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Thesis supervised by
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Summary

Multiple frame surveys were first introduced by Hartley (1962) as a device for reducing data collection

costs without affecting the accuracy of the results with respect to single frame surveys. In a multiple frame

survey, Q ≥ 2 sampling frames are available for sampling. Although each of them may be incomplete, it

is assumed that, overall, they cover the entire target population. Then, independent samples are selected,

one from each frame, under a possibly different sampling design, and information is properly combined

to get estimates. Since its emergence, multiple frame sampling theory has experienced a noticeable

development and a number of estimators for the total of a continuous variable have been proposed. First

proposals were formulated in a dual frame context, i.e. for the case where two frames are available for

sampling. Hartley (1962) himself proposed the first dual frame estimator, which was improved by Lund

(1968) and Fuller and Burmeister (1972). Bankier (1986) and Kalton and Anderson (1986) and Skinner

(1991) proposed dual frame estimators based on new techniques. Skinner and Rao (1996) and Rao and

Wu (2010) applied likelihood methods to compute estimators that perform well in complex designs. More

recently, Ranalli et al. (2015) and Elkasabi et al. (2015) used calibration techniques to derive estimators

in the dual frame context.

In recent years, a number of works focusing on the estimation in cases with three or more sampling

frames has arisen. Lohr and Rao (2006) extended some of the estimators proposed so far to the multiple-

frame setting. Mecatti (2007) used a new approach based on the multiplicity of each unit (i.e. in the

number of frames the unit is included in) to propose an estimator which is easy to compute. Multiplicity

is also used by Rao and Wu (2010) to provide an extension of the pseudo empirical likelihood estimator to

the case of more than two frames. In 2011, Singh and Mecatti suggested a class of multiplicity estimators

that encompasses all the multiple frames estimators available in the literature by suitably specifying a

set of parameters.
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xviii SUMMARY

However, little attention has been devoted to the study of qualitative variables in a multiple frame

context. Qualitative variables are needed to properly represent the responses provided to multiple choice

questions, quite frequent in surveys. An important contribution of this thesis is related to the formulation

of estimators for the proportions of response variables with discrete outcomes. Estimators for proportions

of both multinomial and ordinal response variables have been proposed.

On the other hand, benefits of the multiple frame approach have increased their popularity among the

scientific community and now this methodology is frequently used when conducting surveys. Remarkable

is the use of dual frame surveys when carrying out telephone surveys. In some subject areas (e.g.,

electoral), face-to-face surveys have been completely ousted by telephone interviewing. Telephone surveys

present some drawbacks with regard to coverage, due to the absence of a telephone in some households

and the generalized use of mobile phones, which are sometimes replacing fixed (land) lines entirely. Dual

frame telephone surveys that combine Random-Digit-Dialing (RDD) landline telephone samples and cell

phone samples are a good solution to that issue since they reduce the noncoverage due to cell-only

households in RDD landline telephone surveys. Therefore, in that situations, software for analyzing data

coming from dual frame surveys would be very useful. No existing software covered dual frame estimation

procedures until Frames2, another important contribution of this thesis, was released. Frames2 is an R

package for point and interval estimation in a dual frame context which implements the main estimators

for dual frame data proposed so far.

This thesis is presented as a compendium of 4 publications in relation with the contents of the

thesis. 3 of the papers are already published in specialized journals and the fourth one is submitted for

reviewing. The full version of the papers is included in Appendices A1 - A4, in the second part of the

thesis, at the end of it. Previous to the appendix section, a list of chapters that summarize the most

important aspects of the papers to facilitate their reading is presented. The first chapter constitutes an

introduction to the problem of the estimation in a multiple frame context and a comprehensive overview

of the existing approaches for estimating parameters from data coming from a multiple frame survey.

Then, the objectives this thesis pursues are enumerated. The methodology used and the most relevant

results obtained are presented in Chapters 3 and 4, respectively. Chapter 5 lists the conclusions derived

from the results obtained. Finally, Chapter 6 provides some notes on the current research related with

the topics addressed in the thesis that is being carried out at present.



Resumen

Las encuestas con marcos múltiples fueron propuestas por Hartley (1962) como un mecanismo para la

reducción de los costes de la recolección de datos que consegúıa una precisión en los resultados similar a la

obtenida con las encuestas de un único marco. En una encuesta con marcos múltiples se dispone de Q ≥ 2

marcos muestrales. Aunque cada uno de ellos puede ser incompleto, se supone que, conjuntamente, cubren

la totalidad de la población de interés. A continuación, se selecciona independientemente una muestra de

cada marco considerando diseños muestrales que pueden diferir según el marco y la información recopilada

se combina de forma adecuada para obtener estimaciones. Desde su aparición, la teoŕıa de las encuestas

con marcos múltiples ha experimentado un importante desarrollo y, como consecuencia, se han formulado

numerosos estimadores para el total de una variable continua. Los primeros estimadores se plantearon

para el caso en que se dispone de dos marcos para el muestreo (caso conocido como dual frame o de marcos

duales). El mismo Hartley (1962) propuso el primer estimador para marcos duales, que fue mejorado

posteriormente por Lund (1968) y por Fuller y Burmeister (1972). Bankier (1986) y Kalton y Anderson

(1986) y Skinner (1991) sugirieron nuevos estimadores para marcos duales basados en un nuevo enfoque,

denominado “single frame”. Skinner y Rao (1996) y Rao y Wu (2010) utilizaron técnicas basadas en

la verosimilitud para obtener estimadores que se ha demostrado funcionan bien para diseños muestrales

complejos. Más recientemente, Ranalli et al. (2015) y Elkasabi et al. (2015) consideraron métodos de

calibración para calcular estimadores para marcos duales.

En los últimos años, han visto la luz un buen número de trabajos de investigación centrados en la

estimación en el caso en que se dispone de tres o más marcos muestrales. Lohr y Rao (2006) extendieron

algunos de los estimadores propuestos para marcos duales al caso de tres o más marcos muestrales. Mecatti

(2007) consideró una nueva metodoloǵıa basada en la multiplicidad de las unidades de la muestra (es

decir, en el número de marcos en los que la unidad se incluye) para proponer un estimador que es muy

xix



xx RESUMEN

sencillo de calcular. Rao and Wu (2010) también consideraron un enfoque basado en la multiplicidad para

proponer una extensión al caso de más de dos marcos muestrales del estimador de pseudo verosimilitud

emṕırica que ellos mismos formularon. En 2011, Singh and Mecatti propusieron una clase de estimadores

de multiplicidad que englobaba como casos particulares a todos los estimadores para marcos múltiples

formulados hasta la fecha. Cada estimador puede obtenerse sin más que ajustar de forma adecuada los

valores de un conjunto de parámetros.

Sin embargo, no se ha profundizado demasiado en el estudio de variables cuantitativas en encuestas

con marcos múltiples. Este tipo de variables es necesario, por ejemplo, para representar correctamente

las respuestas que los individuos muestreados proporcionan a preguntas de respuesta múltiple. Una de

las contribuciones más importantes de esta tesis es la formulación de estimadores para la estimación

de proporciones de categoŕıas de variables de respuesta discreta. Se ha considerado tanto el caso en

que las posibles opciones de la variable respuesta no están ordenadas como aquel otro en que śı existe

un determinado orden entre dichas opciones, formulando estimadores adecuados para cada una de las

situaciones.

Por otro lado, los beneficios derivados del uso de encuestas con marcos múltiples han hecho que su

popularidad se dispare entre la comunidad cient́ıfica de manera que son muchas las instituciones, tanto

públicas como privadas, que se decantan por una metodoloǵıa basada en marcos múltiples a la hora de

llevar a cabo sus encuestas. Especialmente llamativo es el uso de encuestas telefónicas que consideran dos

marcos muestrales. En algunas áreas, las encuestas presenciales han sido completamente reemplazadas

por las telefónicas. Este el caso, por ejemplo, de las encuestas electorales. Las encuestas telefónicas

presentan ciertos inconvenientes relativos a la cobertura, debido a la ausencia de teléfono en algunos

hogares y al uso generalizado de teléfonos móviles, los cuales están sustituyendo a los teléfonos fijos en

algunos hogares. Una buena solución para este problema viene dada por las encuestas telefónicas con

dos marcos muestrales que combinan una muestra de teléfonos fijos y otra de teléfonos móviles obtenidas

a través de un marcado automático aleatorio. Mediante esta solución se reduce la falta de cobertura

que se obtendŕıa si la encuesta se llevara a cabo únicamente a través de teléfonos fijos producida por

aquellos hogares en los que solo se dispone de teléfono móvil. Por todo ello, en este tipo de situaciones, se

hace necesario algún software estad́ıstico para el análisis de datos provenientes de encuestas con marcos

duales. Frames2, otra de las contribuciones más destacadas de esta tesis, es un paquete o libreŕıa para

el programa estad́ıstico de código abierto R para la estimación puntual y confidencial en encuestas con
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marcos duales. Este paquete implementa los principales estimadores para datos provenientes de marcos

duales propuestos hasta el momento.

Esta tesis se presenta como un compendio de 4 publicaciones relacionadas con los contenidos de

la propia tesis. 3 de los art́ıculos ya se encuentran publicados en revistas especializadas y el cuarto

se encuentra sometido a un proceso de revisión. La versión ı́ntegra de los art́ıculos se incluye en los

Apéndices A1 - A4, en la segunda parte de la tesis, al final de la misma. Antes de los apéndices, se

presentan varios caṕıtulos que resumen los aspectos clave de los art́ıculos para aśı facilitar la lectura de

los mismos. El primer caṕıtulo consituye una introducción al problema de la estimación en encuestas con

marcos múltiples aśı como una revisión de las alternativas existentes para la estimación de parámetros con

datos procedentes de este tipo de encuestas. A continuación se enumeran los objetivos que se persiguen

con esta tesis. La metodoloǵıa que se ha seguido y los resultados más importantes que se han obtenido

se muestran en los Caṕıtulos 3 y 4, respectivamente. En el Caṕıtulo 5 se listan las conclusiones más

relevantes que se derivan de los resultados. Por último, en el Caṕıtulo 6 se exponen brevemente cuáles

son los temas que están siendo investigados actualmente en relación con los contenidos de esta tesis.
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Chapter 1

Introduction

Classical sampling theory is based on the existence of a unique sampling frame that includes all the

units composing the target population. This is a very strong assumption which is rarely met in practice:

populations are constantly changing with new units entering and exiting the population every few time so

it is difficult to have an updated list of units from which to draw samples. In these cases, it is said that the

sampling frame is incomplete in the sense that it does not include all the units of the population. These

differences between the objective population and the sampling frame produce important coverage biases

and may affect results due to the non-representativeness of the samples selected from the incomplete

frame.

The multiple frame approach has arisen to overcome this issue. The main aim of a multiple frame

survey is to estimate the value of a population parameter from the data collected in a sample. To do

this, it is assumed that two or more frames are available for sampling and that, overall, they cover the

whole target population. So, although each sampling frame can be incomplete treated separately, it is

assumed that the union of all of them is complete in the sense that it contains each and every unit of

the population. This hypothesis is less restrictive than the one assumed by the classical sampling theory

since it is easier to fully reach a population if more than one frame is used. Furthermore, the frames

of a multiple frame setting are easier to maintain due to their reduced size in comparison with a single

complete frame.

Multiple frame surveys were first introduced by Hartley in 1962 as a device for reducing the costs

3
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derived from data collection while still covering the whole target population. As an example, consider

a two frame survey where one of the frames is cheap to sampling from but has an incomplete coverage,

whereas the second one is more expensive to sample from but it covers more of the population. In that

situation, a multiple frame approach could take advantage of the sampling inexpensiveness of the first

frame and of the good coverage of the second to provide better results. Sampling costs depend on many

factors as the size of the sample or the mode of interview. In a multiple frame survey these settings can

be chosen differently for each frame depending on the peculiarities of each one, so that an appropriate

choice may lead to noticeable cost decreases. Other additional technical details, as the sampling design,

can also be set independently for each frame.

The use of multiple frames surveys is especially advisable when studying “hidden” or “hard-to-reach”

populations. These types of populations are generally named as “rare” populations because individuals

composing them present a characteristic which is not frequent in the general population. Although

authors have defined the rare populations in several ways, a widely accepted definition for the concept

of rare population is the one proposed by Lohr (2009a) who identifies a population as rare when the

number of individuals composing it is very small or, even being large, it represents only a small fraction

of the global population (usually 10% or less). People suffering from diseases (as AIDS or Alzheimer)

or homosexual people are good examples of rare populations. Due to the small representativeness of the

individuals of a rare population within the general population, a random sample drawn from this general

group will likely include few “rare” elements. In that case, a multiple frame approach may be considered

and additional frames containing a high rate of units of the rare population can be sampled in order to

increase the sampling size and improve the accuracy of the results. For example, for the population of

Alzheimer disease patients, besides sampling in a general sampling frame one could sample in alternative

frames as specialized clinics or homes for the elderly to reach a higher number of individuals belonging to

the target population. This same reasoning could be applied to elusive or mobile populations which can be

seen as a type of rare population due to the difficulties to locate (and therefore, to contact) the individuals

composing them. Lots of animal populations (insects, migratory animals, nocturnal behaviour birds,...)

are examples of elusive or mobile populations. Finally, a population can be rare both for representing

a small part of the global population and for being nomadic as, for example, the homeless people of a

particular city.

Multiple frame methodology encompasses all the approaches developed in order to use data coming
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Figure 1.1: Two frames with overlapping

for two or more sampling frames. However, the majority of the literature published so far focuses on the

dual frame approach, that is, on the case in which only two frames are available for sampling. The most

general situation in a dual frame context is the one depicted in Figure 1.1, in which the two sampling

frames present a certain degree of overlapping.

Here, the two frames (generically termed as frame A and frame B) originate three different disjoint

non-empty areas or domains: domain a, including population units that belong exclusively to frame

A; domain b, including population units that belong only to frame B and, finally, domain ab, including

population units that belong simultaneously to both frames. To give an example, let suppose a population

of phone users where two sampling frames can be clearly distinguished: the frame A would be, in this

case, the one consisting of the users of landline phones and the frame B would be composed of the users

of cell phones. We could differentiate, then, the following groups of people: landline-only users, cell-only

users and both landline and cell users, which will compose the domains a, b and ab, respectively.

Alternative situations may arise depending on the relative positions of the two frames. Figure 1.2

depicts the case where frame B is totally included in frame A, that is, frame B is a subset of frame

A, which is assumed to be complete. In that case, the domain b is an empty set. This would be the

case, for example, in a survey where the population of interest is composed of the people facing gambling

problems where the frame A is a general population frame and the frame B is composed of the individuals

attending therapies to overcome gambling addiction. On the other hand, in figure 1.3 is shown the case

in which the two sampling frames coincide, so the only non-empty domain is ab. That kind of situations

arise when two different lists of individuals (maybe coming from different sources) of the same target
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Figure 1.2: Frame B is
included in frame A.

Figure 1.3: Frame A and
frame B exactly match.

Figure 1.4: Frame A and frame B are disjoint.

population are available from sampling. Finally, the situation in which ab is an empty domain and the

two frames do not share units is depicted in figure 1.4. As an example, let suppose that a list of the male

individuals and a different one for the female individuals composing the population we are interested in

are available. This case can be seen as a special case of a stratified design where each frame represents

a stratum. Therefore, it could be analyzed using the customary tools of the stratified sampling and it is

not very relevant from a dual frame perspective.

1.1 The estimation problem in dual frame surveys

Without loss of generality, let consider the situation depicted in Figure 1.1, where none of the domains

a, b or ab are empty. Let U be a finite population composed of N units labeled from 1 to N , U =

{1, ..., k, ..., N} and let note the number of units composing frame A and frame B as NA and NB ,

respectively. Similarly, the number of units included in domains a, b and ab are Na, Nb and Nab,

respectively. Let suppose that the parameter of interest is the population total of a continuous variable,

and let note that quantity by Y . Therefore Y =
∑N
k=1 yk, with yk the value of the variable for the k− th

individual of the population. The disjointness of the domains allows us to rewrite the population total as

a sum of domain totals, Y = Ya+Yab+Yb =
∑Na

k=1 yk +
∑Nab

k=1 yk +
∑Nb

k=1 yk. To carry out the estimation

of the parameter, two random samples are independently drawn, one from each frame. Let denote the

sets of units included in the sample drawn from frame A and in the sample drawn from frame B by sA

and sB , respectively, and let suppose that the number of units selected in each one are nA and nB . The

final set of units sampled can be computed, then, as s = sA ∪ sB with size n = nA + nB . Typically, the

sample sA includes both units from domain a and domain ab and the sample sB includes units belonging

to domain b and to domain ab too, as depicted in the Figure 1.5. Sample sA can be poststratified as
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Figure 1.5: Samples drawn from frames.

sA = sa ∪ sAab where sa and sAab are two sets of units of sizes na and nAab that include the units of sA

belonging to domains a and ab, respectively. Similarly, sB may be poststratified as sB = sb ∪ sBab with sb

and sBab the sets of units of sB , with sizes nb and nBab, belonging to b and ab.

As indicated before, a different sampling design may be used in each frame, hence probabilities of

being selected in the final sample may differ for the population units, depending on the frame each one

belongs to. Let note by πAk = P (k ∈ sA) the first order inclusion probability for k − th unit of the frame

A, k = 1, . . . , NA. Therefore, πAk indicates the probability of the k− th unit of the frame A to be selected

in the sample sA and, consequently, in the final sample, s. Similarly, πBk = P (k ∈ sB) denotes the first

order inclusion probability for the k − th unit of the frame B, k = 1, . . . , NB . The design weight for

each unit is defined as the inverse of its first order inclusion probability, that is, dAk = 1/πAk is the design

weight for the k − th unit of the frame A and dBk = 1/πBk is the design weight for the k − th unit of the

frame B.

Using the values of the interest variable observed in the units selected in the sample sA it is possible to

compute the customary Horvitz-Thompson estimator of the population total for each of the two domains

composing the frame A in the following way:

Ŷa =
∑
k∈sA

dAk ykδk(a) =
∑
k∈sa

dAk yk Ŷ Aab =
∑
k∈sA

dAk ykδk(ab) =
∑
k∈sAab

dAk yk

where δ(a) and δ(ab) are the indicator variables for domains a and ab so that δk(a) = 1 when the k − th

unit of the sample sA belongs to domain a and 0 otherwise. Equally, δk(ab) = 1 whether unit k is included
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in domain ab and 0 otherwise.

Similarly, from the information collected in the sample sB we can compute the Horvitz-Thompson

estimator of the population total for domains b and ab as follows:

Ŷb =
∑
k∈sB

dBk ykδk(b) =
∑
k∈sb

dBk yk Ŷ Bab =
∑
k∈sB

dBk ykδk(ab) =
∑
k∈sBab

dBk yk

where, in this case, δk(b) takes the value 1 when the k − th unit of the sample sB and 0 otherwise. On

the other hand, δk(ab) = 1 if the k − th unit of sB belongs to the overlap domain. It is important to

note that both Ŷ Aab and Ŷ Bab are estimators of the population total in the domain ab but while the first is

computed from the information collected in sample sA, the latter uses the information of sB .

One could estimate, then, the population total as the sum of the 4 domain estimates, that is Ŷ =

Ŷa + Ŷ Aab + Ŷ Bab + Ŷb. The main drawback of this estimator is that it is not an unbiased estimator of Y .

Actually,

E[Ŷ ] = E[Ŷa + Ŷ Aab + Ŷ Bab + Ŷb] = Ya + Yab + Yab + Yb = Y + Yab,

so this estimator overestimates the real value of the parameter Y . The problem comes from the overlap

domain, where two different estimates are considered.

1.2 Different approaches for estimation in dual frame surveys

Units in the overlap domain ab can be selected in both samples sA and sB , so the real probability of being

included in the final sample s of any unit belonging to the overlap domain is larger than the probability

of being included in sA and also larger than the probability of being included in sB . In other words,

the true first order inclusion probability of the k − th individual of ab is neither πAk nor πBk but larger.

Indeed, the omission of that fact is the cause of the overestimating issue exposed in the previous section.

Often, authors refer to this issue as the “multiplicity” or “duplicity issue” due to it is originated by the

disregarded appearance of the units in the overlap domain in both sampling frames.

There are several approaches to overcome this problem and to obtain adequate estimates in a dual

frame survey. The most used ones are the screening procedure and the dual and single frame approaches.
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1.2.1 Screening approach

Screening techniques solve the problem of the overestimation in dual frame surveys just by removing the

intersection between frames. That is, they transform scenarios as the depicted in Figures 1.1, 1.2 and

1.3 in a scenario similar to the shown Fn figure 1.4. To do this, they remove the units in the overlap

domain from one of the sampling frames removing, then, the overlap as well. As mentioned previously,

at this point, stratified estimators can be considered for estimating the parameter of interest from data

collected in the samples coming from each frame, which represents a stratum in this case.

The main drawback of this approach is the necessity of identifying the population units that are

included simultaneously in both sampling frames to properly remove them from one of the frames. In

most cases it is impossible to know beforehand the domain each population unit belongs to. Usually,

that information is only available for the sample units, which are assigned to the corresponding domain

once the needed information is collected during the interview. However, there are situations where the

screening process is feasible. González-Villalobos and Wallace (1996) presented an example of a screening

survey where both a land area frame and a list frame of farms were considered.

Benefits of the screening process have been questioned in literature. Indeed, González-Villalobos

and Wallace (1996) themselves refer to the screening as “an operation that requires special attention

and resources”. On the other hand, Mecatti (2014) affirmed that screening operations can be resource-

consuming, error-prone, and essentially amount to missed opportunity to collect data from a willing

participant. Kennedy (2007) discussed the effects of screening in a dual frame phone survey, finding that

the screening techniques may increase the nonresponse error leading to different results depending on the

frame the repeated units are removed from.

Whatever the case, since any screening survey can be seen as a particular case of a stratified survey,

we are not discussing the topic in depth.

1.2.2 Dual frame approach

The dual frame approach suggests a convex combination of the two overlap estimates to obtain an

unbiased global estimator of the parameter of interest. That is, the population total in the common

domain, Yab, is estimated as Ŷab = θŶ Aab + (1 − θ)Ŷ Bab , where the weighting parameter θ is between 0

and 1, θ ∈ [0, 1]. When the value 0 is selected, Ŷab = Ŷ Bab so only the information regarding units of
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the overlap domain that has been collected from the units selected in the sample drawn from frame B is

used to estimate the population total in domain ab. Similarly, when θ = 1, Ŷab = Ŷ Aab . Both situations

can be considered as particular cases of screening and, therefore, of stratification. For this reason, from

now on we are considering only cases where θ ∈ (0, 1). Summarizing, the dual frame approach weights

the two estimates of the parameter of interest of the overlap domain to avoid overestimation issues. The

population total is estimated, then, through the estimator

Ŷ = Ŷa + θŶ Aab + (1− θ)Ŷ Bab + Ŷb, (1.1)

which is now clearly unbiased for Y .

Estimator (1.1) can be rewritten as Ŷ =
∑
k∈s d

◦
kyk, where the weights d◦k are defined for the units in

the poststratified samples as follows:

d◦k =



dAk if k ∈ sa

θdAk if k ∈ sAab

(1− θ)dBk if k ∈ sBab

dBk if k ∈ sb

(1.2)

Unlike the screening, the dual frame approach can always be applied since it does not require any

previous or additional information but only the choice of the parameter θ. Along the years, authors have

proposed different procedures for selecting the value of θ, yielding to different estimators as it will be

shown in the subsequent section. These techniques encompass simple options that select a fixed value for

θ and more complex approaches where θ is determined to optimize, in some sense, the estimates.

1.2.3 Single frame approach

The idea underlying the single frame approach (Bankier (1986) and Kalton and Anderson (1986)) is to

adjust the inclusion probabilities (or, equivalently, the design weights) of the units of the overlap domain

to properly take into account the fact that they may be selected both in samples sA and sB . After

that, the units composing the two frames may be combined into a single dataset (hence the name of the

technique).

As mentioned before, a population unit belonging to the domain ab has the chance of being included
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in the sample sA and in the sample sB too. So, the real first order inclusion probability for the k − th

unit of the overlap domain is πAk + πBk . Then, new sets of adjusted weights can be defined for the units

of the poststratified samples as follows

d̃Ak =

 dAk if k ∈ sa

(1/dAk + 1/dBk )−1 if k ∈ sAab
d̃Bk =

 dBk if k ∈ sb

(1/dAk + 1/dBk )−1 if k ∈ sBab

or, summarizing,

d̃k =


dAk if k ∈ sa

(1/dAk + 1/dBk )−1 if k ∈ sAab ∪ sBab

dBk if k ∈ sb

(1.3)

The main problem with the computation of the weights in (1.3) lies in the requirement of the knowledge

of the first order inclusion probabilities for the units composing the common domain both under the

sampling design used in frame A and the sampling design used in frame B, which is not always the case,

especially when complex sampling designs are considered.

1.3 Existing estimators in dual frame surveys

Since Hartley presented the dual frame methodology in 1962, a number of estimators have been formulated

to estimate parameters using data coming from two frames, both under dual and single frame approaches.

The simplest estimator is computed by selecting a predetermined value between 0 and 1 for the

weighting parameter θ and then by substituting it in the expression (1.1). The resulting estimator is

often called “fixed weight estimator”. Different criteria can be considered for the choice of θ based on

previous studies or on known information about the behavior of the interest variable in the overlap

domain. A value of θ which usually provide good results (Brick et al. (2006)) is θ = 1/2 and the

corresponding estimator in that case can be written as

ŶFW = Ŷa +
1

2
Ŷ Aab +

1

2
Ŷ Bab + Ŷb = Ŷa +

1

2
(Ŷ Aab + Ŷ Bab ) + Ŷb (1.4)

Hartley (1962) generalized the idea of the fixed weight estimator, proposing a class of estimators for
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a simple random sampling design in each frame in the form

ŶH = Ŷa + θŶ Aab + (1− θ)Ŷ Bab + Ŷb (1.5)

with θ ∈ (0, 1). Hartley himself computed in 1974 the optimal value of θ in the sense that the asymptotic

variance of the estimator is minimized. That optimal value can be written as follows

θH =
V (Ŷ Bab ) + Cov(Ŷb, Ŷ

B
ab )− Cov(Ŷa, Ŷ

A
ab)

V (Ŷ Aab) + V (Ŷ Bab )

where V () and Cov() represent the population variance of an estimator and the population covariance

between two estimators, respectively. Usually, these population variances and covariances are unknown

and have to be estimated from the information available in samples sA and sB , resulting in the following

estimator of θH :

θ̂H =
V̂ (Ŷ Bab ) + Ĉov(Ŷb, Ŷ

B
ab )− Ĉov(Ŷa, Ŷ

A
ab)

V̂ (Ŷ Aab) + V̂ (Ŷ Bab )

Since θ̂H is consistent for θH , Hartley estimator is asymptotically optimal among all estimators of the

form Ŷa + θŶ Aab + (1 − θ)Ŷ Bab + Ŷb. However, this estimator presents some important drawbacks. First,

the fact that θH depends on values of the main variable makes the estimator internally inconsistent in

the sense that the sum of the estimates in the subsets conforming a partition of the population does not

coincide with the estimation for the entire population. For example, let suppose that Ŷ1 estimates the

men in the population, Ŷ2 estimates the women in the population and Ŷ3 estimates the total number

of people in the population. Then, it would be desirable that Ŷ1 + Ŷ2 = Ŷ3. But this is only true

when the estimates are computed using an internally consistent estimator, which is not the case of the

Hartley estimator. Furthermore, as indicated by Lohr (2009b), when the absolute value of Ĉov(Ŷb, Ŷ
B
ab )

or Ĉov(Ŷa, Ŷ
A
ab) is large, the values of θ̂H may fall outside the interval (0, 1).

Lund (1968) improved Hartley estimator by considering the random division of the frame sample sizes

among domains actually achieved in the sample. The estimator he proposed is given by

ŶL = Ŷa +

(
θ
NA
nA

nAab + (1− θ)NB
nB

nBab

)
Ŷab
nab

+ Ŷb, (1.6)

where nAab and nBab represent the number of units of the samples sA and sB , respectively, belonging to
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domain ab. On the other hand, Ŷab =
∑
k∈sAab

yk +
∑
k∈sBab

yk and nab = nAab +nBab. Again, θ is a constant

in the interval (0, 1). As it was the case with the Hartley estimator, computation of the optimum value of

θ that minimizes the asymptotic variance of the Lund estimator involves unknown population quantities,

so that it has to be estimated from the information collected in the sample. Lund suggested the estimator

θ̂L =

((
NAna
n2
A

+
NBnb
n2
B

)
yab
nab

)−1
(
Ŷa
nA

+
NBnb
n2
B

Ŷab
nab
− Ŷb
nB

)
,

with na and nb the number of sample units belonging to domain a and to domain b, respectively. θ̂L

depends on the values of the main variable, making the estimator internally inconsistent. It can be proved

that the variance of the Lund estimator is always less or equal than the variance of the Hartley estimator,

irrespective of the value of θ.

Fuller and Burmeister (1972) introduced information about the estimation of the unknown overlap

domain size, Nab, to further improve the Hartley estimator. The estimator they proposed can be written

as

ŶFB = Ŷa + β1Ŷ
A
ab + (1− β1)Ŷ Bab + Ŷb + β2(N̂A

ab − N̂B
ab), (1.7)

where N̂A
ab =

∑
k∈sAab

dAk and N̂B
ab =

∑
k∈sBab

dBk are the estimates of the overlap domain size computed

from the information collected in sA and in sB , respectively. The authors also shown that

β1FB

β2FB

 =−

 V (Ŷ Aab − Ŷ Bab ) Cov(Ŷ Aab − Ŷ Bab , N̂A
ab − N̂B

ab)

Cov(Ŷ Aab − Ŷ Bab , N̂A
ab − N̂B

ab) V (N̂A
ab − N̂B

ab)


−1

×

Cov(Ŷa + Ŷb + Ŷ Bab , Ŷ
A
ab − Ŷ Bab )

Cov(Ŷa + Ŷb + Ŷ Bab , N̂
A
ab − N̂B

ab)


are the optimal values for β1 and β2 in the sense of minimization the variance of the estimator. In

practice, values β1FB
and β2FB

are generally unknown and have to be estimated from sample data,

resulting in different values depending on the response variable. Therefore, this estimator is also internally

inconsistent.

The Hartley and the Lund estimators can be seen as particular cases of the Fuller and Burmeister

estimator, presenting the latter the smallest asymptotic variance of all.

The estimators described so far were proposed following a dual frame approach. Bankier (1986) and
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Kalton and Anderson (1986) introduced the single frame methodology as an alternative to the dual frame

approach. They suggested to group the units of the two samples in a single dataset and use the modified

weights defined in (1.3) to propose the estimator

ŶSF =
∑
k∈sA

ykd̃k +
∑
k∈sB

ykd̃k =
∑
k∈s

ykd̃k (1.8)

This estimator is easy to compute and has the advantage of using the same set of weights regardless of

the main variable considered. On the other hand, it presents the inconvenient of requiring the knowledge

of the inclusion probabilities of the units belonging to the intersection domain under the sampling designs

considered in both frames and not only under the one used in the frame the unit has been sampled from.

This may be a challenging deal when the samples selected are not self-weighted.

The Bankier-Kalton-Anderson estimator (often called single frame estimator) can be improved when

the frame sizes NA and NB are known. In this case, several procedures can be used to incorporate that

auxiliary information to the estimation process. Bankier (1986) calibrated the single frame estimator

to the frames sizes using an iterative algorithm based on the raking ratio estimation. Rao and Skinner

(1996) proved that the raking procedure converges and provided the explicit form of the estimator

ŶSFRR =
NA − N̂rake

ab

N̂a
Ŷa +

NB − N̂rake
ab

N̂b
Ŷb +

N̂rake
ab

N̂abS
ŶabS , (1.9)

where ŶabS =
∑
k∈sAab

ykd̃k +
∑
k∈sBab

ykd̃k, N̂abS =
∑
k∈sAab

d̃k +
∑
k∈sBab

d̃k, N̂a =
∑
k∈sa d

A
k , N̂b =∑

k∈sb d
B
k and N̂rake

ab is the smallest root of the quadratic equation N̂abSx
2−(N̂abS(NA+NB)+N̂aSN̂bS)x+

N̂abSNANB = 0, with N̂aS =
∑
k∈sa d̃k and N̂bS =

∑
k∈sb d̃k.

Alternatively, regression estimation can be considered for adjusting the frame sizes NA and NB . Lohr

and Rao (2000) proposed the following estimator

ŶSFReg = ŶSF + β̂
′

S(NA − N̂AS , NB − N̂BS)
′
, (1.10)

where β̂
′

S = −Ĉov(N̂AS/V̂ (N̂AS), N̂BS/V̂ (N̂BS), ŶSF ), with N̂AS =
∑
k∈sA d̃k and N̂BS =

∑
k∈sB d̃k.

On the other hand, V̂ (N̂AS) and V̂ (N̂BS) are the estimated variances for the estimators N̂AS and N̂BS ,

respectively.

Skinner and Rao (1996) used a pseudo maximum likelihood approach to extend the Fuller and Burmeis-
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ter estimator (1.7), which assumes a simple random sampling in each frame, to the case of complex sam-

pling designs. Their results were based on the paper of Skinner (1991), who shown that the Fuller and

Burmeister estimator can be derived following maximum likelihood principles. As a result, they proposed

the following estimator

ŶPML =
NA − N̂PML

ab (θ)

N̂a
Ŷa +

NB − N̂PML
ab (θ)

N̂b
Ŷb

+
N̂PML
ab (θ)

θN̂A
ab + (1− θ)N̂B

ab

[θŶ Aab + (1− θ)Ŷ Bab ],
(1.11)

where N̂PML
ab (θ) is the smallest of the roots of quadratic equation [θ/NB+(1−θ)/NA]x2−[1+θN̂A

ab/NB+

(1− θ)N̂B
ab/NA]x+ θN̂A

ab + (1− θ)N̂B
ab = 0 and θ ∈ (0, 1). It is also shown that the following value for θ

θPML =
NaNBV (N̂B

ab)

NaNBV (N̂B
ab) +NbNAV (N̂A

ab)

minimizes the variance of ŶPML. Values Na, Nb and the variances involved in the computation of θPML

are usually unknown and must be estimated from the sample data yielding to the estimated value θ̂PML

which is substituted in (1.11). The authors suggested the following approximation for θPML based only

on the variances of the estimators of the overlap domain:

φPML =
V (N̂B

ab)

V (N̂B
ab) + V (N̂A

ab)
,

which is easier to compute. In order to calculate the parameter θPML it is required all the three domains

a, b or ab to be nonempty and variances V (N̂A
ab) and V (N̂B

ab) to be positive. Otherwise, serious difficulties

may arise and alternative approaches have to be considered. This is the situation, for example, when the

sampling frames are placed as shown in Figure 1.2 or in Figure 1.3. In such cases, Lohr and Rao (2006)

proposed calculate the value of θ using average design effects for a fixed subset of important variables.

θPML does not depends on values of the response variable which assures the internal consistency of

the estimator. On the other hand, although the pseudo maximum likelihood may not be optimal under

complex sampling designs, Skinner and Rao (1996) and Lohr and Rao (2006) found that it has small

mean squared error and works well in many situations.

Usually, additional information about auxiliary variables is collected when conducting surveys. This
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information may be taken into account in the estimation process resulting in a considerable improvement

of the accuracy of the estimates when there is a significant relationship between the set of auxiliary and

the main variables. In a dual frame context, the most general situation is when a totally different set of

auxiliary variables is considered in each frame. In that case, one may note as X̌A = (XA
1 , ...,X

A
p ) the set

of the p variables composing the auxiliary information in frame A, so that the vector xAk = (xAk1 , ..., x
A
kp

)

contains the values of the variables X̌A for the k− th member of the frame A. Similarly, in frame B a set

of r additional variables is considered and we note it as X̌B = (XB
1 , ...,X

B
r ), being xBl = (xBl1 , ..., x

B
lr

) the

combination of values of X̌B for the l − th individual belonging to frame B. When sampling, together

with the main variable, the corresponding auxiliary variables are observed. So, for the k − th individual

interviewed in sA, values (yk,x
A
k1
, ...,xAkp) are collected and, analogously values of (yl,x

B
l1
, ...,xBlr ) are

noted for the l-th individual of sB .

In 2010, Rao and Wu formulated a pseudo empirical likelihood estimator for the mean of a quantitative

variable which is able to deal with auxiliary information. The estimator is in the form

ˆ̄YPEL =
Na
N

ˆ̄Ya + θ
Nab
N

ˆ̄Y Aab + (1− θ)Nab
N

ˆ̄Y Bab +
Nb
N

ˆ̄Yb, (1.12)

where, in this case, ˆ̄Ya =
∑
k∈sa p̂akyk,

ˆ̄Y Aab =
∑
k∈sAab

p̂Aabkyk,
ˆ̄Y Bab =

∑
k∈sBab

p̂Babkyk and ˆ̄Yb =
∑
k∈sb p̂bkyk.

The four sets of probability measures pa = (p̂a1, ..., p̂ana)
′
, pAab = (p̂Aab1, ..., p̂

A
abnA

ab
)
′
, pBab = (p̂Bab1, ..., p̂

B
abnB

ab
)
′

and pb = (p̂b1, ..., p̂bnb
)
′

are such that maximize the following pseudo empirical likelihood function

l(pa,p
A
ab,p

B
ab,pb) =n

Na
N

∑
k∈sa

d̃aklog(pak) + θ
Nab
N

∑
k∈sAab

d̃Aabklog(pAabk)

+(1− θ)Nab
N

∑
k∈sBab

d̃Babklog(pBabk) +
Nb
N

∑
k∈sb

d̃bklog(pbk)


subject to the constraints

∑
k∈sa

pak =
∑
k∈sAab

pAabk =
∑
k∈sBab

pBabk =
∑
k∈sb

pbk = 1. (1.13)

The weights d̃ak = dAk /
∑
k∈sa d

A
k , d̃

A
abk = dAk /

∑
k∈sAab

dAk , d̃
B
abk = dBk /

∑
k∈sBab

dBk and d̃bk = dBk /
∑
k∈sb d

B
k

are the normalized weights by domains. Again, θ is a weighting parameter between 0 and 1.
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The authors also impose the additional constraint

∑
k∈sAab

pAabkyk =
∑
k∈sBab

pBabkyk (1.14)

to make sure that the two estimates for the mean of the variable in the common domain coincide, granting

consistency to the estimator. They found that the optimal value of θ that minimizes the asymptotic

variance of the estimator is given by

θPEL =
V ( ˆ̄Y Bab )

V ( ˆ̄Y Aab) + V ( ˆ̄Y Bab )
,

which generally depends on the values of the main variable leading to internal inconsistencies. As an

alternative, they propose the use of (1.3) as weighting parameter.

Note that to compute the estimator (1.12) it is assumed that frame sizes, NA and NB , and overlap

domain size, Nab, are known. However, in their paper, Rao and Wu indicate how to estimate these values

when one or several of then are not known.

The pseudo empirical likelihood estimator can incorporate auxiliary population information into in-

ference through additional constraints. So, when the vector XA of population totals of the variables X̌A

is known, the constraint

Na
N

∑
k∈sa

pakx
A
k + θ

Nab
N

∑
k∈sAab

pAabkx
A
k =

XA

N

is considered together with constraints (1.13) and (1.14) when maximizing the pseudo empirical likelihood

function. A similar constraint can be posed in the case where XB , the vector of population totals of X̌B ,

is known.

Recently, Ranalli et al. (2015) extended the calibration techniques originally proposed by Deville and

Särndal (1992) for an only frame to the case of two sampling frames. As a result, they suggested two

different model calibrated estimators: one constructed under the dual frame approach and another one

formulated following the single frame methodology.

