displacement and very high spatial resolution is not of 

significant importance. Despite of that, the computing power is of significant 

importance because we use 2-D search and high frame-rate is desirable. On the other 
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hand, for Stereo vision computation different problem and specifications are considered. 

The quality of the 3-D reconstruction is directly related with the cameras calibration, 

large image resolutions as well as large correspondence search areas are wanted. 

Furthermore, the differences between cameras due to imbalance on their parameters (for 

example differences on cameras luminance gain) can significantly affect some of the 

stereo correspondence methods whilst in the optical flow domain, with only one 

camera, this problem would be related to the temporal illumination changes. 

 

4.2. Stereo Vision Basics 

 

The problem of estimating calibration is at this point well understood, and high-quality 

toolkits are available (e.g., [BOU06] and links therein). This method characterize each 

camera as a projective device which means that scene points are projected through the 

camera focus to the projective plane. This is modeled as a projection matrix which 

converts a real word 3-D point to a 2-D camera point. The matrix which involves the 

intrinsic (camera origin, focal length, pixel size or exe deviation) and extrinsic (rotation 

matrix, displacement vector) parameters is called Fundamental Matrix, and calibration 

is the process to obtain this matrix. This topic is not addressed on this Thesis. For 

interesting discussions of recent work on calibration, see [HAR04] and [FAU01].  

 Concerning to cameras configuration, we consider the arrangement shown in 

Figure 4.2. This schematic illustrates how distance is calculated from disparity.  The 

depth of a point A in a three-dimension space imaged by two cameras with optical 

centers Cl and Cr is defined by intersecting the rays from the optical centers through 

their respective images of A, which are A’ and A’’. The baseline of the stereo pair is 

defined to be the line segment joining the optical centers. For non-verge geometry as 

schematically shown on Figure 4.2, this line is parallel to the camera x coordinate axis. 

With this camera configuration, the disparity d is defined as the shift between two 

corresponding points which can be expressed by equation (4.1). 

d = x – x' (4.1) 

 The set of all disparities is called a disparity map. From that, depth, Z, can be 

calculated as:  
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d
TfZ =  (4.2) 

where f is the camera focal length and T is the distance between the optical centers of 

the two cameras, Cl and Cr. This is the process called triangulation. Equation (4.2) 

shows that given a fixed focal length and camera separation, distance is inversely 

proportional to disparity. So, the larger the disparity, the closer the scene point is to the 

cameras.  

 
Figure 4.2. The geometry of non-verged stereo, computing depth from disparity. The optical centers are 

Cl and Cr. The point A in the scene is imaged by the left and right cameras respectively as points A’ and 

A’’. 

 

 To solve the correspondence problem, the first approach is to pick one pixel in 

one image and then search through a 2-D region around that pixel location in the other 

image to find the corresponding point. However, it can be shown that a 1-D search is 

sufficient due to the epipolar constraint. This constraint guarantees that if A’ is the 

projection of a scene point A in one image, then the corresponding point, A’’  in the 

other image will lie on a straight line, epipolar line, which is the intersection of the 

image planes with a plane that contains point A’  and the two centers of projection.  

 In a pair of cameras that are vertically aligned and have parallel optical axes, the 

epipolar line will coincide with a scan line of the image (Figure 4.3). This property 

makes the search process simpler compared with non-horizontal epipolar lines. This 

will be of great advantage for a hardware implementation because it makes feasible 

data-flow structures without complex memory management architectures. 
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Figure 4.3. Epipolar constraint for non-verged cameras. 

 

 In practice, it is difficult to build stereo systems with non-verged geometry. 

However, it is well-known that arbitrary stereo image pairs (i.e., with verged geometry) 

may also be rectified (resampled) to non-verged geometry by the epipolar constraint. 

This is illustrated on Figure 4.4. A point A in the scene is imaged by the left and right 

cameras respectively as points A’ and A’’. The baseline T and optical rays Cl to A and Cr 

to A defined a plane of projection for the point A, which called the epipolar plane. This 

plane intersects the image planes in lines called epipolar lines. The epipolar line 

through a point A’’ is the image of the opposite ray, Cl to A through point A’’. The point 

at which an image’s epipolar lines intersect the baseline is called the epipole (e’ and e’’ 

for A’ and A’’ respectively), and this point corresponds to the image of the opposite 

camera's optical center as imaged by the corresponding camera. Given this unique 

geometry, the corresponding point A’’ of any point A’ may be found along its respective 

epipolar line. By rectifying the images in such a way that corresponding epipolar lines 

lie along horizontal scan-lines, the two-dimensional correspondence search problem is 

again reduced to a scan-line search, greatly reducing both computational complexity and 

the likelihood of false matches. In this situation (Figure 4.3), the epipoles are in the 

infinite. See [TRU98] or [CVO06] for details on algorithms to compute this rectification.    
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Figure 4.4. Two arbitrary images of the same scene may be rectified along epipolar lines (solid) to 

produce collinear scan lines (dashed). (Adapted from [BRO03]). 

 

 The calibration process is usually a stage that is done only one time before 

running the stereo system (for example in a grasping application domain as shown in 

Figure. 4.5). Therefore, camera calibration is not a topic related with real-time issues. 

After calibration, rectification process improves 1-D matching but this modification can 

also introduce artifacts. Because of this and also for simplicity, careful camera 

alignment is usually preferred on robotics approaches [FRO96]. Nevertheless, this 

process can be easily introduced into the frame-graber for a customized DSP but we 

have not addressed this topic. In this chapter and the following we have made the 

assumptions of cameras with the same focal length and vertically aligned with parallel 

optical axes. On that way, camera calibration issues and image rectification are not 

addressed here because they are out the scope of the presented contribution.  

 

 
Figure 4.5.  Example scenario of binocular stereo-vision application. Grasping task application with a 

robotic arm. The camera calibration process in this scenario can be done before stereo image processing 

without requiring any modification in the calibration parameters during working time. 
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4.2.1. Stereo Vision quality metrics 

 

The evaluation of the performance of a stereo algorithm allows ranking the different 

approaches based on their accuracy and evaluating also potential target application 

fields. Two general methodologies are used:  

a. Computation of the error statistics with the ground truth data or real images (for 

of natural well calibrated scenarios) [SCH02]. 

b. Evaluation the error using synthetic images obtained by warping the reference 

image by the computed disparity map [SZE99]. 

 

 The first method is more common and databases of images with known ground 

truth are available in the internet [SCH06], [GER06]. There is a large number of quality 

metrics used on the literature, for example: 

1. RMS (root-mean-squared) error (measured in disparity units) between the 

computed disparity map and the ground truth. 

2. Percentage of bad matching pixels, with error larger than a predefined threshold. 

 Furthermore, these metric can be measured over different image types and 

specific areas within these images, such as textureless regions, occluded regions and 

depth discontinuity regions which allow evaluating the performance of the different 

methods under very specific situations. More details can be found in [SCH02]. 

 

4.3. Image pair correspondence methods 

 

As mentioned before, stereo disparities may be determined in a number of ways and by 

exploiting a number of constraints.  All of these methods attempt to match pixels in one 

image with their corresponding pixels in the other image.   

 Although the correspondence problem is also discussed for motion computation 

in Chapter 3, as commented in Section 4.1 the specific characteristics and constraints 

presented in stereopsis make necessary a new analysis of the different correspondence 

methods. 

 For simplicity, we refer to constraints on a small number of pixels surrounding a 

pixel of interest as local constraints.  Similarly, we loosely refer to constraints on scan-



Chapter 4. Stereo vision processing models                                                                 115 

  

lines or on the entire image as global constraints.  A good review about this topic is 

presented in [BRO03] and [SCH02]. Table 4.1 summarizes the main methods for 

exploiting both local and global constraints, focusing on binocular stereo methods.  
 

Table 4.1. Summary of the most common image correspondence techniques applied in stereopsis. 

 

  

4.3.1. Local search correspondence methods 

 

Region-Based Matching also called Block matching methods seek to estimate disparity 

at a point in one image by comparing a small region around that point (the template) 

with a series of small regions extracted from the other image (the search region).  

Differently to what happens for optical flow, the epipolar constraint reduces the search 

to one dimension. These methods have extensively been used for real-time approaches 

as [COR97], [KAN94] because they fit in well with specific hardware architectures 

TECHNIQUE REFERENCES DESCRIPTION 

LOCAL METHODS 

Region-Based 

Matching 

 [KAN94, [COR97], 

[MUH02] 

Search for maximum match score or minimum error 

over a small region, typically using variants of cross-

correlation or robust rank metrics. 

Differential 

Techniques 

[LUC81], [SIM91], 

[NAG83] 

Minimize a functional, typically the sum of squared 

differences, over a small region.  

Energy or Phase 

Based Techniques 

[SAN88], [FLE94], 

[FLE96], [SOL01], 

[FEL02b], [CHE04] 

Analyze the image on the Fourier domain focussing 

on the energy or phase of the signal after convolving 

with quadrature filters. 

Feature Matching [BEN02], [KRÜ04] 
Match specific features rather than intensities 

themselves. 

GLOBAL METHODS 

Dynamic 

Programming 

[BEL96], [BOB99], 

[FOR04] 

Determine the disparity surface for a scanline as the 

best path between two sequences of ordered features.  

Typically, order is defined by the epipolar ordering 

constraint. 

Global optimization 
[TER86], [ROY98], 

[BOY01] 

Determine the disparity surface as energy 

minimization process. 
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(highly parallelizable, fits well on fixed point arithmetic, well known at the algorithmic 

level, etc.). Several classes of metrics are commonly used for block matching:  

 SAD, Sum of Absolute Differences. This technique is often used for computational 

efficiency. Based on the intensity differences. 

 SSD, Sum of Squared Differences. Simpler than NCC (see below), narrower tuning 

curves than SAD, and it can also be normalized. 

 NCC, Normalized Cross Correlation. This is the standard statistical method for 

determining similarity. Its normalization, both in the mean and the variance, makes 

it relatively insensitive to radiometric gain and bias at the cost of higher computing 

power requirements. 

 Local non-parametric transforms: SAD based on rank transform or Censos 

transform with Hamming distance as matching technique [ZAB94]. This transform 

approximately eliminates sensitivity to radiometric bias or gain but reduces the 

accuracy.  

 

 This similarity functions can also be extended to include color information 

[MUH02]. This method achieves good performance on image areas with enough 

structure but it does not produce results on bland areas. Furthermore, information of 

occlusion areas and boundaries has no any special treatment (which would significantly 

can improve the disparity map). An extensive comparison of these metrics has been 

done by Aschwanden and Guggenbuhl [ASC93].    

 Differential Techniques, [LUC81], seek to determine small local disparities 

between two images by formulating a differential equation relating motion and image 

brightness. In order to do this, the assumption is made that the image brightness of a 

point in the scene is constant between the two views. Then, the horizontal translation of 

a point from one image to the other is computed by a simple differential equation. 

Chapter 3 makes a review of these techniques. Their main drawback is that, in order to 

achieve large disparity estimation, multiscale approaches are required [BUR83] which 

significantly increases the architectural complexity. Furthermore, these techniques are 

affected by radiometric problems such as cameras gain luminance or illumination 

changes which make these approaches more suitable for only well controlled scenarios. 

 Energy and Phase Based Methods based on the signal properties on the Fourier 

domain are also a common technique for optical flow computation (see Chapter 3). 

Population coding based on quadrature filter energy can be applied combined with 
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phase based approaches [FLE96] or [CHE04]. Approaches based only on Phase 

information have extensively been used for stereo disparity estimation [SAN88], 

[FLE91], [FLE94], [SOL01], [FEL02]. The advantage of phase based techniques has 

been highlighted by some contributions as [FLE93], [COZ97]. As commented in 

Chapter 2, phase information rely on structural information instead of intensity, this 

makes this approach unbiased to luminance change as well as it leads to a better 

behaviour against affine transformations (for instance due to different cameras 

perspectives). Furthermore, this approach allows direct subpixel disparity information 

without any post-processing as required for block-matching methods. This has 

motivated that real-time approaches based on this technique have recently been 

proposed [POR02], [DAR03] and [DAR06].  

 Feature matching techniques using some specific features such as corners, edges 

or even multimodal information to implement the matching process have been recently 

proposed [BEN02], [KRÜ04]. This sparse map has the advantage of requiring less 

computational resources, allowing large region search and because of that it has been 

widely used in the past when there was not possible to estimate dense disparity maps on 

a reasonable computing time. Furthermore, features are more stable signals than just 

image regions and do not suffer from luminance change problems. The main drawback 

is that the disparity map that they produce is very sparse which is not suitable for 

applications such as 3-D reconstruction but it is still interesting for embedded system 

applications when only small computer power is available.  

 

4.3.2. Global search correspondence methods 

 

In contrast to local methods, global methods try to compute the disparity field based on 

prior assumptions such as disparity smoothness. Keeping that in mind, many global 

methods are formulated in an energy-minimization framework [TER86].  

 The objective is to find a disparity function d that minimizes a global energy as 

expressed in equation (4.3). 

E(d) = Edata(d) + λEsmooth(d) (4.3) 

 The data term, Edata(d) measures how well the disparity function d agrees with the 

input image pair. This is given by equation (4.4). 
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where C is the matching cost function which evaluates how well the image pairs are 

matched. The smoothness term Esmooth(d) encodes the smoothness assumptions made by 

the algorithm. To make the optimization computationally tractable, the smoothness term 

is often restricted to only measuring the differences between neighboring pixels’ 

disparities. This is mathematically formulated in equation (4.5) 
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where δ is a monotonically increasing function of disparity difference.  

 The kind of functions used for C and δ determine the different types of global 

optimization approaches such as max-flow [ROY98] or graph-cuts [BOY01]. For a 

review and comparison of different approaches see [SCH02] and [BRO03]. 

 A different class of global optimization algorithms is composed by the ones that 

are based on dynamic programming. This technique can be applied to scanline 

optimization problem [BOB99], [BEL96]. These approaches work by computing the 

minimum-cost path through the matrix of all pairwise matching costs between two 

corresponding scanlines. Partial occlusion is handled explicitly by assigning a group of 

pixels in one image to a single pixel in the other image.  

 There are other global approaches such as the nonlinear diffusion and belief 

propagation ones also widely used on the literature. In fact, for some of these algorithms 

[SCH98] it is possible to explicitly state a global function that is being minimized. The 

description of these techniques is out of the scope of this chapter. We recommend the 

works [SCH02] and [BRO03] for a more complete review.  

 Global methods as the one presented here do not fit on regular dataflow 

structures and require an intensive iterative process across image areas or scanlines. 

This kind of processing cannot take full advantage of high parallelism and requires fast 

processors to achieve high performance. Therefore, they do not fit well in specific 

hardware architectures (which usually work at low clock frequency) but rather in 

standard processors that work at higher clock frequencies. According to this, recently 

has appeared a real-time systems based on this dynamic programming which used 

Graphic Processing Units (GPUs) as coprocessor to speed-up the stereo computation 

process [FOR04]. 
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4.4. Hardware-friendly Phase-based Stereo  

 

From the previous discussion we conclude that local methods are well suited for 

hardware implementation. Hardware-based approaches normally rely on correlation-

based models because they fit in well with specific hardware architectures [BRO03]. 

Nevertheless, over the last decade phase-based computational models have been 

proposed as an interesting alternative [FLE93] against other methods mainly because 

they are based on local operations and produce dense depth maps with direct subpixel 

resolution. Furthermore, as shown in Chapter 2, phase information is quite stable to 

luminance changes and affine transformation which are very common problems due to 

unbalanced cameras parameters and makes this approach more suitable for reliable 

stereo computation than the others. This has motivated several real-time approaches 

based on these techniques [CRE98], [POR02] and [DAR06]. 

 The adopted computing model has been proposed by Solari & Sabatini [SOL01]. 

In a first approach the positions of corresponding points are related by a 1-D horizontal 

shift, the disparity, along the epipolar line. Formally, the left and right observed 

intensities of the two eyes, IL(x) and IR(x), can be expressed in terms of equation (4.6): 

)]([)( xxIxI LR δ+=  (4.6) 

where ±δ(x) is the (horizontal) binocular disparity. This is represented in Figure 4.6. 

 

 
Figure 4.6.  Phase-based disparity estimation using neurons with receptive fields as quadrature filters. 

 

 Disparity can be estimated in terms of phase differences in the spectral 

components of the stereo-image pair [POG84]. Since the two images are locally related 
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by a shift, within the neighborhood of each image point the local spectral components of 

IL(x) and IR(x) are related by a phase difference shown in equation (4.7). 

δφφφ kkkk RL =−=∆ )()()(  (4.7) 

 Spatially localized phase measurements can be obtained by filtering operations 

with complex-valued, quadrature-pair, bandpass kernels (e.g. Gabor filters or Gaussian 

derivatives), approximating a local Fourier analysis of the retinal images. For example, 

if we consider a complex Gabor filter (h) with a peak frequency k0 and corresponding 

Gaussian variance σ2 can be described as equation (4.8). 

);();()/exp();( 000
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the resulting convolutions with the left and right binocular signals can be expressed as 

in equation (4.9): 
)(
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where ρ(x) and φ(x) denote their amplitude and phase components, while C(x) and S(x) 

are the responses of the quadrature filter pair (C and S stand for cosine and sine 

respectively). Local phase measurements are stable, with a quasi-linear behaviour over 

relatively large spatial extents, except around singular points, where the amplitude of 

Q(x) vanishes and the phase becomes unreliable. This property of the phase signal 

yields good predictions of binocular disparities by equation (4.10). 

⎣ ⎦
)(

)(
)(

)()()( 2

xk
x

xk
xxx

RL
πφφφδ =−=

 
(4.10) 

where we note ⎣ ⎦ π2 as the principal part of the argument (i.e. φ belongs to [-π, π]) and 

k(x) is the average instantaneous frequency of the bandpass signal, measured using the 

phase derivative from the left and right filter outputs (x subscripts indicate 

differentiation along the x axis): 
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 As a consequence of the linear-phase model, the instantaneous frequency is 

generally constant and close to the tuning frequency of the filter (k(x) ≈ k0), except near 

singularities, where abrupt frequency changes occur as a function of spatial position. 

Therefore, a disparity estimation at a point x is accepted only if |(φx- k0)|< k0τ, where τ 

is a proper reliability threshold. 
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 It should be noted that equation (4.10) does not require the explicit calculation of 

the left and right phases and thus we can compute the phase difference in the complex 

plane directly using the following identities: 

⎣ ⎦ ( )⎣ ⎦
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(4.12) 

 

 This approach is hardware friendly. It avoids the logic dedicated to the wrap-

around mechanism. Furthermore, it reduces the number of divisors by 50%. This is 

crucial since the precision required for the operations in the last stages is already 

significant, making the division an expensive operation.  All this is achieved at the cost 

of more multiplications compared to other models that explicitly calculate the phase. 

Nevertheless, multiplications are not so expensive operations since current FPGAs 

include specific circuits for this purpose.  

 

4.5. Conclusions 
 

In this chapter we have briefly described the different issues related with stereo 

computation: camera calibration, images correspondence and 3-D reconstruction. We 

have focused on discussing different techniques for image correspondence in order to 

choose a hardware friendly model for this task. A brief overview of the methods 

described in the literature makes clear that local methods are the ones that can be 

structured in regular dataflows which is an important factor that makes them feasible on 

specific hardware. Furthermore, although region matching models are the most widely 

used in the literature, phase based techniques achieve high accuracy, allow subpixel 

resolution and are more robust to luminance changes. This has prompted us to choose a 

phase based hardware friendly approach proposed in [SOL01] to be implemented in 

specific hardware (see Chapter 7). 



122                                                                         Multimodal bio-inspired vision system 
 



Chapter 5. Hardware architecture for phase, orientation and energy computation       123 
 

  

 

 

       Chapter 5 

Hardware architecture for phase, 

orientation and energy computation 
 

 

 

 

 

 

This chapter describes the hardware architectures that we implemented for local 

energy, phase and orientation estimation. Based on the analysis of Chapter 2, the 

Steerable Second order Gaussian derivatives have been chosen as the best suited 

approach. The Haglund methods will be employed for interpolation image features 

at any orientation from a computed set of 8 images.  We describe here the system 

accuracy vs. bit-width trade-off, we analyze the different architectural approaches 

and we describe the solution adopted. We finally show the global system resources 

consumption, performance and some features computation qualitative results. 
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5. 1. Introduction 

 

Based on the analysis of Chapter 2, the Steerable Second order Gaussian derivatives 

have been chosen as the best approach. The Haglund methods will be employed for 

interpolation image features at any orientation from a computed set of 8 basic 

orientations. The computation stages described on Chapter 2can be summarized as 

follows:  

1. Bidimensional separable convolutions. The Second order Gaussian derivatives Gxx, 

Gxy and Gyy and their Hilbert transforms Hxx, Hxy, Hyx and Hyy are computed. The 

kernel coefficients can be computed from equation (2.10), for details see Appendix 

B and [FRE91].   

2. Filters steering. This is one of the main properties of Gaussian derivatives. From this 

set of 2-D filter outputs, a linear combination of them allows the computation of any 

orientation. We use 8 basic orientations, sampling the angle interval [0,π[ (half 

circumference)  with a regular spacing of 22,5º . The quadrature filter at orientation 

θ, hθ, is calculated using equation (5.1), where cθ and sθ are respectively the even and 

odd components of the filters.  

θθθ jsch += , 

yyxyxx GGGc )(sin)sin()cos()(cos 22 θθθθθ +−=                     

yyyxxyxx HHHHs )(sin)(sin)cos(3)sin()(cos3)(cos 3223 θθθθθθθ +−−=  

(5.1) 

 

3. Features computation. Energy, phase and orientation are computed as described on 

equation (2.28) but some operations and dependencies are not hardware friendly. 

Therefore, we have made some modifications that are described on the next section. 

 The effect of the arithmetic representation and bit-width quantization on the 

embedded system design is also addressed in this chapter. On one hand, current 

standard processors use floating point representation which has very large data range 

and precision. On the other hand, digital circuits usually use fixed point representation 

with a very restricted number of bits. Unfortunately, embedded systems with specific 

circuitry for each computation can only afford floating representation at critical stages 

and most of the computation should be done using fixed point arithmetic. The 

quantization effects should be properly studied to ensure that the data dynamic range is 
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properly adjusted and the bit quantization noise is kept at a small value. We will 

compute this hardware quantization degradation using a standard measure which is the 

Signal to Quantization Noise Ratio SQNR, which is defined by equation (5.2).  
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Where Si are the data values computed using floating point representation, Sqi are the 

data values computed using fixed point representation, E() stands for the mean value 

operator, and N is the number of data. For the analysis described on the following 

sections we use this error metric to evaluate the quantization error of the different 

approaches.  

 

 5.1.1. Modifications for improving the hardware feasibility 

 

We will focus on the three main drawbacks or problems to overcome to arrive at an 

affordable high performance system:  

I. Magnitude/energy for orientation computation. Equation (2.28.b) requires a square 

root operation which is difficult to compute on reconfigurable hardware. 

II. Image features dependencies. Equation (2.28.b) uses the local energy extracted at 

each orientation, also computed on equation (2.28.a). Equation (2.28.c) uses the 

orientation computed at equation (2.28.b). This data dependency enlarges the 

pipeline datapaths and can be quite resource demanding. 

III. Arctan function computation. It can be computed using Look-Up-Tables LUT based 

methods or the Cordic approach [VOL59]. 

 

 The first problem (I) has been solved using the energy instead of its square value 

on equation (2.28.b). Magnitude/energy works in this equation as weights for each 

orientation. The use of energy instead of magnitude implies a heavier weight for 

stronger outputs. If the filter tuned range is narrow enough, this modification does not 

affect significantly the orientation estimation. Figure 5.1 shows the orientation results 

(angular errors) when we use energy and magnitude as weights. This figure illustrates 
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that there is almost no system degradation. We only have detected a small increase of 

0.4º in the error estimation at very high frequency where the filters are not properly 

tuned. At other frequencies, the differences are negligible.  

 

  
(a.1) Magnitude weights (a.2) Energy weights 

  
 

(b.1) Magnitude weights (b.2) Energy weights 
Figure 5.1. Accuracy computation: energy vs. magnitude weights. (a) Error evolution across the 

different stimulus orientations, using sinusoidal gratings as test input. (b) Mean orientation error 

measured for each grating spatial frequency. Note that the differences of both approaches are 

negligible. Only a slight difference can be seen between the top curves of Figs 5.1.a but the filter is 

not tuned at this spatial scale and therefore this is not representative. 

 

 Using Figure 2.8.a, we have also measured the difference between original 

model and the modified version, considering this modification as a noisy signal. The 

SNR for this modification is 57.4 dB which is large enough to ensure a very high 

quality.  

