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This paper presents a study of networking of theories between the theory 
of registers of semiotic representation (TRSR) and the onto-semiotic 
approach of mathematical cognition and instruction (OSA). The results 
obtained show complementarities between these two theoretical 
perspectives, which might allow more detailed analysis of the students’ 
performance. 
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Análisis de la actividad cognitiva subyacente en la resolución de una 
tarea sobre la derivabilidad de la función valor absoluto: dos perspectivas 
teóricas 
En este artículo se presenta un estudio de networking of theories, entre 
la teoría de los registros de representación semióticos (TRRS) y el 
enfoque onto-semiótico de la cognición e instrucción matemáticos 
(OSA). Los resultados obtenidos revelan complementariedades entre 
estas dos perspectivas teóricas cuya aplicación simultánea permitiría 
hacer análisis más pormenorizados de las producciones de los 
estudiantes. 
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BACKGROUND 

One of the main concerns of the research community on the mathematics 
education is determining which are the difficulties that learners face on their way 
to understanding, and therefore, learning, mathematical notions. This interest is 
reflected in the fact that, over decades, one of the main focuses of research within 
our scientific discipline has been the characteristics of the learner’s cognitive 
activity. Furthermore, one of the most popular theories in the field is the theory 
of registers of semiotic representation (TRSR) (Duval, 1995), which focuses on 
the study of the cognitive activity of students when solving mathematical 
problems, providing notions that make it possible to analyze and comprehend 
how subjects use and link the different types of material representations and the 
role that these representations have in the comprehension of mathematical 
concepts.  

On the other hand, an emerging theoretical model in the mathematics 
education, which has been gaining more and more importance worldwide, is the 
onto-semiotic approach (OSA) to mathematical cognition and instruction 
(Godino, Batanero, & Font, 2007), which is a model that tries to articulate 
several perspectives of the discipline and dimensions involved in the processes of 
teaching and learning mathematics. Out of the many dimensions, our main 
interest in this document is what is known as the cognitive facet, which 
emphasizes the different types of mathematical objects involved in mathematical 
practices developed in order to solve a certain mathematical task, and also in the 
connections that subjects establishamong such objects and the meanings that they 
give them in terms of the context in which these are used. 

In this research, we aim at carrying out a comparative study between these 
two theoretical approaches, the theory of registers of semiotic representation and 
the onto-semiotic approach, which allows carrying out cognitive analysis from 
the subjects’ performance. In order to conduct this study, and following the 
proposed methodology for the works within the framework of the networking of 
theories, we analysed the performance of a future high school teacher in a task 
related to the differentiability of the absolute-value function. 

In the following section, theoretical and methodological notions of the study 
will be introduced, beginning with the features of the networking of theories that 
were used, and then, the description of the theoretical and methodological tools 
proposed by the TRSR and OSA for cognitive analysis. In the third section, the 
task and the response protocol that will be the basis for the comparative study of 
the theoretical perspectives is presented. In the fourth section, a detailed 
development of the cognitive analysis from the TRSR and OSA perspectives is 
done. In the fifth section, both perspectives of analysis are compared and the 
approximations and complementarities between the two theoretical 
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methodologies used are performed. Finally, the conclusions of the study are 
presented. 

THEORETICAL AND METHODOLOGICAL NOTIONS 
In what follows we summarize some aspects of the two theories involved in this 
study. But first, we describe the features of the methodology of networking of 
theories. 

Networking of Theories 
Currently, there are several theoretical positions that allow conducting cognitive 
analyses—of students, prospective teachers or teachers—depending on what is 
desired to observe and which is the concerned mathematical notion (Asiala et al., 
1996; Duval, 2006; Godino et al., 2007). However, the complex nature of the 
subjects’ learning phenomena has directed research groups to make efforts to 
revise and find possible complementarities between theoretical and 
methodological approaches that allow providing more detailed and precise 
explanations of such learning processes—e.g., Font, Trigueros, Badillo, and 
Rubio (2016), carry out a comparative study between the APOS theory and the 
OSA. 

The idea of investigating the networking of theories is not new, as evidenced 
in the works presented in the working group since the Fifth Congress of 
European Research in Mathematics Education (CERME 5) to the past CERME 9, 
on different approaches and theoretical perspectives in mathematics education 
research. Artigue, Bartolini-Bussi, Dreyfus, Gray, and Prediger (2005) points out 
that, as a research community, we need to be aware that discussion among 
researchers from different research communities is insufficient to achieve 
networking. Collaboration among teams using different theories with different 
underlying assumptions is called for in order to identify the issues and the 
questions. In general, research studiesthat have been performed in this area, have 
explored ways of handling the diversity of theories in order to better grasp the 
complexity of learning and teaching processes, and understand how theories can 
or cannot be connected in a manner that respects their underlying assumptions. 

In this regards, there are different strategies and methods to deal with this 
type of studies. For example, Prediger, Bikner-Ahsbahs, and Arzarello (2008), 
describe different connecting strategies and methods for articulating theories, 
which range from completely ignoring other theoretical perspectives on the one 
extreme end, to globally unifying different approaches on the other. As 
intermediate strategies, the authors mention the need for making one’s own 
perspective understandable and for understanding other perspectives, and the 
strategies of comparing and contrasting different approaches, coordinating and 
combining perspectives, and achieving local integration and synthesis. For our 
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study, we have utilized diverse strategies, within the framework of the methods 
of networking of theories, which will be described below. 

Firstly, a team of four researchers was formed, who are also the authors of 
this document, two of which—the second and fourth author—have both vast 
experience and deep knowledge in the use of the TRSR. The other two authors—
the first and third—have substantial experience in using the OSA. The first and 
third authors use OSA mainly, but possess knowledge of TRSR too, and the 
second author uses primarily TRSR but also has sufficient knowledge of OSA. 
Therefore, an important first phase in networking theories is achieved: the need 
to really understand the other theory. 

Several authors have showed interest in determining the aspects that 
characterize a theory in order to be able to classify it and compare it (e.g., 
Bikner-Ahsbahs & Prediger, 2010; Radford, 2008). According to Radford 
(2008), essential elements of a theory include principles, methods, and 
paradigmatic research questions. The principles of each theory entail a 
positioning, explicit or implicit, about the nature of mathematical objects. For 
this reason, the second step has been set to determine how both theories model 
mathematical activity and what is their positioning, explicit or implicit, on the 
nature of mathematical objects. This second step allows seeing the differences 
and similarities between both theories and also providing a prior general idea on 
how they can be coordinated. 