Under the assumption of frame sizes, NA and NB , and overlap domain size, Nab, known, the dual

frame calibration estimator can be written as
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ŶCALDF
=
∑
k∈sA

w◦kyk +
∑
k∈sB

w◦kyk =
∑
k∈s

w◦kyk, (1.15)

where the weights w◦k are such that minimize
∑
k∈sG(w◦k, d

◦
k), with G(·, ·) a particular distance measure,

subject to

∑
k∈sa

w◦k = Na
∑
k∈sAab

w◦k = θNab
∑
k∈sBab

w◦k = (1− θ)Nab
∑
k∈sb

w◦k = Nb (1.16)

being θ ∈ (0, 1) fixed. The authors suggest the choice of values for θ that do not depend on the values of

the main variable, as is the case of (1.3).

The calibration process induces a different final value for the weights, which depends on both the

distance measure G(·, ·) used and on the benchmark constraints applied. On the other hand, given a

value for θ, the final set of weights does not depend on the values of the variables of interest and can

therefore be used for all variables.

As with the estimator (1.12), the dual frame calibration estimator is able to incorporate information

about auxiliary variables to the estimation process. Supposing that XA, the vector of population totals

for the set of variables X̌A observed for the units of frame A, is known, one should consider, in addition

to (1.16), the calibration constraint

∑
k∈sa

w◦kx
A
k +

∑
k∈sAab

w◦kx
A
k +

∑
k∈sBab

w◦kx
A
k = XA. (1.17)

Note that formulation of (1.17) requires the knowledge of values of xAk for the units of sBab. Although

these units are included in the sample drawn from frame B they also form part of the frame A (indeed,

they belong to both frames, since they are located in the overlap domain ab). A constraint similar to

(1.17) is formulated when the population totals about auxiliary variables of the frame B are available.

In the context of NA, NB and Nab known, the second calibration estimator developed by Ranalli et.

al (2015), often referred as single frame calibration estimator, is given by the following expression:

ŶCALSF
=
∑
k∈sA

w̃kyk +
∑
k∈sB

w̃kyk =
∑
k∈s

w̃kyk, (1.18)

where, in this case, weights w̃k are such that minimize G(w̃k, d̃k), being again G(·, ·) a particular distance
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measure, subject to the following constraints:

∑
k∈sa

w̃k = Na
∑
k∈sAab

w̃k +
∑
k∈sBab

w̃k = Nab
∑
k∈sb

w̃k = Nb (1.19)

If the vector of population totals XA of the auxiliary variables X̌A observed in the frame A is known,

then a constraint similar to (1.17) is also considered, but replacing w◦k by w̃k. The same comment is

applicable if the vector XB is known.

Both estimators present quite a few similarities, mainly due to they have been constructed following

a similar procedure. However, they also show some differences. The most noticeable one lies in the use of

weights d◦k as starting weights for the calibration used by the dual frame estimator instead of the weights

d̃k used by the single frame one.

The two calibration estimators have been defined assuming the knowledge of the frame sizes and the

overlap domain size, which can be quite restrictive in some cases. Indeed, unlike the frame sizes, which

are usually known when conducting a dual frame survey, common domain size is not always available.

The authors also indicate the modifications that must be carried out in the set of constraints (1.16) and

(1.19) to encompass this situation. They also noticed that some of the estimators exposed so far, as (1.9)

or (1.12), can be seen as special cases of calibration estimators considering appropriate combinations of

distance measures and sets of constraints.

Elkasabi et al. (2015) also used a calibration approach to formulate the so called joint calibration

estimator, which may be expressed as

ŶJCE =
∑
k∈sA

w?kyk +
∑
k∈sB

w?kyk =
∑
k∈s

w?kyk, (1.20)

with weights w?k minimizing G(w?k, dk), a specific distance measure with respect to original design weights

subject to the constraints

∑
k∈s

w?k = N
∑
k∈sa

w?k = Na
∑
k∈sb

w?k = Nb (1.21)

Again, the population size N and the sizes of domains a and b are supposed to be known. This is

equivalent to know the frame sizes NA and NB and the overlap domain size Nab. The authors provide
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the explicit form for the weights w?k when the linear distance is considered.

If, additionally, the vector XA of population totals of the variables X̌A is known, an extra constraint,

similar to (1.17) where weights w◦k are replaced by w?k, is considered together with (1.21) when searching

the new set of weights. The same argument applies when XB is known.

The joint calibration estimator is asymptotically design unbiased conditional on the strong relationship

between the estimation variable and the auxiliary variables employed in the calibration.

1.4 Variance estimation in dual frame surveys

The estimation of the variance of estimators presented in the previous section is not always straightfor-

ward. For the majority of the estimators internally consistent, the estimation of the variance may be

carried out from the independence of the samples sA and sB . This is the case of estimators (1.1)(with a

fixed value of θ) or (1.8). In these situations, the estimated variance can be obtained as the sum of the

estimated variances of the estimators for the two samples. Thus, estimated variance of estimator (1.1)

may be expressed as

V̂ (Ŷ ) = V̂ (Ŷa + θŶ Aab) + V̂ ((1− θ)Ŷ Bab + Ŷb) (1.22)

The two estimated variances composing the sum may be obtained using the sampling design, so V̂ (Ŷ )

can be easily computed. Likewise, variance of (1.8) can be written as

V̂ (ŶSF ) = V̂

(∑
k∈sA

ykd̃k

)
+ V̂

(∑
k∈sB

ykd̃k

)
(1.23)

Nevertheless, this reasoning cannot be followed to estimate the variance of the pseudo maximum

likelihood estimator (1.11) and of the internally inconsistent estimators ((1.5), (1.6), (1.7) and (1.10)).

The computation of all these estimators involves the calculation of a weighting parameter that depends

directly on the values of the study variable or on estimated variances or covariances from the frames.

This generates an additional variability that must be captured when estimating the variance. A similar

comment is applied to the calibration estimators (1.15), (1.18) and (1.20) (and, therefore, for (1.9) and

(1.12)), since an extra variability that should be taken into account in the variance estimation is produced

when calibrating weights to population quantities. Each author addresses this issue by suggesting a

specific variance estimator for the estimator they propose, which leads to difficulties when comparing
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estimators.

In that cases, alternative techniques as Taylor linearization, jackknife or bootstrap have been proposed

to estimate the variance of the estimators in a unified way. Skinner and Rao (1996) used a method based

on the Taylor linearization to estimate the variance of the estimator (1.11). Lohr and Rao (2000) discussed

that procedure in the more general situation in which the parameter can be written as a function, let say

g, of the population means in the two frames. In that context, the linearization variance estimator of a

generic estimated parameter, η̂, is defined as

V̂Lin(η̂) = gA
′
SAgA + gB

′
SBgB , (1.24)

being gA and gB the vectors of first partial derivatives of g in frame A and B, respectively. On the other

hand, SA and SB are the estimated covariance matrices of the population totals estimated from frame

A and B.

It is shown that, under certain regularity conditions, the linearization variance estimator is consistent

but it presents the important drawback that derivatives should be calculated separately for each different

parameter.

Alternatively, one can consider jackknife techniques, originally proposed by Quenouille (1949, 1956)

(see Wolter (2007) for a detailed description of this method in survey sampling) and extended to dual

frame surveys by Lohr and Rao (2000), which can be used to estimate variances irrespective of the type

of estimator allowing us to compare estimated efficiency for different estimators.

For a non stratified design in each frame, the jackknife estimator of the variance for any of the

estimators described, generically denoted by η̂, is given by

V̂Jack(η̂) =
nA − 1

nA

∑
i∈sA

(η̂A(i)− ηA)2 +
nB − 1

nB

∑
j∈sB

(η̂B(j)− ηBc )2, (1.25)

with η̂A(i) the value of estimator η̂ after dropping unit i from sA and ηA the mean of values η̂A(i).

Similarly, one can define η̂B(j) and ηB .

Jackknife may present an important bias when designs are without replacement. One could, then,

incorporate an approximate finite-population correction to estimation to achieve unbiasedness. For exam-

ple, assuming that a finite-population correction is needed in frame A, a modified jackknife estimator of



22 CHAPTER 1. INTRODUCTION

variance, V̂ ?Jack(η̂), can be calculated by replacing η̂A(i) in (1.25) with η̂A∗(i) = η̂c +
√

1− πA(η̂A(i)− η̂),

where πA =
∑
k∈sA π

A
k /nA.

Consider now a stratified design in each frame, where frame A is divided into H strata and frame B

is divided into L strata. From stratum h of frame A, a sample of nAh units from the NAh population

units in the stratum is drawn. Similarly, in stratum l of frame B, one selects nBl units from the NBl

composing the stratum. Jackknife estimator of the variance can be defined, then, as follows

V̂Jack(η̂) =
H∑
h=1

nAh − 1

nAh

∑
i∈sAh

(η̂A(hi)− ηAh)2 +
L∑
l=1

nBl − 1

nBl

∑
i∈sBl

(η̂B(lj)− ηBl)2, (1.26)

where η̂A(hi) is the value taken by η̂ after dropping unit i of stratum h from sample sAh and ηAh is

the mean of values η̂A(hi). η̂B(lj) and ηBl can be defined in a similar way. Again, one can include an

approximate finite-population correction in any stratum needing it. In case of a non stratified design

in one frame and a stratified design in the other one, previous methods can be combined to obtain the

corresponding jackknife estimator of the variance.

Stratified cluster sampling is a very common design in practice. The jackknife variance estimator

when a stratified sample of clusters is selected is now illustrated. Suppose that frame A has H strata

and stratum h has NAh observation units and ÑAh primary sampling units (clusters), of which ñAh are

sampled. Frame B has L strata, and stratum l has NBl observation units and ÑBh primary sampling

units, of which ñBl are sampled.

To define the jackknife estimator of the variance, let η̃A(hj) be the estimator of the same form as

η̂ when the observations of sample primary sampling unit j of stratum h from sample in frame A are

omitted. Similarly, η̃B(lk) is of the same form as η̂ when the observations of sample primary sampling

unit k of stratum l from sample in frame B are omitted. The jackknife variance estimator is then given

by

V̂Jack(η̂) =
H∑
h=1

ñAh− 1

ñAh

ñAh∑
j=1

(η̃A(hj)− η̃Ah)2 +
L∑
l=1

ñBl − 1

ñBl

∑
k∈sBl

(η̃B(lk)− η̃Bl)2, (1.27)

where η̃Ah is the mean of values η̃A(hj) and η̃Bl is the mean of values η̃B(lk).

Lohr (2007) proposed two bootstrap variance estimators for dual frame surveys assuming that any

generic estimator η̂ may be expressed through a function, let say h, of the design weights for the two

frames. The first variance estimator suggested is called separate bootstrap estimator and it is similar
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in form to the jackknife variance estimator (1.25), since the bootstrap is carried out separately in each

frame. The separate bootstrap estimator can be defined as

V̂BootS (η̂) =
1

B1

B1∑
b=1

(η̂∗A(b)− η̂)2 +
1

B2

B2∑
b=1

(η̂∗B(b)− η̂)2, (1.28)

where B1 and η̂A∗(b) are, respectively, the number of bootstrap iterations in frame A and the bootstrap

estimator of η obtained by substituting the original design weights for the bootstrap weights for iteration

b only in frame A. B2 and η̂B∗(b) are defined similarly for frame B. The number of bootstrap iterations

in the frames, B1 and B2, may differ and they are determined beforehand by the investigator. In that

sense, the bootstrap procedure is more flexible than the jackknife. Another relevant advantage of the

bootstrap method compared to the jackknife is than it can be applied to nonsmooth functions (as the

median).

To construct the second estimator, denominated combined bootstrap estimator, the resampling is

carried out jointly for the whole sample of observations. As a result, the following estimator is formulated:

V̂BootC (η̂) =
1

B

B∑
b=1

(η̂∗(b)− η̂)2, (1.29)

begin, in this case, B the number of resamples drawn and η̂∗(b) the estimator of η computed by replacing

the original design weights for the bootstrap weights for iteration b in both frames.

The three variance estimation procedures (Taylor linearization, jackknife and bootstrap) are easy

to apply in practice and they may be extended to the case of three or more frames in a simple way.

Nonetheless, bootstrap and, especially, jackknife, require a computation effort that might be heavy even

for the nowadays advanced computers.

1.5 Software for estimation in dual frame surveys

Several software packages have been developed to facilitate the analysis of complex survey data and

implement some of these estimators as SAS, SPSS, Systat, Stata, SUDAAN or PCCarp. The repository

CRAN contains several R packages that include these design-based methods typically used in survey

methodology to treat samples selected from one sampling frame (e.g. survey (Lumley, 2014), sampling
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(Tillè and Matei, 2012), laeken (Alfons et al., 2014) or TeachingSampling (Gutiérrez Rojas, 2014) among

others). Templ (2014) performs a detailed list of packages that includes methods to analyse complex

surveys.

However, standard software packages for complex surveys can not be used directly when the sample

is obtained from a dual frame survey because the classical design-based estimators are severely biased

and there is a underestimation of standard errors. Weighted analyses with standard statistical software,

with certain modified weights, can yield correct point estimates of population parameters but still yield

incorrect results for estimated standard errors. As exposed in Section 1.3, an important number of authors

have developed methods for estimating population means and totals from dual frame surveys but most

of these methods require ad-hoc software for their implementation. Unfortunately, there is no software

incorporating these estimation procedures for handling dual frame surveys.

1.6 Estimation in three or more frames

Although the majority of the estimators proposed in multiple frames were defined under a dual frame

context, for some time now several estimators for the case of three or more sampling frames have been

formulated in response to emerging needs in sampling. Indeed, it is clear that the internet has become in a

very important data source that offers inexpensive ways to collect information. Couper (2000) analyzes the

issues and challenges related with web surveys concluding that this kind of surveys already offer enormous

potential for survey researchers which is likely only to improve with time. Within multiple frame context,

Lohr (2010) points that web surveys will play a very important role in the future development of multiple

frame surveys. So, in the near future it is very likely that dual frame surveys consisting of a cell and a

landline frame evolve to multiple frame surveys incorporating a third frame of web users, as represented

in Figure 1.6.

As it will be shown, while some of the estimators proposed for a multiple frame setting are the

extension of their counterparts in the dual frame context, others have been developed using specific

techniques of estimation for three or more sampling frames.

Working in a multiple frame context implies an increase in the complexity of the notation. So, let

suppose that A1, . . . , Aq, . . . , AQ is a collection of Q ≥ 3 overlapping frames of sizes N1, . . . , Nq, . . . , NQ.

As in the dual frame context, all of them can be incomplete but it is assumed that overall they cover the
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Figure 1.6: A three frame setting composed of a frame of landline users, a frame of mobile phone users
and a frame of web users.

entire target population. Let the index sets K be the subsets of the range of the frame index q = 1, . . . , Q.

For every index set K ⊆ {1, . . . , q, . . . , Q} a domain is defined as the set DK = (∩q∈K)Aq)
⋂

(∩q/∈KAcq),

where c denotes the complementary of a set.

Our aim is, again, to estimate Y , the total of a quantitative variable, which may be expressed as

Y =
∑N
k=1 yk, being yk the value observed for the k − th individual of the population. The total Y may

be rewritten as

Y =

Q∑
q=1

∑
k∈Uq

yk
mk

(1.30)

where mk indicates the number of frames the k − th unit belongs to, i.e. the multiplicity of the k − th

unit.

Let sq be a sample drawn from frame Aq under a particular sampling design dq, independently for

q = 1, . . . , Q, and let πqk and πqkl be the first and second order inclusion probabilities under the sampling

design, respectively. Let define dqk = 1/πqk as the sampling weight considered in frame q. Let suppose that

nq is the size of sample sq and that s = ∪qsq. When no confusion is possible and for ease of notation, we

consider πk = πqk, πkl = πqkl and dk = dqk for all sample units k, l such that k, l ∈ sq.

Lohr (2006) formulated the multiple frame extension of some of the estimators originally proposed
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for the dual frame case, as (1.5) or (1.7). As was the case for two frames, the optimal versions of these

estimators are asymptotically efficient but they are not internally consistent since they use a different

set of weights for each response variable considered. Moreover, they are often unstable in small or

moderate samples with more than two frames because the optimal estimated parameters involved in the

computation of the estimators are functions of large estimated covariances matrices. They also followed

the so called single frame approach used by Kalton and Anderson (1986) to propose a single frame

estimator in a multiple frame context. This estimator is in the form:

ŶKA =
∑
k∈s

ykd
KA
k (1.31)

with dKAk = 1
π̄k

, where π̄k =
∑
q′3k πk(q

′
).

To compute this estimator it is necessary to know not only the number of frames each unit belongs

to but the specific frames the unit is included in. This can be an important drawback specially if

misclassification issues are present. The authors also proposed the following pseudo-maximum likelihood

estimator for the multiple frame context:

ŶPML =
∑
k∈s

ykd
PML
k (q) (1.32)

where the weights dPML
k (q) can be defined as

dPML
k (q) = dk(q)f(q)

∑
K:q∈K

N̂Kδk(K)∑
j∈K f(j)N̂K(j)

with f(q) = 1
deffY (q)

nq

Nq
, being deffY (q) the design effect for the variable Y in the q-th frame. Values

N̂K(q) can be computed as N̂K(q) =
∑
k∈sq dk(q)δk(K), with δk(K) the indicator variable for domain K

that takes the value 1 whether k − th individual belongs to domain K and the value 0 otherwise. The

estimated domain sizes N̂K are the solution of a system of non linear equations.

The pseudo maximum likelihood is consistent and usually works well in practical situations but it is

complex to compute for a general sampling design, since numerical procedures are required to obtain the

values N̂K .

Mecatti (2007) also considered a single frame approach to propose the following estimator
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ŶM =
∑
k∈s

ykd
M
k , (1.33)

with dMk = dk
mk

. The previous estimator, often called single frame multiplicity estimator, only requires

the knowledge of the multiplicity of each unit, i.e. the number of frames the unit is included in, no

matter which are these frames. This estimator can be adjusted using a raking ratio approach to get a

single frame raking ratio multiplicity estimator where a new set of weights, resulting from an iterative

procedure, is utilized.

In 2011, Singh and Mecatti proposed a composite multiplicity estimator, which generalizes the single

frame multiplicity estimator. This estimator can be written as

ŶCM =
∑
k∈s

ykd
CM
k (1.34)

where

dCMk =
λkdk + (1− λk)dKAk

mk

with

λk =

∑
q′3k(1− π̄k/πk(q′))πk(q′)(1− πk(q′))∑

q′3k(1− π̄k
2

πk(q′)2 −
2π̄k

πk(q′) )πk(q′)(1− πk(q′))

Let suppose now that information about a set of auxiliary variables is available. Let X̌q = (Xq1, Xq2, . . . , Xqpq )
′

be a set of pq auxiliary variables observed in the q − th frame, so the vector xqk = (xq1k , x
q2
k , . . . , x

qpq
k )

′

contains the values of the variables X̌q for the k-th individual of the frame q. Auxiliary variables may

differ in each frame, i.e. X̌q 6= X̌r, q, r = 1, . . . , Q, q 6= r. For the sample coming from frame q, the values

of the variables (yk,x
q
k) are observed.

Rao and Wu (2010) followed a single frame multiplicity based approach to extend their pseudo em-

pirical likelihood estimator for the mean of a variable to the multiple frame setting. This estimator can

be computed as

ˆ̄YPEL =
∑
k∈s

ykpk(q) (1.35)
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with pk(q) maximizing the likelihood function

lPEL(p1, . . . ,pQ) =

∑Q
q=1 nq∑
k∈s d

M
k

∑
k∈s

dMk log(pk(q))

subject to ∑
k∈s

pk(q) = 1

∑
k∈s

pk(q)xk = X̄

being X̄ = (X̄1, X̄2, . . . , X̄p)
′

the vector of the population means of variables X̌q, which are supposed to

be the same in all frames.

The calibration techniques proposed by Ranalli et al. (2015) for the dual frame case, may be easily

extended to the multiple frame context. A model calibrated estimator for the case of more than two

sampling frames can be defined as

ŶCAL =
∑
k∈s

ykd
CAL
k (1.36)

where dCALk are such that minimize ∑
k∈s

G
(
dCALk , dMk

)
subject to ∑

k∈s

dCALk δk(Aq) = Nq, q = 1, ..., Q

∑
k∈s

dCALk xqkδk(Aq) = Xq, q = 1, ..., Q

where Xq = (Xq1, Xq2, . . . , Xqpq )
′

is the vector of population totals for the variables X̌q.

The calibration estimator proposed by Elkasabi et al. (2015) may be also extended to a multiple

frame setting in an easy way. The multiple frame version of the joint calibration estimator has the form

ŶJCE =
∑
k∈s

ykd
JCE
k (1.37)

with dJCEk = dk(1 + λ
′
xk) and
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λ
′

=

(∑
k∈U

xk −
∑
k∈s

dkxk

)′ (∑
k∈s

dkxkx
′

k

)−1

To compute this estimator, the same set of auxiliary variables X̀ = (X1, X2, ..., Xp) is assumed to be

known in all frames.
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Chapter 2

Objectives

As evidenced in the previous chapter, the multiple frame sampling theory has experienced a substantial

development since its inception in the second half of the twentieth century. Nevertheless, there are still

some aspects that require additional attention which motivated the realization of this thesis. The general

purpose of the thesis is to further investigate some topics related with multiple frame surveys that have

been sparsely addressed so far. This global purpose will be concretized along this chapter through the

definition of specific objectives.

In the literature of multiple frames it is possible to find several simulation studies to compare the

different estimation methods exposed in Section 1.3 in terms of bias and variance (see e.g. Lohr and

Rao (2006), Rao and Wu (2010), Ranalli et al. (2015)). However, in very few cases the estimators were

applied simultaneously to data coming from a real survey. On the other hand, in surveys it is frequent

to find questions where respondents must select one in a series of options, specially in the cases where

the survey focuses in public opinion, health or marketing topics. In these situations, the interest lies in

estimating the proportions of respondents selecting each possible option. The first aim of this thesis is to

apply the estimation methods described so far to the estimation of proportions from data coming from a

real dual frame survey, highlighting the issues that can arise and presenting a way to deal with them.

Dual frame surveys are widely used both by statistical agencies and private companies due to their

amply proven benefits. One of the main reasons of the recent rise of the popularity of dual frame surveys

is the steady increase in the use of telephone surveys, which have replaced all other data collection
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methods (the majority of which were face-to-face interviews). In some subject areas (e.g., electoral),

face-to-face surveys have been completely ousted by telephone interviewing. Telephone surveys present

some drawbacks with regard to coverage, due to the absence of a telephone in some households and the

generalized use of mobile phones, which are sometimes replacing fixed (land) lines entirely. Dual frame

telephone surveys that combine Random-Digit-Dialing (RDD) landline telephone samples and cell phone

samples are a good solution to that issue since they reduce the noncoverage due to cell-only households

in RDD landline telephone surveys. Nevertheless, and as noted in Section 1.5, there is no specialized

software for analysing data coming from a dual frame survey. This thesis aims the creation of some

easy-to-use software to handle dual frame data.

All the estimators described in Section 1.3 were originally proposed to estimate the total or the mean

of a continuous variable. Although they may also be used to estimate proportions when the main variable

has discrete outcomes, they may provide inconsistent estimates, since estimations over all categories may

do not add up to 1, which is desirable in that situations. Therefore, more adequate approaches are

required to provide appropriate results. The third objective of this thesis is to propose new estimation

techniques to estimate proportions for qualitative response variables.



Chapter 3

Methodology

The breadth of the objectives this thesis pursues makes the use of a variety of techniques to fulfill them.

To reach the first of the objectives, a real phone dual frame survey (considering a frame of landline users

and another frame of cell phone users) focused on the opinions of the population regarding immigration in

the region of Andalusia (in Spain) has been analyzed. At this point, a first issue related with the sample

size allocation arose. Traditionally, in one frame surveys where the sampling frame is composed of landline

users, a list including all the individuals of the population is available and, therefore, classical sampling

designs as simple random sampling or stratified sampling can be used to select samples. Conversely,

when conducting cell phone surveys one does not have a list of the individuals composing the population

so alternative methods should be used to select the samples. Among these methods, the random digital

dialing (RDD) is one of the most used ones. The issue comes when both frames are sampled simultaneously

in a dual frame survey and it is needed to determine the method to draw the samples. Fortunately, dual

samples surveys are quite flexible in this aspect since they allow a different data collection procedure

in each frame. The key point, then, is to determine the optimal (in some sense) number of individuals

from each frame who should be interviewed. In the specific case of this survey, the issue was solved by

allocating the predefined global sample size by frames considering a minimum variance criterion taking

into account the costs (Pasadas and Trujillo, 2013) and the percentage of possession of each type of device

(following Hartley, 1962).

The sampled individuals answered to a selection of questions with discrete outcomes related to im-
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migrants and immigration policies. The responses were analyzed and point estimates for proportions

using most of the estimators described in Section 1.3 were provided. Since these estimations methods

were originally conceived to estimate parameters of continuous variables, estimations of proportions were

carried out from the values of a dichotomous variable that was created for each category of each response

variable. Therefore, for a category of a given response variable, let consider the dichotomous variable Zi,

so that zki is the value of Zi for the k − th individual of the sample. zki takes the value 1 whether the

k − th individual has selected the i− th outcome of the variable and 0 otherwise. Estimated proportion

for the i− th category was computed, then, as P̂i = Ẑi/N̂ =
∑
k∈s zki/N̂ , being N̂ an estimation of the

population size.

From the formula used to estimate the proportions it follows that the estimation of the population

size, N̂ , has an important impact on the estimates of the proportions. Thus, it is important to have an

accurate estimation of N to achieve good estimations for the proportions. Henceforth, a comprehensive

study on the effect on estimation of using different values for the population size extracted from different

sizes is carried out.

On the other hand, some of the estimation methods considered involves the estimation of variances

and covariances which require second order inclusion probabilities, which were not available in the survey.

To overcome this concern, the approximation proposed by Deville (1992) to estimate variances from first

order inclusion probabilities is used where needed. According to this approximation, the variance of the

estimator of the total of a continuous variable Y may be estimated as

V̂ (Ŷ ) =
1

1−
∑
k∈s a

2
k

∑
k∈s

(1− πk)

(
yk
πk
−
∑
l∈s

al
yl
πl

)2

(3.1)

where ak = (1− πk)/
∑
l∈s(1− πl).

Results also include interval estimation using the method for variance estimation proposed for each

author and jackknife variance estimation, which allow the comparison between estimates.

The objective related to the creation of a software for the analysis of data coming from a dual frame

survey has been achieved by the implementation of Frames2, a new R package for point and interval

estimation from dual frame sample data. The development of the package has been carried out taking

into account statistical and computational criteria to obtain a comprehensive and efficient software.

Therefore, the functions composing the package have been implemented such that they carry out a
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strong argument check to guarantee validity of the arguments and so, to prevent errors when making

subsequent computations. Aspects as the presence of missing values in the arguments, the number of

main variables observed in the samples (that should match), the length of the arguments in each sample

(that should also match) or the values for arguments indicating the domain each unit belongs to (which

only can be ”a” or ”ab” for frame A or ”b” or ”ba” for frame B) are checked. If any issue is encountered,

the function displays an error message indicating the problem and the argument causing it, so that the

user can manage errors easily. Furthermore, each function has additional checks depending on its specific

characteristics or arguments.

Much attention has also been devoted to computational efficiency. Frequently, populations in a survey

are extremely large or it is needed to keep sampling error below a certain value. As a consequence,

one needs to consider large sample sizes, often in the order of tens of thousands sampling units. In

these situations, computational efficiency of functions is essential, particularly when several variables

are considered. Otherwise, user can face high runtimes and heavy computational loads. In this sense,

functions of Frames2 are developed according to strict efficiency measures, using the power of R to the

matrix calculation to avoid loops and increase the computational efficiency.

Functions of Frames2 have been implemented from an user-oriented perspective to increase usability.

In this sense, most input parameters (which are the communication channel between the user and the

function) are divided into two groups, depending on the frame they come from. This is to adapt functions

as much as possible to the usual estimation procedure, in which the first step is to draw two independent

samples, one from each frame. On the other hand, estimation details are managed internally by functions

so that they are not visible for the user, who does not need to manage them.

Construction of functions has been carried out so that they perform properly in as many situations

as possible. As noted in introductory section, one can face several situations when using two sampling

frames depending on their relative positions. Although the most common situation is the one depicted

in Figure 1.1, cases shown in Figures 1.2 and 1.3 may arise as well. All estimators described but PEL

can be modified to cover these three situations, so corresponding functions of Frames2 include necessary

changes to produce estimates irrespective of the situation.

On the other hand, it is usual, when conducting a survey, to collect information on many variables

of interest. To adapt to such situations, all functions are programmed to produce estimates when there

are more than one variable of interest with only one call. To this end, parameters containing information
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about main variables observed in each frame can be either vectors, when only one variable is considered

or matrices or data frames, when there are several variables under study. Cases in which the main aim of

the survey is the estimation of population means or proportions are also very frequent. Hence, from the

estimation of the population total for a variable, functions compute estimation of the mean as ˆ̄Y = Ŷ /N̂ .

To obtain the estimation of the population size, functions internally apply the estimation procedure at

issue to indicator vectors 1A and 1B of sizes nA and nB , respectively.

To get maximum flexibility, functions have been programmed to calculate estimates in cases in which

user disposes of first and second order inclusion probabilities and in those other situations in which only

first order ones are available, indistinctly. Variance estimations from only first order inclusion probabilities

are obtained by applying Deville’s method (3.1), when needed.

Finally, to reach the third objective, appropriate models to deal with discrete response variable are

considered. Firstly, let assume that data from respondents who provide a single choice from a list of non

ordered alternatives, coded as 1, 2, . . . ,m are collected. Therefore, consider a discrete m-valued survey

variable y. The objective is to estimate the frequency distribution of y in the population U . To estimate

this frequency distribution, let consider the class of indicators Zi, i = 1, . . . ,m, defined previously. These

indicators are such that, for each unit k ∈ U , zki = 1 if yk = i and zki = 0 otherwise. The problem thus,

is to estimate the proportions

P (Y = i) = Pi =
1

N

∑
k∈U

zki, i = 1, 2, . . . ,m (3.2)

Such proportions are such that

Pi =
1

N
(Zai + θZabi + (1− θ)Zabi + Zbi), (3.3)

where θ ∈ (0, 1) and Zai =
∑
k∈a zki, Zabi =

∑
k∈ab zki and Zbi =

∑
k∈b zki.

As noted before, auxiliary information is often available in survey sampling and may be used to

obtain more accurate estimators. Then, suppose that values xk of auxiliary variables X̌ are known for

each k ∈ U . Moreover, the distribution, or at least some summary statistics, of these auxiliary variables in

the population are supposed to be known. Let assume that the population under study y = (y1, ..., yN )T
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is the determination of a set of super-population random variables Y = (Y1, ..., YN )T s.t.

µki = P (Yk = i|xk) = E(Zki|xk) =
exp(xTk βi)∑

r=1,...,m exp(xTk βr)
, i = 1, . . . ,m,

that is, a multinomial logistic model is used to relate the main response and the auxiliary variables. Let

β be the parameter vector (βT1 , . . . ,β
T
m)T . As a first step, estimation of the superpopulation parameter

β using the sample data should be considered. This estimation will be carried out in a different way

depending on the auxiliary information available, resulting in two groups of estimators: a first group,

composed of 4 estimators, where the same set of auxiliary variables for all population units is assumed

and a second one, which includes 2 estimators, where the auxiliary variables differ by frame.

To create the first group of estimators, let assume that, for each unit in the population, information

about one vector of auxiliary variables X̌ is known. In this case, for each unit k ∈ U the value of xk is

available and, for each unit k ∈ s, the value of the main variable yk is also observed. Parameter β may

be estimated by maximizing the π-weighted log-likelihood function given by

`d◦(β) =
∑

i=1,...,m

(∑
k∈sA

d◦kzki lnµki +
∑
k∈sB

d◦kzki lnµki

)
, (3.4)

where the weights d◦ are the ones defined in (1.2). Given the estimate β̂◦ of β, the following estimates

for µki may be defined:

poki = µ̂ki =
exp(xTk β̂

o
i )∑

r=1,...,m exp(xTk β̂
o
r)
. (3.5)

Since the vector xk is known for all units of the population U , the values poki are available for all

k ∈ U .

An alternative way of estimating β is maximizing the π-weighted log-likelihood

`d̃(β) =
∑

i=1,...,m

∑
k∈s

d̃kzki lnµki, (3.6)

which is similar to (3.4) but using weights d̃ (defined in (1.3)) instead of d◦. In that case, the resulting
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estimate,
̂̃
β, may be used to compute the following estimations for the individual probabilities

p̃ki = µ̂ki =
exp(xTk

̂̃
βi)∑

r=1,...,m exp(xTk
̂̃
βr)

. (3.7)

On the other hand, to formulate the second group of estimators let suppose that a different set of

variables is known in each frame, that is, values xAk of the vector of auxiliary variables X̌A are known for

all the units composing frame A and values xBk of another vector X̌B are known for the units included

in frame B. In that case, a different model should be considered in each frame to properly represent the

relationship between the auxiliary variables and the main response. Then, For each k ∈ A, values of the

auxiliary vector xAk are known and, thus, we may compute the probabilities

pAki =
exp(xATk β̂Ai )∑

r=1,...,m exp(xATk β̂Ar )
(3.8)

where we estimate βA by maximizing `dA(βA) =
∑
i=1,...,m

∑
k∈sA d

A
k zki lnµki using the sample data

from sA. Sample sA includes, together with values of the auxiliary variables, the values of the main

response yk (and, therefore of zki). Similarly we obtain pBki for k ∈ B.

Estimates poki, p̃ki and pAki and pBki may be used as auxiliary information to define estimators.

As may be noted, this estimation approach has been exposed in a general context which is barely

affected by the number of sampling frames involved. This indicates that, although the dual frame case

is usually the starting point for the estimation in a multiple frame setup, this methodology can be easily

extended to the case where three or more frames are available for sampling. Good evidence of this can

be found in the fact that a general multiple frame context, with Q ≥ 3 frames, has been considered when

studying response variables whose categories may be somehow ordered in Appendix 4.

Analysis of responses variables with ordered outcomes is carried out following a similar approach than

the one used for variables with non ordered categories.

Considering the same multiple frame setup exposed in Section 1.6, let consider the discrete survey

variable y to represent the choice of the respondents from a list of ordered alternatives. We code these

alternatives as 1, 2, . . . ,m, with 1 < 2 < · · · < m. Therefore, y is an m-valued survey variable with yk

the value observed for the k − th individual of the population. The objective is to estimate proportions
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(3.2), which can be rewritten as follows

P (Y = i) = Pi =
1

N

Q∑
q=1

∑
k∈Uq

zki
mk

, i = 1, 2, . . . ,m (3.9)

where mk indicates the number of frames the k − th unit belongs to, i.e. the multiplicity of the k − th

unit and zki are, again, the values of the indicator variables Zi, i = 1, ...,m, such that for each unit k ∈ U

zki = 1 if yk = i and zki = 0 otherwise.

Let suppose that information about auxiliary variables is available. Let X̌q = (xq1,xq2, . . . ,xqpq )T

be a set of pq auxiliary variables observed in the q-th frame, so the vector xqk = (xq1k, xq2k, . . . , xqpqk)T

contains the values of the variables xq for the k-th individual of the frame q. Auxiliary variables may

differ in each frame, i.e. Xq 6= Xr, q, r = 1, . . . , Q, q 6= r, so the most general and realistic situation is

considered. For the sample coming from frame q, the values of the variables (yk,xqk) are observed.

Taking into account the ordinal nature of the response variable, an ordinal model should be considered

instead of a multinomial one to properly relate the main and the auxiliary variables. Therefore, in frame

q, the finite population under study y = (y1, ..., yN )T is the determination of the superpopulation random

variable vector Y = (Y1, ..., YN )T s.t.

µqi (xqk) = P (Yk = i|xqk) = E(Zki|xqk) =


exp(αq

i +βq
i xqk)

1+exp(αq
i +βq

i xqk)
, i = 1

exp(αq
i +βq

i xqk)

1+exp(αq
i +βq

i xqk)
− exp(αq

i−1+βq
i−1xqk)

1+exp(αq
i−1+βq

i−1xqk)
, i = 2, ...,m

.

(3.10)

assuming that Yk are conditionally independent given xqk. An important property that is usually sup-

posed to be accomplished when working with ordinal models is the proportional odds property. According

to this property, effects of the predictors are the same across all the categories. This implies that β pa-

rameters associated to independent variables are fixed and independent of the category considered, so

constraints of the superpopulation model can be rewritten as

µqi (xqk) = P (Yk = i|xqk) = E(Zki|xqk) =


exp(αq

i +βqxqk)

1+exp(αq
i +βqxqk)

, i = 1

exp(αq
i +βqxqk)

1+exp(αq
i +βqxqk)

− exp(αq
i−1+βqxqk)

1+exp(αq
i−1+βqxqk)

, i = 2, ...,m
(3.11)

The proportional odds property provides more parsimonious models which are, therefore, easier to

implement and interpret. As with the multinomial model, population parameters αi, i = 1, ...m and β are
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generally unknown and must be estimated from the sample data. Considering, again, a maximum likeli-

hood approach we can obtain the estimates for the θq-parameter θq = (αq1, . . . , α
q
m,β

q) by maximizing

the following loglikelihood function

`(θq) =
∑

i=1,...,m

∑
k∈sq

dqkzki lnµqi (xqk), (3.12)

and we denote it by θ̂q = (α̂q1, . . . , α̂
q
m, β̂

q). Using these maximum likelihood estimates, we can define an

estimator for probabilities for each category as follows:

pqki = µ̂qi (xqk) =


exp(α̂q

i +β̂qxqk)

1+exp(α̂q
i +β̂qxqk)

, i = 1

exp(α̂q
i +β̂qxqk)

1+exp(α̂q
i +β̂qxqk)

− exp(α̂q
i−1+β̂qxqk)

1+exp(α̂q
i−1+β̂qxqk)

, i = 2, ...,m
(3.13)

Alternatively to (3.12), model parameters for the q-th frame can be estimated maximizing the following

loglikelihood function

`(θq) =
∑

i=1,...,m

∑
k∈sq

dMk zki logµqi (xqk), (3.14)

yielding to the probability estimates

p?qki = µ̂qi (xqk) =


exp(α̂?q

i +β̂?qxqk)

1+exp(α̂?q
i +β̂?qxqk)

, i = 1

exp(α̂?q
i +β̂?qxqk)

1+exp(α̂?q
i +β̂?qxqk)

− exp(α̂?q
i−1+β̂?qxqk)

1+exp(α̂?q
i−1+β̂?qxqk)

, i = 2, ...,m
. (3.15)

As in the multinomial case, both sets of estimates (3.13) and (3.15) may be used in the definition of

estimators for proportions of ordinal responses variables.
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Results

Some important results have been derived from the research carried out in this thesis. The most noticeable

ones are summarized below.

From the analysis of the opinion survey about immigrants and immigration policies performed in

Appendix 1 some aspects may be highlighted:

• There are no important differences between the estimates produced with the single frame or dual

frame approach.

• Among all the estimation strategies, the calibration method performs best and produces the smallest

confidence interval.

• The jackknife method often produces better intervals than methods based on the estimated variance

given by the authors (except for the pseudo empirical likelihood intervals).

Results obtained show a negative view towards immigration that continues to spread. In the moment

of the data collection, 59-61% of the individuals surveyed in Andalusia stated that immigration is bad or

very bad for the region (in the previous edition of the study, in 2011, the corresponding figure was 58 %,

and in the first such survey, in 2005, it was only 51%). Perceptions regarding the number of immigrants,

however, have changed in the opposite direction: there is now a lower percentage of people who say there

are too many immigrants (from 51 % in 2011 to current levels of 40-42 %), while the other scores have

risen slightly.
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Another important result derived from the thesis is the software Frames2. Frames2 is a new R package

for point and interval estimation from dual frame sampling. The initial version consisted of eight main

functions (Hartley, FB, BKA, SFRR, PML, PEL, CalSF and CalDF), implementing most of the estimators

described in Section 1.3. The package also includes an additional function called Compare which provides

a summary with all possible estimators that can be computed from the information provided as input.

