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Chapter 0

Introduction

For a very long time, humans have tried to understand the seemingly capricious be-

havior of Nature. Since the origin of modern Science, a reductionist agenda relying on

the famous words of Descartes –“Divide each difficulty into as many parts as is feasible

and necessary to resolve it”– has been pursued. Thereby, efforts toward understand-

ing the elements of isolated phenomena have prevailed for years, and specialized and

disconnected areas of knowledge arose.

Despite the unquestionable success of Science following this strategy, numerous

phenomena are still puzzling. For instance, life origins, the emergence of biodiver-

sity, species extinctions, global climate, desertification, epidemic spreading, genetic

expression, cancer success, brain functioning, social organizations or market fluctu-

ations, are some examples. The difficulty to develop suitable models to predict or

explain such phenomena emphasized the necessity of searching for other strategies. In

this regard, “complexity science” has emerged as a promising research area. While re-

ductionism strives for gathering detailed information on separated elements of some

particular scale, complexity science relies on identifying the mechanisms by which

emergent collective behavior, unexpected from naive analyses of the individual parts

in isolation, appears from the interactions among the many constituents of lower
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hierarchical levels.

Within this framework, a major and intriguing challenge arises: how can we

capture the behavior of a large system while maintaining the specificity of its con-

stituents? Usually, simple models need to renounce a proper description of either

individuals, or systems. At the beginning, one might be tempted to include every

possible detail of systems’ elements and their interactions. However, this amount of

information may obfuscate the essential features provoking the observed collective

behavior.

Regarding many-body systems, statistical mechanics provides a rather useful

mathematical framework for the understanding of complex systems. In particular,

condensed-matter physics precisely focuses on predicting macroscopic collective be-

havior from the physics of its microscopic constituents, let them be atoms, molecules

(of the same type or of a few different types), electrons, etc. In all cases, these

are well described by the laws of physics. In problems of interest in e.g. biology,

complex-system elements maybe heterogeneous and maybe not as “simple” and well-

characterized as atoms. Despite this fact, valuable understanding can be obtained by

adapting different techniques borrowed from standard statistical physics to these more

complex scenarios. This suggests a “coarse-graining” general strategy that approxi-

mates a complex system to a more tractable one that maintains its main macroscopic

behavior. Such process can reveal deep analogies in the organization of various sys-

tems that substantially differ in their elementary constituents. From a mathematical

viewpoint, this idea is supported by the renormalization group theory.

The most prominent example of this type of “universality” emerges in the vicinity

of phase transitions. Most many-body systems are known to exhibit macroscopic

behaviors, i.e. “phases”, corresponding to different microscopic organizations and dif-

ferent types of internal orderings. Fascinating examples of unexpected and sudden

changes of such behaviors, as a consequence of the change of some external condi-

16



tion such as temperature, pressure, etc., are traditionally encountered in physics and

chemistry. Statistical mechanics explains these phenomena as the result of some type

of destabilization of the global system state. Depending on the manner in which the

latter occurs we distinguish two main types of phase transitions: i) discontinuous or

“first-order” transitions –characterized by abrupt changes of some of their variables

and features such as phase coexistence or hysteresis cycles–; and ii) continuous or

“second-order” transitions –in which variables change smoothly and scale-invariance

or high susceptibilities emerge at the transition or “critical” point–. At the specific

point at which these phase transitions occur, the macroscopic behavior becomes the

same for systems with rather different microscopic details, for instance, the so-called

critical exponents of liquid-gas transitions have been shown to coincide with those

of some paramagnetic-ferromagnectic transitions. Equally, in experiments of cat-

alytic reactions, percolation in porous media, avalanches of flowing granular matter,

electro-positron collision, depinning transitions or polynuclear growth, measured crit-

ical exponents are surprisingly in accordance as well. It is important to remark that

these statistical systems are studied in different ways depending on whether they obey

the “detailed-balance” principle. If such principle is obeyed, the system would be in

equilibrium, and it would be well-described by the Gibbs free energy. In the contrary

case, the system would be out of equilibrium, and should be studied in terms of a

“master equation”.

The concepts of phases and phase transitions have been successfully extended to

cover fields such as biology, ecology, socio-economical systems, etc. In these contexts,

continuous and discontinuous transitions are also present although they are usually

called “smooth” and “catastrophic” shifts, respectively. A clear example of the former

is encountered in the spreading of diseases (or lack thereof). In this case, a continu-

ous transition, between a successful or failed infection proliferation, is undergone as a

function of the infection rates. Spreading would succeed for high infection rates while
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it would fail for lower ones. Similar examples of smooth transitions and criticality

features are ubiquitous in Nature. Continuous transitions separate for instance biodi-

versity versus mono-dominance in ecological systems, disagreement versus accordance

in voters systems, etc. Critical behavior and scale invariance are observed in cortex

activity experiments, earthquakes, bird flocks, etc. On the other hand, many systems

in socio-economy and socio-ecology [148, 131], as well as ecosystems such as lakes,

savannas, or oceans (with their embedded fisheries, or coral reefs) can experience,

as a consequence of small changes in environmental conditions, catastrophic shifts

after which recovery can be extremely difficult [180, 198, 111, 76, 34]. An important

example took place in the Sahara many years ago. In this case, a gradual reduction

of rains and, as a consequence, the local climate, lead to a quick collapse from a green

area to the largest desert of our planet.

Regarding the previous discussion we wonder: What mechanisms make natural

phenomena select a continuous or discontinuous transition? Is there some way of avoid

discontinuous transitions? How are these systems altered by real mechanisms present

in Nature? What are the effects of more complex mechanisms such as evolution and

adaptation?

Here we try to shed light on these issues. For this we rely on standard tech-

niques of statistical mechanics and the theory of stochastic processes, including: the

theory of phase transitions both in equilibrium and away from equilibrium, mean-

field approximations, renormalization group tools, as well as extensive computational

analyses1.

1For this purpose we have employed the super-cluster of PROTEUS that belongs to the “Insti-
tuto Carlos I de Física Teórica y Computacional” (Universidad de Granada). The huge capability
of this cluster (with 13 teraflops and 1100 nuclei) has made possible to accomplish the extensive
computational simulations needed in this thesis.
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Outline of this thesis

In this thesis, by considering mathematical and computational models that account

for the relevant aspects of some complex systems, we obtain predictions about the

behavior and the phase transitions such systems exhibit. This is accomplished from

two different perspectives: on the one hand, we perform technical and detailed studies

of model systems of paradigmatic relevance in statistical physics, emphasizing their

universal features. On the other hand, applying theories and techniques of statistical

mechanics, we explore the potential of our results for real phenomena such as brain

activity ecosystem dynamics and phenotypic diversification.

This work focuses on how the nature of phase transitions, whether continuous

or discontinuous, is impacted by realistic, inherent, an unavoidable aspects of real

out-of-equilibrium systems, such as (i) demographic and environmental fluctuations,

(ii) spatial heterogeneities, and (iii) structural heterogeneities on many-body systems;

paying special attention on how these ingredients may affect phase transitions. Some

of the above-mentioned features can dramatically alter the type of the phase transi-

tions that take place, changing for example from discontinuous to continuous, or the

other way around. Let us briefly discuss these realistic aspects:

∙ (i) The effect of demographic and environmental fluctuations. Statistical physics

tells us that some fluctuations are unavoidably present in small systems. In par-

ticular the central limit theorem quantifies the magnitude of such fluctuations

by
√
𝑁 (being 𝑁 the size of the system). There are many situations in which

fluctuations are essential to explain the actual behavior, possibly changing the

deterministic (noiseless, meand-field) expectations. For instance, the capabil-

ity of exploring multiple metastable states is only possible if fluctuations make

the system able to escape from a given state to another. Another examples are

noise-induced spatial patterns and fronts, noise-sustained waves in sub excitable
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media, noise-induced ordering transitions, and noise-induced disordering phase

transitions [81, 109].

In simple analyses of complex systems and their phase transitions, stochastic

effects are sometimes ignored or averaged away. For example, in the studies of

ecological regime-shifts deterministic approaches are customarily employed [128,

226, 145, 54]. In this thesis we analyze the effect of demographic stochasticity

on such ecological complex systems subjected to a catastrophic transition.

∙ (ii) Spatial heterogeneity. Most real systems exhibit some type of spatial het-

erogeneity. In physics it can be attributed to solid imperfections, spatial effects

which modify interactions, arrangement of adsorbates on a surface of heteroge-

neous catalysis, etc,. In biology or ecology it can be provoked by heterogeneous

distribution of nutrients in a land, firewalls, termites mounds, etc,.

In statistical mechanics, equilibrium arguments tell us that discontinuous tran-

sitions are precluded in low-dimensional systems presenting (quenched) spatial

heterogeneity[3]. In this light, we develop a technical analysis to check whether

this is the case in “non-equilibrium” physical systems. On the other hand,

we study an ecological complex system presenting a discontinuous/catastrophic

shift and explore the consequences of spatial heterogeneity.

∙ (iii) Structural heterogeneity. Individual components of complex systems usually

interact with each other in an intricate way with interesting structural properties

such as modularity, clustering, hierarchies, scale-free connectivity patterns, etc

[4, 12]. Some examples include genetic networks, neural structures, food webs,

social interactions, World Wide Web connections, etc. [4, 12]. Such complex

networks can deeply alter expected behaviors of the system, and consequently,

evidence the presence and relevance of internal non-trivial structures. We focus

on the importance of complex networks on the particular case of integrative
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neural dynamics (based on [1, 28, 29]) displaying discontinuous transition in

the fully-connected (or mean-field) case [228].

A more detailed description of a complex biological system cannot rely solely on

fluctuations and heterogeneities. According to Theodosius Dobzhansky: ”Nothing in

biology makes sense except in the light of evolution”. It is unquestionable that biolog-

ical systems, no matter what the scale is, evolve in time. Unlike disorder, fluctuations

and heterogeneities, evolution acts in long time scales and no relevant effects are wit-

nessed in communities dynamics. However, the existence of feedbacks between com-

munity and evolutionary processes are known to exist, having been empirically char-

acterized in recent years in different types of communities (from microbes to plants

and vertebrates) [171, 231, 101, 77, 211, 108, 48, 67, 45, 194, 209, 200, 201, 88, 70],

and theoretically analyzed with novel and powerful mathematical tools. In this thesis,

we show how evolution plays a fundamental role in systems exhibiting rapid species

diversification[235]. Our results represent a first important step in the direction of a

detailed study of transitions between generalist species-poor regimes, and specialist

species-rich regimes.
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Overview

Let us summarize the main issues treated in the different chapters of this thesis.

In Chapter 1 basic concepts needed in this thesis are summarized. Firstly, main

features of continuous and discontinuous phase transitions are presented analyzing

prototypical models of statistical mechanics. Such analysis introduce the main tools

that we employ throughout this work and the roles of stochasticity and diffusion in

non-equilibrium systems. Then, the effect of spatial heterogeneities in equilibrium

phase transitions is reviewed paving the way of its study in non-equilibrium condi-

tions.

InChapter 2, we study the importance of demographic stochasticity and diffusion

in a generic system exhibiting a discontinuous transition in the mean-field approach.

We investigate how the order of the transition would surprisingly depend on such

mechanisms. Beside this, we also study the effects of the unavoidable presence of

spatial heterogeneity in real systems. In this case, a rounding phenomenon for low

dimensional systems appears. The ideas presented here can help to further understand

discontinuous transitions, and contribute to the discussion about the possibility of

preventing these shifts in order to minimize their disruptive ecological, economic, and

societal consequences.

For a deeper understanding of some of the previous results, in Chapter 3 we

present a more technical and detailed study of the effect of spatial heterogeneity on

a prototypical model exhibiting a discontinuous transition. Here we try to explain

how, in analogy with what happens in problems of thermodynamic equilibrium, the

existence of some form of spatial disorder implies that potentially discontinuous tran-

sitions are rounded-off, thus making the system critical (at low dimensions).

In this context, in Chapter 4 we wonder whether a structurally (and so spatially)

disordered system would also present the same smoothing effect. An extensive analysis
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of all possible systems presenting this structural heterogeneity may constitute a thesis

itself. As a consequence, we focus on the brain cortex, a system that is well described

by models exhibiting discontinuous transitions at mean-field and which presents a

complex and known network structure. Interestingly, criticality appears for small

topological dimensions, in analogy to the case of spatial heterogeneity presented in

Chapter 3. Integrative models of neural activity (which would exhibit discontinuous

transitions in mean-field) are thus able to recover the features of scale invariance

experimentally observed in cortical networks.

The above chapters do not consider any type of mutation or variation of its in-

dividuals due to the fact that, in those cases, evolution usually takes place in longer

times than the considered ones. However, apart from the previous inherent properties,

adaptation is an essential feature of real systems. What would happen if individuals

rapidly evolve affecting community dynamics?

In Chapter 5 we propose a relatively simple computational eco-evolutionary

model specifically devised to describe rapid phenotypic diversification in a particular

experiment of species-rich communities [235]. Despite this, the model is easily gener-

alizable to analyze different eco-evolutionary problems within a relatively simple and

unified computational framework. We show that it captures the main phenomenology

observed experimentally, and it also makes non-trivial predictions. While no phase

transition from poor to rich communities appear with the current simple model, in the

future we will investigate what additional mechanisms may account for the emergence

of such a phase transition.

Finally, thesis conclusions are presented in chapter Chapter 6.

What are the essential mechanisms underlying complex behavior such as cortex

criticality, ecological catastrophic shifts or species diversification? How do realistic

aspects such as stochasticity, diffusion or heterogeneities affect the phase transition

that such systems exhibit? Is there some way to avoid catastrophic shifts? How
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can cortex exhibit critical features while displaying integrative dynamics subjected

to discontinuous transitions (at the mean-field level)? What are the mechanisms

responsible of species diversification? Are they robust? How can such diversification

be quantified? Relying on statistical mechanics techniques, we try to shed light on

these questions.
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Introducción

Desde hace muchos años, los humanos han intentado entender el comportamiento,

aparentemente caprichoso, de la Naturaleza. Desde el origen de la Ciencia mod-

erna, se ha seguido una estrategia reduccionista basada en las famosas palabras de

Descartes (“Divide cada dificultad en tantas partes como sea posible y necesario para

resolverla”). De este modo, un esfuerzo para entender los elementos que constituyen

fenómenos aislados ha prevalecido durante años, y áreas de conocimientos especial-

izadas y desconectadas han surgido.

A pesar del incuestionable éxito de la Ciencia al seguir esta estrategia, numerosos

fenómenos naturales son aún desconcertantes y misteriosos. Algunos ejemplos son el

origen de la vida, la emergencia de la biodiversidad, las extinciones de especies, el

clima global, la desertificación, la propagación de enfermedades, la expresión genética,

el cáncer, el funcionamiento del cerebro, las fluctuaciones del mercado... La dificultad

de desarrollar modelos adecuados que predigan y expliquen estos fenómenos, enfati-

zaron la necesidad de buscar otras estrategias. En este contexto, la “ciencia de la

complejidad” ha emergido como un área prometedora. Mientras que el reduccionismo

se esfuerza por recopilar información detallada de elementos de una escala particular,

la ciencia de la complejidad se basa en identificar los mecanismos por los que un

comportamiento emergente colectivo –inesperado a partir de análisis sencillos de sus

partes por separado– aparece de la interacción entre los muchos constituyentes del

sistema a niveles jerárquicos inferiores.
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Dentro de este marco teórico, un reto fascinante aparece: ¿cómo podemos cap-

turar el comportamiento de un sistema de gran tamaño, mientras mantenemos la

particularidad de sus constituyentes? Normalmente, los modelos simples tienen que

renunciar a una descripción apropiada de, o sus individuos, o de los sistemas. En un

primer momento, uno podría estar tentado a incluir todos los detalles posibles de los

elementos del sistema y sus interacciones. Sin embargo, esta cantidad de informa-

ción podría confundir sobre cuales son los aspectos fundamentales que provocan el

fenómeno colectivo observado.

En cuanto a los sistemas de muchos cuerpos, la mecánica estadística proporciona

un marco matemático bastante útil para entender los sistemas complejos. En par-

ticular, la física de la materia condensada se centra en predecir el comportamiento

macroscópico colectivo a partir de la física de sus constituyentes microscópicos, sean

estos átomos, moléculas (del mismo tipo o de pocos tipos diferentes), electrones, etc.

En todos estos casos, estos están bien descritos por las leyes físicas. En problemas

de interés en, por ejemplo, biología, los elementos de los sistemas complejos pueden

ser heterogéneos y pueden no ser tan simples y bien caracterizados como los áto-

mos. A pesar de este hecho, una valiosa información puede obtenerse adaptando

diferentes técnicas prestadas de la física estadística estándar a estas situaciones más

complejas. Esto nos sugiere una estrategia general de “grano-grueso” que aproxime

los sistemas complejos por unos más fácilmente tratables que mantengan el compor-

tamiento macroscópico principal. Tal proceso puede revelar analogías profundas en

la organización de varios sistemas que difieren sustancialmente en sus constituyentes

elementales. Desde un punto de vista matemático, esta idea está respaldada por la

teoría del grupo de renormalización.

El ejemplo más prominente de este tipo de “universalidad“ emerge en la vecindad

de puntos críticos. La mayoría de los sistemas de varios cuerpos exhiben compor-

tamientos macroscópicos, es decir ”fases“, correspondientes a diferentes organizaciones
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microscópicas y diferentes tipos de orden interno. Ejemplos fascinantes de cambios

abruptos e inesperados de estos comportamientos, como consecuencia de algún cam-

bio de las condiciones externas como la temperatura, la presión, etc., se encuentran

tradicionalmente en la física y la química. La mecánica estadística explica este fenó-

meno como resultado de algún tipo de desestabilización del estado global del sistema.

Dependiendo de la manera en la que esto ocurre distinguimos dos tipos principales

de transición, esto es, discontinua o de ”primer orden“ – caracterizada por cambios

abruptos de algunas de sus variables y propiedades como coexistencia de fases o cic-

los de histéresis– y continuas o de ”segundo orden“ –en las que sus variables cambian

suavemente e invarianza de escala o altas susceptibilidades aparecen en el punto de

transición o ”crítico“–. En los valores específicos en los que estas transiciones de

fase ocurren, el comportamiento macroscópico es el mismo para sistemas con detalles

microscópicos diferentes, de hecho, los llamados exponentes críticos de las transi-

ciones líquido-gas se ha visto que coinciden con las de algunos sistemas magnéticos.

De igual manera, en experimentos de reacciones catalíticas, percolación en medios

porosos, avalanchas de materia granulosa, colisiones electrón-positrón, o crecimiento

polinuclear, los exponentes críticos medidos coinciden sorprendentemente también.

Es importante remarcar que los sistemas estadísticos se estudian de manera difer-

ente dependiendo de si obedecen el principio de ”balance detallado“ – el cual prohíbe

cualquier intercambio de energía, partículas u otras cantidades con reservas externas–

. Si tal principio se cumple, el sistema está en equilibrio, y puede ser descrito por la

energía libre de Gibbs. En el caso contrario, el sistema estaría fuera del equilibrio, y

debería ser estudiado en términos de la ”ecuación maestra“.

El concepto de fases, y transiciones de fase, ha sido extendido de manera exitosa

para cubrir campos como la biología, ecología, sistemas socio-económicos, etc. En

estos contextos, transiciones continuas y discontinuas están también presentes, aunque

son usualmente denominadas ”suaves“ y ”catastróficas“, respectivamente. Un claro
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ejemplo de la primera se encuentra en la propagación de enfermedades. En este caso,

una transición continua, entre el éxito o el fracaso de la propagación, ocurre en función

de la tasa de infección. La propagación será exitosa para tasas grandes de infección,

mientras que fracasará para bajas tasas. Ejemplos similares de transiciones ”suaves“

– tales como biodiversidad frente a monodominancia en sistemas ecológicos, acuerdo

frente a desacuerdo en sistemas de votantes, etc.– y propiedades propias de criticidad –

como aquellas observadas en experimentos de actividad cortical, terremotos, bandadas

de aves, etc. – son ubicuas en la Naturaleza. Por otro lado, muchos sistemas en

socio-economía o socio-ecología, al igual que en ecosistemas como lagos, savanas u

océanos (con sus bancos de peces y corales) pueden experimentar, como consecuencia

de pequeños cambios en las condiciones del entorno, cambios catastróficos de los que

es extremadamente difícil recuperarse. Un ejemplo importante fue observado hace

seiscientos años en el Sahara. En este caso, una reducción gradual de las lluvias y,

como consecuencia del cambio climático local, dio lugar a un colapso repentino, de

una zona verde, al mayor desierto de nuestro planeta.

Teniendo en cuenta toda esta discusión nos preguntamos: ¿qué hace que un sis-

tema presente una transición continua o discontinua? ¿Hay alguna forma de evitar

las transiciones discontinuas? ¿Cómo son alterados estos sistemas por mecanismos

realistas presentes en la naturaleza?

Aquí intentamos arrojar luz sobre estos temas. Para ello nos apoyamos en técnicas

estándar de la mecánica estadística y la teoría de procesos estocásticos, incluyendo:

la teoría de las transiciones de fase en equilibrio y fuera del equilibrio, aproximaciones

de campo medio, herramientas del grupo de renormalización, al igual que en análisis

computacionales exhaustivos 2

2Para llevar a cabo este propósito se ha hecho uso del super-cluster PROTEUS que pertenece
al instituto ”Carlos I de Física Teórica y Computacional“ de la universidad de Granada. La gran
capacidad de cálculo de este cluster (con 13 teraflops y 1100 núcleos) ha hecho posible el llevar a
cabo simulaciones computacionales exhaustivas necesarias para esta tesis.
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Contexto de la tesis

En esta tesis, considerando modelos matemáticos y computacionales que consideren

los aspectos más relevantes de diferentes sistemas, obtenemos predicciones sobre el

comportamiento y las transiciones de fase que estos exhiben. Por otra parte, aplicando

teorías y técnicas de la mecánica estadística, analizamos diferentes sistemas complejos

tales como el córtex, savanas, o comunidades de varias especies.

Uno de los focos principales de este trabajo es el estudio del efecto de algunos

mecanismos inherentes, realistas y no despreciables de los sistemas reales – tales como

i) fluctuaciones demográficas, heterogeneidad ii) espacial y ii) estructural, etc.– sobre

sistemas de muchos cuerpos; prestando especial atención en cómo estos ingredientes

pueden afectar a las transiciones de fase. Algunas de las características mencionadas

anteriormente pueden alterar drásticamente el tipo de fase que tiene lugar, cambiando

por ejemplo de discontinua a continua, o a la inversa. Veamos a discutir brevemente

estos aspectos realistas:

∙ (i) El efecto de las fluctuaciones demográficas. La física estadística nos dice

que las fluctuaciones están presentes inevitablemente en sistemas pequeños. En

particular, el teorema central del límite cuantifica tales fluctuaciones por
√
𝑁

(siendo𝑁 el tamaño del sistema). Hay muchas situaciones en las que las fluctua-

ciones son esenciales para explicar el comportamiento de un sistema, cambiando

posiblemente predicciones deterministas (sin ruido, de campo medio). Por ejem-

plo, la capacidad de un sistema de explorar múltiples estados metaestables es

solo posible si las fluctuaciones permiten al sistema escapar de uno a otro.

Otros ejemplos son frentes y patrones espaciales inducidos por ruido, ondas

mantenidas por ruido en medios poco excitables, transiciones hacia estados or-

denados o desordenados inducidas por el ruido [81, 109].

En análisis simples (deterministas o de campo medio) de sistemas complejos y
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sus transiciones de fase, efectos estocásticos son ignorados algunas veces. Por

ejemplo, en los estudios de cambios de regímenes ecológicos, aproximaciones

deterministas suelen emplearse [128, 226, 145, 54]. En esta tesis analizamos el

efecto de la estocasticidad demográfica en tales sistemas ecológicos sujetos a

una transición catastrófica en la aproximación de campo medio.

∙ (ii) Heterogeneidad espacial. La mayoría de sistemas reales exhiben algún tipo

de heterogeneidad espacial. En física pueden ser causadas por imperfecciones

en los sólidos, efectos espaciales que modifican las interacciones, agrupamiento

de zonas absorbentes en superficies de catálisis heterogénea, etc. En biología

o ecología pueden ser provocadas por distribuciones heterogéneas de nutrientes

en el suelo, cortafuegos, termiteros, etc.

En mecánica estadística, argumentos de equilibrio nos dicen que las transiciones

de fase discontinuas están prohibidas en sistemas de baja dimensión en presencia

de heterogeneidad espacial (congelada)[3]. A la luz de esto, nosotros desarrol-

lamos un análisis técnico para comprobar si sería este el caso en sistemas físicos

de no-equilibrio. Por otra parte, estudiamos un sistema complejo ecológico que

presenta transiciones de fase catastróficas y exploramos las posibles consecuen-

cias de esta heterogeneidad espacial.

∙ (iii) Heterogeneidad estructural. Componentes individuales de los sistemas

complejos interaccionan normalmente con los demás de una forma intrincada

con propiedades estructurales muy interesantes tales como modularidad, agru-

pamiento, jerarquías, patrones de conectividad libres de escala, etc. [4, 12].

Algunos ejemplos incluyen redes genéticas, estructuras neuronales, redes trófi-

cas, interacciones sociales o conexiones en internet [4, 12]. Tales redes complejas

pueden alterar los comportamientos esperados para el sistema y, consecuente-

mente, evidenciar la presencia y relevancia de las estructuras internas no triv-
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iales. Nosotros nos centramos en la importancia de las redes complejas en el

caso particular de dinámicas neuronales integrativas (basadas en [1, 28, 29]) que

presentan transiciones de fase discontinuas en las redes cuyos elementos están

conectados todos con todos (campo medio) [228].

Una descripción detallada de un sistema biológico complejo no puede recaer única-

mente sobre fluctuaciones y heterogeneidades. De acuerdo con Theodosius Dobzhan-

sky: ”Nada en biología tiene sentido excepto a la luz de la evolución“. Es in-

cuestionable que sistemas biológicos, no importa a qué escala, evolucionan en el

tiempo. Contrariamente a las fluctuaciones y heterogeneidades, la evolución ac-

túa a largas escalas y ningún efecto relevante se observa en la dinámica de co-

munidades. Sin embargo, la existencia de una retroalimentación entre procesos

de comunidad y evolutivos ha sido observada empíricamente en los últimos años

en diferentes tipos de comunidades (desde microbios hasta plantas y vertebrados)

[171, 231, 101, 77, 211, 108, 48, 67, 45, 194, 209, 200, 201, 88, 70], y analizados

teóricamente con herramientas matemáticas novedosas y potentes. En esta tesis,

mostramos cómo la evolución juega un papel fundamental en sistemas que exhiben

diversificación [235]. Nuestros resultados representan un primer paso importante en

la dirección de un estudio detallado de las transiciones entre regímenes generalistas

(y con poca diversidad) y especialistas (altamente diversos).
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Resumen

Vamos a resumir los principales temas tratados en esta tesis.

