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Multispectral High Dynamic Range Polarimetric Imaging 

applied to scene segmentation and object classification 

 

Miguel Ángel Martínez Domingo 

 

Abstract 

Different advanced techniques of digital imaging such as multispectral imaging, 
high dynamic range (HDR) imaging, polarimetric imaging or Near-Infra-Red 
imaging, have been developed and applied separately for years. Researchers are 
trying to merge some of these techniques together into a single integrated 
system. However this integration is rather challenging, specially if we are 
dealing with general purpose applications, such as capturing outdoor urban or 
natural scenes. 

This dissertation proposes capturing system designs, as well as algorithms and 
processing techniques for improving and simplifying the systems currently 
present in the state of the art of these different imaging techniques. This way, 
high dynamic range multispectral polarimetric images in the visible and near 
infrared can be captured and processed for many applications such as image 
segmentation, objects or materials classification, vegetation monitoring, food 
inspection, remote sensing, surveillance, etc. 

A new multispectral image capturing system is proposed, based on a novel 
generation of sensors which are still under development. Based on simulations, 
this work takes advantage of the spectral tunability of these sensors, and 
combines it with color filter arrays, to propose an imaging system with 36 
spectral channels, achieving very good colorimetric and spectral performance 
for spectral reflectance estimation. 

Besides, a new algorithm for the automatic capture of HDR images is proposed, 
called Adaptive Exposure Estimation (AEE). It can be implemented in any 
digital imaging system, and it works online, as the capturing is ongoing. It is 
adaptive to scene content without the need of any prior knowledge about the 
scene being captured. The proposed method allows the user to tune the 



performance of the algorithm, keeping the balance between exposure time and 
signal-to-noise ratio, by just adjusting two free parameters. It can also capture 
the full dynamic range of the scene (or region of interest), or just a part of it. 

The proposed AEE algorithm is also adapted to multispectral polarimetric 
image capture. Based on a previous work which uses a Liquid Crystal Tunable 
Filter, a new full framework for capturing and processing 31-channels 
MultiSpectral HDR Polarimetric (MSHDRPol) images is proposed. New 
techniques for segmentation and classification of objects present in indoors 
scenes are proposed and tested. The results show that the algorithm outperforms 
other methods proposed in previous studies. 

As an additional contribution, the whole capturing workflow is adapted to an 8-
channels filter-wheel-based imaging system covering the visible and NIR 
ranges up to 1000 nm. Therefore a system and a framework able to 
automatically capture MultiSpectral HDR Polarimetric Visible and Near Infra-
Red (MSHDRPolVISNIR) images of outdoor scenes are proposed. 

A set of 8 outdoors scenes have been captured using the proposed system and 
methods and they will be made publicly available after the defense of this 
doctoral thesis. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Nuevas técnicas de adquisición y procesado de imágenes 

HDR multiespectrales y polarimétricas. Aplicación a 

segmentación y clasificación de objetos relevantes.  

Miguel Ángel Martínez Domingo 

 

Resumen 

Durante años, muchas técnicas avanzadas de captura de imágenes digitales 
como imágenes multiespectrales, de alto rango dinámico (HDR), polarimétricas 
o en el infrarrojo cercano, han sido desarrolladas y utilizadas por separado. 
Muchos investigadores intentan unir estas técnicas en un solo sistema integrado. 
Sin embargo esta integración es bastante complicada, especialmente si estamos 
apuntando hacia una aplicación de carácter general, como captura de imágenes 
urbanas o naturales al aire libre. 

Esta tesis propone diseños de sistemas de captura, así como algoritmos y 
técnicas de procesado para mejorar y simplificar los sistemas que actualmente 
podemos encontrar en el estado del arte de las diferentes técnicas avanzadas de 
imagen mencionadas. De este modo, se pueden capturar y procesar imágenes 
multiespectrales, de alto rango dinámico, polarimétricas en el visible e infra-
rojo para usarlas en diferentes aplicaciones como segmentación de imágenes, 
clasificación de objetos o materiales, monitorización de vegetación, inspección 
de alimentos, teledetección, vigilancia, etc. 

Se propone un nuevo sistema de captura de imágenes multiespectrales, basado 
en una nueva generación de sensores en desarrollo. Mediante simulaciones, este 
trabajo se beneficia de las propiedades sintonizables de dichos sensores, que 
combinados con arrays de filtros de color, nos permiten alcanzar un sistema de 
36 canales espectrales con un rendimiento colorimétrico y espectral destacable. 

Además, se propone un nuevo algoritmo llamado Adaptive Exposure Estimation 
(AEE, Estimación de Exposición Adaptativa), para la captura automática de 
imágenes HDR. Este algoritmo puede ser implementado en cualquier sistema de 
captura de imágenes digitales. Funciona online, durante la captura, y se adapta 
al contenido de la escena sin necesidad de obtener ninguna información previa 
acerca de ésta. El método propuesto permite al usuario sintonizar su 



rendimiento, eligiendo el equilibrio entre tiempo de captura y relación señal a 
ruido, simplemente ajustando el valor de dos parámetros. También puede 
capturar el rango dinámico completo de la escena (o solo de una región de 
interés), total o parcialmente. 

El algoritmo AEE propuesto se ha adaptado a la captura de imágenes 
multiespectrales y polarimétricas. Basado en un trabajo previo que usaba un 
filtro sintonizable de cristal líquido, se propone un nuevo marco de trabajo  
completo para la captura y el procesado de imágenes multiespectrales HDR 
polarimétricas de 31 canales. También se proponen nuevas técnicas de 
segmentación y clasificación de objetos presentes en escenas interiores. Se ha 
comprobado que dichas técnicas funcionan de manera más robusta que las 
anteriormente propuestas por otros autores. 

Como siguiente paso, todo el marco de trabajo propuesto para la captura se 
adapta a un sistema de captura de imagen basado en una rueda de filtros de 8 
canales. Este sistema es capaz de capturar información de imagen de hasta 1000 
nm de longitud de onda. Por tanto el sistema y métodos propuestos permiten la 
captura de imágenes multiespectrales, HDR polarimétricas en el visible e infra-
rojo cercano de escenas en exteriores. 

Se ha capturado un conjunto de 8 escenas en exteriores usando el sistema y los 
métodos propuestos. Dichas escenas serán publicadas para el libre acceso de la 
comunidad científica tras la defensa de esta tesis doctoral. 
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The people who are crazy enough to think they can change the world, are the 
ones who do. 

Steve Jobs. 
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Chapter 1

Introduction

1.1 Motivation

Since the emergence of the first imaging cameras in the nineteenth century, the main aim of

most imaging systems has been the perfect mimicking of the human visual system (HVS ),

making the captured images as realistic as possible. Scientists and engineers have tried

ever since to capture and display images which are the closest possible to what the human

observers would see when capturing the scene. This aim has always come together with

an artistic purpose. Not only making the images captured faithful, but also to make them

pleasantly looking and engaging.

On the other hand, more recently, in parallel with this aim, and thanks to the evolution

of imaging systems, science has tried to take advantage of such systems, by using them

to analyze different physical phenomena by means of captured image data. The need to

see more than what the eye can see has gained increasing appeal. This purpose has risen

specially after the appearance of digital imaging systems in the twentieth century. Images

became numbers, the language of science and digital machines. Hence, scientists could use

computers to perform image data analysis with a potential that humans could have never

imagined before.

As curiosity is one of the main engines of science, the developers of imaging systems have

not resigned themselves to just mimicking what the HVS could do. They always wanted

to overcome the limitations of our own vision, as well as the limitation of new incoming

imaging systems. This fact triggered the appearance of other imaging technologies which

could be considered advanced compared with the traditional monochrome or color (RGB,
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from Red, Green and Blue) imaging systems. It was here when techniques such as High

Dynamic Range imaging (HDR), MultiSpectral imaging (MS ), Polarimetric imaging (Pol)

or Infrared imaging (NIR) were developed.

Each of these techniques alone poses a challenge in itself. The limitations of classical

imaging systems force the scientist to change the architecture of image capturing systems.

All of these techniques have some potential for helping to detect or analyze some objects of

interest. Combining them to build a more complete image capture system is more challenging

than dealing with each of them individually. However, when we make any change in order

to achieve the goals of one of these techniques, we could accidentally lead further from the

goals of the rest of them. Besides, compared with classical imaging systems (namely mainly

photographic cameras), special imaging systems are not used by so many people in the

world. Some of the solutions proposed can be rather costly and complex. They might be

not easy to manage or involving a lot of pre and post capture image processing, thus making

these kind of advanced systems rather unique.

It is clear that consumer electronics are rather useful for millions of people in the world,

specially imaging consumer electronics. With the appearance of digital cameras and lately

with smartphones featuring photographic cameras with a very high image quality for a

relatively low price, every subject has an imaging device in its pocket, and storing, sharing

and processing the image data captured is so fast and easy that the potential gets infinite.

For this reason, science is always interested in using these consumer-oriented systems for

its purposes. Nevertheless, the hardware of these imaging systems is usually a monochrome

sensor with an RGB Bayern-pattern filter on top of it. Designing new cameras at sensor

level, is a complex and costly process which could lead to the loss of generality of the system.

It means that each single imaging application could need for the development of one new

sensor architecture which could be useful only for this application in particular and not for

any other. Thus, it is always interesting to find a different approach using the same sensors

and cameras, adding or removing outer hardware elements (like color filters, polarization

filters or NIR cut-off filters) which are cheaper and easier to attach or detach. This would

make the camera still valid for a different application. Besides, the fast and powerful CPUs

and GPUs inside any computer or mobile device, make it possible to compensate the lack

of capability of the hardware, with computationally demanding image processing methods.

Hence, there is always a balance between hardware and software. A very complex hardware
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would probably reduce the need of image processing, at the cost of narrowing down the

potential applications of a designed system. On the other hand, a simple hardware would

need more complex image processing techniques, though the system could still be used for

different applications just by changing the software and/or the attached hardware.

The research team at the Color Imaging Laboratory of the University of Granada [148],

has carried out research into both classical Colorimetry (e.g. color differences) and Color

Vision (e.g. chromatic discrimination) since the beginning of the 1970s. In the 1990s it

became interested in both human and computational color constancy ([160, 186]). From

1990 to 2000 the group decided to direct its research attention towards color images [76],

while maintaining open the research lines about human vision related to color constancy and

perception of chromatic gratings [40]. The research group became interested in the math-

ematical characterization of objects and illuminants in scenes by obtaining linear models

for the representation of spectral reflectances of various different types of artificial objects,

particularly acrylic paints and the Spectral Power Distribution (SPDs) of natural and ar-

tificial illuminants ([41, 77, 76]). The group used several algorithms based upon the use of

conventional CCD (Charge-Coupled Device) cameras, with or without the addition of color

filters in front of the lens [147]. After 2000, work has been done in computational color con-

stancy, applying the fundamental concepts relating to the phenomenon of color constancy in

the development of color-descriptors invariant to changes in illumination applicable to color

imaging [146]. In addition, the group is studying the statistical properties of natural color

images and the influence of daylight illumination on the statistical descriptors such as color

contrast, gamut, etc [187].

At present, the group is looking into the design of optimum sensors to be used in the

spectral acquisition of HDR color images. Based in color and/or spectral information of

images, we also work in the development of algorithms for recognition of objects in nat-

ural scenes, dehazing methods and design and optimization of multispectral color scanners.

In the immediate future we intend to continue along these lines of research by improving

our methods of acquiring multispectral and HDR images both outside and in the labor-

atory and by applying color and multispectral techniques to several fields, like industrial

inspection systems and characterization of goniochromatic materials. We are also exploring

other imaging techniques such as polarimetric or infrared imaging. We still continue with

experimental work into the Applied Colorimetry and Atmospheric Optics.
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1.2 Structure of the work

It is in this framework where the inception of this thesis takes place. We wanted to study

the present imaging technologies such as multispectral, HDR and NIR imaging, and during

the study we also incorporated polarimetric imaging. We aimed to find cutting edge limit-

ations in these fields and try to propose new alternative systems or methods to overcome

them. Consequently, we performed an extensive state of the art research in these different

technologies, which is written in chapter 2. Afterwards we dug into a new sensor technology

under development (Transverse Field Detectors or TFDs) to propose a new multispectral

imaging system. These sensors offer a great potential for multispectral imaging thanks to

their tuning capabilities. The experimental work based on simulations as well as the results

and conclusions are presented in chapter 3.

After proposing a new multispectral image capturing system, we moved on to HDR

imaging techniques and proposed a software method to solve the problem of estimating

exposure times when capturing HDR images via multiple exposures. We made our method

universal so that it can be implemented in any imaging system as long as it can control the

exposure time and it is able to perform easy computations like the cumulative histogram.

The proposed method, the experiments performed and the results obtained are presented in

chapter 4.

The next step was trying to merge both technologies into a single system. Since TFDs

were in a very early stage of research and we could not use still a photographic camera

featuring these sensors to capture real images yet, we moved on to a different multispectral

imaging system which could allow us to change spectral responsivities easily, and therefore

make us able to experiment with different possibilities.

In chapter 4, we used different standard cameras for implementing our proposed HDR

capturing technique. Afterwards, in chapter 5, we extended this technique to multispectral

systems.

We chose a Liquid Crystal Tunable Filter (LCTF ) attached to a monochrome camera,

which works in the visible range and polarizes light through it, and a filter wheel camera

that allowed us to capture images in both the visible and NIR ranges of the spectrum,

adding an extra polarizing filter in front of it. The first system has spectrally narrow bands,

and was used to capture 31-channels indoors scenes with multiple common objects. These
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images were used to perform image segmentation and object classification with a completely

new proposed work-flow (compared with the one proposed in [179]). The second system

has broader spectral bands and was used to capture 8-channels outdoors urban scenes. The

description of the systems as well as the experiments made and results obtained are written

in chapter 5. These last systems are the examples of merging different advanced imaging

technologies in one imaging system, by applying hardware and software techniques, allowing

us to retrieve MultiSpectral High Dynamic Range Polarimetric image data pixel-wise in the

visible and NIR range of the spectrum (MSHDRPolVISNIR. See the scheme in figure 1-1).

Figure 1-1: Scheme of different technologies merged in this thesis into a single imaging
system.

Finally, in chapter 6, we summarize the conclusions reached in every step of this thesis,

as well as the lines of future work to explore after it.

We summarize here the main contributions of this thesis:

∙ We have studied the state of the art in the different advanced imaging technologies

such as spectral imaging, HDR imaging, polarimetric imaging, and near infrared (NIR)

imaging.

∙ We have designed through simulations a new multispectral image capturing system,

based on a new generation of CMOS silicon sensors that are still under development.
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Combining them with custom designed color filter arrays (CFA), we have proposed a

system able to capture up to 36 spectral channels in a fraction of a second.

∙ We have proposed a new algorithm to automatize the capture of HDR images through

multiple exposures. Our method is the only one to our knowledge that adapts to

any scene content with no a priori known information about it, and automatically

captures the whole dynamic range of the scene on-line. Besides, our method offers the

possibility to be tuned in order to balance the ratio: capturing time/ SNR.

∙ We have adapted our proposed HDR image capture technique to multispectral and

polarimetric imaging systems, making the capture of MSHDRPol images fully auto-

matic.

∙ We have improved a previously proposed framework for segmentation and classification

of objects in indoors scenes by using MSHDRPol images.

∙ We have captured a database of MSHDRPolVISNIR images of outdoors scenes using

the same capturing strategy proposed for indoors scenes.
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The science of today is the technology of tomorrow. 

Edward Teller. 
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Chapter 2

State of the art

In this thesis, the state of the art is organized in different sections. Each section corresponds

to one of the main technologies and techniques that have been studied. We analyze first

how each of these technologies are developed apart. Later on we also study the attempts

that some authors have made to join two or more of these technologies together into a single

image capturing and processing unified framework.

This chapter is organized as follows: in section 2.1 we review the main architectures used

for spectral image capture. In section 2.2 we explain the systems and techniques used to

capture and process HDR images. In section 2.3 we describe those image capturing systems

which capture image information about the polarization state of light. Later on, in section

2.4 we talk about the working principles of those systems which already combine some of

these techniques together. Finally, in the last section of this chapter (section 2.5), we review

the state of the art in near infrared imaging systems.

2.1 Spectral imaging systems

This section intends to be a summary of the different kinds of techniques and systems that

make up the state of the art in the field of spectral imaging, rather than a exhaustive liter-

ature review with all existing spectral imaging systems. We tackle the different philosophies

and approaches to get to retrieve spectral information pixel-wise in a digital image captured

from a scene.

We call monochrome image to a digital image consisting in only one band of information,

which actually is a two-dimensional matrix of gray values. A color image or RGB image
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is a digital image formed by three of these monochrome images taken in different spectral

bands (usually spectrally broad bands roughly corresponding to the Red, Green and Blue

areas of the spectrum respectively). A multispectral image is a digital image formed by

more than 3 bands, but less than 10. These bands could be broader or narrower spectrally

speaking depending on the nature of the system itself. If the system has more than 9 spectral

bands we can call it a hyperspectral system. Of course the border between multispectral

and hyperspectral is not so well defined, and depends on the literature and authors we are

studying. It is not only about the number of bands but also about how broad or narrow the

spectral channels are, or the processing required to get the final spectral information pixel-

wise, etc ([66]). Normally hyperspectral information refers to data from spectra that are

sufficiently well sampled to be considered like a continuous spectral signal. This definition

is somehow fuzzy since it depends on the nature of the spectral signal itself. If the signal

is totally flat or it changes smoothly with wavelength (see figure 2-1 left), few bands are

needed to represent it all along the spectrum. However, if the signal has very narrow spikes,

like the ones which are typical from artificial light sources (see figure 2-1 right), then a high

number of narrow bands would be required to represent the full spectrum keeping faithful

information for every single wavelength. Therefore, the limits between multispectral and

hyperspectral images, data or systems are not so sharp.

Figure 2-1: Spectral Power Distribution for two CIE standard illuminants. Left: Illuminant
A (incandescent). Right: Illuminant F10 (fluorescent). These two spectral signals are good
examples of a smooth and a spiky spectral functions.

There are many different types of spectral imaging systems. We could do a classification

regarding many aspects of their functioning ([42]). However, as a first level distinction we

divide them into two different classes: direct measuring systems (subsection 2.1.2) and indir-
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ect measuring systems (subsection 2.1.2). We develop these two categories in the following

subsections.

In figure 2-2, we see a scheme with the different spectral imaging systems explained later.

Figure 2-2: Scheme of the spectral imaging systems classification explained in this section.

2.1.1 Direct measuring systems

This kind of systems are usually hyperspectral systems. The name of direct measuring

systems does not imply that the information they capture does not need a post-processing

before it is useful, but rather that after the capture, we already have spectral information in

enough wavelengths so that we can know the signal in its whole spectrum. There is no need

of interpolation or estimation of spectral information in any wavelength because we already

have information in every wavelength after the capture. These systems usually imply the use

of bulky imaging devices and/or time consuming processes including data scanning along

either the spectral or spatial axes. For this reason, we subdivide this section into three

sub-categories: spectral domain scanning systems, spatial domain scanning systems, and

snapshot systems ([42]).

Spectral domain scanning systems

To scan an image in the spectral domain, we need a system which is able to separate the light

coming from each point of the scene into its spectral bands. For this purpose, these systems

consist usually in a digital monochrome camera to which we attach some color filters. These

filters are narrow band-pass filters that only allow a very narrow spectral component of the
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light to pass through, rejecting the rest of the spectrum. Therefore, the way of scanning a

whole hyperspectral cube, is to take several shots of the same scene changing the wavelengths

that are allowed to pass through the filter. This fact implies that during the capturing time

(the sum of all exposure times for every wavelength plus the needed change of filter), the

objects in the scene must not move at all. Otherwise very complex image registration

techniques would be needed to be applied in order to align properly the spectral information

for each single point in the scene, which would be spread over many different pixel positions

in the different band images. This is in practice not feasible since the registration depends on

the movement of the objects for each scene among other things. Thus we assume that these

kind of systems are meant to be used for static scenes. In practice it would also not be very

practical to have a bunch of narrow band-pass color filters (like interference filters) in a big

filter wheel to mechanically change them to capture each single band. This would increase

a lot the time required for the whole capturing process, as well as introduce some possible

sources of error due to the mechanical moving parts such as a filter wheel or any other kind

of filter holder (vibrations, displacements, misalignments, etc). The very first hyperspectral

devices were based on filter wheels, and they were used for different applications such as:

designing a multispectral scanner for print or artwork inspection, ([81, 103, 21]), but then

the technology evolved to tunable filters.

To overcome these issues, there are filters which have the ability to be electronically

tuned, so their peak band-pass wavelength can be switched all along the spectrum. These

filters are called tunable filters, and there are mainly two models depending on the function-

ing principles: Acousto-Optic Tunable Filters (AOTF ), used for spectroscopy, or remote

sensing imaging ([15, 55]), and Liquid Crystal Tunable Filters, used in applications such

as: fluorescence Raman microscopy, spectral reconstruction of different color object surfaces

for object recognition, or biomedical and industrial applications (LCTF [136, 65, 181, 2]).

Based on physical properties of some special materials (like quartz for AOTF or liquid crys-

tals for LCTF ), the filters can be electronically controlled to switch their pass wavelength

applying some signal to these materials. In the case of the AOTF, the signal applied is

an acoustic signal (sound waves) that depending on its frequency (usually always around

radio-frequency) can change the diffraction properties of the quartz. Therefore changing the

acoustic frequency applied to the sound signal, we can change the wavelength to which the

filter is tuned. In the case of the LCTF, the process is more complex involving polarization
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as well as induced birefringence [195, 2].

There are also some other technologies used for the spectral imaging in which the scan-

ning is done spectrally. Recent developments of spectral imaging technology use Bragg

gratings to disperse a complete image over a sensor. An example of such systems is shown

in figure 2-3.

Figure 2-3: Photon Etc Hyperspectral imager in the visible and near infrared based on Bragg
gratings.

Changing the angle of reflection in the diffraction grating, the peak wavelength of light

impinging in the sensor changes as well. As some applications for these systems we can

find material clustering or outdoors spectral reflectance image capture [159, 28]. Besides

the time consuming problem of the previous systems commented in this section, it also has

the problem that there is a wavelength gradient in each image taken. So, what ideally is

supposed to be a monochrome image of each spectral band that only contains information

from one wavelength, actually has information from different wavelengths in a gradient as

we move away from the central vertical line of the image. Therefore, image registration

and gradient correction is required after the whole spectral cube is captured in order to put

together the image information from each wavelength in a single plane of the final spectral

cube.

To finish with in this subsection, it is also worthy to mention the imaging systems that,

instead of varying the spectral responsivities of the sensors by applying different transmit-

tance filters in front of them, they vary the wavelength of the light which is illuminating

the scene. Some possible application of these system are: material segmentation, spec-

tral re-lightning, color image rendering, spectral reflectance recovery or tristimulus imager
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[149, 178, 177].

These systems are called multiplexed illumination systems. For this purpose it is common

to use LED or laser based lightning. LED and laser spectra are quite narrow spectrally and

we can find them almost in any wavelength. Thus, with a proper illuminating system

composed by many different LEDs or a tunable laser, and a monochrome camera we can

spectrally scan a scene to get full spectral information out of it. Nonetheless this kind of

systems only work for controlled conditions and cannot be used to acquire outdoors scenes

where we can not control the illumination. If the number of LEDs used is enough to get full

spectral information we can consider this system a direct measuring system. Otherwise, if it

only has few LEDs and there is a need of estimating the spectral data to get full spectrum

information, then we could include this system into the indirect measuring systems.

Spatial domain scanning systems

The spatial scanning consists of getting full spectral information of a partial area of the image

(not the whole image) and then do the same for a different region of the scene, until we have

the full spectral information from the whole scene. Usually, rather than by areas or pixels,

this spatial scanning is done line by line. Therefore, these systems are line scanners which

are able to disperse the polychromatic light impinging on them and record each wavelength

component of each point of the line separately. In order to scan spatially, there is a need of

moving either the object being scanned or the imaging system itself. In this category, one

of the most popular systems is the Specim’s Imspector (see figure 2-4).

Figure 2-4: Scheme showing the working principle of the Specim Imspector, based on a
Prism-Grating-Prism configuration (PGP).
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This device is used for applications such as: industrial quality control or food inspec-

tion [79, 150]. This system images a line of the scene for instance in horizontal direction,

and disperses the light of each point of the line in vertical direction by an optical element

called PGP (prism-grating-prism), in such a way that this dispersed light impinges on a

bi-dimensional sensor. Therefore in the horizontal direction of the sensor we have spatial

dimension and in the vertical direction we have spectral dimension. If we do this operation

line by line we get the full spectral information of a complete scene. This system requires

a very precise set up, in which the spatial scanning is perfectly controlled and synchronized

with the capture. Therefore it is more recommendable for controlled conditions.

In this category we can also find indirect measuring systems. One example of them is the

12 channels scanning system TruePixa R○ developed by the German company Chromasens

GmbH, and used for applications like in-line color measurement for print inspection, or

spectral reflectance estimation [47, 30, 29] (see figure 2-5).

Figure 2-5: Scheme of multispectral line scanner system used in [47, 30, 29]. Image retrieved
from [32].

In this system, instead of dispersive elements, they use an RGB line scanning sensor

divided in 4 parts (each part with independent optics). These parts cover slightly different

areas of the object being scanned. However there is a common area which can be registered

to align the different images captured after the spatial scanning. Placing 4 different multis-

pectral filters, one on top of each area of the sensor, and given that the line sensor is 3

color channels sensor, they get an image with 12 spectral channels. After applying spectral

estimation methods, they can recover the spectral image information of the scene [31, 32].

This system is included in this category because it scans the scene spatially. However, since
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the final spectral image data is obtained after spectral estimation methods, it could also fit

in section 2.1.2.

Snapshot systems

Spectral imaging techniques have been developed which directly acquire high spectral resol-

ution images in a single exposure for applications like hyperspectral microscopy or industrial

applications ([39, 45, 44]). However this type of spectral imaging system suffers from inher-

ent shortage of light power because the power of the incident light is shared both spatially

and spectrally. These systems have optical components that spectrally decompose the light

coming from very small areas of the scene. Therefore, in the bi-dimensional sensor we get

both bi-dimensional spatial information and spectral information. They use pupil arrays

and lenses arrays to re-image the dispersed areas of the scene in the sensor. Due to this, the

images acquired with these sensors are not very large (up to 285x285 pixels so far) and need

powerful controlled illumination. This is the reason why these systems are mainly used for

spectral microscopy. In figure 2-6, we see the optical layout proposed in [39], and the image

mapping principle to retrieve the spectral information from the two spatial dimensions.

Figure 2-6: Left: optical layout of snapshot system proposed for microscopy. Right: image
mapping principle to retrieve spectral image information. Images retrieves from [39].

2.1.2 Indirect measuring systems

If in the previous subsection we have seen systems that acquire full spectral data images,

in this section we are going to talk about systems that acquire digital images with lower

number of bands and then process the data to obtain, by estimation, the full spectral data
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pixel-wise. This section, in turn, could be divided into the systems themselves, the devices,

which can be very varied in philosophy and architecture, and the estimation techniques, that

are basically algorithms and mathematical tools for mapping the vectorial space responses of

the system into hyperspectral space (full spectral data). In this chapter however we intend

to focus only in the first part.

To start with, we have to say that we could use any digital camera as a spectral imaging

system. We can take any digital RGB camera, shoot pictures, and try to map using some

techniques to spectral data. Of course, the quality of the resulting spectral data will not be

desirable. Some authors studied these limitations for specific environmental applications like

sugar cane monitoring in trial plots [112]. Thus, researchers try to improve the acquisition

elements of the spectral imaging chain in order to make easier to retrieve full spectral data

of good quality with not very complex estimation algorithms. Usually only 3 channels are

not enough to estimate properly the full spectral data from digital images. Therefore, the

developers look for ways to increase the number of channels. But the physical limitations

of imaging systems make this a challenging and non-trivial task. There are many different

approaches. In the end, a common imaging sensor is a bi-dimensional matrix of pixels where

the imaging systems has to concentrate light forming an image that the sensor electronics

will record. However, before reaching the sensor, the light can be pre-filtered, modulated,

deviated, dispersed, etc., so that the pattern shone in the sensor is actually a complex

pattern of information that, with the proper post-processing can be converted into useful

multispectral data to feed the spectral estimation algorithms. Finally, the output of these

algorithms would be the full spectral information pixelwise.

This subsection is in turn divided into five different categories: Color filter array sys-

tems, Multi-sensor systems, Multi-shot systems, Hybrid systems and the recently developed

Tunable responsivity systems. We briefly explain them in the following subsections.

Color filter array (CFA) systems

These are probably the most common type of multispectral system. Most digital color

cameras belong in this group. The basic idea is that they trade off spatial resolution to

gain number of spectral bands. All pixels in the sensor have the same spectral responsivity

covering the whole spectral range we are interested in. But each pixel of the sensor has a

certain color filter over it, which can have broader or narrower transmittances depending on
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the application we are interested in. This filter pattern is the so called Color Filter Array

(CFA). Since the system does not acquire the information from every band in every pixel,

in order to recover it, there is a need to apply interpolation algorithms called demosaicking

[53].

Each camera has different patterns and each developer uses its own algorithms for this

task, which most of the times are protected by industrial property regulations. In common

color cameras, this filter pattern is called Bayer pattern filter ([152]) and it is composed by

three different transmittances, roughly corresponding to Red, Green and Blue regions of the

visible spectrum. They usually have some overlapping. However CFAs can have more than

3 channels. The higher the number of channels, the lower the spatial resolution is. In [142],

the authors proposed a 16 channels CFA system (see figure 2-7) for multispectral imaging

of natural scenes. This system uses 3 sensors, each of them with a color filter on top of it

(red, green or blue). Splitting the incoming light in 3 beams, and adding the CFA, they get

up to 48 channels in one shot. They present the drawback of demosaicking and low spatial

resolution if the number of spectral channels is high. But they are relatively cheap and can

be useful alternatives for some applications.

Figure 2-7: CFA-based system with 3 sensors. Image retrieved from [142].

Multi-sensor systems

Systems in this group try to avoid the demosaicking process and the loss of spatial resolution

typical of CFA-based capture systems. They do so by adding more sensors and including

optical elements to split the input light in order to form images from a single band in each

sensor. The advantage is clear, there is no need for demosaicking to get the full information

from each band. The disadvantages are that they are less robust since the light splitting

has to be very well set up, in order to avoid misalignments between the images captured

by the different sensors, and also they are more expensive. Besides, if we want to include

34



an independent sensor for each spectral band, we are limited by the size, price and amount

of light impinging on each sensor (the more times we divide the beam of light, the less

light each beam has). In [43] and [167], the authors use a 3-CCD camera by Fluxdata,

that combined with CFA can yield up to 7 channels in one shot. Also the company Quest

Innovations provides a 5-CCD camera composed by 3 channels in the visible part of the

spectrum (RGB) and 2 channels in the near infra red (NIR, [25]).

Another approach for this category is that proposed in [166] for general spectral imaging

applications. Instead of using a beam splitter, they use a stereo camera meant for 3D

imaging. This camera has two independent objectives and sensors (the same as using 2

different cameras). In front of each objective, there is a different color filter which spectral

transmittance function is comb shaped, so that the RGB spectral responsivities of each

sensor are split in two and they get 6 channels covering the whole spectrum in a single shot.

In the design of this system, the main challenge is to select a combination of comb-shaped

filters to get a set of 6 responsivities out of the original 3 ones that performs best for the

spectral reconstruction. Of course such combination will depend on the estimation method

used to get the spectral data, as well as on the error metrics used to asses it and of course

on the application.

This idea of stereo cameras is pushed beyond by other authors. In ([183]), they built

a system with 9 cameras attached together used for digital archiving for cultural heritage

preservation. Each of these cameras is not an RGB camera but monochrome, and has a

different color filter in front of it to get 9 different channels out of the same monochrome

responsivity.

Using stereo systems with two or more cameras together has the drawback of image

alignment. Even though, when the cameras are properly set up, the images taken by the

different cameras are very similar, their perspectives are slightly different. Thus they still

need to be aligned with respect to a reference image. Besides, there could be occlusion

effects happening when a 3D scene is being imaged. On the other hand, these effects are

useful in order to retrieve depth information from the image (which actually is the original

purpose these stereo cameras where meant for. [184]).
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Multi-shot systems

Systems in this group reach a trade-off between the previous two groups. In the one hand

they only have one sensor, but in the other hand they do not need demosaicking since what

they do, is to change the light entering the system by adding some other components like

color filters from a filter wheel. These systems are very similar (basically the same working

principle) as the ones explained in subsection 2.1.1. But here the filter transmittances

are usually spectrally broad and the number of bands captured is reduced (less than 10

normally). Of course, the main disadvantage is the need to mechanically move the color

filters by means of a filter wheel or holder, and the time consuming of the capturing process.

As some applications for these systems we can find: hyperspectral reflectance reconstruction

or multispectral fluorescence imaging ([90, 75, 101]).

Hybrid systems

So far we have seen very simple and more complex systems for the acquisition of spectral

images. Hybrid systems try to merge two different kinds of technologies to help each other

and improve the quality of the spectral capture. The most common hybrid systems that have

been developed so far are those which mix the information from a high spatial resolution

RGB color camera and a low spatial resolution hyperspectral system that samples the scene

in few points to add some spectral information as input to the estimation algorithms. In this

field the most productive team so far to our knowledge has been the one led by Professor

Yuri Murakami in the Imaging Science & Engineering Laboratory at Tokyo Institute of

Technology in Japan. For several years, they proposed theoretical methods to recover full

spectral reflectance information pixel-wise combining high resolution RGB images with what

they call multi-point spectral measurements ([138, 137, 140, 141], see figure 2-8).

In these studies, they were performing simulations from previously acquired and estim-

ated spectral images from multi-band cameras. They apply unmixing methods to separate

the spectral components of different pixels belonging to the same spectral measurement.

