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1 Introduction

The observation of the Higgs boson by the ATLAS and CMS experiments [1, 2] with
the LHC Run-1 data at centre-of-mass energies of /s = 7TeV and 8 TeV has been a
major step towards the understanding of the mechanism of electroweak (EW) symmetry
breaking [3-5]. Further measurements of the spin, parity and couplings of the new particle



have shown no significant deviation from the predictions for the Standard Model (SM)
Higgs boson [6-10]. The increased centre-of-mass energy and higher integrated luminosity
of the LHC Run-2 data allows the study of the Higgs boson properties in greater detail
and an improved search for deviations from the SM predictions.

In this paper, the measurement of the Higgs boson coupling properties is performed in
the four-lepton decay channel, H — ZZ* — 4/, where ¢ = e or p, using 36.1 fb~! of Run-2
pp collision data collected by the ATLAS experiment at a centre-of-mass energy of 13 TeV.
This channel provides a clear signature and high signal-to-background ratio. The largest
background is the continuum (Z®) /y*)(Z*) /4*) production, referred to as ZZ* hereafter.
For the studied four-lepton invariant mass range of 118 GeV < myy < 129 GeV, there are
also small but non-negligible background contributions from Z + jets and ¢t production
with two prompt leptons.

The Higgs boson spin, parity and coupling properties have been studied in this channel
with Run-1 data by the ATLAS and CMS experiments [6, 7, 11-13]. In this paper, the
Higgs boson couplings to SM particles are studied using two analysis approaches. In the first
approach, the Higgs boson production cross sections are analyzed based on different pro-
duction modes in several exclusive regions of the production phase space, testing whether
it is compatible with the SM predictions. An interpretation in terms of coupling modifiers
within the x framework [14, 15] is given, assuming a SM tensor structure (J© = 0%) for
all couplings. In the second approach, the tensor structure of the Higgs boson couplings is
studied, probing for admixtures of CP-even and CP-odd interactions in theories beyond the
SM (BSM) in addition to the corresponding SM interactions. Both analyses are performed
assuming that the studied resonance is a single particle state with spin-0 and a mass of
125.09 GeV based on experimental results obtained with the LHC Run-1 data [16]. It is
assumed that the total width of the resonance is small compared the experimental resolu-
tion and the interference effects between the signal and SM backgrounds are neglected due
to the small contribution.

The paper is organized as follows. A brief introduction of the ATLAS detector is given
in section 2. The analysis strategy describing the two analysis approaches is outlined in
section 3. In section 4 the data as well as the simulated signal and background samples
are described. The selection and categorization of the Higgs boson candidate events, as
well as the discriminating observables used in the measurement, are described in section 5,
while the signal and background modelling is detailed in sections 6 and 7, respectively. The
experimental and theoretical systematic uncertainties (section 8) are taken into account for
the statistical interpretation of the data, with the results presented in section 9. Concluding

remarks are given in section 10.

2 ATLAS detector

The ATLAS detector [17] is a multi-purpose particle detector with a forward-backward
symmetric cylindrical geometry.! It consists of an inner tracking detector (ID) in a 2 T

LATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in
the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre



axial magnetic field covering the pseudorapidity range |n| < 2.5. A new innermost sili-
con pixel layer [18] (IBL) was added to the ID after the Run-1 data-taking. The ID is
surrounded by the electromagnetic and hadronic calorimeters up to |n| = 4.9 and by the
muon spectrometer (MS) extending up to || = 2.7. The magnetic field for the MS is
provided by a set of toroids with a field integral ranging between 2 Tm and 6 Tm across
most of the detector. The trigger and data-acquisition system is based on two levels of
online event selection: a hardware-based first-level trigger and a software-based high-level
trigger employing algorithms similar to those for the offline particle reconstruction.

3 Analysis strategy

The Higgs boson couplings to heavy SM vector bosons (W and Z) and gluons are studied
by measuring the cross sections for different production modes and by probing BSM contri-
butions in tensor couplings. In both approaches, the reconstructed Higgs boson candidate
events are classified into different categories. The categories are defined to be sensitive to
different Higgs boson production modes, which in turn also provides sensitivity to the BSM
contributions. The event yields in each category serve as the final discriminant for both
the cross section and the tensor structure studies. There are nine reconstructed event cate-
gories defined for the cross-section measurement, one of which is additionally split into two
separate ones for the tensor structure studies to improve their sensitivity. For the cross-
section measurement, there are also additional discriminating observables introduced in
reconstructed event categories with a sufficiently high number of events. These observables
are defined using dedicated boosted decision trees (BDTs) [19].

3.1 Classification of the Higgs boson production modes

The Higgs boson production cross section times the branching ratio of the decay into Z
boson pairs, o - B(H — ZZ*), is measured in several dedicated mutually exclusive regions
of the phase space based on the production process. For simplicity, these regions are called
“production bins”. Theoretical uncertainties have a reduced impact on o - B(H — ZZ*)
results and enter primarily for the interpretation of results in terms of Higgs boson cou-
plings. The definitions of the production bins shown in figure 1 (shaded area) are based on
particle-level events produced by dedicated event generators closely following the frame-
work of simplified template cross sections [15]. The bins are chosen in such a way that the
measurement precision is maximized and at the same time possible BSM contributions can
be isolated. All production bins are defined for Higgs bosons with rapidity |yz| < 2.5 and
no requirements placed on the particle-level leptons. Two sets of production bins are con-
sidered since a more inclusive phase-space region usually reduces the statistical uncertainty
of the measurement but at the cost of a larger theoretical uncertainty.

For the first set (Stage 0) [15], production bins are simply defined according to the
Higgs boson production vertex: gluon-gluon fusion (ggF), vector boson fusion (VBF) and

of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r,¢) are used in the transverse
plane, with ¢ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of
the polar angle 6 as n = — Intan(6/2).
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Figure 1. The phase-space regions (production bins) for the measurement of the Higgs boson
production cross sections which are defined at the particle level for Stage 0 and 1, and the corre-
sponding reconstructed event categories. Description of production bins is given in section 3, while
reconstructed event categories are described in section 5.

associated production with top quark pairs (ttH) or vector bosons (VH), where V is a
W or a Z boson. The bbH Higgs boson production bin is not included because there is
insufficient sensitivity to measure this process with the current integrated luminosity. This
production mode has an acceptance similar to gluon-gluon fusion, and their contributions
are therefore considered together in the analysis. The sum of their contributions is referred
to in the following as gluon-gluon fusion.

For the second set (reduced Stage 1), a more exclusive set of production bins is defined.
This set is obtained by the merging of those production bins of the original Stage-1 set
from ref. [15] which cannot be measured separately in the H — ZZ* — 4¢ channel with
the current data sample. The gluon-gluon fusion process is split into events with zero, one
or at least two particle-level jets. The particle-level jets are built from all stable particles
(all particles with ¢ > 1 mm) including neutrinos, photons and leptons from hadron
decays or produced in the shower. All decay products from the Higgs boson, as well as
the leptons and neutrinos from decays of the signal V' bosons are removed, while decay
products from hadronically decaying signal V' bosons are included in the inputs to the



particle-level jet building. The anti-k; jet reconstruction algorithm [20], implemented in
the FastJet package [21], with a radius parameter R = 0.4 is used and jets are required
to have pt > 30 GeV. The 1-jet bin is further split into three bins with the Higgs boson
transverse momentum p% below 60 GeV, between 60 GeV and 120 GeV, and above 120 GeV.
The reduced Stage-1 gluon-gluon fusion bins are correspondingly denoted by ggF-04, ggF-
1j-p¥-LOW, ggF—lj—p%—Med, ggF—lj—péI—High and ggF-2j. The VBF production bin is
split into two bins with the transverse momentum of the leading jet, pzrl, below and above
200 GeV (VBF —p%—Low and VBF-pi—High, respectively). The former bin is expected to
be dominated by SM events, while the latter is sensitive to potential BSM contributions.
For VH production, separate bins with hadronically ( VH-Had) and leptonically ( VH-Lep)
decaying vector bosons are considered. The leptonic V' boson decays include the decays into
7 leptons and into neutrino pairs. The ¢tH production bin remains the same as for Stage 0.

Figure 1 also summarizes the corresponding categories of reconstructed events in which
the cross-section measurements are performed and which are described in more detail
in section 5. There is a dedicated reconstructed event category for each production bin
except for ggF-25. This process contributes strongly to all reconstructed event categories
containing events with at least two jets, and can therefore be measured in these categories,
with the highest sensitivity expected in VBF—enriched—p]f—Low category.

3.2 Tensor structure of Higgs boson couplings

In order to study the tensor structure of the Higgs boson couplings to SM gauge bosons,
interactions of the Higgs boson with these SM particles are described in terms of the
effective Lagrangian of the Higgs characterization model [22],

1 _
Ly = {KJSM [QQHZZZMZN + gaww W, W “]
1 -
~1 [mHgggHgngl,G“W” + tan a/ﬁAgggAgngwGa’W}
11
4 A
- = [;@HWWWJ;W‘“” + tan aﬁAWWwLW_#V} }XO. (31)

[/@HZZZWZ’“’ + tan a/iAZZZWZW]

The additional terms in the Lagrangian involving couplings to fermions are not consid-
ered since the present analysis is not sensitive to these couplings. The model is based on an
effective field theory description which assumes there are no new BSM particles below the
energy scale A. The cut-off scale A is set to 1 TeV, supported by the current experimental
results showing no evidence of new physics below this scale. The notation of eq. (3.1) fol-
lows the notation of eq. (2.4) in ref. [22] with A defining a new bosonic state of spin 0 and
with the difference that the dimensionless coupling parameters x are redefined by dividing
them by cosa, where « is the mixing angle between the 0T and 0~ CP states implying
CP-violation for a # 0 and « # 7. In this way the prediction for the SM Higgs boson is
given by kgm = 1 and kpgg = 1 with the values of the BSM couplings set to zero. In this
analysis, only the effective Lagrangian terms with coupling parameters xgvy, kayy and



KAgg are considered as possible BSM admixtures to the corresponding SM interactions.
These terms describe the CP-even (scalar) and CP-odd (pseudo-scalar) BSM interaction
with vector bosons and the CP-odd BSM interaction with gluons, respectively. The BSM
couplings are assumed to be the same for W and Z bosons (i.e. kgww = KHzz = KHVV
and Kaww = Kazz = kavv). The value of « is arbitrarily set to /4 such that the CP-odd
couplings can be more simply denoted by kayy tana = kayy and kagy tana = Kagg.