In order to keep moving forward, once this first comparison between the 
theories has been made, we have applied one of the basic principles of 
networking of theories: to ensure that the job of connecting the theories be as 
precise as possible. According to this principle, the third step was selecting a 
specific mathematical object—the derivative—as context of reflection. The 
reason for choosing the derivative over another topic is because it is a 
mathematical object on which relevant research has been done by both theories, 
utilizing the basic theoretical notions of each. 

Once the mathematical object derivative had been selected, as fourth step we 
chose a task where such object was used and one answer that, regarding the 
application of the task to a sample of students, was provided by one of the 
students. The selection of both the task and the answer has been done, 
principally, by the first two authors and then agreed with the other two authors; 
and it was selected due to the complex mathematical activity provided by the 
student, which we refer to as Juliette. In such activity, Juliette shows difficulties 
that are taken into account in the analysis conducted with two theoretical 
perspectives. 

As fifth step, we have analyzed the answer given by Juliette, from two 
theoretical perspectives. On the one hand, we looked at the solution to the task 
from the perspective of TRSR. This analysis has been basically carried out by the 
two authors that use TRSR. On the other hand, we looked at the solution to the 
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task from the perspective of OSA. This analysis has been basically carried out by 
the two authors that use OSA. 

As sixth step, in this article we focused on the comparison of the principles 
used in the cognitive analysis from both theoretical perspectives, and not on the 
comparison of methods and paradigmatic general research questions between 
TRSR and OSA. This step has been jointly carried out by the four authors in the 
section on comparison of analysis.  

Theory of Registers of Semiotic Representation (TRSR) 
In cognitive psychology, the notion of representation plays an important role 
regarding the acquisition and the treatment of an individual’s knowledge. As 
Duval (1995) points out, “there’s no knowledge that can be mobilized by an 
individual without a representation activity” (p. 15). However, in mathematics, 
what matters are the various semiotic systems used to represent numbers, 
functions, geometrical properties, etc. And unlike other areas of knowledge, any 
mathematical activity always requires substituting some semiotic representation 
for another, no matter the semiotic systems that are mobilized. This leads to 
distinguish two quite different kinds of cognitive operations, which are known as 
conversion and treatment: to substitute one semiotic representation for another, 
only by changing the semiotic system mobilized; and to substitute two semiotics 
representations within the same semiotic system. 

Registers of semiotic representation are all the semiotic representations that 
are used in mathematics for computing, deducing, solving—mathematically—
problems. They can be classified into four types according two criteria (Duval, 
2006). First, the semiotic representations that are produced are either discursive 
representations—numerical or algebraic expressions, definitions, descriptions, 
among others—or non-discursive representation—geometrical figures, graphs, 
diagrams. Second, their substitution can either be set out in algorithms—
numerical or algebraic expressions, graphs—or not be set out in algorithms—
language natural, heuristic exploration of geometrical figures. Treatments are 
always specific to the type of register mobilized. 

The cognitive analysis of mathematical activity in terms of registers, and 
therefore, in terms of conversions and treatments, is based on three ideas that are 
described below. 

¨ There are as many different semiotic representations of the same 
mathematical object, as semiotic registers used in mathematics. 

¨ Each different semiotic representation of the same mathematical object 
does not explicitly state the same properties of the object being 
represented. What is being explicitly stated is the content of the 
representation. 

¨ The content of semiotic representations must never be confused with the 
mathematical objects that these represent. 
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Take, for example, the mathematical object linear function. First, it can be 
represented by mobilizing any of the three registers below (see Figure 1). 

 
Figure 1. Task on recognition of the object linear function 

Second, the content of a semiotic representation changes completely when we 
jump from a register to another—the horizontal arrows. So, there is a cognitive 
distance between the respective contents of two semiotic representations of the 
same object. This cognitive distance varies according the type of the start register 
chosen, for example, to give the data of a problem, and the register to mobilize in 
order to solve the problem or to control the relevancy of the answer. 

Third, when the student has achievedthe coordination between at least two 
registers—all horizontal arrows between two columns—they are able to 
recognize immediately the corresponding semiotic representation in another 
register. Otherwise they confuse the mathematical object represented with the 
particular content of the semiotic representation given and they remain blocked, 
because there are no links at all between the registers. 

This recognition is not a question of concept acquisition or definition. It 
requires becoming aware of what arethe qualitative features from the two 
respective contents that have to be matched. That is why specific tasks of 
experimental exploration are needed—all vertical arrows in Figure 1. In these 
tasks, the relevant variations are the qualitative variations and not the numerical 
values variations. 
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From a mathematical point of view, what matters is treatment, not 
conversion, because computing, deducing, depends on substitutions which are 
made within the same register by applying properties. Treatment always depends 
on the semiotic possibilities of internal substitutions or transformations of 
representations that the register mobilized provides. Therefore, mathematical 
treatments are cognitively more complex in the use of the register of natural 
language and those registers that allow visualizing—graphs, geometrical shapes, 
etc. That is why specific tasks are required in order to make students become 
aware of the way of reasoning and visualizing in mathematics (Duval, 2008). 

Now, in the reality of the mathematical work, conversions and treatments are 
never separated, because mathematical activity always mobilizes, explicitly or 
implicitly, two kinds of registers. In other words, the real mathematical activity 
consists of conversions and treatments performed alternatively or in parallel—in 
geometry, for example, even if, from a mathematical point of view, only 
treatments are scientifically relevant. Therefore, the necessary steps in the 
cognitive analysis of any mathematical activity are the following.  

¨ Separating all the conversions that are, explicitly or implicitly, required 
from the treatment. 

¨ Coding the couple of registers mobilized for each conversion—start 
register and arrival register. 

¨ Making explicit the successive substitutions to perform mainly for the 
treatment in natural language or in visualization registers. 

Thus, we get a grid of all the cognitively heterogeneous tasks underlying a 
mathematical activity that we want to introduce for teaching or for experimental 
purposes. This grid allows to reach two purpouses that we describe below. 