En el Capítulo 1 se recopilan conceptos básicos necesarios en esta tesis. En

primer lugar, se presentan las propiedades principales de las transiciones continuas

y discontinuas. Más adelante, se discute el efecto de la heterogeneidad espacial en

transiciones de fase en equilibrio.

En el Capítulo 2, estudiamos la importancia de la estocasticidad demográfica

y la difusión en sistemas genéricos sujetos a una transición de fase discontinua (en

aproximación de campo medio). Investigamos cómo el orden de la transición depen-

dería sorprendentemente de tales mecanismos. Además de esto, también estudiamos

la presencia inevitable de la heterogeneidad espacial en sistemas reales. En este caso,

un fenómeno de ”redondeo“ aparece para sistemas de baja dimensión. Las ideas pre-

sentadas aquí pueden ayudar a entender mejor las transiciones de fase discontinuas,

y contribuir a la discusión sobre la posibilidad de prevenirlas.

Para una mayor comprensión de algunos de estos resultados, en el Capítulo

3 presentamos un estudio más técnico y detallado del efecto de la heterogeneidad

espacial en modelos prototípicos que exhiben transiciones de fase discontinuas. Aquí

intentamos explicar cómo, en analogía con lo que pasa en problemas de equilibrio, la

existencia de alguna forma de desorden espacial implica un ”redondeo“ de la transición

discontinua que hace crítico el sistema (a bajas dimensiones).

En este contexto, en el Capítulo 4 nos preguntamos si un sistema desordenado

estructuralmente (y, por tanto, espacialmente) presentaría también el mismo efecto

de ”suavizado“. Un análisis extenso de todos los posibles sistemas que presentan

heterogeneidad estructural constituiría una tesis en sí misma. De modo que nos cen-

tramos en el caso particular del córtex cerebral, un sistema bien descrito por modelos

con transiciones de primer orden en campo medio y que presentan una estructura
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compleja y conocida. Es interesante que en este caso, la criticidad aparezca para di-

mensiones topológicas pequeñas explicando la compatibilidad de modelos integrantes

(con transiciones de primer orden en campo medio), y las propiedades críticas medidas

experimentalmente en el córtex.

Los capítulos anteriores no consideran ningún tipo de mutación o variación de sus

individuos debido al hecho de que, en dichos casos, la evolución suele ocurrir a tiempos

más largos que los considerados. Sin embargo, aparte de las propiedades inherentes

consideradas, la adaptación es un aspecto fundamental de los sistemas reales. ¿Qué

ocurriría si los individuos evolucionaran rápidamente afectando a la dinámica de la

comunidad?

En el Capítulo 5 proponemos un modelo computacional eco-evolutivo relati-

vamente simple con el objetivo de describir diversificación fenotípica rápida en un

experimento particular de comunidades de varias especies [235]. A pesar de esto,

el modelo es fácilmente generalizable para analizar problemas de eco-evolución den-

tro de un marco teórico computacional unificado relativamente simple. Mostramos

que este modelo captura la principal fenomenología observada experimentalmente, y

además consigue hacer predicciones no triviales. Aunque, a pesar de lo esperado,

ninguna transición entre comunidades diversas y no diversas emerge, en el futuro

investigaremos los mecanismos para los que esta transición de fase ocurra.

Finalmente, las conclusiones de la tesis son presentadas en el capítulo 6.

¿Cuáles son los mecanismos esenciales subyacentes a comportamientos complejos

como la criticidad presente en el córtex, cambios ecológicos catastróficos o diversi-

ficación de especies? ¿Cómo afectan aspectos realistas como la estocasticidad, la

difusión o la heterogeneidad a las transiciones de fase que dichos sistemas exhiben?

¿Hay alguna forma de evitar los cambios catastróficos? ¿Cómo puede el córtex cere-

bral exhibir propiedades críticas mientras la dinámica subyacente está sujeta a tran-

siciones discontinuas en aproximación de campo medio?¿Cuáles son los mecanismos
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responsables de la diversificación de especies? ¿Son robustos? ¿Cómo podemos cuan-

tificar tal diversificación? Apoyados en técnicas de la mecánica estadística, tratamos

de arrojar luz sobre estas cuestiones.
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Chapter 1

Basic concepts of phase transitions

1.1 Introduction

Since the presocratics, the spontaneous and sudden changes in the behavior of natural

systems have supposed a major and puzzling problem for philosophy and, afterwards,

for Science. Statistical mechanics explains that system “phases” are characterized by

specific microscopic organizations. When some changes of the external conditions

occur, the current phase can destabilize and, as a consequence, the system jumps

towards a more stable internal structure. A prototypical example of this phenomenon

is the gas-liquid-solid transition (see figure 1-1). In this case, when high temperatures

are imposed to the system, the molecules are thermally excited and freely move around

the available space. On the other hand, if the temperature is reduced, clustering

become a more stable solution. Thereby, the liquid phase is characterized by cohesive

(but relatively free) molecules, while in the solid phase the molecules are closely

packed together in a crystalline way.

This example illustrates how, for a given pressure, a temperature reduction im-

plies a transition from a “disordered” phase to an “ordered” one, and so, a change

in the degree of order or symmetry of the system. Such “order-disorder” transitions
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Figure 1-1: Gas-liquid-solid transition. Colloidal phase transitions induced by critical
Casimir forces [71]: colloidal gas (A), colloidal liquid aggregates (B) and colloidal crystal
(C).

are ubiquitous in physics, for instance, the ferromagnetic-paramagnetic transition is

another usual example. The quantities employed to characterize phase transitions

are: i) the “order” parameter (e.g. the density or the magnetization in the above

examples), which quantifies the underlying order or symmetry of the system; ii) the

“control” parameter (e.g. temperature), which is the cause of phase change; and

iii) the “conjugate” parameter (e.g. pressure or magnetic field), which promotes the

system to become ordered.

For specific values of the control and conjugate parameters, the formalism of

the Statistical Mechanics of systems in thermodynamic equilibrium is able to pro-

vide the free energy potential that governs the equilibrium state [8]. However, in

non-equilibrium, for which the free energy does not exist [146, 106, 161, 95], new

techniques, based on the theory of stochastic process, need to be employed. Equa-

tions describing the evolution of the probability density of microscopic states often

provide effective potentials – counterpart of thermodynamic potentials – that enable

a satisfactory analysis of non-equilibrium phase transitions [213, 82].
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In this thesis, relying on these techniques, we study simple non-equilibrium mod-

els – describing both, standard physical problems and less conventional systems in

theoretical biology and ecology – and analyze the phase transition they exhibit. As

the following sections expose, there exist two main types of phase transitions: i) “con-

tinuous” or second-order transitions, for which the order parameter changes smoothly

as a function of the control parameter; and ii) “discontinuous” or first-order transi-

tions, for which, contrarily, the change occurs in an abrupt manner. In this chapter,

by studying prototypical non-equilibrium models, we review the main features that

characterize such type of transitions and the tools to analyze them.

One of the main goals of the present work is to shed light on the effect of stochas-

ticity, diffusion, and heterogeneities on phase transitions exhibited by non-equilibrium

systems. In this regard, section 1.4 summarizes the studies about the effect of spatial

heterogeneity on equilibrium phase transitions [119, 3, 19, 117] and clears a path for

studying non-equilibrium cases.

1.2 Non-equilibrium continuous phase transitions

In this section we elucidate the essential aspects of systems exhibiting a second-order

transition. For that purpose, the “contact process”, one of the most important models

exhibiting such transition, is considered [106].

The contact process is defined as a Markov process [82] on a lattice or an arbi-

trary network in which each site can be either empty or occupied. Occupied sites or

“particles” can create other particle at rate 𝜆 at a nearest neighbor site – provided it

is empty – or die at rate 𝜇:

𝐴
𝜆−→ 2𝐴 (𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛),

𝐴
𝜇−→ 0 (𝑟𝑒𝑚𝑜𝑣𝑎𝑙).

(1.1)
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This process takes place on spatially-explicit systems with𝑁 sites or nodes. Equiv-

alently, a coalescence reaction 2𝐴
𝜇′
−→ 𝐴 can be imposed if the restriction of only one

particle per site is removed. Although it is usual to employ lattice networks connect-

ing the sites, in recent years, more complex networks have been imposed to investigate

the effects of non-trivial underlying architectures on the system dynamics [4, 12]. In

this light, chapter 4 inquire into the effect of hierarchical modular networks on neural

dynamics.

In the following, particles creation is also referred as sites activation, and “active”

and “inactive” states are equivalent to high and low density states.

1.2.1 Stochastic description

A full description of birth-death processes, such as the contact process, is achieved

by the microscopic “master equation” [82, 213]. Considering discrete microscopic

steps, the density 𝜌(𝑡) = 𝑛(𝑡)/𝑁 can increase +1/𝑁 , decrease −1/𝑁 , or remain equal,

and the master equation can be expressed as

𝜕𝑃 (𝜌, 𝑡)

𝜕𝑡
= 𝑊+(𝜌− 1/𝑁, 𝑡)𝑃 (𝜌− 1/𝑁, 𝑡)+

+ 𝑊−(𝜌+ 1/𝑁, 𝑡)𝑃 (𝜌+ 1/𝑁, 𝑡)−

− 𝑊+(𝜌, 𝑡)𝑃 (𝜌, 𝑡)−𝑊−(𝜌, 𝑡)𝑃 (𝜌, 𝑡).

(1.2)

For the contact process, the transition rates are given by:

𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛 : 𝑊+(𝜌, 𝑡) = 𝜆𝜌(1− 𝜌),

𝑎𝑛𝑛𝑖ℎ𝑖𝑙𝑎𝑡𝑖𝑜𝑛 : 𝑊−(𝜌, 𝑡) = 𝜇𝜌,
(1.3)

and, thus, its master equation is:

𝜕𝑃 (𝜌, 𝑡)

𝜕𝑡
= [𝜆𝜌(1−𝜌)]𝑃 (𝜌−1/𝑁, 𝑡)+𝜇𝜌𝑃 (𝜌+1/𝑁, 𝑡)− [𝜆𝜌(1−𝜌)+𝜇𝜌]𝑃 (𝜌, 𝑡). (1.4)
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This is a good way of capturing the behavior of the system. However, solving this

type of equations is usually a difficult task. For this reason it is often approximated

by the called Fokker-Planck equation [82, 213]. Expanding 𝑃 to order 1/𝑁2 in

space [82, 213], it is given by:

𝜕𝑃 (𝜌, 𝑡)

𝜕𝑡
= − 𝜕

𝜕𝜌

{︀[︀
𝑊+(𝜌, 𝑡)−𝑊−(𝜌, 𝑡)

]︀
𝑃 (𝜌, 𝑡)

}︀
+

+
1

2𝑁

𝜕2

𝜕𝜌2
{︀[︀
𝑊+(𝜌, 𝑡) +𝑊−(𝜌, 𝑡)

]︀
𝑃 (𝜌, 𝑡)

}︀
.

(1.5)

and, thus:
𝜕𝑃 (𝜌, 𝑡)

𝜕𝑡
= − 𝜕

𝜕𝜌

{︀[︀
(𝜆− 𝜇)𝜌− 𝜆𝜌2

]︀
𝑃 (𝜌, 𝑡)

}︀
+

+
1

2𝑁

𝜕2

𝜕𝜌2
{︀[︀
(𝜆+ 𝜇)𝜌− 𝜆𝜌2

]︀
𝑃 (𝜌, 𝑡)

}︀
.

(1.6)

This equation gives the evolution of the probability density 𝑃 (𝜌, 𝑡) and it is often a

satisfactory method to obtain the effective potential that characterizes the system, as

well as, the escape times as a function of the system size [82, 213].

On the other hand, when the interest resides in knowing the temporal evolution

of the order parameter, the Langevin equation is the suitable one [82, 213]. It is

well-known that there is an equivalence relation among Fokker-Planck and Langevin

equations [82, 213], and so, the previous development enables for a direct derivation

of the latter. For the contact process, it is given by:

𝜕𝜌

𝜕𝑡
= 𝑊+ −𝑊− +

√︂
𝑊+(𝜌, 𝑡) +𝑊−(𝜌, 𝑡)

𝑁
𝜉(𝑡) =

= −𝜇𝜌+ 𝜆𝜌(1− 𝜌) +

√︂
𝜆𝜌(1− 𝜌) + 𝜇𝜌

𝑁
𝜉(𝑡),

(1.7)

where 𝜉(𝑡) is a Gaussian noise. If space explicit models are considered, a term 𝐷∇2𝜌

must be included to account for effective diffusion to nearest neighbors.
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This equation captures a remarkable phenomenon of the contact process, i.e. the

existence of an absorbing state [146, 106, 161, 95]. Note that, for 𝜌 = 0, the noise

term disappears, and so, as no fluctuations exist, it is impossible to escape from it.

Although the process permits the system to reach this state, it is impossible to return

to the previous densities, and, as a consequence, the system is out of equilibrium by

violating “detailed balance”.

Note that, as the noise term disappears for 𝑁 → ∞, this phenomenon just occurs

for finite systems. In these cases, the only stable state is the absorbing one and,

although the systems remains some time in a metastable state, it eventually falls into

such non-fluctuating state. In order to avoid this, spontaneous creation of particles –

at low rates – can be included in such a way that 𝜌 = 0 is not absorbing [146, 106].

Such process is “quasi-stationary” in the sense that the appearing stationary states

are not truly stationary, and eventually decay towards zero in the original system.

1.2.2 Mean-field approximation

A simple approach to extract information of this system is the “mean-field” approx-

imation, which can be interpreted as a well-mixed, fully-connected infinite system

[21]. Taking 𝑁 → ∞ in equation 1.7, the particle density 𝜌(𝑡) = 𝑛(𝑡)/𝑁 at time 𝑡 is

described by the following rate or mean-field equation:

𝜌̇(𝑡) = −𝜇𝜌+ 𝜆𝜌(1− 𝜌). (1.8)

Stationary states

It is straightforward that the mean-field stationary solutions – for which 𝜌̇(𝑡) = 0

– are: i) 𝜌𝑠 = 0 and ii) 𝜌𝑠 = (𝜆 − 𝜇)/𝜆. As negative densities make no sense, the

non-trivial solution only exists for 𝜆 > 𝜇 and so, the first conclusion that can be
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reached is that, for 𝜆 = 𝜇, a change of behavior or phase transition occurs. While

for 𝜆 < 𝜇 density decays due to annihilation predominance, for 𝜆 > 𝜇 a positive

density or “active” state is possible. Thereby, defining 𝜆 as the control parameter, the

critical point is 𝜆𝑐 = 𝜇. As 𝜆 increases smoothly, 𝜌𝑠 = (𝜆− 𝜇)/𝜆 does it in the same

way, and a continuous transition occurs. Figure 1-2A displays the phase diagram

corresponding to these stationary densities 𝜌𝑠 as a function of the control parameter

𝜆 showing such continuous transition (fixing 𝜇 = 1).

Besides this, it is useful to realize that the right-hand side of the equation 1.8 can

be interpreted as a drift force 𝑓(𝜌), gradient of an effective potential 𝑉 (𝜌) in the form

𝑓(𝜌) = −𝜕𝑉 (𝜌)/𝜕𝜌 [205], an so, 𝑉 (𝜌) = (𝜇 − 𝜆)𝜌2/2 + 𝜆𝜌3/3. Figure 1-2B shows

that the potential minimum rest in zero for 𝜆 < 𝜇 until 𝜆 in increased above 𝜇. In

that case, the minimum position increases continuously corroborating a continuous

transition at 𝜆𝑐 = 𝜇 that separates an inactive state with 𝜌 = 0 from a non-vanishing

density active state 𝜌 > 0.

Figure 1-2: Phase diagram (A) and effective potential (B) of the contact process
for a removal rate 𝜇 = 1. In A) light and dark colors indicate low and high values of the
stationary density, respectively. B) Light and dark colors indicate low and high values of
the control parameter 𝜆, respectively.
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Temporal evolution

Defining Δ = 𝜆 − 𝜇 as the distance to the critical point, the dynamical behavior of

the contact process can be obtained from the equation 1.8:

𝜌(𝑡) ≃

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ

Δ/𝜌0 − 𝜆
𝑒Δ𝑡 (Δ < 0),

(1/𝜌0 + 𝜆𝑡)−1 (Δ = 0),

Δ

𝜆

[︂
1 +

(︂
1− Δ

𝜆𝜌0

)︂]︂
(Δ > 0).

(1.9)

Observe that, in the limit 𝑡 → ∞, the stationary solutions encountered in section 1.2.2

are recovered. Regarding temporal evolution, note that, for Δ < 0, density decays

exponentially towards the absorbing state 𝜌𝑠 = 0; while, for Δ > 0, the density

maintains constant. Both, the exponential decay, and the constant values, depends

on the initial density 𝜌0, and the parameters Δ = 𝜆 − 𝜇 and 𝜆. Remarkably, the

closer to the critical point (Δ = 0), the slower the decay, and the smaller the density

value for inactive and active states, respectively. On the other hand, an interesting

behavior appears at and close to the critical point:

𝜌(𝑡) ≃ 𝑡−1,

𝜌𝑠(Δ) ≃ Δ1,
(1.10)

defining two “critical exponents”: i) 𝛼𝑀𝐹 = 1 such that 𝜌(𝑡) ≃ 𝑡−𝛼, and ii) 𝛽𝑀𝐹 =

1 such that 𝜌(Δ) ≃ Δ𝛽. Such power-law behavior is characteristic of continuous

transitions and it appears for other quantities, as shown in table 1.1.
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Susceptibility

The susceptibility characterizes the response of the system to external perturbations

and plays an important role in continuous transitions. In the contact process, the

external field corresponds to the spontaneous creation of particles within the system

– at some rate 𝜆′ – and constitutes the conjugate parameter of the order parameter

𝜌. The mean-field equation corresponding to the presence of spontaneous creation in

unoccupied sites is given by:

𝜕𝑡𝜌(𝑡) = −𝜇𝜌+ 𝜆𝜌(1− 𝜌) + 𝜆′(1− 𝜌), (1.11)

with a stationary solution

𝜌𝑠(Δ, 𝜆′) =
Δ− 𝜆′ ±

√︀
(Δ− 𝜆′)2 + 4𝜆𝜆′

2𝜆
. (1.12)

Note that, for 𝜆′ ̸= 0, the stationary density is not zero at the critical point and, just

when 𝜆′ → 0, its value tends to zero 𝜌𝑠 → 0. In order to evaluate the stationary

susceptibility close to the critical point when 𝜆′ = 0, the limit Δ → 0 is taken in the

previous equation 1.12 obtaining:

𝜒𝑠(Δ → 0, 𝜆′ = 0) =
𝜕𝜌𝑠(Δ → 0, 𝜆′ = 0)

𝜕𝜆′ ≃ Δ

4𝜆2
(1.13)

defining the critical exponent 𝛾𝑀𝐹 = 1 such that 𝜒𝑠 ≃ Δ−𝛾. This shows that the

susceptibility also diverges as a power-law in the vicinity of the critical point.
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Correlations

In equilibrium, the divergence of susceptibility is associated with the divergence of

correlations, which are usually quantified by the two-point correlation function. While

in equilibrium such function depends just on space, in non-equilibrium time must

also be considered. The two-point correlation functions at equal time and space are,

respectively, given by [106]:

𝑐⊥(r) ∼ r𝜗⊥𝑒−r/𝜉⊥ ,

𝑐||(t) ∼ t𝜗||𝑒−t/𝜉|| ,
(1.14)

being r = |𝑟′ − 𝑟|, t = |𝑡− 𝑡′|, 𝜉⊥ the correlation length, and 𝜉|| the correlation time.

The latter quantities behaves as [106]:

𝜉⊥ ≃ Δ−𝜈⊥ ,

𝜉|| ≃ Δ−𝜈|| ,
(1.15)

in the vicinity of the critical point. In mean-field, these exponents can be obtained

from the spatially-explicit mean-field equation

𝜌̇(𝑡) = −𝜇𝜌+ 𝜆𝜌(1− 𝜌) +𝐷∇2𝜌, (1.16)

by introducing the ansatz 𝜌(𝑡, r/𝑡1/𝑧) with 𝑧 = 𝜈||/𝜈⊥[106]. Thereby, 𝜈⊥,𝑀𝐹 = 1/2

and 𝜈||,𝑀𝐹 = 1.

This divergence of the correlation length implies that the fluctuations at the tran-

sition point are correlated over macroscopic distances. On the other hand, the power-

law divergence of the correlation time, means that, the closer the system is to the

critical point, the slower the time auto-correlation function ⟨𝑠(𝑡)𝑠(𝑡+𝜏)⟩ decays. This

phenomenon is known as “critical slowing down”.
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1.2.3 Beyond mean-field

It has been shown that mean-field approximations are very useful in the analysis of

non-equilibrium phase transitions. However, the exponents obtained do not coincide

with those of real physical systems [141, 165, 197, 21, 6].

The first step to obtain the true critical exponents relies on the “scaling theory”

[141, 165, 197, 21, 6]. The above-mentioned analysis shows that many quantities

diverge as power-laws at or close to the critical point. The ubiquity of such behavior

led to the formulation of the scaling theory, which provides useful scaling functions

to obtain good estimation of the critical exponents, and scaling laws between such

exponents [141, 165, 197, 21, 6].

In order to obtain the critical exponents, several techniques such as series ex-

pansions, or renormalization group theory, can be accomplished. When analytical

calculations are not possible, numerical simulations are employed.

In this section an illustrative example of the scaling theory is accomplished for

the contact process, and some concepts of universality are reviewed. Finally some

important concepts and strategies of numerical simulations are briefly summarized.

Scaling

Dimensional analysis of the previous equations [106] 𝜉||(Δ) ≃ Δ−𝜈|| and 𝜌(Δ) ≃ Δ𝛽

suggests that these quantities can be rescaled as

𝜉|| ↦→ 𝑙−𝜈||𝜉||, 𝜌 ↦→ 𝑙𝛽𝜌, (1.17)

when Δ → 𝑙Δ. Scaling theory predicts that, for an (initially) fully activated state

the scaling function is [106]:

𝜌(𝑡; Δ) ≃ 𝑙−𝛽𝑓(𝑙−𝜈||𝑡; 𝑙Δ). (1.18)
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Scaling functions establish scaling laws between the critical exponents. This leads

to (the most cases) two independent exponents that determine all the behavior of

the system [141, 165, 197, 21, 6]. Besides, these functions constitute a useful tool to

determine critical exponents numerically. In this particular case, by plotting 𝜌(𝑡; Δ)𝑡𝛼

versus 𝑡|Δ|𝜈|| for different values of Δ, data sets must collapse as shown in figure 1-3.

Figure 1-3: Collapse of 𝜌(𝑡) for different values of Δ for the contact process [106].

As scaling functions and accurate values of critical exponents were obtained, it

was shown that different systems shared the same critical exponents and scaling

properties, defining the called “universality classes”. In this light, renormalization

group theory emerges has a useful tool to identify the relevant mechanisms that

makes a system belong to such classes [141, 165, 197, 21, 6].
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Universality

Universality originates in the macroscopically correlated fluctuations that appear at

the critical point and that imply a lack of sensitivity to length transformations. Renor-

malization group theory, relying on such invariance under length transformations, is

able to make a “coarse-graining” of the system under consideration [21, 106]. This

process permits to identify the relevant features of the systems, and classify them in

universality classes. This theory shows that there are just a few relevant features that

determine the universality class, mainly: the dimensionality of the system, the num-

ber of components of the order parameter, the range of the microscopic interactions

in the system, the conservation laws or the presence of quenched disorder [106].

The contact process belongs to one of the most important universality classes,

the “directed percolation” class [122, 89, 106], which capture the main mechanisms

of many different systems such as catalytic reactions, percolation in porous media,

avalanches of flowing granular matter, electro-positron collision, depinning transitions

or polynuclear growth.

Numerical simulations

Finite-size effects

When accomplishing numerical simulations, it is obviously impossible to account for

infinite systems. It is important to realize that, when the linear system size 𝐿 is com-

parable with the correlation length 𝜉⊥, finite-size effects appear. This occurs specially

when approaching the critical point, in which the correlation length – infinite for in-

finite systems – is “truncated” to 𝜉⊥ → 𝐿. As a consequence of this, the divergences

are rounded and shifted, and the phase transition disappears.
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It is easy to obtain how systems quantities scale with 𝐿. Taking 𝜉⊥ → 𝐿 and

recalling 𝜉⊥ ≃ Δ−𝜈⊥ then, for example:

𝜌𝑠 ≃ Δ𝛽 ≃ 𝐿−𝛽/𝜈⊥ ,

𝜒𝑠 ≃ Δ−𝛾 ≃ 𝐿−𝛾/𝜈⊥ .
(1.19)

Another finite-size effect regards that, for finite systems, there is always a non-

vanishing probability of reaching the absorbing configuration. This occurs at a char-

acteristic time 𝜏 ∼ 𝐿𝜈||/𝜈⊥ [106], and, as previously commented, can be avoided by

spontaneous creation of particles [146].

Spreading and decay experiments

When studying the temporal evolution of non-equilibrium systems, initial conditions

are essential. Two different situations are usually considered: i) spreading of a seed

of particles in an empty system; and ii) decaying from a fully active initial state.

Regarding spreading, the principal measures considered are: i) the number of

particles 𝑁(𝑡), ii) the probability of surviving without falling into the absorbing state

𝑃𝑠(𝑡), iii) the number of particles averaged over the surviving trials 𝑁𝑠(𝑡), and iv) the

mean quadratic distance 𝑅2
𝑠 over the surviving trials. Such measures evolve in time

as:
𝑁(𝑡) ∼ 𝑡𝜂,

𝑃𝑠(𝑡) ∼ 𝑡𝛿,

𝑁𝑠(𝑡) ∼ 𝑡𝜂+𝛿,

𝑅2
𝑠 ∼ 𝑡𝑧𝑠𝑝𝑟 .

(1.20)

On the other hand, decaying experiments are usually described by the particles

density:

𝜌(𝑡) ∼ 𝑡−𝜃. (1.21)
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The critical exponents obtained for the contact process (and all systems belonging

to the directed percolation class) are presented in table 1.1.