In the previous Run-1 analysis [11], the Higgs-related BSM interactions with heavy
vector bosons were studied only in Higgs boson decays. In this analysis, the impact of
BSM contributions on both the decay rates and the production cross sections in different
production modes is taken into account. The kpyy and kv parameters contribute the
most to VH and VBF Higgs boson production in the four-lepton decay mode since the
coupling is present in both the production and decay vertices. The k444 parameter mostly
affects the ggF production.

4 Signal and background simulation

The production of the SM Higgs boson via ggF, VBF and VH (including gg — ZH) pro-
duction mechanisms was modelled with the POWHEG-BOX v2 Monte Carlo (MC) event
generator [23, 24], interfaced to EVTGEN v1.2.0 [25] for properties of the bottom and charm
hadron decays, using the PDF4LHC next-to-leading-order (NLO) set of parton distribution
functions (PDF) [26]. The gluon-gluon fusion Higgs boson production is accurate to next-
to-next-to-leading order (NNLO) in the strong coupling, using the POWHEG method
for merging the NLO Higgs + jet cross section with the parton shower, and the MINLO
method [27] to simultaneously achieve NLO accuracy for inclusive Higgs boson produc-
tion. A reweighting procedure, employing the Higgs boson rapidity, was applied using the
HNNLO program [28, 29]. The matrix elements of the VBF and VH production mecha-
nisms were calculated up to NLO in QCD. For VH production, the MINLO method was
used to merge 0- and 1-jet events [30]. The gg — ZH contribution was modelled at leading
order (LO) in QCD. The production of a Higgs boson in association with a top (bottom)
quark pair was simulated at NLO with MADGRAPH5_AMCQNLO v2.2.3 (v2.3.3) [31, 32],
using the CT10nlo PDF set [33] for ttH production and the NNPDF23 PDF set [34] for bbH
production. For the ggF', VBF, VH and bbH production mechanisms, the PYTHIA 8 [35]
generator was used for the H — ZZ* — 44 decay as well as for the parton shower model
using a set of tuned parameters called the AZNLO tune [36]. For the ttH production
mechanism, the HERWIGH++ [37] event generator was used with the UEEES tune [38]. All
signal samples were simulated for the Higgs boson with a mass my = 125.00 GeV. Wherever
relevant, the signal mass distribution is shifted to the reference value of 125.09 GeV.

The Higgs boson production cross sections and decay branching ratios, as well as
their uncertainties, were taken from refs. [14, 26, 34, 39-66]. The ggF production was
calculated with next-to-next-to-next-to-leading order (N®*LO) accuracy in QCD and has
NLO electroweak (EW) corrections applied. For VBF production, full NLO QCD and EW
calculations were used with approximate NNLO QCD corrections. The VH production
was calculated at NNLO in QCD and NLO EW corrections are applied. The ¢tH and



Production process o [pb]

ggF (g9 — H) 48.5+24
VBF  (q¢' — Hqq') 3.78 £0.08
WH  (q¢ — WH) 1.369 +0.028
ZH  (qd/99 — ZH) 0.88 & 0.04
ttH  (qq/gg — ttH) 0.51 £ 0.05
bbH  (qq/g9g — bbH) 0.49 +0.12
Decay process B [- 1074
H—Z7Z* 264+ 6
H—>ZZ" -4 1.250 £ 0.027

Table 1. The predicted SM Higgs boson production cross sections (o) for ggF', VBF and associated
production with a T or Z boson or with a tf or bb pair in pp collisions for my = 125.09 GeV at /s =
13 TeV [14, 26, 34, 39-66]. The quoted uncertainties correspond to the total theoretical systematic
uncertainties calculated by adding in quadrature the QCD scale and PDF+ag uncertainties. The
decay branching ratio (B) with the associated uncertainty for H — ZZ* and H — ZZ* — 4( with
{ = e, u, is also given.

bbH processes were calculated to NLO accuracy in QCD. The branching ratio for the
H — Z7Z* — 40 decay with my = 125.09 GeV was predicted to be 0.0125% [60] in the
SM using PROPHECY4F [62, 63], which includes the complete NLO QCD and EW
corrections, and the interference effects between identical final-state fermions. Table 1
summarizes the production cross sections and branching ratios for the H — ZZ* — 4/
decay for my = 125.09 GeV.

Additional ggF', VBF and VH signal samples with different values of the BSM couplings
KAgg, kHVYV and kayy were generated with MADGRAPHS_AMC@NLO and are used for
the signal modelling as a function of the BSM couplings as explained in section 6. The ggF
simulation includes samples at NLO QCD accuracy for zero, one and two additional partons
merged with the FXFX merging scheme [31, 67], while the VBF and VH simulations are
accurate to LO in ag. Equivalent VBF and VH processes were also generated at NLO
QCD accuracy and used to estimate the relative uncertainties of higher-order QCD effects
as a function of the BSM coupling parameters.

The ZZ* continuum background from quark-antiquark annihilation was modelled using
SHERPA 2.2.2 [68-70], which provides a matrix element calculation accurate to NLO in as
for 0-, and 1-jet final states and LO accuracy for 2- and 3-jet final states. The merging was
performed with the SHERPA parton shower [71] using the ME+PS@NLO prescription [72].
The NLO EW corrections were applied as a function of the invariant mass of the ZZ*
system myzz- [73, 74].

The gluon-induced ZZ* production was modelled by ¢G2VV [75] at LO in QCD. The
higher-order QCD effects for the gg — ZZ* continuum production have been calculated
for massless quark loops [76-78] in the heavy top-quark approximation [79], including the
99 — H* — ZZ processes [80, 81]. The simulated LO samples are scaled by the K-factor



of 1.741.0, defined as the ratio of the higher-order and the leading-order cross section
predictions.

The WZ background was modelled using POWHEG-BOX v2 interfaced to

PYTHIA 8 and EVTGEN v1.2.0 for properties of the bottom and charm hadron de-
cays. The triboson backgrounds ZZZ, WZZ, and WWZ with four or more prompt lep-
tons were modelled using SHERPA 2.1.1. The simulation of ¢t + Z events with both top
quarks decaying semi-leptonically and the Z boson decaying leptonically was performed
with MADGRAPH interfaced to PYTHIA 8 and the total cross section was normalized to
the prediction which includes the two dominant terms at both the LO and the NLO in a
mixed perturbative expansion in the QCD and EW couplings [56].

The modelling of events containing Z bosons with associated jets was performed using
the SHERPA 2.2.2 generator. Matrix elements were calculated for up to two partons at NLO
and four partons at LO using Cowmix [69] and OPENLOOPS [70], and merged with the
SHERPA parton shower [71] using the ME+PS@NLO prescription [72]. The NNPDF3.0
NNLO PDF set was used in conjunction with dedicated parton shower parameters tuning
developed by the SHERPA authors. Simulated samples were normalized to the data-driven
estimate described in section 7. As a cross-check, this estimate was compared to the theory
prediction obtained with FEWZ [82, 83] at NNLO in a.

The tt background was modelled using POWHEG-BOX v2 interfaced to

PYTHIA 6 [84] for parton showering, hadronisation, and the underlying event and to
EvTGEN v1.2.0 for properties of the bottom and charm hadron decays.

Generated events were processed through the ATLAS detector simulation [85] within
the GEANT4 framework [86] and reconstructed the same way as the data. Additional pp in-
teractions in the same and nearby bunch crossings (pile-up) are included in the simulation.
The pile-up events were generated using PYTHIA 8 with the A2 set of tuned parame-
ters [87] and the MSTW2008LO PDF set [88]. The simulation samples were weighted to
reproduce the observed distribution of the mean number of interactions per bunch crossing
in the data.

5 Event selection

5.1 Event reconstruction

The selection and categorization of the Higgs boson candidate events rely on the recon-
struction and identification of electrons, muons and jets, closely following the analyses
reported in refs. [11, 89].

Collision vertices are reconstructed from ID tracks with transverse momentum
pr > 400MeV. The vertex with the highest Zp?r of reconstructed tracks is selected as
the primary vertex. Events are required to have at least one collision vertex with at least
two associated tracks.

Electron candidates are reconstructed from ID tracks that are matched to energy
clusters in the electromagnetic calorimeter [90]. A Gaussian-sum filter algorithm [91] is
used to compensate for radiative energy losses in the ID. Electron identification is based on
a likelihood discriminant combining the measured track properties, electromagnetic shower



shapes and quality of the track-cluster matching. The “loose” likelihood criteria applied
in combination with track hit requirements provide an electron efficiency of 95% [90].
Electrons are required to have Ep > 7GeV and |n| < 2.47, with their energy calibrated as
described in ref. [92].