¨ To perform an accurate diagnosis of the difficulties and incomprehension 
points encountered by students which are a barrier to success. 

¨ To compare the student’s production with the information gathered in 
other similar activities during different periods of time and to assess the 
capacity of transferring to new situations. 

A reliable and controllable interpretation of the students’ oral/written/drawn 
production shall be based on comparison with other data gathered according to 
the same device of observation and with one variation well-identified. This is 
what allows determining the scope of the outcomes of a research. 

The Onto-Semiotic Approach to Cognition and Mathematical Instruction 
(OSA) 
The OSA is a theoretical and methodological framework that has been developed 
since 1994 by Godino and colleagues and has been described in several other 
works (e.g., Font, Godino, & Gallardo, 2013). This theoretical framework arises 
from the field of research of mathematics education and aims at articulating the 
diverse dimensions—epistemic, cognitive, affective, interactional, mediational 
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and ecologic—that are implicit in the processes of teaching and learning 
mathematics (Godino et al., 2007). Relevant for this work are the epistemic facet, 
which makes reference to the distribution, during the time of teaching, of the 
components of the institutional meaning (problems, linguistic elements, concepts, 
propositions, procedures and arguments), and the cognitive facet, which refers to 
the development of personal meanings—learning. 

The notion of system of practices plays an important role for the teaching and 
learning of mathematics within the OSA. Godino and Batanero (1994) refer to 
the system of practices as “any performance or manifestation—linguistic or 
not—carried out by someone in order to solve mathematical problems, to 
communicate the solution to others, to validate the solution and to generalize it to 
other contexts and problems” (p. 334). Font et al. (2013) point out that 
mathematical practices can be conceptualized as the combination of an operative 
practice, through which mathematical texts can be read and produced, and a 
discursive practice, which allows reflecting on operative practices. These 
practices can be carried out by one person—system of personal practices—or 
shared within an institution—system of institutional practices. 

Within the OSA, certain pragmatism is adopted since mathematical objects 
are considered as entities that emerge from the systems of practices carried out in 
a field of problems (Godino & Batanero, 1994). Font et al. (2013) put it this way: 
“Our ontological proposal originates from mathematical practices, and these 
become the basic context from which individuals gain experience and 
mathematical objects emerge. Consequently, the object gains a status originated 
from the practices that precede it” (p. 104). Ostensive objects—symbols, graphs, 
etc.—and non-ostensive objects—concepts, propositions, etc.—intervene in 
mathematical practices, which we evoke while doing mathematics and are 
represented in a textual, oral, graphic, symbolic and even gestural way. New 
objects emerge from the systems of operative and discursive mathematical 
practices and these show their organization and structure (Godino et al., 2007). If 
the systems of practices are shared within the core of an institution, then the 
emerging objects will be considered as institutional objects, while, on the other 
hand, if such systems correspond to one person, then these will be considered as 
personal objects. The emergence of a personal object is progressive during the 
history of a subject, as a consequence of experience and learning, while the 
emergence of an institutional object is progressive over time. 

In order to offer a finer and more pragmatic way to analyze the mathematical 
practices developed in connection to certain problems, OSA introduces a 
typology of primary mathematical entities—or primary mathematical objects, 
that intervene in the systems of practices: (a) situations-problems (extra-
mathematical applications, exercises…); (b) linguistic elements (terms, 
expressions, notations, graphs…) in diverse registers (written, oral, gestural…); 
(c) concepts/definitions (introduced through definitions or descriptions: line, 
point, number, function, derivative…); (d) propositions/properties (statements 
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about concepts); (e) procedures (algorithms, operations, calculation 
techniques…); and (f) arguments (statements used to validate or explain 
propositions and procedures, deductive or of another type).  

Situation-problems are the origin or reason for the activity; language 
represents the remaining entities and serves as an instrument for the action; 
arguments justify the procedures and propositions that relate the concepts. These 
primary mathematical objects are connected with each other, forming intervening 
networks of objects, emerging from the systems of practices, which in OSA are 
known as configurations. These configurations can be socio-epistemic (networks 
of institutional objects) or cognitive (networks of personal objects). 

Each one of the primary mathematical objects can be considered from 
different dual facets or dimensions: personal–institutional, unitary–systemic, 
expression–content, ostensive–non-ostensive and exemplar–type. Godino, Font, 
Wilhelmi, and Lurduy (2011) point out that both of these dualities and primary 
mathematical objects can be analyzed from a process-product perspective, which 
entails the following processes: (a) institutionalization–personalization, (b) 
generalization–particularization, (c) decomposition or analysis–composition or 
reification, (d) materialization–idealization, and (e) representation–signification. 
The emergence of primary mathematical objects, pointed out before, is linked, 
respectively, to processes of problematization, communication, definition, 
algorithmization, enunciation, and argumentation. 

This way, the meaning of mathematical objects in OSA is, basically, 
conceived in two ways: (a) from a pragmatic-anthropological perspective, which 
deals with the relativity of the context—or system of mathematical practices—in 
which these are used, in other words, as emerging and in the sense that is 
assigned to them in the practices or systems of practices—institutional or 
personal—in which these are mobilized; and (b) in terms of semiotic functions, a 
notion that allows to make relations among the several entities in a referential 
and operational way. According to Hjemslev (1943) and Eco (1976), a semiotic 
functionis the correspondence or dependent relationship (or function) that is 
established by a subject (person or institution) between an antecedent 
(expression, signifier) and a consequent—content or meaning, according to a 
criteria or correspondence code (rules, habits, agreements...). The content—o 
consequent—of a semiotic function, and therefore, the meaning can be a personal 
or institutional object, unitary or systemic, ostensive or non-ostensive (Godino et 
al., 2007); similarly, this object can be a linguistic element, a definition, a 
proposition, a procedure, an argument or problem (Font et al., 2013). According 
to Peirce’s semiotic (1978), the OSA assumes that both the expression—
antecedent of a semiotic function—and the content—consequent of a semiotic 
function—could be any kind of entity (primary mathematical object or process). 
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THE TASK AND ITS RESOLUTION: THE CASE OF JULIETTE 
The task addressed in this study (Figure 2), has been the object of study in 
several works (Pino-Fan, 2014; Tsamir, Rasslan, & Dreyfus, 2006), and 
demands, from who solves it, the mobilization of representations (graphic, 
symbolic and verbal), and argumentations that justify procedures. 