Moreover, six extra functions implementing auxiliary operations, like computation of Horvitz-Thompson

estimators or of the covariance between two Horvitz-Thompson estimators, have also been included in the

package to achieve a more understandable code. Finally, the package includes eight more functions, one

for each estimator, for the calculation of confidence intervals based on the jackknife variance estimator.

The package is freely available at the CRAN repository following the URL https://cran.r-project.

org/web/packages/Frames2/index.html. In that web site one may also find a reference manual includ-

ing information about all the functions composing the package and some vignettes illustrating how to

use it in different contexts.

On the other hand, a number of estimators for dealing with multinomial response variables in dual

frame surveys has been proposed. As specified in the previous section, different set of estimated prob-

abilities (poki, p̃ki or pAki and pBki) have been defined, depending on the available auxiliary information.

Whatever the case, these probabilities represent the true relationship between the auxiliary variables and

the main response.

From probabilities poki defined in (3.5) two estimators are formulated to estimate proportions defined

in (3.3) considering dual frame and single frame approaches. The first one is expressed as

P̂DWMLi = N−1

(∑
k∈U

poki +
∑
k∈sA

d◦k(zki − poki) +
∑
k∈sB

d◦k(zki − poki)

)
(4.1)

where the subscript ML stands for Multinomial-Logistic and the superscript DW stands Dual frame

setting and auxiliary information available from the Whole population. We observe that this estimator

takes the same model-assisted form as the MLGREG estimator proposed in Lehtonen and Veijanen

(1998a), but here it is adjusted to account for the dual frame sampling setting.

Following a model calibrated approach (here, subscript MLC refers to Multinomial-Logistic and

https://cran.r-project.org/web/packages/Frames2/index.html
https://cran.r-project.org/web/packages/Frames2/index.html
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Calibration), a second estimator using probabilities poki is defined. It has the form

P̂DWMLCi = N−1(
∑
k∈sA

w◦kzki +
∑
k∈sB

w◦kzki) (4.2)

where w◦k minimizes
∑
k∈sA G(w◦k, d

◦
k)+

∑
k∈sB G(w◦k, d

◦
k) =

∑
k∈sG(w◦k, d

◦
k) for a distance measure G(·, ·)

as those considered in Deville and Särndal (1992), subject to:

∑
k∈s

w◦kp
o
ki =

∑
k∈U

poki,
∑
k∈sa

w◦k = Na,
∑
k∈sb

w◦k = Nb,

∑
k∈sab

w◦k = ηNab and
∑
k∈sba

w◦k = (1− η)Nab.

Following a similar approach, but considering estimates p̃ki defined in (3.7) as auxiliary variables,

equivalent estimators to (4.1) and (4.2) are defined as

P̂SWMLi = N−1

(∑
k∈U

p̃ki +
∑
k∈sA

d̃k(zki − p̃ki) +
∑
k∈sB

d̃k(zki − p̃ki)

)
(4.3)

and

P̂SWMLCi = N−1(
∑
k∈sA

w̃kzki +
∑
k∈sB

w̃kzki), (4.4)

where w̃k minimizes
∑
k∈sA G(w̃k, d̃k)+

∑
k∈sB G(w̃k, d̃k) =

∑
k∈sG(w̃k, d̃k) for a distance measure G(·, ·)

satisfying the usual conditions specified in the calibration paradigm subject to:

∑
k∈s

w̃kp̃ki =
∑
k∈U

p̃ki,
∑
k∈sa

w̃k = Na,
∑
k∈sb

w̃k = Nb and
∑

k∈sab

⋃
sba

w̃k = Nab.

Here, the superscript SW stands Single frame setting and auxiliary information available from the

Whole population. Again, subscript ML stands Multinomial-Logistic while MLC stands for Multinomial-

Logistic and Calibration.

The four estimators (4.1), (4.2), (4.3) and (4.4) have the common characteristic of being defined from

a common set of auxiliary variables whose values are available for the whole population. Nevertheless,
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different sets of auxiliary variables in each frame may be considered, as noted in previous chapter. In

that situations, estimated probabilities pAki defined in (3.8) and their counterparts pBki may be used to

define the following estimators:

P̂DFMLi = N−1

(∑
a

pAki + η
∑
ab

pAki + (1− η)
∑
ba

pBki +
∑
b

pBki+

+
∑
sa

(zki − pAki)dAk + η
∑
sab

(zki − pAki)dAk+

+(1− η)
∑
sba

(zki − pBki)dBk +
∑
sb

(zki − pBki)dBk

)
.

and

P̂DFMLCi = N−1(
∑
k∈sA

w?kzki +
∑
k∈sB

w?kzki) = N−1(
∑
k∈s

w?kzki), (4.5)

where weights w?k are such that

min
∑
k∈sA

G(w?k, dAk) +
∑
k∈sB

G(w?k, dBk) s.t.

∑
k∈sA

w?kp
A
ki =

∑
k∈a

pAki + η
∑
k∈ab

pAki,

∑
k∈sB

w?kp
B
ki = (1− η)

∑
k∈ba

pBki +
∑
k∈b

pBki,

∑
k∈sa

w?k = Na,
∑
k∈sb

w?k = Nb,

∑
k∈sab

w?k = ηNab and
∑
k∈sba

w?k = (1− η)Nab

Performance of the 6 estimators has been check through different simulations studies resulting in

negligible biases and important efficiency gains with respect to customary estimators not using auxiliary

information (as (1.8)) and estimators using the auxiliary information through linear models (as (1.15)

or (1.18)). Moreover, important length reductions in jackknife confidence intervals respect to estimator

(1.8) are obtained when applying the proposed estimators to data coming from a real survey.

Finally, estimated probabilities defined in (3.15) have been used to formulate some estimators for the
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proportions of an ordinal response variable in a multiple frame context. First of all, the following two

model assisted estimators have been proposed:

P̂MA1i =
1

N

(
Q∑
q=1

∑
k∈U

pqki
mk
−
∑
k∈s

pqkid
M
k +

∑
k∈s

zkid
M
k

)
, i = 1, ...,m (4.6)

P̂MA2i =
1

N

(
Q∑
q=1

∑
k∈U

pqki
mk
− N

M̂

∑
k∈s

pqkidk +
∑
k∈s

zkid
M
k

)
, i = 1, ...,m (4.7)

with M̂ =
∑
k∈s dk. To formulate both estimators we have adapted the approach used by Lehtonen and

Veijanen (1998a) to estimate class frequencies of a variable with multinomial outcomes in a single frame

context to the case of an ordinal response variable in a multiple frame setup. Estimated probabilities in

the sum over the population in estimator P̂MA1i are weighted by multiplicities mk to avoid overestimation

issues. For this same reason, weights dMk are used in the sample sums. Such weighing is intended to make

the estimator consistent in the sense that its categories add up to 1. Estimator P̂MA2i is very similar to

P̂MA1i, with the only difference of using original design weights dk in one of the sample sums. Due to

this, and to ensure the consistency of the estimator, adjustment factor N/M̂ is used.

Using probabilities pqki as auxiliary variables and considering a model calibration approach, the fol-

lowing estimator may be formulated:

P̂MC1i =
1

N

∑
k∈s

w◦k
mk

zki, i = 1, ...,m, (4.8)

where weights w◦k are chosen so that they minimize
∑
k∈sG (w◦k, dk), subject to

∑
k∈s

w◦k
mk

δk(Aq) = Nq, q = 1, ..., Q

∑
k∈s

w◦k
mk

pqkiδk(Aq) =
∑
k∈U

pqkiδk(Aq), q = 1, ..., Q, i = 1, ...,m.

In the first group of Q calibration constraints, regarding frame sizes, multiplicities mk are used to properly

weight indicator variables δk(Aq) and so, to cancel any overestimation problem. The same reasoning may

be applied to the second group of constraints, where the auxiliary variables are also weighted by mk.

A calibration approach may be considered also when estimates (3.15) are used as auxiliary information.
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Similarly to (??), another model calibrated estimator may be defined as

P̂MC2i =
1

N

∑
k∈s

w?kzki, i = 1, ...,m (4.9)

where, in this case, the weights w?k are such that they minimize
∑
k∈sG

(
w?k, d

M
k

)
subject to

∑
k∈s

w?kδk(Aq) = Nq, q = 1, . . . , Q

∑
k∈s

w?kp
?q
kiδk(Aq) =

∑
k∈U

p?qkiδk(Aq), q = 1, . . . , Q, i = 1, ...,m.

Unlike those in P̂MC1i, constraints for this calibration estimator do not involve multiplicities. Over-

estimation issues are eliminated, then, by considering dMk (which are already weighted by mk) as the

starting weights for the calibration. Therefore, resulting weights w?k should be near to those starting

weights so they already take into account the multiplicity while still fulfilling the calibration constraints.

The proposed estimators have shown a good behaviour in terms in bias (which may be considered as

negligible) and in terms of efficiency gain with respect to customary multiple frame estimators (as (1.33)

and (1.36)) in the comprehensive simulation studies carried out. Moreover, proposed estimators work

well when applied to real data coming from a dual frame survey.



Chapter 5

Conclusions

Let us remember that the main objective of this thesis is to further study some aspects of the multiple

frame methodology that had not been addressed so far. As a result, a number of estimators for proportions

of discrete response variables have been proposed. Furthermore, software for the analysis of data coming

from dual frame surveys has been released. The main findings derived of the analysis of the results

obtained are detailed below.

Implementation of multiple frame surveys may be challenging in some cases due to the increase of the

complexity with respect to surveys considering only one frame. Focusing on dual frame surveys, different

approaches are available for the analysis of data coming from that kind of surveys. The screening approach

is quite interesting since it allows the use of the well known techniques for stratified samples. However

screening is barely applied due to, in most situations, duplicated units of the overlap domain can not be

identified, which is fundamental in this technique. A dual frame or a single frame methodology should

be, then, considered.

The application of the customary estimators to the data coming from a real dual frame survey fo-

cused on immigration topics allowed their comparison. Calibration, fixed weight, and pseudo maximum

likelihood estimators all give internal consistency (which is a desirable property in an estimator), since

the same set of adjusted weights is used for all variables. Moreover, in the application, good results were

obtained with these procedures. With repeated surveys, the simplicity and transparency of a fixed-weight

estimator may be preferred. Fixed-weight adjustments may make year-to year comparisons easier in an
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annual survey, where the domain proportions are relatively constant over time. Fixed-weight estimators

are also more amenable to weight adjustments for non-response and domain misclassification.

Estimators based on the single frame approach are also very appealing. In addition to being internally

consistent, it is shown that they generally provide quite good results when applied to practical situations.

They are also quite easy to implement. Nevertheless, single frame estimators present the main drawback

of needing extra information regarding the inclusion probabilities of the units belonging to the overlap

domain which is not always available making the computation of these estimators impossible to carry

out.

On the other hand, variance estimation is a tricky issue when dual frame estimators are used. Re-

sampling methods such as jackknife, which is easy to compute an provide accurate estimates, is advisable

to estimate variances. Jackknife constitutes an unifying approach that allows the comparison between

estimates of the variance of different estimators.

The use of auxiliary information, which is often available in surveys, may become a double-edged

sword. While it is true that “good” auxiliary information (in the sense of well related with the main

variable) may improve estimates considerably, poor auxiliary variables may lead to incorrect estimates and

confidence intervals too wide to the extent that it would be preferable not to use them in the estimation

process. Special care should be taken in at this point.

Variables with discrete outcomes, very common in surveys, should be treated in a special way to

get appropriate results. It is important to consider appropriate estimation techniques depending on

the nature of the variable of study to get the best results possible. As an example, simulation results

carried out in a dual frame setup show that, ordinal estimators presented in the Appendix 4 provide

much better results for the proportions of an ordinal response variable than the ones we obtain by

applying the multinomial estimators proposed in the third Appendix. In turn, in that situation, results

of multinomial estimators are better than results of customary dual frame estimators described in Section

1.3. Both groups, multinomial and ordinal, of proposed estimators require the knowledge of the values

of auxiliary variables for each individual in the population, which can be quite a restrictive assumption.

This assumption may be somehow relaxed when categorical variables (as the gender or the professional

status of the individual) or quantitative categorized variables (as the age of the individual, grouped in

classes) are used as auxiliary information. In this context, it is not necessary to have the values of the

auxiliary variables for the complete list of individuals but only the population count in the multi-way
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contingency table, information that can be easily found in databases of national statistical organisms.

Finally, the need for a software for analyzing the data from dual frame surveys led to the release

of the R package Frames2. The package allows a comprehensive analysis of dual frame data through

user-friendly functions. These functions have been implemented following strict criteria regarding com-

putational efficiency to provide results quickly minimizing the computational load. Last version of the

package, as well as documentation and illustrative examples on it use may be freely accessed through the

URL https://cran.r-project.org/web/packages/Frames2/index.html.

https://cran.r-project.org/web/packages/Frames2/index.html
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Chapter 6

Conclusiones

Recordemos que el objetivo principal que se pretende alcanzar con esta tesis es el estudio en profundidad

de algunos aspectos de la metodoloǵıa de encuestas con marcos múltiples que aún no hab́ıan sido tratados.

Para alcanzar este objetivo, se ha formulado un buen número de estimadores para las proporciones de

variables de respuesta discreta. Del mismo modo, se ha creado un programa para el análisis de datos

procedentes de encuestas con marcos duales. Las principales conclusiones que se derivan del análisis de

los resultados obtenidos se detallan a continuación

La puesta en práctica de encuestas con marcos múltiples puede suponer un reto en algunos casos

debido al aumento de su complejidad en comparación con las encuestas de un único marco. Centrándonos

en el caso de encuestas con marcos duales, existen diferentes procedimientos para el análisis de datos

provenientes de ellas. La metodoloǵıa “screening” resulta muy interesante ya que permite el uso de las

ampliamente conocidas técnicas de muestreo estratificado para el análisis de los datos. Sin embargo, el

“screening” raras veces puede aplicarse debido a que requiere la identificación de las unidades duplicadas

en el dominio de solapamiento, lo cual es imposible en muchos casos. En su lugar, debe considerarse una

metodoloǵıa “single frame” o “dual frame”.

La aplicación de los estimadores tradicionales para encuestas con marcos duales a los datos procedentes

de la encuesta de inmigración posibilitó las comparaciones entre ellos. El de calibración, el de pesos fijos

o el de pseudo máxima verosimilitud son estimadores consistentes en el sentido de que utilizan el mismo

conjunto de pesos ajustados para la estimación de todas las variables (lo cual es una propiedad deseable
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en un estimador). Por otra parte, en la aplicación, estos estimadores proporcionaron buenos resultados.

Cuando las encuestas se llevan a cabo de forma periódica, la simplicidad y la transparencia del estimador

de pesos fijos pueden resultar decisivos a la hora de decantarse por el uso de este estimador. Además,

por ejemplo, el uso del estimador de pesos fijos hace que la comparación entre encuestas que se realizan

de forma anual resulte muy sencilla, ya que es habitual que estas encuestas presenten un reparto de la

población entre los dominios que componen los marcos bastante constante a lo largo del tiempo. Otra

ventaja de este estimador es que puede ser fácilmente ajustado para corregir problemas de no repuesta y

de clasificación incorrecta de unidades en dominios.

Los estimadores basados en un enfoque “single frame” también son muy atractivos. Además de ser

internamente consistentes, se ha demostrado que funcionan bastante bien cuando se aplican en situaciones

reales. También presentan la ventaja de ser sencillos de implementar. No obstante, los estimadores

basados en esta metodoloǵıa muestran el inconveniente de necesitar información adicional relativa a las

probabilidades de inclusión de las unidades que pertenen al dominio de intersección, la cual no está

siempre disponible, haciendo que estos estimadores no puedan ser calculados en algunas situaciones.

La estimación de la varianza es un aspecto complicado para los estimadores en marcos duales. En

estos casos, se recomienda estimar las varianzas mediante el uso de algún método de remuestreo como el

jackknife, el cual es sencillo de aplicar y proporciona estimaciones bastante precisas. Además, el jackknife

constituye un enfoque unificador que permite la comparación entre las estimaciones de la varianza de

distintos estimadores.

El uso de información auxiliar, de la cual se dispone habitualmente en las encuestas, puede convertirse

en un arma de doble filo. Si bien es cierto que información auxiliar “buena” (en el sentido de que estar

altamente relacionada con la variable de interés) puede mejorar considerablemente las estimaciones, una

información auxiliar pobre puede desembocar en estimaciones incorrectas y en intervalos de confianza

demasiado amplios. Tanto es aśı que, en ocasiones, puede ser preferible no considerar la información

auxiliar en el proceso de estimación. Por lo tanto, debe prestarse una especial atención en la selección de

las variables que se utilizan como auxiliares.

Las variables de respuesta discreta, muy frecuentes en las encuestas, deben tratarse de forma especial

si se quieren obtener resultados correctos. Es muy importante aplicar las técnicas de estimación adecuadas

en función de la naturaleza de la variable respuesta para aśı obtener los mejores resultados posibles. A

modo de ejemplo, un estudio de simulación realizado considerando dos marcos muestrales mostró que,
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dada una variable respuesta con categoŕıas ordenadas, las estimaciones para las proporciones de estas

categoŕıas que proporcionaron los estimadores ordinales que se describen en el Apéndice 4 fueron mucho

mejores que los resultados proporcionados por los estimadores multinomiales del tercer apéndice. A su

vez, en este mismo contexto, las estimaciones obtenidas con los estimadores multinomiales se mostraron

mucho más precisas que aquellas resultantes de aplicar los estimadores tradicionales para marcos duales

que se describieron en la Sección 1.3. Los dos grupos de estimadores propuestos, multinomiales y ordinales,

necesitan conocer los valores de las variables auxiliares para todos los individuos de la poblacion, lo cual

puede suponer una limitación importante para su uso. Esta hipótesis puede relajarse cuando se utilizan

variables categóricas (como el género o el estado profesional del individuo) o variables cuantitativas

categorizadas (como la edad del individuo, agrupada en clases) como información auxiliar. En estos

casos, no es necesario disponer de los valores de las variables auxiliares para todos los individuos de la

población sino únicamente de las frecuencias poblacionales que aparecen en la tabla de contingencia que

recoge los cruces entre las categoŕıas de las variables. Esta información puede extrarse fácilmente de las

bases de datos que los organismos nacionales de estad́ıstica tienen a disposición del público.

Por último, la necesidad de un software para el análisis de datos procedentes de encuestas con marcos

duales resultó en la creación del paquete de R Frames2. El paquete permite un completo análisis de

datos de encuestas con marcos duales a través del uso de funciones muy sencillas de utilizar para el

usuario. Estas funciones se han implementando siguiendo criterios muy estrictos en cuanto a la eficiencia

computacional para que proporcionen resultados en el menor tiempo posible minimizando también la

carga computacional. La última versión del paquete, aśı como su manual de uso y ejemplos ilustrativos

puede descargarse de forma gratuita en la URL https://cran.r-project.org/web/packages/Frames2/

index.html.

https://cran.r-project.org/web/packages/Frames2/index.html
https://cran.r-project.org/web/packages/Frames2/index.html
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Chapter 7

Current Research Lines

This thesis explores some aspects of the multiple frame approach which required further investigation.

Nevertheless, there are still some points that need additional attention. The study of these topics would

suppose a natural extension of this thesis. A brief summary of some of the topics that are currently under

investigation is presented below.

• As noted in previous chapters, a number of estimators have been proposed so far to estimate

parameters of quantitative variables in a multiple frame context following different approaches,

as calibration or likelihood. Nevertheless, there are a noticeable number of estimation techniques

which has been applied to single frame surveys but whose performance has not been evaluated in a

multiple frame context. A good example is the population empirical likelihood approach (POEL),

proposed by Chen and Kim (2014). As the authors noted, in the POEL approach, a single empirical

likelihood is defined for the finite population. The sampling design can be incorporated into the

constraint in the optimization of the POEL. Furthermore, because a single empirical likelihood

is defined for the finite population, it naturally incorporates auxiliary information obtained from

multiple surveys. They proved through simulation studies that the POEL estimator they propose

works better than the pseudo empirical likelihood estimator for a single frame proposed by Wu

(2004). Therefore, it would be interesting to consider the POEL approach to define estimators in

a multiple frame context and check if they improve the results provided by the existing likelihood

estimators (mainly the pseudo maximum likelihood estimator and the pseudo empirical likelihood
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estimators).

• Interviewed individuals usually do not respond to part or all the items of the survey, which leads to

partial or total nonresponse. If not addressed properly, nonrespose generates important biases, so

results computed may be incorrect. In the multiple frame context, effects of nonresponse errors and

alternatives to overcome them have been barely studied. Lohr (2007) briefly discusses the errors

that may arise when conducting a multiple frame survey, including nonresponse errors. Lepkowski

et al. (2008) focus on the nonsampling errors in dual frame surveys when one of the two frames

involves telephone number. On the other hand, Lohr and Brick (2014) study the problem of the

allocation in dual frame phone surveys in the presence of nonresponse. Despite these papers,

literature about nonresponse in multiple frame surveys is still sparse and there is no a general

approach to solve that problem. Along the development of most of the papers composing this

thesis, it is assumed a full response from the interviewed individuals, so nonresponse is not a real

problem. The nonresponse issue is only addressed in appendix 3, where it is considered as an

additional category when analyzing the data. Therefore, nonresponse is currently being studied in

a multiple frame context and a general approach to minimize its effects is investigated.

• Sometimes it is interesting obtain estimations for subgroups of the population which fulfill a specific

condition. As a simple example, an investigator may be interested in compute and compare the

responses to a determined question of men and women. In that situations, point estimates are easy

to compute but the estimation of the variance of that estimates is not so straightforward. Problem

is even more complicated in a multiple frame context, since selecting a subset of individuals of the

sample s implies the reduction of the sample size n. This, in turn, could lead to small numbers of

individuals of the target subpopulation in some domains, making difficult the estimation. It is clear

that this issue grows with the number of domains (or, equivalently, with the number of frames)

and it requires further research. Right now, techniques for the estimation in subdomains are under

study.

• Development of the software should go hand to hand with theoretical advances to make feasible

the resolution of practical problems. This requirement is specially important in sampling topics

so that theoretical finds are available to be used in practice to achieve better results. Package

Frames2 was created for this purpose. Although initial version of the software only included the
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customary dual frame estimators it has been recently updated with the multinomial estimators

described in the appendix 3. Nevertheless, further updates are planned for Frames2 to incorporate

estimators for ordinal variables and the results of the current and immediate future research. On

the other hand, and as it has been noted, multiple frame surveys with 3 or more sampling frames are

being considered increasingly for public and private institutions when designing surveys. Typically

surveys considering 3 frames composed of landline, cell and internet users, respectively, are used.

But the rapid expansion of the Internet around the world is leading to 3 frame surveys composed of

different list of internet users drawn from different sources. Whatever the case, 3 frame surveys are

becoming a reality and so, a software similar to Frames2 for the analysis of data coming from this

type of surveys is needed. For this reason, we are working on a new R package for the estimation

in a 3 frame context.
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Appendices

59





Appendix A1

Review of estimation methods for

landline and cell-phone surveys

Arcos, A., Rueda, M., Trujillo, M. and Molina, D. (2014)

Review of estimation methods for landline and cell-phone surveys.

Sociological Methods & Research.

DOI: 10.1177/0049124114546904

Abstract

The rapid proliferation of cell-phone use and the accompanying decline in landline service in recent years

have resulted in substantial potential for coverage bias in landline random-digit-dial telephone surveys,

which has led to the implementation of dual-frame designs that incorporate both landline and cell-phone

samples. Consequently, researchers have developed methods to allocate samples and combine the data

from the two frames. In this paper we review point and interval estimation methods of proportions that

can be used to analyze overlapping dual frame surveys. We use data from the survey of attitudes towards

immigrants and immigration (OPIA survey), a dual-frame telephone survey conducted in Andalusia,

Spain, to explore these different statistical adjustments for combining landline and cell-phone samples.

Our application obtains good results for calibration, fixed weight, pseudo-empirical-likelihood and single

frame procedures. We recommend that one of these internally consistent estimators be used in practice.
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The results of these methods of estimation show that the negative image towards immigration continues

to spread.

A1.1 Introduction

Traditionally, surveys have been carried out using three main methods of data collection: face-to-face

interviews, mail surveys and telephone interviews. Over the last 20 years, the picture has changed sharply.

Telephone surveys have become a popular mode of data collection, especially following the creation and

development of computer-assisted telephone interviewing (CATI) systems. Telephone interviews are often

considered a less costly alternative to mail and face-to-face interviews and the population coverage reaches

acceptable levels.

From 2000 to the present,there has been a steady increase in the use of telephone surveys, which

have replaced all other data collection methods (the majority of which were face-to-face interviews). The

telephone survey presents numerous advantages compared to a face-to-face one. In some subject areas (e.g.

electoral studies) face-to-face surveys have been completely ousted by telephone interviewing. Moreover,

studies have reported improved results from phone surveys compared with face-to-face interviews (Abascal

et al., 2012, Dı́az de Rada, 2011).

However, telephone surveys also present some drawbacks with regard to coverage, due to the absence

of a telephone in some households and the generalised use of mobile phones, which are sometimes replacing

fixed (land) lines entirely (see Trujillo et al., 2005, Vicente et al., 2009 and Pasadas et al., 2011). The

potential for coverage error as a result of the exponential growth of the cell-phone-only population has led

to the development of dual-frame surveys. In these designs, a traditional sample from the landline frame

is supplemented with an independent sample from the banks of numbers designated for cell-phones.

By drawing samples from both cell phones and landline phones instead of from a single frame, it is

possible to reduce survey costs, improve the coverage of the overall sample (Brick et al, 2006; Busse and

Fuchs, 2012; Lu et al., 2013), and potentially even increase response rates, depending on the specific

survey being conducted (Opsomer, 2011).

Some surveys have used a screening dual frame survey design, in which people belonging to the

landline telephone frame are removed from the cell-phone frame before sampling commences, and only

people living in cell-phone-only households are interviewed (Brick et al., 2007). No new statistical methods
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are required to estimate totals in such a survey, since essentially a stratified sample is taken.

The screening approach can introduce a potential for bias due to nonsampling errors (Kennedy, 2007),

and in many cases it may not be possible or practical to remove list-frame units from the landline frame

before sampling (it is not known beforehand whether a household member sampled using one frame also

belongs to the other one).

Instead, in an overlapping dual-frame survey, independent probability samples are taken from frame

A (the landline frame) and frame B (the cell-phone frame). Information from the samples must be

combined to estimate population quantities, and there are many options for estimators. The estimation

of a population total for dual frame surveys was first investigated by Hartley (1962, 1974). Lund (1968)

and Fuller and Burmeister (1972) subsequently improved on Hartley’s results, and Bankier (1986) and

Skinner (1991) have proposed alternative estimation techniques. More recently, Skinner and Rao (1996),

Lohr and Rao (2006), Mecatti (2007), Rao and Wu (2010), Singh and Mecatti (2011) and Ranalli et al.

(2013) have considered new multiple frame estimators for the population total. These methods are usually

formulated under an ideal dual-frame survey setup (two frames can cover the entire target population).

In the analysis of a social survey, the response variables encountered are often discrete. For example,

this would be the case for public opinion research, marketing research and government survey research.

In these cases, the estimation of a proportion is a commonly used statistic for summarizing data (the

proportion of voters in favour of a presidential candidate, the unemployment rate, etc.) The customary

sample proportion is calculated as the percentage of individuals with a specific attribute divided by the

total number of individuals in the sample. At the time of data collection, the sizes of the two frames are

known. However, these two frames, in conjunction, do not usually cover the entire population, as many

people do not belong to either of them. If the population size is unknown and must be estimated, the

estimation for proportions is more complex than that for a total, and yet this problem has hardly been

discussed in the literature on multiple frames. In this paper, we estimate the size of the conjunction of

two frames and the proportion of interest in the population, using the methods described in Section 3.

After describing the OPIA survey in the second section, in the third section we consider the problem of

the estimation of a proportion in our dual-frame telephone survey and then examine the effect of various

estimation strategies designed to reduce the sampling error. In the fourth section we present a jackknife

technique variance estimation for all estimators considered. The fifth section presents the results of the

different estimation strategies in our survey dataset. Finally in the sixth section we conclude with some
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thoughts about methods that could be used in future surveys that sample both landline and cell-phone

numbers.

A1.2 Survey of Opinions and Attitudes of the Andalusian Pop-

ulation regarding Immigration (OPIA) 2013

The 2013 survey of Opinions and attitudes of the Andalusian population regarding immigration (OPIA)

is a population-based survey conducted by the IESA, a public scientific research institute specialising in

the social sciences. Its aim is to reflect the opinions of the Andalusian population with regard to various

aspects of immigration and refugee policies in Spain and towards immigrants as a group. This survey was

conducted in a period characterised by one of the most severe economic crises in the modern history of

Andalusia, which has dramatically increased rates of unemployment, a situation that has notably changed

attitudes towards immigration in Andalusia. This survey is based on a sample of persons drawn from

both landline and cell-phone frames.

A1.2.1 Population coverage through landlines and cell phones in Andalusia

In Andalusia, the proportion of survey subjects only reachable by landline communication has decreased

to below 10%. In economic good times, and due to rising numbers of internet connections, the proportion

of people only reachable by cell phone also declined. However, in recent years this proportion has risen

to around 20%. The number of people not reachable by phone now only represent a residual percentage

of the population (less than 2%).

Table A1.1: Coverage in 2013. Source: Survey of Information Technologies in Households (INE).

Both 69.4%
Cell only 9.6%
Land only 19.7%
No phone 1.3%

The distributions of landlines and cell phones vary considerably depending on the age of the pop-

ulation. Figure 2 shows that, taking into account only people for whom the availability of a landline

depends on their own decision, that is, not considering people living with their parents, the younger the
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Figure A1.1: Evolution of landline and cell phone coverage for people over 16 years old.
Source: Survey on the Equipment and Use of Information and Communication Technologies (ICT - H) in Households.

Figure A1.2: Percentage of people with only cell phone, by age.
Source: Survey on the Equipment and Use of Information and Communication Technologies (ICT - H) in Households.

population, the higher the percentage having only a cell phone. This value exceeds 40% for people aged

under 33 years.

A worrying issue in this respect, due to the difficulties posed in correcting it, is the income gap between

those with only a cell phone and the rest of the population (Vicente and Reis, 2009). In Figure 3 it can

be seen, taking into account the age and the state of emancipation, that there are very large differences

in the percentages of people who have only a cell phone, depending on personal income. For example, for

people living independently and aged between 30 and 44 years, 60% of individuals have only a cell phone

when their household income is below 900 euros, and this percentage is 10% when their income exceeds

2,500 euros.

In this survey, the IESA decided to carry out telephone interviews with adults using both landlines

and cell phones. Taking into account the time and budget available, 2402 interviews were performed by

qualified interviewers, specially trained in survey techniques. The number of interviews to be conducted
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Figure A1.3: Percentage of population with only cell phone, by income, age and emancipation.
Source: Survey on the Equipment and Use of Information and Communication Technologies (ICT - H) in Households.

via landline and via cell phone was determined by calculating the optimum proportion (in the sense of

minimum variance) for each type of telephone, taking into account the (Pasadas and Trujillo, 2013) costs

and the percentage of possession of each type of device (following Hartley, 1962). As a result, the sample

sizes ascertained were 1919 for landlines and 483 for cell phones. The interviews were carried out by

the Statistics and Surveys sections of IESA from 22 April to 13 May 2013, using Computer Assisted

Telephone Interviewing (CATI) data input techniques.

A1.2.2 Descriptions of frames and sampling designs

Following Hartley’s classical notation (1962), two samples are drawn independently from two frames, A

and B. Let a = A ∩ B, b = A ∩ B , and ab = A ∩ B, where (·) denotes the complement of a set. From

frame A, land-phone, a stratified sample sA of size nA was drawn. Probability-based random-digit-dial

(RDD) telephone survey is performed in frame B, cell-phone, and a sample sB of size nB is drawn using

a simple random sampling without replacement design, SRSWOR.

Sample sizes of land (A) and cell (B) phones are nA = 1919 and nB = 483. Domain sample sizes

are: in the overlapping population nab = 1727 for the sample sab = (sA ∩ ab), nba = 237 for the

sample sba = (sB ∩ ab) and nb = 246 for the cell phone sample sb = sB ∩ b and na = 192 for the
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land phone sample sa = sA ∩ a. The total sample is s = sA ∪ sB = sa ∪ sab ∪ sba ∪ sb, and its size is

n = nA + nB = na + nab + nba + nb = 2402.

At the time of data collection, frame sizes of land (A) and cell (B) phones were NA = 4982920 and

NB = 5707655 and the total population size was N = 6350916. The domain population sizes were:

Nab = 4339659 for the overlap domain, Na = 643261 for land phones and Nb = 1367996 for cell phones.

(source ICT-H 2012, Survey on the Equipment and Use of Information and Communication Technologies

in Households, INE, National Statistical Institute, Spain.)

Table A1.2: Sample sizes for the OPIA survey. Land and Cell in the columns refer to the frame from
which the units were chosen, while in the rows, they refer to frame in which the units actually reside.

Land Cell Total

Both 1727 237 1964
Cell 246 246
Land 192 192
Total 1919 483 2402

The land-phone sample was also stratified by provinces in the region of Andalusia, as shown in Table

A1.3.

Table A1.3: Stratification in land-phone sample

Province Almeŕıa Cádiz Córdoba Granada Huelva Jaén Málaga Sevilla

NA
h (*) 353787 767370 508258 558087 308941 423548 872011 1190918

nAh 262 210 252 256 275 263 207 194

(*) Those estimates can be found on the INE website: http://www.ine.es/

Cell-phone interviews were carried out with no control over the distribution by provinces owing to the

difficulty of determining the location of this type of telephone. Hence, more interviews were performed

in the most populated provinces than in the less populated ones.

A1.2.3 Initial weighting adjustments

This section describes the procedures used to create the weights for each sample. The base weights are

the ratio of the number of telephone numbers in the frame to the number sampled. The weights were

further adjusted to account for people who had multiple chances of being sampled because they had more
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than one telephone number.

First order inclusion probabilities were computed from a stratified random design in frame A and

modified taking into account the number of fixed lines (Lhk) and adults in the household (Ahk) as follows:

πAhk =
nA
hLhk

NA
h Ahk

. The design weights were computed as dAhk = 1/πAhk for all h and k. A simple random

sample without replacement, SRSWOR, was drawn from frame B and first order inclusion probabilities

were computed and modified given the number of cell-phone numbers per individual (Mk) as πBk = nBMk

NB
,

for all k. The design weights were computed as dBk = 1/πBk .

A1.3 Estimation in dual frame telephone surveys

We consider the problem of estimating the population proportion P = N−1
∑N
k=1 yk, where yk is an

attribute indicator for unit k, i.e., yk = 1 if unit k has the attribute of interest, and yk = 0 otherwise.

The number of population units belonging to the group of interest is denoted by Y =
∑N
k=1 yk.

If the population size is known, an estimator P̂ of the population can easily be obtained from the

total estimator Ŷ as the ratio P̂ = Ŷ /N . In cases where the population size is unknown, P̂ = Ŷ /N̂ is

an estimator of P , where N̂ is an estimate of the population size N (this situation can arise in practice

when, for example, the sampling frames available do not cover the entire target population).

We now present an overview of the estimation procedures of Ŷ used in this survey.

A1.3.1 Single-frame approach

Bankier (1986) and Kalton and Anderson (1986) proposed estimators that treated all the observations as

if they had been sampled from a single frame, with adjusted weights in the intersection domain relying

on the inclusion probabilities for each frame. In those situations, as in our example, in which we know

the inclusion probability of the units in the sample under both sampling designs, the weights are defined

as follows for all units in frame A and in frame B:

dsfk =


dAk if k ∈ a

(1/dAk + 1/dBk )−1 if k ∈ ab

dBk if k ∈ b

(A1.1)

Note that the units in the overlap domain, which are expected to be selected with a probability
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(πAk + πBk ), have equal weights in frame A and in frame B.

Single frame estimator (sf). Kalton and Anderson’s (1986) single frame estimator is:

Ŷ SF =
n∑
k=1

dsfk yk. (A1.2)

The single frame weights are the same for all response variables, and so the estimators are internally

consistent. For complex surveys, however, single frame estimators may not be efficient. Skinner (1991)

provides a theoretical study of the efficiency of the raking ratio estimator for multiple-frame survey. For

the calculation of an unbiased estimator of the variance of a single-frame estimator, we adopted the

approach proposed by Rao and Skinner (1996)

V̂ (Ŷ SF ) = V̂ (z̃Ak ) + V̂ (z̃Bk ), (A1.3)

where z̃Ak = δk(a)yk + (1 − δk(a))yk
πA
k

πA
k +πB

k

, z̃Bk = δk(b)yk + (1 − δk(b))yk
πB
k

πA
k +πB

k

and V̂ (·) denotes the

Horvitz-Thompson variance estimator (see Särndal et al., 1992) with δk(a) = 1 if k ∈ a and 0 otherwise,

δk(ab) = 1 if k ∈ ab and 0 otherwise, δk(ba) = 1 if k ∈ ba and 0 otherwise and δk(b) = 1 if k ∈ b and 0

otherwise.

Calibration estimator (cal). In the OPIA survey, NA, NB and Nab are all known. We can define a

calibration estimator on (Na, Nab, Nb):

Ŷ CAL =
n∑
k=1

wcalk yk (A1.4)

with weights wcal verified to be close to the design weights dsfk and that reproduce the known totals

(Na, Nab, Nb), that is, N̂CAL
a =

∑n
k=1 w

cal
k δk(a) = Na, N̂CAL

b =
∑n
k=1 w

cal
k δk(b) = Nb and N̂CAL

ab =∑n
k=1 w

cal
k δk(ab) = Nab. All the distance measures taken to define “closeness” provide the same set

of calibration weights, because the minimization problem has an analytic solution irrespective of the

distance function employed (see Ranalli et al. 2013 for details).

An estimator of the variance of calibration estimator can be obtained using the residuals of regression
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of y on x = (δk(a), δk(ab), δk(b)) as the y-variable in expression (A1.24).

Single Frame Raking Ratio (SFRR). The single-frame estimator (SF) does not use any auxiliary infor-

mation about the population totals NA and NB , but can be adjusted through any of the raking ratio

estimations. Skinner (1991) and Rao and Skinner (1996) showed that the raking procedures in fact

converge to give the explicit estimator

Ŷ SFRR =
NA − N̂RR

ab

N̂SF
a

Ŷ SFa +
N̂RR
ab

N̂SF
ab

Ŷ SFab +
NB − N̂RR

ab

N̂SF
b

Ŷ SFb (A1.5)

where N̂RR
ab is the smallest root of the quadratic equation N̂SF

ab x
2 −

[
N̂SF
ab

(NA +NB) + N̂SF
a N̂SF

b

]
x+ N̂SF

ab NANB = 0.

If Nab is not known, a calibration estimator can be defined on (NA, NB):

Ỹ CAL =
n∑
k=1

w̃calk yk (A1.6)

with weights w̃cal verified to be close to the design weights dsfk and that reproduce the known totals

(NA, NB), that is, ÑCAL
A =

∑n
k=1 w̃

cal
k δk(A) = NA and ÑCAL

B =
∑n
k=1 w̃

cal
k δk(B) = NB . This estimator

is the same as sfrr in (A1.5) if the “raking” method is used in calibration.

The variance for the single frame calibration estimator is then determined using the residuals of

regression of y on x = (δk(A), δk(B)) as the y-variable in expression (A1.24).

A1.3.2 Dual-frame approach

In situations in which we do not know the inclusion probability of the units in the sample under both sam-

pling designs, dual-frame methods can be considered. For comparison, these methods are also considered

in our example.