 The problem (II) is related with the image feature dependencies. This point 

needs to take into consideration two aspects. First, the local energy is used for mean 

energy computation as well as for orientation estimation. Since local energy only 

requires even and odd filters squaring and addition, this is not a critical dependency 
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because it can be solved just using a delay buffer. Second, the dependency between 

orientation and phase estimator circuits is more relevant. Orientation estimation 

involves the arctan function which usually requires a deep pipeline for high 

performance. The 8 even and 8 odd filters outputs require a buffering technique to make 

available these data when orientation is ready. Furthermore, the filters output should be 

accessible in parallel to maximize the circuits performance which requires a large 

number of memory resources or registers. This requires a large amount of resources and 

should be avoided. Following the indications of [HAG92], equation (2.28c) can be 

simplified as described on equation (5.3).  The differences between the two choices, as 

indicated by [HAG92], are negligible. Furthermore, in the case of a one-dimensional 

signal there will be no difference at all between the methods. We will use the new 

method because is more hardware friendly since it does not suffer from features 

dependencies.   
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 Finally, relative to the arctan function implementation (presented as problem III 

at the beginning on this section) the main goal is to optimize the accuracy vs. resources 

consumption trade-off. The techniques used for this issue are briefly explained in 

Sections 5.2 and 5.3.  
 

5.2. Bit-width analysis 

 
We illustrate in this section the main results produced by the MCode for DSP Analyzer, 

software and methodology described on Section 1.7.1. Since our goal in this chapter is 

to estimate three different features from the same primitives, we choose a common error 

metric for all of them which is the mentioned SQNR. 

 We use an image of periodic spatial patterns with multiple orientations as 

benchmark, (Figure 2.8a.), and we compute the different local features (energy, 

orientation and phase). Each of the main stages requires a careful substages bit-width 

design but here we are only interested on highlighting the main designing decisions. 

Therefore, on this section we focus on the required bit-width of the following stages:  
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1. Convolution kernel weights. 

2. Convolution results of the Gaussian derivatives base set. 

3. Oriented quadrature filters. 

4. Trigonometric functions (sin, cos and their powers or multiplications) that are used 

at the steering and interpolation stages.  

5. Main non linear operations: division and arctan. 

6. Estimated goal features. 

 

 We have chosen the energy as the confidence parameter for computing these 

features has been the energy. Pixels with lower energy values than a given threshold 

represent areas of low contrast, where filters outputs are prone to noise errors. We have 

used a low restricted value to reject from the bit-width analysis only very low 

confidence estimations.  

 Relative to the first point, convolution kernel weights, the methodology is the 

following. We keep all the computation using double precision floating point 

representation but the kernel values and compare the results with the complete software 

version. The results from the MCode for DSP Analyzer are shown on Figure 5.2.  

 

0 3 6 9 12 15 18 21 24
0

50

100

150
 Energy

kernel bit-width

S
Q

N
R

 (d
B

)

0 3 6 9 12 15 18 21 24
0

20

40

60
Orientation

kernel bit-width

SQ
NR

 (d
B)

0 3 6 9 12 15 18 21 24
0

50

100

150
 Phase

kernel bit-width

S
Q

N
R

 (d
B

)

 
Figure 5.2. System SQNR vs. Gaussian derivatives kernels quantization. Energy and phase have 

approximately linear behaviour. For orientation, bit-widths larger than 11 bits do not produce any 

significant accuracy improvement. This is due to the fact that, as commented on Section 5.1.1, on the 

hardware simulator we use energy instead of magnitude as weight for equation (2.28.b) that makes not 

possible to achieve higher SQNR than 57.4 dB. Nevertheless, there is not significant error degradation 

and the quality of the system is very high already for a bit-width of 11.  

 

 Our first conclusion is that, values higher than 11 bits for the kernels do not 

improve the accuracy on orientation but do for energy and phase features. The next 

stage is the analysis of the bit-width used to store the output produced after convolution 

with these quantized kernels. These results are illustrated in Figure 5.3. Different 
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kernels bit-widths are represented with different curves for each image feature. On this 

experiment we have considered (without loss of generality) 8 bits for the integer part 

and a variable number of bits for the fractional part of the convolution outputs 

(represented in the x axis). Different plots represent different bit-widths used for the 

kernel weights mask. This is a general method because a proper scaling was used.  
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Figure 5.3. SQNR (db) evolution for different bit-widths configuration for kernel and convolution 

outputs quantization. The y-axe represents the SQNR values and x-axe the convolution outputs fractional 

part bit-widths. The integer part is fixed to eight bits. Four different curves are presented at each plot. 

They represent different kernels bit-width configurations. Triangles represent 9, stars 11, squares 13 and 

circles 15 bits to store the convolution outputs. 

 

 The main conclusion is that, in order to take full advantage of larger bit-widths 

of the convolution kernel, a larger bit-width should be used for the convolutions output. 
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For example, focusing on the Phase curve, for a kernel bit-width of 9 bits the optimal 

choice for the fractional part is 2 bits, 4 for a 11 bits kernel, 6 for 13 bits kernel, etc. 

Similar results are for the Energy but not for the orientation. As commented before, 

there are not significant differences for the kernels curves with more than 11 bits-widths 

and convolution outputs of 6 fractional bits. 

  
Table 5.1. SQNR at different stages for two well defined configuration examples. Example A uses 11 bits 

for the kernel quantization and 9 bits for the convolution stage (only one fractional bit). Example B uses 

13 bits for the kernels and 11 for the convolution outputs. Each stage (0 to 3) represents the SQNR of the 

Energy, Orientation and Phase after consecutive bit-widths quantization. At stage 0, only the kernels and 

convolution bits have been quantized. Stage 1 represents the SQNR after the previous quantization plus 

the quantization of the oriented quadrature filters with the same number of bits than the convolution 

outputs. Stage 2 shows the results with the addition of the next quantization stage, the trigonometric and 

non linear functions (arctan and division). Trigonometric functions require only 9 bits. Arctan function 

uses (2*bit-width-convolution outputs+2) bits to avoid degrading the system. Finally, stage 3 shows the 

SQNR of the whole system quantized using fixed-point data representation.  Orientation and phase are 

angles and therefore their dynamic range is well defined (-π to π). We have used 9 bits to represent their 

values. For the energy, his dynamic range depend on the convolution outputs bit-widths. We have used 

(2*bit-width-convolution outputs) bits to achieve satisfactory results. 

 
Stage SQNR (dB) Energy Orientation Phase 

A .0 Kernel and convolution outputs quantization 40.739 36.323 27.036 

A. 1 Orientation quadrature filters quantization 39.853 35.404 26.061 

A. 2 
Trigonometric and non linear functions 

quantization. 
39.849 35.403 26.061 

A. 3  Image features results quantization. 39.842 35.027 26.008 

 

B. 0 Kernel and convolution outputs quantization 53.234 48.238 39.194 

B. 1 Orientation quadrature filters quantization 48.560 46.923 40.512 

B. 2 
Trigonometric and non linear functions 

quantization. 
48.557 46.922 40.512 

B. 3  Image features results quantization. 48.550 46.272 40.163 

 

 At this point we need to define some accuracy goals. On Table 5.1 we see that at 

this quantization stage the SQNR of our estimation for two well balanced low area 

cases. We consider acceptable SQNR values larger than 30 dB.  
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Already in Fig. 5.2 was shown that the phase estimation is the most demanding (in 

terms of bit-width) to achieve high SQNR. For instance with 11 bits we obtain 

approximately SQNR=40 dB. 

 The results presented in Table 5.1 show that the most sensible stages are the 

kernel and convolution outputs quantization. Trigonometric, non linear function as well 

as the image features themselves can be quantized with a relatively small number of bits 

without extra accuracy degradation as can be deduced from the SQNR results. From this 

table we also conclude that fixed point arithmetic can be properly used for the system 

design on embedded systems due to the large value of the SQNR. This is especially true 

for the example B with quite high values that validate the bit-width configuration and 

data representation. Nevertheless, the final decision about system design should use the 

information about the hardware resources consumption. This is addressed in Section 

5.3.  

 We have also included a qualitative evaluation of the previous precision 

examples. The software, quantized version A and quantized version B are shown on 

Figure 5.4 for a synthetic image and also for a real image (Figure 5.5). 

 

(a) 

 

(b) 

Magnitude Orientation Phase

(c) 

Magnitude Orientation Phase
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(d) 

Magnitude Orientation Phase

 
Figure 5.4. Images features computation with several data representations and bit-widths. Results 

obtained without any confidence threshold. (a) Synthetic image with multiple orientation and spatial 

scales used for testing. (b) Image primitives computed using software with double precision floating 

point representation. (c) Image primitives computed using fixed point data representation with bit-

widths choices at example B of Table 5.1. (d) Image primitives computed using fixed point data 

representation with bit-widths choices of configuration A in Table 5.1.  Note that the differences 

between floating point and fixed point representation, although numerically significant are not visible 

on the qualitative evaluation. Only some small differences can be found for the figures of row (d). This 

validates the previous choices as good alternatives for hardware implementation. 

 

(a) 

 

(b) 

Magnitude Orientation Phase

 

(c) 

Magnitude Orientation Phase

 

(d) 

Magnitude Orientation Phase
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Figure 5.5. Images features computation with several data representations and bit-widths. (a) Real 

image of Jupiter captured in the Cassini-Huygens space mission. (b) Image primitives computed using 

software with double precision floating point representation. (c) Image primitives computed using 

fixed point data representation with bit-widths choices of configuration B in Table 5.1. (d) Image 

primitives computed using fixed point data representation with bit-widths choices of configuration A 

in Table 5.1. This time we use an energy threshold that rejects pixels with energy bellow the maximum 

energy • 10-5. This allows seeing small differences between floating point and fixed point approaches. 

The threshold rejects more pixels for fixed point that for floating point. This can easily be justified 

because of the energy quantization effect. Despite that, the results are quite similar and the differences 

only reject unreliable data estimations. Although not all of them are rejected because we consider a 

very low restrictive threshold. 

 

5.3 Hardware architecture based on a fine grain pipeline  

 
According to discussion of Section 1.7.2, we have designed a very fine grain pipeline 

architecture whose parallelism grows across the stages to keep our throughput goal of 

one pixel output for clock cycle. The 3 main stages described in Section 5.1 are the 

coarse pipeline stages of our design. Each of them is finely pipelined to achieve our 

throughput goal.  

 The main circuit stages are described on Figure 5.6. Note that the coarse 

parallelism level of the circuit is very high (for example state S1 requires 16 parallel 

paths). The stage S0 basically is composed of 7 separable convolvers. The separability 

property of the convolution operation allows computing first the convolution by rows 

and after that by columns. This configuration requires only 8 double port memories 

shared by all the convolvers. They are arranged storing one image row at each memory 

to allow parallel data access at each column. This stage S0 is finely pipelined in 24 

microstages as indicated in brackets in the upper part of Fig. 5.6. 

 Stage S1 is used to compute the oriented quadrature filters. This is achieved by 

multiplying each output of stage S0 by some interpolation weights as shown on equation 

(5.1). These coefficients are stored using distributed registers for parallel access. In a 

sequential approach they could be stored using embedded memory but the required data 

throughput makes necessary full parallel access to all of them making unviable this 

option.  
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 Stage S2 compute the image features from this set of even and odd complex 

filters. Figure 5.6 shows the three different computation datapaths but, due to their 

complexity, we are going to explain them with more details.  

 

 
Figure 5.6. Image features processing core. Coarse pipeline stages are represented at the top and 

superpipelined scalar units at the bottom. The number of parallel datapaths increase based on the 

algorithm structure. The whole system has more than 59 pipelined stages (without counting other 

interfacing hardware controllers such as memory or video input/output interfaces). This allows computing 

the three image features at one estimation per clock cycle. The number of substages for each coarse-

pipeline stage is indicated in brackets in the upper part of the figure. 

 

 Note that the last stage S2 has different latencies (7, 27 and 30) for each feature 

(Energy, phase and orientation). Nevertheless, since we need all of them at the same 

time we use delay buffers to synchronize the outputs. 

 The three main datapaths are illustrated in Figures 5.7, 5.8 and 5.9. Note that the 

parallelism level grows to maintain the circuit’s throughput. Orientation and Phase 

require the arctan function. We have tested a customized implementation based on 

LUTs and the CORDIC core taken from the Coregenerator tool of Xilinx [XIL06b]. Our 

results are summarized in Table 5.2. Although LUT approach requires less resources, it 

have lower precision (we use a 8 Kwords LUT, using the symmetries of the arctan 
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function, this circuit has an equivalent data input precision of 15 bits). LUT table 

extension requires increasing the memory decoding logic which actually affects the 

speed of the whole circuit (only 42 MHz).  Although this logic can be also pipelined to 

increase the clock rate, the logic required make the approach based on the CORDIC 

core more suitable for our implementation and therefore this is the option that has been 

chosen for our architecture. 

 
Table 5.2. Arctan function implementation approaches. Cordic core uses data input with 21 bits. The 

LUT uses 8 Kwords to sample the arctan fuction. Decision logic allows to extend the range from the 

sampled interval [0, π/2[ to the whole circumference.  

Method Slices EMBs Multipliers fclk_max (MHz) 

CORDIC core 1,020 0 0 118 

LUT-Arctan 841 5 0 42 

 

 
Figure 5.7.  Image features core, stage S2, Energy computation. This stage corresponds to the 

implementation of equation (2.28a). The mean energy is computed using a binary adder’s pipelined tree. 

Normalization is computed by shifting operations. All these operations are computed using 7 fine pipeline 

stages but a memory buffer is connected to its output for synchronization with other image features. 
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Figure 5.8.  Image features core, stage S2, Orientation computation. This stage corresponds to the 

implementation of equation (2.28b). The local energy computed at each orientation on the energy path is 

the input of this stage. Each oriented energy is multiplied by their coefficient and then is added using a 

binary adder’s pipelined tree. Orientation angle is computed using a CORDIC core customized for our 

application.  All these operations are computed using 30 fine grain pipeline stages and this is the largest 

path of stage S2.  

 

 
Figure 5.9. Image features core, stage S2, Phase computation. This stage corresponds to the 

implementation of equation (5.3). The sum of even and odd filters is computed using a binary adder’s 

pipelined tree. Phase angle is computed using a CORDIC core customized for our application. All these 

operations are computed using 27 fine grain pipelines stages, and thus we need to use a memory buffer 

connected to its output for synchronization with other image features. 
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5.3.1 Hardware resources consumption analysis 

 

This architecture has been designed allowing easy parameter specifications. This allows 

exploring the resources-consumption vs. accuracy trade-off. Based on the analysis of 

Section 5.2, we focus on the analysis of the convolution output bit-widths. The different 

pipeline stages of our design scaling using the conclusions extracted from this study. 

Kernels coefficients bit-width have been selected from the values of Figure 5.3 that 

optimize the system (bit-widths values that produce flat horizontal curves). This means 

in ranges from 9 to 21 bits for the kernels and from 9 to 22 bits (8 of them taken for the 

integer part and the other for the fractional part) for the convolution outputs. 

 The hardware resources vs. bit-widths evolution is represented in Figure 5.10. 

Note that the trade-off depends on the proposed architecture and parameter relation and 

due to that, conclusions can only be extended to similar implementations. The Number 

of slices grows approximately exponentially. This is mainly caused by the non linear 

stages whose expansion does not follow a quadratic tendency. The clock frequency of 

the system decreases down to a minimum value of (approximately) 50 MHz. This stable 

minimum can be explained based on the synthesis tool properties.  Our design uses the 

retiming capabilities of the DK synthesizer. This allows redistributing combinational 

logic across a registers path to increase the circuit speed. When the bit-width grows, we 

increase the number of pipeline stages to compensate this effect. For small bit-widths, 

retiming does no produce any effects but, for larger values, retiming is able to reduce 

the combinational paths, increasing the maximum system clock frequency up to this 

value. Nevertheless, the synthesis process involves two different tools which work at 

different abstraction levels, the ISE Foundation [XIL06d] and the DK Design Suite 

[CEL06b]. Because they are proprietary tools, the information available about this 

process is very limited and the analysis could be biased by unknown tasks. Furthermore, 

the frequency change is less than the 14% of the peak value. This percentage is not of 

significant relevance on the synthesis process and therefore it could be biased by the 

optimization tools parameters.  
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Figure 5. 10. Hardware resources consumption and system clock frequency vs. convolution output bit-

width. We can address the different configuration studies because the design technique allows 

automatically scanning of data bit-width and scaling changes (just adjusting some predefined parameters). 

We have marked with a circle our design choice which corresponds to the configuration B analyzed in 

Table 5.1.  

 
We have chosen the bit-widths described in Table 5.1, configuration B.  Figure 5.3 

shows that the hardware resources for this approach represent a good trade-off between 

accuracy (SQNR of all features larger than 40 dB) and resources consumption. The 

whole core has been implemented on the RC300 board of Celoxica [CEL06d]. This 

prototyping board is provided with a Virtex II XC2V6000-4 Xilinx FPGA as processing 

element including also video input/output circuits and user interfaces/communication 

buses. The final required hardware consumption and performance measures of our 

implementation are shown in Table 5.3.  

 
Table 5.3. Complete system resources required for the local image features computing circuit.  The 

circuits have been implemented on the RC300 prototyping board [CEL06d]. The only computing element 

is the Xilinx FPGA Virtex II XC2V6000-4. The system includes the image features processing unit, 

memory management unit, camera Frame-grabber, VGA signal output generation and user configuration 

interface. (Mpps: mega-pixels per second at the maximum system processing clock frequency, EMBS: 

embedded memory blocks). 

Slices / (%) EMBS / (%) Embedded 
multipliers / (% ) Mpps Image 

Resolution 
Fps 

9135 (27%) 8 (5%) 65 (45%) 56.5 1000x1000 56.5 

 

 Detailed information about the image features core and the coarse pipeline 

stages are shown in Table 5.4. Note that the sum of the partial stages is not the total 

number of resources. This can be easily explained based on the synthesis tools. For the 
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whole system is more likely that the synthesizer engine can share some resources and 

reduce hardware consumption. This also explains why the whole system has lower 

clock frequency than the slowest subsystem. This is a trade-off that should be taken into 

account into the design process.  

 The previous argument does not explain why the number of multipliers grows on 

the complete system with respect to the sum of the multipliers used at each substage. 

We have used automatic inference of multipliers on the system. Because the number of 

multiplications by constants is quite high, it is difficult to manually determine when is 

better to use an embedded multiplier or compute it using FPGA logic. Synthesis tools 

define cost functions that are able to evaluate based on technological parameters for 

each multiplication which is the best option. We have compared the manual and the 

automatic inference of multipliers and, though differences are not large, automatic 

inference usually achieves higher clocks rates than manual generation with slightly less 

logic. This automatic inference changes depending on the circuit that is being 

synthesized and produces the differences presented in Table 5.4. 

 
Table 5. 4. Partial system resources required on a Virtex II XC2V6000-4 for the coarse pipeline stages 

described for this circuit. (EMBS stands for embedded memory blocks). The differences between the sum 

of partial subsystems and the whole core are explained in the text. 

 Circuit stage Slices / 
(%) 

EMBS / 
(%) 

Embedded 
multipliers / (% ) 

fclk 
(MHz) 

S0 Gaussian base convolutions 4,170 8 50 85 

S1 Oriented quadrature filters 1,057 0 0 69 

S2 
Features Energy, Phase and 

Orientation computation 2,963 0 6 89 

 Whole processing core 7627 8 65 58.8 

 

5.4 Conclusions: System results summary 

 

The presented implementation combines a well justified bit-width analysis with a high 

performance computing architecture. The circuits SQNR is quite high (more than 40 

dB) which provides a high accuracy computation, as can be seen from the results of 

Figures 5.11 and 5.12.  
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Figure 5. 11. System results for the known image of Lena (left image). The three right pictures present 

the computed features for this image. Note that although restricted fixed-point arithmetic is used, the 

quality of the features is quite high as can be seen looking on small details such as presented on hat’s 

plumes.  

 

 Note that as illustrate Figure 5.12, the contrast independency of the phase 

information can be a quite interesting property for applications which requires high 

quality image edges detection [VAR04], [VAR05], [ROS06].  

 The computation performance allows processing more than 56 Mpixels per 

second, where the imagen resolution can be adapted to the target application. For 

instance, using VGA resolution of 640x480 pixels, the device can compute up to 182 

fps. This is achieved thanks to the fine grain pipeline computing architecture and to the 

highly parallelism employed. This outstanding power performance is required for the 

target specifications addressed on the DRIVSCO project [DRI06], where stereo pair 

images of resolution 1024x1024 require real-time computation. The superscalar and 

superpipelined proposed architecture fulfils our requirements and illustrates that, even 

with a low clock rate, a well defined architecture can achieve an outstanding computing 

performance unviable with current standard processors running more than 60 times 

faster than FPGA circuits. 
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Magnitude Orientation Phase

 
 
Figure 5. 12. System results for a real image. First row, left side, represent a photograph of a close 

face with a tower in the left side. The tower is blurred due to the fog and therefore has low contrast. 

Four images to the right represent the quadrature filters energy output at 4 defined orientations (0, π/4, 

π/2 and 3π/4). The second row represents the computed features for that image. Note that at the energy 

image, the tower is almost invisible but not for the orientation and phase images. This illustrates that 

the structure based features have not got contrast dependency, and therefore the tower appears clearly 

visible. 
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        Chapter 6 

Motion processing: Hardware 

implementation of a high performance 

computing architecture 
 

 

 

 

 

This chapter proposes several specific purpose architectures to compute optic flow. 

The different systems described in this chapter represent solutions with different 

trade-offs of several characteristics: accuracy, hardware cost and data throughput. 

We have implemented different alternatives of the original Lucas and Kanade 

model. The performance evaluation section include comparisons with the state-of-

the-art approaches; in fact the comparisons represent a considerable effort that has 

been worth to do since it helps to highlight the outstanding performance obtained by 

the presented systems. 
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6.1. Introduction 

 

Although in Chapter 3 we concluded that we would focus on the Lucas and Kanade 

model, we described different alternatives (mainly FIR vs. IIR temporal filters) and 

modifications suggested by Brandt [BRA97] that significantly improve the model 

accuracy at a moderate cost in terms of computing load. Instead of focusing on a single 

implementation, since once defined the designing strategy the implementation of 

different alternatives is not very time consuming, we have designed and evaluated 

different versions of the L&K model.  

 We have used a high level Hardware Description Language (HDL) to define the 

circuits. More concretely we have used Handel-C [CEL06c]. We have also integrated 

specific modules (cores), such as a floating point processing unit when considered 

appropriate. This design strategy has facilitated the possibility of defining the system at 

high abstraction level. Being very easy to modify and create different versions of the 

same circuit with different hardware cost vs. computing power trade-offs.  

 

We have focused on two alternative systems: 

• L&K original model with temporal IIR filters. This system represents a solution 

that achieves frame-rate computation at VGA resolution. In order to achieve this 

at moderate hardware cost we adopt the IIR temporal filters which require only 3 

images to be stored and we design a coarse grain pipeline datapath. 

• L&K modified model according to the improvements suggested by Brandt 

[BRA97]. This alternative represents a high performance computing architecture 

able to process high frame-rates at high image resolution (see Section 6.3 for 

more details). For this purpose we have used FIR temporal filters, that although 

requiring higher computational (storage) resources, they represent a more stable 

solution when restricted fixed-point arithmetic is used. Furthermore, since in this 

case we address a high performance system we have designed a fine grain 

pipelined datapath of more than 70 stages, able to deliver one motion estimation 

per clock cycle. To the best of our knowledge, this system outperforms any 

existing optic flow system described in the literature by more than one order of 

magnitude. 
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 A significant effort has been made in evaluating the hardware resources and the 

accuracy of the different approaches. This has revealed to be a very time consuming 

study but important to facilitate the comparison of the proposed processing architecture 

with other approaches described in the literature. This evaluation study has been critical 

to publish the approaches described in this chapter. 

 

6.2. Coarse grain pipelined optic flow processing architecture 

based on IIR temporal filters for the original model of Lucas 

and Kanade  

 

In this section we describe the design of a customized DSP circuit in a single chip of 

high computational power based on an intensive use of the inherent parallelism of 

FPGA devices.  

 For this approach we have chosen the original L&K model and adopted the IIR 

filters for the temporal filters as proposed in [FLE95] (see Chapter 3, Section 6.1 for 

more details). 

 Another slight modification makes possible to provide estimations when the 

aperture problem appears in the direction of the maximum gradient [DIA04a], 

[DIA04c]. We have added a small constant, α to the matrix diagonal as suggested in 

[SIM91], which allows estimating the normal velocity field in situations where 2-D 

velocity cannot be extracted due to the lack of contrast information.  

 Other authors have recently described the hardware implementation of optical-

flow algorithms [NII04], [COB98], [MAY03], [COR02] but most of them provide no 

results to evaluate the performance of the system, i.e. the accuracy and the computation 

speed. We describe a fully stand-alone working system at conventional camera frame 

rates of 30 Hz, with image sizes of 320 x 240 pixels.  

