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Resumen 

 

La cobertura nubosa es una medida meteorológica que se registra 

por inspección visual en todas las estaciones meteorológicas de 

forma sistemática, con periodicidades de una a tres horas. Las nubes 

afectan al tiempo atmosférico y ejercen un papel fundamental en el 

balance radiativo del planeta en general y de la superficie terrestre 

en particular. La cobertura nubosa puede llegar a reducir la 

radiación solar hasta en un 99%, y los diferentes tipos de nubes 

ejercen un papel primordial en el balance de energía, ya que las 

nubes reflejan hacia el espacio la radiación proveniente del Sol, 

pero también absorben la radiación infrarroja proveniente del suelo. 

Esta influencia de las nubes sobre la radiación es especialmente 

importante en el ultravioleta ya que existen configuraciones de tipo 

y posición en el cielo de las nubes en las que la radiación 

ultravioleta es mayor de la esperada. 

Por otro lado la suspensión de partículas en la atmósfera (aerosol 

atmosférico) también ejerce un importante papel en el balance de 

energía. De forma directa el aerosol dispersa y absorbe la radiación 

y de forma indirecta influye en las nubes modificando su tiempo 

medio de vida y sus propiedades radiativas. El aerosol produce un 

efecto de enfriamiento de la Tierra, al contrario que el CO2 y el resto 

de gases de efecto invernadero, sin embargo la incertidumbre 

acerca de la magnitud de este enfriamiento es aun muy grande por 



lo que hacen falta más estudios e instrumentación para su 

caracterización. 

Dada la importancia de la cobertura nubosa y otras propiedades 

macrofísicas de las nubes, así como del aerosol atmosférico, en los 

procesos de transferencia radiativa y de balance de energía en la 

Tierra, se propone el diseño de un dispositivo, la cámara de cielo 

(“sky imager”), para el registro continuo de las condiciones de cielo. 

Por un lado, es necesaria la información de cubierta nubosa junto 

con otras propiedades macrofísicas de las nubes para estudios 

meteorológicos y del efecto de las nubes sobre la radiación solar. 

Por otro lado, la importancia del aerosol atmosférico en el balance 

radiativo requiere establecer nuevos métodos para su 

caracterización. 

Mientras que los dispositivos de cámara de cielo se han diseñado 

tradicionalmente para el registro de la cobertura nubosa, en este 

trabajo se plantea también su uso para la caracterización del aerosol 

atmosférico.  



Abstract 

 

Cloud cover is a meteorological measurement registered by visual 

inspection hourly or 3 hourly in all the meteorological stations. 

Clouds affect the weather and also have an important role in the 

amount of solar radiation reaching the Earth’s surface. Cloud cover 

can reduce the solar radiation up to 99% and the different types of 

clouds exert a key role in the energy budget since clouds reflect 

incoming sun radiation, but also because they absorb Earth infrared 

radiation. This influence of clouds on radiation is especially 

important in the ultraviolet because certain configurations of clouds 

in the sky (type and position) yields an amount of ultraviolet 

radiation greater than expected. 

On the other hand, the suspension of particles in the atmosphere 

(the atmospheric aerosol) also exerts an important role in the energy 

budget. Aerosol directly scatters and absorbs radiation and, 

indirectly affects clouds modifying their life time and radiative 

properties. Aerosol produces a cooling effect on the Earth system, 

opposite to the heating effect due to the CO2 and the rest of green 

house gases, but the uncertainty is large, and therefore more studies 

and instrumentation are required for its characterization. 

Because of the importance of cloud cover and other macrophysical 

properties of clouds, and the importance of the aerosol in the 

radiative transfer processes and energy budget, we propose the 



design of a device, a sky imager, for the record of sky conditions. 

On one hand, the information on cloud cover and other 

macrophysical properties of clouds is needed for meteorological 

studies and studies on the cloud effect on solar radiation. On the 

other hand, the importance of the aerosol on the radiative budget 

requires establishing new methods for its characterization. 

While sky imager systems have been design primarily for cloud 

cover characterization, in this work we also propose the use for 

aerosol characterization. 
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Solar radiation is the only external energy source for 

the Earth-Atmosphere system and it is the direct or indirect 

responsible of all the phenomena affecting its meteorology and 

climatology. In average, the Earth emits to the space the same 

energy that absorbs from the Sun. Thus, any factor altering the 

composition of the atmosphere or the energy emitted by the Sun 

modifies the net radiative balance of the Earth-Atmosphere system 

and therefore, affects the climate. 

This work focuses on the development of a sky imager 

and the techniques for characterization of two of the most important 

elements in the atmosphere affecting the Earth radiation budget: 

clouds and the atmospheric aerosol. 

 

1.1 Clouds 

Clouds are one of the most significant elements of the 

atmospheric system, playing several key roles (Seinfeld and Pandis, 

1998). First, the radiation budgets at the top of the atmosphere, as 

observed from satellites, are closely related to the cloud field. 

Second, a small change in the cloud parameters may significantly 

amplify or offset climatic temperature perturbations due to the 

increase in CO2 and other greenhouse gases. Third, in general, high 

clouds act as a greenhouse and warm the Earth, whereas low 

clouds, by reflecting sunlight back to space tend to cool the planet 

(solar albedo effect) (Liou, 1992). 
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Concerning the influence of clouds in the Earth’s 

radiation budget we talk about the radiative effect of clouds. One of 

the prominent uncertainties in climate modeling is how the cloud 

system reacts in response to increases in the levels of greenhouse 

gases (Seinfeld and Pandis, 1998). 

Calbó et al. (2005) reviewed the importance of clouds 

on ultraviolet radiation. UV radiation is defined as electromagnetic 

radiation having wavelengths within the range 100 – 400 nm and 

have important implications for human health (i.e. Berwick and 

Kesler, 2005; Godar, 2005; Grant and Holick. 2005). Because 

clouds are formed by small water droplets or ice crystals, radiation is 

scattered when passing through them, resulting in extinction or 

diminished transmittance of the atmosphere. Therefore, the usual 

effect of clouds is the attenuation of UV radiation reaching the 

Earth’s surface (Bais et al., 1993). Nevertheless, ground level UV 

radiation may be affected by clouds in such a manner that 

sometimes it may be higher than UV radiation in cloudless 

conditions. This effect, known as cloud enhanced UV, is described 

in various studies (Estupiñan et al., 1996; Schafer et al., 1996; 

Sabburg and Wong, 2000; Sabburg et al., 2003) but the magnitude 

of this enhancement is not well established (Calbó et al., 2005). 

Despite their great importance, clouds still remain one 

of the least understood components of the weather and climate 

system. 
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1.2 The atmospheric aerosol 

Solid and liquid particles suspended in the atmosphere 

(the atmospheric aerosol) interacts both directly and indirectly with 

the Earth’s radiation budget and climate (Horvath, 1998). The 

radiative forcing is defined by Ramaswamy et al. (2001) as the 

change in net (downward minus upward) irradiance (solar plus 

longwave; in W m-2) at the tropopause after allowing for 

stratospheric temperatures to readjust to radiative equilibrium, but 

with surface and tropospheric temperatures and state held fixed at 

the unperturbed values. Radiative forcing is used to assess and 

compare the anthropogenic and natural drivers of climate change. 

Positive radiative forcings lead to a global mean surface warming 

and negative radiative forcings to a global mean surface cooling. 

Radiative forcing normally refers to the difference in net irradiance 

between the present and the beginning of the industrial era 

(approximately 1750) (Foster et al., 2007). 

The direct effect is the mechanism by which aerosol 

scatter and absorb shortwave and longwave radiation, thereby 

altering the radiative balance of the Earth – atmosphere system 

(Foster et al., 2007). Scattering of aerosol exert a net negative direct 

radiative forcing, while partially absorbing aerosol may exert a 

negative direct radiative forcing over dark surfaces such as oceans or 

dark forest surfaces, and a positive radiative forcing over bright 

surfaces such as deserts, snow and ice, or if the aerosol is above 

clouds (e.g. Chylek and Wong, 1995; Haywood and Shine, 1995). 

Both positive and negative direct effect mechanisms reduce the 
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shortwave irradiance at the surface. The longwave direct effect is 

only substantial if the aerosol particles are large and occur in 

considerable densities at higher altitudes (Tegen et al., 1996). 

The indirect effect is the mechanism by which aerosol 

modifies the microphysical and hence the radiative properties, 

amount and lifetime of clouds. Key parameters for determining the 

indirect effect are the effectiveness of an aerosol particle to act as a 

cloud condensation nucleus, which is a function of the size, 

chemical composition, mixing state and ambient environment 

(Penner et al., 2001). The microphysically induced effect on the 

cloud droplet number concentration and hence the cloud droplet 

size, with the liquid water content held fixed, has been called the 

‘first indirect effect’ (Ramaswamy et al., 2001), ‘cloud albedo effect’ 

(Lohmann and Feichter, 2005) or ‘Twomey effect’ (Twomey, 1977). 

The microphysically induced effect on the liquid water content, 

cloud height, and lifetime of clouds has been called the ‘second 

indirect effect’ (Ramaswamy et al., 2001), ‘cloud lifetime effect’ 

(Lohmann and Feichter, 2005) or ‘Albrecht effect’ (Albrecht, 1989). 

Figure 1.1 shows a schematic diagram of the different effects of the 

atmospheric aerosol. 
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Figure 1.1. Schematic diagram showing the various radiative mechanisms 

associated with cloud effects that have been identified as significant in 

relation to aerosol. The small black dots represent aerosol particles; the 

larger open circles cloud droplets. Straight lines represent the incident and 

reflected solar radiation, and wavy lines represent terrestrial radiation. The 

filled white circles indicate cloud droplet number concentration (CDNC). 

The unperturbed cloud contains larger cloud drops as only natural aerosol 

particles are available as cloud condensation nuclei (CCN), while the 

perturbed cloud contains a grater number of smaller cloud drops as both 

natural and anthropogenic aerosol particles are available as cloud 

condensation nuclei. The vertical gray dashes represent rainfall, and LWC 

refers to the liquid water content. (From Foster et al., 2007 modified from 

Haywood and Boucher, 2000) 

 

IPCC reported that the anthropogenic contributions to 

aerosol (primarily sulfate, organic carbon, black carbon, nitrate and 

dust) together produce a cooling effect, with a total direct radiative 

forcing of –0.5 [–0.9 to –0.1] W m–2 and an indirect cloud albedo 

forcing of –0.7 [–1.8 to –0.3] W m–2 (Foster et al., 2007). This can be 

compared to the forcing induced by the increase of the greenhouse 



Introduction 
 

 12 

effect gases concentration during the last century (Foster et al., 

2007). However, radiative forcing induced by aerosol has a factor of 

two uncertainty, and may thus have much more importance in the 

overall energy balance. Figure 1.2 shows the principal components 

of the radiative forcing of climate change. 

 

 

Figure 1.2. Summary of the principal components of the radiative forcing of 

climate change. All these radiative forcings result from one or more factors 

that affect climate and are associated with human activities or natural 

processes. The values represent the forcings in 2005 relative to the start of 

the industrial era (about 1750). The thin black line attached to each colored 

bar represents the range of uncertainty for the respective value. (From Foster 

et al., 2007) 
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Aerosol is the dominant uncertainty in radiative 

forcing. Solving these uncertainties induced by the different factors 

contributing to the radiative forcing due to aerosol is decisive in the 

estimation of the total uncertainty in radiative forcing (Foster et al., 

2007). 

Knowledge of the variables that determine the optical 

and microphysical properties of atmospheric aerosol is essential for 

the determination of their climate effects. Nevertheless, there are 

many difficulties in evaluating the climate effects of the aerosol due 

to the great spatial and temporal variability of their densities and 

properties. Remote sensing (from satellite and ground-based) 

appears to be a valuable tool for characterizing the microphysical 

and optical properties of the aerosol (Foster et al., 2007). 

 

1.3 Outline of this work 

The structure of this work is the following: 

Chapter 2 describes the background to fully 

understand the characterization of the cloud cover and atmospheric 

aerosol from the ground surface using sky imagery. 

Chapter 3 describes the sites where the instruments 

gathered the data used in this work. 
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Chapter 4 presents the two imagers used in this work 

and the sun photometer CIMEL CE318. The main core of this work 

involved the development of the All-Sky Imager. This work also used 

the calibrated Whole Sky Imager as collaboration between the 

Atmospheric Physics Group from University of Granada and the 

Atmospheric Optics Group from University of California at San 

Diego, where this instrument has been designed and developed. 

Chapter 5 introduces the technique for cloud cover 

estimation applied to the All-Sky Imager. Starting with a review of 

the traditional algorithms and then, the new approach proposed. 

This approach with neural networks and genetic algorithms requires 

a brief introduction to these techniques. Finally the design of the 

algorithms, the final procedure and the results and evaluation of the 

process are presented. 

Chapter 6 presents a methodology for aerosol optical 

depth estimation and its spectral dependency with the All-Sky 

Imager and the WSI and then, an inversion code applied to the WSI 

data for the retrieval of the aerosol size distribution. 

Chapter 7 presents the concluding remarks. First of all, 

we present a brief summary of the sky imager itself. Then, we 

discuss the methodology for cloud detection and aerosol 

characterization. Finally, some notes for future work. 

After the references, it is included a list of publications 

related to the thesis that have been published in different journals or 

scientific conferences. 
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Background 
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This chapter describes the background to fully 

understand the characterization of the cloud cover and atmospheric 

aerosol from the ground surface using sky imagery. 

First section is an introduction to the Earth’s 

atmosphere. Second section introduces the solar radiation and its 

interaction with the atmosphere. Following sections describe the 

two more interesting elements in the atmosphere for this work, 

clouds and the atmospheric aerosol. 
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2.1 The Atmosphere 

The Earth’s atmosphere can be divided into a number 

of well defined horizontal layers, mainly on the basis of temperature 

as is shown in Figure 2.1 (Barry and Chorley, 2003). 

The troposphere is the lowest layer of the atmosphere 

and it is the zone where weather phenomena and atmospheric 

turbulence are most marked. It begins at the surface and extends to 

between 8 km at the poles and 16 km at the equator, with some 

variation due to weather factors. Temperature decreases with height 

at a mean rate of about 6.5°C. It contains 75% of the total molecular 

or gaseous mass of the atmosphere and virtually all the water vapor, 

and therefore the clouds (see section 2.3), and particles (aerosol 

particles as explained in section 2.4). The troposphere is capped in 

most places by a temperature inversion level (i.e. a layer of relatively 

warm air above a colder layer) and in others by a zone that is 

isothermal with height. The troposphere thus remains to a large 

extent self-contained, because the temperature inversion acts as a lid 

that effectively limits convection. This inversion level is called the 

tropopause. 

The stratosphere extends upward from the tropopause 

to about 50 km. Temperature increases with height. The stratosphere 

contains the ozone layer, the part of the Earth's atmosphere that 

contains most of the ozone in the whole atmosphere. It is mainly 

located in the lower portion of the stratosphere from approximately 

15–35 km above Earth's surface, though the thickness varies 
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seasonally and geographically. The limit of the stratosphere is 

marked by a zone that is isothermal with height, the stratopause. 

Above the stratopause, the mesosphere extends from 

about 50 km to the range of 80–90 km. Temperature decreases with 

height, reaching −130°C in the upper mesosphere. 

The thermosphere extends from 80–90 Km and 

temperature increases with height. The temperature of this layer can 

rise to 1,500°C. The International Space Station orbits in this layer, 

between 320 and 380 km. 

The exosphere extends from 500–750 km up to 

10,000 km and contains free-moving particles. 

The Earth’s atmosphere is composed of two groups of 

gases, one with nearly permanent concentrations and another with 

variable concentrations (Table 2.1). Nitrogen (N2), oxygen (O2) and 

argon (Ar) account for more than 99.96% of the atmosphere by 

volume. The permanent gases have virtually constant volume ratios 

up to an altitude of about 60 km. The amounts of variable gases are 

small, but they are extremely important in the radiation budget of 

the atmosphere. Water vapor is the major radiative and dynamic 

element in the Earth’s atmosphere. The H2O concentration varies 

significantly with both space and time. The highly variable spatial 

distribution of tropospheric H2O is determined by the local 

hydrological cycle via evaporation, condensation (i.e. cloud 

formation) and precipitation (rainfall), and by large-scale transport 

processes. The stratospheric H2O concentration is relatively small, 



Background 
 

 20 

with a value of approximately 3–4 ppmv in the lower stratosphere. 

The atmosphere also contains various kinds of particles suspended 

in the air, the atmospheric aerosol, which are highly variable in 

space and time. 

 

Figure 2.1. Vertical distribution of temperature and pressure up to 110 km. (From 

Barry and Chorley, 2003) 
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Permanent Variable 
Element % volume Element % volume 
Nitrogen 78.084 Water vapor 0 – 0.04 
Oxygen 20.948 Ozone 0 – 12x10-4 
Argon 0.934 Sulfur dioxide 0.001x10-4 
Carbon dioxide 0.033 Nitrogen dioxide 0.001x10-4 
Neon 18.18x10-4 Ammonia 0.004x10-4 
Helium 5.24x10-4 Nitric Oxide 0.0005x10-4 
Krypton 1.14x10-4 Hydrogen Sulfide 0.00005x10-4 
Xenon 0.089x10-4   
Hydrogen 0.5x10-4   
Methane 1.5x10-4   
Nitric oxide 0.27x10-4   
Carbon 
monoxide 

0.19x10-4   

Table 2.1. U.S. Standard Atmosphere (1976) composition. 

 

2.2 Solar radiation: atmospheric interaction 

The measurement of the interaction between solar 

radiation and atmosphere requires dealing quantitatively with light 

and defining radiometric quantities. The basis of the radiometric 

quantities is the monochromatic radiant flux Φλ, which is defined as 

the radiant power or radiant energy, Q, through a control surface 

per second at a given wavelength λ. This magnitude does not 

provide any information about the distribution of the energy in a 

direction or over a surface. The radiant flux, dΦλ, received (or 

emitted) crossing an area, dS, on a detector (or source), without 

considerations about the direction is defined as the radiant flux 

density or irradiance: 
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 . (2.1) 

In order to characterize the emission of point sources, 

the radiant intensity Iλ represents the radiant flux dΦλ, propagated in 

a solid angle dΩ. Its definition is 

 . (2.2) 

For extended sources the radiance, defined as the flux 

emitted per unit solid angle and unit area (perpendicular to the 

direction considered s), is used. If θ is the angle between the normal 

of the radiating surface and the direction in which the emitted 

radiant flux is considered, the radiance is given by 

  (2.3) 

Figure 2.2 shows a schematic diagram of the definition 

of radiance. The notation given above is summarized with units in 

table 2.2. 

 

Radiometric quantity Symbol Unit 
Radiant energy Q J 
Radiant flux Φλ Wµm-1 
Radiant flux density (irradiance) Eλ W m-2 µm-1 
Radiant intensity Iλ W µm-1 sr-1 
Radiance Lλ W m-2 µm-1 sr-1 

Table 2.2. Radiometric symbols and units 
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Figure 2.2. Definition of radiance. Zenith angle θ and Azimuth angle  define the 

direction of the radiant flux s. 

