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Summary

Multiple frame surveys were first introduced by Hartley (1962) as a device for reducing data collection
costs without affecting the accuracy of the results with respect to single frame surveys. In a multiple frame
survey, @ > 2 sampling frames are available for sampling. Although each of them may be incomplete, it
is assumed that, overall, they cover the entire target population. Then, independent samples are selected,
one from each frame, under a possibly different sampling design, and information is properly combined
to get estimates. Since its emergence, multiple frame sampling theory has experienced a noticeable
development and a number of estimators for the total of a continuous variable have been proposed. First
proposals were formulated in a dual frame context, i.e. for the case where two frames are available for
sampling. Hartley (1962) himself proposed the first dual frame estimator, which was improved by Lund
(1968) and Fuller and Burmeister (1972). Bankier (1986) and Kalton and Anderson (1986) and Skinner
(1991) proposed dual frame estimators based on new techniques. Skinner and Rao (1996) and Rao and
Wu (2010) applied likelihood methods to compute estimators that perform well in complex designs. More
recently, Ranalli et al. (2015) and Elkasabi et al. (2015) used calibration techniques to derive estimators
in the dual frame context.

In recent years, a number of works focusing on the estimation in cases with three or more sampling
frames has arisen. Lohr and Rao (2006) extended some of the estimators proposed so far to the multiple-
frame setting. Mecatti (2007) used a new approach based on the multiplicity of each unit (i.e. in the
number of frames the unit is included in) to propose an estimator which is easy to compute. Multiplicity
is also used by Rao and Wu (2010) to provide an extension of the pseudo empirical likelihood estimator to
the case of more than two frames. In 2011, Singh and Mecatti suggested a class of multiplicity estimators
that encompasses all the multiple frames estimators available in the literature by suitably specifying a

set of parameters.
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xviii SUMMARY

However, little attention has been devoted to the study of qualitative variables in a multiple frame
context. Qualitative variables are needed to properly represent the responses provided to multiple choice
questions, quite frequent in surveys. An important contribution of this thesis is related to the formulation
of estimators for the proportions of response variables with discrete outcomes. Estimators for proportions
of both multinomial and ordinal response variables have been proposed.

On the other hand, benefits of the multiple frame approach have increased their popularity among the
scientific community and now this methodology is frequently used when conducting surveys. Remarkable
is the use of dual frame surveys when carrying out telephone surveys. In some subject areas (e.g.,
electoral), face-to-face surveys have been completely ousted by telephone interviewing. Telephone surveys
present some drawbacks with regard to coverage, due to the absence of a telephone in some households
and the generalized use of mobile phones, which are sometimes replacing fixed (land) lines entirely. Dual
frame telephone surveys that combine Random-Digit-Dialing (RDD) landline telephone samples and cell
phone samples are a good solution to that issue since they reduce the noncoverage due to cell-only
households in RDD landline telephone surveys. Therefore, in that situations, software for analyzing data
coming from dual frame surveys would be very useful. No existing software covered dual frame estimation
procedures until Frames2, another important contribution of this thesis, was released. Frames2 is an R
package for point and interval estimation in a dual frame context which implements the main estimators
for dual frame data proposed so far.

This thesis is presented as a compendium of 4 publications in relation with the contents of the
thesis. 3 of the papers are already published in specialized journals and the fourth one is submitted for
reviewing. The full version of the papers is included in Appendices Al - A4, in the second part of the
thesis, at the end of it. Previous to the appendix section, a list of chapters that summarize the most
important aspects of the papers to facilitate their reading is presented. The first chapter constitutes an
introduction to the problem of the estimation in a multiple frame context and a comprehensive overview
of the existing approaches for estimating parameters from data coming from a multiple frame survey.
Then, the objectives this thesis pursues are enumerated. The methodology used and the most relevant
results obtained are presented in Chapters 3 and 4, respectively. Chapter 5 lists the conclusions derived
from the results obtained. Finally, Chapter 6 provides some notes on the current research related with

the topics addressed in the thesis that is being carried out at present.



Resumen

Las encuestas con marcos multiples fueron propuestas por Hartley (1962) como un mecanismo para la
reduccién de los costes de la recoleccion de datos que conseguia una precision en los resultados similar a la
obtenida con las encuestas de un tinico marco. En una encuesta con marcos miltiples se dispone de @ > 2
marcos muestrales. Aunque cada uno de ellos puede ser incompleto, se supone que, conjuntamente, cubren
la totalidad de la poblacién de interés. A continuacién, se selecciona independientemente una muestra de
cada marco considerando disenos muestrales que pueden diferir segiin el marco y la informacién recopilada
se combina de forma adecuada para obtener estimaciones. Desde su aparicién, la teoria de las encuestas
con marcos miultiples ha experimentado un importante desarrollo y, como consecuencia, se han formulado
numerosos estimadores para el total de una variable continua. Los primeros estimadores se plantearon
para el caso en que se dispone de dos marcos para el muestreo (caso conocido como dual frame o de marcos
duales). El mismo Hartley (1962) propuso el primer estimador para marcos duales, que fue mejorado
posteriormente por Lund (1968) y por Fuller y Burmeister (1972). Bankier (1986) y Kalton y Anderson
(1986) y Skinner (1991) sugirieron nuevos estimadores para marcos duales basados en un nuevo enfoque,
denominado “single frame”. Skinner y Rao (1996) y Rao y Wu (2010) utilizaron técnicas basadas en
la verosimilitud para obtener estimadores que se ha demostrado funcionan bien para disenos muestrales
complejos. M4s recientemente, Ranalli et al. (2015) y Elkasabi et al. (2015) consideraron métodos de
calibracién para calcular estimadores para marcos duales.

En los ultimos anos, han visto la luz un buen ntimero de trabajos de investigacion centrados en la
estimacion en el caso en que se dispone de tres o mas marcos muestrales. Lohr y Rao (2006) extendieron
algunos de los estimadores propuestos para marcos duales al caso de tres o mas marcos muestrales. Mecatti
(2007) consideré una nueva metodologia basada en la multiplicidad de las unidades de la muestra (es

decir, en el nimero de marcos en los que la unidad se incluye) para proponer un estimador que es muy
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xx RESUMEN

sencillo de calcular. Rao and Wu (2010) también consideraron un enfoque basado en la multiplicidad para
proponer una extensién al caso de més de dos marcos muestrales del estimador de pseudo verosimilitud
empirica que ellos mismos formularon. En 2011, Singh and Mecatti propusieron una clase de estimadores
de multiplicidad que englobaba como casos particulares a todos los estimadores para marcos miltiples
formulados hasta la fecha. Cada estimador puede obtenerse sin més que ajustar de forma adecuada los
valores de un conjunto de pardmetros.

Sin embargo, no se ha profundizado demasiado en el estudio de variables cuantitativas en encuestas
con marcos miltiples. Este tipo de variables es necesario, por ejemplo, para representar correctamente
las respuestas que los individuos muestreados proporcionan a preguntas de respuesta multiple. Una de
las contribuciones mds importantes de esta tesis es la formulacién de estimadores para la estimacién
de proporciones de categorias de variables de respuesta discreta. Se ha considerado tanto el caso en
que las posibles opciones de la variable respuesta no estan ordenadas como aquel otro en que si existe
un determinado orden entre dichas opciones, formulando estimadores adecuados para cada una de las
situaciones.

Por otro lado, los beneficios derivados del uso de encuestas con marcos multiples han hecho que su
popularidad se dispare entre la comunidad cientifica de manera que son muchas las instituciones, tanto
publicas como privadas, que se decantan por una metodologia basada en marcos multiples a la hora de
llevar a cabo sus encuestas. Especialmente llamativo es el uso de encuestas telefénicas que consideran dos
marcos muestrales. En algunas areas, las encuestas presenciales han sido completamente reemplazadas
por las telefénicas. Este el caso, por ejemplo, de las encuestas electorales. Las encuestas telefénicas
presentan ciertos inconvenientes relativos a la cobertura, debido a la ausencia de teléfono en algunos
hogares y al uso generalizado de teléfonos moviles, los cuales estan sustituyendo a los teléfonos fijos en
algunos hogares. Una buena solucién para este problema viene dada por las encuestas telefénicas con
dos marcos muestrales que combinan una muestra de teléfonos fijos y otra de teléfonos moéviles obtenidas
a través de un marcado automadtico aleatorio. Mediante esta solucién se reduce la falta de cobertura
que se obtendria si la encuesta se llevara a cabo tnicamente a través de teléfonos fijos producida por
aquellos hogares en los que solo se dispone de teléfono mévil. Por todo ello, en este tipo de situaciones, se
hace necesario algin software estadistico para el andlisis de datos provenientes de encuestas con marcos
duales. Frames2, otra de las contribuciones mas destacadas de esta tesis, es un paquete o libreria para

el programa estadistico de cédigo abierto R para la estimacién puntual y confidencial en encuestas con
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marcos duales. Este paquete implementa los principales estimadores para datos provenientes de marcos
duales propuestos hasta el momento.

Esta tesis se presenta como un compendio de 4 publicaciones relacionadas con los contenidos de
la propia tesis. 3 de los articulos ya se encuentran publicados en revistas especializadas y el cuarto
se encuentra sometido a un proceso de revision. La version integra de los articulos se incluye en los
Apéndices Al - A4, en la segunda parte de la tesis, al final de la misma. Antes de los apéndices, se
presentan varios capitulos que resumen los aspectos clave de los articulos para asi facilitar la lectura de
los mismos. El primer capitulo consituye una introduccién al problema de la estimacién en encuestas con
marcos multiples asi como una revisién de las alternativas existentes para la estimacion de parametros con
datos procedentes de este tipo de encuestas. A continuacién se enumeran los objetivos que se persiguen
con esta tesis. La metodologia que se ha seguido y los resultados mas importantes que se han obtenido
se muestran en los Capitulos 3 y 4, respectivamente. En el Capitulo 5 se listan las conclusiones més
relevantes que se derivan de los resultados. Por 1ltimo, en el Capitulo 6 se exponen brevemente cuéles

son los temas que estan siendo investigados actualmente en relacién con los contenidos de esta tesis.
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Chapter 1

Introduction

Classical sampling theory is based on the existence of a unique sampling frame that includes all the
units composing the target population. This is a very strong assumption which is rarely met in practice:
populations are constantly changing with new units entering and exiting the population every few time so
it is difficult to have an updated list of units from which to draw samples. In these cases, it is said that the
sampling frame is incomplete in the sense that it does not include all the units of the population. These
differences between the objective population and the sampling frame produce important coverage biases
and may affect results due to the non-representativeness of the samples selected from the incomplete

frame.

The multiple frame approach has arisen to overcome this issue. The main aim of a multiple frame
survey is to estimate the value of a population parameter from the data collected in a sample. To do
this, it is assumed that two or more frames are available for sampling and that, overall, they cover the
whole target population. So, although each sampling frame can be incomplete treated separately, it is
assumed that the union of all of them is complete in the sense that it contains each and every unit of
the population. This hypothesis is less restrictive than the one assumed by the classical sampling theory
since it is easier to fully reach a population if more than one frame is used. Furthermore, the frames
of a multiple frame setting are easier to maintain due to their reduced size in comparison with a single

complete frame.

Multiple frame surveys were first introduced by Hartley in 1962 as a device for reducing the costs



4 CHAPTER 1. INTRODUCTION

derived from data collection while still covering the whole target population. As an example, consider
a two frame survey where one of the frames is cheap to sampling from but has an incomplete coverage,
whereas the second one is more expensive to sample from but it covers more of the population. In that
situation, a multiple frame approach could take advantage of the sampling inexpensiveness of the first
frame and of the good coverage of the second to provide better results. Sampling costs depend on many
factors as the size of the sample or the mode of interview. In a multiple frame survey these settings can
be chosen differently for each frame depending on the peculiarities of each one, so that an appropriate
choice may lead to noticeable cost decreases. Other additional technical details, as the sampling design,
can also be set independently for each frame.

The use of multiple frames surveys is especially advisable when studying “hidden” or “hard-to-reach”
populations. These types of populations are generally named as “rare” populations because individuals
composing them present a characteristic which is not frequent in the general population. Although
authors have defined the rare populations in several ways, a widely accepted definition for the concept
of rare population is the one proposed by Lohr (2009a) who identifies a population as rare when the
number of individuals composing it is very small or, even being large, it represents only a small fraction
of the global population (usually 10% or less). People suffering from diseases (as AIDS or Alzheimer)
or homosexual people are good examples of rare populations. Due to the small representativeness of the
individuals of a rare population within the general population, a random sample drawn from this general
group will likely include few “rare” elements. In that case, a multiple frame approach may be considered
and additional frames containing a high rate of units of the rare population can be sampled in order to
increase the sampling size and improve the accuracy of the results. For example, for the population of
Alzheimer disease patients, besides sampling in a general sampling frame one could sample in alternative
frames as specialized clinics or homes for the elderly to reach a higher number of individuals belonging to
the target population. This same reasoning could be applied to elusive or mobile populations which can be
seen as a type of rare population due to the difficulties to locate (and therefore, to contact) the individuals
composing them. Lots of animal populations (insects, migratory animals, nocturnal behaviour birds,...)
are examples of elusive or mobile populations. Finally, a population can be rare both for representing
a small part of the global population and for being nomadic as, for example, the homeless people of a
particular city.

Multiple frame methodology encompasses all the approaches developed in order to use data coming
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Figure 1.1: Two frames with overlapping

for two or more sampling frames. However, the majority of the literature published so far focuses on the
dual frame approach, that is, on the case in which only two frames are available for sampling. The most
general situation in a dual frame context is the one depicted in Figure [[.I] in which the two sampling

frames present a certain degree of overlapping.

Here, the two frames (generically termed as frame A and frame B) originate three different disjoint
non-empty areas or domains: domain a, including population units that belong exclusively to frame
A; domain b, including population units that belong only to frame B and, finally, domain ab, including
population units that belong simultaneously to both frames. To give an example, let suppose a population
of phone users where two sampling frames can be clearly distinguished: the frame A would be, in this
case, the one consisting of the users of landline phones and the frame B would be composed of the users
of cell phones. We could differentiate, then, the following groups of people: landline-only users, cell-only

users and both landline and cell users, which will compose the domains a, b and ab, respectively.

Alternative situations may arise depending on the relative positions of the two frames. Figure [I.2]
depicts the case where frame B is totally included in frame A, that is, frame B is a subset of frame
A, which is assumed to be complete. In that case, the domain b is an empty set. This would be the
case, for example, in a survey where the population of interest is composed of the people facing gambling
problems where the frame A is a general population frame and the frame B is composed of the individuals
attending therapies to overcome gambling addiction. On the other hand, in figure [1.3]is shown the case
in which the two sampling frames coincide, so the only non-empty domain is ab. That kind of situations

arise when two different lists of individuals (maybe coming from different sources) of the same target
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Figure 1.2: Frame B is  Figure 1.3: Frame A and Figure 1.4: Frame A and frame B are disjoint.
included in frame A. frame B exactly match.

population are available from sampling. Finally, the situation in which ab is an empty domain and the
two frames do not share units is depicted in figure As an example, let suppose that a list of the male
individuals and a different one for the female individuals composing the population we are interested in
are available. This case can be seen as a special case of a stratified design where each frame represents
a stratum. Therefore, it could be analyzed using the customary tools of the stratified sampling and it is

not very relevant from a dual frame perspective.

1.1 The estimation problem in dual frame surveys

Without loss of generality, let consider the situation depicted in Figure [I[.I} where none of the domains
a, b or ab are empty. Let U be a finite population composed of N units labeled from 1 to N, U =
{1,...,k,..., N} and let note the number of units composing frame A and frame B as N4 and Np,
respectively. Similarly, the number of units included in domains a, b and ab are N,, Ny and Ny,
respectively. Let suppose that the parameter of interest is the population total of a continuous variable,
and let note that quantity by Y. Therefore Y = Z,ivzl Yk, with yi the value of the variable for the k —th
individual of the population. The disjointness of the domains allows us to rewrite the population total as
a sum of domain totals, Y =Y, + Y, +Y, = ZkN:‘ll Yk + Efcv:bl Yr + Zgil Y. To carry out the estimation
of the parameter, two random samples are independently drawn, one from each frame. Let denote the
sets of units included in the sample drawn from frame A and in the sample drawn from frame B by s4
and sp, respectively, and let suppose that the number of units selected in each one are n4 and ng. The
final set of units sampled can be computed, then, as s = s4 U sp with size n = ns + ng. Typically, the
sample s 4 includes both units from domain a and domain ab and the sample sp includes units belonging

to domain b and to domain ab too, as depicted in the Figure Sample s4 can be poststratified as
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Figure 1.5: Samples drawn from frames.

SA = Sq U sfb where s, and sfb are two sets of units of sizes n, and n(‘l“b that include the units of sz
belonging to domains a and ab, respectively. Similarly, s may be poststratified as sp = s, U s5 with s,

and sB the sets of units of sp, with sizes n, and n2, belonging to b and ab.

As indicated before, a different sampling design may be used in each frame, hence probabilities of
being selected in the final sample may differ for the population units, depending on the frame each one
belongs to. Let note by w,‘;‘ = P(k € sa) the first order inclusion probability for k — th unit of the frame
A, k=1,...,N4y. Therefore, ﬂ,‘:‘ indicates the probability of the k — th unit of the frame A to be selected
in the sample s4 and, consequently, in the final sample, s. Similarly, 77,? = P(k € sp) denotes the first
order inclusion probability for the k& — th unit of the frame B, k = 1,..., Ng. The design weight for
each unit is defined as the inverse of its first order inclusion probability, that is, d‘k4 =1/ 7r,‘€4 is the design
weight for the k& — th unit of the frame A and dkB = 1/7r,]€3 is the design weight for the k — th unit of the

frame B.

Using the values of the interest variable observed in the units selected in the sample s 4 it is possible to
compute the customary Horvitz-Thompson estimator of the population total for each of the two domains

composing the frame A in the following way:

Y, = Z dityron(a Z ity = Z di yrdk (ab) Z ity

kEsa kEsg kEsa k€sab

where d(a) and §(ab) are the indicator variables for domains a and ab so that d;(a) = 1 when the k — th

unit of the sample s4 belongs to domain a and 0 otherwise. Equally, d;(ab) = 1 whether unit & is included
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in domain ab and 0 otherwise.

Similarly, from the information collected in the sample sp we can compute the Horvitz-Thompson

estimator of the population total for domains b and ab as follows:

= > dPyede(d) = Y diu = diyebe(ab) = > diu

kEsp keEsy kE€sp ke%b

where, in this case, 5 (b) takes the value 1 when the k — th unit of the sample sp and 0 otherwise. On
the other hand, dx(ab) = 1 if the k — th unit of sg belongs to the overlap domain. It is important to
note that both Y and Y,§ are estimators of the population total in the domain ab but while the first is

computed from the information collected in sample s 4, the latter uses the information of sp.

One could estimate, then, the population total as the sum of the 4 domain estimates, that is Y =
Ya + YaAb + Ya’f + f’b. The main drawback of this estimator is that it is not an unbiased estimator of Y.
Actually,
EY) =BV, + Y4 +YE + V) = Vo4 Yap + Yap + Yy = Y + Yo,

so this estimator overestimates the real value of the parameter Y. The problem comes from the overlap

domain, where two different estimates are considered.

1.2 Different approaches for estimation in dual frame surveys

Units in the overlap domain ab can be selected in both samples s4 and spg, so the real probability of being
included in the final sample s of any unit belonging to the overlap domain is larger than the probability
of being included in s4 and also larger than the probability of being included in sg. In other words,
the true first order inclusion probability of the k& — th individual of ab is neither 7rk nor 7rk but larger.
Indeed, the omission of that fact is the cause of the overestimating issue exposed in the previous section.
Often, authors refer to this issue as the “multiplicity” or “duplicity issue” due to it is originated by the

disregarded appearance of the units in the overlap domain in both sampling frames.

There are several approaches to overcome this problem and to obtain adequate estimates in a dual

frame survey. The most used ones are the screening procedure and the dual and single frame approaches.



1.2. DIFFERENT APPROACHES FOR ESTIMATION IN DUAL FRAME SURVEYS 9
1.2.1 Screening approach

Screening techniques solve the problem of the overestimation in dual frame surveys just by removing the
intersection between frames. That is, they transform scenarios as the depicted in Figures and
[[.3] in a scenario similar to the shown Fn figure [[.4] To do this, they remove the units in the overlap
domain from one of the sampling frames removing, then, the overlap as well. As mentioned previously,
at this point, stratified estimators can be considered for estimating the parameter of interest from data
collected in the samples coming from each frame, which represents a stratum in this case.

The main drawback of this approach is the necessity of identifying the population units that are
included simultaneously in both sampling frames to properly remove them from one of the frames. In
most cases it is impossible to know beforehand the domain each population unit belongs to. Usually,
that information is only available for the sample units, which are assigned to the corresponding domain
once the needed information is collected during the interview. However, there are situations where the
screening process is feasible. Gonzdlez-Villalobos and Wallace (1996) presented an example of a screening
survey where both a land area frame and a list frame of farms were considered.

Benefits of the screening process have been questioned in literature. Indeed, Gonzélez-Villalobos
and Wallace (1996) themselves refer to the screening as “an operation that requires special attention
and resources”. On the other hand, Mecatti (2014) affirmed that screening operations can be resource-
consuming, error-prone, and essentially amount to missed opportunity to collect data from a willing
participant. Kennedy (2007) discussed the effects of screening in a dual frame phone survey, finding that
the screening techniques may increase the nonresponse error leading to different results depending on the
frame the repeated units are removed from.

Whatever the case, since any screening survey can be seen as a particular case of a stratified survey,

we are not discussing the topic in depth.

1.2.2 Dual frame approach

The dual frame approach suggests a convex combination of the two overlap estimates to obtain an
unbiased global estimator of the parameter of interest. That is, the population total in the common
domain, Yy, is estimated as f/ab = 9?{1’2 +(1- H)Ya%, where the weighting parameter 6 is between 0

and 1, § € [0,1]. When the value 0 is selected, Yo = f/a% so only the information regarding units of
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the overlap domain that has been collected from the units selected in the sample drawn from frame B is
used to estimate the population total in domain ab. Similarly, when 6 = 1, Yoy = Yaﬁ. Both situations
can be considered as particular cases of screening and, therefore, of stratification. For this reason, from
now on we are considering only cases where 6 € (0,1). Summarizing, the dual frame approach weights
the two estimates of the parameter of interest of the overlap domain to avoid overestimation issues. The

population total is estimated, then, through the estimator

Y:}}a+0?aAb+(170))>alg+Yba (11)
which is now clearly unbiased for Y.