These authors have recently proposed and implemented a real system doing such acquisi-

tions [139]. This system combines the PGP spectral line scanner explained in subsection

2.1.1, with a smart optical fiber arrangement which acquires the light in a bi-dimensional

shape and converts it into a one-dimensional line to input the line scanner. Then after
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Figure 2-8: Hybrid system combining RGB images with multi-point spectral measurements.
Left: scheme of hybrid capture. Right-top: grayscale image of one color channel image.
Right-bottom: example of spot areas used for spectral measurements. Images retrieved
from [141].

reading the signal from the scanner and rearranging it, they get the low spatial resolution

spectral image. Applying the unmixing method presented in [141] to this image, and com-

bining it with the high resolution color image taken by an RGB camera, side by side with

the low resolution spectral system (LRSS ), this system is able to get real-time spectral im-

ages. The computations needed to unmix the data, the misalignments between the RGB

and spectral data, the optical accessories needed to convert 2-dimensional data into a line,

and the need of using a spectral line scanner, make however this system complex and rather

expensive.

Tunable responsivity systems

This is a new sensor technology which aims to overcome some of the limitations of the

previously described capture systems. It takes advantage of the wavelength dependence

of the penetration depth of photons in a silicon layer. Basically, when photons fall in a

silicon sensor, they penetrate deeper the longer their wavelength is. In silicon sensors,

light is absorbed following an exponential intensity decrease described by the Beer-Lambert

law. Electron-hole pairs are photo-generated with different depth profiles according to the

material and the radiation energy (or wavelength). In a typical pn-junction based CMOS

pixel, photo-generated electrons are collected by the same well, regardless of the generation

depth [35]. Thus, for each pixel, only one value is read in a single exposure.

Therefore, if the collection of generated electrons is done at different depths within the
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silicon layer, we can retrieve different spectral bands within a pixel in only one exposure

time. The first sensors using this technology were Sigma Foveon RGB X3 sensors [89, 88, 59],

mainly used for color digital photography. In only one shot and without the need of any

demosaicking algorithm, we can get full resolution color information. But the responsivities

of these sensors are fixed. Recently, a new generation of sensors which is still under prototype

development, adds the property of tunable spectral responsivities. These new generation

sensors are called Transverse Field Detectors (TFD), so far used mainly for color as well as

infrared imaging applications ([111, 109, 108, 107]). Their working principle is similar to the

Foveon RGB X3 sensors, but in this case, a transverse electric field is applied through the

silicon, in such a way that depending on the intensity of this field, the depth collection of

electrons changes. Therefore, we have the ability of tuning the spectral responsivities of the

channels by changing the biasing voltage. We can see a comparison scheme in figure 2-9,

between normal Bayer-pattern filtered sensors, Sigma Foveon X3 sensors, and TFD sensors.

Also the typical spectral responsivity shapes are included in the figure.

Figure 2-9: Comparison scheme between normal RGB Bayer-pattern filtered sensors (top-
left), Sigma Foveon X3 sensors (top-right) and TFD sensors (bottom). Note that RGB
Bayer-pattern filtered sensors have reduced spatial resolution (13).

This system, in theory, should be included in subsection 2.1.2, because the way to get

several spectral bands is taking different shots with different biasing voltages applied. How-

ever, TFDs offer the possibility to retrieve up to 5 channels in a single shot (3 in the visible

range and 2 in the infra red). Besides, the switching of the biasing voltage is so fast and the

38



exposure times needed are so short, that 2 shots with different biasing voltages can happen

in less than 50 ms. Therefore, we can get up to 10 channels in a very short time, and even

more (15 to 20) without increasing much the capture time. Thus in practice we can say that

these systems are multi-shot systems that overcome the drawback of very long capturing

times. Furthermore, these sensors also offer the possibility of biasing half of their pixels in

one way and other half in a different way (bipolarization). This means that the capability

of retrieving up to 10 channels in only one exposure time exists. In this case we would

sacrifice some spatial resolution and we would need to apply some demosaicking method.

Spectral imaging systems have been proposed using TFDs [110, 121]. However these sensors

present the disadvantage of having very broad spectral responsivities. This fact has been

proven not to be very appropriate for spectral estimation [94]. In order to overcome it,

and as one of the novel contributions of this thesis, a new system has been proposed based

on simulations, using the TFDs and adding bi-polarized configurations together with color

filter arrays [120, 123]. This new system could be included as a hybrid system combining

different approaches to improve the spectral estimation accuracy. The proposed system will

be explained in chapter 3.

2.1.3 Future trends of spectral imaging systems

We have seen many different approaches attempting to solve the problem of spectral ima-

ging. It is not a trivial problem and there is no simple solution for it. There exist many

systems that work pretty well for particular cases and under particular conditions. Capturing

spectral images is easier when we deal with controlled conditions (illumination, geometry,

static scenes, etc.) like it happens in a laboratory. For outdoor scenes the problem gets

harder to solve. It is the future of this branch of science to design a system which has the

ability to get real-time spectral images, being portable and easy to use, without the need

of expensive optical components or multiple systems arranged in a complex way. It seems

that the trending is to use some smart hybrid designed multispectral device combined with

advanced mathematical tools to estimate the spectra pixel-wise. Yet some authors still try

new complex architecture philosophies like incorporating Fabry-Perot filters directly on the

sensor [189].
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2.2 High dynamic range imaging systems

This section is a summary of the different approaches that engineers and researchers develop

for overcoming the limited dynamic range of common imaging systems (as explained in

chapter 1). Even though the variety might not be as extensive as that of spectral imaging

systems (see section 2.1), there are still different approaches that are worth considering when

facing the design of an HDR imaging system.

As done by other authors ([155, 24, 125]), we divide this section into two subsections or

categories. Each of them corresponds to the two main philosophies adopted for capturing

HDR images: the hardware approaches and the software approaches.

2.2.1 Hardware approaches for HDR imaging

In this section we explain different prototypes that some authors propose for capturing

HDR images for general photography application, usually in one shot, but with the need

of special cameras or sensors. We also made a distinction in this category. Those systems

which are composed of common imaging sensors with some smart set up, and those which

are composed of sensors with special architectures or features.

HDR hardware systems with common sensors

In this category we have systems using extra filters to control the exposure, like the one

proposed in [145, 82] for general color photography. They use a normal CCD sensor coupled

with a neutral density filter pattern with 4 different densities (see figure 2-10). Therefore,

they can get 4 different exposures in one shot, by sacrificing spatial resolution, which is

divided by 4, compared with a normal RGB imaging system.

Figure 2-10: HDR imaging system proposed in [145]. Left: neutral density filter pattern.
Center: RGB image with neutral density filter pattern on top. Right: final HDR image
after tone mapping. Images retrieved from the paper.
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Another approach is to use an HDR video system which adapts the exposure in each

pixel by using a spatial light modulator (SLM ), [144]. The SLM adapts the light through

each pixel forming a grayscale image which is proportional to the negative of the current

image recorded (see figure 2-11). Thus, those pixels which were very bright or saturated,

would be dark in the SLM, letting less light through. And those pixels which were dark

would be transparent to let the whole light through.

Figure 2-11: Adaptive HDR imaging system proposed in [144], based on a spatial light
modulator and a video camera. Left: video camera attached to a spatial light modulator.
Right: scheme of working principle. Images retrieved from the paper.

As a last example in this category we have the system proposed in [3]. They designed a

system featuring 6 CCD sensors. Each sensor has a different neutral density filter on top of

it. Therefore the image recorded in each sensor has a different exposure, but synchronizing

all of them, we capture 6 different exposures in one shot. Of course they need to split the

incoming light beam into 6 beams. For this purpose they use a 6-sided pyramid made of

mirrors. Dividing the light into 6 beams makes each of them have one sixth less intensity.

This brings the need of increasing exposure times or ISO settings.

HDR hardware systems with special sensors

In this category we find some HDR imaging systems that feature a special pixel architecture.

In the previous systems, we assumed that pixels in all sensors respond linearly to light.

However the idea in the systems of this category, is that the final sensor response does

not. For this purpose, authors design systems that include pixels with linear response,

but operating them in a different way. CMOS sensors allow the independent driving of
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single pixels since the electronics controlling them are in-pixel. In the system proposed in

[80], they achieve a piecewise linear sensor response by independently resetting each pixel

partially while the capture is ongoing. Another approach with linear response pixels is that

called time-to-saturation (see [171]). These systems, instead of measuring the amount of

charge accumulated in the well, measure the time that each pixel needs to reach saturation.

In bright regions this time would be short, and in darker regions it would be longer. The

problem is that they need a large amount of in-pixel circuitry in order to control this charge

monitoring.

On the other hand, pixels with non-linear response are interesting for HDR imaging as

well. Logarithmic response pixels like those proposed in [156] are interesting because they

yield high responsivity to low light, and low responsivity to high lights. We can say that

logarithmic sensor’s responsivity is inversely proportional to the incoming light intensity.

Thus extending the dynamic range able to be captured in one shot. These sensors however

tend to suffer from fixed pattern noise and response delay [24].

Also frequency modulators can be used in pixel for HDR imaging. They provide an

output signal of constant amplitude but with a variable frequency directly proportional to

the photocurrent. This approach is called light-to-frequency ([191]). The problem is that

when the light signal is low, the readout time needs to be long in order to see at least one

period of the output signal. In highlights however, the bandwidth needs to be very high.

2.2.2 Software approaches for HDR imaging

Software approaches for HDR imaging systems are of special interest, because they can be

applied in any common imaging system. They can yield better looking RGB pictures than

hardware methods, however they need the scene to be as static as possible. This happens

because they are based in merging multiple captures of the same scene. Thus, no moving

objects or changes in illumination should occur during the capturing time. Yet there are

techniques to remove the effect of ghosting due to subtle movements [97, 100, 50, 37].

The usual architecture of a software method for HDR imaging is to capture multiple

exposures of the scene and create an HDR radiance map. Later on, if we want to visualize

the image, we perform tone mapping operators (TMO). There are many different TMO

([198, 113]). They are intended to make the final HDR image look as natural as possible

after compressing its dynamic range to be able to be displayed in a normal LDR display. It
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is not within the scope of this thesis to study the different TMO, since we are not aiming to

produce natural looking HDR images. Nonetheless, we will use them in order to visualize

the content of the scenes we capture with our imaging systems.

The ideal case for a software method would be that sensor response is linear and therefore

reciprocity law holds directly [34]. Unfortunately, in many common digital imaging systems

this is not the case. Their response to light is rather sigmoid-shaped. This curve is under-

responsive close to dark and close to saturation, and over-responsive in the middle range,

where it behaves almost linear (see figure 2-12). This fact makes it necessary to implement

a previous step before stitching the different exposures of a scene together.

Firstly Mann and Picard in [119], and later on Debevec and Malik in ([26]), demonstrated

that capturing different exposures of a static scene, is effectively sampling the camera re-

sponse function (CRF ) at each pixel. This CRF is a function that relates the input radiance

outgoing the scene, or the irradiance impinging in the sensor, with the output sensor re-

sponse. If we workout what this function is like, we are able to obtain the CRF of a capture

system, we can use its inverse function (given that this function is by definition a monoton-

ically increasing function), to estimate the radiance (𝐿𝑒)/irradiance (𝐸𝑒) impinging on each

pixel of the sensor. This is how the concept of radiance map emerges. In figure 2-12, we

see an example of CRF function that we estimated for a Canon EOS 7D camera working

in jpeg mode.

Figure 2-12: Example CRF of a Canon EOS 7D camera working in jpeg mode.

We see the typical S-shaped (sigmoid) function mentioned before. This is the key to

recovering HDR image data from multiple LDR images captured using different exposure
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settings (either changing the exposure time, or the aperture, or the ISO, etc.). We will

discuss later on how to merge these differently exposed LDR images.

The main difference between the main software methods proposed, is the way this CRF

is derived from image data. Mann & Picard ([119]), estimate it in an iterative way from

only two differently exposed images. A set of corresponding pixels with their pixel values is

generated, and from them, a power function CRF is estimated using regression.

Debevec & Malik ([26]) though, do not impose a power shape to compute the CRF. They

solve it by minimizing an objective function by singular value decomposition. The resulting

CRF can feature any shape.

Mitsunaga & Nayar ([134]), model the CRF by a polynomial of order 𝑘, where the order

and the the 𝑘+1 coefficients are unknown. They do so in an iterative process which is very

computationally heavy.

Robertson et al. ([157]), choose a cubic spline function to model the CRF. Besides, they

also include constraints related with the exposure times used to capture the images when

building the HDR image from many LDR images.

These are the main software methods used to obtain HDR images. Once the CRF is

estimated and the LDR images are captured, the way we build the HDR image is the same

(see section 4.3.2).

2.3 Polarimetric imaging and material classification

Since in this thesis the polarization information is used to perform material classification

of the objects present in the captured scenes, we will tackle these two topics together. We

focus more closely on material classification techniques rather than describe all the existing

polarimetric imaging techniques.

Regarding material classification, initially some authors studied it by using the dichro-

matic reflection model ([175]). Using a spectroradiometer, they studied the spectral color

signals coming from different objects and also its chromaticities. In general RGB or mono-

chrome images were used to perform material classification ([70]). Limitations of those

methods are that the color reflected by objects is strongly dependent on the observation

geometry. In [188], they based the classification in the texture of the objects, assuming

that objects with similar textures are made by the same materials. Later on some authors
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approached the material classification problem via polarization-based imaging. In [194, 17],

they already tried to classify objects in two main classes: metals and dielectrics. They

based their method in a thresholding of the Degree of Linear Polarization (DoLP). They

used for the first time polarization features, which do not depend on object color and illu-

mination. However their method was strongly dependent on the observation geometry, and

only available for flat object surfaces. Besides, using polarimetric images also helps getting

extra information about the content of the scene that is not visible with common imaging

systems [85, 104]. In [180], they found that inspecting the curvature of DoLP map around

specular highlights, they could classify the objects into metal or dielectric, disregarding the

observation geometry. This allowed them to perform classification including curved object

surfaces as well ([179]), but sometimes the DoLP calculation around the highlights is un-

stable. Specially if the image captured is somewhat noisy or the highlight region is rather

extensive. This system could also be included in next section 2.4, since the imaging system

used is also a multispectral system. Besides, the images captured are HDR as well. They

used a liquid crystal tunable filter (LCTF ), and took advantage of its light polarization

properties. Therefore by rotating the LCTF in front of the camera (see figure 2-13), they

could capture images at different polarization angles.

Figure 2-13: LCTF -based imaging system used in [179]. The LCTF is rotated in different
angles to capture different polarization angles of light. Image provided by Horiuchi & Hirai
laboratory, in Chiba University (Japan).
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2.4 Multispectral, HDR, Polarimetric imaging crossovers

Few authors combined some of these techniques (multispectral, HDR and polarization ima-

ging) before. In [61], they propose a system composed of a beam splitter dividing the

incoming beam of light into two beams. Each of these is impinging in a different sensor.

Both are RGB sensors, but each of them has a different comb-shaped filter on top. Therefore

each of the 3 color channels is spectrally divided into two halves. Besides, one of the sensors

has also a neutral density filter on top of it, making the whole response of this sensor less

sensitive. This way they get a 6 channels HDR multispectral image in one shot.

In [162], they propose a system for HDR polarimetric imaging in remote sensing. They

rigidly attach to the camera a fixed, spatially varying polarization and attenuation filter.

This way, the camera motion induced multiple measurements per scene point, taken under

different optical settings. This is in contrast to the redundant measurements of traditional

Bayern pattern mosaics. Computational algorithms then analyze the data to extract polar-

ization imaging with high dynamic range for the entire field of view.

Even some authors tried combining all three of them together in a system able to capture

all-sky HDR multispectral and polarimetric image data in less than two minutes, using two

filter wheels and a fish-eye lens ([151]). They use a fish-eye lens to capture all-sky images,

together with two filter wheels. One filter wheel contains multispectral filters at different

wavelengths and bandwidths, and the other wheel contains linear polarization filters at

different polarization angles. This way they sequentially capture all-sky multispectral and

polarimetric images in HDR.

We based a chapter of this thesis on a system proposed in [179]. They used a Liquid

Crystal Tunable Filter (LCTF ) attached to a monochrome scientific camera to capture

multispectral HDR polarimetric images by using exposure times chosen by the user by trial

and error. Their capturing process was not automatic or adaptive, and they were not

accounting for the misalignment errors we found when repeating their experiments with the

same work-flow (see chapter 5).

2.5 Near Infrared imaging

When it comes to Near Infrared (NIR) imaging, most systems are specifically application-

oriented. We can find many works using NIR imaging. Even though NIR portion of the
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spectrum is considered to be up to 2500 nm approximately, many studies use only up to

1000 nm, where common silicon imaging sensors are still responsive.

In [91], they study wavelength-specific features in the spectrum of particulate minerals.

They use images from a remote sensing database covering the spectral range from 325 nm,

to 2500 nm.

Regarding the medical imaging field, in [96], they used an array of microbolometer

elements, to generate thermal maps of different regions of the human body, trying to relate

features of these maps with possible diseases. Also in [87], they proposed a system based

on gold nanorods with suitable aspect ratios that absorb and scatter strongly in the range

from 650 nm, to 900 nm. They found a way to distinguish cancer malignant cells from

benignant ones, in order to find how to thermally destroy only the malignant ones, keeping

the benignant ones alive.

Concerning food industry, in [114] the authors used the line scanning hyperspectral ima-

ging system proposed in [102], to capture 460x1200 pixels hyperspectral images with 112

spectral bands in the range from 447 nm, to 951 nm. They wanted to detect fecal contam-

inants present in apple surfaces treated with different concentrations of fecal treatments.

Also tenderness of fresh beef, as well as its pH were studied by different authors. For this

purpose, in [143], the authors used a line scanning system composed of a CCD silicon sensor

and a spectrograph. They covered the range from 400 nm, to 1000 nm. In [33], they used

the same line-scanning approach with Specim Imspector N17E spectrograph covering the

spectral range from 910 nm, to 1700 nm.

As instances of some other miscellaneous applications, in [200], the authors proposed a

method for enhancing the texture details of color images by using the contrast and texture

information from a NIR image. They capture the dual images by using two synchronized

commercial cameras installed in an optical set up which divides the incoming beam of light

by two using a hot mirror (see figure 2-14). Therefore one of the cameras receives the visible

light, and the other the NIR light. The latest is modified by removing the IR cut-off filter

on top of the CCD sensor (which is a built-in feature of this camera model: Sony F828 ).

In [5], the authors proposed a method to assess environmental changes, by deriving

baseline conditions for the radiation intercepted by vegetation. They used remote sensing

imagery in the visible and NIR portions of the spectrum, and deduced a vegetation index

as a ratio between spectral bands in both regions.
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Figure 2-14: Dual camera system used in [200]. Image retrieved from the paper.

If we are going to capture outdoors images for vegetation monitoring, we should include

the possibility of capturing HDR image data. Therefore in section 5.6, we propose a sys-

tem and a capturing procedure to retrieve multispectral HDR and polarimetric images of

outdoors scenes in the visible and near infra-red portions of the spectrum.
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Light brings us the news of the Universe. 

William Bragg. 
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Chapter 3

Spectral imaging using Transverse

Field Detectors

We have seen in the previous chapter 2 that there exist many different approaches for spectral

imaging. All of them have advantages and disadvantages, and depending on the application

we are focusing in, we have a wide variety of architectures to choose from. When facing a

specific application ([150, 114, 27]), one of the advantages is that usually, the conditions in

which the capturing is done (i.e. illumination, motion in the scene, geometry, background,

etc), are rather well known or controlled. However, if we aim for a more general imaging

application, specially if the capture is made outdoors ([84, 28]), the imaging conditions

usually will not be controlled any more.

As mentioned in chapter 1, one of the contribution of this thesis relates to the improve-

ment of multispectral imaging systems. Later on, in section 2.1.2, we introduced a new

generation of filter-less tunable sensors that are being developed in the Polytechnic Uni-

versity of Milan (Italy). These sensors are called Transverse Field Detectors (TFDs). We

studied the working principles of this new technology and tried to exploit the promising

capabilities that these sensors could bring to multispectral imaging. Electronic tunability is

a rather interesting feature which is worth testing for capturing this kind of images.

Thus we tried to achieve a higher color and spectral accuracy in the estimation of spectral

reflectances from sensor responses. Such an improvement was done by combining these

recently developed silicon-based sensors with color filter arrays (CFAs). As mentioned in

section 2.1.2, CFAsare usually composed of 3 different filters (red, green and blue, also
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named as RGB). But they can be composed of any number of filters. If the CFA has more

than 3 different transmittances or colors, it can also be called multispectral filters array

(MSFA). In this work, for simplicity, we will always call them CFAs.

As we can observe in figure 3-1, TFD responsivities are rather spectrally broad. Hence,

we decided to include these CFAs in order to be able to narrow them down. Using the

CFAs, we sacrificed the filter-less full spatial resolution property of TFDs, but we gained

narrower spectral responsivities.

We designed and performed several experiments based on simulations, to test the influ-

ence of different design features such as: type of sensor, tunability, interleaved polarization,

use of CFAs, type of CFAs, and number of shots, on the estimation quality. Some of these

features are exclusive to TFDs. We compared systems that use a TFD, with systems that

use normal monochrome sensors, both combined with multispectral CFAs as well as common

RGB filter arrays present in commercial digital color cameras.

We propose CFA+TFD-based systems with one or two shots depending on the possib-

ility of using longer capturing times or not. Improved TFD systems thus emerge as an

interesting possibility for multispectral acquisition which overcomes the limited accuracy

found in previous studies [121].

Figure 3-1: TFD responsivities corresponding to 8 different biasing conditions. Red, green
and blue lines correspond to red, green and blue channels in each tuning condition. These
responsivities were measures in laboratory by TFD developers in Milan (Italy).
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As explained in section 2.1.2, these sensors take advantage of the wavelength-dependent

penetration depth of photons in silicon. The longer the wavelength is, the deeper the pen-

etration depth of the photon within the silicon layer. Therefore, if we collect electrons

generated upon incoming photons at different depths, we are selectively separating them

according to their wavelength (see figure 3-2).

Figure 3-2: TFD pixel scheme of electrons collection trajectories at different depths. Left
and right represent different biasing voltages. Red, green and blue lines represent the tra-
jectories of generated electrons from photons in roughly the red, green and blue regions of
the spectrum. Images retrieved from [107].

This property is also characteristic of filter-less color imaging sensors like Sigma Foveon

X3 ([133, 89, 88, 59]). As explained in section 2.1.2 these sensors are tunable, by means of

applying different biasing voltages [115, 199]. Moreover, this tunability property goes beyond

with the bi-polarization property (half pixels of the sensor with one configuration, and the

other half with a different configuration). This bi-polarization is done in an interleaved way

(like a chess pattern mosaic where black patches are tuned with one biasing condition, and

white patches with a different one). When all pixels of the sensor are equally biased, we call

it full-polarized. If half of the pixels are differently polarized from the other half, we call it

bi-polarized. In figure 3-3 we see an example scheme of the bi-polarization pattern.
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Figure 3-3: Example scheme of a 6 pixels area of a bi-polarized TFD sensor.

These sensors however, are still in an early stage of development. By the moment this

work was done, the biggest prototype was an 8𝑥8 sensor, attached to a prototype board.

Later on, the developers built a 64𝑥64 pixels sensor and included it in a camera mount for

prototype sensors, operating it from an external micro processor ([12]).

Our idea was to study the potential of these sensors for spectral imaging, taking advant-

age of their quick tunability. Therefore, we simulated sensor responses using different biasing

voltage values, using real objects’ reflectances illuminated with real outdoors light sources’

SPDs (for additional details see section 3.1). Using these multispectral sensor responses,

we applied a spectral estimation algorithm to recover the spectral reflectances. We also

compared the spectral estimation results with those of other typical system architectures as

well.

In the following section 3.1, we will explain the physical model used to simulate TFD

sensor responses. Section 3.2 is dedicated to explain the TFD-based system we propose, as

well as the different architectures simulated to compare their performance with our proposed

system (using both TFD sensors in different configurations as well as normal silicon sensors).

In section 3.3, we explain the simulation experiments performed, together with the spectral

estimation algorithm and the spectral data used as well as the methods for assessing the

performance and comparing it with the other systems simulated. In section 3.4 we explain
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the results we reached in these experiments. Finally in section 3.5, we summarize the main

conclusions related to this contribution of the PhD dissertation.

3.1 Physical model to simulate TFD pixel responses

TFD developers at Polytechnic University of Milan, provided us with a physical model to

simulate pixel analog to digital conversion and noisy sensor response generation. They also

gave us the spectral quantum efficiencies of 8 different biasing conditions of TFD (3 channels

per biasing condition), ranging from 400 nm to 700 nm. Therefore we could generate sensor

responses from spectral radiance signals. And these radiance signals could be generated

from spectral reflectances of real objects and spectral power distributions (SPDs) of real

light sources.

In the following we describe the physical model used to simulate camera responses. 𝑅(𝜆)

is the object spectral reflectance illuminated with illuminant 𝐿(𝜆).

𝐶(𝜆) = 𝑅(𝜆) · 𝐿(𝜆) (3.1)

𝐼𝑐ℎ = 𝑞 · 𝐴𝑙𝑖𝑔ℎ𝑡 ·
∫︀ 700𝑛𝑚

400𝑛𝑚 𝐶(𝜆) ·𝑄𝑒𝑐ℎ(𝜆)𝑑𝜆 (3.2)

𝑉𝑐ℎ =
𝐼𝑐ℎ·𝑡𝑒𝑥𝑝
𝐶𝑓

(3.3)

We firstly calculate the spectral color signal 𝐶(𝜆) as the product of the two spectral

signals 𝑅(𝜆) and 𝐿(𝜆). Later on we calculate the photo-current (𝐼𝑐ℎ), as the product of

the elementary charge (𝑞 = 1.6× 10−19𝐶), the pixel illuminated area (𝐴𝑙𝑖𝑔ℎ𝑡 = 𝐴𝑡𝑜𝑡𝑎𝑙 · 𝐹𝐹 ,

where 𝐴𝑡𝑜𝑡𝑎𝑙 = 1𝜇𝑚2 is the total pixel area, and 𝐹𝐹 = 0.2 is the pixel fill factor for the TFD

CMOS technology), and the integral over the visible range of the product of the calculated

𝐶(𝜆) and the spectral quantum efficiency of each channel of the sensor (𝑄𝑒𝑐ℎ(𝜆)). Later on,

for the calculation of pixel output voltage (𝑉𝑐ℎ), we use the exposure time used to capture

the image, and the pixel feedback capacitance 𝐶𝑓 = 3× 10−14𝐹 .

Since we are dealing with digital signals, all spectral signals are sampled at a sample

step of Δ𝜆 = 10𝑛𝑚 from 400𝑛𝑚 to 700𝑛𝑚. Therefore, equations 3.1 and 3.2 transform into
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the following two equations 3.4 and 3.5 respectively:

𝐶(𝜆) = 𝑅(𝜆) · 𝐿(𝜆) (3.4)

𝐼𝑐ℎ = 𝑞 · 𝐴𝑙𝑖𝑔ℎ𝑡 ·
∑︀700𝑛𝑚

400𝑛𝑚𝐶(𝜆) ·𝑄𝑒𝑐ℎ(𝜆) ·Δ𝜆 (3.5)

After calculating the pixel output voltage, we check for saturation. If this voltage is

higher than the maximum pixel output voltage (𝑉𝑑𝑑 = 1.3𝑉 ), it is clipped to this value.

This output voltage represents the noiseless analog output of the TFD pixel. So far

we have not included any source of noise. Thus, before performing quantization in order

to transform the analog signal in a digital signal (process which will also add noise to the

final sensor response), we include two sources of analog noise: photo-current shot noise, and

thermal noise. The former depends on the signal level, the exposure time, and the gain of

the electronics. The latter is independent on signal level and exposure time. It only depends

on the temperature and the value of the feedback capacitance.

The noise variances are calculated as:

𝜎𝑐ℎ𝑠ℎ𝑜𝑡
=
√︁

2·𝑞·𝑡𝑒𝑥𝑝
𝐶𝑓
· (𝐼𝑐ℎ + 𝐽𝑑 · 𝐴𝑡𝑜𝑡𝑎𝑙 · 𝛼𝑐ℎ) (3.6)

𝜎𝑘𝑇/𝐶 =
√︁

𝑘·𝑇
𝐶𝑓

(3.7)

Where 𝐽𝑑 = 7× 10−5 𝐴
𝑚2 is the technology dark current density, and a scaling factor 𝛼𝑐ℎ

is 0.5 for red channel, 0.3 for green channel and 0.2 for the blue channel. 𝑇 = 300𝐾 is the

absolute temperature and 𝑘 = 1.38× 10−23 𝐽
𝐾 is the Boltzman constant.

There are other typical sources of noise, like dark current shot noise. It is independent

on signal level, and dependent on exposure time. However the variance of this noise can

be reduce to negligible values by capturing and subtracting dark images using the same

exposure time. Therefore we did not add this source of noise.

We add now the noise to the output analog voltage. We do it sequentially because

different noise sources have different probability distributions. First we add the thermal
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noise as indicated in equation 3.8, where function 𝑟𝑛𝑑𝑚𝑛𝑜𝑟𝑚 (Matlab R2012b) picks a

random value from a normal distribution of 𝑉𝑐ℎ mean and 𝜎𝑘𝑇/𝐶 variance.

𝑉𝑐ℎ𝜂𝑘𝑇/𝐶 = 𝑟𝑛𝑑𝑚𝑛𝑜𝑟𝑚(𝑉𝑐ℎ, 𝜎𝑘𝑇/𝐶) (3.8)

However, the probability density function of shot noise behaves statistically as a Poisson’s

distribution. Therefore, after the thermal noise is added, we add shot noise as indicated in

equation 3.9, where function 𝑟𝑛𝑑𝑚𝑝𝑜𝑖𝑠𝑠 (Matlab R2012b) adds a random value to 𝑉𝑐ℎ𝜂𝑘𝑇/𝐶
,

according to the mass density function 𝑓(𝑘, 𝜆) in equation 3.10

𝑉𝑐ℎ𝜂 = 𝑟𝑛𝑑𝑚𝑝𝑜𝑖𝑠𝑠(𝑉𝑐ℎ𝜂𝑘𝑇/𝐶 , 𝜎𝑐ℎ𝑠ℎ𝑜𝑡
) (3.9)

𝑓 (𝑘, 𝜆) = 𝑒−𝜆𝜆𝑘

𝑘! (3.10)

It might happen that, a very high unsaturated noiseless sensor response becomes satur-

ated after adding noise. Therefore at this point we check for saturation again. This time

we compare the value of 𝑉𝑐ℎ𝜂 with the maximum pixel output voltage (𝑉𝑑𝑑 = 1.3𝑉 ). If

𝑉𝑐ℎ𝜂 > 𝑉𝑑𝑑 = 1.3𝑉 then 𝑉𝑐ℎ𝜂 is clipped to 𝑉𝑑𝑑.

Now that we already have the final noisy analog output signal for channel 𝑐ℎ, we quantize

it with 𝐵𝐼𝑇 = 12 bits as indicated in equation 3.11.

𝜌𝑐ℎ𝜂 = 𝑟𝑜𝑢𝑛𝑑(
𝑉𝑐ℎ𝜂
𝑉𝑑𝑑
× (2𝐵𝐼𝑇 − 1)) (3.11)

Where 𝑟𝑜𝑢𝑛𝑑(𝑥) is a function that rounds the value of 𝑥 to the closest integer, and 𝜌𝑐ℎ

is the final 12 bits noisy digital sensor response for channel 𝑐ℎ, in digital counts (DC ).

We are still missing the noise introduced by the quantization in the analog to digital

conversion (quantization noise). The variance of quantization noise (𝜎𝑞) is calculated as

shown in equation 3.12).

𝜎𝑞 =
𝑉𝑑𝑑√

𝐵𝐼𝑇×2𝐵𝐼𝑇 (3.12)

Now we can calculate the total noise variance including all sources of noise: shot noise,

thermal noise, and quantization noise. Thus, the total noise variance 𝜎𝑡𝑜𝑡 is calculated as
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the squared root sum of all noise variances, as shown in equation 3.13.

𝜎𝑐ℎ𝑡𝑜𝑡 =
√︁

𝜎2
𝑐ℎ𝑠ℎ𝑜𝑡

+ 𝜎2
𝑘𝑇/𝐶 + 𝜎2

𝑞 (3.13)

And the SNR can be calculated as shown in equation 3.14, using the noiseless output

voltage 𝑉𝑐ℎ calculated in equation 3.3, and the total noise variance (𝜎𝑐ℎ𝑡𝑜𝑡) calculated in

equation 3.13.

𝑆𝑁𝑅𝑐ℎ = 20× 𝑙𝑜𝑔( 𝑉𝑐ℎ
𝜎𝑐ℎ𝑡𝑜𝑡

) (3.14)

Now that we can calculate the noisy simulated sensor responses as well as the total

SNR, we can already compare the colorimetric and spectral estimation performances of each

system, taking into account the SNR featured by each of them.

3.2 Systems compared

In previous sections, we have already explained the working principles of TFD sensors.

Thanks to their easily tunable capabilities, we believe they are good candidates for spectral

imaging. Spectrally narrow responsivities can be beneficial for spectral imaging if we are to

estimate spectral signals pixel-wise (i.e. spectral reflectances, radiances, etc) [94]. However,

as we can see in figure 3-1, the spectral responsivities of TFDs are far from narrow. There-

fore, we studied how good the spectral estimation was using only raw TFD sensors, but

we also studied how TFD sensors combined with CFA performed. We actually proposed a

system exploiting all benefits from TFDs as well as CFAs together.

What follows is a series of simulation experiments that aim to prove that the proposed

system outperforms other reasonable capture system designs. We will describe all the sys-

tems simulated and tested, and then show the results of the respective comparisons to achieve

the proposed aim.