 
Figure 2. Task on derivability of the absolute-value function 

The selected protocol of resolution is the one given by Juliette to the task above 
(Figure 3). The case of Juliette arises in connection to a research carried 
conducted by the first author of this document (Pino-Fan, 2014), which is 
oriented towards the implementation of a questionnaire to analyze partial aspects 
of the knowledge of a sample of future teachers of mathematics.  

As it can be observed in Figure 3, Juliette had some serious difficulties to 
solve the task assigned. Her answer was selected from among other 93 answers, 
due to the complexity of the cognitive activity reflected in her mathematical 
practice. 
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Figure 3. Juliette’s solution to the task on derivability of the absolute-value 

function 

ANALYSIS OF THE PROTOCOL FROM TWO THEORETICAL 

PERSPECTIVES 
In this section, we develop a detailed cognitive analysis from the TRSR and OSA 
perspectives. 

Analysis from the TRSR Perspective 
The formulation of the task contains elements of the verbal, graphic and 
symbolic registers. The questions related to the symbolic and graphic 
representation of the absolute-value function, combine the verbal register and 
symbolic notations. The answers to these questions are expected to be given in 
the form of any of the registers mentioned before—verbal, graphic, or symbolic. 

In general, Juliette’s answers for the items (a), (b), and (c), show that she 
knows the definition of the absolute-value function, and that she can express it in 
the symbolic register. But regarding the derivative function, she shows 
deficiencies, because even though she answers that if the graph of the function 
presents a corner or peak on 0=x  then the function is not derivable, in her 
upcoming arguments some confusions are perceived regarding the domain of the 
f ¢ function. In the symbolic register, she represents the absolute-value function 

by parts and for the non-negative values of x she writes the f derivative using 
symbols. She recognizes )2(f ¢  as image for 2=x , but she is not successful 
regarding 0=x . Details per item are presented below. 
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¨ For item (a), the domain xxf =)(  is required. Juliette, being in the 
graphic register, visualizes the typical edge of the graph of the absolute-
value function and she perceptively associates it with the non-
differentiability of the function. She does not make the domain of f ¢  
explicit, and states that the function is not differentiable. She clearly 
associates the top point or peak of the graph with the fact that the function 
can not be derived in its domain. In other words, she does an incorrect 
generalization. On the other hand, she represents the absolute-value 
function in the symbolic register, expressing it by parts and stating that if 
fwas differentiable, it would be so in its entire domain. In Juliette’s answer 
to item a), an apparent separation between the graphic and symbolic 
registers is perceived because she answers through the visualization of the 
graph first, and then, she performs a treatment of the algebraic expression 
of the absolute-value function through the symbolic register. 

¨ For item (b) it is required to calculate )2(f ¢ . Here, we can appreciate a 
new contradiction in her answer. First, she answers that “ )2(f ¢  cannot be 
calculated”, and justifies her answer by citing her answer to item (a). 
Then, she adds a hypothesis, “if it was differentiable, the graphic 
representation would be a point on the cartesian plane”. It is not clear 
whether the graphic representation of the function 'f  is a point, or she is 
only referring to 2=x . In any case, we appreciate that she recognizes, in 
isolation, that the notation )2(f ¢  represents the ordinate of a point in the 
cartesian plane, since she draws it but does not justifies it. It could be 
stated that Juliette does a simple passage from symbolic to graphic. 

¨ For item (c) the question is if it is possible to calculate )0(f ¢ . Juliette is in 
the symbolic register and suggests a new hypothesis, “if we take a 

function of the type 
îí
ì

<-
³= 0 ,

0    ,)( xx
xxxf  the derivative would be 1)(' =xf

[considering 0³x ]”, and then draws the graphic representation of the 
image of zero, 1)0( =¢f . Although her treatment is coherent because she 
justifies her answer deriving for the values 0³x , obtains 1)0( =¢f  and 
graphs the corresponding point, she clearly does not master the absolute-
value function and does not articulate its algebraic representation, by 
parts, with its graphic representation. 

In general, the symbolic register has prevailed over the graphic register in 
Juliette’s answers. She only used the graphic register to graph points, but she 
failed to correctly read the graph of the absolute-value function. The question of 
item (c) was a key question and required the articulation of the symbolic and 
graphic registers, but despite the treatment and passages that can be observed in 



Analysis of the Underlying Cognitive… 109 

PNA 11(2) 

her answers, the lack of mastering of her mathematical knowledge did not allow 
her coordinate the registers at play—graphic and symbolic. 

Analysis from the OSA Perspective 
We have organized the analysis in two levels. A first level where the 
mathematical practice carried out by Juliette is described in general terms—a 
fairly more global analysis; and a second level where, in a meticulous way, 
detailed information about primary mathematical objects, their meanings and the 
processes mobilized in her practice, as well as the way in which she relates to 
them—cognitive configuration of objects and processes—is provided. 

Mathematical Practice 
Firstly, we observe that Juliette begins her practice based on a visual justification 
to answer, although wrongly, subtask (a), pointing out the existence of a peak at 
the point of domain of the function 0=x . From the beginning of her practice, we 
can observe that Juliette confuses the non-derivability—local—at a point of 
domain of the absolute-value function with, her misconception of, non-
derivability of the function—global. Later, Juliette writes the symbolic 
definition, by parts, of the absolute-value function. We could say that, in a certain 
way, such definition is correct, however, she does not make crucial 
considerations, like for example, that the point of domain of the function 0=x
belongs to both xxf =)(  and xxf -=)( . This fact leads her to a cognitive 
conflict that is shown in her sentence “If it is considered as a function of the 
type... the function would be differentiable in the whole domain, in other words, 
( )-¥¥, ”. This cognitive conflict generated from her visual interpretation of the 
graph of the function—the function is not derivable since it has a peak in 0=x —
in contraposition to her interpretation of the symbolic definition, by parts, of the 
function—she considers that xxf =)(  exclusively for 0³x , is what leads her to 
give incorrect answers to the other subtasks. 