Estimator l) can be rewritten as Y = > kes dpyr, where the weights df, are defined for the units in

the poststratified samples as follows:

d,? if k€ s,
Odﬁ if ke sfb

(1—0)d? ifkesh

dkB if ke sy

Unlike the screening, the dual frame approach can always be applied since it does not require any
previous or additional information but only the choice of the parameter 6. Along the years, authors have
proposed different procedures for selecting the value of 6, yielding to different estimators as it will be
shown in the subsequent section. These techniques encompass simple options that select a fixed value for

# and more complex approaches where 6 is determined to optimize, in some sense, the estimates.

1.2.3 Single frame approach

The idea underlying the single frame approach (Bankier (1986) and Kalton and Anderson (1986)) is to
adjust the inclusion probabilities (or, equivalently, the design weights) of the units of the overlap domain
to properly take into account the fact that they may be selected both in samples sy and sp. After
that, the units composing the two frames may be combined into a single dataset (hence the name of the
technique).

As mentioned before, a population unit belonging to the domain ab has the chance of being included
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in the sample s4 and in the sample sg too. So, the real first order inclusion probability for the k& — th
unit of the overlap domain is 7r;€4 + 7P, Then, new sets of adjusted weights can be defined for the units

of the poststratified samples as follows

it - di ifk e s, i = dB if k € sy
(1/d2 +1/dB)~t if k € s4 (1/d +1/dB)~t if k € sB
or, summarizing,
dﬁ ifk € s,
d, =< (1/df +1/dB)~" if k€ s4 UsB) (1.3)
dkB if k € sy

The main problem with the computation of the weights in (|1.3)) lies in the requirement of the knowledge
of the first order inclusion probabilities for the units composing the common domain both under the
sampling design used in frame A and the sampling design used in frame B, which is not always the case,

especially when complex sampling designs are considered.

1.3 Existing estimators in dual frame surveys

Since Hartley presented the dual frame methodology in 1962, a number of estimators have been formulated

to estimate parameters using data coming from two frames, both under dual and single frame approaches.

The simplest estimator is computed by selecting a predetermined value between 0 and 1 for the
weighting parameter 6 and then by substituting it in the expression . The resulting estimator is
often called “fixed weight estimator”. Different criteria can be considered for the choice of 8 based on
previous studies or on known information about the behavior of the interest variable in the overlap
domain. A value of 6 which usually provide good results (Brick et al. (2006)) is § = 1/2 and the

corresponding estimator in that case can be written as

YFW = Ya"’

YA+ YE+YV, =Y, + (V4 +YE)+ Y, (1.4)

N | =

1
2

N | =

Hartley (1962) generalized the idea of the fixed weight estimator, proposing a class of estimators for
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a simple random sampling design in each frame in the form
Yy =Y, +0V4 +(1-0)YE +v, (1.5)

with 6 € (0,1). Hartley himself computed in 1974 the optimal value of # in the sense that the asymptotic

variance of the estimator is minimized. That optimal value can be written as follows

V(VE) + Cov(Yy, YE) — Cov(Y,, Vi)
V(YL +V(YE)

Oy =

where V() and Cov() represent the population variance of an estimator and the population covariance
between two estimators, respectively. Usually, these population variances and covariances are unknown
and have to be estimated from the information available in samples s 4 and sg, resulting in the following

estimator of 0g:

5, VOR) + Cou(¥y, i) — Cou(¥a, ¥ih)
V(Y3 + V(YR

Since Ay is consistent for 0, Hartley estimator is asymptotically optimal among all estimators of the
form Ya + HYaAb +(1- 9))7;?; + SA/b. However, this estimator presents some important drawbacks. First,
the fact that 8y depends on values of the main variable makes the estimator internally inconsistent in
the sense that the sum of the estimates in the subsets conforming a partition of the population does not
coincide with the estimation for the entire population. For example, let suppose that Y; estimates the
men in the population, Y estimates the women in the population and Y3 estimates the total number
of people in the population. Then, it would be desirable that Vi + Y, = Y;5. But this is only true
when the estimates are computed using an internally consistent estimator, which is not the case of the
Hartley estimator. Furthermore, as indicated by Lohr (2009b), when the absolute value of @(ffb, vE)

or @)(Ya, Y4) is large, the values of 0 may fall outside the interval (0,1).

Lund (1968) improved Hartley estimator by considering the random division of the frame sample sizes

among domains actually achieved in the sample. The estimator he proposed is given by

T
>+ Y, (1.6)

N N N N,
Yo =Ya+ (GA”Z?I; +(1- H)BnaBb)
nA np Nap

where nfb and nfb represent the number of units of the samples s4 and sg, respectively, belonging to
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domain ab. On the other hand, Yab = Zkesg‘b Yk + Zkesfb Yr and ngp = nfb + naBb. Again, 6 is a constant
in the interval (0,1). As it was the case with the Hartley estimator, computation of the optimum value of
f that minimizes the asymptotic variance of the Lund estimator involves unknown population quantities,

so that it has to be estimated from the information collected in the sample. Lund suggested the estimator

- ((Nang  Npnp\ yw\  (Ye  NpmVYu Y
0L = S — — g =
na np Nab na np Nap np

with n, and n, the number of sample units belonging to domain a and to domain b, respectively. 6r,

depends on the values of the main variable, making the estimator internally inconsistent. It can be proved
that the variance of the Lund estimator is always less or equal than the variance of the Hartley estimator,
irrespective of the value of 6.

Fuller and Burmeister (1972) introduced information about the estimation of the unknown overlap
domain size, Ngp, to further improve the Hartley estimator. The estimator they proposed can be written
as

Vip = Yo+ BiVi + (1= B)YVE + YV, + Bo(N4 — NB), (1.7)

where N a4 = D ke sA df and N B = Zkesfb dB are the estimates of the overlap domain size computed

from the information collected in s4 and in spg, respectively. The authors also shown that

- —1

/BlFB _ V(f/a% - Ya]g) COU(YCL’% - Yalz7Nz;4b - Nﬁ)
/BQFB COU(}}a% - i/aBg’ Nﬁ) - Nﬁ) V(N;}) - Nﬁ))

COU(Y/ﬂ + Y/b + Ya%’ Yal?) - }AfaBl;)

Cov(Yy + Yy + YE NA — NEB)

are the optimal values for 8y and (> in the sense of minimization the variance of the estimator. In
practice, values f1,, and (3,, are generally unknown and have to be estimated from sample data,
resulting in different values depending on the response variable. Therefore, this estimator is also internally
inconsistent.

The Hartley and the Lund estimators can be seen as particular cases of the Fuller and Burmeister
estimator, presenting the latter the smallest asymptotic variance of all.

The estimators described so far were proposed following a dual frame approach. Bankier (1986) and
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Kalton and Anderson (1986) introduced the single frame methodology as an alternative to the dual frame
approach. They suggested to group the units of the two samples in a single dataset and use the modified

weights defined in (|1.3]) to propose the estimator

Yor = Y unde+ Y ykdi =Y yrds (1.8)

k€sa k€sp kes

This estimator is easy to compute and has the advantage of using the same set of weights regardless of
the main variable considered. On the other hand, it presents the inconvenient of requiring the knowledge
of the inclusion probabilities of the units belonging to the intersection domain under the sampling designs
considered in both frames and not only under the one used in the frame the unit has been sampled from.
This may be a challenging deal when the samples selected are not self-weighted.

The Bankier-Kalton-Anderson estimator (often called single frame estimator) can be improved when
the frame sizes N4 and Np are known. In this case, several procedures can be used to incorporate that
auxiliary information to the estimation process. Bankier (1986) calibrated the single frame estimator
to the frames sizes using an iterative algorithm based on the raking ratio estimation. Rao and Skinner
(1996) proved that the raking procedure converges and provided the explicit form of the estimator
Na— Ngghe o Np = Nyghe o Ngpheo

- Y, - Yy, + —2—VYaus, (1.9)
N, Ny Naps

where Y5 = ZkEs;‘b yrdy + Zkesfb Yrdi, Naps = Zkegfb di + Zk@ﬁ di, N, = D kes, A, Ny =

D kes, dB and N7¢ke is the smallest root of the quadratic equation Nups2?—(Naps(Na+Ng)+NusNys)z+

Ysrrr =

NabSNANB = 0, with NaS = ZkEsa Czk and NbS = Zkesb de
Alternatively, regression estimation can be considered for adjusting the frame sizes N4 and Ng. Lohr

and Rao (2000) proposed the following estimator

Ysrreg = Ysr + B:s‘(NA — Nas, Ng — Ngg) (1.10)

where B/S = —@)(NAs/V(NAs),NBs/V(Ngs),ySF), with NAS = ZkGSA Jk and NBS = ZkesB Jk.
On the other hand, V(N4g) and V(Npg) are the estimated variances for the estimators N g and Npg,
respectively.

Skinner and Rao (1996) used a pseudo maximum likelihood approach to extend the Fuller and Burmeis-
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ter estimator , which assumes a simple random sampling in each frame, to the case of complex sam-

pling designs. Their results were based on the paper of Skinner (1991), who shown that the Fuller and

Burmeister estimator can be derived following maximum likelihood principles. As a result, they proposed
the following estimator

Vg, = YA~ ZifﬂML(@)f/a LN ZY;ZML(H)%

N, Ny

NaME(6) - .
S Vi + (1= 0V
ab - ab

(1.11)

where NEME(9) is the smallest of the roots of quadratic equation [0/Np +(1—0)/NaJz? —[1+0N4 /N +

(1 —0)NE /Nalz +0NA + (1 —0)NE =0 and 6 € (0,1). It is also shown that the following value for 6

N,NpV(NE)
NoNpV(NE) + NyNAV (NA)

Opmr =

minimizes the variance of ?p M- Values N,, N, and the variances involved in the computation of Opp;r,
are usually unknown and must be estimated from the sample data yielding to the estimated value Oparr
which is substituted in . The authors suggested the following approximation for 8pp,r, based only
on the variances of the estimators of the overlap domain:

V(NZ)
VNG + V(NG

¢PJV1L =

which is easier to compute. In order to calculate the parameter 0pysy, it is required all the three domains
a, b or ab to be nonempty and variances V(N 4) and V(N B) to be positive. Otherwise, serious difficulties
may arise and alternative approaches have to be considered. This is the situation, for example, when the
sampling frames are placed as shown in Figure or in Figure In such cases, Lohr and Rao (2006)

proposed calculate the value of 6 using average design effects for a fixed subset of important variables.

Oparrr does not depends on values of the response variable which assures the internal consistency of
the estimator. On the other hand, although the pseudo maximum likelihood may not be optimal under
complex sampling designs, Skinner and Rao (1996) and Lohr and Rao (2006) found that it has small

mean squared error and works well in many situations.

Usually, additional information about auxiliary variables is collected when conducting surveys. This
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information may be taken into account in the estimation process resulting in a considerable improvement
of the accuracy of the estimates when there is a significant relationship between the set of auxiliary and
the main variables. In a dual frame context, the most general situation is when a totally different set of
auxiliary variables is considered in each frame. In that case, one may note as X4 = (X, ..., X;‘) the set
of the p variables composing the auxiliary information in frame A, so that the vector x‘,? = (x?17 - x?p)
contains the values of the variables X for the k —th member of the frame A. Similarly, in frame B a set
of r additional variables is considered and we note it as X? = (X%, ..., X5), being xP = (z,...,x[) the
combination of values of X? for the [ — th individual belonging to frame B. When sampling, together
with the main variable, the corresponding auxiliary variables are observed. So, for the k — th individual

interviewed in s4, values (yk,xfl, ., X ) are collected and, analogously values of (yl,xl’f y ey XD) are
» r

noted for the [-th individual of spg.

In 2010, Rao and Wu formulated a pseudo empirical likelihood estimator for the mean of a quantitative

variable which is able to deal with auxiliary information. The estimator is in the form

Nab

ab<-A
Yo+ (1—

“y 49

VB by (1.12)

~ Ny 2
YpEL = Wb

2\2

where, in this case, Y, = Sy, Partins Vb = =D kesh i Y3 = = Dress, Dapk¥i and Y = Y hes, Dok

’

The four sets of probability measures p, = (pa1, ...,pana) Py = (P4, ...,pabna ) .pE =®E,,. "ﬁfbnfb)

and py = (Pp1, - ﬁbnb)/ are such that maximize the following pseudo empirical likelihood function

b
l(paapabvpabvpb E d, aklog(par) + 9 Na E d vil0g pabk)
k@a kESQb

N, ~ N, -
(1= 0) =7 Y dilog(pi) + 57 Y doklog(per)

kesB kEsyp

subject to the constraints

Z Pak = Z Py, = Z Dok = Z Pk = 1. (1.13)

kE€s, kesa kesa keEsy

The weights dux = dj/ D ks, di, Jfbk =d;/ Zkesfb di;, dfbk =d;/ Ekesfb di} and dy, = df}/ Dkes, 4

are the normalized weights by domains. Again, # is a weighting parameter between 0 and 1.
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The authors also impose the additional constraint

> Piwvk = > Phwk (1.14)

kEsfb k:Esfb

to make sure that the two estimates for the mean of the variable in the common domain coincide, granting
consistency to the estimator. They found that the optimal value of # that minimizes the asymptotic

variance of the estimator is given by

which generally depends on the values of the main variable leading to internal inconsistencies. As an

alternative, they propose the use of (|1.3)) as weighting parameter.

Note that to compute the estimator ([1.12)) it is assumed that frame sizes, N4 and Npg, and overlap
domain size, Ngp, are known. However, in their paper, Rao and Wu indicate how to estimate these values

when one or several of then are not known.

The pseudo empirical likelihood estimator can incorporate auxiliary population information into in-
ference through additional constraints. So, when the vector X4 of population totals of the variables X4

is known, the constraint

Na Nab XA
N Zpakxf +0 N Z Doy X = N

k€sq kesd,
is considered together with constraints ([1.13)) and (1.14)) when maximizing the pseudo empirical likelihood

function. A similar constraint can be posed in the case where X2, the vector of population totals of X7,

is known.

Recently, Ranalli et al. (2015) extended the calibration techniques originally proposed by Deville and
Sarndal (1992) for an only frame to the case of two sampling frames. As a result, they suggested two
different model calibrated estimators: one constructed under the dual frame approach and another one

formulated following the single frame methodology.

Under the assumption of frame sizes, N4 and Npg, and overlap domain size, Ny, known, the dual

frame calibration estimator can be written as
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Yearpr = Z WRYk + Z Wiy = szyk, (1.15)

k€sa kEsp kEs
where the weights wj are such that minimize ), G(wy,dy;), with G(-,-) a particular distance measure,

subject to

> wp =N, > wp =0Na > wp=(1-0)Na S wp=N, (1.16)
k€sa kess, kesB k€sy
being 6 € (0, 1) fixed. The authors suggest the choice of values for 6 that do not depend on the values of
the main variable, as is the case of .

The calibration process induces a different final value for the weights, which depends on both the
distance measure G(-,-) used and on the benchmark constraints applied. On the other hand, given a
value for 6, the final set of weights does not depend on the values of the variables of interest and can
therefore be used for all variables.

As with the estimator , the dual frame calibration estimator is able to incorporate information
about auxiliary variables to the estimation process. Supposing that X4, the vector of population totals
for the set of variables X4 observed for the units of frame A, is known, one should consider, in addition

to (|1.16]), the calibration constraint

Sowpxit+ D wpxit + Y wixit = XA (1.17)

k€sa kesh kesB,

Note that formulation of requires the knowledge of values of x,‘? for the units of s5. Although
these units are included in the sample drawn from frame B they also form part of the frame A (indeed,
they belong to both frames, since they are located in the overlap domain ab). A constraint similar to
is formulated when the population totals about auxiliary variables of the frame B are available.

In the context of N4, Ng and N, known, the second calibration estimator developed by Ranalli et.

al (2015), often referred as single frame calibration estimator, is given by the following expression:

Yoarsy = Z WYk + Z WYk = Z?f)kym (1.18)

kEsa kEsp keEs

where, in this case, weights w;, are such that minimize G(1y,, czk), being again G(-, -) a particular distance
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measure, subject to the following constraints:

> g = N, >+ Y ik = Na > i =N, (1.19)

ke€sa kesh, kesB, kesy,

If the vector of population totals X4 of the auxiliary variables X4 observed in the frame A is known,
then a constraint similar to is also considered, but replacing w; by wy. The same comment is
applicable if the vector X? is known.

Both estimators present quite a few similarities, mainly due to they have been constructed following
a similar procedure. However, they also show some differences. The most noticeable one lies in the use of
weights dj, as starting weights for the calibration used by the dual frame estimator instead of the weights

dy, used by the single frame one.

The two calibration estimators have been defined assuming the knowledge of the frame sizes and the
overlap domain size, which can be quite restrictive in some cases. Indeed, unlike the frame sizes, which
are usually known when conducting a dual frame survey, common domain size is not always available.
The authors also indicate the modifications that must be carried out in the set of constraints and
to encompass this situation. They also noticed that some of the estimators exposed so far, as
or , can be seen as special cases of calibration estimators considering appropriate combinations of

distance measures and sets of constraints.

Elkasabi et al. (2015) also used a calibration approach to formulate the so called joint calibration

estimator, which may be expressed as

Yiop = Y wiys+ Y, wiye = Y wiyk, (1.20)

k€sa ke€sp keEs

with weights w} minimizing G(wf, di), a specific distance measure with respect to original design weights

subject to the constraints

> wp=N > wi=N, S wp=N, (1.21)

kEs k€Esq keEsy

Again, the population size N and the sizes of domains a and b are supposed to be known. This is

equivalent to know the frame sizes N4 and Np and the overlap domain size N,,. The authors provide
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the explicit form for the weights w} when the linear distance is considered.

If, additionally, the vector X4 of population totals of the variables X4 is known, an extra constraint,
similar to where weights w;, are replaced by wy;, is considered together with when searching
the new set of weights. The same argument applies when X? is known.

The joint calibration estimator is asymptotically design unbiased conditional on the strong relationship

between the estimation variable and the auxiliary variables employed in the calibration.

1.4 Variance estimation in dual frame surveys

The estimation of the variance of estimators presented in the previous section is not always straightfor-
ward. For the majority of the estimators internally consistent, the estimation of the variance may be
carried out from the independence of the samples s4 and sp. This is the case of estimators (with a
fixed value of 9) or . In these situations, the estimated variance can be obtained as the sum of the
estimated variances of the estimators for the two samples. Thus, estimated variance of estimator
may be expressed as

VY)=V (Y, + 0V )+ V(1 -0)YE +Y) (1.22)

a

The two estimated variances composing the sum may be obtained using the sampling design, so V(Y)

can be easily computed. Likewise, variance of (L.8]) can be written as

V(Yop) =V (Z ykdk> +V (Z ykdk> (1.23)

k€sa kesp

Nevertheless, this reasoning cannot be followed to estimate the variance of the pseudo maximum
likelihood estimator and of the internally inconsistent estimators (, , and )
The computation of all these estimators involves the calculation of a weighting parameter that depends
directly on the values of the study variable or on estimated variances or covariances from the frames.

This generates an additional variability that must be captured when estimating the variance. A similar

comment is applied to the calibration estimators (1.15]), (1.18]) and (1.20) (and, therefore, for (1.9) and

(1.12))), since an extra variability that should be taken into account in the variance estimation is produced
when calibrating weights to population quantities. Each author addresses this issue by suggesting a

specific variance estimator for the estimator they propose, which leads to difficulties when comparing



1.4. VARIANCE ESTIMATION IN DUAL FRAME SURVEYS 21

estimators.

In that cases, alternative techniques as Taylor linearization, jackknife or bootstrap have been proposed
to estimate the variance of the estimators in a unified way. Skinner and Rao (1996) used a method based
on the Taylor linearization to estimate the variance of the estimator . Lohr and Rao (2000) discussed
that procedure in the more general situation in which the parameter can be written as a function, let say
g, of the population means in the two frames. In that context, the linearization variance estimator of a

generic estimated parameter, 7, is defined as
Viin () = g™ 549" + g7 574", (1.24)

being g# and ¢g” the vectors of first partial derivatives of ¢ in frame A and B, respectively. On the other
hand, S and SZ are the estimated covariance matrices of the population totals estimated from frame

A and B.

It is shown that, under certain regularity conditions, the linearization variance estimator is consistent
but it presents the important drawback that derivatives should be calculated separately for each different

parameter.

Alternatively, one can consider jackknife techniques, originally proposed by Quenouille (1949, 1956)
(see Wolter (2007) for a detailed description of this method in survey sampling) and extended to dual
frame surveys by Lohr and Rao (2000), which can be used to estimate variances irrespective of the type

of estimator allowing us to compare estimated efficiency for different estimators.

For a non stratified design in each frame, the jackknife estimator of the variance for any of the

estimators described, generically denoted by 7, is given by

Vs (i) = "2 7 @A) -0+ A S 0PG) - e (1.25)

with 74 (i) the value of estimator 7 after dropping unit i from s4 and 7 the mean of values 74 (7).
Similarly, one can define 72 (j) and 7%.

Jackknife may present an important bias when designs are without replacement. One could, then,
incorporate an approximate finite-population correction to estimation to achieve unbiasedness. For exam-

ple, assuming that a finite-population correction is needed in frame A, a modified jackknife estimator of
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variance, Vfack (1)), can be calculated by replacing 74 (i) in with 74* (i) = e + 1 — 7a (72 (i) — 1),
where Tq =Y., 7 /na.

Consider now a stratified design in each frame, where frame A is divided into H strata and frame B
is divided into L strata. From stratum h of frame A, a sample of n 45, units from the N 45, population
units in the stratum is drawn. Similarly, in stratum [ of frame B, one selects np; units from the Np;

composing the stratum. Jackknife estimator of the variance can be defined, then, as follows

H L
Vyacr(@) = 3 241§~ (44 (i) — 7 2+Z”Bl SR -T2, (126)

n
h=1 Ah 1€ES AR 1€SB]

where 74(hi) is the value taken by 7 after dropping unit i of stratum h from sample s4;, and 74" is

the mean of values 7 (hi). $Z(lj) and 75! can be defined in a similar way. Again, one can include an
approximate finite-population correction in any stratum needing it. In case of a non stratified design
in one frame and a stratified design in the other one, previous methods can be combined to obtain the

corresponding jackknife estimator of the variance.

Stratified cluster sampling is a very common design in practice. The jackknife variance estimator
when a stratified sample of clusters is selected is now illustrated. Suppose that frame A has H strata
and stratum h has N 45 observation units and N Ap primary sampling units (clusters), of which 724, are
sampled. Frame B has L strata, and stratum [ has Np; observation units and N BhL primary sampling

units, of which npg; are sampled.