All systems studied in this work are silicon-based systems. Despite the architecture

of each system in particular, the light acquisition process of them all can be realistically

described with the CMOS capture model used for simulating camera responses (see section

3.1). Therefore, sensor responses for every system studied in this work have been calculated

using the same model for signal and noise generation (explained in section 3.1). We can
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thus be sure that a higher or lower noise level is not the reason for a better or a worse

performance. The average SNR was calculated for each system. As it was explained in

section 3.1, the noise model accounts for exposure time and quantum efficiency. Therefore,

even though the values of exposure time were different for different systems, this difference

was taken into account when computing the noise. As we will see in section 3.4, all systems

resulted in similar SNR values. Actually the system which resulted in the lowest SNR (worst

noise condition) is the proposed system number 1 (see table 3.1, where the average SNR is

shown for each simulated system). To demonstrate the performance of the designed system,

we have created 4 different experiments (explained in section 3.3) in which its features are

tested across other imaging systems.

In Figure 3-4, we can see a representation of the eleven different systems simulated in

this study and used to complete the four different experiments.

Figure 3-4: Scheme of the 11 systems simulated and compared along the 4 different experi-
ments explained in section 3.3. The filter layer has blue caption. The sensing layer has red
caption. The number in each pixel determines the number of channels retrieved in one shot
out of it.

In each system there is a filter layer and a sensing layer. The number of different

transmittances in the filter layer determines the spatial resolution of the captured image.

A CFA with 3 filters provides 1
3 of spatial resolution and with 6 filters 1

6 . If the TFDs are

bi-polarized and use no filters, the spatial resolution reduces to 1
2 . The characteristics of

each system are explained in the following and summarized in table 3.1.

1. This is the proposed system. The filter layer is a CFA made up of 6 band-pass optical

filters selected from a real database (see section 3.3). The sensing layer is a TFD

sensor full-polarized where two different biasing conditions were used in two shots. 3
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Table 3.1: Systems characteristics
System # System name Filter layer Sensing layer # shots # channels Spatial resolution Average SNR

1 CFA+2TFD CFA TFD full 2 36 1/6 40.5 dB
2 CFA+1TFDbi1 CFA TFD bi 1 6 1/6 42.1 dB
3 CFA+Monochrome CFA Silicon 1 6 1/6 42.5 dB
4 Cut+Re RGB\RGB+𝐶𝑜𝑓𝑓 Silicon 2 6 1/3 42.3 dB
5 Comb+Re RGB+𝐶𝑜𝑚𝑏1\RGB+𝐶𝑜𝑚𝑏2 Silicon 2 6 1/3 44.6 dB
6 RGB+TFDbi RGB TFD bi 1 6 1/6 44.4 dB
7 TFDbi Empty TFD bi 1 6 1/2 42.8 dB
8 TFDbi4 Empty TFD bi 4 24 1/2 47.7 dB
9 CFA+1TFDfull CFA TFD full 1 18 1/6 47.4 dB
10 CFA+1TFDbi3 CFA TFD bi 1 18 1/6 40.9 dB
11 CFA+2TFDalt CFA TFD full 2 36 1/6 45.1 dB

channels are retrieved per pixel. Thus, without the need of any moving mechanical

optical component, we get information from 36 channels in two shots.

2. Same CFA used as in system number 1. The sensing layer however was a bi-polarized

TFD from which we only take the information from one channel per pixel. The

channel which was operative for each pixel was selected as explained in section 3.3.

This system is similar to the proposed one, but it has been designed to compare fairly

its performance with other systems under the same conditions, in terms of number of

channels.

3. The sensing layer is a normal monochrome silicon sensor like the one from a commer-

cial scientific camera model Retiga SRV (Qimaging Corp., Canada), equipped with

a NIR cut-off filter. In the filter layer we set a CFA which has been optimized for

the monochrome sensor, using the same technique as in our proposed system (see sec-

tion 3.3). This system has been designed to test if including a TFD sensor with its

tunability property in a CFA-based system helps to improve its performance.

4. In the sensing layer we used the spectral responsivities of the RGB scientific camera

Retiga 1300C (QImaging Corp., Canada). In the first shot we set no filter in the filter

layer, and in the second shot we added a IR-UV -cutoff filter (𝐶𝑜𝑓𝑓 ) in front of the

lens, which sharpened down the responsivities in the extreme of the spectrum. This

system has been designed to test the performance of TFDs plus CFAs against other

types of systems which were proven to work well in a previous work [121].

5. In the sensing layer we used the RGB camera again. This is also a 2-shots system.

In each shot a different ideally custom-made comb-shaped optical filter (𝐶𝑜𝑚𝑏1 and

𝐶𝑜𝑚𝑏2) was placed in the filter layer. These filters divided by half the 3 responsivities
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into 6. This idea of splitting the spectral responsivities of single channels into two

by using a comb-shaped filter has been used by some authors in the literature as well

[68, 166, 185].

6. The sensing layer used here was the same as in system number 2, but the filter layer

used was composed of an RGB Bayer filter like the one from the scientific camera

Retiga 1300C (QImaging Corp., Canada) used in this study as representative of a

standard RGB CCD camera. This system has been designed to test the effect of the

selected CFA versus other kinds of narrow band-pass filters present in common color

imaging systems.

7. The filter layer was left empty in this system. The sensing layer used was a bi-polarized

TFD sensor. Only one shot was taken. This system and the next one were designed

to test if adding a CFA to a TFD sensor improves its performance.

8. The same as the previous configuration but we took 4 shots with 4 different bi-

polarization conditions. We wanted to push the number of channels to the extreme

using all the biasing conditions that the developers provided to us.

9. The filter layer was the same CFA used in system number 1, but the sensing layer was

a single shot full-polarized TFD sensor. This system has been designed to test the

effect of bi-polarization property of the TFD sensor versus full-polarization state.

10. The filter layer was the same CFA used in system number 1. The sensing layer in this

case was a one-shot bi-polarized TFD. This system is also proposed as an alternative

to system number 1 if the application requires shorter capturing times (since it only

uses one shot instead of two). In addition, this system has been compared to system

number 9 to check the effect of using the bi-polarization property of TFD sensors.

11. This system has been designed exactly the same as the proposed system. However

its channels were randomly selected from the available ones instead of using voting

principal feature analysis (VPFA) [16, 117] as explained in section 3.3. Ten reasonable

combinations were simulated in which the channels were selected to cover the whole

visible range with some overlap. We selected the one with best results. This system

was simulated to check whether selecting the channels using VPFA effectively increases

the performance of our system or not.
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Figure 3-5: Normalized Spectral Sensitivities of all systems versus wavelength in nanometers.
Normalization was performed just for displaying.

We have specifically selected these configurations to better isolate the effect of each

feature that we wanted to test in our proposed system. To sum up: systems number 2, 3,

4 and 5 were designed to prove, under the same conditions in terms of number of channels,

that using a TFD sensor improves the accuracy of the results over common monochrome

sensor systems. Systems number 2, 6, 7 and 8 were designed and compared to test whether

combining the CFA with the TFD also helps to improve its performance. Systems number

9 and 10 were designed to test if using the bi-polarization property of TFDs is better than

not using it. System number 1 evolved from system number 10, pushing up the number of

channels retrieved with only two biasing conditions adding one shot to the capturing process.

System number 11 was designed to test the advantages of using VPFA to select the spectral

channels.

In figure 3-5 we can see the spectral responsivities of all simulated systems.

Note how systems including a CFA (numbers 1, 2, 3, 9, 10 and 11), have narrower re-
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Figure 3-6: Normalized Spectral Power Distribution of CIE standard illuminant D65.

sponsivities compared with systems using RGB Bayer pattern filters (numbers 4, 5 and 6),

or filter-less TFD-based systems (7 and 8).

3.3 Methods

This section is divided into 4 subsections. In 3.3.1, we explain the filter selection as well as

the spectral data used in the experiments. In 3.3.2 we explain the color and spectral metrics

used to assess the spectral estimation from sensor responses and compare the performance

between different systems. In 3.3.3, we explain how the spectral estimation was performed

and evaluated. Finally, in 3.3.4 we explain the 4 simulation experiments conducted to test

how well our proposed system performs compared with the others.

3.3.1 Spectral data and filter selection

As mentioned in section 3.1, the illuminant used for the simulations was the CIE standard

D65 illuminant [66] (see figure 3-6), and the spectral reflectances were 1700 samples from the

Natural Color System (NCS ) [62, 63, 64]. We selected these samples because they represent

natural colors found in common scenes for a general purpose color correction application

very well.

We were provided by the developers of TFD [111], with a set of 8 different RGB re-

sponsivities corresponding to 8 different biasing voltages (24 responsivities in total. See
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figure 3-1). As candidates for filters included in the CFA, we used a set of 13 real filter

transmittances from the Andover corp. web site [23] (see figure 3-7).

Figure 3-7: Normalized Spectral Transmittances of selected band-pass filters.

These spectral transmittances were selected so that they all covered the whole visible

range of the spectrum with certain overlap between them. We carefully chose different

bandwidths and maxima positions. The commercial references of these 13 selected filters are:

400FS40, 400FS70, 450FS40, 450FS80, 500FS40, 500FS80, 550FS20, 550FS40, 550FS80,

600FS40, 600FS80, 650FS40 and 650FS80.

Combining all responsivities with all filters, we got a total of 312 channels. Out of them

we wanted to select six, corresponding to only two different biasing conditions (which are

the limits of bi-polarization as mentioned in the beginning of this chapter), which could best

recover the spectral information of the samples imaged in the visible range.

For the channel selection, we have implemented the Voting Principal Feature Analysis

method (VPFA). This method takes as input the sensor responses from all 312 channels of

the 1700 NCS [62] color samples used, and performs principal component analysis (PCA,

[193]) on them. Then we select a reduced number of projections of the data onto the principal

component vectors (half of them) and cluster them into 6 clusters (which is the number of

channels we aim to find) using k-means clustering method [67]. We calculate the mean point

(center) of each cluster, and then select the filters corresponding to the vectors closest to

each of the cluster centers. Due to the random initialization of k-means clustering method,
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the clustering step is repeated for several iterations (50) and the selected vectors are voted.

Finally the most voted ones which correspond to only two biasing conditions are selected.

Each pixel of the TFD yields 3 channels responses. With VPFA we only selected the 6 best

performing ones. This would correspond to system number 2. However once the capture is

done, we already get the 3 channels per pixel. Therefore we also studied the possibility of

using the other two channels per pixel. This situation corresponds to system number 10.

Results showed that there is a slight improvement when considering all possible channels.

Furthermore, a two-shot system was also designed using the two full polarizations of the

TFD resulting from VPFA and retrieving the information from all resulting channels. This

corresponds to our proposed system number 1. After this process, the spectral responsivities

of the channels selected were the ones shown in figure 3-5. As this figure shows, they span

the whole visible range with some overlap. Overlap is important not to leave a gap in the

spectrum without retrieved information [66]. However too much overlap could cause bad

performance as well due to the consequent stronger effect of cross-talk between channels.

We also simulated other systems with the same characteristics, but selecting randomly the

combination of filters and sensors to get a set of responsivities which visually looks good

(covering the spectrum, relatively narrow and with some spectral overlap). Out of the

combinations we built, the one with the best color and spectral metrics was chosen. This

corresponds to system number 11. We also compared it with the one resulting from the

VPFA.

3.3.2 Error metrics

We used both spectral and colorimetric indexes for the evaluation of the performance.

∙ Goodness of fit coefficient 𝐺𝐹𝐶 [161, 78, 121, 116], also known as the complement

of Pearson distance [74]. It is a spectral performance metric calculated as shown in

equation 3.15.

𝐺𝐹𝐶 =
|
∑︀𝑛

𝑗=1𝐸(𝜆𝑗)·𝐸𝑅(𝜆𝑗)|

|
∑︀𝑛

𝑗=1[𝐸(𝜆𝑗)]2|
1
2 ·|

∑︀𝑛
𝑗=1[𝐸𝑅(𝜆𝑗)]2|

1
2

(3.15)

Where 𝑛 is the number of spectral bands, 𝐸(𝜆𝑗) is the estimated spectral signal to be

compared with the reference spectral signal 𝐸𝑅(𝜆𝑗). The GFC quality index is the
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cosine of the angle formed by the two samples in the high-dimensional vector space of

spectral signals. The closer theGFC is to unity, the better the estimation quality of the

sample. The GFC index is independent of scale factors. In consequence, two samples

differing only in scale but not in shape would result in a GFC of 1 (perfect match).

If 𝐺𝐹𝐶 > 0.999 the estimation was considered quite good and if 𝐺𝐹𝐶 > 0.9999 the

estimation was almost a exact fit [147].

∙ Root mean square error, 𝑅𝑀𝑆𝐸 [95, 121]. This spectral metric focuses on absolute

differences between the original and the estimated spectral signals. Thus, it is not

independent of scale factors. For a perfect match we get 𝑅𝑀𝑆𝐸 = 0. It is calculated

as show in equation 3.16.

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1

𝑛
·

𝑛∑︁
𝑗=1

(𝐸(𝜆𝑗)− 𝐸𝑅(𝜆𝑗))2 (3.16)

∙ Δ𝐸*
00 color difference. Also called CIEDE2000 ([164]). When Δ𝐸*

00 < 1 units, the

colorimetric performance was considered acceptable. We included this color metric

because assessing how good the estimation of the spectral signal is in terms of color

perception is also important. It could happen that two very similar spectral signals

(with good spectral metrics), have their highest differences in spectral bands where our

perception is most sensitive. In this case we would still perceive these two signals as

different colors. On the other hand, two spectral signals with worse spectral metrics,

but which main differences are in regions of the spectrum where we are less sensitive,

could yield a very similar color, and so be acceptable for a colorimetric application.

3.3.3 Spectral reflectance estimation and evaluation

When we face the problem of spectral reflectance estimation from sensor responses, there

are many algorithms proposed in the literature. In a previous work ([121]), we compared the

performance of several methods for this task. Thise methods were: Pseudoinverse ([147]),

Matrix R ([201]), Projection Onto Convex Sets (POCS, [170]), Radial Basis Functions Neural

Networks (RBFNN, [10]), and Kernels ([73]). We will not explain the details of each of these

methods in this thesis. More details about the working principles of each of these methods

are presented in [121]. We summarize in table 3.2 the average color and spectral metrics
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found when comparing those methods over the spectral estimation from simulated sensor

responses of 1600 reflectances.

Table 3.2: Mean (and std) of spectral and color error metrics for the different spectral
estimation algorithms compared [121]

Algorithm Pseudoinverse MatrixR RBFNN POCS Kernel

𝐺𝐹𝐶 0.9941 0.9962 0.9941 0.9959 0.9965
(0.0064) (0.0041) (0.0337) (0.0049) (0.0083)

𝑅𝑀𝑆𝐸 0.0497 0.0487 0.0473 0.0416 0.0385
(0.0216) (0.0233) (0.0238) (0.0192) (0.0217)

Δ𝐸𝑎𝑏 9.37 4.57 8.2807 5.7098 4.3313
(7.26) (4.0769) (9.5163) (4.1218) (3.25)

We see in table 3.2, that Kernel method outperforms the rest of the methods in all

color and spectral error metrics. Hence we decided to use this algorithm for our simulation

experiments. In this previous study ([121]) for comparing the different algorithms, the color

error metric used was Δ𝐸𝑎𝑏 ([196]) instead of 𝐶𝐼𝐸𝐷𝐸00. We did so for direct comparison

with other authors’ publications. However we used 𝐶𝐼𝐸𝐷𝐸00 as a better recommendation

from CIE for color difference calculations.

The estimation method used was regularized in-homogeneous polynomial kernel regres-

sion [72, 73, 71]. This is a non-linear mathematical regression method. A kernel function

projects the input data into a new vector space, and afterwards a regularized linear regres-

sion is performed over the data in this new vector space. As explained in [71], this model

needs to set two free parameters: the degree of the polynomial (𝑑) and the regularization

term (𝜆𝑟). The values of these parameters need to be optimized.

For the optimization and evaluation, a double 10-fold cross validation method was used,

one nested inside the other. In the outer loop, we randomly separated the 1700 NCS samples

into optimization and evaluation sets. The former was used to find the optimal values of the

two parameters of the mathematical model, and the latter to evaluate the estimation of the

spectral reflectances. In each iteration of the outer 10-fold, the optimization set was used

in the inner 10-fold loop. A grid of parameters was built and every possible combination of

both parameters was tested (exhaustive search) with the testing set corresponding to each

loop of the inner 10-fold. For the parameter optimization, we used the CIEDE2000 color

difference formula as a cost function (see Δ𝐸*
00 in subsection 3.3.2). Using a color difference
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Table 3.3: Mean (and std) of polynomial degree (𝑑) and regularization term (𝜆𝑟) kernel
parameters values found in the optimization process for every system. The regularization
term values are shown in logarithmic scale. Values of 𝑑 are not integers because they are
the computed mean.
System # 1 2 3 4 5 6 7 8 9 10 11

𝑑 2.68 5.70 5.9 7.08 3.47 7.00 5.41 4.13 4.46 4.30 4.60
(0.58) (0.48) (1.37) (0.80) (1.14) (0.00) (1.31) (0.83) (0.59) (0.48) (0.52)

𝑙𝑜𝑔10(𝜆𝑟) -2.85 -6.06 -4.29 -5.81 -4.15 -4.93 -8.19 -4.39 -3.17 -4.23 -4.43
(0.43) (0.13) (1.06) (0.87) (1.94) (0.22) (1.19) (0.64) (0.68) (0.42) (0.50)

formula for parameter optimization gives to colorimetric performance of the results a slight

advantage over spectral performance compared with using a spectral metric. The opposite

happens using a spectral metric as a cost function. In average, using the color metric

yields slightly better results. Therefore the metric we chose for our application domain was

CIEDE2000.

After the 10 iterations of the inner loop, the average of the parameters found was

calculated, and those were used for evaluation in the outer loop. The standard devi-

ation was also calculated to check if the distributions of the best parameters found were

stable. Table 3.3 shows the means and standard deviations (in parenthesis) of both ker-

nel parameters found in every system out of each of the 100 folds in total (10 times

10 folds). Since the regularization parameter was optimized looking for the value that

performed best in different orders of magnitude, the mean and standard deviation cal-

culated for it are shown in logarithmic scale. The parameter grid studied by exhaust-

ive search consisted in all possible combinations between 𝑑 ∈ [1, 2, 3, 4, 5, 6, 7, 8, 9] and

𝜆 ∈ [102, 101, 100, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8, 10−9].

After the 10 iterations of the outer loop, the average error metrics were calculated and

these were the values with which we compared the different systems. By doing things this

way, we ensured that samples used for training would never be used for testing, which could

lead to over-fitting and thus to overestimating the quality of the recovered samples obtained

from the camera responses of our system.

3.3.4 Experiments performed

Since we wanted to test separately features like the tunability of TFDs, or the presence of

different types of CFAs, we performed 4 experiments to test the following hypotheses:
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∙ Hypothesis 1: the proposed system performs better than systems based on other types

of sensors such as monochrome sensors or multi-shot systems based on RGB scientific

cameras plus some filters (see subsection 3.4.1).

∙ Hypothesis 2: the proposed system performs better than systems based on TFDs that

do not use the designed CFA. Therefore, this CFA helps to improve the performance

of TFDs (see subsection 3.4.2).

∙ Hypothesis 3: using the bi-polarization property of a TFD sensor, the performance can

be improved without the need to increase the number of shots taken (see subsection

3.4.3).

∙ Hypothesis 4: the proposed system performs better than a similar system in which

the channels selection was not done by VPFA (see subsection 3.4.4).

Hypothesis 1 demonstrates the capabilities of the proposed design. Hypotheses 2 and

3 try to go deeper into the reasons justifying the superiority of our TFD-based proposed

system. Hypothesis 4 demonstrates that using VPFA for selecting candidate filters and

channels is worthy.

3.4 Results

Table 3.4 shows the average error metrics obtained for the 11 systems simulated. In the

following subsections these results are commented on.

Table 3.4: Results for all systems studied. Mean (and standard deviation).
System # 1 2 3 4 5 6 7 8 9 10 11

Δ𝐸*00 0.23 0.51 1.26 0.66 0.27 0.96 3.15 1.89 0.41 0.38 0.35
(0.16) (0.35) (1.3) (0.47) (0.18) (0.73) (2.27) (1.32) (0.34) (0.26) (0.24)

𝐺𝐹𝐶 0.9997 0.9987 0.9992 0.9982 0.9992 0.9986 0.9976 0.9982 0.9991 0.9996 0.9994
(0.0028) (0.0043) (0.0022) (0.0030) (0.0030) (0.0079) (0.0038) (0.0033) (0.0010) (0.0012) (0.0021)

𝑅𝑀𝑆𝐸 0.0064 0.0101 0.0094 0.0103 0.0083 0.0113 0.0169 0.0143 0.0082 0.0064 0.0067
(0.0063) (0.0087) (0.0082) (0.062) (0.0099) (0.034) (0.0092) (0.008) (0.004) (0.0043) (0.0053)

The best performance for the three error metrics evaluated corresponds to system number

1 (written in bold in table 3.4).

We also present the quality indexes for all systems compared in this study in figure 3-8.
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Figure 3-8: Color and spectral error metrics for all systems. The bars show the mean value
and the lines the standard deviation centered on the mean.

3.4.1 Simulation experiment 1: Superiority of TFDs

This experiment was performed to check whether our proposed system yields better accuracy

in spectral reflectance estimation than systems based on other types of sensors using the

same kind of CFAs and other different ones. We included the 2-shot system made up of a

RGB Retiga camera and a cut-off filter, studied in previous work [120], and we also designed

a new system in which we divided each of the R, G and B responsivities of Retiga camera

into two halves (see Figure 3-5 system 5) with theoretical custom-designed comb-shaped

optical filters. Results are shown in Table 3.4 for systems number 2, 3, 4 and 5.

We see that system number 2 performed better both for spectral and color metrics than

systems number 3 and 4. The system formed by monochrome silicon sensor plus the CFA

performed worst. This means that the good results obtained by system 2 were not only due

to the CFA, but also that the tunability and bi-polarization property of TFD sensor helped

to improve the performance. The systems formed by RGB Retiga camera plus filters yielded

good results, especially the one with the two comb-shaped filters which worked best. This

is in agreement with previous studies [121, 120]. This comparison was made in the same

conditions as far as number of channels is concerned. However, when we simulated system

number 2, we were neglecting the information from 2 channels from each pixel. This meant

that we are capturing 18 channels, but only using 6. If we add this available information to
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the recovery (we get system number 10) the results improved. They were closer to system

number 5 colorimetrically and better spectrally. Besides we would only need one shot instead

of two, and there would be no need to mechanically move in and out any filter.

Moreover, we designed a two shots fully-polarized system, and we retrieved the informa-

tion from all channels under each pixel, increasing the number of channels to up to 36 in just

two shots. This was the strategy of system number 1. In this case we used two shots which

were sequentially captured just by switching the biasing voltage of the TFD. These results

outperformed the ones from system 5. In practice systems 1 and 5 have the same number

of shots (2 shots). For system number 5 the capturing process cannot be real time since

the filters need to be switching all the time. In the case of the proposed system, even also

being a 2-shot system, the switching of the biasing voltage occurs so fast and electronically

controlled that it can be considered as a snapshot system in practice, as long as the lighting

conditions in the scene being imaged allow short exposure times. We thus propose system

number 10 as a good and convenient option to be used in applications which require fast

capturing times. And if we could afford longer capturing times, then system number 1 is

our proposal to enhance performance by increasing the number of shots.

3.4.2 Simulation experiment 2: Superiority of a CFA-based system

In this experiment, we wanted to assess whether including the CFA in the TFD-based

system is the key factor leading to the superior performance of the system shown in first

experiment. For this we simulated different systems using TFD sensors. One of them used

no filters in front (system number 7). The other used the filters present in a common RGB

scientific color camera (system number 6). This was done as we had found out that the RGB

Retiga camera was working very well and that these filters drastically narrowed down raw

responsivities. The results of this experiment are shown in Table 3.4 for systems number

2, 6 and 7. We see that the system we propose performs best for both spectral and color

metrics. Including other kinds of filters such as RGB color filters (system number 6) yielded

reasonable results, but still far from the ones reached by system number 2. A system using

only two TFD polarizations such as the proposed one, but with no CFA (system number

7), yielded quite bad results in comparison. Even pushing this strategy to the limit of

taking many shots with different polarizations (up to 4 shots with bi-polarized TFD as in

system number 8), the performance was far from our proposed system. Therefore it did not
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outperform a system with only one shot, two TFD polarizations and a CFA.

If the difference is clear when the experiment is performed for systems with the same

number of channels, the difference is still more evident if we use the systems number 10 or

1. We pointed out their advantages in subsection 3.4.1. Therefore we can conclude that

adding in a TFD-based system, a CFA which has been calculated to be the best choice out

of a set of available color filters, helps to improve the performance for spectral reflectance

estimation, over systems without CFA or with other filters that are not specially selected.

3.4.3 Simulation experiment 3: Bi-polarization vs full-polarization

In this experiment we wanted to assess whether using the capability of bi-polarizing the

TFD sensor helps with its performance. So the easiest way was to test it by comparing

systems number 9 and 10. The results are shown in table 3.4.

We see how using two polarization states of the TFD improves the system performance

slightly for both color and spectral metrics. Therefore it is worth adding a second biasing

voltage, since in practice, the acquisition process is the same. Apparently, using responsivit-

ies from different biasing voltages perform better than using them all from the same biasing

condition.

3.4.4 Simulation experiment 4: VPFA performance

This last experiment was carried out to check whether it makes sense to invest time in

selecting the filters using VPFA, or simply any combination of them, randomly chosen,

covering well the visible range of the spectrum and having some little overlap between

bands, could yield better or similar results. Out of ten random combinations, we selected

the one giving the best results (system number 11) and compared it with our proposed

system (number 1). Results show that the VPFA procedure improves the filter selection

process.

3.5 Conclusions

Two different approaches for a multispectral imaging system have been proposed which are

based on a novel technology still under development. These are TFD-based systems which

exploit the tunability and bi-polarization properties of this new type of sensor. They are
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coupled with a CFA whose filter transmittances have been selected via VPFA method out

of a set of real available color filters from a commercial database. Four simulation experi-

ments have been conducted to prove if the proposed systems outperform others with similar

characteristics but using other design strategies. We aimed to assess if the combination of

TFD plus CFA works better than any of them separately. We also studied whether we could

use different architectures depending on the requirements of a particular application. We

found out that the proposed systems perform both colorimetrically and spectrally better or

as well as other systems, while offering an easier and more elegant solution to the problem

of spectral imaging. Some systems yield close spectral results, and only one of them comes

significantly close in the color metrics. However this system is made up of a scientific RGB

color camera plus two ideal filters that are placed in front of it alternatively (system number

5), so each capture would need two shots and the mechanical switch between filters from

the first shot to the second. This would make the real time capture unsuitable.

One of our proposed systems (system number 1) is also a two-shot system, but the tuning

of the responsivities is so fast and easy that we could still use it for real time spectral imaging

if the conditions of the amount of light in the scene being imaged allowed it. Otherwise we

offer a single shot alternative system (system number 10) which would reduce drastically

the time needed for capturing and would still give good colorimetric and spectral results.

This study demonstrates the potential of TFD sensors as candidates to be part of spectral

imaging systems that are portable, real-time, versatile and low cost, as soon as they can be

implemented as part of a real capturing system.

The work and results presented in this chapter were published in [123] which is the

publication number 1 in the Appendix A.

3.6 Future work

After performing these theoretical experiments, simulations showed the potential of TFD

sensors combined with CFAs for spectral imaging. The next step would be to implement a

real camera featuring a TFD sensor and the CFA we have designed for it. Unfortunately, by

the time this study was done, TFD sensors were still in a prototype phase of development.

Therefore it was still too early for this step.

As the next step in this thesis was to move on to HDR imaging and combine it with
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Figure 3-9: Pixelteq Spectrocam VIS-NIR. Left: 8-slots filter wheel. Right: camera with
filter wheel attached, and 16 band-pass filters covering the visible and near infrared range
of the spectrum [400𝑛𝑚, 1000𝑛𝑚].

spectral imaging, we decided to switch to different spectral imaging systems which. These

systems do not offer so many advantages as the TFD-based system proposed, but they

could still be easily tuned in order to perform different experiments combining all imaging

techniques studied in this work. For this reason we continued our spectral imaging experi-

ments with a system based on a monochrome camera and a Liquid Crystal Tunable Filter

(LCTF ), and another system based on a scientific monochrome camera synchronized with

a filter wheel. The latest was Pixelteq SpectroCam VIS-NIR (see figure 3-9). We will talk

about the experiments done with these imaging systems in chapter 5, but before that, we

will move on to the techniques developed regarding HDR imaging in next chapter 4.
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In order for the light to shine so brightly, the darkness must be present. 

Francis Bacon. 
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Chapter 4

Adaptive Exposure Estimation for

HDR imaging

As explained in section 2.2, there are many different approaches for tackling the HDR

imaging problem. Many authors are focusing in developing new camera or sensor hardware

architectures ([145, 144, 3, 80, 171, 156, 191, 99, 98]). However we wanted to focus rather in

the software methods. As our final goal is to combine HDR imaging techniques with spectral

imaging techniques, including special sensors or camera set ups could affect the capability

of our system for spectral imaging. Therefore, it is more convenient to exploit some of the

already existing hardware architectures for spectral imaging, and try to incorporate to them

an HDR software method.

The most common software method is multiple exposures. It is popular because it is

simple and can be carried out by any imaging system. As explained in section 2.2.2, this

methods consists on capturing different images of the same scene. The only requirement is

to change the exposure settings of the camera between shots. This can be done either by

changing the exposure time (which is the most popular technique), or by changing other

parameters like the ISO gain, the aperture, the presence of neutral density filters (ND-

filters), etc.

Out of all these options, we focused in the variable exposure time option. Even though

the other options are plausible, we discarded them because of the following reasons:

∙ ISO setting in digital sensors is a electronic gain applied at pixel level. Increasing it

results in a higher voltage signal. However it also causes a higher amount of noise due
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to electronic processes of amplification.

∙ Aperture setting is easily adaptive to scene content. Using an automated aperture

system, which nowadays is embedded in many commercial camera systems, we can

implement an algorithm within camera chip to open or close the aperture as the

capturing process requires it. The problem is that when we increase the aperture

of an optical system the depth of focus is reduced. This might bring defocussing

problems, specially if we are working at close distances. The effect can be even worse

if we are dealing with spectral imaging systems with narrow spectral responsivities

(using interference or liquid crystal tunable filters). In these cases, due to chromatic

aberration combined with reduced depth of focus, the system might produce blurry

images in some spectral bands, or even in objects at different distances within the

same spectral band image.

∙ Regarding the presence of ND-filters, this approach is indeed a hardware approach.

Since we would in all likelihood be using some filters already as part of the spectral

imaging capture device, we decided to avoid including extra filters as much as possible.

We decided then to take the multi-shot approach changing the exposure time between

shots. We wanted to develop an algorithm to make the HDR image capture as automatic

as possible. Despite the content of the scene, we aimed for an algorithm which could search

for the different exposure times with no need of user intervention.

When we capture an HDR scene, either with a monochrome, RGB or spectral imaging

system, we always need to decide which exposure time we are going to use. Auto-exposure

settings available in most commercial cameras and smartphones work fine for a single LDR

capture. This means that they analyze the content of the scene (usually in live view,

which means capturing several shots, or they resort to cues like the reading from a built-in

photometer in high end cameras). They focus in a region of interest (ROI, e.g. the whole

image, the center region, etc). If the pixel values in this ROI are too dark, the exposure time

setting increases its value. If on the other hand it is too bright, the exposure time setting

decreases its value. However, in most outdoors conditions, we could find regions of the image

where the incoming light is too bright, and regions of the image where the shadowy areas

are too dark. Thus, with a single shot, whatever its exposure time is, we can not correctly

expose the whole information in our ROI. We show an example of this in figure 4-1. Both
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images are taken from the same scene, using the exposure time values 20 ms (calculated by

the auto-exposure setting of the camera) for the image in the left and 500 ms for the image

in the right. The aperture setting was 𝑓5.6. We can observe underexposed areas in the left

image and saturated areas in the right image. Whatever exposure time value we choose in

between these two values used, would yield underexposed and/or saturated pixels as well.

Figure 4-1: Example of outdoors scene captured using Canon EOS 7D commercial RGB
camera. Left: image captured using 20 ms of exposure time. Right: image captured using
500 ms of exposure time. The red ellipse highlights an underexposed region, and the green
ellipse highlights a saturated region.

Usually, the dynamic range of a given sensor (i.e. the ratio between the maximum and

minimum irradiance impinging on the sensor that produces an effective response) is much

lower than the dynamic range found in natural open air scenes. The dynamic range of these

scenes (ratio between the maximum and minimum radiances emitted by the objects in the

scene) can vary from 2 to 8 orders of magnitude depending on the season and scene content

[125] (see table 4.1 from [190, 155], showing the typical luminance levels present in common

scenes). The human visual system can simultaneously adjust to a difference of up to 3.73

orders of magnitude (or logarithmic units) [106], when adaptation is accomplished. However,

most imaging and display devices can only account for barely 2 orders of magnitude in a

single image (either for capturing or for displaying) [197, 163].

Consequently, when we use our camera to capture a digital image of a scene with HDR

content, we can not know in advance which exposure times would be useful for composing

the HDR image afterwards. We could just take a large number of images with different

exposure times (or even all available ones in the camera), and then use all of these LDR

images to compose the final HDR image. But this option could take too much time and

could be very computationally demanding, so it is not always feasible.
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Table 4.1: Average luminances present in common scenes. Table data retrieved from [155]
Condition Illumination: ( 𝑐𝑑

𝑚2 )

Starlight 10−3

Moonlight 10−1

Indoor lighting 102

Sunlight 105

Max. Intensity CRT monitors 102

Our aim was to present a method for the selection of a set of exposure times (bracketing

set), which allowed us to retrieve useful information from all pixels within our ROI (or at

least from as many of them as possible). As we will explain in section 4.1, other proposed

methods also aim to find bracketing sets for HDR capture.

A correct HDR capture is very important for capturing useful image information from

scenes with HDRcontent, either indoors ([176, 179]) or outdoors [84]. Thus, a digital camera

can be a useful tool for composing a HDR radiance map of these scenes. Of course, if the

scene captured has very dark regions that need long exposure times to be correctly exposed,

then it is important that there is no relative movement between camera and scene content

during the capturing time. If small movements happen, there are ghosting-compensation

techniques to correct for artifacts [37]. In this thesis we did not focus in these issues, and

assumed that the content in all scenes captured was static.