 

Solar radiation as it travels through the atmosphere 

(without clouds) suffers attenuation due to the scattering and 

absorption produced by the atmospheric components (gases and 

particles). In the scattering process the energy transported by an 

electromagnetic wave is scattered in every direction as a 

consequence of the interaction of this wave with the particles in the 

medium. Part of the scattered radiation comes back to the space and 

another part reaches the Earth’s surface (diffuse radiation). Thus, in 

this process the incident energy does not form part of the internal 

energy of the particle. On the other hand, in the absorption process 

the energy becomes part of the internal energy of the particle. As a 

consequence the radiation that reaches the Earth’s surface without a 
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change in its direction (direct radiation) suffers attenuation. Figure 

2.3 shows a schematic diagram of the radiation distribution. 

 

Figure 2.3. Distribution of the solar radiation components as they travel through 

the atmosphere. 

2.2.1 Scattering and absorption processes in the atmosphere 

The atmosphere presents basically two scattering 

phenomena, the first one due to molecules in the air, Rayleigh 

scattering, and the second one due to particles, Mie scattering. 

(Iqbal, 1983). 

Rayleigh theory, published in 1899, was developed to 

demonstrate that the blue of the sky is a consequence of the 

scattering of solar radiation due to molecules in the air. Assuming 

that the scattering nuclei are small compared to the wavelength, 

Rayleigh described the spectral distribution of sky radiance and its 

polarization. The solution presents a dependency of the intensity of 

Earth’s 
surface 

Atmosphere 

Direct radiation 

Diffuse radiation (upward) 

Diffuse radiation  (downward) 
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the scattering proportional to λ-4 and a little dependency of the 

scattering angle. 

On the other hand, Gustav Mie (1908) solved the 

Maxwell equations for the problem of the interaction of an 

electromagnetic wave with a sphere, assuming that the sphere is 

homogeneous and isotropic. A deep description of both theories is 

presented by Bohren and Huffman (1983). 

The formulation describes two basic optical 

properties, the absorption and the scattering of solar radiation by a 

spherical particle. These properties depend on the size parameter (x) 

defined as a relation between the radius of the particle and the 

wavelength of the incident wave (2πr/λ) and also on the refractive 

index m, that depends on the chemical composition of the particle. 

The scattered radiance also depends on the scattering angle, Θ, and 

the function that describes its angular distribution, the phase 

function. Mie reached to an expression for the extinction coefficient 

σe for a suspension of spherical particles of different radii (between r1 

and r2): 

 , (2.4) 

where Qe is the extinction efficiency factor and can be understood 

as the effectiveness with which the particle interacts with the radiant 

flux, and n(r) is the size distribution of those spherical particles (see 

section 2.4.4). 
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Mie theory is applied when the size of the particles is 

comparable to the incident wavelength (x ~ 1), producing 

interference patterns with the partial waves emitted by the 

multipoles of the particles having phase differences. For this reason 

there is a strong angular dependency, there is an increase in the 

forward scattering (compared to Rayleigh scattering) and the 

chromatic dependency of the scattering is smaller. Mie theory 

converge into Rayleigh theory when x decreases, therefore Rayleigh 

theory can be explained with Mie theory, but due to the simplicity 

of Rayleigh theory they usually are applied separately. Figure 2.4 

shows the differences in the scattering for both theories. Rayleigh 

scattering is symmetric respect to the plane perpendicular to the 

propagation direction and find its minimum at Θ = ±90º. On the 

other hand Mie scattering presents an asymmetry, with a strong 

forward scattering. 

 

 

Figure 2.4. Up, Rayleigh scattering. Down, Mie scattering. 
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Solar radiation is also partially absorbed by the 

atmospheric components increasing their internal energy and 

therefore their temperature. The absorption process depends on the 

energy state of a molecule. The absorbed radiation is used to 

produce a transition from one energy state to another. Because the 

state energy associated to some kinds of energy, like rotational, 

vibrational or electronical energies, are quantized the absorption 

process occurs only at discrete wavelengths and is called selective 

absorption. When the absorption takes place over a number of 

wavelengths very close to each other it is possible some overlap and 

it is called band absorption (Iqbal, 1983). 

The main molecular absorbers are H2O (water vapor), 

CO2, O3, N2O, CO, O2, CH4 and N2. The minor absorbers are oxides 

of nitrogen NO2, N2O4, N2O5; hydrocarbon combinations C2H4, 

C2H6, C3H8; and sulfurous gas H2S. Most of these absorbers are 

active mainly in the near- and far-infrared wavelengths regions (from 

0.7 to 100 µm). Atomic gases as O and N, on the contrary, absorb 

mainly the maximum UV and shorter wavelengths. Figure 2.5 shows 

the main molecular absorbers for the solar radiation spectrum. 

Both scattering and absorption occur simultaneously, 

because all materials scatter, at least via their molecules, and 

absorb. The attenuation of the radiant energy in a real medium is 

expressed by the extinction coefficient σe, defined by the sum of the 

scattering (σs) and absorption (σa) coefficients:  
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Figure 2.5. Identification of the various molecular absorbers. The graph shows the 

solar irradiance on top of the atmosphere, at sea level and also the corresponding 

irradiance for a black body at 5900 K. 

 

2.2.2 Radiative Transfer Equation 

Let us consider a volume dV of an isotropic non 

absorbing medium hit by a radiant flux characterized by the 

irradiance E. The flux d2Φ scattered by dV in the solid angle dΩ at a 

given direction Θ respect to the incident direction is 

 , (2.5) 
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where f(Θ) (in m-1 sr-1) is the scattering function, that characterizes 

the angular distribution of scattered photons by the particles in the 

medium. 

The amount of scattered flux is obtained integrating in 

all directions 

 . (2.6) 

The flux scattered by the volume dV must be equal to the flux lost 

due to scattering along the thickness of the volume ds. Then, the 

incident flux in a transversal section of the volume is noted EdA and 

the amount of scattered flux is dΦ=σsEdAds=σsEdV. Thus, using 

equation 2.6 we obtain the relationship between f(Θ) and the 

scattering coefficient 

 . (2.7) 

If we are interested only on the angular dependency of f(Θ), we 

define the phase function P(Θ), related to f(Θ) by the following 

expression 

 . (2.8) 

This parameter P(Θ) represents the fraction of scattered radiation in 

the direction Θ, per solid angle, respect to the scattered radiation in 

all directions. 



Background 
 

 30 

The relative importance of the scattering and 

absorption is characterized with the single scattering albedo 

  (2.9) 

Let us now consider a radiant flux propagating in a 

direction perpendicular to the thickness ds of a medium. The 

extinction of the radiance along the thickness is defined by means of 

the optical thickness 

 . (2.10) 

In atmospheric problems is common the use of the optical depth, or 

normal optical thickness (δ) as the optical thickness measured 

vertically 

 . (2.11) 

The relationship between optical thickness and optical depth is 

 , (2.12) 

and m0 is the optical air mass. In equation 2.12 the optical air mass 

m0 is a function of the solar zenithal angle (θ0) defined as the angle 

between the zenith (the vertical direction) and the direct solar 

irradiance path. Its relation can be approximate with the following 

expression (Kasten, 1966): 
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 . (2.13) 

Equation 2.13 works assuming a uniform atmosphere 

with refractive index equal to one and considering a plane-parallel 

atmosphere (Iqbal, 1983). This approximation can be applied for θ0 

smaller than 80º. Otherwise, it has to be used a different 

approximation (i.e. Kasten and Young, 1989). 

Based on the principle of conservation of energy we 

present the equation that describes the radiative transfer in a 

medium. The variation of radiance dLλ, observed when a radiant flux 

travels through a volume (figure 2.6) has two components. On one 

hand, due to the attenuation 

 . (2.14) 

 

 

Figure 2.6. Schematic draw of the variation of the radiance observed when a 

radiant flux beam travels through a volume 
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On the other hand, the radiant flux can be intensified 

by the emission of the medium and the multiple scattering. This 

effect is quantified by the coefficient Jλ. 

 . (2.15) 

Thus, the total variation in the radiance is . If we 

divide this expression by σeds, the result is the general radiative 

transfer equation 

 . (2.16) 

If the contribution due to emission is not considered, the source 

function can be expressed in term of the phase function P(Θ), and 

the radiative transfer equation presents this form 

 . (2.17) 

The next step consists on finding a solution to the 

equation for a medium equivalent to the atmosphere as real as 

possible. The simplest geometry is a layer limited by two parallel 

and infinite planes, where the properties are constant and the 

incident radiation is also constant. This is the case of the plane-

parallel atmospheres that constitute a good approximation for the 

real atmosphere, where the vertical variations are faster than the 

horizontal variations for all the magnitudes. In this situation is 
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convenient measuring the distance over the vertical direction z, i.e. 

normal to the stratification plane (figure 2.7). 

 

 

Figure 2.7. Coordinates defining a point. θ is the zenith angle and  is the 

azimuth angle. The coordinates are noted with a 0 subscript refer to sun position. 

 

This geometry allows approximating the optical mass 

to m-1 = µ = cos(θ). Applying the variable change dz=µds in 

equation 2.16 and using the optical depth (equation 2.11) we obtain 

 . (2.18) 

Let us assume that the input radiance does not vary 

with time, does not present horizontal gradients and that the 

atmosphere is isotropic. Multiplying equation 2.18 by  and 

integrating between δ0=0 (top of the atmosphere) and δλ, we obtain 

the solution for emerging radiance through the atmosphere from the 

level δλ 
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. (2.19) 

The physical interpretation is simple (figure 2.8). The 

radiance that reaches the level δλ is equal to the radiance on δ0 

attenuated between both levels, plus the contribution of the medium 

attenuated by the successive layers δ’. 

 

 

Figure 2.8. Plane-parallel atmosphere irradiated by a solar beam. 

 

In the case of the direct sun irradiance, where the 

contributions for emission and scattering in directions other than the 

direct flux can be discarded, the solution to the radiative transfer 

equation can be reduced to the Beer-Bouguer-Lambert Law: 

  (2.20) 

This expression tells us that the attenuation of the 

direct irradiance follows an exponential function. 
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2.3 Clouds in the atmosphere 

Clouds are collections of droplets and crystals 

suspended in the air (Kokhanovsky, 2006). They are global in nature 

and regularly cover about 60% of the Earth’s surface. Average global 

cloud coverage over the oceans is estimated at 65% and over land 

at 52% (Warren et al., 1986, 1988). The occurrence of clouds shows 

dramatic geographical variation and is generally restricted to the 

lowest 4 to 6 km of the troposphere except for cirrus. Clouds form 

and evaporate repeatedly. Only a small fraction (about 10%) of the 

clouds that form actually generate precipitation (Seinfeld and 

Pandis, 1998). 

Clouds are conventionally classified in terms of their 

position and appearance in the atmosphere from the ground. The 

cloud classification system was proposed by Luke Howard in 1803 

and has been adopted internationally (Rogers and Yau, 1989). 

WMO (1983) defines the essential requirements of this international 

system. Clouds are classified according to a Latin Linnean system 

(similar to the one used for plants and animals), which is based on 

the altitude of their bases, their vertical development and their 

structure. Most clouds fall into one of ten basic groups, known as 

genera. The troposphere is divided into three levels: low, middle 

and high. These are sometimes called étages. The height of the 

troposphere varies with latitude, but in the mid-latitude temperate 

regions of the world the clouds with base height below 2 km 

(sometimes 4 km) are designated low-level clouds, a category that 

includes stratocumulus (Sc), stratus (St) and nimbostratus (Ns). The 
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group of middle clouds with base height between 2 and 7 km 

consist of altocumulus (Ac) and altostratus (As). Cirrus (Ci) 

cirrostratus (Cs) and cirrocumulus (Cc) constitute a group of high-

level clouds with base height above 7 km. Even though the base 

height designates the étage, some clouds extend through several 

étages (clouds with vertical development): cumulus (Cu) and 

cumulonimbus (Cb) (Seinfeld and Pandis, 1998). A summary of the 

genus classification is shown in Table 2.3. 

 

Étages Genus 
Stratocumulus (Sc) 
Stratus (St) Low level clouds 
Nimbostratus (Ns) 
Altocumulus (Ac) 

Mid level clouds 
Altostratus (As) 
Cirrus (Ci) 
Cirrostratus (Cs) High level clouds 
Cirrocumulus (Cc) 
Cumulus (Cu) Clouds with 

vertical 
development 

Cumulonimbus (Cb) 

Table 2.3. Cloud classification. 

 

WMO (1983) also defines the standard for manually 

recording cloud area. This standard is presented in Table 2.4. The 

unit of measurement of cloud area is the okta, meaning one eighth 

of the whole-sky as seen by an observer. Sometimes cloud area is 

quoted in tenths or even in percent. 
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Code Okta Area of cloud (tenths) 
0 None None 
1 1 okta or less, but not zero 1/10 or less, but not zero 
2 2 2/10 to 3/10 
3 3 4/10 
4 4 5/10 
5 5 6/10 
6 6 7/10 to 8/10 
7 7 okta or more, but not zero 9/10 or more, but not 10/10 
8 8 10/10 
9 Sky obscured, or cloud area cannot be estimated 
/ No measurement made 

Table 24. International scale of cloud area (WMO, 1983). 

 

Additionally, there has been a variety of other cloud 

properties estimated by direct observations for the purposes of 

radiation studies. Some of them include cloud obstruction of the sun 

(e.g. McKenzie et al. 1998), cloud thickness (e.g. Bener, 1964), 

cloud altitude (e.g. Frederick and Steele, 1995) and cloud velocity 

(Platt et al., 1994). Long et al. (2006) also describe other estimators 

as the uniformity of cloud coverage and the cloud brokenness. 

 

2.4 The atmospheric aerosol 

The atmosphere continuously contains particles 

ranging in size from a few nanometers to tens of micrometers in 

diameter. These particles are always present in the atmosphere and 

show highly variable densities. Aerosol is defined as a system 
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composed by a gas and solid or liquid particles suspended on it at 

least several minutes. If the gas taken into account is the 

atmosphere, the system formed by the gases and particles in the 

atmosphere is the atmospheric aerosol (Horvath, 1998). 

Aerosol particles and gases present different 

characteristics. Atmospheric gases are invisible and react 

chemically, while the aerosol particles affect the visibility and they 

have less chemical activity. There are two ways for aerosol 

production: gas-to-particle conversion and mechanical processes. 

Approximately half the mass of atmospheric aerosol is produced by 

gas-to-particle conversion. 

Gas-to-particle conversion includes the production of 

solid and liquid particles from substances in gas form. This 

production is due to the formation of new particles (homogeneous 

condensation) or the condensation on existing particles (heterogenic 

condensation). Whitby (1978) estimates that 95% of the aerosol 

mass produced is condensed on existing particles. In urban areas, 

Whitby (1980) concludes that 20% of the transformed mass by gas-

to-particle conversion is used to produce new particles, and 80% is 

condensed in existing particles. Gases included in these processes 

are sulfur dioxide, nitrogen dioxide and hydrocarbons. 

Mechanical processes conduct to the direct injection 

of aerosol into the atmosphere (dust, salt crystals, etc.) from volcanic 

eruptions, fires, sea spray and other natural processes.  
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Finally, atmospheric aerosol can be eliminated from 

the atmosphere by sedimentation, precipitation and the impact with 

obstacles. Normally, the coagulation is not considered an 

elimination process since it is part of the aerosol dynamic. With 

coagulation, particles grow in size but the total mass is the same. 

However, if we consider the atmospheric effects of the aerosol, 

coagulation can be treated as an elimination process. 

 

2.4.1 Aerosol classification 

Classifying aerosol according to size we have fine 

particles (less than 2.5 µm in diameter) and coarse particles (greater 

than 2.5 µm in diameter). Fine particles can often be divided 

roughly into two modes: the nuclei mode (or aitken mode) and the 

accumulation mode.  The nuclei mode, extending from about 0.005 

to 0.1 µm diameter, contains particles formed from condensation of 

hot vapors during combustion processes and from the nucleation of 

atmospheric species to form fresh particles. They are lost principally 

by coagulation with larger particles. The accumulation mode 

extending from 0.1 to 2.5 µm diameter contains particles formed 

from coagulation of particles in the nuclei mode and from 

condensation of vapors onto existing particles, causing them to grow 

into this size range. The accumulation mode is so named because 

particle removal mechanisms are least efficient in this regime, 

causing particles to accumulate there. The coarse mode, from >2.5 

µm diameter, is formed by mechanical processes and usually 
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consists of man-made and natural dust particles (Seinfeld and 

Pandis, 1998). Figure 2.9 shows an idealized schematic depicting 

the typical distribution of surface area of an atmospheric aerosol. 

 

 

Figure 2.9. Idealized schematic of the distribution of particle surface area of an 

atmospheric aerosol (Whitby and Cantrell, 1976). Principal modes, sources and 

particle formation and removal mechanisms are indicated (From Seinfeld and 

Pandis, 1998). 
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Significant natural sources of particles include soil and 

rock debris (terrestrial dust), volcanic action, sea spray, biomass 

burning, and reactions between natural gaseous emissions. 

Emissions of particles attributable to the activities of humans 

(anthropogenic aerosol) arise primarily from four source categories: 

fuel combustion, industrial processes, nonindustrial fugitive sources 

(roadway dust from paved and unpaved roads, wind erosion of 

cropland, construction, etc.) and transportation sources 

(automobiles, etc.). 

Anthropogenic aerosol can be divided according to its 

composition in organic aerosol and inorganic aerosol (sulfates and 

nitrates). The largest fraction of organic aerosol is produced in the 

form of smoke from tropical fires (Echalar et al., 1995; Chylek and 

Wong, 1995; Chylek et al., 1995). For inorganic aerosol, 

components are mainly sulfates from petroleum derivates 

combustion. Densities of these components have increased rapidly 

since the industrial revolution (Kondratyev, 1999). Densities are 

larger in the northern hemisphere, where all industrial activities are 

focused. Sulfate aerosol does not absorb solar radiation, but scatters 

it reducing the solar energy reaching the Earth’s surface. 

 

2.4.2 Aerosol Optical Depth 

The aerosol optical depth (AOD) is the simplest and 

more significant magnitude to characterize the columnar 

atmospheric aerosol load (Holben et al., 2001). It is the magnitude 
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more extended, especially in remote sensing where it is complicated 

(or impossible) to obtain other magnitudes. The AOD is easy to 

obtain with spectral direct irradiance extinction measurements. 

Moreover, the spectral dependency of the AOD is related to the size 

of particles. 

The Beer-Bouguer-Lambert law (equation 2.20) 

presented in section 2.2.2 represents the attenuation of the 

monochromatic direct solar flux density as it travels through the 

atmosphere and reaches the Earth’s surface. This attenuation is 

characterized by the optical thickness (equation 2.10) or the optical 

depth (equation 2.11) which represents the extinction due to the 

spectral scattering and absorption of the atmospheric components, 

normalized to the vertical or atmospheric column. Optical depth is 

calculated solving it in the Beer-Bouguer-Lambert equation 

(equation 2.20): 

 , (2.21) 

where ρ is the correction for Earth-Sun distance and modulates the 

differences in the flux at the upper limit of the atmosphere along the 

year. 