To define the jackknife estimator of the variance, let 74(hj) be the estimator of the same form as
71 when the observations of sample primary sampling unit j of stratum h from sample in frame A are
omitted. Similarly, 772 (k) is of the same form as 7 when the observations of sample primary sampling
unit k of stratum [ from sample in frame B are omitted. The jackknife variance estimator is then given

by
. o T HAR -1, )2 g — ~B 51
Vsacri) = S A= LSRGy iy SO TEL SN gy gt (L)

n g
h=1 A T =1 kEsp

where 74" is the mean of values 74 (hj) and 72! is the mean of values 77 (k).
Lohr (2007) proposed two bootstrap variance estimators for dual frame surveys assuming that any
generic estimator 77 may be expressed through a function, let say h, of the design weights for the two

frames. The first variance estimator suggested is called separate bootstrap estimator and it is similar
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in form to the jackknife variance estimator (1.25)), since the bootstrap is carried out separately in each

frame. The separate bootstrap estimator can be defined as

By

Vioors (1) = = S_(40) = ) + 7= S0P ) = ), (1.28)

b=1

where B; and 74*(b) are, respectively, the number of bootstrap iterations in frame A and the bootstrap

estimator of 7 obtained by substituting the original design weights for the bootstrap weights for iteration

b only in frame A. By and /P*(b) are defined similarly for frame B. The number of bootstrap iterations

in the frames, B; and Bs, may differ and they are determined beforehand by the investigator. In that

sense, the bootstrap procedure is more flexible than the jackknife. Another relevant advantage of the

bootstrap method compared to the jackknife is than it can be applied to nonsmooth functions (as the
median).

To construct the second estimator, denominated combined bootstrap estimator, the resampling is

carried out jointly for the whole sample of observations. As a result, the following estimator is formulated:

B
Voot (1) = 7 D07 (1) — )*, (129
b=1

begin, in this case, B the number of resamples drawn and 7*(b) the estimator of  computed by replacing
the original design weights for the bootstrap weights for iteration b in both frames.

The three variance estimation procedures (Taylor linearization, jackknife and bootstrap) are easy
to apply in practice and they may be extended to the case of three or more frames in a simple way.
Nonetheless, bootstrap and, especially, jackknife, require a computation effort that might be heavy even

for the nowadays advanced computers.

1.5 Software for estimation in dual frame surveys

Several software packages have been developed to facilitate the analysis of complex survey data and
implement some of these estimators as SAS, SPSS, Systat, Stata, SUDAAN or PCCarp. The repository
CRAN contains several R packages that include these design-based methods typically used in survey

methodology to treat samples selected from one sampling frame (e.g. survey (Lumley, 2014), sampling



24 CHAPTER 1. INTRODUCTION

(Tille and Matei, 2012), laeken (Alfons et al., 2014) or TeachingSampling (Gutiérrez Rojas, 2014) among
others). Templ (2014) performs a detailed list of packages that includes methods to analyse complex
surveys.

However, standard software packages for complex surveys can not be used directly when the sample
is obtained from a dual frame survey because the classical design-based estimators are severely biased
and there is a underestimation of standard errors. Weighted analyses with standard statistical software,
with certain modified weights, can yield correct point estimates of population parameters but still yield
incorrect results for estimated standard errors. As exposed in Section[1.3] an important number of authors
have developed methods for estimating population means and totals from dual frame surveys but most
of these methods require ad-hoc software for their implementation. Unfortunately, there is no software

incorporating these estimation procedures for handling dual frame surveys.

1.6 Estimation in three or more frames

Although the majority of the estimators proposed in multiple frames were defined under a dual frame
context, for some time now several estimators for the case of three or more sampling frames have been
formulated in response to emerging needs in sampling. Indeed, it is clear that the internet has become in a
very important data source that offers inexpensive ways to collect information. Couper (2000) analyzes the
issues and challenges related with web surveys concluding that this kind of surveys already offer enormous
potential for survey researchers which is likely only to improve with time. Within multiple frame context,
Lohr (2010) points that web surveys will play a very important role in the future development of multiple
frame surveys. So, in the near future it is very likely that dual frame surveys consisting of a cell and a
landline frame evolve to multiple frame surveys incorporating a third frame of web users, as represented
in Figure [T.6

As it will be shown, while some of the estimators proposed for a multiple frame setting are the
extension of their counterparts in the dual frame context, others have been developed using specific
techniques of estimation for three or more sampling frames.

Working in a multiple frame context implies an increase in the complexity of the notation. So, let
suppose that A;,..., Aq, ..., Ag is a collection of Q) > 3 overlapping frames of sizes Ny,..., Ng, ..., Ng.

As in the dual frame context, all of them can be incomplete but it is assumed that overall they cover the
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Figure 1.6: A three frame setting composed of a frame of landline users, a frame of mobile phone users
and a frame of web users.

entire target population. Let the index sets K be the subsets of the range of the frame index ¢ = 1,...,Q.
For every index set K C {1,...,q,...,Q} a domain is defined as the set Dx = (Ngex)Aq) ((Nggx AY),;

where ¢ denotes the complementary of a set.

Our aim is, again, to estimate Y, the total of a quantitative variable, which may be expressed as
Y = 22\;1 Yk, being yi the value observed for the k£ — th individual of the population. The total ¥ may

be rewritten as

Q
y=3"%" i_lz (1.30)

q=1keU,
where my, indicates the number of frames the k — th unit belongs to, i.e. the multiplicity of the k — th

unit.

Let s, be a sample drawn from frame A, under a particular sampling design dg, independently for
¢=1,...,Q, and let 7{ and 7}, be the first and second order inclusion probabilities under the sampling
design, respectively. Let define df = 1/} as the sampling weight considered in frame ¢. Let suppose that
ng is the size of sample s, and that s = U;s,. When no confusion is possible and for ease of notation, we

consider 7 = 7}, mp = ¢, and d = dj for all sample units %, such that k, € s,.

Lohr (2006) formulated the multiple frame extension of some of the estimators originally proposed
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for the dual frame case, as or . As was the case for two frames, the optimal versions of these
estimators are asymptotically efficient but they are not internally consistent since they use a different
set of weights for each response variable considered. Moreover, they are often unstable in small or
moderate samples with more than two frames because the optimal estimated parameters involved in the
computation of the estimators are functions of large estimated covariances matrices. They also followed
the so called single frame approach used by Kalton and Anderson (1986) to propose a single frame

estimator in a multiple frame context. This estimator is in the form:

Vica=> yrdi? (1.31)
keEs

with df4 = ﬁ—lk, where 7p = >/, (g )
To compute this estimator it is necessary to know not only the number of frames each unit belongs
to but the specific frames the unit is included in. This can be an important drawback specially if

misclassification issues are present. The authors also proposed the following pseudo-maximum likelihood

estimator for the multiple frame context:

Veur = ZykdkPML(Q) (1.32)
kes

where the weights dfML(q) can be defined as
Niox(K)

dPML —d o
M (g) = di(q) f(g) K%E:K S o FONRU)

with f(q) = m%, being def fy (q) the design effect for the variable Y in the ¢-th frame. Values
Nk (q) can be computed as N (q) = > kes, W (@)0k(K), with 6 (K) the indicator variable for domain K
that takes the value 1 whether k — th individual belongs to domain K and the value 0 otherwise. The

estimated domain sizes Nk are the solution of a system of non linear equations.

The pseudo maximum likelihood is consistent and usually works well in practical situations but it is
complex to compute for a general sampling design, since numerical procedures are required to obtain the

values Ng.

Mecatti (2007) also considered a single frame approach to propose the following estimator
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Yy = Zykd%a (1.33)
kes

with d,ICV[ = %. The previous estimator, often called single frame multiplicity estimator, only requires
k

the knowledge of the multiplicity of each unit, i.e. the number of frames the unit is included in, no

matter which are these frames. This estimator can be adjusted using a raking ratio approach to get a

single frame raking ratio multiplicity estimator where a new set of weights, resulting from an iterative

procedure, is utilized.

In 2011, Singh and Mecatti proposed a composite multiplicity estimator, which generalizes the single

frame multiplicity estimator. This estimator can be written as

You = Zykdch (1.34)
keEs
where
JCM _ Apdy + (1 — )\k)df“‘
k o
with

2gron(t = T/mi(q))mi(q) (1 — mi(d)

\ ( )
k= T2 7
S ol — =B = B (01— ()

Let suppose now that information about a set of auxiliary variables is available. Let X7 = (X9, X492 ..

q _ (.91 g2 qpq\’
= (a2l )

be a set of p, auxiliary variables observed in the ¢ — th frame, so the vector x
contains the values of the variables X9 for the k-th individual of the frame ¢. Auxiliary variables may
differ in each frame, i.e. X9 # X", q,r =1,...,Q,q # r. For the sample coming from frame ¢, the values

of the variables (yj,x}) are observed.

Rao and Wu (2010) followed a single frame multiplicity based approach to extend their pseudo em-
pirical likelihood estimator for the mean of a variable to the multiple frame setting. This estimator can

be computed as

YppL = Z Yrpk(q) (1.35)
kes

., XPa)’
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with pg(¢) maximizing the likelihood function

Z(?:l Nq M
lpeL(P1,---,PQ) = W de log(pr(q))
k€s 'k Les

subject to

ZPk(CI) =1

kes

> prlg)xk =X

kes
being X = (X' X2 ..., XP )/ the vector of the population means of variables X4, which are supposed to
be the same in all frames.
The calibration techniques proposed by Ranalli et al. (2015) for the dual frame case, may be easily
extended to the multiple frame context. A model calibrated estimator for the case of more than two

sampling frames can be defined as

YCAL = ZykdkcAL (136)
kes
where d{4L are such that minimize
> G (gt dY)
kes
subject to

D A (A) = Ny, q=1,..,Q

kes

kes

where X9 = (X491, X% .. ,X‘U’Q)/ is the vector of population totals for the variables X?.

The calibration estimator proposed by Elkasabi et al. (2015) may be also extended to a multiple

frame setting in an easy way. The multiple frame version of the joint calibration estimator has the form

Yicp = ZykdiCE (1.37)
kes

with d{°F = dj,(1 4+ \'x;,) and
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’

(e (o)

keU kes kes

To compute this estimator, the same set of auxiliary variables X = (X1, X2, ..., Xp) is assumed to be

known in all frames.
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Chapter 2

Objectives

As evidenced in the previous chapter, the multiple frame sampling theory has experienced a substantial
development since its inception in the second half of the twentieth century. Nevertheless, there are still
some aspects that require additional attention which motivated the realization of this thesis. The general
purpose of the thesis is to further investigate some topics related with multiple frame surveys that have
been sparsely addressed so far. This global purpose will be concretized along this chapter through the

definition of specific objectives.

In the literature of multiple frames it is possible to find several simulation studies to compare the
different estimation methods exposed in Section in terms of bias and variance (see e.g. Lohr and
Rao (2006), Rao and Wu (2010), Ranalli et al. (2015)). However, in very few cases the estimators were
applied simultaneously to data coming from a real survey. On the other hand, in surveys it is frequent
to find questions where respondents must select one in a series of options, specially in the cases where
the survey focuses in public opinion, health or marketing topics. In these situations, the interest lies in
estimating the proportions of respondents selecting each possible option. The first aim of this thesis is to
apply the estimation methods described so far to the estimation of proportions from data coming from a

real dual frame survey, highlighting the issues that can arise and presenting a way to deal with them.

Dual frame surveys are widely used both by statistical agencies and private companies due to their
amply proven benefits. One of the main reasons of the recent rise of the popularity of dual frame surveys

is the steady increase in the use of telephone surveys, which have replaced all other data collection
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methods (the majority of which were face-to-face interviews). In some subject areas (e.g., electoral),
face-to-face surveys have been completely ousted by telephone interviewing. Telephone surveys present
some drawbacks with regard to coverage, due to the absence of a telephone in some households and the
generalized use of mobile phones, which are sometimes replacing fixed (land) lines entirely. Dual frame
telephone surveys that combine Random-Digit-Dialing (RDD) landline telephone samples and cell phone
samples are a good solution to that issue since they reduce the noncoverage due to cell-only households
in RDD landline telephone surveys. Nevertheless, and as noted in Section there is no specialized
software for analysing data coming from a dual frame survey. This thesis aims the creation of some
easy-to-use software to handle dual frame data.

All the estimators described in Section [I.3] were originally proposed to estimate the total or the mean
of a continuous variable. Although they may also be used to estimate proportions when the main variable
has discrete outcomes, they may provide inconsistent estimates, since estimations over all categories may
do not add up to 1, which is desirable in that situations. Therefore, more adequate approaches are
required to provide appropriate results. The third objective of this thesis is to propose new estimation

techniques to estimate proportions for qualitative response variables.



Chapter 3

Methodology

The breadth of the objectives this thesis pursues makes the use of a variety of techniques to fulfill them.

To reach the first of the objectives, a real phone dual frame survey (considering a frame of landline users
and another frame of cell phone users) focused on the opinions of the population regarding immigration in
the region of Andalusia (in Spain) has been analyzed. At this point, a first issue related with the sample
size allocation arose. Traditionally, in one frame surveys where the sampling frame is composed of landline
users, a list including all the individuals of the population is available and, therefore, classical sampling
designs as simple random sampling or stratified sampling can be used to select samples. Conversely,
when conducting cell phone surveys one does not have a list of the individuals composing the population
so alternative methods should be used to select the samples. Among these methods, the random digital
dialing (RDD) is one of the most used ones. The issue comes when both frames are sampled simultaneously
in a dual frame survey and it is needed to determine the method to draw the samples. Fortunately, dual
samples surveys are quite flexible in this aspect since they allow a different data collection procedure
in each frame. The key point, then, is to determine the optimal (in some sense) number of individuals
from each frame who should be interviewed. In the specific case of this survey, the issue was solved by
allocating the predefined global sample size by frames considering a minimum variance criterion taking
into account the costs (Pasadas and Trujillo, 2013) and the percentage of possession of each type of device

(following Hartley, 1962).
The sampled individuals answered to a selection of questions with discrete outcomes related to im-
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migrants and immigration policies. The responses were analyzed and point estimates for proportions
using most of the estimators described in Section were provided. Since these estimations methods
were originally conceived to estimate parameters of continuous variables, estimations of proportions were
carried out from the values of a dichotomous variable that was created for each category of each response
variable. Therefore, for a category of a given response variable, let consider the dichotomous variable Z;,
so that zy; is the value of Z; for the k — th individual of the sample. z; takes the value 1 whether the
k — th individual has selected the i — th outcome of the variable and 0 otherwise. Estimated proportion
for the i — th category was computed, then, as P, = ZZ/N = res z;ﬂ/N, being N an estimation of the
population size.

From the formula used to estimate the proportions it follows that the estimation of the population
size, N , has an important impact on the estimates of the proportions. Thus, it is important to have an
accurate estimation of IV to achieve good estimations for the proportions. Henceforth, a comprehensive
study on the effect on estimation of using different values for the population size extracted from different
sizes is carried out.

On the other hand, some of the estimation methods considered involves the estimation of variances
and covariances which require second order inclusion probabilities, which were not available in the survey.
To overcome this concern, the approximation proposed by Deville (1992) to estimate variances from first
order inclusion probabilities is used where needed. According to this approximation, the variance of the
estimator of the total of a continuous variable Y may be estimated as
V(Y) =

1S 2 Z (k _Zalii) (3.1)

ZkES Uk s

where ay, = (1 —m)/ > e (1 —m).

Results also include interval estimation using the method for variance estimation proposed for each
author and jackknife variance estimation, which allow the comparison between estimates.

The objective related to the creation of a software for the analysis of data coming from a dual frame
survey has been achieved by the implementation of Frames2, a new R package for point and interval
estimation from dual frame sample data. The development of the package has been carried out taking

into account statistical and computational criteria to obtain a comprehensive and efficient software.

Therefore, the functions composing the package have been implemented such that they carry out a
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strong argument check to guarantee validity of the arguments and so, to prevent errors when making
subsequent computations. Aspects as the presence of missing values in the arguments, the number of
main variables observed in the samples (that should match), the length of the arguments in each sample
(that should also match) or the values for arguments indicating the domain each unit belongs to (which
only can be ”a” or "ab” for frame A or ”b” or "ba” for frame B) are checked. If any issue is encountered,
the function displays an error message indicating the problem and the argument causing it, so that the
user can manage errors easily. Furthermore, each function has additional checks depending on its specific
characteristics or arguments.

Much attention has also been devoted to computational efficiency. Frequently, populations in a survey
are extremely large or it is needed to keep sampling error below a certain value. As a consequence,
one needs to consider large sample sizes, often in the order of tens of thousands sampling units. In
these situations, computational efficiency of functions is essential, particularly when several variables
are considered. Otherwise, user can face high runtimes and heavy computational loads. In this sense,
functions of Frames2 are developed according to strict efficiency measures, using the power of R to the
matrix calculation to avoid loops and increase the computational efficiency.

Functions of Frames2 have been implemented from an user-oriented perspective to increase usability.
In this sense, most input parameters (which are the communication channel between the user and the
function) are divided into two groups, depending on the frame they come from. This is to adapt functions
as much as possible to the usual estimation procedure, in which the first step is to draw two independent
samples, one from each frame. On the other hand, estimation details are managed internally by functions
so that they are not visible for the user, who does not need to manage them.

Construction of functions has been carried out so that they perform properly in as many situations
as possible. As noted in introductory section, one can face several situations when using two sampling
frames depending on their relative positions. Although the most common situation is the one depicted
in Figure cases shown in Figures and may arise as well. All estimators described but PEL
can be modified to cover these three situations, so corresponding functions of Frames2 include necessary
changes to produce estimates irrespective of the situation.

On the other hand, it is usual, when conducting a survey, to collect information on many variables
of interest. To adapt to such situations, all functions are programmed to produce estimates when there

are more than one variable of interest with only one call. To this end, parameters containing information
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about main variables observed in each frame can be either vectors, when only one variable is considered
or matrices or data frames, when there are several variables under study. Cases in which the main aim of
the survey is the estimation of population means or proportions are also very frequent. Hence, from the
estimation of the population total for a variable, functions compute estimation of the mean as Y=V / N.
To obtain the estimation of the population size, functions internally apply the estimation procedure at

issue to indicator vectors 14 and 1p of sizes ny and ng, respectively.

To get maximum flexibility, functions have been programmed to calculate estimates in cases in which
user disposes of first and second order inclusion probabilities and in those other situations in which only
first order ones are available, indistinctly. Variance estimations from only first order inclusion probabilities

are obtained by applying Deville’s method (3.1]), when needed.

Finally, to reach the third objective, appropriate models to deal with discrete response variable are
considered. Firstly, let assume that data from respondents who provide a single choice from a list of non
ordered alternatives, coded as 1,2,...,m are collected. Therefore, consider a discrete m-valued survey
variable y. The objective is to estimate the frequency distribution of y in the population U. To estimate
this frequency distribution, let consider the class of indicators Z;, i = 1, ..., m, defined previously. These
indicators are such that, for each unit k € U, z; = 1 if yr = ¢ and z; = 0 otherwise. The problem thus,

is to estimate the proportions

1
P(Y:z’):Pi:N];]z,m i=1,2,...,m (3.2)

Such proportions are such that
1
Pi = N(Zai + 9Zabi + (1 — Q)Zabi + sz‘), (33)

where 0 € (0,1) and Zoi = Y 1cq Zhis Zabi = D peap 2hi a0 Zpi = Dy cp 2

As noted before, auxiliary information is often available in survey sampling and may be used to
obtain more accurate estimators. Then, suppose that values xj, of auxiliary variables X are known for
each k € U. Moreover, the distribution, or at least some summary statistics, of these auxiliary variables in

the population are supposed to be known. Let assume that the population under study y = (y1, ..., yn)%
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is the determination of a set of super-population random variables Y = (Y7, ..., Ya)% s.t.

exp(xfﬁi)

pri = P(Yy, =i|x) = E(Zyi|xk) = ,
= PO =) = B = o T B,)

t=1,...,m,

that is, a multinomial logistic model is used to relate the main response and the auxiliary variables. Let

T

T)T. As a first step, estimation of the superpopulation parameter

B be the parameter vector (37,...,0
B using the sample data should be considered. This estimation will be carried out in a different way
depending on the auxiliary information available, resulting in two groups of estimators: a first group,

composed of 4 estimators, where the same set of auxiliary variables for all population units is assumed

and a second one, which includes 2 estimators, where the auxiliary variables differ by frame.

To create the first group of estimators, let assume that, for each unit in the population, information
about one vector of auxiliary variables X is known. In this case, for each unit k& € U the value of xj, is
available and, for each unit k£ € s, the value of the main variable y;, is also observed. Parameter 3 may

be estimated by maximizing the m-weighted log-likelihood function given by

Lo (B) = Z (Z dy zii In g + Z dy zki 1nu;“-> , (3.4)

i=1,....,m \k€sa kEsp

where the weights d° are the ones defined in 1) Given the estimate B; of B3, the following estimates

for pp; may be defined:
T Qo
. exp(x] B
Phi = ki = (i )TA . (3.5)
ZT:l,...,m eXp(Xk B?)

Since the vector x; is known for all units of the population U, the values p}, are available for all

kelU.

An alternative way of estimating 3 is maximizing the m-weighted log-likelihood

L4(B) = Z dezkilnﬂki7 (3.6)

i=1,...,m kEs

which is similar to lb but using weights d (defined in 1} instead of d°. In that case, the resulting
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estimate, ,é, may be used to compute the following estimations for the individual probabilities

T’.\.
N R exp(x; 3,
DPki = Pki = p(x Bi) = (3.7)

Zr:l,...,m exp(xzﬁr)

On the other hand, to formulate the second group of estimators let suppose that a different set of
variables is known in each frame, that is, values x‘,j of the vector of auxiliary variables X are known for
all the units composing frame A and values x2 of another vector XP are known for the units included
in frame B. In that case, a different model should be considered in each frame to properly represent the
relationship between the auxiliary variables and the main response. Then, For each k € A, values of the

auxiliary vector xﬁ are known and, thus, we may compute the probabilities

exp(x; "B

= 3.8
ZT:I,..A,m CXp(X?TIB;A) ( )

A _
Pri =

where we estimate 84 by maximizing (44 (84) = Y, m D kesa dz; In ju; using the sample data
from s4. Sample s, includes, together with values of the auxiliary variables, the values of the main

response y, (and, therefore of zy;). Similarly we obtain p?, for k € B.
Estimates p?,, pr; and pﬁi and pkBi may be used as auxiliary information to define estimators.

As may be noted, this estimation approach has been exposed in a general context which is barely
affected by the number of sampling frames involved. This indicates that, although the dual frame case
is usually the starting point for the estimation in a multiple frame setup, this methodology can be easily
extended to the case where three or more frames are available for sampling. Good evidence of this can
be found in the fact that a general multiple frame context, with () > 3 frames, has been considered when

studying response variables whose categories may be somehow ordered in Appendix 4.