Muon candidate reconstruction [93] within || < 2.5 is primarily performed by a
global fit of fully reconstructed tracks in the ID and the MS. In the central detector
region (|n| < 0.1), which has a limited MS geometrical coverage, muons are also iden-
tified by matching a fully reconstructed ID track to either an MS track segment (segment-
tagged muons) or a calorimetric energy deposit consistent with a minimum-ionizing particle
(calorimeter-tagged muons). For these two cases, the muon momentum is determined by
the ID track alone. In the forward MS region (2.5 < |n| < 2.7) outside the ID coverage,
MS tracks with hits in the three MS layers are accepted and combined with forward ID
tracklets, if they exist (stand-alone muons). Calorimeter-tagged muons are required to
have pt > 15GeV. For all other muon candidates, the minimum transverse momentum is
5GeV instead of the 6 GeV threshold in the Run-1 publication [11], increasing the signal
acceptance in the four-muon final state by about 7%. At most one calorimeter-tagged or
stand-alone muon is allowed per event.

Jets are reconstructed from noise-suppressed topological clusters [94] in the calorimeter
using the anti-k; algorithm with a radius parameter R = 0.4. The jet four-momentum
is corrected for the calorimeter’s non-compensating response, signal losses due to noise
threshold effects, energy lost in non-instrumented regions, and contributions from pile-
up [95]. Jets are required to have pr > 30 GeV and |n| < 4.5. Jets from pile-up are rejected
using a jet-vertex-tagger discriminant [96] based on the fraction of the jet’s tracks that come
from the primary vertex. Jets with |n| < 2.5 containing b-hadrons are identified using the
MV2c20 b-tagging algorithm [97, 98] at an operating point with 70% b-tagging efficiency.

Ambiguities are resolved if electron, muon or jet candidates are reconstructed from
the same detector information. If a reconstructed electron and muon share the same 1D
track, the muon is rejected if it is calorimeter-tagged; otherwise the electron is rejected.
Reconstructed jets geometrically overlapping in a cone of radius R = 0.2 with electrons or
muons are also removed.

5.2 Selection of the Higgs boson candidates

Events are triggered by a combination of unprescaled single-lepton, dilepton and trilepton
triggers with pr and E thresholds increasing slightly during the data-taking periods due to
an increasing peak luminosity. The lowest-threshold triggers are complemented by triggers
with higher thresholds but looser lepton selection criteria. The global trigger efficiency for
signal events passing the final selection is 98%.

At least two same-flavour and opposite-charge lepton pairs are required in the final
state, resulting in one or more possible lepton quadruplets in each event. The three highest-
pr leptons in each quadruplet must have transverse momenta above 20 GeV, 15 GeV and
10 GeV, respectively. The lepton pair with the invariant mass mja (mg4) closest (second
closest) to the Z boson mass in each quadruplet is referred to as the leading (subleading)
lepton pair. Based on the lepton flavour, each quadruplet is classified into one of the follow-



ing decay channels: 4u, 2e2u, 2u2e and 4e, with the first two leptons always representing
the leading lepton pair. In each subchannel, only the quadruplet containing the leading
lepton pair with an invariant mass closest to the Z boson mass is accepted.

The leading lepton pair must satisfy 50 GeV < mqi2 < 106 GeV. The subleading lepton
pair is required to have a mass mpyy, < mgs < 115GeV, where mpy, is 12 GeV for the
four-lepton invariant mass myy below 140 GeV, rising linearly to 50 GeV at my4py = 190 GeV
and then remaining at 50 GeV for all higher my, values. In the 4e and 4 channels, the
two alternative opposite-charge lepton pairings within a quadruplet must have a dilepton
mass above 5GeV to suppress the J/i¢ background. The two lepton pairs within the
quadruplet must have an angular separation of AR = /(Ay)? + (A¢)? > 0.1 (0.2) for
same-flavour (different-flavour) lepton pairs. Each electron (muon) must have a transverse
impact parameter significance |dp|/o(dg) below 5 (3) to suppress the background from
heavy-flavour hadrons. Reducible background from the Z-jets and tt processes is further
suppressed by imposing track-based and calorimeter-based isolation criteria on each lepton.
The scalar sum of the pp of the tracks lying within a cone of AR = 0.3 (0.2) around the
muon (electron) is required to be smaller than 15% of the lepton pr (E7). Similarly, the
sum of the calorimeter Er deposits in a cone of AR = 0.2 around the muon (electron)
is required to be less than 30% (20%) of the lepton Er. The calorimeter-based isolation
requirement is applied after correcting for the pile-up and underlying-event contributions
as well as removing the energy deposits from the remaining three leptons. If there is
more than one decay channel per event with a quadruplet satisfying the above selection
criteria, the quadruplet from the channel with highest efficiency is chosen as the Higgs
boson candidate. The signal selection efficiencies in the fiducial region with |yg| < 2.5 are
33%, 25%,19% and 17%, in the 4, 2e2u, 2u2e and 4e channels, respectively.

In case of VH-Lep or ttH production, there may be additional leptons present in the
event, together with the selected quadruplet. There is therefore a possibility that some
of the quadruplet leptons do not originate from a Higgs boson decay, but rather from the
V boson or top quark decays. To improve the lepton pairing in such cases, a matrix-
element-based pairing method is used for all events containing at least one additional
lepton with pr >12 GeV and which satisfies the same identification and isolation criteria
as the four quadruplet leptons. For all possible quadruplet combinations which pass the
above selection, a matrix element for the Higgs boson decay is computed at LO using
the MADGRAPH5_AMC@NLO [31] generator. The quadruplet with the largest matrix
element value is selected as the final Higgs boson candidate.

In order to improve the four-lepton mass reconstruction, the reconstructed final-state
radiation (FSR) photons in Z boson decays are accounted for using the same strategy as in
the Run-1 data analysis [11, 99]. After the FSR correction, the lepton four-momenta of the
leading lepton pair are recomputed by means of a Z-mass-constrained kinematic fit. The
fit uses a Breit-Wigner Z line shape, and a single Gaussian function per lepton to model
the momentum response function for the expected resolution of each lepton. The Z boson
mass constraint improves the resolution of the four-lepton invariant mass my4, by about
15%. The expected mass resolution for the Higgs boson with a mass myg = 125.09 GeV is
1.6 GeV, 1.7GeV, 2.1 GeV and 2.4 GeV in the 4, 2e2u, 2pu2e and 4e channels, respectively.
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Finally, to compensate for an increased reducible background due to lowering the muon pr
threshold to 5 GeV, the four quadruplet leptons are required to originate from a common
vertex point. A requirement corresponding to a signal efficiency of 99.5% is imposed in all
decay channels on the x? value from the fit of the four lepton tracks to their common vertex.

The Higgs boson candidates within a mass window of 118 GeV < myy < 129 GeV are
selected to study the properties of the Higgs boson.

5.3 Categorization of reconstructed Higgs boson event candidates

In order to gain sensitivity to different Higgs boson production modes, reconstructed events
are classified into several exclusive categories based on the presence of jets and additional
leptons in the final state as outlined in figure 1. The classification of events is performed in
the following order. First, events are classified as enriched in the ¢tH process (ttH-enriched)
by requiring at least one b-tagged jet in the event. In addition, there must be at least four
additional jets or one additional lepton with pt > 12GeV together with at least two
jets. The additional lepton is required to satisfy the same isolation, impact parameter and
angular separation requirements as the leptons in the quadruplet. Events with additional
leptons but not satisfying the above jet requirements compose the next category enriched
in VH production with leptonic vector boson decays ( VH-Lep-enriched).

The remaining events are classified according to their jet multiplicity into events with
no jets, exactly one jet or at least two jets. Among events with at least two jets there
are significant contributions from the VBF and VH production modes in addition to ggF.
These events are divided into two categories according to the invariant mass m;; of the two
leading jets. The requirement of m;; < 120 GeV enhances the VH production mode with
hadronically decaying vector bosons ( VH-Had-enriched). For m;; > 120 GeV, the VBF
Higgs boson signal is enhanced, and these events are further classified according to the
transverse momentum of the leading jet into events with pjT1 below (VBF—enriched—pZF-Low)
and above 200 GeV (VBF-enriched—p]f—High). Events with zero or one jet in the final state
are expected to be dominated by the ggF process. Following the particle-level definition
of production bins from section 3.1, the 1-jet category is further split into three categories
with the four-lepton transverse momentum p4TZ smaller than 60 GeV (1 j—p4TZ—L0W), between
60 and 120 GeV (lj—pﬁlfé—l\/[ed), and larger than 120 GeV (1j—pff£—High). The largest number
of ggF events and the highest ggF purity are expected in the zero-jet category (0j).

For the tensor structure measurement, the BSM interactions are expected to be more
prominent at higher Higgs boson and jet transverse momenta. Thus, in addition to the split-
ting of events with a VBF-like topology according to pz'rl, the VH-Had-enriched category is
further divided into two categories with four-lepton transverse momentum pﬁlfg below and
above 150 GeV: VH —Had—enriched—p%?—Low and VH —Had—enriched—p‘lTK—High, respectively.