 

6.2.1. Hardware Description 

 

For our design we have used two platforms: the first one is the RC1000-PP board from 

Celoxica [CEL06e]. This is a PCI bus board connected to the PC and can be used as a 
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hardware accelerator board or as a prototype board containing a Virtex 2000E-6 Xilinx 

FPGA The second platform is the stand-alone RC200 board from Celoxica [CEL06f]. 

This board includes camera input, video/VGA output, two 2 MB SSRAM memory 

banks and a XC2V1000-4 FPGA. It is a very suitable test system for embedded 

applications. The conection schemes are illustrated in Figure 6.1. 

  We have used Handel-C [CEL06c] as hardware specification language to 

generate the Edif input to the Xilinx ISE environment. This high-level hardware 

language allows us to describe RTL circuits in a very algorithmic-like way. This is 

relevant due to the algorithmic nature of the proposed method that makes an RTL 

approach more difficult to adopt. The drawback is the cost in terms of number of gates 

but the design time is reduced significantly [ORT06a], [ORT06b].  

 Four our discussion, we will focus on the PCI board implementation [DIA06F]. 

The version running on the stand-alone platform implements the same processing 

architecture (including new I/O controller modules). In Section 6.2.2 we will only 

outline the resource requirements and the improvements for the design based on the 

Virtex II FPGA family.  

  
(a) (b) 

Figure 6.1. Platforms for the optical flow computing system. (a) PCI-board scheme. (b) Stand-alone 

board scheme. 

 

6.2.1.1 Hardware development 
 

The efficient implementation of the algorithm with an FPGA device requires the 

intensive exploitation of the intrinsic processing parallelism of this kind of device. 

We use a pipeline architecture, as shown in Figure 6.2, which basic computational 

stages can be summarized as follows: 
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Figure 6.2. Coarse pipeline processing architecture 

 

 S0. The frame-grabber receives the pixels from the camera and stores them in one of 

the memory banks, using a double-buffer technique to avoid temporization 

problems.   

 S1. Spatial-Gaussian-filter smoothing stage.  

 S2. The IIR temporal filter computes temporal derivative and space-time smoothed 

images.  

 S3. Spatial derivatives stage.   

 S4. Construction of least-square matrices for integration of neighborhood velocities 

estimations [BAR94].  

 S5. Custom floating-point unit. Final velocity estimation requires the computation of 

a matrix inversion, which includes a division operation. At this stage the resolution 

of the incoming data bits is significant and expensive arithmetic operations are 

required. Thus fixed-point arithmetic becomes too expensive, prompting us to 

design a customized floating-point unit.  

 

 The computation bit-width increases throughout the pipeline structure. For 

example, for a high precision system with low accuracy degradation, we use 8 bits in 

the first two stages, 12 bits in the third and fourth stages, 24 in the construction of the 

least-square matrices and 25 for the floating-point unit. The computation of the least-

square matrices (S4) is the most expensive stage in terms of computational resources. 

Different parallelism strategies can be adopted at this point.  
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 The basic parameters of the pipeline structure are Latency (L) and the Maximum 

Number of Cycles (MNC) required during the longest stage, which is the limiting factor 

of the computing speed. The pipeline circuit scheme provides a computing speed (data 

throughput) in pixels per second (pps) that depends on the MNC and the frequency 

clock (fclk) according to the expression pps=fclk/MNC. 

 

 
(a) 

 
(b) 

Figure 6. 3. Architecture details for some specific pipeline stages. (a) Pipeline stage S4, Least squares matrices circuit 

builder for a 3x3 neighborhood. (b) Pipeline stage S5, Floating-point unit scheme. 
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 There are two main critical stages: S4 and S5 whose architecture are shown in 

Figure 6.3. The construction of least-square matrices is done in S4 where the trade-off 

between efficiency and cost can vary widely. Equation (3.10) requires the previous 

computation of five products: Ix
2, Iy

2, IxIy, IxIt, IyIt. Thus we make a weighted sum in a 

window (Ω) over a neighborhood of size wx • wy. Due to memory limitations we save 

the Ix, Iy, and It values instead of the five crossed products. Therefore, the operations 

required are:  

- Computation of the products for all the elements within a neighborhood. We 

need to calculate five wx • wy multiplications. 

- Row-convolution operation. We compute five multiplications by wy 

convolutions. 

- Column-convolution operation, requiring the computation of five more 

convolutions. 

 

 This is an important stage where we can bias the trade-off between efficiency 

and hardware cost. For example, if we use a 3x3 neighborhood, we need between 1 to 

45 multipliers, 1 to 15 row-convolution units and 1 to 5 column-convolution units. This 

choice allows us to compute the weighted sum values in one clock cycle with a highly 

parallel hardware unit or to compute it sequentially. 

 The second critical stage is the computation of final velocities using a custom 

floating point unit which architecture is shown in Figure 6.3.b. At this stage equation 

(3.10) is computed. Until now the arithmetic operations have been done using integer or 

fixed-point arithmetic with truncation operations. Convolution operations work well 

with this representation but when bit-width is too large, a floating-point representation 

of the data is better suited for hardware implementation. This is done with a customized 

superscalar floating-point unit. Since during the previous stage (S4), a high bit-width (24 

bits) is used to preserve computational accuracy, the current stage (S5) becomes very 

expensive in terms of hardware resources. Therefore the design of S5 is critical as it 

exerts an important influence on the accuracy vs processing speed trade-off.  

 The calculations in this stage involve the following basic arithmetical 

operations: subtraction, multiplication and division. When arithmetical operations are 

made with high bit-width, the signal delays associated with carry lines degrade overall 

performance, decreasing the maximum system frequency. To avoid this, pipeline 

arithmetic operators or sequential iterative operators can be used. The first approach 
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allows us to make the computation in 1 or 2 clock cycles, after a given latency at a high 

cost in terms of hardware resources. The second option takes several clock cycles, 

therefore degrading the MNC of the system, but allows us to use the same hardware for 

each iteration. We define a system which uses one-cycle floating-point hardware 

circuits because this works at the desired maximum clock frequency (without becoming 

the limiting stage) for all the operations except the division. We have used a hardware 

sequential divisor instead of a pipelined divisor that needs 21 cycles to compute the 

division of 25 bits of floating numbers. But in this case the MNC is too high and 

imposes a considerable limit on pipeline performance. To counter this we use up to 3–

way division units and, depending on the performance required, we can synthesize more 

or less ways. Each floating-point unit needs: 

1. One to five fixed-point to floating-point converter units. 

2. One to six 25-bit floating point multipliers. 

3. One to three subtractors.  

4. One or two divisor units. If an n-ways divisor scheme is chosen, we use n to 2n 

divisor units. 

 

6.2.2. Hardware resources and processing performance 

 

This section presents the main results of the system. First, we analyze the resources 

consumption of the different stages as well as different implementation possibilities 

with different levels of parallelism. After that we measure the performance and finally, 

we estimate the accuracy of the system using synthetic and real sequences for 

evaluation.  

 

6.2.2.1. Hardware resources consumption and flow estimations 

accuracy 

 

The system is designed in modules so that parallelism and bit accuracy at the different 

stages can be easily modified. Due to the high level of abstraction that Handel-C 

provides [CEL06c] it is easy to manage the parallelism of the computing circuits and 

the bit-width at the different stages. The hardware resources of the different stages using 
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a XCV2000E Virtex FPGA for a specific implementation (called HSHQ in the Table 

6.2) are summarized in Table 6.1. 

 
Table 6. 1.  Detailed sub-circuit hardware requirements on a Virtex XCV2000E. Note that the sum (% of 

the device in the first column) is larger than 100%, this can be explained because these data have been 

obtained by partial compilations and the synthesis tool makes a wide use of the available resources. When 

the whole design is compiled it consumes 99% of the device. 

  

Number of slices / 

(% of the device) 

/ equivalent gates 

Computing cycles 

ISE maximum 

Clock frequency 

(MHz) 

Memory 

requirements / 

(% of the device) 

S1 

Spatial 

Gaussian 

(17 taps) 

220 / (1%) / 

270,175 
8 29.2 16 / (10%) 

S2 IIR filter 
134 / (1%) / 

51,971 
7 38.5 3 / (1%) 

S3 

Spatial 

derivative 

convolution 

287 / (1%) / 

121,296 
7 28.0 7 / (4%) 

S3 

Least square 

matrices 

construction 

15,288 / (79%) / 

642,705 
10 20.3 24 / (15%) 

S5 

Superscalar 

floating point 

unit 

5,720 / (29%) / 

90,993 
10 17.4 0 

 

 The last two stages have the larger MNC values. Note that a lower MNC is 

possible for other stages but there is no reason to improve them due to the other existing 

limiting stages. The maximum clock frequency is taken from Xilinx timing analyzer 

thought they are not always accurate. In fact it usually underestimates the speed at 

which a circuit can run: the maximum frequency allowed by the system has been 

experimentally measured and it is 10-20 MHz higher than the very conservative results 

given by ISE. This arises because the analyser looks at the static logic path rather than 
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the dynamic one (cf. [CEL06g]) and because of that we measure experimentally the 

maximum working frequency. As can be seen in Table 6.1, we have designed a system 

with a pipeline structure which has a global latency of 42 cycles and a maximum 

working frequency of 17.4 MHz evaluated by ISE (35 MHz measured experimentally). 

 One important aspect is that of the various possibilities for configuring the 

system. We have evaluated several configurations to explore different trade-offs 

between accuracy, hardware cost and computing speed. In all these configurations we 

have used the same basic architecture but with different levels of parallelism, mainly 

customizing stages S4 and S5.  

 
Table 6. 2. Performance and hardware cost of different configurations on a Virtex 2000-E FPGA (2 

million gates and 640 Kbits of embedded memory). (Kpps  kilopixels per second, Fps  frames per 

second). All the performance values were measured using a clock frequency of fclk=27MHz. These 

measurements (Kpps and Fps) are underestimations because the computing time measured also included 

data transmission to the prototyping board. 

Version 
% device 

occupation 

% on-chip 

memory 
Kpps 

Image 

resolution 

Fps 

(fclk=27MHz) 

Max. fclk 

(MHz) 

HSHQ 99 
17 

31 
1776 

160x120 

320x240 

95 

24 
35 

HSMQ 65 
16 

31 
1776 

160x120 

320x240 

97 

24 
35 

MSMQ 43 16 625 160x120 33 35 

LSLQ 36 8 400 120x90 38 35 

 

 Table 6.2 summarizes the main properties of the different configurations. The 

ones using a 5x5 average window for the least-square-matrix neighborhood are called 

high quality (HQ) approaches, and the ones using a 3x3 window, medium quality (MQ). 

Other modifiable parameters are the smoothing and spatial derivative filter sizes. HQ 

and MQ approaches include 5-pixel derivative filters and 9-pixel Gaussians. A low cost 

(LQ) version uses 3-pixel derivatives and a Gaussian filter of the same size. If we fix 

the optical-flow quality of the system, another factor to take into account is the 

performance vs. hardware cost trade-off. If the system works with maximum parallelism 

the MNC is 10. Lower cost approaches are possible if we reduce the parallelism level, 
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thus increasing MNC. For example, we implemented a high-speed (HS) version with 

MNC=10 cycles using a three-way division unit and maximum parallelism. A slower 

version was implemented reducing the parallelism and thus resulting in a medium speed 

(MS) version. Finally, we implemented a low-speed (LS) version. Table 6.2 summarises 

the performance of the systems and hardware costs. 

 It is important to note that in our experiments data transmission of the images to 

the prototyping board through the 33 MHz PCI bus takes about 30-40% of the total 

processing time and therefore higher frame rates might be expected using a direct 

connection between the camera and the FPGA. Furthermore, the theoretical data-

throughput of the HSHQ is 2700Kpps at this clock frequency. This topic is amply 

discussed in [BEN03].  

 We also have tested the design using the stand-alone prototyping platforms 

RC200 and RC203 [CEL06f]  to avoid the PCI bus bottleneck (see Table 6.3). The first 

platform includes an XC2V1000-4 FPGA, the second includes a XC2V3000-4 FPGA, 

both with embedded multipliers. In these approaches we have implemented the whole 

optical flow system plus Video input, VGA and memory arbitration controller. A LUT 

for visual color representation of the velocities vector for the VGA output has also been 

included in the FPGAs. The optical flow system implemented in the RC203 is the 

HSHQ. In the RC200 is a customization for this specific platform. It shares the main 

properties of HSHQ PCI board version but uses the embedded multipliers and several 

clock domains. This version also has a limited level of parallelism getting a MNC value 

of 14 cycles and can be considered as Medium Speed, High Quality (MSHQ) version.   

 
Table 6.3. Performance and hardware costs of stand-alone systems for optical flow computation with 

camera input and VGA output. First row contains values correspond to the HSHQ version using RC203 

board provided with a Virtex II XC2V3000-4 FPGA (3 million gates and 1728 Kbits of embedded 

memory). Second row implement the MSHQ version using the Virtex II XC2V1000-4 FPGA (1 million 

gates and 720 Kbits of embedded memory) which RC200 board is provided. 

Version % device 
occupation 

% on-chip 
memory 

% Embedded 
multipliers Kpps Image 

resolution Fps  Max. fclk 
(MHz) 

Stand-alone 
RC203 board 99 29 41 4100 340x280 53 41 

Stand-alone 
RC200 board 99 70 40 2857 340x280 37 40 
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 The computing speed measured at the maximum clock frequency (40 MHz) for 

the system running in the RC200 platform was 2,857 kpps (30 fps of 340x280 images). 

Now the system is faster due to the improved technology of the Virtex II and the 

elimination of the PCI bus.  The use of a customizable approach with a high level 

description language facilitates the implementation of this system on an FPGA of only 1 

million gates (99% of resources was used). In fact, the optical flow processing 

algorithm only consumes 80% of the number of slices whilst the rest is occupied by the 

I/O controllers. The use of the embedded multipliers saves 662 slices (13% of the 

system resources). In the RC203 platform, higher level of parallelism is achievable and 

due to that, the system is able to process up to 4100 Kpps with the HSHQ system 

version.  

 

6.2.2.2. Performance evaluation 
 

As commented in Chapter 3, the accuracy of the computation of the optical flow in real-

life sequences is difficult to assess because the real flow of these sequences is unknown. 

Therefore to evaluate the accuracy of our design, which depends on the bit-width of the 

different stages, we have adopted the test scheme and synthetic sequence from the 

comparative study made by Barron et al. [BAR94], with the error measurement 

proposed in [FLE90]. This error measurement has been widely used in the literature and 

therefore it is appropriate to compare our results with previous works. This 

measurement can be used with high- and low-velocity modules with the same 

estimators but with some bias. A more detailed explanation of this can be found in 

[BAR94]. 

 In the hardware implementation some simplifications are made to the original 

model. Table 6.4 shows the accuracy of the model after the modification of several 

parameters. Unthresholded results (100% density) are included to enable an easy 

comparison between the hardware and software versions. The second row in Table 6.4 

includes the evaluation results with reliable estimations as indicated in [BAR94]. 

 The fourth and fifth rows include results of the implementation of the algorithm 

with IIR filters computed with fixed point arithmetics using 12 bit-width. In the sixth 

row of Table 6.4 the accuracy of the L&K algorithm (with hardware-system parameters) 

is computed by a standard PC using double precision variables and unthresholded 
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results. Finally, the seventh row includes the performance achieved with our hardware 

implementation. It can be seen that accuracy is reasonably high, bearing in mind that 

fixed-point variables and restricted bit-widths are used in this approach. It can be seen 

that the performance of the hardware is only slightly worse (2.48º increase in error) than 

the software version with a data precision of 64 bits. Furthermore, the results of the 

hardware implementation described here are comparable with other software 

approaches evaluated by Barron et al. [BAR94]. 

 
Table 6.4. Yosemite sequence results using the angle error measurement of Fleet et al. [FLE90]. 

Comparison between software models (including FIR and IIR filters, and computed with double precision 

variables) with different parameters. Final row also includes the hardware system accuracy. The fourth, 

fifth and sixth rows use the simplifications adopted in the hardware implementation. For a description of 

the parameters significance see [BAR94][FLE95]. 

 

Model Average 
Error º 

Standard 
deviation º 

Density 
% Parameters 

LK FIR 11.29 17.72 100 λmin=0, α =0, 
σxyt=1.5 

LK FIR 4.54 11.31 33.3 λmin=0.75, α =0, 
σxyt=1.5 

LK IIR 11.97 16.027 100 λmin=0, σxy=1.5, 
τ=2, α=0. 

LK IIR 
(with hardwarized filters) 11.47 15.34 100 λmin=0, σxy=1.5, 

τ=2, α=0 

LK IIR 
(with hardwarized filters) 13.71 15.99 100 λmin=0, σxy=1.5, 

τ=2, α=1/16; 

LK IIR 
(version implemented in 

hardware) 
15.91 º 11.5 º 100 λmin=0, σxy=0.8, 

τ=2, α=1 

Hardware system 18.30 º 15.8 º 100 λmin=0, σxy=0.8, 
τ=2, α=1 

 

 We have also compared the performance of the software and the hardware 

implementations using sinusoidal grating sequences. We used different stimulus 

frequencies (f0=0.02 and f0=0.05) and velocities (V=0.25 ppf and V=1 ppf). With these 

tests the hardware achieved results very similar to those of the software (less than 5% 

error in the speed of calculation).  
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Real sequences: overtaking-car segmentation 
  

 Only qualitative differences were estimated with both the hardware and software 

optical-flow approaches using real sequences (since the real flow is unknown). In this 

section we include some real image sequences for a qualitative evaluation.  

 

 
(a) 

 
(b) 

 
 

(c) 

Figure 6.4. Optical flow for the overtaking car. Software vs. hardware estimations. (a) Original image 

extracted from the sequence. (b) Software result and (c) hardware result. The left-hand images use 

arrows to represent velocity vectors. In the right-hand images, for the sake of clarity, only leftwards 

(light colours) due to the landscape and rightwards (dark colours) due to the overtaking-car are used to 

indicate the motion. From this information the car segmentation is straight-forward. 
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 Figure 6.4 contains the image of an overtaking-car sequence seen from the rear-

view mirror, together with the results of software and hardware optical-flow 

estimations. This is a good example of how optical flow can be used for certain real-life 

applications in a very straightforward way (see Chapter 8 for more details about this real 

world application). In this example, the goal is the segmentation of the overtaking car, 

which can easily be done relying on optical flow, since the motion pattern of the 

overtaking car (moving rightward in the images) contrasts sharply with the landmarks, 

moving leftwards due to the egomotion of the host car. Note that the presented approach 

is based on a dense feature map but the motion segmentation problem can be addressed 

in multiple ways, using for example sparse feature maps as in [MOT06a], [MOT06b]. 

 As shown in Figures 6.4.b and 6.4.c, the software results are smoother than those 

produced by the hardware. This is due to the bit-width restriction of the hardware 

approach. Nevertheless the results are quite similar and the accuracy of the hardware 

seems to be enough to obtain good qualitative results and address further processing 

stages such as car tracking. 

 

6.3. Fine grain superpipelined optic flow architecture based 

on FIR temporal filters for the modified model of Lucas and 

Kanade 

 

Temporal aliasing is one of the major error sources in motion estimation algorithms 

when they are forced to work with conventional sensors working at 30 fps. In order to 

reduce this temporal aliasing effect, some approaches implement multiscale schemes. 

These models require very complex architectures that imply very high hardware 

resources consumption in order to achieve real-time processing and in some cases their 

inherent parallelism is constrained (for instance by the warping method in multiscale 

approaches or due to the use of iterative algorithms). The approach described in the next 

sections, focuses on a different alternative. It consists in implementation of a very 

regular motion estimation approach that allows the utilization of high frame-rate 

cameras in an efficient way. Advances in imaging sensor technology make possible to 

acquire more than 1000 frames per second (fps) (see products from the web sites: 
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http://www.coreco.com, http://www.hitachi-service.net/, http://www.ims-

chips.com/index.php3). The utilization of such kind of hardware reduces the motion 

range presented at the video sequences, allowing the simplification of the optical flow 

models and increasing the accuracy of the system [LIM05]. Although the 1000 fps 

frame-rate is still far away from our processing capabilities, the presented specific 

purpose computing architecture is able to compute at frame-rates significantly higher 

than the standard 25 fps. 

 This motivates the development of a high frame-rate optical flow computing 

system. Although we have presented in previous sections a description of a system able 

to process 41 Kps (Kilopixels per second) using the RC203 stand-alone platform, the 

approach presented here adopts a different algorithmic strategy according to the 

modifications proposed in [BRA97] (see Section 3.6.2 for more details). Furthermore, 

here we implement a novel superpipelined processing architecture capable of computing 

one pixel per clock cycle. A deep analysis of the circuit arithmetic has been required to 

achieve accurate results at affordable hardware resources. These innovative aspects 

make the presented approach outperform by one order of magnitude any previous 

system described in the literature. This outstanding performance mark allows real-time 

processing of oversampled frame-rates, which opens the door to the use of advanced 

image sensors in real-time motion estimation systems and their potential applications.  

 The addressed challenge is to design a novel architecture capable of processing 

optical flow at oversampled frame-rates. The state-of-the-art processing architectures 

(see Section 6.4) are unable to process 640x480 resolution images (we will assume this 

resolution in the rest of the work unless explicitly mentioned) at frame-rates higher than 

13 frames per second (fps) for subpixels methods or 26 for correlation based approaches 

(see Table 6.9 in Section 6.4) and therefore a novel design strategy is needed. We will 

show in the following sections the architecture of a customized DSP designed on FPGA 

for this goal. We illustrate how the presented superpipelined architecture outperforms 

the up-to-now fastest processing system in more than one order of magnitude.  

 Appendix A reviews 3-D spatio-temporal sampling theory and investigates the 

effects of motion aliasing as well as the main limitations of the L&K model. 
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6.3.1 High frame-rate system motivation 

 

 The analysis in Appendix A motivates the use of a first-order-Gaussian-

derivative kernel of 5 taps. According to the sampling theorem and as described on 

[LIM05], we can not compute reliably the velocity of high spatial frequency contents 

objects. We can just compute fast motion for low spatial-frequency objects using 

complex multiscale methods as described in [WEB95], [FLE90], [SIM91], [GAU02].  

Therefore, we propose to increase the temporal sampling frequency to recover fast 

motion patterns and improve model assumptions. 

 We comment in the introduction the availability of image sensors with 

acquisition rates of more than 1000 fps at different image resolutions. The combination 

of such high frame-rate image sensors and a specific processing system capable of 

computing the incoming data stream can be of significant interest for a wide range of 

real world applications. The main improvements of such a system are the following:  

1. The processing scheme is simplified, avoiding the complex multiscale 

approaches which require complex architectures and translate in higher system 

costs. The improved version of L&K optical flow model that we adopt combines 

high accuracy and implementation feasibility [LIU98], [DIA06a], [DIA06e]. 

2. Temporal aliasing is reduced significantly through high frame-rate sampling. 

This allows the computation of high spatial frequency contents of the image 

motion, increasing the density of the flow field.   

3. Constant luminance condition is better satisfied [LIM05] through high frame-

rate sampling. Therefore, first order constraint is better satisfied improving the 

accuracy.  

 

 Up to date there are only a few approaches capable of processing optical flow in 

real-time at standard video rates of up to 30 fps and faster processing systems are 

required to deal with high frame-rates in real-time. Nevertheless, even though we are 

able to compute the flow one order of magnitude faster than previous approaches, there 

is a trade-off between flow accuracy and image camera SNR. In general, SNR is 

proportional to the square root of the exposure time. Thus, higher frame-rate implicates 

lower exposure time which can make the noise increase dramatically. As showed in 

[LIM05], an oversampled factor of 3 (90 fps) dramatically increases the accuracy of 
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motion estimation models but this strategy is not recommend for oversample factors 

higher than 6 due to the degradation of the image SNR.   

 

 
Figure 6.5. Qualitative effects of different frame-rates sequences acquisitions. The top row shows the 

example of a walking and moving the arms up sequence captured at 90 fps. The low level structure of the 

clothes allows us to focus on the motion at the body boundaries. Second row shows three optical flows 

computed at 90, 30, and 10 fps (using sequence subsampling) respectively. Finally, third row shoes the 

pixels over the confidence threshold for the sequences computed at the three different frame-rates. Note 

that though the walking movement is slow (the human-camera distance is approximately 4 m), the system 

is not able to compute its motion pattern at 10 fps. Still at 30 fps the flow is noisy, and some important 

details (such as the left arm pattern) are lost.  