Cognitive Configuration of Objects and Processes 
Juliette mobilizes in her practice a series of primary mathematical objects—
linguistic elements, concepts/definitions, properties/propositions, procedures and 
arguments—and processes—emerging—which are detailed below (see Table 1, 
Table 2, Table 3, Table 4, and Table 5). Similarly, as part of the configuration of 
objects and processes, the previous objects and processes that Juliette must 
interpret and understand before starting her practice are identified.  



L. Pino-Fan et al. 110 

PNA 11(2) 

Table 1 
Linguistic Elements 

Mathematical objects Meanings 

Previous 

LE1: xxf =)(  Symbolic representation of the absolute-value function. 

LE2: “Graph of the 
function” (Figure 1) 

Graphic-cartesian representation of the absolute-value 
function with domain (-5, 5). Also, all the real numbers can 
be inferred as the domain of the absolute-value function, just 
like Juliette does. 

LE3: )2(f ¢  Symbolic representation that denotes the derivative of the 
absolute-value function at the point of domain 2=x . 

LE4: )0(f ¢  Symbolic representation that denotes the derivative of the 
absolute-value function at the point of domain 0=x . 

Emerging 

LE5:
îí
ì

<-
³= 0 ,

0    ,)( xx
xxxf  

Symbolic expression that determines the definition, by parts, 
of the absolute-value function. 

LE6: ( )¥¥- ,  Symbolic-notational expression that refers, according to 
Juliette, to the domain of the derived function. 

LE7: 1)( =¢ xf  Symbolic expression that Juliette uses to denote the 
derivative of the function at the point of domain 2=x . This 
expression is also used by Juliette to represent the derivative 
of the function at the point 0=x . 

LE8: 

 

Graphic representation that denotes the derivative of the 
function at the point of domain 2=x . 

LE9: 

 

Graphic representation that Juliette uses to refer to the 
derivative of the function at the point of domain 0=x , a 
point at (0,1) of the cartesian plane. 

Note. LE=Linguistic element. 

Table 2 shows concepts and definitions related to mathematical practice carried 
out by Juliette.  
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Table 2 
Concepts/Definitions 

Mathematical Objects Meanings 

Previous 

CD1: Function Particularized as absolute-value function and referred to 
graphically as well as symbolically. 

CD2: Derivative of a 
function and its domain 

Particularized, with the sub-task (a), as the derivative of 
the absolute-value function. 

CD3: Derivative at a point Specifically, at the points of domain of the function 
2=x and 0=x . 

Emerging 
CD4: Absolute value Defined symbolically as: 

î
í
ì

<-
³

=
0  ,

0   ,
xx
xx

x  

Juliette extrapolated this implicit definition of absolute-
value to her definition of absolute-value function. 

CD5: Domain Of the derivative of the function, referred by Juliette as 
( )¥¥-  , . 

Note. CD=Concept/definition. 

Table 3 shows properties/propositions that Juliette mobilizes in her practice. 

Table 3 
Properties/Propositions 

Mathematical 
Objects 

Meanings 

Previous 
PP1: “Examine the function 

xxf =)(  and its graph” 
Proposition that establishes a previous process of 
enunciation-representation, which allows the linking of 
the symbolic representation of the function with its 
graphic representation. 
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Table 3 
Properties/Propositions 

Mathematical 
Objects 

Meanings 

Emerging 
PP2: “...the function 

xxf =)(  is not 
differentiable...” 

This proposition supposes the partial answer that 
Juliette provides to sub-task (a).  

PP3: “If it is considered as a 
function of the type 

î
í
ì

<-
³

=
0  ,

0   ,
)(

xx
xx

xf  the 

function would be 
differentiable in the whole 
domain, in other words, 

( )¥¥-  , ”. 

Proposition that accounts for a definition process—
definition of the function by parts. This proposition also 
refers to: (a) a process of algorithmization, which allows 
to derive, implicitly, the function by parts (this process 
of algorithmization refers to a procedure); and (b) a 
process of argumentation, in which a special treatment 
for the derivative of the function at the point of domain 

0=x  is not considered. This proposition also supposes 
a partial answer by Juliette to subtask (a). 

PP4: “... )2(f ¢  can not be 
calculated...” 

Partial answer to sub-task (b). Proposition that accounts 
for a process of argumentation of a graphic-visual type, 
in which Juliette presupposes that, since the value 
function is not differentiable because it has peaks, then 
the derivative at the point of domain 2=x , cannot be 
calculated. 

PP5: “... and if it was 
differentiable [the absolute-
value function] then, the 
graphic representation would 
be a point on the cartesian 
plane...” 

Partial answer to sub-task (b). Proposition that shows 
evidence of the procedure of deriving by parts the 
function. This proposition is reaffirmed with PP6. 
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Table 3 
Properties/Propositions 

Mathematical 
Objects 

Meanings 

PP6: “Considering the type 
of function ‘LE5’, the 
derivative would be ‘LE7’ 
then it would represent a 
point ‘LE8’” 

This proposition could be decomposed into two. The 
first one would make reference to the processes of 
algorithmization and argumentation of PP3 and PP4. A 
second one would refer to a process of representation in 
which Juliette links LE7 and LE8. 

PP7: “...if the function ‘LE5’ 
is considered, the derivative 
would be ‘LE7’ and the 
graphic representation would 
be ‘LE9’” 

Answer to sub-task c). This proposition refers to a 
process of algorithmization that leads to the procedure 
of deriving the function by parts, and to a process of 
argumentation, based on LE5 and the process of 
algorithmization, that allows Juliette to find the 
derivative for 0=x . Likewise, this proposition also 
makes reference to a process of representation in which 
Juliette links LE7 and LE9. 

Note. PP=Property/proposition. 