Relation Exponent 𝑑 = 1 𝑑 = 2 𝑑 = 3 Mean field
𝜌𝑠(Δ) ∼ Δ𝛽

𝜌𝑠(𝐻) ∼ 𝐻𝛽/𝜎

𝜌(𝑡) ∼ 𝑡−𝛼

𝑃𝑠(Δ) ∼ Δ𝛽′

𝑃 (𝑡) ∼ 𝑡−𝛿

𝜒(Δ) ∼ Δ−𝛾

𝜉⊥(Δ) ∼ Δ−𝜈⊥

𝜉||(Δ) ∼ Δ−𝜈||

𝑁(𝑡) ∼ 𝑡𝜂

𝑅2(𝑡) ∼ 𝑡𝑧

𝛽
𝜎
𝛼

𝛽′ = 𝛽
𝛿 = 𝛼
𝛾
𝜈⊥
𝜈||
𝜂
𝑧

0.276486(8)
2.554216(13)
0.1594664(6)

2.277730(5)
1.096854(4)
1.733847

0.313686(8)
1.580745(10)

0.5834(30)
2.1782(171)
0.4505(10)

1.5948(184)
0.7333(75)
1.2950(60)
0.2295(10)
1.7660(16)

0.813(9)
2.049(26)
0.732(4)

1.237(23)
0.584(5)
1.110(10)
0.114(4)
1.901(5)

1
2
1

1
1/2
1
0
2

Table 1.1: Directed percolation critical exponents [106]

1.3 Non-equilibrium discontinuous phase transition

Some non-equilibrium systems with absorbing states exhibit discontinuous transi-

tions. One of the simplest examples displaying such transition is the one-component

reaction-diffusion Markov process [146, 106, 161, 95] with 𝑙-particle creation and 𝑘-

particle annihilation [69] expressed by the following equations:

𝑘𝐴→(𝑘 − 𝑛)𝐴 , 𝑙𝐴→(𝑙 +𝑚)𝐴 , (1.22)

where 𝑘, 𝑛, 𝑙,𝑚 ∈ N. As in the case of the contact process, it is considered on a

spatially-explicit system with 𝑁 sites occupied by, at most, one particle. Models

presenting these reactions exhibit a discontinuous transition for 𝑙 > 𝑘 whenever the

sites obey the latter condition or an additional reaction 𝑖𝐴→𝑗𝐴, with 𝑖 > 𝑗 and

𝑖 > 𝑙, is imposed to stabilize the system – this is easily seen from the corresponding

mean-field equation –.
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In this thesis we employ the simplest of these models, the often called ”quadratic“

contact process, which is obtained by choosing 𝑙 = 2,𝑚 = 1, 𝑘 = 1, 𝑛 = 1 [228]. In

this reaction-diffusion model, an individual particle can die at a fixed rate 𝜇 or diffuse

to its nearest neighbors, and pairs of nearest-neighbor particles can create a single

particle at some rate 𝜆:

2𝐴
𝜆−→ 3𝐴 (𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛),

𝐴0
𝐷−→ 0𝐴 (𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛, )

𝐴
𝜇−→ 0 (𝑟𝑒𝑚𝑜𝑣𝑎𝑙).

(1.23)

1.3.1 Stochastic description

Following the method described in the previous section, the stochastic Langevin equa-

tion is given by:

𝜕𝜌

𝜕𝑡
= 𝜆𝜌2(1− 𝜌)− 𝜇𝜌+

√︂
𝜆𝜌2(1− 𝜌) + 𝜇𝜌

𝑁
𝜉(𝑡). (1.24)

Again when 𝜌 = 0, the noise disappears and, as a consequence, such low density state

is absorbing.For spatially-explicit systems, effective diffusion must be included by the

term 𝐷∇2𝜌.

1.3.2 Mean-field approximation

Taking 𝑁 → ∞ in equation 1.24, the mean field equation corresponding to the

quadratic contact process is given by:

𝜌̇(𝑡) = −𝜇𝜌(𝑡) + 𝜆𝜌(𝑡)2(1− 𝜌(𝑡)). (1.25)
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From here, the steady-states solutions can be obtained: i) 𝜌𝑠 = 0 and ii) 𝜌𝑠 =

1
2
(1+

√︀
1− 4𝜇/𝜆) for 𝜆 > 4𝜇. This means that, for low creation rates 𝜆 < 4𝜇, particles

number decays towards zero; while, for high creation rates 𝜆 > 4𝜇, population can

survive. The difference of this process respect to the contact process is that, when

evaluating the stationary density at 𝜆 = 4𝜇 – fixing 𝜇 = 1 – it results to be 𝜌𝑠 = 1/2,

and so, an abrupt change of the order parameter occurs.

When evaluating the stability of these solutions it appears that, for 𝜆 > 4𝜇, both

𝜌𝑠 = 0, and the positive density solution, obey 𝜕2𝜌(𝑡)/𝜕𝑡2 < 0. This fact results in

the appearance of metastability.

The effective potential, corresponding to the drift force 𝑓(𝜌) = −𝜇𝜌(𝑡)+𝜆𝜌(𝑡)2(1−

𝜌(𝑡)), is 𝑉 (𝜌) = 𝜇𝜌2/2−𝜆𝜌3/3+𝜆𝜌4/4 and is depicted in figure 1-4B. It is shown that

such potential exhibits a double well corroborating the previous results. Depending

on the control parameter, the truly stable state changes: while, for 𝜆 = 4𝜇, 𝜌𝑠 = 0 is

stable and the active state is metastable; for other value of 𝜆, the contrary occurs. As

a consequence of this fact, the change from low-density to high-density state occurs

at a different control parameter that the change from high to low densities. This

phenomena is called hysteresis. On the other hand, for 𝜆 = 9𝜇/5, the two phases are

equally stable. Such point is known as the coexistence point, and is the transition or

”Maxwell“ point.

Both results lead us to expect, at this mean-field level, a discontinuous transition

between an active density state 𝜌 > 0 and an inactive state 𝜌 = 0 at 𝜆 = 4𝜇. This is

due to the facilitation or Allee mechanism [204]. Thereby, low-density states are less

stable that high-density phases, and stationary states of positive densities are just

reached when a “critical” density is surpassed.
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Figure 1-4: Phase diagram (A) and effective potential (B) of the quadratic contact
process for a removal rate 𝜇 = 1. In A) light and dark colors indicate low and high values
of the stationary density, respectively. B) Light and dark colors indicate low and high values
of the control parameter 𝜆, respectively.

1.3.3 Beyond Mean-field

Phase transition

In chapter 2 a detailed analysis shows that deterministic predictions are not valid for

low 𝐷 and high demographic noise, and, instead, a continuous transitions appears.

For high 𝐷 and low noise, the effective potential of the stochastic system displays

a well of infinite depth at 𝜌 = 0, showing the absorbing behavior of such point.

Contrarily, for low𝐷 and high noise, it radically changes towards an effective potential

typical of an absorbing continuous transition – described in the previous section –.

In figure 2-4 such effective potential can be seen.
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Numerical simulations

We identify a discontinuous transition by the previous features, i.e. abrupt transition

of the order parameter, phase coexistence and hysteresis. Besides the methodology

described in the previous section, interesting finite-size effects are measured and in-

terfacial experiments are performed, as we describe now.

Finite-size effects

It is important to note that, for the quadratic contact process, finite systems also

falls into the absorbing configuration. This fact can difficult the measure of hysteresis

in discontinuous transitions and, for this reason, spontaneous creation of particles is

included – at low rates – in this case.

Besides this, a remarkable size effect in systems exhibiting discontinuous tran-

sitions is observed in the first passage time or mean survival time [151]. As it is

observed in figure 1-5, for systems with size 𝐿 < 𝐿𝑐, the mean passage time 𝜏 grows

exponentially with 𝐿. Recalling equilibrium, this is a consequence of the Arrhenius

law in which the jump probability 𝑝 depends on the potential barrier Δ𝐺 – that, in

turn, depends on the system size – in the form 𝑝 ∝ 𝑒Δ𝐺. However, if the system

is enlarged beyond a critical value 𝐿𝑐, the survival time decreases. This is due to

the fact that, as the system size is greater, large regions of the alternative phase ap-

pears and can more probably invade the original phase – such invasion phenomena is

known as nucleation process –. Finally, once the system surpasses a particular value

𝐿*, several invasions – or nucleations – take place. As a consequence, the increasing

of the system size does not affect the result in this case, and the mean survival time

maintains constant when increasing the size.
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Figure 1-5: Finite-size effect of mean survival time for the quadratic contact
process [151].

Spreading, decaying and interfacial experiments

Spreading and decaying experiment are also employed in the study of discontinuous

transitions. As an abrupt jump occurs at this case, the exponents at the transition

point are all zero, for instance, 𝜌(𝑡) ≃ 𝑡0.

Apart from this, interfacial experiments are very useful when characterizing dis-

continuous transitions. There exists a coexistence point, at which both phases are

equally stable; it corresponds to the transition or Maxwell point 𝜆𝑀 . This means

that, while for 𝜆 > 𝜆𝑀 (or 𝜆 < 𝜆𝑀) the active (or inactive) phase invades the other,

for 𝜆 = 𝜆𝑀 , the interface velocity between both phases is zero. In non-equilibrium

systems, this point can be obtained by interfacial experiments in which two halves

of the system are occupied by different states. The control parameter at which the

front velocity is zero corresponds to the transition point.
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1.4 Spatial heterogeneities in equilibrium phase

transitions

One of the focal points of this thesis is to discern the effect of spatial heterogeneities

on phase transitions. Here, a brief summary of what is know about quenched (spatial)

disorder effects on equilibrium phase transitions is presented.

1.4.1 Continuous transitions

Quenched spatial disorder has a dramatic effect on both the statics and the dynamics

of phase transitions [105, 94, 120]. A time-honored argument by Imry and Ma explains

in a simple and parsimonious way why symmetries cannot be spontaneously broken

in low-dimensional systems in the presence of quenched random fields [119]. In a nut-

shell, the argument is as follows. Suppose a discrete symmetry (e.g., 𝑍2 or up-down)

was actually spontaneously broken in a 𝑑-dimensional system and imagine a region of

linear size 𝐿 with a majority of random fields opposing the broken-symmetry state.

As a direct consequence of the central limit theorem, by reversing the state of such

a region the bulk-free energy would decrease proportionally to 𝐿𝑑/2, but this inver-

sion would also lead to an inter-facial energy cost proportional to 𝐿𝑑−1. Comparing

these two opposing contributions for large region sizes, it follows that for 𝑑 ≤ 2 the

first dominates, making the broken-symmetry state unstable. If the distinct phases

are related by a continuous symmetry, soft modes reduce the effect of the boundary

conditions to 𝐿𝑑−2 and the marginal dimension is 𝑑 = 4 [3]. Thus, the energetics

of low-dimensional systems is controlled by the random field, which is symmetric,

thus preventing symmetries from being spontaneously broken and continuous phase

transitions from existing. Instead, in higher dimensional systems, the situation is

reversed, symmetries can be spontaneously broken, and phase transitions exist.
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The Imry-Ma argument i) holds for equilibrium systems (where the free energy

is well defined), ii) is backed by more rigorous renormalization group calculations,

which prove that no symmetry breaking occurs even at the marginal case 𝑑 = 2

(where rough interfaces could potentially break the argument above [3]), iii) has been

verified in countless examples both experimentally and numerically, and (iv) has been

extended to quantum phase transitions [92, 219].

1.4.2 Discontinuous transitions

Let us now shift the discussion to first-order phase transitions, for which system prop-

erties such as the magnetization, energy, density, etc., change abruptly as a control

parameter crosses a threshold value at which two distinct phases coexist. As shown

by Aizenman and Wehr, first-order phase transitions in low-dimensional equilibrium

systems are rounded (made less sharp) by disorder, and, even more remarkably, the

rounding may result into a critical point; i.e., first-order/discontinuous phase transi-

tions become second-order/continuous ones upon introducing (random-field) disorder

[3]. A similar conclusion applies to the case of random interactions [3, 19, 117]; in-

deed, a random distribution of interactions (e.g., bonds) locally favors one of the two

phases, and thus, it has the same effects as random fields. Different Monte Carlo

results support this conclusion; furthermore they suggest that the disorder-induced

continuous transition exhibits critical exponents which are consistent with those of the

corresponding pure model. An argument explaining these findings was put forward

by Kardar et al. [141].

In close analogy with the argument above for the absence of symmetry-breaking,

in the case of phase coexistence as well, regions (or “islands”) of arbitrary size of

one of the phases appear in a stable way within the other. Therefore, islands exist

within islands in any of the two phases in a nested way, leading always to hybrid
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states. Hence, two distinct phases cannot possibly coexist and first-order transitions

are precluded in disordered low-dimensional equilibrium systems.

Although these equilibrium expectations may not be obeyed in non-equilibrium

conditions, they can cut a path to understand the behavior in such situations.

1.5 Summary

In this chapter, continuous and discontinuous transitions have been characterized,

and the role of spatial heterogeneity on such transitions has been explicitly discussed.

On the one hand, relying on the contact process, we described second-order phase

transitions. Such a transition presents smooth changes of the control parameter,

and a critical point at which several quantities diverge as power-laws. Besides, we

have introduced the main techniques to study the systems presenting such transitions,

specifically, the mean-field approach, stochastic processes techniques, renormalization

group, and numerical simulations.

On the other hand, as light modification of the previous process, the quadratic

contact process, has provided us with a simple model to study first-order transitions.

In this case, the presence of a discontinuous change of the control parameter, phase

coexistence, and hysteresis characterize the transition. Besides this, finite-size analy-

ses and interfacial experiments have been introduced as a useful tool in the description

of such transition.

Finally, a brief review of the effect of spatial heterogeneities on equilibrium transi-

tions has highlighted that, in low-dimensional equilibrium systems, continuous tran-

sitions are precluded and discontinuous transitions become continuous. In this light,

chapter 2 and 3 analyze if this is the case in non-equilibrium systems.

The presented concepts regarding standard physical problems have been success-

fully applied to other systems in biology, ecology, socio-economic systems, etc. Such
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systems are much more complex than physical or chemical ones in the sense that they

are usually constituted by elements which are not well described by simple rules –

contrarily to atoms or molecules – and that usually differ between them. However,

simplification of these systems in terms of statistical mechanics models, has revealed

to be a extremely useful strategy to understand and anticipate its behavior. In this

regard, the concepts presented in this chapter are applied, not only in physical prob-

lems, but also in complex biological and ecological systems in the following chapters.
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Chapter 2

Eluding discontinuous transitions.

The relevance of stochasticity,

diffusion and heterogeneity

Transitions between regimes with radically different properties are ubiquitous in the

nature. Such transitions can occur either smoothly or in an abrupt and catastrophic

fashion. Important examples of the latter can be found in ecology, climate sciences,

and economics, to name a few, where regime shifts have catastrophic consequences

that are mostly irreversible (e.g. desertification, coral-reef collapses, market crashes).

Predicting and preventing these abrupt transitions remains a challenging and impor-

tant task.

In this chapter, we study spatially-explicit stochastic systems that are susceptible a

priori to exhibiting discontinuous transitions. Our goal is to scrutinize how intrinsic

stochasticity influences these systems; in particular, to explore whether stochasticity

in combination with other realistic mechanisms such as limited diffusion and spatial

(quenched) heterogeneity may alter the nature of phase transitions.
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By using a combination of computational and analytical techniques, together with

known results from the statistical mechanics of phase transitions, we show that these

realistic ingredients can potentially round-up abrupt discontinuities, giving rise to

more predictable, progressive, and easy-to-reverse transitions. As a possible appli-

cation of our novel understanding, we speculate that basic and widespread aspects of

natural systems could be potentially exploited to prevent abrupt regime shifts and their

undesired consequences.

2.1 Introduction

2.1.1 First-order transitions in nature

Discontinuous transitions are an ubiquitous and important phenomena in nature [181,

185]. For instance, socio-economic and socio-ecological systems [148, 131], as well as

ecosystems such as lakes, savannas, or oceans (with their embedded fisheries, or coral

reefs) can experience, as a consequence of small changes in environmental conditions,

sudden collapses after which recovery can be extremely difficult [180, 198, 111, 76, 34].

As a consequence of this irresistibility, they are often called “catastrophic shifts”.

Abrupt transitions from vegetation-covered states to desertic ones in semiarid

regions constitute an illustrative example [128, 216, 103, 183, 184, 127, 178, 191].

The latter habitats are characterized by positive feedback loops between vegetation

and water: the presence of water fosters plant growth that, in turn, fosters water

accumulation in plant-covered regions by, for instance, reducing evaporation rates.

The fate of the ecosystem is determined by the overall precipitation rate, with a

green or a deserted stable state for high and low rates, respectively. Interestingly,

there is an intermediate bistable precipitation regime compatible with either a barren

or a vegetated landscape. Thus, as a response to some small environmental change, or
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if the feedback loop is incidentally interrupted, there can be a regime shift, implying

a collapse of the vegetation cover and the mostly-irreversible emergence of a deserted

landscape [181, 128, 216, 103, 199].

This mechanism, in which population growth (or, more generally, “activity” gen-

eration) is reinforced by a positive feedback, constitutes the basic ingredient for mul-

tistability and for possible catastrophic regime shifts –also called tipping points or

“critical transitions”. Similar “facilitation” mechanisms appear in a vast variety of ex-

amples in population ecology (Allee effect)[204], neuroscience (synaptic facilitation)

[234], systems biology [164] and, in general, in climate, biological, and social sciences

[181, 192, 193].

Opposite to abrupt shifts, many other systems in nature and society exhibit much

smoother transitions between active and quiescent states, with a more-easily-reversed

progressive deterioration. Examples of the latter appear in epidemic spreading, fixa-

tion of alleles in population genetics, computer virus propagation, and autocatalytic

chemical reactions, to name a few [159, 163, 106, 110, 161].

2.1.2 Previous studies

Predicting and anticipating catastrophic regime shifts and distinguishing them from

their smoother counterparts constitutes a timely subject with a vast number of impor-

tant applications, including the prevention of biodiversity collapse or radical climate

changes as the result of anthropogenic pressures [182, 52, 51, 130, 164]. Indeed, early

warning indicators of regime shifts (such as increasingly slower return rates from

perturbation and rising variance) have been proposed and some of them have been

empirically tested [34, 52, 51, 184], even if their degree of robustness and reliability

is still under debate [22, 23]. Most of these approaches rely on understanding de-

rived from simple deterministic equations in which spatial dependence is averaged
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out [182, 52, 51, 130, 164]. Recently, spatially explicit versions of these deterministic

approaches have also been considered in the literature [135]. In particular, ingredients

such as spatial heterogeneity and mobility (e.g. diffusion) have been incorporated into

those models, leading to interesting consequences and a much richer phenomenology

that includes patchiness and pattern formation [51, 53, 54, 35, 17, 160, 75, 65, 72, 97].

Moreover, it has been suggested that emerging spatio-temporal patterns could be po-

tentially employed as early indicators of tipping points, or that transitions in these

improved models can become more gradual [127, 178, 191, 173, 144, 145].

2.1.3 Importance of stochasticity

However, common to most previous studies is the fact that stochastic effects such as

demographic or intrinsic noise –an unavoidable feature of real systems– are typically

left out of the picture (see, however, e.g. [128, 226, 145, 54]). Stochasticity or noise is

known to play a fundamental role in complex problems with many degrees of freedom,

inducing non-trivial effects such as noise-induced transitions, stochastic resonance,

and stochastic amplification of fluctuations [81, 109]. In particular, demographic noise

can have dramatic effects in spatially-explicit low-dimensional systems, profoundly

influencing the features of the expected transitions [21]. Thus, although external or

environmental noise could also play an important role [179, 215], here we focus on

analyzing explicitly the effects that demographic or internal noise may have on abrupt

shifts.

Spatially-explicit stochastic differential equations (such as “Langevin” equations)

constitute the most appropriate mathematical formalism to study the role of stochas-

ticity on phase transitions [112]. Alternatively, individual-based models could be also

employed (see e.g. [54, 128] and refs. therein), but Langevin equations can be usually

derived from these individual-based approaches by using standard techniques [82].
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Furthermore, Langevin equations provide a much more generic and robust frame-

work, highlighting universal features and therefore transcending the specificities of

particular systems [112]. Thus, beyond the theory of dynamical systems, the lan-

guage and tools of statistical mechanics prove to be best suited for shedding light

upon stochastic problems with many degrees of freedom. Within this framework,

simple bifurcations exhibited by deterministic (or “mean-field” [21]) systems are just

fingerprints of true phase transitions. Catastrophic shifts stand for first-order or

discontinuous (i.e., abrupt) transitions showing bistability and hysteresis [20], while

smooth bifurcations correspond to continuous or second-order phase transitions, in

which the system reaches scale-invariant (fractal) organization with diverging char-

acteristic lengths and times, and other remarkable and distinct features [21].

2.2 Mathematical model

Mathematically, smooth regime shifts into quiescent states are usually described and

understood in terms of simple deterministic equations such as the logistic equation,

𝜕𝑡𝜌(𝑡) = 𝑎𝜌(𝑡)−𝑏𝜌2(𝑡). In the latter, 𝜕𝑡 stands for time derivative, 𝜌 ≥ 0 is the relevant

variable (e.g. population density) that we call henceforth “activity”, 𝑎 is the growth

rate, and 𝑏 > 0 fixes the maximal activity density (e.g. carrying capacity) [159].

This equation describes a smooth (transcritical) transition between an active and a

quiescent state as 𝑎 is varied beyond a critical value (see figure 2-1A and 1C). This

equation can be easily modified to include a generic facilitation term, representing the

positive-feedback mechanisms discussed in the previous section. In its simplest form,

facilitation alters linearly the growth rate 𝑎, enhancing it in the presence of activity:

𝑎 → 𝑎+ 𝛼𝜌, with 𝛼 > 0. This variation generates an effecttive quadratic term −𝛼𝜌2,

which is fully equivalent to leaving the growth term unaltered and replacing 𝑏 → 𝑏−𝛼

in the logistic equation. Thus, the coefficient of the resulting quadratic term – which,
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for simplicity, we continue to call 𝑏– can potentially change its sign, and the new

equation takes the form:

𝜕𝑡𝜌(𝑡) = 𝑎𝜌(𝑡)− 𝑏𝜌2(𝑡)− 𝑐𝜌3(𝑡), 𝑏 < 0 (2.1)

A new higher-order (cubic) term has been added to enforce a finite carrying capacity

(i.e., to prevent the population density to diverge when 𝑏 < 0). equation (2.1) is

the simplest equation employed to study catastrophic shifts at a deterministic level

[159, 181, 185, 192, 193] (see figure 2-1). This equation admits two alternative stable

solutions (bistability) as well as an abrupt, discontinuous (i.e., fold) bifurcation (see

figure 2-1B and 1D) [159, 36, 163].

As the figure illustrates, the right-hand side of equation (2.1) can be interpreted as

the gradient of a potential [205], and the sign of the parameter 𝑏 controls the nature

of the transition at the deterministic level: continuous for 𝑏 > 0 or abrupt for 𝑏 < 0.

This observation is essential for the discussion that follows.

Aiming at capturing the relevant phenomenology of catastrophic shifts in a par-

simonious yet complete way, we extend the equation above to include explicit spatial

dependence and demographic or intrinsic stochasticity

𝜕𝑡𝜌(x, 𝑡) = 𝑎𝜌(x, 𝑡)− 𝑏𝜌2(x, 𝑡)− 𝑐𝜌3(x, 𝑡)

+ 𝐷∇2𝜌(x, 𝑡) + 𝜂(x, 𝑡), 𝑏 < 0 (2.2)

where 𝜌(x, 𝑡) quantifies the activity at position x and time 𝑡.
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Figure 2-1: Bifurcation diagrams and deterministic potential 𝑉 (𝜌) for continuous
(panel A) and abrupt (panel B) transitions. (Top) Lines represent the steady-state
solutions of 𝜌̇(𝑡) = 𝑎𝜌(𝑡) − 𝑏𝜌2(𝑡) − 𝑐𝜌3(𝑡) as 𝑎 is varied, with 𝑏 either positive (left) or
negative (right), displaying continuous and abrupt transitions, respectively. Four particular
values of 𝑎 are highlighted with spheres (blue for quiescent states and increasingly more
reddish for active ones). (Bottom) Effective potential 𝑉 (𝜌) = −(𝑎2𝜌

2 − 𝑏
3𝜌

3 − 𝑐
4𝜌

4) –from
which the deterministic forces above are derived– plotted as a function of the activity, 𝜌, for
the same values of 𝑎 highlighted above. In panel C, 𝑏 > 0 and the transition is smooth and
continuous (transcritical bifurcation), while in panel D, 𝑏 < 0 and there is an abrupt jump
in the location of the potential absolute minimum, 𝑎* = −𝑏2/4𝑐, as the control parameter
𝑎 is varied corresponding to a discontinuous transition (fold bifurcation). In summary, the
sign of 𝑏 in equation (2.1) controls the nature of the transition at the deterministic or
“fluctuation-less” level.
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This equation, similar to the one employed to describe the strong Allee effect [204],

consists of three different contributions:

∙ A local deterministic force (with 𝑏 < 0), which coincides at each location x with

the r.h.s. in equation (1).

∙ Diffusion, represented by the Laplacian term 𝐷∇2𝜌(x, 𝑡), with proportionality

constant 𝐷 > 0; this term accounts for dispersal of activity to neighboring

locations.

∙ Demographic stochasticity, encoded in the Gaussian (white) noise 𝜂(x, 𝑡) with

zero mean and variance proportional to 𝜎2𝜌(x, 𝑡); this multiplicative noise en-

sures that demographic fluctuations do not exist in the bulk of regions deprived

of activity.

equation (2.2), with 𝑏 < 0, could a priori –i.e., thinking in a deterministic or

“mean-field” way [21]– be expected to capture the behavior of catastrophic shifts in

spatially-extended systems. However, as a result of the presence of noise, its emerging

phenomenology might not be straightforwardly inferable from the mean-field reason-

ing. Therefore, we first need to provide an overview of the actual properties of

systems described by equation (2.2) with 𝑏 < 0 under standard circumstances. Af-

terward, we shall scrutinize how these results might be altered once other ingredients

such as large demographic noise, limited diffusion, and/or environmental disorder are

introduced. Here, we resort to extensive computational analyses as well as renormal-

ization group calculations to discuss aspects of equation (2.2) that are relevant to our

discussion. For other (fundamental) aspects of this equation, such as existence and

uniqueness of solutions as well as more formal analytical approaches including small-

noise calculations we refer the reader to the existing vast mathematical literature

[49, 44, 13, 38, 31, 32, 39, 151, 68].
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2.3 Computational results

Integrating numerically equation (2.2) is not a trivial task owing to the presence of

multiplicative noise. However, as described in appendix A, there exists to this end an

exact integration scheme [64] that has already been successfully employed to study

spatially-explicit problems in ecology [25]. As a note of caution, let us remark that

determining numerically the nature of a phase transition in an extended system can be

a difficult enterprise; the literature is plagued with claims of discontinuous transitions

in systems with quiescent states [57] that eventually were proven to be continuous ones

once sufficiently large sizes, times, and enough statistics were collected [106]. Thus,

in order to avoid any ambiguity in our conclusions, we performed very extensive

large-scale computer simulations and different types of numerical experiments. We

considered discrete square lattices of size up to 1024×1024 with either periodic or open

boundary conditions, averaged over up to 106 realizations, for each of the different

types of computational experiments we performed: i) decay experiments from an

initial homogeneously active state, ii) spreading experiments from an initially localized

seed of activity in an otherwise quiescent state, and iii) interfacial experiments in

which the evolution of an initially half-empty/half-occupied lattice –with a planar

interface in between– is investigated.