We can write

Y = Ya + ηYab + (1− η)Yba + Yb, (A1.7)

where Ya =
∑
j∈a yj , Yab =

∑
j∈ab yj , Yba =

∑
j∈ba yj and Yb =

∑
j∈b yj .
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Fixed weight adjustment (fwa). The simplest weight modification to preserve approximate unbiased-

ness, as described by Hartley (1962), yields

Ŷ (θ) = Ŷa + θŶab + (1− θ)Ŷba + Ŷb (A1.8)

Brick et al. (2006) used θ = 1/2 in their study of a dual-frame survey in which frame A was a landline

telephone frame and frame B was a cell-phone frame. For this purpose, the value of θ = 1/2 is frequently

recommended (see, for example, Mecatti 2007). This estimator is denoted by

Ŷ FWA = Ŷa + (1/2)Ŷab + (1/2)Ŷba + Ŷb (A1.9)

In order to calculate an estimator of the variance, we have taken into account that samples from

frames A and B are drawn independently and that the value for θ is fixed. Thus,

V̂ (Ŷ (θ)) = V̂ (Ŷa + θŶab) + V̂ ((1− θ)Ŷba + Ŷb) (A1.10)

where (A1.24) is used to compute the variance estimations.

Hartley (har) (1962, 1974) proposed choosing θ in (A1.8) so that the variance of Ŷ (θ) would be mini-

mized. The optimizing value of θ is

θopt =
V (Ŷba) + cov(Ŷb, Ŷba)− cov(Ŷa, Ŷab)

V (Ŷab) + V (Ŷba)
(A1.11)

and the estimator has the form

Ŷ HAR(θopt) = Ŷa + θoptŶab + (1− θopt)Ŷba + Ŷb (A1.12)

However, this optimal estimator is a function of the variances and covariances of the estimated domain

totals and then the optimal estimates will differ for different response variables.

In cases where estimation of θopt is outside [0, 1], approximation

θopt '
V (Ŷba)

V (Ŷab) + V (Ŷba)
(A1.13)
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can be used instead. In our example, using (A1.24) to estimate the three variances found in the latter

expression of θopt, we can obtain an estimation for the θopt without using second-order inclusion proba-

bilities. The variance estimator for the Hartley estimator can be obtained by replacing θ in (A1.10) for

the θopt value given in (A1.11).

Fuller and Burmeister (fb). Fuller and Burmeister (1972) proposed modifying Hartley’s estimator by

incorporating additional information regarding estimation of the overlap domain. The resulting estimator

is

Ŷ FB(β) = Ŷa + β1Ŷab + (1− β1)Ŷba + Ŷb + β2(N̂ab − N̂ba) (A1.14)

where β1 and β2 are selected to minimize V (ŶFB(β)). In this case, and as with Hartley’s estimator, a new

set of weights must be calculated for each response variable, leading to the inconsistency of the estimator.

Optimum values depend on covariances among the Horvitz-Thompson estimators and it is also possible

to obtain values of β1 outside [0, 1]. Moreover, it is not possible to estimate the population size N using

the fb estimator, because the minimization process requires the inversion of a singular matrix.

Pseudo-Maximum Likelihood (pml). Skinner and Rao (1996) proposed modifying the maximum like-

lihood estimator for a simple random sample suggested by Fuller and Burmeister (1972) to obtain a

pseudo-maximum likelihood (PML) estimator for a complex design. The PML estimator, unlike the

Hartley and Fuller-Burmeister estimators, is linear in y and is of the form

Ŷ PML(θ) =
NA − N̂PML

ab (θ)

N̂a
Ŷa +

N̂PML
ab (θ)

N̂ab(θ)
Ŷab(θ) +

NB − N̂PML
ab (θ)

N̂b
Ŷb (A1.15)

where Ŷab(θ) = θŶab + (1− θ)Ŷba, N̂ab(θ) = θN̂ab + (1− θ)N̂ba and N̂PML
ab (θ) is the smallest root of the

quadratic equation [θ/NB + (1− θ)/NA]x2−
[
1 + θN̂ab/NB + (1− θ)N̂ba/NA

]
x+ N̂ab = 0. Skinner and

Rao (1996) suggested choosing θ to minimize the asymptotic variance of N̂PML
ab (θ), with

θ̂ =
NaNBV̂ (N̂ba)

NaNBV̂ (N̂ba) +NbNAV̂ (N̂ab)
(A1.16)
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or estimate it as

θ ' V (N̂ba)

V (N̂ab) + V (N̂ba)
(A1.17)

In practice the variances in (A1.16) are unknown and must be estimated from the data. The PML

estimator uses the same set of weights for each response variable and thus avoids some of the difficulties

associated with the Hartley and Fuller-Burmeister estimators.

To estimate the variance of the PML estimator, we followed the method proposed by Rao and Skinner

(1996), which provides a consistent estimator of variance in the form

V̂ (Ŷ PML) = V̂ (z̃Ak ) + V̂ (z̃Bk ), (A1.18)

where, in this case, z̃Ak = yk − Ŷa

N̂a
if k ∈ sa and z̃Ak = θ

(
yk − Ŷab

N̂ab

)
+ λ̂φ̂ if k ∈ sab, where θ is calculated

according to (A1.16), λ̂ = Ŷab

N̂ab
− Ŷa

N̂a
− Ŷb

N̂b
and φ̂ = nAN̂b

nAN̂b+nBN̂a
. Similarly, we can define z̃Bk = yk − Ŷb

N̂b
if

k ∈ sb and z̃Bk = (1− θ)
(
yk − Ŷba

N̂ab

)
+ λ̂(1− φ̂) if k ∈ sba.

Pseudo-Empirical-Likelihood (pel). Recently, Rao and Wu (2010) extended the Pseudo-Empirical-

Likelihood approach (pel) proposed by Wu and Rao (2006) from one-frame surveys to dual-frame surveys

following a stratification approach and considering an estimation of the population mean of y,

ˆ̄Y PEL(θ) = (Na/N) ˆ̄Ya + (θ)(Nab/N) ˆ̄Yab + (Nab/N)(1− θ) ˆ̄Yba + (Nb/N) ˆ̄Yb, (A1.19)

where θ ∈ (0, 1) is a fixed constant to be specified and ˆ̄Ya =
∑
k∈sa p̂akyk, ˆ̄Yb =

∑
k∈sb p̂bkyk and ˆ̄Yab =∑

k∈sab
p̂abkyk = ˆ̄Yba. The weights maximize the pseudo empirical likelihood and verify

∑
k∈sa pak = 1,∑

k∈sab
pabk = 1,

∑
k∈sba pbak = 1,

∑
k∈sb pbk = 1, and the additional constraint induced by the common

domain mean Ȳab = Ȳba. In this case, we use the same estimation for θ as the one proposed in (A1.17).

Instead of calculating the explicit variance of the estimator, confidence intervals are obtained using the

bi-section method described by Wu (2005). This method constructs intervals in the form θ|rns(θ) < χ2
1(α),

where χ2
1(α) is the 1− α quantile from a χ2 distribution with one degree of freedom and rns represents

the pseudo empirical log likelihood ratio statistic, which can be obtained as the difference of two PEL

functions.
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A1.4 Jackknife variance estimation

We also use jackknife estimation to determine the variance of the estimators compared (Wolter, 2007).

The variance estimators presented in the third section can be computed in many different ways, depend-

ing on the specific estimator. Moreover, in small samples, they may poorly estimate the variability of

estimators because they estimate the asymptotic variance rather than the exact variance. Instead, the

jackknife approach is a common method for variance estimation that can be used whatever the estimator.

Thus, estimated variances obtained through this method can be used to compare the efficiencies of the

estimators. For the sake of brevity, in this section dual or single-frame estimators are denoted by Ŷc.

In the case of a stratified design, as in frame A, let frame A be divided into H strata and let stratum

h have NAh observation units of which nAh are sampled. Then, a jackknife variance estimator of Ŷc with

an approximate finite-population correction is given by

V AJ (Ŷc) =
H∑
h=1

(
1− nAh

NAh

)
nAh − 1

nAh

∑
i∈sAh

(Ŷ Ac (hi)− Y Ahc )2 (A1.20)

where Ŷ Ac (hi) is the value taken by estimator Ŷc after dropping unit i of stratum h from sample sAh,

Y
Ah

c is the average of these nAh values.

If we consider a non stratified design, as in frame B, the jackknife estimator for the variance of Ŷc

with an approximate finite-population correction may be given by

V BJ (Ŷc) =
nB − 1

nB
(1− nB

NB
)
∑
i∈sB

(Ŷ Bc (i)− Y Bc )2 (A1.21)

where Ŷ Bc (i) is the value taken by estimator Ŷc after dropping unit i from sB and Y
B

c is the average of

Ŷ Bc (i) values (see Wolter, 2007).

For any estimator Ŷc in the single or dual frame approach, we compute Ŷc(i), i = 1, . . . , n. Then,

the pseudo values Ŷc(i) are separated into those from frame A and from frame B and V AJ and V BJ are

computed. Finally, due to the independence, VJ = V AJ + V BJ .
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A1.5 Results for the OPIA Survey

To examine the performance of the dual-frame estimation methods in practice, we applied them to the

dataset from the OPIA survey.

Three main variables are included in this study, related to “goodness of immigration”, “amount of

immigration” and “confidence in immigration”. The variables are the answers to the following questions:

• And in relation to the number of immigrants currently living in Andalusia, do you think there are

...?: Too many, A reasonable number, Too few

• In general, do you think that for Andalusia, immigration is ...?: Very bad, Bad, Neither good nor

bad, Good, Very good

• In general, how much confidence do you have in immigrants? None at all, Very little, It depends,

Quite a lot, Very much

Each category of each variable is treated separately as an attribute so that for any of the attributes of

interest, ykI = 1 if the k-th individual presents the attribute I and ykI = 0 otherwise. The proportions

for all the main variables are computed using P̂I = ŶI

N̂
, where ŶI is the estimated total of units in the

population with the attribute of interest I and N̂ is an estimate of the population size N . For example,

using the single frame estimator (A3.9) we estimate the population total and the population size as:

Ŷ SFI =
n∑
k=1

dsfk ykI and N̂SF =
n∑
k=1

dsfk , (A1.22)

respectively, and similarly for the other estimators. For the fb estimator, the matrix to solve the minimum

variance is singular in estimating the population size N and this estimator is not included.

The weights wcalk of the calibration estimator (A1.4) verify that

n∑
k=1

wcalk δk(a) = 643261,
n∑
k=1

wcalk δk(ab) = 1367996,
n∑
k=1

wcalk δk(b) = 4339659. (A1.23)

As Särndal (2007) says, the calibration gives a unique weighting system, one that is perfectly clear

and transparent, and applicable to all study variables.

In the dual-frame approach, there is no single θ̂opt for the har estimator, since it depends on the

values of each study variable. For the pel estimator, the value for θ̂ in (A1.17)(applicable to all study
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variables) is θ̂ = 0.729684, whereas with the fwa estimator we use θ = 1/2. For the pml estimator, the

value for θ in (A1.16) is θ̂ = 0.620662.

All dual-frame estimators have one thing in common: the weighting of the estimations for the overlap

domain, either with 1/2 or with one of estimations of θ in (A1.11), (A1.13) or (A1.16). In single-frame

estimators, the weighting is given by probabilities under both sampling designs.

All the estimators considered in this paper require estimates of the domain sizes Na, Nb and Nab. The

estimates for the sizes of the population domains are obtained using the Horvitz-Thompson estimator.

For domain a, the population size Na is estimated by N̂a =
∑nA

k=1 d
A
k δk(a) where δk(a) = 1 if k ∈ a and

0 otherwise. For domain ab, there are two options: a) the population size Nab is estimated by N̂ab =∑nA

k=1 d
A
k δk(ab) where δk(ab) = 1 if k ∈ ab and 0 otherwise and b) the population size Nab is estimated by

N̂ba =
∑nB

k=1 d
B
k δk(ab). For domain b, the population size Nb is estimated by N̂b =

∑nB

k=1 d
B
k δk(b) where

δk(b) = 1 if k ∈ b and 0 otherwise.

In a similar way, we denote the Horvitz-Thompson estimator of any y variable in domain a as Ŷa =∑nA

k=1 d
A
k δk(a)yk and similarly for the others. In the present survey the following results are obtained:

Table A1.4: Estimates of domain sizes and coefficients of variation

Domain Estimate CV

a 493776 0,084
ab 4646468 0,020
ba 3117703 0,049
b 3227202 0,047

The variances in Table A1.4 are computed using Deville’s method (Deville, 1993) to avoid second-

order probabilities (although in this case it is possible to easily compute them). This method yields,

given a y-variable whose population total Y is estimated using the Horvitz-Thompson estimator based

on a sample s, Ŷ =
∑
s yk/πk, the following variance estimator:

V̂ (Ŷ ) =
1

1−
∑
k∈s a

2
k

∑
k∈s

(1− πk)

(
yk
πk
−
∑
l∈s

al
yl
πl

)2

(A1.24)

where ak = (1− πk)/
∑
l∈s(1− πl).

Tables A1.5, A1.6 and A1.7 show the point and 95% confidence level estimation of proportions of

the main variables. Two different sets of confidence intervals are calculated: one, based on the jackknife
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variance estimation described in the fourth section and the other, based on the variance estimations

described in the third section. Other tables could be obtained if finite population correction factors were

used in jackknife variance estimation, but they are not included here because the results would be very

similar.

For the outcomes shown in Tables A1.5, A1.6 and A1.7, we obtained the following findings:

• There are no important differences between the estimates produced with the single or dual frame

approach.

• Among all the estimation strategies, the calibration method performs best, and produces the small-

est confidence interval. Calibration estimation can be implemented easily using existing software

for single-frame populations. There are several R packages for obtaining estimations using the

calibration technique, as the sampling package.

• The jackknife method often produces better intervals than methods based on the estimated variance

given by the authors (except for the PEL intervals)

At the time of data collection, the frame sizes for land phones (A) and cell phones (B) were NA =

4982920 and NB = 5707655 and the overlap domain was size Nab = 4339659. We also studied the

effect on estimation of using different values for frame and overlap domain sizes extracted from different

sources. For this purpose, we considered the three sets of sizes shown in Table 8. The data were

obtained from the Survey on the Equipment and Use of Information and Communication Technologies in

Households (conducted by the Spanish National Institute of Statistics) and from the IESA Households

Survey conducted in 2012 and 2013. Using four of the estimators described in the third section, we

computed the three possible estimations, the average values and the coefficients of variation. The results

of this are shown in Tables 9 and 10 for the three main variables.

The estimates obtained by each method, using different values of frame sizes obtained from 3 sources,

are, in general, similar. It is concluded that the estimators are only slightly influenced by the source used

to estimate the population sizes for landline and cell phones.
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A1.6 Conclusions

This paper addresses some of the issues involved in using dual-frame methods for landline and cell-phone

surveys. Multiple frame surveys are very useful when it is not possible to guarantee complete coverage

of the target population, and may result in considerable cost savings in comparison with a single-frame

design with comparable precision. However, this technique is not often applied by national statistical

agencies or by private survey agencies due to its complexity and the difficulties inherent in analyzing

multiple-frame surveys with standard survey software.

Several estimators have been proposed and the first question to be considered is how to choose the

most suitable one for this application.

Calibration, fixed weight, PML and single-frame estimators all give internal consistency, since the

same set of adjusted weights is used for all variables. In our application, good results were obtained

with these procedures. We recommend that an internally-consistent estimators be used. With repeated

surveys, the simplicity and transparency of a fixed-weight estimator may be preferred. Fixed-weight

adjustments may make year-to year comparisons easier in an annual survey, where the domain proportions

are relatively constant over time. Fixed-weight estimators are also more amenable to weight adjustments

for non-response and domain misclassification. Standard survey software may then be used to estimate

population proportions and totals using the modified weights.

On the other hand, variance estimation is more complicated when dual-frame estimators are used.

Resampling methods such as jackknife estimation may then be used to estimate variances. Jackknife

intervals are easy to compute and give accurate intervals.

The dual-frame estimates obtained from the variables considered in this study suggest that the use

of different values for frame and overlap domain sizes extracted from different sources had no substantial

impact on the level of efficiency obtained.

In this study, the use of auxiliary variables was not considered for estimating the study variables.

The use of demographic variables such as age, income or emancipation in the calibration and pseudo-

empirical-likelihood methods can improve the estimates, because these variables can have a considerable

impact on the distribution of landlines and cell phones.

We also highlight the need to implement these methods in both commercial and non-commercial

software for survey estimation. In this respect, we are now working on an R package for point and
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interval estimation for a two-frame estimator.

Finally, let us note that the results obtained in applying these methods in the OPIA survey indicate

that negative views towards immigration continue to spread, and that currently 59-61% of those surveyed

in Andalusia state that immigration is bad or very bad for the region (in the previous edition of the

study, in 2011, the corresponding figure was 58 %, and in the first such survey, in 2005, it was only 51%).

Perceptions regarding the number of immigrants, however, have changed in the opposite direction: there

is now a lower percentage of people who say there are too many immigrants (from 51 % in 2011 to current

levels of 40-42 %), while the other scores have risen slightly.
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Table A1.5: Point and 95% confidence level estimation of proportions using several methods for variance
estimation. Main variable: ”goodness of immigration”

In general, do you think that for Andalusia,

immigration is ...?

Jackknife variance Analytical variance

Estimator prop lb ub len lb ub len

Very bad

sf 13.72 11.57 15.87 4.31 11.57 15.87 4.30
sfrr 13.90 11.84 15.95 4.11 11.09 16.12 5.03
cal 13.35 11.69 15.01 3.33 10.72 15.97 5.25
fwa 13.70 11.66 15.74 4.08 11.68 16.30 4.62
har 13.44 11.66 15.23 3.58 11.64 15.98 4.34
pml 13.87 11.76 15.97 4.21 11.57 16.87 5.30
pel 13.62 11.71 15.53 3.82 12.89 15.86 2.97

Bad

sf 47.24 43.72 50.77 7.05 43.79 50.70 6.91
sfrr 47.39 44.43 50.35 5.92 43.98 51.14 7.16
cal 46.92 44.52 49.33 4.81 43.18 50.66 7.48
fwa 45.48 42.24 48.72 6.49 43.10 50.16 7.06
har 46.16 43.19 49.12 5.93 43.06 49.93 6.87
pml 46.43 43.02 49.84 6.82 42.96 50.95 7.99
pel 45.95 43.24 48.65 5.41 45.22 50.79 5.57

Neither good nor bad

sf 4.85 3.54 6.16 2.61 3.54 6.16 2.61
sfrr 4.47 3.42 5.51 2.09 3.08 6.19 3.11
cal 4.75 3.75 5.74 1.99 3.13 6.37 3.24
fwa 4.20 3.18 5.23 2.05 3.17 5.88 2.71
har 4.60 3.59 5.62 2.03 3.09 5.68 2.59
pml 4.34 3.30 5.38 2.08 2.44 5.43 2.99
pel 4.33 3.30 5.36 2.06 2.81 5.21 2.40

Good

sf 28.35 25.56 31.14 5.58 25.58 31.13 5.55
sfrr 28.22 25.87 30.57 4.70 25.00 31.33 6.33
cal 28.98 26.86 31.11 4.25 25.68 32.29 6.61
fwa 30.46 27.74 33.19 5.45 25.98 31.85 5.87
har 29.93 27.52 32.34 4.82 25.71 31.32 5.61
pml 29.36 26.92 31.81 4.89 25.19 31.81 6.62
pel 29.96 27.49 32.43 4.94 25.05 29.96 4.91

Very good

sf 2.18 1.36 3.00 1.63 1.36 3.00 1.64
sfrr 2.10 1.41 2.79 1.38 1.12 3.08 1.96
cal 2.16 1.51 2.82 1.31 1.14 3.19 2.05
fwa 2.14 1.35 2.93 1.58 1.25 3.03 1.78
har 2.11 1.43 2.78 1.35 1.29 2.94 1.65
pml 2.08 1.36 2.80 1.44 0.98 3.05 2.07
pel 2.12 1.35 2.88 1.53 1.39 2.54 1.15
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Table A1.6: Point and 95% confidence level estimation of proportions using several methods for variance
estimation. Main variable: ”Amount of immigration”

In relation to the number of immigrants currently

living in Andalusia, do you think there are ...?

Jackknife variance Analytical variance

Estimator prop lb ub len lb ub len

Too many

sf 42.31 38.95 45.66 6.71 38.97 45.64 6.67
sfrr 40.69 37.90 43.48 5.59 37.79 44.90 7.11
cal 40.97 38.61 43.34 4.74 37.26 44.69 7.43
fwa 40.26 37.28 43.24 5.97 39.10 45.94 6.84
har 39.92 37.26 42.59 5.33 38.75 45.42 6.67
pml 40.44 37.29 43.59 6.30 38.12 45.86 7.74
pel 41.05 38.37 43.73 5.36 39.78 43.93 4.15

A reasonable number

sf 45.81 42.44 49.19 6.74 42.51 49.12 6.61
sfrr 47.85 44.99 50.72 5.73 43.05 50.15 7.10
cal 47.03 44.63 49.43 4.79 43.32 50.74 7.42
fwa 47.91 44.59 51.23 6.64 42.03 48.82 6.79
har 48.43 45.41 51.45 6.04 42.02 48.63 6.61
pml 47.95 44.88 51.02 6.14 41.82 49.35 7.53
pel 46.72 44.00 49.43 5.43 43.44 47.96 4.52

Too few

sf 6.06 4.53 7.59 3.06 4.52 7.59 3.07
sfrr 5.39 4.15 6.63 2.48 3.87 7.49 3.62
cal 5.62 4.50 6.74 2.25 3.73 7.51 3.78
fwa 5.19 3.99 6.39 2.40 4.38 7.62 3.24
har 5.34 4.22 6.46 2.23 4.38 7.47 3.09
pml 5.33 4.09 6.56 2.47 3.74 7.35 3.62
pel 5.49 4.27 6.72 2.45 4.51 6.63 2.12
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Table A1.7: Point and 95% confidence level estimation of proportions using several methods for variance
estimation. Main variable: ”Confidence in immigrants”

In general, how much confidence

do you have in immigrants?

Jackknife variance Analytical variance

Estimator prop lb ub len lb ub len

None at all

sf 7.15 5.56 8.75 3.18 5.56 8.75 3.19
sfrr 7.66 6.07 9.24 3.18 5.59 9.36 3.77
cal 7.17 5.91 8.43 2.51 5.20 9.14 3.93
fwa 7.15 5.67 8.64 2.98 5.47 8.88 3.41
har 7.01 5.70 8.31 2.61 5.48 8.68 3.20
pml 7.36 5.76 8.97 3.21 5.87 9.80 3.93
pel 7.14 5.73 8.54 2.81 7.14 9.37 2.23

Very little

sf 35.67 32.43 38.90 6.47 32.46 38.88 6.42
sfrr 34.61 31.83 37.40 5.56 31.46 38.42 6.96
cal 34.34 32.04 36.65 4.61 30.71 37.98 7.27
fwa 34.09 31.16 37.02 5.86 32.80 39.46 6.66
har 33.65 31.01 36.29 5.28 32.37 38.80 6.43
pml 34.44 31.36 37.52 6.16 32.32 39.85 7.53
pel 34.71 32.09 37.32 5.22 34.14 38.33 4.19

Quite a lot

sf 35.02 32.06 37.98 5.92 32.09 37.94 5.85
sfrr 36.45 33.80 39.10 5.31 32.36 38.98 6.62
cal 36.55 34.27 38.84 4.57 33.10 40.01 6.91
fwa 38.18 35.14 41.23 6.09 32.08 38.21 6.13
har 38.12 35.39 40.84 5.45 32.07 37.96 5.89
pml 37.34 34.63 40.05 5.42 31.80 38.72 6.92
pel 37.06 34.44 39.67 5.22 32.72 37.06 4.34

Very much

sf 12.24 10.13 14.34 4.20 10.13 14.34 4.21
sfrr 10.94 9.30 12.59 3.28 8.85 13.75 4.90
cal 11.34 9.82 12.86 3.05 8.78 13.90 5.12
fwa 10.80 9.10 12.50 3.40 9.95 14.40 4.45
har 10.90 9.36 12.44 3.08 9.94 14.16 4.22
pml 10.90 9.22 12.57 3.35 8.58 13.56 4.98
pel 11.18 9.48 12.88 3.40 9.36 12.10 2.74

It depends

sf 7.29 5.73 8.85 3.13 5.73 8.85 3.12
sfrr 6.87 5.71 8.04 2.33 5.64 9.33 3.69
cal 7.63 6.38 8.87 2.49 5.70 9.56 3.85
fwa 6.68 5.42 7.94 2.51 5.18 8.43 3.25
har 7.25 6.03 8.47 2.44 5.17 8.27 3.10
pml 6.71 5.53 7.90 2.37 4.72 8.33 3.61
pel 7.05 5.73 8.36 2.63 5.27 8.27 3.00
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Table A1.8: Frame sizes

ICT-H ICT-H IESA-SH
2012 2013 2012

NA 4982920 4507662 4880574
NB 5707655 6073789 6098453
Nab 4339659 3983443 4266797

IESA-SH, Survey in Households, IESA

ICT-H, Survey on the Equipment and Use of Information and

Communication Technologies in Households, INE

Table A1.9: Average, avg and coefficient of variation, cv, of four point estimations. Main variable:
”Goodness of immigration”

In general, do you think that for Andalusia,

immigration is ...?

ICT-H ICT-H IESA-SH
Estimator avg 2012 2013 2012 cv

Very bad

sfrr 13.96 13.90 13.95 14.04 0.51
cal 13.45 13.35 13.47 13.54 0.71
pml 13.85 13.87 13.82 13.85 0.18
pel 13.71 13.62 13.72 13.78 0.59

Bad

sfrr 47.24 47.39 47.19 47.14 0.28
cal 47.02 46.92 47.05 47.08 0.18
pml 46.28 46.43 46.10 46.32 0.36
pel 46.10 45.95 46.14 46.22 0.30

Neither good nor bad

sfrr 4.51 4.47 4.52 4.53 0.71
cal 4.77 4.75 4.77 4.80 0.53
pml 4.40 4.34 4.46 4.41 1.37
pel 4.38 4.33 4.38 4.43 1.14

Good

sfrr 28.26 28.16 28.31 28.30 0.30
cal 28.80 28.98 28.76 28.66 0.57
pml 28.06 27.77 27.86 28.55 1.52
pel 29.72 29.96 29.67 29.53 0.74

Very good

sfrr 2.12 2.10 2.13 2.14 0.98
cal 2.17 2.16 2.17 2.17 0.27
pml 2.11 2.08 2.13 2.11 1.19
pel 2.12 2.12 2.12 2.13 0.27
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Table A1.10: Average, avg and coefficient of variation, cv, of four point estimations. Main variables:
”amount immigration”, ”confidence in immigrants”

In relation to the number of immigrants currently
living in Andalusia, do you think there are ...?

ICT-H ICT-H IESA-SH
Estimator avg 2012 2013 2012 cv

Too many

sfrr 40.82 40.69 40.81 40.96 0.33
cal 41.34 40.97 41.38 41.68 0.86
pml 40.46 40.44 40.46 40.53 0.12
pel 41.42 41.05 41.45 41.75 0.85

A reasonable number

sfrr 47.86 47.85 47.88 47.86 0.03
cal 46.69 47.03 46.65 46.39 0.69
pml 48.03 47.95 48.10 48.03 0.16
pel 46.40 46.72 46.36 46.11 0.66

Too few

sfrr 5.44 5.39 5.44 5.49 0.92
cal 5.74 5.62 5.75 5.85 2.01
pml 5.38 5.33 5.39 5.41 0.77
pel 5.62 5.49 5.63 5.74 2.23

In general, how much
confidence do you have in immigrants?

ICT-H ICT-H IESA-SH
Estimator avg 2012 2013 2012 cv

None at all

sfrr 7.58 7.66 7.56 7.53 0.90
cal 7.17 7.17 7.18 7.16 0.14
pml 7.27 7.36 7.16 7.28 1.39
pel 7.14 7.14 7.15 7.13 0.14

Very little

sfrr 34.73 34.61 34.70 34.87 0.38
cal 34.71 34.34 34.76 35.04 1.01
pml 34.46 34.44 34.34 34.61 0.40
pel 35.06 34.71 35.10 35.36 0.93

Quite a lot

sfrr 36.45 36.45 36.49 36.40 0.12
cal 36.12 36.55 36.06 35.75 1.12
pml 37.51 37.34 37.61 37.58 0.39
pel 36.59 37.06 36.53 36.19 1.20

Very much

sfrr 11.14 10.94 11.16 11.32 1.71
cal 11.59 11.34 11.60 11.82 2.07
pml 11.09 10.90 11.15 11.22 1.52
pel 11.44 11.18 11.45 11.68 2.19

It depends

sfrr 6.73 6.87 6.73 6.58 2.16
cal 7.53 7.63 7.52 7.45 1.20
pml 6.74 6.71 6.68 6.82 1.09
pel 6.99 7.05 6.98 6.93 0.86
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Abstract

Data from complex survey designs require special consideration with regard to estimation for finite

population parameters and corresponding variance estimation procedures, as a consequence of significant

departures from simple random sampling assumption. In the past decade a number of statistical software

packages have been developed to facilitate the analysis of complex survey data. All these statistical

software are able to treat samples selected from one sampling frame containing all population units.

Dual frame surveys are very useful when it is not possible to guarantee a complete coverage of the

target population and may result in considerable cost savings over a single frame design with comparable

precision. There are several available estimators in the statistical literature but no existing software

covers dual frame estimation procedures. This gap is now filled by Frames2. In this paper we highlight

the main features of the package. The package includes the main estimators in dual frame surveys and
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also provides interval confidence estimation.

A2.1 Introduction

Classic sampling theory usually assumes the existence of one sampling frame containing all finite popu-

lation units. Then, a probability sample is drawn according to a given sampling design and information

collected is used for estimation and inference purposes. In traditional design-based inference the popu-

lation data are regarded as fixed and the randomness comes entirely from the sampling procedure. The

most used design-based estimator is the Horvitz-Thompson estimator that is unbiased for the population

total if the sampling frame includes all population units, if all sampled units respond and if there is no

measurement error. In the presence of auxiliary information, there exist several procedures to obtain

more efficient estimators for population means and totals of variable of interest; in particular, customary

ratio, regression, raking, post-stratified and calibration estimators. Several software packages have been

developed to facilitate the analysis of complex survey data and implement some of these estimators as

SAS, SPSS, Systat, Stata, SUDAAN or PCCarp. CRAN contains several R packages that include these

design-based methods typically used in survey methodology to treat samples selected from one sampling

frame (e.g. survey (Lumley, 2014), sampling (Tillè and Matei, 2012), laeken (Alfons et al., 2014) or Teach-

ingSampling (Gutierrez Rojas, 2014) among others). Templ (2014) performs a detailed list of packages

that includes methods to analyse complex surveys.

In practice, the assumption that the sampling frame contains all population units is rarely met.

Often, one finds that sampling from a frame which is known to cover approximately all units in the

population is quite expensive while other frames (e.g. special lists of units) are available for cheaper

sampling methods. However, the latter usually only cover an unknown or only approximately known

fraction of the population. A common example of frame undercoverage is provided by telephone surveys.

Estimation could be affected by serious bias due to the lack of a telephone in some households and the

generalised use of mobile phones, which are sometimes replacing fixed (land) lines entirely. The potential

for coverage error as a result of the exponential growth of the cell-phone only population has led to the

development of dual-frame surveys. In these designs, a traditional sample from the landline frame is

supplemented with an independent sample from a register of cell-phone numbers.

Dual frame sampling approach assumes that two frames are available for sampling and that, overall,
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they cover the entire target population. The most common situation is the one represented in Figure

A2.1 where the two frames, say frame A and frame B, show a certain degree of overlapping, so it is

possible to distinguish three disjoint non-empty domains: domain a, containing units belonging to frame

A but not to frame B; domain b, containing units belonging to frame B but not to frame A and domain

ab, containing units belonging to both frames. As an example, consider a telephone survey where both

landline and cell phone lists are available; let A be the landline frame and B the cell phone frame. Then,

it is possible to distinguish three types of individuals: landline only units, cell-only units and units with

both landline and cell phone, which will compose domain a, b and ab, respectively.

Figure A2.1: Two frames with
overlapping.

Figure A2.2: Frame B is in-
cluded in frame A.

Figure A2.3: Frame A and
frame B exactly match.

Nevertheless, one can face some other situations depending on the relative positions of the frames. For

example, Figure A2.2 shows the case in which frame B is totally included in frame A, that is, frame B is

a subset of frame A. Here domain b is empty. We also may find scenarios where the two sampling frames

exactly match, as depicted in Figure A2.3, where ab is the only non-empty domain. Finally, the scenario

where domain ab is empty has no interest from a dual frame perspective, since it can be considered as a

special case of stratified sampling.

Whatever the scenario, an appropriate choice of the frames results in a better coverage of the target

population, which, in turn, leads to a better efficiency of estimators calculated from data from dual

frame surveys. This point is particularly important when estimating parameters in rare or elusive pop-

ulations, where undercoverage errors are usually due to the difficulty of finding individuals showing the

characteristic under study when sampling from only one general frame. This issue can be dealt with

by incorporating a second frame with a high density of members of the rare population so that the two

frames are, together, now complete. Dual frame sampling as a method of improvement of efficiency may

seem expensive and unviable, but it is not. In fact, Hartley (1962) notes that dual frame surveys can

result in important cost savings in comparison with single frame ones with a comparable efficiency. As
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an additional interesting characteristic, dual frame methodology offers the researcher the possibility to

consider different data collection procedures and/or different sampling designs, one for each frame. Dual

frame surveys have gained much attention and became largely used by statistical agencies and private

organizations to take advantage of these benefits.

Standard software packages for complex surveys can not be used directly when the sample is obtained

from a dual frame survey because the classical design-based estimators are severely biased and there is

a underestimation of standard errors. Weighted analyses with standard statistical software, with certain

modified weights, can yield correct point estimates of population parameters but still yield incorrect

results for estimated standard errors. A number of authors have developed methods for estimating

population means and totals from dual (or, more generally, multiple) frame surveys but most of these

methods require ad-hoc software for their implementation. To the best of our knowledge, there is no

software incorporating these estimation procedures for handling dual frame surveys.

Frames2 (Arcos et al., 2015) tries to fill this gap by providing functions for point and interval es-

timation from dual frame surveys. The paper is organized as follows. In the next section, we provide

an overview of the main point estimators proposed so far in the dual frame context and reviews also

jackknife variance estimation as a tool to compare efficiency for all of them. Subsequently, we present

package Frames2, discussing guidelines that have been followed to construct it and presenting its principal

functions and functionalities. We also provide examples to illustrate how the package works.

A2.2 Estimation in dual frame surveys

Consider again the situation depicted in Figure A2.1. Assume we have a finite set of N population units

identified by integers, U = {1, . . . , k, . . . , N}, and let A and B be two sampling-frames, both can be

incomplete, but it is assumed that together they cover the entire finite population. Let A be the set of

population units in frame A and B the set of population units in frame B. The population of interest,

U , may be divided into three mutually exclusive domains, a = A ∩ Bc, b = Ac ∩ B and ab = A ∩ B. Let

N,NA, NB , Na, Nb and Nab be the number of population units in U ,A,B, a, b, ab, respectively.

Let y be a variable of interest in the population and let yk be its value on unit k, for k = 1, ..., N .



FRAMES2: A PACKAGE FOR ESTIMATION IN DUAL FRAME SURVEYS 89

The objective is to estimate the finite population total Y =
∑
k yk that can be written as

Y = Ya + Yab + Yb,

where Ya =
∑
k∈a yk, Yab =

∑
k∈ab yk and Yb =

∑
k∈b yk. To this end, independent samples sA and sB are

drawn from frame A and frame B of sizes nA and nB , respectively. Unit k in A has first-order inclusion

probability πAk = Pr(k ∈ sA) and unit k in B has first-order inclusion probability πBk = Pr(k ∈ sB).

From data collected in sA, it is possible to compute one unbiased estimator of the total for each

domain in frame A, Ŷa and Ŷ Aab , as described below:

Ŷa =
∑
k∈sA

δk(a)dAk yk, Ŷ Aab =
∑
k∈sA

δk(ab)dAk yk,

where δk(a) = 1 if k ∈ a and 0 otherwise, δk(ab) = 1 if k ∈ ab and 0 otherwise and dAk are the weights

under the sampling design used in frame A, defined as the inverse of the first order inclusion probabilities,

dAk = 1/πAk . Similarly, using information included in sB , one can obtain an unbiased estimator of total

for domain b and another one for domain ab, Ŷb and Ŷ Bab , which can be expressed as

Ŷb =
∑
k∈sB

δk(b)dBk yk, Ŷ Bab =
∑
k∈sB

δk(ab)dBk yk,

with δk(b) = 1 if k ∈ b and 0 otherwise, and dBk the weights under the sampling design used in frame B

defined as the inverse of the first order inclusion probabilities, dBk = 1/πBk .

Different approaches for estimating the population total from dual frame surveys have been proposed

in the literature. Hartley (1962) suggests the use of a parameter, θ, to weight Ŷ Aab and Ŷ Bab , providing the

estimator

ŶH = Ŷa + θŶ Aab + (1− θ)Ŷ Bab + Ŷb, (A2.1)

where θ ∈ [0, 1]. Hartley (1974) himself proved that

θopt =
V (Ŷ Bab ) + Cov(Ŷb, Ŷ

B
ab )− Cov(Ŷa, Ŷ

A
ab)

V (Ŷ Aab) + V (Ŷ Bab )

is the optimum value for θ so that variance of the estimator with respect to the design is minimized. In
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practice, θopt cannot be computed, since population variances and covariances involved in its calculation

are unknown, so they must be estimated from sampling data. An estimator for the variance of ŶH can

be computed, taking into account that samples from frame A and frame B are drawn independently, as

follows

V̂ (ŶH) = V̂ (Ŷa) + θ2V̂ (Ŷ Aab) + θĈov(Ŷa, Ŷ
A
ab) + (1− θ)2V̂ (Ŷ Bab ) + V̂ (Ŷb) + (1− θ)Ĉov(Ŷb, Ŷ

B
ab ), (A2.2)

where hats denote suitable variance and covariance estimators.

Fuller and Burmeister (1972) introduce information from the estimation of overlap domain size, ob-

taining the following estimator

ŶFB = Ŷa + Ŷb + β1Ŷ
A
ab + (1− β1)Ŷ Bab + β2(N̂A

ab − N̂B
ab), (A2.3)

where N̂A
ab =

∑
k∈sA δk(ab)dAk and N̂B

ab =
∑
k∈sB δk(ab)dBk . Fuller and Burmeister (1972) also show that

[
β̃1

β̃2

]
=−

[
V (Ŷ Aab − Ŷ Bab ) Cov(Ŷ Aab − Ŷ Bab , N̂A

ab − N̂B
ab)

Cov(Ŷ Aab − Ŷ Bab , N̂A
ab − N̂B

ab) V (N̂A
ab − N̂B

ab)

]−1

×
[
Cov(Ŷa + Ŷb + Ŷ Bab , Ŷ

A
ab − Ŷ Bab )

Cov(Ŷa + Ŷb + Ŷ Bab , N̂
A
ab − N̂B

ab)

]

are the optimal values for β1 and β2 in the sense that they minimize the variance of the estimator. Again,

β̃1 and β̃2 need to be estimated, since population values are not known in practice. An estimator for the

variance of ŶFB is given by

V̂ (ŶFB) = V̂ (Ŷa)+V̂ (ŶB)+β̂1(Ĉov(Ŷa, Ŷ
A
ab)−Ĉov(ŶB , Ŷ

B
ab ))+β̂2(Ĉov(Ŷa, N̂

A
ab)−Ĉov(ŶB , N̂

B
ab)), (A2.4)

with ŶB = Ŷb + Ŷ Bab .