Analysis of responses variables with ordered outcomes is carried out following a similar approach than

the one used for variables with non ordered categories.

Considering the same multiple frame setup exposed in Section let consider the discrete survey
variable y to represent the choice of the respondents from a list of ordered alternatives. We code these
alternatives as 1,2,...,m, with 1 < 2 < --- < m. Therefore, y is an m-valued survey variable with yy

the value observed for the k — th individual of the population. The objective is to estimate proportions
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(3.2), which can be rewritten as follows

Q
P(Y =i) = Jbzzl;zk i=1,2,...,m (3.9)

where my, indicates the number of frames the k — th unit belongs to, i.e. the multiplicity of the k — th
unit and zx; are, again, the values of the indicator variables Z;,i = 1, ..., m, such that for each unit &k € U
zk; = 1 if yp, =4 and z; = 0 otherwise.

Let suppose that information about auxiliary variables is available. Let Xq = (Xq1,Xq2, - - - ,xqpq)T
be a set of p, auxiliary variables observed in the g-th frame, so the vector xg; = (zq1k, Ze2k, - - - ,xqqu)T
contains the values of the variables x, for the k-th individual of the frame ¢. Auxiliary variables may

differ in each frame, ie. X, # X,,q,7r =1,...,Q,q # r, so the most general and realistic situation is

considered. For the sample coming from frame ¢, the values of the variables (yx, Xqx) are observed.
Taking into account the ordinal nature of the response variable, an ordinal model should be considered

instead of a multinomial one to properly relate the main and the auxiliary variables. Therefore, in frame

q, the finite population under study y = (y1, ..., yn)? is the determination of the superpopulation random

variable vector Y = (Y1, ..., Yn)7 s.t.

_exp(af+B{xqr) i1
7 = =i - _ — ) Trexp(af+8x) 1=
122 (qu) = P(Yk = Z|X(1k) = E(Zkz|qu) - exp(al+BIxqr) _ exp(ad_,+B{_ xqk) 9
1+exp(of +B8{xqk) 14exp(af_;+B7 1 xq1)’ y ey 110
(3.10)

assuming that Y are conditionally independent given x4;. An important property that is usually sup-
posed to be accomplished when working with ordinal models is the proportional odds property. According
to this property, effects of the predictors are the same across all the categories. This implies that 3 pa-
rameters associated to independent variables are fixed and independent of the category considered, so

constraints of the superpopulation model can be rewritten as

exp(ongququ) Z =1
q _ _ _ ] _ 1+exp(af+B7xqk) T
pl(xqx) = P(Yy = i|xgk) = E(Zyilxqr) = (o £ B xplol tox) o (3.11)

T+exp(ad +Bxqr) 1+eX1D(a1 1+B‘1qu)’ I

The proportional odds property provides more parsimonious models which are, therefore, easier to

implement and interpret. As with the multinomial model, population parameters o;,¢ = 1,...m and 3 are



40 CHAPTER 3. METHODOLOGY

generally unknown and must be estimated from the sample data. Considering, again, a maximum likeli-
hood approach we can obtain the estimates for the 89-parameter 87 = (af,...,ad,,3%) by maximizing

the following loglikelihood function

(0 = > > dizInpd(xqe), (3.12)

i=1,...,m k€s,

and we denote it by 01 = (af,...,a4, Bq). Using these maximum likelihood estimates, we can define an

estimator for probabilities for each category as follows:

ewp(&f"réqqu) | =
o Treap(@TBixer) o 313
Pr; = Ky (qu) - exp(&d+F%q1) _ cap(&f_y +87%qr) =2 m ( . )

)

Itexp(6d+B9%xqr)  ltewp(ad_,+Bixqr)’

Alternatively to (3.12), model parameters for the g-th frame can be estimated maximizing the following

loglikelihood function

007 = > > di zpilog pd (xgr), (3.14)

i=1,...,m k€sq

yielding to the probability estimates

ea:p(d:q+ﬁ*qqu) i=1
*q _ ~q I+exp(a}i+B%9xq)) T
I a0 ) = o o 3.15
Pr; Nz( qk) ea:p(éz:q+ﬁ*qqu) _ emp(diﬁﬁﬁ Ixgk) o m ( )
s ey

1terp(a+B*Ixqr)  l+exp(@}? +B*Ixqr)

As in the multinomial case, both sets of estimates (3.13]) and (3.15)) may be used in the definition of

estimators for proportions of ordinal responses variables.



Chapter 4

Results

Some important results have been derived from the research carried out in this thesis. The most noticeable
ones are summarized below.
From the analysis of the opinion survey about immigrants and immigration policies performed in

Appendix 1 some aspects may be highlighted:

e There are no important differences between the estimates produced with the single frame or dual

frame approach.

e Among all the estimation strategies, the calibration method performs best and produces the smallest

confidence interval.

e The jackknife method often produces better intervals than methods based on the estimated variance

given by the authors (except for the pseudo empirical likelihood intervals).

Results obtained show a negative view towards immigration that continues to spread. In the moment
of the data collection, 59-61% of the individuals surveyed in Andalusia stated that immigration is bad or
very bad for the region (in the previous edition of the study, in 2011, the corresponding figure was 58 %,
and in the first such survey, in 2005, it was only 51%). Perceptions regarding the number of immigrants,
however, have changed in the opposite direction: there is now a lower percentage of people who say there
are too many immigrants (from 51 % in 2011 to current levels of 40-42 %), while the other scores have

risen slightly.
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Another important result derived from the thesis is the software Frames2. Frames2 is a new R package
for point and interval estimation from dual frame sampling. The initial version consisted of eight main
functions (Hartley, FB, BKA, SFRR, PML, PEL, CalSF and CalDF), implementing most of the estimators
described in Sectionm The package also includes an additional function called Compare which provides
a summary with all possible estimators that can be computed from the information provided as input.
Moreover, six extra functions implementing auxiliary operations, like computation of Horvitz-Thompson
estimators or of the covariance between two Horvitz-Thompson estimators, have also been included in the
package to achieve a more understandable code. Finally, the package includes eight more functions, one

for each estimator, for the calculation of confidence intervals based on the jackknife variance estimator.

The package is freely available at the CRAN repository following the URL https://cran.r-project.
org/web/packages/Frames2/index.html. In that web site one may also find a reference manual includ-
ing information about all the functions composing the package and some vignettes illustrating how to

use it in different contexts.

On the other hand, a number of estimators for dealing with multinomial response variables in dual
frame surveys has been proposed. As specified in the previous section, different set of estimated prob-
abilities (pf;, Pri or p‘,:‘i and pkBi) have been defined, depending on the available auxiliary information.
Whatever the case, these probabilities represent the true relationship between the auxiliary variables and

the main response.

From probabilities p?. defined in (3.5) two estimators are formulated to estimate proportions defined

in (3.3) considering dual frame and single frame approaches. The first one is expressed as

Pyp; =N~ ( Z Pri + Z dy(2ki — PRg) + Z di (i —p&)) (4.1)
keU k€sa kesp

where the subscript ML stands for Multinomial-Logistic and the superscript DW stands Dual frame

setting and auxiliary information available from the Whole population. We observe that this estimator

takes the same model-assisted form as the MLGREG estimator proposed in Lehtonen and Veijanen

(1998a), but here it is adjusted to account for the dual frame sampling setting.

Following a model calibrated approach (here, subscript M LC refers to Multinomial-Logistic and


https://cran.r-project.org/web/packages/Frames2/index.html
https://cran.r-project.org/web/packages/Frames2/index.html
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Calibration), a second estimator using probabilities pf, is defined. It has the form

P = N7Y( Z wyzki + Z Wy 2ki) (4.2)

k€sa kEsp

where wy minimizes ), . G(wy, dp)+> e, G(wp,dy) = > c, G(wy, dy) for a distance measure G-, -)

as those considered in Deville and Sirndal (1992), subject to:

szpiizzpziv ZTUZ:NG, Zwlz:Nbv

kEs keU k€sq kesy

Z wy =nNNg, and Z wy = (1 — 1) Ngp.

kEsab kEspa

Following a similar approach, but considering estimates py; defined in (3.7) as auxiliary variables,
equivalent estimators to (4.1)) and (4.2)) are defined as

Py, =N < Z Pri + Z dis(2i — Pri) + Z di(zri — ﬁki)> (4.3)

keU kE€Esa kesp
and
DSW —1 ~ ~
Pittei = NN drzri+ Y tnzka), (4.4)
k€sa kEsp

where @y, minimizes ), . = G(wx, Jk)+2ke53 G (g, dy) = > okes G, dy,) for a distance measure G(-, -)

satisfying the usual conditions specified in the calibration paradigm subject to:

E WyDki = E Dhis E Wy, = N, E W, = Np and E W = Ngp.
kes keU k€Esq keEsy k€sab U Sba

Here, the superscript SW stands Single frame setting and auxiliary information available from the

Whole population. Again, subscript M L stands Multinomial-Logistic while M LC' stands for Multinomial-

Logistic and Calibration.

The four estimators (4.1]), (4.2), (4.3)) and (4.4)) have the common characteristic of being defined from

a common set of auxiliary variables whose values are available for the whole population. Nevertheless,
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different sets of auxiliary variables in each frame may be considered, as noted in previous chapter. In
that situations, estimated probabilities pg‘i defined in (3.8) and their counterparts pkBi may be used to

define the following estimators:

Por, =Nt (Zp?i Y i+ (=) pe+ Y i+
a ab ba b

+ Z(z;ﬂ- — Phi)dar +1 Z(zki — i) dak+

Sa Sab

+(1=m) Y (2ki — pi)dBr + > (2ki — pfi>dBk) ~

Sba Sb
and
ﬁzﬁfcz‘ = N_l( Z Wi 2k + Z Wi 2ki) = N_l(z Wi 2ki), (4.5)
k€sp kesp kes

where weights w}, are such that

min Y G(wf,dax) + Y G(wi,dpr) st

kE€sa k€sp

S wipl =Y vl +n > pis

k€sa k€a k€ab
x B _ B B
Z wipg; = (1 —n) Z P T Zpkia
kesp kéeba keb
sz:Na, szsz,
k€s, k€Esy
* *
Z wy =nNNg and Z wy = (1 —=n)Nap
kEsab k€Espa

Performance of the 6 estimators has been check through different simulations studies resulting in
negligible biases and important efficiency gains with respect to customary estimators not using auxiliary
information (as (L.8)) and estimators using the auxiliary information through linear models (as (L.15)
or ) Moreover, important length reductions in jackknife confidence intervals respect to estimator

(1.8) are obtained when applying the proposed estimators to data coming from a real survey.

Finally, estimated probabilities defined in (3.15]) have been used to formulate some estimators for the
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proportions of an ordinal response variable in a multiple frame context. First of all, the following two

model assisted estimators have been proposed:

Q q
Parani = % (Z Z % - szid% + szidi”> , i=1,...m (4.6)

q=1keU kes keEs

Q q
Parazi = % (Z Z ZZ — A];szidk + szld,lc‘/[> , i=1,..,m (4.7)

q=1keU kes kes

with M = > kes i To formulate both estimators we have adapted the approach used by Lehtonen and
Veijanen (1998a) to estimate class frequencies of a variable with multinomial outcomes in a single frame
context to the case of an ordinal response variable in a multiple frame setup. Estimated probabilities in
the sum over the population in estimator Paray; are weighted by multiplicities my to avoid overestimation
issues. For this same reason, weights dﬁ/[ are used in the sample sums. Such weighing is intended to make
the estimator consistent in the sense that its categories add up to 1. Estimator PM A2 is very similar to
Py A1i, with the only difference of using original design weights dj in one of the sample sums. Due to

this, and to ensure the consistency of the estimator, adjustment factor N/ M is used.

Using probabilities p{; as auxiliary variables and considering a model calibration approach, the fol-
lowing estimator may be formulated:
,LUO
ko

. 1 )
PMCli: N;mk ki 1= 17"'7ma (48)

where weights wj, are chosen so that they minimize ), G (wy,dy), subject to

wo
Y EG(A) =Ny, g=1,..,Q
keEs Mk

wy ,
Z m—’“pzi(sk(/lq) = ZPZi‘Sk(Aq)a q=1,..,Q, i=1,...m.
kes k keU
In the first group of @ calibration constraints, regarding frame sizes, multiplicities my, are used to properly
weight indicator variables d;(A,) and so, to cancel any overestimation problem. The same reasoning may

be applied to the second group of constraints, where the auxiliary variables are also weighted by my.

A calibration approach may be considered also when estimates (3.15]) are used as auxiliary information.
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Similarly to (??), another model calibrated estimator may be defined as

. 1
PMCQi = N Zw;zki, L= 1, .., m (49)
kEs

where, in this case, the weights wj, are such that they minimize ), . G (w,’;, dfg”) subject to

ngak(Aq) =N, q¢=1,...,Q

kes

Zw;ngék(Aq) = szgdk(Aq)7 q:17"'7Qa Z: 17""m'

kes keU

Unlike those in PMCU, constraints for this calibration estimator do not involve multiplicities. Over-
estimation issues are eliminated, then, by considering dfy (which are already weighted by my) as the
starting weights for the calibration. Therefore, resulting weights wj should be near to those starting
weights so they already take into account the multiplicity while still fulfilling the calibration constraints.

The proposed estimators have shown a good behaviour in terms in bias (which may be considered as
negligible) and in terms of efficiency gain with respect to customary multiple frame estimators (as (|1.33)
and ) in the comprehensive simulation studies carried out. Moreover, proposed estimators work

well when applied to real data coming from a dual frame survey.
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Conclusions

Let us remember that the main objective of this thesis is to further study some aspects of the multiple
frame methodology that had not been addressed so far. As a result, a number of estimators for proportions
of discrete response variables have been proposed. Furthermore, software for the analysis of data coming
from dual frame surveys has been released. The main findings derived of the analysis of the results

obtained are detailed below.

Implementation of multiple frame surveys may be challenging in some cases due to the increase of the
complexity with respect to surveys considering only one frame. Focusing on dual frame surveys, different
approaches are available for the analysis of data coming from that kind of surveys. The screening approach
is quite interesting since it allows the use of the well known techniques for stratified samples. However
screening is barely applied due to, in most situations, duplicated units of the overlap domain can not be
identified, which is fundamental in this technique. A dual frame or a single frame methodology should

be, then, considered.

The application of the customary estimators to the data coming from a real dual frame survey fo-
cused on immigration topics allowed their comparison. Calibration, fixed weight, and pseudo maximum
likelihood estimators all give internal consistency (which is a desirable property in an estimator), since
the same set of adjusted weights is used for all variables. Moreover, in the application, good results were
obtained with these procedures. With repeated surveys, the simplicity and transparency of a fixed-weight

estimator may be preferred. Fixed-weight adjustments may make year-to year comparisons easier in an
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annual survey, where the domain proportions are relatively constant over time. Fixed-weight estimators
are also more amenable to weight adjustments for non-response and domain misclassification.

Estimators based on the single frame approach are also very appealing. In addition to being internally
consistent, it is shown that they generally provide quite good results when applied to practical situations.
They are also quite easy to implement. Nevertheless, single frame estimators present the main drawback
of needing extra information regarding the inclusion probabilities of the units belonging to the overlap
domain which is not always available making the computation of these estimators impossible to carry
out.

On the other hand, variance estimation is a tricky issue when dual frame estimators are used. Re-
sampling methods such as jackknife, which is easy to compute an provide accurate estimates, is advisable
to estimate variances. Jackknife constitutes an unifying approach that allows the comparison between
estimates of the variance of different estimators.

The use of auxiliary information, which is often available in surveys, may become a double-edged
sword. While it is true that “good” auxiliary information (in the sense of well related with the main
variable) may improve estimates considerably, poor auxiliary variables may lead to incorrect estimates and
confidence intervals too wide to the extent that it would be preferable not to use them in the estimation
process. Special care should be taken in at this point.

Variables with discrete outcomes, very common in surveys, should be treated in a special way to
get appropriate results. It is important to consider appropriate estimation techniques depending on
the nature of the variable of study to get the best results possible. As an example, simulation results
carried out in a dual frame setup show that, ordinal estimators presented in the Appendix 4 provide
much better results for the proportions of an ordinal response variable than the ones we obtain by
applying the multinomial estimators proposed in the third Appendix. In turn, in that situation, results
of multinomial estimators are better than results of customary dual frame estimators described in Section
Both groups, multinomial and ordinal, of proposed estimators require the knowledge of the values
of auxiliary variables for each individual in the population, which can be quite a restrictive assumption.
This assumption may be somehow relaxed when categorical variables (as the gender or the professional
status of the individual) or quantitative categorized variables (as the age of the individual, grouped in
classes) are used as auxiliary information. In this context, it is not necessary to have the values of the

auxiliary variables for the complete list of individuals but only the population count in the multi-way
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contingency table, information that can be easily found in databases of national statistical organisms.
Finally, the need for a software for analyzing the data from dual frame surveys led to the release
of the R package Frames2. The package allows a comprehensive analysis of dual frame data through
user-friendly functions. These functions have been implemented following strict criteria regarding com-
putational efficiency to provide results quickly minimizing the computational load. Last version of the
package, as well as documentation and illustrative examples on it use may be freely accessed through the

URL https://cran.r-project.org/web/packages/Frames2/index.html.


https://cran.r-project.org/web/packages/Frames2/index.html
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Chapter 6

Conclusiones

Recordemos que el objetivo principal que se pretende alcanzar con esta tesis es el estudio en profundidad
de algunos aspectos de la metodologia de encuestas con marcos multiples que atin no habian sido tratados.
Para alcanzar este objetivo, se ha formulado un buen ntmero de estimadores para las proporciones de
variables de respuesta discreta. Del mismo modo, se ha creado un programa para el andlisis de datos
procedentes de encuestas con marcos duales. Las principales conclusiones que se derivan del analisis de

los resultados obtenidos se detallan a continuacién

La puesta en practica de encuestas con marcos miltiples puede suponer un reto en algunos casos
debido al aumento de su complejidad en comparacién con las encuestas de un tinico marco. Centrandonos
en el caso de encuestas con marcos duales, existen diferentes procedimientos para el andlisis de datos

. I o . .
provenientes de ellas. La metodologia “screening” resulta muy interesante ya que permite el uso de las
ampliamente conocidas técnicas de muestreo estratificado para el andlisis de los datos. Sin embargo, el
“screening” raras veces puede aplicarse debido a que requiere la identificaciéon de las unidades duplicadas
en el dominio de solapamiento, lo cual es imposible en muchos casos. En su lugar, debe considerarse una

metodologia “single frame” o “dual frame”.

La aplicacién de los estimadores tradicionales para encuestas con marcos duales a los datos procedentes
de la encuesta de inmigracion posibilité las comparaciones entre ellos. El de calibracion, el de pesos fijos
o el de pseudo maxima verosimilitud son estimadores consistentes en el sentido de que utilizan el mismo

conjunto de pesos ajustados para la estimacién de todas las variables (lo cual es una propiedad deseable
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en un estimador). Por otra parte, en la aplicacidn, estos estimadores proporcionaron buenos resultados.
Cuando las encuestas se llevan a cabo de forma periddica, la simplicidad y la transparencia del estimador
de pesos fijos pueden resultar decisivos a la hora de decantarse por el uso de este estimador. Ademds,
por ejemplo, el uso del estimador de pesos fijos hace que la comparacién entre encuestas que se realizan
de forma anual resulte muy sencilla, ya que es habitual que estas encuestas presenten un reparto de la
poblacién entre los dominios que componen los marcos bastante constante a lo largo del tiempo. Otra
ventaja de este estimador es que puede ser facilmente ajustado para corregir problemas de no repuesta y
de clasificacién incorrecta de unidades en dominios.

Los estimadores basados en un enfoque “single frame” también son muy atractivos. Ademds de ser
internamente consistentes, se ha demostrado que funcionan bastante bien cuando se aplican en situaciones
reales. También presentan la ventaja de ser sencillos de implementar. No obstante, los estimadores
basados en esta metodologia muestran el inconveniente de necesitar informacion adicional relativa a las
probabilidades de inclusién de las unidades que pertenen al dominio de interseccién, la cual no esta
siempre disponible, haciendo que estos estimadores no puedan ser calculados en algunas situaciones.

La estimacién de la varianza es un aspecto complicado para los estimadores en marcos duales. En
estos casos, se recomienda estimar las varianzas mediante el uso de algin método de remuestreo como el
jackknife, el cual es sencillo de aplicar y proporciona estimaciones bastante precisas. Ademsds, el jackknife
constituye un enfoque unificador que permite la comparacién entre las estimaciones de la varianza de
distintos estimadores.

El uso de informacion auxiliar, de la cual se dispone habitualmente en las encuestas, puede convertirse
en un arma de doble filo. Si bien es cierto que informacién auxiliar “buena” (en el sentido de que estar
altamente relacionada con la variable de interés) puede mejorar considerablemente las estimaciones, una
informacién auxiliar pobre puede desembocar en estimaciones incorrectas y en intervalos de confianza
demasiado amplios. Tanto es asi que, en ocasiones, puede ser preferible no considerar la informacién
auxiliar en el proceso de estimacion. Por lo tanto, debe prestarse una especial atencion en la seleccién de
las variables que se utilizan como auxiliares.

Las variables de respuesta discreta, muy frecuentes en las encuestas, deben tratarse de forma especial
si se quieren obtener resultados correctos. Es muy importante aplicar las técnicas de estimacién adecuadas
en funcion de la naturaleza de la variable respuesta para asi obtener los mejores resultados posibles. A

modo de ejemplo, un estudio de simulacién realizado considerando dos marcos muestrales mostré que,



93

dada una variable respuesta con categorias ordenadas, las estimaciones para las proporciones de estas
categorias que proporcionaron los estimadores ordinales que se describen en el Apéndice 4 fueron mucho
mejores que los resultados proporcionados por los estimadores multinomiales del tercer apéndice. A su
vez, en este mismo contexto, las estimaciones obtenidas con los estimadores multinomiales se mostraron
mucho maés precisas que aquellas resultantes de aplicar los estimadores tradicionales para marcos duales
que se describieron en la Seccién[I.3] Los dos grupos de estimadores propuestos, multinomiales y ordinales,
necesitan conocer los valores de las variables auxiliares para todos los individuos de la poblacion, lo cual
puede suponer una limitacién importante para su uso. Esta hipdtesis puede relajarse cuando se utilizan
variables categéricas (como el género o el estado profesional del individuo) o variables cuantitativas
categorizadas (como la edad del individuo, agrupada en clases) como informacién auxiliar. En estos
casos, no es necesario disponer de los valores de las variables auxiliares para todos los individuos de la
poblacion sino tinicamente de las frecuencias poblacionales que aparecen en la tabla de contingencia que
recoge los cruces entre las categorias de las variables. Esta informacién puede extrarse facilmente de las
bases de datos que los organismos nacionales de estadistica tienen a disposicién del piblico.