We wanted to design a method with the following characteristics:

∙ Blind: no information from the scene content is needed to be known a-priori. Thus the

method would work whatever the scene content is as long as it is within the physical

limits of the camera.

∙ Adaptive: the method adapts to scene content by dynamically adjusting the required

exposure times.

∙ Full range: the complete dynamic range of the scene can be correctly exposed if it is

within the physical limits of the camera and the veiling glare conditions allow it.

∙ Universal: works for any camera provided that it allows us to control exposure settings

and trigger.
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∙ On-line: the exposure times are calculated as the capturing process is ongoing and

every single shot acquired is used in the HDR radiance map generation. Therefore there

is no need to capture some shots in advance to make any estimations or assumptions

about the content of the scene, and the method will not waste time capturing shots

that are not useful for the composition of the HDR image.

∙ Minimal: the method gives as default output the minimal bracketing set (i.e. the

bracketing set that has minimum number of shots, yet recovering the full dynamic

range of the scene).

∙ Tunable: the method can be tuned to yield longer exposure times with a higher SNR.

This tunability is introduced to control the amount of overlapping between consecutive

exposures, increasing SNR in the resulting HDR image at the cost of increasing the

number of shots taken, and hence the capturing time.

∙ Flexible: in some applications, it could happen that we are not really interested in the

very brightest or darkest areas of a scene, even if they are inside our ROI. Then can

introduce the possibility to set the percentage of pixel population that we can accept

to be underexposed or saturated in all shots.

In the following section, we will study the previous approaches proposed by other authors

to solve the problem of finding an appropriate bracketing set for HDR imaging (see section

4.1). Afterwards we will explain the details of our proposed method (see section 4.2). Later

on, we will show the experiments performed to test our method against the the most similar

one developed so far ([7]). Finally we will draw our conclusions (section 4.4) and the future

lines of research (section 4.5).

4.1 Previous approaches

Several approaches have been proposed in the literature for solving the problem of finding

the exposure time values for HDR image capture via multiple exposures. In [18], the authors

proposed an scheduling for capture times. They were assuming a known illuminant in the

scene, which in practice is a rather non-realistic assumption. In [51], they proposed a method

to simulate the response of any camera (linear, logarithmic, gamma function, etc) using a

single camera with known Camera Response Function (CRF ), by just selecting a set of
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exposure times. So their aim was not to find a minimum bracketing set for radiance map

generation. In [172], they proposed a method for capturing HDR images of the sun and

sky. They thresholded the images and checked if there were saturated and/or underexposed

pixels. If so, they added new shots by increasing or decreasing the exposure a fixed amount

of 3-stops. This approach is not adaptive to the scene content and could lead to situations

where the exposure times are not well fitted to cover the full dynamic range of the scene.

In [9], the authors proposed a method for overcoming the limitations of mobile devices for

HDR imaging. Their proposal was also done by iteratively trying every available value of

exposure time and afterwards decide which is the correct one. Therefore many images need

to be taken before a bracketing set is selected, which makes it not an on-line or adaptive

approach.

In [7], they proposed a method for finding minimal bracketing sets for HDR capture.

Firstly they studied how the camera responds to radiance using every available exposure

time. Then they selected only those exposure times that completely covered the full dynamic

range of the camera, with certain overlap. This is the so-called Minimal System Bracketing

Set (MSBS ), and whatever the content of the scene being imaged is, using all these exposures

will always cover the full radiance range that the camera can effectively acquire. To adapt

this MSBS to scene content, they proposed to select a subset of it called Minimum Image

Bracketing Set (MIBS ) by capturing a first shot with an intermediate exposure time (that

belongs to the MSBS ), and checking if there are saturated or underexposed pixels. If so,

they add the next exposure time included in the MSBS until the full dynamic range is

covered. Though the underlying idea in this method is similar to the one proposed in this

thesis, it is still not totally adaptive to scene content since they limit the exposure times

selected to those belonging to the MSBS (usually just 4 or 5). We believe that the same

scenes could be captured with less shots and shorter exposure times, yet covering their full

dynamic range, and we have demonstrated this by comparing the results of our method with

Barakat et al’s clairvoyant algorithm, using their MIBS approach. More details about this

method are given in section 4.3.1.

In [49], they proposed a method which used as stating point the mean HDR irradiance

histogram of the scene being captured. This method worked only for linear cameras, and

they used a greedy algorithm, iteratively capturing the same scene many times until they

got the optimal SNR solution. Thus, this method is not on-line. In [83], the authors used

82



a mathematical method based on training for HDR exposure time selection. They assumed

linear sensor response and known noise sources in the capture, which is not always a realistic

scenario. They did not really aim for finding minimum bracketing sets, but for optimal SNR

in the HDR radiance map.

In [46], they adapted HDR imaging to mobile devices as well. They merged LDR images

iteratively two by two. If there are still saturated or underexposed pixels, they keep adding

the next available exposure time that the camera offers. In [69], the authors proposed a

method to calculate a bracketing set that is optimal in terms of SNR (see figure 4-2) but not

minimal. They just try to fit it within a given time budget, by varying both the exposure

time and the ISO settings of the camera. Besides, their method assumes linear raw sensor

responses only, and known information about scene radiance content.

Figure 4-2: Left: Reference 3-shot exposure bracketing sequence, with images 2 stops apart.
Right: SNR-optimal 3-shots capture sequence maximizing worst-case SNR in the same time
budget. Images taken from [69].

Later on, in [38], the authors proposed a method which takes advantage of mobile phone

camera APIs (Application Programming Interface). They programmed the automatic his-

togram calculation in mobile phones to build a reduced HDR histogram of the scene, which

will be the target to be captured. This is however not possible if the camera used for the

captures does not feature this automatic process. Besides, if the scene imaged has very

dark regions, the long exposures needed to create this histogram make the process slow.

Moreover, the method is not on-line. After this histogram is calculated, they capture sev-

eral exposures of the scene and then study many possible combinations of them until the

optimal one is selected.

Afterwards, in [56], they followed the lines previously proposed by the authors in [97],

who implemented a method for sequentially adjusting the exposure for real-time HDR video.

83



Both methods in [56] and [97], are iterative and limited to only two shots for building

the HDR image. Later on, in [57, 58], they developed their algorithm further for HDR

video capture. They propose a weighting function which punishes low signal values, and

iteratively try to fit the histogram of the incoming captured frames to this weighting function

by adjusting the exposure time. This approach is smart for a video system. However it

needs some iterations until convergence is reached, and also assumes that histograms of the

captured images match somehow the shape of the weighting function (unimodal histogram).

In [54], they proposed a Fibonacci-series-based bracketing set determination algorithm

in which each exposure time is the sum of the previous two. However, their purpose was not

full dynamic range recovery, but image registration for HDR video. Afterwards, in [86], the

authors proposed a method to be implemented in-camera chip. They get information from

the camera metering system (i.e. analysis of certain ROI to check if it is correctly exposed).

First they capture an image exposing the whole image as good as possible. Afterwards

they capture two more images. One of them has a longer exposure time and the other one

a shorter exposure time (over and underexposed respectively). The way they calculate the

new exposure times for the two new images is by finding the areas in the image with most

underexposed and saturated pixels, and extracting the camera measurement data in those

regions. This method however does not ensure that the whole scene is correctly exposed. It

is limited to three shots and can not be implemented for cameras with no metering system.

Therefore it is neither universal, nor full range or adaptive.

After this extensive literature research, we conclude that only the method proposed in

[7] has similar features to the one we intend to develop. However it still has disadvantages

that we will comment later on in section 4.3.1.

4.2 Proposed method

Since we wanted to propose a universal method applicable to any imaging system, we imple-

mented it in different cameras. The first series of experiments (explained in this chapter),

were performed with a scientific monochrome camera (Retiga SRV 1300 ), a scientific RGB

camera (Retiga 1300C ), and a commercial RGB camera (Canon EOS 7D). The three cam-

eras are shown in figure 4-3. The technical details of each of these cameras can be found in

the devices and instrumentation section of the web site of our research group ([148]). The
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method was proven to work satisfactorily for all of them. In this chapter we will show the

results obtained for the commercial RGB camera. In the following chapter 5, we will show

the results of applying the proposed method to multispectral imaging systems, including

some modifications.

Figure 4-3: Left: Canon EOS 7D commercial RGB camera. Center: Retiga SRV 1300
monochrome scientific camera. Right: Retiga 1300 C, RGB scientific camera.

We drove our Canon EOS 7D camera from our laptop via USB port, using the open-

source libraries called GPhoto2 ([1]), which were accessed through our algorithm implemen-

ted in Matlab R2014a and working on-line. Thus, the images captured were processed in

the computer on the spot as the capture was ongoing.

The method proposed is full range, because it finds a bracketing set which covers the

full dynamic range radiance map of the scene. The HDR radiance map is unknown a priori,

therefore we can not know in advance how many shots are we going to need to expose it

completely.

In figure 4-4, we show an example of HDR relative radiance histogram. This is the target

histogram we have to expose completely by capturing multiple shots with different exposure

times.

We can see in figure 4-5, the CRF of the camera we are using to capture the scene.

When we fix an exposure time and we capture the first shot, we block the CRF of the

camera over a window of the HDR relative radiance histogram. We see an example of this

in figure 4-6 (top).

We see how, if we increase the exposure time, the areas of the scene which would be

well exposed are those darker than in the previous shot. Therefore the exposure window in

the second shot is shifted to the left in the histogram (yellow CRF ). On the other hand,
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Figure 4-4: HDR relative radiance histogram of the scene to be captured. This information
is unknown a priori. We plot it for the explanation of the AEE method.

Figure 4-5: CRF of Canon EOS 7D camera in 8-bits jpeg mode. Left: linear scale. Right:
logarithmic scale.

Figure 4-6: HDR relative radiance histogram superimposed with CRF. Top: first shot.
Bottom: second and third shots. Note the overlapping radiance areas covered in two shots
colored in yellowish and greenish color.
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if we decrease the exposure time, then the exposure window would be shifted to the right,

exposing well the light-most regions of the scene (green CRF ). We then see how we can

slide the exposure window along the histogram by just changing the exposure time. In

the example plotted in figure 4-6, we see how there are two areas (shaded in yellowish and

greenish colors), that are covered by two exposure windows at the same time. This overlap

works fine for HDR image reconstruction. But if we would choose shorter or longer exposure

times (thus sliding the exposure windows further towards right or left sides respectively), we

could risk leaving some gap in the radiance histogram, not covered by any shot. Therefore

the information in this range of radiances would be lost. A MIBS for this scene could be any

combination of three shots with certain overlap between them (since any combination of only

two shots would not be enough to cover the whole radiance range without overlap). However,

we can say so, because in this example we know the HDR relative radiance histogram in

advance. As this information is unknown in real scenarios, after the first shot (red CRF ), the

way to maximize the possibilities to cover the whole dynamic range with the least number

of shots would be to push the CRF of the next shots as far as possible yet keeping certain

overlap. This way, with the minimum number of shots, we could cover the widest possible

dynamic range. But how could we choose these new exposure time values?

As explained in section 2.2.2, the CRF is a function which relates the response of the

camera, in digital counts (𝐷𝐶), with the exposure that the sensor receives. This function

depends on each camera, and even could be different for different settings of the same camera

(e.g. camera working in raw mode or in jpeg mode, etc). Knowing the CRF of our camera

is a key factor to build the radiance map.

The computation of the CRF of a camera is a well known procedure ([26]). The CRF

of our Canon camera working in jpeg mode is shown in figure 4-5. Both plots represent the

same function. However the one on the left is in linear scale, and the one on the right in

logarithmic scale. Having a look at the one in the left, we see how the CRF is clearly not

linear.

The exposure axis is in relative units and it is normalized so that the center of the 𝐷𝐶

values (128𝐷𝐶 for 8-bits images) corresponds to a relative exposure value of 1. The function

is the same for the 3 color channels R, G and B of the camera, since it is a property of the

sensor. Therefore we process the 3 color channels together like it is done in [38]. For each

LDR image we capture, we know the exposure time (Δ𝑡) used as well as the digital counts
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(𝐷𝐶) for each pixel and channel. Therefore, using the CRF we can easily work out the

relative irradiance (𝐸) by computing a simple ratio shown in equation 4.1.

𝐸𝑖,𝑘,𝑒 =
𝐻(𝑖,𝑘,𝑒)
Δ𝑡(𝑒) (4.1)

Where 𝐻(𝑖, 𝑘, 𝑒) is the relative exposure for pixel 𝑖, in color channel 𝑘, and for exposure

index 𝑒 (or number of shot). Once we have captured an initial image with a known exposure

time Δ𝑡0, the CRF relates 𝐻0 with 𝐷𝐶0 as shown in equation 4.2.

𝐷𝐶0 = CRF(𝐻0) = CRF(𝐸0 ·Δ𝑡0) (4.2)

Therefore we can work out the relative irradiance value of a point of the image (𝐸0,

calculated as shown in equation 4.3), knowing the CRF, the Δ𝑡 and its DC value in the first

shot (Δ𝑡0 and 𝐷𝐶0 respectively).

𝐸0 =
CRF

−1(𝐷𝐶0)
Δ𝑡0

(4.3)

Where 𝐶𝑅𝐹−1 refers to the inverse CRF function which always exists since CRF is

a monotonically increasing function (a higher radiance/irradiance would never result in a

lower sensor response). Then, to shift the sensor responses 𝐷𝐶0 to this same irradiance

value 𝐸0, into a new value 𝐷𝐶1, we just have to workout which new exposure time Δ𝑡1, is

needed for a new shot, like equation 4.4 shows.

Δ𝑡1 =
CRF

−1(𝐷𝐶1)
𝐸0

(4.4)

If our camera has only a limited set of available exposure time values (like our Canon

camera), we can select the available value which is closest to the calculated one.

We already have a tool to control the values of sensor responses, by tuning the exposure

time used to acquire the images. In other words, we know now how to slide the exposure

window as shown in figure 4-6. Now we explain how to use it for our purpose of optimizing

the HDR capture. For this aim, we propose a method based on cumulative histograms of

the scene and inspired on the work by Grossberg and Nayar in [52], originally applied to

pixel selection for CRF computation. If the scene content does not change, then the same

value of percentile of population in the cumulative histogram will correspond to the same
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areas in the image. In figure 4-7, we show several cumulative histograms of the same scene

captured using different exposure times.

Figure 4-7: Cumulative histograms of the same scene captured using different exposure times
and plotted in increasing value of exposure time from Exp 1 to Exp 8.

The horizontal lines with red circles represent the same areas of the image. Depending on

the exposure (8 shots in this example named in increasing value of exposure time from Exp

1 to Exp 8 ), the sensor response values for the same areas of the scene (red circles) increase

with exposure time. If a given percentile is below some exposure value for a given exposure

time, then, for a different exposure time, the same percentile will correspond to a different

exposure value but they will still keep its location within the scene. Therefore, the points

where the horizontal lines intersect the histograms, report information corresponding to the

same areas of the scene. Our idea is to shift sensor responses by calculating exposure times,

to control the sensor responses to pixel populations of key percentile values. As a starting

point, we calculate the cumulative histogram of the image captured with the automated

exposure of the camera. But in principle any image can be used as starting point as long as

it has some pixels that are neither saturated nor underexposed.

We sample the scene’s radiance using the CRF of the camera between two DC levels.

Unless the scene has a very reduced dynamic range, there will be pixel values below and

above these DC values. Since in the default version of the algorithm we aim to find the

MIBS, we have set the low level (LO) to 3 DC and the high level (HI ) to 252 DC for

considering a pixel underexposed or saturated respectively out of these bounds.
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Thus, any pixel with camera responses out of the [LO,HI ] range will need to be re-

captured with different exposure settings.

We introduce now two novel features of our method. One is the possibility to set a

tolerance for the percentage of useless pixels. If we choose 0% tolerance, the algorithm will

look for longer or shorter exposure times if at least one pixel is underexposed or saturated,

like Barakat et al. proposed [7]. However, for some scenes we can set a different tolerance

threshold accept a certain amount of incorrectly exposed pixels (e.g. when we directly

image the sun and our region of interest (ROI ) is in a different area). This feature makes

the method flexible.

The other feature is the possibility of setting the LO and HI values. Setting values very

close to the extremes (0 and 255 DC for 8 bits), will result in less number of shots, at the

cost of lower SNR. In contrast if we set values further from these extremes, we will sample

the scene’s radiance with more overlap between contiguous shots and therefore the SNR will

increase, at the cost of higher number of shots. This shows how our algorithm is tunable,

allowing us to adapt to different requirements regarding SNR of the captured HDR.

After commenting these functionalities, we describe now in detail how the exposure time

search is done. With the information present in the cumulative histogram of the first shot

captured, we check the percentile of pixel population which is below the LO level. If it is

higher than the maximum value set, then a longer exposure time is calculated. The same

is done if the difference between 100 and the percentile of pixel population above the HI

level is higher than the tolerance threshold. In this case a shorter exposure time will be

calculated.

To find a longer exposure time, we will use equation 4.4, to shift the camera response

value from the LO level to HI level. Therefore we use the HI level as 𝐷𝐶1 , and 𝐸0 is

substituted by equation 4.3, where we use the LO level as 𝐷𝐶0. Δ𝑡0 is the exposure time

used to acquire the current image (see eq. 4.5).

Δ𝑡𝑙𝑜𝑛𝑔𝑒𝑟 =
CRF

−1(HI)

CRF
−1(LO)

·Δ𝑡0 (4.5)

On the other hand, to find a shorter exposure time, we will use equation 4.4, to shift

the camera response value from the HI level to LO level. Therefore we use the LO level as
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𝐷𝐶1, and 𝐸0 is substituted by equation 4.3, where we use the HI level as 𝐷𝐶0 (see eq. 4.6).

Δ𝑡𝑠ℎ𝑜𝑟𝑡𝑒𝑟 =
CRF

−1(LO)

CRF
−1(HI)

·Δ𝑡0 (4.6)

In this way, if the population that has a sensor response at HI level in one shot, shifts

to LO level in the next shot, we can cover the full dynamic range of the scene with certain

overlap between contiguous shots.

The process described here goes on checking the cumulative histograms of the longer

and shorter exposure times until the tolerance requested is met or the system reaches its

maximum or minimum available exposure time values.

4.3 Experiments and results

We will first explain in section 4.3.1 the only method found following the same philosophy

as ours: the MIBS method proposed by Barakat et al. (BAR) [7]. Later on, in section 4.3.2,

we describe the two experiments performed:

∙ Experiment 1: we tested the default version of our Adaptive Exposure Estimation

(AEE ) method (see section 4.3.2).

∙ Experiment 2: we explore the tunability and evaluate the SNR performance (see

section 4.3.2).

4.3.1 BAR method and MSBS

Regarding BAR method, the MSBS found for our Canon camera, as explained in [7], using

5.6 aperture setting, was composed by 4 exposure times which values were: 30 s , 300 ms, 1

ms and 0.0125 ms. By definition, a MSBS contains the longest and shortest exposure times

that the imaging system allows us to use.

In figure 4-8, we can see an example of overlaid cumulative histograms for a scene

captured using the MSBS. As we can see, contiguous shots have certain overlap. Choosing

exposure times further apart would end up in leaving some gaps in the exposure axis not

covered by any shot, and therefore some areas of the scene would not be correctly captured.

Depending on the scene captured, it can happen that we do not need all four shots to

record the full dynamic range. In these cases, a sub-set of the MSBS is used. This subset
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Figure 4-8: Minimal System Bracketing Set found for Canon EOS 7D camera. Composed
of 4 shots with increasing exposure times: 0.0125 ms, 1 ms, 300 ms, and 3000 ms.

is called Minimal Image Bracketing Set (MIBS ). We could use as first shot’s exposure time

the automatic exposure selected by the camera, as done for the AEE method. However we

found that doing so, we only got the same number of shots or even one more (see figure 4-9).

The exposure time chosen by the auto-exposure mode of the camera using the whole

image for metering was 66.7 ms (top-center). It was used as first shot for AEE method,

since our method adapts to any exposure value chosen as first. However this value was in

between 300 ms and 1 ms (both belong to MSBS ). Therefore if we used it also as first shot

for BAR method, it would mean that the capture of this scene would end up with 5 shots

instead of 4.

Also if we change the aperture setting of the camera, as the CRF is not changing, AEE

method would work the same, adapting to the new exposure levels in the sensor. However

for BAR method we would need to calculate a new MSBS, since the same exposure times

for a different aperture could not be valid any more. Thus we fixed our aperture setting to

5.6 for both methods.

4.3.2 Experiments performed

For the first experiment (section 4.3.2), we captured 30 scenes (25 outdoors and 5 indoors)

using both AEE and BAR methods and we studied the number of shots taken, the total

exposure time used, and the percentage of pixel population which was not properly exposed.
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Figure 4-9: Cumulative histograms of the same scene using AEE method (top row) and
BAR method (bottom row). The histograms are ordered by decreasing exposure time to
observe their continuity.

This way we assessed how efficiently did both methods recover the full dynamic range of the

scene, comparing their resulting bracketing sets.

In the second experiment (section 4.3.2), we built an indoors HDR scene with controlled

illumination conditions. We captured 10 HDR images of it using AEE and BAR methods.

Besides, for the AEE method we repeated the capture 4 times using different values for the

LO and HI levels (see section 4.2). Finally we captured 10 ground-truth (GT ) HDR images

using all available exposure times in the camera. These GT represent the highest SNR that

our camera can achieve to record the scene.

HDR capturing efficiency

As mentioned before, we acquired 30 HDR scenes. 23 scenes were captured outdoors with

natural illumination and 7 indoors with artificial illumination. Outdoors, daylight casts

HDR illumination over objects, including clouds. Indoors we used a light booth and a

fluorescent lamp oriented directly to the camera in a dark room to generate HDR content.

The different LDR images captured were stitched together using the weighted average
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equation 4.7 ([155]).

𝐸 ′𝜆(𝑥, 𝑦) =
∑︀𝑁

𝑛=1 𝜔(𝜌𝑛𝜆(𝑥,𝑦))·
𝐶𝑅𝐹−1(𝜌𝑛𝜆(𝑥,𝑦))

Δ𝑡𝑛∑︀𝑁
𝑛=1 𝜔(𝜌𝑛𝜆(𝑥,𝑦))

(4.7)

Where 𝐸′ is the value of HDR radiance map generated, 𝜆 is the spectral band index,

(𝑥, 𝑦) are pixel coordinates, 𝑁 is the number of shots captured for each spectral band, 𝜌

is the sensor response in each LDR image captured, 𝐶𝑅𝐹−1 the inverse camera response

function, Δ𝑡𝑛 is the exposure time used for shot number 𝑛, and 𝜔 the weighting function

used to build the HDR image (see figure 4-10).

Figure 4-10: Weighting function used to build HDR images from multiple 12-bits LDR
images.

In the literature we find some other shapes for this weighting function like the triangular

or hat shape ([26]), derivatives of the CRF ([119, 158, 134]), or more complex shaped

functions ([49]). We found the smooth (also called broad hat function) function proposed

in [155, 4] and shown in figure 4-10 was less prone to introduce artifacts in the final HDR

image than the other alternatives.

To check the performance of both methods in terms of full range recovery, we plotted

the cumulative histograms of all shots taken for each scene, checking that no irradiance gaps

were left uncovered between consecutive shots. We set the maximum percentile allowed to

be lost to 0%. In table 4.2 we can see the results for 7 out of the 30 scenes captured.
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Table 4.2: MIBS found for BAR and AEE methods in 7 of the 30 scenes captured.

Scene # Method # shots % lost
∑︀𝑛

𝑖=1 𝑇𝑖(𝑠)

1 BAR 3 1.61 0.301
AEE 2 1.61 0.025

2 BAR 3 0 0.301
AEE 2 0 0.101

3 BAR 3 0 0.301
AEE 2 0 0.040

4 BAR 3 0 0.301
AEE 2 0 0.050

5 BAR 3 0 0.301
AEE 2 0 0.034

6 BAR 3 0 0.301
AEE 2 0 0.025

7 BAR 4 0 30.301
AEE 3 0 13.067

We observe how the number of shots is always equal or lower for AEE method. The

percentage of useless pixels is always the same for both methods. Many scenes had a

percentage of lost pixels equal to 0, since both methods managed to retrieve the full dynamic

range of the scene. For the rest of the scenes, the useless pixels were due to direct sunlight

(like in scene 1). The total exposure time is always lower for the AEE method. The same

commented trends are found for the remaining 23 scenes captured. In total, for the 30 scenes

captured, BAR method took a total of 96 shots, using 218.734 seconds, and AEE method

81 shots and 139.869 seconds. This means that the number of shots was 15.63% less, an the

total exposure time 36.06% less for AEE method.

In figure 4-11 we show the LDR pictures and the tone-mapped HDR radiance maps gener-

ated for some of the scenes. The tone-mapping algorithm used was contrast-limited adaptive

histogram equalization, introduced by Ward [155] and implemented in Matlab R2014a.

In figure 4-9 we plot an example of the cumulative histograms corresponding to both

methods of scene number 7. Although at a first glance the central histograms for both meth-

ods may seem to reach percentiles 0 and 100 respectively, the percentage of underexposed

pixels in the central shot of AEE was 8.53%, and the percentage of saturated pixels in this

same shot was 5.08%. In the case of BAR method, the shot taken with 𝑇𝑒𝑥𝑝 = 0.3𝑠 had a

percentage of underexposed pixel of 0.065%, while the percentage of saturated pixels in the
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Figure 4-11: LDR images and HDR radiance maps for some of the indoors and outdoors
captured scenes using AEE method. Figure taken from [122]

image taken with 𝑇𝑒𝑥𝑝 = 1𝑚𝑠 was 0.04%.

We observe how both methods succeeded in recovering the full dynamic range of the

scene. However, the AEE method managed to do it in 3 shots, while the BAR method

needed 4 shots. Therefore we can conclude with this experiment that AEE method recovers

the dynamic range of the scene as satisfactorily as BAR method does, but is more effective

in terms of time and number of shots.

Signal to Noise Ratio

We did a second experiment to study the SNR behavior of our method. As explained in [6],

there is a trade off between SNR and total amount of shots in HDR imaging. For the AEE

method, we tested 4 different conditions:

A LO = 3 and HI = 253.

B LO = 16 and HI = 240.

C LO = 56 and HI = 200.

D LO = 106 and HI = 150.
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We compared all these AEE conditions with BAR method and the ground-truth (GT ).

We set up an indoor scene and measured its dynamic range using a spectroradiometer

(Photo Research: PR745 ). We measured the integrated radiances of both the brightest and

the darkest points of the scene. The resulting dynamic range measured was 4.1 logarithmic

units. We captured the scene 10 times using each method.

For each pixel and each color channel of these HDR radiance maps, we calculated its

average HDR value and its standard deviation across the ten images corresponding to each

method. The average HDR value provides information about the signal level in the pixel,

and the standard deviation provides information about the level of noise generated by all

noise processes present in the HDR capture process. Thus, computing the ratio of average

HDR value (𝐸𝑥𝑦) over the standard deviation (𝜎𝑥𝑦) as equation 4.8 shows, we have a SNR

estimate [11].

𝑆𝑁𝑅𝑥𝑦 = 20× log10(
Ē𝑥𝑦

𝜎𝑥𝑦
) (4.8)

The subindex 𝑥𝑦 stands for pixel position within the HDR radiance map.

We show the number of shots, the total exposure times and the average SNR for each

method in table 4.3.

Table 4.3: SNR performance for 4 AEE, GT, and BAR methods.

Method # shots Δ t (s) 𝑆𝑁𝑅 (dB)
AEE A 3 14.79 27.19
AEE B 4 15.02 30.47
AEE C 5 31.32 32.58
AEE D 16 61.22 33.57
GT 55 151.43 35.32
BAR 4 30.30 29.97

As expected, setting the LO and HI values further from the extremes of the range in

AEE method, yields a higher number of shots and also higher total exposure time, but

the SNR increases as well. For condition D, we reached an average SNR only less than 2

dB below the ideal case (GT ), yet using only about 40% of the total exposure time. The

minimum bracketing set found was AEE A, with only 3 shots and 14.79 s of total exposure

time, but also had the lowest SNR. BAR method needed the full MSBS to recover this
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scene, using 4 shots. It got better SNR than our minimum bracketing set, but we also got

a second option (AEE B), using 4 shots, with shorter total exposure time (less than half),

and higher SNR than BAR method.

We can also observe in figure 4-12 the SNR for each pixel of the radiance maps generated,

plotted as a function of the signal level. We can observe how AEE D has the most similar

distribution compared with GT. Also BAR method has a very similar distribution compared

with cases AEE A and AEE B, as expected.

Figure 4-12: SNR vs Average HDR signal present in the radiance maps.

In figure 4-13 we plot the SNR histograms for all conditions and methods, including the

ground truth.

We observe how for AEE method, the main lobe gets narrower and shifts towards higher

mean SNR (rightwards) as we tune the LO and HI levels further from the extremes of the

range (thus closer to each other). AEE D is quite close to GT in position and shape. But

the number of shots captured is higher, and therefore the total exposure time used for the

HDR capture increases.
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Figure 4-13: Histograms of SNR values for all conditions tested.
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On the other hand, BAR method yields a histogram which is the most spread over a

wide range of SNR values, as well as the second one with the lowest mean SNR value, yet

using a relatively high total exposure time.

4.4 Conclusions

We have presented a new method for estimating the exposure times needed to recover the

HDR radiance map from a scene via multiple exposures. We compared the performance of

our method with that of the only method found in the literature with similar design and

purpose (finding minimum image bracketing sets).

Our proposed method is adaptive because it finds a bracketing set adapted to any HDR

scene content, and universal because it works for any camera. We only need to calculate the

CRF (which is anyway needed to build the radiance map).

Besides, the method is tunable, since we can decide if we prefer to find a minimum

bracketing set, at the cost of lower SNR, or increase the SNR, by sampling the radiance of

the scene with more overlapping between consecutive shots (increasing the number of shots

and capturing time as well). For the minimum bracketing set case, the bracketing sets found

were minimal in the 30 scenes tested.

Moreover our method is blind, which means that no information about the content of

the scene needs to be known a-priori. The multiple LDR images are captured on-line as the

process is ongoing, and every single shot taken is used to compose the HDR radiance map.

We can also control what is the percentage of total pixel population we can accept as

useless (underexposed or saturated). This way we can find the minimum bracketing set only

for our region of interest.

We have applied the method for natural scenes where partially cloudy skies were present

in order to increase the dynamic range of the capture. We have successfully covered the full

dynamic range of the 30 scenes imaged. We have shown how our method can find bracketing

sets which are shorter than those found by Barakat method (BAR), yet keeping higher SNR

levels in the HDR radiance map reconstructed from the multiple exposures.

We studied the SNR performance of our method comparing it not only with BAR

method, but also with an ideal-case ground-truth HDR image built using all available ex-

posure times in the camera. We have demonstrated how we can tune our method to suit
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different requirements of SNR at the cost of increasing the number of shots.

The proposed method offers a solution for the blind acquisition of HDR images using

multiple exposures, which can be used in any HDR imaging context: machine vision, out-

doors urban or natural scenes, sky imaging, HDR photography, etc. And in particular, for

studying optical phenomena present in open air scenes, where the illumination conditions

are extreme.

4.5 Future work

As future lines of research for the HDR method proposed, we would like to include ISO and

aperture settings to the capturing. We have to take care of both noise and depth of focus in

order to be able to play with these two parameters as well. If we manage to use them and

include them in a new version of the AEE, maybe we could accelerate even more the HDR

automatic capture where the imaging conditions are rather dim. Accelerating enough the

adaptive capture of HDR images, could lead us to propose a new method for the capture of

HDR video.

We would also like to consider the implementation of some ghost removal techniques

([100, 93]) for those cases where slight movements are present in the captured LDR images.

Also we plan to consider variational techniques [36] to try to reduce the impact of veiling

glare during the post-processing of the images, rather than doing so during the acquisition

process ([173]).
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When you open your mind to the impossible, sometimes you find the truth. 

Walter Bishop. 
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Chapter 5

Multispectral HDR Polarimetric

imaging for object segmentation and

classification

After presenting the advances proposed for spectral imaging in chapter 3, and for HDR

imaging in chapter 4, we will now explain how we combined both technologies. In chapter 2,

we described many different system architectures for capturing multispectral images. One of

the aims of this thesis was object classification. Polarimetric imaging shows potential, since

different object materials interact differently with light from the polarization point of view.

Liquid Crystal Tunable Filters (LCTFs, [136, 65, 181]) receive incoming unpolarized light,

and produce as output linearly polarized light. Hence we propose a method for the capture

of HDR, Multispectral (MS ), Polarimetric (Pol) images of indoor scenes using a LCTF.

In a 100 days stay in University of Chiba (Japan), we collaborated with the members

of the Horiuchi & Hirai’s laboratory in the Graduate School of Advanced Integration Sci-

ence. We based our work there on improving the capture of MSHDRPol images for object

segmentation and classification ([180, 179]).

We have included our Adaptive Exposure Estimation method (AEE, explained in chapter

4) to fully automatize the capturing process. We also propose a pre-processing method which

can be applied for the registration of HDR images after they are already built as the result

of combining different LDR images. This method is applied to ensure a correct alignment of

the different polarization HDR images for each spectral band. We have focused our efforts
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in two main applications: object segmentation and classification into metal and dielectric

classes.

We have simplified the segmentation using mean shift combined with cluster averaging

and region merging techniques. We compared the performance of our segmentation al-

gorithm with that of Ncut ([165]) and Watershed (WS, [8]) methods. For the classification

task, we propose to use information not only in the highlight regions but also in their sur-

rounding area, extracted from the degree of linear polarization (DoLP) maps. We present

experimental results which proof that the proposed image processing pipeline outperforms

previous techniques developed specifically for MSHDRPol image cubes.