Bankier (1986) and Kalton and Anderson (1986) combine all sampling units coming from the two

frames, sA and sB , trying to build a single sample as if it was drawn from only one frame. Sampling

weights for the units in the overlap domain need, then, to be modified to avoid bias. These adjusted
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weights are

d̃Ak =

{
dAk if k ∈ a

(1/dAk + 1/dBk )−1 if k ∈ ab and d̃Bk =

{
dBk if k ∈ b

(1/dAk + 1/dBk )−1 if k ∈ ab

or, summarizing,

d̃k =

 dAk if k ∈ a
(1/dAk + 1/dBk )−1 if k ∈ ab

dBk if k ∈ b
. (A2.5)

Hence, the estimator can be expressed in the form

ŶBKA =
∑
k∈sA

d̃Ak yk +
∑
k∈sB

d̃Bk yk =
∑
k∈s

d̃kyk, (A2.6)

with s = sA ∪ sB . Note that to compute this estimator, one needs to know, for units in sample coming

from the overlap domain, the inclusion probability under both sampling designs. Rao and Skinner (1996)

propose the following unbiased estimator for the variance of the estimator

V̂ (ŶBKA) = V̂ (
∑
k∈sA

z̃Ak ) + V̂ (
∑
k∈sB

z̃Bk ), (A2.7)

where z̃Ak = δk(a)yk + (1− δk(a))yk
πA
k

πA
k +πB

k

and z̃Bk = δk(b)yk + (1− δk(b))yk
πB
k

πA
k +πB

k

.

When frame sizes, NA and NB , are known, estimator (A2.6) can be adjusted to increase efficiency

through different procedures as, for example, raking ratio (Bankier, 1986; Skinner, 1991). Applying the

latter, one obtains a new estimator, usually called raking ratio (Skinner, 1991), which has the form

ŶSFRR =
NA − N̂rake

ab

N̂a
Ŷ Aa +

NB − N̂rake
ab

N̂b
Ŷ Bb +

N̂rake
ab

N̂abS
ŶabS , (A2.8)

where ŶabS =
∑
k∈sA d̃

A
k δk(ab)yk +

∑
k∈sB d̃

B
k δk(ab)yk, N̂abS =

∑
k∈sA d̃

A
k δk(ab) +

∑
k∈sB d̃

B
k δk(ab), N̂a =∑

k∈sA δk(a), N̂b =
∑
k∈sB δk(b) and N̂rake

ab is the smaller root of quadratic equation N̂abSx
2−(N̂abS(NA+

NB) + N̂A
aSN̂

B
bS)x+ N̂abSNANB = 0.

Skinner and Rao (1986) use a pseudo maximum likelihood approach to extend to complex designs

the maximum likelihood estimator proposed by Fuller and Burmeister (1972) only for simple random
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sampling without replacement. The resulting estimator is given by

ŶPML =
NA − N̂PML

ab (γ)

N̂A
a

Ŷ Aa +
NB − N̂PML

ab (γ)

N̂B
b

Ŷ Bb

+
N̂PML
ab (γ)

γN̂A
ab + (1− γ)N̂B

ab

[γŶ Aab + (1− γ)Ŷ Bab ],

(A2.9)

where N̂PML
ab (γ) is the smallest of the roots of quadratic equation [γ/NB+(1−γ)/NA]x2−[1+γN̂A

ab/NB+

(1− γ)N̂B
ab/NA]x+ γN̂A

ab + (1− γ)N̂B
ab = 0 and γ ∈ (0, 1). It is also shown that the following value for γ

γopt =
N̂aNBV (N̂B

ab)

N̂aNBV (N̂B
ab) + N̂bNAV (N̂A

ab)
(A2.10)

minimizes the variance of ŶPML. One can use the delta method to obtain a consistent estimator of the

variance of this estimator in the form

V̂ (ŶPML) = V̂ (
∑
k∈sA

z̃Ak ) + V̂ (
∑
k∈sB

z̃Bk ), (A2.11)

where, in this case, z̃Ak = yk − Ŷa

N̂a
if k ∈ a and z̃Ak = γ̂opt

(
yk − Ŷ A

ab

N̂A
ab

)
+ λ̂φ̂ if k ∈ ab, with γ̂opt an

estimator of γopt in (A2.10) obtained by replacing population quantities with their estimators, λ̂ =

nA/NAŶ
A
ab+nB/NB Ŷ

B
ab

nA/NAN̂A
ab+nB/NBN̂B

ab

− Ŷa

N̂a
− Ŷb

N̂b
and φ̂ = nAN̂b

nAN̂b+nBN̂a
. Similary, one can define z̃Bk = yk − Ŷb

N̂b
if k ∈ b and

z̃Bk = (1− γ̂opt)
(
yk − Ŷ B

ab

N̂B
ab

)
+ λ̂(1− φ̂) if k ∈ ab.

More recently, Rao and Wu (2010) have proposed a pseudo empirical likelihood estimator for the

population mean based on poststratified samples. Such estimator is computed as

ˆ̄YPEL =
Na
N

ˆ̄Ya +
ηNab
N

ˆ̄Y Aab +
(1− η)Nab

N
ˆ̄Y Bab +

Nb
N

ˆ̄Yb, (A2.12)

where, in this case, ˆ̄Ya =
∑
k∈sA p̂akykδk(a), ˆ̄Y Aab =

∑
k∈sA p̂

A
abkykδk(ab), ˆ̄Y Bab =

∑
k∈sB p̂

B
abkykδk(ab) and

ˆ̄Yb =
∑
k∈sB p̂bkykδk(b) with p̂ak, p̂Aabk, p̂Babk and p̂bk the weights resulting from maximizing the pseudo

empirical likelihood procedure under a set of constraints (see Rao and Wu (2010) for details). Further-

more, η ∈ (0, 1). In this case, it is assumed that NA, NB and Nab are known, but this is not always the

case. Authors also provide modifications to be carried out in (A2.12) to adapt it to situations where only

NA and NB are known or where none of NA, NB or Nab are known. In addition, auxiliary information
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coming from either one or both frames can be incorporated to the estimation process to improve the

accuracy of the estimates. In addition, instead of an analytic form for the variance of this estimator, Rao

and Wu (2010) propose to compute confidence intervals using the bi-section method described by Wu

(2005) for one single frame and extending it to the dual frame case. This method constructs intervals in

the form {θ|rns(θ) < χ2
1(α)}, where χ2

1(α) is the 1−α quantile from a χ2 distribution with one degree of

freedom and rns(θ) represents the so called pseudo empirical log likelihood ratio statistic, which can be

obtained as a difference of two pseudo empirical likelihood functions.

Recently, Ranalli et al. (2013) extended calibration procedures to estimation from dual frame sampling

assuming that some kind of auxiliary information is available. For example, assuming there are p auxiliary

variables, xk(x1k, ..., xpk) is the value taken by such auxiliary variables on unit k. Each auxiliary variable

may be available only for units in frame A, only for units in frame B or for units in the whole population.

In addition, it is assumed that the vector of population totals of the auxiliary variables, tx =
∑
k∈U xk

is also known. In this context, the dual frame calibration estimator can be defined as follows

ŶCALDF =
∑
k∈s

dCALDFk yk, (A2.13)

where weights dCALDFk are such that min
∑
k∈sG(dCALDFk , d̆k) subject to

∑
k∈s d

CALDF
k xk = tx, with

G(·, ·) a determined distance measure and

d̆k =


dAk if k ∈ a
ηdAk if k ∈ ab

⋂
sA

(1− η)dBk if k ∈ ab
⋂
sB

dBk if k ∈ b

, (A2.14)

being η ∈ [0, 1].

Then, with a similar approach to that of ŶBKA, another calibration estimator can be computed as

ŶCALSF =
∑
k∈s

dCALSFk yk, (A2.15)

with weights dCALSFk verifying that min
∑
k∈sG(dCALSFk , d̃k) subject to

∑
k∈s d

CALSF
k xk = tx, being d̃k

the weights defined in (A2.5).

An estimator of the variance of any calibration estimator can be obtained using Deville’s method
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(Deville, 1993) through following expression

V̂ (Ŷ ) =
1

1−
∑
k∈s a

2
k

∑
k∈s

d?k − 1

d?k

(
d?kek −

∑
l∈s

ald
?
l el

)2

, (A2.16)

where d?k is given by (A2.5) or by (A2.14) according to whether we use ŶCALSF or ŶCALDF , respectively.

In addition, ak =
d?k−1
d?k

/
∑
l∈s

d?l−1
d?l

and ek are the residuals of the generalized regression of y on x.

Some of the estimators described above are particular types of calibration estimators. For example,

estimator (A2.8) can be obtained as a particular case of ŶCALSF in the case where frame sizes NA and NB

are known and the ”raking” method is selected for calibration. Having noted this, one can use (A2.16)

to calculate an estimator of variance of (A2.8). See Ranalli et al. (2013) for more details.

Table A2.1 shows a summary of the previous dual frame estimators according to the auxiliary infor-

mation required. It can be noted that Hartley, FB and BKA estimators can be computed even when no

information is available, but they cannot incorporate some auxiliary information when available. PML

and SFRR can incorporate information on NA and NB , but PEL and CAL type estimators are the most

flexible in that they can incorporate any kind of auxiliary information available.

Table A2.1: Estimator’s capabilities versus auxiliary information availability

NA, NB Na, Nb and Na, Nab, Nb and
None known Nab known XA and/or XB known

Hartley X
FB X
PML X
PEL X X X X
CalDF X X X X
BKA* X
SFRR* X
CalSF* X X X X
(*) Inclusion probabilities are known in overlap domain ab for both frames

A2.2.1 Jackknife variance estimation

Variance estimation methods exposed so far depend on each specific estimator, so comparisons between

variance estimations may lead to incorrect conclusions. Instead, one can consider jackknife, originally
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proposed by Quenouille (1949, 1956) (see Wolter (2007) for a detailed description of this method in survey

sampling) and extended to dual frame surveys by Lohr and Rao (2000), which can be used to estimate

variances irrespective of the type of estimator allowing us to compare estimated efficiency for different

estimators.

For a non stratified design in each frame, the jackknife estimator of the variance for any of the

estimators described, generically denoted by Ŷc, is given by

vJ(Ŷc) =
nA − 1

nA

∑
i∈sA

(Ŷ Ac (i)− Y Ac )2 +
nB − 1

nB

∑
j∈sB

(Ŷ Bc (j)− Y Bc )2, (A2.17)

with Ŷ Ac (i) the value of estimator Ŷc after dropping unit i from sA and Y
A

c the mean of values Ŷ Ac (i).

Similarly, one can define Ŷ Bc (j) and Y
B

c .

Jackknife may present an important bias when designs are without replacement. One could, then,

incorporate an approximate finite-population correction to estimation to achieve unbiasedness. For exam-

ple, assuming that a finite-population correction is needed in frame A, a modified jackknife estimator of

variance, v∗J(Ŷc), can be calculated by replacing Ŷ Ac (i) in (A2.17) with Ŷ A∗c (i) = Ŷc+
√

1− πA(Ŷ Ac (i)−Ŷc),

where πA =
∑
k∈sA π

A
k /nA.

Consider now a stratified design in each frame, where frame A is divided into H strata and frame B

is divided into L strata. From stratum h of frame A, a sample of nAh units from the NAh population

units in the stratum is drawn. Similarly, in stratum l of frame B, one selects nBl units from the NBl

composing the stratum. Jackknife estimator of the variance can be defined, then, as follows

vJ(Ŷc) =
H∑
h=1

nAh − 1

nAh

∑
i∈sAh

(Ŷ Ac (hi)− Y Ahc )2 +
L∑
l=1

nBl − 1

nBl

∑
i∈sBl

(Ŷ Bc (lj)− Y Blc )2, (A2.18)

where Ŷ Ac (hi) is the value taken by Ŷc after dropping unit i of stratum h from sample sAh and Y
Ah

c is

the mean of values Ŷ Ac (hi). Ŷ Bc (lj) and Y
Bl

c can be defined in a similar way. Again, one can include

an approximate finite-population correction in any stratum needing it. In case of a non stratified design

in one frame and a stratified design in the other one, previous methods can be combined to obtain the

corresponding jackknife estimator of the variance.

Stratified cluster sampling is very common in practice. Now we illustrate the jackknife estimator

when a stratified sample of clusters is selected. Suppose that frame A has H strata and stratum h has
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NAh observation units and ÑAh primary sampling units (clusters), of which ñAh are sampled. Frame B

has L strata, and stratum l has NBl observation units and ÑBh primary sampling units, of which ñBl

are sampled.

To define the jackknife estimator of the variance, let Ỹ Ac (hj) be the estimator of the same form as

Ŷc when the observations of sample primary sampling unit j of stratum h from sample in frame A are

omitted. Similarly, Ỹ Bc (lk) is of the same form as Ŷc when the observations of sample primary sampling

unit k of stratum l from sample in frame B are omitted. The jackknife variance estimator is then given

by:

vJ(Ŷc) =
H∑
h=1

ñAh− 1

ñAh

ñAh∑
j=1

(Ỹ Ac (hj)− Ỹ Ahc )2 +
L∑
l=1

ñBl − 1

ñBl

∑
k∈sBl

(Ỹ Bc (lk)− Ỹ Blc )2, (A2.19)

where Ỹ Ahc is the mean of values Ỹ Ac (hj) and Ỹ Blc is the mean of values Ỹ Bc (lk).

A2.3 The R package Frames2

Frames2 is a new R package for point and interval estimation from dual frame sampling. It consists of

eight main functions (Hartley, FB, BKA, SFRR, PML, PEL, CalSF and CalDF), each of them implement-

ing one of the estimators described in the previous sections. The package also includes an additional

function called Compare which provides a summary with all possible estimators that can be computed

from the information provided as input. Moreover, six extra functions implementing auxiliary operations,

like computation of Horvitz-Thompson estimators or of the covariance between two Horvitz-Thompson

estimators, have also been included in the package to achieve a more understandable code. Finally, the

package includes eight more functions, one for each estimator, for the calculation of confidence intervals

based on the jackknife variance estimator.

A remarkable characteristic of these functions is the strong argument check. Functions check general

aspects as the presence of NA or NaN values in its arguments, the number of main variables considered in

the frames (that should match), the length of the arguments in each frame (that should also match) or

the values for arguments indicating the domain each unit belongs to (which only can be ”a” or ”ab” for

frame A or ”b” or ”ba” for frame B). If any issue is encountered, the function displays an error message
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indicating what is the problem and what is the argument causing it, so that the user can manage errors

easily. Furthermore, each function has additional checks depending on its specific characteristics or

arguments. The main aim of this exhaustive check is to guarantee validity of the arguments, so one can

avoid, to the extent possible, issues during computation.

Much attention has also been devoted to computational efficiency. Frequently, populations in a survey

are extremely large or it is needed to keep sampling error below a certain value. As a consequence,

one needs to consider large sample sizes, often in the order of tens of thousands sampling units. In

these situations, computational efficiency of functions is essential, particularly when several variables

are considered. Otherwise, user can face high runtimes and heavy computational loads. In this sense,

functions of Frames2 are developed according to strict efficiency measures, using the power of R to the

matrix calculation to avoid loops and increase the computational efficiency. Table A2.2 shows user and

system times necessary to compute estimators using an Intel(R) Core(TM) i7-3770 at 3.40 GHz when

different sample sizes are considered. Elapsed time is also included to get an idea about the real time

user needs to get estimations.

Table A2.2: User, system and elapsed times (in seconds) for estimators considering different sample sizes.

user system elapsed

nA = 10605, nB = 13635

Hartley 0.01 0.02 0.04
FB 0.05 <0.01 0.07
BKA 0.03 <0.01 0.05
PML 0.02 0.02 0.03
SFRR 0.03 0.03 0.07
CalSF 0.03 <0.01 0.06
CalDF 0.04 0.01 0.05

nA = 105105, nB = 135135

Hartley 0.11 0.06 0.19
FB 0.27 0.07 0.32
BKA 0.13 0.05 0.17
PML 0.16 0.02 0.18
SFRR 0.42 0.12 0.54
CalSF 0.20 0.08 0.30
CalDF 0.22 0.07 0.31
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Functions of Frames2 have been implemented from an user-oriented perspective to increase usability.

In this sense, most input parameters (which are the communication channel between the user and the

function) are divided into two groups, depending on the frame they come from. This is to adapt functions

as much as possible to the usual estimation procedure, in which the first step is to draw two independent

samples, one from each frame. On the other hand, estimation details are managed internally by functions

so that they are not visible for the user, who does not need to manage them.

Construction of functions has been carried out so that they perform properly in as many situations

as possible. As noted in introductory section, one can face several situations when using two sampling

frames depending on their relative positions. Although the most common is the one depicted in Figure

A2.1, cases shown in Figures A2.2 and A2.3 may arise as well. All estimators described but PEL can be

modified to cover these three situations, so corresponding functions of Frames2 include necessary changes

to produce estimates irrespective of the situation.

On the other hand, it is usual, when conducting a survey, to collect information on many variables

of interest. To adapt to such situations, all functions are programmed to produce estimates when there

are more than one variable of interest with only one call. To this end, parameters containing information

about main variables observed in each frame can be either vectors, when only one variable is considered

or matrices or data frames, when there are several variables under study. Cases in which the main aim of

the survey is the estimation of population means or proportions are also very frequent. Hence, from the

estimation of the population total for a variable, functions compute estimation of the mean as ˆ̄Y = Ŷ /N̂ .

To obtain the estimation of the population size, functions internally apply the estimation procedure at

issue to indicator vectors 1A and 1B of sizes nA and nB , respectively.

To get maximum flexibility, functions have been programmed to calculate estimates in cases in which

user disposes of first and second order inclusion probabilities and in those other in which only first

order ones are available, indistinctly. Knowledge of both first and second order inclusion probabilities

is a strong assumption that does not always occur in practice. However, when calculating most of the

estimators described in previous sections, second order inclusion probabilities are needed in many steps

of the estimation procedure, mainly in computing estimated variances of a Horvitz-Thompson estimator

or estimated covariances between two Horvitz-Thompson estimators. As an alternative, one can obtain

variance estimations from only first order inclusion probabilities applying Deville’s method reported in

(A2.16), by substituting residuals ek with the values of the variable of interest, yk. Covariance estimations
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are also obtained from variances through following expression

Ĉov(Ŷ , X̂) =
V̂ (Ŷ + X̂)− V̂ (Ŷ )− V̂ (X̂)

2
.

To cover both cases, user has the possibility to consider different data structures for parameters relating

to inclusion probabilities. So, if both first and second order inclusion probabilities are available, these

parameters will be square matrices, whereas if only first order inclusion probabilities are known, these

arguments will be vectors. The only restriction here is that type of both should match.

As can be deduced from previous sections, an essential aspect when computing estimates in dual

frame is to know the domain each unit belongs to. Character vectors domains_A and domains_B are used

for this purpose. The former can take values ”a” or ”ab”, while the latter can take values ”b” or ”ba”.

Any other value will be considered as incorrect.

A2.3.1 Data description

To illustrate how functions operate, we use data sets DatA and DatB, both included in the package. DatA

contains information about nA = 105 households selected through a stratified sampling design from the

NA = 1735 households composing frame A. More specifically, frame A has been divided into 6 strata

of sizes NhA = (727, 375, 113, 186, 115, 219) from which simple random without replacement samples

of sizes nhA = (15, 20, 15, 20, 15, 20) have been drawn. On the other hand, a simple random without

replacement sample of nB = 135 households has been selected from the NB = 1191 households in frame

B. The size of the overlap domain for this case is Nab = 601. This situation is depicted in Figure A2.4.

Figure A2.4: Frame and domain sizes for the data sets.
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Both data sets contain information about the same variables. To better understand their structure,

we report the first three rows of DatA:

> library (Frames2)

> data(DatA)

>

> head (DatA, 3)

Domain Feed Clo Lei Inc Tax M2 Size ProbA ProbB Stratum

1 a 194.48 38.79 23.66 2452.07 112.90 0.00 0 0.02063274 0.0000000 1

2 a 250.23 16.92 22.68 2052.37 106.99 0.00 0 0.02063274 0.0000000 1

3 ab 199.95 24.50 23.24 2138.24 121.16 127.41 2 0.02063274 0.1133501 1

Each data set incorporates information about three main variables: Feeding, Clothing and Leisure.

Additionally, there are two auxiliary variables for the units in frame A (Income and Taxes) and another

two variables for units in frame B (Metres2 and Size). Corresponding totals for these auxiliary variables

are assumed known in the entire frame and they are TAInc = 4300260, TATax = 215577, TBM2 = 176553 and

TBSize = 3529. Finally, a variable indicating the domain each unit belongs to and two variables showing

the first order inclusion probabilities for each frame complete the data sets.

Numerical square matrices PiklA and PiklB, with dimensions nA = 105 and nB = 135, are also used

as probability inclusion matrices. These matrices contains second order inclusion probabilities and first

order inclusion probabilities as diagonal elements. To check the appearance of these matrices let see the

first submatrix of order 6 of PiklA.

> data(PiklA)

>

> PiklA[1:6, 1:6]

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.020632737 0.000397876 0.000397876 0.000397876 0.000397876 0.000397876

[2,] 0.000397876 0.020632737 0.000397876 0.000397876 0.000397876 0.000397876

[3,] 0.000397876 0.000397876 0.020632737 0.000397876 0.000397876 0.000397876

[4,] 0.000397876 0.000397876 0.000397876 0.020632737 0.000397876 0.000397876

[5,] 0.000397876 0.000397876 0.000397876 0.000397876 0.020632737 0.000397876
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[6,] 0.000397876 0.000397876 0.000397876 0.000397876 0.000397876 0.020632737

A2.3.2 No auxiliary information

When there is no further information than the one on the variables of interest, one can calculate some of

the estimators described in previous section (as, for example, (A2.1) or (A2.3)) as follows

> library(Frames2)

>

> data(DatA)

> data(DatB)

> data(PiklA)

> data(PiklB)

>

> yA <- with(DatA, data.frame(Feed, Clo))

> yB <- with(DatB, data.frame(Feed, Clo))

>

> #Estimation for variables Feeding and Clothing using Hartley and Fuller-Burmeister

> #estimators with first and second order probabilities known

> Hartley(yA, yB, PiklA, PiklB, DatA$Domain, DatB$Domain)

Estimation:

Feed Clo

Total 586959.9820 71967.62214

Mean 246.0429 30.16751

> FB(yA, yB, PiklA, PiklB, DatA$Domain, DatB$Domain)

Estimation:

Feed Clo

Total 591665.5078 72064.99223
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Mean 248.0153 30.20832

>

> #This is how estimates change when only first order probabilities are considered

> Hartley(yA, yB, DatA$ProbA, DatB$ProbB, DatA$Domain, DatB$Domain)

Estimation:

Feed Clo

Total 570867.8042 69473.86532

Mean 247.9484 30.17499

> FB(yA, yB, DatA$ProbA, DatB$ProbB, DatA$Domain, DatB$Domain)

Estimation:

Feed Clo

Total 571971.9511 69500.11448

Mean 248.4279 30.18639

As result, an object of class ”EstimatorDF” is returned showing, by default, estimations for the

population total and mean for the 2 considered variables. In general, m columns will be displayed,

one for each of the m variables estimated. Further information about estimation process (as variance

estimations or values of parameters involved in estimation) can be displayed by using function summary

> summary(Hartley(yA, yB, PiklA, PiklB, DatA$Domain, DatB$Domain))

Call:

Hartley(ysA = yA, ysB = yB, pi_A = PiklA, pi_B = PiklB, domains_A = DatA$Domain,

domains_B = DatB$Domain)

Estimation:

Feed Clo

Total 586959.9820 71967.62214

Mean 246.0429 30.16751
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Variance Estimation:

Feed Clo

Var. Total 2.437952e+08 4.728875e+06

Var. Mean 4.283804e+01 8.309261e-01

Total Domain Estimations:

Feed Clo

Total dom. a 263233.1 31476.84

Total dom. ab 166651.7 21494.96

Total dom. b 164559.2 20451.85

Total dom. ba 128704.7 15547.49

Mean Domain Estimations:

Feed Clo

Mean dom. a 251.8133 30.11129

Mean dom. ab 241.6468 31.16792

Mean dom. b 242.2443 30.10675

Mean dom. ba 251.5291 30.38466

Parameters:

Feed Clo

theta 0.8027766 0.7551851

Previous output shows in the component Estimation the estimations of the population total and

the population mean computed using the Harley estimator, that is, ŶH and ˆ̄YH . Estimated variances of

these estimations, V̂ (ŶH) and V̂ ( ˆ̄YH), are displayed in component Variance Estimation. In the section

Total Domain Estimations we can see estimations Ŷa, Ŷ
A
ab , Ŷb and Ŷ Bab . Estimates for the population

mean for each domain, ˆ̄Ya,
ˆ̄Y Aab ,

ˆ̄Yb and ˆ̄Y Bab are displayed in the component Mean Domain Estimations.

Finally, θ̂, the estimated value of parameter involved in computation of the Hartley estimator is shown.
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This additional information depends on the way each estimator is formulated. Thus, for example,

extra information will include a parameter component when applied to a call to the Fuller-Burmeister

estimator (and values of estimates for β1 and β2 will be displayed there), but not when applied to a

call to the Bankier-Kalton-Anderson estimator (because no parameters are used when computing this

estimator).

Results slightly change when a confidence interval is required. In that case, user has to indicate the

confidence level desired for the interval through argument conf_level (default is NULL) and add it to

the list of input parameters. The function calculates, then, a confidence interval based on the pivotal

method. This method yields a confidence interval as follows: Ŷ ± zα/2
√
V̂ (Ŷ ) where zα/2 is the critical

value of a standard normal distribution. Only for the case of PEL, confidence intervals are based on a

χ2 distribution and the bi-section method (Rao and Wu, 2010). In this case, default output will show 6

rows for each variable, lower and upper boundaries for confidence intervals are displayed together with

estimates. So, one can obtain a 95% confidence interval for estimations in the last two of the previous

four cases in this way

> Hartley(yA, yB, DatA$ProbA, DatB$ProbB, DatA$Domain, DatB$Domain, 0.95)

Estimation and 95 % Confidence Intervals:

Feed Clo

Total 570867.8042 69473.86532

Lower Bound 511904.6588 61756.37677

Upper Bound 629830.9496 77191.35387

Mean 247.9484 30.17499

Lower Bound 222.3386 26.82301

Upper Bound 273.5582 33.52697

> FB(yA, yB, DatA$ProbA, DatB$ProbB, DatA$Domain, DatB$Domain, 0.95)

Estimation and 95 % Confidence Intervals:

Feed Clo

Total 571971.9511 69500.11448
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Lower Bound 513045.7170 61802.57411

Upper Bound 630898.1852 77197.65484

Mean 248.4279 30.18639

Lower Bound 222.8342 26.84307

Upper Bound 274.0217 33.52971

For estimators constructed as (A2.6), numeric vectors pik_ab_B and pik_ba_A of lengths nA and nB

should be added as arguments. While pik_ab_B represents first order inclusion probabilities according to

sampling design in frame B for units belonging to overlap domain selected in sample drawn from frame

A, pik_ba_A contains first order inclusion probabilities according to sampling design in frame A for units

belonging to overlap domain selected in sample drawn from frame B.

> yA <- with(DatA, data.frame(Feed, Clo, Lei))

> yB <- with(DatB, data.frame(Feed, Clo, Lei))

>

> #Bankier-Kalton-Anderson estimation and a 95% confidence

> #interval for the three main variables

> BKA(yA, yB, DatA$ProbA, DatB$ProbB, DatA$ProbB, DatB$ProbA, DatA$Domain,

+ DatB$Domain, 0.95)

Estimation and 95 % Confidence Intervals:

Feed Clo Lei

Total 566434.3200 68959.26705 50953.07583

Lower Bound 624569.2139 76538.11015 56036.23578

Upper Bound 508299.4262 61380.42395 45869.91588

Mean 247.8845 30.17814 22.29822

Lower Bound 273.3257 33.49482 24.52273

Upper Bound 222.4434 26.86147 20.07372

Note that these examples include just a few of the estimators that can be used when no auxiliary

information is known. As noted in Table A2.1, other estimators, as those in (A2.12) or in (A3.8) or
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in (A3.10), can be also calculated in this case.In this context, function Compare is quite useful, since it

returns all possible estimators that can be computed according to the information provided as input.

> Compare(yA, yB, DatA$ProbA, DatB$ProbB, DatA$Domain, DatB$Domain)

$Hartley

Estimation:

Feed Clo Lei

Total 570867.8042 69473.86532 51284.2727

Mean 247.9484 30.17499 22.2746

$FullerBurmeister

Estimation:

Feed Clo Lei

Total 571971.9511 69500.11448 51210.03819

Mean 248.4279 30.18639 22.24236

$PEL

Estimation:

Feed Clo Lei

Total 1.791588e+08 2.663164e+06 1.455533e+06

Mean 2.479314e+02 3.011373e+01 2.235969e+01

$Calibration_DF

Estimation:

Feed Clo Lei

Total 595162.2604 72214.13351 53108.5059
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Mean 248.8422 30.19332 22.2051

Using appropriate indicator variables as variables of interest, one can also estimate the overlap domain

size, as shown below:

> indA <- as.integer(DatA$Domain == "ab")

> indB <- as.integer(DatB$Domain == "ba")

>

> Hartley(indA, indB, DatA$ProbA, DatB$ProbB, DatA$Domain, DatB$Domain)

Estimation:

[,1]

Total 534.2743208

Mean 0.2320545

> BKA(indA, indB, DatA$ProbA, DatB$ProbB, DatA$ProbB, DatB$ProbA,

+ DatA$Domain, DatB$Domain)

Estimation:

[,1]

Total 560.4121771

Mean 0.2452491

A2.3.3 Auxiliary information about frame sizes

For estimators requiring frame sizes known, as (A2.8) or (A2.9), it is needed to incorporate two additional

input arguments, N_A and N\_B. There is also a group of estimators, including (A2.12) and (A3.10), that

even being able to provide estimations without the need of auxiliary information, can use frame sizes to

improve their precision. The following examples show the performance of these estimators.

> #SFRR estimator and CalSF estimator with frame sizes as auxiliary

> #information using method "raking" for the calibration for the three main variables

> SFRR (yA, yB, DatA$ProbA, DatB$ProbB, DatA$ProbB, DatB$ProbA, DatA$Domain,
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+ DatB$Domain, N_A = 1735, N_B = 1191)

Estimation:

Feed Clo Lei

Total 584713.4070 71086.18669 52423.74035

Mean 248.2219 30.17743 22.25487

> CalSF(yA, yB, DatA$ProbA, DatB$ProbB, DatA$ProbB, DatB$ProbA, DatA$Domain,

+ DatB$Domain, N_A = 1735, N_B = 1191, met = "raking")

Estimation:

Feed Clo Lei

Total 584713.4070 71086.18669 52423.74035

Mean 248.2219 30.17743 22.25487

As highlighted previously, both results match. Note that argument met of SF calibration estimator

indicates the method used in the calibration procedure. The possibility of choosing the calibration

method is given by the fact that computation of both SF and DF calibration estimators is based on

the function calib from package sampling (Till and Matei, 2012), which can manage three different

calibration methods, each one associated with one particular distance measure. These methods are:

linear, raking and logit.

Condition of knowing probabilities of inclusion in both frames for the units in the overlap domain may

be restrictive is some cases. As an alternative, in cases where frame sizes are known but this condition

is not met, it is possible to calculate dual frame estimators as (A2.9), (A2.12) or (A3.8). Next, it is

illustrated how to obtain some of these estimators with Frames2.

> #Estimates for the three main variables using PML, PEL and CalDF

> #with frame sizes as auxiliary information in PEL and CalDF

> PML(yA, yB, PiklA, PiklB, DatA$Domain, DatB$Domain, N_A = 1735, N_B = 1191)

Estimation:

Feed Clo Lei
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Total 593085.4467 72272.73759 53287.68044

Mean 248.0966 30.23277 22.29104

> PEL(yA, yB, PiklA, PiklB, DatA$Domain, DatB$Domain, N_A = 1735, N_B = 1191)

Estimation:

Feed Clo Lei

Total 590425.4843 72211.61334 53258.38286

Mean 247.4958 30.26982 22.32497

> CalDF(yA, yB, PiklA, PiklB, DatA$Domain, DatB$Domain, N_A = 1735, N_B = 1191)

Estimation:

Feed Clo Lei

Total 587502.4374 71368.45308 52490.98852

Mean 248.7193 30.21385 22.22207

To calculate PEL estimator, computational algorithms for the pseudo empirical likelihood method for

the analysis of complex survey data presented by Wu (2005) have been used.

A2.3.4 Auxiliary information about domain sizes

In addition to the frame sizes, in some cases, it is possible to know the size of the overlap domain,

Nab. Generally, this highly improves the precision of the estimates. This situation has been taken into

account when constructing functions implementing estimators (A2.12), (A3.8) and (A3.10), so user can

incorporate this information through parameter N_ab, as shown below

> #Estimates for the three main variables using PEL estimator

> #with frame sizes and overlap domain size as auxiliary information

> PEL(yA, yB, PiklA, PiklB, DatA$Domain, DatB$Domain, N_A = 1735, N_B = 1191,

+ N_ab = 601)

Estimation:

Feed Clo Lei
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Total 575289.2186 70429.95642 51894.32490

Mean 247.4362 30.29245 22.32014

> #Calibration estimators with the same auxiliary information

> #Estimates do not change when raking method is used for the calibration

> CalSF(yA, yB, PiklA, PiklB, DatA$ProbB, DatB$ProbA, DatA$Domain, DatB$Domain,

+ N_A = 1735, N_B = 1191, N_ab = 601)

Estimation:

Feed Clo Lei

Total 577163.6066 70173.20412 51726.19862

Mean 248.2424 30.18202 22.24783

> CalSF(yA, yB, PiklA, PiklB, DatA$ProbB, DatB$ProbA, DatA$Domain, DatB$Domain,

+ N_A = 1735, N_B = 1191, N_ab = 601, met = "raking")

Estimation:

Feed Clo Lei

Total 577163.6067 70173.20414 51726.19863

Mean 248.2424 30.18202 22.24783

> CalDF(yA, yB, PiklA, PiklB, DatA$Domain, DatB$Domain, N_A = 1735, N_B = 1191,

+ N_ab = 601)

Estimation:

Feed Clo Lei

Total 578691.1756 70246.32319 51600.78973

Mean 248.8994 30.21347 22.19389

> CalDF(yA, yB, PiklA, PiklB, DatA$Domain, DatB$Domain, N_A = 1735, N_B = 1191,

+ N_ab = 601, met = "raking")

Estimation:

Feed Clo Lei
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Total 578691.1763 70246.32328 51600.78979

Mean 248.8994 30.21347 22.19389

Note that, in this case, calibration estimators provide the same results irrespective of the distance

function employed. This is an interesting property that calibration estimators show only in the case in

which all the domain sizes are known and used for calibration (see Deville, 1993).

A2.3.5 Auxiliary information about additional variables

On the other hand, some of the estimators are defined such that they can incorporate auxiliary information

to the estimation process. This is the case of estimators (A2.12), (A3.8) and (A3.10). Functions imple-

menting them are also able to manage auxiliary information. To achieve maximum flexibility, functions

implementing estimators (A2.12), (A3.8) and (A3.10) are prepared to deal with auxiliary information

when it is available only in frame A, only in frame B or in both frames. For instance, auxiliary informa-

tion collected from frame A should be incorporated to functions through three arguments: xsAFrameA

and xsBFrameA, numeric vectors, matrices or data frames (depending on the number of auxiliary variables

in the frame); and XA, a numeric value or vector of length indicating population totals for the auxiliary

variables considered in frame A. Similarly, auxiliary information in frame B is incorporated to each

function through arguments xsAFrameB, xsBFrameB and XB. If auxiliary information is available in the

whole population, it must be indicated through parameters xsT and X. In the following example, one can

see how to calculate estimators using different type of auxiliary information

> #PEL, CalSF and CalDF estimators for the three main variables

> #using Income as auxiliary variable in frame A and Metres2 as auxiliary

> #variable in frame B assuming frame sizes known

> PEL(yA, yB, PiklA, PiklB, DatA$Domain, DatB$Domain, N_A = 1735, N_B = 1191,

+ xsAFrameA = DatA$Inc, xsBFrameA = DatB$Inc, xsAFrameB = DatA$M2,

+ xsBFrameB = DatB$M2, XA = 4300260, XB = 176553)

Estimation:

Feed Clo Lei

Total 587742.7193 71809.56826 53094.20112
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Mean 246.3713 30.10129 22.25614

>

> CalSF(yA, yB, PiklA, PiklB, DatA$ProbB, DatB$ProbA, DatA$Domain, DatB$Domain,

+ N_A = 1735, N_B = 1191, xsAFrameA = DatA$Inc, xsBFrameA = DatB$Inc,

+ xsAFrameB = DatA$M2, xsBFrameB = DatB$M2, XA = 4300260, XB = 176553)

Estimation:

Feed Clo Lei

Total 582398.3181 70897.88438 52252.24741

Mean 247.5819 30.13922 22.21282

>

> CalDF(yA, yB, PiklA, PiklB, DatA$Domain, DatB$Domain, N_A = 1735, N_B = 1191,

+ xsAFrameA = DatA$Inc, xsBFrameA = DatB$Inc, xsAFrameB = DatA$M2,

+ xsBFrameB = DatB$M2, XA = 4300260, XB = 176553)

Estimation:

Feed Clo Lei

Total 585185.4497 71194.61148 52346.43878

Mean 247.8075 30.14866 22.16705

> #Now, assume that overlap domain size is also known

> PEL(yA, yB, PiklA, PiklB, DatA$Domain, DatB$Domain, N_A = 1735, N_B = 1191,

+ N_ab = 601, xsAFrameA = DatA$Inc, xsBFrameA = DatB$Inc,

+ xsAFrameB = DatA$M2, xsBFrameB = DatB$M2, XA = 4300260, XB = 176553)

Estimation:

Feed Clo Lei

Total 572611.6997 69991.74803 51737.56089

Mean 246.2846 30.10398 22.25271

>
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> CalSF(yA, yB, PiklA, PiklB, DatA$ProbB, DatB$ProbA, DatA$Domain, DatB$Domain,

+ N_A = 1735, N_B = 1191, N_ab = 601, xsAFrameA = DatA$Inc, xsBFrameA = DatB$Inc,

+ xsAFrameB = DatA$M2, xsBFrameB = DatB$M2, XA = 4300260, XB = 176553)

Estimation:

Feed Clo Lei

Total 575636.7876 70076.78485 51628.27583

Mean 247.5857 30.14055 22.20571

>

> CalDF(yA, yB, PiklA, PiklB, DatA$Domain, DatB$Domain, N_A = 1735, N_B = 1191,

+ N_ab = 601, xsAFrameA = DatA$Inc, xsBFrameA = DatB$Inc,

+ xsAFrameB = DatA$M2, xsBFrameB = DatB$M2, XA = 4300260, XB = 176553)

Estimation:

Feed Clo Lei

Total 576630.7609 70102.0037 51477.16737

Mean 248.0132 30.1514 22.14072

A2.3.6 Interval estimation based on jackknife variance estimation

Finally, eight additional functions have been included, each of them calculating confidence intervals based

on jackknife variance estimator for each estimator. To carry out variance estimation using jackknife

method, in addition to parameters to calculate each specific estimator, user has to indicate through

arguments sdA and sdB the sampling design applied in each frame. Possible values are ”srs” (simple

random sampling without replacement), ”str” (stratified sampling), ”pps” (probabilities proportional to

size sampling), ”clu” (cluster sampling) or ”strclu” (stratified cluster sampling). Default is ”srs” for

both frames. If a stratified or a cluster sampling has been carried out in one of the frames, it is needed

to include information about the strata or the clusters. Furthermore, user is able to include a finite

population correction factor in each frame by turning to TRUE parameters fcpA and fcpB, set by default

to FALSE. Since main purpose of functions is to obtain confidence intervals, parameter conf_level is now
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mandatory. As noted, these functions can be used, for example, to make comparisons between efficiency

of estimators, as shown in next example.