Por tdltimo, la necesidad de un software para el andlisis de datos procedentes de encuestas con marcos
duales resulté en la creaciéon del paquete de R Frames2. El paquete permite un completo analisis de
datos de encuestas con marcos duales a través del uso de funciones muy sencillas de utilizar para el
usuario. Estas funciones se han implementando siguiendo criterios muy estrictos en cuanto a la eficiencia
computacional para que proporcionen resultados en el menor tiempo posible minimizando también la
carga computacional. La tltima version del paquete, asi como su manual de uso y ejemplos ilustrativos
puede descargarse de forma gratuita en la URL https://cran.r-project.org/web/packages/Frames2/

index.html.


https://cran.r-project.org/web/packages/Frames2/index.html
https://cran.r-project.org/web/packages/Frames2/index.html
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Chapter 7

Current Research Lines

This thesis explores some aspects of the multiple frame approach which required further investigation.
Nevertheless, there are still some points that need additional attention. The study of these topics would
suppose a natural extension of this thesis. A brief summary of some of the topics that are currently under

investigation is presented below.

e As noted in previous chapters, a number of estimators have been proposed so far to estimate
parameters of quantitative variables in a multiple frame context following different approaches,
as calibration or likelihood. Nevertheless, there are a noticeable number of estimation techniques
which has been applied to single frame surveys but whose performance has not been evaluated in a
multiple frame context. A good example is the population empirical likelihood approach (POEL),
proposed by Chen and Kim (2014). As the authors noted, in the POEL approach, a single empirical
likelihood is defined for the finite population. The sampling design can be incorporated into the
constraint in the optimization of the POEL. Furthermore, because a single empirical likelihood
is defined for the finite population, it naturally incorporates auxiliary information obtained from
multiple surveys. They proved through simulation studies that the POEL estimator they propose
works better than the pseudo empirical likelihood estimator for a single frame proposed by Wu
(2004). Therefore, it would be interesting to consider the POEL approach to define estimators in
a multiple frame context and check if they improve the results provided by the existing likelihood

estimators (mainly the pseudo maximum likelihood estimator and the pseudo empirical likelihood
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estimators).

Interviewed individuals usually do not respond to part or all the items of the survey, which leads to
partial or total nonresponse. If not addressed properly, nonrespose generates important biases, so
results computed may be incorrect. In the multiple frame context, effects of nonresponse errors and
alternatives to overcome them have been barely studied. Lohr (2007) briefly discusses the errors
that may arise when conducting a multiple frame survey, including nonresponse errors. Lepkowski
et al. (2008) focus on the nonsampling errors in dual frame surveys when one of the two frames
involves telephone number. On the other hand, Lohr and Brick (2014) study the problem of the
allocation in dual frame phone surveys in the presence of nonresponse. Despite these papers,
literature about nonresponse in multiple frame surveys is still sparse and there is no a general
approach to solve that problem. Along the development of most of the papers composing this
thesis, it is assumed a full response from the interviewed individuals, so nonresponse is not a real
problem. The nonresponse issue is only addressed in appendix 3, where it is considered as an
additional category when analyzing the data. Therefore, nonresponse is currently being studied in

a multiple frame context and a general approach to minimize its effects is investigated.

Sometimes it is interesting obtain estimations for subgroups of the population which fulfill a specific
condition. As a simple example, an investigator may be interested in compute and compare the
responses to a determined question of men and women. In that situations, point estimates are easy
to compute but the estimation of the variance of that estimates is not so straightforward. Problem
is even more complicated in a multiple frame context, since selecting a subset of individuals of the
sample s implies the reduction of the sample size n. This, in turn, could lead to small numbers of
individuals of the target subpopulation in some domains, making difficult the estimation. It is clear
that this issue grows with the number of domains (or, equivalently, with the number of frames)
and it requires further research. Right now, techniques for the estimation in subdomains are under

study.

Development of the software should go hand to hand with theoretical advances to make feasible
the resolution of practical problems. This requirement is specially important in sampling topics
so that theoretical finds are available to be used in practice to achieve better results. Package

Frames2 was created for this purpose. Although initial version of the software only included the
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customary dual frame estimators it has been recently updated with the multinomial estimators
described in the appendix 3. Nevertheless, further updates are planned for Frames2 to incorporate
estimators for ordinal variables and the results of the current and immediate future research. On
the other hand, and as it has been noted, multiple frame surveys with 3 or more sampling frames are
being considered increasingly for public and private institutions when designing surveys. Typically
surveys considering 3 frames composed of landline, cell and internet users, respectively, are used.
But the rapid expansion of the Internet around the world is leading to 3 frame surveys composed of
different list of internet users drawn from different sources. Whatever the case, 3 frame surveys are
becoming a reality and so, a software similar to Frames2 for the analysis of data coming from this
type of surveys is needed. For this reason, we are working on a new R package for the estimation

in a 3 frame context.
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Abstract

The rapid proliferation of cell-phone use and the accompanying decline in landline service in recent years
have resulted in substantial potential for coverage bias in landline random-digit-dial telephone surveys,
which has led to the implementation of dual-frame designs that incorporate both landline and cell-phone
samples. Consequently, researchers have developed methods to allocate samples and combine the data
from the two frames. In this paper we review point and interval estimation methods of proportions that
can be used to analyze overlapping dual frame surveys. We use data from the survey of attitudes towards
immigrants and immigration (OPIA survey), a dual-frame telephone survey conducted in Andalusia,
Spain, to explore these different statistical adjustments for combining landline and cell-phone samples.
Our application obtains good results for calibration, fixed weight, pseudo-empirical-likelihood and single

frame procedures. We recommend that one of these internally consistent estimators be used in practice.
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The results of these methods of estimation show that the negative image towards immigration continues

to spread.

A1.1 Introduction

Traditionally, surveys have been carried out using three main methods of data collection: face-to-face
interviews, mail surveys and telephone interviews. Over the last 20 years, the picture has changed sharply.
Telephone surveys have become a popular mode of data collection, especially following the creation and
development of computer-assisted telephone interviewing (CATI) systems. Telephone interviews are often
considered a less costly alternative to mail and face-to-face interviews and the population coverage reaches
acceptable levels.

From 2000 to the present,there has been a steady increase in the use of telephone surveys, which
have replaced all other data collection methods (the majority of which were face-to-face interviews). The
telephone survey presents numerous advantages compared to a face-to-face one. In some subject areas (e.g.
electoral studies) face-to-face surveys have been completely ousted by telephone interviewing. Moreover,
studies have reported improved results from phone surveys compared with face-to-face interviews (Abascal
et al., 2012, Diaz de Rada, 2011).

However, telephone surveys also present some drawbacks with regard to coverage, due to the absence
of a telephone in some households and the generalised use of mobile phones, which are sometimes replacing
fixed (land) lines entirely (see Trujillo et al., 2005, Vicente et al., 2009 and Pasadas et al., 2011). The
potential for coverage error as a result of the exponential growth of the cell-phone-only population has led
to the development of dual-frame surveys. In these designs, a traditional sample from the landline frame
is supplemented with an independent sample from the banks of numbers designated for cell-phones.

By drawing samples from both cell phones and landline phones instead of from a single frame, it is
possible to reduce survey costs, improve the coverage of the overall sample (Brick et al, 2006; Busse and
Fuchs, 2012; Lu et al., 2013), and potentially even increase response rates, depending on the specific
survey being conducted (Opsomer, 2011).

Some surveys have used a screening dual frame survey design, in which people belonging to the
landline telephone frame are removed from the cell-phone frame before sampling commences, and only

people living in cell-phone-only households are interviewed (Brick et al., 2007). No new statistical methods
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are required to estimate totals in such a survey, since essentially a stratified sample is taken.

The screening approach can introduce a potential for bias due to nonsampling errors (Kennedy, 2007),
and in many cases it may not be possible or practical to remove list-frame units from the landline frame
before sampling (it is not known beforehand whether a household member sampled using one frame also
belongs to the other one).

Instead, in an overlapping dual-frame survey, independent probability samples are taken from frame
A (the landline frame) and frame B (the cell-phone frame). Information from the samples must be
combined to estimate population quantities, and there are many options for estimators. The estimation
of a population total for dual frame surveys was first investigated by Hartley (1962, 1974). Lund (1968)
and Fuller and Burmeister (1972) subsequently improved on Hartley’s results, and Bankier (1986) and
Skinner (1991) have proposed alternative estimation techniques. More recently, Skinner and Rao (1996),
Lohr and Rao (2006), Mecatti (2007), Rao and Wu (2010), Singh and Mecatti (2011) and Ranalli et al.
(2013) have considered new multiple frame estimators for the population total. These methods are usually
formulated under an ideal dual-frame survey setup (two frames can cover the entire target population).

In the analysis of a social survey, the response variables encountered are often discrete. For example,
this would be the case for public opinion research, marketing research and government survey research.
In these cases, the estimation of a proportion is a commonly used statistic for summarizing data (the
proportion of voters in favour of a presidential candidate, the unemployment rate, etc.) The customary
sample proportion is calculated as the percentage of individuals with a specific attribute divided by the
total number of individuals in the sample. At the time of data collection, the sizes of the two frames are
known. However, these two frames, in conjunction, do not usually cover the entire population, as many
people do not belong to either of them. If the population size is unknown and must be estimated, the
estimation for proportions is more complex than that for a total, and yet this problem has hardly been
discussed in the literature on multiple frames. In this paper, we estimate the size of the conjunction of
two frames and the proportion of interest in the population, using the methods described in Section 3.

After describing the OPIA survey in the second section, in the third section we consider the problem of
the estimation of a proportion in our dual-frame telephone survey and then examine the effect of various
estimation strategies designed to reduce the sampling error. In the fourth section we present a jackknife
technique variance estimation for all estimators considered. The fifth section presents the results of the

different estimation strategies in our survey dataset. Finally in the sixth section we conclude with some
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thoughts about methods that could be used in future surveys that sample both landline and cell-phone

numbers.

A1.2 Survey of Opinions and Attitudes of the Andalusian Pop-
ulation regarding Immigration (OPIA) 2013

The 2013 survey of Opinions and attitudes of the Andalusian population regarding immigration (OPIA)
is a population-based survey conducted by the IESA, a public scientific research institute specialising in
the social sciences. Its aim is to reflect the opinions of the Andalusian population with regard to various
aspects of immigration and refugee policies in Spain and towards immigrants as a group. This survey was
conducted in a period characterised by one of the most severe economic crises in the modern history of
Andalusia, which has dramatically increased rates of unemployment, a situation that has notably changed
attitudes towards immigration in Andalusia. This survey is based on a sample of persons drawn from

both landline and cell-phone frames.

A1.2.1 Population coverage through landlines and cell phones in Andalusia

In Andalusia, the proportion of survey subjects only reachable by landline communication has decreased
to below 10%. In economic good times, and due to rising numbers of internet connections, the proportion
of people only reachable by cell phone also declined. However, in recent years this proportion has risen
to around 20%. The number of people not reachable by phone now only represent a residual percentage

of the population (less than 2%).

Table A1.1: Coverage in 2013. Source: Survey of Information Technologies in Households (INE).

Both 69.4%
Cell only 9.6%
Land only 19.7%
No phone  1.3%

The distributions of landlines and cell phones vary considerably depending on the age of the pop-
ulation. Figure 2 shows that, taking into account only people for whom the availability of a landline

depends on their own decision, that is, not considering people living with their parents, the younger the
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Figure A1.1: Evolution of landline and cell phone coverage for people over 16 years old.
Source: Survey on the Equipment and Use of Information and Communication Technologies (ICT - H) in Households.
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Figure A1.2: Percentage of people with only cell phone, by age.

Source: Survey on the Equipment and Use of Information and Communication Technologies (ICT - H) in Households.

population, the higher the percentage having only a cell phone. This value exceeds 40% for people aged

under 33 years.

A worrying issue in this respect, due to the difficulties posed in correcting it, is the income gap between
those with only a cell phone and the rest of the population (Vicente and Reis, 2009). In Figure 3 it can
be seen, taking into account the age and the state of emancipation, that there are very large differences
in the percentages of people who have only a cell phone, depending on personal income. For example, for
people living independently and aged between 30 and 44 years, 60% of individuals have only a cell phone
when their household income is below 900 euros, and this percentage is 10% when their income exceeds

2,500 euros.

In this survey, the IESA decided to carry out telephone interviews with adults using both landlines
and cell phones. Taking into account the time and budget available, 2402 interviews were performed by

qualified interviewers, specially trained in survey techniques. The number of interviews to be conducted
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Figure A1.3: Percentage of population with only cell phone, by income, age and emancipation.
Source: Survey on the Equipment and Use of Information and Communication Technologies (ICT - H) in Households.

via landline and via cell phone was determined by calculating the optimum proportion (in the sense of
minimum variance) for each type of telephone, taking into account the (Pasadas and Trujillo, 2013) costs
and the percentage of possession of each type of device (following Hartley, 1962). As a result, the sample
sizes ascertained were 1919 for landlines and 483 for cell phones. The interviews were carried out by
the Statistics and Surveys sections of IESA from 22 April to 13 May 2013, using Computer Assisted

Telephone Interviewing (CATI) data input techniques.

A1.2.2 Descriptions of frames and sampling designs

Following Hartley’s classical notation (1962), two samples are drawn independently from two frames, A
and B. Let a= ANB,b=ANDB , and ab = AN B, where 6 denotes the complement of a set. From
frame A, land-phone, a stratified sample s of size ny was drawn. Probability-based random-digit-dial
(RDD) telephone survey is performed in frame B, cell-phone, and a sample sp of size np is drawn using
a simple random sampling without replacement design, SRSWOR.

Sample sizes of land (A) and cell (B) phones are ng = 1919 and np = 483. Domain sample sizes

are: in the overlapping population ng, = 1727 for the sample s, = (s4 N ab), np, = 237 for the

sample sp, = (sp N ab) and n, = 246 for the cell phone sample s, = s Nb and n, = 192 for the
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land phone sample s, = sa4 Na. The total sample is s = s4 U sp = Sq U Sqp U Spe U Sp, and its size is
N="nA+nB = Ng + Nap + Npg + np = 2402.

At the time of data collection, frame sizes of land (A) and cell (B) phones were N4 = 4982920 and
Np = 5707655 and the total population size was N = 6350916. The domain population sizes were:
Ngp = 4339659 for the overlap domain, N, = 643261 for land phones and N, = 1367996 for cell phones.
(source ICT-H 2012, Survey on the Equipment and Use of Information and Communication Technologies

in Households, INE, National Statistical Institute, Spain.)

Table A1.2: Sample sizes for the OPIA survey. Land and Cell in the columns refer to the frame from
which the units were chosen, while in the rows, they refer to frame in which the units actually reside.

Land Cell Total

Both 1727 237 1964
Cell 246 246
Land 192 192
Total 1919 483 2402

The land-phone sample was also stratified by provinces in the region of Andalusia, as shown in Table

[AL3l

Table A1.3: Stratification in land-phone sample

Province Almeria C&adiz Coérdoba Granada Huelva Jaén Madlaga Sevilla

NA) 353787 767370 508258 558087 308941 423548 872011 1190918
n,‘;‘ 262 210 252 256 275 263 207 194

(*) Those estimates can be found on the INE website: http://www.ine.es/

Cell-phone interviews were carried out with no control over the distribution by provinces owing to the
difficulty of determining the location of this type of telephone. Hence, more interviews were performed

in the most populated provinces than in the less populated ones.

A1.2.3 Initial weighting adjustments

This section describes the procedures used to create the weights for each sample. The base weights are
the ratio of the number of telephone numbers in the frame to the number sampled. The weights were

further adjusted to account for people who had multiple chances of being sampled because they had more
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than one telephone number.
First order inclusion probabilities were computed from a stratified random design in frame A and

modified taking into account the number of fixed lines (Lpy) and adults in the household (Apy) as follows:

A
A 1}, Lk

Thk = Nfan, - The design weights were computed as di, = 1/m7 for all h and k. A simple random

sample without replacement, SRSWOR, was drawn from frame B and first order inclusion probabilities
were computed and modified given the number of cell-phone numbers per individual (M}) as Wf = "’]3\,7];["',

for all k. The design weights were computed as df = l/wf.

A1.3 Estimation in dual frame telephone surveys

We consider the problem of estimating the population proportion P = N~! Zgzl Yr, where yi is an
attribute indicator for unit k, i.e., yp = 1 if unit k£ has the attribute of interest, and y; = 0 otherwise.
The number of population units belonging to the group of interest is denoted by ¥ = 25:1 Y-

If the population size is known, an estimator P of the population can easily be obtained from the
total estimator Y as the ratio P = Y /N. In cases where the population size is unknown, P=Y / N is
an estimator of P, where N is an estimate of the population size N (this situation can arise in practice
when, for example, the sampling frames available do not cover the entire target population).

We now present an overview of the estimation procedures of Y used in this survey.

A1.3.1 Single-frame approach

Bankier (1986) and Kalton and Anderson (1986) proposed estimators that treated all the observations as
if they had been sampled from a single frame, with adjusted weights in the intersection domain relying
on the inclusion probabilities for each frame. In those situations, as in our example, in which we know
the inclusion probability of the units in the sample under both sampling designs, the weights are defined

as follows for all units in frame A and in frame B:

da if kea
&/ =< (1/dA +1/dB)"t if k€ ab (A1.1)
dB if keb

Note that the units in the overlap domain, which are expected to be selected with a probability
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(2 + 72), have equal weights in frame A and in frame B.

Single frame estimator (SF). Kalton and Anderson’s (1986) single frame estimator is:
n
ySF _ Zdzfyk- (A1.2)
k=1

The single frame weights are the same for all response variables, and so the estimators are internally
consistent. For complex surveys, however, single frame estimators may not be efficient. Skinner (1991)
provides a theoretical study of the efficiency of the raking ratio estimator for multiple-frame survey. For
the calculation of an unbiased estimator of the variance of a single-frame estimator, we adopted the

approach proposed by Rao and Skinner (1996)
VSF) = V(3t) + VEP), (AL3)

A B A
where Z{! = §p(a)yr + (1 — 5k(a))ykﬂkf+ﬁ, B = 6,(0)yr + (1 — 6k(b))yk7rg%wf and V() denotes the
Horvitz-Thompson variance estimator (see Sarndal et al., 1992) with dx(a) = 1 if k € a and 0 otherwise,
dk(ab) = 1 if k € ab and 0 otherwise, d;(ba) = 1 if k € ba and 0 otherwise and 0, (b) = 1 if k € b and 0

otherwise.

Calibration estimator (CAL). In the OPIA survey, N4, Np and Ny, are all known. We can define a

calibration estimator on (Ng, Nup, Np):
n
y AL — Zw,ﬁ“lyk (A1.4)
k=1

with weights w® verified to be close to the design weights dzf and that reproduce the known totals
(Nu, Nap, Np), that is, NOAL = S0 wi@ldy(a) = N, NCAL = S0_ wis,(b) = N, and NGAL =

Z:l w,@‘”ék(ab) = Ngp. All the distance measures taken to define “closeness” provide the same set
of calibration weights, because the minimization problem has an analytic solution irrespective of the

distance function employed (see Ranalli et al. 2013 for details).

An estimator of the variance of calibration estimator can be obtained using the residuals of regression
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of y on x = (0 (a), 0 (ab), 0x (b)) as the y-variable in expression (A1.24)).

Single Frame Raking Ratio (SFRR). The single-frame estimator (SF) does not use any auxiliary infor-
mation about the population totals N4 and Np, but can be adjusted through any of the raking ratio
estimations. Skinner (1991) and Rao and Skinner (1996) showed that the raking procedures in fact

converge to give the explicit estimator

N N — NER Z\ATRR R Np — NEBR
SFRR __ A ab SF ab SF B ab SF
Y = 7A5F YoF 4 7Abe YoiE+ 7]\71)511 Y, (A1.5)

where NﬁR is the smallest root of the quadratic equation N liF z? — {J\Af{ﬁf
(N + Np) + NSENSF| 4+ NSFNANp = 0.

If N, is not known, a calibration estimator can be defined on (N4, Np):
YOAL =N gy, (A1.6)
=1

with weights w°® verified to be close to the design weights dzf and that reproduce the known totals
(N4, Np), that is, N{AF = 37 @596, (A) = Na and N§AL = S0 0§05 (B) = Np. This estimator
is the same as SFRR in ([A1.5) if the “raking” method is used in calibration.

The variance for the single frame calibration estimator is then determined using the residuals of

regression of y on x = (0;(A), 0x(B)) as the y-variable in expression (A1.24]).

A1.3.2 Dual-frame approach

In situations in which we do not know the inclusion probability of the units in the sample under both sam-
pling designs, dual-frame methods can be considered. For comparison, these methods are also considered
in our example.

We can write

Y=Y, +nYu+ (1 —1)Ys + Y, (A1.7)

where Yo =37, yj, Yab = 3 5c0p ¥is Yoa = 2 jepa ¥i and Yo =3 ey v
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Fixed weight adjustment (FwWA). The simplest weight modification to preserve approximate unbiased-

ness, as described by Hartley (1962), yields

Y (0) = Yo+ 0Yap + (1 = 0)Ysa + Y (A1.8)

Brick et al. (2006) used 6 = 1/2 in their study of a dual-frame survey in which frame A was a landline
telephone frame and frame B was a cell-phone frame. For this purpose, the value of 8 = 1/2 is frequently

recommended (see, for example, Mecatti 2007). This estimator is denoted by
VEWA = ¥, 4 (1/2) Vs + (1/2) 5o + Vi (AL9)

In order to calculate an estimator of the variance, we have taken into account that samples from

frames A and B are drawn independently and that the value for 6 is fixed. Thus,

V(Y () =V (Va4 60Ya) + V(1 —6)Ys + Y3) (A1.10)

where (A1.24)) is used to compute the variance estimations.

Hartley (HAR) (1962, 1974) proposed choosing 6 in (A1.8) so that the variance of ¥ () would be mini-

mized. The optimizing value of 6 is

Oopt = \ _ (A1.11)

and the estimator has the form
YHAR(GOPt) = Ya + eoptffab + (1 - eopt)?ba + YE‘J (A112)

However, this optimal estimator is a function of the variances and covariances of the estimated domain
totals and then the optimal estimates will differ for different response variables.