In decay experiments the system is initialized with a homogeneously active state,

𝜌(x, 𝑡 = 0) = 1, and the evolution of 𝜌(𝑡) is monitored, averaging over all sites and

over many different realizations. In spreading experiments, we follow the dynamics of

an initially localized seed of 100 active sites forming a 10×10 squared box at the center

of an otherwise empty lattice, measuring how the averaged total (integrated) activity

changes as a function of time. In Interfacial experiments: an initially half-empty/half-

occupied lattice is considered, and the dynamics of the interface separating the two

halves is analyzed (see figure 2-2). In first-order transitions this interface moves on
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average in one direction or the other depending on the value of the control parameter,

and remains stable right at the Maxwell point. Instead, in second-order continuous

transitions the interface is quickly erased rather than moving as a whole.

Catastrophic shifts can appear in 2D noisy systems

A summary of the main features shown by a two-dimensional system described by

equation (2.2) with typical parameter values is presented in figure 2-2. In particular,

figure 2-2A shows the averaged activity in the steady states as a function of the control

parameter 𝑎 revealing the existence of two alternative homogeneous stable solutions:

an active one with 𝜌 > 0 and a quiescent one with 𝜌 = 0, with an intermediate

regime of bistability, and all the characteristic signs of a discontinuous transition. In

particular, as illustrated in the inset of figure 2-2A, which steady state is reached may

depend upon initial conditions revealing the existence of bistability and hysteresis,

i.e., trademarks of first-order phase transitions.

Regarding probabilistic aspects, which are essential here, let us remark that small

systems –even in the active phase– may fall into the quiescent state owing to rare

demographic fluctuations; however, the averaged time for this to happen grows ex-

ponentially with system size in the active phase [82], and it is much larger than

computational times for the sizes we have considered. On the other hand, different

“routes to extinction” –all of them of stochastic nature– exist in the regime of bistabil-

ity (these have been studied computationally in chapter 3 and analytically in [151] for

a discrete version of our model) confirming the discontinuous nature of the transition.
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Figure 2-2: Computational results for equation (2.2) in a two dimensional lattice,
showing an abrupt regime shift. Parameter values are: 𝐷 = 𝑐 = 1 and 𝜎2 = 1, and
𝑏 = −2. Panel A: Steady-state averaged activity as a function of the tunable parameter 𝑎
(different colors correspond to different type of initial conditions: light green for small initial
activities and dark green for large initial activities). There are two distinct stable solutions:
one with an associated large stationary activity (which disappears around 𝑎 ≈ −0.98) and a
trivial or quiescent one with 𝜌 = 0 (which becomes unstable at some point near 𝑎 ≈ −0.95).
These two alternative steady states are separated by a line of unstable solutions (dashed
grey). In the interval between the two limits of stability, two alternative stable states
compete. The existence of bistability is confirmed by results in the inset, showing that the
steady state depends upon initial conditions (𝑎 = −0.9640). Panel B illustrates how an
initially localized seed of activity expands throughout the system (spreading experiment)
near the threshold of instability of the quiescent phase. Similarly, panel C illustrates the
decay of an initially homogeneous state towards the quiescent state (decay experiment).
Panel D: In interfacial experiments, half of the system is initially occupied and half is
empty; either the active phase invades the quiescent one (top panel) or viceversa (bottom
panel); these two regimes are separated by a Maxwell point at which the interface does not
move on average. In panels B to D, arrows indicate the direction of system’s advance with
time.

As a visual illustration, figure 2-2B and figure 2-2C show examples of how an

“island” of one of the phases may propagate, invading a “sea” of the other, when the

latter phase is close to the threshold of instability. We have found no evidence of the
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existence of an intermediate critical behavior with a non-trivial power-law exponent

–as would correspond to a continuous transition– in any of the numerical (spreading

or decay) experiments we have performed.

Finally, we have also conducted interfacial experiments to determine the relative

stability of both phases. If the system described by equation (2.2) shows a catas-

trophic shift, there should be a value of 𝑎 for which the interface separating two

perfect halves of the system –each half in one of the two coexisting states– does not

move on average; this is the so-called Maxwell point [17]. As shown in figure 2-2D,

there indeed exists a Maxwell point for the system described by equation (2.2).

Hence, all this evidence allows us to safely conclude that equation (2.2) experiences

a true discontinuous, first-order phase transition in two dimensions, in agreement

with deterministic expectations. This conclusion is quite robust against changes in

parameter values but, as detailed in what follows, it may eventually break down in

the presence of certain additional mechanisms, giving rise to very different scenarios.

Factors preventing catastrophic shifts in 2D noisy systems

The role of enhanced (demographic) noise

The noise amplitude, 𝜎2, is a measure of the level of demographic stochasticity present

in the system. This factor is, thus, a straightforward indicator of how far the actual

stochastic system is from its deterministic counterpart. To explore the consequences of

high stochasticity, we have carried out the same type of computational experiments

described above, but now enhancing the noise amplitude (from 𝜎2 = 1 above to

𝜎2 = 4) while keeping fixed the remaining parameters. As illustrated in figure 2-3A

the situation is very different from the one in the previous section. In particular, now

there is a continuous phase transition at a specific value of the control parameter,

𝑎𝑐. At this point, the relevant quantities in spreading and decay experiments exhibit
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power-law (scale-free) behavior, characteristic of continuous transitions (see inset).

Moreover, the associated critical exponents coincide within-numerical-precision with

the expected values in standard continuous transitions into quiescent states, i.e.,

those characteristic of the well-known directed percolation (DP) universality class (see

section 1.2) [106, 110, 161, 157]. For completeness, we have also verified that there is

no bistability and, as a consequence, a Maxwell point cannot possibly be identified.

Further computational experiments confirmed that, for any parametrization, it is

possible to find a threshold for the noise amplitude that alters the character of the

transition, therefore leading to the same conclusions. This provides strong evidence

that equation (2.2) exhibits a continuous (more specifically, a DP) phase transition

if demographic stochasticity is large enough. This conclusion is in contrast with the

deterministic expectation and thus manifests that strong demographic fluctuations

play an essential role in these low-dimensional spatially explicit systems.

The role of limited diffusion

Similarly, we have scrutinized the effect of reducing the diffusion constant, 𝐷, in

equation (2.2), while keeping fixed all other parameters. Limited diffusion is very

widespread in ecological systems. For example, under certain conditions, plants may

restrict their range of seed dispersal as an evolutionary strategy to enhance survival

[150]. When limited diffusion occurs, one could expect spatial effects to be enhanced

and thus departures from mean-field behavior are more likely to occur; at the opposite

extreme of very large diffusion (e.g. long-ranged seed dispersal) results are expected

to be much closer to the deterministic limit. Indeed, for small 𝐷 (e.g. 𝐷 = 0.1 in

figure 2-3B) computational evidence reveals the existence of a continuous transition

in the DP class, in contrast to the catastrophic shift reported above for 𝐷 = 1.

As an explicit illustration of the probabilistic nature of the discussed phenomena,

the inset of figure 2-3B includes results for the surviving probability as a function
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Figure 2-3: Realistic ingredients can alter the nature of potentially catastrophic
shifts in two-dimensional environments. Using the same parametrization as in figure
2-2, we study separately the effects induced in equation (2.2) by A) enhanced demographic
noise (𝜎2 = 4, 𝐷 = 1), B) limited diffusion (𝐷 = 0.1, 𝜎2 = 1), and C) spatial heterogeneity
(𝑏 → 𝑏(x)). In all three cases, the transition becomes continuous, with no sign of bistability
nor discontinuous jumps. In A and B, power-law behavior is observed (see insets) for all the
computed time-dependent (decay and /or spreading) quantities right at the critical point
(𝑎𝑐 ≈ −0.708 in A and 𝑎𝑐 ≈ −0.5236 in B. Moreover, the corresponding exponent values
(both of them close to 0.45) coincide with the expected values for the directed percolation
class (see section 1.2). Curves in the insets correspond to values of 𝑎 between −0.702 and
−0.718 inA, and between−0.5234 and−0.5238 inB, both in equal intervals. InC, alongside
the continuous transition, there appears a broad region within the quiescent phase, called
a “Griffiths phase”, characterized by an extremely slow decay of activity, i.e., by power-laws
with continuously varying exponents, as illustrated in the inset (values of 𝑎 between −0.250
and −0.300 in equal intervals).

of time 𝑃𝑠(𝑡) in spreading experiments, showing a smooth continuous change in its

asymptotic behavior and a DP-like power-law decay at criticality. Similarly to the

enhanced stochasticity case, there always can be found a threshold for 𝐷 below which
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equation (2.2) exhibits a continuous transition (see section 2.4).

The role of (quenched) spatial heterogeneity

A relevant ingredient which is unavoidably present in real systems is spatial hetero-

geneity. Here, we focus on cases where disorder does not change with time (i.e.,

quenched disorder). Local differences in environmental conditions can generate re-

gions that are more prompt to collapse and others that are more resilient, giving rise

to patchy and irregular activity patterns.

To study explicitly the consequences of heterogeneity in a system described by

equation (2.2), we assume 𝑏, to be position-dependent, i.e., 𝑏 → 𝑏(x). The value

of 𝑏(x) at each location x is randomly extracted from a uniform distribution in the

interval (−2, 0), essentially ensuring a different 𝑏 < 0 at each location. Results of

extensive computer simulations, summarized in figure 2-3C, show that any amount of

spatial heterogeneity induces a smooth transition. In this transition, the collapse from

the active phase to the quiescent one occurs in a rather gradual way, with a progressive

deterioration of the less favorable regions. Furthermore –and differently for the two

previous cases– spatial disorder induces a broad region around the transition point in

which power-law scaling is generically observed. In particular, the averaged activity

decays in a very slow (power-law) fashion as a function of time towards the quiescent

state, not just at the critical point (as usually happens) but rather for a whole range

of values of the control parameter 𝑎. This region, with generic scale-free behavior,

is usually dubbed “Griffiths phase” and stems from the fact that unfavorable zones

are emptied first and then, progressively, more and more resilient zones collapse in

a step-by-step fashion [220]. In chapter 3 a detailed and technical analysis in this

respect is accomplished.
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The role of spatial dimensionality

All the results above have been obtained for two-dimensional systems. However,

some of the reported noise-induced effects might depend profoundly on the system

dimensionality. Thus, we now discuss the one-dimensional and three-dimensional

cases.

For one-dimensional systems, fluctuation effects are expected to be extremely se-

vere [21]. Indeed, existing analytical arguments predict that stochasticity completely

washes away discontinuous transitions into absorbing states, converting them into

continuous ones [106]. Thus, catastrophic shifts into quiescent states cannot possi-

bly occur in one-dimensional systems [106, 226]. We have verified computationally

this prediction: our simulations show clearly a continuous phase transition in all

one-dimensional cases.

In three-dimensional systems, the combined effect of amplified demographic noise

and limited diffusion still affect the nature of the transition, even if to a lesser ex-

tent (as shown by our analytical calculations; see below). On the other hand, and

contrarily to the two-dimensional case, spatial random heterogeneity combined with

demographic stochasticity, do not suffice to destroy abrupt regime shifts in three-

dimensional systems: alternative stable states and abrupt shifts can survive the in-

troduction of spatial disorder. see chapter 3. In consequence, catastrophic shifts

can occur more easily in three-dimensional systems than in their two-dimensional

counterparts.

In summary, the smaller the spatial dimension the more likely fluctuations play

a fundamental role, potentially breaking deterministic predictions, preventing catas-

trophic shifts and generating much more gradual and smooth transitions.
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2.4 Analytical results

In addition to the strong numerical evidence presented so far, we now provide analyt-

ical understanding on why the transition may become continuous under the above-

discussed circumstances; in particular, for low diffusion as well as for the large noise

case. To this end, we rely again on statistical mechanics and use renormalization

group theory [21, 106].

In fluctuating spatially-extended systems, crucial information about large-scale

features –including the nature of possible phase transitions– cannot be derived from

the associated deterministic potential (figure 2-1). The reason is that the true (or

“renormalized”) effective potential includes fluctuation effects, which are lacking in

such deterministic or “bare” potential [227, 21]. Therefore, in order to rationalize the

previous numerical conclusions, we need to think in terms of the (true) “renormalized”

potential, 𝑉𝑅(𝜌). In particular, fluctuations have the net effect of shifting the effective

parameter values characterizing the potential, from their original deterministic or

“bare” values to their “renormalized” or “dressed” variants.

Renormalization group techniques were devised to compute analytically 𝑉𝑅(𝜌)

as the scale of description is enlarged [227, 106]. To illustrate how this works, we

have computationally measured the probability distribution for the local activity,

Prob(𝜌𝑚), in the stationary steady state, where 𝜌𝑚 is the activity averaged in square

boxes of progressively larger linear size, 𝑚 (i.e., at coarser and coarser scales). In this

way, it is possible to measure the renormalized coarse-grained effective potential as

− log(Prob(𝜌𝑚)) [227, 21]. The most likely value of the activity at each coarse-grained

scale lies at the minimum of the corresponding potential.

As an example, results for the limited diffusion case (𝐷 = 0.1, 𝜎2 = 1) are shown in

figure 2-4 for different values of the control parameter. For “fine-grain” scales such as

𝑚 = 1, the effective potential is expected to coincide with the deterministic one [21].
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Figure 2-4: The effective potential at coarse-grained scales. Effective potential for the
averaged activity 𝜌 measured in cells of linear size𝑚, in a square lattice of size 𝑁 = 256×256
(segmentation of the system into boxes schematically illustrated in the insets). The potential
is defined, for each value of 𝑚 as − log(Prob(𝜌𝑚)), where Prob(𝜌𝑚) is the steady state
probability distribution of the activity 𝜌 averaged in boxes of linear size 𝑚 with A) 𝑚 = 1
and B) 𝑚 = 64. Colors represent different values of 𝑎, namely 𝑎 = 0.15, 0.11, 0.07 and 𝑎 =
0.521, 0.522, 0.523, 0.524, respectively (other parameters: 𝑏 = −2, 𝑐 = 1, 𝜎2 = 1, 𝐷 = 0.1).
As the coarse-graining scale 𝑚 is increased the shape of the effective potential changes, from
that typical of discontinuous transitions (for 𝑚 = 1) to the one characteristic of continuous
ones (at larger coarse-graining scales, e.g. 𝑚 = 64. This is tantamount to saying that the
“renormalized” value of 𝑏 changes sign, from 𝑏 < 0 to 𝑏 > 0 and that even if the deterministic
potential exhibits a discontinuous transition, the renormalized one does not.
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Indeed, it exhibits a discontinuous transition as its global minimum jumps abruptly

from 0 to a non-vanishing value in a discontinuous way. However, as the level of

coarse-graining is increased, a dramatic change of behavior is observed. For instance,

for boxes of size𝑚 = 64, it can be already seen that the effective potential experiences

a continuous transition from 0 to arbitrarily small activity values. This illustrates the

change in the nature of the phase transition –occurring for small diffusion constants

or for large demographic noise amplitudes– once fluctuations and spatial effects are

taken into account.

Renormalization group calculation

These results can be understood using renormalization group ideas. Here we employ

standard procedures to perform an analytical renormalization group calculation (a

la Wilson [227]). This allows us to compute (up to first order in a perturbative

expansion) how every parameter appearing in the potential changes or “flows” upon

coarse-graining.

Renormalization group techniques [227, 21] have been applied to equations such

as equation (1.8) and equation (2.2). In particular, equation (1.8) –sometimes called

Reggeon field theory or Gribov process– captures the relevant features of contin-

uous transitions into absorbing or quiescent phases, defining the so-called directed

percolation (DP) class [122, 89, 106]. For a clear and concise presentation of how

renormalization group techniques can be applied to equation (1.8) we refer the reader

to [110]. The calculation consists of a perturbative expansion around the critical

dimension, 𝑑𝑐 = 4, above which standard deterministic (mean-field results) hold.

Here, we just follow the calculation in [110] and briefly describe the modifications

required to deal with equation (2.2) rather than with equation (1.8). All the basic

ingredients of the perturbative theory remain unchanged (see figure 2-5 and [110]),
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Figure 2-5: Basic elements of a perturbative (diagrammatic) expansion. Propaga-
tor, vertices and novel Feynman diagram contributing to lowest-order perturbative correction
to 𝑏. For more details and proper definitions see e.g. [110].

but the sign of 𝑏 needs to be inverted and an additional cubic non-linearity, −𝑐𝜌3

(which has an associated new “vertex” as shown in figure 2-5) needs to be included.

Naive dimensional analysis tells us that the new cubic term is irrelevant around

four spatial dimensions (at which the perturbative expansion is performed); however,

if 𝑏 is negative, then 𝑐 is needed to stabilize the theory and, thus, it is a so-called

dangerously-irrelevant operator, which needs to be explicitly taken into consideration

to obtain stable results.

The renormalization procedure consists in first rescaling coordinates and fields:

x → Λx, 𝑡 → Λ𝑧𝑡, and 𝜌 → Λ𝜒𝜌 (where Λ is an infinitesimal dilatation in momentum

space, which can be expressed a Λ = exp(𝑙)) and then, eliminating short-range fluc-

tuations, i.e., integrating out the moments in the shell Ω ≤ |k| ≤ ΩΛ, where Ω is the

original cut-off in momentum space (i.e., the inverse of the underlying lattice space).

By doing this one can readily obtain a renormalized effective theory at a coarser scale,

i.e., it is feasible to compute effective values for all parameters appearing in equation

(1.8) as a function of the coarse-graining parameter 𝑙 [227, 110, 122, 89].
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Here we consider only the lowest-order correction in a series expansion in the pa-

rameter 𝑐. The new leading correction to 𝑏(𝑙) within this approximation stems from

the combined effect of the noise vertex 𝜎2 and the cubic non-linearity 𝑐 (as schemat-

ically represented by the the corresponding Feynman diagram showed in 2-5) and

yields: 3𝑐𝜎2𝑙𝑆𝑑/(4(2𝜋)
𝑑(Ω2𝐷+ 𝑎)), where 𝑆𝑑 is the surface of a 𝑑-dimensional hyper-

sphere. Incorporating this additional correction to the standard DP renormalization

group flow equations and fixing the spatial dimension to 𝑑 = 2, we obtain the flow

diagram shown in figure 2-6.

Renormalization group results

Figure 2-6 clearly illustrates how, starting with a negative value of 𝑏, the flow keeps

it negative for large values of 𝐷. Meanwhile, for small 𝐷’s, the renormalized value

crosses the line 𝑏 = 0, thus becoming positive and remaining so. As soon as 𝑏 becomes

positive, the standard DP theory is recovered, the term 𝑐 becomes irrelevant and,

therefore, it starts flowing to 0 at larger coarse-graining scales. As 𝑐 approaches 0, the

renormalization group becomes identical to that of the standard directed percolation

class, and in particular, 𝑏 reaches the DP fixed point. This is in perfect agreement

with our numerical observations, which reported a transmutation in the nature of the

transition only in the low-diffusion limit.

Similarly, keeping 𝐷, the same phenomenon can be observed by increasing the

(demographic) noise variance 𝜎2. Let us remark that a “tricritical” point –at which the

renormalized 𝑏 vanishes– should also appear at some value of 𝐷 (located at 𝐷 ≈ 0.9

in figure 2-6). This point separates continuous from discontinuous transitions and

can be also investigated in detail using renormalization group techniques [162].

This renormalization group calculation can also be used to illustrate that the

system’s dimensionality plays an important role in these results. Observe that,
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Figure 2-6: Renormalized value of the carrying- capacity-related parameter 𝑏 as a
function of the coarse-graining scale 𝑙. As 𝑙 increases and coarser levels of description
are achieved, an initially negative 𝑏 can invert its sign for sufficiently small values of the
diffusion constant 𝐷. This change of sign induces a change in the order of the transition,
from discontinuous (at small scales or deterministic level) to continuous (at sufficiently large
scales). On the contrary, for large values of the diffusion constant 𝐷, 𝑏 remains always
negative and the transition abrupt. Parameter values 𝑎 = 1, 𝑐 = 0.5, 𝜎2 = 1, initial value
𝑏 = −0.5, and diffusion constants (from bottom to top) from 𝐷 = 2.0 to 𝐷 = 0.2 in equal
intervals. A very similar plot can be obtained as a function of 𝜎2: large noise amplitude
values induce a change in the sign of 𝑏 and thus, the nature of the phase transition.
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as 𝑆𝑑/(2𝜋)
𝑑 increases with decreasing dimensionality, the effect becomes more pro-

nounced for low-dimensional systems: the lower the dimension the larger the value

of 𝐷 at which the transition changes nature. Thus, discontinuous transitions and

catastrophic shifts are predicted to be much easily found in three-dimensional than

in two-dimensional systems, in agreement with our numerical findings.

In summary, renormalization/coarse-graining techniques –both computationally

and analytically implemented– allowed us to confirm the numerical results above,

and understand how a discontinuous transition can mutate into a continuous one

once fluctuations are taken into account and sufficiently large scales are considered.

2.5 Conclusions. Eluding catastrophic shifts

Catastrophic shifts occur when –as a consequence environmental or external changes–

a system crosses abruptly from one phase to a radically different competing one, from

which recovery may be exceedingly difficult due to hysteresis effects. Such abrupt

regime shifts can affect the system at multiple levels, entailing for instance important

ecological and/or socio-economic consequences to name a few. Classical examples

include studies of insect outbreaks [140], shallow lakes, savannas, socio-ecological sys-

tems and markets [181, 185, 148, 131]. Therefore, there is an increasing interest

in finding early-warning signals that may help to predict when one of these tipping

points is about to occur. Most studies and predictions concerning catastrophic shifts

and their early-warning indicators have been based on deterministic equations where

demographic stochasticity –a natural and unavoidable ingredient of real systems– is

left out of the picture. Statistical mechanics tells us that intrinsic noise can play a

fundamental role in the behavior of complex systems with many degrees of freedom,

generating non-trivial effects such as stochastic resonance and noise-induced transi-

tions among many others [81]. Therefore, it is important to go beyond deterministic
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approaches in order to develop robust and reliable predictors of the occurrence of

catastrophic shifts.

In this work, we have introduced and analyzed the simplest possible stochastic

theory of catastrophic shifts in spatially extended systems, namely equation (2.2).

A simplistic deterministic analysis of this equation would average out the noise and

would lead –in general– to the prediction of alternative stable states and an abrupt

transition between them (see equation (2.1)). Here, we have studied instead the full

stochastic model, including demographic noise, by using a combination of computa-

tional and analytical tools, and have explored the effects of stochasticity. First, we

have verified that for low or moderate levels of demographic noise two-dimensional

systems may truly exhibit a bona fide first-order transition, with bistability and hys-

teresis. Thus, catastrophic shifts can actually appear in noisy systems. However,

we also show that adding any of the following ingredients, i) enhanced demographic

variability, ii) limited dispersal/diffusivity, and/or iii) spatial (quenched) heterogene-

ity, suffices to alter the nature of the phase transition, giving rise to a second-order

(continuous) one.

Most of our results have been obtained for two-dimensional systems, which have

obvious applications to ecological problems such as desertification processes, or veg-

etation dynamics in savannas. However, some of the reported noise-induced effects

depend profoundly on the system dimension. For example, in one spatial dimension,

relevant for the study of, e.g. the oceanic water column, or rivers, fluctuation effects

prohibit the very existence of discontinuous transitions, as has already been suggested

in the literature [106]. In three spatial dimensions the smoothing effects of limited

diffusion and amplified demographic noise are still present even if to a lesser extent

(see analytical results), and –contrarily to the two-dimensional case– discontinuous

transitions can survive to the introduction of spatial (quenched) heterogeneity. Thus,

as a rule of thumb, the smaller the spatial dimension the more likely fluctuations play
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an important role, potentially breaking deterministic predictions and smooth abrupt

transitions. However, fluctuation effects need to be carefully analyzed in each spatial

dimension to reach robust conclusions.

In this work we have put the focus onto demographic or intrinsic noise, but envi-

ronmental or external sources of noise can also potentially be an important actor of

this picture [179, 215, 214]. Preliminary studies suggest that this type of variability

could also alter the order of phase transitions [215] but more detailed analyses of this,

as well as of the interplay between demographic and environmental noise, would be

highly desirable.

This study offers obvious opportunities for ecosystem management. All the rele-

vant features present in equation (2.2) and its variations have straightforward coun-

terparts in natural systems. Thus, identifying these mechanisms in specific problems

may provide a reliable indicator as to when a transition is expected and of whether it

is expected to be abrupt or smooth. Moreover, the conclusions here can potentially

help prevent catastrophic transitions from occurring by forcing their transformation

into continuous ones. Most of the current ecosystem management strategies focus on

stopping or slowing down the ongoing change before the shift occurs. For instance,

the declaration of a species as protected aims to prevent species extinction. In the

system’s phase diagram, this is equivalent to preventing the control parameter 𝑎 (e.g.

poaching pressure) from reaching its transition value. Unfortunately, this goal is not

always possible to achieve, e.g. when the control parameter is linked to natural re-

source availability, climatological factors, or hardly-unavoidable human activities. In

these cases, our study offers alternative strategies with which the catastrophic ef-

fects of those shifts can be reduced (that is, the discontinuous shift transformed into

a continuous one), allowing the transition to be more predictable and even eventu-

ally reverted. Continuous transitions show a single stable state changing progressively

with environmental conditions; therefore, they are easier to handle, foresee, and undo.
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Some examples of ecosystem engineering that could potentially take the system

in that direction include introducing or enhancing spatial disorder (e.g. grazing, wa-

tering, or burning selected zones in the vegetation example), forcing a reduction of

effective diffusion (e.g. preventing seed dispersal by herbivores), or artificially en-

hancing demographic variability. Similarly, these ideas may be potentially useful in

the design of practical programs for ecosystem restoration, and management policies

to avoid the collapse of natural resources. For instance, using any of the mechanisms

we present here to smooth an abrupt transition to extinction, could potentially open

the door to the existence of low-density states of the focal species, which were not

possible in the discontinuous case. These low-density states could be ideally used as

early-warning indicators and therefore help prevent such extinctions. On the other

hand, introducing these mechanisms may enlarge the absorbing phase (i.e. shift the

transition point 𝑎𝑐 towards less negative values). Therefore, the system may become

more vulnerable, as the same pressure will drive the population extinct. Thus, the

suitability of these mechanisms for ecosystem management depends on this impor-

tant trade-off between predictability and vulnerability, which needs to be carefully

evaluated.

In summary, we have proposed a general framework under which specific studies

of potential catastrophic shifts should be set in order to obtain more reliable and in-

formative predictions. Given the growing concerns about the impact of anthropogenic

pressures on climate and biodiversity, we hope that this novel framework will help

to understand better and open new research roads to explore possible strategies to

mitigate the radical and harmful effects of sudden undesirable regime shifts.
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Chapter 3

Spatial heterogeneity.

From first to second order

In chapter 2 we observe that spatial heterogeneity, on diffusive stochastic systems, can

change discontinuous transitions to much smoother and easily-reversible continuous

ones. Aimed at shedding some light on this issue, we present a detailed and technical

study in this respect.

In this chapter we consider a prototypical microscopic model usually employed in

the study of discontinuous transitions, the “quadratic contact process” described in

section 1.3. As a first step, we verify that the pure version of the model exhibits

a first-order transition separating an active phase from an absorbing one. Then we

introduce disorder in the form of a site-dependent transition rates and investigate its

effects.