Assuming that the scattering and absorption processes 

are independent for the different atmospheric components, δ, is 

expressed as the sum of the optical depth of the different 

components 
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 , (2.22) 

where the different subscripts stand for different attenuation 

processes relevant in the solar spectrum, thus g refers to the 

uniformly mixed gases absorption, NO2 to the nitrogen dioxide 

absorption, w to the water vapor absorption, O3 to ozone 

absorption, r to the Rayleigh scattering component and a to the 

aerosol attenuation (scattering and absorption). In order to 

characterize the AOD the measurements are performed in 

wavelengths outside the strong atmospheric absorption bands and 

thus the absorption contributions can be discarded or corrected in a 

simple way (e.g. Alados-Arboledas et al, 2003). 

The spectral dependency of the AOD can be 

approximated using the Ångström Law (Ångström, 1964): 

 , (2.23) 

where α and β are the Ångström coefficients. λ is expressed in µm. α 

is the Ångström exponent and is related to the size of the aerosol 

particles. It is often used to discuss the relative proportion between 

fine and coarse particles in size distributions without calculating it. 

Its values vary from 0 to 4, but typical values are from slightly 

negative to 2.5, where greater values means smaller particles and 

vice versa. β is the turbidity factor and is related to the amount of 

aerosol particles and also represents the AOD at 1000 µm (Shifrin, 

1995). 
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2.4.3 Aerosol microphysical properties 

Aerosol particles are characterized by their shape, 

size, chemical composition and total content, which determine their 

radiative properties. A simple way to characterize a set of particle 

suspended on a fluid is by means of its density that represents the 

total mass per volume or air, usually represented in µg m-3 for 

atmospheric aerosol. It is also widely used the number density of 

particles N, expressed in inverse volume units. 

However, the most complete description of the 

aerosol is provided by the size distributions (Horvath, 1998). 

Considering spherical particles with a radius in the logarithmic 

interval [lnr, lnr+dlnr], the number of particles in this interval will be 

dN and the mass dM. The use of the logarithmic scale is useful due 

to the large range in size of aerosol particles. Number size 

distribution is denoted as 

 , (2.24) 

and mass size distribution as 

 . (2.25) 

In the same way, volume size distribution is defined as 

 , (2.26) 
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representing the aerosol volume in an air column of unity cross 

section per logarithmic particle radius unit. The total number of 

particles (or mass or volume) is obtained integrating between the 

minimum and maximum particle radius. 

 . (2.27) 

Considering spherical particles, volume and number 

distributions can be related using the following expression: 

 . (2.28) 

It has been observed that size distributions measured 

in the atmosphere present certain rules, and this allows their 

modeling. The general approach is to represent these size 

distributions using a mathematical expression with some fitting 

parameters retrieved by the measurements. 

At the present time, it is an open problem to clarify the 

number of parameters necessary to define the radiative 

characteristics of the aerosol and which one can be obtained with 

accuracy using only the measurements. A good representation for 

the aerosol, specially the smaller particles, in clean and polluted 

areas, is the log-normal distribution function (Hegg et al., 1993): 

 . (2.29) 
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Similar functions can describe mass and number size distributions. 

In this function, rm and σ are the adjustable parameters, V0 represent 

the volume of particles in an air column of unity cross section. The 

standard deviation of the logarithm of the radii σ represents the 

width of the size distribution. The median radius of the particles rm 

provides the position of the maximum in the curve of the 

distribution. 

Atmospheric aerosol size distribution can be 

represented with the sum of three log-normal distributions, called 

modes (see figure 2.9), building a multimodal size distribution 

function. Both modeling of the actual distribution show a good 

agreement in the range of radii of interest. 

Besides the shape, content and size distribution, 

another physical property that characterizes the aerosol, related to 

its chemical composition, is the refractive index expressed by the 

complex number m = n – ki. This magnitude is wavelength 

dependant. The real part of the refractive index n determines the 

scattering of the incident wave. It varies from 1.33 for pure water to 

1.77 for soot. The greater the index, the larger the effect of the 

particle on the incident radiation. The imaginary part k determines 

the ability of the particle to absorb radiation. Larger values mean 

more absorption capability. This value varies from 0 for non 

absorbent particles as marine salt, to 0.4 for soot (D’Almeida et al., 

1991). 
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This work has been carried on mainly in Granada 

(Spain) although some of the instruments were operated at the 

Southern Great Plains in the United States. This chapter describes 

the sites where the instruments gathered the data used in this work. 
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3.1 Granada 

The station of the Atmospheric Physics Group (Grupo 

de Física de la Atmósfera, GFAT) is located at Granada (Spain) on 

the rooftop of the Andalusian Center for Environmental Studies 

building (Centro Andaluz de Medio Ambiente, CEAMA) at 37.16ºN 

latitude, 3.6ºW longitude and 680 m a.s.l. The station records 

meteorological and radiometric information. Instruments such as 

broadband radiometers (ultraviolet, visible and infrared), UV 

spectroradiometer (Bentham DMc-150) and sun photometers (CIMEL 

CE318) are continuously gathering data. The records are 

complemented with meteorological parameters at ground level such 

as atmospheric pressure, wind, temperature and humidity. 

Granada is a non-industrialized medium-sized city in 

southeastern Spain. It is situated in a natural basin surrounded by 

mountains. Semicontinental conditions prevailing at this site are 

responsible for large seasonal temperature differences, with cold 

winters and hot summers. The area also experiences periods of low 

humidity. Most rainfall occurs during spring- and wintertime. The 

summer is normally very dry, with few rainfall events in July and 

August (anon., guia clima 1995). Annually, 31.15% of the days in 

Granada have clear sky days (0 oktas), 46.44% cloudy (1 – 7 oktas), 

and 22.4% overcast (8 oktas), according to climatology over the 

period 1961-1990 (anon., guia clima 1995). The region also 

experiences dust outbreaks that carry important loads of mineral 

aerosol coming from the Sahara desert. These events are especially 
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common in summertime (Lyamani et al, 2005; Guerrero-Rascado et 

al., 2009). 

A map of the area of the CEAMA station is shown in 

figure 3.1 

 

 

Figure 3.1. CEAMA station map 

 

The All-Sky Imager and the radiometer CIMEL CE318, 

described in the next chapter, are located in the station. 

 



Sites description 
 

 52 

3.2 Southern Great Plains 

Part of this work is the result of a research stay at the 

Atmospheric Optics Group (AOG) in the Marine Physical 

Laboratory, Scripps Institution of Oceanography, University of 

California San Diego. This group has been researching and 

developing sky imagers for decades (Johnson et al., 1989; Shields et 

al., 1993; Shields et al., 1998). They have different sky imagers in 

different locations. The WSI used in this work was located in the 

Southern Great Plain (SGP) in the United States during 2000 – 2004 

(an earlier WSI was at the site from 1995 – 2000). 

The SGP site was the first field measurement site 

established by the Department of Energy’s (DOE) Atmospheric 

Radiation Measurement (ARM) Program (www.arm.gov). Scientists 

are using the information obtained from the SGP to improve cloud 

and radiative models and parameterizations and, thereby, the 

performance of atmospheric general circulation models used for 

climate research. 

The SGP was chosen as the first ARM field 

measurement site for several reasons including its relatively 

homogeneous geography and easy accessibility, wide variability of 

climate cloud type and surface flux properties, and large seasonal 

variation in temperature and specific humidity. 

The SGP site consists of in situ and remote-sensing 

instrument clusters arrayed across approximately 55,000 square 
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miles (143,000 square kilometers) in north-central Oklahoma. Figure 

3.2 shows a map of the facility. 

 

 

Figure 3.2. SGP facility map 

 

The central facility is a heavily instrumented location 

on 160 acres of cattle pasture and wheat fields southeast of Lamont, 

Oklahoma (36.61ºN, 97.5ºW, 320 m a.s.l.). More than 30 

instrument clusters have been placed around the SGP site, at the 

Central Facility and at Boundary, Extended, and Intermediate 

Facilities. The locations for the instruments were chosen so that the 

measurements reflect conditions over the typical distribution of land 

uses within the site. 

Both instruments, the CIMEL CE318 and the WSI are 

located in the central facility. 
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This chapter presents the two imagers used in this 

work and the sun photometer CIMEL CE318. The main core of this 

work involved the development of the All-Sky Imager described in 

section 4.1.1. This work also used the calibrated Whole Sky Imager, 

described in section 4.1.2, as collaboration between the 

Atmospheric Physics Group from University of Granada and the 

Atmospheric Optics Group from University of California at San 

Diego, where this instrument has been designed and developed. 
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4.1 Sky Imagery 

In recent years, atmospheric researchers have become 

increasingly interested in quantifying clouds. As we saw in section 

1.1, clouds are a major meteorological phenomena related to the 

hydrological cycle and affect the energy balance on both local and 

global scales through interaction with solar and terrestrial radiation. 

Clouds, and cloud-aerosol interaction, are responsible for the largest 

uncertainties in climate model (Houghton et al., 2001). In addition, 

clouds affect our everyday lives, for example modifying the amount 

of ultraviolet radiation that reaches the earth’s surface. Most cloud-

related studies require some sort of cloud observations, such as the 

amount and type of clouds that are present. These macrophysical 

observations have been performed historically by human observers 

who recorded cloud cover and cloud type at several meteorological 

stations and at given time intervals, typically hourly at many US sites 

and most of the Spanish meteorological stations, 3 hourly at many 

other sites worldwide (Long et al., 2006). However, high costs 

associated with human observers have led to the research of 

observations based on automatic devices to detect and quantify 

cloud amount and type. Satellite retrievals have known weaknesses 

in quantifying small and/or low cloud features due to their limited 

spatial resolution and undesired surface influences on the measured 

radiances. Other option for obtaining continuous information on sky 

conditions is the use of sky imagers (Long et al., 2006). 
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There have been numerous instruments and 

techniques developed to automate the measurement of the cloud 

properties in the last three decades but it was until recently, the last 

decade, when these instruments began to experiment some success 

on fully automate the ground-based measurement of cloud 

properties, typically the cloud area. Sabburg (2000) and Parisi et al. 

(2004) presented overviews on the different sky imagers developed 

until recently. Here is a summary. 

Borkowski et al. (1977) used a standard 35 mm 

camera with telephoto lens. The lens was located above a 

hemispherical reflector. Processed negatives of the whole-sky were 

projected onto a grid made of concentric circles and radial lines. 

Cloud area was measured by manually counting the number of 

intersections covered by clouds on the grid. Wooldridge (1993), and 

Wooldridge and Hayman (1994) also analyzed 35 mm whole-sky 

negatives for cloud area. They considered the grid design and cloud 

retrieval methodology and recommended using an equal area grid 

and a cloud presence/absence scale. 

The application of computer vision to sky imagers has 

become possible due to the rapid increase in camera technology. 

For example, McKenzie et al. (1998) attempted to use a video 

camera, developed by Harnett (1992), to study the effect of cloud 

area on UV radiation. However, restrictions of lack of color and the 

necessity of shading the camera from direct sunlight limited its 

suitability. Schafer et al. (1996) employed a ground based whole-sky 

video camera to study cloud effects on UV radiation. However, due 
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to lack of suitable digital image processing (DIP) software, they 

estimated solar obstruction by cloud and cloud area from the images 

by manual inspection.  

DIP began in the 1960s and revolutionized the 

analysis of aerial photographs (Lillesand and Kiefer, 1994). When 

DIP was applied to analyzing satellite and ground based sky camera 

images, the full automation of the measurement of cloud properties 

was realized. For example, Wooldridge (1993) and Platt et al. (1994) 

describe the development and evaluation of an automated, whole-

sky, video camera system, incorporating DIP. The system estimated 

cloud area, optical thickness and the velocity of clouds from one 

image to the next. The methodology was promising when 

illuminance levels were high enough to provide quality digital 

images. However, sky conditions for mid range cloud area was 

poorly retrieved. Also, Long and DeLuisi (1998) describe the 

development of an automated whole-sky camera system using DIP. 

The system is essentially a digital form of the sky imager developed 

by Borkowski et al. (1977). This design by Long and DeLuisi was 

later improved and commercialize by the company Yes Inc. under 

the name of Total Sky Imager (TSI) that is described deeper by e.g. 

Long et al. (2006). 

Other sky imagers do not provide a full hemispherical 

field of view. Sabburg (2000) developed a sun-centered sky camera 

(SCSC). The system located the position of the sun in the sky images, 

evaluated the sun obstruction by clouds and then digitally 

eliminated the sun disc from the images for further analysis. Finally, 
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a new set of sky properties based on the cloud distribution on the 

sun vicinity. Thus, they extracted properties as solar disk 

obstruction, cloud cover, aureole brightness, cloud brokenness, 

cloud brightness variation and angle of maximum cloud cover. The 

main limitation of this method is the field of view of the system. 

Also, Sabburg and Long (2004) proposed a model of the 

enhancement of UVB due to clouds using parameters from the 

analysis of images from the TSI. 

The Environmental Physics Group at University of 

Girona developed a sky imager that is described by Long et al. 

(2006). The system consists on a video camera with a fish eye lens. 

They recently developed a new sky imager placed in a sun tracker. 

This system presents similarities to the All Sky Imager described in 

section 4.1.1. 

On the other hand, Shields et al. (1998) developed a 

sky imager combining a fish eye lens with narrow band filters. This 

sky imager also operates at night and retrieves the sky radiance in all 

directions of the sky, as we will see in section 4.1.2. 

 

4.1.1 All-Sky Imager 

4.1.1.1 Design, development and features 

There are advantages on developing specific-purpose 

imagers; for example, the user has a detailed knowledge of the 

prototype system and can choose components that best suit a 
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specific task. However, this development process requires 

knowledge of detectors and optical systems, as well as development 

of the interface algorithms needed to construct actual images in a 

format using the readings of the detector array (Long et al., 2006). In 

the GFAT we decided to develop a sky imager, so we have fully 

control of the components, algorithms and operation schema. 

The original idea behind the sky imager is to provide 

images of the whole sky dome during daytime for cloud cover 

characterization. The problem with sky imagery from the ground is 

that there are very bright region (e.g. close to the Sun) and other 

darker regions. The sky imager has to capture details all the image 

regions at the same time since we need information about the 

clouds in each pixel of the image. Moreover, Sun direct irradiation 

cannot strike the CCD to prevent stray light and a possible blooming 

of the sensor. 

Our All-Sky Imager is a custom adaptation of a 

scientific CCD camera. The principal modifications are the lens, the 

environmental housing and the solar shadow system. 

The camera body is a color CCD sensor by QImaging 

(RETIGA 1300C). It provides full color images (1280 x 1020 pixels) 

with three channels: one centered in red wavelengths, another 

centered in the green and the last one centered in the blue. The 

CCD sensor has 12-bit digitization per channel and therefore, the 

final image has 36-bit digitization and 4096 counts per channel. 

These characteristics offer a higher dynamic range than 
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conventional CCD cameras and allow better discrimination for 

details in images with very dark or bright areas with the same 

exposure time. A peltier cell coupled to the CCD cools it to 25º C 

below ambient in order to reduce dark noise. Table 4.1 shows the 

main characteristics of the CCD sensor as provided by the 

manufacturer. 

 

Sensor type 2/3” color CCD (bayer mosaic) 
Light sensitive pixels 1280x1024 (1.3 mega-pixels) 
Pixel size 6.7µm x 6.7µm 
Readout noise 8 e- 

Dark current 0.15 e-/píxel/s 

Quantum efficiency 
400nm 30%; 500nm 43%; 600nm 
30% 

Digital output 12-bit 
Integration time 40 µs to 15 min. in 1µs increments 
Shutter control Electronic shutter 
Gain and Offset control 0 to 10x optimum gain 
Optical interface C-mount, 2/3” optical format 
Digital/Electrical Interface FireWire 1394 interface 
Power requirements 900mA at 12V (11W) 

Tabla 4.1. CCDsensor specifications 

 

The lens is a Fujinon CCTV fish eye lens developed for 

a 2/3 inches format megapixel color CCD with C-mount. The field of 

view is 185º. This configuration guarantees a 180º field of view 

projected onto the CCD, and therefore the image captured shows 

the whole sky dome. The optical data sheet provided by 

manufacturer (FUJINON TV Lens, Optical Data Reports, 
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FE185C057HA) indicates that there is no longitudinal or lateral 

chromatic aberration and that the angular distortion in less than 

0.8% at every angle between 0 and 180º (Table 4.2). Since the 

distortion is so low, no correction is applied to the images. 

 

Half angle of 
view (degrees) 

Angular 
distortion (%) 

92.51 -0.80 
82.55 0.05 
73.15 0.36 
63.96 0.43 
54.85 0.39 
45.75 0.30 
36.63 0.20 
27.50 0.12 
18.34 0.05 
9.18 0.01 

Table 4.2. Angular distortion per angle. It is calculated from 0 to 90º and 

extrapolated to 180º. 

 

An environmental housing built by the GFAT protects 

the All-Sky Imager from the rain, snow, and extreme temperatures 

on the rooftop. The housing has a transparent acrylic dome on the 

top, and the walls have two layers with polyurethane foam in the 

middle for thermal isolation. The thermoelectric regulator, a Peltier 

system by Supercool, controls the temperature inside the housing. 

The temperature controller configures the Peltier as a cooler or 

heater as necessary and maintains the same temperature, 25ºC, 
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inside the housing under most conditions. Figure 4.1 shows a 

schematic diagram of the All-Sky Imager. 

 

 

Figure 4.1. Schematic diagram of the All-Sky Imager 

 

The solar shadow system must protect the lens, and 

consequently the CCD, at every moment from the direct irradiation 

of the Sun. The 2AP Sun Tracker/Positioner from Kipp & Zonen 

follows the Sun and projects the shade of three spheres onto a tray. 

The original function of the Sun Tracker is to shadow three 

radiometers, but it has been adapted for the All-Sky Imager. The Sun 

Tracker shades the All-Sky Imager, which is placed in the middle 

tray. Figure 4.2 shows the final configuration of the All Sky Imager 

placed in the 2AP Sun Tracker. 
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Figure 4.2. Final configuration of the All-Sky Imager placed in the Sun Tracker 

 

4.1.1.2 Control software 

The All-Sky Imager system includes control software 

that automates the image acquisition and analyses them for cloud 

characterization. The original software provided by the 

manufacturer of the CCD camera did not suffice for our needs, and 

thus new software has been developed. 

The CCD sensor manufacturer supplies an application 

program interface (API) to program specific applications in C/C++. 

The control software has been developed to obtain color images 

from the pixel matrix of the CCD sensor. Each pixel is sensitive to 

one color (red, green or blue); the pattern that the sensor follows is 
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called bayer mosaic (Figure 4.3). As we can see, each 4 pixels (2x2) 

have the information of the three channels. It has one pixel for red, 

one pixel for blue and two pixels for green. Thus, the nominal 

resolution is 640x512 in the green and 320x256 in the red and blue. 

The information about the other channels for each pixel is retrieved 

by interpolation of the neighbor pixels providing a full resolution 

image (1280 x 1024 pixels) with the three channels. 

 

 

Figure 4.3. Bayer Mosaic 

 

The new control software allows setting the camera 

parameters such as exposure time, gain, and offset. It is possible to 

change between 8 and 12 bit digitization (it is always set as 12), and 

the CCD Peltier cell can be connected or not. The control software 

has a timer and takes pictures with a specified time interval during 

daytime only. This time interval is set to 5 minutes as a compromise 

between short intervals that require large storage space and long 

intervals where useful information would be lost. All the images 
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with solar zenithal angle less than or equal to 80º are stored in the 

computer. 