We could also analyze the meaning that Juliette gives to the sentence that lies 
before PP7, “As mentioned before [her answer to sub-task (b)]...”, as a 
proposition that suggests as a first partial answer to sub-task c), that )0(f ¢  cannot 
be calculated because the graph of the function has a peak—as in the case of sub-
task (b). This is relevant because the two propositions (PP4 and PP5) that make 
reference to partial answers to sub-task (b), show contradictions in the answers 
that Juliette provides to sub-task (b).Thus, a cognitive conflict arises within her 
that leads her to argue that the derivative in 2=x  cannot be calculated if based 
on the graphic-visual aspects only, but can indeed be calculated if based on 
purely symbolic-algorithmic aspects.The same occurs with her answer to sub-
task (c).  
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Table 4 
Procedures 

Mathematical 
Objects Meanings 

Emerging 
P1: Graphic-Visual Procedures that allow Juliette to provide answers to 

sub-tasks (a), (b) and (c), from her interpretation of the 
graphof the absolute-value function. In the case of 
Juliette’s answer, these kinds of procedures are 
connected with the type of arguments A1. By means of 
these types of procedures Juliette achieves propositions 
such as PP2 and PP4. 

P2: Calculation of the 
derivative from LE5 

Procedures that Juliette utilizes to provide answers, 
through propositions PP3, PP5 and PP6, to sub-tasks 
(a), (b) and (c) respectively. Basically, this procedure 
consists of the derivative by parts of the function, from 
the definition CD4 that is also mentioned in LE5. 

Note. P=Procedure. 

The description of the arguments that Juliette mobilizes in her practice are 
displayed in Table 5. 
Table 5 
Arguments 

Mathematical 
Objects Meanings 

Emerging 
A1: Graphic-Visual 
“…because the 
graph has a peak at 
the point 0=x ” 

Argument centered on the visual consideration of the 
peak in the graph of the function. This argument is 
the one Juliette uses to point out that the function is 
not differentiable and therefore, it is not possible to 
calculate the derivative at the points of domain 2=x  
and 0=x . 

A2: Symbolic-
Algorithmic 

Argument presented by Juliette in which the process 
of definition of the absolute-value function 
(symbolically: CD4, LE5) and the process of 
algorithmization that allows obtaining the procedure 
of calculation of the derivative by parts (P2), are 
considered. 

Note. A=Argument. 
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As explained in a preliminary section (on the OSA to cognition and mathematical 
instruction), the notion of meaning is a key notion within the OSA and it can 
basically be conceived in two ways. In this sense and complementary to the 
description of primary mathematical objects and processes that Juliette mobilizes 
in her practice, we can identify the relevant semiotic functions that she 
establishes to each one of the items of the task. 

For item (a) Juliette establishes three semiotic functions. The first one has a 
graphic-visual nature because, from the absolute-value graph—LE2, antecedent, 
the proposition PP2—consequent—is enunciated, arguing such proposition in a 
visual way through the peak in the graph—argument A1, correspondence code. 
The content—or consequent—of this first semiotic function constitutes, 
according to Juliette’s practice, a partial answer to item (a) “...the function is not 
differentiable...” 

The second partial answer to item (a) reflects the establishment of two 
semiotic functions. The first of them accounts for a manipulation of the symbolic 
representation of the function, that allows moving from the antecedent LE1 to the 
consequent LE5 by means of the implicit definition of absolute-value—CD4, 
correspondence code. The second one, allows us perceiving the symbolic-
algorithmic nature of Juliette’s second partial answer because, from the way she 
defines the absolute-value function—CD4, antecedent, and by procedure P2—
correspondence code, she achieves the proposition PP3—consequent—that 
constitutes her partial answer: “...the function is differentiable in the whole 
domain...”. 

With the two partial solutions that Juliette provides as answers to item (a), it 
becomes evident that there is an apparent disconnection between the graphic-
visual interpretation and treatment that she performs in order to give her first 
partial answer, and the symbolic-algorithmic manipulation and interpretation that 
leads her to give her second partial answer. 

In the same way, for item (b) Juliette provides two partial solutions, one of 
graphic-visual nature and another one of symbolic-algorithmic nature. In the first 
partial solution, the establishment of a semiotic function can be identified. Here, 
the antecedent is the proposition PP2 given in her solution to item (a). Thus, 
since Juliette considers that the function is not differentiable at any point of the 
domain—because there is a peak in the graph—argument A1, correspondence 
code—then “... )2(f ¢ can not be calculated...”—PP4, consequent. 

In the second partial solution to item (b), the establishment of two 
concatenated semiotic functions can be identified. For the first one, Juliette starts 
in the way she defines the absolute-value function—CD4, antecedent), and 
through a procedure of deriving the positive part of the function

0 , ,)( ³"= xxxxf —P2, correspondence code, she concludes that the derivative 
at the point of domain is 1, which she represents with LE7—consequent. For the 
second semiotic function, LE7 is established as antecedent, and through the 
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proposition PP5—correspondence code, provides the graphic representation—
LE8, consequent—of LE7. 

Finally, for item (c) it is possible to identify two concatenated semiotic 
functions. For the first one, Juliette once again starts from the definition CD4—
antecedent, and through the procedure P2—correspondence code, of deriving

xxf =)(  since 00 ³ , she concludes that the derivative at the point of domain is 
1, which she represents with LE7—consequent. The second semiotic function 
has the LE7 as antecedent and LE9 as consequent. 

In general, it is possible that Juliette does not make a connection between the 
graphic and symbolic representations of the function, even though such 
connection is established in the formulation of the task by means of the a priori, 
or institutional, semiotic function in which mathematical objects that had been 
previously enunciated in Tables 1, 2 and 3 are mobilized. This a priori semiotic 
function connects symbolic—LE1, antecedent—and graphic—LE2, 
consequent—representations of the function, through a proposition PP1—
correspondence code—imposed as if it was a norm. 

COMPARISON OF THE ANALYSIS 
As seen in the previous section, the analysis conducted with both TRSR and 
OSA, show deficiencies in Juliette’s mathematical activity, related to the lack of 
connection of the interpretations and treatments that she makes in the graphic and 
symbolic representations of the absolute-value function. However, there are some 
qualifications regarding the analysis carried out and the results obtained that are 
intrinsic to the principles and notions of each theoretical perspective. The Table 6 
presents in detail the general methodologyof analysis used by both theoretical 
perspectives. 

Table 6 
Methodology for Cognitive Analysis According to TRSR and OSA 

Theory of Register of Semiotic 
Representation (TRSR) Onto-Semiotic Approach (OSA) 

Identification of the registers involved in 
the formulation of the task. 