Based on Imry-Ma-Aizenman-Wehr-Berker equilibrium arguments, we show how

phase coexistence and first-order phase transitions become continuous in non-

equilibrium low-dimensional systems in the presence of quenched disorder. We also

study the universal features of the disorder-induced criticality and find them to be

compatible with the universality class of the quenched-disordered directed percolation.

85



3.1 Introduction

In contrast with the equilibrium case described in section 1.4, recent work by

Barghathi and Vojta [11], shows that second-order phase transitions may survive

to the introduction of random fields even in one-dimensional cases [147, 168] in gen-

uine non-equilibrium systems with absorbing states for which there is not such a thing

as free energy [146, 106, 161, 95]. Therefore, the Imry-Ma argument does not apply

to these non-equilibrium systems owing to the presence of absorbing states, and, in

consequence, states of broken symmetry can exist in the presence of random fields.

Thus, the question arises as to whether shifting to the non-equilibrium realm

entails the shattering of a fundamental cornerstone of equilibrium statistical me-

chanics as it happens for continuous phase transitions (see table 3.1 for a synthetic

summary); do first-order phase transitions, and, hence, phase coexistence, exist in

low-dimensional non-equilibrium disordered systems?

System with
Random Fields

𝑑 ≤ 2

2𝑛𝑑 order
(spontaneous sym.

breaking)

1𝑠𝑡 order
(phase coexistence)

Equilibrium NO [119] NO [119, 3, 19, 117]

Non-equilibrium
(abs. states)

YES [11] ?

Table 3.1: Random fields in low-dimensional disordered systems. Summary of the
effects of quenched random fields on the existence of continuous/second-order transitions
(with spontaneously symmetry breaking), and discontinuous/first-order (with associated
phase coexistence) phase transitions in 𝑑 ≤ 2 systems. Both, the equilibrium and non-
equilibrium cases are considered, the latter including the possibility of one or more absorbing
states.
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Two alternative scenarios might be expected a priori for the impure/disordered

model:

1. the Imry-Ma argument breaks down in this non-equilibrium case and a first

order phase transition is observed, or

2. the Imry-Ma prediction holds even if the system is a non-equilibrium one, and

a disorder-induced second-order phase transition emerges.

If the latter were true, we could then ask what universality class such a continuous

transition belongs to. A priori, it could share universality class with other already-

known critical phase transitions in disordered systems with absorbing states [114, 30,

221, 222, 220] or, instead, belong to a new universality class defined by this disorder-

induced criticality.

If no novel universal behavior emerges, then it is expected for the model to behave

as a standard two-dimensional contact process (or directed percolation) with quenched

disorder with the following main features [114, 221, 222, 220]:

∙ there should be a critical point separating the active from the absorbing phase,

∙ at criticality, a logarithmic or activated type of scaling (rather than algebraic)

should be observed. For instance, for quantities related to activity spreading

such as the survival probability, averaged number of particles, and radius from

a localized initial seed, we expect 𝑃𝑠(𝑡) ∼ [ln(𝑡/𝑡0)]
−𝛿, 𝑁(𝑡) ∼ [ln(𝑡/𝑡0)]

𝜃, and

𝑅(𝑡) ∼ [ln(𝑡/𝑡0)]
1/Ψ, respectively; 𝑡0 is some crossover time, and 𝛿, 𝜃, and Ψ

should take the values already reported in the literature [222].

∙ there should be a sub-region of the absorbing phase, right below the critical

point, exhibiting generic algebraic scaling with continuously varying exponents,

i.e. a Griffiths phase [93]. Griffiths phases stem from the existence of rare
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regions where the disorder takes values significantly different from its average

[220].

These features follow from a strong-disorder renormalization group approach for

the disordered contact process, which concludes that this anomalous critical behavior

can be related to the random transverse-field Ising model for sufficiently strong dis-

order [114], and have been confirmed in computational studies which suggested that

this behavior is universal regardless of disorder strength [222, 220, 115].

3.2 Microscopic model

Pure version

As mentioned in section 1.3, the simplest non-equilibrium model with absorbing states

exhibiting a first-order/discontinuous transition is the “quadratic” contact process.

Among the many possible ways in which this particle system can be implemented [73,

230, 228], we employ the model proposed in Ref. [228], which was numerically studied

in two-dimensions and verified to exhibit a first-order phase transition separating an

active from an absorbing phase [228].

We consider a two-dimensional square lattice and define a binary occupation vari-

able 𝑠 = 0, 1 (empty/occupied) at each site. We consider some initial conditions and

perform a sequential updating following the standard procedure [146, 106, 161, 95]: i)

an active site is randomly selected (from a list including all active ones); ii) with prob-

ability 𝑝𝑑 (death) the particle is annihilated, otherwise, with complementary proba-

bility 1− 𝑝𝑑 a nearest neighbor site is chosen; iii) if this latter is empty, the selected

particle diffuses to it, and otherwise an offspring particle is created at a randomly

chosen neighboring site with probability 𝑝𝑏 (birth) provided it was empty; otherwise

nothing happens. We keep 𝑝𝑏 = 0.5 fixed and use 𝑝𝑑 as the control parameter.
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Spatially disordered version

In the disordered version of the model, each lattice site has a random uncorrelated

(death) probability. In particular, we take 𝑝𝑑(x) = 𝑝𝑑𝑟 where 𝑝𝑑 is a constant and 𝑟 is

a homogeneously-distributed random number 𝑟 ∈ [0, 2] (and, thus, the mean value is

𝑝𝑑). Spatial disorder is refreshed for each run, to ensure that averages are independent

of any specific realization of the disorder.

3.3 Computational results

Characterizing a discontinuous transition

In the first place, we study the pure model presented above to ensure the presence of

a first-order transition. As customarily done, we perform two types of experiments

[146, 106, 161, 95], considering as initial condition either a homogeneous state, i.e., a

fully occupied lattice of linear size 𝐿, or a localized seed, consisting in this case of a

few, at least a couple, neighboring particles in an otherwise empty lattice.

Homogeneous initial conditions– Figure 3-1 shows results of computer simulations

for the temporal decay of the particle density from 𝜌(𝑡 = 0) = 1. The upper panel

shows an abrupt change of behavior at a threshold value 𝑝𝑑𝑡ℎ𝑟 ≈ 0.0747; activity

survives indefinitely for 𝑝𝑑 < 𝑝𝑑𝑡ℎ𝑟 (at least up to the considered maximum time)

and the particle density converges to relatively large steady state values (𝜌 ≈ 0.6),

while activity dies off exponentially for any 𝑝𝑑 > 𝑝𝑑𝑡ℎ𝑟 . This behavior is compatible

with a first order phase transition, but the location of the threshold value has to be

considered as a rough estimate.

To better locate the transition point, we study the mean survival time (MST)

as a function of system size. Figure 3-1b shows a non-standard non-monotonous

dependence of the MST as a function of size𝑁 = 𝐿2. As we see, there are two regimes:
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Figure 3-1: Decay from a homogeneous initial condition in the pure model . (a)
Time evolution of the total averaged particle density for 𝑁 = 𝐿2 = 2562; a first order phase
transition can be observed near 𝑝𝑑𝑡ℎ𝑟 ≈ 0.0747. (b) Mean survival time, 𝑡𝐹 , required to reach
an arbitrarily small density value here fixed to 0.01 (results are robust against variations of
this choice) as a function of system size. Up to 103 realizations have been used to average
these results. From this finite size analysis, the threshold point can be bounded to lie in the
interval [0.070, 0.075].

i) for 𝐿 < 𝐿𝑐 there is an exponential increase of the MST with system size; ii) for

𝐿𝑐 < 𝐿, and quite counter-intuitively, the MST decreases with increasing system size.

This behavior can be rationalized following recent work where a particle system very

similar to ours is studied by employing a semiclassical approach [151] (see also Ref.

[212]). Following this study, the first regime corresponds to the standard Arrhenius

law, i.e., the fact that a quasi-stationary state with a finite particle density experiences

a large fluctuation extinguishing the activity in a characteristic time which grows

exponentially with system size [82]. On the other hand, there is a “critical system

size” above which the most likely route to “extinction” consists on the formation of a

critical nucleus that then expands in a ballistic way, destabilizing the quasi-stationary

state. Obviously, the larger the system size the most likely that a critical nucleus is

spontaneously formed by fluctuations. Finally, for sufficiently large system sizes there

is a last “multi-droplet” regime in which many nuclei are formed and the MST ceases
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to depend on system size, reaching and asymptotic value [151]. This picture fits

perfectly well with our numerical findings.

From this analysis, we conclude that, with the present computational resolution,

we can just give a rough estimation for the location of the transition point 0.070 <

𝑝𝑑𝑡ℎ𝑟 < 0.075.

To show further evidence of the discontinuous nature of the phase transition, fig-

ure 3-2 illustrates the system bistability around the transition point: depending on

the density of the initial configuration, a homogeneous steady state may converge

either to a stationary state of large density (active) or to the absorbing state. A

separatrix marks the distinction between the two different basins of attraction. Let

us remark that systems exhibiting a first-order transition are bistable only at ex-

actly the transition point but for finite system sizes the coexistence region has some

non-vanishing thickness. The existence of bistability makes a strong case for the

discontinuous character of the transition.

Figure 3-2: Bistability at the transition point of the pure model. Log-log plot of
the averaged particle density as a function of time for different initial conditions in the
neighborhood of the transition point (results here are for 𝑝𝑑 = 0.07315). Depending on the
initial density, the system stabilizes in the active or in the absorbing phase. The selected
initial densities are equi-spaced in the interval [0.005, 1] with constant increments 0.05;
system size 𝑁 = 2562 and averages performed over up to 106 realizations.
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Spreading experiments from a localized seed– We consider a few (at least 2) neigh-

boring particles at the center of an otherwise empty lattice, and monitor how activity

spreads from that seed. Each simulation run ends whenever the absorbing state is

reached or when activity first touches the boundary of the system. We monitor the

averaged squared radius from the origin 𝑅2(𝑡), the averaged number of particles over

surviving trials, 𝑁𝑠(𝑡), and the survival probability, 𝑃𝑠(𝑡) [146]. Figure 3-3 shows

log-log plots of these three quantities as a function of time. In all cases, we find a

threshold value 𝑝𝑑𝑡ℎ𝑟 ≈ 0.073 that marks a change of tendency, signaling the fron-

tier between the absorbing and active phases. In the active phase (𝑝𝑑 < 𝑝𝑑𝑡ℎ𝑟) and

for large values of 𝑡, both 𝑁𝑠(𝑡) and 𝑅2 grow approximately as 𝑡2 (as expected for

ballistic expansion), while 𝑃𝑠(𝑡) converges to a constant (i.e. some runs do survive

indefinitely). On the other hand, in the absorbing phase all three quantities curve

downwards indicating exponential extinction.

Figure 3-3: Spreading experiments for the pure model. Double-logarithmic plot of the
(from bottom to top), (i) the survival probability 𝑃𝑠(𝑡), (ii) the averaged number of particles
𝑁𝑠(𝑡) (averaged over surviving runs), and (iii) the averaged squared radius (averaged over
of all runs), as a function of time, for 𝑁 = 10242 using up to 4× 1010 experiments. Curves
for 𝑅2(𝑡) have been shifted upwards for clarity. In spite of the large number of runs used to
average, curves are still noisy. This is due to the fact that, being very close to the transition
point, a large fluctuation is needed for the system to "jump" to the active phase from the
vicinity of the absorbing one and only a few runs reach large times.
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Thus, the pure model exhibits a discontinuous transition at some value of 𝑝𝑑𝑡ℎ𝑟 ≈

0.073, which separates a phase of high activity from an absorbing one. Observe, that

the estimation of the transition point is compatible with the interval obtained above.

The appearance of a continuous transition

We now analyse whether the discontinuous transition is maintained in presence of

quenched disorder. To that purpose we perform the previous experiments in the

disordered model version.

Homogeneous initial conditions– We have computed time series for i) the mean

particle density averaged over all runs and ii) the mean particle density for surviving

runs (i.e. those which have not reached the absorbing state). Figure 3-4 shows time

evolution after up to 2× 104 realizations. Results are strikingly different from those

of the pure-model.

For values below threshold, 𝑝𝑑 < 𝑝𝑑𝑐 ≈ 0.077, the particle density converges to a

constant value for asymptotically large times, while for 𝑝𝑑𝑐 > 0.077 curves decay as

power laws (a much more precise estimation of the critical point will be computed

below). The generic algebraic decay is observed for a wide range of 𝑝𝑑; however,

the transient before the power-law regime increases with 𝑝𝑑, which makes it difficult

to determine the exact boundaries of the mentioned range. The presence of generic

algebraic scaling in an extended region is the trademark of Griffiths phases.

Plotting the activity over the surviving trials [Fig. 3-4b], we observe that the

evolution is non-monotonous in the absorbing (Griffiths) phase: the curves decrease

up to a minimum value and then increase. This stems from the fact that realizations

with large rare active regions remain active for longer times than those with smaller

ones; as realizations with only relatively small rare-regions progressively die out, those

with larger and larger rare-regions are filtered through and, thus, the overall average
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Figure 3-4: Density decay from a homogeneous initial conditions in the disordered
model. (a) Particle density averaged over all trials in a lattice of size 2562 and up to 2×104

realizations (curves in the active phase are plotted with dashed lines). Observe the presence
of a broad region with generic power-law behavior, i.e. a Griffiths phase which starts roughly
at 𝑝𝑑 = 0.0775. (b) As (a) but averaging only over surviving trials. Note the non-monotonic
behavior in the Griffiths phase (see main text for details).

density grows as a function of time, being limited only by system size.

In addition, we observe that, contrarily to the pure case, there is no bistability

around the transition point (figure 3-5). Indeed, very near to the transition point

(𝑝𝑑 = 0.07650), all curves regardless of their initial value converge to a unique well-

defined stationary density close to zero, as appropriate for a continuous transition to

an absorbing state.

Spreading experiments from a localized seed– Figure 3-6 shows results for three

spreading observables as a function of time; for all of them, we clearly observe generic

asymptotic power laws with continuously varying exponents.

These spreading quantities also allow us to scrutinize the behavior at the critical

point. As discussed in the Introduction, in a disordered system as the one under

study, we expect logarithmic (activated scaling) at criticality. Indeed, Figure 7 shows

results for the usual spreading quantities represented in a double logarithmic plot
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Figure 3-5: Absence of bistability in the disordered model. Double-logarithmic plot
of the averaged particle density as a function of time for 𝑝𝑑 = 0.0765, with 𝑁 = 2562, and
up to 106 realizations. Initial densities are 𝜌0 = 0.00006, 0.01, 0.2, 0.3, 0.4, 0.7, 1. Regardless
of the initial condition, the system stabilizes to a constant small value of the density, as
expected for a second-order phase transition.

of the different quantities as a function of 𝑙𝑛(𝑡/𝑡0). The value of 𝑡0 is in principle

unknown and constitutes a significant error source [222]. We fix it as the value

of 𝑡 such that it gives the best straight lines at the transition point for all three

quantities [222]). Right at the critical point (𝑝𝑐 ≈ 0.07652 to be obtained with more

accuracy below) a straight asymptotic behavior indicates that results are compatible

with logarithmic (i.e. activated) type of scaling. The best estimates for the (pseudo)-

exponents listed in the previous section are: 𝛿 ≈ 1.90, 𝜃 ≈ 2.09, and Ψ ≈ 0.43,

which are compatible with the values reported in the literature for the universality

class of directed percolation with quenched disorder (i.e. 𝛿 = 1.9(2), 𝜃 = 2.05(20),

Ψ = 0.51(6)).

Similarly, following the work of Vojta and collaborators [222], we represent in

Fig. 8 one of the spreading quantities as a function of another one, e.g. 𝑁(𝑡) as

a function of 𝑃𝑠(𝑡) to eliminate the free variable 𝑡0 from the plot. This type of

plot allows for the identification of power-law dependencies rather than logarithmic

ones, i.e. 𝑁(𝑡) ∼ 𝑃𝑠(𝑡)
−𝜃/𝛿. If the second-order phase transition belongs to the
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Figure 3-6: Spreading experiments in the disordered model. Double logarith-
mic plot of the three usual spreading quantities showing the presence of generic power-
laws with continuously varying exponents all along the Griffiths phase (𝑝𝑑 . 0.07652).
Parameter values (from top to bottom) 0.06, 0.07, 0.073, 0.075, 0.07652, 0.077, 0.0775,
0.078, 0.0785, 0.079, 0.0795 (curves in the active phase are plotted with dashed lines), up
to 5× 107 realizations.

universality class of the directed percolation with quenched disorder, we should have

𝑁(𝑡) ∼ 𝑃𝑠(𝑡)
−1.08(15), using as a reference the values in the literature [222]. Indeed,

as shown in Figure 8 we obtain 𝑁(𝑡) ∼ 𝑃𝑠(𝑡)
−1.10(2), in very good agreement with

the expected value [222], and this is the method by which the critical point location,

𝑝𝑑 ≈ 0.07652, is obtained with best accuracy.

96



Figure 3-7: Spreading experiments in the disordered model. Double logarithmic
plot of the three usual spreading quantities as a function of ln(𝑡/𝑡0) for different parameter
values (from top to bottom 0.07, 0.073, 0.075, 0.07652, 0.077, 0.0775, 0.078 (curves in the
active phase are plotted with dashed lines). Same network sizes as in the homogeneous
case and up to 106 realizations. By conveniently choosing 𝑡0 = 0.01 (see main text) we
observe straight lines at the critical point, 𝑝𝑑 ≈ 0.07652. From their corresponding slopes
we measure the associated (pseudo)-exponents: 𝜃 ≈ 2.09, 𝛿 ≈ 1, 9, and 2/Ψ ≈ 4.6 (slopes
marked by dashed lines). These values have a large uncertainty, as changes in the value of
𝑡0 severely affect them. Estimating these exponents with larger precision is computationally
very demanding.

Figure 3-8: Double logarithmic plot of 𝑁(𝑡) as a function of 1/𝑃𝑠(𝑡) for spreading
experiments at criticality in the disordered model [220]. Our best estimate for the
slope of at the critical point (separatrix of the curves, see main panel) is compatible with
the value reported in the literature 𝑁(𝑡) ∼ 𝑃𝑠(𝑡)

−𝜃/𝛿≈−1.08 corresponding to the universality
class of the directed percolation with quenched disorder. The inset shows a zoom around
the critical point. Lattice size 𝑁 = 10242; averages up to 5 × 107 realizations, and same
parameters as in Figure 7.
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3.4 Conclusions. “Non equilibrium Imry-Ma argument”

In contrast with the pure model, in the disordered case we have found a Griffiths phase

and a second-order phase transition with an activated type of scaling. Therefore, in

this non-equilibrium system with one absorbing state the situation remains much as

in equilibrium situations: disorder annihilates discontinuous transitions and induces

criticality.

Results are rather similar to those reported for the standard contact process with

quenched disorder. Indeed, results are fully compatible (up to numerical precision)

with the standard strong-disorder fixed point of the universality class of the directed

percolation with quenched disorder [114, 220, 222]. We believe that our results are

robust upon considering other types of (weaker) disorders [115]. Thus, two different

models with significantly different pure versions –i.e. one with a first-order and one

with a second-order transition– become very similar once quenched disorder is intro-

duced. Both exhibit Griffiths phases and activated scaling at the transition point.

From a more general perspective, deciding whether novel universal behavior

emerges in disorder-induced criticality is still an open problem in statistical mechan-

ics. For illustration, let us point out that recent work suggests that disorder-induced

second-order phase transitions in an Ising-like system with up-down symmetry does

not coincide with Ising transition [18]. Similarly, in Ref. [115] a novel type of crit-

ical behavior is found for disorder-induced criticality. In the case studied here, the

disorder-induced criticality does not seem to lead to novel behavior (up to numerical

precision); indeed, all evidences suggest that it behavior coincides with the universal-

ity class of the directed percolation with quenched disorder.

After a careful inspection of the literature in search of discontinuous transitions

in disordered non-equilibrium low-dimensional systems, we found a very recent work

in which the authors study the popular (two-dimensional) Ziff-Gulari-Barshad (ZGB)
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model for catalytic oxidation of carbon monoxide [233] in the presence of catalytic

impurities (a fraction of inert sites) [27]. The pure ZGB model is known to exhibit,

among many other relevant features, a discontinuous transition into an absorbing

state. However, after introducing quenched disorder, no matter how small its pro-

portion, the discontinuous transition is replaced by a continuous one [27], similarly

to our findings here.

In conclusion, we conjecture that first-order phase transitions cannot appear in

low-dimensional disordered systems with an absorbing state. In other words, the

Imry-Ma-Aizenman-Wehr-Berker argument for equilibrium systems can be extended

to non-equilibrium situations including absorbing states. The underlying reason for

this is that, even if the absorbing phase is fluctuation-less and hence is free from the

destabilizing effects the Imry-Ma argument relies on, the other phase is active and sub-

ject to fluctuation effects. Therefore, intrinsic fluctuations destabilize it as predicted

by the Imry-Ma-Aizenman-Wehr-Berker argument, precluding phase coexistence.

Remarkably, in the case studied by Barghathi and Vojta, in which the Imry-Ma

argument is violated in favor of a second-order phase transition, the two broken-

symmetry states are absorbing ones: once the symmetry is broken in any of the two

possible ways, the system becomes completely frozen, i.e., free from fluctuation effects,

and, consequently, the Imry-Ma argument breaks down. Thus, the only possibility

to have first-order phase transitions in low-dimensional disordered systems would be

to have (in its pure version counterpart) a discontinuous phase transition between

two different fluctuation-less states, and we are not aware of any such transition.

Therefore, we conclude that quenched disorder forbids discontinuous phase transitions

in low-dimensional non-equilibrium systems with absorbing states.
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Chapter 4

Structural heterogeneity.

Rounding of abrupt transitions in

cortex networks

In chapter 3 we conjectured that dynamical models of activity propagation charac-

terized by discontinuous phase transitions, at the mean-field level, exhibit a rounding

phenomenon in finite dimensional disordered systems, eventually leading to contin-

uous phase transitions at dimension 𝑑 ≤ 2. Such behavior has been envisaged as

the non-equilibrium analogue of the well-know Imry-Ma criterion, which states that

(in the presence of quenched disorder) first-order phase transitions are prohibited in

equilibrium systems at 𝑑 ≤ 2 [119, 3, 19].

Analogously to quenched disorder in lattices, structural disorder is integral to any

non-trivially connected system and may thus be responsible for the rounding of dis-

continuous phase transitions in such systems [158]. In this light, we investigate how

topological disorder can potentially alter the order of phase transitions exhibited by

the prototypical quadratic contact process. In analogy with the Imry-Ma criterion, a
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priori, this effect should be expected to occur in networks with topological dimension

𝑑 less than 2 (chapter 3).

Due to the great variety of complex networks present in nature, an extensive anal-

ysis of all of them would be difficult. In this chapter we focus on a system that is

well described by the previous model and extremely affected by its structure, the brain

cortex. We present an extensive numerical study of the quadratic contact process,

which would describe activity propagation in brain networks through the integration

of different neighboring spiking potentials (mimicking basic neural interactions). The

requirement of signal integration may lead to discontinuous phase transitions , thus

preventing the emergence of critical points in such systems. Here we show that criti-

cality in the brain is instead robust, as a consequence of the hierarchical organization

of the higher layers of cortical networks.

4.1 Introduction

4.1.1 Criticality in brain cortex and “single-node” models

Experimental evidence of critical or quasi-critical behavior in brain networks was

gathered over the past decade [15, 16, 170, 14, 166, 100, 43]. The discovery of scale-

invariant avalanches of neural activity led to the conjecture that the brain might

operate close to a critical point [15, 16]. It was argued that critical behavior might

bear functional advantages; for instance, the divergence at criticality of quantities such

as susceptibilities and correlation lengths could entail the ability of brain networks to

coordinate system-wide activities and efficiently respond to a broad range of stimuli.

A vast number of studies have since flowered, focusing on the numerical simulation

of simple dynamical models that could recover phenomenologically the hallmarks of

criticality observed in experiments [125, 124, 176, 224, 225]. In particular, it was noted
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that effective highly-simplified models of activity propagation –such as the contact

process and the quiescent-excited-refractory-quiescent model– could provide valuable

information on large-scale brain properties [96]. In these ideal models, an active

“unit” or node –be it a neuron at a microscopic scale or a coarse-grained active region

at a larger mesoscopic scale– can propagate its activity to neighboring units and/or

become deactivated. Such simple dynamics –where activity propagation involves a

single active node– lead generically to continuous phase transitions, with a critical

point separating an active from a quiescent phase [146, 137, 161, 106]. Moreover,

relatively simple modifications of these models implementing standard mechanisms

of self-organized criticality lead to robust critical or quasi-critical behavior without

the need of parameter fine tuning [136, 154, 24].

4.1.2 Discontinuous transitions and integrative neural models

A closer look at real neural dynamics suggests that neural activity propagation may

follow more complicated rules. In particular, individual neurons usually require to

integrate up to hundreds of post-synaptic potentials before spiking themselves, as

typically captured by integrate-and-fire models [1, 28, 29].

At mesoscopic scales, such requirement may be less stringent; however it is rea-

sonable to consider that a few neighboring active units might be required to generate

further activity: i.e. the dynamics follow a schematic rule of the type: 𝑛A→ (𝑛+𝑚)A,

with 𝑛 > 1 and 𝑚 of the order of a few units, where each A stands for an active lo-

cation or site [146, 137, 161, 106].

Such types of (𝑛,𝑚)-processes are well known in reaction-diffusion systems [146,

137, 161, 106], and they are often used in the modeling of neural dynamics. In

particular, it is known that they lead to broad phases of sustained activity [125]

and enhanced dynamic ranges [129, 86]. However, these processes are also well-

103



known to lead to pattern formation (Turing patterns) and to discontinuous phase

transitions between active and quiescent phases, with associated phase coexistence

[228] and lacking critical points, in seeming contradiction with the observation of

scale-invariant behavior in brain dynamics. In other words, the requirement of more

than one source of activity to generate further activity leads to discontinuous phase

transitions, separating two highly different active and quiescent phases, with no sign

of criticality nor scale-invariance in between [146, 137, 161, 106].

A goal in this chapter is to reconcile the need for signal integration at the neuron

scale, supposedly leading to discontinuous transitions, with the empirical observation

of critical-like features, characteristic of continuous phase transitions. As we hope

to convincingly argue, the key to this puzzling ambiguity lies in the topology of the

underlying network of neural connections, which we will prove responsible for the

generic rounding of discontinuous transitions.