In cases where estimation of 6, is outside [0, 1], approximation

V (Yha)
V(Yab) + V(ﬁ)a)

(A1.13)

Qopt ~
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can be used instead. In our example, using (A1.24)) to estimate the three variances found in the latter
expression of ,,:, we can obtain an estimation for the 6,,; without using second-order inclusion proba-

bilities. The variance estimator for the Hartley estimator can be obtained by replacing 6 in (A1.10|) for
the 8¢ value given in (A1.11)).

Fuller and Burmeister (FB). Fuller and Burmeister (1972) proposed modifying Hartley’s estimator by
incorporating additional information regarding estimation of the overlap domain. The resulting estimator
is

YFB(B) = Yy + B1Yap + (1 = B1)Yoa + Yo + Bo(Nap — Nia) (A1.14)

where 81 and S, are selected to minimize V (Yrg(3)). In this case, and as with Hartley’s estimator, a new
set of weights must be calculated for each response variable, leading to the inconsistency of the estimator.
Optimum values depend on covariances among the Horvitz-Thompson estimators and it is also possible
to obtain values of 31 outside [0,1]. Moreover, it is not possible to estimate the population size N using

the FB estimator, because the minimization process requires the inversion of a singular matrix.

Pseudo-Maximum Likelihood (PML). Skinner and Rao (1996) proposed modifying the maximum like-
lihood estimator for a simple random sample suggested by Fuller and Burmeister (1972) to obtain a
pseudo-maximum likelihood (PML) estimator for a complex design. The PML estimator, unlike the
Hartley and Fuller-Burmeister estimators, is linear in y and is of the form

N NEML@) o NEME(@9) . Np - NEME(E)

yPML (g it Y, + —4 Yop(0) + ———ab 7y, Al1.15
(0) X, Non®) b(0) X, b ( )

where )A/'ab(e) =0Y,, + (1-— H)f/},m Nab(ﬁ) = 0N, + (1- G)Nba and NLﬁ)ML(G) is the smallest root of the
quadratic equation [#/Ng + (1 — 0)/N4] 22 — |1+ 0N, /Np + (1 — Q)Nba/NA} &+ Ngp = 0. Skinner and

Rao (1996) suggested choosing 6 to minimize the asymptotic variance of N EML(6)) with

NNV (Noa)
NuNpV (Npa) + NyNaV (Nap)

0= (A1.16)
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or estimate it as

0 ~

; , (AL.17)
V(Nab) + V(Nba)

In practice the variances in (A1.16) are unknown and must be estimated from the data. The PML
estimator uses the same set of weights for each response variable and thus avoids some of the difficulties

associated with the Hartley and Fuller-Burmeister estimators.

To estimate the variance of the PML estimator, we followed the method proposed by Rao and Skinner

(1996), which provides a consistent estimator of variance in the form

V(YPMLYy — v (E0) + V(EP), (A1.18)

where, in this case, 2,{3 =y — % if k € s, and 2,‘? =0 (yk — Zg‘“’ ) + 5\45 if k € sqp, where 6 is calculated
a ab

. 3 Y, Y, Y n nalN ‘. =B Yy
according to (|A1.16), A = Xab — 2o 2 gnd ¢ = —245e — Similarly, we can define 2z, = vy, — =2 if
& 6 ’ Nap Ng Ny ¢ naNp+npNg S ¥ k Yk Ny

ke s and 28 = (1-0) (g — =) + A(1 = 6) il & € sp.

Pseudo-Empirical-Likelihood (PEL). Recently, Rao and Wu (2010) extended the Pseudo-Empirical-
Likelihood approach (PEL) proposed by Wu and Rao (2006) from one-frame surveys to dual-frame surveys

following a stratification approach and considering an estimation of the population mean of y,
YPEL(9) = (N, /N)Yq + (0)(Nap/N)Yap + (Nap/N)(1 = 0)Yse + (Ny/N)Y5, (A1.19)

where 6 € (0,1) is a fixed constant to be specified and f’a = Zkesa DakYks f/b = Zkesb Poryr and ?ab =
Zkesab Dabk Yk = ?ba. The weights maximize the pseudo empirical likelihood and verify Zkesa Dak = 1,

abk = 1 bak = 1, v = 1, and the additional constraint induced by the common
ZkESQb p ’ kEspa p keEsy p ’ y

domain mean Y,;, = Y,. In this case, we use the same estimation for @ as the one proposed in (A1.17).

Instead of calculating the explicit variance of the estimator, confidence intervals are obtained using the
bi-section method described by Wu (2005). This method constructs intervals in the form 6|r,,5(8) < x3(«),
where x(a) is the 1 — o quantile from a x? distribution with one degree of freedom and 7,,; represents
the pseudo empirical log likelihood ratio statistic, which can be obtained as the difference of two PEL

functions.
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Al1.4 Jackknife variance estimation

We also use jackknife estimation to determine the variance of the estimators compared (Wolter, 2007).
The variance estimators presented in the third section can be computed in many different ways, depend-
ing on the specific estimator. Moreover, in small samples, they may poorly estimate the variability of
estimators because they estimate the asymptotic variance rather than the exact variance. Instead, the
jackknife approach is a common method for variance estimation that can be used whatever the estimator.
Thus, estimated variances obtained through this method can be used to compare the efficiencies of the

estimators. For the sake of brevity, in this section dual or single-frame estimators are denoted by Y.

In the case of a stratified design, as in frame A, let frame A be divided into H strata and let stratum
h have N 45 observation units of which n4j are sampled. Then, a jackknife variance estimator of Y, with

an approximate finite-population correction is given by

H
. 1 . _an
VAY.) = _ nap \ Map — 1 Arpay 2 ]
P =3 (1- ) M PATRA (A1.20)

where YCA(hi) is the value taken by estimator Y, after dropping unit ¢ of stratum h from sample sap,

—Ah .
Y. is the average of these n 45 values.

If we consider a non stratified design, as in frame B, the jackknife estimator for the variance of Y.,
with an approximate finite-population correction may be given by
By _ "B —1 np B/ oBio
Vy(Ye) = T(l - N73) Z (Yoo -Y,.) (Al.21)

1€sp

5 N e . o . .- B .
where Y.P (i) is the value taken by estimator Y, after dropping unit i from sg and Y, is the average of

Y.B (i) values (see Wolter, 2007).

For any estimator Y, in the single or dual frame approach, we compute }A’C(i),i =1,...,n. Then,
the pseudo values Y, (i) are separated into those from frame A and from frame B and VA and VP are

computed. Finally, due to the independence, V; = V,A + V]B
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A1.5 Results for the OPIA Survey

To examine the performance of the dual-frame estimation methods in practice, we applied them to the
dataset from the OPIA survey.
Three main variables are included in this study, related to “goodness of immigration”, “amount of

immigration” and “confidence in immigration”. The variables are the answers to the following questions:

o And in relation to the number of immigrants currently living in Andalusia, do you think there are

...2: Too many, A reasonable number, Too few

e In general, do you think that for Andalusia, immigration is ...?: Very bad, Bad, Neither good nor

bad, Good, Very good

e In general, how much confidence do you have in immigrants? None at all, Very little, It depends,

Quite a lot, Very much

Each category of each variable is treated separately as an attribute so that for any of the attributes of
interest, yx; = 1 if the k-th individual presents the attribute I and yr; = 0 otherwise. The proportions
for all the main variables are computed using Pr = %, where Y7 is the estimated total of units in the
population with the attribute of interest I and N is an estimate of the population size N. For example,
using the single frame estimator we estimate the population total and the population size as:

n n

VAT =S "d g and  NST =3N"ay, (A1.22)
k=1 k=1

respectively, and similarly for the other estimators. For the FB estimator, the matrix to solve the minimum
variance is singular in estimating the population size N and this estimator is not included.

The weights w§® of the calibration estimator (A1.4) verify that

> wito(a) = 643261, Y wi™(ab) = 1367996, Y wi™ sk (b) = 4339659. (A1.23)
k=1 k=1 k=1
As Sdrndal (2007) says, the calibration gives a unique weighting system, one that is perfectly clear
and transparent, and applicable to all study variables.
In the dual-frame approach, there is no single éopt for the HAR estimator, since it depends on the

values of each study variable. For the PEL estimator, the value for 6 in |j (applicable to all study
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variables) is 0 = 0.729684, whereas with the FWA estimator we use 6 = 1/2. For the PML estimator, the

value for 6 in (A1.16) is § = 0.620662.

All dual-frame estimators have one thing in common: the weighting of the estimations for the overlap

domain, either with 1/2 or with one of estimations of  in (A1.11), (A1.13]) or (A1.16]). In single-frame

estimators, the weighting is given by probabilities under both sampling designs.

All the estimators considered in this paper require estimates of the domain sizes N,, N, and Ng;,. The
estimates for the sizes of the population domains are obtained using the Horvitz-Thompson estimator.
For domain a, the population size N, is estimated by N, = Sor2 ditéy(a) where d(a) = 1if k € a and
0 otherwise. For domain ab, there are two options: a) the population size Ny, is estimated by Nab =
Sn2, didox(ab) where 8 (ab) = 1 if k € ab and 0 otherwise and b) the population size N, is estimated by
Npo = 12, dB6y(ab). For domain b, the population size Ny, is estimated by Ny = SRE | dP oy (b) where
0r(b) = 11if k € b and 0 otherwise.

In a similar way, we denote the Horvitz-Thompson estimator of any y variable in domain a as }Afa =

SR, d 6k (a)yy, and similarly for the others. In the present survey the following results are obtained:

Table Al.4: Estimates of domain sizes and coefficients of variation

Domain Estimate CV

a 493776 0,084
ab 4646468 0,020
ba 3117703 0,049

b 3227202 0,047

The variances in Table are computed using Deville’s method (Deville, 1993) to avoid second-
order probabilities (although in this case it is possible to easily compute them). This method yields,
given a y-variable whose population total Y is estimated using the Horvitz-Thompson estimator based

on a sample s, ¥ = >« Y/ Tk, the following variance estimator:

2
5 Y

where ap = (1 —mx)/ > (1 —m).

Tables [A1.5] [A1.6] and [A1.7] show the point and 95% confidence level estimation of proportions of

the main variables. Two different sets of confidence intervals are calculated: one, based on the jackknife
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variance estimation described in the fourth section and the other, based on the variance estimations
described in the third section. Other tables could be obtained if finite population correction factors were
used in jackknife variance estimation, but they are not included here because the results would be very

similar.

For the outcomes shown in Tables [AT.5] [AT.6] and [AT.7] we obtained the following findings:

e There are no important differences between the estimates produced with the single or dual frame

approach.

e Among all the estimation strategies, the calibration method performs best, and produces the small-
est confidence interval. Calibration estimation can be implemented easily using existing software
for single-frame populations. There are several R packages for obtaining estimations using the

calibration technique, as the sampling package.

e The jackknife method often produces better intervals than methods based on the estimated variance

given by the authors (except for the PEL intervals)

At the time of data collection, the frame sizes for land phones (A) and cell phones (B) were Ny =
4982920 and Ny = 5707655 and the overlap domain was size N,, = 4339659. We also studied the
effect on estimation of using different values for frame and overlap domain sizes extracted from different
sources. For this purpose, we considered the three sets of sizes shown in Table 8. The data were
obtained from the Survey on the Equipment and Use of Information and Communication Technologies in
Households (conducted by the Spanish National Institute of Statistics) and from the TESA Households
Survey conducted in 2012 and 2013. Using four of the estimators described in the third section, we
computed the three possible estimations, the average values and the coefficients of variation. The results

of this are shown in Tables 9 and 10 for the three main variables.

The estimates obtained by each method, using different values of frame sizes obtained from 3 sources,
are, in general, similar. It is concluded that the estimators are only slightly influenced by the source used

to estimate the population sizes for landline and cell phones.
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A1.6 Conclusions

This paper addresses some of the issues involved in using dual-frame methods for landline and cell-phone
surveys. Multiple frame surveys are very useful when it is not possible to guarantee complete coverage
of the target population, and may result in considerable cost savings in comparison with a single-frame
design with comparable precision. However, this technique is not often applied by national statistical
agencies or by private survey agencies due to its complexity and the difficulties inherent in analyzing
multiple-frame surveys with standard survey software.

Several estimators have been proposed and the first question to be considered is how to choose the
most suitable one for this application.

Calibration, fixed weight, PML and single-frame estimators all give internal consistency, since the
same set of adjusted weights is used for all variables. In our application, good results were obtained
with these procedures. We recommend that an internally-consistent estimators be used. With repeated
surveys, the simplicity and transparency of a fixed-weight estimator may be preferred. Fixed-weight
adjustments may make year-to year comparisons easier in an annual survey, where the domain proportions
are relatively constant over time. Fixed-weight estimators are also more amenable to weight adjustments
for non-response and domain misclassification. Standard survey software may then be used to estimate
population proportions and totals using the modified weights.

On the other hand, variance estimation is more complicated when dual-frame estimators are used.
Resampling methods such as jackknife estimation may then be used to estimate variances. Jackknife
intervals are easy to compute and give accurate intervals.

The dual-frame estimates obtained from the variables considered in this study suggest that the use
of different values for frame and overlap domain sizes extracted from different sources had no substantial
impact on the level of efficiency obtained.

In this study, the use of auxiliary variables was not considered for estimating the study variables.
The use of demographic variables such as age, income or emancipation in the calibration and pseudo-
empirical-likelihood methods can improve the estimates, because these variables can have a considerable
impact on the distribution of landlines and cell phones.

We also highlight the need to implement these methods in both commercial and non-commercial

software for survey estimation. In this respect, we are now working on an R package for point and
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interval estimation for a two-frame estimator.

Finally, let us note that the results obtained in applying these methods in the OPIA survey indicate
that negative views towards immigration continue to spread, and that currently 59-61% of those surveyed
in Andalusia state that immigration is bad or very bad for the region (in the previous edition of the
study, in 2011, the corresponding figure was 58 %, and in the first such survey, in 2005, it was only 51%).
Perceptions regarding the number of immigrants, however, have changed in the opposite direction: there
is now a lower percentage of people who say there are too many immigrants (from 51 % in 2011 to current

levels of 40-42 %), while the other scores have risen slightly.
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Table A1.5: Point and 95% confidence level estimation of proportions using several methods for variance
estimation. Main variable: ”goodness of immigration”

In general, do you think that for Andalusia,
immigration is ...?

Jackknife variance Analytical variance
Estimator PROP LB UB LEN LB UB LEN
Very bad
SF 13.72 11.57 15.87  4.31 11.57 15.87  4.30
SFRR 13.90 11.84 15.95 4.11 11.09 16.12 5.03
CAL 13.35 11.69 15.01 3.33 10.72 15.97  5.25
FWA 13.70 11.66 15.74  4.08 11.68 16.30  4.62
HAR 13.44 11.66 15.23 3.58 11.64 15.98  4.34
PML 13.87 11.76 15.97  4.21 11.57 16.87  5.30
PEL 13.62 11.71 15.53 3.82 12.89 15.86 2.97
Bad
SF 47.24 43.72 50.77 7.05 43.79 50.70 6.91
SFRR 47.39 44.43  50.35 5.92 43.98 51.14  7.16
CAL 46.92 44.52 49.33  4.81 43.18 50.66 7.48
FWA 45.48 42.24  48.72 6.49 43.10 50.16 7.06
HAR 46.16 43.19  49.12 5.93 43.06 49.93 6.87
PML 46.43 43.02 49.84  6.82 42.96 50.95 7.99
PEL 45.95 43.24  48.65 5.41 45.22 50.79 5.57
Neither good nor bad
SF 4.85 3.54 6.16 2.61 3.54 6.16 2.61
SFRR 4.47 3.42 5.51 2.09 3.08 6.19 3.11
CAL 4.75 3.75 5.74 1.99 3.13 6.37 3.24
FWA 4.20 3.18 5.23 2.05 3.17 5.88 2.71
HAR 4.60 3.59 5.62 2.03 3.09 5.68 2.59
PML 4.34 3.30 5.38 2.08 2.44 5.43 2.99
PEL 4.33 3.30 5.36 2.06 2.81 5.21 2.40
Good
SF 28.35 25.56  31.14  5.58 25.58 31.13 5.55
SFRR 28.22 25.87  30.57 4.70 25.00 31.33 6.33
CAL 28.98 26.86 31.11 4.25 25.68 32.29 6.61
FWA 30.46 27.74  33.19 5.45 25.98 31.85 5.87
HAR 29.93 27.52 3234 4.82 25.71 31.32 5.61
PML 29.36 26.92 31.81 4.89 25.19 31.81 6.62
PEL 29.96 27.49 3243 494 25.05 29.96 491
Very good
SF 2.18 1.36 3.00 1.63 1.36 3.00 1.64
SFRR 2.10 1.41 2.79 1.38 1.12 3.08 1.96
CAL 2.16 1.51 2.82 1.31 1.14 3.19 2.05
FWA 2.14 1.35 2.93 1.58 1.25 3.03 1.78
HAR 2.11 1.43 2.78 1.35 1.29 2.94 1.65
PML 2.08 1.36 2.80 1.44 0.98 3.05 2.07
PEL 2.12 1.35 2.88 1.53 1.39 2.54 1.15
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Table A1.6: Point and 95% confidence level estimation of proportions using several methods for variance
estimation. Main variable: ” Amount of immigration”

In relation to the number of immigrants currently
living in Andalusia, do you think there are ...?

Jackknife variance Analytical variance
Estimator PROP LB UB LEN LB UB LEN
Too many
SF 42.31 38.95 45.66 6.71 38.97 45.64 6.67
SFRR 40.69 37.90 43.48 5.59 37.79 44.90 7.11
CAL 40.97 38.61 43.34 4.74 37.26 44.69 7.43
FWA 40.26 37.28 43.24 5.97 39.10 45.94 6.84
HAR 39.92 37.26 42.59 5.33 38.75 45.42 6.67
PML 40.44 37.29 43.59 6.30 38.12 45.86 7.74
PEL 41.05 38.37 43.73 5.36 39.78 43.93 4.15
A reasonable number
SF 45.81 42.44 49.19 6.74 42.51 49.12 6.61
SFRR 47.85 44.99 50.72 5.73 43.05 50.15 7.10
CAL 47.03 44.63 49.43 4.79 43.32 50.74 7.42
FWA 47.91 44.59 51.23 6.64 42.03 48.82 6.79
HAR 48.43 45.41 51.45 6.04 42.02 48.63 6.61
PML 47.95 44.88 51.02 6.14 41.82 49.35 7.53
PEL 46.72 44.00 49.43 5.43 43.44 47.96 4.52
Too few
SF 6.06 4.53 7.59 3.06 4.52 7.59 3.07
SFRR 5.39 4.15 6.63 2.48 3.87 7.49 3.62
CAL 5.62 4.50 6.74 2.25 3.73 7.51 3.78
FWA 5.19 3.99 6.39 2.40 4.38 7.62 3.24
HAR 5.34 4.22 6.46 2.23 4.38 7.47 3.09
PML 5.33 4.09 6.56 2.47 3.74 7.35 3.62
PEL 5.49 4.27 6.72 2.45 4.51 6.63 2.12
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Table A1.7: Point and 95% confidence level estimation of proportions using several methods for variance
estimation. Main variable: ”Confidence in immigrants”

In general, how much confidence
do you have in immigrants?

Estimator

SF
SFRR
CAL
FWA
HAR
PML
PEL

SF
SFRR
CAL
FWA
HAR
PML
PEL

SF
SFRR
CAL
FWA
HAR
PML
PEL

SF
SFRR
CAL
FWA
HAR
PML
PEL

SF
SFRR
CAL
FWA
HAR
PML
PEL

Jackknife variance

Analytical variance

PROP LB UB LEN LB UB LEN
None at all
7.15 5.56 8.75 3.18 5.56 8.75 3.19
7.66 6.07 9.24 3.18 5.59 9.36 3.77
7.17 5.91 8.43 2.51 5.20 9.14 3.93
7.15 5.67 8.64 2.98 5.47 8.88 3.41
7.01 5.70 8.31 2.61 5.48 8.68 3.20
7.36 5.76 8.97 3.21 5.87 9.80 3.93
7.14 5.73 8.54 2.81 7.14 9.37 2.23
Very little
35.67 3243 3890 @ 6.47 32.46 38.88 6.42
34.61 31.83 37.40  5.56 31.46 38.42 6.96
34.34 32.04  36.65 4.61 30.71 37.98 7.27
34.09 31.16  37.02 5.86 32.80 39.46 6.66
33.65 31.01 36.29 5.28 32.37  38.80 6.43
34.44 31.36  37.52 6.16 32.32 39.85 7.53
34.71 32.09 37.32 5.22 34.14 38.33 4.19
Quite a lot
35.02 32.06  37.98 5.92 32.09 3794 585
36.45 33.80 39.10 5.31 32.36 38.98 6.62
36.55 34.27  38.84  4.57 33.10  40.01 6.91
38.18 35.14 41.23 6.09 32.08 38.21 6.13
38.12 35.39  40.84 5.45 32.07  37.96 5.89
37.34 34.63  40.05 5.42 31.80 38.72 6.92
37.06 34.44 39.67 5.22 32.72 37.06 4.34
Very much
12.24 10.13 14.34 4.20 10.13 14.34 4.21
10.94 9.30 12.59 3.28 8.85 13.75  4.90
11.34 9.82 12.86 3.05 8.78 13.90 5.12
10.80 9.10 12.50 3.40 9.95 14.40 4.45
10.90 9.36 12.44 3.08 9.94 14.16 4.22
10.90 9.22 12.57  3.35 8.58 13.56  4.98
11.18 9.48 12.88 3.40 9.36 12.10 2.74
It depends
7.29 5.73 8.85 3.13 5.73 8.85 3.12
6.87 5.71 8.04 2.33 5.64 9.33 3.69
7.63 6.38 8.87 2.49 5.70 9.56 3.85
6.68 5.42 7.94 2.51 5.18 8.43 3.25
7.25 6.03 8.47 2.44 5.17 8.27 3.10
6.71 5.53 7.90 2.37 4.72 8.33 3.61
7.05 5.73 8.36 2.63 5.27 8.27 3.00
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Table A1.8: Frame sizes

ICT-H ICT-H IESA-SH
2012 2013 2012
Ny 4982920 4507662 4880574
Np 5707655 6073789 6098453
Nap 4339659 3983443 4266797

IESA-SH, Survey in Households, IESA
ICT-H, Survey on the Equipment and Use of Information and

Communication Technologies in Households, INE

Table A1.9: Average, AVG and coefficient of variation, cv, of four point estimations. Main variable:
”Goodness of immigration”

In general, do you think that for Andalusia,
immigration is ...?