As explained in chapter 2.3, in [180], the authors found that inspecting the curvature of

DoLP map around specular highlights, they could classify the objects into metal or dielectric,

disregarding the observation geometry. This allowed them to perform classification including

curved object surfaces as well ([179]), but sometimes the DoLP calculation around the

highlights is unstable. Specially if the image captured is somewhat noisy or the highlight

region is rather large.

We proposed a new method which is also based on the study of the spatial distribution

of the DoLP map around the highlights, and which overcomes these limitations. We also

found and showed that when we rotate the LCTF for changing the polarization angle,

we introduce some slight unwanted arbitrary translation, which was unaccounted for before.

This translation is specially problematic if we want to get high resolution images and retrieve

pixel-wise MSHDRPol data (for instance for studying the metallic sparkling elements in

special effects coating car paints [131]).

As explained in section 5.3, methods for registering the differently exposed LDR images

captured to compose a HDR image [192, 174, 93] do not yield satisfactory results with already

built HDR images. We therefore proposed a pre-processing step before the registration,

based in the compression of the dynamic range of the HDR scenes. This way, we also saved

computation time, since for each spectral band we only need to register one HDR image,

and not many LDR images.

We also wanted to move the capture of MSHDRPol images out of the laboratory. How-

ever when we work outdoors, the imaging conditions become uncontrolled. Outdoor illumin-

ation might suffer relatively rapid changes, which make unfeasible the use of an LCTF to

capture the full spectrum of each pixel in an outdoor scene. Thus we tried to implement the
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same capturing method to the system commented at the end of section 3.6. This filter-wheel

camera (Pixelteq SpectroCam VIS-NIR), provides us a way to capture multispectral HDR

images with the advantage of changing the spectral responsivities of the spectral channels

by switching to different filters. If we also include a rotating polarizing filter in front of it,

we add the polarization information to our image data. As an extra feature, this camera is

sensitive in both visible and NIR ranges of the spectrum. Therefore our outdoors images

were MSHDRPolVISNIR images.

The remainder of this chapter is structured as follows: in section 5.1, we explain the

absolute radiometric calibration performed to the camera, as well as the spectral calibration

of the imaging system. In section 5.2 we briefly explain the capturing system and also the

capture work-flow. In section 5.3, we explain all the image processing applied in order to

get correctly registered HDR multispectral polarimetric images. In sections 5.4 and 5.5,

we explain our proposed work-flows for the segmentation and classification applications

respectively, showing the results obtained and comparing them with those of the methods

proposed in [179]. Later on, in section 5.6, we explain how we captured a new set of

MSHDRPol images outdoors, using a very similar method with Pixelteq SpectroCam VIS-

NIR. Finally, in section 5.6.4, we draw the final conclusions of this chapter and in section

5.6.5 the future lines of research proposed.

5.1 Radiometric and spectral calibration

When capturing HDR images via combination of multiple LDR exposures, the resulting

image data is in a different scale from the original LDR images [119]. The former scale is

exposure-time-independent, and the latter is exposure-time-dependent. Usually for the HDR

images, we aim to get pixel values in the final image that are proportional to the amount

of light coming from each region of the scene. For this purpose we perform a radiometric

calibration of the camera.

5.1.1 Radiometric Calibration

Before starting with the capture of the scenes, we performed an absolute radiometric cal-

ibration of the imaging system [129, 130] by measuring the CRF of our camera. We also

did it for the imaging system used for outdoors scenes, but this will be explained in section
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5.6.2.

For the LCTF -based system, we first detached the LCTF from the camera, because the

CRF is unaffected by the LCTF, and detaching it allows us to work with shorter exposure

times, while the signal level is still high enough to get useful image data. We prepared a

scene containing ten homogeneous gray patches of different gray levels (see figure 5-1).

Figure 5-1: Tone-mapped version of monochrome HDR image of the scene used for ra-
diometric calibration. The scale shows scene radiance (𝑊/𝑚2𝑠𝑟) in a logarithmic scale.
The spectral radiances of highlighted areas are shown in figure 5-2.

The patches were non-homogeneously illuminated (different levels of irradiance from

direct light to shadow). This way we generated radiance signals covering a wide range of

values in the scene (up to 4 orders of magnitude). We captured several images of this

static scene using different exposure times and aperture values. After that, we substituted

the camera by a spectroradiometer model Photo Research PR-645 (this model is different

from the spectroradiometer used in the Color Imaging Laboratory at University of Granada,

explained in section 4.3.2), and measured the radiance coming from the ten patches in the

scene. Since the scene was static, the radiance outgoing from each patch was constant in

time. Therefore we did ten radiance measurements for each patch and averaged them in
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order to reduce noise. The spectral radiances measured for the ten patches can be seen in

figure 5-2.

Figure 5-2: Spectral radiances from the ten gray patches in the scene used for radiometric
calibration (shown in figure 5-1). The vertical axis is in logarithmic scale.

Multiplying all the integrated radiance values in the spectral range from 400𝑛𝑚 to

700𝑛𝑚, by all exposure times used to capture the images for each aperture, we got a matrix

of pseudo-exposure values. We call it pseudo-exposure because the exposure is the product

of exposure time times irradiance (𝑇𝑒𝑥𝑝 ·𝐸𝑒), but our spectroradiometer measured radiance

instead (𝐿𝑒) of irradiance. Radiance and irradiance are different magnitudes, but both of

them give us information about the amount of light in each region of the scene.

According to the reciprocity law [34], halving the exposure time and doubling the irra-

diance should result in the same sensor response. Since we can also average a small area in

each patch to retrieve sensor responses for each exposure time and aperture value, then we

could estimate the CRF for each aperture setting. This function relates exposure/pseudo-

exposure with sensor responses, and afterwards it is used to estimate a radiance map of the

scene captured via multiple exposures technique [26].

Several factors influence the shape of the CRF. As Ferrero et al. pointed out in [34],

reciprocity law does not hold when we study the response of the whole camera to light

(rather than just the response of the sensor). This happens even working in raw mode. This

is due to the fact that other phenomena also determine the way the camera responds to light.
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Figure 5-3: Scheme of how veiling glare affects the responses of pixels. The arrows represent
contributions from each scene point to the target pixel’s response, not light rays.

The strongest impact is that of optical veiling glare. Camera optics are not perfect, and as

light goes through them, unwanted light from some regions of the scene, ends up impinging

in pixels from other regions. Even light coming from regions of the scene out of the field of

view of the camera can influence the camera responses. This effect is specially severe when

there are very brilliant regions present in the scene together with very dark areas. McCann

and Rizzi have thoroughly characterized this phenomenon [126, 127, 129, 128, 130, 125].

In figure 5-3, we a diagram to better illustrate the effect of veiling glare. The thin

black arrows represent the contribution of each point of the scene to the sensor response

in the target pixel. They do not represent light rays. The target pixel should only receive

the contribution (thick red arrow) from the target scene point (marked with an X sign).

However we can see how all points in the camera’s field of view, as well as those out of the

field of view, contribute to the target pixel’s response. If the target scene point is dark,

and other scene points are very light, their contributions are very significant compared with

the contribution of the target scene point. Therefore the target pixel’s response is wrongly
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increased.

Consequently, the way the camera responds to light (i.e. the shape of its CRF ), is

different depending on the content of the scene. Thus, we can conclude that there is not a

single CRF for a single camera. In other words, the CRF of a camera is scene-dependent.

To demonstrate this, we prepared 3 scenes with different veiling glare conditions (see figure

5-4).

Figure 5-4: Scenes captured with different veiling glare conditions to test the influence of
this phenomenon in the calculation of CRF. From left to right, scenes 1 to 3.

Scene number 1 had a very unfavorable veiling glare condition, with a powerful light

source included in the scene, directly pointing towards the camera. Scene Number 2 was

also unfavorable regarding veiling glare, but not as bad as scene number 1, since the light

source was right out of the camera’s field of view. Scene number 3 was rather favorable in

terms of veiling glare, since we switched of the light source. We included a color checker in

the scenes with a 6 patches grayscale, and used the camera responses in these patches to

estimate the CRF in the three conditions. Figure 5-5 shows the resulting CRFs. Both axes

are in logarithmic scale.

We can see the different shapes of the CRFs obtained for the different veiling glare

conditions. This fact is a problem for HDR imaging. No matter how good the quality of

our optics is, we can not completely get rid of the veiling glare effect. In this work, we have

not considered correcting the effects of veiling glare (like they propose in [173] using some

complex and not really practical system set up). We assumed that the imaging conditions

are not so extreme so that the CRF curves measured for the different apertures hold for

all the images captured. The CRF curves fitted from the measured data for the different

aperture settings are shown in figure 5-6.

In figure 5-6 we can appreciate a clear linear behavior in the CRF curves. We used the

CRF corresponding to the aperture number in the capture to estimate the HDR radiance
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Figure 5-5: CRFs estimated for our camera using three different scenes with distinct veiling
glare conditions, from very unfavorable (scene 1) to favorable (scene 3).

Figure 5-6: 12 bits Camera Response Functions (CRF ) for different apertures settings. Both
axes are displayed in logarithmic scale. Only the sensor response range above noise floor
and below saturation is shown. X axis in (𝑊 · 𝑠/𝑠𝑟 ·𝑚2) and Y axis in digital counts.
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map. We checked this absolute radiometric calibration including some gray patches in

different scenes and measuring its integrated radiance with a spectroradiometer. The results

are shown in figure 5-7.

Figure 5-7: Comparison between radiances measured with the spectroradiometer and estim-
ated from the HDR radiance map. The vertical axis is in logarithmic scale.

We can observe how the estimation of HDR radiances is reasonably close to the measure-

ments done with the spectroradiometer. Therefore we conclude that, for scenes where the

veiling glare condition is not very unfavorable, the HDR radiance map built is acceptably

similar to the real radiances we can measure using a spectroradiometer.

The last part of the radiometric calibration consisted in identifying which pixels of the

sensor were considered as hot pixels. These pixels produce a very high response even in

darkness condition. This high response depends on the exposure time and temperature

among other factors. We considered hot pixels those which average sensor response exceeded

5% of the dynamic range of our camera, or 205 digital counts, when we averaged 10 images

with the aperture closed and 50 ms or higher exposure time. We stored the pixel coordinates

of such pixels in order to make their impact negligible in the AEE method during the capture.

Since the response of these pixels is not relevant, we located them in every captured

image and interpolated their pixel values by the mean value of their closest 8-neighbors. We

found 35 hot pixels in total (less than 0.003% of the pixels contained in a captured image).

However, since depending on the settings, the AEE algorithm might keep on looking for
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new exposure times until every pixel is correctly exposed in at least one shot, it is important

to account for them in order to mitigate the impact of these pixels and achieve convergence.

5.1.2 Spectral Calibration

The camera spectral responsivity 𝑅(𝜆), as well as the spectral transmittances of the dif-

ferent tune modes of the LCTF (weighted by the IR cut-off filter spectral transmittance)

𝑇𝑖(𝜆), and the Spectral Power Distribution (SPD) of the lamp 𝐿(𝜆) were measured using

the spectroradiometer previously mentioned, and a monochromator. The members of the

Horiuchi & Hirai’s laboratory performed these measurements and provided us with all the

data. All these spectral measurements are used during the capturing process explained in

section 5.2.

5.2 Image capturing

Our imaging device includes a 12-bits CCD monochrome camera (QImaging Retiga SRV

1200) with hot mirror attached, and a LCTF model Cambridge Research Instruments VIS

10− 20 (see figure 2-13).

We illuminated the scenes using a 500 watts incandescent lamp. Thanks to the polar-

izing properties of the LCTF technology [195], we can capture images at different linear

polarization angles just by rotating the LCTF along its optical axis. For a more detailed

explanation about the capturing system see [179]. A work-flow diagram for the capture

process is shown in figure 5-8.

As explained before, we selected the exposure times needed to capture each spectral

band using the AEE method described in chapter 4. This method had been tested so far for

color RGB camera (Canon EOS 7D) and also for a monochrome camera (Qimaging Retiga

SRV 1200). Both cameras were capturing all their spectral channels (3 and 1 respectively)

in a single shot. Thus, we needed to adapt the method for the first time to a multispectral

imaging system, which takes one shot to capture each spectral channel. We therefore run

the AEE method for each individual spectral band.

As explained in chapter 4, the AEE method only needs as input one initial exposure time

value. This value only has to accomplish one condition: at least some pixels of the resulting

image must be properly exposed (i.e. neither below noise level, nor above saturation level).
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Figure 5-8: Work-flow diagram of the capture process.

For this first shot of each band, due to the wide differences for different spectral bands in

the spectral responsivity of the sensor, the spectral transmittances of the LCTF and the

SPD of the light, the exposure time value that accomplishes the mentioned condition for a

spectral band (e.g. 550 nm), does not accomplish it for a different spectral band (e.g. 400

nm or 700 nm). This fact makes it necessary to determine the initial exposure time value

to run the AEE algorithm in each spectral band.

Our idea was to select a valid initial exposure time in the spectral band we usually use

to point and focus the imaging system (550 nm since is the central band in the range from

400 nm to 700 nm). Once we chose this exposure time value, the AEE could run for this

band. Afterwards, for each of the remaining spectral bands, we calculated a new initial

exposure time value by using a weighting function. This function was derived from the

product of the relative weights of spectral responsivity, SPD of light and the integral of the

spectral transmittance of each mode of the LCTF multiplied by the IR cut-off filter used.

The resulting relative weighting function is plotted in figure 5-9.

In order to capture polarimetric information, we rotated the LCTF in front of the camera.

As we assumed unknown the directions of maximum and minimum transmission through the

polarizer, we make the capture in four relative rotation angles of the LCTF, which results

in the 4 relative polarization images:
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Figure 5-9: Weighting function used to scale the initial exposure time values to run the AEE
algorithm in each spectral band. Values around [560 nm, 600 nm] are non-zero values.

∙ 0∘ 𝐼(𝜆, 𝜃)

∙ 45∘ 𝐼(𝜆, 𝜃) + 45∘

∙ 90∘ 𝐼(𝜆, 𝜃) + 90∘

∙ 135∘ 𝐼(𝜆, 𝜃) + 135∘

Each of these images is a HDR image built from several LDR images captured with

different exposure times. In section 5.5 we explain how to calculate the DoLP map out of

these 4 polarization images.

5.3 Image pre-processing

There are three pre-processing steps in our proposed pipeline, which are applied to the

MSLDRPol cubes resulting from the capture process: dark image subtraction, HDR image

building and polarimetric registration (see figure 5-10). We explain them in the following

subsection.

Once the capture is finished, for each spectral band and polarization angle, we get

a set of images captured with different exposure times. The number of images for each

spectral band and polarization angle would depend on the dynamic range of the scene we
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Figure 5-10: Work-flow diagram of the whole image processing pipeline from the captured
images to the final classification step.

are capturing, as well as the parameters we set for the AEE method, and the capturing

device responsivity. Since our AEE parameterization was configured to get MIBS (i.e. the

set of different exposure times needed to capture correctly every point of the scene with the

lowest number of shots), we obtained from two to three images per band and polarization

angle.

5.3.1 Dark subtraction

As it usually happens in most digital imaging systems, there are some sources of noise which

make the sensor yield a non-zero response even in the absence of light a signal [182, 24]. The

impact of this dark noise component can be reduced by subtracting black images from the

different images captured from the scene. These black images are captured using the same

exposure times as the scene images, but the aperture of the camera is completely closed.

For each exposure time value used during the capture of all LDR images, ten black images

were captured and averaged (in order to reduce noise). Afterwards, and before the next step

of building the HDR images, these averaged black images were subtracted from every LDR

image captured.
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5.3.2 HDR image building

Once the values of the hot pixels are corrected (as explained in section 5.1.1) and the dark

noise is subtracted from every LDR image, we are ready to build the HDR image of each

spectral band and polarization angle. We did so using equation 5.1, previously used in

[26, 155].

𝐸 ′𝜆𝜃(𝑥, 𝑦) =
∑︀𝑁

𝑛=1 𝜔(𝜌𝑛𝜆𝜃(𝑥,𝑦))·
𝐶𝑅𝐹−1(𝜌𝑛𝜆𝜃(𝑥,𝑦))

Δ𝑡𝑛∑︀𝑁
𝑛=1 𝜔(𝜌𝑛𝜆𝜃(𝑥,𝑦))

(5.1)

This equation is similar to equation 4.7 shown in chapter 4. However now we have added

the subindex 𝜃, which is the polarization angle index. The weighting function (𝜔) used is

the one shown in figure 4-10.

5.3.3 Polarimetric registration

Once the HDR images were built for each spectral band, and each polarization angle, we

checked for misalignments between different bands and polarization angles within each band.

We found no noticeable misalignment between spectral bands. This is in all likelihood

happening because the depth of field was larger than the longitudinal chromatic aberration

in our capturing conditions. Thus, there was no need for registration among different bands

captured with the same polarization angle.

However we did find misalignment between the images corresponding to different po-

larization angles for a given spectral band. Apparently, the manual rotation of the LCTF

introduced small translations of the images. Thus, we had to perform image registration.

Since all spectral bands were correctly aligned for each polarization angle individually, as

long as we could find the transformation needed to align the four polarization images for one

spectral band, we could apply the same transformation to every spectral band. These mis-

alignments could cause future inaccurate results in the metal-dielectric classification based

on polarimetric images. The difficulty in this step lies in the fact that the images we are

going to align are already HDR images.

In figure 5-11, we show some of these misalignments. We captured some test scenes

including objects covered with a chessboard pattern. Each image is an overlay of two

polarization angle images. If the images were perfectly registered (aligned), we would not
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see any color shades, only gray shades. However, the green and purple color shades indicate

that the two overlaid images are not perfectly aligned.

Figure 5-11: Polarization images overlaid of test scene. Image overlay 0∘ over 135∘ for 550
nm. Same results were found for any two of the four polarization angles captured.

Several algorithms have been proposed for the registration of the differently exposed

LDR images before building the final HDR image. Some of them are based in percentile

threshold bitmaps like [192]. Some others are based on SIFT key points extraction like

[174], or novel proposed methods such as optimum target frame estimation [93]. However

all these methods are not applicable for the registration of different HDR images already

built. This is due to the fact that when the HDR images are already built, their pixel values

are too different from the darkest regions to the brightest ones. Key features such as edges

or corners are based in the high contrast between different objects. However, the magnitude

of this contrast is very different for HDR images depending whether we are in a very dark

or a very bright region.

We tried standard feature-based registration methods for estimating the transformation

needed in order to align the HDR images of the 4 different polarization angles. We considered

different types of affine transformations (translation, rotation, scale and shear), as well as

combinations of them, but none succeeded. Therefore we decided to modify the registration

work-flow by including a three-stage pre-processing step before applying the standard key-

point based registration procedure [48, 202].

Our method has three stages:

∙ Stage 1: dynamic range logarithmic compression. We compress the dynamic range
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in logarithmic scale to reduce the large difference between very bright and very dark

regions.

∙ Stage 2: normalization. We scale the image values in the range [0, 1], by subtracting

minimum value and dividing by maximum value.

∙ Stage 3: contrast enhancement. We stretch the contrast of the image so that we allow

5% underexposed pixels and 5% saturated pixels. This way, even if up to 5% of pixel

population is either very bright or very dark, we will still highlight the details in the

middle exposure region.

Figure 5-12 shows a portion of overlay between the polarization images corresponding to

0∘ and 135∘ for the spectral band of 550 nm, before and after pre-processing and registration

are applied. Same results were found for any two of the four polarization angles captured.

Figure 5-12: Image overlay 0∘ over 135∘ for 550 nm. Left: before registration. Right: after
registration.

We see that before registration (left), there are colored bands close to the edges of the

objects and their highlights. This means there is misalignment between the two polarization

images. A similar situation is found for all pairs of images corresponding to different polar-

ization angles. After the registration procedure, we can see in figure 5-12 (right) how the

two images are correctly aligned. So we can conclude that the registration was performed

satisfactorily.

The final transformation found for all images was a translation. The magnitude of this
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translation depended on the scene, ranging from 5 to 15 pixels both in horizontal and vertical

directions.

After all the described pre-processing steps were finished, our MSHDRPol image cubes

were ready to use. These images will be made publicly available in the website of the Color

Imaging Laboratory ([148]), after the defense of this thesis.

We focused our work in two main applications: segmentation and material classification.

For each of those, we concentrated our efforts in trying to overcome the limitations found

in the methods proposed in [179], which is to our knowledge the only reference available

so far which deals with MSHDRPol image cubes for segmentation and material classifica-

tion. We will explain both applications in the next sections. The first one is dedicated to

the segmentation method description and validation experiments, and the next one to the

classification method and its validation experiments.

5.4 Segmentation method and evaluation

The images we are going to capture and process contain common objects present in indoors

scenes, made out of different metal and dielectric materials. The segmentation procedure

we propose is composed of several steps. We used Matlab R2016a for processing the cap-

tured image data. In the pseudo-code of algorithm 1 we describe the different steps of the

segmentation. We explain each of them in the following subsections from 5.4.1 to 5.4.5.

The input to the algorithm is a MSHDRPol cube obtained after applying the pre-processing

method explained in the previous section 5.3.

1: Segment(𝑐𝑢𝑏𝑒.𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙)
2: 𝑅𝐺𝐵1← 𝑚𝑠ℎ𝑑𝑟2𝑟𝑔𝑏(𝑐𝑢𝑏𝑒.𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙)
3: 𝑅𝐺𝐵2← ℎ𝑙𝑟𝑒𝑚𝑜𝑣𝑎𝑙(𝑅𝐺𝐵1)
4: 𝑙𝑎𝑏𝑒𝑙𝑠1← 𝑚𝑒𝑎𝑛𝑠ℎ𝑖𝑓𝑡(𝑅𝐺𝐵2)
5: 𝑐𝑢𝑏𝑒2← 𝑙𝑎𝑏𝑒𝑙𝑠2𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠(𝑐𝑢𝑏𝑒.𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙, 𝑙𝑎𝑏𝑒𝑙𝑠1)
6: 𝑅𝐺𝐵3← 𝑚𝑠ℎ𝑑𝑟2𝑟𝑔𝑏(𝑐𝑢𝑏𝑒2)
7: 𝑙𝑎𝑏𝑒𝑙𝑠2← 𝑚𝑒𝑎𝑛𝑠ℎ𝑖𝑓𝑡(𝑅𝐺𝐵3)
8: 𝑅𝐺𝐵4← 𝑙𝑎𝑏𝑒𝑙𝑠2𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠(𝑅𝐺𝐵2, 𝑙𝑎𝑏𝑒𝑙𝑠2)
9: 𝑙𝑎𝑏𝑒𝑙𝑠3← 𝑚𝑒𝑎𝑛𝑠ℎ𝑖𝑓𝑡(𝑅𝐺𝐵4)

10: 𝑙𝑎𝑏𝑒𝑙𝑠𝑓𝑖𝑛𝑎𝑙← 𝑚𝑒𝑟𝑔𝑒𝑟𝑒𝑔𝑖𝑜𝑛𝑠(𝑙𝑎𝑏𝑒𝑙𝑠3)
11: return 𝑙𝑎𝑏𝑒𝑙𝑠𝑓𝑖𝑛𝑎𝑙

Algorithm 1: Segmentation algorithm

Our proposed segmentation method involves sequential application of the mean-shift
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algorithm [19, 22], together with the clustering of all pixels belonging to the same superpixel

after a mean shift iteration is applied. Each time we apply a new iteration of mean-shift,

we reduce the number of superpixels in the pre-segmented image.

We first produce a usable RGB image from the original cube with highlights removed

(see subsections 5.4.1 and 5.4.2). Afterwards we apply mean-shift to get an initial crude

estimation of labels for the different regions (see subsection .5.4.3). Later on, we use the

original spectral cube and these labels to perform an initial clustering of superpixels data.

From here on, we use only the RGB image of this initial clustering to further apply mean-

shift and clustering to obtain a second set of more refined labels (see subsections 5.4.3 and

5.4.4). These labels are finally segmented and merged (see subsection 5.4.5) to obtain the

output of the segmentation algorithm.

5.4.1 RGB image from spectral HDR image cube (mshdr2rgb)

This function receives as input a HDR multispectral image cube and uses the CIE 1931 Color

Matching Functions ([118]) to get a HDR XYZ image, which afterwards is transformed into

RGB color space. Later on we perform a tone mapping to get finally a LDR RGB image.

The tone mapping includes logarithmic compression, normalization, contrast enhancement,

histogram equalization and saturation boost. In figure 5-13 we can see an instance of the

output RGB1 image for one of the scenes.

Figure 5-13: RGB1 (see algorithm 1) image rendered after a HDR multispectral cube using
function mshdr2rgb in algorithm 1.
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5.4.2 Highlights removal (hlremoval)

This function receives an RGB image containing objects with highlights, and returns another

RGB image where the highlights are reduced or eliminated. This is done by computing the

negative of the image (for an 8 − 𝑏𝑖𝑡𝑠 image: 𝐼𝑚𝑎𝑔𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 = 255 − 𝐼𝑚𝑎𝑔𝑒). Then we

perform a morphological operator called region filling ([168]) to the negative image, and

finally calculate again the negative of the filled image. Figure 5-14 shows the RGB1 image

for one scene and the resulting RGB2 image after removing highlights. It is important to

note that we remove the highlights to help in the segmentation task. As we will explain in

subsection 5.5, we will use the information in the highlight regions for this task, getting it

again from the original pre-processed images (cube.original).

Figure 5-14: Left: RGB1 image rendered. Right: RGB2 image after highlights removal.

5.4.3 Mean shift

This function receives as input and RGB image and returns a label image. A label image is

an image where each pixel value corresponds to a label. Mean shift algorithm ([19, 22]) is a

pre-segmentation performed to find areas of the image where the pixels have similar values,

and group them together under the same label. This cluster is often called superpixel.

5.4.4 Labels to clusters (labels2clusters)

Once the label images are generated, we can use a multispectral image cube or a RGB image

to average the pixel values in each spectral or color channel in order to generate a new cube
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or image which is much more simple than the original one. This is what this function does.

It receives a labels image and an original image (color or multispectral), and returns an

image of the same kind of the original, where the pixel values for those pixels under the

same label (belonging to the same superpixel) are the same. This value is the average of all

pixels in the same superpixel.

This new image can in turn be an input for a new mean shift iteration. In figure 5-15,

we can see an RGB renderization of one of the highlights-removed images (RGB2 ), and the

resulting RGB image (RGB3 ), after applying the first mean shift iteration.

Figure 5-15: Left: RGB2 image after highlights removal. Right: RGB3 image after the first
iteration of mean-shift and labels2clusters processing.

The performance was found to be better if we apply labels2clusters method using the

label images and the spectral cubes in the first iteration, and then the label images and

the RGB highlight-removed rendered image for the second iteration. The reason why we

use first the spectral cube (cube.original) and second the RGB image (RGB2 ) to perform

the labels2clusters method is that when the image is still rather complex, averaging spectral

information produces a better input for the next step. However once the second mean-shift

iteration has been performed, the RGB images are already simpler, yielding satisfactory

results. Thus we do not need to use the spectral cubes anymore. This way we can save a

step of mshdr2rgb method.

5.4.5 Region merging (mergeregions)

After mean shift is applied and we have used the label image to cluster regions in our image,

we tried to reduce the number of clusters as much as possible, yet keeping the different objects
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apart both from each other and from the background. We then apply an iterative region

merging process which consists in the following steps. First of all we find the background,

assuming it is the region with the biggest pixel area. We know that this might not occur in

some cases where there is a very large and homogeneous object in the scene. However for

the general case this condition worked fine. Afterwards we compute the adjacency matrix

of the label image ignoring the background. This means that any region adjacent with the

background would account as no adjacent, since we will never want to merge any object with

the background. Once we have the adjacency matrix, we compute a dissimilarity matrix.

We treat the image as a graph, in which the weight (𝜔𝑖,𝑗) between nodes 𝑖 and 𝑗 is ∞ for

non adjacent regions, and calculated as shown in equation 5.2 for adjacent regions.

𝜔𝑖,𝑗 =
√︁∑︀𝐾

𝑘=1(𝜌𝑘,𝑖 − 𝜌𝑘,𝑗)
2 (5.2)

where 𝐾 is the number of color or spectral channels, and 𝜌𝑘,𝑎 is the average sensor

response for image channel 𝑘 and region 𝑎. The fourth step is thresholding the dissimilarity

matrix. Those regions which dissimilarity lies below a threshold value found by trial and

error to be convenient for all our scenes were merged. Merging two regions means computing

the average sensor response values for each channel and giving the same label to both of them.

Therefore after each merging, we recomputed the adjacency and dissimilarity matrices again.

This iterative process goes on until there are no adjacent regions for which dissimilarity

metric falls below the threshold. In figure 5-16, we can see a false color labels image before

and after applying the region merging. We can see how the number of regions in the image

was reduced from 36 to 8.

Figure 5-16: Left: Grayscale labels image before region merging (36 regions). Center: labels
after thresholding with 𝑡ℎ = 60 (15 regions remaining). Right: labels after thresholding
with 𝑡ℎ = 120 (8 regions remaining).
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In this scene, the optimal number of regions would be 6 or 7. They would correspond

with the 4 objects, the ground, and the wall (divided in two sides by the top-most object).

We are reasonably close to this number using a threshold value of 120. Increasing this value

would make the walls merge with the top-most object.The threshold value used performs

reasonably well even with the residual highlights or shadows remaining in the scene after

the previous steps.

In general, a threshold value of 120 performed rather well for all scenes tested. However a

fine adjustment of this value would increase the performance of the segmentation for certain

scenes.

5.4.6 Evaluation of segmentation procedure

In order to evaluate our segmentation results, we need to compare them with a reference

segmentation or ground truth. For this purpose we segmented manually the images captured

(see figure 5-17), with the help of a graphical user interface ([169]). We considered this

segmentation as a perfect segmentation, and then compared how close our segmentation

was from this ground truth (see figure 5-17). We considered to be background whatever was

not an object in the scene.

Figure 5-17: Top row: RGB renderization of original spectral cubes. Bottom row: bench-
mark manually segmented. From left to right, scenes from 1 to 5.

The figure of merit we used for evaluation was the Jaccard’s similarity index [60, 154, 153].

This metric measures the similarity between finite sample sets. It is defined as the size of

the intersection between sets divided by the union of these sets. In our case, we use it to

compare the benchmark labeling and the automatically segmented labeling for each scene.

It is a measure of how much each labeled object overlaps with its ground truth labeling. A
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Jaccard’s index value of 100% would mean a perfect match, while the lower this value is,

the more dissimilar the two segmentation results would be.

In order to compare our segmentation with that proposed in [179], we also used Ncut

algorithm with the RGB highlights removed images (RGB2 ) of the scenes captured. Besides,

we included a third widely used image segmentation method implemented in most image

processing toolboxes, like Matlab. This method is called Watershed (WS ), and it is based

on morphological Watershed transforms, embodying edge detection, thresholding and region

growing [8]. Table 5.1 shows the Jaccard index values for the five scenes captured and

segmented using the three methods.

Table 5.1: Jaccard index values of the five scenes captured and processed for the three
segmentation methods compared.

Scene 1 2 3 4 5

Our method 92.49% 87.62% 91.99% 95.23% 90.82%
Ncut 81.11% 84.72% 52.94% 90.01% 39.01%

Watershed 59.61% 71.85% 52.77% 54.41% 35.20%

We can see how, scene-wise, the smallest improvement of our proposed method is 2.9%

better than Ncut, which we could consider almost negligible, and 15.77% better than Wa-

tershed. The largest improvement is 51.81% from Ncut and 55.62% from Watershed. If we

average results, we find that our proposed method yields a mean segmentation accuracy of

91.63%, while Ncut method yields a mean accuracy of 69.56% and Watershed of 54.77%.

That means that applying our method resulted in a relative 31.73% increase in segmentation

accuracy from Ncut, and 36.86% from Watershed.

5.5 Classification method and evaluation

When dealing with the classification problem, we based our work in the method used in

[180, 179], that uses the DoLP map curvature around the highlights. The DoLP map

is computed from the four polarization angles images. Using these four images, we can

calculate the Stokes parameters images ([14]), as well as the DoLP map for wavelength 𝜆

using the following equations:
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𝑆0(𝜆, 𝜃) = 𝐼(𝜆, 𝜃) + 𝐼(𝜆, 𝜃 + 90∘) (5.3)

𝑆1(𝜆, 𝜃) = 𝐼(𝜆, 𝜃)− 𝐼(𝜆, 𝜃 + 90∘) (5.4)

𝑆2(𝜆, 𝜃) = 𝐼(𝜆, 𝜃 + 45∘)− 𝐼(𝜆, 𝜃 + 135∘) (5.5)

𝐷𝑜𝐿𝑃 (𝜆) =

√
𝑆1(𝜆,𝜃)2+𝑆2(𝜆,𝜃)2

𝑆0(𝜆,𝜃)
(5.6)

In [180, 179], they classified the objects into metal and dielectrics by studying an area of

9 x 9 pixels centered in the brightest point of the highlights, detected by simple thresholding

in the luminance image. Then the curvature along the direction of maximum variation of the

DoLP surface was computed. According to the sign of this curvature (which indicates if the

surface is concave or convex), the object can be classified into metal or dielectric material.

When we implemented this method, we found some difficulties in the calculation of this

magnitude. Sometimes, the shapes of the highlights and the DoLP maps are not regular

or rounded, but rather spiky and having elongated or non-rounded shapes. In these cases,

calculating the curvature in both the direction of maximum variation of the DoLP map

or even the direction of the highlight in the HDR image, was not yielding satisfactory

classification results. We even tried studying the mean curvature along all directions around

the brightest point, but results were still poor.

In figure 5-18, we can see two examples of DoLP map surfaces together with their

corresponding HDR image areas and highlight surfaces. Both these highlights belong to two

different metal objects. However, using the curvature of the DoLP map resulted in wrongly

classifying one of these two objects as a dielectric. With this kind of DoLP pattern (with

the brightest point in the middle of a ramp-like surface), the curvature varies quite a lot

depending on the direction we choose. We found this pattern rather often, and not only in

objects presenting elongated highlights.