 

 In Figure. 6.5 we show the qualitative results of an optical flow sequence 

computed at 90, 30 and 10 fps using a progressive area scan CCD sensor. Because the 

oversampling factor is small, as a first approximation we consider that image SNR is 

constant at the different frames-rates. The results shows that the flow computed at 90 

fps is very homogeneous and stable and the confidence areas clearly identify the motion 

boundary which corresponds with the areas of higher spatio-temporal structure. The 

results computed at 10 fps are quite noisy, which can be easily derived from the 

reliability areas of the third row. Note that at 30 fps the flow quality is significantly 



Chapter 6. Motion processing: high performance computing architecture                   161 
 

  

degraded (compared with the 90 fps flow) and the fastest movements (for instance the 

left arm pattern) are lost. This shows the high interest of a computing system able to 

process the data stream of 90 fps sequences.  

 

6.3.2. Hardware description 

 

For the design of the presented architecture, although we maintain the coarse structure 

described in Section 6.2.1 [DIA04c], [DIA06b], each stage has been carefully 

redesigned. We would like to highlight the following points which are completely novel 

with respect to our previous work (Section 6.2): 

1. Improved optical flow parameters according to [BRA97] are adopted. We have 

designed a 3-D complementary smoothing-derivative FIR filters based on 

Simoncelli kernels [SIM94] to improve the derivation operations. These kernels are 

first order Gaussian derivatives which properties have been described in Chapter 2. 

Although orientation requires second order derivatives, for optical flow 

computation, first derivative order has enough angular accuracy and requires lower 

resources. Their structure is shown in Figure 6.6.  

 
Figure 6.6. 3-D complementary smoothing-derivative filters structure. There are two basic primitives 

corresponding to the smoothing and derivation operation. First, we compute these two primitives on the 

temporal domain. Second, complementary smoothing/derivation are carried out on the spatial dimension. 

The final results correspond to a 3-D derivation over each spatio-temporal axe. For a high performance 
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design, all the operations (2 temporal and 6 spatial FIR filtering) are processed in parallel based on 

separable convolutions.  

 

2. In our previous works, Section 6.2, we used the Fleet & Langley [FLE95] IIR filters 

for optical flow computation that are more hardware-friendly than FIR ones because 

they reduce the system memory requirements to three images. The drawback of this 

approach is that, due to the iterative process required for IIR operations, fixed-point 

arithmetic magnifies errors leading a significant degradation in the temporal 

derivative accuracy. The modifications adopted from [BRA97] allow using smaller 

FIR filters in the presented approach which makes this option more reliable. 

3. We have implemented a superpipelined processing architecture able to compute one 

pixel per clock cycle as described in the next section. 

 

6.3.3. From coarse to superpipeline architecture 

 

We have motivated the interest of a high frame-rate optical flow processing 

architecture. The previous scheme (Section 6.2), with a pipelined structure divided on 5 

basic stages, would lead to a remarkable performance but still far from high frame-rate 

processing requirements. The main reason is that the architecture in Figure 6.2 is similar 

to a DSP processor. There is a trade-off between pipeline length and system 

performance based on the dependence problems (branch conditions often break the 

pipeline which represents a significant waste of time). Therefore, long pipelines are not 

presented on standard DSPs and microprocessors. On the other hand, we describe here a 

specific purpose processing architecture that highly benefits of a fine grain pipeline 

datapath. In this way, we take full advantage of the regular data flow of the L&K 

algorithm. According to [FOR02], the best architecture is a superscalar and 

superpipelined structure. This design strategy has been adopted and it has been proven 

to be successful on other problems such as the ones described on [SAM06], [AGI06], 

[ROS06]. In Figure 6.7 we present the global scheme. Each coarse stage has been finely 

pipelined leading to a processing datapath of more than 70 stages. The number of scalar 

units grows at stages in which L&K model requires to maintain the system throughput. 

This parallelism expansion is outlined in the following: 

 Stage S0 uses one scalar unit for spatial smoothing.  
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 Stage S1 uses two scalar units, one for temporal smoothing and another one for 

temporal differentiation. 

 Stage S2 uses three scalar units; corresponding to the three dimensions (Ix, Iy, and It) 

in which are computed the image derivatives.  

 Stage S3 uses five scalar units, corresponding to the five cross-products (Ix·Ix, Iy·Iy, 

Ix·Iy, Ix·It, and Iy·It) which are used on the weighted squared sum at the least-squares 

fitting stage of the L&K approach (see Section 3.6).  

 Finally, stage S4 uses one scalar unit to compute the final motion for each pixel but 

internally several parallel pathways drive the data process. Therefore, this stage 

must be seen as a superscalar floating point unit.  

 

 
Figure 6.7. Optical flow processing core. Coarse pipeline stages are represented at the top and 

superpipelined scalar units at the bottom. Colors indicate the type of scalar units according to the legend 

at the bottom of the figure. The number of parallel datapaths increase based on the optical flow 

algorithm structure. The whole system has more than 70 pipelined stages (counting the motion 

processing core and other interfacing hardware controllers). This allows computing one optical flow 

measurement per clock cycle. The number of substages for each coarse-pipeline stage is indicated in 

brackets. 

 

 Figure 6.7 legend indicates the internal data representation of the scalar units. 

The number of parallel units is driven by the intrinsic model parallelism. Note that 

parallelism level is only schematically represented at each stage. There are some 

internal operations computed on parallel at each scalar unit to get the final throughput of 
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one estimation per clock cycle (therefore some of these datapaths can be seen as 

superscalar units). We used fixed-point representation for all the stages but S4, which 

uses floating-point representation. This has been a critical decision motivated by the 

large incoming bit-width at this stage which makes fixed-point representation very 

expensive in terms of computational resources. This topic is widely discussed in Section 

6.3.4.  

 Details about the most representative device stages are presented on the next 

sections.  

 

6.3.3.1. Memory Management Unit 

 
The FIR temporal filters are highlights on Section 3.6.2 as the best solution for our 

system, but its specifications have special effect on the designing process 

considerations. The limited number of memory banks accessible on board constraints 

the available system parallelism (which translates in performance degradation) and 

increments the design complexity. Therefore, an efficient Memory Management Unit 

(MMU) becomes of great interest to abstract the sequential access inherent to this kind 

of devices. For this purpose, we create Virtual Memory Ports (VMP), whose behavior 

emulates parallel independent real memory ports. High abstraction Hardware 

description Languages (HDL) make it feasible to define systems at a high abstraction 

level, but finally, low level hardware imposes strong constraints on the feasibility of the 

system. We have designed a shell to expand the parallelism of this sequential elements 

in such a way that the design process of the system can be carried out without taking 

into account this low level considerations. According to this strategy, algorithmic 

implementations as the one proposed here can be designed at a higher abstraction level. 

The main idea for this implementation is to combine the following concepts/properties: 

1. Nowadays, long memory words (36 bits) make it feasible to store up to four 9-

bit-width data at each memory address with more than 512Kaddress [IDT06] (up 

to 5 images of 720x576 pixels per memory chip).  

2. A throughput of one pixel per cycle is possible by using pipelined packing and 

unpacking circuits, which only requires to access memory once in 4 clock 

cycles.  
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 We have designed an MMU which benefits from the previous architectural 

descriptions. Depending on the number of VMPs required and packing/unpacking 

possibilities (provided by the memory word bit-width), a state machine is used to feed 

the VMP registers sequentially, achieving a final performance of one data per cycle. 

Furthermore, this architecture is scalable because an increment of N in the number of 

VMPs available on one memory only modifies the required access cycles on a factor of 

N. This can be further optimized by incrementing the MMU clock frequency by this 

factor with respect to the global system clock frequency. There is only one limitation, 

due to the packing and unpacking circuits, random access is limited to an addresses 

multiple of 4. Besides, for an efficient data management, they should be stored on 

memory in a consecutive packed way. 

 

 
Figure 6.8. MMU schematic for a 4 VMPs expansion-case. VMPs are represented by one address register 

(type Read or Write) and a Data-Write or Data-Read register. Low level memory control manages the 

data and address signals as well as the SSRAM clock, read-no-write signal (R/NW), etc. The state 

machine feeds four VMPs sequentially and manages the low level memory access. Packing/Unpacking 

circuits achieve a total throughput of one pixel per clock cycle. This architecture allows us to multiply by 

4 the equivalent memory parallel access. 

 
 The MMU architecture is illustrated on Figure 6.8 for a four VMP case. Note 

that a VMP is composed of a 4 addresses register (read or write type) plus a data-write 

register with packing circuits or by a data-read register with unpacking circuitry.  

 The new high level abstraction provided by the MMU makes the implementation 

of FIR temporal filters feasible by using a high abstraction level description. Previous 

implementation of L&K used IIR filters to reduce the memory access, but the drawback 
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was the accuracy degradation [FLE95]. The presented architecture allows the easy 

management of a large number of read-write processes necessary for FIR temporal 

filters with a minimum FPGA logic, which clearly justifies the design of the presented 

MMU architecture. 

 

6.3.3.2. Stage S3 architecture  

 
This stage is the one which requires more hardware resources. As showed on Figure 6.9, 

this stage is expanded to compute the five cross-products utilized for the least squares 

fitting process. This is implemented as five parallel segmented scalar units. 

Furthermore, incoming data for this stage require 18 bits, which makes the arithmetic 

circuits consume a considerable circuit area.  

 As illustrated on Figure 6.9, the main computing circuit of this stage is the 

separable convolution unit which implements the weighted average calculation.  

 

 
Figure 6.9.  Architecture schematic of the least squares matrices construction. Pipeline stage S3. 

 

6.3.3.3. Stage S4 architecture  

 
Stage S4 is critical in terms of system frequency, resources, and accuracy. The incoming 

data use fixed point representation of 18 bits and this stage requires the operations of 

multiplication, addition/subtraction and division without losing accuracy. As discussed 

on Section 6.3.4., the best arithmetic representation for this stage is floating point data 



Chapter 6. Motion processing: high performance computing architecture                   167 
 

  

which allows obtaining the required precision with reasonable resources consumption 

(as is shown on Table 6.5). Figure 6.10 presents the architecture of this stage, based 

again on a high pipelined and parallel datapaths to achieve a high system throughput. 

The whole stage requires 25 steps. Data conversion, multiplication, addition, and 

subtraction are computed in just one cycle. The superscalar division unit of n-ways 

presented in Section 6.2 does not suit well the specifications of this new architecture. 

The requirement of MNC=1 constraints the division units to pipelined version because a 

superscalar version is more expensive for very large parallelism level. Therefore, a 

pipelined floating point divider has been designed, requiring 15 steps for the current 

custom float type. 

 S4 is the stage limiting the system clock frequency and it could be even further 

pipelined to increase the clock frequency if necessary.   

 

 
Figure 6.10. Architecture schematic of the floating-point unit. Pipeline stage S4. 

 

6.3.3.4. Global system superpipelined datapath description 

 

We have described the main computing stages on the previous subsections. The 

parallelism of the system is expanded according to the algorithmic structure and the 

final architecture is described on Figure 6.11. Note that the MMU units are critical 

allowing the management the memory accesses of the different elements as described in 

the figure.  



168                                                                         Multimodal bio-inspired vision system 
 

 
Figure 6.11. Architecture schematic of the global system. We represent the number of functional units (as 

parallel pathways), fine grain pipeline stages (indicated as rectangular cells and in brackets in the top 

labels corresponding to each coarse grain pipeline stage), and memory access elements (MMU channels 

are included).  

 

 The synchronization among the different processing units (frame-grabber, 

motion processing, VGA, and user interface) is accomplished by using specific external 

memories as data buffers, which solves the problem associated to the different clock 

frequencies. The memory interchange strategy makes use of delays between processing 

units as synchronization technique. This enables the design of a very deep pipeline 

processing structure without using branch predictions that would degrade the overall 

performance. The high system throughput is based on this deep pipeline and on the 

parallel scalar units of different stages designed according to the Lucas & Kanade 

algorithmic complexity. Well balanced units are used to achieve a final system 

throughput of one estimation per clock cycle. Only on specific points (for example 

VGA controller) interprocess communication is needed. On these situations, we use an 

interface module between the two processes, with a synchronized and buffered point-to-

point communication scheme. This module blocks the communication until both 

modules (sender and receiver) are ready and data is transferred, allowing synchronizing 

hardware controllers with different clocks or other characteristics. 
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6.3.4 Bit-width optimization  

 

The proper selection of the data structure is a key factor for a successful implementation 

of a customized system. First we need to consider the system accuracy vs. resources 

consumption trade-off. The best accuracy is obtained with double floating point 

representation, (this is the choice mostly adopted in software approaches). This choice 

leads to a maximum precision at the cost of low performance. Custom processors for 

real-time systems lack of large resources compared with the current general purpose 

processors. Because of that, customized datapaths need to be carefully designed in order 

to achieve comparable of higher performance. Typically, the customized systems use 

fixed point data representation because it fits better on current digital technology but 

this strategy requires a careful analysis to avoid accuracy degradation. Second, a well 

bit-width design has significant importance in terms of power consumption [CON03]. 

Low significant bits tend to switch their state more frequently and this shall be avoided 

if it does not drive any information. Due to that, the smart elimination of low significant 

data allows to decrease the bit values transition, reducing the switching power which is 

important for migration to VLSI devices.   

 

(a) (b) (c) (d) 

 
 

Figure 6.12. Module of the velocity for the Yosemite valley through flow sequence (thresholds not used). 

From left to right: (a) velocity real ground-truth module, (b) module computed with the software program, 

(c) module computed with the designed system, (d) module computed with inadequate bit-width for stage 

S4. Note that the quantization errors are visible as a salt and pepper like noise but there is no significant 

difference between the module of the software (b) and our hardware implementation (c). 

 

 In our system designing process we have used several measures and strategies to 

evaluate how well the specifications are fulfilled. First, concerned that our goal is to 

optimize the optical flow accuracy, we have used the MCode for DSP Analyzer with 
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several bit-width configurations and the well known synthetic sequence of flow-through 

across Yosemite Valley [BAR94] as reference to measure the degradations of each 

approach with respect to a double precision data representation. The decision of the bit-

widths at each stage has an important impact on the accuracy of the system. Figure 6.12 

shows the effects of insufficient bit-width utilization for the stage S4, which leads to a 

significant quantization noise (visually similar to salt and pepper noise).   

 Stages S0 to S3 have been implemented using fixed point arithmetic because 

these operations are based on convolutions. After an extensive analysis of the accuracy 

vs. resources consumption trade-off, we have decided to implement stages S0 to S2 with 

9 bits and stage S3 with 18 bits. This corresponds to the use of one fractional bit on the 

image derivatives. With this configuration and using a threshold that allows an optical 

flow density of 36.47 %, the angular error and its variance changes from 3.38º (8.93º 

variance) for double floating point to 3.43 (8,96º variance) for fixed point 

representation. This can be seen in Figure 6.13. This bit-width choice is also motivated 

by hardware device structure (some of the internal hardware resources, such as 

embedded multipliers and memories, are optimally used for a maximum of 18 bits) and 

to the fact that the absolute error increment remains very low (0.05 º).  

 

 
Figure 6.13.  Angular error considering image derivatives of different bit-widths. We take an integer 

part of 8 bits plus different values of the fractional part. The next circuit’s stages are designed according 

to this decision. The dark line (red) corresponds to a mantissa of 6 bits utilized at stage S4. Light one 

(green) corresponds to a 12 bits implementation. There is no appreciable improvement for larger 

mantissa bit-widths. It is clear that the fixed point stages dramatically compromises the whole system 

accuracy compared to bit-width decision at the mantissa in stage S4, i.e., stage S4 can not take advantage 

of larger bit-widths if the precision is restricted in previous stages. 
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 Note that on the datapath, previous stages accuracy limits the maximum 

precision achievable by next stages and due to that their requirements shall be carefully 

studied taking into account the whole datapath. According to this, increasing the bit-

width of these stages only makes sense if the next stages also increase their bit-widths in 

order to obtain higher system accuracy.  

 At stage S4 the incoming bit-width is too large and specific arithmetic 

representation is required. With these precision requirements, customized floating point 

arithmetic produces faster circuits with lower system resources. In table 6.5 an 

implementation using 36 bits fixed point arithmetic achieves similar accuracy to the one 

using a customized representation with 19 bits but the resources consumption is 6 times 

larger and the maximum system clock frequency is more constrained (by a factor 0.7). 

This short study motivates the use of floating point arithmetic in S4.  

 
Table 6.5. System accuracy vs. resources consumption trade-off based on stage S4 precision and data 

format. Hardware resources in terms of gates consumption taken from the DK synthesizer [CEL06b]. 

Optical flow error measure using Fleet & Jepson method [FLE92] at a density of 36.44%.  (man stands 

for mantissa and exp for exponent). 

Pipelined stages NAND 
gates FFs Max clock 

frequency (MHz) 
Angular 
error (º) 

Error 
variance (º) 

S4 Floating point unit 
(11 man + 7 exp) 57167 3488 45 3.42º 8.95º 

S4 Fixed point unit 
( 36 bits) 345981 1080 31 3.37º 8.93º 

 

 For the bit-width decision of stage S4 we have carried out an extensive batch of 

simulations of different cases. The main parameters under study being are the angular 

error, its variance and the SQNR of the signal. These parameters are represented against 

the mantissa bit-width of S4 on Figure 6.14. 

 Once decided the bit-widths at different stages we evaluate the degradation due 

to quantization errors of our design. In this way, we check the accuracy of different 

implementations measuring the results in the same pixels (and thus same densities). 

Table 6.6 summarizes these results. As it is shown, the system still achieves a very high 

accuracy. It validates our previous data analysis and confirms that the high bit-width 

used at the standard computer can be significantly reduced. 
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Figure 6.14. Angular error (top-left), variance (bottom- left) and SQNR (right) against the number of bits 

of the mantissa in stage S4. Please note that error and variance are approximately constant for values 

larger than 10 bits and SQNR becomes also stable for values higher than 12 bits. As good trade-off, we 

choose a mantissa of 11 bits that allows a larger accuracy similar to double floating point arithmetic with 

high SQNR. 

 
Table 6. 6. Comparing angular errors between the software double data type and the customized data 

structure used in the hardware implementation. Note that though the bit-width has been dramatically 

reduced, due to the previous analysis the results obtained with the hardware approach are only slightly 

degraded even at significant estimation densities.  

Software double data implementation Customized hardware implementation Density 

(%) Angular error (º) Variance (º) Angular error (º) Variance (º) 

36.47 3.4330 9.1056 3.5166 deg 9.2406 

42.14 4.0731 9.8389 4.2128 10.0986 

57.20 6.9166 12.9283 7.8611 14.5013 

91.95 17.3303 20.3685 18.3185 20.6841 

 

 A comparative analysis of the optical flow reliability areas vs. the high 

quantization error areas highlights that the scenarios with lower confidence are the 

candidates to produce noisier results due to the quantization effects. Fig. 6.15 illustrates 

this effect. In Figure 6.15.a we visualize confidence values at each image pixel. Bright 

grey levels mean higher confidences. In the right image (Fig. 6.15.b) we represent the 

angular error difference between software and hardware estimations. In this image, light 

areas represent pixels with higher quantization noise. This image clearly shows that the 
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areas prone to larger quantization noise are the ones with lower optical flow 

confidences. Therefore, the confidence filtering efficiently helps to neglect 

misestimating driven by quantization errors. 

 This effect can be easily understood based on the image structure. Image pixels 

with low confidence correspond to areas of low structure which produce smaller image 

derivatives and therefore the division operations required to estimate motion is prone to 

errors. When these results are computed using a limited bit-width the relative 

importance of their quantization is larger and translates into erroneous estimations. This 

motivates the utilization of a proper threshold for the optical flow computation, 

allowing us to get high accuracy circuits with lower resources consumption and 

rejecting not reliable estimations (i. e. prone to quantization errors). 

 

 
(a) 

 
 (b) 

Figure 6.15. Confidence areas and quantization error. (a) Logarithm of optical flow 

confidence values (light grey means high confidence estimations). (b) Software-

hardware angular error difference. Data range (logarithmic) scaling is done to improve 

visualization. Note that areas prone to higher quantization noise correspond with the 

lower optical flow confidence areas. 

 

6.3.5 System resources and performance 

 

The whole system benefits of the accuracy analysis of the previous section and has been 

successfully implemented on a stand-alone board for embedded image processing 

applications. The used prototyping board is provided with a Virtex II XC2V6000-4 

Xilinx FPGA as processing element including also video input/output circuits and user 

interfaces/communication buses. Illustrative results are shown in Figure 6.16. Tables 
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6.7 and 6.8 show the hardware costs of the motion processing core as well as the 

control/interface logic. After synthesis, the whole system consumes 24 % of the FPGA 

slices, 20% of the available embedded memory and 8% of internal multipliers. Its 

maximum frequency clock rate is 45.5 MHz. The image resolution can be selected 

according to image input camera standard or processing capabilities.  

 
Table 6. 7.  System stages gates resources consumption (results taken from the DK synthesizer 

[CEL06b]). First row: interfaces and hardware controllers (camera frame-grabber, MMUs, VGA signal 

output and user configuration interface). Second row: motion processing core.  

Pipelined stages NAND 
gates FFs Memory bits Max clock 

frequency (MHz)
Image 

Resolution Fps 

Interfaces  + hardware 
controllers 65881 2363 18208 45 

Motion Processing 

core 
1145554 6529 516096 45,5 

640x480 
1280x960 

148 
37 

 

Table 6. 8. System resources required on a Virtex II XC2V6000-4 after bit-stream generation with Xilinx 

ISE Foundation [XIL06d]. The system includes the optical flow processing unit, memory management 

unit, camera Frame-grabber, VGA signal output generation and user configuration interface. (Mpps: 

mega-pixels per second at the maximum system processing clock frequency, EMBS: embedded device 

memory). 

Slices / 
(%) 

EMBS / 
(%) 

Embedded 
multipliers 

/ (% ) 
Mpps Image 

Resolution Fps 

8250 
(24%) 29 (20%) 12 (8%) 45.49 640x480 

1280x960 
148 
37 

 

 This architecture is modular and scalable, being possible to reduce the system 

parallelism (and performance) to fit on smaller devices as illustrated in Section 6.2. 

Furthermore, the processing core can be replicated (more than 75% of system resources 

are available) and the Frame-grabber can be easily modified (thanks to the MMU 

architecture) to split the image and send it to several processing units. This high level 

scalability allows multiplying the processing performance if it is required. 
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(a) 

  
(b) 

Figure 6.16. Optical flow processing results for a coupled of sequences used in 

[BAR94] and available at [VIS06]. (a) Diverging tree sequence. (b) Yosemite Fly-

Through sequence. The flow is represented as vectors with module proportional to the 

motion speed. 

 

6.4 Systems performance comparison with other approaches  

 

The implementation of the optical-flow algorithm with FPGAs has only been addressed 

by some authors in very recent years. Table 6.9 summarizes the performances obtained 

by the different approaches. In our previous work described on Section 6.2, [DIA04c], 

[DIA06b], the basic implementation of L&K model was proposed and we presented a 

detailed study about the performance vs. system resources trade-off. Although the 

performance was already high, neither the image resolution or frame-rates complaint the 

high frame-rate requirements addressed by the system described in Section 6.3. It can be 

seen that the approach described in Section 6.3 outperforms any previous system in 

more than one order of magnitude. 

 The iterative algorithm of Horn & Schunk (H&S) [HOR81] has also been 

implemented by different authors. Martin et. al. [MAR05] presented a system 
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implementation that fits quite well the specification of a standard frame-rate optical 

flow system. The main disadvantage of that approach is that the model itself obtains 

poor accuracy (compared to L&K) as shown by Barron et al. [BAR94]. There is also a 

work from Cobos et al. [COB98] which described the implementation of the H&S 

model but using modest resources and therefore achieving lower performance. Using 

the block-matching approach, the implementation described by Niitsuma & Maruyama 

[NII04] achieves 30 fps of image size 640x480 but with high hardware cost (90% slices 

of a XC2V6000 FPGA) and without sub-pixel accuracy.  

    Based on the L&K approach, Correia & Campilho [COR02] presented a real-time 

implementation of the system using a MaxVideo200 pipeline image processor. Though 

still far from our results, they obtain a high performance (1666 Kpps) because they take 

full advantage of the pipeline architecture Nevertheless, the use of an acceleration 

processor (such as the MaxVideo200) makes difficult the transference to embedded 

platforms. 

 
Table 6. 9. Comparison to prior works. Our data uses the maximum available system clock frequency for 

comparison with previous approaches. 