ICT-H ICT-H IESA-SH

Estimator AVG 2012 2013 2012 cv
Very bad
SFRR 13.96 13.90 13.95 14.04 0.51
CAL 13.45 13.35 13.47 13.54 0.71
PML 13.85 13.87 13.82 13.85 0.18
PEL 13.71 13.62 13.72 13.78 0.59
Bad
SFRR 47.24 47.39 47.19 47.14 0.28
CAL 47.02 46.92 47.05 47.08 0.18
PML 46.28 46.43 46.10 46.32 0.36
PEL 46.10 45.95 46.14 46.22 0.30
Neither good nor bad
SFRR 4.51 4.47 4.52 4.53 0.71
CAL 4.77 4.75 4.77 4.80 0.53
PML 4.40 4.34 4.46 4.41 1.37
PEL 4.38 4.33 4.38 4.43 1.14
Good
SFRR 28.26 28.16 28.31 28.30 0.30
CAL 28.80 28.98 28.76 28.66 0.57
PML 28.06 27.77 27.86 28.55 1.52
PEL 29.72 29.96 29.67 29.53 0
Very good

SFRR 2.12 2.10 2.13 2.14 0.98
CAL 2.17 2.16 2.17 2.17 0.27
PML 2.11 2.08 2.13 2.11 1.19

PEL 2.12 2.12 2.12 2.13 0.27
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Table A1.10: Average, AVG and coefficient of variation, cv, of four point estimations. Main variables:
“amount immigration”, ”confidence in immigrants”

In relation to the number of immigrants currently

living in Andalusia, do you think there are ...?

ICT-H ICT-H  IESA-SH

Estimator AVG 2012 2013 2012 cv
Too many
SFRR 40.82 40.69 40.81 40.96 0.33
CAL 41.34 40.97 41.38 41.68 0.86
PML 40.46 40.44 40.46 40.53 0.12
PEL 41.42 41.05 41.45 41.75 0.85
A reasonable number
SFRR 47.86 47.85 47.88 47.86 0.03
CAL 46.69 47.03 46.65 46.39 0.69
PML 48.03 47.95 48.10 48.03 0.16
PEL 46.40 46.72 46.36 46.11 0.66
Too few
SFRR 5.44 5.39 5.44 5.4 0.92
CAL 5.74 5.62 5.75 5.85 2.01
PML 5.38 5.33 5.39 5.41 0.77
PEL 5.62 5.49 5.63 5.74 2.23
In general, how much
confidence do you have in immigrants?
ICT-H ICT-H IESA-SH
Estimator AVG 2012 2013 2012 cv
None at all
SFRR 7.58 7.66 7.56 7 0.90
CAL 7.17 7.17 7.18 7.16 0.14
PML 7.27 7.36 7.16 7.28 1.39
PEL 7.14 7.14 7.15 7.13 0.14
Very little
SFRR 34.73 34.61 34.70 34.87 0.38
CAL 34.71 34.34 34.76 35.04 1.01
PML 34.46 34.44 34.34 34.61 0.40
PEL 35.06 34.71 35.10 35.36 0.93
Quite a lot
SFRR 36.45 36.45 36.49 36.40 0.12
CAL 36.12 36.55 36.06 35.75 1.12
PML 37.51 37.34 37.61 37.58 0.39
PEL 36.59 37.06 36.53 36.19 1.20
Very much
SFRR 11.14 10.94 11.16 11.32 1.71
CAL 11.59 11.34 11.60 11.82 2.07
PML 11.09 10.90 11.15 11.22 1.52
PEL 11.44 11.18 11.45 11.68 2.19
It depends
SFRR 6.73 6.87 6.73 6.58 2.16
CAL 7.53 7.63 7.52 7.45 1.20
PML 6.74 6.71 6.68 6.82 1.09
PEL 6.99 7.05 6.98 6.93 0.86
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in dual frame surveys
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Frames2: A package for estimation in dual frame surveys.
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Abstract

Data from complex survey designs require special consideration with regard to estimation for finite
population parameters and corresponding variance estimation procedures, as a consequence of significant
departures from simple random sampling assumption. In the past decade a number of statistical software
packages have been developed to facilitate the analysis of complex survey data. All these statistical
software are able to treat samples selected from one sampling frame containing all population units.
Dual frame surveys are very useful when it is not possible to guarantee a complete coverage of the
target population and may result in considerable cost savings over a single frame design with comparable
precision. There are several available estimators in the statistical literature but no existing software
covers dual frame estimation procedures. This gap is now filled by Frames2. In this paper we highlight

the main features of the package. The package includes the main estimators in dual frame surveys and
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also provides interval confidence estimation.

A2.1 Introduction

Classic sampling theory usually assumes the existence of one sampling frame containing all finite popu-
lation units. Then, a probability sample is drawn according to a given sampling design and information
collected is used for estimation and inference purposes. In traditional design-based inference the popu-
lation data are regarded as fixed and the randomness comes entirely from the sampling procedure. The
most used design-based estimator is the Horvitz-Thompson estimator that is unbiased for the population
total if the sampling frame includes all population units, if all sampled units respond and if there is no
measurement error. In the presence of auxiliary information, there exist several procedures to obtain
more efficient estimators for population means and totals of variable of interest; in particular, customary
ratio, regression, raking, post-stratified and calibration estimators. Several software packages have been
developed to facilitate the analysis of complex survey data and implement some of these estimators as
SAS, SPSS, Systat, Stata, SUDAAN or PCCarp. CRAN contains several R packages that include these
design-based methods typically used in survey methodology to treat samples selected from one sampling
frame (e.g. survey (Lumley, 2014), sampling (Tille and Matei, 2012), laeken (Alfons et al., 2014) or Teach-
ingSampling (Gutierrez Rojas, 2014) among others). Templ (2014) performs a detailed list of packages
that includes methods to analyse complex surveys.

In practice, the assumption that the sampling frame contains all population units is rarely met.
Often, one finds that sampling from a frame which is known to cover approximately all units in the
population is quite expensive while other frames (e.g. special lists of units) are available for cheaper
sampling methods. However, the latter usually only cover an unknown or only approximately known
fraction of the population. A common example of frame undercoverage is provided by telephone surveys.
Estimation could be affected by serious bias due to the lack of a telephone in some households and the
generalised use of mobile phones, which are sometimes replacing fixed (land) lines entirely. The potential
for coverage error as a result of the exponential growth of the cell-phone only population has led to the
development of dual-frame surveys. In these designs, a traditional sample from the landline frame is
supplemented with an independent sample from a register of cell-phone numbers.

Dual frame sampling approach assumes that two frames are available for sampling and that, overall,
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they cover the entire target population. The most common situation is the one represented in Figure
where the two frames, say frame A and frame B, show a certain degree of overlapping, so it is
possible to distinguish three disjoint non-empty domains: domain a, containing units belonging to frame
A but not to frame B; domain b, containing units belonging to frame B but not to frame A and domain
ab, containing units belonging to both frames. As an example, consider a telephone survey where both
landline and cell phone lists are available; let A be the landline frame and B the cell phone frame. Then,
it is possible to distinguish three types of individuals: landline only units, cell-only units and units with

both landline and cell phone, which will compose domain a, b and ab, respectively.

>
w
>
o]

Figure A2.1: Two frames with Figure A2.2: Frame B is in- Figure A2.3: Frame A and
overlapping. cluded in frame A. frame B exactly match.

Nevertheless, one can face some other situations depending on the relative positions of the frames. For
example, Figure shows the case in which frame B is totally included in frame A, that is, frame B is
a subset of frame A. Here domain b is empty. We also may find scenarios where the two sampling frames
exactly match, as depicted in Figure where ab is the only non-empty domain. Finally, the scenario
where domain ab is empty has no interest from a dual frame perspective, since it can be considered as a

special case of stratified sampling.

Whatever the scenario, an appropriate choice of the frames results in a better coverage of the target
population, which, in turn, leads to a better efficiency of estimators calculated from data from dual
frame surveys. This point is particularly important when estimating parameters in rare or elusive pop-
ulations, where undercoverage errors are usually due to the difficulty of finding individuals showing the
characteristic under study when sampling from only one general frame. This issue can be dealt with
by incorporating a second frame with a high density of members of the rare population so that the two
frames are, together, now complete. Dual frame sampling as a method of improvement of efficiency may
seem expensive and unviable, but it is not. In fact, Hartley (1962) notes that dual frame surveys can

result in important cost savings in comparison with single frame ones with a comparable efficiency. As
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an additional interesting characteristic, dual frame methodology offers the researcher the possibility to
consider different data collection procedures and/or different sampling designs, one for each frame. Dual
frame surveys have gained much attention and became largely used by statistical agencies and private

organizations to take advantage of these benefits.

Standard software packages for complex surveys can not be used directly when the sample is obtained
from a dual frame survey because the classical design-based estimators are severely biased and there is
a underestimation of standard errors. Weighted analyses with standard statistical software, with certain
modified weights, can yield correct point estimates of population parameters but still yield incorrect
results for estimated standard errors. A number of authors have developed methods for estimating
population means and totals from dual (or, more generally, multiple) frame surveys but most of these
methods require ad-hoc software for their implementation. To the best of our knowledge, there is no

software incorporating these estimation procedures for handling dual frame surveys.

Frames?2 (Arcos et al., 2015) tries to fill this gap by providing functions for point and interval es-
timation from dual frame surveys. The paper is organized as follows. In the next section, we provide
an overview of the main point estimators proposed so far in the dual frame context and reviews also
jackknife variance estimation as a tool to compare efficiency for all of them. Subsequently, we present
package Frames2, discussing guidelines that have been followed to construct it and presenting its principal

functions and functionalities. We also provide examples to illustrate how the package works.

A2.2 Estimation in dual frame surveys

Consider again the situation depicted in Figure Assume we have a finite set of N population units
identified by integers, U = {1,...,k,..., N}, and let A and B be two sampling-frames, both can be
incomplete, but it is assumed that together they cover the entire finite population. Let A be the set of
population units in frame A and B the set of population units in frame B. The population of interest,
U, may be divided into three mutually exclusive domains, a = AN B, b= A°NB and ab = AN B. Let

N,Na,Np, Ny, Ny, and Ng, be the number of population units in U, A, B, a, b, ab, respectively.

Let y be a variable of interest in the population and let y; be its value on unit k, for k = 1,..., N.
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The objective is to estimate the finite population total Y =), y; that can be written as
Y = }L +'Ybb+_y%7

where Y, = > 1o Uk, Yab = D pcap Yk and Yy = >, o, yx. To this end, independent samples s 4 and sp are
drawn from frame A and frame B of sizes n4 and np, respectively. Unit k in A has first-order inclusion

probability 77! = Pr(k € s4) and unit k in B has first-order inclusion probability 72 = Pr(k € sp).

From data collected in s4, it is possible to compute one unbiased estimator of the total for each

domain in frame A, Y and Y4, as described below:

ab?

Z Sk (@)di yr., Y’Ab Z O (ab) iy,

kEsa k€sa
where §;(a) = 1 if k € a and 0 otherwise, & (ab) = 1 if k € ab and 0 otherwise and d;! are the weights
under the sampling design used in frame A, defined as the inverse of the first order inclusion probabilities,
dd = 1/7{1. Similarly, using information included in sp, one can obtain an unbiased estimator of total

for domain b and another one for domain ab, Y, and Y2 5> which can be expressed as

Yy =Y on(b)di v, Y=Y dlab)dfyx,

k€sp k€sp

with 6, (b) = 1 if k € b and 0 otherwise, and dP the weights under the sampling design used in frame B

defined as the inverse of the first order inclusion probabilities, d2 = 1/75.

Different approaches for estimating the population total from dual frame surveys have been proposed

in the literature. Hartley (1962) suggests the use of a parameter, 0, to weight YA and Y2

3, providing the
estimator

Y=Y, +0V4 +(1-0)YE +V, (A2.1)

where 0 € [0,1]. Hartley (1974) himself proved that

V(ffﬁ) + C’ov(ff Ya]i’) - C’ov(f’a, Ya‘%)
V(Y3) +V(VE)

eopt

is the optimum value for 6 so that variance of the estimator with respect to the design is minimized. In
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practice, 6,,: cannot be computed, since population variances and covariances involved in its calculation
are unknown, so they must be estimated from sampling data. An estimator for the variance of Yy can
be computed, taking into account that samples from frame A and frame B are drawn independently, as

follows

V(Vi) = V(Va) + 02V (YA + 0Cov(Ya, Vi) + (1 — 0)2V(YE) + V(Vy) + (1 — 0)Cov(Vs, VE), (A2.2)

where hats denote suitable variance and covariance estimators.

Fuller and Burmeister (1972) introduce information from the estimation of overlap domain size, ob-

taining the following estimator
Yirp = Yo+ Yo+ BV + (1= BOYaE + 5o (Vo — Nij), (A2.3)

where N4 = > kes, Ox(ab)d;} and NE = > kesy, Ok(ab)df . Fuller and Burmeister (1972) also show that

~ N . . . -1
|:6~1:| — _ |: R V(Ya% Ya%) R COU(YaAb Ya%’ NA Nzg))
B Cov(Ya‘z Ya]i,NA NaB;) V(N(ﬁ) Nﬁ)

L [Coo(Ya+ Yo+ V2.V -V D)
Cov(Yy + Y, +YE NA — NB)

are the optimal values for 57 and S5 in the sense that they minimize the variance of the estimator. Again,
Bl and BQ need to be estimated, since population values are not known in practice. An estimator for the

variance of YF B is given by
V(Yrp) =V (Vo) +V (V5)+ 51 (Cov(Yy, Vi) —Cov(Yp, Y.5)) +B2(Cov(Vy, Nij) — Cov(Vp, N5)), (A2.4)
with Y/B = YA'b + Y(g
Bankier (1986) and Kalton and Anderson (1986) combine all sampling units coming from the two

frames, s4 and sp, trying to build a single sample as if it was drawn from only one frame. Sampling

weights for the units in the overlap domain need, then, to be modified to avoid bias. These adjusted
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weights are

JA — d’,j ifkea and JB — dkB ifkeb
Fl(/d +1/d8)t ifk€ab F(1/d2 +1/dB)"t ifk € ab
or, summarizing,
B dg ifkea
dp, =14 (1/d2 +1/dB)~" ifkecab. (A2.5)
d,’f ifkeb
Hence, the estimator can be expressed in the form
YBKA = Z ci,?yk + Z cikByk = deyk, (A2.6)
k€sa k€sp kes

with s = s4 U sp. Note that to compute this estimator, one needs to know, for units in sample coming
from the overlap domain, the inclusion probability under both sampling designs. Rao and Skinner (1996)

propose the following unbiased estimator for the variance of the estimator

V(Vera) =V(Y_ 2+ V(Y 2, (A2.7)

kE€sa keEsp

A B
where ! = 8 (a)yr + (1 — 6k(a))ykm§+ﬂf and zP = 6, (b)yx + (1 — 5k(b))ykm{:TTk7r,13'

When frame sizes, Ny and Npg, are known, estimator (A2.6) can be adjusted to increase efficiency
through different procedures as, for example, raking ratio (Bankier, 1986; Skinner, 1991). Applying the
latter, one obtains a new estimator, usually called raking ratio (Skinner, 1991), which has the form

Na= N on  No = Nog™ o |

N, Ny Naps

Nrake R
b Yo, (A2.8)

Ysrrr =

where }Afabs = ZkESA Jfék(ab)yk +ZkEsB JkB§k(ab)yk, NabS = Zk’EsA Jfék(ab) + ZkESB JkBék(ab), Na =
> kes, Ok(a), Ny = > kesy Ok (D) and Nr#ke is the smaller root of quadratic equation Nups2? —(Naps(Na+
Ng)+ NANE)z + NypsNaNp = 0.

Skinner and Rao (1986) use a pseudo maximum likelihood approach to extend to complex designs

the maximum likelihood estimator proposed by Fuller and Burmeister (1972) only for simple random
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sampling without replacement. The resulting estimator is given by

Na — ]YﬁML(W) yA + Np — ]YﬂML(W) YbB
N Ny

NPML(,Y) . R
’}/NA —Zb(l ’Y)NB [PyYajg + (1 - W)Yag]u
ab - ab

Ypur = a

(A2.9)

where NLME () is the smallest of the roots of quadratic equation [y/Ng+(1—7)/Nalz? —[1+yN4 /Ng+
(1 =~)NE/Nalz +yNA + (1 —v)NE =0 and v € (0,1). It is also shown that the following value for ~y

N,NgV(NE)
NaNBV(Nﬁ) + NbNAV(N;};)

Yopt = (A2 10)

minimizes the variance of Yp mr- One can use the delta method to obtain a consistent estimator of the

variance of this estimator in the form

V(YPML) = V( Z Z,‘?) + V( Z ng)’ (A2.11)

where, in this case, Z,’? = Yr — ]}\:/:a if kK € a and Z,’;‘ = Yopt (yk -

m ) + Ad if k € ab, with 4op; an

estimator of 7o, in (A2.10) obtained by replacing population quantities with their estimators, A=
na/Na¥i+ns/NeYqy
na/NaNA+np/NpNE
~ . v B . .
zl? = (1 - ’70pt) (yk - Naé)) + )\(1 - ¢) if k € ab.

ab

Ya Y, y nalNy s 5B _ Yy -
— e — =D gp = —24% _ Similary, one can defin =y — =L if n
NN A do N aT Similary, one can define z;] =y, o k € band

More recently, Rao and Wu (2010) have proposed a pseudo empirical likelihood estimator for the

population mean based on poststratified samples. Such estimator is computed as

N N, = Nop = 1
Yper = WYG+?7NbY£+(

— )Ny rrn Ny=
Mgy Ny, (A2.12)

where, in this case, lzfa = ZkGSA ﬁakykék(a),f/aﬁ = ZkESA ﬁfbkykék(ab),ffﬁ = ZkesB B Y6y (ab) and
?}7 = Y kesy PokYrOk(b) With pag, phe, PB, and ppi the weights resulting from maximizing the pseudo
empirical likelihood procedure under a set of constraints (see Rao and Wu (2010) for details). Further-
more, 7 € (0,1). In this case, it is assumed that N4, Ng and N, are known, but this is not always the
case. Authors also provide modifications to be carried out in to adapt it to situations where only

N4 and Npg are known or where none of N4, Ng or Ny, are known. In addition, auxiliary information
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coming from either one or both frames can be incorporated to the estimation process to improve the
accuracy of the estimates. In addition, instead of an analytic form for the variance of this estimator, Rao
and Wu (2010) propose to compute confidence intervals using the bi-section method described by Wu
(2005) for one single frame and extending it to the dual frame case. This method constructs intervals in
the form {0|r,s(0) < x3(a)}, where x?(a) is the 1 — a quantile from a x? distribution with one degree of
freedom and r,(0) represents the so called pseudo empirical log likelihood ratio statistic, which can be

obtained as a difference of two pseudo empirical likelihood functions.

Recently, Ranalli et al. (2013) extended calibration procedures to estimation from dual frame sampling
assuming that some kind of auxiliary information is available. For example, assuming there are p auxiliary
variables, X (Z1k, ..., Tpk) is the value taken by such auxiliary variables on unit k. Each auxiliary variable
may be available only for units in frame A, only for units in frame B or for units in the whole population.
In addition, it is assumed that the vector of population totals of the auxiliary variables, tx = Zkeu Xk

is also known. In this context, the dual frame calibration estimator can be defined as follows

Yoarpr = Z dSALPEy, (A2.13)
keEs

where weights d$4"PT are such that min 3", G(dFALPT dy) subject to 3, dFALPFx; = ty, with

G(+,-) a determined distance measure and

d? ifkea

;) md}  ifkecab(sa

= (L—n)df ifkeabsp’ (A2.14)
i ifkeb

being 1 € [0, 1].

Then, with a similar approach to that of Vax 4, another calibration estimator can be computed as

Yoarsr = Z dg A5y, (A2.15)
kes

with weights d{AESF verifying that min D okes G(dJALSE, (Zk) subject to ) ;. d{ALSFx) = ty, being d,

the weights defined in (A2.5)).

An estimator of the variance of any calibration estimator can be obtained using Deville’s method
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(Deville, 1993) through following expression

2
V) Ly ( o — Zaldfel> , (A2.16)

1o a? dx
Zkes E kes k les

where dj; is given by 1| or by (|A2.14) according to whether we use f/c ALSF OT 17(; ALDF, respectively.

In addition, a; = %{1 /> ies %l:l and ey, are the residuals of the generalized regression of y on x.

Some of the estimators described above are particular types of calibration estimators. For example,
estimator can be obtained as a particular case of YC aLsF in the case where frame sizes N4 and Np
are known and the ”raking” method is selected for calibration. Having noted this, one can use
to calculate an estimator of variance of (A2.8). See Ranalli et al. (2013) for more details.

Table shows a summary of the previous dual frame estimators according to the auxiliary infor-
mation required. It can be noted that Hartley, FB and BKA estimators can be computed even when no
information is available, but they cannot incorporate some auxiliary information when available. PML
and SFRR can incorporate information on N4 and Ng, but PEL and CAL type estimators are the most

flexible in that they can incorporate any kind of auxiliary information available.

Table A2.1: Estimator’s capabilities versus auxiliary information availability

NA,NB Na,Nb and NayNabaNb and
None known Nap known X4 and/or Xp known

Hartley v

FB v

PML v

PEL v v v v

CalDF v v v v

BKA* v

SFRR* v

CalSF* v v v v

(*) Inclusion probabilities are known in overlap domain ab for both frames

A2.2.1 Jackknife variance estimation

Variance estimation methods exposed so far depend on each specific estimator, so comparisons between

variance estimations may lead to incorrect conclusions. Instead, one can consider jackknife, originally
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proposed by Quenouille (1949, 1956) (see Wolter (2007) for a detailed description of this method in survey
sampling) and extended to dual frame surveys by Lohr and Rao (2000), which can be used to estimate
variances irrespective of the type of estimator allowing us to compare estimated efficiency for different
estimators.

For a non stratified design in each frame, the jackknife estimator of the variance for any of the

estimators described, generically denoted by }A’C, is given by

. nag—1 N —A ng — 1 N . —B
vsVe) = == 3 (VG Vo) + == 3 (VP G) - Yo )%, (A2.17)
1€SA JEsSB

with YA(i) the value of estimator Y, after dropping unit i from s, and 7;4 the mean of values YA (i).
Similarly, one can define Y. (j) and 75.

Jackknife may present an important bias when designs are without replacement. One could, then,
incorporate an approximate finite-population correction to estimation to achieve unbiasedness. For exam-
ple, assuming that a finite-population correction is needed in frame A, a modified jackknife estimator of
variance, v%(Y,), can be calculated by replacing Y,2A() in with YA* (i) = Yo+v/1 — 74 (YA(D)-Ye),
where T4 =) e, T /na.