We propose a new method of material classification based on the DoLP maps which

consists in thresholding a ratio between the DoLP values within the highlight and in the

surrounding area (see figure 5-19). Equation 5.7 shows how to calculate this DoLP ratio

(𝑅) value for each highlight. 𝑁 is the total number of pixels in the highlight central area.

𝑀 the total number of pixels in the diffuse surrounding area. 𝛿ℎ𝑙𝑛 is the DoLP value in pixel

𝑛 of the highlight area and so 𝛿𝑠𝑢𝑚 is the same for the surrounding area. As we can observe,
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Figure 5-18: Example of two HDR highlight surfaces (left) of a metal object. DoLP surfaces
(center) and 550 nm band images (right). The brightest point is highlighted with a red mark
on the surfaces. Both are metallic objects. The top example is correctly classified as metal,
but the bottom example is wrongly classified as a dielectric.

𝑅 just a ratio of average DoLP values in the two areas.

𝑅 =
∑︀𝑁

𝑛=1 𝛿
ℎ𝑙
𝑛∑︀𝑀

𝑚=1 𝛿
𝑠𝑢
𝑚

· 𝑀𝑁 (5.7)

We keep a safe zone between these two areas to avoid including pixels of a highlight area

in the computation of the surrounding area or viceversa. The central and surrounding areas

are selected via a double region growing morphological image processing operator ([132]),

around the brightest points of each detected highlight. We used a disk-shaped growing

element of radius 5 two times consecutively. First we grow to get the safe area out of the

central area, and then we grow once more to get the surrounding area. Afterwards we just

subtract both to end up with the ring-shaped surrounding area. We can see an example of

this in figure 5-19.

On the left side we have a zoomed-in area of the image, which contains a highlight. The

central region of the highlight (which sensor responses are in the numerator in equation 5.7)
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is shaded in green color. The surrounding area of the highlight (which sensor responses are

in the denominator in equation 5.7), is shaded in blue color. Between both regions, there is

a safe area shaded in white color.

On the right side se can see all the highlights detected for one of the scenes. In each

of them we see both the central and surrounding regions, as well as the value of the DoLP

ratio (𝑅) calculated for each highlight and the class assigned automatically to it.

Figure 5-19: Example of highlight detected. The central area is shaded in green color, and
the surrounding area in blue color. The green numbers are the 𝑅 ratio of each highlight cal-
culated as shown in equation 5.7. The reference white patch was included just for monitoring
the illuminant.

Once the ratios for all the objects included in our scene set are computed as shown in

equation 5.7, we noticed that their values for metal objects were lower than for dielectric

objects. Thus, our idea was to make a thresholding of this ratio value to classify each

highlight. In order to find an optimal threshold value, we proposed to use a set of highlights

with known labels (training set). For this set, the optimal value is found by brute force

approach in a fast and easy way. Once we find the threshold value yielding the highest

classification accuracy for the training set, we compute its percentile value for the whole

distribution of ratio values in this set. Afterwards, when we get a set of test highlights, we

can compute the optimal threshold value using the same percentile with the new distribution

of ratio values and check the classification accuracy for validating our proposed method.

In figure 5-20, we see another example of scene with the highlights automatically detected
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and classified. On the left side we see the results of our proposed method using a threshold

value of 1.2 (which was optimal for this particular scene). However, as we explain in section

5.5.1, the optimal threshold value found for all scenes tested is 1.5. Therefore, using this

global optimal value, highlight number 4 would be misclassified as a metal. On the right

side we see the result of applying the method used in [179], where highlight number 4 was

also misclassified.

Figure 5-20: Example of highlights detected (green) and their surrounding areas (blue) in
scene 2. Each highlight is automatically classified as metal (M) or dielectric (D), according
to its ratio value (green text under each highlight). Left: proposed method using a threshold
value of 1.2. Right: method in [179].

5.5.1 Evaluation of classification method

We have created a benchmark dataset of manually classified highlights detected in the scenes.

After running the automatic classification using our proposed method (explained in subsec-

tion 5.5), and the method proposed in [179], we compared their respective classification

accuracies.

We randomly divided the full highlights data set (72 highlights from 10 scenes captured

only in the spectral band of 550 nm) into two halves. One of them was the training set, and

the other one the test set. In the training set, we looked for the optimal threshold value by

a brute force approach. We tested all threshold values from 0 to 4 by steps of 0.1. In figure
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5-21, we can see the classification accuracy in the training set for each threshold value.

Figure 5-21: Classification accuracy vs threshold value for training set.

As we can see, the optimal threshold value calculated was 1.5 with an maximum accuracy

of 88.57% for the training set. Since we divided the data set into train and test sets randomly,

different instances of this process yielded different overall classification accuracies. After 20

trials, we found that the same threshold value was estimated in all of them.

Applying this threshold value for the classification of the test sets, gave us accuracy values

ranging between 86.11% and 91.89%. The mean accuracy for the 20 trials was 89.19%. As

an overall accuracy for the whole data set, using a threshold value of 1.5, we got a 90.28%

classification accuracy. In figure 5-22, we see all the highlights in a cloud of points relating

DoLP ratio and radiance of brightest area in each highlight. The threshold value found as

optimal for the full set is drawn in green color.

On the other hand, using the classification method in [179] based on curvature of DoLP

map, we got a total accuracy of 66.67% for the full set. We found that this method was failing

to classify most objects for which the brightest point in the highlight did not correspond

to a local maximum or minimum in the DoLP map. On the other hand, a fair comparison

should mention that this method does not require for a training set.

In general, using our method we also observe that the classification accuracy for the

dielectric objects is lower (77.42%) than for the metal objects (95.12%). In other words, the
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Figure 5-22: DoLP ratio vs HDR Highlight radiance for the whole data set of highlights.
Red: dielectric objects. Blue: metal objects.

number of false positives in the metal class (classifying a dielectric as a metal) is 28.52%,

and the number of false positives in the dielectric class (classifying a metal as a dielectric)

is only 4.88%. This could be due to the fact that dielectric objects are from very different

base materials (plastics, ceramics, etc, which can also be coated). Thus they behave in a

more heterogeneous way in terms of DoLP ratio than metals.

Finally, if we only consider the results of the five scenes which were used as well in the

segmentation procedure, we get a global classification accuracy of 90.91%. Therefore for the

full framework, and in realistic conditions, we would get roughly more than 9 out of every

10 objects correctly classified.

We have seen how for the segmentation method, the full set of multispectral images has

been used during the procedure. However in the classification method, only one spectral

band was used. We found the best candidate spectral band for classification to be 550 nm.

Besides, the responsivity of the capturing system is highest in this band, thus reducing the

exposure times needed for the capture. Hence, if only classification of highlights is going to

be performed, capturing a single spectral band could be enough to do it.
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5.6 MSHDRPolVISNIR outdoors

The full method proposed in this chapter, for both capturing and processing, and also the

two applications segmentation and object classification, were tested for indoors scenes. The

imaging system, as explained in section 5.2, was a scientific monochrome camera attached

to a LCTF.

We also wanted to test the capturing method in outdoors scenes. Outdoor illumination

might suffer relatively rapid changes as well, which make not convenient the use of an LCTF

to capture the full spectrum of each pixel in an outdoor scene. For this reason, instead

of using the same imaging system, we decided to capture 8-channels images using a filter

wheel camera model Pixelteq Spectrocam VIS-NIR (see figure 3-9). This camera is a 12-bits

monochrome camera attached and synchronized with a 8-slots filter wheel. We chose this

system because a filter wheel camera allows us certain spectral tunability by changing the

interference filters. Compared with the LCTF -based system used in previous experiments,

we lost the easy tunability (changing the interference filters was easy but not to be done

on-line) and the narrow-band filtering, but we gained information in the NIR range of the

spectrum ranging from 700 nm to 1000 nm. Besides, the exposure times were reduced with

respect to any 8 channels of the LCTF configuration, because the filters of the Pixelteq

SpectroCam have wider transmittances. This is another reason for choosing this system for

outdoors scenes.

As this system does not polarize light, we included a linear polarizer in front of it,

attached to a goniometer to control the angle in which we rotate it (see figure 5-23).

In our case we rotated the polarizer manually, but we could consider as well to use a

motorized rotation stage.

5.6.1 Filter selection

The first thing we did was to select the set of 8 filter we were going to use. We were offered

a catalog of 145 commercially available interference filters among which we could choose.

Out of this list we discarded some of them as we will explain later and remained with a set

of 121 candidate filters. In appendix B, we show the filter data we were provided by the

manufacturers of the 121 candidate filters. We were provided with the central wavelength

and bandwidth data of each filer, as well as with the relative spectral responsivity of the
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Figure 5-23: Spectrocam set up used for capturing outdoor scenes with a linear polarizer
attached to a goniometer in front of the camera.

sensor. Therefore, we performed filter selection by simulations. In figure 5-24 we can see

the spectral data we used for simulations.

We simulated camera responses to spectral radiance images, which were computed using

spectral reflectance images of urban scenes acquired using a hyperspectral imaging device

model PhotonEtc. HImager ([28]). Then we divided the spectrum from 400 nm to 1000

nm in 8 different regions (see table 5.2), and tried every possible combination of filters in

which there was only one filter per region. This was done to reduce the huge number of

possible combinations, as well as for ensuring that the whole visible and NIR ranges of

the spectrum were covered with a single 8-channels system with certain overlap between

adjacent bands. In figure 5-25 we show the CIE Lab coordinates for the 2526 reflectances

used. These reflectances were selected by downsampling the full spectral images, in order

to get spectral information from all objects present in the scenes.

Table 5.2: Regions of the spectrum in which we divided it to search a filter in each of them.
Minimum and maximum wavelength of each region

Region A B C D E F G H
Minimum 𝜆 (nm) 400 451 501 551 601 651 701 851
Maximum 𝜆 (nm) 450 500 550 600 650 700 850 1000

The spectral reflectances were in the range [0, 1]. As the reflectances resulting from the

HImager capture are slightly spiky, we did a pre-processing step consisting in smoothing

each of them, using the Matlab function smooth, and a window spanning 5 data points.
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Figure 5-24: Top: spectral responsivity of Spectrocam sensor. Bottom: spectral transmit-
tances of the 121 commercially available filter candidates.

Figure 5-25: CIE Lab coordinates of the 2526 spectral reflectances used for the simulation
of camera responses for filter selection. Left: 𝑎* − 𝑏* plot. Center: 𝐿* − 𝑎* plot. Right:
𝐿* − 𝑏* plot.
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As the imaging system allows us to choose a different exposure time for each spectral

channel, we scaled the sensor responses for each channel so that the response for the whitest

pixel (that of highest integrated radiance), was 100 of the dynamic range (meaning 4095

digital counts for 12 bits). This does not ensure the lack of saturated or underexposed pixels,

but yielded a good average of less than 2 of sensor responses not properly exposed (very

bright or very dark ones).

From the list of 145 candidate filters, we discarded several of them since their bandpass

were so narrow that the exposure time needed to be very long as the incoming signal was

too low on the sensor. Every filter with FWHM lower than 20 nm was discarded. We also

discarded those filters with similar FWHM, if their maximum transmittance wavelengths

were closer than 5 nm to another similar filter. So after this purge, 121 candidate filters

were remaining.

We tried all possible combinations of 8 channels in which only one channel has its max-

imum responsivity in each of the 8 spectral regions. This way, we ensure that the whole

spectral range is covered without leaving any gap in every combination tested. There were

a total of 54432 combinations tested (before discarding some filters the possible combina-

tions were several hundred billions). For each combination, the 2526 samples’ reflectances

were recovered using a double 10-folds cross-validation method and logarithmic kernel-ridge

regression method. This way we ensured that the samples used for optimizing the regulariz-

ation parameter of the logarithmic kernel regression method, were never used for evaluating

its performance ([31]). The samples were previously randomly scrambled to ensure similarity

in the statistical distribution of each fold.

Since some previous trials showed in the error surfaces that the optimal parameter found

was pretty stable for all folds of the inner loop, the search for optimal parameters was done

using only the following 4 possible values: [10−4, 10−3, 10−2, 10−1]. In every outer iteration,

the mode of the 10 inner 10-folds iterations was chosen as optimal parameter. We chose the

mode instead of the mean because since we are dealing with different orders of magnitude,

sometimes we found that one or relatively few outliers could bias the mean calculation

towards a non-optimal value.

The parameter optimization was done according to minimal RMSE over the whole spec-

tral range, since it was found to perform better than using any other error metric as a cost

function. For each filter combination we compared RMSE, GFC and CIEDE00 color differ-
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ence with the original reflectance signals. Then the combinations that yielded best RMSE,

GFC and CIEDE00 results were chosen. We can see in table 5.3, the central wavelength

and FWHM of the best performing filter combinations.

Table 5.3: Central wavelengths (𝜆) and FWHM of the filter combinations found to yield
best color and spectral metrics. All data given in nanometers.

Best RMSE Best GFC Best Δ𝐸00

𝜆 FWHM 𝜆 FWHM 𝜆 FWHM
425 50 425 50 425 50
482 56 482 56 482 56
555 50 530 24 530 24
615 100 570 50 555 50
680 50 650 100 606 34
770 102 660 59 660 59
833 125 833 125 833 125
950 100 950 100 950 100

We see in table 5.3 that the filter combinations yielding best RMSE, best GFC and best

Δ𝐸00, are pretty similar. We found during the optimization that in general, using the best

RMSE metric produced the best results. Therefore our selection was the filter set in the

left column of table 5.3. In figure 5-26 we show the real filter transmittances of the selected

filters, measured using spectroradiometer Photo Research PR-745.

Figure 5-26: Spectral transmittances of the 8 filters chosen for the spectral system, measured
using a spectroradiometer.
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5.6.2 Radiometric calibration

We have set up a scene in our lab, containing an X-rite color Checker classic with 24 color

patches. The target was illuminated with a 500W incandescent lamp with an angle of

approximately 45∘. We eliminated all color filters from the Spectrocam. Thus, the images

acquired were monochrome images covering the whole responsivity range of the camera,

roughly ranging from 400 nm to 1000 nm (see figure 5-24, top).

We captured 10 images with each of the following 11 values of exposure time: 0.064 ms,

0.1 ms, 0.5 ms, 1 ms, 5 ms, 10 ms, 50 ms, 100 ms, 500 ms, 1 s, and 2 s. In figure 5-27,

we can see the monochrome images captured with the different exposure times. We skipped

the images captured with 1 s and 2 s because both of them are completely saturated.

Figure 5-27: Monochrome images captured with different exposure times, used to perform
radiometric calibration of the Spectrocam.

As the whole scene was completely static during the capturing process, we consider the

illumination temporally (not spatially) constant over it. In other words, during the whole

capture, the radiance coming from each point of the scene was not changing. We monitored

it by measuring the spectral radiances of the 24 patches of the Color Checker twice. Once

just before the image capturing and once just after it. The final spectral radiances used

for the calculations were the average of these two measurements for each color patch. No

significant changes were found in these radiances along time. In figure 5-28, we can see the
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24 radiances measured before (green) and after (red) the image captures and their average

vectors (blue). In all plots, the X -axis correspond to wavelength in nanometers, and the

Y -axis to spectral radiance in 𝑊
𝑠𝑟·𝑚2·𝑛𝑚 . Axis labels and legends were excluded for the sake

of clarity in the plots.

Figure 5-28: Spectral radiances measured for each patch of the Color Checker to check
illumination stability. Green: before the scene capture. Red: after the scene capture. Blue:
average of both measurements.

For each exposure time, the ten images captured were averaged. Besides, also in each

exposure time, 10 dark images were captured with the lens cover on, and averaged in order to

have images with dark signal information. The mean dark image calculated was subtracted

to the mean image, in order to eliminate the dark current noise. These resulting images

were then studied.

We calculated the mean and standard deviation values of the dark images over the whole

image area. The camera captures 12 bits raw image data but we converted it to 16 bits

since we anyway need to use 16 bits data container to store 12 bits image data. We found

that the average dark noise was pretty constant with exposure time, with a value around

2100 DC (3.2% of the entire dynamic range). However the standard deviation did increase

from 50 DC for exposure time values below 100 ms, to 250 DC for the 2 seconds exposure

time.
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Once the images were averaged for each exposure time and the dark images were sub-

tracted, we retrieved the sensor responses corresponding to each of the 24 color patches.

We did it averaging an area of 22 × 22 pixels in the center of each color patch (roughly

the area seen by the spectroradiometer (PR) with the aperture of 0.2 degrees at the same

distance than the camera captured the images). We assumed that the areas seen by the

PR in the 24 color patches and the areas averaged to retrieve camera sensor responses in

each color patch were roughly the same in size and place. We plotted these average sensor

responses versus exposure time (for each color patch), and versus pseudoexposure (product

of integrated radiance times exposure time).

In figure 5-29, we see the sensor responses in 16 bits for the 24 color patches with the

different exposure times. We can observe how the behavior of the camera is rather linear

with exposure time for each individual patch (same radiance). In the left-side axis we plot

the first 12 color patches and in the right-side the last 12.

Figure 5-29: Camera responses in 16 bits digital counts versus exposure time in milliseconds
Left: first 12 color patches of the color checker. Right: last 12 color patches of the color
checker.

As we could expect, the sensor responses are linear with exposure time, and the slope

of this function is the same (lines are parallel) for every different integrated radiance (color

patch) within the scene. However, in order to say that our camera is linear, it would no

be enough to check its response versus exposure time only. Therefore we also have to

check how the camera responds to the amount of light impinging on the sensor. For this

purpose, in figure 5-30 we plotted the product of integrated radiance times exposure time

(pseudoexposure) in the X-axis. We have included the complete cloud of points, but we

used different marker shapes for the data corresponding to different exposure times, to see

how they distribute. The final shape of the cloud of points, is what Debevec and Malik [26]
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call the CRF. In this case, it is an absolute CRF, since the X-axis is composed by absolute

values of time and radiance.

We have linearly fitted the cloud of points (red line in the plot). We cropped those values

below 3300 DC (approximately around 5% of the dynamic range) and above 62300 DC

(approximately around 95% of the dynamic range). We consider the former underexposed

(dark noise) and the latest saturated. Thus, for all our calculations, we will not consider

those pixel values out of the linear range of the CRF. If some pixels have values below this

linear range, the AEE algorithm will search for a longer exposure time. If on the other hand

some pixels have values above the linear range, the AEE algorithm will search for a shorter

exposure time. The fitted linear CRF is the one we used for the HDR capture using AEE

method (see chapter 4) and for building the HDR radiance maps (see equation 5.1). The

weighting function (𝜔) used for building the HDR images, was the 16-bits version of the

one shown in 4-10. As we see, this function has a range in which its values are 1. If we

make this range to match the linear range of the calculated CRF, then we will ensure that

those values we considered underexposed or saturated will not be taken into account when

building the HDR image.

Figure 5-30: Absolute CRF measured for the Spectrocam, and linear fit used for HDR
capture with AEE and HDR image building.
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5.6.3 Scenes captured

Once the camera was calibrated, we captured several MSHDRPol images of outdoor scenes

using the same method explained in section 5.2. Afterwards we also processed them using the

method explained in section 5.3. For this camera, we did not need to perform any registration

though, as we found no misalignments between different spectral bands or polarimetric

angles. The rest of the processing done after capturing and before the MSHDRPol images

were ready was the same.

We captured a set of 8 scenes. Since the images captured were multispectral, including

the visible and NIR ranges of the spectrum, we can call these images MSHDRPolVISNIR

images. The whole set of images after pre-processing will be made publicly available at our

Lab’s website ([148]) after the defense of this thesis.

In figure 5-31, we can see a false RGB version of the 8 images captured rendered just for

displaying the content of the scene. As these images were HDR, polarimetric and multis-

pectral images, we built for displaying a tone-mapped version of the 0∘ polarization angle

taking channels number: 5, 3 and 1 as red, green and blue color channels respectively.

Figure 5-31: False RGB tone-mapped image renderizations from the MSHDRPolVISNIR
images captured from outdoors scenes. Scenes are numbered from left to right and from top
to bottom from 1 to 8.

As we can see, the scenes contain elements commonly present in urban scenes, like:

buildings, vehicles, ground, sky and cars. Each of these classes is rather heterogeneous.

For instance if we study the class ’vehicle’, we can see how these objects include metal,

glass, tires and plastics. This fact makes the application of segmentation or classification
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techniques based only in spectral information potentially more complex.

To illustrate of how big the amount of information of one of these images is, compared

with the amount of information of a monochrome image of the same size, we have designed

figure 5-32.

Figure 5-32: Scheme of one multispectral HDR polarimetric visible and NIR image. Each
image plane is equivalent to one 12-bits LDR image captured.

In figure 5-32, we have made a spatial 3D composition of the LDR images captured for

a single scene and exposure time set. In columns we have all spectral band images for the

same polarimetric angle, and in different rows the different polarization angles. Note that

the third dimension in this figure corresponds to the differently exposed images captured.

In general, for the scenes captured, the AEE algorithm always needed 3 different exposures

per band and angle. However this number can vary depending on the content of the scene

and also on the settings used for the AEE algorithm. The different false colors given to the

images are just for reference. Note also that the first 6 channels cover the visible range of

the spectrum (roughly from 400 nm to 700 nm), and the last two channels the NIR portion

of the spectrum approximately from 700 nm to 1000 nm. Each of these MSHDRPolVISNIR

images was approximately 300 Mega-Bytes in size.
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Some of the benefits of the captured images are shown in the following figures. First of

all, in figure 5-33 we can see the comparison between a normal LDR spectral image (left),

and its tone-mapped HDR version (right). They are captured in the spectral band centered

in 555 nm with a bandwidth of 50 nm, with polarization angle 0∘. We can see how on

the LDR image, the details in the bright and dark areas are saturated and underexposed

respectively. Conversely, in the HDR image, no details are lost. This trend was found for

all spectral bands and polarization angles.

Figure 5-33: Grayscale images of scene 1 (see figure 5-31) captured at 555 nm with a
bandwidth of 50 nm and polarization angle 0∘. Left: LDR image. Right: tonemapped HDR
image.

Another one of the applications we can use our captured images for, is detecting veget-

ation present in the scenes. We can do it by just calculating a simple ratio image as shown

in equation 5.8.

𝐼𝑅𝑎𝑡𝑖𝑜 =
𝐼833𝑛𝑚
𝐼615𝑛𝑚

(5.8)

Where 𝐼𝑅𝑎𝑡𝑖𝑜 is the vegetation ratio image, 𝐼833𝑛𝑚 is the image captured at 833 nm, and

𝐼615𝑛𝑚 is the image captured at 615 nm. Once this ratio image is computed (center images

in figure 5-34), we normalize it to the 8-bits range from 0 to 255 DC. Later on we only need

to threshold it using the threshold value of 50 DC. This value was found by trial and error

and worked for all scenes captured.

In figure 5-34, we show the false RGB images of scenes number 4 and 6 (left column), the

145



ratio image (𝐼𝑅𝑎𝑡𝑖𝑜) computed as shown in equation 5.8 (center column), and the vegetation

detected after thresholding the ration image with a threshold value of 50 DC (highlighted

in green color).

Figure 5-34: From left to right: false RGB image, vegetation ration image (computed as
show in equation 5.8), and vegetation-detected image after thresholding the ratio image with
a threshold value of 50 DC. Top row: scene number 4. Bottom row: scene number 6.

Finally, in image 5-35, we see an example of the DoLP maps (computed as shown in

equation 5.6), for the different spectral bands of scene number 1. These DoLP maps are

rendered in false color in order to see better the differences in polarization information

from different regions of the scene. We can observe how some materials like glass have

homogeneously higher DoLP values in almost all spectral bands (but the one centered at 950

nm). Others like concrete are more heterogeneous though still having high DoLP values. On

the other hand, building walls have rather low DoLP values for all spectral bands captured.

5.6.4 Conclusions

We have introduced a complete image processing pipeline from image capture to object

segmentation and classification for multispectral HDR polarimetric images of indoors scenes.

We based our work in a previous study [179] done with an LCTF -based imaging system,

and introduced a remarkable number of novel features.
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Figure 5-35: False color rendered DoLP maps computed (as shown in equation 5.6) for each
spectral band captured for scene number 1.

Our capturing device was successfully calibrated and its CRF determined. We used

this function to build four HDR images at different polarization angles for each spectral

band, which were afterwards correctly registered after range compression, normalization

and contrast enhancement. Our method succeeded in registering the already built HDR

images where common methods proposed for registering LDR images failed.

We have also introduced new segmentation and classification approaches using as build-

ing blocks existing techniques which are combined aiming to simplify the computational

load of previous approaches to this problem for MSHDRPol image cubes. We got a relat-

ive improvement of 31.73% in segmentation accuracy and 35.41% in classification accuracy

compared with previous methods.

We have also implemented our proposed capturing method to a filter wheel camera in

order to capture MSHDRPolVISNIR images of outdoors scenes. We calibrated this camera

radiometrically and also performed filter selection from a big set of commercially available

filters to purchase. We will make these MSHDRPolVISNIR images free for public use after

the defense of this thesis.
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The work and results presented in this chapter have been submitted to Pattern Recog-

nition Journal, and we are currently waiting for the journal’s response [124].

5.6.5 Future work

As future work, we will try to improve the segmentation procedure by assessing the clustering

made after each mean-shift, so we can automatically perform a fine tune of the threshold

for the final region merging step. How to tune this parameter automatically to find its ideal

value is a matter of future study. We could use clustering quality metrics to make the full

segmentation process completely automatic.

Regarding the classification, we believe that including also infrared information by ex-

tending the spectral range we are capturing, could help us including more candidate classes.

However the LCTF model we used in this study could not be used above 720 nm. So we

will use the filter wheel camera for indoor scenes as well.
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In you can’t explain it simply, you don’t understand it well. 

Albert Einstein. 
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Chapter 6

Conclusions and future lines of

research

6.1 Conclusions

In this thesis, multiple advanced imaging technologies have been studied. Spectral, HDR,

polarimetric and NIR imaging have been researched and merged together into a single

imaging system.

New system architectures and methods have been proposed for the different fields of

digital imaging investigated. Regarding multispectral image capture, two different sys-

tems have been proposed based on a novel technology still under development. Tunable

TFD-based systems coupled with a CFA whose filter transmittances have been selected

from a real available color filters commercial database. Simulation experiments have proved

that the proposed systems outperform others with similar characteristics using other design

strategies.

We proposed to use different architectures depending on the requirements of the ap-

plication we are working in. We proposed a two shots strategy if the application allows

us to afford a slightly longer capturing time. Otherwise, we also propose a single shot ap-

proach with very good colorimetric and spectral performance, for those applications that

need faster captures. We found out that the proposed systems perform both colorimetrically

and spectrally better or as well as other systems, while offering an easier and more elegant

solution to the problem of spectral imaging. We conclude that TFD sensors are a promising
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technology for the future of multispectral imaging, offering systems that are portable, real-

time, versatile and low cost, as soon as they can be implemented as part of a real capturing

system.

Concerning HDR imaging, we have presented a new method for estimating the exposure

times needed to recover the HDR radiance map from a scene via multiple exposures. After

looking for similar methods in the literature aiming for a completely automatic HDR cap-

ture, we compared the performance of our proposed method with the only method to our

knowledge with most similar design strategy and features (Barakat method [7]).

Our proposed method is adaptive because it finds a bracketing set adapted to any HDR

scene content. It is universal because it works for any imaging system as long as the exposure

time can be controlled and the system is able to make simple computations like a cumulative

histogram. It is full range because it aims to expose correctly at least in one LDR shot the

whole radiance range of the scene. It is tunable, since we can decide if we prefer to find a

minimum bracketing set, at the cost of lower SNR, or increase the SNR by increasing the

number of shots and capturing time as well. Then, if we set it up for finding the smallest

bracketing set, we can say the method is minimal. It is blind because no information about

the content of the scene needs to be known a-priori. It is on-line as it works during the

capture, and every single shot taken is used to compose the HDR radiance map. It is

flexible because we can also control what is the percentage of total pixel population we can

assume underexposed or saturated. Hence we can focus only in our region of interest (not

only spatially but also in terms of dynamic range).

We have applied our AEE proposed method in monochrome and RGB cameras, as

well as in multispectral imaging systems like a scientific camera attached to a LCTF, and

a monochrome camera attached to a filter wheel. In all cases, the method worked well

and yielded full range HDR images which are either monochrome, color or multispectral

depending on the system used.

In the case of RGB images, we studied the SNR performance in 30 captured outdoors

scenes where partially cloudy skies were present in order to increase the dynamic range of

the capture. We compared it with that of Bakarat’s method and found that AEE method

can find bracketing sets which are shorter than those found by Barakat’s method (BAR),

yet keeping higher SNR levels in the HDR radiance map reconstructed from the multiple

exposures.
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The proposed method brings a solution for the blind acquisition of HDR images us-

ing multiple exposures, which can be used in any HDR imaging context: machine vision,

sky imaging, daylight illuminated scenes, HDR photography, surveillance, remote sensing,

medical imaging, etc.

As a combination of multispectral and HDR imaging system, together with polarimetric

imaging, we have proposed a complete image processing pipeline from image capture to

object segmentation and classification for MSHDRPol images of indoors scenes, with a

remarkable number of novel features involved.

We calibrated our device and used it to build four HDR images at different polarization

angles for each spectral band, which were afterwards correctly registered after range com-

pression, normalization and contrast enhancement. Our method succeeded in registering

the already built HDR images, contrary to common methods proposed for registering LDR

images failed.

We have also introduced new segmentation and classification approaches using a com-

bination of existing techniques. We compared our work with that of [179] and got improved

performance with less computationally demanding methods. We obtained a relative im-

provement of 31.73% in segmentation accuracy and 35.41% in classification accuracy.

We have also used a filter wheel camera to capture MSHDRPolVISNIR images of out-

doors scenes. We studied which filters to use and calibrated the camera as well. The

processed MSHDRPolVISNIR images will be publicly available after the defense of this

thesis.

6.2 Future lines of research

We still believe there is a lot of future work to be done. Many lines of research are still open

to improve and advance for the development of cheaper, faster and more efficientMSHDRPol

imaging systems in the visible and NIR ranges of the spectrum.

As long as big size TFD sensors become available in cameras, the next step would be

to implement a real MSHDRPol imaging system featuring a TFD sensor and the CFA we

have designed for it, as well as a rotating polarizing filter. We would implement the AEE

method for the capturing process, and also research the proposed methods for processing

the images and studying the segmentation and classification of their content, not only in
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indoor scenes, but also in common outdoors urban scenes.

In the HDR field, we want to test the possibility of including other parameters in a new

version of the AEE algorithm. Besides exposure time, we want to consider adding aperture

setting as well as ISO setting to try to accelerate the automatic adaptive HDR capture in

very dim lightning conditions, yet keeping satisfactory noise and focus levels using current

high end CMOS sensors.

Also ghost removal techniques as well as the possibility to record HDR video using AEE

method will be studied.

Simplifying the capture of indoors scenes by reducing the number of bands and using

alternative and cheaper capture devices is also among the future lines of research we are

contemplating.

Regarding both segmentation and classification, we will study a machine learning as

well as a deep learning approach ([20, 13, 105]). Methods like support vector machines,

kernels, or deep neural networks can work well for the big amount of image data generated

in each captured scene. After capturing a big set of urban scenes, and performing a manual

benchmark segmentation and classification which will be used as ground truth, we can apply

local and global methods for detecting, segmenting and classifying singular objects present

in common urban scenes like: buildings, plants, vehicles, people, urban furniture, traffic

signs, ground, sky, etc. We believe that polarimetric as well as NIR information can be

crucial for this task.

Some of these steps have already been implemented. We have captured a new set of 44

MSHDRVISNIR images of outdoors scenes. We have processed them and manually created

a benchmark for segmentation and classification of objects present in them. We will use this

data base for the study of deep learning methods for the classification of objects in urban

scenes. For this purpose, multispectral invariant image representations ([135, 92]) will also

be considered.
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Nothing in life is to be feared, it is only to be understood. 