The expected number of signal events is shown in table 2 for each Stage-0 production
bin and separately for each reconstructed event category. The ggF and bbH contributions
are shown separately in order to compare their relative contributions, but both are included
in the same (ggF) production bin. The highest bbH event yield is expected in the 0y
category since the jets tend to be more forward than in the ¢¢tH process, thus escaping the
acceptance of the ttH selection criteria. The included systematic uncertainties are detailed
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Reconstructed SM Higgs boson production mode

event category ggF VBF VH ttH bbH

0j 25.9+£2.5 0.29 £+ 0.09 0.253 4+ 0.025 0.00025 £ 0.00019 0.29 £0.14
1j-p¥-Low 8.0+£1.1 0.514 4+ 0.034 0.230 £0.018  0.0007 £ 0.0005 0.09 £ 0.05
1j-p¥-Med 4.5+0.7 0.64 + 0.09 0.227 +£0.019  0.0010 £ 0.0005 0.026 4+ 0.013
1j-pA-High 1.10+0.24 0.27 £ 0.04 0.095 4+ 0.007 0.00080 £ 0.00024 0.0036 4 0.0018
VBF-enriched-pZ'r-Low 39+0.8 2.03 £0.19 0.285 4 0.024 0.065 £ 0.009 0.045 £+ 0.023
VBF-enriched-pJf-High 0.33 +0.09 0.185 4+ 0.024 0.050 +0.004  0.0159 £ 0.0027 0.00058 £ 0.00029
VH-Had-enriched-pi*-Low 2.3+£05 0.169 +0.014 0.418 +0.023 0.022 £+ 0.004 0.025 +0.013
VH-Had-enriched-p#*-High  0.42 %+ 0.09 0.048 + 0.008 0.162 £ 0.005  0.0090 £ 0.0015 < 0.0001
VH-Lep-enriched 0.0129 4+ 0.0018 0.00310 4 0.00021 0.263 4 0.018 0.038 &+ 0.005 0.0009 + 0.0005
ttH-enriched 0.050 4+ 0.016 0.010 £0.006  0.0196 +0.0031  0.301 £ 0.032 0.0064 + 0.0035
Total 47+ 4 4.16 £0.23 2.00£0.11 0.45 £+ 0.05 0.49 +£0.24

Table 2. The expected number of SM Higgs boson events with a mass my = 125.09 GeV in the
mass range 118 < my, < 129 GeV for an integrated luminosity of 36.1 fb~! and /s = 13 TeV
in each reconstructed event category, shown separately for each Stage-0 production bin. The ggF
and bbH contributions are shown separately but both contribute to the same (ggF) production bin.
Statistical and systematic uncertainties are added in quadrature.
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VH-Lep-enriched
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Figure 2. Signal composition in terms of the reduced Stage-1 production bins in each reconstructed
event category. The ggF and bbH contributions are shown separately but both contribute to the
same (ggF') production bin.

in section 8. The signal composition in terms of the reduced Stage-1 production bins is
shown in figure 2. The separation of contributions from different production bins, such as
the sizeable contribution of the ggF-2j component in reconstructed categories with two or
more jets, is further improved by means of boosted decision tree observables, as described
in the following.
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Reconstructed event category BDT discriminant Input variables

0j BDTger PT, Nae, Dzz

1j-p*-Low BDTLEH Low P, 15, AR(j, 46)

1j-p4{-Med BDTY 0 e P, 1, AR(j, 40)

1j-pt'-High - -

VBF—enriched—pjf—LOW BDTvyer mjj, Anjj, pzflv p%?, Nies ARTZH]7 (pz"i"ejj)cor‘s“ai“ed
VBF-enriched-p?.-High - -

VH-Had-enriched BDTy i tad mjj, Anjj, P, P, mies AR, mit
VH-Lep-enriched - -

ttH-enriched - -

Table 3. The BDT discriminants and their corresponding input variables used for the measurement
of cross sections per production bin. The jets are denoted by “j”. See the text for variable
definitions.

5.4 Additional discriminating observables

In order to further increase the sensitivity of the cross-section measurements in the produc-
tion bins (section 3.1), BDT discriminants are introduced in reconstructed event categories
with a sufficiently high number of events. The BDTs are trained on simulated samples to
distinguish a particular Higgs boson production process from either the background or the
other production processes, based on several discriminating observables as summarized in
table 3. It is assumed for the training that all input distributions are governed by the SM
predictions.

A BDT discriminant in the 0j category is built to separate the Higgs boson signal
from the non-resonant ZZ* background, relying on the four-lepton transverse momentum
and rapidity as well as on the kinematic discriminant Dzz~ [11], defined as the difference
between the logarithms of the signal and background matrix elements squared. In the
two 1-jet categories with p4T€ below 120 GeV, a BDT discriminant combining information
about the jet transverse momentum (p%), rapidity (7;) and angular separation between
the jet and the four-lepton system (AR(j,4¢)) is introduced to distinguish between ggF
and VBF Higgs boson production. In the VBF—enriched—p%—Low (VH-Had-enriched) cate-
gory, the separation of the VBF (VH) from ggF (ggF and VBF) production mechanism is
achieved by means of the following input variables: mj;, pseudorapidity separation (An;;)
and transverse momenta of the two leading jets (pJTl and pzfQ), the difference between the
pseudorapidity of the four-lepton system and the average pseudorapidity of the two leading
jets (n},), as well as the minimum angular separation between the leading lepton pair and
the two leading jets (AR;“Zin). In addition, the pseudorapidity of the leading jet (n;1) is used
as an input in the VH-Had-enriched category, while the constrained transverse momentum
of the Higgs-dijet system, defined as (pilfgjj )constrained = p%ejj (50 GeV) for p%?jj > 50GeV
(p4T€jj < 50GeV) is employed for the VBF-enriched category. The transverse momen-
tum p4T£jj of the Higgs-dijet system below 50 GeV is replaced by the minimum value of

pérejj = 50 GeV in order to reduce the QCD scale variation uncertainty.
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The BDT discriminants improve the expected cross-section measurement statistical
uncertainties by 15%, 35% and 25% for the ggF, VBF and VH Stage-0 production bins,
respectively.

6 Signal modelling

The observables used for the measurements of the cross sections in the production bins
introduced in section 3 are BDT discriminants for five of the selected reconstructed event
categories, described in section 5.4, together with event yields for the remaining four event
categories. For the SM Higgs boson signal, the shapes of the BDT distributions and the
fractions of events in each category are predicted using simulation.

No BDT discriminants are used for the measurement of the tensor structure of the
Higgs boson couplings. This measurement is based on event yields in the ten event
categories introduced in section 5. A dedicated signal model is introduced to describe
the impact of BSM contributions. The model is based on a morphing technique [100]
which provides a parameterization to evaluate the signal response as a function of the
BSM coupling parameters. The expected number of signal events ns(/%'target) at a given
target point in the BSM parameter space, defined by a set of BSM coupling values
’_{target = {KSM, KBSM_1s- - - » IiBSan}, is obtained by

nS(gtarget) = Z wi(gtargeta /zz) : nS(Ez)
7

This corresponds to a linear weighted (w;(Ktarget,<;)) combination of a minimal set of
base inputs ng(7;), with coupling values &; = {k&\1, Kgni 15+ - - » Fasyn ) fOr each input i
selected in such a way as to span the full coupling parameter space. The functional form of
the weight w; and the value assigned to each input is defined by the coupling structure of
the BSM signal matrix element as described in ref. [100]. The inputs for the ggF, VBF and
VH production processes are obtained from the simulation samples described in section 4.
The values x; for each input sample are chosen to cover most parts of the interesting BSM
parameter space and to therefore ensure a reasonably small statistical uncertainty for any
target point in the BSM parameter space within the range of coupling values under study.
These samples are then used to predict the expected variations of event yields in each
reconstructed event category relative to the SM prediction. The limited number of events
in the simulated BSM samples is estimated to impact the measurement results by less
than 5%. In combination with all other systematic uncertainties, the impact on the final
result is negligible in the couplings range under study. Therefore, this uncertainty is not
taken into account in the results presented in section 9. Since the BSM input samples
were generated with the SM value I'gy for the total decay width of the Higgs boson, an
additional correction corresponding to ratio of the total width with BSM to the SM width
is applied to the o - B(H — ZZ) value for the samples with non-vanishing BSM coupling
parameters. The correction is of the order of —11% for k49 = £ 0.8, —2% for kayy = + 8
and about +14% (—17%) for kgyy = —8 (+8).

The ttH and bbH BSM processes are not simulated. Since the Higgs boson coupling to
top or bottom quarks in the effective coupling to gluons is included in kg4 and k444, and
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there is little sensitivity to ttH production in the H — ZZ* — 44 channel, it is assumed
that the production vertex of the ttH and bbH processes is not affected by the BSM
parameters. The impact of the BSM parameters on the Higgs boson decay is accounted
for by scaling the corresponding decay branching ratio. The BSM parameters also affect
B(H — Z~v) and B(H — 7) but the impact on the signal model predictions is found to
be negligible and is not considered in the analyses.

7 Background contributions

The main source of background in the H — ZZ* — 4¢ decay channel is non-resonant
Z7Z* production with the same final state as the signal. This process, as well as a minor
contribution from ¢tV and triboson production, is modelled using simulation normalized to
the highest-order SM prediction available. Additional reducible background sources are the
Z+jets, tt and WZ processes whose contributions in the signal region (SR) are estimated
using dedicated signal-depleted control regions (CRs) in data, separately for events with
different flavours of the subleading lepton pair (i.e. £¢ + pp or ¢¢ 4 ee, where ¢¢ denotes
the leading and pp or ee the subleading lepton pair). No requirement is imposed on the
four-lepton invariant mass in the control data. The backgrounds are first estimated for the
inclusive event selection, i.e. prior to event categorization, and then divided into separate
contributions in each reconstructed event category.

7.1 Background estimation for the inclusive selection

The reducible #¢ 4+ pp background with at least one jet containing a muon from secondary
decays of pions/kaons or heavy-flavour hadrons originates from Z+jets, ¢t and WZ produc-
tion. The Z+jets background comprises a heavy-flavour (Z+HF) component containing
jets with b- or c-quark content and a light-flavour (Z+LF) component from pion or kaon
decays. These components of the Z+jets background and the ¢f contribution are extracted
using orthogonal CRs formed by relaxing the x? requirement on the vertex fit, and by
inverting or relaxing isolation and/or impact parameter requirements on the subleading
muon pair. In these regions an unbinned maximum-likelihood fit to mqo is performed. The
numbers of tt, Z+HF and Z+LF events estimated in these CRs are each extrapolated
to the SR using a simulation-based transfer factor which depends on the efficiency of the
isolation and impact parameter selection criteria. The contribution from WZ production
is estimated using simulation.