Implementation Throughput 
(Kpixels/s) 

Image size 
(pixels) 

Image rate 
(frames/s) 

Improved L&K (described section 
6.3) 45490 640x480 

1280x960 
148 
37 

L&K (stand-alone board, table 6.4, 
first row) 4100 320x240 53 

L&K (PCI-board, table 6.4, second 
row) 2303 320x240 30 

H&S (Martin et. al. [MAR05]) 3932 256x256 60 
Block-matching, 

( Niitsuma & Maruyama [NII04]) 9216 640x480 30 

L&K (Correia & Campilho 
[COR02]) 1666 256x256 25 

H&S (Cobos et al. [COB98]) 47.5 50x50 19 
Variational (Bruhn, et al. [BRU05a]) 

Intel Pentium 4, 3 GHz 1444.7 316x252 18 

Intel Pentium 4 HT (3.2 GHz) 914 160x120 47.6 
  

 For standard PC platform, the approach described in [BRU05a] presented a high 

accuracy but performance is still far away from the presented system and the used 

method is not suitable of easy implementation on embedded devices.  
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 Finally, the model described here, running in software on an Intel Pentium 4 HT, 

3200 MHz, can compute 47.6 fps of 160x120 pixels (914 Kpps as indicated on the last 

row of Table 6.9) though this can be further optimized using MMX and SSE 

instructions. But in any case this requires the full computing power of the machine. 

Since the referenced works are very recent (some of then using even the same 

evaluation devices), the outstanding performance of our approach is not provided by 

technology improvements but rather by a very efficient processing architecture 

(superpipelined and superscalar datapath) that extensively uses the parallel resources of 

the FPGA device. 

 

6.5. Conclusions 

 

This chapter presents two optical flow systems which represent the state-of-the-art in 

the field of high performance motion estimation systems on chip. The chapter describes 

mainly two different alternatives: 

 

1. A coarse grain pipelined datapath for flow estimation based on IIR temporal filters 

and the original Lucas & Kanade algorithm. This system shows how an optical-flow 

estimation circuit can be implemented using an FPGA platform as a customized 

DSP for a specific purpose. We describe a scalable architecture that can work with 

large image data at a conventional video-frame rate (30 fps). System performance, 

customization feasibility and scalability, due to the FPGA technology and design 

strategy, allow the use of the system in diverse application fields as explained in 

previous sections. The modularity of the system also enables the easy alteration of 

the computing scheme to target different computing speed vs. hardware cost trade-

offs. 

 The accuracy of the estimated flow is essential for some applications (for 

instance the one described in Chapter 8). We have studied how the restricted bit-

width of the different computations affects the quality of the extracted optic flow 

and compared the results obtained with software implementations of the algorithm 

computed with double precision. The results of the hardware implementation 

described are in the range of other software approaches considered in the study of 

Barron et al. [BAR94]. Therefore, the performance of the hardware is of reasonable 
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quality provided that it computes in real time (at a speed of 1776 Kpps with our PCI 

board system, 4100 Kpps with the RC203 stand-alone platform). 

2. Fine grained superpipelined datapath based on FIR temporal filters and the modified 

version [BRA97] of the Lucas and Kanade algorithm. The necessity of a system for 

high frame-rate optical flow systems has been clearly motivated. Current image 

sensors make possible very fast image acquisition which lead to significant 

improvements on the optical flow accuracy [LIM05]. Simple gradient based optical 

flow approaches seem to be a suitable alternative for moderate cost systems 

(compared with complex multiscale approaches). According to this we have 

implemented an improved version of the L&K model [BRA97] which complements 

the capabilities of high frame-rate cameras providing real-time image motion 

analysis of high accuracy.  

 We have presented an architecture proved to be scalable, modular, and versatile 

and we have described how parallel and superpipelined structures can be utilized on 

the implementation of algorithms to design novel high performance architectures for 

image processing. The system outperforms in more than one order of magnitude any 

previous approach validating the adopted computing scheme. From the accuracy 

analyses we conclude that, with a much reduced bit-with data representation, the 

designed system achieves accuracy close to the software implementation (with 

double precision floating point representation).  

 We finally have evaluated the system resources consumption and performance 

of an implementation on a stand-alone platform which fulfils the high frame-rate 

optical flow requirements. The comparison with previous works clearly shows the 

outstanding performance of the system and opens the door to a wide range of 

application fields. 

 

 The second model can be considered a fully parallel implementation of model 

described in Section 6.2 but the spatio-temporal differentiation stages plus the fine-

pipeline require an especial design which motivates considering it as a complete new 

circuit.  

 It is also worthwhile to comment that the resources required for the version 

described in Section 6.3 are lower than the ones used for the HSHQ model (section 6.2) 

implemented on the same family device (see Tables 6.3 and 6.8). This can be 

understood based on the careful bit-width design (for example, the system described in 
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Section 6.3 uses less bits in the floating point unit than the circuit presented in 

Section6.2, as indicated by the accuracy analysis done) and also for the architectural 

improvement (on sequential designs not all the hardware is shared and therefore some 

parts of the circuits are not optimally used).  This analysis support our hypothesis that 

high parallel devices can be optimal also in term of hardware resources compared with 

sequential circuits if a carefully design is done. 
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         Chapter 7 

High Performance stereo computing 

architecture 

 

 

 

This chapter proposes a high performance stereo computing architecture. The 

system is structured in a fine grain pipelined datapath (with some superscalar critical 

stages) able to provide one stereo estimation per clock cycle. 

The final implementation of a specific model in a specific purpose datapath with 

constrained precision and fixed-point arithmetic can be considered as a novel 

approach (though with behavior close to the software model based on high precision 

computation resources). This chapter includes a study of how the limited precision 

in the critical computations affects the global accuracy of the system and how many 

hardware resources are required when increasing the bit-width at these critical 

stages.  

In the final part of the chapter the performance of the presented architecture is 

evaluated and compared with other approaches described in the literature. 
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7.1. Introduction 

 

In Chapter 4 was described the stereo model in which we will focus now. It is a 

hardware friendly phase-based model in which we compute the phase difference 

(disparity estimation) without an explicit calculation of the phase of each of the two 

images. We have used Gabor as quadrature filters but, depending on the resource-

sharing strategy, the Second Order Gaussian derivatives described in Chapter 5 also can 

be used.  

 This approach has several advantages that make the system hardware-friendly 

[DIA06h]. Although equation (4.12) increases the number of multiplications compared 

to circuits with direct phase subtraction, current FPGA devices include embedded 

multipliers for DSP operations, which make this technology of particular interest for 

vision tasks. In fact, the main advantage provided by this approach is that of avoiding 

the explicit logic required for the wrap-around mechanism. This implies reducing 

comparison logic considerably. Furthermore, the number of division operations is 

reduced by 50%. This reduction is important because this division using fixed-point 

arithmetic requires high precision. In fact, quantization errors make the former approach 

noisier and thus demand more hardware resources to achieve similar accuracy.  

 To address the hardware implementation of this approach the basic steps can be 

summarized as follows: 

1. DC component image removal using the local image contrast I-Imean operator for the 

even quadrature filters. 

2. Even (C) and odd (S) 1-D quadrature filters convolution of left and right images. 

3. Direct phase-difference calculation from (4.12). 

4. Disparity computation using equation (4.10), assuming k(x)≈ k0.  

 

7.2. Hardware implementation 

 

Most of the previous real-time contributions described in the literature are based on 

correlation techniques [BRO03] because this approach fits in quite well with 

customized hardware but the choice of a phase-based stereo approach is also justified 

because of its capacity to reduce illumination problems. As mentioned in [COZ97], a 



Chapter 7. High performance stereo computing architecture                                        183 
 

  

contrast test shows that this approach is not very susceptible to differences in local 

contrast. It also seems to be capable of dealing with imbalanced images too, which are 

usual in real cameras since they have slightly different luminance gains.  

 The phase-based approach can also be of interest in biological studies to extract 

real-time working models based on features (phase) similar to the ones that are thought 

to be used by biological systems [FLE96] or [CHE04].  

 

7.2.1. Camera calibration 

 

Setting up the system requires image rectification and camera calibration (which is a 

critical stage). After a manual calibration to arrange the cameras in parallel, the current 

implementation only involves a simple pre-processing method based on image 

displacement, which runs in a set-up system configuration stage as follows:  

a. We define a plane of null disparity and we allocate a flat object or picture on it 

with some texture (for instance a chessboard pattern).  

b. A frame-grabber shift of up to 32 pixels is explored iteratively along the 

horizontal and vertical co-ordinates to obtain the best overall matching value 

within that range (integrating 4 times in each iteration to reduce the error due to 

camera noise and image flickering). This plane defines the zero disparity 

distance. Closer and farther objects will lead to positive and negative disparities 

respectively. This reference plane is defined depending on the cameras 

configuration, system scale and target application to properly tune the filter 

disparity range to the target scenario (close to the reference plane). With this 

method we reduce the range of disparities presented at the image close to this 

reference plane, which allows us to recover disparities with only small 

quadrature filters kernels.  

c. When the calibration process finishes, the system is auto-reprogrammed from 

external Flash memory with the new configuration file and the stereo 

computation starts.  

 

 This simple calibration process takes about 32 seconds using a 40 MHz FPGA 

clock but this time is not critical since the calibration is computed only once at the 

initial configuration stage. In fact, up to a 70 MHz clock frequency is supported by this 
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circuit, but we only use a 40 MHz clock to facilitate the on-line generation a VGA 

output of the imaged matching process. In this way, we are able to visually monitor the 

calibration process (iterative matching). This allows discarding wrong initial camera 

settings that lead to poor matching results. Future work will address an improved 

calibration pre-processing including image rectification techniques.    

 

7.2.2. System architecture 

 

Handel-C [CEL06c] allows us to define very straightforwardly the level of parallelism 

and pipelined structure, which can be easily grouped on the basis of functionality and 

finely sub-divided to get well balanced pipelined structures of high data throughput.  

 

  
Figure 7.1. Stereo-system hardware architecture. System calibration parameters are stored and used as input shifts 

(horizontal and vertical) for the camera frame-grabbers of stage S0. At stage S1 the local contrast is removed to 

eliminate even quadrature filter DC response. At S2 we compute the even and odd Gabor outputs (where ‘S’ stands 

for the sine or odd Gabor filter and ‘C’ for the cosine or even filter). Note that left and right images have parallel 

pathways during these stages (high processing performance is enhanced by replicating scalar units). ‘L’ and ‘R’ 

denote the responses coming from the left and right images. Stages S3 to S6 implement the direct phase-difference 

computation as described in Equation (6). Left and right image responses are combined during these stages into two 

different datapaths. The upper pathway (A) computes the quadrature filter output energy, which is used as a 

confidence measure. The bottom pathway (B) computes the phase difference. Note that the efficient use of the 

intrinsic parallelism available in the FPGAs is achieved by a customized pipeline processing architecture based on 

well balanced parallel computing blocks at different stages. It  allows the computation of one estimation per clock 

cycle. For this purpose we have designed a micropipelined architecture. In the upper part of the figure we indicate in 

brackets the number of micropipelined steps at each functional stage; in stages S5 and S6, ‘/’ is used to indicate the 

different number of micropipelined steps of each of their parallel datapaths (A/B). 
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 According to this strategy, the system is configured in 7 functional stages 

(coarse grain pipelined structure) which are divided into fine-grain pipelined sub-stage 

data-paths. This leads to a total latency of 115 clock cycles (equal to the number of fine 

pipeline stages) and a data throughput of one estimation per clock cycle.  

 The stereo architecture according to this strategy is shown in Figure 7.1. There 

are two parallel pathways which process each camera image to compute the Gabor-

filtered values (implemented as optimized convolution circuits). The level of parallelism 

at each stage has been expanded to achieve a data throughput of one estimation per 

clock cycle. The direct phase-difference calculation of equation (4.12) is based on two 

different paths, (A) and (B) of the circuit. The unit (B) computes the disparity value and 

the unit (A) measures the confidence estimation (module of the quadrature filters’ 

output).  We use this confidence measurement since phase is not clearly defined near 

module singularities and therefore no reliable information is present at these points 

[COZ97]. The TH Buffer is a memory buffer used to balance the two processing paths 

(A and B).  The system has been fully implemented in a stand-alone board as a 

prototype for embedded applications (the RC300 board [CEL06d]). This complete 

system set-up is shown in Figure 7.2. All the processing operations are computed in the 

FPGA device as a System-on-a-Chip (SoC), which also contains the camera’s frame- 

grabbers, memory management units, VGA controller and user interface. 

  

 
Figure 7.2. Stereo processing system set-up. 
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7.3. Analysis of System requirements 

 

The full system has been successfully implemented on a Xilinx Virtex-II FPGA 

[XIL06c]. The system frequency is 65 MHz and due to the regular data-path of the 

proposed model, we achieve one pixel per clock cycle. This means that we can compute 

up to 65 megapixels per second (arranged as 52 fps of 1280x960 pixels per image for 

instance). The consumption of system resources has also been evaluated. The factors to 

take into account for implementation are those of model degradation due to limited 

fixed-point bit-width and to the Gabor-filter wavelength (large values improve the 

disparity range but consume more resources).  

 

7.3.1 Bit-width study 

 

Several decisions have been made about the data representation and bit-width in each 

pipeline stage based on our utilization of MCode for DSP Analyzer. The bit-width of the 

convolved images with the Gabor filters is critical because its precision affects the 

following stages in two ways: firstly the bit-width of the next computation grows 

concomitantly with the square of the number of bits of this stage and secondly, any 

limitations in precision are transferred to the following stages reducing the system 

accuracy.  

 Therefore, in order to optimize the accuracy vs. efficiency trade-off we focus on 

this stage (S2). We process a couple real images (shown in Figure 7.4) with a software 

implementation of the model using double floating-point data precision. We store the 

disparity values for future evaluations. Then, the filters output is recalculated using 

signed fix-point arithmetic of different bit-width (from 2 to 32) and we obtain the 

disparity estimation using this limited precision implementation. In this implementation 

the RMS error metrics has been used instead SQNR (used in Chapter 5 for local image 

features) for the sake of clarity (disparity error are easy to evaluate). This show how we 

benefit from the flexibility of MCode for DSP Analyzer that easily adapts to different 

quantization error metrics.  
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(a) 

 

(b) 

 

(c) 

 
Figure 7.3. Quadrature filters, stage S2, bit-width study. (a) Root-mean-squared (RMS) 

disparity error. (b) Number of equivalent gates (hardware cost) vs. bit-width. (c) Number of 

reliable data (normalized to 1) for the different bit-width choices. The filled squared 

represent our 9 bits choice which represents a well balanced trade-off between system 

accuracy, density and hardware cost. 

 

 Figure 7.3 represents the study of the bit-width influence in the global system 

accuracy, reliable density estimations and hardware cost. The RMS error between 

double floating-point and restricted precision fix-point arithmetic version is represented 

in Figure 7.3.a.  The difference is caused by the data representation bit-width which is 

fixed independently of image quality. We also calculate a confidence measurement that 
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helps us to filter unreliable estimations. As future work we plan to study if we could use 

this confidence measurement to adapt dynamically the bit-depth of the data 

representation. This would require using dynamic reconfiguration. 

 The hardware cost of the whole system depending on the precision on this stage 

is illustrated in the 7.3.b. image. These data are extracted synthesizing the whole system 

width different bit-widths. Finally, using the confidence measure parameters, Figure 

7.3.c. shows that low densities are selected for very restricted bit-width. Note that in 

Figure 7.3.a. the RMS values are very low but this is not important since these points 

represent very low density values, as it is shown in Figure 7.3.c. 

 

Based on this study, our stages are developed as follows:  

 At the convolution stages the processing is done with fixed-point data representation 

of 9 bits.  

 Intermediate data precision is 19 bits using fixed-point arithmetic, avoiding bit 

wrapping or saturation operations.  

 The division operation is implemented using a Xilinx pipelined division core 

[XIL06b] with 24 bits (19 bits from the above data plus a fractional part of 5 bits for 

the arctan function).  

 The arctan function is implemented using a look-up table of 1024 addresses of 10 

bits with 5 fractional bits. Using symmetry, only the [0, π/2] interval is sampled. A 

decision logic based on the input data sign allows us to recover the quadrant of the 

angle within the full range [-π, π]. This simple scheme allows a maximum 

estimation error of 0.03 rad for the arctan function with a very simple logic and 

therefore complex circuits, such as CORDIC [VAL02] for example, are not 

required. 

 

7.3.2. Hardware resources consumption 

 

Table 7.1 shows the required resources for the whole system with the choice described 

above (Section 7.3.1). The first row indicates the calibration-system circuit resources 

and the following rows show the consumption for each Gabor scale, which grows for 

longer scales. We consider these bit widths as good trade-offs between the system 

accuracy and hardware resource requirements. Note that in Figure 7.3.b, for bit-widths 
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higher than 18 there is a clear increment in the FPGA resource usage. This is because 

the width of the FPGA internal multiplier is exceeded. 

 Each design is characterized by the Megapixels per second and is completely 

modular. Therefore we can choose different resolution versus frames per second trade-

offs. The 65 Mpps of performance also has been used for population coding simulation, 

using the system as coprocessing unit  based on time-slicing techniques, see [DIA06j] 

for details.  

 Besides the calibration stage, the FPGA reconfigurability also allows different 

image scales computation. Provided that stereo techniques work better for small 

disparities, we have designed three different scales, with Gabors filters of 15, 31 and 55 

taps.  In that way, depending on the image structure, our FPGA can be reconfigured for 

different scales to estimate the range of disparities that match better the image structure. 

It is important to note that larger filters work as low pass filters and high frequency 

image structures are lost; therefore, Gabor filters must be tuned to the desired 

application to get the best results. 

 
Table 7. 1. System resources required on a Virtex II XC2V6000-4. First row: simple camera calibration 

system. Following rows: phase-based stereo device using several Gabor scales. (Mpps: mega-pixels per 

second at its maximum system processing clock frequency.) EMBs stands for embedded memory blocks. 

Slices / (%) EMBs / 
(%) 

Embedded 
multipliers / (% ) Mpps Gabor spatial scale 

(filter length) 
Image 

Resolution Fps 

2864 / (8%) 1 / (1%) 0 / 0 70 - 640x480 56 

6411 / 
(18%) 

15 / 
(10%) 21 / (14 %) 15 

9197 /  
(27 %) 

39 / 
 (27%) 31 / (21 %) 31 

13048 / 
(38%) 

71 / 
(49%) 59 / (49 %) 

65 

55 

640x480 
1280x960 

211 
52 

 

7.4. Performance evaluation 

 

Figure 7.4 shows the disparity estimation for a couple of real binocular image pairs. 

Gray levels encode depth information (lighter levels indicate closer objects). Software 

(with double floating-point representation data) and hardware (with limited fixed-point 

data representation) approaches are compared. Qualitatively, the degradation is very 

low.  



190                                                                         Multimodal bio-inspired vision system 
 

  

(a) 

  

(b) 

  

(c) 

 
Figure 7.4. Software vs. hardware implementation: (a) original images, (b) software stereo 

processing, and (c) hardware stereo processing. The image on the left was processed using a small 

scale (Gabor filters with a length of 15 pixels) and that on the right with a medium scale (Gabor 

filters with a length of 31 pixels). Note that only small differences are visible as an increase in salt-

and-pepper noise (more visible in the right-hand image) in the hardware results due to the restricted 

precision available in the hardware implementation. 

  

 For a quantitative study, we measure the quantization error of the images in 

Figure 7.4, which have significantly reduced bit-width. We measure the mean disparity 

error for the left and right images obtaining values in the interval [0.05, 0.06] pixels. 

This represents a negligible noise contribution compared to the error coming from the 
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stereo estimation model itself which hardly achieves a precision higher than 0.1 pixels 

on arbitrary scenes [BRO03]. We conclude from these measurements that the system 

quantization degradation versus the hardware resources consumption (table 7.1) trade-

off is appropriate. For more details on the bit cutting procedure see previous Section and 

[DIA05a], [DIA05b].  

 Given that stereo techniques work better for small disparities, we have designed 

three different scales, using quadrature filters with a length of 15, 31 and 55 pixels. The 

Gabor-filter wavelength determines system quality according to image resolution and 

disparity range. The disparity range for each circuit is +/- 4 pixels, +/-8 and +/- 14 

pixels respectively [COZ97]. It is important to note that larger filters work as low-pass 

filters and high-frequency image structures are lost; therefore, although the first stage of 

camera calibration reduces overall image displacement, the Gabor filters must be tuned 

to the desired application to get the best results. 

 According to this strategy, the implementations presented here, which only 

compute one scale, must be scale-tuned according to the application addressed and 

image structure required. This is done by the user (or agent), who can reconfigure the 

circuit (i.e. the FPGA device can be reprogrammed in less than 400 ms) from the system 

interface or PC command line to change the disparity scale. Future studies will try to 

combine different scales dynamically based on the image structure without the need for 

intervention by the user.  

 The evaluation of the system performance should consider the image resolution, 

frames per second and number of cameras. It is also important to consider the searching 

area where the two images are compared (small searching areas or filter lengths require 

less computing performance than larger areas). According to that, we use a common 

comparison metric of stereo-vision systems [DAR03], [DAR06] in order to rank the 

system, the performance is given by measuring the number of disparities computed per 

second. This is the PDS (Point-time Disparity per Second), measured as: PDS=N•D•(C-

1), where N is the number of pixels processed per second, D the number of disparity 

values estimated (the disparity range) and we also include C which is the number of 

cameras to extend the metric to multi-baseline stereo approaches. Please note that this 

metric only measures the system performance and not the architecture complexity 

which is based on different factors such as the disparity estimation model and the 

computing platform.  
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 Using this metric our binocular system achieves different performances 

according to the Gabor scale and consequently shows different system-resource 

consumptions. Expression (8.1) calculates the performance of the system in terms of the 

PDS of the different configurations based on scales of 15, 31 and 55 Gabor-filter 

lengths. The disparity range for each circuit is +/- 4 pixels, +/-8 and +/- 14 pixels, which 

gives us equivalent D values of 9, 15, and 29 respectively. Thus, the corresponding PDS 

values are as follows: 

⎪
⎩

⎪
⎨

⎧

=⋅
=⋅

=⋅
=⋅⋅=−⋅⋅=
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(8.1) 

 A comparative performance study is shown in Table 7.2. The large differences 

between architectures (standard processors, custom hardware, Graphical cards and 

FPGAs) makes difficult a direct comparison but it is still worthwhile to illustrate how 

well each approach fits the stereo computation task. We use the system raw 

performance in PDS as performance metric unit. 

 There are recent Software based approaches but most of the processing 

platforms are based on FPGAs [DRA03] and they use different FPGA families with 

different performance that bias the comparison due to technology advances. Because of 

that we are not taking into account the resources consumption. In FPGA based 

approaches we try to reduce the bias due to technology advances by normalizing the 

PDS performance by the clock frequency as shown on Table 7.2. The performance 

obtained by our system is faster than the earlier block-matching-based binocular 

implementations commented in [BRO03] (whose fastest version is included in the sixth 

row of Table 7.2).   

 In terms of PDS our system outperforms the fastest non-comercial 

implementation in Table 7.2 (more concretely, the approach of Niitsuma and Maruyama 

[NII04], by a factor between 2.3 and 7.5, depending upon the chosen Gabor scale). 

Similar outperforms are achieved using the normalized PDS. Note that this system 

[NII04] uses the same FPGA technology and fast clock frequency but our outstanding 

performance is based most significantly on the optimized computing architecture 

described in this chapter. This becomes clearer when we compare the normalized PDS 

to evaluate the computing parallelism of the different approaches. Our system achieves 

far higher normalized PDS through the intensive use of the parallel processing resources 

available at the FPGA device (mainly due to the fine pipeline architecture). 
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Table 7. 2. Performance comparison of selected real-time binocular systems. We have only included 

systems with performance information available in the literature. In the systems based on FPGAs we also 

include the normalized performance measures PDS/fclk in order to facilitate the evaluation of the 

efficient use of the parallel resources available at these devices. 

Real-time 
system 

Image 
resolution fps Disparity 

range 
PDS x106 / 

[PDSx106/fclk] Method Processor 
type 

Proposed 
here 1280x960 52 

9 
15 
29 

585 / 9 
975 / 15 
1885 /29 

Phase based 
Custom FPGA, 
Xilinx Virtex-II 

(65 MHz) 

Gong and 
Yang 

[GON05] 
(2005) 

512x384 14.7 40 117 / -- 

Correlation-
based with 

image-
gradient-

guided cost 
aggregation 

Pentium 4 
3GHz 

equipped with 
an ATI 9800 

XT (412 MHz)

Forstmann 
et al. 

[FOR04] 
(2004) 

256x256 
640x480 

1024x1024 

30.4 
7.23 
2.2 

100 
200 / -- 
222 / -- 
230 / -- 

Dynamic 
programming 

AMD 
AthlonXP 
2800+ and 

MMX  
optimization 

Niitsuma 
and 

Maruyama 
[NII04] 
(2004) 

640x480 30 27 248.8 / 3,66 Correlation. 
SAD 

Custom 
FPGA, Xilinx 
Virtex-II (68 

MHz) 

Darabiha et 
al. [DAR06] 

(2006) 
360x256 30 20 55.3 / 1,1 Correlation 

phase-based 

Custom 
FPGA, Xilinx 

Virtex, 
(50MHz) 

Woodfill, 
and Herzen  
[WOO97] 

(1997) 

320x240 42 24 77.4 / 2,35 Census 
matching 

Custom FPGA 
Xilinx 

XC4000 
(33MHz) 

Focus 
Robotics 
[FOC06] 

752x480 30 94 1017/ -- Correlation. 
SAD (9x9) 

Xilinx 
Spartan3 

Videre 
Design 

[VID06] 
640x480 30 64 589 / -- Correlation. 