4.2 The model

Dynamics

In what follows, we provide extensive numerical tests of the above conjecture, show-

ing how the topological dimension of a disordered network can tune the nature of the

dynamical phase transition, ultimately forcing 𝑛A→ (𝑛 + 𝑚)A dynamics to exhibit

continuous transitions for 𝑑 ≤ 2. To this end, we consider the prototypical quadratic

contact process, in which we choose 𝑛 = 2 and 𝑚 = 1, whose Monte Carlo implemen-

tation is as follows: each of the 𝑁 nodes of the network is endowed with a binary state

variable 𝜎 = 0, 1, inactive or active, and 𝜌(𝑡) is the density of active nodes at time 𝑡;

i) at each time step an active node R1 is selected and time is increased by [𝑁𝜌(𝑡)]−1;

ii) with death probability 𝑝d, R1 is deactivated, while with complementary probability
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1− 𝑝d, a neighboring node R2 is considered and one of the following actions is taken;

iiia) if R2 is inactive, activity diffuses to R2, leaving R1; iiib) if R2 is active, a new

neighbor R3 of R1 is considered and, if inactive, it is activated with birth probability

𝑝b. From a neurophysiological perspective, 𝑝d encodes the exhaustion mechanism that

accounts for spontaneous deactivation of neurons and neural regions, which proves

essential in maintaining sustained activity bounded [125]. The integrated activation

is tuned by 𝑝b.

Notice that different choices of 𝑛,𝑚 > 1, which might account for enhanced realism

in the physiological description of brain networks at the mesoscale, would not affect

the behavior. A more detailed theoretical description of this system –taking explicitly

into account the underlying network topology– would be provided by a quenched-

mean-field approach [158].

Structure

In spite of the huge complexity that would be required to represent the detailed

structure of the brain down to the single-neuron level, an effective coarse-grained

description of neural contact patterns can be provided by a network –the connectome–

whose nodes represent groups of neurons, such as cortical columns, and whose links

represent the groups of fibers connecting them [124].

Studies employing different neuroimaging techniques have revealed that the

Human Connectome, the current mapping of human brain connections, is orga-

nized in a hierarchical and modular fashion, in which local regions are clustered

into large-scale moduli, which in turn form higher level structures and so on

[196, 152, 126, 195, 99, 232]. The resulting hierarchical modular network (HMN)

can be visualized as built-up from moduli of large internal neural connectivity, en-

closed into higher-level sparser moduli, in a nested hierarchical fashion.

105



Figure 4-1: Sketch of the HMN construction method. Given a positive integer 𝑠, consider 2𝑠

basal fully connected moduli of size 𝑀 . At the lowest hierarchical level, moduli are linked
pairwise into super-moduli by establishing a fixed number 𝛼 of random unweighted and
undirected links between the elements of each modulus (𝛼 = 2 in figure). Newly formed
blocks are then iteratively linked pairwise with the same 𝛼 for a total of 𝑠 iterations, until
the network becomes connected. The resulting network has size 𝑁 = 2𝑠𝑀 .

HMNs have been recently found to play a crucial role in neural dynamics. In par-

ticular, simple models of activity propagation were recently found to display Griffiths

phases when running on top of HMNs [156], corroborating the experimental obser-

vation of extended critical regions in the human at its resting state [202]. Similarly,

they were argued to extend the region of apparent criticality in self-organized models

of neural activity and they were used to explain the ability of the brain to sustain

activity over extended time windows [125, 124, 176, 224, 225, 156].

Here we shall use a simple structural model to build-up synthetic HMNs as fol-

lows: local densely connected moduli are used as building blocks; they are recursively

grouped by establishing additional inter-moduli links in a level-dependent way, as

exemplified in Figure 4-1. Further details of the construction methods can be found

in Reference [156]. A crucial feature of HMNs is represented by their finite topolog-

ical dimension 𝑑. The topological dimension of a network can be defined as follows:

starting from a single node, the number of neighbors 𝑁𝑧 reachable after 𝑧 steps is

computed for increasing 𝑧 until the entire network is covered [158]. The network is

finite dimensional with dimension 𝑑 if ⟨𝑁𝑧⟩ ∼ 𝑧𝑑, generalizing the familiar behavior of
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regular lattices. The topological dimension of a HMN can be tuned easily, by chang-

ing the average number 𝛼 of links between pairs of modules at each hierarchical level

(see Fig. 4-1 and [156]). Although brain moduli and columns may be densely con-

nected, at larger mesoscopic and macroscopic scales the hierarchical contact patterns

become very sparse. At such scales, the effective network becomes finite dimensional

[80, 156].

As a substrate on which the above dynamics run, we considered different HMNs,

characterized by different topological dimensions 𝑑. In the rest of the chapter we will

show results for HMN extracted from two ensembles 𝒩− and 𝒩+, each with a fixed

average dimension 𝑑−,+ below and above the threshold value 𝑑 = 2. In particular, we

show results for 𝑑− ≈ 1.6 and 𝑑+ ≈ 2.8 (networks with such properties are obtained

by choosing 𝛼 = 1 and 𝛼 = 4 respectively, in the HMN building-up process; see

Figure 4-1).

4.3 Results

We ran Monte Carlo simulations of the above process on such networks. Figure 4-2

shows the steady state value of the average activity density, as a function of the control

parameter 𝑝d, respectively below and above dimension 𝑑 = 2, in spreading simulations

starting both from localized active seeds (𝜌0 ≈ 0) and from the homogeneously active

state (𝜌0 = 1). While the discontinuity encountered above 𝑑 = 2 is in agreement with

the mean-field behavior for this type of dynamics, below 𝑑 = 2 the dynamical phase

transition is evidently continuous, confirming the conjecture of a low-dimensional

rounding.

To provide further evidence of the radical difference in the transition nature,

Figure 4-3 shows the time evolution of the average activity density 𝜌 upon changing

the initial activity 𝜌0, for both cases in Figure 4-2, each at the estimated threshold
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Figure 4-2: Phase diagrams for topological dimension 𝑑 above and below 𝑑 = 2 respectively.
In high dimension, the phenomenology of a discontinuous phase transition is recovered, in
agreement with the mean-field prediction for the quadratic contact process. Below 𝑑 = 2,
the transition becomes continuous. A feeble appearance of hysteretic behavior is recorded in
the 𝑑 > 2 case, where different colors correspond to different initial conditions and spinodal
points marking the transition are located at 𝑝dthr ≈ 0.0732(1) and 𝑝dthr ≈ 0.0734(1) for
𝜌0 = 0 and 𝜌0 = 1 respectively (not distinguishable in figure). Such dependence disappears
for 𝑑 < 2, in accordance with the the hypothesis of a continuous phase transition, the critical
point being located at 𝑝dthr ≈ 0.0402(1) Simulations are run on HMNs of size 𝑁 = 217 =
131072, partitioned into 𝑠 = 13 hierarchical levels.
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Figure 4-3: Time evolution of the activity density 𝜌 for different initial values 𝜌0 (different
colors), for dimension above and below 𝑑 = 2 respectively. In both cases, the control
parameter 𝑝d is chosen at the threshold value. For high dimension, bistable behavior is
recovered, as in standard first-order transitions, whereas no sign of bistability is encountered
below 𝑑 = 2. Notice however that both configuration converge very slowly to their expected
behavior. In particular, in the 𝑑 > 2 (discontinuous) case, large enough initial conditions
lead to very long transients, which could be misinterpreted as continuous behavior for short
simulation times. Such traits of quasi-critical states become stronger as 𝑑 = 2 is approached
from above, and corroborate the picture of a rounding phenomenon.

𝑝d. Above 𝑑 = 2 clear signs of bistability emerge, signaling coexistence phenomena,

which typically characterize discontinuous phase transitions. Below 𝑑 = 2, however,

the steady state does not depend on the initial condition anymore, as expected for

a continuous transition, in which correlations become system-wide and coexistence is

prohibited. In order to gain a deeper understanding of the rounding phenomenon, we

can analyze the nature of the inactive (absorbing) phase in both cases.

To this end, let us consider simulations starting from a homogeneous 𝜌0 = 1 state.

Time evolution of 𝜌 is shown in Figure 4-4, for different values of 𝑝d in the inactive

phase. As usual, above 𝑑 = 2 results for 𝑝d point to an abrupt change in behavior at

the dynamic threshold 𝑝dthr , below which activity dies off exponentially fast as soon
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Figure 4-4: Time evolution of the activity density 𝜌 for different values of the control param-
eter 𝑝d (different colors) below the dynamic threshold, for dimension above and below 𝑑 = 2
respectively. For high dimension, the transition between the inactive and the active state is
abrupt, with no signs of criticality. Below 𝑑 = 2, a Griffiths phase emerges for 𝑝d > 𝑝dthr ,
characterized by generic power-law relaxation and critical-like behavior.
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as a large enough fluctuation breaks the coexistence of active and inactive islands. At

𝑝dthr , such coexistence becomes stable in the large-𝑁 limit and the phenomenology of

a discontinuous phase transition is recovered. For dimensions below 𝑑 = 2, instead,

the system displays a Griffiths phase[220, 218]: the average activity density decays as

power laws with continuously varying exponents as a function of the control param-

eter 𝑝d. A critical point, characterized by activated scaling logarithmic time decay

(𝑝dthr ≈ 0.0402(1) in Fig.4-4) separates the Griffiths phase from the active phase,

marking the recovery of critical behavior at low dimension. Griffiths phases are a

manifestation of rare-region effects: islands of localized activity are able to remain

active for long times. Their relevance for both complex networks [158] and brain

networks [156] has been recently discussed in the literature. Activity propagation

models without signal integration yield such behavior in HMNs as they naturally

lead to continuous phase transitions regardless of dimensionality constraints [156].

Remarkably, the quadratic contact process dynamics at low dimensions recovers here

those fingerprints of criticality, in spite of being typically associated with discontinu-

ous transitions at mean field. Interestingly, upon approaching the threshold dimension

from above, 𝑑 → 2+, the discontinuous nature of the transition is rounded: although

coexistence is genuinely recovered at very large times, activity is able to self-sustain

even in the absorbing state for times potentially longer than any observation window.
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4.4 Conclusions. Rounded large-scales transitions in neu-

ral dynamics

A recent study showed that the quadratic contact process adopted here as a paradigm

for first-order phase transitions may show tricritical behavior in certain families of

ordered fractal lattices of dimension 1 < 𝑑 < 2 [229]. Such a finding implies that for

each family of ordered fractals, there exist a “critical” dimension 1 < 𝑑c < 2, below

which the transition is continuous, recovering the known behavior of one dimensional

chains, and above which the transition becomes discontinuous, anticipating the be-

havior of pure two-dimensional lattices. In our study we have introduced disorder

in the topology and shown that finite-dimensional disordered hierarchical modular

networks of relevance in neuroscience always display continuous phase transitions for

𝑑 < 2. In fact even square lattices (𝑑 = 2) exhibit this behavior provided that disorder

is introduced, specifically in the form of quenched impurities (chapters 2 and 3). Such

results corroborate the conjecture that, due to disorder, non-equilibrium systems with

absorbing states do not sustain first-order dynamical phase transitions for any 𝑑 ≤ 2.

We provided further evidence for this claim, proving its validity for HMNs, and we

focused on the relevance that such result may have for neuroscience. Brain activity

is known to exhibit critical-like behavior, which would suggest its ability to sit con-

stantly in the vicinity of a continuous transition. We have shown that even if realistic

dynamic models lead to first-order phase transitions in the mean-field approximation,

in low-dimensional disordered systems such transitions are rounded. A natural ques-

tion arises whether the brain actually is a low-dimensional network, provided that

each single neuron may have up to thousands of neighbors. The solution to this ap-

parent contradiction comes from the hierarchical organization of brain connections.

At the lowest scales, neurons are grouped in well connected moduli which act as small

worlds of diverging topological dimension. At such scales, integrate-and-fire dynamics
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naturally trigger coexistence and local discontinuous activations of moduli. At the

largest scales, however, inter-moduli connectivity is very sparse in order to maintain

the volume of white-fiber matter bounded [124], allowing only for weak small-world

effects [80]. Such connectivity patterns become finite dimensional, and discontinuous

phase transitions are prohibited. Notice that the 𝑑 = 2 bound should not be read

strictly in real systems. We found that significant traits of quasi-critical behavior

appear even above 𝑑 = 2, suggesting a gradual rounding phenomenon. Such systems

will theoretically show discontinuous transitions for large enough times, yet they are

able to sustain anomalous activity for typical time windows of experimental obser-

vations. More detailed and realistic models of neural dynamics could be provided.

While the behavior presented here is conserved for different choices of the parame-

ters (𝑛,𝑚), realistic models supposedly include ingredients such as refractory times,

explicit time integration, inhibition and dependence on synapse directedness. While

such details are of primary importance in correctly describing physiological aspects

of brain activity, we believe that our simple approach has the advantage of focusing

on the large-scale topology of the Human Connectome [196, 99], in order to provide

insight about its large-scale behavior. An understanding of low-level synaptic activity

requires realistic neuron models and remains a formidable task.

In conclusion, we have studied the properties of a family of dynamic models of

relevance in the description of neural activity in the presence of signal integration.

Although signal integration may be responsible for the emergence of first-order phase

transitions in generic networks, we have shown that phase transitions are rounded

in finite dimensional hierarchical networks, eventually turning continuous for 𝑑 ≤ 2.

Such finding is relevant in explaining the observation of critical behavior in the brain

at large scales, in spite of the high degree of signal integration required to fire neuron

activity at small scale.
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Chapter 5

Co-evolutionary systems.

Rapid phenotypic diversification in

ecological systems

There is no denying that, besides the mechanisms studied in previous chapters, adap-

tation and evolution are essential aspects of living systems. Usually, the times needed

to observe them is extremely long compared to communities dynamics, however, re-

cent experiments lead us to believe that, in some systems, rapid evolutionary changes

can feed back into ecological interactions. A recent long-term field experiment has

explicitly shown that communities of competing plant species can experience very fast

phenotypic diversification, and that this gives rise to enhanced complementarity in

resource exploitation and to enlarged ecosystem-level productivity.

In this chapter, we build on progress made in recent years in the integration of

eco-evolutionary dynamics, and present a computational approach aimed at describing

these empirical findings in detail. In particular we model a community of organisms of

different but similar species evolving in time through mechanisms of birth, competition,
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sexual reproduction, descent with modification, and death. Based on simple rules, this

model provides a rationalization for the emergence of rapid phenotypic diversification

in species-rich communities. Furthermore, it also leads to non-trivial predictions about

long-term phenotypic change and ecological interactions.

Our results illustrate that the presence of highly specialized, non-competing species

leads to very stable communities and reveals that phenotypically equivalent species

occupying the same niche may emerge and coexist for very long times. Thus, the

framework presented here provides a simple approach (complementing existing the-

ories, but specifically devised to account for the specificities of the recent empirical

findings for plant communities) to explain the collective emergence of diversification

at a community level, and paves the way to further scrutinize the intimate entangle-

ment of ecological and evolutionary processes, especially in species-rich communities.

Although, contrarily to expected, no phase transition between poor and rich species

diversity (generalist and specialists regimes, respectively) appears, we will investigate

the conditions under which this occurs in future work.

5.1 Introduction

Community ecology studies how the relationships among species and their environ-

ments affect biological diversity and its distribution, usually neglecting phenotypic,

genetic and evolutionary changes [143, 174, 207]. In contrast, evolutionary biology

focuses on genetic shifts, variation, differentiation, and selection, but –even if ecolog-

ical interactions are well-recognized to profoundly affect evolution [74]– community

processes are often neglected. Despite this apparent dichotomy, laboratory analyses

of microbial communities and microcosms [171, 231, 101, 77, 211, 108, 48, 67, 45, 194]

as well as long-term field experiments with plant communities [209, 200] and verte-

brates [201, 88] provide evidence that species can rapidly (co)evolve and that eco-
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and evolutionary processes can be deeply intertwined even over relatively short (i.e.

observable by individual researchers) timescales [70].

Over the last two decades or so, the need to consider feedbacks between ecological

and evolutionary processes has led many authors to develop a framework to merge

together the two fields [190, 134, 59, 60, 133, 206, 58, 62, 63, 188, 138, 37, 78, 56, 40,

123, 90, 55, 189, 102, 61, 210]. In particular, the development of quantitative trait

models [79] and the theories of adaptive dynamics [84, 83] and adaptive diversification

[59, 60, 133, 58, 62, 63, 40], reviewed in [79, 61], has largely contributed to the ratio-

nalization of eco-evolutionary dynamics, shedding light onto non-trivial phenomena

such as sympatric speciation and evolutionary branching [61].

On the empirical side, the recent work by Zuppinger-Dingley et al. on long-term

field experiments of vegetation dynamics appears to confirm many of the theoreti-

cal and observational predictions [235]. This study provided strong evidence for the

emergence of rapid collective evolutionary changes, resulting from the selection for

complementary character displacement and niche diversification, reducing the overall

level of competition and significantly increasing the ecosystem productivity within

a relatively short time. This result is not only important for understanding rapid

collective evolution, but also for designing more efficient agricultural and preserva-

tion strategies. More specifically, in the experimental setup of Zuppinger-Dingley

and colleagues, 12 plant species of different functional groups were grown for 8 years

under field conditions either as monocultures or as part of biodiverse communities.

Collecting plants (seedlings and cutlings) from these fields, propagating them in the

laboratory, and assembling their offspring in new communities, it was possible to

quantify the differences between laboratory mixtures consisting of plants with a his-

tory of isolation (i.e. from monocultures) and plants from biodiverse fields. While

the former maintained essentially their original phenotypes, the latter turned out to

experience significant complementary trait shifts –e.g. in plant height, leaf thickness,
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etc.– which are strongly suggestive of a selection for phenotypic and niche differen-

tiation [210] (see figure 5-1 therein). Furthermore, there were strong net biodiversity

effects [139], meaning that the relative increase in total biomass production in labo-

ratory mixtures with respect to laboratory monocultures was greater for plants from

biodiverse plots than for plants coming from monocultures. These empirical results

underscore the need for simple theoretical methodologies, in the spirit of the above-

mentioned synthetic approaches [190, 203, 60, 62, 63, 79, 90, 61, 50]. These approaches

should explain the community and evolutionary dynamics of complex and structured

communities such as the ones analyzed in [235].

The phenotypic differentiation observed in the experiments of Zuppinger-Dingley

et al. might be partially rationalized within the framework of relatively sim-

ple deterministic approaches to eco-evolution such as adaptive dynamics (see e.g.

[190, 203, 60, 62, 63, 79, 90, 61]). In this context, diversification is the natural outcome

of an adaptive/evolutionary process that increases fitness by decreasing competition

through trait divergence.

However, it is not obvious what would be the combined effects in this simplistic

version of adaptive dynamics of introducing elements such as sexual reproduction,

space, and multi-species interactions that could play an important role in shaping

empirical observations. Moreover, questions such as whether phenotypic differentia-

tion occurs both above and below the species level (i.e., within species or just between

them), the possibility of long term coexistence of phenotypically equivalent species in

the presence of strong competition (i.e., emergent neutrality), or the expected number

of generations needed to observe significant evolutionary change remain unanswered

and require a more detailed and specific modeling approach, within the framework of

adaptive dynamics.

Our aim in this chapter is to contribute to the understanding of eco-evolutionary

dynamics, emphasizing collective co-evolutionary aspects rather than focusing on in-
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dividual species or pairs of them. For this purpose, we developed a simple computa-

tional framework –similar to existing approaches– specifically devised at understand-

ing the emerging phenomenology of the experiments of Zuppinger-Dingley et al. In

particular, we propose an individual-based model, with spatial structure, stochas-

ticity, sexual reproduction, mutation, multidimensional trait-dependent competition

and, importantly, more than-two-species communities (in particular, possibly owing

to analytical difficulties, relatively limited work has been published about more than

three-species communities, which is crucial to achieve a realistic integration of ecolog-

ical and evolutionary dynamics for natural communities; see however [186, 26, 121]).

Furthermore, our method is flexible enough as to be easily generalizable to other

specific situations beyond plant communities and can rationalize the circumstances

under which phenotypic diversification and niche specialization may emerge using

simple, straightforward rules.

5.2 Co-evolutionary model

Model essentials

We construct a simple model which relies on both niche based approaches [142, 42, 41]

and neutral theories [116, 175, 223, 7]. The former prioritize trait differences and

asymmetric competition, underscoring that coexisting species must differ in their

eco-evolutionary trade-offs, i.e., in the way they exploit diverse limiting resources,

respond to environmental changes, etc., with each trade-off or “niche” choice implying

superiority under some conditions and inferiority under others [143, 207, 42, 41].

Conversely, neutral theory ignores such asymmetric interactions by making the radical

assumption of species equivalence, and focuses on the effects of demographic processes

such as birth, death and migration.
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Here, we adopt the view shared by various authors [208, 91, 98, 90] that niche-

based and neutral theories are complementary extreme views. In what follows, we

present a simple model that requires of both neutral and niche-based elements. In

particular, our model incorporates trade-off-based features such as the existence of

heritable phenotypic traits that characterize each single individual. However, the

impact of these traits on individual fitness is controlled by a model parameter, that

can be tuned to make the process more or less dependent on competition, in the limit

even mimicking neutral (or “symmetric”) theories [116, 175].

The traits of each single individual are determined by quantitative phenotypic val-

ues that can be regarded as the investment in specific functional organs. For instance,

the traits could represent the proportion of biomass devoted to exploit soil nutrients

(roots), light (leaves and stems), and to attract pollinators and capture pollen (flow-

ers; see figure 5-1). We then assume a hard limit –constant across generations– to

the amount of resources that can be devoted to generate the phenotype, i.e. it is

impossible to increase all phenotypic values simultaneously. Thus each individual is

constrained to make specific trade-offs in the way it exploits resources. Because sim-

ilar values in the trade-off space entail comparable exploitation of the same resource

(e.g., water, light or pollinators) similar individuals experience higher levels of com-

petition, which translates into a lower fitness. This can be regarded as a frequency

dependent selection mechanism providing an adaptive advantage to exceptional in-

dividuals, able to exploit available resources. Therefore, the ecological processes of

competition, reproduction, and selection lead to evolutionary shifts in the distribu-

tion of phenotypic traits which feed back into community processes, giving rise to

integrated eco-evolutionary dynamics.
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Figure 5-1: Sketch of the model. (A) Individuals of different species (different colors)
compete for available resources in a physical space (two-dimensional square lattice), which is
assumed to be saturated at all times. Each individual is equipped with a set of phenotypic
traits that corresponds to a single point in the trade-off space. This is represented here
(as a specific example) as an equilateral triangle (a “simplex” in mathematical terms) corre-
sponding to the case of 3 coordinates which add up to 1 (e.g., fraction of the total biomass
devoted to roots, leaves/stems and flowers, respectively [210]). For instance, a point close
to vertex 𝑇 1 exploits better the limiting resource 1 (e.g. soil nutrients) than another one
near vertex 𝑇 2, but is less efficient at exploiting resource 2 (e.g. light) than this latter one
(see section 5.3). (B) Individuals die after one timestep, giving rise to empty sites; each of
these is occupied by an offspring from a “mother” within its local neighborhood (consisting
of 8 sites in the sketch for clarity, although we considered also a second shell of neighbors in
the simulations, i.e. a kernel of 24 sites). The mother is randomly selected from the plants
occupying this neighborhood in the previous generation, with a probability that decreases
with the level of similarity/competition with its neighbors (see section 5.3). The implanted
seed is assumed to have been fertilized by a conspecific “father” from any arbitrary random
location, selected also with a competition-level dependent probability. The offspring inherits
its phenotype from both parents; its traits can lie at any point (in the shaded region of the
figure) nearby the the parental ones, allowing for some variation. For a given number of
initial species 𝑆, two key parameters control the final outcome of the dynamics: 𝛽, char-
acterizing the overall level of competition, and 𝜇, representing the variability of inherited
traits. We fix most of the parameters in the model (lattice site, individuals within the
competition/reproduction kernel, etc.) and study the dependence on 𝑆, 𝛽 and 𝜇.
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Model construction

The basic components of the model are as follows (further details are deferred to the

following section). We consider a community of individuals of 𝑆 different species,

that are determined initially by mating barriers (i.e. a species is defined as a set of

individuals that can produce fertile offspring [47]). Each individual occupies a position

in physical space (represented as a saturated square lattice) and is characterized by

the label of the species to which it belongs and a set of intrinsic parameters (i.e.

trait values), specifying its coordinates in the “trade-off space” as sketched in figure

5-1 (see also [177, 210]). All positions within the trade-off space are assumed to be

equally favorable a priori. In what follows, we make a perfect identification between

the trade-offs of a given individual and its phenotypic traits, which also determine

the “niche” occupied by each individual. In principle, each individual, regardless of

its species, can occupy any positition in the trade-off space. Positions near the center

of the trade-off space (figure 5-1) correspond to phenotypes with similar use of the

different resources (i.e., “generalists”), while individuals near the corners specialize in

the exploitation of a given resource (“specialists”).

Individuals are subjected to the processes of birth, competition for resources, re-

production, descent with modification, and death. Individuals are assumed to undergo

sexual reproduction, as in the experiments of [235] (implementations with asexual re-

production are discussed later); they are considered to be semelparous, so that after

one simulation time step (i.e, a reproductive cycle) they all die and are replaced by

a new generation. Importantly, demographic processes are strongly dependent on

phenotypic values. In particular, the main niche-based hypothesis is that individ-

ual organisms with a better “performance” are more likely to reproduce than poorly

performing ones. To quantify the notion of “performance”, we rely on classical con-

cepts such as limiting similarity, competitive exclusion principle and niche overlap
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hypothesis [149, 167], which posit that in order to avoid competition, similar species

must differ in their phenotypes. More specifically, our model assumes that the perfor-

mance of a given individual increases with its trait “complementarity” to its spatial

neighbors [167], as quantified by its averaged distance to them in trade-off space (see

section 5.3); i.e. the larger the phenotypic similarity among neighbors, the stronger

the competition, and the worse their performance. Although the performance of a

given individual depends on its complementarity with its neighbors, the model is

symmetric among species and phenotypes; performance is blind to species labels and

does not depend on the specific location in the trade-off space.

The reproduction probability or performance of any given individual is mediated

by a parameter 𝛽 which characterizes the global level of competitive stress in the

environment (see section 5.3). In the limit of no competition, 𝛽 = 0, the dynamics

become blind to phenotypic values and can be regarded as fully neutral, while in

the opposite limit of extremely competitive environments, 𝛽 → ∞, niche effects are

maximal and a relatively small enhancement of trait complementarity induces a huge

competitive advantage. Finally, a mother selected as described in the competition

process is assumed to be fertilized by a conspecific “father” in the population (in-

terspecies hybridization is not considered here) which is also selected with the same

reproduction probability function based on its performance. The offspring inherits its

traits from both parents, with admixture and some degree of variation 𝜇 (see figure

5-1 and the following section). This process is iterated for all lattice sites and for an

arbitrarily large number of reproductive cycles, resulting in a redistribution of species

both in physical and in trade-off space. Species can possibly go extinct as a conse-

quence of the dynamics. In this version of the model, speciation is not considered,

though it could be easily implemented by establishing a dependence of mating on

phenotypic similarity, making reproduction between sufficiently different individuals

impossible [55].
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Model details

In this model, each individual plant, 𝑖, is fully characterized by (see also figure 5-1):

(i) a label identifying its species, (ii) its coordinates in the physical space, and (iii) a

set of real numbers specifying its phenotypic traits. Some details to take into account

in this respect are:

∙ i) Species. A fixed number of species, labeled from 1 to 𝑆, is taken. While

the emergence of new species is not considered here, some of them may become

extinct along the course of evolution.