> #Confidence intervals through jackknife for the three main variables

> #for estimators defined under the so called single frame approach with

> #a stratified random sampling in frame A and a simple random sampling

> #without replacement in frame B. Finite population correction factor

> #is required for frame A

>

> JackBKA (yA, yB, DatA$ProbA, DatB$ProbB, DatA$ProbB, DatB$ProbA, DatA$Domain,

+ DatB$Domain, conf_level = 0.95, sdA = "str", strA = DatA$Stratum, fcpA = TRUE)

Feed Clo Lei

Total 566434.3200 68959.26705 50953.07583

Jack Upper End 610992.1346 74715.89841 54717.32664

Jack Lower End 521876.5055 63202.63570 47188.82502

Mean 247.8845 30.17814 22.29822

Jack Upper End 267.3840 32.69738 23.94555

Jack Lower End 228.3850 27.65891 20.65090

> JackSFRR(yA, yB, DatA$ProbA, DatB$ProbB, DatA$ProbB, DatB$ProbA, DatA$Domain,

+ DatB$Domain, N_A = 1735, N_B = 1191, conf_level = 0.95, sdA = "str",

+ strA = DatA$Stratum, fcpA = TRUE)

Feed Clo Lei

Total 584713.4070 71086.18669 52423.74035

Jack Upper End 619959.0338 76576.74587 55204.67760

Jack Lower End 549467.7802 65595.62751 49642.80309

Mean 248.2219 30.17743 22.25487

Jack Upper End 263.1843 32.50828 23.43543

Jack Lower End 233.2595 27.84659 21.07431

> JackCalSF(yA, yB, DatA$ProbA, DatB$ProbB, DatA$ProbB, DatB$ProbA, DatA$Domain,

+ DatB$Domain, N_A = 1735, N_B = 1191, N_ab = 601, conf_level = 0.95, sdA = "str",
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+ strA = DatA$Stratum, fcpA = TRUE)

Feed Clo Lei

Total 577163.6066 70173.20412 51726.19862

Jack Upper End 599105.4275 73516.53187 53165.97439

Jack Lower End 555221.7858 66829.87636 50286.42285

Mean 248.2424 30.18202 22.24783

Jack Upper End 257.6798 31.62001 22.86709

Jack Lower End 238.8051 28.74403 21.62857

>

> #Same for a selection of dual frame estimators

> JackHartley (yA, yB, DatA$ProbA, DatB$ProbB, DatA$Domain, DatB$Domain,

+ conf_level = 0.95, sdA = "str", strA = DatA$Stratum, fcpA = TRUE)

Feed Clo Lei

Total 570867.8042 69473.86532 51284.27265

Jack Upper End 610664.7131 74907.33129 54782.33083

Jack Lower End 531070.8954 64040.39934 47786.21447

Mean 247.9484 30.17499 22.27460

Jack Upper End 265.2336 32.53494 23.79393

Jack Lower End 230.6631 27.81504 20.75527

> JackPML(yA, yB, DatA$ProbA, DatB$ProbB, DatA$Domain, DatB$Domain,

+ N_A = 1735, N_B = 1191, conf_level = 0.95, sdA = "str", strA = DatA$Stratum,

+ fcpA = TRUE)

Feed Clo Lei

Total 594400.6320 72430.05834 53408.30337

Jack Upper End 626443.7529 76885.06491 56003.77592

Jack Lower End 562357.5111 67975.05176 50812.83082

Mean 248.0934 30.23115 22.29178

Jack Upper End 261.4677 32.09060 23.37509

Jack Lower End 234.7191 28.37171 21.20847

> JackCalDF(yA, yB, DatA$ProbA, DatB$ProbB, DatA$Domain, DatB$Domain, N_A = 1735,
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+ N_B = 1191, N_ab = 601, conf_level = 0.95, sdA = "str", strA = DatA$Stratum,

+ fcpA = TRUE)

Feed Clo Lei

Total 578895.6961 70230.11306 51570.55683

Jack Upper End 601626.7000 73614.66702 53037.42260

Jack Lower End 556164.6921 66845.55910 50103.69107

Mean 248.9874 30.20650 22.18088

Jack Upper End 258.7642 31.66222 22.81179

Jack Lower End 239.2106 28.75078 21.54997

A2.4 An application to a real telephone survey

In the example above data are separated into two data sets DatA and DatB containing domain information.

But in practice, it is common to have a joint data set including units from both samples in which there

is not a specific variable indicating the domain where each individual is placed. However, we can easily

split the dataset and format it, so functions of Frames2 can be applied. To illustrate how to do this, we

are going to use dataset Dat, which includes some of the variables collected in a real dual frame survey.

Data included in Dat comes from an opinion survey on the Andalusian population with respect to

immigration. This survey is conducted using telephone interviews on adults using two sampling frames:

one for landlines and another one for cell phones. From the landline frame, a stratified sample of size 1919

was drawn, while from the cell phone frame, a sample of size 483 is drawn using simple random sampling

without replacement. First-order inclusion probabilities were computed from a stratified random design in

the landline frame and modified taking into account the number of fixed lines and adults in the household.

In the cell phone frame first-order inclusion probabilities were computed and modified, given the number

of cell phone numbers per individual. At the time of data collection, frame sizes of land and cell phones

were 4,982,920 and 5,707,655, respectively, and the total population size was 6,350,916.

The data set includes information about 7 variables: Drawnby, which takes value 1 if the unit comes

from the landline sample and value 2 if it comes from the cell phone sample; Stratum, which indicates the

stratum each unit belongs to (for individuals in cell phone frame, value of this variable is NA); Opinion

the response to the question: ”Do you think that immigrants currently living in Andalusia are quite a
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lot?” with value 1 representing ”yes” and value 0 representing ”no”; Landline and Cell, which record

whether the unit possess a landline or a cell phone, respectively. First order inclusion probabilities are

also included in the data set.

> data(Dat)

> head(Dat,3)

Drawnby Stratum Opinion Landline Cell ProbLandline ProbCell

1 1 2 0 1 1 0.000673623 8.49e-05

2 1 5 1 1 1 0.002193297 5.86e-05

3 1 1 0 1 1 0.001831489 7.81e-05

From the data of this survey we wish to estimate the number of people in Andalusia thinking that

immigrants currently living in this region are quite a lot. In order to use functions of Frames2, we need

to split this dataset. The variables we will use to do this are Drawnby and Landline and Cell.

> attach(Dat)

> #We can split the original dataset in four new different

> #datasets, each one corresponding to one domain.

>

> DomainOnlyLandline <- Dat[Landline == 1 & Cell == 0,]

> DomainBothLandline <- Dat[Drawnby == 1 & Landline == 1 & Cell == 1,]

> DomainOnlyCell <- Dat[Landline == 0 & Cell == 1,]

> DomainBothCell <- Dat[Drawnby == 2 & Landline == 1 & Cell == 1,]

>

> #From the domain datasets, we can build frame datasets

>

> FrameLandline <- rbind(DomainOnlyLandline, DomainBothLandline)

> FrameCell <- rbind(DomainOnlyCell, DomainBothCell)

>

> #Finally, we only need to label domain of each unit using "a", "b",

> #"ab" or "ba"

>
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> Domain <- c(rep("a", nrow(DomainOnlyLandline)), rep("ab", nrow(DomainBothLandline)))

> FrameLandline <- cbind(FrameLandline, Domain)

>

> Domain <- c(rep("b", nrow(DomainOnlyCell)), rep("ba", nrow(DomainBothCell)))

> FrameCell <- cbind(FrameCell, Domain)

Now dual frame estimators, as PML estimator, can be computed:

> summary(PML(FrameLandline$Opinion, FrameCell$Opinion, FrameLandline$ProbLandline,

+ FrameCell$ProbCell, FrameLandline$Domain, FrameCell$Domain, N_A = 4982920,

+ N_B = 5707655))

Call:

PML(ysA = FrameLandline$Opinion, ysB = FrameCell$Opinion,

pi_A = FrameLandline$ProbLandline, pi_B = FrameCell$ProbCell,

domains_A = FrameLandline$Domain, domains_B = FrameCell$Domain,

N_A = 4982920, N_B = 5707655)

Estimation:

[,1]

Total 3.231325e+06

Mean 4.635634e-01

Variance Estimation:

[,1]

Var. Total 1.784362e+10

Var. Mean 3.672317e-04

Total Domain Estimations:

[,1]

Total dom. a 219145.1
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Total dom. ab 2318841.9

Total dom. b 1346646.1

Total dom. ba 1457501.0

Mean Domain Estimations:

[,1]

Mean dom. a 0.4438149

Mean dom. ab 0.4990548

Mean dom. b 0.4172797

Mean dom. ba 0.4674919

Parameters:

gamma 0.3211534

As overlap domain size is known, we can include additionally this information in the process and

compute more accurate estimators as CalDF and CalSF.

> summary(CalDF(FrameLandline$Opinion, FrameCell$Opinion, FrameLandline$ProbLandline,

+ FrameCell$ProbCell, FrameLandline$Domain, FrameCell$Domain, N_A = 4982920,

+ N_B = 5707655, N_ab = 4339659))

Call:

CalDF(ysA = FrameLandline$Opinion, ysB = FrameCell$Opinion,

pi_A = FrameLandline$ProbLandline, pi_B = FrameCell$ProbCell,

domains_A = FrameLandline$Domain, domains_B = FrameCell$Domain,

N_A = 4982920, N_B = 5707655, N_ab = 4339659)

Estimation:

[,1]

Total 2.985028e+06
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Mean 4.700153e-01

Variance Estimation:

[,1]

Var. Total 1.478990e+10

Var. Mean 3.666844e-04

Parameters:

eta 0.7296841

>

> summary(CalSF(FrameLandline$Opinion, FrameCell$Opinion, FrameLandline$ProbLandline,

+ FrameCell$ProbCell, FrameLandline$ProbCell, FrameCell$ProbLandline,

+ FrameLandline$Domain, FrameCell$Domain, N_A = 4982920, N_B = 5707655, N_ab = 4339659))

Call:

CalSF(ysA = FrameLandline$Opinion, ysB = FrameCell$Opinion,

pi_A = FrameLandline$ProbLandline, pi_B = FrameCell$ProbCell,

pik_ab_B = FrameLandline$ProbCell, pik_ba_A = FrameCell$ProbLandline,

domains_A = FrameLandline$Domain, domains_B = FrameCell$Domain, N_A = 4982920,

N_B = 5707655, N_ab = 4339659)

Estimation:

[,1]

Total 2.986787e+06

Mean 4.702923e-01

Variance Estimation:

[,1]

Var. Total 1.442969e+10
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Var. Mean 3.577539e-04

Observe that as greater is the information included in the estimation process as greater is the accuracy

of the estimates.

A2.5 Summary

The statistical literature about dual frame surveys started around 1960 and its development has evolved

very quickly because these surveys are largely used by statistical agencies and private organizations to

decrease sampling costs and to reduce frame undercoverage errors that could occur with the use of a

single sampling frame.

Dual frame surveys can be more complicated to design and more complicated to analyze than those

that use one frame only. There are several estimators of the population total available in the statistical

literature. These estimators rely on weight adjustments to compensate the multiplicity of the units in

the overlap domain. Some of these estimators allow to handle different types of auxiliary information at

different levels. Nevertheless, none of the existing statistical software implements all of these estimators.

In this article we illustrate Frames2, a new R package for point and interval estimation in dual frame

context. Functions composing the package implement the most important estimators in the literature

for population totals and means. We include two procedures (Pseudo-Empirical-Likelihood approach

and calibration approach) to incorporate auxiliary information about frame sizes and also about one or

several auxiliary variables in one or two frames. Post-stratification, raking ratio or regression estimation

are all encompassed as particular cases of these estimation procedures. Additional functions for confidence

interval estimation based on the jackknife variance estimation have been included as well.

The functionalities of the package Frames2 have been illustrated using several data sets DatA, DatB and

Dat (included in the package) corresponding to different complex surveys. We envision future additions

to the package that will allow for extensions to more than two frames.

Finally, we would like to direct the reader to the package vignettes estimation (Estimation in a dual

frame context) and formatting.data (Splitting and formatting data in a dual frame context) for further

examples and background information.
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Multinomial logistic estimation in

dual frame surveys

Molina, D., Rueda, M., Arcos, A. and Ranalli, M. G. (2015)

Multinomial logistic estimation in dual frame surveys.

Statistics and Operations Research Transactions (SORT), Vol. 39, Number 2, pp. 309 - 336.

Abstract

We consider estimation techniques from dual frame surveys in the case of estimation of proportions

when the variable of interest has multinomial outcomes. We propose to describe the joint distribution

of the class indicators by a multinomial logistic model. Logistic generalized regression estimators and

model calibration estimators are introduced for class frequencies in a population. Theoretical asymptotic

properties of the proposed estimators are shown and discussed. Monte Carlo experiments are also carried

out to compare the efficiency of the proposed procedures for finite size samples and in presence of different

sets of auxiliary variables. The simulation studies indicate that the multinomial logistic formulation

yields better results than the classical estimators that implicitly assume individual linear models for the

variables. The proposed methods are also applied in an attitude survey.
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A3.1 Introduction

Sampling theory for finite populations usually assumes the existence of one sampling frame containing all

population units. Then, a probability sample is drawn according to a sampling design and information

collected is used for estimation and inference purposes. To ensure quality of the results obtained, the

sampling frame must contain every single unit of population of interest (that is, it must be complete)

and it must be updated as well. Otherwise, estimates could be affected by a serious bias due to the

non-representativeness of the frame and, therefore, of the selected sample. Unfortunately, this is not

an easy task: populations are constantly changing, with new units entering and exiting the population

frequently, so getting a good sampling frame can be difficult.

The dual frame approach tries to solve the aforementioned problems. This approach assumes that two

frames are available for sampling and that, overall, they cover the entire target population. A sample is

selected from each frame using a, possibly different, sampling design. Much attention has been devoted

to the introduction of different ways of combining estimates coming from the different frames. See the

seminal papers by Hartley (1962), Fuller and Burmeister (1972), Bankier (1986) and Kalton and Anderson

(1986). However, these techniques were originally proposed to estimate means and totals of quantitative

variables, and although their extension to the estimation of proportions in multinomial response variables

is possible, it requires further investigation. Questionnaire items with multinomial outcomes are quite

common in public opinion research, marketing research, and official surveys: estimating the proportion of

voters in favour of each political party, based on a political opinion survey, is just one practical example

of this procedure. Items where respondents must select one in a series of options can be modeled by a

multinomial distribution. Lehtonen and Veijanen (1998a) present estimators for a proportion which use

logistic regression.

This paper focuses on the estimation of proportions for multinomial response variables when data

come from two sampling frames. The proposed approach is motivated by a study on immigration. After

describing the survey of opinions and attitudes of the Andalusian population regarding immigration, in

Section A3.2, alternative estimators for the proportions are proposed following different approaches and

their main theoretical properties are studied. A simulation study is also carried out to study their finite

size sample properties. The results from the application to this dual frame attitude survey are then

presented in Section 9.
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A3.2 Study background: the 2013 Survey on opinions and atti-

tudes of the Andalusian population regarding immigration

The 2013 Survey on opinions and attitudes of the Andalusian population regarding immigration (OPIA)

is a population-based survey conducted by the IESA, a public scientific research institute for social

sciences. The aim of the survey is to reflect the opinion of the Andalusian population with regard to

various aspects of immigration and refugee policies in Spain and towards immigrants as a group. This

survey is based on telephone interviews on a sample of adults drawn from both landline and mobile

phone frames. Taking into account the time and budget available, 2402 interviews were performed by

professional interviewers. The number of interviews to be conducted via landline and via mobile phone

was determined by calculating the optimal proportion (in the sense of minimum variance) for each frame,

taking into account costs and the percentage of possession of each type of device (following Hartley

(1962)). As a result, final sample sizes were 1919 for landline and 483 for mobile. Interviews were carried

out by the Statistics and Surveys sections of IESA from April, 22 to May, 13, 2013, using Computer

Assisted Telephone Interviewing (CATI) data input techniques. Sample sizes are reported in Table A3.1.

The landline sample was also stratified by provinces in the region of Andalusia, as shown in Table A3.2.

Cell-phone interviews were carried out with no control over the distribution by provinces owing to the

difficulty of determining the location of this type of telephone. Hence, more interviews were performed

in the most populated provinces than in the less populated ones.

Table A3.1: Sample sizes for the OPIA survey. Landline and Mobile in the columns refer to the frame
the interview comes from, while in the rows, they refer to the domain in which the units actually reside
(type of user).

Landline Mobile
Domain Sample Sample Total

Both 1727 237 1964
Mobile 246 246
Landline 192 192

Total 1919 483 2402

At the time of data collection, frame sizes of landline and mobile were 4,982,920 and 5,707,655, respec-

tively, and the total population size was 6,350,916 (source ICT-H 2012, Survey on the Equipment and

Use of Information and Communication Technologies in Households, INE, National Statistical Institute,
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Table A3.2: Stratification in land-phone sample

Province Almeŕıa Cádiz Córdoba Granada Huelva Jaén Málaga Sevilla

Population(*) 353787 767370 508258 558087 308941 423548 872011 1190918
Sample 262 210 252 256 275 263 207 194
(*) Those estimates can be found on the INE website: http://www.ine.es/

Spain). Auxiliary information about the user’s sex and age is also available from the ICT-H 2012 survey.

The total number of individuals in each domain (landline, mobile and both users) for every possible com-

bination of values of the auxiliary variables is therefore known. The information about these auxiliary

variables is displayed in Table A4.3.

One of the most important response variables in this study is related to the “attitude towards im-

migration”. The variable is the answer to the following question: And in relation to the number of

immigrants currently living in Andalusia, do you think there are ...?: Too many, A reasonable number,

Too few, No reply. In the following sections we review approaches available in the literature to address

the issue of estimating the distribution of a multiple choice type of variable in the population using a dual

frame survey. We then illustrate our proposal to fully account for the nature of the response variable and

the auxiliary information available.

Table A3.3: Population data for variables sex and age

Both Landline Mobile Total

Males
18 - 29 428,750 0 188,172 616,922
30 - 44 724,435 4,259 298,416 1027,110
45 - 59 603,338 59,385 135,981 798,704
≥ 60 396,626 206,410 94,729 697,765

Females
18 - 29 480,151 0 115,472 595,623
30 - 44 658,984 17,673 289,106 965,763
45 - 59 601,478 39,362 141,553 782,393
≥ 60 445,897 316,172 104,567 866,636
(*) Source: Survey of Information Technologies in Households (INE)
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A3.3 Existing approaches to estimation of class frequencies in

dual frame surveys

We employ the notation considered in Rao and Wu (2010). Let U denote a finite population with N units,

U = {1, . . . , k, . . . , N} and let A and B be two sampling-frames. Let A be the set of population units in

frame A and B the set of population units in frame B. The population of interest, U , may be divided

into three mutually exclusive domains, a = A ∩ Bc, b = Ac ∩ B and ab = A ∩ B. Because the population

units in the overlap domain ab can be sampled in either survey or both surveys, it is convenient to create

a duplicate domain ba = B∩A, which is identical to ab = A∩B, to denote the domain in the overlapping

area coming from frame B. Let N , NA, NB , Na, Nb, Nab, Nba be the number of population units in

U , A, B, a, b, ab, ba, respectively. We assume that NA, NB and Nab are known, so the population size

N = NA +NB −Nab is also known. This is also the situation in our motivating dataset.

We consider the estimation of class frequencies of a discrete response variable. Assume that we collect

data from respondents who provide a single choice from a list of alternatives. We code these alternatives

1, 2, . . . ,m. Therefore, consider a discrete m-valued survey variable y. The objective is to estimate the

frequency distribution of y in the population U . To estimate this frequency distribution, we define a class

of indicators zi (i = 1, . . . ,m) such that, for each unit k ∈ U , zki = 1 if yk = i and zki = 0 otherwise. Our

problem thus, is to estimate the proportions Pi = N−1
∑
k∈U zki, for i = 1, 2, . . . ,m. Such proportions

are such that

Pi = N−1(Zai + ηZabi + (1− η)Zbai + Zbi), (A3.1)

where 0 ≤ η ≤ 1 and Zai =
∑
k∈a zki, Zabi =

∑
k∈ab zki, Zbai =

∑
k∈ba zki and Zbi =

∑
k∈b zki.

Two probability samples sA and sB are drawn independently from frame A and frameB of sizes nA and

nB , respectively. Each design induces first-order inclusion probabilities πAk and πBk, respectively, and

sampling weights dAk = 1/πAk and dBk = 1/πBk. The sample sA can be post-stratified as sA = sa ∪ sab,

where sa = sA ∩ a and sab = sA ∩ (ab). Similarly, sB = sb ∪ sba, where sb = sB ∩ b and sba = sB ∩ (ba).

Note that sab and sba are both from the same domain ab, but sab is part of the frame A sample and sba

is part of the frame B sample. Then, assuming that duplicated units (i.e. sA ∩ sB) cannot be identified

and that this event has a negligible chance to happen, we let s = sA ∪ sB . Note that this is a reasonable

assumption in the OPIA survey at hand.
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The Hartley (1962) estimator of Pi, for i = 1, 2, . . . ,m, is given by

P̂Hi(η) = N−1(Ẑai + ηẐabi + (1− η)Ẑbai + Ẑbi), (A3.2)

where Ẑai =
∑
k∈sa dAkzki is the expansion estimator for the population count of category i in domain a

and similarly for the other domains. If we let

d◦k =


dAk if k ∈ sa
ηdAk if k ∈ sab
(1− η)dBk if k ∈ sba
dBk if k ∈ sb

, (A3.3)

then P̂Hi(η) = N−1(
∑
k∈sA d

◦
kzki +

∑
k∈sB d

◦
kzki) = N−1(

∑
k∈s d

◦
kzki). Since the population count in

each domain is estimated by its expansion estimator, P̂Hi(η) is an unbiased estimator of Pi for a given η.

Fuller and Burmeister (1972) proposed modifying Hartley’s estimator by incorporating additional

information regarding estimation of the overlap domain. The resulting estimator is:

P̂FBi(β1, β2) = N−1(Ẑai + β1Ẑabi + (1− β1)Ẑbai + Ẑbi + β2(N̂ab − N̂ba)) (A3.4)

where N̂ab =
∑
k∈sab

dAk and N̂ba =
∑
k∈sba dBk. Coefficients β1 and β2 are selected to minimize

V (P̂FBi(β1, β2)). In this case, and as with Hartley’s estimator, a new set of weights must be calculated

for each response variable. This leads to possible inconsistencies among the estimated proportions, which

is particularly relevant when dealing with multinomial outcomes. In addition, optimal values depend

on covariances among Horvitz-Thompson estimators, which may be difficult to compute in practice and,

finally, it is also possible to obtain values of β1 outside the range [0, 1].

Skinner and Rao (1996) propose a modification of the estimator proposed by Fuller and Burmeister

(1972) for simple random sampling to handle complex designs. They introduce a pseudo maximum

likelihood (PML) estimator that does not achieve optimality like the FB estimator, but it can be written

as a linear combination of the observations and the same set of weights can be used for all variables of

interest:

P̂PMLi(θ) = N−1

(
NA − N̂PML

ab (θ)

N̂a
Ẑai +

N̂PML
ab (θ)

N̂ab(θ)
Ẑabi(θ) +

NB − N̂PML
ab (θ)

N̂b
Ẑbi

)
(A3.5)
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where Ẑabi(θ) = θẐabi + (1 − θ)Ẑbai, N̂ab(θ) = θN̂ab + (1 − θ)N̂ba and N̂PML
ab (θ) is the smallest root of

the quadratic equation

[θ/NB + (1− θ)/NA]x2 −
[
1 + θN̂ab/NB + (1− θ)N̂ba/NA

]
x+ N̂ab = 0.

Recently, Rao and Wu (2010) extended the Pseudo-Empirical-Likelihood approach (PEL) proposed

by Wu (2006) from one-frame surveys to dual-frame surveys following a stratification approach. In

particular,

P̂PELi(θ) = (Na/N) ˆ̄Zaip + θ(Nab/N) ˆ̄Zabip + (1− θ)(Nab/N ˆ̄Zbaip + (Nb/N) ˆ̄Zbip, (A3.6)

where θ ∈ (0, 1) is a fixed constant to be specified and ˆ̄Zaip =
∑
k∈sa p̂akzki,

ˆ̄Zbip =
∑
k∈sb p̂bkzki and

ˆ̄Zabip =
∑
k∈sab

p̂abkzki = ˆ̄Zbaip. The p-weights maximize the pseudo empirical likelihood and verify∑
k∈sa p̂ak = 1,

∑
k∈sab

p̂abk = 1,
∑
k∈sba p̂bak = 1,

∑
k∈sb p̂bk = 1, and the additional constraint induced

by the common domain mean ˆ̄Zabip = ˆ̄Zbaip (see Rao and Wu (2010) for more details). Note that (A3.6)

can be rewritten as:

P̂PELi = (Na/N) ˆ̄Zaip + (Nab/N) ˆ̄Zabip + (Nb/N) ˆ̄Zbip, (A3.7)

so the estimator does not depend on explicitly on θ and its value only affects the estimator ˆ̄Zaip for the

population mean of the overlapping domain.

Ranalli et al. (2015) used calibration procedures for estimation from dual frame sampling assuming

that some kind of auxiliary information is available. For example, assuming that there are p auxiliary

variables, xk = (x1k, ..., xpk) is the value taken by such auxiliary variables on unit k. It is assumed that

the vector of population totals of the auxiliary variables, tx =
∑
k∈U xk is also known. In this context,

the dual frame calibration estimator can be defined as follows,

P̂CalDFi = N−1(
∑
k∈s

dDFk zki) (A3.8)

where weights dDFk are chosen to be as close as possible to basic design weights and, at the same time,

satisfy benchmark constraints on the auxiliary variables, i.e. they are such that

min
dDF
k

∑
k∈s

G(dDFk , d◦k), subject to
∑
k∈s

dDFk xk = tx,
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with G(·, ·) a given distance measure.

When inclusion probabilities in domain ab are known for both frames, and not just for the frame

from which the unit is selected, single-frame methods (Banker (1986), Kalton and Anderson (1986)),

which combine the observations into a single dataset and adjust the weights in the intersection domain

for multiplicity, can also be used. To adjust for multiplicity, the weights are defined as follows for all

units in frame A and in frame B,

d̃k =

 dAk if k ∈ a
(1/dAk + 1/dBk)−1 if k ∈ ab
dBk if k ∈ b

.

In this context, BKA single frame estimator (Banker (1986), Kalton and Anderson (1986)) is given by

P̂BKAi = N−1

(∑
k∈sA

d̃kzki +
∑
k∈sB

d̃kzki

)
= N−1

(∑
k∈s

d̃kzki

)
. (A3.9)

Single frame weights are the same for all response variables, and so estimators are internally consistent.

A calibration estimator under the single-frame approach can be defined as follows:

P̂CalSFi = N−1

(∑
k∈s

dSFk zki

)
(A3.10)

with weights dSFk verifying that min
∑
k∈sG(dSFk , d̃k) subject to

∑
k∈s d

SF
k xk = tx. The single-frame

approach requires the knowledge of the design weight of a unit for both frames, not just for the one in

which the unit was selected. Given this information, multiplicity can be adjusted for using sampling

weights only. Therefore, unlike the dual frame methods, they do not require calculation of η. Single-

frame estimators are usually more efficient than dual-frame estimators, and this can be explained by the

extra-information they incorporate in the estimation process. The estimators presented in this Section

can be computed using the R-package Frames2 (Arcos et al. (2015)).
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A3.4 Estimation of class frequencies using multinomial logistic

regression

Auxiliary information is often available in survey sampling. This information, which may come from past

censuses or from other administrative sources, can be used to obtain more accurate estimators. Then,

other than the values of the variables of interest and of the auxiliary variables for k ∈ s, assume we also

know the distribution or at least some summary statistics of the auxiliary variables in the population.

We consider that the population under study y = (y1, ..., yN )T is the determination of a set of super-

population random variables Y = (Y1, ..., YN )T s.t.

µki = P (Yk = i|xk) = E(Zki|xk) =
exp(xTk βi)∑

r=1,...,m exp(xTk βr)
, i = 1, . . . ,m,

that is, we use the multinomial logistic model to relate y and x. Let β be the parameter vector

(βT1 , . . . ,β
T
m)T . In the following sections we introduce new estimators for the population proportions

Pi. To this end, as a first step, we need to consider estimation of the superpopulation parameter β using

the sample s.

A3.4.1 Case I: The same set of auxiliary variables is available for all popula-

tion units

Suppose that for each unit in the population we have information about one vector of auxiliary variables

x. In this case, for each unit k ∈ U we know the value of xk. In addition, for each unit k ∈ s, we observe

the value of the main variable yk and we denote by (zk1, zk2, ..., zkm) the multinomial trial observed for

this unit k.

We can estimate β by maximizing the π-weighted log-likelihood (Godambe and Thompson (1986),

Särndal et al. (1992)) given by

`d◦(β) =
∑

i=1,...,m

(∑
k∈sA

d◦kzki lnµki +
∑
k∈sB

d◦kzki lnµki

)
. (A3.11)

This approach is usually motivated by first defining a census-level parameter βU , obtained by max-

imizing the likelihood over all units in the population, i.e. `U (β) =
∑
i=1,...,m

∑
k∈U zki lnµki. Then,
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β̂o obtained using the the π-weighted likelihood (A3.11) is its design based estimate. Computing β̂o

usually requires numerical procedures, and Fisher scoring or Newton-Raphson often work rather well.

Most statistical packages include a multinomial logit procedure that can handle weights.

Given the estimate β̂o of β, we consider the following auxiliary variable

poki = µ̂oki =
exp(xTk β̂

o
i )∑

r=1,...,m exp(xTk β̂
o
r)
. (A3.12)

Please note that these p values are different from those involved in the definition of estimator (A3.6).

Since the vector xk is known for all units of the population U , the values poki are available for all k ∈ U

and we propose to use such values to define a new estimator for Pi,

P̂DWMLi = N−1

(∑
k∈U

poki +
∑
k∈sA

d◦k(zki − poki) +
∑
k∈sB

d◦k(zki − poki)

)
(A3.13)

= N−1

(∑
k∈U

poki +
∑
k∈s

d◦k(zki − poki)

)
.

We observe that this estimator takes the same model-assisted form as the MLGREG estimator proposed

in Lehtonen and Veijanen (1998a), but here it is adjusted to account for the dual frame sampling setting.

The subscript ML stands for Multinomial-Logistic and the superscript DW stands Dual frame setting

and auxiliary information available from the Whole population.

Note that we cannot compute
∑
k∈U p

o
ki in (A3.13) without knowing xk for each k ∈ U , i.e. we need

the value of the auxiliary variables for each individual in the population. This assumption can be quite

restrictive; nonetheless, it can be relaxed. For example, if we have two discrete or categorical variables,

we only need the population counts in the two-way contingency table. In human populations, sizes of

certain demographic groups are known and are used often as auxiliary information. This is also the case

in the OPIA survey and this information can be retrieved from the last column in Table A4.3.

An important way to incorporate available auxiliary information is given by calibration estimation

(Deville and Särndal (1992)), that seeks for new weights that are close (in some sense) to the basic design

weights and that, at the same time, match benchmark constraints on auxiliary information. We have

reviewed in the previous section extension of linear calibration to the dual frame setting. Here, using the

idea of model calibration introduced by Wu and Sitter (2001a), we propose the following model calibration
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estimator (the subscript MLC stands for Multinomial-Logistic and Calibration, and the superscript DW

stands Dual frame setting and auxiliary information available from the Whole population), given by

P̂DWMLCi = N−1(
∑
k∈sA

w◦kzki +
∑
k∈sB

w◦kzki) = N−1(
∑
k∈s

w◦kzki),

where w◦k minimizes
∑
k∈sA G(w◦k, d

◦
k)+

∑
k∈sB G(w◦k, d

◦
k) =

∑
k∈sG(w◦k, d

◦
k) for a distance measure G(·, ·)

as those considered in Deville and Särndal (1992), subject to:

∑
k∈s

w◦kp
o
ki =

∑
k∈U

poki,
∑
k∈sa

w◦k = Na,
∑
k∈sb

w◦k = Nb,

∑
k∈sab

w◦k = ηNab and
∑
k∈sba

w◦k = (1− η)Nab.

Suppose, now, that for each unit in the population inclusion probabilities in domain ab are known for

both frames, and not just for the frame from which the unit is selected. In this situation, the single-frame

approach can also be used to propose new multinomial logistic estimators. First, we calculate β̃ by

maximizing the π-weighted log-likelihood given by

`d̃(β) =
∑

i=1,...,m

∑
k∈s

d̃kzki lnµki. (A3.14)

We use the new auxiliary variable p̃ki = µ̃ki =
exp(xTk β̃i)∑

r=1,...,m exp(xTk β̃r)
to define a new estimator (the

subscript ML stands for Multinomial-Logistic and the superscript SW stands Single frame setting and

auxiliary information available from the Whole population):

P̂SWMLi = N−1

(∑
k∈U

p̃ki +
∑
k∈sA

d̃k(zki − p̃ki) +
∑
k∈sB

d̃k(zki − p̃ki)

)
(A3.15)

= N−1

(∑
k∈U

p̃ki +
∑
k∈s

d̃k(zki − p̃ki)

)
.

Note that d̃k weights are used in the formulation of the estimator (A3.15) and also in the likelihood
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function (A3.14).

Model calibration can be also used to define a single-frame estimator (the subscript MLC stands for

Multinomial-Logistic and Calibration, and the superscript SW stands Single frame setting and auxiliary

information available from the Whole population):

P̂SWMLCi = N−1(
∑
k∈sA

w̃kzki +
∑
k∈sB

w̃kzki) = N−1(
∑
k∈s

w̃kzki),

where w̃k minimizes
∑
k∈sA G(w̃k, d̃k)+

∑
k∈sB G(w̃k, d̃k) =

∑
k∈sG(w̃k, d̃k) for a distance measure G(·, ·)

satisfying the usual conditions specified in the calibration paradigm subject to:

∑
k∈s

w̃kp̃ki =
∑
k∈U

p̃ki,
∑
k∈sa

w̃k = Na,
∑
k∈sb

w̃k = Nb and
∑

k∈sab

⋃
sba

w̃k = Nab.

Note that when inclusion probabilities are known for both frames, it is possible to calculate single and

dual frame type estimators.

A3.4.2 Case II: Two different sets of auxiliary variables are available accord-

ing the frame considered

Now we consider a different situation: the auxiliary information is available separately in each frame. In

this case, for each unit k ∈ A we have an auxiliary vector xAk and for each unit k ∈ B we have another

auxiliary vector xBk where the components of xA and xB can be different. Indeed in the OPIA survey

the two sets of auxiliary variables coincide. Nonetheless, we will leave the treatment general and provide

two proposals based on the dual frame approach to handle this situation as well.

In this case, we can use the available auxiliary information to fit a multinomial logistic model separately

in each frame. For each k ∈ A, using data from sA we can compute

pAki =
exp(xTAkβ̂

A
i )∑

r=1,...,m exp(xTAkβ̂
A
r )

(A3.16)
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where we estimate βA by maximizing `dA(βA) =
∑
i=1,...,m

∑
k∈sA dAkzki lnµki. Similarly we obtain pBki

for k ∈ B, and define for each i = 1, ...,m the following regression estimator:

P̂DFMLi = N−1

(∑
a

pAki + η
∑
ab

pAki + (1− η)
∑
ba

pBki +
∑
b

pBki+

+
∑
sa

(zki − pAki)dAk + η
∑
sab

(zki − pAki)dAk+

+(1− η)
∑
sba

(zki − pBki)dBk +
∑
sb

(zki − pBki)dBk

)
.

As in the previous section, the subscript ML stands for Multinomial-Logistic, while the superscript DF

stands now for Dual frame setting and auxiliary information available from the Frames. To compute

P̂DFMLi we only need to know the total number of individuals in each domain (a, b and ab) for every

possible combination of values of the auxiliary variables in the cases where discrete variables have been

used as auxiliary information. In the OPIA survey this information is obtained from Table 3.

A calibration estimator in this setting can be defined under the dual frame approach as follows,

P̂DFMLCi = N−1(
∑
k∈sA

w?kzki +
∑
k∈sB

w?kzki) = N−1(
∑
k∈s

w?kzki), (A3.17)

where the subscript MLC stands for Multinomial-Logistic and Calibration, and the superscript DF

stands Dual frame setting and auxiliary information available from the Frames. Weights w?k are such

that

min
∑
k∈sA

G(w?k, dAk) +
∑
k∈sB

G(w?k, dBk) s.t.

∑
k∈sA

w?kp
A
ki =

∑
k∈a

pAki + η
∑
k∈ab

pAki,

∑
k∈sB

w?kp
B
ki = (1− η)

∑
k∈ba

pBki +
∑
k∈b

pBki,

∑
k∈sa

w?k = Na,
∑
k∈sb

w?k = Nb,

∑
k∈sab

w?k = ηNab and
∑
k∈sba

w?k = (1− η)Nab,
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where pAki are the estimated probabilities defined in (A3.16) and pBki are their analogous in frame B.

A3.5 Properties of proposed estimators

To show the asymptotic properties of the proposed estimators P̂DWML , P̂DWMLC , P̂SWML , P̂SWMLC , P̂DFML , P̂DFMLC ,

we adapt and place ourselves in the asymptotic framework of Isaki and Fuller (1982), in which the dual-

frame finite population U and the sampling designs pA(·) and pB(·) are embedded into a sequence of such

populations and designs indexed by N , {UN , pAN
(·), pBN

(·)}, with N → ∞. We will assume therefore,

that NAN
and NBN

tend to infinity and that also nAN
and nBN

tend to infinity as N → ∞. We will

further assume that Na > 0 and Nb > 0. In addition nAN
/nN → c1 ∈ (0, 1), where nN = nAN

+ nBN
,

Na/NA → c2 ∈ (0, 1), Nb/NB → c3 ∈ (0, 1) as N →∞. Subscript N may be dropped for ease of notation,

although all limiting processes are understood as N → ∞. Stochastic orders Op(·) and op(·) are with

respect to the aforementioned sequences of designs. The constant η ∈ (0, 1) is kept fixed over repeated

sampling.

We first discuss the theoretical properties of P̂DWMLC and then move to the other estimators, be-

cause these can be dealt with using slight modifications of this more general setting. Let µ(xk,θi) =

exp(xTk θi)/
∑
r=1,...,m exp(xTk θr), for i = 1, . . . ,m. In order to prove our results, we make the following

technical assumptions.

A1. Let βU be census level parameter estimate obtained by maximizing the likelihood `U (β) =
∑
i=1,...,m

∑
k∈U zki lnµki.

Assume that β = limN→∞ βU exists and that β̂o = βU +Op(n
−1/2
N ).

A2. For each xk, |∂µ(xk,θi)/∂θi| ≤ f1(xk,βi) for θi in a neighborhood of βi and f1(xk,βi) = O(1), for

i = 1, . . . ,m.

A3. For each xk, maxj,j′ |∂2µ(xk,θi)/∂θjθj′ | ≤ f2(xk,βi) for θi in a neighborhood of βi and f2(xk,βi) =

O(1), for i = 1, . . . ,m.

A4. The auxiliary variables x have bounded fourth moments.

A5. For any study variable ξ with bounded fourth moment, the sampling designs are such that for the

normalized Hartley estimators of ξ̄ = N−1
∑
k∈U ξk a central limit theorem holds, i.e.

√
nN ( ˆ̄ξH − ξ̄)→L N(0, V ( ˆ̄ξH)),
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where ˆ̄ξH = N−1
∑
k∈s d

◦
kξk and V ( ˆ̄ξH) = V ( ˆ̄ξa+η ˆ̄ξab)+V ((1−η) ˆ̄ξba+ ˆ̄ξb). The latter can be consistently

estimated by v( ˆ̄ξH) = v( ˆ̄ξa + η ˆ̄ξab) + v((1− η) ˆ̄ξba + ˆ̄ξb).

Assumption A6 requires consistency of parameter estimates defined by weighted estimating equations

to their census level counterpart. See e.g. Binder (1983). We will first state the properties of P̂DWMLC for

the Euclidean distance. In fact, in this case an analytic solution to the constrained distance minimization

problem exists and is given by

P̂GDWMLCi = N−1

{∑
k∈s

d◦kzki +
(∑
k∈U

p̃◦ki −
∑
k∈s

d◦kp̃
◦
ki

)T
α̂◦i

}
,

where p̃◦ki = (δk(a), δk(ab), δk(ba), δk(b), p◦ki)
T is a vector that contains p◦ki defined in (A4.15) and a

set of indicator variables – δk(a), δk(ab), δk(ba), δk(b) – implicitly used in the benchmark constraints. In

particular, δk(a) takes value 1 if unit k ∈ U belongs to domain a and 0 otherwise. Then
∑
k∈U δk(a) = Na.