The reducible ¢ + ee background originating mainly from the Z+jets, tt and WZ pro-
duction is classified into processes with misidentified jets faking an electron (f), electrons
from photon conversions (v) and electrons from semileptonic decays of heavy quarks (q).
The contribution of the g component is obtained from simulation, while the f and the v
components are obtained from the 3¢ + X CR containing 2u2e and 4e final states. In this
CR, three leptons pass the full analysis selection, while the most probable candidate for a
fake electron, the lowest-E1 electron (denoted by X) in the subleading electron pair, has
only the track hit requirement of the electron identification applied. In order to suppress
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the ZZ* contribution, only electrons with same-sign charge are considered for the sublead-
ing electron pair in this CR. A template fit to the number of track hits (nmnerpix) in the
innermost or next-to-innermost? pixel layer for the associated track is used to separate the
~v and f background components. The templates for the v and f background contribu-
tions are obtained from simulated Z 4+ X events with an on-shell Z boson decay candidate
accompanied by an electron X selected using the same criteria as in the 3¢ + X CR. The
simulated Z 4+ X events are also used to obtain the efficiencies needed to extrapolate the
f and v background contributions from the CR to the SR, after correcting the simulation
to match the data in dedicated control samples of Z + X events.

7.2 Background estimation per reconstructed event category

The background event yields and BDT output distributions are determined separately
for each event category. The reducible ¢¢ + ee background normalization is obtained by
applying the data-driven approach described above for the inclusive sample in each separate
category. The fraction of the reducible ¢¢+ pp background per category with respect to the
inclusive yield is obtained from simulation, separately for the Z+jets and ¢t background.
The ¢¢+ pp simulation was checked against data in CRs with relaxed selection criteria and
is found to predict the fraction of reducible background events in each category well within
the statistical uncertainty.

Since the data-driven background estimates provide the event yields for the full myy
range, the effect of the my4, mass window requirement has to be taken into account. For this
purpose, the my, distributions of reducible backgrounds in each category are smoothed with
the kernel density estimation method [101] and then integrated to obtain the fraction of
events within the mass window. The yields of the backgrounds in each category are shown in
table 4, together with the associated systematic uncertainties. Three sources of uncertainty
are considered. First, the systematic uncertainty of the inclusive background estimate
from the determination of the selection efficiencies related to the lepton identification,
isolation and impact parameter significance. This uncertainty is evaluated by comparing
data with an on-shell Z boson decay candidate accompanied by an electron or a muon
to the simulation. Second, the inclusive background estimate has also a relatively small
(4%) statistical uncertainty from the control data. The total uncertainty of the inclusive
reducible background estimate from both of these sources is considered as correlated across
the experimental categories. Third, there is an additional uncorrelated uncertainty in the
fraction of the reducible background in each experimental category due to the statistical
precision of the simulated samples.

The shapes of the BDT discriminant distributions for the reducible background are
determined from simulation by combining the simulated ¢t and Z+jets distributions ac-
cording to the relative fractions measured in data. To increase the statistical precision of
the simulated samples, the isolation requirements and my, range are relaxed. The mass
window requirement is relaxed in the 0j category to 115 < myg < 130 GeV and to

2A hit in the next-to-innermost pixel layer is used when the electron falls in a region that is either not
instrumented with an IBL module or the IBL module is not operating.

16



Reconstructed Reducible background Uncertainty

event category U4-pp Ul+-ee Total Corr. Uncorr.
0j 0.96 +0.21 1.25 £ 0.23 2.21+0.33 +13% +7%
1j-p3¥-Low 0.21 +£0.05 0.30 £0.06 0.52 £0.08 +13% +10%
1j-pA-Med 0.19£0.12 0.16 = 0.04 0.35+£0.13  +13%  +£40%
1j-p3*-High 0.0049 £ 0.0025  0.036 £ 0.008 0.041 £0.009 +13% +18%
VBF—enriched—p%—Low 0.14 +0.04 0.128 £ 0.025 0.27 £ 0.05 +13% +15%
VBF—cnriChcd—p%—High 0.019 £ 0.010 0.018 £ 0.004 0.037+£0.009 +13% +28%
VH-Had-enriched-p4-Low 0.057 £0.015 0.067 £ 0.015 0.124 £0.021  +13% +14%
VH—Had—enriched-pi‘FZ-High 0.0035 £ 0.0023  0.011 + 0.004 0.015+0.004 +13% +34%
VH-Lep-enriched 0.003 +0.004  0.0005 #+ 0.0008 0.0031 £0.0031 +13% £100%
ttH-enriched 0.009 £ 0.004 0.022 £ 0.005 0.031 £0.007  +13% +22%

Table 4. Estimates of reducible background yields in each reconstructed event category in the
signal region for 36.1 fb~! at /s = 13 TeV, together with the associated correlated and uncorrelated
systematic uncertainties. The total error in each category is composed of the combined statistical
and systematic uncertainty of the inclusive background estimate, as well as an additional statistical
uncertainty in the fraction of the reducible background in each category. The uncertainty due to the
inclusive background estimate is considered as correlated (penultimate column), while the statistical
uncertainty due to the event categorization (last column) is uncorrelated across the reconstructed
event categories.

110 < mye < 200 GeV for all other categories. Instead of both leptons, at least one lep-
ton in the subleading pair is required to meet the isolation criteria. These looser selection
criteria have no impact on the shape of the BDT distributions. The statistical precision
of the simulated samples and the uncertainty in the relative fractions of Z+jets and tt
contributions are taken into account as systematic shape variations.

8 Systematic uncertainties

The systematic uncertainties in this analysis are grouped into experimental and theoretical
uncertainties. The first category includes uncertainties in the modelling of lepton and
jet reconstruction, identification efficiencies, energy resolution and scale, and in the total
integrated luminosity. Uncertainties from the procedure used to derive the data-driven
background estimates are also included in this category. The second category includes
uncertainties in the theoretical modelling of the signal and the background processes.
The uncertainties can affect the signal acceptance, efficiency and discriminant distri-
butions as well as the background estimates. The dominant sources of uncertainty and
their effect are described in the following subsections. The impact of these uncertainties
on the cross-section measurements in different production bins is summarized in table 5.

8.1 Experimental uncertainties

The uncertainty in the combined 2015+2016 integrated luminosity is 3.2%. It is derived,
following a methodology similar to the one described in ref. [102], from a preliminary
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Experimental uncertainties [%] Theory uncertainties [%]

Production | Lumi e, u, Jets, flavour Higgs Reducible Z7* Signal theory
bin pile-up tagging mass  backgr. | backgr. PDF QCD scale Shower
Inclusive cross section
4.1 3.1 0.7 0.8 0.9 1.9 0.3 0.8 1.2
Stage-0 production bin cross sections
ggF 4.3 3.4 1.1 1.2 1.1 1.8 0.5 1.8 14
VBF 2.6 2.7 10 1.3 0.9 2.2 1.6 11 5.3
VH 3.0 2.7 11 1.6 1.7 5.9 2.1 12 3.7
ttH 3.6 2.9 19 <0.1 24 1.9 3.3 7.9 2.1

Table 5. Impact of the dominant systematic uncertainties (in percent) on the measured inclusive
and the Stage-0 production mode cross sections o - B(H — ZZ*). Signal theory uncertainties
include only acceptance effects and no uncertainty in predicted cross sections.

calibration of the luminosity scale using x—y beam-separation scans performed in August
2015 and May 2016.

The uncertainty in the predicted yields due to pile-up modelling is about 2% and is
derived by varying the average number of pile-up events in the simulation to cover the
uncertainty in the ratio of the predicted to measured inelastic cross sections [103].

The electron (muon) reconstruction and identification efficiencies, and the energy (mo-
mentum) scale and resolution are derived from data using large samples of J/i¢ — ¢¢ and
Z — 0l decays [91-93]. Typical uncertainties in the predicted yield due to the identifi-
cation efficiencies are in the range 0.5-1.0% for muons and 1.0-1.3% for electrons. The
uncertainty in the expected yields coming from the muon and electron isolation efficiencies
are also taken into account, with the typical size being 2%. The uncertainties in the elec-
tron and muon energy scale and resolution are small and have a negligible impact on the
measurements presented in section 9.

The uncertainties in the jet energy scale and resolution are in the range of 3-7% and 2—
4%, respectively [104, 105]. Given the analysis categories, the impact of these uncertainties
are more relevant for the VH, VBF and ¢tH production modes cross-section measurements
(10-20%) and for all the reduced Stage-1 cross-section measurements, including the ggF
process split into the different n-jet exclusive production bins (5-20%), while they are
negligible for the inclusive and the ggF (Stage-0) cross-section measurements.

The uncertainties associated with the efficiency of the b-tagging algorithm, which are
derived from ¢t events, are at the level of a few percent over most of the jet pr range [97].
This uncertainty is only relevant in the ¢tH-enriched category, with its expected impact
being approximately 5% in the ttH cross-section measurement.

The impact of the precision of the Higgs boson mass measurement, my = 125.09 +
0.24 GeV [16], on the signal acceptance due to the mass window requirement defining the
signal region is negligible. A small dependency of the BDT 4, shape on my is observed
for the signal (below 2% in the highest BDT bins) and is included in the signal model.
This uncertainty affects the measurement of ggF production, as well as the measurements
in other production bins with large ggF contamination.
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The uncertainties from the data-driven measurement of reducible background contri-
butions are detailed in section 7. Their impact on the cross-section measurements is also
summarized in table 5.