∙ ii) Physical space. We consider a two-dimensional homogeneous physical space

described by a 𝐿 × 𝐿 square lattice, assumed to be saturated at all times, in

which the neighborhood of each individuals is determined by the closest 𝐾 sites

(in our simulations, we took 𝐿 = 64 and 𝐾 = 24).

∙ iii) Phenotypic traits and trade-off space. As energy and resources are limited,

each individual plant needs to make specific choices/trade-offs on how to allocate

different functions. The way we implement the “trade-off space” is inspired in the

field of multi-constraint (non-parametric) optimization that it is called Pareto

optimal front/surface [153]; it includes the set of possible solutions such that

none of the functions can be improved without degrading some other. Thus,

the phenotype of any individual can be represented as a trade-off equilibrium, a

point in this space and encapsulated in a set of real numbersT = (𝑇 1, 𝑇 2, ..., 𝑇 𝑛)

(all of them in the interval [0, 1]), such that
∑︀𝑛

𝑘=1 𝑇
𝑘 = 1 where 𝑛 is the number

of trade-offs (see figure 5-1 and [210]). All positions within the trade-off space

are equivalent a priori, although this requirement can be relaxed.
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The dynamics that determine each individual relies on competition, reproduction,

and mutation. These processes would be characterized by the following considera-

tions:

∙ Competition for resources. It is based on the concept of trait “complementarity”

between two individuals 𝑖 and 𝑗. It would be quantified as their distance in the

trade-off space: 𝑐𝑖𝑗 =
∑︀𝑛

𝑘=1 |𝑇 𝑘(𝑖)−𝑇 𝑘(𝑗)|/𝑛, which does not depend on species

labels. The averaged complementarity, (or simply “complementarity”) over all

the neighbors 𝑗 of individual 𝑖 is 𝐶𝑖 =
∑︀

𝑗∈𝑛.𝑛.(𝑖) 𝑐𝑖𝑗/𝐾.

∙ Reproduction. Each timestep, every individual is removed from the population;

the resulting vacant site 𝑖 is replaced by an offspring of a potential mother plant

𝑗 which is selected from the list of 𝐾 local neighbors of the vacant site with a

given probability 𝑃mother(𝑗). This probability controls the dynamical process; we

assume it to increase as the mother’s trait complementarity 𝐶𝑗 increases (i.e. as

its effective competitive stress diminishes): 𝑃mother(𝑗) = 𝑒𝛽𝐶𝑗/
∑︀

𝑗′∈𝑛.𝑛.(𝑖) 𝑒
𝛽𝐶𝑗′ ,

where the sum runs over the set of 𝐾 neighbors of 𝑖; 𝑒𝛽𝐶𝑗 is the “performance”

of individual 𝑗 and 𝛽 is a tunable “competition parameter” controlling the over-

all level of competitive stress in the community. Once the mother has been

selected, the father is randomly chosen from all its conspecific individuals 𝑙 in

the community, with a probability proportional to their performance, 𝑒𝛽𝐶𝑙 . In

other words, individuals with lower competition pressure are more likely to sire

descendants both as females and as males.

∙ Inheritance, admixture and variation of phenotypes. The traits of each single

offspring are a stochastic interpolation of those of both parents with the possi-

bility of variation: 𝑇 𝑘
new = 𝜂𝑇 𝑘

mother+(1−𝜂)𝑇 𝑘
father+𝜉𝑘, for 𝑘 = 1, ..., 𝑛, where 𝜂 is

a random variable (uniformly distributed in [0, 1]) allowing for different levels of

admixture for each offspring, and 𝜉𝑘 are (Gaussian) zero-mean random variables
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with standard deviation 𝜇, a key parameter that characterizes the variability of

inherited traits. To preserve the overall constraints 𝑇 𝑘 ∈ [0, 1] and
∑︀

𝑘 𝑇
𝑘 = 1,

mutations are generated as 𝜉𝑘 = (𝑟𝑘 − 𝑟𝑘+1), where {𝑟1 = 𝑟𝑛+1, ..., 𝑟𝑛} are in-

dependent Gaussian random variables with zero-mean and standard deviation

𝜇/
√
2; in the rare case that 𝑇 𝑘

new < 0 (resp. > 1), we set it to 0 (resp. to 1) and

added the truncated difference to another random trait.

5.3 Methods and measures

Simulations are started with individuals of 𝑆 different species (e.g. 𝑆 = 16) randomly

distributed in space. Initially, the traits of all individuals are sampled from a com-

mon Gaussian distribution centered around the center of the simplex. Note that, as

shown in section 5.5, results do not depend on the particular choice of initial con-

ditions. Time evolution of this initialized system is quantified by different measures

of biodiversity described in this section. In this model, time can be implemented

either as discrete/synchronous updating or continuous/sequential updating without

significantly altering the results.

Species distances

We define two different distances in our framework:

∙ Interspecies distance, the distance between the centroids of two different species

𝑠 and 𝑠′ in the trade-off space 𝑑𝑠,𝑠′ =
∑︀

𝑘 |𝐵𝑘(𝑠)− 𝐵𝑘(𝑠′)|/𝑛, averaged over all

surviving species.

∙ Intraspecific distance, the average distance in trade-off space between all pairs

of individuals of a given species 𝑠, 𝑑𝑠 =
∑︀

𝑖,𝑗∈𝑠 𝑐𝑖𝑗/𝑛𝑠(𝑛𝑠 − 1) averaged over all

surviving species.
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Here, the centroid of species 𝑠 is given by B(𝑠) = {𝐵1(𝑠), ..., 𝐵𝑛(𝑠)}, with 𝐵𝑘(𝑠) =∑︀
𝑖 𝑇

𝑘(𝑖)/𝑛𝑠 for each trait 𝑘, where 𝑖 runs over the 𝑛𝑠 individuals of species 𝑠.

Complementarity

We distinguish three different measures regarding averaged complementarities (see

the sketches in figure 5-2):

∙ Local complementarity (LC). It is defined as the mean phenotypic distance be-

tween an individual and its spatial neighbors, LC =
∑︀

𝑖(
∑︀

𝑗∈𝑛.𝑛.(𝑖) 𝑐𝑖𝑗/𝐾)/𝑁 (𝑁

is the total number of individuals and 𝐾 is the number of local neighbors.)

∙ Global complementarity (GC). The complementarity averaged over all pairs

of individuals regardless of their relative positions in physical space, GC =∑︀
𝑖,𝑗 ̸=𝑖 𝑐𝑖𝑗/(𝑁(𝑁 − 1)). Similarly GCinter is the averaged complementarity be-

tween individuals of different species and GCintra is the averaged complementar-

ity between conspecific individuals. In the case of monocultures, GCinter(𝑆 = 1)

is measured from two different/independent realizations.

∙ Relative complementarity (RC). A measure of the averaged difference in the

level of competition between randomly sampled conspecific and non-conspecific

individuals, RC = GCinter −GCintra.

While local measurements capture the effect of spatial correlations, global ones

are useful to characterize the evolution of the whole community in trade-off space.

In analogy with the experimental setup of Zuppinger-Dingley et al. [235], we per-

formed computer simulations using both monocultures and mixtures. For the case

of monocultures, GCinter was estimated taking individuals coming from two indepen-

dent realizations of the simulations. Zuppinger et al. gathered seeds from surrounding

populations and grew them together in their experimental set-up. This removed any
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cumulative, trans-generational effect of spatial correlations. In this way, GC mea-

surements (figure 5-2 B) constitute better proxies (as compared to LC) to contrast

our results with global community (biodiversity) effects in [235].

Figure 5-2: Complementarity measurements:

A) Local complementarity (i.e. mean phenotypic distance between spatially close
neighbors) reveals the effect of spatial correlations; B) Intraspecific and interspecific
global complementarities (i.e. mean phenotypic distance between individuals of the
same and of different species, respectively, regardless of their spatial location). In all
cases, we performed computer simulations using monocultures and mixtures.
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Moran index

The Moran’s index [155] quantifies the likelihood of an individual to be surrounded by

individuals of the same species. When Moran’s index is negative, individuals are less

likely to be close to their co-specifics than what would be expected by pure chance,

while positive values indicate spatial clustering of species. Mathematically, given a

species 𝑠 we compute its Moran’s index 𝐼𝑠 as

𝐼𝑠 =

∑︀
𝑖∈𝑠

∑︀
𝑗∈𝑛.𝑛.(𝑖)(𝑋

𝑖
𝑠 − 𝑋̄𝑠)(𝑋

𝑗
𝑠 − 𝑋̄𝑠)

𝐾
∑︀

𝑖∈𝑠(𝑋
𝑖
𝑠 − 𝑋̄𝑠)2

, (5.1)

where 𝐾 is the number of local neighbors (kernel size), and 𝑋 𝑖
𝑠 is a variable such

that 𝑋 𝑖
𝑠 = 1 when the specie of 𝑖 is equal to 𝑠 and 𝑋 𝑖

𝑠 = 0 if it is different, with 𝑋̄𝑠

the density of individuals of species 𝑠. Finally, we obtain the total index averaging

over species, 𝐼 =
∑︀𝑆

𝑖=1 𝐼𝑠/𝑆. As a result, positive, zero, and negative values of 𝐼

correspond to positive spatial correlation, random, and anti-correlation of species,

respectively.

5.4 Results

Statistical patterns emerging from the eco-evolutionary dynamics described above

are analyzed as a function of the number of generations and as a function of the

number of species 𝑆, for different values of the two free parameters: the overall level

of competition 𝛽 and the variability of inherited traits 𝜇. Results are illustrated in

figure 5-3 showing (i) phenotypic diagrams (top row) specifying the position of each

single individual and its species in the trade-off space for different parameter values

and evolutionary times (ii); values of complementarity for all individuals (central

row) in the trade-off space, and (iii) the spatial distribution of individuals and species

(bottom row). Finally, several biodiversity indexes are reported in figure 5-4.
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Figure 5-3: Illustration of the emergence of rapid phenotypic diversification for a
computational system of size 64× 64 and 16 species (labeled with different colors). (Top).
Phenotypic diagrams measured at different evolution stages (1, 3, 10 and 100 generations,
respectively) for different values of the two parameters: level of competition 𝛽 (1 for the
case of low competition and 10 for strong competition) and variation in inherited traits 𝜇
(0.1 for large variation and 0.025 for small variation). In all cases, phenotypic differentiation
among species is evident even after only 10 generations. In the long term (100 generations)
species diversification and specialization is most evident for small 𝜇 and large 𝛽; in this
last case, different species (colors) can coexist for large times in the same region/corner
of trade-off space. (Central). Complementarity diagrams representing the values of
averaged local complementarity for all individuals of any species for small 𝜇 (0.025) and
large 𝛽 (10). Individuals with small complementarity (i.e. under strong competition with
neighbors) disappear in the evolutionary process, while communities with high degrees of
local complementarity are rapidly selected. (Bottom). Spatial distribution of species
for different number of generations. As a result of the eco-evolutionary dynamics, anti-
correlated patterns –in which neighboring plants tend to be different– emerge (note that
colors represent species assignment and do not reflect phenotypic values)

.
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Species differentiation

As illustrated in figure 5-3 (shaded area), different distributions of individuals in the

trade-off space appear depending on the specific values of 𝛽 and 𝜇. Visual inspection

reveals the emergence of rapid phenotypic differentiation, i.e. segregation of colors

in trade-off space after a few (e.g. 10) reproductive cycles. The segregation is much

more pronounced for relatively small variability (e.g. 𝜇 = 0.025) and large competitive

stress (e.g. 𝛽 = 10). This is quantified (see figure 5-4A) by the average interspecies

distance, whose specific shape depends on parameter values. As shown in figure 5-

4B, the fastest growth is obtained for 𝑆 = 2, but the curves converge to a constant

value (mostly independent of 𝑆) after a sufficiently large number of generations.

Moreover, as shown in the central row of figure 5-3 the complementarity –averaged

over all individuals in the community (see section 5.3)– also grows during the course

of evolution (i.e. colors shift from blue to yellowish). Observe in figure 5-3. that, for

asymptotically large evolutionary times, there is a tendency for all species to cluster

around the corners of the trade-off space, suggesting that the optimal solution to the

problem of minimizing the competition with neighbors corresponds to communities

with highly specialized species. This specialization does not occur in monocultures

(𝑆 = 1), as sexual mating pulls the species together and avoids significant phenotypic

segregation.
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Figure 5-4: Measurements of different biodiversity indexes. (A) Phenotypic dis-
tances among species grow systematically during the eco-evolutionary process, reflecting
a clear tendency towards species differentiation (same sets of parameter values as in figure
5-3, 𝑆 = 16). Differentiation is faster for relatively small values of trait variability 𝜇 and
large values of the competitive stress 𝛽. (B) Phenotypic differentiation among and
within species. While interspecies distances grow in time for all values of 𝑆 and converge
to similar values on the long term, intraspecific phenotypic variability is much larger on
the long term for monocultures than for biodiverse mixtures. (C) Phenotypic similarity
among close neighbors. Moran’s index (𝐼) for 𝛽 = 10 and different values of 𝑆 as well as
for 𝛽 = 0 and for a random distribution (i.e. in the absence of spatial interactions). Figure
clearly indicates the avoidance of close cohabitation (𝐼 < 0) in competitive systems (𝛽 > 0).
(D) Averaged local and relative complementarity in the community increase with
time and reach larger values for more biodiverse communities. In all plots, parameters are
𝐿 = 64 and, unless it is specified, 𝛽 = 10 and 𝜇 = 0.025; curves are averaged over at least
103 runs; shaded light grey areas stand for times during which extinction tends to occur
causing 𝑆 to decrease (see below for details), while in dark grey ones the system tend to
stabilize at a given final number of species.
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Emergence of local anti-correlations

The high level of phenotypic specialization observed after large evolutionary times

for large competition stress and small variability, might seem in contradiction with

the overall tendency to niche differentiation. In other words, most of the trade-off

space becomes empty in this case, while individuals aggregate at the (highly popu-

lated) corners. The answer to this apparent conundrum is that similarly specialized

individuals have a statistical tendency to avoid being spatial neighbors. Indeed, as

qualitatively illustrated in the lowest right panel of figure 5-3, extreme specialization

is accompanied by a tendency to diminish spatial clustering, i.e. to create spatial

anti-correlations within each species. This tendency –which stems from intraspecific

competition and opposes to the demographic tendency of similar individual to cluster

in space– is quantitatively reflected by negative values of Moran’s index 𝐼 (see figure

5-4C and section 5.3). Note also that 𝐼 and thus the spacial distribution of species,

is radically different in the presence and in the absence of competition (i.e. for 𝛽 ̸= 0

and 𝛽 = 0, respectively) as can be seen in figure 5-4C. In the absence of compe-

tition, species are distributed randomly forming aggregated spatial clusters without

competition-induced local anti-correlations.

Intraspecific diversity

This quantity is defined as the mean “complementarity” among all pairs of conspecific

individuals in the community, and illustrates the level of phenotypic diversity within

species. As shown in figure 5-4B, the intraspecific diversity is much larger for mono-

cultures. In monocultures, neighbors are obviously conspecific and the only available

mechanism to reduce overall competition is to increase intraspecific diversity. There-

fore, as a general result, monocultures tend to enhance their intraspecific phenotypic

distances, while biodiverse communities tend to enhance phenotypic differentiation
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among species but result in more similar conspecifics.

Local complementarity

Figure 5-4D shows the evolution of the mean complementarity of individuals respect to

its spatial neighbors. This averaged local complementarity (LC) controls the dynamics

and the actual reduction in the level of competition for a given spatial distribution,

and is much larger for mixtures than for monocultures (it grows monotonously with

𝑆 and saturates at a maximal value).

Global complementarity

Similarly, we can measure “global ” complementarity (GC), i.e. the average phenotypic

distance among all individuals in the experiment, regardless of their spatial coordi-

nates, after a given number of generations. Additionally, we measured GCintra (resp.

GCinter) which is GC averaged only over individuals of the same (resp. different)

species (see section 5.3). In figure 5-4D we present results for the relative comple-

mentarity RC = GCinter − GCintra, which is a measure of the averaged difference in

the level of competition between randomly sampled non-conspecific and conspecific

individuals, respectively. Observe that the RC is larger for mixtures than for mono-

cultures, RC(𝑆 > 1) > RC(𝑆 = 1), and that it grows faster in time for smaller values

of 𝑆 (e.g. 𝑆 = 2), but reaches almost equal constant values after a sufficiently large

number of generations.

Complementing the results presented in figure 5-4, figure 5-5 shows measurements

for LC and GCintra/inter for different initial number of species 𝑆 after 10 and 1000 gener-

ations. We observe that, even though complementarities become almost independent

of 𝑆 at 𝑡 = 1000 (due to the extinction of some species), transient measurements at

𝑡 = 10 clearly show that communities with fewer species exhibit higher values of GC
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Figure 5-5: Local and global complementarities after A) 10 and B) 1000 repro-
ductive cycles, plotted as a function of the initial number of species 𝑆 in the community.
Parameter values: system size 𝐿 = 64, competition 𝛽 = 10 and variability 𝜇 = 0.025.

and, consequently, reach the stationary state faster. Biodiversity delays the process

because several species simultaneously compete for empty niches. On the other hand,

LC is inversely correlated with 𝑆, i.e., individuals tend to be more phenotypically

similar in less biodiverse communities.

Emergent neutrality

As illustrated in figure 5-3, different species with very similar trait values can coexist

(e.g. yellow and orange species at the right corner of the phenotypic diagram for

𝜇 = 0.025 and 𝛽 = 10 in figure 5-3) even after many generations. Such a coexistence

emerges spontaneously and, although it is transitory, it can last for arbitrarily long

times provided that the system size is sufficiently large. From an ecological point

of view, these species can be regarded as functionally equivalent as they occupy the

same niche region.
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It is important to underline that not all realizations lead to equivalent species

coexisting in the community. However, this appears to be a significant pattern, and

so, we explored it further. In particular, we decided to check the stability of the

coexistence by studying the mean coexistence time of equivalent species.

As a first step we define a computational criterion to determine species equivalence:

two species 𝑠1 and 𝑠2 are considered equivalent if their inter-specific distance (i.e.

distance between their centroids) differs less than a fraction of their mean intraspecific

distance (mean trait amplitude), for instance 1/4, which produces a significant overlap

of the clusters of both species in phenotypic space.

We then measured the mean number of generations Δ𝑇 between the time at which

4 species remain in the system (with two of them being equivalent, based on the

previous definition) and the time at which one of such equivalent species invades the

other one (as a result of demographic fluctuations). In voter models (i.e. the neutral

case), the mean time to reach mono-dominance, Δ𝑇 , increases with the number of

individuals in the community, 𝑁 ; in particular, Δ𝑇 ∼ 𝑁 log𝑁 in a 2D lattice and

Δ𝑇 ∼ 𝑁 in a well-mixed situation [46].

Figure 5-6 shows Δ𝑇 for simulations of our model, as well as the theoretical

expectation for the neutral case, in 2𝐷. To check the robustness of coexistence to

the shape of the competition kernel [85, 2, 169, 107, 9, 132] (see section 5.5), we run

simulations using a linear-exponential (𝑒𝛽𝐶) and a quartic-exponential (𝑒𝛽𝐶
4
) kernel,

where 𝐶 is the mean trait complementarity among neighbors. In both cases, our

results are compatible with the neutral scenario.
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Figure 5-6: Mean number of “ coexistence” , for different system sizes of the community.
We show results using a linear-exponential (𝑒𝛽𝐶) and a quartic-exponential (𝑒𝛽𝐶

4
) kernel

comparing them with the theoretical expectation for a 2D voter model, Δ𝑇 ∝ 𝑁 log𝑁 [46].
Parameters: 𝐿 = 64, 𝑆 = 8, 𝛽 = 10, 𝜇 = 0.025. Deviations from the straight line probably
stem from lack of statistics (which is costly at such large sizes/times).

Surviving species

As we do not include mechanisms such as migration or speciation, the number of

species actually present in the community can be reduced after several generations.

The resulting change in diversity can be regarded as an important attribute, because

it illustrates the limit of maximum diversity that a finite system can harbor is the

absence of inmigration or speciation processes.

Figure 5-7 shows the number of surviving species in different scenarios, including

different levels of competition and variability parameters, and other model variants

(see section 5.5). As expected, extinctions occur more rapidly for higher levels of

competition (larger values of 𝛽). The effective level of competition is enhanced in

the mean-field case in which all individuals interact with each other (see section 5.5),

leading to faster extinction.
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Figure 5-7: Number of surviving species in time for different A) initial number
of species, B) competition and variability parameters and C) variants of the
model. Species disappear faster in environments with high competition (higher values of
𝛽, or the mean-field). In contrast, the neutral case (𝛽 = 0) corresponds to the case in
which more species survive after generations, although, due to demographic fluctuations,
they still disappear on the long term. For sufficiently large numbers of generations, the
system converges to a state with the same number of species than the niche dimensionality
(3 in our case); these species coexist for arbitrarily long periods (provided the lattice is
sufficiently large). Parameter values: 𝐿 = 64, and 𝛽 = 10, and 𝜇 = 0.025 in A) and C).

In the neutral case (𝛽 = 0), species disappear at a very slow rate as there is no

competition, but due to stochasticity, most of them are likely to disappear, leading

to mono-dominance for sufficiently large timescales [137]. Interestingly, the stable

solution in our model with competition (𝛽 ̸= 0) consists of multiple species –as many

as the niche dimensionality, in this case 3– coexisting for an arbitrarily large number

generations. This result is congruent with the “niche dimension hypothesis”, which

states that a greater diversity of niches leads to a greater diversity of species [118].

138



5.5 Model variants and results robustness

To investigate the generality of our findings, we also explored whether the main

conclusions are robust against some constraints of the implementation.

Initial phenotypic traits

In the previous section, initial conditions are given by randomly sampling the value of

each individual phenotypic trait from a single distribution (Gaussian around the cen-

ter of the phenotypic space), independently of species labels. After some generations,

we observe that competition causes species to segregate in phenotypic space.

Although the most widely accepted definitions of species are based exclusively on

the role of mating barriers, individuals belonging to the same species tend to share

common trait values. Here, we approximate this kind of scenario and test the robust-

ness of our results running simulations with partial clustering of species in phenotypic

space. For this, we sampled individual traits from equal amplitude Gaussian distri-

butions centered around different (randomly chosen) species-dependent points of the

phenotypic space (see initial top panel in figure 5-8A).

As illustrated in figure 5-8B, species diversify sooner in phenotypic space (initial

values for inter- and intra-specific distances are higher than in the case described in

section 5.4), but after this transient, difference asymptotic results remain essentially

unchanged.
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Figure 5-8: Simulations under initial phenotypic segregation of species. Individual
traits are initially sampled from different species-dependent Gaussian distributions. Each of
these Gaussians have a standard deviation equal to 0.05 and a mean value randomly selected
from another Gaussian (with the same amplitude 0.05) centered at the triangle barycenter.
A) From top to bottom: Tradeoff values, trait complementarities, and spatial distributions at
different generations. B) Evolution of the inter and intra-specific distances, local and relative
complementarity and Moran’s Index. Parameters: 𝐿 = 64, 𝑆 = 16, 𝛽 = 10, 𝜇 = 0.025.

Effect of the competition kernel

In the implementation of our model, the reproduction probability of an individual 𝑖 is

proportional to 𝑒𝛽𝐶𝑖 , where 𝐶𝑖 is the average trait complementarity among neighbors,

𝐶𝑖 =
1
𝐾

∑︀
𝑗

1
𝑛

∑︀𝑘 |𝑇 𝑘(𝑖) − 𝑇 𝑘(𝑗)|. However, the use of a non-differentiable argument

(absolute value) appearing linearly in the exponential kernel may lead to spurious

robust coexistence of arbitrarily similar species (at zero phenotypic distance) [85, 2,

107, 9, 132]. Kernels of the form 𝑒𝛽𝐶
2+𝛼
𝑖 with 𝛼 > 0 have been shown to avoid such

artifacts [169]. For these reasons, we also considered an alternative competition kernel

of the form 𝑒𝛽𝐶
4
𝑖 to check for the validity and robustness of our conclusions.

Results are shown in Fig 5-9. We observe that, as the quartic kernel reduces the

overall competition of phenotypically similar individuals, it leads to a slower species-

diversification process (as compared with the linear one for the same value of the
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parameters). However, results are qualitatively similar to the linear kernel case. In

particular, similar (equivalent) species continue to emerge and coexiste for very long

times, as in the linear case (figure 5-6).

Figure 5-9: Quartic competition kernel. A) From top to bottom: Tradeoff values, trait
complementarities, and spatial distributions at different generations. Simulations were run
setting the performance of individuals proportional to 𝑒𝛽𝐶

4
(rather than 𝑒𝛽𝐶), where 𝐶 is

the average trait complementarity among neighbors. B) Inter and intra-specific distances,
local and relative complementarity and Moran’s Index evolution. Parameters: 𝐿 = 64, 𝑆 =
16, 𝛽 = 10, 𝜇 = 0.025.

Long-distance dispersal and competition

We have also studied well mixed (or “fully connected” ) communities, in which i)

there is frequent long-distance dispersal (so that both progenitors of the new offspring

can be located at any site in space) and, additionally, ii) each individual competes

with the rest of the community, i.e. all individuals behave as nearest neighbors.

As illustrated in figure 5-10, all the previously reported phenomenology is still

present in this ideal mean-field scenario. As a matter of fact, phenotypic differen-

tiation seems to occur faster than when spatial distribution is conditioned by local

dispersal (see figure 5-4). In other words, long-distance dispersal and global compe-

tition drive evolution faster than local dynamics. This is a consequence of enhanced
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competition, which increases the relative fitness of better performing individuals.

Another important difference is that, under mean field conditions, equivalent taxa

cannot occupy different spatial locations and are forced to compete with each other.

Consequently, coexistence of species with similar traits is much less likely than in

spatially-explicit communities.

Figure 5-10: Evolution of the community with long-distance dispersal and global
competition (i.e. well-mixed or mean-field dynamics). A) Tradeoff space and com-
plementarity measured at different generations. B) Inter and intra-specific distances, and
local complementarity and relative complementarity (RC= GCinter-GCintra) in time. Pa-
rameters: 𝐿 = 64, 𝑆 = 16, 𝛽 = 10, 𝜇 = 0.025.