Marie Curie. 
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This work focuses on the improvement of a multispectral imaging sensor based on transverse field
detectors (TFDs). We aimed to achieve a higher color and spectral accuracy in the estimation of spectral
reflectances from sensor responses. Such an improvement was done by combining these recently devel-
oped silicon-based sensors with color filter arrays (CFAs). Consequently, we sacrificed the filter-less full
spatial resolution property of TFDs to narrow down the spectrally broad sensitivities of these sensors. We
designed and performed several experiments to test the influence of different design features on the es-
timation quality (type of sensor, tunability, interleaved polarization, use of CFAs, type of CFAs, number of
shots), some of which are exclusive to TFDs. We compared systems that use a TFD with systems that use
normal monochrome sensors, both combined with multispectral CFAs as well as common RGB filters
present in commercial digital color cameras. Results showed that a system that combines TFDs and
CFAs performs better than systems with the same type of multispectral CFA and other sensors, or even
the same TFDs combined with different kinds of filters used in common imaging systems. We propose
CFA+TFD-based systems with one or two shots, depending on the possibility of using longer capturing
times or not. Improved TFD systems thus emerge as an interesting possibility for multispectral acquis-
ition, which overcomes the limited accuracy found in previous studies. © 2014 Optical Society of
America
OCIS codes: (110.4234) Multispectral and hyperspectral imaging; (110.0110) Imaging systems;

(330.1690) Color; (330.1730) Colorimetry.
http://dx.doi.org/10.1364/AO.53.000C14

1. Introduction

Spectral science has been receiving gradually
increased attention in the last few decades. New
applications come up on a daily basis, offering an
interesting range of possibilities [1–3]. Industrial,
medical, military, remote sensing, and many more
fields of research, focus nowadays on the use of spec-
tral sciences for their new technological advances.
One of the outstanding disciplines in the spectral sci-
ence field is spectral imaging. It is mainly concerned

with the problem of obtaining pixel-wise spectral
information in an image. Many types of systems
are found in the literature for this purpose. We could
divide the spectral imaging devices into two main
groups: measuring devices and estimating devices.
The first group is made up mainly of hyperspectral
devices, which acquire full spectral information dur-
ing the capturing process. In this group, we can find
systems formed by monochrome cameras attached to
tunable filters [4], such as acousto-optic tunable fil-
ters (AOTFs) [5,6] or liquid-crystal tunable filters
(LCTFs) [7]. We also find Bragg-grating-based sys-
tems [8], or snapshot systems [9] used in spectral
microscopy [10]. The clear disadvantage of this group

1559-128X/14/130C14-11$15.00/0
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of systems is either their bulky size (usually coupled
to long capture times, since they require as many
shots as spectral bands), or else a reduced spatial res-
olution, which is clearly not enough for most applica-
tions. In the second group, we find numerous systems
that can acquire three or more spectral bands (com-
monly termed multispectral imaging devices), which
are used for estimation. These systems usually have
a lower number of bands than those in the first group
and their spectral sensitivities are not so spectrally
narrow-banded. Such devices acquire the sensor re-
sponses and then require different techniques to map
these responses onto spectra [11]. The quality of the
estimated spectra depends critically on the number
of channels, their spectral shape, and the algorithms
used to obtain the mapping from sensor responses to
full spectra. Within estimation capturing systems,
we find as representative instances: monochrome
cameras with a color filter wheel with few filters
[12], multi-sensor cameras [13–15], color filter array
(CFA)-based cameras [16,17], and hybrid systems
[18]. Some of these systems suffer from relatively
long capture times and need the mechanical
movement of parts that might cause misalignment
problems (e.g., filter wheel devices). Others have ex-
pensive hardware, including many sensors and light
splitting optical components, which suffer from low-
light throughput, increased exposure times, limited
portability, etc. Given all these problems, it is clear
that the question of how to design a capturing system
that is portable, nonexpensive, easy to use, and
capable of acquiring full spectral information, pixel-
wise, in real-time is still far from solved. In this
study, we present a proposal for a multispectral im-
aging system based on a recently developed technol-
ogy as a potential answer to this question. The
transverse field detector (TFD) technology definitely
has the advantage of allowing for the capture of
multiple channels at a pixel with full spatial resolu-
tion. However, the TFD by itself does not provide
enough accuracy in the estimated spectra [19–21].
In [22] we pointed out the hypothesis that one of the
main causes of this decrease in accuracy is the width
of the spectral response functions typical of TFDs.
This width is such that we deem that conventional
sharpening techniques are not enough to solve the
problem [23]. Instead, in this paper, we propose com-
bining the TFD sensors with a specifically designed
CFA [17] to obtain the required accuracy in the spec-
tral estimation. The filters narrow down the spectral
sensitivities of TFDs and improve their color and
spectral estimation performance, trading off their
full spatial resolution property. We carried out differ-
ent experiments to check if the improvement of per-
formance is due to combining TFDs and CFAs. We
also checked whether ourmethod for selecting the fil-
ters to be used was effective for selecting the combi-
nations of filter time sensitivities (what we call
channels).

Using simulated sensor responses, we com-
pared this system with several others. We present

convincing evidence in Section 5 of the advantages
of such a design, even allowing for the inevitable
need to sacrifice the full spatial resolution feature
of conventional TFD-based systems over the ones
presented in previous works [21,22]. We offer some
alternative designs depending on the requisites that
each individual application may require, regarding
capturing times, colorimetric, and spectral accuracy.

The remainder of this paper is organized as
follows: in Section 2 we present the TFD sensors.
Section 3 describes all the systems simulated and
compared in this study. In the methods section (4),
we clarify the filter selection procedure, the compu-
tations of sensor responses, the estimation procedure
and the experiments performed. In Section 5 we pro-
vide the results found in the different experiments.
Finally, Section 6 draws relevant conclusions from
these results.

2. TFD Sensors

In silicon sensors, light is absorbed following an
exponential intensity decrease, described by the
Beer–Lambert law. Electron-hole pairs are photogen-
erated with different depth profiles, according to the
material and the radiation energy (or wavelength).
In a typical pn-junction-based CMOS pixel, photo-
generated electrons are collected by the same well,
regardless of the generation depth [24]. Thus, for
each pixel, only one value is read in a single expo-
sure. In contrast to these normal sensors, others,
such as filter-less sensors like Foveon X3 [25] or
TFDs [19], account for the fact that photons are able
to penetrate deeper into the silicon as their wave-
length increases. Therefore, electrons generated at
different depths can be separated by junctions built
at different depths (as in the case of Foveon sensors),
or by suitable transverse electric fields (as in the case
of TFDs). Understanding this principle makes it
possible to set the collection of generated electrons
at different depths within the silicon, so that in a sin-
gle pixel, and in a single exposure, we can retrieve
information from three (Foveon) and up to five
(TFDs) spectral bands or channels. Usually, in a
3-channel configuration, the responsivities have
peaks in the short, middle, and long wavelength
ranges, similar to standard RGB sensors; however,
they are spectrally wider since there is no sharpen-
ing filter in front of the sensor. Furthermore, TFDs
also offer the capability of modifying the collection
depth of photons by modifying the applied transverse
electric field via a tunable biasing voltage. Thus,
using a given biasing voltage, the sensor presents
a set of three sensitivities with certain spectral shape
and maxima positions, and setting a different value
for this voltage, the spectral shapes and positions of
the sensitivities change. We can see this in system
number 8 (Fig. 2). In this figure, we present eight dif-
ferent sets of RGB sensitivities corresponding to
eight different values of biasing voltage. The differ-
ence in the spectral shapes and peaks is quite clear.
The possibilities offered by this technology are many,
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and few studies have so far been done to examine the
capability of TFDs for multispectral imaging [21,22].
As pointed out before, TFD sensitivities are too spec-
trally broad to provide satisfactory accuracy in the
estimated spectra within the context of 3-channel
noisy systems. This is a drawback when trying to use
them for spectral imaging [26], because even when
adding more shots corresponding to different biasing
voltages (up to 8, with a total of 24 channels), the re-
sults were equaled or outperformed by a simple RGB
system based on CFAs [22], where spectral sensitiv-
ities were much narrower in comparison.

In previous studies, many authors have reported
good estimation accuracies obtained with both
simulated and real camera responses from narrow
spectral responsivities [27] and, more recently, some
have proposed the possibility of increasing this
accuracy by using tunability of the channels’ peak re-
sponse positions and widths with simulated camera
responses of Gaussian-shaped channels [28]. Never-
theless, narrow-band tunable responses are not so
far achievable in practice without the use of external
filters. Nonetheless, TFDs have the advantage of
not needing any demosaicking process to get the full
spatial information for every spectral band. This
prompted an idea. Does adding filters embedded in
the TFD sensor matrix (and so combining CFAs with
TFDs) boost the estimation accuracy of the system?
We present in the next sections a set of experiments
comparing the color and spectral accuracy of differ-
ent capturing system designs, to provide clear evi-
dence on these points. We have assessed the color
and spectral reconstruction accuracy of a set of reflec-
tance samples with no spatial information present.
Therefore, we did not study the effect of varying
the spatial arrangement of the different transmit-
tances present in the CFA pattern. This factor has
been shown to influence image quality [29]. Other
studies have been made using similar multispectral
CFAs with up to seven channels, providing methods
to design their spatial arrangement, as well as the
demosaicking techniques used to retrieve multispec-
tral information with good image quality [30,31].

TFDs offer the possibility of either being full polar-
ized (all pixels with the same state of polarization),
or bi-polarized (the sensor is biased in an interleaved
configuration [19] with different bias voltage).
Hence, some pixels can have an RGB set of sensitiv-
ities, and others can have different ones being biased
by a different voltage. We also checked the effect of
using this property. We compared a system taking
advantage of this property to reduce the number of
shots against a system taking more shots with differ-
ent full-polarized biasing conditions. This second sys-
tem had a larger number of channels, but also needed
a longer capturing time.

As pointed out before, TFDs offer the capability of
retrieving up to five channels out of a pixel in a single
shot [32], but two of them would be in the near-
infrared range (NIR) of the spectrum. Getting NIR
information is an advantage in many applications.

However, as a starting point for our study, we have
decided to use the three channels within the visible
range. This matches a general-purpose application.
We have left the remaining two channels for future
studies that target a more specific field of research,
for which the NIR content might be critical. Includ-
ing data beyond the limits of the visible range of the
spectrum would make the simulations closer to the
real behavior of the imaging systems in those chan-
nels close to the red and blue limits of the visible
range. However, no spectral data was available for
the set of spectral reflectances used (explained in
Subsection 4.A) out of the visible range, so we re-
stricted our camera response simulation to the limits
of the visible range. Moreover, common imaging sys-
tems use a hot mirror to get rid of crosstalk effects
between visible and NIR ranges of the spectrum
[33], and most common optics components block nat-
urally the UV components of radiation, to a certain
extent.

3. Systems Simulated for Study and Comparison

TFDs are still under development and only prototype
sensors exist so far. Nonetheless, their physical prop-
erties are very well characterized. The simulations
of sensor response calculations are very realistic
with the physical model provided by the developers
(explained in Subsection 4.B). All systems studied in
this work are silicon-based systems. Despite the
architecture of each system in particular, the light
acquisition process of them all can be realistically
described with the CMOS capture model used for
simulating camera responses. Therefore, sensor re-
sponses for every system studied in this work have
been calculated using the same model for signal and
noise generation. We can thus be sure that a higher
or lower noise level is not the reason for better or
worse performance. The average signal-to-noise ratio
(SNR) of sensor responses is shown for each system
in the last column of Table 1. As it will be explained
in Subsection 4.B, the noise model accounts for expo-
sure time and quantum efficiency. Therefore, even
though the values of exposure time were different
for different systems, this difference was taken into
account when computing the noise. The calculation of
SNR is also explained in Subsection 4.B. All systems
result in similar SNR values. To demonstrate the
performance of the designed system, we have created
four experiments (explained in Subsection 4.D), in
which its features are tested across other imaging
systems. In Fig. 1, we can see a representation of
the 11 different systems simulated in this study
and used to complete the four different experiments.

In each system, there is a filter layer and a sensing
layer. The number of different transmittances in the
filter layer determines the spatial resolution. A CFA
with 3 filters provides 1∕3 of spatial resolution and,
with 6 filters, 1∕6. If the TFDs are bi-polarized (as
explained in Section 2) and use no filters, then the
spatial resolution reduces to 1∕2. The characteristics
of each system are explained and summarized in

C16 APPLIED OPTICS / Vol. 53, No. 13 / 1 May 2014



Table 1. Figure 2 shows the spectral sensitivities of
all systems, which are described in detail in the fol-
lowing paragraphs.

1. This is the proposed system. The filter layer
is a CFA made up of six bandpass optical filters
selected from a real database (see Subsection 4.A).
The sensing layer is a TFD sensor full-polarized
where two different biasing conditions were used
in two shots. Three channels are retrieved per pixel;
thus, without the need of any moving mechanical
optical component, we get information from 36 chan-
nels in two shots.

2. Same CFA used as in system 1. The sensing
layer, however, was a bi-polarized TFD from which
we only take the information from one channel per
pixel. The channel that was operative for each pixel
was selected as explained in Subsection 4.A. This
system is similar to the proposed one, but it has been
designed to compare fairly its performance with
other systems under the same conditions, in terms
of number of channels.

3. The sensing layer is a normal monochrome
silicon sensor like the one from a commercial scien-
tific camera model Retiga SRV (QImaging Corp.,
Canada), equipped with a NIR cut-off filter. In the
filter layer we set a CFA that has been optimized
for the monochrome sensor, using the same tech-

nique as in our proposed system (see Subsection 4.A).
This system has been designed to test if including a
TFD sensor with its tunability property in a CFA-
based system helps to improve its performance.

4. In the sensing layer, we used the spectral re-
sponsivities of the RGB scientific camera Retiga
1300C (QImaging Corp., Canada). In the first shot,
we set no filter in the filter layer, and in the second
shot we added an IR–UV cut-off filter (Coff ) in front of
the lens, which sharpened down the sensitivities in
the extremes of the spectrum. This system has been
designed to test the performance of TFDs plus CFAs
against other types of systems and was proven to
work well in a previous work [22].

5. In the sensing layer, we used the RGB camera
again. This is also a 2-shot system. In each shot, a
different ideally custom-made comb-shaped optical
filter (Comb1 and Comb2) was placed in the filter
layer. These filters divided by half the 3 sensitivities
into 6. This idea of splitting the spectral sensitivities
of single channels into two by using a comb-shaped
filter has been used by other authors in the litera-
ture, as well [13,34,35].

6. The sensing layer used here was the same as in
system 2, but the filter layer used was composed of
an RGB Bayer filter like the one from the scientific
camera Retiga 1300C (QImaging Corp., Canada)

Fig. 1. Schemes for the 11 system configurations studied. Filter layer with blue caption, sensing layer with red caption. The number in
each pixel determines the number of channels retrieved in one shot out of it.

Table 1. System Characteristics

System # System Name Filter Layer
Sensing
Layer # Shots # Channels

Spatial
Resolution

Average
SNR (dB)

1 CFA+2TFD CFA TFD full 2 36 1∕6 40.5
2 CFA+1TFDbi1 CFA TFD bi 1 6 1∕6 42.1
3 CFA+Monochrome CFA Silicon 1 6 1∕6 42.5
4 Cut+Re RGB RGB� Coff Silicon 2 6 1∕3 42.3
5 Comb+Re RGB� Comb1 RGB� Comb2 Silicon 2 6 1∕3 44.6
6 RGB+TFDbi RGB TFD bi 1 6 1∕6 44.4
7 TFDbi Empty TFD bi 1 6 1∕2 42.8
8 TFDbi4 Empty TFD bi 4 24 1∕2 47.7
9 CFA+1TFDfull CFA TFD full 1 18 1∕6 47.4
10 CFA+1TFDbi3 CFA TFD bi 1 18 1∕6 40.9
11 CFA+2TFDalt CFA TFD full 2 36 1∕6 45.1
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used in this study as representative of a standard
RGB CCD camera. This system has been designed
to test the effect of the selected CFA versus other
kinds of narrow bandpass filters present in common
color imaging systems.

7. The filter layer was left empty in this system.
The sensing layer used was a bi-polarized TFD sen-
sor. Only one shot was taken. This system and the
next one were designed to test if adding a CFA to
a TFD sensor improves its performance.

8. The same as the previous configuration but we
took 4 shots with 4 different bi-polarization condi-
tions. We wanted to push the number of channels
to the extreme using all the biasing conditions that
the developers provided.

9. The filter layer was the same CFA used in sys-
tem number 1, but the sensing layer was a single
shot full-polarized TFD sensor. This system has been
designed to test the effect of bi-polarization property
of the TFD sensor versus full-polarization state.
10. The filter layer was the same CFA used in sys-

tem number 1. The sensing layer in this case was a
one-shot bi-polarized TFD. This system is also pro-
posed as an alternative to system number 1 if the
application requires shorter capturing times (since
it only uses one shot instead of two). In addition, this
system has been compared with system number 9 to
check the effect of using the bi-polarization property
of TFD sensors.
11. This system has been designed exactly the

same as the proposed system. However, its channels
were randomly selected from the available ones in-

stead of using voting principal feature analysis
(VPFA) [36,37], as explained in Subsection 4.A. Ten
reasonable combinations were simulated, in which
the channels were selected to cover the whole visible
range with some overlap. We selected the one with
best results. This system was simulated to check
whether selecting the channels using VPFA effec-
tively increases the performance of our system or not.

We have specifically selected these configurations
to better isolate the effect of the feature that we
wanted to test in our proposed system. To sum up:
system numbers 2, 3, 4, and 5 were designed to prove,
under the same conditions in terms of number of
channels, that using a TFD sensor improves the
accuracy of the results over common monochrome
sensor systems. System numbers 2, 6, 7, and 8 were
designed and compared to test whether combining
the CFA with the TFD also helps to improve its per-
formance. System numbers 9 and 10 were designed
to test if using the bi-polarization property of TFDs is
better than not using it. System number 1 evolved
from system number 10, pushing up the number of
channels retrieved with only two biasing conditions
adding one shot to the capturing process. System
number 11 was designed to test the advantages of
using VPFA to select the spectral channels.

4. Data, Methods, and Experiments

In this section, we explain the methods used to cal-
culate the simulated sensor responses, select the set
of sensors and filters, estimate the reflectances from

Fig. 2. Normalized spectral sensitivities of all systems versus wavelength in nanometers. Normalization was done just for displaying.
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sensor responses, and evaluate the performance of
each system.

A. Spectral Data, Sensors and Filters Selection

The illuminant used for the simulations was the CIE
standard D65 illuminant, and the spectral reflectan-
ces were 1700 samples from the Natural Color
System (NCS) [38,39], since they represent natural
colors found in common scenes and are well-used
for general-purpose color correction.

The TFD developers [40] provided a set of 8 differ-
ent RGB sensitivities corresponding with 8 different
biasing voltages (24 sensitivities in total). We can see
them in Fig. 2 (system number 8). We used a set of 13
real filter transmittances from the Andover Corp.
website [41]. These transmittances were selected
so that they all covered the whole visible range of
the spectrum, with certain overlap between them.
We carefully chose different bandwidths andmaxima
positions. The commercial references of these 13
selected filters are: 400FS40, 400FS70, 450FS40,
450FS80, 500FS40, 500FS80, 550FS20, 550FS40,
550FS80, 600FS40, 600FS80, 650FS40, and
650FS80.

Combining all sensitivities with all filters, we
obtained a total of 312 channels. Out of them we
wanted to select six, corresponding to only two differ-
ent biasing conditions (which are the limits of
bi-polarization, as mentioned in Section 2) that could
best recover the spectral information of the samples
imaged in the visible range.

Basically, the VPFA method employed for this
selection consisted of taking the sensor responses
from all 312 channels of the 1700 NCS [39] color sam-
ples used, and perform principal component analysis
on them. Then, we selected a reduced number of pro-
jections of the data onto the principal component vec-
tors (half of them) and clustered them into 6 clusters
(which was the number of channels we aimed to find)
using the k-means clustering method [42]. We calcu-
lated the mean point (center) of each cluster, and
then selected the filters corresponding to the vectors
closest to each of the cluster centers. Due to the ran-
dom initialization of k-means clustering, the cluster-
ing step is repeated over several iterations (50) and
the selected vectors are voted. Finally, the most voted
ones that correspond to only two biasing conditions
are selected. Since each pixel of the TFD still gives
us 3 channels, even though we only accounted for
the 6 best performing ones (system number 2), we
also studied the possibility of using the other two
channels per pixel (system number 10), since results
showed that there is a slight improvement when add-
ing all of them. Furthermore, a two-shot system was
also designed using the two full polarizations of the
TFD resulting from VPFA and retrieving the infor-
mation from all resulting channels (system number
1). After this process, the spectral sensitivities of the
channels selected were the ones shown in Fig. 2
(upper left). As this figure shows, they span the
whole visible range with some overlap. Overlap is

important, so as not to leave a gap in the spectrum
without retrieved information. However, too much
overlap could cause bad performance as well, due
to the consequent stronger effect of cross talk
between channels. We also simulated other systems
with the same characteristics, but selecting ran-
domly the combination of filters and sensors to get
a set of sensitivities that visually looks good (cover-
ing the spectrum, relatively narrow, and with some
spectral overlap). The one with the best results was
chosen (system number 11) and compared with
the one resulting from the VPFA. The metrics used
for evaluation of the performance were spectral
(goodness-of-fit coefficient GFC [22,43], also known
as complementary Pearson distance [44], and root
mean square error, RMSE [22,45]), and colorimetric
(ΔE�

00 also called CIEDE2000 [46]). If GFC > 0.999,
then the estimation was considered quite good, and if
GFC > 0.9999, then the estimation was almost an
exact fit [47]. Regarding CIEDE2000 colorimetrics,
differences of less than 1ΔE�

00 units were considered
acceptable.

B. Sensor Responses Simulation

As mentioned before, TFDs are still a technology
under development, from which only prototype
sensors exist and there is no implementation of a
complete imaging system available yet. We were pro-
vided by the developers [40] with a physical model
that well describes the opto-electronic behavior of
such sensors. They are based on CMOS technology.
The first step was to calculate the power spectral
density (PSDi�λ�) of the color signal incident on a
pixel, composed by the illuminant (D65) spectral pho-
ton flux per unit time and area (SPFD65�λ�), and the
sample spectral reflectance of the ith color sample
(Ri�λ�), as Eq. (1) shows:

PSDi�λ� � Ri�λ� · SPFD65�λ�: (1)

Afterwards, we calculated the photocurrent Iik and
the output voltage Voki generated in each channel f
for each sample i, as Eqs. (2) and (3) show:

Iik � q · Alight ·
Z
λ
PSDi�λ� ·Qek�λ�dλ; (2)

Voki � Iik ·
Tint

Cf
; (3)

where q is the elementary charge, Alight is the illumi-
nated area on the TFD surface, Qek�λ� is the spectral
quantum efficiency of channel k, Tint is the exposure
time, and Cf is the pixel feedback capacitance. After
calculating the noiseless output voltage (Voki) and
before quantifying the signal into digital counts,
the additive noise component (ησ) is added to get
the noisy output voltage (Vηoki). This noise was
Gaussian and its total variance σtot was composed
by kTC noise (σT), and dark current and shot
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noise (σDCS). These calculations are shown in
Eqs. (4)–(7):

σT �
������������
K · T
Cf

s
; (4)

σDCS �
����������������������������������������������������
q · Tint

C2
f

· �Iik � Jd · Atot�
s

; (5)

σtot �
�����������������������
σ2T � σ2DCS

q
; (6)

Vηoki � Voki � ησ; (7)

whereK is the Boltzmann constant, T is the absolute
temperature (300°K � 26.85°C), Jd is the dark cur-
rent density, and Atot is the overall sensor area. As
a last step, we quantify the noisy voltage signal to
get the noisy sensor response in digital counts (ρki)
using B bits, as shown in Eq. (8):

ρki � round
�
Vηoki·�2B−1�

Vdd

�
; (8)

where Vdd is the pixel maximum output range. The
values of all TFD-specific parameters were extracted
from Finite Elements Simulation using the Dessis
software, as described in [19]. Typical biasing volt-
ages of the TFD anodes range between 0.5 V and
8 V. The simulations of all systems compared in this
study were done using the same model for sensor re-
sponses calculations. As it would happen in reality,
including filters on top of the sensor reduces their
quantum efficiency (Qek�λ�). Moreover, in some sys-
tems, the difference in magnitude between Qek�λ�
of different channels would cause low dynamic range
problems. The exposure time selected for each sys-
tem was the one exposing most of the samples within
the sensor range between noise floor and saturation
level. This means that in all cases, some samples
were underexposed and some overexposed, but in
all cases this is taken into account for computing
the results, which reflect all these realistic limita-
tions of imaging systems. Due to the fact that the
noise model used accounts for different Qek�λ� levels
and exposure time values, the resulting levels of
noise in all systems were similar, as mentioned in
Section 3. The calculation of SNR was done by calcu-

lating the ratio in logarithmic units between the
noiseless output voltage signal (Voki) calculated in
Eq. (3) over the total noise variance (σtot) calculated
in Eq. (6).

C. Spectral Reflectance Estimation and Evaluation

The estimation method used was regularized inho-
mogeneous polynomial kernel regression [48,49],
which was the one found to perform best in previous
studies [22]. The model used for the estimation needs
to set two free parameters, the degree of the polyno-
mial (d) and the regularization term (λr), and these
values need to be optimized. Then, a double 10-fold
cross validation method was used, one nested inside
the other. In the outer loop, we randomly separated
the 1700 NCS samples into optimization and evalu-
ation sets. The former was used to find the optimal
values of the two parameters of the mathematical
model, and the latter to evaluate the estimation of
reflectances. In each iteration of the outer 10-fold,
the optimization set was used in the inner 10-fold
loop. A grid of parameters was built and every pos-
sible combination of both parameters was tested with
the testing set corresponding to each loop of the inner
10-fold. For the parameter optimization, we used the
CIEDE2000 color difference formula as a cost func-
tion (ΔE�

00). Using a color difference formula for
parameter optimization gives to colorimetric perfor-
mance of the results a slight advantage over spectral
performance, compared with using a spectral metric.
The opposite happens using a spectral metric as a
cost function. In this work, we aimed for a general
color correction application via spectral estimation.
Therefore, the metric we chose for our application do-
main was CIEDE2000. After the 10 iterations of the
inner loop, the average of the parameters found was
calculated, and those were used for evaluation in the
outer loop. The standard deviation was also calcu-
lated to check if the distributions of the best param-
eters found were stable. Table 2 shows the means
and standard deviations (in parenthesis) of both ker-
nel parameters found in every system out of each of
the 100 folds in total (10 times 10 folds). Since the
regularization parameter was optimized, looking
for the value that performed best in different orders
of magnitude, the mean and standard deviation cal-
culated for it are shown in logarithmic scale. After
the 10 iterations of the outer loop, the average error
metrics were calculated, and these were the values
with which we compared the different systems. By
doing things this way, we ensured that samples used
for training would never be used for testing, which

Table 2. Means and Standard Deviations of Polynomial Degree (d ) and Regularization Term (λr ) Kernel Parameters Values a

System # 1 2 3 4 5 6 7 8 9 10 11

d 2.68 5.70 5.9 7.08 3.47 7.00 5.41 4.13 4.46 4.30 4.60
(0.58) (0.48) (1.37) (0.80) (1.14) (0.00) (1.31) (0.83) (0.59) (0.48) (0.52)

log10�λr� −2.85 −6.06 −4.29 −5.81 −4.15 −4.93 −8.19 −4.39 −3.17 −4.23 −4.43
(0.43) (0.13) (1.06) (0.87) (1.94) (0.22) (1.19) (0.64) (0.68) (0.42) (0.50)

aThe regularization term values are shown in logarithmic scale. Values of d are not integers because they are the computed mean.
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could lead to over-fitting and, thus, to overestimating
the quality of the recovered samples obtained from
the camera responses of our system.

D. Experiments

In this study, four experiments were conducted to
test the following four hypotheses:

1. The proposed system performs better than sys-
tems based on other types of sensors, such as mono-
chrome sensors or multi-shot systems based on RGB
scientific cameras, plus some filters.

2. The proposed system performs better than sys-
tems based on TFDs that do not use the designed
CFA. Therefore, this CFA helps to improve the per-
formance of TFDs.

3. Using the bi-polarization property of a TFD
sensor, the performance can be improved without
the need to increase the number of shots taken.

4. The proposed system performs better than a
similar system in which the channels selection was
not done by VPFA.

Hypothesis 1 demonstrates the capabilities of the
proposed design. Hypotheses 2 and 3 try to go deeper
into the reasons justifying the superiority of our
TFD-based proposed system. Hypothesis 4 demon-
strates that using VPFA for selecting candidate
filters and channels is worthy. The results for these
four experiments are shown in the following
Section 5.

5. Results and Discussion

In this section, results from the four experiments are
shown in tabular format in Table 3, and then com-
mented on.

A. Experiment 1: Superiority of TFDs

This experiment was performed to check whether our
proposed system yields better accuracy in spectral
reflectance estimation than systems based on other
types of sensors using the same kind of CFAs, and
other different ones. We included the 2-shot system
made up of a RGB Retiga camera and a cut-off filter,
studied in previous work [50], and we also designed a
new system, in which we divided each of the R, G,
and B sensitivities of the Retiga camera into two
halves (see Fig. 2, system 5) with theoretical custom-
designed comb-shaped optical filters. The results
are shown in Table 3 for system numbers 2, 3, 4,
and 5.

We see that system number 2 performed better
both for spectral and color metrics than system num-
bers 3 and 4. The system formed by a monochrome
silicon sensor plus the CFA performed worst. This
means that the good results obtained by system 2
were not only due to the CFA, but also that the tun-
ability and bi-polarization property of TFD sensor
helped to improve the performance. The systems
formed by RGB Retiga camera plus filters yielded
good results, especially the one with the two comb-
shaped filters which worked best. This is in agree-
ment with previous studies [22,50]. This comparison
was made in the same conditions as far as the num-
ber of channels is concerned. However, when we
simulated system number 2, we were neglecting the
information from 2 channels from each pixel. This
meant that we were not using 12 channels, which
we achieved anyway in the capturing process. If we
add this available information to the recovery (sys-
tem number 10), then the results improved, and were
closer to system number 5 colorimetrically and better
spectrally, and we would not need to add a second
shot. Besides, there is no need to mechanically move
any filter in and out. Moreover, we went further and
designed a two-shot fully-polarized system, and we
retrieved the information from all channels under
each pixel, increasing the number of channels to
up to 36 in just two shots. This was the strategy of
system number 1. In this case, we used two shots,
which were sequentially captured just by switching
the biasing voltage of the TFD. These results outper-
formed the ones from system 5. Practice systems 1
and 5 have the same number of shots. For system
number 5, the capturing process cannot be real-time
since the filters need to be switching all the time. In
the case of the proposed system, even though it is
also a 2-shot system, the switching of the biasing
voltage occurs so fast (electronically controlled) that
it can be considered as a snapshot system in practice,
as long as the lighting conditions in the scene being
imaged allow short exposure times. We thus propose
system number 10 as a good and convenient option to
be used in applications requiring fast capturing
times. If we could afford longer capturing times, then
system number 1 is our proposal to enhance perfor-
mance by increasing the number of shots.

B. Experiment 2: Superiority of a CFA-Based System

In this experiment, we wanted to assess whether
including the CFA in the TFD-based system is the
key factor leading to the superior performance of

Table 3. Results for All Systems Studied (Mean and STD)

System # 1 2 3 4 5 6 7 8 9 10 11

ΔE�
00 0.23 0.51 1.26 0.66 0.27 0.96 3.15 1.89 0.41 0.38 0.35

(0.16) (0.35) (1.3) (0.47) (0.18) (0.73) (2.27) (1.32) (0.34) (0.26) (0.24)
GFC 0.9997 0.9987 0.9992 0.9982 0.9992 0.9986 0.9976 0.9982 0.9991 0.9996 0.9994

(0.0028) (0.0043) (0.0022) (0.0030) (0.0030) (0.0079) (0.0038) (0.0033) (0.0010) (0.0012) (0.0021)
RMSE 0.0064 0.0101 0.0094 0.0103 0.0083 0.0113 0.0169 0.0143 0.0082 0.0064 0.0067

(0.0063) (0.0087) (0.0082) (0.062) (0.0099) (0.034) (0.0092) (0.008) (0.004) (0.0043) (0.0053)
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the system shown in the first experiment. For this,
we simulated different systems using TFD sensors.
One of them used no filters in front (system number
7). The other used the filters present in a common
RGB scientific color camera (system number 6). This
was done as we had found out that the RGB Retiga
camera was working very well and that these filters
drastically narrowed down raw sensitivities. The
results of this experiment are shown in Table 3 for
system numbers 2, 6, and 7. We see that the system
we propose performs best for both spectral and color
metrics. Including other kinds of filters, such as RGB
color filters (system number 6), yielded reasonable
results, but still far from the ones reached by system
number 2. The system using only two TFD polariza-
tions, such as the proposed one, but with no CFA
(system number 7), yielded quite bad results, in com-
parison. Even pushing this strategy to the limit of
taking many shots with different polarizations (up
to 4 shots with bi-polarized TFD, as in system num-
ber 8), the performance was far from our proposed
system. Therefore, it did not outperform a system
with only one shot, two TFD polarizations, and a
CFA. If the difference is clear when the experiment
is performed for systems with the same number of
channels, then the difference is still more evident
if we use the system number 10 or 1, the advantages
of which were pointed out in Subsection 5.A. There-
fore, we can conclude that adding in a TFD-based
system and a CFA that has been calculated to be
the best choice out of a set of available color filters,
helps improve the performance for spectral reflec-
tance estimation beyond systems without CFA, or
with other filters that are not specially selected.

C. Experiment 3: Bi-Polarization versus Full-Polarization

In this experiment, we wanted to assess whether
using the capability of bi-polarizing the TFD sensor
helps with its performance. The easiest way to test
this was by comparing system numbers 9 and 10.
The results are shown in Table 3. We see how using
two polarization states of the TFD improved the sys-
tem performance slightly for both color and spectral
metrics. Therefore, it is worth adding a second bias-
ing voltage since, in practice, the acquisition pro-
cess is the same. Apparently, the use of sensitivities
from different biasing voltages perform better than
the use of all sensitivities from the same biasing
condition.

D. Experiment 4: VPFA Performance

This last experiment was carried out to check
whether it makes sense to invest time in selecting
the filters using VPFA, or to simply choose any com-
bination of them randomly to cover the visible range
of the spectrum and having some little overlap
between bands, to yield better results. Out of ten ran-
dom combinations, we selected the one that produced
the best results (system 11) and compared it with
our proposed system (number 1). Results show that
the VPFA procedure improves the filter selection

process. As a final summary of results, we present
the quality indexes for all systems compared in this
study in Fig. 3.

6. Conclusions

Two different approaches for a multispectral
imaging system have been proposed, based on a
novel technology still under development. TFD-
based systems, which exploit the tunability and
bi-polarization properties of this new type of sensor,
are coupled with a CFA whose filter transmittances
have been selected via VPFA method out of a set of
real available color filters from a commercial data-
base. Four simulation experiments have been
conducted to demonstrate whether the proposed sys-
tems outperform others with similar characteristics,
but using other design strategies. We aimed to assess
whether the combination TFD plus CFAworks better
than any of them separately. We also studied
whether we could use different architectures, de-
pending on the requirements of particular applica-
tions. We found that the proposed systems perform
both colorimetrically and spectrally as well as or bet-
ter than the other systems while offering an easier

Fig. 3. Color and spectral error metrics for all systems. The bars
show the mean value and the lines the standard deviation
centered on the mean.
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and more elegant solution to the problem of spectral
imaging. Some systems give close spectral results,
and only one of them comes significantly close in
the color metrics. However, this system is made up
of a scientific RGB color camera plus two ideal filters
that are placed in front of it, alternatively, such that
each capture would need two shots and the mechani-
cal switch between filters from one shot to the next.
This would make the real-time capture unsuitable.
One of our proposed systems (system number 1) is
also a two-shot system, but the tuning of the sensi-
tivities is so fast and easy that we could still use it for
real-time spectral imaging if the conditions of the
amount of light in the scene being imaged allowed
it. Otherwise, we offer a single-shot alternative sys-
tem (system number 10), which would reduce drasti-
cally the time needed for capturing and would still
give good colorimetric and spectral results. This
study demonstrates the potential of TFD sensors
as candidates to be part of spectral imaging systems
that are portable, real-time, versatile, and low cost,
as soon as they can be implemented as part of a real
capturing system.