The data acquisition software changes the format of 

the original full resolution image (1280x1024 pixels) to a 900 x 900 

pixels image that covers the useful area. By extracting this region, 

we reduce the size of the images, which is important because of the 

massive amount of data stored in the computer. Then, images are 

saved in the computer in TIFF format. This format is selected to 

enable storage of 12-bit images in lossless format. The images 

represent the whole sky dome, and the useful area of the image is 

circular, where the center of the image is the zenith and the horizon 

is along the border of the circle (spherical projection) as it can be 

seen in Figure 4.4. 

 

 

Figure 4.4. Image captured with the All-Sky Imager 
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Along with the images, the software stores the settings 

for every image as well as an event log (setting changes, 

malfunctions, etc.). Figure 4.5 shows a capture of the control 

software. 

 

 

Figure 4.5. Control software of the All-Sky Imager 

 

After the deployment of the All-Sky Imager we 

estimated the optimal parameters and kept them fixed. This is done 

using the histogram of the image. The histogram presents the tonal 

distribution of an image, i.e. represents the frequency of every 

possible value a pixel can take (0 to 4096 in a 12-bit CCD). The 
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parameters have to be adjusted in a way that the histogram does not 

have pixels at 0 (underexposed) or at 4096 (overexposed) for all of 

the possible images and it has to have a gaussian shape (tested over 

several days at different solar zenith angles). After trying different 

configurations the exposure time was set to 12 ms, the gain was set 

to 0.5 and the offset was set to 83. 

 

4.1.1.3 Geometric calibration 

In order to obtain an atmospheric aerosol 

characterization we will see in chapter 6 that it is necessary to 

locate the principal plane of the images. This plane is perpendicular 

to the image plane. Thus, in the projection of the sky onto the image 

this plane is a line and is easily found. The All-Sky Imager is placed 

on a sun tracker and the whole system follows the sun therefore, the 

principal plane in the image is the line that crosses the image 

vertically. However, the placement of the All-Sky Imager in the sun 

tracker is not perfect and so, this line can be displaced some pixels. 

A simple method allows obtaining the correct 

placement of the principal plane in the images. First, we mark a 10° 

step ruler in an acrylic dome where 0° is the zenith and 90° is the 

horizon. Then, the dome is placed in the place of the original 

protection dome. The line is aligned with the sun tracker’s shadow 

system. Figure 4.6 shows a sky image with the calibration dome in 

place. 
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Figure 4.6. Sky image with the calibration dome in place. The orange blanket was 

placed to facilitate the visualization of the marks. Note that the vertical ruler is 

aligned with the sun tracker shadow system. 

 

Once the image is captured each mark is associated 

with its pixel coordinates. A linear model can be applied to the X 

and Y coordinates of the images and the corresponding equations 

allow finding the pixel coordinates of a specific zenithal angle. 

The maximum absolute error is calculated to be ±5 

pixels horizontally and ±1 pixel vertically and each pixel is 0.21° in 

size (field of view of the pixel). Finally the equations for the model 

are: 
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 , (4.1) 

 . (4.2) 

Figures 4.7 and 4.8 shows the correlation between 

pixels coordinates and zenithal angle and the equations for the 

model. 

 

Figure 4.7. Pixel Y coordinate (row) versus zenithal angle 

 

Figure 4.8. Pixel X coordinate (column) versus zenithal angle 
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4.1.2 Whole Sky Imager 

4.1.2.1 Features 

The Atmospheric Optics Group (AOG), at the Scripps 

Institution of Oceanography, has been very active in the 

development of digital sky imagers for two decades. The original 

concept for the WSI evolved from a measurement and modeling 

program using multiple sensors for monitoring sky radiance, 

atmospheric scattering coefficient profiles and other parameters 

related to vision through the atmosphere (Johnson et al., 1980; 

Johnson et al., 1989). In particular, the first automated WSI was 

conceived as combining the features of the all-sky camera with a 

scanning radiometer system that provided quantitative 

measurements of sky radiance distribution. Early systems were based 

on digital cameras, with fisheye lenses, optical filter changers, relay 

optics to provide the proper image size and location, equatorial sun 

occultors to provide shading for the lens, and early versions of 

personal computers for automated control. With the use of very low 

noise 16-bit CCD cameras and an occultor modified to handle both 

sun and moon, these systems were further developed into the 

Day/Night WSI (Shields et al., 1998). 

The Day/Night WSI is a 16-bit digital imaging system 

that acquires images of the full sky (180º FOV) under both day and 

night conditions in order to assess cloud fraction, cloud 

morphology, and radiance distribution. The WSI measures the sky 

radiance in approximately 185,000 directions simultaneously by 
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using a 512x512 CCD sensor. The result is a 0.35° field of view in 

each direction, to cover the full 180º dome. Images are acquired in 

visible and near infrared (NIR) wavebands with filters at 450 nm 

(blue), 650 nm (red), and 800 nm (NIR) under sunlight or moonlight. 

The full width at half maximum (FWHM) of the filters is 70 nm. An 

open hole visible filter is used under starlight. The image acquisition 

interval is user selected, with intervals such as 1 minute or 10 

minutes between image sets. A picture of the instrument fielded at 

the Oklahoma Cloud and Radiation Testbed (CART) site at SGP is 

shown in figure 4.9. The primary features seen in this figure are the 

environmental housing that protects the sensor and electronics, the 

optical dome, and the solar occultor that shades the optics. Figure 

4.10 shows a daytime image. 

 

 

Figure 4.9. Day/Night WSI fielded at SGP CART site 
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Figure 4.10. Raw red image. The edge is the horizon and the center is the zenith. 

The arc is the shadow system. 

 

The primary optical element is a fisheye lens with a 

181º field of view (FOV). The light is filtered by spectral and neutral 

density filters, and transferred via a tapered fiber optic bundle (with 

approximately 106 optical fibers) to the CCD. 

The CCD camera, provided by Photometrics, is a very 

low noise 16-bit camera. Typical instrument noise (readout and dark 

current noise) is approximately 0.1% of the signal in the daytime. At 

night, under the darkest conditions with no moon at a 1-minute 

exposure, instrumental noise is approximately 1% of the signal of 

the background sky between stars, and a much lower fraction of the 
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star radiance signal. The camera in combination with the filter and 

exposure selection by the system, yield a dynamic range about 1010. 

That is, radiance can be measured from approximately 3 10-7 to 7 

102 (red) or 6 103 (blue) W m-2 µm-1 sr-1. 

A PC-based controller controls the system, with 

electronics developed at the AOG for manual or automated control. 

Algorithms programmed into the instrument provide flux control to 

keep data on scale even during quickly changing times such as 

sunrise and sunset. 

The environmental housing seen in figure 4.9 is 

designed to keep the camera and electronics cool. Self-diagnostic 

indicators such as readouts of CCD temperature, housing 

temperature, and coolant flow rate are also included in this housing. 

The arc seen in figure 4.9 provides shading for the optical system. 

Even though the camera would not be damaged by direct sun 

radiation, this shading is desirable because it minimizes stray light 

especially near the sun. 

 

4.1.2.2 Absolute radiance calibration 

One of the capabilities of the WSI is the determination 

of the absolute radiance distribution. The fisheye lens directs the 

light from different directions onto different pixels in the image 

plane, and the signal of each pixel may be calibrated to yield a 

determination of the absolute radiance, in W m-2 µm-1 sr-1, in that 
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direction. The FOV for each pixel is approximately 0.35º. Thus, this 

radiance product is equivalent conceptually to a radiance 

distribution determined by a scanning radiometer, except that all 

radiances are acquired simultaneously (at 185,000 points) and at a 

very high spatial resolution. 

The overall sensitivity is determined by the lens, the 

transmittance of the various filters, the throughput of the optical fiber 

bundle, and the quantum efficiency of the CCD chip. The 

calibration process has different stages (Shields et al., 1998). 

First of all the spectral sensitivity of the chip and 

transmittance of filters are measured. These spectral curves are used 

in conjunction with the calibration lamp spectral irradiance to 

compute the effective lamp irradiance in the filter passbands used by 

the WSI. These effective irradiances are in turn an input to the 

processing of the absolute calibrations. 

Dark calibration characterizes the pixel-to-pixel 

variations of the zero signal (no light) offset. A dark image, i.e. with 

the shutter closed, is taken every time the exposure is changed. 

Flat Field calibration characterizes the pixel-to-pixel 

variation in the system gain. During the calibration process the WSI 

is placed inside an integrating sphere.  Several images are taken and 

processed to determine the uniformity. As a result we obtain a flat 

field image and a normalization constant. 
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Linearity characterizes the relative system response to 

changing exposure and changing light levels.  There is a finite 

shutter opening time and shutter delays, and corrections are made 

for these when the images are acquired.  The system is linear with 

respect to changing light levels to better than 0.5% over most of its 

range, hence no linearity correction is currently applied. 

Off-axis rolloff determines the off-axis effects of optical 

fresnel losses and solid angle per pixel changes. This correction is 

determined imaging a source changing the zenith angle. The 

resulting correcting is a function of the relative power of the source 

as a function of the zenith angle. 

Finally, absolute radiance calibration determines the 

absolute radiance as a function of the exposure time and filter 

selection.  Several redundant measurements are taken in each filter 

combination (spectral and neutral density filter).  The computed 

calibration constants CC are the absolute radiance for each filter 

combination that will yield a signal of 10,000 counts (dark-

corrected) at an exposure of 100 ms. 

The equation to calibrate an image is as follows. 

 , (4.3) 

where Cp is the radiance in the pixel, Rp is raw pixel signal value in 

the image (number of counts), Dp is the pixel value in the dark 

image, FFNorm is the flat field normalization constant, FFp is the 
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pixel value in the flat field image, Rop is the pixel value in the rolloff 

image, Expos is the exposure time in ms and CC is the calibration 

constant of the filter combination used to acquire the image. Figure 

4.11 shows a schematic chart of the calibration of an image. 

 

 

Figure 4.11. Schematic chart of the calibration of an image. Exposure and filter 

components are constants in the calibration process, the rest are images. 

 

4.1.2.3 Geometric calibration 

Geometric angular calibration characterizes zenith 

angle and azimuth angle in object space as a function of pixel in 

image space. The first step in the calibration is to provide an 

approximate calibration, accurate to approximately 2 pixels.  In 

order to calibrate the WSI an image is taken in the calibration room 

where different marks have been placed on the wall from -90 to 90º. 

Image is centered to 0º zenithal angle and every mark is associated 

to a pixel in the image with visual inspection. Using a standard least 

squares method with matrix inversion a 3rd order polynomial fits of 

radius versus zenith angle is made for the data. The radius is forced 

to 0 when θ equals 0. The equation takes the form 
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 , (4.4) 

where R0 is the image radius of about 246 pixels. 

Given the radius and azimuth angle, the x- and y-pixel 

coordinates are found using equations (4.5) and (4.6). xcenter and ycenter 

are the coordinates of the image center and radius is the value from 

equation (4.4) 

 , (4.5) 

 . (4.6) 

After the instrument is fielded, a more precise 

geometric calibration is determined using the star field.  This second 

calibration also takes into account the slight errors in leveling of the 

instrument and alignment with respect to true North.  For this 

calibration, approximately 100 bright stars in the image are selected, 

and compare their actual position in the image with an anticipated 

position based on star libraries and the first level geometric 

calibration.  In this process, the actual position is determined to sub-

pixel accuracy by characterizing the Point Spread Function around 

the star. An iterative process is used to a modified high precision 

geometric calibration, typically accurate to about half a pixel.  The 

high-resolution calibration takes the form: 

 , (4.7) 

 , (4.8) 
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where 

  (4.9) 

and 

  (4.10) 

This process was originally developed by Dr. Tim 

Tooman of the ARM program (personal correspondence with the 

AOG), and then further developed by the AOG. 

 

4.2 Sun photometer CIMEL CE318 

Sun-photometry is the most common way to 

characterize aerosol in daytime from the ground. First sun 

photometers were developed by Volz (1974) exploiting the new 

electric thermopiles and the development of the optics industry that 

produced the first spectral filters (Iqbal, 1983, Rollin, 2000). Volz’s 

photometer included two spectral channels designed for the 

calculation of the solar constant and the measurement of 

atmospheric transmittance, and it is the precursor of the modern sun 

photometers. Advances in electronics brought substantial 

improvements in sun photometry (Forgan, 1994; Schmid et al., 

1997; Holben et al., 1998; Morys et al., 2001), but the design of the 

instruments have not changed a lot since Volz’s photometer (Holben 
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et al., 1998; Estellés, 2006). These new developments are basically, 

more sensitive, accurate and stable. 

The development of interferential filters has a vital 

importance for sun photometry. Characteristics of these filters, 

determined by their slit functions, define the spectral selectivity of 

the measurements. It is fundamental in the design of a photometer 

the selection of the central wavelength and width of the filters that 

define the channels of the instrument. There are several wavelengths 

recommended by the WMO (Shaw, 1983). They are in the so-called 

spectral windows, where there is no strong absorption by gases so 

the effect of atmospheric aerosol is isolated. It is also common to 

include specific absorption bands to characterize a specific gas 

component (typically water vapor and ozone). 

 

4.2.1 Description 

 The design of the sun photometer CIMEL CE318 

consists on an optical head with two collimators, a robotic arm for 

sun tracking and sky positioning and an electronic box 

(http://www.cimel.fr). 

The optical head includes the sensors and the optics 

for the measurements. It has attached a double collimator with a 

field of view of 1.2º for the direct irradiance measurements, solar 

aureole (about 6º around the sun) and sky radiance in the 

almucantar plane (fixing the solar zenithal angle and varying the 
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azimuth angle) and the principal plane (fixing the solar azimuth 

angle and varying zenithal angle). The interferential filters select the 

measurement channels. These filters are placed in a filter wheel and 

one of the positions is blind for noise measurement. The 

wavelengths of the instrument are centered on 340, 380, 440, 670, 

870, 936 and 1020 nm. The 936 nm channel is used for precipitable 

water content calculation; the others are used for the 

characterization of the optical and microphysical properties of the 

atmospheric aerosol. The FWHM of the filters are 2 nm for the 340 

nm filter, 4 nm for the 380 nm filter and 10 nm for the rest. The slit 

function of the filters is Gaussian. Finally, the detectors are silicon 

photodiodes. 

The robotic arm moves the optical head pointing to 

the sun for the direct irradiance measurements and it also move the 

head for the almucantar and principal plane measurements (figure 

4.12). 

 

 

Figure 4.12: Measurements schema for direct irradiance and almucantar and 

principal planes. 
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The electronic box includes the necessary electronics 

for the function of the robotic arm and the optical head. These 

electronics can be programmed and the system works automatically 

following certain protocols established. It can also operate 

manually. The box also includes the batteries, a solar panel, a 

humidity sensor and the data transmission system. Figure 4.13 

shows the CIMEL CE318. 

 

 

 

Figure 4.13. A Cimel CE 318 fielded in Sierra Nevada (Granada, Spain) 

 

 

 



Instrumentation 
 

  85 

4.2.2 Measurements schema 

Filters at 340, 380, 440, 670, 870, 937 and 1020 nm 

are used for the direct irradiance measurements. It takes 10 seconds 

to measure with all the filters. This is repeated three times at 30 

seconds interval to form three measurements per channel (triplet). 

The triplet is used for the cloud screening (Holben et al., 1998; 

Smirnov et al., 2001). On the other hand the measurement sequence 

is defined according the relative optical mass. When the optical 

mass is less than 2, the triplet is measured every 15 minutes, when 

the optical mass is between 2 and 5, the triplet is measured at 0.25 

optical mass intervals. Finally, when the optical mass is between 5 

and 7, the triplet is measured at 0.5 optical mass intervals. 

Filters at 440, 670, 870 and 1020 nm are used for the 

sky radiance measurements. Almucantar plane measurements start 

at the sun position and continue 360º in approximately 40 seconds 

per channel. Measurements are performed every hour between 9 

a.m. and 3 p.m. in solar time and also when the optical mass is 4, 3, 

2, and 1.7 in both, morning and afternoon. Principal plane 

measurements start 6º below the sun position and continue moving 

the optical head upwards taking approximately 30 seconds per 

channel. Measurements are performed every hour when the optical 

mass is below 2. 
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4.2.3 Sun photometer networks 

Sun photometer CIMEL CE318 was developed in early 

90s as collaboration between the company Cimel Electronique 

(Paris, France) and the Laboratorie d’Optique Atmosphérique (LOA) 

from l’Université des Sciences et Technologies de Lille (France). The 

first model became the standard instrument of the PHOTONS 

network (Photométrie por le Traitement Opérationnel de 

Normlization Satellitaire, http://www-loa.univ-lille1.fr/photons). In 

the mid 90s, NASA (National Aeronautic and Space Agency) in 

collaboration with PHOTONS created AERONET (Aerosol Robotic 

Network, http://aeronet.gsfc.nasa.gov) using the CIMEL CE318 as the 

standard instrument as well. CIMEL CE318 is also the standard 

instrument in other networks, for example AEROCAN (the Canadian 

sun photometer network, http://pages.usherbrooke.ca/aerocan) or 

the Spanish network RIMA (Red Iberica de medida de aerosoles, 

http://www.rima.uva.es). 

AERONET is the wider network and pretends to obtain 

optical and microphysical properties of the atmospheric aerosol in 

order to validate satellite measurements and create a climatology of 

aerosol (Holben et al., 1998). It is composed by over 200 stations 

distributed all over the world (figure 4.14) covering all kind of 

aerosol, anthropogenic and natural. 
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Figure 4.14: Distribution of the AERONET stations over the world (image from 

http://aeronet.gsfc.nasa.gov) 

 

AERONET provides data almost in real time, but there 

are three levels in the processing of the data. AOD data are 

computed for three data quality levels: Level 1.0 (unscreened), Level 

1.5 (cloud-screened), and Level 2.0 (cloud screened and quality-

assured). Inversions, precipitable water, and other AOD-dependent 

products are derived from these levels and may implement 

additional quality checks following the procedures developed by 

Dubovik et al. (2002; 2006). 

The instruments used in this work are two Cimel 

CE318, one of them from the GFAT sited on the rooftop of the 

CEAMA) in Granada (Spain) and the other one from the ARM sited 

in the SGP, in Oklahoma, United States. The first one operates in 

AERONET since 2004 but it also uses algorithms developed in the 
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GFAT for the inversions (Olmo et al, 2006; 2008). The second one 

operates in AERONET since 1994. 

 



5 
Cloud cover 

characterization 
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In this chapter we present the technique for cloud 

cover estimation applied to the All-Sky Imager. First, we will see the 

traditional algorithms more widely applied and the new approach 

that we propose. This approach with neural networks and genetic 

algorithms requires a brief introduction to these techniques. Then, 

we proceed with the design of the algorithms and the final 

procedure and finally, the results and evaluation of the process. 
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5.1 Introduction 

In section 4.1 we saw that the development of sky 

imagers increased drastically due to the dramatic improvements in 

technology in recent years, both with respect to the hardware and 

digital image processing (DIP). 