SAD (15x15) 
Xilinx 

Spartan3 

T. Kanade 
et. al. 

[KAN94] 
(1994) 

256x240 24,4 20 30 / -- 

Multi-
baseline 

Correlation. 
SSAD 

Custom HW & 
C40 DSP  (2-6 

cameras) 

 

 Table 7.2 also includes approaches with software implementations using graphic 

cards and MMX extensions [FOR04], [GON05]. Despite the computing performance of 

such systems being quite high, they consume all the resources of the computer, 

rendering it impossible to compute higher level algorithms based on stereo in real-time. 

Furthermore, it is difficult to use these approaches on mobile platforms for embedded 

applications such as robotics or smart sensors.  
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 We have also included some recent commercial products based on FPGAs 

processors [FOC06], [VID06]. These are very good engineering solutions from 

companies which use well-known block-matching technique with SAD as similarity 

function. Despite their high performance, especially for the approach of [FOC06] with 

performance similar to our design, their main limitation coming from the chosen 

approach. As commented in [SCH02], they have regular disparity estimation quality. 

Furthermore, correlation based approaches suffers from radiometric problems and 

present a high dependence on light conditions and other environment options which 

make these systems a valuable solution but only for specific applications. 

 Finally the last row of Table 7.2 shows a very interesting approach [KAN94]. In 

this case the comparison with our system is not fair because they build a full custom 

system which can not be easily updated (while our approach easily takes advantage of 

the continuous technology advances). Furthermore this system has very high power 

consumption while in ours everything is built on the same chip that significantly 

reduces the required power. 

 There are also commercial products such as Bumblebee and Digiclops® from 

Point Grey Research [POI06]. These devices consist of calibrated stereo cameras plus 

software libraries to compute the stereo. We have not included these devices in the 

comparison in Table 7.2 because the information about processing performance on 

standard computing platforms is obsolete.  

 

7.5. Improved system based on population coding 

 
The main limitation of the previous system is the limited range of disparities available 

due to the linear approximation of the phase model. Theoretically this is λ/2 (being 

λ=2π/k0 the period of the tuning frequency of the Gabor filter) but experimentally is 

about λ/3 (for details see [COZ97]). Usually the solution found in the literature consists 

of a coarse-to-fine approach, using confidence values from coarse scales to warp the 

image at fine scales. The problem of such an approach is that wrong estimations 

propagate from coarse to fine scales. 

 Contrary to this approach, a parallel processing of spatial scales with a fusion 

integration stage is more biologically plausible. In a similar way to [FLE94], the scales 

are processed in parallel and integrated using a similarity measure. Shift neurons could 



Chapter 7. High performance stereo computing architecture                                        195 
 

  

also be added ([FLE94], [POR02]) to improve the disparity range using neurons with 

overlapping disparity tunings. Contrary to Fleet’s approach ([FLE94]), which uses 

Gabor filter correlation and sub-pixel estimations by linear interpolation, we propose a 

scheme which uses Sum of Absolute Differences (SAD) over the energy of the shifted 

cells (which is more hardware-friendly because it avoids square roots and division 

operations) [DIA06j]. At this stage, the cell with the lowest response encodes the 

winner shift value which achieves the best disparity tuning. Phase difference for sub-

pixel estimation (instead of linear interpolation methods) is used to obtain sub-pixel 

disparities values. The shift offset obtained with SAD, is calculated with the value 

obtained from the basic model providing the improved subpixel disparity estimation. 

This is schematically shown in Figure 7.5.  

 

 
Figure 7.5.  Population coding for binocular disparity estimation based on shifted neurons and SAD 

similarity measure. 

 

 Qualitative results for this model are shown in Figure 7.6. Note that the disparity 

range and resolution are improved, obtaining smooth variation and disparity details.  
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(a) (b) (c) 

  

   
Figure 7.6. Basic vs. modified stereo model.  (a) Original images, (b) Original stereo 

model described in Section 4.4. (c) Results using the multiple estimation based model 

described on this section. The disparity is encoded in grey levels, light pixels indicate 

short distances.  

 

 The processing speed of our system using a customized frame-grabber allows us 

to test several population types and fusion methods in real time, using for example the 

basic system described in Sections 7.2 as a coprocessing board. For example, we can 

process each image pair 8 times, using 3 spatial scales and a shifted distribution of 5 

neurons with overlapping disparity tuning to increase the available range of disparities 

obtaining an equivalent circuit running up to 26 fps of image sizes of 640x480 pixels 

using approximately the same system resources (memory resources demand is 

increased). Shift neuron just implies offset values in the frame-grabber of one of the 

cameras and the different scales imply just changing the Gabor filter coefficients. 

Therefore, we use the same primitives described in Section 7.2. Furthermore, the 

outstanding processing speed achieved by our approach allows us to use the same 

circuits to process the images repetitively (with different shifts and filter scales) storing 

the results to be integrated in a simple winner-takes-all stage. In this fusion module we 

just take at each pixel the disparity value (among candidates) with the highest 

confidence value. 
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7.6. Conclusion 

 

We present a bio-inspired model implemented onto programmable hardware that runs 

on a stand-alone chip for embedded applications. The pipeline processing structure, 

including some well balanced parallel processing modules, efficiently computes phase-

based disparity estimations. The most important contribution of this chapter is the 

efficient implementation of a vision model on specific circuits adopting a well 

structured design strategy, as described in Section 7.2. The regular data-path is able to 

compute one pixel per system clock cycle. This efficient use of the parallel computing 

resources available on FPGAs plus a fine-grain pipeline design lead to an outstanding 

processing speed (65 Megapixels per second, which can be arranged as 52 fps of 

1280x960 pixels per image). 

 The system includes an automatic pre-calibration stage to improve the system 

disparity range as well as the possibility of switching between spatial filters scales 

according to the application addressed and image structure in the target scenario. We 

have measured the system degradation due to bit-width restrictions and decided upon a 

good trade-off between degradation and resource consumption. 

 In the future we plan to study the implementation of a multiple-scale stereo 

system that takes advantage of the designed architecture and combines the different 

scales according to the image structure presented in the neighborhood of each image 

point. We are also planning to address the integration of population schemes as showed 

in Section 7.5 in order to analyze plausible biological models for stereo vision 

computation.  
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This chapter proposes a lane-change decision aid system for monitoring vehicle 

overtaking scenarios. The system is based on the real-time optic flow systems 

described in the Chapter 6. We describe the system and evaluate its performance 

with a benchmark database of real overtaking sequences taken using instrumented 

cars which makes possible to know parameters such as the detection distance at 

which the vehicle that is approaching is reliably tracked. 
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8.1. Introduction 

 

The work presented this chapter was carried out within the framework of the 

ECOVISION Project [ECO06]. One of the objectives of the ECOVISION consortium 

was the development of pre-cognitive visual models for real-world environments. In 

particular, a rear-view-mirror blind-spot monitor and a driver-distraction alert system 

are presented as a feasible problem in which motion processing can provide useful cues 

for the motion pattern based segmentation of an overtaking car.  

 Current techniques concerning car tracking usually focus on road-traffic 

monitoring. The use of video cameras with computer vision techniques offers an 

attractive alternative to current sensors due to their ability to measure a greater variety 

of traffic parameters (e.g. entry/exit statistics, journey times and incident detection) 

[ATE06],  [SET01]. Although the use of an image-processing system in a car is not 

straightforward since it requires an embedded processor capable of computing images 

from moving cameras in real-time, blind spot and driver distractions are such important 

sources of accidents that the European Commission is studying specific actions to 

eliminate the blind spot on motor vehicles [DIR03]. A lane-change assistant should 

recognize vehicles in the blind spot and warn the driver if he starts changing lane. A 

standardization committee has been formed on the subject of a Lane-Change Decision-

Aid System (LCDAS). To evaluate this system a preliminary draft of the ISO standard is 

applied here (ISO / TC204 / WG14 / N40.27).  

 Over the last few years driver-assistance systems have become a priority for car 

manufacturers. Nowadays, on-board image processing platforms and cameras are more 

in demand for help in lane keeping and the detection of impending collisions from fast-

approaching or lane-changing vehicles [HIT06], [MOB06], even to the extent of 

including stereo cameras [RCM06] or radar-stereo fusion [BRO05] to estimate the 

distance to collision. Some companies, such as Mobileye N.V. [MOB06], Volvo 

[VOL06], and Fico S.A. [FIC06], have apparently developed some aids to lane-change 

decision making but no reports on their technical details or the performance of these 

approaches have as yet been published. Their initiatives only cover the application itself 

but with no benchmarking information to validate their systems, making it impossible to 

compare the different approaches. There is also a product based on radar sensors 

[HEL06a] to solve the same problem but again it lacks any validation information. 
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Furthermore, the impossibility of acquiring such sensors indicates that they are still at a 

predevelopment stage, with some problems still to be solved.  

 In our approach we use a monocular camera within the car that allows us to 

detect the overtaking vehicle by using optical-flow algorithms. This system can be used 

to generate alert signals to the driver. The optical-flow-driven scheme has several 

properties that can be very useful for car segmentation. Basically, by focusing on the 

optical-flow field we should find static objects and landmarks moving backwards (due 

to our ego-motion) and the overtaking cars moving forward towards our vehicle. 

Nevertheless, there are several artefacts such as perspective deformation and camera 

vibration that can affect the performance of the system. The proposed scheme needs to 

address these kinds of artefacts.  

 The application involves significant challenges. Most of the contributions 

developed for traffic analysis work with static cameras [SET01], [HSU04], [DES05]. 

On-board cameras increase the complexity of the system considerably, partly because 

the algorithm needs to deal with non-static scenarios (which means complex algorithms 

to analyse the scene), and partly because the processing frame rate becomes a critical 

factor for such analysis. On-board cameras have been used for lane tracking [APO04], 

[MCC06], and also in front/back vision for obstacle avoidance [RCM06], [DAG04], but 

the application we present here focuses on a different field of view, the rear-view 

mirror. It is important to emphasise that we have to deal with such important factors as 

perspective deformation [MOT04a], [MOT04b] and in order to perform satisfactorily 

the proposed system needs to overcome this problem.  

  One important implementation issue concerns the co-design strategy, i.e. 

deciding the software/hardware code partitioning, which will have an important impact 

on the final flexibility of the system and its cost. The working scheme that we have 

adopted is composed of two very different stages. In the first step we have customised a 

FPGA device (to be used with embedded systems) for real-time motion processing 

[DIA04b], [DIA04c]. The chosen optical-flow scheme uses a gradient model based on 

the classical approach of Lucas & Kanade [LUC81], [BAR94]. As mentioned in 

[DIA04c], this model achieves satisfactory optical-flow accuracy using affordable 

hardware resources. We have used a high-level hardware description language (Handel-

C, see [CEL06c]), which allows us to describe hardware using high-level (C-like) 

algorithmic structures. This makes it easy to decide the critical code to be implemented 

on a customised DSP. In the second step, based on the previous motion-salience map, 
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we combine Kalman filtering techniques with appropriate filtering operations to 

compensate the effects of perspective deformations in order to arrive at a reliable 

estimation of a car’s position in the scenario.  

 

8.2. Car Tracking 

 

What is the aim of the system? The system has to warn the driver of impending critical 

situations during a lane change. Critical situations occur in different possible scenarios:  

1. A vehicle is beside the lane-changing car in the so-called blind spot and the 

driver does not realise that his lane change would cause a critical situation.  

2. A car is coming up at relatively high speed, which would also result in a 

dangerous situation if the driver were to change lane.  

3. The absent-minded driver begins to change lane without noticing that an 

overtaking car is approaching. 

  

 Within this context, we are only interested in the approaching car closest to us, 

so we begin the local searching within the right-hand area of the image (Figure 8.1)1. 

We are interested in detecting the car as soon as possible and not losing track of it, 

especially when the car is close to us. Furthermore, the proposed application needs to 

direct alert signals at the driver to prevent an accident. Therefore we estimate the car’s 

position and the confidence level. This facilitates the generation of the alert signal.  

 

8.2.1. Pattern selection and optical-flow filtering templates 

 

Optical flow is a well known method used for motion-based segmentation [WEB97], 

[YAN03] and according to our previous results [MOT05] we have validated this 

approach for the on-board segmentation of overtaking vehicles. In our system some 

simplifications can be made because of the structure of the problem addressed. We 

consider only rightward movements. During overtaking manoeuvres the approaching 

car is moving to the right-hand side of the rear-view image so we do not need to 

                                                 
1 For the sake of clarity we only consider right-hand driving with the steering wheel on the left and left-
hand overtaking. 
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consider leftward velocities (Figure 8.1). Wrong velocity estimations of the optical flow 

are frequent; therefore we need to clean up these erroneous patterns in the next steps. If 

Vx is the x component of the velocity, Vy is the y component and k the minimum reliable 

velocity component module, the velocity set that we use should verify Vx>k and |Vy |<Vx. 

This allows us to consider only rightward motion and take into consideration the focus 

of expansion in the rear-view mirror, which apparently produces both vertical and 

horizontal patterns for the moving objects.  

 The proposed system uses templates that filter the motion-saliency map. We use 

them to clean up the optical flow of the previous stage and maintain only the more 

reliable data to compute the position of the overtaking vehicle. This scheme fits quite 

well into specific hardware because the operation can be implemented as convolvers.  

 An object will pass to the next stage if it has enough active points in the 

neighbourhood circumscribed by the templates. The template forms are rectangles that 

grow along the x axis towards the right-hand side of the image, where the vehicle is 

expected to be larger (cf. Figure 8.1).  Each spatial position has an associated template 

that establishes the minimum number of points and the neighbourhood area to carry out 

the search. Pixels without enough active neighbours are neglected. The values of active 

neighbours are experimentally determined using the overtaking-car sequence database 

provided by Hella KGaA Hueck & Co. [HEL06b]. A typical value of the threshold of 

active points related to each template is 50% of all the points inside the template. 

 

 
(a)                                   (b)                                 (c)                                (d) 

Figure 8.1. Vehicle segmentation example. (a) Overtaking car sequence. (b) Original optical-flow 

saliency map (colors indicate velocity orientations: red encodes rightward motion and blue-green 

pixels encode leftward motion). (c) Templates for filtering the optical flow based on rectangles to 

estimate the car’s position. (d) Final result (segmented car) after applying the filtering. 

 

 Centroid computation of the saliency map gives us an estimation of the car’s 

position but this is correct only for continuous overtaking. Some more complex and 

realistic situations need to be solved: 
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1. Static overtaking: An overtaking car seems to stop (and its optical flow 

vanishes) because it maintains the same velocity as the car being overtaken. In 

this situation we need to maintain the car’s estimated position for a certain time.  

2. Multiple car overtaking. This is a very common situation on highways and one 

that we need to solve.  

 

 Another subject to address is the minimum number of overall valid pixels that 

gives us reliable car-position estimations. When there are no cars in the sequence, or 

they maintain the same speed as our own car, no valid data should appear in the saliency 

map. We use a confidence threshold for the remaining data to keep only reliable 

features active. The threshold is dynamically adapted according to the system’s recent 

record, using a threshold function which decreases linearly with time in the absence of 

inputs (enhancing the system sensibility) and increases when a high number of inputs 

are presented (improving the system’s reliability). Besides, this threshold also varies 

according to the car’s estimated position using our a priori knowledge about the mirror 

perspective deformation. Higher thresholds are used in the right-hand area of the image, 

where candidate cars are expected to be larger. Furthermore, the motion extracted in this 

area is noisier because speeds are higher. A study concerning perspective deformation 

and the different techniques available to minimise this deformation can be found in 

[MOT04a]. 

 

8.2.2. Solution for static overtaking. Kalman filtering 

 

We need to use a memory system to retain the vehicle position when it remains 

stationary relative to our car. Traditionally Kalman filtering has proved to be 

satisfactorily in resolving many problems involved in predicting the position of moving 

targets [DEL97], [GAO05] and is even useful for complex motion prediction [JUN97]. 

It is also advisable because of the inherent latency of the system’s processing. Although 

the proposed platform can compute 25 fps, the optical-flow processing unit has a 

latency of 3 frames. This means that the estimated position of the car undergoes a short 

delay with respect to its real position. This is not a problem for low relative velocities 

but when the velocity is high it might result in the system’s underestimating the car’s 

position. The capability of Kalman filtering to predict position allows us to overcome 
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the artefact produced by this inherent processing latency, thus increasing the system’s 

reliable detection distance.  

 As far as hardware feasibility is concerned, we have used simple Kalman filter 

equations that basically act as a short-term memory system with prediction capability. 

The process model we use is described by equation (8.1), where σQ
2 is a model 

parameter. 
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(8.1) 

 The system state depends on the position and velocity estimations at the 

previous instants using the memory gain parameter gm. This parameter is a constraint 

which implies smooth velocities and which, for this application, can be gm(x). The 

variables x’k+1, y’k+1, vx
k, vy

k are measured using an iterative centroid computation as 

described in the section below. The vector ξ represents a random Gaussian white vector 

of zero mean that models the additive noise and has a diagonal covariance matrix, Qk, 

which is also defined in equation (8.1). This model makes the assumption that the 

velocity is constant and that the noise can be seen as an acceleration of the object. For 

the measurement model we use equation (8.2). 
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(8.2) 

Vector µ, as ξ in the previous equations, represents a random Gaussian white vector of 

zero mean that models the additive noise and has a diagonal covariance matrix Rk with 

σR
2  as model parameter. 

 

8.2.3. Solution for multiple car overtaking: iterative process 

 

For our application, a multi-target tracking system is unnecessary. We only need to 

know whether there is at least one car in a relevant situation. We use an iterative 

computation with several steps to compute the car’s position. In the first step we use all 

the saliency-map points of the whole image to give the estimated position of the car, 

which will be the correct position if there is only one car. When there are several targets 

in the system, however, the main goal is to detect the position of the car closest to us. 
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 Therefore, we focus on the right-hand area of the image, using the computed 

centroid position as the left-hand image boundary. We try to calculate a centroid of this 

restricted area in the image if we have significant features; otherwise we take the 

previously calculated value. We can repeat this computation several times until the 

estimation converges or we can use a limited number of iterations. For our system we 

have used only three iterations to get adequate results. A qualitative example with some 

frames of an overtaking sequence is shown in Figure 8.2. The car labelled (1) is tracked 

(frame A); once it passes, the vehicle estimation searches for a new vehicle (frame B). 

The car labelled (2) is found and tracked (frames C and D); when this vehicle has 

overtaken the system looks for the next car and finds the one labelled (3) (frame E). 

 

Figure 8.2. Multiple cars overtaking on a highway on a cloudy day. Number labels on the top of the cars 

are added to clarify the process. The reliable position is marked automatically by the system in the figures 

using a white cross. 

 

8.2.4. Confidence measure estimator discussion 

 

After the optical-flow filtering step, the resulting image contains only reliable points for 

the centroid computation. If there are only a few points remaining, no reliable 

information can be obtained and no estimation can be arrived at. The number of 

confidence points (NCP) also varies with the evolution of the system. Closer cars 

appear larger in the image due to perspective so NCP must increase with the estimated 

car position moving rightwards. Nevertheless, with a small confidence threshold (CTH) 

we can effectively get a stable vehicle position and a stability signal that indicates the 

confidence of our system on the acquired data. Sometimes the optical flow is very noisy 

(on a bumpy road for example) and, despite the number of thresholds imposed to 

compensate them, some mistakes appear (such as the isolated points shown in Figure 

8.3). These spurious estimations should not be allowed to trigger the alarm signal or 

they would compromise the driver’s confidence in the monitoring system. Although 
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from an engineering point of view the number of errors presented as isolated dots in 

Figure 8.3 is not significant (less than 2%), from a psychological point of view, false 

positive alarms significantly  affect the driver’s confidence. Therefore our alarm system 

only triggers in the shadowed areas in Figure 8.3. The system can also benefit from 

methods for monitoring the driver vigilance (such as eyetrackers [BER06]) whose 

information can be efficiently used to inhibit or increase the alarm signal generation. 

This is important to reduce the number of unnecessary alarms which represents an 

interesting topic to be explored in future works. 

 

 
Figure 8.3. Example of confidence car-tracking estimators for an overtaking sequence of three 

cars. Target vehicle closing speed is about 15 m/s. Black dots represent the estimation of the 

car’s position using centroid computation from optical-flow data. There are still some isolated 

errors. Filled areas represent high confidence frames in which the car’s position is estimated 

reliably (i.e., exceeding the confidence thresholds) and isolated points represent unreliable data. 

The horizontal line represents the vehicle-position threshold to trigger the alarm signal. 

 

 To solve this situation a very simple hardware-friendly scheme is adopted. Using 

a temporal memory window of 7 frames and median filtering of the stability signal we 

finally achieve high confidence, high stability and high reliability in deciding when we 

are in critical situations. The temporal persistence of the stimulus allows us to reject 

noisy inputs and thanks to the large detection distance (provided by subpixel optical-

flow configuration) we can utilise this median filtering without loss of performance. 
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The final system output is represented by the grey areas in Figure 8.3, corresponding to 

three different overtaking cars. These areas represent the alarm signal which a driver 

will see if he tries to steer towards the overtaking car lane.  

 The scheme shown in Figure 8.4 summarizes all the computing stages described 

above.   

 

 
Figure 8.4. System functional blocks. Note that the different thresholds adapt dynamically 

according to the evolution of the recent scenario. Final alarm decision uses overtaking-car 

position, car-steering sensors and blinkers. 
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8.3. System architecture and FPGA resources consumption 

 
The global system architecture is represented in Fig. 8.5. We have implemented a very 

regular datapath (without requiring specific interrupt handling) with a very deep 

pipeline structure (more than 70 stages) in order to achieve high performance. 

 The synchronization between the different processing units (frame-grabber, 

motion processing core and tracking unit) is done using specific memory data buffers 

which solves the problem associated to the different clock frequencies. The computing 

platform used to ZBT SSRAM memories whose capabilities have been exploited using 

a specifically designed Memory Management Unit (MMU) described in Chapter 6 that 

minimizes data delays and latencies. It is especially useful for the temporal filtering 

stage of the motion processing unit because it enables the use of FIR temporal filters 

which provide more stable estimations. 

 

 
Figure 8.5. Overtaking monitor system architecture. All the processing stages and interfaces have 

been implemented using the FPGA as control element and processing unit. The whole system 

requires two external memory banks, a camera and vehicle interfaces for the alarm generation and 

external inputs encoding vehicle information such as speed, steering or lateral indicators. 

     
 
 The memory interchange strategy makes use of delays between processing units 

as synchronization technique. This makes possible the design of a very deep pipeline 
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processing structure without using branch predictions that would degrade the 

performance. The high system throughput is based on this deep pipeline and on the 

parallel scalar units of different stages designed according to the Lucas & Kanade 

algorithmic complexity. Well balanced units are used to achieve a final system 

throughput of one estimation per clock cycle. 

 The performance of the optical flow unit makes possible to take advantage of 

high frame-rate cameras reducing the speed range to be processed (more time 

resolution) and leading to accurate tracking. Each stage has been designed with 

customized bit-widths from 8 (in the first stage) to 19 bits (in the last stage) with fixed-

point and floating point data representation depending on required precision. More 

details about this architecture are given in Chapter 6.  

 In the tracking unit the templates computation has been implemented using 

convolution kernels which collect the information of the neighbourhood of each pixel 

[DIA06d]. The iterative process only requires some boundary image control to choose 

the area in which the centroid is computed. Finally, the Kalman filtering uses simple 

arithmetic operations which are computed once per frame.  
 
Table 8.1. Basic stages gates resources consumption (results taken from the DK synthesizer [CEL06b]). 

 

Pipelined stages NAND gates FFs Memory bits Max clock 
frequency (MHz) 

Interfaces  + hardware 
controllers 65881 2363 18208 45 

Motion Processing core 1145554 6529 516096 45,5 

Tracking core 12087 751 0 71 

 
Table 8.2.  System resources required on a Virtex II XC2V6000-4. First row contain the Optical flow 

processing system resources, taken from Table 6.8 and copied here for the sake of easy systems 

comparison. The whole overtaking car system monitor resources are shown in the second row. (Mpps: 

mega-pixels per second and it’s the maximum system processing clock frequency, EMB stands for 

embedded memory blocks). 