This work was funded by the Spanish Ministry of
Economy and Competitiveness through the research
project DPI2011-23202. We thank our colleague A. L.
Tate for revising our English text.
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Digital imaging of natural scenes and optical phenomena present on them (such as shadows, twilights,
and crepuscular rays) can be a very challenging task because of the range spanned by the radiances
impinging on the capture system. We propose a novel method for estimating the set of exposure times
(bracketing set) needed to capture the full dynamic range of a scene with high dynamic range (HDR)
content. The proposedmethod is adaptive to scene content and to any camera response and configuration,
and it works on-line since the exposure times are estimated as the capturing process is ongoing. Besides,
it requires no a priori information about scene content or radiance values. The resulting bracketing sets
are minimal in the default method settings, but the user can set a tolerance for the maximum percentage
of pixel population that is underexposed or saturated, which allows for a higher number of shots if a
better signal-to-noise ratio (SNR) in the HDR scene is desired. This method is based on the use of
the camera response function that is needed for building the HDR radiance map by stitching together
several differently exposed low dynamic range images of the scene. The use of HDR imaging techniques
converts our digital camera into a tool for measuring the relative radiance outgoing from each point of the
scene, and for each color channel. This is important for accurate characterization of optical phenomena
present in the atmosphere while not suffering any loss of information due to its HDR. We have compared
our method with the most similar one developed so far [IEEE Trans. Image Process. 17, 1864 (2008)].
Results of the experiments carried out for 30 natural scenes show that our proposed method equals or
outperforms the previously developed best approach, with less shots and shorter exposure times, thereby
asserting the advantage of being adaptive to scene content for exposure time estimation. As we can also
tune the balance between capturing time and the SNR in our method, we have compared its SNR per-
formance against that of Barakat’s method as well as against a ground-truth HDR image of maximum
SNR. Results confirm the success of the proposed method in exploiting its tunability to achieve the de-
sired balance of total Δt and SNR. © 2015 Optical Society of America
OCIS codes: (110.1758) Computational imaging; (100.2000) Digital image processing; (040.1490)

Cameras; (010.7295) Visibility and imaging; (110.1085) Adaptive imaging; (110.0110) Imaging systems.
http://dx.doi.org/10.1364/AO.54.00B241

1. Introduction

Natural scenes are usually composed by a wide vari-
ety of radiance signals outgoing from the objects in the
scene, which are very different inmagnitude. This fact
makes their correct capture with a normal digital
camera a nontrivial problem. Capturing a scene with

high dynamic range (HDR) content with a single low
dynamic range (LDR) image would cause loss of infor-
mation in those regions of the scene where the light
level reaching the sensor is too low or too high to
be correctly registered with a single exposure time.
The HDR imaging techniques solve this problem.

Common imaging sensors suffer from limitations
in the process of capturing the light. Usually, the
dynamic range of the sensor (i.e., the ratio between
the maximum and minimum irradiance impinging

1559-128X/15/04B241-10$15.00/0
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on the sensor that produces an effective response) is
much lower than the dynamic range found in natural
open air scenes. The dynamic range of these scenes
(ratio between the maximum and minimum radian-
ces emitted by the objects in the scene) can vary from
2 to 8 orders of magnitude depending on the season
and scene content [1]. The human visual system can
simultaneously adjust to a difference of up to 3.73 or-
ders of magnitude (or log units) [2] when adaptation
is accomplished. However, most imaging and display
devices can only account for barely 2 orders of mag-
nitude in a single image (either for capturing or for
displaying) [3,4].

There have beenmany techniques proposed [5–7] as
well as sensor architectures [8,9] to achieve this goal.
The most common techniques are based on building
a HDR image from the information of a number of
different LDR images. The difference between these
LDR images is the exposure (i.e., the product of irra-
diance impinging in the sensor times the exposure
time used to acquire the image). It is changed by vary-
ing either exposure time or the aperture. Usually, the
former is adjusted since it does not affect the depth of
field between different captures. These differently ex-
posed versions of the same scene, when combined in
the correct way, can be used to build an image that
contains extended dynamic range information com-
pared to just a single exposure [10].

When we use our camera to capture a digital image
of a scene, we cannot know in advance which expo-
sure times would be useful for composing the HDR
image afterwards. We could just take a large number
of images with different exposure times (or even all
available ones in the camera), and then use all of
these LDR images to compose the HDR image. But
this option is often time consuming and very compu-
tationally demanding, so it is not always feasible.
Commercial cameras usually have an auto-exposure
mode that estimates an exposure time value based
on some cues like the reading from a built-in photom-
eter in high-end cameras that measures the average
brightness value in certain regions of the image.

All of these cases aim just for finding one exposure
time that works well for correctly imaging most parts
of the scene. However, whether we would be able to
find it or not, there is not a single value of exposure
time that could make all pixels in one shot be cor-
rectly exposed for most common natural scenes.

The aim of this paper is not to explain how to
merge LDR images into a HDR radiance map. The
process we used for this is very well explained in the
literature [11]. It is rather to present a method for
the selection of a set of exposure times (bracketing
set) to use in order to retrieve useful information
from all pixels (or at least from most of them). This
is very important for the study of optical phenomena
present in the atmosphere and open air natural
scenes with shadows, twilights, clouds, crepuscular
rays, and so forth [12], all of which have HDR content
that cannot be captured with a single shot of a com-
mercial digital camera. Thus, a digital camera can be

a useful tool for composing a HDR radiance map of
these phenomena in order to study them. Of course,
if the scene captured has very dark regions that
need long exposure times to be correctly exposed,
then it is important that there is no relative move-
ment between the camera and scene content during
the capturing time. If small movements happen,
there are ghosting-compensation techniques to cor-
rect for artifacts [13].

We aimed for a method that is blind (no information
from the scene content is known a priori), adaptive
(adapts to scene content dynamically by adjusting
required exposure times), universal (works for any
camera that we have tested so far), and on-line (the
exposure times are calculated as the capturing proc-
ess is ongoing and every single shot acquired is used
in the HDR radiance map generation). It will also
give as default output the minimal bracketing set
(the bracketing set that has the minimum number
of shots, yet recovers the full dynamic range of the
scene), but it can be tuned to yield longer exposure
times with a higher signal-to-noise ratio (SNR). This
tunability is introduced as a method that controls the
amount of overlapping between consecutive exposures
to increase the SNR in the resulting HDR image at
the cost of increasing the number of shots taken, and
hence the capturing time. We have also introduced a
method to control the percentage of pixel population
that we can accept to be useless.

The remainder of this paper is organized as follows.
Section 2 summarizes the state-of-the-art technology
for estimating exposure times for HDR imaging.
Section 3 explains the details of the method we pro-
pose. Section 4 explains the experiments made to
compare our method with the most advanced method
of those described in Section 2, as well as the results
obtained. Finally, Section 5 draws the main conclu-
sions of this work.

2. State of the Art

Several approaches have been proposed in the liter-
ature for solving the problem of finding the exposure
time values for HDR image capture via multiple ex-
posures. Chen and Gamal [14] proposed scheduling
for capture times. They were assuming a known illu-
minant in the scene, which in practice is a rather
non-realistic assumption, especially for optical open
air phenomena. Grossberg andNayar [15] proposed a
method to simulate the response of any camera (lin-
ear, logarithmic, gamma function, etc.) using a single
camera with a known camera response function
(CRF) by just selecting a set of exposure times. So
their aim was not to find a minimum bracketing set
for radiance map generation. Stumpfel et al. [16] pro-
posed a method for capturing HDR images of the sun
and sky. They threshold the images and check if
there are saturated and/or underexposed pixels. If
any, they add new shots by increasing or decreasing
the exposure by a fixed amount of three-stops. This
approach is not adaptive to the scene content and
could lead to situations where the exposure times
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are not well fitted to cover the full dynamic range of
the scene. Bilcu et al. [17] proposed amethod for over-
coming the limitations of mobile devices for HDR
imaging. Their proposal was also done by iteratively
trying every available value of exposure time and
afterwards deciding which is the correct one. There-
fore, many images need to be taken before a brack-
eting set is selected.

Barakat et al. [18] proposed a method for finding
minimal bracketing sets for HDR capture. Firstly,
they studied how the camera responds to radiance
using every available exposure time. Then, they se-
lect only those exposure times that completely cover
the full dynamic range of the camera with certain
overlap. This is the so-called minimal system brack-
eting set (MSBS), and whatever the content of the
scene being imaged is, using all these exposures
will always cover the full radiance range that the
camera can effectively acquire. To adapt this MSBS
to scene content, they proposed to select a subset of
it called the minimum image bracketing set (MIBS)
by capturing a first shot with an intermediate expo-
sure time (that belongs to the MSBS) and checking
if there are saturated or underexposed pixels. If so,
they add the next exposure time included in the
MSBS until the full dynamic range is covered.
Though the underlying idea in this method is similar
to the one proposed in this work, it is still not totally
adaptive to scene content since they limit the expo-
sure times selected to those belonging to the MSBS.
We believe that the same scenes could be captured
with less shots and shorter exposure times, yet cover-
ing their full dynamic range, and we have demon-
strated this by comparing the results of our method
with Barakat et al.’s insightful algorithm using their
MIBS approach.

Granados et al. [19] proposed amethod assuming the
known mean HDR irradiance histogram of the scene
being captured. Besides, their method only works for
linear cameras, and they used a greedy algorithm, iter-
atively capturing the same scene many times until
they obtained the optimal SNR solution. Thus, their
method is not on-line. Hirakawa and Wolfe [20] used
a mathematical method based on training for HDR ex-
posure time selection. They assumed linear sensor re-
sponse and known noise sources in the capture, which
is not always a realistic scenario. They did not really
aim for defining minimum bracketing sets, but for op-
timal SNRs instead. Gelfand et al. [21] adapted HDR
imaging to mobile devices as well. They merge LDR
images iteratively two by two. If there are still satu-
rated or underexposed pixels, they keep adding the
next available exposure time that the camera offers.
Hasinoff et al. [22] proposed a method to calculate a
bracketing set that is optimal in terms of the SNR
but not minimal (they just try to fit it within a given
time budget) by varying both the exposure time and
the ISO (i.e., sensitivity) settings of the camera. Be-
sides, their method assumes linear raw sensor re-
sponses only and known information about scene
radiance content.

Gallo et al. [23] proposed a method for taking
advantage of mobile phone camera APIs (application
programming interfaces). They programmed the auto-
matic histogram calculation in mobile phones to con-
struct a reduced HDR histogram of the scene, which
will be the target to be captured. This is however not
possible if the camera used for the captures does not
feature this automatic process. Besides, if the scene
imaged has very dark regions, the long exposures
needed to create this histogram make the process
slow. Moreover, the method is not on-line. After this
histogram is calculated, they capture several expo-
sures of the scene and then study many possible com-
binations of them until the optimal one is selected.

Guthier et al. [24] followed the lines previously pro-
posed by Kang et al. [25], who implemented a method
for sequentially adjusting the exposure for real-time
HDR video. Both are iterative and limited to only two
shots for building the HDR image. Finally, Gupta
et al. [26] proposed a Fibonacci-series-based bracket-
ing set determination algorithm in which each expo-
sure time is the sum of the previous two. This
technique does not aim for full dynamic range recov-
ery though, but image registration for HDR video.

3. Proposed Method

We drove our Canon EOS 7D camera from our laptop
via the USB (universal serial bus) port using the
open-source libraries called GPhoto2 from our algo-
rithm implemented in Matlab R2014a and working
on-line.

The method proposed in this paper is full range
because it finds a bracketing set that covers the full
dynamic range radiance map of the scene. This
HDR radiance map would be potentially useful for
studying the behavior of light in HDR open air
phenomena.

Our method uses the CRF to compute the relative
irradiance impinging on the sensor, which corre-
sponds to a certain population of pixels in the image
(using its cumulative histogram). Then, a new expo-
sure time is calculated in order to shift the camera
responses to this irradiance to a different value. This
way, the cumulative histogram is shifted and the new
shot would capture a different range of irradiances,
which are contiguous to the range captured in the
previous shot.

The CRF is a function that relates the response of
the camera, in digital counts (DC), with the exposure
that the sensor receives. This function depends on
each camera, and it even can be different for different
settings of the same camera (e.g., a camera working
in raw mode or in jpeg mode). Knowing the CRF of
our camera is a key factor to build the radiance map.
A detailed explanation of how to calculate the CRF
is given in [11]. The calculated CRF of the camera
used for the experimental part in this work is shown
in Fig. 1. It is clearly not linear.

The exposure axis is in relative units, and it is nor-
malized so that the center of the DC values (128 DC
for the 8-bits case) corresponds to a relative exposure
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value of 1. The function is the same for the three color
channels R, G, and B of the camera, since it is a prop-
erty of the sensor. Therefore, we process the three
color channels together like the technique in [23]. For
each LDR image we capture, we know the Δt used as
well as the DC values for each pixel and channel.
Therefore, by using the CRF we can easily work out
the relative irradiance (E) by computing the simple
ratio shown in Eq. (1):

Ei;k;e �
H�i; k; e�
Δt�e� : (1)

The subindex i accounts for the pixel index, k accounts
for the color channel, and e accounts for the exposure
index (or number of shots). Thus, once we have cap-
tured an initial image with a known exposure time
Δt0, the CRF relatesH0 with DC0 as shown in Eq. (2):

DC0 � CRF�H0� � CRF�E0 · Δt0�: (2)

Therefore, we can work out the relative irradiance
value of a point of the image [E0, calculated as shown
in Eq. (3)] by knowing the CRF, the Δt, and its DC
value in the first shot (Δt0 and DC0, specifically):

E0 � CRF−1�DC0�
Δt0

; (3)

where CRF−1 refers to the inverse CRF function that
always exists since CRF is a monotonically increasing
function. Then, to shift the sensor responses DC0 to
this same irradiance value E0 into a new value DC1,
we just have to workout which new exposure time Δt1
is needed for a new shot, like shown in Eq. (4):

Δt1 � CRF−1�DC1�
E0

: (4)

If our camera has only a limited set of values from
which to choose the exposure time, we can select the
available value that is closest to the calculated one.

We already have a tool to control the values of sen-
sor responses, which is done by tuning the exposure
time used to acquire the images. Now, we explain
how to use it for our purpose of optimizing HDR
capture. For this aim, we propose a method based on
cumulative histograms of the scene inspired by

Grossberg and Nayar [27], who originally applied it
to pixel selection for CRF computations. If the scene
content does not change, then the same value for the
percentile of population in the cumulative histogram
will correspond to the same areas in the image. In
Fig. 2, we can see a plot where several cumulative
histograms of the same scene differently exposed
are drawn together.

If a given percentile is below some exposure value
for a given exposure time, then, for a different expo-
sure time, the same percentile of population will cor-
respond to a different exposure value but they will
still keep its location within the scene. Therefore,
the points where the horizontal lines in Fig. 2 inter-
sect the histograms report information correspond-
ing to the same areas of the scene. Our idea is to
shift sensor responses by calculating exposure times
to control the sensor responses to pixel populations of
key percentile values. As a starting point, we calcu-
late the cumulative histogram of the image captured
with the automated exposure of the camera. But in
principle, any image can be used as starting point
as long as it has some pixels that are neither satu-
rated nor underexposed.

We are going to sample the scene’s radiance using
the CRF of the camera between two DC levels. Un-
less the scene has a very reduced dynamic range,
there will be pixel values below and above these DC
values. Since in the default version of the algorithm
we aim for minimum bracketing sets, we have set
the low level (LO) to 3 DC and the high level (HI)
to 252 DC for considering a pixel to be underexposed
or saturated, respectively, when it is out of these
bounds. Thus, whatever pixel population is above
the HI level or below the LO level, we will sample
it using a different exposure time. Here, we introduce
two novel features of our method. One is the possibil-
ity of setting a tolerance for the percentage of useless
pixels. If we choose 0% tolerance, the algorithm will
look for longer or shorter exposure times if at least
one pixel is underexposed or saturated, like Barakat
et al. [18] proposed. However, for some scenes we can
set a different tolerance threshold to renounce to a
certain percentage of the population to be properly
exposed [e.g., when we directly image the sun and
our region of interest (ROI) is in a different area].

Fig. 1. CRF of the Canon EOS 7D camera in jpeg mode.
Fig. 2. Cumulative histograms of the same scene captured using
different exposure times.
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The other novelty involves controlling the LO and
HI values of the CRF. Setting values very close to the
extremes (0 and 255 DC for 8 bits) will result in a
lower number of shots at the cost of a lower SNR.
In contrast, if we set values further from these ex-
tremes, we will sample the scene’s radiance withmore
overlap between contiguous shots and therefore the
SNR will increase, at the cost of a higher number
of shots. This shows how our algorithm can be tuned
to adapt to different requirements regarding the SNR
of the captured HDR.

After commenting on these functionalities, we de-
scribe now in detail how the exposure time search is
done. With the information present in the cumula-
tive histogram of the first shot captured, we check
the percentile of the pixel population that is below
the LO level. If it is higher than the maximum value
set, then a longer exposure time is calculated. The
same is done if the difference betwen 100 and the per-
centile of the pixel population above the HI level is
higher than the tolerance threshold. In this case, a
shorter exposure time will be calculated.

To find a longer exposure time, we will use Eq. (4)
to shift the camera response value from the LO level
to HI level. Therefore, we use the HI level as DC1 and
E0 is substituted by Eq. (3), where we use the LO
level as DC0. Δt0 is the exposure time used to acquire
the current image [see Eq. (5)]:

Δtlonger �
CRF−1�HI�
CRF−1�LO� · Δt0: (5)

In contrast, to find a shorter exposure time, we will
use Eq. (4) to shift the camera response value from

the HI level to LO level. Therefore, we use the LO
level as DC1 and E0 is substituted by Eq. (3), where
we use the HI level as DC0 [see Eq. (6)]:

Δtshorter �
CRF−1�LO�
CRF−1�HI� · Δt0: (6)

In this way, if the population that has a sensor re-
sponse at the HI level in one shot shifts to the LO
level in the next shot, we can cover the full dynamic
range of the scene with certain overlap between
contiguous shots.

The process described here goes on checking the
cumulative histograms of the longer and shorter ex-
posure times until the tolerance requested is met or
the system reaches its maximum or minimum avail-
able exposure times.

4. Experiments and Results

Our camera (Canon EOS 7D) allows the choice of
only a discrete set of exposure times. We tuned the
HI and LO levels (explained in Section 3) to get the
minimum bracketing sets (lowest SNR). In the first
experiment, we tested the default version of the
adaptive exposure estimation (AEE) method (see
Section 4.B.1); in the second experiment, we explored
the tunability and evaluated the SNR performance
(see Section 4.B.2). In all scenes tested, the method
built a full dynamic range radiance map of the scenes.
We implemented our proposed method as well as the
only method found following the same philosophy,
which is the MIBS method proposed by Barakat
et al. [18] (hereafter termed BAR), to compare their
performances.

Fig. 3. LDR images and HDR radiance maps for some captured scenes.
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A. Bar Method and MSBS

Regarding the BAR method, the MSBS found for our
Canon camera, as explained in [18], using a 5.6 aper-
ture setting, was composed by four exposure times
for which the values were: 30 s, 300 ms, 1 ms, and
0.0125 ms. Sometimes, not all of these four shots
were needed to record the full dynamic range of the
scene. In these cases, a sub-set of the MSBS is used
omitting some of its shots. This represents the MIBS.
We could use as well as a first shot, the one chosen by
the auto-exposure mode of the camera, as was done
for the AEE method. However, we found that when
doing so, we only got the same number of shots or
even one more. So we did not use it. We see an exam-
ple of this in Fig. 4. The exposure time chosen by the
auto-exposure mode of the camera was 66.7 ms (top-
center). It was used as first shot for the AEE method,
since this method adapts to any exposure value
chosen as first. However, this value was in between
300 and 1 ms (both belong to MSBS). Therefore, if we
used it also as a first shot for the BAR method, it
would mean that the capture of this scene would
end up with five shots instead of four.

Also, if we change the aperture setting of the cam-
era, as the CRF is not changing, the AEE method
would work the same by adapting to the new expo-
sure levels impinging in the sensor. However, for the
BAR method we would need to calculate a new
MSBS, since the same exposure times for a different
aperture would not be valid any more. Thus, we fixed
our aperture setting to 5.6 for both methods.

B. Comparison between the AEE and BAR Methods

For the first experiment (Section 4.B.1), we captured
30 scenes using both methods and we studied the
number of shots taken, the total exposure time used,
and the percentage of the pixel population that was
not properly exposed. In this way, we assessed how
efficiently did both methods recover the full dynamic
range of the scene by comparing their resulting
bracketing sets.

In the second experiment (Section 4.B.2), we built
an indoors HDR scene with controlled illumination
conditions. We captured 10 HDR images of it using
the AEE and BAR methods. Besides, for the AEE
method we repeated the capture four times using dif-
ferent values for the LO and HI levels (see Section 3).
Finally, we captured 10 ground-truth (GT) HDR im-
ages using all available exposure times in the cam-
era. These GT images represent the highest SNR
that our camera can achieve to record a scene with-
out repeating shots with the same exposure.

1. HDR Capturing Efficiency
As mentioned before, we acquired 30 HDR scenes;
23 scenes were captured outdoors with natural illu-
mination and 7 were captured indoors with artificial
illumination. Outdoors, daylight cast HDR illumina-
tion over objects including clouds. Indoors we used a
light booth and a fluorescent lamp oriented directly
to the camera in a dark room to generate HDR
content. To check the performance of both methods
in terms of full range recovery, we plotted the

Fig. 4. Cumulative histograms of the same scene using the AEE method (top row) and BAR method (bottom row). The histograms are
ordered by decreasing exposure time to observe their continuity.
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cumulative histograms of all shots taken for each
scene and checked that no irradiance gaps were left
uncovered between consecutive shots. We set the
maximum percentile allowed to be lost to 0%. In
Table 1, we can see the results for 7 out of the 30
scenes captured.

We observed how the number of shots is always
equal or lower for the AEE method. The percentage
of useless pixels is always the same for both methods.
Many scenes had a percentage of lost pixels equal to
0, since both methods managed to retrieve the full
dynamic range of the scene. For the rest of the scenes,
the useless pixels were due to direct sunlight (like
the case of scene 1). This made some pixels impos-
sible to recover even for the shortest exposure time
available in the camera. The total exposure time is
always lower for the AEE method. The same trends
commented on were found for the remaining 23
scenes captured. In total, for the 30 scenes captured,
the BAR method took a total of 96 shots using
218.734 seconds and the AEE method took a total
of 81 shots using 139.869 seconds. This means that
the number of shots was 15.63% less, and the expo-
sure time was 36.06% less, for the AEE method.

In Fig. 3, you can see the LDR pictures and the tone-
mapped HDR radiance maps generated for some of
the scenes. The tone-mapping algorithm used was a
contrast-limited adaptive histogram equalization,
which was introduced by Ward [28] and implemented
in Matlab R2014a.

In Fig. 4, we plot an example of the cumulative histo-
grams corresponding to both methods for scene num-
ber 7. The data-tips in histograms for shots 2 and 3
for the BAR method highlight that there are still
underexposed and saturated pixels in those exposures,
although at first glance the histograms may seem to
reach percentiles 0 and 100, respectively.

We observed how bothmethods succeeded in recov-
ering the full dynamic range of the scene. However,
thanks to the adaptation of the AEE method, only
three shots were needed instead of the four shots the
BAR method used. Therefore, we can conclude with
this experiment that the AEE method recovers the

dynamic range of the scene as well as the BAR
method does, but by using amore reduced bracketing
set.

2. Signal-to-Noise Ratio
We did a second experiment to study the SNR behav-
ior of our method. For the AEE method, we tested
four different conditions named A (LO � 3 and
HI � 253), B (LO � 16 and HI � 240), C (LO � 56
and HI � 200), and D (LO � 106 and HI � 150). We
compared all these AEE conditions with the BAR
method and the ground-truth (GT) images.

The dynamic range of the scene was measured us-
ing a spectroradiometer (Photo Research, PR-745) to
measure the integrated radiances of both the bright-
est and the darkest points of the scene. The resulting
dynamic range measured was 4.1 log units.

For each pixel and each color channel of these HDR
radiance maps, we calculated its average HDR value
and its standard deviation across the ten images cor-
responding to each method. The average HDR value
provides information about the signal level in the
pixel, and the standard deviation provides informa-
tion about the level of noise generated by all noise
processes present in the HDR capture process. Thus,
by computing the ratio of the average HDR value
(Ēxy) over the standard deviation (σxy) as Eq. (7)
shows, we obtain a SNR estimate [29]:

SNRxy � 20 × log10

�
Ēxy

σxy

�
: (7)

The subindex xy stands for pixel position within the
HDR radiance map.

We can see the number of shots, the total exposure
times, and the average SNR for each method in
Table 2.

As expected, setting the LO and HI values further
from the extremes of the range in the AEE method
yields a higher number of shots and also higher total
exposure time, but the SNR increases as well. For
condition D, we reached an average SNR only less
than 2 dB below the ideal case (GT), yet using only
about 40% of the total exposure time. The minimum
bracketing set found was AEE A, with only three
shots and 14.79 s of total exposure time, but this also
had the lowest SNR. The BAR method needed the
full MSBS to recover this scene using four shots. It
had a better SNR than our minimum bracketing

Table 1. Minimum Bracketing Sets Found for BAR and AEE
Methods in 7 of the 30 Scenes Captured

Scene # Method # Shots % Lost
Pn

i�1 Ti�s�
1 BAR 3 1.61 0.301

AEE 2 1.61 0.025
2 BAR 3 0 0.301

AEE 2 0 0.101
3 BAR 3 0 0.301

AEE 2 0 0.040
4 BAR 3 0 0.301

AEE 2 0 0.050
5 BAR 3 0 0.301

AEE 2 0 0.034
6 BAR 3 0 0.301

AEE 2 0 0.025
7 BAR 4 0 30.301

AEE 3 0 13.067

Table 2. SNR Performance for Four AEE Conditions and the GT
and BAR Methods

Method # Shots Δt (s) SNR (dB)

AEE A 3 14.79 27.19
AEE B 4 15.02 30.47
AEE C 5 31.32 32.58
AEE D 16 61.22 33.57
GT 55 151.43 35.32
BAR 4 30.30 29.97
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set, but we also had a second option (AEE B) using
four shots with a shorter total exposure time (less
than half) and a higher SNR than the BAR method.

We can observe in Fig. 5 the SNR for each pixel of
the radiance maps generated versus the signal level.
We can also see how the AEE D has the most similar
distribution compared with GT. Also, the BARmethod
has a very similar distribution compared with cases
AEE A and AEE B, as expected.

Figure 6 plots the SNR histograms for all methods.
We can observe how for the AEE method, the main
lobe gets narrower and shifts towards a higher mean
SNR as we tune the LO and HI levels further from
the extremes of the range. The AEE D is quite close
to GT in position and shape. In contrast, the BAR
method yields a histogram that is the mostly spread
over a wide range of SNR values.

5. Conclusions

We present a new method for estimating the expo-
sure times needed to recover the HDR radiance map
from a scene via multiple exposures. We compared
the performance of our method with that of the only
method found in literature that aims for the same
purpose (i.e., finding minimum bracketing sets) and
performs under the same conditions (adapted to
scene content with no a priori information about it
and valid for any camera whether it is linear or not).

Fig. 5. SNR versus average HDR signals present in the radiance maps.
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Our proposed method is adaptive because it finds a
bracketing set adapted to any HDR scene content,
and it is universal because it works for any camera.
We only need to calculate its CRF (which is needed
anyway to build the radiance map).

Moreover, the method is tunable, since we can de-
cide if we prefer to find a minimum bracketing set at
the cost of higher SNR or increase the SNR sampling
the radiance of the scene with more overlapping be-
tween consecutive shots (increasing the number of
shots and capturing time as well). For the minimum
bracketing set case, the bracketing sets found were
minimal in the 30 scenes tested.

Futhermore, our method is blind, which means
that no information about the content of the scene
needs to be known a priori. Themultiple LDR images
are captured on-line as the process is ongoing, and
every single shot taken is used to compose the HDR
radiance map.

We can also control the percentage of the total
pixel population that we can assume is useless
(underexposed or saturated). This way, we can find
the minimum bracketing set only for our region of
interest.

We have applied the method for HDR imaging of
natural scenes where partially cloudy skies were
present in order to increase the dynamic range of the
capture. We have successfully covered the full dy-
namic range of the 30 scenes imaged. We have shown
how our method can find bracketing sets that are
shorter than those found by the BAR method, yet
keeping higher SNR levels in the HDR radiance
map reconstructed from the multiple exposures.

We studied the SNR performance of our method
comparing it not only with the BAR method but also
with an ideal-case ground-truth HDR image built
using all available exposure times in the camera.
We have demonstrated how we can tune our method
to suit different requirements for the SNR at the cost
of increasing the number of shots.

The proposedmethod brings a solution for the blind
acquisition of HDR images using multiple exposures,
which can be used in any HDR imaging context:
machine vision, sky imaging, daylight illuminated
scenes, HDR photography, etc. And in particular, the
proposed method may be useful for studying optical
phenomena present in open air scenes where the illu-
mination conditions are extreme (i.e., direct sunlight
that might be surrounded by regions of interest like
halos, clouds casting shadows, and rainbows, just to
give a few examples).

This work was funded by the Spanish Ministry of
Economy and Competitiveness through the research
project DPI2011-23202.
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Extra data

181



Table B.1: Central wavelength and bandwidth provided for the 121 candidate filters for the
SpectrCam (see section 5.6.1). All data shown in nanometers.

Filter # 𝜆 BW Filter # 𝜆 BW Filter # 𝜆 BW

1 402 16 42 542 10 83 724 41
2 406 11 43 542 70 84 728 41
3 420 20 44 550 100 85 740 10
4 420 100 45 555 50 86 740 20
5 426 100 46 560 20 87 750 10
6 426 60 47 570 17 88 750 100
7 426 20 48 570 50 89 750 102
8 428 60 49 570 20 90 750 16
9 440 16 50 575 100 91 768 102
10 440 26 51 575 28 92 770 102
11 440 20 52 578 10 93 776 100
12 460 16 53 581 20 94 780 10
13 460 12 54 600 20 95 780 20
14 460 20 55 601 13 96 784 62
15 460 16 56 606 34 97 790 10
16 466 21 57 609 38 98 800 10
17 468 10 58 610 20 99 820 20
18 470 20 59 616 100 100 833 125
19 476 20 60 616 17 101 838 28
20 476 100 61 620 10 102 840 40
21 476 60 62 620 20 103 846 10
22 476 80 63 626 50 104 860 44
23 480 10 64 627 48 105 860 46
24 480 26 65 640 102 106 860 100
25 482 68 66 640 20 107 866 30
26 486 108 67 646 17 108 868 120
27 500 20 68 660 100 109 880 10
28 500 27 69 660 10 110 880 20
29 508 20 70 660 68 111 876 60
30 508 10 71 660 20 112 876 36
31 511 20 72 667 17 113 900 20
32 515 10 73 669 10 114 906 60
33 520 20 74 676 100 115 913 10
34 525 35 75 680 10 116 926 60
35 525 50 76 680 60 117 940 20
36 530 48 77 680 20 118 960 180
37 530 24 78 700 10 119 960 100
38 532 18 79 700 20 120 972 10
39 535 50 80 704 100 121 980 20
40 538 82 81 708 43
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Appendix C

Glossary

∙ AEE Adaptive Exposure Estimation.

∙ AOTF Acousto-Optic Tunable Filter.

∙ API Application Programing Interface.

∙ B Blue.

∙ BAR Barakat.

∙ CRT Cathode Rays Tube.

∙ CCD Charge Coupled Device.

∙ CFA Color Filter Array.

∙ CIE Commission Internationale de l’Éclairage.

∙ CMOS Complementary Metal-Oxide-Semiconductor.

∙ CPU Control Process Unit.

∙ CRF Camera Response Function.

∙ DC Digital Counts.

∙ DoLP Degree of Linear Polarization.

∙ FWHM Full Width Half Maximum.
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∙ G Green.

∙ GFC Goodness of Fit Coefficient.

∙ GPU Graphics Processor Unit.

∙ GT Ground Truth.

∙ HDR High Dynamic Range.

∙ HI High.

∙ HVS Human Visual System.

∙ IR-UV Infra Red - Ultra Violet.

∙ ISO International Standardization Organization.

∙ LCTF Liquid Crystal Tunable Filter.

∙ LDR Low Dynamic Range.

∙ LED Light Emitting Diode.

∙ LO Low.

∙ LRSS Low Resolution Spectral System.

∙ MIBS Minimal Image Bracketing Set.

∙ MS MultiSpectral.

∙ MSBS Minimal System Bracketing Set.

∙ MSFA MultiSpectral Filter Array.

∙ MSHDRPol MultiSpectral High Dynamic Range Polarimetric.

∙ MSHDRPolVISNIR Multispectral High Dynamic Range Polarimetric in the Visible

and Near Infra Red.

∙ NCS Natural Color System.

∙ Ncut Normalized Cut.
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∙ ND Neutral Density.

∙ NIR Near Infra Red.

∙ PCA Principal Component Analysis.

∙ PGP Prism Grating Prism.

∙ PR Photo Research.

∙ POCS Projection Onto Convex Sets.

∙ Pol Polarimetric.

∙ R Red.

∙ RBFNN Radial Basis Functions Neural Networks.

∙ RGB Red, Green and Blue.

∙ RMSE Root Mean Square Error.

∙ ROI Region Of Interest.

∙ SIFT Scale Invariant Feature Transform.

∙ SLM Spatial Light Modulator.

∙ SNR Signal to Noise Ratio.

∙ SPD Spectral Power Distribution.

∙ TFD Transverse Field Detector.

∙ TMO Tone-Mapping Operator.

∙ VIS Visible range.

∙ VPFA Voting Principal Feature Analysis.

∙ WS WaterShed.
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