DIP is based on the fundamental steps of image 

acquisition, noise removal, feature extraction, recognition and 

knowledge (Gonzalez and Woods, 1992). Goodman and 

Henderson-Sellers (1988) reviewed the major types of DIP 

algorithms used for analyzing satellite images for cloud properties 

and grouped these into three classes. These classes consisted of 

thresholds, radiative transfer and statistical procedures, and example 

applications are described by Chou (1991), Ebert (1992), Romanov 

(1994) and Chen and Takagi (1994). Nevertheless, Goodman and 

Henderson-Sellers (1988) pointed out that ground-based 

observations of cloud area are different from satellite-based retrieval 

because of the difference in viewing geometry. They established this 

difference in about ±1 okta.  

Thresholds and radiative transfer procedures have also 

been applied to ground-based sky image processing. A method 

based on the threshold of the ratio between the red and blue 

channels of the images has been widely used. This method was 

developed by the AOG for the WSI (Johnson et al., 1989). A limit or 

threshold is set for a clear-sky ratio value for each pixel in the 

image, and the pixels for which the red/blue ratio exceeds the clear 
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limit are counted as cloudy. It must be noted that the particular 

threshold function is climate and camera dependent. In addition, 

how white tinted the blue of the sky appears, which is considered to 

be cloud free, relates to such factors as the typical aerosol loading at 

a given location. One way to account for these effects is to tailor the 

clear/cloud threshold specifically for a given camera and location 

(Long et al, 2006). This method, with different variation in the 

process of selecting the threshold, is applied to imagers such as the 

WSI, WSC and the TSI. Alternatively, there is a threshold method 

based on the hue-saturation-intensity color space (Souza-Echer et 

al., 2006). 

In this work, we present a different way to approach 

the problem of cloud cover determination. We are considering this 

problem as a classification problem. Pixels of the images are 

classified into one of three different classes: clear sky, opaque cloud 

or thin cloud. The classification method applied is neural networks 

and the input selection is chosen by means of a genetic algorithm. 

Following sections describe the instruments for this method, i.e. the 

neural networks and the genetic algorithms, and then the procedure 

applied for the cloud cover determination. 

 

5.2 Neural networks 

An Artificial Neural Network (Lippman, 1987; 

Khanna, 1990; Bishop, 1995) is an information processing paradigm 

that is inspired by the way biological nervous systems, such as the 
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brain, process information. The key element of this paradigm is the 

novel structure of the information processing system. It is composed 

of a large number of highly interconnected processing elements 

(neurons) working in unison to solve specific problems. After a 

training (also called learning), the neural network is configured for a 

specific application, such as classification, pattern recognition, 

functional approximation, control system, etc. According to Haykin 

(1994) a neural network resembles the human brain in two aspects: 

the knowledge is acquired by the network through a learning 

process, and interneuron connection strengths known as synaptic 

weights are used to store the knowledge. 

Neural networks have been widely used in 

atmospheric science recently, as Gutiérrez et al. (2004) reviewed. 

Some other examples developed in our research group (GFAT) are 

Alados et al. (2004); Gil et al. (2005) and Alados et al. (2007). 

The Perceptron (Rosenblatt, 1961) is the elemental 

unit in a neural network and emulates a biological neuron. It has a 

set of inputs (dendrites in the biological neurons), a processing unit 

(soma or nucleus) and an output (axon). The inputs are weighted 

and the processing unit consists on the weighted sum of the inputs. 

The output is a function of that sum (transfer function) and is, 

typically, a linear, gaussian or sigmoidal function. 
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Figure 5.1. The perceptron 

 

A set of perceptrons forms a neural network and the 

way this perceptrons are connected determine the kind of neural 

network. 

 Multilayer Percentron, described in the following 

section is an example of a neural network widely used for 

classification and pattern recognition. 

 

5.2.1 Multilayer Perceptron 

Multilayer perceptron (Rumerlhart et al., 1986; Barber 

and Bishop, 1997) has been used widely for classification and the 

training algorithms has been studied and tried numerous times. 

Moreover, the topology is very simple. 

The topology of the multilayer perceptron requires 

determining the number of layers and the number or neurons per 
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layer. The first layer is called input layer and the number of neurons 

is determined by the input parameters and their codification (this is 

called pattern or prototype). The last layer is the output layer and the 

number of neurons is defined by the output of the system. In the 

case of classification it could be, for example, one neuron per class. 

Layers between the input and output are the hidden layers. The 

number or hidden layers and the number or neurons per hidden 

layer depend on the problem and requires trying different 

possibilities. Connections between neurons in a multilayer 

perceptron are always feed-forward, i.e. each neuron in one layer is 

only connected to all the neurons in the following layer except the 

last layer that gives the final output. Figure 5.2 shows a schematic 

draw of the topology of the multilayer perceptron. 

 

 

Figure 5.2. Topology of the multilayer perceptron 
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Training algorithm for multilayer perceptron is the 

backpropagation (Rumerlhart et al., 1986) o a variant of it. The 

algorithm tries to minimize the mean square error between the 

output of the multilayer perceptron and the desired output by 

changing the weights in the input of the neurons. The algorithm is a 

supervised learning algorithm, thus it requires a set of pairs pattern-

output. This set is divided in two subsets, one for training and the 

other one for validation. The algorithm begins with random weights 

and presents the training set to the neural network. At the end of the 

iteration it calculates the mean square error and changes the weights 

in the inputs in the direction of minimizing the mean square error. 

The actualization of the weights in the hidden and input layers 

requires calculating the gradient. Therefore the transfer functions in 

the neurons have to be continuous. After several iterations, the 

neural network learns to classify according to the presented 

problem. The validation of the algorithm consists on presenting the 

validation subset and calculating the network throughput. Basically, 

calculating the success rate for an independent set (the validation 

subset). 

The steps in the design of a multilayer perceptron are: 

1. selection of the input and its codification 

2. selection of the output codification 

3. number or hidden layers and number or neurons in 

each layer 
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4. selection of the training and validation sets 

5. selection of the training algorithm 

6. selection of the transfer function en each neuron in 

each layer. 

 

5.3 Genetic Algorithms 

Genetic algorithms (Holland, 1962; Bremermann, 

1962; Goldberg, 1989; Michalewicz, 1992) are bio-inspired systems 

as well. They are based in the evolution theory by natural selection 

developed by Darwin. A population of individuals evolve over 

generations, some individuals adapts better to the environment and 

have a higher probability of survival. The evolution occurs due to 

two processes, the crossover between individuals (mixing their 

genetic information) and the mutation of one individual. 

Genetic algorithms are used in a wide range of fields 

such as optimization, robotics, control system, classification, etc. 

Population represents a set of solutions for a problem. 

The objective is to evolve the population for a specific problem 

trying to produce better generations of solution to the problem than 

their ancestors. 

Chromosomes are the individuals of the population. 

This is the solution to the problem. The codification of the 

chromosome depends on the problem. Essentially is a string of genes 
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and these can be binary numbers, real numbers, intervals, represent 

an order, etc. We work over the original codification, the binary 

string. 

Fitness function evaluates each chromosome in the 

population. The idea is to determine which individuals (solution to 

the problem) adapts better to the environment (solve the problem 

better). Each chromosome has a fitness. 

The main operators applied to the chromosomes are 

the crossover and the mutation. In the crossover two chromosomes 

mix their genes generating one or more offspring. The codification of 

the chromosomes determines the kind of crossover operators that 

can be applied. One-point crossover selects a point in the parents’ 

individuals and exchanges the genetic information after this point 

generating two children with a mix of the genetic information of the 

parents. In the mutation, a chromosome changes one gene. Once 

again, the codification determines the kind mutation operator. The 

simple mutation, for binary codification, changes a gene for the 

other value, i. e. from 0 to 1 or vice versa. Figure 5.3 shows a 

graphic description of the crossover and mutation operators. 

These operators described above are applied to a 

subset of the population. The selection procedure picks the 

individual over which the operators will be applied. The selection 

depends on the fitness of the individual and some probability. 

Therefore the best individuals have higher probability for crossover 

and mutation and their genetic information will keep in the 
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following generations. A typical procedure is the selection by 

roulette. Each individual has a percent assigned as a function of its 

fitness (the larger the fitness, the larger the percent) and a random 

number will fall inside the interval of an individual, then this 

individual is picked. Figure 5.4 illustrates the process of roulette 

selection. 

 

Figura 5.3. Crossover and mutation operators 

 

Figure 5.4. Roulette wheel approach based on fitness. There are 5 individuals with 

a percent assigned as a function of their fitness. The selection point falls into one 

of the individuals. Fitter individuals have higher probability of being selected 

while weaker individuals have lower probability of being selected. 
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Finally the elitism operator keeps the best individuals 

in the population over generations until another better individual 

substitutes it.  This operator increases the velocity of convergence in 

genetic algorithms when they are used for optimization. 

 

5.4 Design of the cloud classification algorithm 

Inputs to the neural network are a set of parameters 

extracted from every pixel of the images. Parameters are extracted 

from the image by using a 1 and 9 pixel window (see figure 5.6). For 

each pixel we compute some parameters using a 9 pixels window 

centered on it, that is, using information from the eight pixels that 

surround it (neighbors). The first version of the procedure had a total 

of 18 parameters extracted from the pixels. These parameters are: 

• Value of signal in R channel 

• Value of signal in G channel 

• Value of signal in B channel 

• Mean value of pixel and neighbors in R channel 

• Mean value of pixel and neighbors in G channel 

• Mean value of pixel and neighbors in B channel 

• Variance for the pixel and its neighbors in R channel 

• Variance for the pixel and its neighbors in G channel 
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• Variance for the pixel and its neighbors in B channel 

• Value of signal in gray scale 

• Mean value for the pixel and its neighbors in gray 

scale 

• Variance of values for the pixel and its neighbors in 

gray scale 

• R/G for pixel 

• R/B for pixel 

• G/R for pixel 

• G/B for pixel 

• B/R for pixel 

• B/G for pixel 

 

Consequently, the input layer of the multilayer 

perceptron (MLP) has 18 perceptrons. 

We have established three possible output classes. The 

pixels are classified as opaque cloud, thin cloud, or clear sky by 

visual inspection of the images. Hence the output layer has three 

perceptrons. Each perceptron in this layer evaluates one of the three 

classes. The outputs of the neural network are in the range [0,1]. 
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Values close to 1 indicate that the pixel corresponds to the class. 

Values close to 0 indicate that the pixel does not correspond to the 

class. 

The neural network has only one hidden layer, as a 

multilayer perceptron only needs three layers to create a decision 

region as complex as required (Lippman, 1987), and the number of 

perceptrons is the same as the input layer, since some testing 

revealed that more perceptrons do not increase the performance. 

The selection of the training and test sets is a delicate 

operation. The set has to cover all the possibilities that we 

encounter. The procedure to create these sets requires the visual 

inspection of the images extracting portions of them and classifying 

them. For that reason we examined a set of 50 images with a wide 

variety of sky conditions and extracted specific regions of those 

images. Those regions are patches of the images, some of them close 

to the horizon, the circumsolar area and transition between cloud 

and sky, which are difficult areas to classify, and also areas of clear 

sky and inside a cloud. The 18 parameters are extracted for each 

pixel in those portions of the images and we labeled the pixels in 

one of the three possible classes and made a table with the input 

parameters and the corresponding class. This set has a size of about 

1000 samples. This set was randomly divided in two, and one set 

was selected as training and the other as a test set. 

Transfer function has been selected by test for each 

layer in the neural network. The output layer has a sigmoid transfer 
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function since the output range is [0, 1]. In this layer the neuron 

with the maximum decides the class of the sample is being 

classified. For the hidden and input layers the difference between a 

lineal or sigmoid transfer function is minimum, so lineal function is 

selected. 

The training algorithm was also selected by test. Five 

variations of backpropagation (Howard and Beale 2000), and the 

one with the best performance was selected. Three random seeds 

have been selected for the division of the table in training and 

validation sets and the network has been trained three times for each 

set (running 6 times per seed using one of the divisions as training 

and the other as validation and vice versa). The network has been 

trained over 100 iterations reaching a mean square error in the 

training set of 10-2. Resilient backpropagation (Riedmiller and Braun, 

1993) is the one that reached the best performance (over 80% of 

success in all runs). This variant of the backpropagation only uses 

the sign of the derivative to determine the direction of the weight 

update, the magnitude of the derivative has no effect on the weight 

update and therefore the optimum is reached faster when the 

transfer functions are sigmoid. The size of the weight change is 

determined by a separate update value. The parameters of the 

training algorithm have been left by default since the results were 

good. 

A large set of parameters has been selected in the 

beginning and an optimization process has been applied to reduce 
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the number or parameters keeping or increasing the performance of 

the neural network as explained in the next section. 

 

5.5 Design of the optimization algorithm 

A genetic algorithm minimizes the number of input 

parameters keeping or increasing the performance of the neural 

network. Reducing the number or parameters we reduce the size 

and therefore the running time and efficiency of the classification. 

The chromosomes represent the input parameters to 

take into account. They are a binary string of 18 elements (genes) 

with a value of 1 when the parameter is taken into account and 0 

otherwise. 

Fitness for each individual is the performance of the 

network with the corresponding input parameters. Therefore, the 

fitness function creates a neural network with the corresponding 

inputs, it trains it and validates it. The validation consists in 

presenting the validation set to the network and calculates the 

success rate in the classification for that set. 

The crossover operator selected is the simple 

crossover explained in section 5.3 but modified to, at least have one 

1 (there has to be at least one parameter as input). If all the 

parameters are 0, mutation is forced. The mutation parameter also 

described in section 5.3, was also modified to avoid an individual 
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with all genes to 0 (again another mutation is forced). The selection 

algorithm is the roulette also described in section 5.3. 

Initial population is generated randomly but the 

individual with all genes to 1 is forced to be in the population. This 

way, the reference neural network explained in section 5.4 is 

evaluated in the first generation. The genetic algorithm evolves to 

better solutions that necessarily have less parameters. If all 

parameters were needed, the highest fitness value would be reached 

in the first generation, if not, following generations will create 

individuals with less parameters and thus the final neural network 

will be an optimization of the original one. 

The parameters used in the genetic algorithm are: 

• Number or generations: 500 

• Population size: 50 

• Crossover probability: 0.9 

• Mutation probability: 0.1 

 

5.6 Final procedure 

Different in-house programs have been designed in 

order to develop a final procedure for the cloud cover assessment 

using the techniques discussed in sections 5.4 and 5.5. First, the 

design of the neural network (creating and optimizing with a genetic 



Cloud cover characterization 
 

  107 

algorithm) was developed and, second, the program that classifies 

the pixels of the sky images and provides the cloud cover 

assessment of the sky images. 

One program, the NN program, enables creating and 

training neural networks specifying some parameters, i.e., the 

number of neurons in the different layers, the transference functions, 

the learning algorithm, and the training and test sets. Another 

program, the GA program, implements the genetic algorithm and all 

the functions required, including the fitness function, i.e., the NN 

program. The outputs of the GA program are the best neural network 

found and its performance. Figure 5.5(a) shows a schema of this 

procedure, and figures 5.5(b) and 5.5(c) show flux diagrams of the 

GA program and the subroutine that creates and evaluates the 

neural network, i.e., the NN program. The performance is calculated 

from the test set, computing the error rate in that set. 

Finally, another program analyzes the images for 

cloud classification using the neural network obtained with the 

genetic algorithm. This program first extracts the parameters of the 

image pixels, i.e., the input of the neural network; then the neural 

network classifies every pixel; and, finally, a new image, the result 

image, is built representing the opaque clouds as white, the thin 

clouds as gray, and the sky as blue. Black represents areas not 

analyzed, which are the solar-shadow system and the building on 

the horizon. This result image is analyzed to extract information 

about cloud cover in percent or oktas for the two cloud classes 

(opaque and thin) and the cloud cover in different regions of the 
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image and the brokenness and uniformity of cloud cover. Figure 5.6 

is a schema of this procedure with an example of the original and 

result images. The output parameters extracted from the sky images 

are: 

• Percent of opaque clouds 

• Percent of thin clouds 

• Oktas for opaque and thin clouds 

• Percent of opaque clouds in every octant (Fig. 5.7) 

• Percent of thin clouds in every octant (Fig. 5.7) 

• Sun position in octant (Figure 5.7) 

• Brokenness of cloud cover 

• Uniformity of cloud cover 
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Figure 5.5. (a) Schema of the optimization procedure. (b) Flux diagram for the GA 

program. (c) Flux diagrams for the NN program. 
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Figure 5.6. Schema of the final procedure. It receives a sky image and generates 

the resulting image. 
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Figure 5.7. Position of the octants for the output parameters. (The image is rotated 

to calculate the percent in regions; hence the south is always placed at the bottom 

of the image.) 

 

The program creates a thumbnail version of the 

original and analyzed images and they are showed on a website in 

real time along with some analysis (oktas and percent of clouds). 

This website was developed by the GFAT using PHP (www.php.net). 

The website also allows to navigate through all the stored images 

(starting on October 2005). It can be accessed through the address 

http://cloudcamera.ugr.es or navigating through the GFAT website: 

http://atmosfera.ugr.es. Figure 5.8 shows an example of the website. 
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Figure 5.8. Image capture of the website showing the original image on the left, 

processed image on the right and analysis. 

 

Initially, we use as many as 18 inputs parameters for 

the neural network. The performance of the neural network is 

calculated by using the test set. First, we calculate the error rate, or 

error in classification (number of errors divided by the number of 

cases in the test set), then, the performance is (1 – error rate). The 
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performance of this version of the neural network is 82% including 

the whole set of input data; that is, the error in pixel classification is 

18%. 

The genetic algorithm found the best neural network 

with three input parameters out of the original 18. These parameters 

are the mean of the pixel and its neighbors in the red and blue 

channels and the variance of the pixel and its neighbors in the red 

channel (a schema of the neighbors of the window size can be seen 

on figure 5.6). The performance of the optimized neural network is 

85%, that is, the error in pixel classification is 15%. More important, 

with the reduction in the number of input parameters, the time used 

in the parameter extraction procedure is significantly reduced and 

the running time if the whole procedure is reduced too. It is also 

significant to emphasize that the information is in the red and blue 

channels; that is, the channels used in the algorithms based on 

threshold of the red/blue ratio image. The use of more parameters or 

different channels contaminates the learning process of the neural 

network, worsening performance when more inputs are used. 

 

5.7 Results and evaluation 

5.7.1 Pixel-based evaluation 

As indicated in section 5.4, we have selected a set of 

50 images with a wide variety of sky conditions, making a set of 

about 1000 samples. This sample test was randomly divided in two, 
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one selected as training and the other as test. To evaluate the 

classification procedure in this section we have used the set of 500 

samples not selected in the training procedure. Thus, we have used 

different approaches. In the pixel-based evaluation we have tested 

the number of successes and failures, discriminating the type of 

failure. That is, there are three classes, so when the neural network 

fails in the classification of pixels there are two possibilities: the 

neural network can fail classifying in one class or another. Table 5.1 

shows error frequencies for the three classes. The first row shows the 

error frequency for classification of the neural network in the three 

different classes for the pixels cataloged as clear sky by a human 

observer. The second row shows the same for pixels catalogued as 

thin cloud by a human observer, and the third row those cataloged 

as opaque. The classification of clear skies is quite good; over 88% 

of the test pixels are correctly classified. Opaque clouds are also 

well classified; more than 84% of the test pixels are correctly 

classified. Over 61% of thin clouds pixels are correctly classified, 

but almost 30% are classified as clear skies and about 10% are 

classified as opaque cloud. Human inspection of pixels for 

classification is quite complicated in this case. Thin clouds are 

difficult to detect visually in the sky images, so that may be one 

reason why thin clouds are detected as clear sky. On the other hand, 

the ability of the observer to distinguish between opaque and thin 

clouds is a source of error mainly when the pixel is wrongly 

classified as opaque cloud. 
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 Pixel estimated as (%) 
Pixel observed as Clear sky Thin cloud Opaque cloud 
Clear sky 88.11 28.44 5.78 
Thin cloud 11.01 61.41 9.45 
Opaque cloud 0.88 10.16 84.77 

Table 5.1. Contingency of the relative frequency of pixel classification (maxima 

are boldface) 

 

5.7.2 Image-based evaluation 

The evaluation of the procedure for cloud cover 

assessment requires a reference to compare the actual sky condition 

with the cloud cover estimated over the whole image. This can be 

done by comparing the performance of the full classification of our 

methodology with an independent record of cloud cover by human 

observers. The closest meteorological office is situated at the Armilla 

Air Force Base, located 4 km from the station. There are no 

mountains, big buildings or other obstacles between them; so, it is 

assumed that the cloud cover registered at the meteorological office 

is similar to the estimation of cloud cover with the All-Sky Imager. 