Slices / (%) EMBS / (%) Embedded multipliers 
/ (% ) Mpps Image 

Resolution Fps 

8250 (24%) 29 (20%) 12 (8%) 45.49 640x480 148 

10073 (29%) 29 (20%) 12 (8%) 45,5 640x480 148 

 
 The gates consumption estimation of the different subcircuits is given on Table 

8.1. Note that the tracking unit, provided that is implemented using iterative 
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computation, allows efficient resources sharing (thus representing a relatively 

inexpensive stage). On the other hand, the motion processing unit requires the intensive 

exploitation of the parallelism capabilities of the FPGA device (representing the most 

expensive module in terms of chip area). The interfaces and hardware controllers also 

require a considerable number of resources. Global system resources are shown in Table 

8.2 after synthesis. It requires less than 2 million gates in a Virtex-II FPGA.. The 

tracking stage is processed sequentially only requiring 5% more of the whole FPGA 

slices. This represents 17% of the global hardware resources consumed by the complete 

system. 

 

8.4. System performance evaluation 

 

Evaluating the accuracy and efficiency of the system for real-image sequences is not 

easy. A visual inspection of the results gives us some “quality hints” to evaluate the 

performance but this is not a valid “quality evaluation procedure”. Several authors have 

addressed this validation using forward or backward cameras mounted on cars [DEL97], 

[BET96].  

 For our application we have used a camera mounted in the rear-view mirror, this 

experimental setup is shown in Figure 8.6. We have tested the algorithm in different 

overtaking sequences provided by Hella KGaA Hueck & Co [HEL06b] with different 

vehicles and weather conditions. There are 20 sequences composed of more than 9,000 

frames. Our goals are: 

1. To detect the overtaking car as soon as possible.  

2. To track it reliably.  

 

 It is a complex task because if we use a very sensitive system, continuous false 

alerts can render the approach useless and make the driver lose confidence in the 

system. The next section shows some qualitative results. Section 8.3.2 describes the 

system benchmark procedure. It should be remembered here that although there are 

some commercial initiatives working towards similar systems [MOB06], [VOL06], 

[FIC06], no performance evaluation or scientific benchmarking methodology seems to 

have been applied to date. This makes it impossible to compare the different approaches 

and estimate their applicability.  
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Figure 8.6. Experimental setup utilized for testing the system, in collaboration with Hellla [HEL06b]. 

 

8.4.1. Illustrative system results 

 
In this section we illustrate some of the qualitative results obtained using different 

overtaking car sequences provided by Hella [HEL06b] with different vehicles and 

weather conditions. At the beginning of the overtaking maneuvering, when the vehicle 

is very small our system confidence measure is not reached. This means that we have 

not enough information but we have already unreliable position estimations. This has 

been marked as black squares in the figures. When the car is larger, confidence 

thresholds begin to be reached but without temporal consistency and, finally, the system 

is able to track accurately the vehicle until the end of the overtaking sequence. Reliable 

position is drawn in the figures using a white cross. For all the evaluated sequences, this 

situation is reached for very far distances of the overtaking car so the system 

performance is good for safe distances. 

  

.  
Figure 8.7.Overtaking with relative static situation with a black car in a sunny day. Sequence recorded using a 

conventional CCD camera. 

 

 An important problem occurs when the overtaking car velocity is equal to our 

car velocity, so the relative vehicle velocity will be around zero. In this situation the 

Kalman filtering allows us to keep the car position but the confidence value will not be 

reached, as it is seen in Figure 8.7.  The system memory allows us to keep the car 

position under the confidence threshold (see black square in the third frame). The Alert 
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signal system can use the estimation position and memory consistency to decide if we 

are in a dangerous situation or not. 

 

 
Figure 8.8. Car in a foggy and rainy day. Sequence recorded using a high dynamic range camera. 

 

 
Figure 8.9. Car in a cloudy day. The car moves with the lights switched off. Sequence recorded using a 

high dynamic range camera. 

    
 In different weather and light conditions the kind of camera sensor is crucial and 

strongly motivates the use of high dynamic range cameras. The sequence of Figures 8.8 

and 8.9 tests our system capability for very low contrast sequences. The weather 

conditions in the sequence of Figure 8.8 are really bad, in these situations lights become 

a very important source of information. Here the system needs closer cars to reach the 

confidence value to begin the car tracking reliably. In Figure 8.9 we test the robustness 

of the system to low contrast scenarios. This sequence has more contrast but the car has 

switched off the lights. As it can be seen the results are correct.   

 The sequence of Figure 8.2, Section 8.2.2.2, shows a complex scene. Several 

cars are overtaking in a highway. Each car is numbered using brackets.  The figure 

shows different frames of the sequence and the dangerous car position estimations. As 

we explained in section 8.2.2.2, a multi-target system is not necessary and the system 

only marks the closest car (the most dangerous in the scene). One important problem 

occurs when we have multiple lanes. Motion information from monocular viewing can 

not give us information about car distance so it is difficult to know in which lane is 

detected the approaching car. We can use the road white lines to do that but the 

important issue is to be able to discriminate whether the situation is dangerous or not. 
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Our system is useful if it prevents us of changing lane when another vehicle is present 

in a dangerous situation. This problem will be addressed in the future.  

  In this figure we can see the car estimation inertia (Figure 8.2.B). It should be 

noted that when the system looks for a new car, the estimation is over the confidence 

threshold but in a wrong position. This occurs because the saliency map obtained from 

the optical flow has reliable information about the car position but the Kalman filter 

needs two or three frames to update its parameters. We can use a more complex model 

for the car tracking but, thinking in hardware implementation of an embedded system, it 

can represent an unnecessary computation overload, since for a real time system that 

computes 25 frames/s (or even more) this delay of the alert signal is not significant. 

 

8.4.2. Benchmark methodology and system description 

 

The idea that the car in question is the closest to us and therefore must be in the right-

hand area of the image has important implications for our test. We are interested in 

detecting the car as soon as we can and not losing track of it, especially when it is close 

to us. We measure the distance in which reliable tracking starts to evaluate the quality of 

the system.  

 For benchmarking, special test sequences were recorded by Hella KGaA Hueck 

& Co [HEL06b] according to the preliminary version of the ISO standard (ISO / TC204 

/ WG14 / N40.27). Three systems are considered, based on the areas they cover (see 

Figure 8.10.a):  

 Type I: Blind Spot Warning. This system is intended to warn only about target 

vehicles in the adjacent zones (the zones on the left and right of the subject 

vehicle). It is not required to provide warnings of target vehicles approaching the 

subject vehicle from the rear. 

 Type II: Closing Vehicle Warning. This system is intended to warn about target 

vehicles that are approaching the subject vehicle from the rear.  

 Type III: Lane Change Warning. This type combines the Blind Spot and Closing 

Vehicle functions. 
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 We deliberately did not take into account in the first steps situations where cars 

enter the blind spot from the front, when the ego-vehicle overtakes cars in the adjacent 

right-hand lane.  

 The Type II specifications consider different closing speeds: A  5-10 m/s; B 

15-20 m/s; C  25-30 m/s. For the evaluation we used two instrumented test cars, the 

target car (TC) which is the overtaking car, and the subject car (SC) which is equipped 

with the camera and the system described for tracking the target car. TC has a LIDAR 

sensor installed at the front [HEL06c] (illustrated in Figure 8.10.b) to measure the 

distance between the two vehicles. Both instrumented data-acquisition systems are 

synchronised to match the recorded frames of SC with the LIDAR information of TC at 

any time. An onboard computer stores this information for off-line analysis.  

 

(a) 

 
 

(b) 

 
Figure 8.10. Vehicle areas and distances. (a) Car areas for device type classification. (b) 

Inter-car distances using the LIDAR sensor and camera view angle to cover the blind spot 

areas. 
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 In the test scenario it is possible to get image data from SC and, as a reference, 

the value of the distance between both vehicles from the LIDAR sensor of the 

overtaking car. Most of the recorded video streams have corresponding LIDAR 

measured distances. Nevertheless, due to technical problems only a limited number of 

cross-validated sequences were recorded. Day and night scenarios where tested but we 

include here only the results from the day scenarios, which present the more difficult 

situation since at night the headlights of overtaking cars facilitate the tracking task.  

 

8.4.3. Benchmark evaluation results  

 

The results from our 20 cross-validated test sequences shown in Figure 8.11 indicate the 

distance between cars as measured using the LIDAR sensor. Basically, we have two 

different kinds of recorded sequences, one for the Type I system test (dark bars) and 

another for the Type II system test (light bars). In this case, three different approaching 

speeds are possible according to our preliminary standard (except for 3 lanes and 25-30 

m/s where no distance information is available due to technical problems).  

 Figure 8.11 shows that cars approaching faster are reliably detected at longer 

distances (in the two-lane bars). This is highly desirable since the time-to-contact (TTC) 

is shorter in these situations. It is possible because TC is approaching faster and the 

motion cues become significant even when TC is still far away.  

 The sequences were taken under different visibility and weather conditions. This 

also affects the system performance (significantly in the third bar of the three-lane case 

in Figure 8.11). 

 These results show the high potential for a possible application within the 

framework of a driver-assistance system [DIA06g]. With these data we have been able 

to evaluate and classify the system, using the ISO draft, as nearly fulfilling the 

requirements for a Type III system (lane-change warning) with the subtype C (relative 

velocities up to 20 m/s). 
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Figure 8.11.  System evaluation results. The average detection distances (in meters) with their 

typical deviation are presented. Two different cases are considered: two-lane motorways and 

three-lane motorways. At the top of the bars we include the number of cross-validated 

sequences. 

 

8.5. Conclusions 

 

 We have described a system to track overtaking cars using the rear-view-mirror 

perspective. Basically, we implement it in two steps: firstly we compute the optical 

flow, and then, after a filtering stage, this motion-saliency map represents reliably car 

points that are used to compute the overtaking car’s position. We implemented a 

customized DSP for optical-flow computation combined with a tracking unit for alarm 

generation. Finally, we have also applied a benchmarking methodology with a wide set 

of diverse overtaking sequences to evaluate the system’s performance. The results 

shown are very promising because the system is very reliable and stable, even for very 

difficult image sequences in poor visibility.  

 From Figure 8.11 we can also compute the TTC when the alarm signal is 

generated. Using the fastest velocity of each interval and considering the lowest 

detection distance (average value minus typical deviation), the worst case is 1.61 

seconds, presented in the bar corresponding to two lanes and a closing speed of 15-20 

m/s. Based on driver behaviour studies [GRE00], the worst reaction time for a driver is 

1.5s for braking (less if we consider that the lane-change manoeuvre just implies a 
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steering action, which is more than 0.15s faster than braking, and therefore the reaction 

time becomes 1.35s). Therefore we believe that our system can effectively alert the 

driver and leave him enough time to react.  

 There are still some open issues for future work, however. (1) On three-lane 

roads an overtaking car in the outside lane should not generate a warning signal. This 

implies a distinction between overtaking manoeuvres in the other two lanes. (2) Inverse 

overtaking scenarios, when the SC is overtaking the TC, the warning signal should be 

generated since lane changing would also generate a dangerous situation. (3) Smart 

warning strategy (human-machine interface field). Future work will cover these points 

and test the whole system into the car.  
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Este capítulo constituye un resumen comentado de todo el trabajo presentado en esta 

memoria de tesis. Discutimos los diferentes resultados obtenidos 

interrelacionándolos y comentando sus campos de aplicación potencial.  

El principal objetivo de este capítulo es presentar un resumen claro de las 

principales contribuciones de este trabajo y sus aspectos innovadores. Finalmente 

resaltamos explícitamente las conclusiones y contribuciones científicas.   
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9.1. Discusión  

 

El principal objetivo de este trabajo era investigar diferentes modalidades visuales y su 

implementación en tiempo real utilizando hardware de propósito específico. Las 

modalidades visuales que han sido estudiadas e implementadas son las siguientes: 

• Características locales de las imágenes (fase, energía y orientación). Véanse 

Capítulos 2 y 5. 

• Movimiento. Véase los Capítulos 3 y 6. 

• Estéreo. Véanse los Capítulos 4 y 7. 

• Ejemplo de aplicación. Véase el Capítulo 8. 

 

 Después de los estudios de viabilidad de las diferentes técnicas para la 

extracción de cada una de esas características hemos diseñado arquitecturas de altas 

prestaciones de los modelos que permiten una implementación más eficiente. Estas 

arquitecturas son capaces de extraer estas modalidades visuales en tiempo real (a 

distintas resoluciones espacio-temporales, esto es importante ya que la frecuencia de 

muestreo temporal es crítico para la estimación de movimiento mientras que la 

resolución espacial es más relevante para el estéreo).  

 La implementación de arquitecturas de procesamiento específicas para visión es 

un campo interesante que requiere estrategias de diseño radicalmente distintas a las que 

se utilizan para arquitecturas basadas en un solo procesador de propósito general. 

Hemos estructurado las técnicas de procesamiento visual de forma apropiada para 

adaptarlas a un mejor aprovechamiento de flujos de datos regulares. Además hemos 

estudiado las operaciones en que se basan estas técnicas para identificar las etapas de 

procesamiento críticas y evaluar su viabilidad. Finalmente, hemos diseñado caminos de 

datos segmentados con grano fino para obtener arquitecturas de altas prestaciones. De 

hecho, los sistemas presentados superan en potencial de cálculo a todas las soluciones 

encontradas en la literatura (por ejemplo el sistema de procesamiento de movimiento 

supera en más de un orden de magnitud a todas las implementaciones previas 

publicadas hasta la fecha). 
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El trabajo se ha estructurado en las siguientes etapas: 

• Evaluación de la viabilidad y compromiso entre eficiencia y precisión de las 

distintas técnicas de procesamiento de imágenes para la extracción de las 

modalidades visuales estudiadas. El objetivo de esta etapa preliminar es la 

elección de un modelo concreto en el que centrar el diseño de circuitos 

específicos. 

• Adaptación del mejor modelo a un flujo de datos regular. En esta etapa 

adoptamos una estrategia de procesamiento que permite computación 

segmentada eficiente. 

• Evaluación de las operaciones y los requerimientos de precisión en cada etapa de 

procesamiento. En este estudio evaluamos la profundidad de bits necesaria en 

cada paso del modelo y escogemos una representación de datos con aritmética 

en punto fijo o aritmética en punto flotante. En vez de realizar una búsqueda 

exhaustiva estudiamos brevemente las distingas operaciones y nos centramos en 

las etapas de procesamiento críticas. Para ello, hemos utilizado estrategias de 

evaluación apropiadas basadas en secuencias o imágenes sintéticas (con unos 

valores reales conocidos de los distintas características visuales que se pretenden 

extraer) y métricas de error utilizadas ampliamente en la literatura. 

• Tras la implementación hemos evaluado los recursos hardware que requiere cada 

uno de los sistemas diseñados. 

• Finalmente, hemos hecho un esfuerzo considerable en  la realización de un 

estudio comparativo de las arquitecturas presentadas con otros sistemas e 

implementaciones publicadas por otros autores. 

 

 Esta metodología de trabajo ha sido adoptada para la implementación de tres 

sistemas: características locales de la imagen (fase, orientación y magnitud), 

movimiento y estéreo. Estas modalidades visuales no han sido escogidas 

arbitrariamente, requieren de modelos de procesamiento computacionalmente muy 

pesados (fundamentalmente basados en operaciones de convolución espacio-

temporales). Consumen más del 90% de la carga computacional de los sistemas de 

visión complejos que también incluyen procesamientos de más alto nivel (como fusión 

multimodal, etc). De hecho, los tres sistemas presentados no deben ser vistos como 

independientes, sino que comparten la misma metodología de procesamiento (caminos 
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de datos con segmentación de cauce de grano fino basados en circuitos de computación 

superescalares) y están basados en primitivas comunes (convoluciones espacio-

temporales). Aunque los recursos computacionales de los distintos caminos de datos no 

pueden compartirse sin degradar las prestaciones, las tres arquitecturas se han 

implementado en un mismo dispositivo y juntas pueden considerarse como un sistema 

de visión multimodal de bajo nivel en un chip.  

 La implementación de este sistema visual multimodal ha sido motivada por 

distintos aspectos: 

• Arquitecturas de propósito específico. La implementación de arquitecturas 

radicalmente diferentes a las de los procesadores de propósito general 

(ampliamente utilizados) es interesante en ciertos campos. El hecho de que los 

sistemas desarrollados en este trabajo se hallan podido estructurar en caminos de 

datos regulares nos ha empujado a investigar e implementar caminos de datos 

muy segmentados en microetapas basadas en circuitos superescalares. Este tipo 

de arquitecturas no se utiliza en el diseño de procesadores de propósito general 

debido a la flexibilidad que requieren sus recursos computacionales. Las 

condiciones del flujo de control de los algoritmos que se ejecutan en estas 

máquinas hacen que sistemas con caminos de datos supersegmentados no sean 

eficientes para la ejecución de cualquier tipo de código. 

• Aprender construyendo. Una fuerte motivación para la implementación de 

esquemas de procesamiento bio-inspirados (en nuestro caso esquemas de 

procesamiento de modalidades visuales biológicas) es el aprendizaje del modo 

de funcionamiento de estos sistemas biológicos. Como ingenieros tratamos de 

copiar sistemas de procesamiento (como el esquema de estimación de 

movimiento) de los sistemas biológicos, en los que se consiguen unas 

prestaciones impresionantes con un número limitado de recursos 

computacionales. Durante la construcción de estos sistemas artificiales nos 

planteamos los mismos objetivos que los sistemas biológicos (por ejemplo 

estimación de movimiento en el área cerebral MT con una cantidad de recursos 

computacionales reducida). Esto nos fuerza a adoptar una actitud que nos ayuda 

a entender la función de determinados procesamientos intermedios que se dan en 

los sistemas nerviosos centrales. Por ejemplo, las convoluciones espacio-

temporales (que es una primitiva ampliamente utilizada por los sistemas 

naturales en tareas de visión) que son combinadas de forma eficiente en los 
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sistemas de visión más avanzados que conocemos (que son los sistemas 

biológicos). De hecho, algunas de las técnicas adoptadas (por ejemplo, el 

modelo de extracción de estéreo) representan sistemas muy bio-inspirados. Pero 

en todo caso hemos adoptado una actitud oportunista: utilizando estrategias de 

computación que llevan a altas prestaciones y gran precisión pero no emulamos 

otras propiedades que no son fáciles de adaptar a la tecnología que estamos 

utilizando. Por ejemplo, implementamos caminos de datos supersegmentados en 

vez de computación distribuida y cooperativa de elementos de procesamiento 

independientes que sería una aproximación mucho más bio-inspirada.  

• Visión en tiempo real en un chip. La disponibilidad de diferentes modalidades 

visuales en un solo chip abre las puertas a la exploración de esquemas de fusión 

sensorial en el marco de sistemas de visión de más alto nivel. Este tema está 

siendo estudiado en otros grupos de investigación internacionales en el marco 

del proyecto Europeo DRIVSCO. De hecho, está planificado que a corto plazo 

el sistema desarrollado se utilice para este propósito en cuatro centros europeos 

de investigación.   

• Aplicaciones reales. Como se ha descrito en el Capítulo 8, algunas modalidades 

visuales, como el movimiento tienen una aplicación directa en algunos campos. 

Por ejemplo en sistemas embebidos para la vigilancia de vehículos durante 

maniobras de adelantamiento. Estamos explorando otros campos de aplicación 

como robots con navegación dirigida por visión (movimiento), robots para la 

manipulación de objetos utilizando estéreo, sistemas de visión aumentada 

(incluyendo diferentes modalidades visuales) para pacientes de baja visión, etc. 

Pero una correcta evaluación de las prestaciones de los sistemas presentados en 

esta memoria en estos campos de aplicación es parte de nuestro trabajo futuro. 

 

 Aunque el trabajo presentado se debe considerar un sistema de visión global 

podemos extraer conclusiones diferentes de las distintas arquitecturas desarrolladas: 

 Características locales (fase, orientación y magnitud). Estas características 

pueden ser extraídas con distintos tipos de filtros que han sido estudiados. No se ha 

encontrado publicado ningún estudio comparativo entre las distintas alternativas a 

nivel de filtros. Distintos autores escogen una u otra alternativa a priori, 

presuponiendo que son aproximadamente equivalentes en precisión y carga 

computacional. Sin embargo, la implementación de un sistema eficiente nos ha 
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forzado a realizar este estudio preliminar encontrando importantes diferencias entre 

los distintos filtros en cuanto a la precisión, cobertura de amplios rangos en 

frecuencias espaciales (típicos de escenas naturales) y carga computacional. 

 Movimiento. En este caso existen estudios comparativos entre distintas técnicas 

para la extracción de movimiento. Esto ha facilitado la selección de un modelo 

concreto (el algoritmo de Lucas y Kanade) que alcanza un buen compromiso entre 

precisión y eficiencia. Para el procesamiento de movimiento el muestreo temporal es 

muy importante y es un tema que rara vez se ha estudiado o comentado. Para esta 

modalidad visual el error debido a la baja frecuencia de muestreo temporal es 

importante porque convencionalmente se utilizan cámaras comerciales que trabajan 

a 25 o 30 imágenes por segundo. Hemos desarrollado una arquitectura de altas 

prestaciones capaz procesar hasta 95 imágenes por segundo. Esto hace que se pueda 

utilizar de forma eficaz con sensores avanzados o camaras digitales de bajo coste 

capaces de adquirir imágenes con mayor frecuencia. La calidad de las estimaciones 

de movimiento que se pueden extraer con esta combinación de arquitectura de altas 

prestaciones y sensor avanzado es mucho mejor que la que se obtiene por métodos 

más complejos en plataformas que no pueden procesar en tiempo real más que 

secuencias tomadas a 30 imágenes por segundo.    

 Estéreo. La extracción de información estéreo con alta precisión requiere imágenes 

de mucha resolución espacial y áreas de estimación de disparidad amplias. Por lo 

tanto en este caso, una arquitectura de altas prestaciones es de interés para computar 

áreas amplias de estimación de disparidades (filtros espaciales grandes). Para esta 

modalidad visual hemos adoptado un modelo que se puede implementar en 

hardware específico de forma eficiente ya que no requiere del cálculo directo de 

diferencia de fases espaciales.  

 

 La implementación de sistemas de cierta complejidad es difícil con los lenguajes 

de descripción de hardware más ampliamente utilizados (como VHDL o Verilog). 

Nosotros hemos escogido un lenguaje de más alto nivel (Handel-C) que permite la 

definición de arquitecturas de cómputo de altas prestaciones, además facilita la gestión 

del paralelismo durante el diseño de distintas arquitecturas. Hemos definido circuitos 

específicos como la unidad de manejo de memoria para multiplexar eficientemente los 

accesos a memoria, lo cual es un punto crítico cuando se diseñan caminos de datos muy 

segmentados. Este tipo de recursos ha permitido la definición de sistemas de cierta 
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complejidad a un alto nivel de abstracción (ya que, por ejemplo,  no es precisa la gestión 

directa de los accesos a memoria). Además la utilización de un lenguaje de descripción 

de hardware muy algorítmico ha facilitado la implementación de modelos descritos 

originalmente de esta manera. Aunque sin embargo, la implementación de arquitecturas 

de altas prestaciones ha hecho necesario el diseño de los caminos de datos a un nivel de 

transferencia de registros (RTL).  

 

9.2. Publicación de resultados 

 

Se pueden destacar dos conceptos o tópicos sobre el trabajo que se ha presentado: 

 

a) Los circuitos de visión pueden considerarse modelos de visión genuinamente 

nuevos, con comportamientos parecidos a los correspondientes modelos 

software pero con compromisos totalmente diferentes entre precisión y 

velocidad de procesamiento. Por lo tanto, se han presentado como “modelos 

nuevos”, se han descrito y evaluado comparando sus resultados con otras 

soluciones de otros autores. Esta metodología científica ha facilitado la 

publicación de los circuitos desarrollados. 

b) Todos los sistemas han sido diseñados como arquitecturas supersegmentadas 

(con unidades de computación superescalares en ciertas etapas críticas) lo cual 

permite una utilización eficiente de los recursos inherentemente paralelos de los 

dispositivos de tipo FPGA. Esta metodología de diseño es bastante novedosa y 

ha sido adoptada en pocas ocasiones por otros autores. Sin embargo, se ha 

probado que es una metodología de diseño muy eficiente para obtener sistemas 

de altas prestaciones de propósito específico.   

 

 Estos dos argumentos constituyen las bases de los sistemas presentados en este 

trabajo y han recibido muy buenas críticas en las revisiones científicas que hemos 

recibido. Además algunos de los resultados relacionados con esta tesis se han publicado 

en los siguientes artículos: 
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segmentation system, “Lecture Notes On Computer Science, Springer-Verlag, 
2006, (en publicación). 
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object segmentation,” Lecture Notes On Computer Science, Springer-Verlag, 
2006, (en publicación). 

[6] E. Ortigosa, A. Cañas, R. Rodriguez, J. Diaz, S. Mota, “Towards an optimal 
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626, 2004. 
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[8] F. Vargas-Martin, M. D. Peláez-Coca, E. Ros, J. Díaz. and S. Mota, 
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loss”, presented at the Conference and Workshop on Assistive Technologies 
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movimiento,” VI Jornadas sobre Computación Reconfigurable y Aplicaciones 
(JCRA 2006), Cáceres, España, September 2006, (en publicación). 