The other indicator variables are defined similarly. In addition, α̂◦i = (
∑
k∈s d

◦
kp̃
◦
kip̃
◦T
ki )−1(

∑
k∈s d

◦
kp̃
◦
kizki),

i.e. it is the vector of coefficients of the generalized regression of zki on p̃◦ki similar to the case of classical

model calibration for one frame only (see Wu and Sitter (2001a)). Then from calibration theory (see

Deville and Särndal, 1992), it is well known that all other calibration estimators that use different

distance functions are equivalent to P̂GDWMLCi, under additional regularity conditions on the shape of the

distance function itself.

Theorem 1. Under assumptions A6–A10, P̂GDWMLCi is design
√
nN -consistent for Pi in the sense that

P̂GDWMLCi − Pi = Op(n
−1/2
N ),

and has the following asymptotic distribution

P̂GDWMLCi − Pi√
V∞(P̂GDWMLCi)

→L N(0, 1)

where V∞(P̂GDWMLCi) = N−2V (t̂eiH) and t̂eiH =
∑
k∈s d

◦
keki is the Hartley estimator of the population total

of the census-level residuals eki = zki− µ̃◦Tki α◦i , and α◦i = (
∑
k∈U µ̃

◦
kiµ̃
◦T
ki )−1(

∑
k∈U µ̃

◦
kizki), where µ̃◦ki is
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like p̃◦ki but with p◦ki replaced by its population counterpart

µ◦ki =
exp(xTk βUi)∑

r=1,...,m exp(xTk βUr)
. (A3.18)

In addition, let êki = zki − p̃◦Tki α̂◦i . Then, V (t̂eiH) can be consistently estimated by

v(P̂GDWMLCi) = N−2v(t̂êiH)

= N−2
{
v
(∑

k∈sa dAkêki + η
∑
k∈sab

dAkêki

)
+

+ v
(

(1− η)
∑
k∈sba dBkêki +

∑
k∈sb dBkêki

)}
.

(A3.19)

Proof. Using the same approach developed in Montanari and Ranalli (2005) and similarly to Wu and

Sitter (2001b), it is easy to show that by assumptions A6–A7 and A9–A10,

N−1(
∑
k∈s

d◦kp
◦
ki −

∑
k∈U

p◦ki) = Op(n
−1/2
N ),

using a first order Taylor expansion of µ(xk, β̂
o
i ) at β̂oi = βUi, and that α̂◦i −α◦i = Op(n

−1/2
N ) because α̂◦i

is just a function of population means of variables with finite fourth moments, that can be consistently

estimated by their Hartley counterparts. Using A6–A10 and a second order Taylor expansion of µ(xk, β̂
o
i )

at β̂oi = βUi,

N−1(
∑
k∈s

d◦kp
◦
ki −

∑
k∈U

p◦ki) = N−1(
∑
k∈s

d◦kµ
◦
ki −

∑
k∈U

µ◦ki) +Op(n
−1
N ).

Then,

P̂GDWMLCi = N−1
∑
k∈s

d◦kzki +N−1
(∑
k∈U

µ̃◦ki −
∑
k∈s

d◦kµ̃
◦
ki

)T
α◦i +Op(n

−1
N )

and the first part of the result is proven.

Now, from assumption A10, v(t̂eiH) = V (t̂eiH) + op(n
−1
N ). Since p◦ki = µ◦ki + Op(n

−1/2
N ), êki =

eki +Op(n
−1/2
N ) and v(t̂êiH) = v(t̂eiH) + op(n

−3/2
N ), then the argument follows.

Note that, given the asymptotic equivalence of calibration and generalized regression estimation,

analytic variance estimator in (A3.19) can be used to estimate the variance of P̂DWMLC also when using

different distance functions.

Now, P̂DWML can be seen as a particular case of P̂GDFMLCi in which p̃◦ki includes only p◦ki, and α̂◦i is only

a scalar and is set exactly equal to 1. Therefore, P̂DWML is consistent for Pi and asymptotically normal
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with V∞(P̂DWML ) = N−2V (t̂eiH), where census-level residuals are given here by eki = zki − µ◦ki. Variance

estimation can again be conducted by plugging sample level estimated residuals in (A3.19) given in this

case by êki = zki − p◦ki.

Estimator P̂DFMLC is in all similar to P̂DWMLC , the only difference is in the fact that coefficient estimates for

the multinomial model are obtained separately from the two frames and, therefore, we have two separate

model calibration constraints. In this case the vector of auxiliary variables used in the calibration proce-

dure can be written as p̃A,Bki and contains pAki, p
B
ki and the other indicator variables used in the benchmark

constraints: for example p̃A,Bki = (δk(a), δk(ab), δk(ba), δk(b), [δk(a) + δk(ab)]pAki, [δk(b) + δk(ba)]pBki)
T .

To encompass this situation, it is enough to change assumption A6 accordingly and assume that the

two sets of population parameters βA and βB are consistently estimated by β̂A and β̂B and that these

samples fits and the finite population fits share a common finite limit. Then, it is easy to show that

P̂DFMLC is design consistent and the variance of its asymptotic normal distribution can again be written

in terms of the variance of the population total of residuals. In particular, V∞(P̂GDFMLCi) = N−2V (t̂eiH)

and t̂eiH =
∑
k∈s d

◦
keki is the Hartley estimator of the population total of the census-level residuals given

here by eki = zki− (µ̃A,B)Tkiαi, where µ̃A,Bki is like p̃A,Bki but with pAki and pBki replaced by their population

counterparts, similarly to (A3.18). Analytic variance estimation can be conducted by using sample level

estimates of the residuals. In particular, by using êki = zki − (p̃A,Bki )T α̂i in formula (A3.19).

Now, similarly as for P̂DWML and P̂DWMLC , P̂DFML can be seen as a particular case of P̂GDFMLCi in which p̃◦ki

includes only pA,Bki , with pA,Bki = pAki if k ∈ sA and pA,Bki = pBki if k ∈ sB , and α̂◦i is again a scalar here

and its value is set exactly equal to 1. Therefore, it is consistent for Pi and asymptotically normal with

V∞(P̂DFML) = N−2V (t̂eiH), where census-level residuals are given here by eki = zki − µA,Bki , and µA,Bki is

the census level fit corresponding to pA,Bki . Variance estimation can again be conducted by using sample

level estimated residuals in equation (A3.19) given by êki = zki − pAki if k ∈ sA and êki = zki − pBki if

k ∈ sB .

The calibration estimator P̂SWMLC is very similar to P̂DWMLC , the only differences are (i) in the set of

basic design weights employed in the calibration procedure: for P̂SWMLC we use d̃k, and (ii) p◦ki is replaced

by p̃ki in the definition of the vector p̃◦ki. Once these changes are incorporated across assumption A6, and

assumption A10 reflects the fact that we are now dealing with Bankier-Kalton-Anderson type estimators,

instead of Hartley estimators, then all the results can be proven. The variance of the asymptotic distri-

bution of P̂SWMLC is given by V∞(P̂GSWMLCi) = N−2V (t̂ei) and t̂ei =
∑
k∈s d̃keki is the single-frame estimator
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of the population total of the census-level residuals eki = zki − µ̃Tkiαi, and where µ̃ki is like p̃ki but with

pki replaced by its population counterpart

µki =
exp(xTk βUi)∑

r=1,...,m exp(xTk βUr)
.

In addition, let êki = zki − p̃Tkiα̂i. Then, V (t̂ei) can be consistently estimated so that v(P̂GSWMLCi) =

N−2v(t̂êi).

A3.6 Selection of the optimal weight

In the previous sections we have considered a fixed value 0 < η < 1. Selection of parameter η is an

important issue in dual frame estimators, because the efficiency of the estimator relies heavily on this

value (see Lohr (2009b) for a review). Hartley (1962) proposed choosing η to minimize the variance of

the estimator in (A3.2). Using the same idea, we can derive the optimal value of η for each proposed

multinomial logistic estimator by minimizing its asymptotic variance with respect to η. However, as

the optimal value for the Hartley estimator, such optimal values would depend on unknown population

quantities, such as variances and covariances that, when estimated from sample data, would make the

final estimator depend on the values of the variable of interest. This implies a need to recompute an

optimal η for each value i = 1, ...,m and for each variable of interest y, which will be inconvenient

in practice for statistical agencies conducting surveys with several variables, other than introducing a

lack in coherence among estimates that is particularly relevant when dealing with multinomial outcomes

(namely,
∑
i P̂i can be 6= 1).

Skinner and Rao (1996) suggested choosing

ηSR =
NaNBV (N̂B

ab)

NaNBV (N̂B
ab) +NbNAV (N̂A

ab)
,

or alternatively

ηSR2 =
V (N̂B

ab)

V (N̂B
ab) + V (N̂A

ab)
,

being V (N̂A
ab) and V (N̂B

ab) the variances of the estimated sizes of domain ab based on samples sA and sB

respectively. These two proposals provide a value for η that does not depend on the sample values of y.
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In this way, resulting estimator uses the same η for all variables of interest, even if variances V (N̂A
ab) and

V (N̂B
ab) are unknown and must be estimated from the data.

Brick et al. (2006) propose using the simple value η = 1/2 in their dual-frame study in which frame

A was a landline telephone frame and frame B was a cell-phone frame. For this purpose, the value of

η = 1/2 is frequently recommended (see, for example, Mecatti (2007)). Another simple choice for η is

given by NB/nB

NA/nA+NB/nB
(see Skinner and Rao (1996) or Lohr and Rao (2000)).

A3.7 Jackknife variance estimation

In this section we explore the possibility of using jackknife methods to estimate the variance of the

proposed estimators as an alternative to the analytic variance estimators considered in Section 5. The

jackknife approach is a common replication method for variance estimation that can be used in complex

surveys for different types of estimators (see e.g. Wolter (2007) for an introduction to jackknife). For the

sake of brevity, in this section all estimators are denoted by P̂i, i = 1, · · · ,m.

If we consider a non clustered and non stratified design, the Jackknife estimator for the variance of

P̂i may be given by

vJ(P̂i) = V AJ + V BJ =
nA − 1

nA

∑
g∈sA

(P̂Ai (g)− PAi )2 +
nB − 1

nB

∑
j∈sB

(P̂Bi (j)− PBi )2 (A3.20)

where P̂Ai (g) is the value taken by estimator P̂i after dropping unit g from sA and P
A

i is the average of

P̂Ai (g) values. Each value P̂Ai (g) is computed by fitting a new model that does not consider the g − th

sample unit. P̂Bi (j) and P
B

i are defined similarly.

In the case of a stratified design in both frames, let frame A be divided into H strata and let stratum

h has NAh observation units of which nAh are sampled. Similarly, frame B has L strata, stratum l has

NBl observation units of which nBl are sampled. Then, a jackknife variance estimator of P̂i is given by

vstJ (P̂i) = V stAJ + V stBJ =

=
H∑
h=1

nAh − 1

nAh

∑
g∈sAh

(P̂Ai (hg)− PAhi )2 +
L∑
l=1

nBl − 1

nBl

∑
j∈sBl

(P̂Bi (lj)− PBli )2, (A3.21)
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where P̂Ai (hg) is the value taken by estimator P̂i after dropping unit g of stratum h from sample sAh,

P
Ah

i is the average of these nAh values; P̂Bi (lj) and P
Bl

i are defined similarly.

In case of a non stratified design in one frame and a stratified design in the other one, previous

methods can be combined to obtain the corresponding jackknife estimator of the variance.

Alternatively, a finite-population correction can be considered, as described in Ranalli et al. (2015),

resulting in the following jackknife variance estimators:

vJc(P̂i) =
nA − 1

nA
(1− πA)

∑
g∈sA

(P̂Ai (g)− PAi )2 +
nB − 1

nB
(1− πB)

∑
j∈sB

(P̂Bi (j)− PBi )2 (A3.22)

for non stratified designs in frames, where πA = 1
nA

∑
k∈sA πAk and similarly for πB , and

vstJc(P̂i) =
H∑
h=1

nAh − 1

nAh
(1− πAh)

∑
g∈sAh

(P̂Ai (hg)− PAhi )2

+

L∑
l=1

nBl − 1

nBl
(1− πBl)

∑
j∈sBl

(P̂Bi (lj)− PBli )2 (A3.23)

for a stratified design in each frame, where πAh = 1
nAh

∑
k∈sAh

πAk and similarly for πBl.

A non clustered sampling design is assumed subsequently. No new principles are involved in the

application of jackknife methodology to clustered samples. We simple work with the ultimate cluster

rather than elementary units (see e.g. Wolter (2007)).

A3.8 Monte Carlo simulation experiments

For our simulation study we use the hsbdemo data set (http://www.ats.ucla. edu/stat/data/hsbdemo.dta).

The data set contains variables on 200 students. The outcome variable is prog, program type, a three-

level categorical variable whose categories are academic, general, vocation. The predictor variables

are social economic status, ses, a three-level categorical variable and a mathematical score, math, a con-

tinuous variable. We estimate a multinomial logistic regression model. We create a new data set with 50

copies of the predictor variables ses and math and with the predicted values for the variable prog (the

category with highest probability). The simulated populations, namely POP1, have, therefore, dimension

N = 10000.
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Units are randomly assigned to the two frames, A and B, according to three different scenarios

depending on the overlap domain sizeNab. We first generateN normal random numbers, εk, k = 1, . . . , N

and data is sorted by such random numbers. Then, the first Na records of the ordered dataset are

considered as the values of the domain a, the Nb subsequent records as the values belonging to domain

b and the last Nab records as the values of the domain ab. The first scenario has a small overlap domain

size Nab=1000 and the resulting sizes of the two frames are NA=6000 and NB=5000. The second and the

third scenario have respectively medium and large overlap domain size. The resulting frame sizes in the

second scenario are given by NA=6000 and NB=7000 and the overlap domain size is Nab=3000, while

for the third scenario we have NA=8000, NB=7000 and Nab=5000. In POP1, we compute all estimators

using as auxiliary information ses and math.

On the other hand, POP2 is built first by assigning units to the frames and second by fitting a

multinomial logistic regression model separately in each frame. In frame A, ses and math have been

considered as auxiliary variables and in frame B the auxiliary variables are ses and write (a score in

writing). To be able to fit a separated model in each frame we consider that the units composing the

overlap domain can be equally divided into two groups, each one coming from a frame. So half of the

overlap domain units are used to fit a multinomial logistic regression model in frame A and the remaining

ones are considered when fitting the multinomial logistic model in frame B. POP2 is built with the

predicted values from the two multinomial logistic model. In this population, we compute P̂DWML , P̂DWMLC ,

P̂SWML and P̂SWMLC estimators using as x-variable ses (Case I), and P̂DFML and P̂DFMLC estimators using as

xA-variables ses and math and as xB-variables ses and write (Case II).

Samples of schools from frame A are selected by means of Midzuno sampling, with inclusion proba-

bilities proportional to the size of the school the student belongs to. All students in the selected schools

are included in the sample. The variable cid is an indicator of school. Samples from frame B are selected

by means of simple random sampling. For each scenario, we draw a combination of sample sizes for frame

A and frame B, as follows: nA = 180 and nB = 232.

We have two populations, three sizes of the overlap domain and different sets of auxiliary variables.

We compute the BKA estimator in (A3.9), for the purpose of comparison. The Pseudo Empirical

Likelihood estimator (PEL) proposed in Rao and Wu (2010) and the dual frame and the single frame

calibration estimator (P̂CalDF and P̂CalSF ) proposed in Ranalli et al. (2015) are also computed using

the auxiliary information as previously mentioned (in POP1 ses and math for both estimators and in
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POP2 as xA-variable ses and math and as xB-variable ses and write for P̂CalDF estimator and as

x-variable ses for P̂CalSF estimator). When needed (and for comparative purposes) the value of η has

been estimated using η = v(N̂ba)/(v(N̂ab)+v(N̂ba)) (see for example Rao and Wu, 2010) for all compared

estimators, where v(N̂ab) is an estimate of the variance of the Horvitz-Thompson estimator N̂ab for the

size of overlap domain, and similarly for v(N̂ba).

For each estimator, we compute the percent relative bias RB% = EMC(Ŷ − Y )/Y ∗ 100, the percent

relative mean squared error RMSE% = EMC [(Ŷ − Y )2]/Y 2 ∗ 100, based on 1000 simulation runs, for

each category of the main variable prog.

The percent relative biases are negligible in all cases (the results on RB are not included for brevity),

so efficiency comparisons can be based on variances. Table A3.4 displays the relative efficiency of proposed

estimators with respect to BKA estimator. From this table we can see that, consistently with theoretical

findings, the performance in terms of efficiency of the estimators is essentially driven by the model

employed. When the auxiliary varibles are used in a calibration process using a linear model (P̂CalSF ,

P̂CalDF ) or through a pseudo-empirical likelihood method (PEL), the efficiency increases with respect to

the BKA estimator, which does not use auxiliary information or any model. As expected, a most effective

situation arises when the auxiliary variables are also used through a multinomial model (P̂DWML , P̂DWMLC ,

P̂SWML , P̂DWMLC , P̂DFML and P̂DFMLC).

In general, the best results in efficiency are achieved by the P̂DFMLC estimator and the efficiency increases

as the size of the overlap domain increases, particularly for POP2. As a consequence of the ignorability

of the frames the units belong to when modelling the relation between the response and the auxiliary

variables, there is not a relevant difference in efficiency between estimators using a multinomial model in

the whole population and estimators using a multinomial model in each frame.

We now turn to the evaluation of the precision of the proposed estimators by means of confidence

intervals. We obtain the 95% confidence intervals based on a normal distribution and the jackknife

variance estimator proposed in Section 7 with finite-population correction. Table A3.5 shows the average

length reduction of 95% confidence intervals and the empirical coverage probability over 1000 simulation

runs in each category of the main variable. The confidence interval lengths of proposed estimators have

been compared with the confidence interval lengths of their linear calibration counterparts using the

same amount of auxiliary information. That is, P̂DWML , P̂DWMLC , P̂SWML and P̂SWMLC have been compared with

P̂CalSF and P̂DFML and P̂DFMLC have been compared with P̂CalDF .
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From Table A3.5 we conclude that all the proposed estimators considerably reduce the length of the

confidence intervals obtained, with respect to the linear calibration estimators. The empirical coverage

is very close to the nominal level. It is observed that the estimates based on the joint estimation of the

parameter β (P̂DWML , P̂DWMLC , P̂SWML and P̂SWMLC) have a somewhat lower coverage than the others.

Looking at the effect of the choice of η (in relative bias and relative mean squared error), we have

repeated the simulation study (for all populations and scenarios) using alternative values for η. In

particular, other than that used previously, i.e.

ηSR2 =
v(N̂B

ab)

v(N̂B
ab) + v(N̂A

ab)
,

we have considered a fixed value η = 1
2 and one estimated following Skinner and Rao (1996):

ηSR =
NaNBv(N̂B

ab)

NaNBv(N̂B
ab) +NbNAv(N̂A

ab)
.

See Section A3.6 for details and guidelines on choosing a value for η. Table A3.6 shows (only when

the overlap domain size is Medium, for space reason) that there is a little effect of these three different

estimates for η on the behaviour of the considered estimators. We can conclude that the available auxiliary

information and the way in which it is included in the estimation procedure play a much more relevant

role than the choice of a value for η.

A3.9 Application to the Survey on Opinions and Attitudes of

the Andalusian Population regarding Immigration (OPIA)

2013

To examine the performance of the proposed estimation methods in practice, we have applied them to

the dataset from the OPIA survey. The main variable in this study is related to the “attitude towards

immigration”. The variable is the answer to the following question: And in relation to the number of

immigrants currently living in Andalusia, do you think there are ...?: Too many, A reasonable number,

Too few, No reply.

We have considered the same set of auxiliary variables (sex and age) in the two frames. To incorporate
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information about sex into estimation process two indicator variables (one for males and another one for

females) were created. Similarly, four age classes were established and each respondent was assigned to

one of them. Corresponding indicator variables were used, then, for the analysis. Necessary population

information about these variables for calculating proposed estimators is displayed in Table A4.3. Note

that both auxiliary variables sex and age are available from the two frames. In this case, the population

counts in the two-way contingence table are known in each domain.

Table A3.7 shows point and jackknife confidence estimation for proposed estimators. Length reduc-

tion in jackknife confidence interval for each estimator regarding same interval for BKA estimator is also

displayed. In keeping with results obtained from simulation experiments, reduction is quite significative

for all estimators whatever the category of the main variable. Calibration approach achieves most impor-

tant reductions in length, with single frame calibration presenting the best results. On the other hand,

using P̂DWML , P̂SWML and P̂DFML estimators the length reduction is less noticeable.

Table A3.8 shows point estimation for proposed estimators by sex and age. Analyzing results by gen-

der, it is noticeable that there are more males than females thinking that there are too many immigrants

in Andalusia and that females are more reticent to answer the question than males.

On the other hand, it is worth noting that perception that there are too many immigrants in Andalusia

increases together with age. So, while most of the people in the 18-29 age group think that the number

of immigrants in Andalusia is reasonable, most part of people aged 45 years or over think that there are

too many. The age group where the non-response is higher is the one including people aged 60 years or

over.

A3.10 Conclusions

Data collected from surveys are often organized into discrete categories. Analyzing such categorical data

from a complex survey often requires specialized techniques. To improve the accuracy of estimation

procedures, a survey statistician often makes use of the auxiliary data available from administrative

registers and other sources.

Generalized regression is a popular design-based method used in the production of descriptive statistics

from survey data. Although the Generalized regression estimator is design-consistent regardless of the

form of the assisting model, a linear model is not the best choice for multinomial response variables. For



MULTINOMIAL LOGISTIC ESTIMATION IN DUAL FRAME SURVEYS 147

such variables we introduce a class of multinomial logistic generalized regression estimators when data

are obtained from samples from different frames.

We introduce a new approach to the model assisted estimation of population class of frequencies in dual

frame surveys. We propose a class of logistic estimators based on multinomial logistic models describing

the joint distribution of the category indicators in the total population or in each frame separately. We

also consider different ways of combining estimates coming from the two frames.

The type of sample design used in practice drives the user to choose between Dual-Frame or Single-

Frame approaches. The Single-Frame approach requires additional information in the overlapping domain

that is not always easy to take in practical applications.

As for calibration, it seems clear that the better for efficiency is to incorporate it, regardless of whether

or not a logistics model is used.

As for the model, apart from the advantage provided by the fact that the estimates of proportions for

each category add to one, our simulation study suggests that it is preferable to use it.

As for the type of model, in most practical applications it will be almost entirely forced, depending on

the auxiliary information available and, more specifically, on the availability of auxiliary variable totals

for domains, for frames or for the entire population.

To compute the proposed estimators, we have assumed to know the values of auxiliary variables for

each individual in the population, which can be quite a restrictive assumption. Indeed, to compute the

proposed estimators we need to know the count of each value of the auxiliary variable vector in the

population. This is a very frequent situation that arises, for example, when categorical variables (as the

gender or the professional status of the individual) or quantitative categorized variables (as the age of

the individual, grouped in classes) are used as auxiliary information in a survey. In this context, we

do not have a complete list of individuals but still the proposed estimators can be computed since the

population information needed can be found in databases of national statistical organisms. In fact, in

this case, we only need to know the population count in the multi-way contingency table. This is also

the situation in the application to data from the Survey on Opinions and Attitudes of the Andalusian

Population regarding Immigration explored in Section A3.9.

Here we have considered two frames. The extension to more than two frames is under study as well.

One important issue when dealing with more than two frames is that of using a proper notation (see Lohr

and Rao (2006) and Singh and Mecatti (2011)). A first simple way around is the one, also considered
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in Rao and Wu (2010), in which weights from the multiplicity estimator of Mecatti (2007) are used as

starting weights and calibration is applied straightforwardly. More complicated is the issue of accounting

for different levels of frame information, although we believe that Singh and Mecatti (2011) may provide

a good starting point.
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Table A3.4: Relative efficiency (respect to the BKA estimator) of compared estimators. POP1 and POP2

POP1 POP2

acad. gen. voc. acad. gen. voc.

Medium

P̂BKA 100.00 100.00 100.00 100.00 100.00 100.00

P̂CalSF 149.94 142.21 132.30 152.77 145.10 129.26

P̂PEL 217.89 135.87 177.26 175.94 146.75 148.75

P̂CalDF 213.91 134.83 175.14 175.03 146.84 147.59

P̂DWML 347.02 181.43 252.42 204.46 194.97 148.32

P̂DWMLC 356.87 181.05 258.60 209.29 192.64 153.29

P̂SWML 348.12 181.25 252.44 205.63 194.71 148.82

P̂SWMLC 358.10 180.97 258.85 210.22 192.32 153.70

P̂DFML 350.18 187.65 257.22 207.83 251.93 147.44

P̂DFMLC 358.93 186.31 263.52 214.76 250.13 153.44

Small

P̂BKA 100.00 100.00 100.00 100.00 100.00 100.00

P̂CalSF 155.30 137.56 140.60 152.77 142.46 137.70

P̂PEL 232.55 147.36 198.25 179.24 149.26 158.30

P̂CalDF 210.50 134.54 179.08 182.73 150.09 160.65

P̂DWML 331.43 163.16 247.64 165.45 146.32 157.70

P̂DWMLC 353.76 163.06 265.66 176.59 146.83 166.11

P̂SWML 331.75 163.33 248.08 166.09 146.83 157.60

P̂SWMLC 353.77 163.17 265.85 176.78 146.99 165.93

P̂DFML 343.94 164.70 257.75 170.24 150.15 154.31

P̂DFMLC 365.15 163.94 275.28 184.50 150.24 164.51

Large

P̂BKA 100.00 100.00 100.00 100.00 100.00 100.00

P̂CalSF 147.60 130.53 138.13 152.25 121.61 125.29

P̂PEL 193.48 124.99 173.21 163.71 142.12 149.74

P̂CalDF 192.10 125.72 170.56 165.55 153.62 161.09

P̂DWML 354.00 161.79 256.45 303.59 118.57 269.38

P̂DWMLC 371.74 161.23 266.64 307.98 123.76 282.16

P̂SWML 356.73 161.87 257.40 302.59 119.33 269.14

P̂SWMLC 375.21 161.38 267.54 306.81 124.75 281.93

P̂DFML 362.07 168.39 265.88 344.86 130.46 370.90

P̂DFMLC 376.11 167.22 274.78 348.03 137.80 379.38
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Table A3.5: Length reduction (in percent, %) of proposed estimator with respect to linear calibration estimators
using the same amount of auxiliary information (P̂DW

ML , P̂DW
MLC , P̂SW

ML and P̂SW
MLC have been compared with P̂CalSF

and P̂DF
ML and P̂DF

MLC have been compared with P̂CalDF ). Coverage (in percent, %) of jackknife confidence intervals.
POP1.

Length reduction Cov

acad. gen. voc. acad. gen. voc.

Medium

P̂DWML 10.31 25.44 30.91 94.5 93.9 94.9

P̂DWMLC 9.90 28.28 32.78 95.2 93.9 94.5

P̂SWML 10.59 25.73 31.18 94.8 94.1 95.0

P̂SWMLC 9.95 28.34 32.82 95.0 93.8 94.5

P̂DFML 8.83 33.04 16.41 95.8 96.0 95.5

P̂DFMLC 8.11 35.23 18.24 95.9 95.3 95.1

Small

P̂DWML 9.14 23.76 28.25 95.0 93.2 95.2

P̂DWMLC 8.78 26.86 30.41 94.1 93.4 93.6

P̂SWML 9.43 24.04 28.52 94.5 93.5 94.0

P̂SWMLC 8.81 26.89 30.43 94.8 92.5 94.2

P̂DFML 6.98 24.64 13.09 96.3 95.0 95.9

P̂DFMLC 6.30 27.15 15.32 96.6 94.6 95.1

Large

P̂DWML 10.11 25.45 30.71 94.2 93.5 93.9

P̂DWMLC 9.34 28.24 32.38 94.1 93.4 93.6

P̂SWML 10.64 25.94 31.14 94.5 93.5 94.0

P̂SWMLC 9.71 28.51 32.62 94.8 92.5 94.2

P̂DFML 10.18 35.37 17.96 96.3 95.0 95.9

P̂DFMLC 9.29 37.39 19.45 96.6 94.6 95.1
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Table A3.6: Relative efficiency (respect to the BKA estimator) of compared estimator for η̂SR2 =
v(N̂ba)/(v(N̂ab) + v(N̂ba)), η̂SR = NaNBv(N̂ba)/(NbNAv(N̂ab) + NaNBv(N̂ba)) and η1/2 = 1

2
. Overlap domain

size Medium.

POP1 POP2

acad. gen. voc. acad. gen. voc.

P̂DWML η̂SR2 347.02 181.43 252.42 204.46 194.97 148.32
η̂SR 348.45 181.32 252.88 205.14 194.69 148.71
η1/2 347.27 181.30 252.57 204.69 194.91 148.32

P̂DWMLC η̂SR2 356.87 181.05 258.60 209.29 192.64 153.29
η̂SR 358.65 181.01 259.21 209.78 192.36 153.62
η1/2 357.11 180.91 258.76 209.48 192.54 153.26

P̂DFML η̂SR2 350.18 187.65 257.22 207.83 251.93 147.44
η̂SR 351.57 187.70 257.90 207.85 249.31 147.45
η1/2 350.34 187.45 257.33 208.03 251.91 147.50

P̂DFMLC η̂SR2 358.93 186.31 263.52 214.76 250.13 153.44
η̂SR 360.76 186.46 264.35 214.57 247.50 153.26
η1/2 215.02 250.07 153.52 182.44 148.19 163.36
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Table A3.7: Point and 95% confidence level estimation of proportions using several methods for Jackknife
variance estimation. Length reduction (in percent, %) respect to the BKA estimator. Main variable:
”Amount of immigration”

In relation to the number of immigrants currently

living in Andalusia, do you think there are ...?

Length

Estimator prop lb ub len reduction

Too many

P̂DW
ML 42.75 39.76 45.74 5.98 14.33

P̂DW
MLC 41.23 38.78 43.68 4.90 29.80

P̂SW
ML 42.89 39.94 45.84 5.90 15.47

P̂SW
MLC 41.41 39.03 43.79 4.76 31.81

P̂DF
ML 42.61 39.64 45.58 5.94 14.90

P̂DF
MLC 41.16 38.67 43.65 4.98 28.65

A reasonable number

P̂DW
ML 45.24 42.27 48.20 5.93 12.28

P̂DW
MLC 46.57 44.11 49.03 4.92 27.22

P̂SW
ML 45.09 42.17 48.01 5.84 13.61

P̂SW
MLC 46.40 44.02 48.78 4.76 29.59

P̂DF
ML 45.45 42.49 48.41 5.92 12.43

P̂DF
MLC 46.68 44.17 49.18 5.01 25.89

Too few

P̂DW
ML 6.06 4.55 7.58 3.03 15.36

P̂DW
MLC 5.77 4.58 6.97 2.39 33.24

P̂SW
ML 6.05 4.56 7.54 2.98 16.76

P̂SW
MLC 5.76 4.61 6.91 2.30 35.75

P̂DF
ML 6.13 4.62 7.64 3.02 15.64

P̂DF
MLC 5.63 4.46 6.80 2.34 34.64

No reply

P̂DW
ML 5.95 4.65 7.25 2.60 12.75

P̂DW
MLC 6.43 5.27 7.58 2.31 22.48

P̂SW
ML 5.96 4.67 7.25 2.58 13.42

P̂SW
MLC 6.43 5.30 7.56 2.26 24.16

P̂DF
ML 5.80 4.51 7.10 2.59 13.09

P̂DF
MLC 6.54 5.33 7.74 2.41 19.13
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Table A3.8: Point estimation of proportions by sex and age. Main variable: “Amount of immigration”

In relation to the number of immigrants currently

living in Andalusia, do you think there are ...?

Estimator all males females 18-29 30-44 45-59 ≥ 60

Too many

P̂DW
ML 42.75 46.46 39.15 32.46 44.29 46.03 45.14

P̂DW
MLC 41.23 43.64 38.97 30.97 42.07 43.31 46.58

P̂SW
ML 42.89 46.74 39.11 32.76 43.89 46.44 45.85

P̂SW
MLC 41.41 43.79 39.19 31.55 41.61 43.87 45.77

P̂DF
ML 42.61 44.45 39.16 31.99 41.69 43.56 48.13

P̂DF
MLC 41.16 43.55 38.96 30.01 42.14 43.28 48.56

A reasonable number

P̂DW
ML 45.24 42.31 48.10 59.82 40.71 40.72 44.47

P̂DW
MLC 46.57 44.39 48.74 61.97 44.44 42.72 43.25

P̂SW
ML 45.09 42.04 48.11 59.62 40.90 40.68 43.70

P̂SW
MLC 46.40 44.14 48.63 61.49 44.67 42.64 43.61

P̂DF
ML 45.45 44.02 48.35 60.42 43.98 42.81 42.11

P̂DF
MLC 46.68 44.59 48.78 63.21 44.46 42.56 41.65

Too few

P̂DW
ML 6.06 6.75 5.35 3.77 9.84 6.18 2.82

P̂DW
MLC 5.77 6.68 4.92 3.29 7.58 6.73 2.80

P̂SW
ML 6.05 6.64 5.47 3.79 9.89 6.12 2.83

P̂SW
MLC 5.76 6.67 4.92 3.39 7.62 6.66 2.95

P̂DF
ML 6.13 6.58 5.11 3.50 8.17 6.37 2.39

P̂DF
MLC 5.63 6.46 4.81 2.92 7.46 6.77 2.35

No reply

P̂DW
ML 5.95 4.47 7.39 3.95 5.16 7.06 7.56

P̂DW
MLC 6.43 5.28 7.37 3.76 5.91 7.24 7.37

P̂SW
ML 5.96 4.58 7.31 3.83 5.32 6.76 7.62

P̂SW
MLC 6.43 5.41 7.26 3.57 6.10 6.84 7.67

P̂DF
ML 5.80 4.95 7.38 4.09 6.15 7.25 7.36

P̂DF
MLC 6.54 5.39 7.45 3.86 5.93 7.39 7.44
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Appendix A4

Estimation of proportions for class

frequencies with ordinal outcomes in

multiple frame surveys with complex

sampling designs

Rueda, M., Arcos, A., Molina, D. and Ranalli, M. G. (2016)

Estimation of proportions for class frequencies with ordinal outcomes in multiple frame surveys with

complex sampling designs.

Survey Research Methods. In review process.

Abstract

Surveys usually include questions where individuals should select one in a series of possible options

which can be somehow ordered. This kind of items are particularly frequent in social, marketing and

opinion surveys where, usually, respondents are asked to indicate their degree of agreement with a list of

sentences through a Likert or any other measurement scale. On the other hand, multiple frame surveys
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are becoming a widely used method to decrease bias due to undercoverage of the target population. In

this work, we propose statistical techniques for handling ordinal data coming from a multiple frame survey

using complex sampling designs. Our aim is to estimate proportions when the variable of interest has

ordinal outcomes. We propose to describe the joint distribution of the class indicators by an ordinal model.

Several estimators are constructed following model assisted generalized regression and model calibration

techniques. Theoretical properties are investigated for these estimators. Simulation studies with different

sampling procedures are considered to evaluate the performance of the proposed estimators via the

empirical relative bias and the empirical relative efficiency. Empirical coverage of confidence intervals

and their lengths are computed using jackknife techniques for variance estimation. An application to real

survey data is also included.

A4.1 Introduction

Multiple frame surveys were first introduced by Hartley (1962) as a device for reducing data collection

costs without affecting the accuracy of the results with respect to single frame surveys. Since then,

multiple frame sampling theory has experienced a noticeable development and several estimators for the

total of a continuous variable have been proposed. First proposals were formulated in a dual frame

context, i.e. for the case where two frames are available for sampling. Hartley (1962) himself proposed

the first dual frame estimator, which was improved by Lund (1968) and Fuller and Burmeister (1972).

Bankier (1986) and Kalton and Anderson (1986) and Skinner (1991) proposed dual frame estimators

based on new techniques. Skinner and Rao (1996) and Rao and Wu (2010) applied likelihood methods

to compute estimators that perform well in complex designs. More recently, Ranalli et al. (2015) and

Elkasabi et al. (2015) used calibration techniques to derive estimators in the dual frame context.

In recent years, a number of works has arisen that focus on the estimation in cases with three or more

sampling frames. Lohr and Rao (2006) extended some of the estimators proposed so far to the multiple-

frame setting. Mecatti (2007) used a new approach based on the multiplicity of each unit (i.e. in the

number of frames the unit is included in) to propose an estimator which is easy to compute. Multiplicity

is also used by Rao and Wu (2010) to provide an extension of the pseudo empirical likelihood estimator to

the case of more than two frames. In 2011, Singh and Mecatti suggested a class of multiplicity estimators

that encompasses all the multiple frames estimators available in the literature by suitably specifying a
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set of parameters.

Popularity of multiple frame surveys has increased among scientific community along last years and

now they are widely used both in statistical agencies and in private organizations. From 2000 to the

present, there has been a steady increase in the use of telephone surveys, which have replaced all other

data collection methods (the majority of which were face-to-face interviews). In some subject areas (e.g.,

electoral studies), face-to-face surveys have been completely ousted by telephone interviewing. Moreover,

studies have reported improved results from phone surveys compared with face-to-face interviews (Abascal

et al., 2012). Telephone surveys also present some drawbacks with regard to coverage, due to the absence

of a telephone in some households and the generalized use of mobile phones, which are sometimes replacing

fixed (land) lines entirely (see Trujillo et al., 2005). The potential for coverage error as a result of the

exponential growth of the cell phone-only population has been a key point in the increasing of the use

of a dual-frame approach when conducting telephone surveys. An example of a phone survey using both

a landline and a cell frame to ensure the highest possible coverage of the eligible population is the 2014

U.S. National Survey of Latinos (Lopez et al., 2014). Jackson et al. (2014) and McMillen et al. (2015)

compared the estimates obtained through a dual frame survey with those computed using a single frame

survey, with similar results. Surveys where data are collected from three sampling frames are also used in

practice. Iachan et al. (1993) used a three frame survey to reach the homeless population of Washington

D.C. metropolitan area. Frames in this survey were composed of homeless shelters, soup kitchens and

street areas. On the other hand, the Canadian Community Health Survey conducted by Statistics Canada

(2003) is based on a area frame, a list frame and a RDD frame.

The internet has become a very important data source that offers inexpensive ways to collect informa-

tion. Couper (2000) analyzes the issues and challenges related with web surveys concluding that this kind

of surveys already offer enormous potential for survey researchers which is likely only to improve with

time. Within multiple frame context, Lohr (2010) points that web surveys will play a very important

role in the future development of multiple frame surveys. So, in the near future it is very likely that dual

frame surveys consisting of a cell and a landline frame evolve to multiple frame surveys incorporating a

third frame of web users.

Surveys in general, and multiple frame surveys in particular, usually include questions in which the

respondents have to indicate their opinion or their degree of agreement with a statement by selecting one

of a list of given options. This is the case, eparticularly, in surveys focused on health, marketing and
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public opinion topics. In most situations, the Likert scale is used to scale the possible responses or these

are such that they can be somehow ordered according to a particular criteria (e.g., from the worst to the

best opinion). The main aim is to estimate the proportion of individuals selecting each option. Although

classical multiple frame estimators can be used, the estimates they provide are inconsistent since they

do not add up to 1 through all the categories. In the dual frame setting, Molina et al. (2015) developed

some logistic multinomial estimators but they may not be a good choice either, since for ordinal variables

the distance between adjacent categories is unknown and cannot be assumed as equal, which is a basic

assumption in the multinomial approach.