The meteorological office archives the METAR reports (WMO, 

1995). METAR stands for aviation routine weather report, and it is 

used by pilots in partial fulfillment of a preflight weather briefing. 

These reports are generated every hour in daytime and include 

information about cloud cover. The cloud cover given is not the 

best, as it is given in ranges of oktas instead of oktas per se. That is, 

there is a category for clear skies (0 oktas), another for few clouds (1-
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2 oktas), another for scattered clouds (3-4 oktas), another for broken 

clouds (5-7 oktas), and the last one for overcast (8 oktas). 

The All-Sky Imager provides the percent of clouds and 

the number of oktas, so the resolution is different, and we have to 

assume an uncertainty of at least 1 okta in the comparison. For the 

METAR categories we use the mean of oktas in the interval, e.g., the 

“few clouds” category is 1.5 oktas (± 1 okta), “scattered clouds” is 

3.5 oktas (± okta) and so. 

The evaluation has been performed over 15 months of 

data (from October 2005, to December 2006). Figure 5.9 shows the 

monthly average oktas registered on the METAR record and by the 

All-Sky Imager. This average has been done with estimation from all 

the images available and all the available METAR observations for 

every month. Figure 5.10 shows the number of sky images for each 

month. We can see that August and September of 2006 have very 

few images because of a period of inactivity due to maintenance of 

the All-Sky Imager. These months are omitted from this study. The 

difference between the monthly METAR register and the monthly 

estimated cloud cover is less than one okta (the resolution error of 

the comparison) except for December 2005 and April 2006, for 

which the differences barely exceed one okta, and May, July and 

October of 2006. This difference can be explained by the incidence 

of Saharan dust events at Granada (Lyamani et al., 2005; 2006). 

Dust events contains mainly coarse particles that provoke a strong 

forward scattering, and therefore the brightness of the image, 

especially in the circumsolar area, is higher than usual. This 
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brightness is classified as cloud by the algorithm procedure and 

introduces an error. 

 

Figure 5.9. Comparison of monthly average oktas of METAR record for clouds 

(and its standard deviation) and the All-Sky Imager. The averages are computed 

using all the measurements in every month. 

 

Figure 5.10. Number of images registered by the All-Sky Imager every month. 
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Figure 5.11 further illustrates the impact of the dust 

events on the comparison between the All-Sky Imager and METAR 

results. The bar values show the absolute difference between the All-

Sky Imager oktas and the METAR report for clouds. The line plot in 

figure 5.11 shows the monthly values of the Ångström exponent that 

characterizes the spectral dependency of the atmospheric aerosol 

optical depth and it is related to the size of the particles (see section 

2.4.3 and equation 2.11): large values of α indicate the prevalence 

of fine particles from urban-industrial and biomass burning sources, 

while low values of α are related to the presence of coarse particles 

such as desert dust. We have computed the Ångström exponent in 

the interval 440-1020 nm, using the photometric CIMEL-CE318 

measurements (Lyamani et al., 2006). Figure 5.11 shows that the 

months with bigger particles in average are May, June and July 

2006. Figures 5.9 and 5.11 show that the two months with 

meaningful negative differences (about 1 okta, All-Sky Imager – 

METAR), December 2005 and January 2006 correspond to the 

highest values of the Ångström exponent. On the other hand, the 

greatest positive differences (about 2 oktas, May and July 2006) 

correspond to the lowest values of Ångström exponent. 
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Figure 5.11. Absolute difference between All-Sky Imager estimated oktas and 

METAR report for clouds. The ordinates axis also gives the values of the Ångström 

exponent (alpha). 

 

As example, figure 5.12 shows the measurements of 

the All-Sky Imager and the METAR report for clouds on May 29 

2006, during a day with a dust event. The CALIMA web site 

(Characterization of Aerosol due to African Mass Intrusions, 

www.calima.ws) from the Environmental Ministry of Spain recorded 

that the day was associated with a Saharan dust event. Thus, the 

number of oktas estimated with the sky images is higher than the 

values registered in the METAR reports. 
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Figure 5.12. Estimation of cloud cover and METAR report during a dust event 

(May 29, 2006). 

 

Figure 5.13 shows a relative frequency histogram for 

the difference between All-Sky Imager oktas and the METAR report 

for cloud cover in temporally coincident measurements. More than 

60% of the sky images estimates differ less than or exactly one okta 

from the synchronic METAR report. This is the minimum uncertainty 

that can be expected in the comparison, since METAR data are 

given in interval of 2 or 3 oktas. On the other hand, as we have seen 

in figure 5.11, dust events explain the cases when the difference 

between All-Sky Imager and METAR is larger, as the All-Sky Imager 

procedure classifies a greater part of the sky as cloudy in those 

cases. 
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Figure 5.13. Relative frequency histrogram for the difference between All-Sky 

Imager oktas and METAR records for cloud cover in temporally coincident 

measurements over the whole data set. 
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Section 4.2 presented the sun photometry as the most 

common way to characterize the atmospheric aerosol. Aerosol 

optical depth (AOD) is calculated by extinction measurements using 

the Beer-Bouguer-Lambert law (equation 2.20), and the 

microphysical properties of the atmospheric aerosol are calculated 

by inversion codes using either the AOD or a combination of AOD 

and sky radiance measurements performed at the principal or 

almucantar planes. 

Sky imagers can capture the sky brightness (in the 

form of pixel counts) or even sky radiance of the whole sky 

simultaneously. On the dark side, direct irradiance is not available 

because the sun disc is blocked with the shadow system. 

This chapter presents a methodology for the estimation 

of AOD and its spectral dependency with the All-Sky Imager and the 

WSI and, in a second step, an inversion code applied to the WSI 

data for size distribution estimations. 
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6.1 Optical properties of the atmospheric aerosol 

Calculating the AOD with a sky imager requires a 

different approach than the traditional methodology applied in sun 

photometry. Since the sun, and therefore the direct solar irradiance, 

is not available, we use the sky radiance on the principal plane to 

estimate the AOD. Before we discuss the methodology we need to 

introduce one of the tools used. The AOD is estimated using a 

neural network. Section 5.3 introduced the neural networks and the 

multilayer perceptron. This time a different kind of neural network is 

used and presented in the following section. 

 

6.1.1 Radial Basis Function Neural Networks 

Radial basis function (RBF) networks (Yee and Haykin, 

2001; Gutiérrez et al., 2004) are especially suitable for function 

approximation. The inputs of the radial basis networks are the 

variables of the function, and the output is the function 

approximation. 

RBFs emerged as a variant of neural networks in late 

80s. However, their roots are established in much older pattern 

recognition techniques as for example potential functions, 

clustering, functional approximation and spline interpolation (Tou 

and Gonzalez., 1974). RBFs are embedded in a two layer neural 

network, where each hidden unit implements a radial activated 

function. The output units implement a weighted sum of hidden unit 
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outputs. The input into an RBF network is nonlinear while the 

output is linear. Their excellent approximation capabilities have 

been studied by Poggio et al. (1990) and Park and Sandberg (1991). 

Due to their nonlinear approximation properties, RBF networks are 

able to model complex mappings, which multilayer perceptrons can 

only model by means of multiple intermediary layers (Haykin, 

1994). 

Same as multilayer perceptrons, the design of a RBF 

network requires determining the inputs (variables of the function), 

the output (the function values), the number of neurons and the 

training. 

The topology of the RBF networks consists in a two-

layer feed-forward neural network. Such a network is characterized 

by a set of inputs and a set of outputs. In between the inputs and 

outputs there is a single hidden layer of neurons. Each of them 

implements a radial basis function. Figure 6.1 shows the topology of 

the RBF networks. 

 

Figure 6.1. RBF network topology 
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RBF networks are characterized for its transfer 

function, which is the RBF. In this case input to the transfer function 

is the vector distance between its weight vector w and the input 

vector p, multiplied by the bias b  

 . (6.1) 

The transfer function for a radial basis neuron is a Gaussian function 

 . (6.2) 

The RBF has a maximum of 1 when its input is 0. As 

the distance between w and p decreases, the output increases. Thus, 

a radial basis neuron acts as a detector that produces 1 whenever 

the input p is identical to its weight vector w. The bias b allows the 

sensitivity of the neuron to be adjusted. 

This topology allows a very simple training for 

function approximation or interpolation. Every sample in the training 

set creates a new neuron in the hidden layer, i.e. the hidden layer 

has the same number of neurons as samples in the training set. The 

weight of the connection input-neuron is set to the input value. 

Therefore n in function (6.1) is 0 and a in function (6.2) is 1. The last 

layer gathers the hidden layer’s outputs and readjusts the output to 

provide the correct function value. A typical input would activate 

several neurons (the weight is not exactly the same as the input 

since the input is not in the training set), i.e. 0<a<1 for several 

neurons output and the final output to the network is a combination 

of the different neuron outputs. This feature allows to the network to 
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interpolate the function values and, therefore learn the shape of the 

function. Assuming that the training set is well spread along the 

input range, the RBF network learns the shape of the function with 

the training set. An independent set, the test set, is used to evaluate 

the function approximation. It works like a spline interpolation with 

the advantage that N-dimensional functions can be approximated 

easily but the disadvantage that the function is unknown. 

 

6.1.2 Aerosol Optical Depth estimation 

The sky radiance depends directly on the molecules, 

and aerosol load through several parameters connected with 

extensive and intensive aerosol properties. While previous 

investigations have related AOD to radiances measured in a 

restricted range of scattering angle to simulate the spaceborne point 

of view (e.g. Kaufman, 1993; Sánchez et al., 1998), here the 

development is focused on surface measurements. 

There is a dependency between radiance along the 

principal plane and the aerosol optical properties (Olmo et al, 

2008). The effect of the AOD and α on the radiance over the 

principal plane is shown in figure 6.2. The graph shows sky radiance 

over the principal plane measured with the WSI on two different 

days with extreme values of α and different values of AOD. The 

relationship of the radiance over the principal plane and the AOD 

can be seen as well as the relationship of the radiance over the 

principal plane, the wavelength and α. 
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Figure 6.2. Comparison of the radiance along the principal plane of the WSI 

varying the �ngström exponent � and AOD. The three wavelengths of the WSI are 

represented. 

 

As we stated before, the methodology applied uses 

RBF networks. We are considering that the AOD is a function of the 

sky radiance over the principal plane. Several scattering angles are 

selected as inputs to the RBF network and the output is the AOD 

itself. There are several differences in the methodology applied to 

the All-Sky Imager and the WSI, so both methodologies are 

explained in separated sections. 

 

6.1.2.1 All-Sky Imager 

The information provided by the All-Sky Imager 

includes the sky brightness reaching the surface for every pixel of 
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the image. This brightness is, in the form of pixel counts, somehow 

related to the sky radiance assuming the linearity of the CCD sensor. 

This approximation also includes the assumption of knowing the 

filters response and the uniformity of the bayer mosaic of the CCD 

(see section 4.1.1.1). 

Looking at figure 6.2 we observe that scattering angles 

closer to the Sun exhibit a large dependence on the AOD. The 

scattering angle at 90º has a smaller dependency on AOD and also 

on the Ångström exponent α. This last scattering angle is the 

minimum polarization point and it is the point where the Rayleigh 

scattering presents a minimum (see section 2.2.1). 

Inputs to the RBF networks are sky radiances at 

specific scattering angles in the principal plane. We selected a value 

close to the sun (20º scattering angle) and the 90º scattering angle. 

These values are easily retrieved using the equations 4.1 and 4.2 

presented in section 4.1.1.3. On the other hand, the brightness of 

the sky also depends on the SZAº or, in other words, the amount of 

radiation reaching the earth’s surface depends on the air mass. 

Finally, these sky radiances and the cosine of the SZAº (for its 

relation to the air optical mass, equation 2.13) are inputs to the RBF 

network. 

AOD is wavelength dependant, and we need to relate 

the channels of the All-Sky Imager with the spectral dependence of 

extinction measured by the CIMEL CE318. We considered relating 

the blue channel with the 440 nm and the red channel with the 670 
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nm wavelength. Thus, the output of the neural network is the value 

to be estimated, i.e. AOD at 440 nm and 670 nm corresponding to 

the blue and red channels, respectively. There is a different neural 

network for each AOD. The training process requires a data set 

pairing inputs and outputs. The inputs are the sky radiances at 20º 

and 90º scattering angles in the corresponding wavelength and the 

cosine of the SZAº; the outputs are the AOD at 440 nm or 670 nm. 

The experimental data used in this work are sky 

images catalogued as cloudless skies from October 2005 to February 

2006. Using the methodology explained in chapter 5 we sorted out 

the cloudy images. The final data set consisted on 1018 images that 

were processed to extract the inputs and matched to CIMEL CE318 

measurements. The time interval for both instruments is different, so 

we established a margin of ±2 minute for the association. These 

1018 experimental cases were used for model development and for 

validation. This set is divided randomly in two subsets, a training set 

using 2/3 of the whole data set and a test set using 1/3 of the whole 

data set. All values, inputs and outputs, were normalized to the 

range [0,1], i.e. the values are rescaled to that range where the 

minimum and maximum values correspond to 0 and 1, respectively. 

During the training every measurement is used to adjust the internal 

values of the neural network (the weights) so the output is the 

desired variable amount, i.e. the AOD corresponding to the 

wavelength we are trying to estimate. Once the network is trained 

we use the test set to evaluate the performance of the network. The 

coefficient of determination (R2), calculated between the AOD 
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estimated with the CIMEL and the values estimated with the All-Sky 

Imager using the test set, is our performance estimator. The 

performance depends on the selection of the training and test sets. 

These sets are created randomly out of the whole data set. Hence 

we repeat the process nine times and select the best partition, i.e. 

the one that yields the best performance. 

 

6.1.2.2 Whole Sky Imager 

The absolute radiance calibration of the WSI provides 

the actual sky radiance in every scattering angle. Section 4.1.2.2 

explained the calibration process and equation 4.3 lets us pixel 

calibrations in the sky image for absolute radiance. 

We extract the sky radiance values over the principal 

plane in the images for every scattering angle. Thus, we have these 

values for scattering angles from 1º to 100º. Equations 4.5 and 4.6 in 

section 4.1.2.3 let us obtain the coordinates x and y in the image 

plane given a zenith and azimuth angle, so knowing the Sun 

position we can locate the principal plane making the azimuth angle 

equal to the Sun azimuth angle and varying the zenith angle. While 

in the All-Sky Imager methodology we selected a couple of 

scattering angles by visual inspection of the principal planes as 

criterion, here the selection of those scattering angles is done by 

means of a greedy algorithm (Cormen et al., 2001). The greedy 

algorithms are iterative algorithms that build a string solution getting 

the best item every loop. While AOD is sky radiance dependent, not 
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all the scattering angles are necessary in its estimation. The first 

iteration of the algorithm creates 100 networks using the radiance at 

one of the scattering angles. All of them are evaluated and the best 

one is added to the solution. The second iteration of the algorithm 

creates 99 networks using the radiance at the best scattering angle of 

the previous iteration and the radiance at a different scattering angle. 

Once again, the best one is added to the solution. This process is 

repeated until the performance decreases, i.e. no more scattering 

angles are needed. During the process we applied a mask to 

eliminate the measurements with non-valid values (obstruction due 

to the horizon or shadow system or brightness in the circumsolar 

area). As a result, the final data set may vary depending on the 

scattering angles used. Summarizing, as inputs we have the sky 

radiance in scattering angles selected by the greedy algorithm and 

the SZAº. 

Again, we need to relate the wavelengths of the WSI 

filters with the wavelengths used to measure the extinction values 

with the CIMEL CE318. We used the nearest wavelength and, 

therefore the 450 nm filter is associated with the 440 nm in the 

CIMEL CE318, the 650 nm filter is associated with the 670 nm and 

the 800 nm filter is associated with the 870 nm. Thus, we developed 

a RBF network model for each WSI wavelength obtaining an 

estimation of the AOD at 440, 670 and 870 nm respectively. 

 The data set selected in this work comprises the 

period from October 1st 2001 to September 29th 2002. This data set 

is from a whole year, so we can model the seasonal variability of the 
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atmospheric aerosol. Using the cloud decision images processed by 

the Atmospheric Optics Group (AOG) we sorted out all the cases 

with clouds, to work with the clear-sky results. A total of 1047 clear-

sky image sets (i.e. 3 spectral images acquired in one set) were 

associated with a synchronous CIMEL measurement, applying a ±2 

minutes margin. This image set has been used to create and validate 

the model. The whole data set consists of the radiances over the 

principal plane of the 1047 images, the SZAº at the time of the 

measurement and the synchronous AOD calculated with the CIMEL 

CE318. This set is divided randomly in two subsets, a training set 

using 2/3 of the whole data set, and a test set using 1/3 of the whole 

data set. All values are normalized to the range [0,1] as in the All-

Sky Imager methodology. The R2 calculated between the AOD 

estimated with the CIMEL and the values estimated with the Whole 

Sky Imager using the test set, is our performance estimator. Again, 

the process is repeated nine times and selects the best partition, i.e. 

the one that yields the best performance. 

 

6.1.3 Ångström exponent 

Once we obtain the AOD, its spectral dependency 

offers valuable information about the particles size in a direct and 

simple way. Section 2.4.3 introduced the Ångström Law (equation 

2.23) and the Ångström coefficients α and β. The calculation of 

these coefficients requires defining the spectral interval. The most 

common way is to consider the visible and near infrared interval 
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440 – 1020 nm. Other authors define intervals in the ultraviolet (340 

– 380 nm), visible (440 – 670 nm) and near infrared (870 – 1020 

nm) and three different Ångström exponents α1, α2 and α3 (e.g. 

Vergaz, 2001). 

Once the interval is selected, there are several ways 

for calculating the Ångström coefficients. The most common way is 

the linear fit of the spectrum expressed as: 

  (6.3) 

using the interval 440-1020. 

We will use this methodology for the WSI and a 

technique with neural networks for the All-Sky Imager and the WSI 

as explained in the following sections. 

 

6.1.3.1 All-Sky Imager 

Using the traditional methodology and the equation 

6.3 with the All-Sky Imager AODs does not provide good results. 