8.2 Theoretical uncertainties

The theoretical modelling of the signal and background processes is affected by uncertain-
ties from QCD scale variations, modelling of parton showers and multiple-particle interac-
tions, and PDF uncertainties.

The impact of the theory systematic uncertainties on the signal depends on the kind
of measurement that is performed. For the signal strength measurements and the tensor
structure analysis, each source of theory uncertainty affects both the fiducial acceptance
and the predicted SM cross section. For the cross-section measurements, only effects on
the acceptance need to be considered.

One of the dominant sources of theoretical uncertainty is the prediction of the ggF
process in the different n-jet categories. The ggF process is the major background in the
2-jet categories that are used to measure the cross section of the VBF and VH production
modes. To estimate the QCD scale variation and migration effects on the n-jet ggF cross
sections, the approach described in ref. [15] is used, which exploits the latest predictions
for the inclusive jet cross sections and the exclusive jet bin fractions. In particular, the
uncertainty from the choice of the factorization and renormalization scales, the choice of
resummation scales, and the migrations between the 0-jet and 1-jet phase-space bins or be-
tween the 1-jet and > 2-jet bins are considered. The impact of QCD scale variations on the
Higgs boson pr distribution is taken into account as an additional uncertainty. The uncer-
tainty in the Higgs boson pr at higher order originating from the assumption of infinite top
and bottom quark masses in the heavy-quark loop is also taken into account by comparing
the pr distribution predictions to finite-mass calculations. An additional uncertainty in the
acceptance of the ggF process in VBF topologies due to missing higher orders in QCD in
the calculation is estimated by variations of the resummation and factorization scales using
fixed-order calculations with MCFM [106]. For the other production modes, the QCD scale
uncertainties are obtained by varying the scale by factors of two. The configuration with
the largest impact is chosen to define the uncertainty in each experimental category as
the relative difference between the prediction in this and the nominal configuration. QCD
scale uncertainties are treated as uncorrelated among the different production modes.

The uncertainties in the acceptances due to the modelling of parton showers and
multiple-parton interactions are estimated with AZNLO tune eigenvector variations and
by comparing the acceptance using the parton showering algorithm from PYTHIA 8
with HERWIGT for the ggF, VBF and VH processes, while HERWIG+-+ is compared with
PYTHIA 8 for the ttH process. The uncertainty due to each AZNLO tune variation is
taken as correlated among the different production modes while the difference between the
parton showering algorithms is treated as an uncorrelated uncertainty. Uncertainties due
to the modelling of the ggF production in association with b-quarks affect the measurement
in the ttH production bin only negligibly compared to the statistical precision. They are
therefore not taken into account for the final result.
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The impact of the PDF uncertainties is estimated with the eigenvector variations of
the PDF4LHC_NL0O_30 Hessian PDF set. The modification of the predictions for each
eigenvector variation is added as a separate source of uncertainty in the model. The same
procedure is applied for the ggF, VBF and VH processes, enabling correlations to be taken
into account in the fit model.

The same procedure is used to estimate the impact of the sources of theoretical un-
certainty described above on the shape of BDT discriminants. In addition, for VBF Higgs
production, the changes in the Anj;; distribution as predicted at NNLO compared to NLO in
QCD [107] are considered and shown to have a negligible impact on the BDT distributions.

40
For ggF production, a further cross-check is performed by comparing the BDT%,JBPFT LOW,

15-p3¢-Med . . .
BDTVJB]%T ¢ , BDTygr and BDTy g.paq shapes in the corresponding categories as pre-

dicted by PowHEG NNLOPS and MADGRAPH5_AMC@NLO (with the FxFx merging
scheme). The BDT shapes from the two generators agree within the statistical uncertainties
and, therefore, no additional shape uncertainty is included.

For BSM interactions parameterized via the effective Lagrangian terms, the theoretical
uncertainties in the PDF set and the missing higher-order QCD and EW corrections are
generally assumed to factorize with respect to the new physics. However, it has been
shown [108] that the K-factors corresponding to the NLO to LO cross-section ratio, as well
as several kinematic quantities that affect the categorization of reconstructed events, such
as the jet transverse momenta, receive higher-order corrections that can differ from those
computed for the SM process and depend on the value of the BSM couplings. Therefore, an
uncertainty is assigned to the K-factor obtained from the SM samples. For this purpose,
the K-factor for a given VBF and VH BSM process is evaluated as the ratio of NLO to LO
event yields in simulated BSM samples, separately for each reconstructed event category.
The uncertainty in the SM K-factor is then defined as the relative difference of the K-factors
computed for the BSM and SM processes. The obtained uncertainties range from 10% to
40% depending on the category and are considered as being correlated across all categories.
This is one of the dominant sources of uncertainty for the tensor structure measurements.
No such uncertainty is considered for the ggF BSM samples as these are simulated at NLO.

The dominant theoretical uncertainty in the expected ZZ* background yield in the
signal mass window is obtained by varying the factorization and renormalization QCD
scales by factors of two. The configuration with the largest impact is chosen to define the
uncertainty in each experimental category as the relative difference between the prediction
in this and the nominal configuration. This uncertainty is about 4% for the inclusive event
yield and is as large as 30% for the categories where additional jets are required. The
impact of the QCD scale uncertainty on the BDT discriminant shapes is approximately
1-2%. The PDF uncertainty on the ZZ* event yield in each category and on the BDT
distributions, obtained using the MC replicas of the NNPDF3.0 PDF set, was found to
be approximately 1-2%. The impact of the parton shower modelling uncertainty on the
ZZ* event yield is estimated to be approximately 1-5%, with the largest value reached in
the categories where the presence of one or more jets is required. In addition, the event
yield and BDT discriminant shapes in each event category are compared to the data in a
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Figure 3. The expected and observed four-lepton invariant mass distribution for the selected
Higgs boson candidates with a constrained Z boson mass, shown for an integrated luminosity of
36.1 fb~! and at /s = 13 TeV assuming the SM Higgs boson signal with a mass mg = 125.09 GeV.

sideband around the signal region (my < 115 GeV or 130 GeV< my < 170 GeV). Good
agreement between the SHERPA predictions and the data is found.

9 Results

The expected and observed four-lepton invariant mass distribution of the selected Higgs
boson candidates after the event selection with a constrained Z boson mass is shown
in figure 3. The corresponding expected and observed numbers of events are shown in
table 6 separately for each of the four decay channels. The predicted event yields are
in reasonable agreement with the data. The observed and expected distributions of the
jet multiplicity, the dijet invariant mass, as well as the leading jet and the four-lepton
transverse momenta, which are used for the categorization of reconstructed events, are
shown in figure 4 for different stages of the event categorization. As shown in figures 4(c)
and 4(d) there is an excess of events observed in the sample with > 2 jets (shown as a
dijet invariant mass distribution) and also in the subset with m;; > 120GeV (shown as
the jet pr distribution) in comparison with the expectations. All other distributions are in
good agreement with the data. The expected numbers of signal and background events in
each reconstructed event category (including the splitting of the VH-enriched category for
the tensor structure measurement) are shown in table 7 together with the corresponding
observed number of events. The expected event yields are in reasonable agreement with
the observed ones. The largest differences are again observed in the two VBF-enriched
categories. The expected and observed distributions of the BDT discriminants introduced
in section 5.4 are shown in figure 5, where a small excess is observed at larger values of
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Decay Signal Signal 77* Other Total Observed
channel | (full mass range) background backgrounds | expected
dp 21.0+1.7 19.7+ 1.6 7.54+0.6 1.00 £0.21 | 28.1 £ 1.7 32
2e2u 15.0+1.2 13.5+£1.0 54+04 0.78+0.17 | 19.7+ 1.1 30
2u2e 114+1.1 104+1.0 3.57%£0.35 1.094+0.19 | 15.1£1.0 18
4e 11.3+1.1 99+1.0 3.35£0.32 1.01£0.17 | 14.3£1.0 15
Total 59+5 54 +£4 19.7+£1.5 39£0.5 TT+4 95

Table 6. The expected and observed numbers of signal and background events in the four-lepton
decay channels for an integrated luminosity of 36.1 fb~! and at /s = 13 TeV, assuming the SM
Higgs boson signal with a mass my = 125.09 GeV. The second column shows the expected number
of signal events for the full mass range while the subsequent columns correspond to the mass range of
118 < myy < 129 GeV. In addition to the ZZ* background, the contribution of other backgrounds
is shown, comprising the data-driven estimate from table 4 and the simulation-based estimate of
contributions from rare triboson and £V processes. Statistical and systematic uncertainties are
added in quadrature.

Reconstructed Signal 27" Other Total Observed
event category background backgrounds expected

07 26.8 +2.5 13.7+1.0 2.23 £0.31 42,7+ 2.7 49
lj—pflfz—Low 88+1.1 3.1+04 0.53 £ 0.07 125+ 1.2 12
1j-pi¥-Med 54+0.7 0.88+0.12 0.38 £0.05 6.7+£0.7 9
1j-p¥-High 1.47+0.24  0.139+£0.022 0.045 + 0.007 1.65 +0.24 3
VBF-enriched-pé-Low 6.3+0.8 1.08 +0.32 0.40 £ 0.04 7.7+0.9 16
VBF—enriched—pé—High 0.58 £0.10  0.093+£0.032  0.054 + 0.006 0.72 £0.10 3
VH-Had-enriched-pi‘-Low 29+0.5 0.63+£0.16 0.169 £ 0.021 3.7+£05 3
VH-Had-enriched-p3’-High ~ 0.64 £0.09  0.029 £0.008 0.0182 4 0.0022  0.69 +0.09 0
VH-Lep-enriched 0.318 £0.019 0.049 £0.008 0.0137 £0.0019 0.380 £ 0.020 0
ttH-enriched 0.39 £0.04 0.014 + 0.006 0.07 £0.04 0.47 £0.05 0
Total 54+4 19.7+£1.5 3.9+0.5 =" 95

Table 7. The expected and observed numbers of signal and background events in the mass range
118 < myp < 129 GeV for an integrated luminosity of 36.1 fb~! and at /s = 13 TeV in each recon-
structed event category (including the splitting of the VH-enriched category for the tensor structure
measurement), assuming the SM Higgs boson signal with a mass myg = 125.09 GeV. In addition to
the ZZ* background, the contribution of other backgrounds is shown, comprising the data-driven
estimate from table 4 and the simulation-based estimate of contributions from rare triboson and
ttV processes. Statistical and systematic uncertainties are added in quadrature.
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Figure 4. The observed and expected distributions of (a) Nje; after the inclusive selection, (b)
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the VBF BDT. All other distributions are in good agreement with the data. Based on
these results, the measurements of the Higgs boson production cross sections and of its
tensor coupling structure are performed. The profile likelihood ratio [109] is used for the
interpretation of data with the effects of systematic uncertainties included as constrained
nuisance parameters. If the same source of uncertainty affects two or more processes
(e.g. the error in the integrated luminosity can affect the signal yield and the MC-based
background estimates), the same nuisance parameter is assigned to each of these processes.