[2] J. Díaz, E. Ros, and S. Mota, “Arquitectura para cómputo de estéreo en 
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9.3. Conclusiones 

 

Finalmente resumimos las principales contribuciones del trabajo presentado: 

• Hemos estudiado distintas alternativas basadas en diferentes filtros espaciales 

para la extracción de características locales. Hemos evaluado las distintas 

alternativas con imágenes sintéticas para comparar sus precisiones y hemos 
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estimado la carga computacional de cada una de ellas. Las derivadas Gausianas 

de segundo orden han resultado las más ventajosas por su buen compromiso 

entre precisión y eficiencia.  

• Hemos implementado una arquitectura de altas prestaciones para la extracción 

de características locales. Hemos evaluado los requerimientos de recursos 

computacionales, las prestaciones del sistema y la pérdida en precisión debida al 

número limitado de profundidad de bits en los datos en las distintas etapas. 

• Hemos diseñado dos sistemas alternativos para el procesamiento de movimiento. 

Las dos aproximaciones tienen distinta precisión y requerimientos 

computacionales. Estos dos sistemas son los siguientes: 

o Una arquitectura con un camino de datos segmentado en grano grueso 

basado en el modelo original de Lucas y Kanada pero utilizando filtros 

temporales IIR para reducir los recursos de almacenamiento temporal. 

De hecho hemos definido distintas versiones de este sistema con 

diferente grado de paralelismo en las etapas críticas para permitir su 

implementación en dispositivos de distinto coste y potencia. 

o Una arquitectura con un camino de datos supersegmentado (en grano 

fino) basado en el modelo modificado de Lucas y Kanade propuesto por 

Brandt [BRA97] que utiliza filtros temporales FIR. Este sistema 

representa una opción de muy altas prestaciones capaz de procesar 

secuencias a más de 30 imágenes por segundo (a 95 imágenes por 

segundo con una resolución VGA). Esta arquitectura tiene gran interés 

cuando se utiliza con sensores avanzados (capaces de captar secuencias 

con alta resolución temporal). El sistema presentado supera en más de un 

orden de magnitud las soluciones publicadas hasta el momento. 

• Hemos aplicado la arquitectura de procesamiento de movimiento en tiempo real 

en el marco de un sistema de asistencia a la conducción para monitorizar el 

cambio de carril durante maniobras de adelantamiento. Los resultados prueban 

claramente la utilidad de la solución presentada, ya que el sistema es capaz de 

detectar y seguir vehiculos en proceso de adelantamiento de forma fiable a 

distancias en las cuales los conductores tienen tiempo para reaccionar.  

• Hemos implementado una arquitectura de altas prestaciones para la extracción 

de información estéreo basada en un modelo bio-inspirado. Hemos evaluado las 
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etapas de computación que más afectan a la precisión del sistema. Hemos 

estudiado los requerimientos hardware del sistema y sus prestaciones 

comparándolos con otras plataformas descritas por otros autores.   

• Hemos mostrado a lo largo del diseño de los diferentes sistemas una 

metodología para el estudio de la profundidad de bits de las distintas etapas y del 

tipo de aritmética a utilizar, permitiendo de esta manera un compromiso 

optimizado entre el recursos utilizados y precisión del sistema.  

• Hemos mostrado que el uso de sistemas altamente paralelos (múltiples unidades 

escalares y cauce supersegmentado) permite obtener una alta potencia de 

procesamiento. Este método de trabajo es poco utilizado en la literatura pero 

hemos demostrado su viabilidad y eficiencia para el diseño de caminos de datos 

en circuitos específicos de procesamiento de imágenes.  
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     Chapter 9 

Conclusions 
 
 
 
 
 
 
 
 
 

 
 

 

This chapter summarizes the whole work that has been done and presented in this 

PhD memory. We discuss the different results relating them with each other and 

with potential application fields.  

The main goal of this chapter is to summarize in a clear manner the different 

contributions and their innovation aspects of the presented work. Finally we 

highlight specific conclusions and scientific contributions. 
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9.1. Discussions  

 

The main purpose of this work was to investigate different vision processing modalities 

and their implementation in real-time using specific hardware. The vision modalities 

that have been studied and implemented are the following: 

• Local image features (phase, energy and orientation). See Chapters 2 and 5. 

• Motion. See Chapters 3 and 6. 

• Stereo. See Chapters 4 and 7. 

• Application example: See Chapter 8. 

 

 After feasibility studies about the different techniques for extracting each of 

these features, we have designed efficient computing architectures of hardware friendly 

models able to extract these features in real-time (at different frame-rates since the 

temporal sampling may be critical for some of them, for instance motion estimation, 

while spatial resolution may be more relevant for stereo).  

 The implementation of specific processing architectures for vision is a highly 

challenging field which requires design strategies radically different to the general 

purpose single-processor architectures. We have structured the vision processing 

techniques in a proper manner to adapt them to regular data flows. After this we have 

studied the different operations in which they are based evaluating the feasibility and 

critical stages of each technique. Finally, we have designed fine grain pipelined 

datapaths in order to achieve high performance computing architectures. In fact, to the 

best of our knowledge the presented architectures outperform any existing solution 

published in the literature (for instance the motion processing system outperforms in 

more than one order of magnitude any existing solution published so far).  

 

The work has been structured in the following stages: 

 Evaluation of the feasibility and efficiency vs accuracy trade-off of the different 

techniques. The goal of this stage is to choose a concrete approach to be 

implemented in hardware. 

 Adaptation of the best model to a feed-forward regular data flow. In this stage 

we adopt a processing strategy that allows efficient pipelined computing. 
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 Study of the operations and accuracy requirements of each processing stage. In 

this study we evaluate the bit width necessary at each step of the design of the 

model and we choose between fix point arithmetic and floating point data type. 

Instead of doing an exhaustive search in this stage we evaluate briefly all the 

different operations and we explicitly focus on the critical stages. For this 

purpose, we have used a proper benchmarking strategy based on synthetic 

sequences or images (with known ground-truth of the goal visual modality) and 

error metrics widely used in the literature.  

 After the implementation, we have evaluated the hardware resources 

requirements of the designed systems. 

 Finally, we have done a considerable effort in benchmarking the proposed 

computing architectures in terms of accuracy and performance with previously 

published approaches.  

 

 This working methodology has been adopted for the implementation of mainly 

three systems: local image features (phase, orientation and energy), motion and stereo. 

These visual modalities have not been chosen arbitrary. They represent very expensive 

processing models (mainly based on extensive spatio-temporal convolution operations). 

They consume more than 90% of the computational load of complex vision systems that 

also include higher vision tasks (such as multimodal fusion, etc). Furthermore, the three 

designed systems should not be seen as independent processing architectures. They 

share the same processing methodology (very deep pipelined datapaths composed of 

superscalar computation circuits) and they are basically based on common primitives 

(spatio-temporal convolutions). Although the computing resources of the different 

datapaths cannot be shared without loosing performance, the three processing 

architectures can be implemented on a single device and all of them together can be 

seen as a low level multimodal vision system on a chip. 

 The implementation of such a low level multimodal vision system has several 

motivations:  

 Specific purpose architectures. Implementation of computing architectures 

radically different of the most widely used general purpose single-processor 

platforms. Since the systems that have been developed in this work can be 

structured in very regular data flows this has prompted us to investigate and 

implement superpipelined and superscalar datapaths. These architectures are not 
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affordable in general purpose processors due to the required flexibility of their 

processing resources. The branching conditions of the dataflow of general 

processors make superpipelined approaches not convenient for processors that 

need to run arbitrary codes.  

 Understanding by building. A very strong motivation for the implementation 

of bio-inspired processing schemes (in our case processing schemes of 

biological visual modalities) is the understanding of biological systems. As 

engineers we try to copy processing systems (such as motion estimation) in 

which biological approaches show impressive performances with a restricted 

number of computational resources. We address the same goals as biological 

systems (for instance motion estimation in the brain area MT) with constrained 

resources. This forces us to adopt an attitude that helps to clarify intermediate 

computations that take place in the biological systems. For instance, this is the 

case of spatio-temporal convolutions (which is a primitive widely used for 

vision tasks by nature) which are efficiently combined in the smart biological 

visual systems. In fact, some of the techniques adopted (such as the stereo 

model) implement highly bio-inspired approaches. Nevertheless, we have 

adopted an opportunistic attitude: using computing strategies that lead to high 

accuracy and performance but we do not adopt or emulate other properties 

which do not fit the goal technology in which our system will be implemented 

(for instance we implement very deep pipelined datapaths instead of distributed 

and cooperative computing of independent and asynchronous processing 

elements).  

 Real-time vision on a chip. The availability of different visual modalities in 

real-time on a chip opens the door to explore sensory fusion schemes in the 

framework of higher level vision system. This issue is being studied by other 

European labs in the framework of the European project DRIVSCO. In fact, in 

the short run, the vision system developed in this work is planed to be soon 

working on 4 European Universities.  

 Specific real applications. As described in Chapter 8, some visual modalities, 

such as motion have very high potential applications in the framework of 

embedded systems for instance for car tracking during overtaking maneuvers. 

We are exploring other application fields such as robot navigation based on 

optic flow, robotic object manipulation based on stereo, augmented vision 
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systems (including different vision modalities) for low vision patients, etc. But a 

correct evaluation of the performance of our approaches in these fields is part of 

our future work. 

 

Although the presented work should be seen as a global vision system we can extract 

different conclusions from the different implemented architectures: 

 Local features (phase, orientation and energy). These features can be 

extracted with different kinds of filters which have been studied. This 

comparative study has not been found in the literature before, normally one or 

other approach is just adopted by different authors a priori, because they 

consider them more or less equivalent in terms of accuracy and computational 

load. But the implementation of an efficient system extracting these features 

requires a preliminary study. We have found out significant differences between 

the different filters in terms of accuracy, robustness against wide spatial 

frequencies (usually present in natural scenarios) and computational load. 

 Motion. The extensive comparative studies about different techniques available 

in the literature have facilitated the selection of an approach (the Lucas and 

Kanade algorithm) with a very good accuracy vs efficiency trade off. For motion 

processing, temporal sampling is very important and is an issue which is seldom 

addressed or commented. For this vision modality is critical the temporal 

aliasing, since the conventional cameras work at 25 or 30 frames per second. We 

have developed a high performance motion computing architecture able to 

process up to 95 frames per second which can be used with advanced sensors or 

even low cost digital cameras able to acquire “oversampled sequences”. The 

quality of the motion estimations extracted with this combination of high 

performance computing architecture and advance sensors clearly outperforms 

more sophisticated approaches which cannot process sequences at more than 30 

frames per second in real-time.  

 Stereo. Accurate stereo computation requires high spatial resolution and large 

disparity estimation areas. Therefore, in this case high performance is highly 

desirable since it allows the computation of larger disparity estimation areas 

(larger spatial filters). For this vision modality we have adopted a hardware 

friendly scheme which avoids unnecessary computations of phase differences.  
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 The implementation of systems of a certain complexity becomes difficult with 

the most widely used hardware description languages (such as VHDL or Verilog). 

Because of that we have used a higher level description language (Handel-C) which 

allows the definition of high performance computing architectures and easily managing 

the computing parallelism of the architecture. We have defined specific circuits such as 

the memory management unit to efficiently multiplex the memory accesses which is a 

critical issue when defining very deep pipelined datapaths. This allows designing 

systems of a certain complexity at a high  level that properly abstracts the description of 

specific low level issues (such as external memory access). 

 We have used an algorithmic-like hardware description language which 

facilitates the implementation of models described as algorithms. Nevertheless, the 

design of high performance computing architectures has required the definition of the 

datapaths at a register transfer level.    

 

9.2. Publication of the results 

 

There are two general points that can be specifically highlighted about the work 

presented here: 

a. The described vision circuits can be seen as genuine new models (with 

behaviors similar to their software counterparts) but with completely different 

processing speed vs accuracy trade-offs. Therefore, as “new models” they have 

been presented, discussed and evaluated comparing their results with other 

approaches described in the literature. This scientific methodology has 

facilitated the publication of the presented circuits. 

b. All the systems have been designed as deep pipelined computing architectures 

(with superscalar datapaths at certain critical stages) which enables the efficient 

use of the available parallel processing resources at FPGA devices. This design 

methodology is quite novel and seldom adopted by other authors. Nevertheless, 

it has been proven to be a very valid tool to obtain high performance specific 

purpose systems. 

 

 These two issues are a strong motivation for all the implementations presented in 

this dissertation and when reviewed in scientific publications have received very good 
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marks. Besides the works that are currently under review, some of the results related 

with this thesis have been published in the following papers: 

 

International Journals with Scientific Impact (SCI) 

 

[1] R. Agís, J. Díaz, E. Ros, R. Carrillo, E. M. Ortigosa, “Hardware Event-driven 
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[2] J. Díaz, E. Ros, F. Pelayo, E. M. Ortigosa and S. Mota, “FPGA based real-time 
optical-flow system,” IEEE Transactions on Circuits and Systems for Video 
Technology, vol. 16, no. 2, pp. 274-279, 2006 

[3] J. Díaz, E. Ros, S. Mota and R. Rodriguez-Gomez, “FPGA based architecture 
for motion sequence extraction”, International Journal of Electronics (Taylor 
& Francis Group), 2006 to be published. 

[4] J. Díaz, E. Ros, S. Mota, F. Pelayo, and E. M. Ortigosa, “Sub-pixel motion 
computing architecture,” IEE Proc. Vision, Image & Signal Processing, 2006, 
to be published 

[5] J. Diaz, E. Ros, A. Rotter, M. Muehlenberg, “Lane-change decision aid system 
based on motion-driven car tracking,” IEEE Transactions on Intelligent 
Transportation Systems, 2006, submitted for publication. 

[6] J. Díaz, E. Ros, R. Carrillo and A. Prieto, “Real-time system for high-image-
resolution disparity,” IEEE Trans. on Image Processing, 2006, submitted for 
publication. 

[7] E. M. Ortigosa, A. Cañas E. Ros, P. M. Ortigosa, S. Mota, J. Díaz, “Hardware 
description of multi-layer perceptrons with 3 different abstraction levels,” 
Microprocessors and Microsystems, 2006, to be published. 

[8] J. Díaz, E. Ros, S. P.  Sabatini, F.  Solari  y S. Mota, “A Phase based stereo 
system-on-a-chip,” BioSystems journal,2006,  to be published. 

[9] S. Mota, E. Ros, J. Díaz, E. M. Ortigosa, and A. Prieto, “Motion-Driven 
Segmentation by Competitive Neural Processing,” Neural Processing Letters, 
vol.22, no 2, pp. 125-147, 2005. 

[10] F. Vargas-Martin, M. D. Peláez-Coca, E. Ros, Díaz J. and S. Mota, 
“Optoelectronic Visual Aid Based on Reconfigurable Logic for Severe 
Peripheral Vision Loss Rehabilitation”, Ophthalmic Research, vol. 36, no. 1, 
pp. 60, 2004 
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view mirror overtaking car monitoring,” Lecture Notes On Computer Science, 
Springer-Verlag, 2006, to be published. 
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9.3. Conclusions 

 

We now summarize the main contributions of the presented work: 

 For the local image features extraction we have studied diverse alternatives 

based on different spatial filters. We have benchmarked the different alternatives 

with synthetic images to evaluate their accuracy and we have also estimated the 

computational load of the different approaches. The Second Order Gaussian 

derivatives are highlighted as the approach with the best accuracy versus 

efficiency trade off. 

 We have implemented a high performance computing architecture to extract 

local image features. We have evaluated the lost of accuracy due to the restricted 

bit-width at the different stages. We have evaluated the hardware resources 

requirements and the performance of the system. 

 We have designed alternative systems for motion processing with different 

accuracy versus hardware resources trade offs. Mainly two approaches: 

o A coarse grain pipelined datapath based on the original model of Lucas 

& Kanade but with IIR temporal filters to reduce the temporal storage 

resources. This system has also been defined with different levels of 

parallelism at the critical stages to allow its implementation on devices of 

very diverse costs and available resources. 

o A fine grain pipelined datapath based on the modified Lucas & Kanade 

algorithm proposed by Brandt [BRA97] using FIR temporal filters. This 

system represents a very high performance approach able to process 

“oversampled sequences” (at frame rates of 95 images per second at 

VGA resolution) which can highly benefit of the current advanced 

sensors (able to acquire images at high frame rates). The presented 

system outperforms in more than an order of magnitude any previous 

approach found in the literature. 

 We have applied the real-time motion computing architecture in the framework 

of a driver assistant system for lane change monitor during overtaking 

maneuvers. The results clearly prove the utility of the approach, since it is able 
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to robustly detect overtaking vehicles at distances in which the driver is able to 

react. 

 We have implemented a high performance stereo computing architecture based 

on a bio-inspired hardware friendly model. We have evaluated the computing 

stages which affect most significantly the system accuracy. We have evaluated 

the hardware resources of the approach and its performance comparing it with 

previous approaches described in the literature. 

 Across the design process of the different stages we have validate a 

methodology for bit-width study and arithmetic type decision. Our technique 

allows achieving a good trade-off between resources consumption and system 

accuracy.  

 We have developed massive parallel architectures (based on superscalar and 

superpipelined units) capable to achieve high computing power. This 

architectural strategy is quite uncommon in the literature but the results 

presented at this dissertation show that these datapaths are feasible and valuable 

alternatives for specific image processing computing devices.  
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        Appendix A 

First order gradient model 

limitation analysis 
 

This appendix reviews 3-D spatio-temporal sampling theory and investigates the effects 

of motion aliasing (being this, as first approximation, the main limitation of the L&K 

model). It is discussed in a simplified but insightful way.  

 L&K model is based on a first order Taylor expansion of the image, equation 

(3.5), which is correct only if quadratic and further terms can be neglected. This is true 

for small velocity vectors but errors grow fast when high order terms become 

significant. Nevertheless, the consideration of how small or large a velocity can be 

depends on the image structure presented in the neighbourhood of each pixel position. 

According to the Nyquist-Shannon theorem, the maximum velocity that can be 

measured in an image without aliasing is limited by the local spatial bandwidth. 

According to Weber et al. [WEB95], if we consider a sinusoid grating of wavelength λ, 

we can limit the maximum acceptable displacement given by expression (A.1.a):  
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 For real images, they show a velocity limit even smaller, about the third part of 

the theoretical bound, equation (A.1.b) [WEB95]. This equation implicates that the 

maximum velocity is strongly correlated with the spatial frequencies presented at each 

image position. The maximum frequency in units of pixels is 0.5 pixels-1 which means 

λ=2 pixels thus, the maximum theoretical speed that can be recovered is less than 1 

pixel per frame at the lowest spatial frequency. Thus, using pixels as units, the sampling 

period is 1 pixel and we can not recover 1 pixel motion of λ=2 sinusoidal gratings. But, 

this also means that the maximum value of the velocity can be very high for images 

with spectral contents of large wavelengths. For example, if we consider λ=100 pixels, 

algorithms could theoretically recover motion up to 49 pixels/frame (first integer value 

below than 100/2) and experimentally 16 pixels/frame. But note that in order to get this 
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estimation we need to tune the image derivative to the proper frequency in order to get 

response from the filters 

 The next consideration is related with the pre-filters and the derivative kernels 

sizes. Usually the derivative operation is computed as a convolution with Gaussian 

derivatives which works as band-pass filters with optimal frequency response given by 

equation (A.2) (also presented in equation (2.13) and replicated here for the sake of 

clarity) where σ2 represents the variance and n the derivative order [BLO96].  

20 2
1

σπ
nf =  (A.2) 

 The utilization of large filters allows us to recover fast motion because it 

corresponds to large wavelengths but, high frequency image information is lost. 

Furthermore, the Gaussian derivative bandwidths are approximately constant and 

asymptotically equal as expressed in (A.3) [KOE87] (also presented in equation (2.12) 

and replicated here for the sake of clarity). This means that the spatial extension of the 

Gaussian derivative filters is inversely proportional to the filter bandwidth.  

σπ
β

24
1→  (A.3) 

 According to equation (A.3), smaller kernels allow us higher flow densities 

because a larger frequency range is considered (although filters are not optimally tuned 

for the whole range). Nevertheless, the drawback is that these small spatial resolution 

filters provide estimations prone to noise, which typically affect more significantly high 

spatial frequencies. Then, for low noise sequences, the utilization of a small smoothing 

kernel could be profitable for real images but the final decision of the optimal pre-filters 

and derivative kernels must be chosen taking into account the SNR of the input images 

and their spectral properties.  

 Other important hypothesis is the implicit assumption of constant luminance. 

Large temporal filters impose a high restriction to the illumination condition that is not 

always preserved on real scenarios. This motivates the utilization of shorter temporal 

windows for computing the optical flow. But the drawback of this approach is that 

higher temporal frequencies are available thus, incrementing the aliasing artefacts. 

 We decide to utilize first-order-Gaussian-derivative kernels of 5 pixels length 

which is widely used in most of the implementations and evaluations because it 

represents a good trade-off between accuracy and computing resources. This strategy 

implies to adopt two basic assumptions:  
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1. Low noise. Standard micro-cameras achieve SNR >45 dB in standard 

environments (not industrial) with homogenous illumination.  

2. Only small velocities can be computed, at least for high spatial frequencies. This 

is a more restrictive assumption. First-order-Gaussian-derivative kernels of 5 

pixels have a variance of 1 pixel and a top cut-off frequency of 1.35 rad/pixels 

(using equation (A.2) and (A.3), f0+β) which corresponds to a wavelength of 

λ=1.48π pixels and gives us an experimental maximum velocity for such 

frequency of 0.74 pixels/frame. This highly motivates the use of high frame-rate 

cameras for motion estimation in real scenarios.  
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         Appendix B 

X-Y separable basis set for 

second derivative of Gaussian 
 

This appendix presents the equations of the Second order Gaussian derivatives Gxx, Gxy 

and Gyy and their Hilbert transforms Hxx, Hxy, Hyx and Hyy. Their shape can be seen in 

Figure 2.4. Their equations are, for the Gaussian derivatives:  

( ) ( )

( ) ( )

( ) ( )22

22

22

129213.0

12843.1

129213.0

2

2

2

yx
xx

yx
xy

yx
xx

eyG

exyxG

exG

+−

+−

+−

⋅−⋅=

⋅−⋅⋅⋅=

⋅−⋅=

 

(B.1.a) 

(B.1.b) 

(B.1.c) 

 And for their Hilbert Transform:  
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 We use a 9 taps kernel, with a sampling period of 0.67. The peak frequency is 

f0=0.21 pixels-1 and bandwidth β= 0.1 pixel·s-1 as in [FRE91]. Note that thanks to the 

exponential function properties, the separable implementation of these kernels is 

straightforward. 

 The filters steering is done by equations (B.3) (replicated here from equation 

(5.1) for the sake of clarity). The quadrature filter at orientation θ, represented 

by θθθ jsch += , is calculated using equation (B.3), where cθ and sθ are respectively the 

even and odd components of the filter.  

yyxyxx GGGc )(sin)sin()cos()(cos 22 θθθθθ +−=                     

yyyxxyxx HHHHs )(sin)(sin)cos(3)sin()(cos3)(cos 3223 θθθθθθθ +−−=  
(B.3) 

 Note that the minus sign in the components of equation (B.3) selects the 

direction of θ to be counter-clockwise. 
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      Appendix C 

Acronyms and abbreviations list 
CCD: Charge-Coupled Device 

CTH:  Confidence Threshold 

DRIVSCO: Learning to emulate perception action cycles in a driving school scenario 

DSP: Digital Signal Processor 

ECOVISION: Artificial Vision Systems based on early cognitive cortical processing 

EDIF: Electronic Design Interchange Format 

EMB: embedded memory blocks 

FPGA: Field Programmable Gate Array 

GPU: Graphics processing Unit 

HDL: Hardware Definition Language 

IMO: Independent Moving Object 

LCDA: Lane-Change Decision-Aid System 

LIDAR: LIght Detection And Ranging 

MMU: Memory Management Unit 

MMX: MultiMedia eXtensions 

MNC: Minimum Number of Cycles 

NCP: Number of Confidence Points 

PDS: Point-time Disparity per Second 

RMS: Root Mean Square 

RTL: Register Transfer Level 

SAD: Sum of Absolute Differences 

SC: Subject Car 

SNR: Signal to Noise Ratio 

SOC: System-On-a-Chip 

SQNR: Signal to Quantization Noise Ratio 

SSD: Sum o f Squared Differences 

SSE: Streaming SIMD Extensions 

TC: Target Car 

TTC: Time-To-Contact 

VHDL: Very high speed integrated circuit Hardware Description Language. 

VMP: Virtual Memory Port 
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