AODs are estimated well, but the propagation of errors when we 

calculate α does not allow getting to a good estimation. For this 

reason a new RBF network model is applied. The idea is the same as 

the estimation of the AOD. α is a function of the sky radiance and 

therefore can be estimated with a function approximation method. 

Since α is the spectral dependency of the AOD we need the sky 

radiance on several wavelengths as inputs to the model. Also, in 
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section 6.1.2 and figure 6.2 we saw that α is more sensitive to 

changes of sky radiance in scattering angles closer to the sun. For 

these reasons we created the model using as inputs the sky radiance 

on 10º, 20º and 90º scattering angles in both blue and red channels. 

SZAº is also an input. 

The procedure is exactly the same as in AOD 

estimation. The same data set, the same splitting in training and test 

sets and so on. Now the output is α instead of the AOD at a specific 

wavelength. α can be calculated using different intervals. The 

interval 440-1020 nm includes the wavelengths of our All-Sky 

Imager, and therefore this is the interval used to compare the results. 

The R2 calculated between the α estimated with the CIMEL in that 

interval and the values estimated with the neural network using the 

test set, is our performance estimator. Again, the process is repeated 

nine times and selects the best partition, i.e. the one that yields the 

best performance. 

 

6.1.3.2 Whole Sky Imager 

Two different approaches have been tested to estimate 

the Ǻngström parameters. First, we use the method explained in 

section 6.1.3 (linear fit) using the AODs estimated with the neural 

networks, as seen in section 6.1.2.2. Secondly, a new RBF network 

has been trained using the α calculated with the CIMEL CE318. In 

this case the interval is 440 – 870 nm. The procedure is the same 

applied to the All-Sky Imager explained in section 6.1.3.1. 
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6.1.4. Results and evaluation 

6.1.4.1 All-Sky Imager 

Figure 6.3 shows the AOD (440 nm) estimated with 

the neural network using the blue channel of the sky images versus 

the AOD (440 nm) calculated with the CIMEL CE318. Figure 6.4 

shows the AOD (670 nm) estimated with the neural network using 

the red channel of the sky images versus the AOD (670 nm) 

calculated with the CIMEL CE318. In both cases, the analyses have 

been performed over the test set. The linear fits are forced through 

zero, thus the slope b provides information about the relative over- 

or underestimation associated with the model. The coefficient of 

determination R2 gives an evaluation of the experimental variance 

explained by the model. The performance of the models was 

evaluated also using the root mean squared deviation (RMSD) and 

the mean bias deviation (MBD). These statistics allow for detection 

of both the differences between experimental data and model 

estimates and the existence of systematic over- or underestimation. 

Table 6.1 shows statistics of the analyses for the different models 

selected. 
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Figure 6.3. Scatter plot of estimated versus measured values for AOD at 440 nm. 

 

Figure 6.4. Scatter plot of estimated versus measured values for AOD at 670 nm. 

 

Finally, Figures 6.5 and 6.6 show histograms of the 

differences between measured and estimated AOD (440 nm) and 

AOD (670 nm), respectively. Figure 6.5 reveals that 52% of the 

estimated AOD (440 nm) has deviation less than 0.01. Figure 6.6 
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reveals that 62% of the estimated AOD (670 nm) has a deviation 

less than 0.01. This threshold in the deviation corresponds to the 

nominal error in the retrieval of AOD for AERONET network 

(Holben et al., 1998). 

 

Figure 6.5. Histogram of the differences between measure and estimated values 

for AOD at 440 nm. 

 

Figure 6.6. Histogram of the differences between measure and estimated values 

for AOD at 670 nm. 
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We also tried an ANOVA test for AOD estimation and 

the p-value is 0.976 at 440 nm and 0.93 at 670 nm, i.e. the 

measured and estimated AODs are indistinguishable with a 98% 

and 93% probability at 440 and 670 nm, respectively. 

Figure 6.7 shows α estimated with the neural network, 

using the sky radiances in both channels (red and blue) of the sky 

images, versus α calculated with the CIMEL CE318 in the interval 

440-1020 nm. The performance of the model was evaluated using 

the R2, RMSD and the MBD, and Table 6.1 shows these statistics of 

the analysis. 

Finally, Figure 6.8 shows a histogram of the 

differences between measured and estimated values for α. 

 

Figure 6.7. Scatter plot of estimated versus measured values for α. 

 



Aerosol characterization 
 

 142 

 

Figure 6.8. Histogram of the differences between measured and estimated values 

for α. 

 

 b±error R2 MBD RMSD 
AOD440 0.985±0.004 0.872 7E-5 0.019 
AOD670 0.976±0.005 0.847 1.3E-4 0.014 

α 0.982±0.003 0.876 0.021 0.012 

Table 6.1. Statistical results of the RBF networks for estimation of AOD at 440 nm, 

AOD at 670 nm and α. The column b represents the slope of the linear fitting 

through zero of the data and its error, R2 is the coefficient of determination, MBD 

is the mean bias deviation and RMSD is the root mean squared deviation. 

 

6.1.4.2 Whole Sky Imager 

There is an important difference in the methodology 

for both instruments. While the input selection in the methodology 

for the All-Sky Imager followed intuition, for the Whole Sky Imager 
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there is an algorithm that selected the most adequate scattering 

angles. At the end, the greedy algorithm selected only one scattering 

angle for each AOD model. 

For the blue WSI channel (450 nm associated to the 

440 nm AOD), it selected the 37º scattering angle. Therefore the 

model has two inputs: the sky radiance at that scattering angle over 

the principal plane and the SZA. 117 measurements had to be 

eliminated from the original 1047 measurements due to shadow 

system obstruction, so the model was created from the remainder of 

this set with 930 measurements. For the red WSI channel (650 nm 

associated to the 675 nm AOD) selected the 71º scattering angle. 

The number of valid measurements after applying the mask is 968. 

Finally, for the NIR WSI channel (800 nm associated to the 870 nm 

AOD) selected the 83º scattering angle. The number of valid 

measurements is 973 in this case. 

Figure 6.9, 6.10, and 6.11 show estimated values of 

AOD at 440, 675 and 870 nm, respectively, versus calculated 

values of AOD with the CIMEL at those wavelengths. The analysis 

has been done over the test set. The linear fit was also forced 

through zero so the slope provides information about the over- or 

underestimation associated with the model. Table 6.2 shows the 

statistics for the three models. Figure 6.12 shows histograms of the 

differences between measured and estimated AOD at 440, 675 and 

870 nm. 
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Figure 6.9. Scatter plot of estimated AOD values from the WSI versus values 

calculated from the CIMEL CE318 for 440nm. The line represents the linear fit 

through zero and the dashed lines are the upper and lower prediction bars at 

95%. 

 

Figure 6.10. Scatter plot of estimated AOD values from the WSI versus values 

calculated from the CIMEL CE318 for 675nm. The line represents the linear fit 

through zero and the dashed lines are the upper and lower prediction bars at 

95%. 
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Figure 6.11. Scatter plot of estimated AOD values from the WSI versus values 

calculated from the CIMEL CE318 for 870nm. The line represents the linear fit 

through zero and the dashed lines are the upper and lower prediction bars at 

95%. 

 

Figure 6.12. Histogram of the differences between calculated (from CIMEL CE318 

measurements) and estimated values for AOD at 440, 675 and 870 nm. 
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Set size 

Scattering 
angle 

b R2 MBD (%) RMSD 

AOD440 930 37º 0.96 0.96 -2 0.05 
AOD675 968 71º 0.93 0.94 -1 0.07 
AOD870 973 83º 0.96 0.92 3 0.07 

Table 6.2. Statistical results of the RBF networks for estimation of AOD at 440, 

675 and 870 nm. The column b represents the slope of the linear fitting through 

zero of the data, R2 is the coefficient of determination, MBD is the mean bias 

deviation and RMSD is the root mean squared deviation. 

 

As we can see in figure 6.9 and table 6.2, 96% of the 

data variance is explained by the model that estimates the AOD at 

440 nm. MBD and the slope of the linear fit reveal a slight 

systematic underestimation. Figure 6.12 shows a histogram of the 

differences between the calculated and estimated values. It reveals 

that 81% of the estimated AOD values at 440 nm had a deviation 

less than 0.01 with respect to the CIMEL result, which is the 

AERONET AOD estimated uncertainty (Holben et al., 1998). 

Figure 6.10 and Table 6.2 reveal that 94% of the data 

variance is explained by the model that estimates the AOD at 675 

nm. MBD and the slope of the linear fit also indicate a slight 

systematic underestimation. Figure 6.12 shows that almost 80% of 

the estimated AOD at 675 nm has a deviation less than 0.01. 

Finally, figure 6.11 and table 6.2 reveal that 92% of 

the data variance is explained by the model that estimated the AOD 

at 870 nm. While MBD suggests a slight overestimation, the slope of 
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the linear fit indicates an underestimation. Figure 6.12 shows that 

90% of the estimated AOD at 870 nm has a deviation less than 

0.01. 

Figure 6.9, 6.10 and 6.11 reveal that the data set is not 

homogeneously distributed along the whole range of values. There 

are a lot of points with low AOD and very few with higher AOD. 

This can explain the slight systematic underestimation of the model. 

The linear fit is forced to zero and there are a lot of points close to 

zero, but the very few values far from the zero introduce a variance 

that, in this case makes the slope be slightly below 1. 

The coefficient of determination decreases when we 

estimate AOD at longer wavelengths. This can be because of the 

difference between the central wavelength of the filters of the WSI 

and the CIMEL increases with the wavelength. That is, the AOD at 

440 nm, is estimated with the measurements at 450 nm (10 nm of 

difference), the difference is 25 nm for AOD at 675 nm and it is 70 

nm for AOD at 870 nm. In other words, at 440 and 675 nm there is 

an overlapping of the filters because of the FWHM of the WSI filters 

is 70 nm, but at 870 nm the filters do not overlap, hence this can 

produce a decrease in performance. 

For the α estimation, figure 6.13 shows estimated 

versus calculated values of α with the CIMEL in the interval 440-870 

nm using the linear fitting procedure. Figure 6.15 shows the 

histogram of the differences between calculated and estimated α. 

Figure 6.13 reveals that 63% of the data are explained by the model 
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that estimated α. Figure 6.15 shows that 48% of the estimated α has 

a deviation less than 0.1, which is the estimated uncertainty in the 

AERONET procedure for α calculation (Holben et al., 1998). 

 

Figure 6.13. Scatter plot of estimated versus measured values for α (440-870 nm) 

using the AERONET standard procedure over the whole data set. 

 

Figure 6.14. Scatter plot of estimated versus measured values for α (440-870 nm) 

using a neural network-based model with RBFs over the test set. 
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Figure 6.15. Histogram of the differences between measured and estimated values 

for α (440-870nm) for both methods. 

The α estimation affected by the error introduced in 

the AOD estimation. The AOD at 870 nm introduces an error in the 

calculation of α by linear fitting of ln(AOD) vs wavelength. For this 

reason, we tried a new neural network-based model using RBF 

networks to estimate the value of α using the radiance over the 

principal plane of the sky images for the three wavelengths. The 

inputs for this model are the same for the estimation of the AOD 

together, i.e. we combined the radiance at different scattering angles 

over the principal plane for the three wavelengths, and the SZA. The 

model is trained and validated to calculate α in the interval 440-870 

nm in the same way the model for the AODs were created. Figure 

6.14 shows estimated versus CIMEL calculated values of α in the 

interval 440-870 nm using this method. Figure 6.15 shows the 
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histogram of the differences between measured and estimated α. 

Figure 6.14 reveals that 78% of the data are explained by the model 

that estimates α. Figure 6.15 shows that 84% of the estimated alpha 

has a deviation less than 0.1, which is the estimated uncertainty in 

the AERONET procedure for α calculation. This represents a clear 

improvement in the estimation of α from WSI images. 

Even though the uncertainty in the estimation of α is 

large with the standard method, the estimation is still useful for the 

interpolation of the AOD at different wavelengths. We have tested it 

calculating the AOD at 500 nm with α and β estimated with the first 

method using Ångström law (Ångström, 1964) and compared it with 

the AOD at 500 nm obtained from CIMEL CE318 measurements. 

Figure 6.16 show estimated values of AOD at 500 nm versus 

calculated values of AOD with the CIMEL. 96% of the data variance 

is explained by the model that estimates the AOD at 500 nm. 

 

Figure 6.16. Scatter plot for estimated versus measured values for AOD at 500 

nm. The estimation has been done using α and β calculated with the standard 

AERONET procedure with the estimated values of AOD with the neural network-

based model. 
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As we can see, the use of this estimation yields a very 

good estimation of AOD in different wavelengths (one of the main 

usefulness of α). 

 

6.2 Microphysical properties of the atmospheric aerosol 

A relationship between the size of atmospheric aerosol 

particles and the wavelength dependence of the extinction 

coefficient was first suggested by Ångström (1929). Since that time, 

Ǻngström law (equation 2.23) has been directly related to a 

parameter of a Junge size distribution when the radii extend from 0 

to infinity (van de Hulst, 1957; Junge, 1955). Curcio (1961) use the 

wavelength dependence of the particulate extinction coefficient in 

the visible and near-infrared regions to infer the aerosol size 

distribution existing above water in the Chesapeake Bay area. He 

determined that the majority of aerosol size distributions could best 

be represented by a two-component size distribution consisting of a 

Junge-type distribution plus a small component of larger particles. 

This type of composite distribution was the most capable of 

explaining the wavelength dependence of the attenuation 

measurements he observed. 

Yamato and Tanaka (1969) were the first to apply a 

numerical inversion algorithm to spectral measurements of 

extinction coefficient in order to determine an aerosol size 

distribution. These authors applied the linear inversion techniques 

developed by Phillips (1962) and Twomey (1963) to the problem of 
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numerically solving the Fredholm integral equation of the first kind 

which arises in this problem (see equation 6.5 in next section). 

Although they clearly demonstrated that these numerical procedures 

are quite successful for obtaining size distributions by remote 

sensing, other investigators have still continued to estimate 

parameters of model size distribution from spectral attenuation 

measurements (e.g. Quenzel, 1970; Shaw et al., 1973). Although 

these fitting procedures are reasonably satisfactory, they are more 

restrictive than inversion procedures in that they assume that the 

atmospheric particulates follow one of several possible analytical 

distributions. 

Grassl (1971) presented an iterative method for 

numerically inverting spectral attenuation data. After demonstrating 

the success of this algorithm on spectral attenuation coefficients 

generated for three model size distributions, he presented the size 

distributions obtained by inversion of two real data cases. 

In order to accurately determine aerosol size 

distributions from spectral optical depth measurements obtained 

from direct solar observations, it is necessary to collect optical depth 

measurements over a sufficient number of wavelengths to obtain a 

good estimate of both the ozone absorption and particulate optical 

depths separately. In making these corrections, Grassl (1971) used 

tabulated values for a model atmosphere instead of alternative 

observations. 
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6.2.1 King’s inversion code 

An earlier theoretical study from Herman et al. (1971) 

of angular scattering intensities was extended by King et al. (1978) to 

the problem of inferring columnar aerosol size distribution by 

inversion of spectral optical depth measurements. An inversion 

formula which explicitly includes the magnitudes of the 

measurements variances was derived and applied to optical depth 

measurements with a solar radiometer. 

The spectral dependency of the aerosol optical depth 

contains information about the size distribution of the aerosol (e.g. 

Heintzenberg et al., 1981; Wang et al., 1989). Following Mie’s 

theory and considering that atmospheric aerosol is composed by 

spherical particles with a unique refraction index, m, we can 

determine the columnar size distribution through the spectral 

variation of the aerosol optical depth. Starting with equations 2.4 

and 2.11 we have 

  (6.4) 

and, considering the radii limits between 0 and the infinity and 

performing the height integration, equation 6.4 can be rewritten as 

 , (6.5) 

where nc(r) is the unknown columnar aerosol size distribution, i.e. 

the number of particles per unit area per unit radius interval in a 

vertical column through the atmosphere, the extinction coefficient 
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Qe has been rewritten showing the dependency with the radius r 

and the wavelength λ separately, and m is the refraction index. 

To determine nc(r), the transform of equation 6.5 must 

be obtained. Since an expression for nc(r) cannot be written 

analytically as a function of the δaλ values, a numerical approach 

must be followed. Therefore, the integral in equation 6.5 is replaced 

by a summation over coarse intervals in r, each of which is 

composed of several subintervals as described by Herman at al. 

(1971) for the case of the angular distribution of scattered light of 

one wavelength. In order to examine the specific kernel functions, 

which result if that procedure is applied to the present problem, we 

let , where h(r) is a rapidly varying function of r and 

f(r) is more slowly varying. With this substitution, equation 6.5 

becomes 

 

€ 

δaλ = πr2Qe (r,λ,m)h(r) f (r)drra

rb∫ =

= πr2Qe (r,λ,m)h(r) f (r)drrj

rj+1∫
j=1

q

∑
 (6.6) 

where the limits of integration have been made finite with r1=ra and 

rq+1=rb. If f(r) is assumed constant within each coarse interval, a 

system of linear equations results which may be written as 

  (6.7) 

In order to take into account the error from the 

approximation, we have to add a term to equation 6.7. Thus the 

equation has the form 
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 , (6.8) 

where ε is the unknown error vector whose elements εI represent the 

deviation between the measurements (gi) and the estimation (Σj Aij fj). 

This deviation arises from quadrature and measurement errors, as 

well as any unvcertainties as to the exact form of the kernel function 

(in this case πr2Qe(r,λ,m)). 

Returning to equation 6.6, the elements of equation 

6.8 are given by 

, i=1,2,…,p 

, j=1,2,…,q (6.9) 

 

In terms of an integral over x=logr, equation 6.9 may 

be rewritten as 

 , (6.10) 

where 

 . (6.11) 

Equations 6.10 and 6.11 are those obtained by 

Yamamoto and Tanaka (1969) if h(r) takes the form of a Junge size 

distribution (Junge, 1955), 
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 , (6.12) 

with ν assumed to have a value of 3.0. 

Phillips (1962) and Twomey (1963) have discussed the 

instability in the solution vector f which results if equation 6.8 is 

directly solved by minimizing Σεi
2. Phillips suggested that, due to 

ever-present error, a constraint be added that discriminates against 

such instability. In order to select a physical solution among the 

family of solutions that satisfy equation 6.8, Phillips introduced a 

smoothing constraint such that the sum of the squares of the second 

derivatives of the solution points is minimized. For a quadrature of 

equal division, the solution vector f is obtained by minimizing a 

performance function Q, defined as 

 , (6.13) 

where γ is some non-negative Lagrange multiplier. Minimizing Q 

with respect to the unknown fk coefficients, when γ equals zero, is 

equivalent to making an unweighted least-squares fit to the data. 

Since it is further known that some of the δaλ 

measurements are more precise than others, it is desirable to include 

that information in the mathematical formalism. For the case in 

which the measurements are correlated with known covariances 

, a more general form of equation 6.13 would be 
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 , (6.14) 

where Cij=σ
2

gi gj is an element of the measurement covariance matrix 

C. This follows from the Gauss-Markov theorem in the absence of a 

constraint (e.g. Liebelt, 1967), and thus the minimum value of Q 

represents the statistically optimum estimate of f. 