The proposed task is decomposed into 
basic units of analysis, and based on this 
decomposition, primary mathematical 
objects, their meanings and previous 
processes are identified. Semiotic 
functions established a priori are 
identified, if there are any. 
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Table 6 
Methodology for Cognitive Analysis According to TRSR and OSA 

Theory of Register of Semiotic 
Representation (TRSR) Onto-Semiotic Approach (OSA) 

It focuses on the analysis of the 
mathematical activity of the individual, 
focusing on the registers that are at play 
when solving a task. 

It focuses the analysis on the subject’s 
mathematical practice. 

Identification of significant units within 
the representations put into play in each 
register. 

Describing the subject’s mathematical 
practice in general terms, identifying 
basic units of analysis. 

Identification and characterization of the 
subject’s cognitive operations and 
characterization of the cognitive 
operations of treatments and 
conversions/passages in the subject’s 
activities. 

In the treatments, specify the type of 
register utilized from the subject’s 
production, determining: if it is a visual 
recognition, a calculation, or a 
utilization of a discursive or algebraic 
definition. 
In the conversions, specify the sense of 
these in terms of congruence or non-
congruence of the representations at 
stake. In this stage, the pair of registers 
mobilized and the sense of the 
conversion should be indicated. 
Furthermore, from a mathematical point 
of view, it should be pointed out if the 
conversion is explicit or implicit. 

Identifying and describing the 
configuration—or sub configurations—
of primary mathematical objects—
linguistic elements, concepts, 
propositions, procedures and arguments, 
processes and their meanings, involved 
in the subject’s mathematical practice. 

Identifying and reconstructing the 
semiotic functions established by the 
subject, which provide meaning to the 
mathematical objects mobilized during 
his/her practice and give sense to the 
elements that form the configuration 
described in the previous step. 

Studying conversions in terms of 
congruence—or incongruence—of the 
articulation—or no articulation—that a 
subject performs between the different 
registers of representation involved. 

Studying coherence, from a 
mathematical point of view, regarding 
the connection—or lack of—that a 
subject makes between diverse sub-
configurations and, in consequence, 
between the different semiotic functions 
that the subject establishes within 
his/her practice. 
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A first key aspect that is important to distinguish is that, while the analysis from 
the OSA perspective focused on the subjects’ mathematical practices, and 
mathematical objects, processes and their meanings, that emerge from such 
practices, the TRSR focused its analysis primarily on the registers of 
representation that the subject mobilizes in his/her productions. In this way, the 
methodology proposed by TRSR can be considered as more “global”, in the 
sense that the subjects’ cognitive activity is analyzed without performing 
valuations from a mathematical point of view, as it is done with the tools of 
OSA. For example, with TRSR, it is possible to draw conclusions such as there 
are deficiencies in the subject’s knowledge because he/she does not carry out 
conversion, passage or treatment. However, contradictions can indeed be 
detected in the subject’s cognitive activity and whether the task was successfully 
solved or not can also be determined. On the other hand, with OSA it is possible 
to provide a detailed explanation, from a mathematical point of view, of what are 
the knowledge deficiencies the subject has in relation to a certain problem, by 
identifying and describing in a detailed way, the mathematical objects, processes 
and their meanings, involved in his/her mathematical practice. 

Yet, it must be pointed out that in OSA there is not systematization for the 
analysis of linguistic elements. As a part of the methodology proposed by OSA, 
language signs—linguistic elements—can be identified, which the subject uses to 
express cognitive activity. However, whether such linguistic elements make 
reference to representations of objects in a same register or in different ones is 
not made explicit in the analysis; in other words, the linguistic elements of OSA 
would correspond to representations of objects in different registers. In this way, 
a linguistic element encompasses different languages—verbal, figurative, 
symbolic... These different languages could make reference both to registers of 
semiotic representation and semiotic systems. 

In this regard, TRSR makes a clear distinction between register of semiotic 
representation and semiotic system. As discussed before, a register is a semiotic 
system that fulfills three conditions: (a) traces or significant units of 
representation that belong to a system must be clearly identifiable and should not 
allow contradictions; (b) it allows internal treatments in each register; and (c) it 
allows passages or conversions from one register to another. Thus, we can 
observe how the notion of register of semiotic representation of TRSR, 
complements and enriches the notion of linguistic elements of OSA, by making a 
very clear distinction between register and semiotic system, and systematizing 
the analysis of such registers. Having said that, it is quite undeniable that in the 
methodologies of analysis proposed by both theoretical approaches, it is agreed 
that language is the most relevant semiotic system of them all. In this sense, we 
could add that language is a multifunctional system. Another example of 
multifunctional system is the figural register, since geometries—flat, 
spherical…—do not constitute a register, but a mathematical framework—or a 
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framework for other disciplines, in which several registers can work. Therefore, 
it is important not to confuse register with framework. 

Despite the systematization that TRSR provides for the analysis of registers 
of representation, by means of the study of treatments and conversions, some 
relevant aspect must be taken into account for the improvement of cognitive 
analysis and provide more detailed explanations, from a mathematical point of 
view, about the subject’s cognitive activity to which we have access to through 
his/her mathematical practice. As mentioned above, since it is a global theory 
and it focused on a subject’s cognitive activity—and in his/her ability to mobilize 
diverse registers of representation, the TRSR focuses its attention on the study of 
registers of representation mobilized by such subject, leaving the content and the 
meaning of the mathematical objects being represented implicit. For example, if 
we consider the answer given by Juliette to item (c), with the TRSR methodology 
of analysis it can be concludedthat she performs a treatment in the symbolic 

register that allows passing from the expression 
îí
ì

<-
³= 0 ,

0 ,   )( xx
xxxf  to the 

expression 1)( =¢ xf , then she performs a direct passage that allows her to move 
from the latter expression—given in the symbolic register—to the graph of a 
point on the cartesian plane—graphic register. In general, we can observe how 
often conversions/passages always have as starting point and as point of arrival a 
register of representation, that could as well be the same—in the case of 
treatments—or different—in the case of conversions/passages. But, how does 
Juliette’s answer relate to the way she conceives the definition of absolute-value 
function? What explanation can be provided to the fact that Juliette had 
expressed the derivative of the absolute-value function at 0=x as 1)( =¢ xf  
instead of 1)0( =¢f —although we know that such answer is mathematically 
incorrect? 