Comparison with neutral theory (𝛽 = 0)

In the limit of no competition, 𝛽 = 0, our model equates to neutral-theory [116] in

which reproduction probabilities become independent of individual phenotypes. figure

5-11 reports computational results for this case, illustrating the emergence of a very

different scenario with respect to the non-neutral case. Sexual reproduction still pulls

species together so they aggregate in the trade-off space, but their centroids describe

slow and independent random walks instead of being controlled by a relatively fast

separating drift (see figure 5-12). This phenomenology is caused by the lack of an

effective force pushing species away; indeed segregated species can become closer after
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some generations, but on average there is only random drift allowing them to slowly

diversify, so they cannot account for the empirical observations in [235]. Similarly,

relative complementarities (which in the absence of competition can be regarded as

the averaged difference in the level of phenotypic similarity between randomly sampled

non-conspecific and conspecific individuals) start to grow later and reach low values,

Figure 5-11: Neutral dynamics (𝛽 = 0), implying that all individuals have the same
probability of reproduction independently of their species assignment and phenotype. A)
Plots in the trade-off space illustrate that species hardly segregate in short time scales.
In the physical space, local dispersal leads the the system to be clustered, i.e. positively
auto-correlated rather than anti-correlated. B) Different measures illustrate that rapid evo-
lutionary changes are much harder to observe in the neutral scenario. In particular, local
complementarity (LC) and relative complementarity increase at a much slower pace. The
increase in the Moran’s index confirms that the system remains positively correlated (as
usually is the case in neutral models) Parameters have been set to 𝐿 = 64, 𝑆 = 16 and
𝜇 = 0.025.
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Figure 5-12: Species diffuse in the trade-off space under neutral dynamics (𝛽 = 0):
The plot shows average distance between species centroids and the central point of the
phenotypic space (i.e. the position of all species centroids at 𝑡 = 0) as a function of time.
Mutations cause a random movement of species centroids in the phenotypic space, as shown
by the 0.5 slope in double logarithmic scale, characteristic of diffusive processes. Parameter
values are set as in figure 5-11.

Asymmetrical resource trade-offs

In this section we consider a model variant in which positions in the trade-off space

are not equally rewarding a priori. In particular, we chose one of the corners to be

favored respect to the others: individuals whose phenotypes are closer to that vertex

have a higher probability of reproduction. This could be interpreted as one particular

limiting resource being more crucial, or mean that the availability of some resource

scales nonlinearly with corresponding trait (e.g., a plant with a short root might not

be able to reach a deep water layer. Individuals with longer root systems will have a

disproportionate advantage).
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In particular, we now modulate the performance of each individual 𝑖 by multiplying

it by a factor 𝑅𝑖 = 𝑟1𝑇
1 + 𝑟2𝑇

2 + 𝑟3𝑇
3; where 𝑟1, 𝑟2 and 𝑟3 are weights (real numbers

in the interval [0, 1]) such that 𝑟1 + 𝑟2 + 𝑟3 = 1. For simplicity we fix 𝑟1 = (1+ 2𝜖)/3,

𝑟2 = 𝑟3 = (1− 𝜖)/3 in order to control the asymmetry with a single parameter (𝜖; the

symmetric case is 𝜖 = 0), while 𝜖 values close to 1 lead to large asymmetries. In what

follows we fix 𝜖 = 0.99.

As illustrated in figure 5-13, although most of individuals initially occupy the

most favored (left) corner, after a few generations, some individuals also settle at

other available (and less favorable) regions; this is a consequence of the system’s

tendency to reduce the level of competition. In conclusion, the main phenomenology

reported in section 5.4 appears robust to asymmetrical trade-offs.

Figure 5-13: Asymmetry among trade-offs: A) Trade-off space and complementarity
as a function of the number of generations. B) Different measurements characterizing the
community in time. Local and relative complementarities confirm that rapid evolutionary
changes may within a few generations. Parameters: 𝐿 = 64, 𝑆 = 16, 𝛽 = 10, 𝜇 = 0.025.
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Asexual reproduction

Our main model adopts the (sexual) reproduction mechanism of the communities

considered in the experiments by Zuppinger-Dingley et al. [235]. Here we analyze

a case of asexual reproduction in which the traits are directly transmitted from an

individual to its offspring (with some variability), i.e. taking 𝜂 = 1 in our model.

Fig 5-14A shows the evolution of individual phenotypes (each trait value 𝑇1, 𝑇2, 𝑇3

is represented by the amount of red, yellow and blue respectively), complementarity

and spatial distribution. Observe that, once again, the chief phenomenology of the

model, i.e. segregation toward high levels of specialization, is observed. However,

in this case, the mechanism of diversification is quite different: individuals from any

given species can specialize independently. Thus, in the absence of sexual reproduc-

tion, diversification occurs at an individual rather than at a species level. This type

of individual differentiation fosters the presence of equivalent species (as the species

label becomes completely irrelevant in this setting).

Figure 5-14: Asexual reproduction: A) Tradeoff space and complementarity as a function
of the number of generations. Each individual traits values 𝑇1, 𝑇2, 𝑇3 are represented by the
amount of red, yellow and blue respectively. Parameter values: 𝐿 = 64, 𝑆 = 16, 𝛽 = 10,
𝜇 = 0.025. Competition avoidance leads individuals to segregate in the trade-off space. B)
Local complementarity increases similarly to the main model.
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5.6 Conclusions. Rapid phenotypic diversification and

other interesting phenomena

In the present chapter, we have developed a parsimonious modeling approach to in-

tegrate important ecological and evolutionary processes. In particular, we focused on

understanding rapid phenotypic diversification observed in complex biological com-

munities of plants such as those recently reported by Zuppinger-Dingley et al. in

long-term field experiments [235, 210].

Our model blends standard community processes, such as reproduction, com-

petition or death, with evolutionary change (e.g., descent with modification); i.e.

community and evolutionary dynamics are coupled together, feeding back into each

other. Over the last decades, attempts to integrate ecological and evolutionary dy-

namics have been the goal of many studies (see e.g. [59, 60, 133, 206, 58, 62, 63, 188,

138, 37, 200, 78, 56, 40, 55, 102, 61, 50, 177]). In particular, a basic algorithm for

modeling eco-evolutionary dynamics as a stochastic process of birth with mutation,

interaction, and death was proposed in [59] and much work has been developed after-

wards to incorporate elements such as spatial effects and different types of interspecies

interactions [63].

Rather than providing a radically different framework, our model constitutes a

blend of other modeling approaches in the literature of eco-evolutionary processes,

and in fact it shares many ingredients with other precedent works, specially with the

theory of adaptive dynamics [61, 79]. For instance, Gravel et al. [90] also considered a

spatially-explicit individual-based model with trait-dependent competition. However,

our work has been specifically devised to shed light on the experimental findings of

Zuppinger et al. [235], and puts the emphasis on communities with arbitrarily large

number of species, while usually the focus is on the (co-)evolution of pairs of species

(e.g. predator-prey, host-parasite, etc.) or speciation/radiation of individual species.
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Finally, our modeling approach is sufficiently general as to be flexible to be adapted

to other situations with slightly different ingredients. We explored some of these

possible extensions in section 5.5 (e.g long-distance dispersal, asexual reproduction,

etc.), but other studies can be built upon the work laid here in a relatively simple

way.

The present model relies on a number of specific assumptions, two of which are

essential in that they couple community and evolutionary dynamics: i.e. (i) demo-

graphic processes are controlled by competition for resources which is mediated by

phenotypic traits and (ii) successful individuals are more likely to transmit their phe-

notypes to the next generation with some degree of variation. These two ingredients

are critical for the emerging phenomenology. For instance, in the absence of competi-

tion (i.e. 𝛽 = 0) reproduction probabilities are identical for all individuals, implying

that the model becomes neutral, and the evolutionary force leading to species differ-

entiation vanishes (see section 5.5). On the other hand, variation in inherited traits

is necessary to allow for the emergence of slightly different new phenotypes and the

emergence of drifts in trade-off-space. Although these constraints might be regarded

as limiting, we deem them biologically realistic and do not think they hamper the pre-

dictive power of our model. Most of the remaining ingredients, such as the existence

of a saturated landscape, semelparity (i.e. non-overlapping generations), the specific

form in which we implemented initial conditions, competition, dispersion, selection,

inheritance linked to phenotypic characters rather than to a genotypic codification,

etc. can be modified without substantially affecting the results. This flexibility could

make the description of other type of communities possible with minimal model vari-

ations. Similarly, the model could be extended to incorporate phenotype-dependent

reproductive barriers (and thus speciation) and the possibility of interspecies hy-

bridization by making reproduction a function of phenotypic distance and relaxing

its dependency on species labels.
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In addition to rapid phenotypic diversification, the experiments of Zuppinger et

al. found an enhancement of the overall productivity in mixtures of diverse plants

with respect to monocultures of the same plants [235]. Our model cannot be used to

directly quantify such “biodiversity effects” [139], as we assume a fully saturated land-

scape and there is no variable that accounts for total biomass production. However,

in principle, under the hypothesis that larger trait complementarities correlate with

greater resource capture and biomass production, the observed increase of relative

complementarity in mixtures (see figure 5-4) could be used as a proxy for biodiver-

sity effects. Observe, nonetheless, that the previous assumption might by wrong (or

incomplete) as productivity can be profoundly affected by other factors such as, for

instance, positive interactions between similar species, not modeled here, and more

sophisticated approaches –see [113, 66, 33, 172, 87]– are necessary to validate this

hypothesis. In the future we plan to modify our model to represent non-saturated

landscapes and more detailed ecological dynamics, allowing for explicit analyses of

biodiversity-productivity relationships.

Beyond explaining most of the empirical observations in [235], our model leads to

some far-reaching predictions (some of them already shared by existing theories); one

of the most remarkable ones is that optimal exploitation of resources comes about

when the full community evolves into a reduced number of highly specialized species

–the exact number depending on the dimensions of the trade-off space– that coexist

in highly dispersed and intermixed populations. Such specialization might be un-

realistic in the case in which all traits in trade-off space are essential for survival,

and thus the convergence toward perfect specialization is capped. In any case, this

result is congruent with the niche dimension hypothesis [118], that postulates that a

greater diversity of niches entails a greater diversity of species, i.e. a larger number

of limiting factors (and thus of possible trade-offs) leads to richer communities [104].

However, this outcome might be affected by perturbations (migration, environmental
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variability, etc) which could be easily implemented in our model, and could prevent

real communities from reaching the asymptotic steady state predicted here. It is also

noteworthy that the resulting highly specialized species can be phenotypically equiv-

alent, and a set of them can occupy almost identical locations in the trade-off space.

Such species equivalence appears spontaneously, and supports the views expressed by

other authors that “emergent neutrality” is a property of many ecosystems [5, 187, 10].

In future work we will explore the possibility of phase transitions separating an eco-

logical regime based on the coexistence of multiple highly specialized species from

an ecosystem dominated by generalists and the conditions under which each regime

emerges.

Beyond phenotype-dependent mating, upcoming studies will extend our approach

to address communities where collective diversification phenomena based on both

competition and cooperation are known to emerge (see e.g. [45]), as well as investigate

the evolution of communities with distinct types of interacting species such as plant-

pollinator mutualistic networks. This research will hopefully complement the existing

literature and help highlighting the universal and entangled nature of eco-evolutionary

processes.
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Chapter 6

Conclusions

For a long time, the collective emergent macroscopic behavior of many-body systems

present in physics and chemistry has been the subject of study of statistical physical

mechanics. In recent years, “complexity science” has emerged has as promising area

for the understanding of other types of many-body systems such as those existing

on biology, ecology, or socio-economic fields. In this case, the standard techniques of

statistical mechanics are applied helping, among other many aspects, to identify the

essential mechanisms underlying emergent phenomena of complex systems. Careful

inspection is needed to infer what needs to be included into a model and how, and

what can be neglected and left out. In this light, we study the role of some inherent

aspects of complex systems, that are sometimes neglected in complex systems, and

emphasize the importance of considering them in many cases.

Phase transitions are a remarkable feature of the above-mentioned systems. Good

models that explain the mechanisms responsible of such transitions and predict its

appearance are extremely important, not only in physics, but also in biology, ecology,

etc. Regarding the latter, a correct understanding can help to avoid essential prob-

lems such as climate change, species extinctions, desertification, disease spreading, or

market crashes, among others.

151



Aimed to shed light on these mechanisms, we have firstly studied a generic eco-

logical system subjected to discontinuous/catastrophic transitions at mean-field ap-

proximation. Computational and analytical results of the simplest Langevin equation

describing these systems, lead us to the conclusion that stochasticity is essential in

the understanding of these systems. In particular, the presence of high demographic

noise, combined with low diffusion, dramatically alters the system by forcing it to

present a smoother continuous transition with a directed percolation critical point.

Contrarily, in a more “mean-field” case (i.e. low-stochastic and high-diffusive systems),

discontinuous transitions are recovered. A remarkable fact is that, when considering

(quenched) spatial disorder, an unavoidable feature of real systems, a rounding phe-

nomena occurs in any of the previous cases, providing the system is low-dimensional.

We hope that this work helps to prevent catastrophic shifts from occurring or, at

least, by identifying the mentioned mechanisms in particular systems, to know the

type of transition that would be expected.

Looking for a more complete description of the effect of spatial heterogeneities,

we have performed a technical and detailed analysis in a separated work. Consider-

ing the prototypical quadratic contact process, which exhibits a discontinuous phase

transition from an active fluctuating phase to an inactive absorbing regime, we have

performed extensive computational analysis of the “pure” and (spatially) disordered

cases. While the former presents bistability, hysteresis and abrupt changes of its

variables; the heterogeneous version exhibits continuous transitions features. In par-

ticular, we observe an activated-scaling critical point compatible with the quenched

directed percolation universality class, and a regime of generic power-laws (also called

Griffiths phase) in the vicinity of the transition point. This lead us to believe that,

equilibrium (Imry-Ma-Aizenman-Wehr-Berker) arguments can be extended to non-

equilibrium systems providing that a fluctuating phase exists. In that case, at least

one phase is subjected to destabilizing effects of fluctuations, and as a consequence,
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phase coexistence is excluded.

In this light, we ask ourselves whether, not only quenched, but also structural

spatial disorder would lead to the same intriguing effect. We focus on the particular

problem of neural dynamics which, in apparent contradiction to the critical features

observed, is likely to be described by integrative models with discontinuous transition

in mean-field approach. To that end, we consider the previous prototypical model

on a hierarchical modular network that mimics the cortex structure. In particular,

we consider a specific construction method that enables us to tune the topological

dimension of the considered network. Similarly to the quenched version, we have

shown that a rounding phenomenon, leading to criticality, appears for low-dimensional

systems. In this way we explain how the activity integration that takes place in neural

dynamics is compatible with critical features exhibited in the cortex.

Aiming at unraveling the role of realistic mechanisms of complex systems, adap-

tation cannot be ignored. In nature, individuals unavoidably changes in response

to the environment in which they are embedded. However, evolution is usually ex-

tremely slow compared to community dynamics. In recent years, some examples of

rapid evolutionary changes have been reported, and so, new (co-)evolutionary frame-

work is needed. Elaborating on existing approaches, we construct an eco-evolutionary

model aimed at explaining a particular system of coexisting plant-communities. By

considering competition, sexual reproduction and mutation we obtain, not only the

experimentally observed rapid phenotypic diversification, but also some other non-

trivial results. For instance, we obtain an optimal exploitation of available resources

by high specialized species efficiently distributed in space in a anti-correlated way.

This result is in accordance with the niche dimension hypothesis, but may likely

change when migration or environmental variability takes place. On the other hand,

the appearance of emergent neutrality is remarkable, and so, studied in detail. We

show that these findings are robust to a wide range of model variants as long as

153



competition and mutation is maintained (of course). This work contributes to the

existing and extensive theory of co-evolution and paves the way for further work in

this area. For instance, future studies about the conditions at which phase transition

from generalists to specialist take place is a main objective on this point.

In summary, by using statistical-mechanics techniques and the theory of stochastic

process –specifically, phase transitions theory, renormalization group approach and

extensive computational analyses–, we have been able to simplify some complex sys-

tems to simple mathematical or computational models presenting the same (main)

macroscopic behavior. Specifically, we have modeled integrative neural dynamics in

cortex, ecological systems presenting catastrophic shifts and rich-species communi-

ties displaying a rapid phenotypic diversification. Besides, we have detailedly char-

acterized absorbing non-equilibrium phase transitions existing in both, physical, and

biological systems (specifically, the above-mentioned ones) in the presence of inher-

ent aspects of real systems such as stochasticity, diffusion and spatial or structural

heterogeneity. We have discussed the proper way of considering these realistic as-

pects in a real system and the similar results that would be encountered if they are

considered in a different manner. Regarding neural systems, we have succeeded to

capture essential properties of cortex networks in a simplified complex network with

tunable topological dimension. Finally, apart from constructing a simple model of a

eco-evolutionary system, we have been able to quantitatively characterize many as-

pects of the emergent diversification and check its robustness when model variations

are considered.

With this, we have tried to unravel and emphasize the relevance of essential in-

herent aspects of real systems and its role in the way the latter behaves. Mechanisms

such as stochasticity, diffusion, heterogeneities, and individuals adaptation should not

be neglected carelessly, specially in the studies of phase transitions.
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Conclusiones

Durante mucho tiempo, el comportamiento macroscópico emergente en sistemas de

varios cuerpos, presentes en los campos de la física y química, ha sido objeto de

estudio de la mecánica estadística. En los último años, “la ciencia de la complejidad”

ha surgido como un área prometedora para la comprensión de otro tipo de sistemas

de varios cuerpos como los que existen en biología, ecología o socio-economía. En este

caso, las técnicas estándar de la mecánica estadística son aplicadas ayudando, entre

otras cosas, a identificar mecanismos esenciales subyacentes a fenómenos emergentes

de sistemas complejos. Un intenso trabajo es necesario para inferir lo que es necesario

incluir en un modelo (y cómo) y qué puede ser despreciado. A la vista de esto, nosotros

estudiamos el papel de algunos aspectos inherentes a sistemas naturales, que son a

menudo ignorados, y enfatizamos la importancia de tenerlos en cuenta en el estudio

de varios sistemas.

Las transiciones de fase son una característica a destacar en los sistemas men-

cionados anteriormente. Buenos modelos que expliquen los mecanismos responsables

de dichas transiciones y que predigan su aparición, son de gran importancia, no solo

en física, sino también en biología, ecología, etc. Teniendo en cuenta eso, una correcta

comprensión puede ayudar a evitar problemas esenciales como el cambio climático,

la extinción de especies, la desertificación, la propagación de enfermedades o caídas

abruptas en la bolsa, entre otros.
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Aspirando a aclarar estos mecanismos, hemos estudiado diversos problemas. En

primer lugar, nos hemos centrado en un un sistema ecológico genérico sometido a

una transición de fase discontinua o catastrófica en aproximación de campo medio.

Resultados computacionales y analíticos a partir de la ecuación de Langevin más sim-

ple que describe a estos sistemas, nos llevan a la conclusión de que la estocasticidad

es esencial para entenderlos. En particular, la presencia de ruido demográfico alto,

combinado con baja difusión, altera dramáticamente el sistema forzándolo a presentar

transiciones continuas con un punto crítico en la clase de universalidad de percolación

dirigida. Contrariamente, en un caso más próximo a campo medio (es decir, sistemas

poco fluctuantes y muy difusivos) las transiciones de fase discontinuas se recuperan.

Un hecho a remarcar es que, cuando consideramos ruido espacial (congelado), in-

evitable en sistemas reales, un fenómeno de “redondeo” de la transición ocurre en

cualquiera de los casos anteriores, siempre que el sistema sea de dimensión baja. Con

este trabajo, esperamos ayudar en la prevención de los cambios catastróficos o, al

menos, a identificar el tipo de transición más propicia en un sistema dado su nivel de

ruido, difusión, o heterogeneidad.

Con la objetivo de hacer una descripción más completa del efecto de la heterogenei-

dad espacial, hemos llevado a cabo un análisis más técnico y detallado en un segundo

trabajo. Considerando el proceso de “contacto cuadrático” que exhibe transiciones de

fase discontinuas, entre una fase activa fluctuante y una inactiva absorbente, hemos

llevado a cabo un análisis computacional extenso de los casos “puro” y desordenado.

Mientras que el primer caso presenta biestabilidad, histéresis y cambios abruptos de

sus variables; la versión heterogénea exhibe características de una transición de fase

continua. En particular, observamos un punto crítico con “escalado-activo” compat-

ible con la clase de universalidad de percolación dirigida congelada, y un régimen

de leyes de potencia genéricas (también llamado fase de Griffit) en las vecindades

del punto de transición. Esto nos lleva a pensar que los argumentos de equilibrio

156



de Imry, Ma, Aizenman, Wehr, y Berker, pueden ser extendidos a sistemas de no-

equilibrio siempre que exista una fase fluctuante. En este caso, al menos una de

las fases está sometida a los efectos desestabilizadores de las fluctuaciones, y como

consecuencia, la coexistencia de fases es imposible.

A la luz de esto, nos preguntamos si, no solo desorden espacial congelado, sino

estructural, conllevaría los mismos efectos. En referencia a esto, nos centramos en

el problema particular de la dinámica neuronal que, en aparente contradicción con

las propiedades críticas observadas, probablemente esté descrita por modelos “inte-

grantes” con transiciones de fase discontinuas en la aproximación de campo medio.

Con esto propósito, consideramos el modelo del capítulo anterior sobre una red mod-

ular jerárquica que captura la estructura del córtex. En particular, consideramos un

método de construcción que nos permite ajustar la dimensión topológica de la red

considerada. De forma similar al caso congelado, mostramos un fenómeno de “re-

dondeo” hacia la criticidad para sistemas de baja dimensión, específicamente 𝑑 < 2.

De este modo explicamos cómo la dinámica integrante, que tiene lugar en la dinámica

neuronal, es compatible con las propiedades críticas exhibidas en el córtex.

Si aspiramos a esclarecer el papel de mecanismos realistas en sistemas complejos,

el fenómeno de adaptación no puede ser ignorado. En la naturaleza, los individuos

cambian inevitablemente como respuesta al ambiente en el que están integrados. Sin

embargo, la evolución es normalmente extremadamente lenta en comparación a la

dinámica de comunidades. En los últimos años, algunos ejemplos de cambios evo-

lutivos rápidos han sido observados, llevándonos a pensar que es necesario crear un

nuevo marco teórico de co-evolución. Basados en las muchas teorías previas en este

contexto, construimos un modelo eco-evolutivo aspirando a explicar un sistema par-

ticular de comunidades de plantas. Considerando mecanismos como competición,

reproducción sexual y mutación, obtenemos, no solo la diversificación fenotípica ob-

servada, sino otros resultados no triviales. Por ejemplo, obtenemos que el sistema
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consigue una explotación óptima de los recursos mediante la especialización de las

especies y su distribución espacial anti-correlacionada. Aunque este resultado cumple

la hipótesis de nichos, podría cambiar al considerar migraciones o variabilidad ambi-

ental. Por otra parte, la aparición de neutralidad emergente es destacada y estudiada

en detalle. Estos resultados son robustos a una gran variedad de variantes siempre

que la competición y las mutaciones se mantengan. Con este trabajo intentamos

contribuir a la extensa teoría existente acerca de co-evolución y nos abre un campo

de trabajo futuro. De hecho, prevemos estudiar las condiciones para las cuales una

transición de fase entre generalistas y especialistas tenga lugar.

En resumen, mediante el empleo de técnicas de la mecánica estadística y teoría de

los procesos estocásticos (específicamente, teoría de transiciones de fase, aproxima-

ciones del grupo de renormalización y análisis computacionales) hemos sido capaces de

simplificar algunos sistemas complejos por modelos matemáticos o computacionales

sencillos que presenten las mismas propiedades principales macroscópicas. Específi-

camente, hemos modelado la dinámica integrativa en el córtex, sistemas ecológicos

sometidos a cambios catastróficos y comunidades de múltiples especies con diversi-

ficación fenotípica rápida. Además, hemos caracterizado de forma detallada transi-

ciones de fase absorbentes de no-equilibrio existentes tanto en sistemas físicos como

biológicos (específicamente los mencionados arriba) en presencia de aspectos inher-

entes de los sistemas reales como la estocasticidad, la difusión y la heterogeneidad

espacial o temporal. Hemos discutido también la manera adecuada de considerar

estos aspectos realistas y argumentado que resultados similares se obtendrían si es-

tos aspectos se consideraran de manera distinta. En el caso de sistemas neuronales,

hemos conseguido capturar las propiedades esenciales de las redes del córtex con una

red simple con dimensión topológica ajustable. Finalmente, a parte de construir un

modelo eco-evolutivo simple, hemos sido capaces de caracterizar cuantitativamente

muchos aspectos de la diversificación emergente y probar su robustez.
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Con todo esto, hemos intentado esclarecer y enfatizar la importancia de aspectos

esenciales e inherentes a los sistemas reales y su papel en la manera en que estos

sistemas se comportan. Mecanismos como la estocasticidad, difusión, heterogeneidad

y adaptación no deben ser despreciados a la ligera, especialmente en el estudio de las

transiciones de fase de dichos sistemas.
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Appendix A

Langevin integration. Dornic et. al

integration method

Integrating stochastic (partial) differential equations with multiplicative noise –i.e., a

noise depending on the system’s state– is a non-trivial task. The key problem is that

standard integration techniques do lead to negative values of the activity variables 𝜌

and, thus, to numerical instabilities. Nevertheless, an efficient and accurate numerical

integration can be obtained through a split-step scheme introduced a few years back

[64]. The scheme consists in separating –at each spatial site– the integration of some

of the deterministic terms from that of the stochastic part (plus eventually linear

and constant deterministic terms), e.g. 𝜕𝑡𝜌 = 𝑎𝜌 + 𝜂 –where the Gaussian (white)

noise 𝜂(x, 𝑡) has zero mean and variance proportional to 𝜎2𝜌(x, 𝑡). The scheme allows

us to exactly sample –at each spatial location– the time-dependent solution of the

associated Fokker-Planck equation[82]:

𝑃 (𝜌(𝑡+Δ𝑡)) = 𝜆𝑒−𝜆(𝜌(𝑡)𝑒𝑎𝑡+𝜌) +

[︂
𝜌

𝜌(𝑡)𝑒𝑎𝑡

]︂𝜇/2
𝐼𝜇

(︁
2𝜆

√︀
𝜌(𝑡)𝜌𝑒𝑎𝑡

)︁
(A.1)
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where, 𝐼𝜇 is a Bessel function of order 𝜇, 𝜆 = 2𝑎/𝜎2(𝑒𝑎𝑡 − 1) and 𝜇 = −1. The most

important step is to realize that this equation can be rewritten, with the help of a

Taylor-series expansion, as:

𝑃 (𝜌(𝑡+Δ𝑡)) =
∞∑︁
𝑛=0

(𝜆𝜌(𝑡)𝑒𝑎Δ𝑡)𝑛𝑒−𝜆𝜌(𝑡)𝑒𝑎Δ𝑡

𝑛!

𝜆𝑒−𝜆𝜌(𝜆𝜌(𝑡))𝑛+𝜇

Γ(𝑛+ 𝜇+ 1)
(A.2)

and noticing that 𝜌(𝑡 + Δ𝑡) can be obtained by a mixture of gamma and poisson

probability distributions that will reconstitute, on average, all terms of the latter

equation. Thus, the method alternates two steps: (i) the integration of deterministic

terms employing some standard algorithm (such as an Euler or Runge-Kutta) and

then (ii) using its output, Eq.(A.2) is employed to obtain the final updated value of

𝜌(𝑡 + Δ𝑡) at each spatial location. More details and applications of this numerical

scheme can be found in [64].
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