9.1 Cross-section measurement by production modes

In order to measure the Higgs boson production cross section times branching ratio for
H — ZZ* decay for each Stage-0 or reduced Stage-1 production bin, a fit to the data is
performed using the likelihood function £(&, §) that depends on the Higgs boson production
cross section & = {01,09,...,0x} in each production bin and the nuisance parameters g
accounting for the systematic uncertainties. The likelihood function is defined as a product
of conditional probabilities P over binned distributions of the discriminating observables

in each reconstructed event category j,

Ncategories Nbins Nnuisancc
£@ 0= TI TIP(NuylL-d-Ay@ +By@)x [ e,
J i m

with Poisson distributions P corresponding to the observation of N;; events in each bin
1 of the discriminating observable given the expectations for the background, Bm(g), and
for the signal, S; ; @ =L-G- Elj(g), where L is the integrated luminosity and Elj(g) the
signal acceptance in each production bin. The signal acceptance is defined as the number of
simulated signal events satisfying the event selection criteria in a given reconstructed event
category divided by the total number of events generated in the phase space defined by
the production bin. Constraints on the nuisance parameters corresponding to systematic
uncertainties described in section 8 are represented by the functions Cm(g) The cross
sections are treated as independent parameters for each production bin and correlated
among the different categories. The test statistic used to compare the probabilities of

different hypotheses is the ratio of profile likelihoods [109],

where & represents only the cross section(s) considered as parameter(s) of interest in the
given fit, while the likelihood is maximized with respect to all remaining cross sections
and nuisance parameters. In the denominator the likelihood is maximized with respect
to all other cross sections and nuisance parameters as well as the parameters of interest,
which are fixed to hypothetical values in the numerator. The parameter of interest o

—

in each production bin is alternatively replaced by u - ogm(6), allowing an interpretation

in terms of the signal strength p relative to the SM prediction ogy(€). In addition, the
number of signal events is extracted from a simultaneous fit of the signal templates in all
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Figure 6. The profile likelihood as a function of (a) o - B(H — ZZ*) and (b) the inclusive
signal strength u; the scans are shown both with (solid line) and without (dashed line) systematic
uncertainties.

reconstructed event categories, using a coarser BDT binning with several bins merged into
one and considering only the background systematic uncertainties in the fit.

The expected and observed numbers Ng of signal events are shown in table 8 together
with the signal acceptances for the Stage-0 production bins.

Assuming that the relative signal fractions in each production bin are given by the
predictions for the SM Higgs boson, the inclusive production cross section of

o0-B=o-B(H — ZZ*) = 1.737533(stat.) 003 (exp.) £ 0.04(th.) pb = 1.73%5-2¢ pb

is measured in the rapidity range |ygy| < 2.5, compared to the SM prediction of
(60 -B)sm = (0-B(H — ZZ*))sm = 1.34 £ 0.09 pb. The data are also interpreted in
terms of the global signal strength, yielding

= 1.28F013 (stat.) 008 (exp.) T J8 (th.) = 1287035,

The measured cross section and signal strength agree with the SM prediction at the
level of 1.70 and 1.60, respectively. The corresponding likelihood scans are shown in
figure 6. The dominant systematic uncertainty of the cross-section measurement is the
experimental uncertainty in the integrated luminosity and lepton efficiency measurements.
The signal strength measurement is also equally affected by the theoretical uncertainty of
the ggF signal yield due to QCD scale variations. This theory uncertainty in the predicted
signal yield cancels out when expressing the results in terms of the ratio of the observed
to expected cross section times the branching ratio (o - B)/(o - B)sm = 1.29703%, with no
uncertainty assigned to the denominator.

The SM expected cross section, the observed values of o - B(H — ZZ*) and their

ratio for the inclusive production and in each Stage-0 and reduced Stage-1 production bin
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Production bin Cross section (o - B) [pb] (¢ -B)/(c- B)sm

SM expected Observed Observed

Inclusive production, |ym| < 2.5

0.244-0.10 0.184-0.07
1.34 £ 0.09 1737053 0 08£0.04 | 1.29151531005+£0.03

Stage-0 production bins, |yg| < 2.5

gl 1.18 +£0.08 1.31702610-0940.05 | 1.117022+5-07+0.04
VBF 0.0928 + 0.0028  0.377015+0.03+0.03 | 4.0777+0.3+0.3
VH 0.0537000 < 0.20 <37

ttH 0.0154 700004 < 0.12 <75

Reduced Stage-1 production bins, |yg| < 2.5

geF-0j 0.73 & 0.05 0.881032+0-09 1221030043
ggF-1j-pH-Low | 0.174 +0.025 0.08701515-0¢ 0.5158+02
ggF-1j-pH-Med | 0.120 +0.018 0.16 1051008 1.370940.2
ggF-1j-pi-High | 0.024 + 0.005 0.0313:9340.01 1.272340.3
ggF-2j 0.137 4 0.029 0.2070140.03 1.471240.2
VBF-p/-Low | 0.0886 = 0.0027 0.26 515008 3.072:0+0:4
VBF-pj-High | 0.004275:9504 0.0610:05+0.01 13132 +1
VH-Had 0.036215:0039 < 0.20 < 5.6
VH-Lep 0.016610 057 <0.16 <9.3
ttH 0.015470000% <0.11 <71

Table 9. The SM expected cross section (o - B)sm, the observed values of o - B(H — ZZ*),
and their ratio (o - B)/(o - B)sm for the inclusive production and in each Stage-0 and reduced
Stage-1 production bin for an integrated luminosity of 36.1 fb=! and at /s = 13 TeV. The bbH
contribution is considered as a part of the ggF production bins. The upper limits correspond to
the 95% CL obtained with pseudo-experiments using the CLg method. The uncertainties are given
as (stat.)+(exp.)+(th.) for Stage 0 and as (stat.)+(syst.) for reduced Stage 1.

are shown in table 9. The corresponding values are summarized in figure 7. The bbH
production process is treated as a part of the ggF production bins. In the ratio calculation
uncertainties on the SM expectation are not taken into account.

All measured Stage-0 and reduced Stage-1 ggF measurements agree with the predic-
tions for the SM Higgs boson within 1o. Somewhat worse agreement is obtained for the
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Figure 7. The observed and expected SM values of the cross-section ratios ¢ - B normalized by
the SM expectation (o - B)gy for the inclusive production and in the (a) Stage-0 and (b) reduced
Stage-1 production bins for an integrated luminosity of 36.1 fb=! at /s = 13 TeV. Different colors
for the observed results indicate different Higgs boson production modes. The hatched area indicates
that the VH and {tH parameters of interest are constrained to positive values. For visualization
purposes, the VBF—pJf—High value and the limits for the three reduced Stage-1 production bins
VH-Had, VH-Lep and ttH are divided by a factor of five when shown normalized to (- B)sy. The
yellow vertical band represents the theory uncertainty in the signal prediction, while the horizontal
grey bands represent the expected measurement uncertainty.
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VBF bins due to the observed excess of events in the two VBF-enriched reconstructed
event categories. The largest deviation of 2.2¢ is observed for the Stage-0 VBF production
bin due to an observed excess of events characterized by the presence of at least two jets
and a dijet invariant mass above 120 GeV. Due to the limited number of events in the
VH- and ttH-enriched categories, only upper limits are set on the cross sections and signal
strengths for these production modes. The limits are based on the CLg prescription [110]
and derived using pseudo-experiments. The VH and ttH parameters of interest are con-
strained to positive values to avoid the fit’s prediction of negative total event yields in the
VH-Lep-enriched and ttH-enriched categories and provide a stable fit configuration. It was
found that the impact of this constraint on the final fit results is negligible.

The dominant contribution to the measurement uncertainty in the Stage-0 ggF produc-
tion bin originates from the same sources as in the inclusive measurement. In the remaining
three Stage-0 production bins, similar sources of uncertainty are relevant for both the cross
section and the signal strength measurements: the jet energy scale or resolution uncer-
tainties in all production bins and, additionally, jet bin migrations for the VBF and VH
processes. For the reduced Stage-1 categories the dominant cross-section uncertainties are
the integrated luminosity and lepton efficiency measurements for the ggF-0j and VH-Lep
bins and the jet energy scale or resolution for all other categories. The VBF—p%—Low bin is
additionally affected by parton shower uncertainties, while the effects of the finite top quark
mass have a dominant impact on the VBF—pgf—High bin, together with migrations between
transverse momentum bins. The signal strength measurement of the reduced Stage-1 ggF
processes is also strongly affected by the theory uncertainties from event migrations be-
tween different jet multiplicity and Higgs boson transverse momentum bins, while parton
shower and QCD scale uncertainties affect the remaining reduced Stage-1 production bins.