The notion of semiotic function, introduced by OSA, allows giving a better 
explanation about what is Juliette’s cognitive activity to give her answer and 
allows responding to the two previous questions. As evidenced with the analysis 
performed with the OSA perspective, Juliette establishes two semiotic functions 
as part of her answer to item (c). As described in the previous section, the first 
semiotic function is established from the way Juliette defines the absolute-value 
function (antecedent), considering 0=x  as part of the domain of the line segment 

xxf =)( . Afterwards, through the implicit procedure of derivation of xxf =)(
—correspondence rule, she finally obtains 1)0( =¢f —consequent. It is possible 
to observe that, in order to establish this first semiotic function, the meaning that 
Juliette gives to the mathematical object definition of absolute-value function is 
emphasized, leaving the representation of such mathematical object implicit. The 
semiotic function that we have just discussed has a definition as antecedent, an 
implicit procedure as correspondence code, and a representation as consequent—
that lies in the same register than the antecedent. Something similar can be said 
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about the second semiotic function, but the difference is that it has a 
representation in the symbolic register as antecedent, a proposition in the verbal 
register as correspondence code, and a representation in the graphic register as 
consequent. Thus, we can notice how the semiotic function of OSA, reinterprets 
and enriches the notions of treatments and conversions/passages of TRSR, by 
emphasizing the meaning—personal or institutional—given to the mathematical 
content of the objects represented and contemplating that both antecedent and 
consequent of the function can be languages—representations, 
concepts/definitions, properties/propositions, procedures or arguments. 

Finally, it is important to point out that similar analyses can be carried out for 
the expected solutions—from an expert or institutional point of view—from the 
two theoretical perspectives—cognitive analysis of the answer of the expert in 
TRSR and epistemic analysis in OSA—analysis of expected institutional 
meanings. However, for length reasons and because it would be redundant with 
what has already been described in this document, we do not present such a priori 
analysis in this document. In any case, the last stage in the methodological 
approach of both perspectives (Table 6) makes reference to the study of the 
proximity of the subject’s knowledge in relation to the knowledge that was 
expected to be mobilized in his/her practice.  

FINAL REFLECTIONS 
In this paper, we discussed the relation between representations and the 
underlying mathematical activity during the development of a task—about 
derivative. In order to examine such a relation, it is necessary to rely on models 
which analyze students’ mathematical activity. In the literature, most models are 
cognitive-based. They consider that learning a mathematical concept and its 
application occurs if various appropriate internal representations are developed 
and integrated together with functional relations among them. Other few models 
are semiotic and pragmatic-based. The pragmatic approach also gives importance 
to the use of diverse representations; however, different reasons are provided in 
comparison to those from the cognitive approach. On the one hand, the cognitive 
approach primarily explores representations from a representational perspective. 
On the other hand, the pragmatic approach emphasizes the instrumental 
dimension, namely, what can be done with a representation. 

We investigate this relation, first, from a cognitive perspective (TRSR) and 
second, from a pragmatic and semiotic perspective (OSA). The notions of 
semiotic system and register of semiotic representation of the TRSR are essential 
for the comprehension of the cognitive activity needed to solve a task, while that 
OSA provides a level of analysis of the subject’s cognitive activity that shows 
mathematical objects that are involved in the processes of treatment and 
conversion/passages between registers of semiotic representation. This level of 
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analysis complements the analysis carried out using the tools of TRSR, because 
with the tools of configuration of objects and processes and semiotic function, 
the contents of representations become explicit and are used as part of such 
cognitive activity. The registers of representation are implicitly involved in 
semiotic functions; however, these emphasize the mathematical content of the 
representation. The relationship between notions of mathematical objects and its 
meanings—as considered in OSA—and semiotic representation—as considered 
in TRSR, are essential for the analysis and characterization of mathematical 
knowledge. 

The results of the comparison of analysis presented in comparison of the 
analysis section show that between these two theoretical perspectives there are 
complementarities that would allow performing more precise and finer cognitive 
analysis, from the subjects’ production. As a result of these complementarities, 
we thought it was pertinent to propose the following methodology to develop 
cognitive analysis, integrating the contributions of both perspectives: 

¨ To center the analysis on subjects’ production, since it is through it that 
we can get closer to their cognitive activity. 

¨ To decompose the subject’s production in significant units of analysis. 
¨ To identify in each significant unit, the language signs that the subject 

utilizes to express his/her knowledge. It is important to specify if these 
signs make reference to a semiotic system or to a register of 
representation, and also, to which type does it refer to. 

¨ To study and describe if the representations—language signs—that the 
subject utilizes to show his/her knowledge make reference to 
concepts/definitions, properties/propositions, procedures or arguments—
identification of configurations or sub configurations of objects and 
processes. The meaning that the subject gives to each of such 
mathematical objects (concepts, properties…) must be described. 

¨ To identify and reconstruct the semiotic functions that the subject 
establishes as part of his/her practice. Determine if such semiotic 
functions make reference to cognitive operations of treatments or 
conversions/passages. 

¨ To study coherence, from a mathematical point of view, in relation to the 
connections—or lack of—that the subject makes among the diverse sub-
configurations and, in consequence, among the diverse semiotic functions 
that he/she establishes during his/her practice. Similarly, to study the 
semiotic functions that make reference to the conversions in terms of 
congruence—or non-congruence—of the articulation—or no 
articulation—that a subject performs among the different registers of 
representation involved. 

The above-mentioned methodology can also be utilized for the performance of 
respective a priori analysis, and which will unveil expected mathematical 
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knowledge, which is indispensable to determine the proximity of the knowledge 
shown by subjects—based on the latter point of the previously mentioned 
methodology—in relation to the expected knowledge. Besides, the methodology 
is flexible since it can be adapted both to the productions of a subject regarding 
diverse types of tasks, and the mathematical objects that such tasks demand. 
Thus, the combination of the two frameworks contributes to literature by 
extending our understanding of the relationship between representations and the 
underlying mathematical activity during the development of tasks that provide 
better explanations about the aspects that make it possible or impossible to 
comprehend mathematical notions.  
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