In this context, the ordinal logit model (OLM) offers a great power for the estimation. The most

popular OLM is the cumulative logit model, where categories of the variable of interest are divided into

two groups: the first one containing a particular category together with all categories lying below, and

the second one including categories above that particular category. When working with cumulative logit

models it is common to assume the proportional odds (PO) property, which establishes that the distance

between categories, even though unknown, is equivalent. That is, for each predictor variable the estimated

cumulative odds of being at or below a particular level of the response variable are assumed to be the

same across all the ordinal categories. Assuming this property leads to a more parsimonious model and,

consequently, to simpler interpretations. The cumulative OLM with PO property is considered as the

default ordinal regression model in the most common used statistical softwares, such as SPSS, SAS or

Stata.

Although ordinal regression models have been extensively used in sociological, medical and educational

applications, its use for parameter estimation in finite populations sampling is very sparse.

This article proceeds as follows: Section 2 introduces the problem of estimating the proportions of an

ordinal response variable in a multiple frame context, reviewing the existing approaches for estimation. In

section 3, we propose some estimators based on the ordinal logistic regression for estimating proportions of

a response with ordinal outcomes using model assisted and model calibrated techniques. Main theoretical

properties of the proposed estimators are studied in section 4. Performance of the estimators will be

measured through simulation experiments in section 5. Finally, we check how the estimators work in

a real context by applying them to data corresponding to a survey on perceptions of immigration in a

certain region in section 6.
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A4.2 Existing approaches for estimating proportions of a vari-

able with ordinal outcomes in a multiple frame context

We will employ the notation used in Mecatti (2007). Let U be a finite population composed of N

units labeled from 1 to N , U = {1, ..., k, ..., N} and let A1, . . . , Aq, . . . , AQ be a collection of Q ≥ 2

overlapping frames of sizes N1, . . . , Nq, . . . , NQ, all of them can be incomplete but it is assumed that

overall they cover the entire target population U . Let the index sets K be the subsets of the range of

the frame index q = 1, . . . , Q. For every index set K ⊆ {1, . . . , q, . . . , Q} a domain is defined as the set

DK = (∩q∈KAq)
⋂

(∩q/∈KAcq), where c denotes the complement of a set. Assume that we collect data from

respondents who provide a single choice from a list of ordered alternatives. We code these alternatives

as 1, 2, . . . ,m, with 1 < 2 < · · · < m. Therefore, consider a discrete m-valued survey variable y and we

denote yk the value observed for the k-th individual of the population. The objective is to estimate the

frequency distribution of y in the population U . To estimate this frequency distribution, we define a class

of indicators zi (i = 1, . . . ,m) such that for each unit k ∈ U zki = 1 if yk = i and zki = 0 otherwise. Our

problem thus, is to estimate the population proportion for each i, that is

Pi =
1

N

∑
k∈U

zki, i = 1, 2, . . . ,m. (A4.1)

Note that these proportions can be rewritten as follows

Pi =
1

N

Q∑
q=1

∑
k∈Uq

zki
mk

, i = 1, 2, . . . ,m, (A4.2)

where mk indicates the number of frames unit k belongs to, i.e. the multiplicity of k.

Let sq be a sample drawn from frame Aq under a particular sampling design pq(sq), independently

for q = 1, . . . , Q and let πk(q) and πkl(q) be the first and second order inclusion probabilities under this

sampling design, respectively. Let dk(q) = 1/πk(q) be the sampling weight for units in frame q. Let nq

be the size of sample sq and that s = ∪qsq. For ease of notation, we will drop (q) from probabilities and

weights, i.e. we will consider πk = πk(q), πkl = πkl(q) and dk = dk(q), when this is not ambiguous.

Lohr and Rao (2006) formulated the multiple frame extension of some of the estimators originally

proposed for the dual frame case, as the one proposed by Hartley (1962, 1974) or by Fuller and Burmeister
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(1972). Although the optimal version of these estimators is asymptotically efficient, it is not internally

consistent since a different set of weights is sued for each response variable. Moreover, it is often unstable

in small or moderate samples with more than two frames because the optimal estimated parameters

involved in the computation of the estimators are functions of large estimated covariances matrices.

Lohr and Rao (2006) also followed the so called single frame approach used by Kalton and Anderson to

proposed a single frame estimator in a multiple frame context. This estimator is in the form:

P̂KAi =
1

N

∑
k∈s

zkid
KA
k (A4.3)

with dKAk = π̄−1
k , where π̄k =

∑
q′3k πk(q′). To compute this estimator it is necessary to know not only

the number of frames each unit belongs to, but also the specific frames the unit is included in. This can

be an important drawback particularly if misclassification issues are present.

Lohr and Rao also proposed the following pseudo-maximum likelihood estimator for the multiple

frame context:

P̂PMLi =
1

N

∑
k∈s

zkid
PML
k (q), (A4.4)

where the weights dPML
k can be defined as

dPML
k (q) = dk(q)f(q)

∑
K:q∈K

N̂Kδk(K)∑
j∈K f(j)N̂K(j)

with f(q) = 1
deffz(q)

nq

Nq
, being deffz(q) the design effect for variable z in the q-th frame. Values N̂K(q)

can be computed as N̂K(q) =
∑
k∈sq dk(q)δk(K), with δk(K) the indicator variable for domain K that

takes the value 1 whether unit k belongs to domain K and 0 otherwise. The estimated domain sizes N̂K

are the solution of a system of non linear equations. The pseudo maximum likelihood is consistent and

usually works well in practical situations but it is complex to compute for a general sampling design,

since numerical procedures are required to obtain the values N̂K .

Mecatti (2007) also considered a single frame approach and proposed the following estimator

P̂Mi =
1

N

∑
k∈s

zkid
M
k , (A4.5)
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with dMk = dk/mk. The previous estimator, often called single frame multiplicity estimator, only requires

the knowledge of the multiplicity of each unit, i.e. the number of frames the unit is included, no matter

which these frames are. This estimator can be adjusted using a raking ratio approach to get a single frame

raking ratio multiplicity estimator where a new set of weights, resulting from an iterative procedure, is

used.

In 2011, Singh and Mecatti proposed a composite multiplicity estimator, which generalizes the single

frame multiplicity estimator. This estimator can be written as

P̂CMi =
1

N

∑
k∈s

zkid
CM
k (A4.6)

where

dCMk =
λkdk + (1− λk)dKAk

mk

with

λk =

∑
q′3k(1− π̄k/πk(q′))πk(q′)(1− πk(q′))∑

q′3k(1− π̄2
k

πk(q′)2 −
2π̄k

πk(q′) )πk(q′)(1− πk(q′))
.

Usually, additional information about auxiliary variables is available in surveys. Let xq = (xq1, xq2, . . . , xqpq )′

be a set of pq auxiliary variables observed in the q-th frame, so the vector xqk = (xq1k, xq2k, . . . , xqpqk)′

includes the values of the variables xq for the unit k of frame q. Auxiliary variables may differ in each

frame, i.e. xq 6= xr, for q, r = 1, . . . , Q, q 6= r. For the sample coming from frame q, the values of the

variables (yk,xqk) are observed. Equivalently, (zk1, . . . , zki, . . . , zkm,xqk) are known.

Rao and Wu (2010) followed a single frame multiplicity based approach to extend the pseudo empirical

likelihood estimator for the mean of a variable to the multiple frame setting. This estimator can be

computed as

P̂PELi =
∑
k∈s

zkipk(q) (A4.7)

with pk(q) maximizing the likelihood function

lPEL(p1, . . . ,pQ) =

∑Q
q=1 nq∑
k∈s d

M
k

∑
k∈s

dMk log[pk(q)]
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subject to ∑
k∈s

pk(q) = 1

∑
k∈s

pk(q)xk = x̄

being x̄ = (x̄1, x̄2, . . . , x̄p)
′ the vector of the population means of variables xq, which are assumed in this

case to be the same in all frames.

Calibration is also a well-known technique to deal with auxiliary information in estimation. Ranalli et

al. (2015) proposed different calibration estimators for the dual frame case, which can be easily extended

to the multiple frame context. A calibration estimator in the case of more than two sampling frames can

be defined as

P̂CALi =
1

N

∑
k∈s

zkid
CAL
k (A4.8)

where dCALk are such that they minimize
∑
k∈sG

(
dCALk , dMk

)
, where G(·, ·) is a particular distance func-

tion, subject to ∑
k∈s

dCALk δk(Aq) = Nq, q = 1, ..., Q

∑
k∈s

dCALk xqkδk(Aq) = txq, q = 1, ..., Q,

where δk(Aq) is the indicator variable that takes value 1 if unit k is in frame q and zero otherwise, and

txq are the population totals of xq.

Recently, Elkasabi et al. (2015) proposed a joint calibration estimator for the dual frame case that

can be easily extended to the case of three or more frames. The estimator is in the form

P̂JCEi =
1

N

∑
k∈s

zkid
JCE
k (A4.9)

with dJCEk = dk(1 + λ′xk) and

λ′ =

(∑
k∈U

xqk −
∑
k∈s

dkxk

)′(∑
k∈s

dkxkx
′
k

)−1

As for P̂PELi, the same set of auxiliary variables x = (x1, x2, ..., xp) is assumed to be known in all frames.
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A4.3 Proposed estimators for responses with ordinal outcomes

Estimators reviewed in the previous section were originally formulated for estimating parameters (usually

a total or a mean) of a continuous variable. They can be used also for estimating proportions of an ordinal

variable although final estimates may likely be inconsistent, in the sense that they can take value outside

the interval [0; 1] and they may not add up to 1. Moreover, they are not taking into account the extra

information we have from the order among categories. In this case, an approach based on an ordinal

logistic model (OLM) seems to be more appropriate. Within OLMs, the most widely used one is the

cumulative ordinal logistic model, which assumes a linear model for the logit of cumulative probabilities

for the categories of y. See Agresti (2007) for a good review on ordinal logistic models.

Under this scenario, we can exploit superpopulation models for inference from sample surveys. A

superpopulation model is a way of formalizing the relationship between a target variable and auxiliary

data. Superpopulation models have been used in sociological and electoral studies Cassel et al.(1997)

used the superpopulation approach to estimate the average customer satisfaction, Pavia and Larraz (2012)

used superpopulation models in electoral polls,...) Traditionally, linear regression models have been used

to incorporate auxiliary information. As it is well known in sociological literature (Winship and Mare,

1984), for qualitative variables a linear model is unrealistic.

Considering the most general case, where auxiliary information differs by frame, we consider a different

superpopulation ordinal logistic model in each frame. So, in frame q, the logit transformation of the

cumulative probabilities can be written as follows

logitlog(P (yk ≤ i)) = log
P (yk ≤ i)
P (yk > i)

= αqi + βqixqk, i = 1, ...,m− 1, q = 1, . . . , Q, (A4.10)

where αqi is a scalar and βqi = (βq1i, . . . , β
q
pqi

). This expression can be rewritten as

P (yk ≤ i) =
exp(αqi + βqixqk)

1 + exp(αqi + βqixqk)
, i = 1, ...,m− 1, q = 1, . . . , Q. (A4.11)

We assume that, in frame q, the finite population under study y = (y1, ..., yN )′ is the determina-

tion of the superpopulation random variable vector Y = (Y1, ..., YN )′, that can be described by the
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superpopulation model, ξq, s.t.

µqi (xqk) = P (Yk = i|xqk) = Eξq (Zki|xqk) =


exp(αq

i +βq
ixqk)

1+exp(αq
i +βq

ixqk)
, i = 1

exp(αq
i +βq

ixqk)

1+exp(αq
i +βq

ixqk)
− exp(αq

i−1+βq
i−1xqk)

1+exp(αq
i−1+βq

i−1xqk)
, i = 2, ...,m

.

(A4.12)

Here Eξq denotes the expected value with respect to the model in frame q and we assume that Yk are

conditionally independent given xqk. An important property that is usually assumed to be accomplished

is the proportional odds property. According to this property, effects of the predictors are the same across

categories. This implies that βqi = βq, i.e. parameters associated to independent variables are fixed and

independent of the category considered. Then, the superpopulation model can be rewritten as

µqi (xqk) = P (Yk = i|xqk) = Eξq (Zki|xqk) =


exp(αq

i +βqxqk)

1+exp(αq
i +βqxqk)

, i = 1

exp(αq
i +βqxqk)

1+exp(αq
i +βqxqk)

− exp(αq
i−1+βqxqk)

1+exp(αq
i−1+βqxqk)

, i = 2, ...,m

(A4.13)

Usually, population parameters αqi and βq involved in the model ξq are unknown and should be

estimated using sample information. Different procedures, as weighted least squares (Goldberger, 1964)

or maximum likelihood, can be used to this end. Under the latter, we can obtain the maximum likelihood

estimates for the parameter θq = (αq1, . . . , α
q
m,β

q) by maximizing the following function

`(θq) =
∑

i=1,...,m

∑
k∈sq

dkzki logµqi (xqk,θ
q), (A4.14)

and we denote it by θ̂q = (α̂q1, . . . , α̂
q
m, β̂

q
). Under certain conditions the π-weighted log-likelihood

estimator is consistent for θq (Nordberg, 1989). Using these maximum likelihood estimates, we can

define an estimator for probabilities for each category as follows:

pqki = µ̂qi (xqk) =


exp(α̂q

i +β̂
q
xqk)

1+exp(α̂q
i +β̂

q
xqk)

, i = 1

exp(α̂q
i +β̂

q
xqk)

1+exp(α̂q
i +β̂

q
xqk)
− exp(α̂q

i−1+β̂
q
xqk)

1+exp(α̂q
i−1+β̂

q
xqk)

, i = 2, ...,m

. (A4.15)

These estimated probabilities can be used to define the following model assisted estimators:
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P̂MA1i =
1

N

(
Q∑
q=1

∑
k∈U

pqki
mk
−
∑
k∈s

pqkid
M
k +

∑
k∈s

zkid
M
k

)
, i = 1, ...,m (A4.16)

P̂MA2i =
1

N

(
Q∑
q=1

∑
k∈U

pqki
mk
− N

M̂

∑
k∈s

pqkidk +
∑
k∈s

zkid
M
k

)
, i = 1, ...,m (A4.17)

with M̂ =
∑
k∈s dk. To formulate both estimators we have adapted the approach used by Lehtonen and

Veijanen (1998a) to estimate class frequencies of a variable with multinomial outcomes in a single frame

context to the case of an ordinal response variable in a multiple frame setup. Estimated probabilities in

the sum over the population in estimator P̂MA1i are weighted by multiplicities mk to avoid overestimation

issues. For this same reason, weights dMk are used in the sample sums. Such weighing is intended to make

the estimator consistent in the sense that its categories add up to 1. Estimator P̂MA2i is very similar to

P̂MA1i, with the only difference of using original design weights dk in one of the sample sums. Due to

this, and to ensure the consistency of the estimator, adjustment factor N/M̂ is used.

It is important to note that, since different auxiliary information is considered in each frame, we need

to adjust q different models, each one based on the set of auxiliary variables of the specific frame.

Treating probabilities pqki as auxiliary variables, we can include them in the estimation process through

a model calibration approach (Wu and Sitter (2001a) introduce model calibration in a classical one frame

survey). The resulting model calibration estimator can be written as

P̂MC1i =
1

N

∑
k∈s

w◦k
mk

zki, i = 1, ...,m, (A4.18)

where weights w◦k are chosen so that they minimize
∑
k∈sG (w◦k, dk), subject to

∑
k∈s

w◦k
mk

δk(Aq) = Nq, q = 1, ..., Q

∑
k∈s

w◦k
mk

pqkiδk(Aq) =
∑
k∈U

pqkiδk(Aq), q = 1, ..., Q, i = 1, ...,m.

In the first group of Q calibration constraints, regarding frame sizes, multiplicities mk are used to properly

weight indicator variables δk(Aq) and so, to cancel any overestimation problem. The same reasoning may

be applied to the second group of constraints, where the auxiliary variables are also weighted by mk.
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Alternatively to (A4.14), model parameters for the q-th frame can be estimated maximizing the

following loglikelihood function

`(θq) =
∑

i=1,...,m

∑
k∈sq

dMk zki logµqi (xqk,θ
q), (A4.19)

yielding to the probability estimates

p?qki = µ̂qi (xqk) =


exp(α̂?q

i +β̂
?q

xqk)

1+exp(α̂?q
i +β̂

?q
xqk)

, i = 1

exp(α̂?q
i +β̂

?q
xqk)

1+exp(α̂?q
i +β̂

?q
xqk)
− exp(α̂?q

i−1+β̂
?q

xqk)

1+exp(α̂?q
i−1+β̂

?q
xqk)

, i = 2, ...,m

. (A4.20)

The following calibration estimator can be defined

P̂MC2i =
1

N

∑
k∈s

w?kzki, i = 1, ...,m (A4.21)

where, in this case, the weights w?k are such that they minimize
∑
k∈sG

(
w?k, d

M
k

)
subject to

∑
k∈s

w?kδk(Aq) = Nq, q = 1, . . . , Q

∑
k∈s

w?kp
?q
kiδk(Aq) =

∑
k∈U

p?qkiδk(Aq), q = 1, . . . , Q, i = 1, ...,m.

Unlike those in P̂MC1i, constraints for this calibration estimator do not involve multiplicities. Over-

estimation issues are eliminated, then, by considering dMk (which are already weighted by mk) as the

starting weights for the calibration. Therefore, resulting weights w?k should be near to those starting

weights so they already take into account the multiplicity while still fulfilling the calibration constraints.

A4.4 Properties of the proposed estimators

In this section we describe the main properties of the proposed estimators. We adapt the asymptotic

framework of Isaki and Fuller (1982) to a multiple frame context, in which the finite population U

and the sampling designs p1(·), p2(·), ..., pQ(·) are embedded into a sequence of such populations and

designs indexed by N , {UN , p1N
(·), p2N

(·), ..., pQN
(·)}, with N → ∞. We will assume, thus, that
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N1N
, N2N

, ..., NQN
tend to infinity and that n1N

, n2N
, ..., nQN

also tend to infinity when N → ∞.

Furthermore, we will assume all domains DK being non-empty, K ⊆ {1, ..., q, .., Q}. Additionally,

nqN /nN → cq ∈ (0, 1), q = 1, ..., Q, where nN =
∑Q
q=1 nqN as N → ∞. All limiting processes are

understood as N → ∞, so we drop subscript N for ease of notation. Stochastic orders Op(·) and op(·)

are with respect to the aforementioned sequences of designs.

We first discuss the theoretical properties of P̂MC2 and then move to the other estimators, be-

cause these can be dealt with using slight modifications of this more general case. Let µqi (xqk,θ
q) =

exp(αq
i +βqxqk)

1+exp(αq
i +βqxqk)

− exp(αq
i−1+βqxqk)

1+exp(αq
i−1+βqxqk)

, for i = 1, ...,m and q = 1, ..., Q. In order to prove our results, we

make a set of technical assumptions reported in Appendix A4.7.1.

Theorem 2. Under assumptions A6–A11, estimator P̂MC2i is design
√
nN -consistent for Pi in the sense

that

P̂MC2i − Pi = Op(n
−1/2
N ),

and has the following asymptotic distribution

P̂MC2i − Pi√
V∞(P̂MC2i)

→L N(0, 1)

where

V∞(P̂MC2i) =
1

N2

Q∑
q=1

∑
k∈Uq

∑
l∈Uq

∆kl(d
M
k e

q
ki)(d

M
l e

q
li)

 (A4.22)

with ∆kl = πkl−πkπl and eqki = zki−µqi (xqk,θ
q
U )Bq

iU , and Bq
iU =

∑
k∈Uq

(µqi (xqk,θ
q
U )2)−1(

∑
k∈Uq

µqi (xqkθ
q
U )zki).

In addition, let êqki = zki−pqkiB̂
q
i , being B̂q

i = (
∑
k∈sq d

M
k p

q2
ki)
−1(
∑
k∈s d

M
k p

q
kizki). Then, V∞(P̂MC2i) can

be consistently estimated by

v(P̂MC2i) =
1

N2

Q∑
q=1

∑
k∈sq

∑
l∈sq

(
∆kl

πkl
)(dMk ê

q
ki)(d

M
l ê

q
li)


Proof. See Appendix A4.7.2

Estimator P̂MC1 is similar to P̂MC2. The only differences are (i) P̂MC1 uses original design weights

dk as starting weights for the calibration, correcting with multiplicities mk where necessary to avoid

overestimating issues and (ii) probability estimates pqki are used as auxiliary information instead of p?qki .
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On the other hand, P̂MA1 and P̂MA2 can be seen as particular cases of P̂MC2i in which Bq
iU is a scalar

equal to 1 for all i and all q and, again, estimates pqki are used as auxiliary information. In both estimators

population sum of probabilities is weighted by mk to correct for the multiplicity. The main difference

between estimator P̂MA2 and estimator P̂MA1 is that in P̂MA2 the term
∑Q
q=1

∑
k∈Uq

µqi (xqk) is estimated

by N
M̂

∑
k∈s p

q
kidk instead of by

∑
k∈s p

q
kid

M
k as in the latter. Despite of these particularities, a similar

procedure to the one used with P̂MC2 can be considered to prove the results.

A4.5 Monte Carlo Simulation Experiments

We now compare empirically the performance of the proposed estimators with respect to alternative

estimators via Monte Carlo experiments, which have been carried out by using the freeware statistical

program R.

We have considered a three frame setting, say frames A, B and C, where three normal variables have

been simulated: a first one following a N (30, 3), which is categorized considering 4 ordered levels to create

the ordinal response variable, y, (for simplicity, we have coded the levels as 1, 2, 3 and 4, considering 1

< 2 < 3 < 4) and another two which play the role of auxiliary variables: x1 and x2. These two auxiliary

variables are generated controlling their correlation with the response variable (taking advantage of the

fact that response variable has been generated from a continuous variable). In this first scenario, the

correlation between the response y and the auxiliary variables x1 and x2 has been set at 0.85. We have

generated N = 10000 observations for each of the three variables involved in the study. Population ratios

of the levels of response variable are: 0.1, 0.2, 0.3 and 0.4, respectively.

Domain sizes were defined beforehand and then each unit was randomly assigned to one of these

domains. As a result, three overlapping frames of sizes NA = 5500, NB = 6000 and NC = 5000 were

obtained. Three samples of sizes nA = 360, nB = 464 and nC = 728 were independently drawn, one

from each frame, considering Midzuno sampling designs in frames A and C and a simple random sam-

pling design in frame B. Sample from frame A was drawn with probabilities proportional to a normally

distributed variable with mean 1000 and standard deviation 250. On the other hand, sample from frame

C was drawn considering inclusion probabilities proportional to another normally distributed variables

with mean 5000 and standard deviation 500. In this scenario, the two ordinal model-assisted estimators

(PMA1 and PMA2) and the two ordinal model-calibrated estimators (PMC1 and PMC2) were computed.
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For comparison purposes, we also compute Kalton-Anderson (KA), multiplicity (M), composite multi-

plicity (CM) and calibration (CAL) estimators. For the estimators using auxiliary information (CAL,

PMA1, PMA2, PMC1 and PMC2) we have considered different sets of variables: x1 in frame A, x2 in

frame B and both x1 and x2 in frame C.

For each estimator, we compute the percent relative bias RB% = EMC(P̂−P )/P ∗100 and the percent

relative mean squared error RMSE% = EMC [(P̂ − P )2]/P 2∗100 for each category of the variable y based

on 1000 simulation runs. We have used RMSE% to calculate percent relative efficiency gain with respect

to multiplicity estimator (results are presented in Table A4.1).

Table A4.1: % Relative bias (in italics) and % relative efficiency, with respect to multiplicity estimator for each
estimator. Corresponding equation in parentheses. ρY X1 = 0.85, ρY X2 = 0.85

1 2 3 4 min max mean

M (A4.5) -0.08 0.19 0.04 -0.10 0.04 0.19 0.10

100.00 100.00 100.00 100.00 100.00 100.00 100.00

KA (A4.3) -0.14 0.16 0.05 -0.09 0.05 0.16 0.11

107.00 104.11 104.47 104.26 104.11 107.00 104.96

CM (A4.6) -0.14 0.16 0.07 -0.10 0.07 0.16 0.12

106.71 103.84 104.16 103.92 103.84 106.71 104.65

CAL (A4.8) -0.43 0.24 0.21 -0.17 0.17 0.43 0.26

134.47 113.68 99.41 173.16 99.41 173.16 130.18

PMA1 (A4.16) 0.71 -0.12 -0.31 0.11 0.11 0.71 0.31

190.77 132.25 119.69 216.48 119.69 216.48 164.79

PMA2 (A4.17) 0.09 0.16 -0.01 -0.10 0.01 0.16 0.09

166.77 122.88 114.08 179.71 114.08 179.71 145.86

PMC1 (A4.18) -0.08 0.13 0.03 -0.07 0.03 0.13 0.08

183.79 129.51 121.54 192.99 121.54 192.99 156.95

PMC2 (A4.21) -0.10 0.14 0.02 -0.06 0.02 0.14 0.08

184.70 129.50 121.75 195.23 121.75 195.23 157.79

From results of table A4.1 we can conclude that bias for all the estimators considered is negligible.

Equally, we can observe that estimators using auxiliary variables perform better than the estimators that

do not use any extra information. All the proposed ordinal estimators work better than the classical
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calibration estimator, which assume an underlying linear model. Whatever the proposed estimators,

we can see that the largest mean efficiency gain with respect to multiplicity estimator is achieved in

category 4, which is the category with the largest population proportion. Within the group of proposed

estimators, PMA1 is the estimator which shows the largest efficiency gain. On the other hand, no

significative differences can be detected between the two calibration estimators proposed.

To determine the effect of varying association between response and auxiliary variables, we are going

to consider new scenarios with different correlation levels between y and x1 and x2. In the first scenario

created, correlation between y and x1 has been decreased with respect to the initial situation to 0.65.

On the other hand, correlation between y and x2 has been set to 0.5. In the second scenario, correlation

levels between y and x1 and between y and x2 are set to 0.4 and 0.7, respectively. We have run 1000

repetitions keeping the same sample sizes for the three frames. Relative bias is not significant in any case

and so only relative efficiency with respect to multiplicity estimator is displayed in table A4.2.

Table A4.2: % Relative efficiency with respect to multiplicity estimator of compared estimators considering
different association levels between y and x1 and x2

1 2 3 4 min max mean

ρY X1
= 0.65, ρY X2

= 0.5.

PMA1 125.15 110.56 104.16 133.48 104.16 133.48 118.33

PMA2 119.00 106.49 102.14 123.58 102.14 123.58 112.80

PMC1 126.53 107.40 103.46 130.77 103.46 130.77 117.04

PMC2 125.96 107.18 103.21 130.84 103.21 130.84 116.79

ρY X1 = 0.4, ρY X2 = 0.7.

PMA1 122.54 110.27 106.44 133.53 106.44 133.53 118.19

PMA2 116.57 105.99 103.36 124.20 103.36 124.20 112.53

PMC1 124.35 107.16 104.99 131.43 104.99 131.43 116.98

PMC2 123.59 106.97 104.80 131.60 104.80 131.60 116.74

We observe that proposed estimators have a gain in efficiency in comparison to the customary mul-

tiplicity estimator when the association between the auxiliary variables and the main variable is also

moderated. If correlation decreases, then the improvement of course of using the model is less impor-

tant. As in the previous scenario, gain in efficiency for category 4 is quite relevant compared with the 3

remaining categories.
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A4.5.1 Application to real data

In addition to simulation studies, we have utilized a set of real data to check the performance of the

proposed estimators. Data come from a survey on opinions of the Andalusian population towards immi-

gration conducted in 2013 by an Andalusian research institute focusing on social studies. In this survey,

the institute conducting the survey decided to carry out telephone interviews with adults using two sam-

pling frames: one of landlines (frame A) and another one of cell phones (frame B). Finally, n = 1853

telephone interviews were performed.

At the time of data collection, frame sizes were known (extracted from ICT-H 2012, Survey on

the Equipment and Use of Information and Communication Technologies in Households, INE, National

Statistical Institute, Spain). Landline frame was stratified by provinces in region of Andalusia and then

a stratified sample of size nA = 1468 was drawn. In cell phone frame a simple random sample of size

nB = 385 was selected by using a random digit dialing (RDD) method.

We have considered two different response variables related with attitudes regarding immigration.

The first one is “The place you prefer for living is a place with...” where possible options are “...few

immigrants”, “...some immigrants” or “...many immigrants”. The second main variable is the response

to question “Do you consider that immigrants have nothing, little, quite a few or much in common with

you?” As auxiliary information we use the sex and the age (categorized by considering 4 age classes) of

interviewed people in each frame. Population data for auxiliary variables is available from table A4.3.

Together with the proposed estimators, we have calculated some additional estimators for comparison

purposes as multiplicity (M), Kalton-Anderson (KA), composite multiplicity (CM), calibration (CAL))

and joint calibration (JCE) estimators. For CAL and JCE we have used also the sex and the age of

the individuals as auxiliary variables to get comparable results. Note these estimators are the alterna-

tives available given the same amount of auxiliary information but both estimators work well when the

relationship between main and auxiliary variable is strongly linear.

Table A4.4 shows point estimation for compared estimators for the two main variables. We have used

the jackknife procedure described in Lohr and Rao (2000) to estimate variance of estimators and then

a 95 % confidence interval has been computed. Results of lower bound, upper bound and lengths of

intervals are also includes in the table.

In both cases, average length of confidence intervals of all proposed estimators is smaller than average
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Table A4.3: Population data for variables sex and age

Both Landline Cell

Men

18 - 29 428750 0 188172
30 - 44 724435 4259 298416
45 - 59 603338 59385 135981
> 60 396626 206410 94729

Women

18 - 29 480151 0 115472
30 - 44 658984 17673 289106
45 - 59 601478 39362 141553
> 60 445897 316172 104567

lengths of confidence intervals of classical estimators.

A4.6 Conclusions

In this paper we have introduced a flexible way of using auxiliary information when estimating propor-

tions for an ordinal variable using a multiple frame survey. We have worked within the model-assisted

framework for finite population inference and proposed estimators using both the generalized regression

and the calibration approach. In both cases, we have relaxed the assumption of a linear regression model

and considered ordinal regression models. Weighted likelihood methods have been employed to obtain

design consistent parameter estimates. The proprieties of the proposed estimators have been investigated

theoretically and via simulation studies.

The performance of the proposed ordinal estimators is good under a variety of sampling designs.

Our main findings show that it is important to include auxiliary information into the estimation process

to increase efficiency. Of course, the gain in efficiency depends on the strength of the relationship of

the auxiliary variables with the variable of interest. In addition, it is also important to account for the

ordinal nature of the variable of interest and, therefore, employ suitable models. In fact, the proposed

estimators outperform classical calibration methods that, implicitly, employ a linear regression model.

In this regard, a methodology that is often used to incorporate auxiliary information in sample surveys

is post-stratification; it should be noted that it is just a particular case of calibration and, therefore, we

have shown that it is possible to use auxiliary information in a more efficient way when the variable of
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interest is ordinal. This has been highlighted also in the application to real data from a dual frame survey

on attitudes towards immigration: the calibration estimator in this case is essentially an adaptation of

post-stratification to multiple frame surveys. The proposed ordinal model-assisted estimators provide all

a sensible reduction on the length on the confidence intervals for the estimated proportions compared to

all other estimators.

A4.7 Appendix - Assumptions and proof of Theorem 4.1.

A4.7.1 Assumptions

A6. Let θqU be the census level parameter estimate obtained by maximizing the likelihood

`U (θq) =
∑

i=1,...,m

∑
k∈Uq

zki logµqi (xqk,θ
q).

Assume that θq = limN→∞ θ
q
U exists and that θ̂q = θqU +Op(n

−1/2
N ), q = 1, . . . , Q.

A7. For each xqk, ∂µ(xqk, t)/∂t is continuous in t and |∂µ(xqk, t)/∂t| ≤ f1(xqk,θ
q) for t in a neighbor-

hood of θq and f1(xqk,θ
q) = O(1), for i = 1, . . . ,m; q = 1, . . . , Q.

A8. For each xqk, ∂2µ(xqk, t)/∂tjtj′ is continuous in t and maxj,j′ |∂2µ(xqk, t)/∂tjtj′ | ≤ f2(xqk,θ
q) for

t in a neighborhood of θq and f2(xqk,θ
q) = O(1), for i = 1, . . . ,m; q = 1, . . . , Q.

A9. The auxiliary variables x have bounded fourth moments.

A10. For any study variable ξ with bounded fourth moment, the sampling designs are such that for the

normalized multiplicity estimators of ξ̄ = N−1
∑
k∈U ξk a central limit theorem holds, i.e.

√
nN ( ˆ̄ξM − ξ̄)→L N(0, V ( ˆ̄ξM )),

where ˆ̄ξM = N−1
∑
k∈s d

M
k ξk.

A11. Let Bq
iU =

∑
k∈Uq

(µqi (xqk,θ
q
U )2)−1(

∑
k∈Uq

µqi (xqk,θ
q
U )zki). Assume that Bq

i = limN→∞B
q
iU exists,

and the sampling designs are such that Bq
iU can be consistently estimated by B̂q

i for i = 1, ...,m; q =

1, ..., Q.
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A4.7.2 Proof of Theorem 4.1.

Estimator P̂MC2i can be rewritten in the form

P̂MC2i =
1

N

∑
k∈s

dMk zki+
1

N

Q∑
q=1

(∑
k∈U

p?qki −
∑
k∈s

dMk p
?q
ki

)
Bq
iU+

1

N

Q∑
q=1

∑
k∈U

p?qki −
1

N

∑
k∈sq

dMk p
?q
ki

 (B̂q
i−B

q
iU )

with p?qki = (δk(Aq), p
?q
kiδk(Aq)).

Now, using the same approach developed in Montanari and Ranalli (2005), it is easy to show that by

assumption A11, B̂q
i −B

q
iU = o(1); and by assumptions A6–A7 and A9–A10

1

N

Q∑
q=1

∑
k∈U

p?qkiδk(Aq)−
1

N

Q∑
q=1

∑
k∈s

dMk p
?q
kiδk(Aq) = Op(n

−1/2),

using a first order Taylor expansion of µ(xqx, θ̂
q) at θ̂q = θqU . Using A6–A10 and a second order Taylor

expansion of µ(xqx, θ̂
q) at θ̂q = θqU

1

N

Q∑
q=1

∑
k∈U

p?qkiδk(Aq)−
1

N

Q∑
q=1

∑
k∈s

dMk p
?q
kiδk(Aq) =

1

N

Q∑
q=1

∑
k∈U

µqkiδk(Aq)−
1

N

Q∑
q=1

∑
k∈s

dMk µ
q
kiδk(Aq) = Op(n

−1)

Thus,

P̂MC2i =
1

N

∑
k∈s

dMk zki +
1

N

Q∑
q=1

(∑
k∈U

µ?qki −
∑
k∈s

dMk µ
?q
ki

)
Bq
iU + op(n

−1),

where µ?qki is like p?qki but with p?qki replaced by its population counterpart µ?qki . Consequently

Ep(P̂MC2i)→ Ep(
1

N

∑
k∈s

dMk zki) = Pi

and

Vp(P̂MC2i)→ Vp(
1

N

∑
k∈s

dMk (zki − µqi (xqk,θ
q
U ))Bq

iU ).

Under assumption A10, estimator 1
N

∑
k∈s d

M
k (zki−µqi (xqk,θ

q
U ))Bq

iU is asymptotic normal distributed,
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so we can conclude that estimator P̂MC1i is also asymptotic normal distributed.
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Table A4.4: Point and 95% confidence level estimation of percentages using Jackknife variance estimation.
Auxiliary variables: Sex and Age.

The place you prefer for living is a place with...

Estimator prop lb ub len

...few immigrants

M 45.26 41.93 48.58 6.65
KA 44.70 41.60 47.78 6.17
CM 44.92 41.84 48.00 6.17
CAL 44.43 41.47 47.39 5.92
JCE 44.97 42.03 47.90 5.87
PMA1 45.29 42.24 48.32 6.07
PMA2 45.60 42.33 48.86 6.53
PMC1 44.55 41.67 47.42 5.75
PMC2 44.67 41.73 47.60 5.87

...some immigrants

M 48.36 45.03 51.67 6.64
KA 49.18 46.07 52.27 6.20
CM 48.65 45.56 51.72 6.16
CAL 49.46 46.45 52.48 6.03
JCE 48.80 45.86 51.72 5.86
PMA1 48.51 45.47 51.54 6.07
PMA2 48.13 44.86 51.39 6.53
PMC1 49.50 46.55 52.45 5.90
PMC2 49.30 46.22 52.37 6.15

...many immigrants

M 6.39 4.68 6.38 3.41
KA 6.13 4.62 7.62 3.00
CM 6.43 4.83 6.43 3.20
CAL 6.09 4.68 7.51 2.83
JCE 6.23 4.78 7.67 2.89
PMA1 6.20 4.67 7.72 3.06
PMA2 6.27 4.60 7.93 3.32
PMC1 5.95 4.56 7.33 2.76
PMC2 6.03 4.58 7.47 2.89

Do you consider that immigrants have nothing,

little, something, quite a few

or much in common with you?

Estimator prop lb ub len

Nothing

M 12.13 9.80 14.45 4.65
KA 11.09 9.08 13.08 4.01
CM 12.15 9.96 14.34 4.38
CAL 11.37 9.41 13.33 3.92
JCE 11.34 9.47 13.20 3.73
PMA1 12.18 10.04 14.31 4.27
PMA2 12.50 10.17 14.82 4.65
PMC1 11.41 9.54 13.26 3.71
PMC2 11.63 9.64 13.60 3.96

Little

M 27.87 24.94 30.80 5.87
KA 27.92 25.20 30.63 5.43
CM 28.02 25.29 30.74 5.45
CAL 28.59 25.92 31.25 5.33
JCE 28.60 25.96 31.24 5.28
PMA1 28.73 26.03 31.43 5.40
PMA2 28.45 25.55 31.33 5.78
PMC1 28.42 25.83 31.00 5.16
PMC2 28.39 25.72 31.06 5.34

Something

M 10.86 8.78 12.93 4.15
KA 10.99 9.03 12.93 3.90
CM 10.65 8.74 12.56 3.82
CAL 10.83 9.00 12.65 3.65
JCE 10.47 8.68 12.26 3.58
PMA1 10.75 8.86 12.62 3.76
PMA2 10.81 8.78 12.83 4.05
PMC1 10.80 9.01 12.58 3.57
PMC2 10.79 8.99 12.59 3.60

Quite a few

M 29.30 26.29 32.29 5.99
KA 29.82 27.00 32.63 5.62
CM 29.33 26.54 32.10 5.56
CAL 29.09 26.42 31.75 5.33
JCE 28.94 26.34 31.54 5.20
PMA1 28.90 26.22 31.58 5.36
PMA2 28.88 25.98 31.77 5.78
PMC1 29.14 26.54 31.73 5.18
PMC2 29.04 26.43 31.65 5.22

Much

M 19.84 17.22 22.45 5.23
KA 20.19 17.72 22.65 4.93
CM 19.85 17.43 22.25 4.83
CAL 20.11 17.76 22.47 4.71
JCE 20.64 18.22 23.05 4.82
PMA1 19.43 17.08 21.78 4.70
PMA2 19.36 16.82 21.90 5.08
PMC1 20.23 17.90 22.56 4.67
PMC2 20.14 17.78 22.50 4.72
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The place you prefer for living is a place with...

Estimator reduction

...few immigrants ...some immigrants ...many immigrants mean

PMA1 8.65 8.66 10.40 9.24
PMA2 1.86 1.76 2.67 2.10
PMC1 13.50 11.26 19.04 14.60
PMC2 11.79 7.40 15.33 11.51

Table A4.5: Relative length reduction in % of the 95% confidence intervals of the proposed estimators
with respect to the multiplicity estimator.

Do you consider that immigrants have nothing,

little, something, quite a few or much in common with you?

Estimator reduction

Nothing Little Something Quite a few Much mean

PMA1 8.15 7.94 9.43 10.52 10.23 9.25
PMA2 -0.05 1.44 2.45 3.50 2.96 2.06
PMC1 20.09 11.98 13.98 13.52 10.79 14.07
PMC2 14.78 9.03 13.33 12.90 9.72 11.95

Table A4.6: Relative length reduction in % of the 95% confidence intervals of the proposed estimators
with respect to the multiplicity estimator.
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