Figure 8(a) shows the likelihood contours in the (oger- B, oypr-B ) plane. The VH and
ttH cross section parameters are left free in the fit, i.e. they are not treated as parameters
of interest. The compatibility with respect to the Standard Model expectation is at the
level of 2.3, due to the discrepancies observed in the VBF-related distributions in figures 4
and 5. The cross-section results by production mode (Stage 0) can also be interpreted in
the k framework [14, 15] in which coupling modifiers, x;, are introduced to parameterize
possible deviations from the SM predictions of the Higgs boson couplings to SM bosons and
fermions. One interesting benchmark allows two different Higgs boson coupling strength
modifiers to fermions and bosons, reflecting the different structure of the interactions of the
SM Higgs sector with gauge bosons and fermions. The universal coupling-strength scale
factors kg for all fermions and xy for all vector bosons are defined as Ky = kw = Kz
and Kp = Kt = Ky = Ke = Ky = K, = Kg. It is assumed that there are no undetected or
invisible Higgs boson decays. The observed likelihood contours in the Ky — xkr plane are
shown in figure 8(b) (only the quadrant kg > 0 and ky > 0 is shown since this channel
is not sensitive to the relative sign of the two coupling modifiers). The compatibility with
the Standard Model expectation is at the level of 1.40. Better agreement is observed here
compared to the likelihood contours for the cross sections, since the lower observed yield
in the VH categories compared with SM expectations compensates for the observed excess
in the VBF categories.
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Figure 8. (a) Likelihood contours at 68% CL (dashed line) and 95% CL (solid line) in the (oger - B,
oypr - B) plane and (b) likelihood contours in the ky—kp plane. The best fits to the data (solid
cross) and the SM predictions are also indicated. In (a), the SM prediction is shown together with
its theory uncertainty (filled blue elipse), while in (b) only the central value of the SM prediction
(solid blue star) is shown.

9.2 Tensor structure of Higgs boson couplings to vector bosons

In order to probe the tensor structure of the Higgs boson couplings to vector bosons, a
likelihood function is constructed as a product of conditional probabilities over the event
yield N; in each reconstructed event category j,

Ncategories Nnuisance
L= [I PW; 1820 +B;@) x [ ¢,
i m

with the set of coupling parameters K representing the parameters of interest for a specific
hypothesis test. The expected number of signal events SJ(-E) (5) is parameterized in terms
of the SM and BSM couplings using the signal modelling described in section 6, while the
expected background event yields B; (5) are given by the background estimates detailed in
section 7. As in the case of the cross-section measurements, the test statistic is based on a

profile likelihood ratio, )
L(7,6(F))
L(F, 0(F))

with the conditional and the unconditional maximum-likelihood estimators in the numera-

g=—2In = —-2InA(R),

tor and the denominator, respectively. The coupling parameter x 444 is measured assuming
that all other BSM couplings are equal to zero. The coupling parameters kgyy and Kayy
are probed both simultaneously and one at a time assuming that all other BSM couplings
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Figure 9. Observed (solid black line) and SM expected (dashed blue line) negative log-likelihood
scans for (a) kagg, (b) Kmyvy and (¢) kKayy coupling parameters using 36.1 fb~! of data at
/s = 13TeV. The horizontal lines indicate the value of the profile likelihood ratio correspond-
ing to the 68% and 95% CL intervals for the parameter of interest, assuming the asymptotic 2
distribution of the test statistic.

vanish. If not stated otherwise, the SM couplings xksm and kpge described in section 3.2
are fixed to the SM value of one. The BSM changes in the Higgs sector are assumed not
to affect the SM background processes.

Figure 9 shows the observed negative log-likelihood as function of one BSM coupling
at a time, together with the expectation for the SM Higgs boson. The corresponding
exclusion limits at a 95% confidence level (CL), the best-fit values and the size of the
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BSM coupling Fit Expected Observed Best-fit  Best-fit | Deviation
KBSM configuration conf. inter. conf. inter. RBSM RsM from SM
KAgg (KHgg = 1, ksm = 1) | [-0.47, 0.47] [-0.68, 0.68] +0.43 - 1.80
KHVV (KHgg = 1, ksm = 1) [—2.9, 3.2] [0.8, 4.5] 2.9 - 2.30
KHVV (kHgg = 1, ksm free) [-3.1, 4.0] [-0.6, 4.2] 2.2 1.2 1.70
KAVYV (KHgg = 1, ksm = 1) [-3.5, 3.5] [-5.2, 5.2] +2.9 - 1.40
KAVV (kHgg = 1, ksm free) [—4.0, 4.0] [—4.4, 4.4] +1.5 1.2 0.50

Table 10. Expected and observed confidence intervals at 95% CL on the Kag49, vy and Kayy
coupling parameters, their best-fit values and corresponding compatibility with the SM expectation,
as obtained from the negative log-likelihood scans performed with 36.1 fb~! of data at /s = 13 TeV.
The coupling kp 44 is fixed to the SM value of one in the fit, while the coupling kgw is either fixed
to the SM value of one or left as a free parameter of the fit.

Fit configuration | Best-fit kgyy Best-fit K4y Best-fit Agy | Deviation from SM

RKHgg = 1, KRSM = 1 2.9 +0.5 - 1.90
KHgg = 1, ksm free 2.1 +0.3 1.7 1.20
Table 11. The best-fit coupling values and corresponding deviation from the SM expectation,

as obtained from the two-dimensional kgyvy — K4y y negative log-likelihood scans performed with
36.1 fb~! of data at /s = 13 TeV.

deviation from the SM are summarized in table 10. The event yields measured in the
introduced reconstructed event categories do not provide any sensitivity to the sign of the
Kagg and kayy coupling parameters. On the other hand, event yields are expected to be
larger for positive kgyy values compared to the negative ones due to large interference
effects with the CP-even SM coupling interactions. Due to the larger number of events
observed compared with expectation in the reconstructed VBF-enriched event categories,
the best-fit values for the coupling parameters k444, Kpyvy and kayy differ from zero and
deviate from the SM expectation at the level of 1.80, 2.30 and 1.40, respectively. If the
coupling parameter kg of the SM interaction is left free in the fit, the expected limits on
the BSM HVV and AV'V couplings decrease by up to 10%. The observed deviation from
the SM hypothesis decreases to below 20 (1) for the BSM HVV (AVV) coupling, since the
observed excess of events is at least partially absorbed by a 20% increase of the SM coupling
parameter xgn. The best-fit kv and k 4y values decrease correspondingly. Due to the
mentioned interference effects for CP-even couplings, the expected yields decrease more
steeply with decreasing xgyy, so that the increasing kgy value cannot fully compensate
for the observed excess. The best-fit kg value therefore decreases less than the best-fit
kAyvy value compared to the fit configuration with kgy = 1.

The CP-even and CP-odd BSM couplings to heavy vector bosons are also probed
simultaneously in a two-dimensional contour analysis of the negative log-likelihood. The
results are shown in figure 10 and summarized in table 11.

The best-fit value kv obtained from the two-dimensional scan is similar to the one
obtained in the one-dimensional scan. The value of 54y from the two-dimensional scan is
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Figure 10. Observed (black) and SM expected (blue) contours of the two-dimensional negative
log-likelihood at 95% CL for the kgvy and kayy coupling parameters with 36.1 fb~! of data at
/s = 13 TeV. The coupling kr44 is fixed to the SM value of one in the fit. The coupling kg is (a)
fixed to the SM value of one or (b) left as a free parameter of the fit (b).

closer to the SM expectation than the corresponding value from the one-dimensional scan.
The obtained result is compatible with the SM prediction within 20.

The coupling parameter x 444 is also probed directly by the cross sections measured in
the reduced Stage-1 production bins. The largest sensitivity to this coupling is obtained
from the ggF-0j production bin. Here one can neglect the impact of the BSM gluon cou-
pling on the BDTg.r observable that is based solely on the Higgs boson decay topology.
The cross-section dependence on the BSM coupling is parameterized using simulated M AD-
GRAPHH_AMCQ@NLO samples and fitted to the measured values. The fit results agree with
those presented in table 10.

10 Summary

The coupling properties of the Higgs boson are studied in the four-lepton decay channel
using 36.1 fb~! of LHC pp collision data at /s =13 TeV collected by the ATLAS experi-
ment. The Higgs boson candidate events are categorized into several topologies, providing
sensitivity to different production modes in various regions of phase space. Additional BDT
discriminants are used to further improve the sensitivity in reconstructed event categories
with a sufficiently large number of events.

The cross sections times branching ratio for H — ZZ* decay measured in dedicated
production bins are in agreement with the SM predictions. The largest deviation of 2.2¢ is
observed for the VBF production due to an observed excess of events characterized by the
presence of at least two jets and a dijet invariant mass above 120 GeV. The inclusive cross
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section in the Higgs boson rapidity range of |yx| < 2.5 is measured to be 0-B(H — ZZ*) =
1.73f8:%2 pb compared to the SM prediction of 1.34 +0.09 pb. Results are also interpreted
within the x framework with coupling modifiers xy and kp, showing compatibility with
the SM. Based on event yields observed in each reconstructed event category, constraints
are placed on possible BSM interactions of the Higgs boson within the framework of an
effective Lagrangian extension of the SM. The data are shown to be consistent with the SM
hypothesis, with the largest deviations of about 20 due to the excess of observed events in
the VBF categories. Exclusion limits are set on the CP-even and CP-odd BSM couplings of
the Higgs boson to vector bosons and on the CP-odd BSM Higgs boson coupling to gluons.
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