Following the method suggested by Twomey (1963) 

whereby the performance function is differentiated with respect to 

each of the fk coefficients, a set of simultaneous equations results, 

which may be written as 

 k= 1,2,…,q (6.15) 

where Hkj is an element of the smoothing matrix H defined by 

Twomey (1963). 

 

Writing the series of equations 6.15 in matrix for, we 

have: 

 , (6.16) 

where AT is the transpose of A. Eliminating ε leads to the solution of 

f 

 . (6.17) 
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The iterative method proposed by King et al. (1978) 

begins guessing an initial solution that is updated every iteration. 

The process is repeated until a stable solution is reached. This 

method considers that the initial function has the shape of a Junge 

distribution (equation 6.12) related to the Ångström parameter by 

equation v=α - 2. Normally, several values of v are used to calculate 

the initial function and they are compared to the final results. The 

lagrange parameter γ enters (equation 6.17) in a manner such that 

elements of γH are to be added to ATC-1A to produce the desired 

smoothing, the magnitude of γHkj/(A
TC-1A)kj is of importance, not the 

magnitude of γ alone. In selecting γ, therefore, γrel≡γH11/(A
TC-1A)11 is 

allowed to vary in the range 10-3 to 1 until a minimum value of γrel is 

reached for which elements of the solution vector f are positive 

(negative values of the elements of f constitute an unphysical 

solution). 

King et al. (1978) discussed the difficulties associated 

with the use of inversion of spectral measurements of aerosol optical 

depth in order to obtain the aerosol columnar size distribution. We 

note important among these difficulties the election of the radii 

range that contribute the most to the values of optical depth. These 

authors showed that the radii that contribute most significantly to the 

magnitude of the Mie optical depth measurements vary somewhat 

with the type of the size distribution to be retrieved. Satisfactory size 

distribution determinations can normally be obtained for the radii 

range 0.1 µm < r < 4.0 µm when measurements are available for 

wavelengths throughout the visible and near-infrared regions. 
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Another difficulty is the sensitivity of the distribution function to the 

refractive index. In general, the shape of the size distribution does 

not change with the refractive index (King et al., 1978; Gonzalez 

and Ogren, 1996 and Martinez-Lozano et al., 1999) 

 

6.2.2 Results and evaluation 

Before we run the inversion code we have to select a 

refractive index. As it was stated before, the results do not 

significantly change with the refractive index. Literature establishes 

commonly used default values (e. g. D’Almeida et al. 1991 and 

Martinez-Lozano et al., 1999), so a value of 1.5 – 0.0005i was 

selected. 

The wavelengths used and the corresponding AODs 

are given by the instrument. WSI provides 3 wavelengths and we 

estimated in section 6.1.2.2 the AOD at those wavelengths (440, 

670 and 870 nm). Also, the Ǻngström coefficients α and β are 

calculated in section 6.1.3.2 so we can estimate AODs at other 

wavelengths. On the other hand we compared the results with the 

size distributions given by the CIMEL CE318 using the five 

wavelengths available (380, 440, 670, 870 and 1020 nm). 

Figure 6.17 shows three examples of size distribution 

calculated with the King’s inversion code for days with different 

AODs and α. Size distribution has been estimated using the WSI 

with 3 wavelengths, also with 5 wavelengths (estimated with the 
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Ångström coefficients α and β) and with the CIMEL using 5 

wavelengths. 

 

 

Figure 6.17. Size distribution for (a) December 18th 2001, (b) June 6th 2002 and (c) 

July 25th 2002 calculated with King’s inversion code using the WSI and the CIMEL 

CE318 with 3 and 5 wavelengths 

 

As we can see, the distributions are exactly the same 

for two of the cases and it is different for the case with lower AOD. 

In order to compare the results for a large data set we 

need a different estimator than the visual inspection of the size 

distributions. The effective radius is the ratio between size 

distribution function momentums and constitutes a parameter that 
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describes radiatively the size distribution. In other words, if all the 

particles would have the effective radius, the radiative response 

would be the same as the radiative response of the actual size 

distribution. 

  (6.18) 

The same data set used in section 6.1.2.2 is used here 

to calculate the size distribution. Over 900 cases are calculated 

using the WSI with 3 and 5 wavelengths and the CIMEL using 5 

wavelengths. 

 Figures 6.18 and 6.19 show frequency histograms of 

the difference between the effective radius of the WSI size 

distributions and the effective radius of the CIMEL distributions. 

Figure 6.18 uses 3 wavelengths for the WSI and figure 6.19 uses 5 

wavelengths for the WSI. 
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Figure 6.18. Histogram of the differences between WSI effective radius and CIMEL 

effective radius using 3 wavelengths in the WSI (440, 670 and 870 nm) and 5 

wavelengths in the CIMEL (380, 440, 670, 870 and 1020 nm). 

 

Figure 6.19. Histogram of the differences between WSI effective radius and CIMEL 

effective radius using 5 wavelengths in both instruments (380, 440, 670, 870 and 

1020 nm). 
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The goodness of the effective radius estimation using 

the WSI compared to the CIMEL can be evaluated with some 

statistical analysis over the data sets and the histograms. First, the 

whole CIMEL data set has an effective mean radius of  µm 

and the standard deviation is  µm, which means that the 

standard deviation is about 22%. Then, performing a Gaussian 

fitting on the histogram in figure 6.18 (WSI with 3 wavelengths) we 

obtain that the center of the Gaussian is xc3 = -0.0026 µm with σ3 = 

0.008 µm. The same fitting for figure 6.19 (WSI with 5 wavelengths) 

are xc5 = 0.0072 µm  and σ5 = 0.0204 µm. 

These statistics values show that the effective radius 

calculated using the WSI with 3 wavelengths underestimates the 

CIMEL effective radius in a 2.8% ( ) and its deviation is 

lower than the standard deviation of the CIMEL data set ( ), or 

we can also say that the standard deviation is about 8.6%. Using 5 

wavelengths, the calculation of the effective radius overestimates the 

CIMEL effective radius in a 7.7% ( ) and its deviation is 

again lower than the standard deviation ( ) or, again, the 

standard deviation is about 22%. 

Now, let us try to find in what cases there is a 

difference in the effective radii or, in other words, what factors 

influence the size distribution estimation for both instruments the 

CIMEL and the WSI. It seems to be clear, as shown in figure 6.17, 

that smaller values of AOD introduce a difference in the size 

distribution that does not happen for larger values. Figure 6.20 
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(using 3 wavelengths) and figure 6.21 (using 5 wavelengths) show 

that, for the whole data set, smaller values of AOD introduce more 

uncertainty in the effective radius estimation. 

 

Figure 6.20. Difference of effective radius estimation (WSI – CIMEL) using 3 

wavelengths versus AOD at 440 nm. 

 

Figure 6.20. Difference of effective radius estimation (WSI – CIMEL) using 5 

wavelengths versus AOD at 440 nm. 
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We saw that the error using 5 wavelengths is about 

5% larger than using 3 wavelengths and, figure 6.21 shows that the 

reason is the error in the estimation of the Ångström α coefficient. 

The figure shows the difference of effective radius versus the 

difference of α coefficient. 

 

Figure 6.21. Difference of effective radius estimation (WSI – CIMEL) using 5 

wavelengths versus difference of α coefficient. 

 

The uncertainty in the effective radius is larger when 

there is a difference in the α coefficient. Moreover, when the α 

coefficient is underestimated, the effective radius is overestimated, 

and vice versa. 

Summarizing, in all cases the effective radius of the 

size distributions estimated is inside the standard deviation of the 

CIMEL estimated effective radius (22%), and the mean value of 
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effective radius has a difference less than 8% respect to the CIMEL 

estimated effective radius. 
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This last chapter presents the concluding remarks. First 

of all, we present a brief summary of the sky imager itself. Then, the 

methodology for cloud detection and aerosol characterization are 

explained separately. Second section presents a discussion on the 

cloud detection algorithm and its results. Third section shows the 

discussion on the aerosol characterization for both instruments, the 

All-Sky Imager and the Whole Sky Imager splitting between the 

optical properties and the microphysical properties. 

Finally, fourth section summarizes the future lines to 

follow. 
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7.1 The All-Sky Imager 

We have succeeded in the endeavor of designing and 

deploying a sky imager. Starting from the election of an appropriate 

CCD sensor and lens, followed by the shadow system (a sun 

tracker), and the design of the environmental housing and the 

election of a temperature controller. Moreover, the system is fully 

automated, capturing images during daytime and storing them in the 

computer. The analysis of images is performed in real time, and also 

stored in the computer and available in a website also designed for 

the purpose of having the data accessible to the community. 

 

7.2 Cloud cover characterization 

The use of sky imagery offers better resolution in space 

and time than does human observation. The All-Sky Imager captures 

an image every 5 minutes every day of the year. On the other hand, 

human observers estimate cloud cover in oktas, or ranges of oktas as 

in METAR reports, with a degree of subjectivity. The analysis 

procedure of the images of the All-Sky Imager, the multilayer 

perceptron (MLP), includes subjectivity in the election of the training 

set and the classification of it, i.e., the human interaction in the 

process. Beyond this, the MLP always acts objectively according to 

the learning process and provides a good way to determine cloud 

cover with quite good resolution as demonstrated in the comparison 

with the METAR records. The apparent complexity of the algorithm 

provides the added value of cloud classification into two classes 
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(thin and opaque clouds). Another added value is spatial 

classification. The procedure provides as output an ASCII file 

including the spatial classification in oktas, the cloud class (thin or 

opaque), and the apparent Sun octant position, as well as the 

processed image. Such results are important for the characterization 

of cloud effects on UV radiation, since thin clouds that nearly 

obstruct the Sun can enhance UV radiation. 

The error rate of the classifier is given in percent of 

pixels, but the final procedure classifies images. The error is always 

gathered in specific regions. Observing the image results, it is 

revealed that the circumsolar area is very difficult to classify. 

Currently, the MLP always classifies the brightness of the Sun as 

cloud, and this uncertainty is bigger in the case of dust events (or 

under large aerosol load). This also hinders the possibility of 

detecting solar obstruction by clouds, especially in our location 

where dust outbreaks are frequent. The ability of the human 

classifier to distinguish between thin clouds and sky or opaque 

clouds is also a source of error. 

The usefulness of the genetic algorithm for parameter 

optimization is clearly demonstrated. The final prototype has 1/6 of 

the original number of required inputs, increasing the speed of the 

execution of the procedure for cloud cover estimation, and the 

performance of the MLP is also slightly increased. One of the most 

important conclusions we can extract from the results of the 

optimization algorithm is that the information required for cloud 

detection is in the red and blue channels, as in the red/blue ratio 
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threshold method, and the classification of thin and opaque clouds 

requires the use of the variance, which is a texture parameter. 

The main problems in the design of the MLP are the 

election of the training set and its classification. This election affects 

the performance of the MLP drastically. It is important to select a 

wide variety of conditions and classify them properly. The use of this 

technique in other locations might require repeating the training 

process as well. 

The main weaknesses of the MLP cloud classification 

of sky images are found in the circumsolar area and at cloud edges. 

The circumsolar area is important because of the UV enhancement 

effect, as stated above. The solution of the circumsolar area problem 

may be difficult because the brightness of that area nearly saturates 

the pixels and blinds the imager, making it impossible to see what is 

behind the brightness, especially during dust events. The problem at 

cloud edges includes bias by the human observer. 

This methodology and specially the input selection 

algorithm using genetic algorithms could be used for a more 

complex cloud classification algorithm that includes all or some of 

the clouds generas. A cloud detection algorithm as the red/blue ratio 

or the methodology here explained could be combined with a cloud 

classification algorithm to provide a more complete characterization 

of the cloud cover. 
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7.3 Aerosol characterization 

7.3.1 Optical properties 

The All-Sky Imager and the Whole Sky Imager (WSI) 

have been tested for aerosol optical properties characterization. 

Both aerosol optical depth (AOD) and Ångström exponent have 

been estimated and compared with the results estimated with the 

sun photometer CIMEL CE318. 

The All-Sky Imager is a non-calibrated system, but the 

linearity of the CCD-based systems allows relating the pixel counts 

of the imager with sky radiance and a neural network-based model 

estimates the values of AOD and Ångström exponent using the sky 

radiance at specific scattering angles in the principal plane. The 

models for AOD provide estimations that, according to the 

validation, are within the limits of nominal precision of AERONET 

(±0.01) in 52% of the cases for AOD-440 and 62% of the cases for 

AOD-670. In the case of the Ångström exponent, about 80% of the 

cases have deviations below 0.1 (limits of nominal precision of 

AERONET). 

The neural network-based models are very sensitive to 

the training set. The data sets do not have many cases with high 

AOD or small Ångström exponent (coarse particles such as dust) so 

a larger data set with a wider range of values for AOD and Ångström 

exponent is required for a training that would yields to an applicable 

methodology. 
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This first approach is very promising and demonstrates 

the merits of the method, so the methodology was applied to a 

calibrated sky imager, the WSI, using a larger data set and a 

procedure to select the optimal scattering angles along the principal 

plane. Three neural network-based models have been created to 

estimate the value of the AOD at three different wavelengths using 

the radiance over the principal plane of the sky images. The 

correlation constants are close to unity and the number of cases 

within measurement error is very large. Only one scattering angle 

per channel has been used: 37º, 71º and 83º corresponding to the 

blue, red and NIR channel respectively. The three AOD models 

provide an estimation that, according to validation, is inside the 

nominal error of the AERONET (±0.01) in approximately 80% for 

the blue and red channels and 90% for the NIR channel. In all cases 

the models explain up to 92% of the variance of the experimental 

data. The coefficient of determination decreases when we estimate 

AOD at longer wavelengths. This can be caused by the difference 

between the central wavelength of the filter in the sky imager and 

the CIMEL. This difference is larger with longer wavelengths and, 

therefore, the overlap of the wavelength decreases and so the 

performance. Nevertheless, all estimations have a coefficient of 

determination over 0.92. 

The estimation of the Ångström exponent has been 

performed in two ways. First, it has been calculated applying a 

linear fit as explained in section 6.1.3 using the AODs estimated 

with the neural network and secondly, it has been estimated with a 
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new neural network-based model using RBF networks. Inputs to this 

RBF network are the radiances in the same scattering angles used for 

the AOD models. The α estimation using the linear fit is affected by 

the cumulative error of all the AOD estimations. However, almost 

50% of the data are inside the nominal error of the AERONET 

program for α calculation using the standard procedure in 

AERONET. The neural network-based model for estimation 

increases the explanation of the data to 63% and the data inside the 

nominal error is increased to 78%. The neural network process is 

complex but increases substantially the estimation. The neural 

network model forces the result to be the same as that estimation of 

α in the interval 440–870 nm. 

Concerning the scattering angles selected with the 

greedy algorithm, these reveal that to estimate the AOD at 450 nm 

(blue) it is necessary to use an angle relatively close to the sun. The 

estimation of the AOD at 870 nm (NIR) requires an angle farther 

from the sun. At 675 nm the behavior can be catalogued as in 

between of the behavior presented in the other two wavelengths. 

The reduction of angles needed respect to the methodology applied 

to the All-Sky Imager can be explained by the character of the 

measurements since they are calibrated radiances while the previous 

work used pixel counts. 

The results are promising in the sense that it seems to 

be feasible that a sky imager can estimate the AOD and the 

algorithm could be applied in the field. Furthermore, we believe that 

this model might be applied to different WSIs in different locations 
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without a new training process since all the WSIs have an absolute 

radiance calibration and this proposed model directly relates 

spectral radiances in fixed geometries with AOD and, thus the 

underlying statistics of the data is similar to that of the training set 

used in this work. Nevertheless, this validation with different WSI 

datasets in different location might be undertaken in the future. The 

two methods for the α estimation differ, however we consider that 

the linear fit procedure is simple and useful for the interpolation of 

AODs at different wavelengths. 

 

7.3.2 Microphysical properties 

A complete aerosol characterization requires 

estimating microphysical properties. We have estimated the size 

distribution of the atmospheric aerosol using an inversion code. 

Inputs to the inversion code are the AODs estimated in the optical 

properties section for the WSI. The WSI yielded better results than 

the All-Sky Imager, and more AODs are available (3 versus 2 for the 

All-Sky Imager). Also the α exponent allows estimating the AOD at 

different wavelengths. 

In order to evaluate the size distribution in a large data 

set, we use the effective radius of the WSI retrieved size distribution 

and the effective radius of the CIMEL CE318 size distribution. The 

differences between both effective radii are small using 3 

wavelengths of the WSI and also using 5 wavelengths. This reveals 

that the size distributions estimated with both instruments have a 
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similar behavior from the radiative point of view. It is interesting to 

note that the differences between both instruments are more 

noticeable when the AOD values are smaller. The uncertainty of the 

size distribution is greater when the AOD values are smaller. 

It is also manifest that using 3 wavelengths provide 

better results than using 5 wavelengths. This means that the α 

coefficient estimated with the WSI introduces more error than using 

fewer wavelengths. 

Concluding, we can say that these good results 

strengthen the results obtained for the optical properties. On one 

hand, the AODs estimated are good enough to provide realistic size 

distributions compared to the ones estimated with the CIMEL CE318 

(2.8% of error in the mean effective radius) and the standard 

deviation of the whole data set is almost 3 times smaller than the 

standard deviation of the CIMEL CE318 estimated effective radius 

(8.6% compared to 22%). On the other hand, the α and β 

coefficients calculated using the linear fit provides fair estimation of 

AODs at different wavelengths since the size distributions obtained 

including those interpolated AODs slightly reduce the agreement of 

the size distribution comparison (about 5% more error than using 

only 3 wavelengths) and the standard deviation is about the same 

than the CIMEL CE318 estimated effective radius (22%). 

The capabilities of sky imagers for aerosol 

characterization are demonstrated. Nevertheless the potential of 

these instruments go further. A calibrated sky imager provides the 
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sky radiance at every scattering angle in the sky dome, and the 

information over the almucantar or principal plane can be used to 

feed a more complex inversion code that also would provide other 

useful properties from the radiative perspective such as the single 

scattering albedo, the phase function or the asymmetry factor. In this 

sense, King’s inversion code is robust as does not require too much, 

since we only need the AOD, the sources of error are smaller than a 

more complex code that also requires the sky radiance as an input. 

Preliminary tests revealed many difficulties in the convergency of 

the algorithms, but this is an open field for possible future 

investigations. 

 

7.4 Future work 

Here is a summary of the improvements and future 

work already noted in previous sections of this chapter. 

The next logical step in the cloud cover 

characterization is the classification in different types of clouds. 

With the past experience, we can define new features from the sky 

images, specially texture features, that could be input to a new 

neural network with the idea of classifying all, or a subgroup of, 

cloud generas. The usefulness of the genetic algorithm could be use 

here again to optimally select the inputs. 

Another problem related to cloud cover 

characterization is the circumsolar area. Treating this area 



Conclusions 
 

  179 

separately, and defining specific algorithms could improve the 

classification in this area. 

Our system, the All-Sky Imager, has a partial 

geometric calibration and no absolute radiance calibration. This is 

another subject for improvement. In order to perform quality aerosol 

characterization with our system, these calibrations are required. 

Finally, the next step in the aerosol microphysical 

properties, would be the use of a more complex inversion algorithm 

taking advantage of the sky radiance in order to obtain more 

properties of the aerosol (e.g single scattering albedo, phase function 

or asymmetry factor). 
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