Consider now a stratified design in each frame, where frame A is divided into H strata and frame B
is divided into L strata. From stratum h of frame A, a sample of n 4, units from the N4, population
units in the stratum is drawn. Similarly, in stratum [ of frame B, one selects np; units from the Np;

composing the stratum. Jackknife estimator of the variance can be defined, then, as follows

H L
0 (V) = S AL S A -V SIS ) -V, (a2as)
h=1 AR e =1 "Bl e
where YA (hi) is the value taken by Y, after dropping unit i of stratum % from sample s;, and th is
the mean of values YA (hi). Y,2(lj) and Vfl can be defined in a similar way. Again, one can include
an approximate finite-population correction in any stratum needing it. In case of a non stratified design
in one frame and a stratified design in the other one, previous methods can be combined to obtain the
corresponding jackknife estimator of the variance.
Stratified cluster sampling is very common in practice. Now we illustrate the jackknife estimator

when a stratified sample of clusters is selected. Suppose that frame A has H strata and stratum A has
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N 45, observation units and N Ap primary sampling units (clusters), of which 745, are sampled. Frame B
has L strata, and stratum [ has Npg; observation units and N Br primary sampling units, of which npg;
are sampled.

To define the jackknife estimator of the variance, let )76‘4 (hj) be the estimator of the same form as
Y, when the observations of sample primary sampling unit j of stratum h from sample in frame A are
omitted. Similarly, f’CB (Ik) is of the same form as Y, when the observations of sample primary sampling
unit k of stratum ! from sample in frame B are omitted. The jackknife variance estimator is then given

by:

nAh —1 nan L 5 N B
Z TiAn >_ (V) =Y 4+ il > (VPR - Y2, (A2.19)
h=1 j=1 = Sewall

where YA is the mean of values YA(hj) and VB! is the mean of values Y5 (Ik).

A2.3 The R package Frames2

Frames?2 is a new R package for point and interval estimation from dual frame sampling. It consists of
eight main functions (Hartley, FB, BKA, SFRR, PML, PEL, CalSF and CalDF), each of them implement-
ing one of the estimators described in the previous sections. The package also includes an additional
function called Compare which provides a summary with all possible estimators that can be computed
from the information provided as input. Moreover, six extra functions implementing auxiliary operations,
like computation of Horvitz-Thompson estimators or of the covariance between two Horvitz-Thompson
estimators, have also been included in the package to achieve a more understandable code. Finally, the
package includes eight more functions, one for each estimator, for the calculation of confidence intervals
based on the jackknife variance estimator.

A remarkable characteristic of these functions is the strong argument check. Functions check general
aspects as the presence of NA or NaN values in its arguments, the number of main variables considered in
the frames (that should match), the length of the arguments in each frame (that should also match) or
the values for arguments indicating the domain each unit belongs to (which only can be ”a” or "ab” for

frame A or ”b” or "ba” for frame B). If any issue is encountered, the function displays an error message
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indicating what is the problem and what is the argument causing it, so that the user can manage errors
easily. Furthermore, each function has additional checks depending on its specific characteristics or
arguments. The main aim of this exhaustive check is to guarantee validity of the arguments, so one can
avoid, to the extent possible, issues during computation.

Much attention has also been devoted to computational efficiency. Frequently, populations in a survey
are extremely large or it is needed to keep sampling error below a certain value. As a consequence,
one needs to consider large sample sizes, often in the order of tens of thousands sampling units. In
these situations, computational efficiency of functions is essential, particularly when several variables
are considered. Otherwise, user can face high runtimes and heavy computational loads. In this sense,
functions of Frames2 are developed according to strict efficiency measures, using the power of R to the
matrix calculation to avoid loops and increase the computational efficiency. Table shows user and
system times necessary to compute estimators using an Intel(R) Core(TM) i7-3770 at 3.40 GHz when
different sample sizes are considered. Elapsed time is also included to get an idea about the real time

user needs to get estimations.

Table A2.2: User, system and elapsed times (in seconds) for estimators considering different sample sizes.

user system elapsed

na = 10605, np = 13635

Hartley 0.01 0.02 0.04
FB 0.05 <0.01 0.07
BKA 0.03 <0.01 0.05
PML 0.02 0.02 0.03
SFRR 0.03 0.03 0.07
CalSF 0.03 <0.01 0.06
CalDF 0.04 0.01 0.05

na = 105105,np = 135135

Hartley 0.11 0.06 0.19
FB 0.27 0.07 0.32
BKA 0.13 0.05 0.17
PML 0.16 0.02 0.18
SFRR 0.42 0.12 0.54
CalSF 0.20 0.08 0.30

CalDF 0.22 0.07 0.31
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Functions of Frames2 have been implemented from an user-oriented perspective to increase usability.
In this sense, most input parameters (which are the communication channel between the user and the
function) are divided into two groups, depending on the frame they come from. This is to adapt functions
as much as possible to the usual estimation procedure, in which the first step is to draw two independent
samples, one from each frame. On the other hand, estimation details are managed internally by functions
so that they are not visible for the user, who does not need to manage them.

Construction of functions has been carried out so that they perform properly in as many situations
as possible. As noted in introductory section, one can face several situations when using two sampling
frames depending on their relative positions. Although the most common is the one depicted in Figure
cases shown in Figures and may arise as well. All estimators described but PEL can be
modified to cover these three situations, so corresponding functions of Frames2 include necessary changes
to produce estimates irrespective of the situation.

On the other hand, it is usual, when conducting a survey, to collect information on many variables
of interest. To adapt to such situations, all functions are programmed to produce estimates when there
are more than one variable of interest with only one call. To this end, parameters containing information
about main variables observed in each frame can be either vectors, when only one variable is considered
or matrices or data frames, when there are several variables under study. Cases in which the main aim of
the survey is the estimation of population means or proportions are also very frequent. Hence, from the
estimation of the population total for a variable, functions compute estimation of the mean as Y=Y / N.
To obtain the estimation of the population size, functions internally apply the estimation procedure at
issue to indicator vectors 14 and 1p of sizes ny and npg, respectively.

To get maximum flexibility, functions have been programmed to calculate estimates in cases in which
user disposes of first and second order inclusion probabilities and in those other in which only first
order ones are available, indistinctly. Knowledge of both first and second order inclusion probabilities
is a strong assumption that does not always occur in practice. However, when calculating most of the
estimators described in previous sections, second order inclusion probabilities are needed in many steps
of the estimation procedure, mainly in computing estimated variances of a Horvitz-Thompson estimator
or estimated covariances between two Horvitz-Thompson estimators. As an alternative, one can obtain
variance estimations from only first order inclusion probabilities applying Deville’s method reported in

(A2.16|), by substituting residuals e; with the values of the variable of interest, y;. Covariance estimations
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are also obtained from variances through following expression

Fon(¥. ) = V(Y +X) - ;7(?) - V(X)

To cover both cases, user has the possibility to consider different data structures for parameters relating
to inclusion probabilities. So, if both first and second order inclusion probabilities are available, these
parameters will be square matrices, whereas if only first order inclusion probabilities are known, these

arguments will be vectors. The only restriction here is that type of both should match.

As can be deduced from previous sections, an essential aspect when computing estimates in dual
frame is to know the domain each unit belongs to. Character vectors domains_A and domains_B are used
Mo

for this purpose. The former can take values ”a” or "ab”, while the latter can take values ”b” or "ba”.

Any other value will be considered as incorrect.

A2.3.1 Data description

To illustrate how functions operate, we use data sets DatA and DatB, both included in the package. DatA
contains information about n4 = 105 households selected through a stratified sampling design from the
N4 = 1735 households composing frame A. More specifically, frame A has been divided into 6 strata
of sizes N4 = (727,375,113,186,115,219) from which simple random without replacement samples
of sizes npa = (15,20, 15,20, 15,20) have been drawn. On the other hand, a simple random without
replacement sample of ng = 135 households has been selected from the Ng = 1191 households in frame

B. The size of the overlap domain for this case is Ny, = 601. This situation is depicted in Figure[A2.4]

A B

Figure A2.4: Frame and domain sizes for the data sets.



100 APPENDIX A2

Both data sets contain information about the same variables. To better understand their structure,

we report the first three rows of DatA:

> library (Frames2)
> data(DatA)
>

> head (DatA, 3)

Domain Feed Clo Lei Inc Tax M2 Size ProbA ProbB Stratum
1 a 194.48 38.79 23.66 2452.07 112.90 0.00 0 0.02063274 0.0000000 1
2 a 250.23 16.92 22.68 2052.37 106.99 0.00 0 0.02063274 0.0000000 1
3 ab 199.95 24.50 23.24 2138.24 121.16 127.41 2 0.02063274 0.1133501 1

Each data set incorporates information about three main variables: Feeding, Clothing and Leisure.
Additionally, there are two auxiliary variables for the units in frame A (Income and Taxes) and another
two variables for units in frame B (Metres2 and Size). Corresponding totals for these auxiliary variables

are assumed known in the entire frame and they are T7, .

= 4300260, T4, = 215577, TE, = 176553 and
TE__ = 3529. Finally, a variable indicating the domain each unit belongs to and two variables showing
the first order inclusion probabilities for each frame complete the data sets.

Numerical square matrices Pik1A and Pik1B, with dimensions n4 = 105 and ng = 135, are also used
as probability inclusion matrices. These matrices contains second order inclusion probabilities and first
order inclusion probabilities as diagonal elements. To check the appearance of these matrices let see the

first submatrix of order 6 of Pik1A.

> data(Pik1A)
>
> Pikl1A[1:6, 1:6]

[,1] [,2] [,3] [,4] [,5] [,6]
[1,]1 0.020632737 0.000397876 0.000397876 0.000397876 0.000397876 0.000397876
[2,] 0.000397876 0.020632737 0.000397876 0.000397876 0.000397876 0.000397876
[3,] 0.000397876 0.000397876 0.020632737 0.000397876 0.000397876 0.000397876
[4,] 0.000397876 0.000397876 0.000397876 0.020632737 0.000397876 0.000397876

[6,] 0.000397876 0.000397876 0.000397876 0.000397876 0.020632737 0.000397876
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[6,] 0.000397876 0.000397876 0.000397876 0.000397876 0.000397876 0.020632737

A2.3.2 No auxiliary information

When there is no further information than the one on the variables of interest, one can calculate some of

the estimators described in previous section (as, for example, (A2.1)) or (A2.3)) as follows

> library(Frames2)
>

> data(DatA)

> data(DatB)

> data(Pik1A)

> data(PiklB)

> yA <- with(DatA, data.frame(Feed, Clo))

> yB <- with(DatB, data.frame(Feed, Clo))

> #Estimation for variables Feeding and Clothing using Hartley and Fuller-Burmeister
> #estimators with first and second order probabilities known

> Hartley(yA, yB, PiklA, PiklB, DatA$Domain, DatB$Domain)

Estimation:

Feed Clo
Total 586959.9820 71967.62214
Mean 246.0429 30.16751

> FB(yA, yB, PiklA, PiklB, DatA$Domain, DatB$Domain)

Estimation:
Feed Clo

Total 591665.5078 72064 .99223
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Mean 248.0153 30.20832
>
> #This is how estimates change when only first order probabilities are considered

> Hartley(yA, yB, DatA$ProbA, DatB$ProbB, DatA$Domain, DatB$Domain)

Estimation:

Feed Clo
Total 570867.8042 69473.86532
Mean 247.9484 30.17499

> FB(yA, yB, DatA$ProbA, DatB$ProbB, DatA$Domain, DatB$Domain)

Estimation:
Feed Clo
Total 571971.9511 69500.11448

Mean 248.4279 30.18639

As result, an object of class "EstimatorDF” is returned showing, by default, estimations for the
population total and mean for the 2 considered variables. In general, m columns will be displayed,
one for each of the m variables estimated. Further information about estimation process (as variance

estimations or values of parameters involved in estimation) can be displayed by using function summary

> summary (Hartley(yA, yB, PiklA, Pik1B, DatA$Domain, DatB$Domain))

Call:
Hartley(ysA = yA, ysB = yB, pi_A = PiklA, pi_B = PiklB, domains_A = DatA$Domain,

domains_B = DatB$Domain)

Estimation:
Feed Clo
Total 586959.9820 71967.62214

Mean 246.0429 30.16751
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Variance Estimation:
Feed Clo
Var. Total 2.437952e+08 4.728875e+06

Var. Mean 4.283804e+01 8.309261e-01

Total Domain Estimations:

Feed Clo
Total dom. a 263233.1 31476.84
Total dom. ab 166651.7 21494.96
Total dom. b 164559.2 20451.85

Total dom. ba 128704.7 15547.49

Mean Domain Estimations:

Feed Clo
Mean dom. a 251.8133 30.11129
Mean dom. ab 241.6468 31.16792
Mean dom. b 242.2443 30.10675

Mean dom. ba 251.5291 30.38466

Parameters:
Feed Clo

theta 0.8027766 0.7551851

Previous output shows in the component Estimation the estimations of the population total and
the population mean computed using the Harley estimator, that is, YH and EQ/H. Estimated variances of
these estimations, f/(f/H) and V(?H), are displayed in component Variance Estimation. In the section

Total Domain Estimations we can see estimations }A’G,YA }A/}) and Y(ﬁ. Estimates for the population

ab?

mean for each domain, Ya,l_/af?),?b and }7“%’ are displayed in the component Mean Domain Estimations.

Finally, é, the estimated value of parameter involved in computation of the Hartley estimator is shown.
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This additional information depends on the way each estimator is formulated. Thus, for example,
extra information will include a parameter component when applied to a call to the Fuller-Burmeister
estimator (and values of estimates for 1 and f2 will be displayed there), but not when applied to a
call to the Bankier-Kalton-Anderson estimator (because no parameters are used when computing this

estimator).

Results slightly change when a confidence interval is required. In that case, user has to indicate the
confidence level desired for the interval through argument conf_level (default is NULL) and add it to
the list of input parameters. The function calculates, then, a confidence interval based on the pivotal
method. This method yields a confidence interval as follows: Y + Za /2\/‘7(?) where 2,5 is the critical
value of a standard normal distribution. Only for the case of PEL, confidence intervals are based on a
x? distribution and the bi-section method (Rao and Wu, 2010). In this case, default output will show 6
rows for each variable, lower and upper boundaries for confidence intervals are displayed together with
estimates. So, one can obtain a 95% confidence interval for estimations in the last two of the previous

four cases in this way
> Hartley(yA, yB, DatA$ProbA, DatB$ProbB, DatA$Domain, DatB$Domain, 0.95)

Estimation and 95 % Confidence Intervals:
Feed Clo

Total 570867 .8042 69473.86532

Lower Bound 511904.6588 61756.37677

Upper Bound 629830.9496 77191.35387

Mean 247.9484 30.17499

Lower Bound 222.3386 26.82301

Upper Bound 273.5582 33.52697

> FB(yA, yB, DatA$ProbA, DatB$ProbB, DatA$Domain, DatB$Domain, 0.95)

Estimation and 95 % Confidence Intervals:
Feed Clo

Total 571971.9511 69500.11448
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Lower Bound 513045.7170 61802.57411

Upper Bound 630898.1852 77197.65484

Mean 248.
Lower Bound 222.

Upper Bound 274.

4279 30.
8342 26.
0217 33.

18639

84307

52971

For estimators constructed as (A2.6]), numeric vectors pik_ab_B and pik_ba_A of lengths n4 and np

should be added as arguments. While pik_ab_B represents first order inclusion probabilities according to

sampling design in frame B for units belonging to overlap domain selected in sample drawn from frame

A, pik_ba_A contains first order inclusion probabilities according to sampling design in frame A for units

belonging to overlap domain selected in sample drawn from frame B.

> yA <- with(DatA, data.frame(Feed, Clo, Lei))

> yB <- with(DatB, data.frame(Feed, Clo, Lei))

>

> #Bankier-Kalton-Anderson estimation and a 95% confidence

> #interval for the three main variables

v

+

Estimation and 95

Total 566434.

Lower Bound 624569.

Upper Bound 508299

Mean 247 .

Lower Bound 273.

Upper Bound 222

DatB$Domain, 0.95)

BKA(yA, yB, DatA$ProbA, DatB$ProbB, DatA$ProbB, DatB$ProbA, DatA$Domain,

% Confidence Intervals:

Feed

3200 68959
2139 76538.
.4262 61380
8845 30.
3257 33
.4434 26

Clo

.26705

11015

.42395

17814

.49482

.86147

Note that these examples include just

information is known. As noted in Table other estimators, as those in (A2.12)) or in (A3.8) or

Lei
50953.07583
56036.23578
45869.91588

22.29822
24.52273

20.07372

a few of the estimators that can be used when no auxiliary
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in (A3.10)), can be also calculated in this case.In this context, function Compare is quite useful, since it

returns all possible estimators that can be computed according to the information provided as input.

> Compare(yA, yB, DatA$ProbA, DatB$ProbB, DatA$Domain, DatB$Domain)

$Hartley

Estimation:
Feed Clo Lei

Total 570867.8042 69473.86532 51284.2727

Mean 247.9484 30.17499 22.2746
$FullerBurmeister
Estimation:

Feed Clo Lei

Total 571971.9511 69500.11448 51210.03819

Mean 248.4279 30.18639 22.24236
$PEL
Estimation:

Feed Clo Lei

Total 1.791588e+08 2.663164e+06 1.455533e+06

Mean 2.479314e+02 3.011373e+01 2.235969e+01

$Calibration_DF

Estimation:

Feed Clo Lei

Total 595162.2604 72214.13351 53108.5059
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Mean 248.8422 30.19332 22.2051

Using appropriate indicator variables as variables of interest, one can also estimate the overlap domain

size, as shown below:

> indA <- as.integer(DatA$Domain == "ab")
> indB <- as.integer(DatB$Domain == "ba")
>

> Hartley(indA, indB, DatA$ProbA, DatB$ProbB, DatA$Domain, DatB$Domain)

Estimation:
[,1]
Total 534.2743208
Mean 0.2320545
> BKA(indA, indB, DatA$ProbA, DatB$ProbB, DatA$ProbB, DatB$ProbA,

+ DatA$Domain, DatB$Domain)

Estimation:
[,1]
Total 560.4121771

Mean 0.2452491

A2.3.3 Auxiliary information about frame sizes

For estimators requiring frame sizes known, as (A2.8) or (A2.9)), it is needed to incorporate two additional

input arguments, N_A and N\_B. There is also a group of estimators, including (A2.12)) and (A3.10]), that

even being able to provide estimations without the need of auxiliary information, can use frame sizes to

improve their precision. The following examples show the performance of these estimators.

> #SFRR estimator and CalSF estimator with frame sizes as auxiliary
> #information using method "raking" for the calibration for the three main variables

> SFRR (yA, yB, DatA$ProbA, DatB$ProbB, DatA$ProbB, DatB$ProbA, DatA$Domain,
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+ DatB$Domain, N_A = 1735, N_B = 1191)

Estimation:
Feed Clo Lei
Total 584713.4070 71086.18669 52423.74035
Mean 248.2219 30.17743 22.25487
> CalSF(yA, yB, DatA$ProbA, DatB$ProbB, DatA$ProbB, DatB$ProbA, DatA$Domain,

+ DatB$Domain, N_A = 1735, N_B = 1191, met = "raking")

Estimation:
Feed Clo Lei
Total 584713.4070 71086.18669 52423.74035

Mean 248.2219 30.17743 22.25487

As highlighted previously, both results match. Note that argument met of SF calibration estimator
indicates the method used in the calibration procedure. The possibility of choosing the calibration
method is given by the fact that computation of both SF and DF calibration estimators is based on
the function calib from package sampling (Till and Matei, 2012), which can manage three different
calibration methods, each one associated with one particular distance measure. These methods are:
linear, raking and logit.

Condition of knowing probabilities of inclusion in both frames for the units in the overlap domain may

be restrictive is some cases. As an alternative, in cases where frame sizes are known but this condition

is not met, it is possible to calculate dual frame estimators as (A2.9), (A2.12) or (A3.8)). Next, it is

illustrated how to obtain some of these estimators with Frames2.

> #Estimates for the three main variables using PML, PEL and CalDF
> #with frame sizes as auxiliary information in PEL and CalDF

> PML(yA, yB, PiklA, Pik1B, DatA$Domain, DatB$Domain, N_A = 1735, N_B = 1191)

Estimation:

Feed Clo Lei
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Total 593085.4467 72272.73759 53287.68044
Mean 248.0966 30.23277 22.29104

> PEL(yA, yB, PiklA, Pik1B, DatA$Domain, DatB$Domain, N_A = 1735, N_B = 1191)

Estimation:

Feed Clo Lei
Total 590425.4843 72211.61334 53258.38286
Mean 247.4958 30.26982 22.32497

> CalDF(yA, yB, PiklA, Pik1B, DatA$Domain, DatB$Domain, N_A = 1735, N_B = 1191)

Estimation:
Feed Clo Lei
Total 587502.4374 71368.45308 52490.98852

Mean 248.7193 30.21385 22.22207

To calculate PEL estimator, computational algorithms for the pseudo empirical likelihood method for

the analysis of complex survey data presented by Wu (2005) have been used.

A2.3.4 Auxiliary information about domain sizes

In addition to the frame sizes, in some cases, it is possible to know the size of the overlap domain,
Ngp. Generally, this highly improves the precision of the estimates. This situation has been taken into

account when constructing functions implementing estimators (A2.12), (A3.8) and (A3.10]), so user can

incorporate this information through parameter N_ab, as shown below

> #Estimates for the three main variables using PEL estimator
> #with frame sizes and overlap domain size as auxiliary information
> PEL(yA, yB, PiklA, Pik1B, DatA$Domain, DatB$Domain, N_A = 1735, N_B = 1191,

+ N_ab = 601)

Estimation:

Feed Clo Lei
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Total 575289.2186 70429.95642 51894.32490

Mean 247.4362 30.29245 22.32014

> #Calibration estimators with the same auxiliary information

> #Estimates do not change when raking method is used for the calibration

> CalSF(yA, yB, PiklA, Pik1lB, DatA$ProbB, DatB$ProbA, DatA$Domain, DatB$Domain,

+ N_A = 1735, N_B = 1191, N_ab = 601)

Estimation:
Feed Clo Lei
Total 577163.6066 70173.20412 51726.19862
Mean 248.2424 30.18202 22.24783
> CalSF(yA, yB, Pik1lA, Pik1B, DatA$ProbB, DatB$ProbA, DatA$Domain, DatB$Domain,

+ N_A = 1735, N_B = 1191, N_ab = 601, met = "raking")

Estimation:
Feed Clo Lei
Total 577163.6067 70173.20414 51726.19863
Mean 248.2424 30.18202 22.24783
> CalDF(yA, yB, PiklA, Pik1B, DatA$Domain, DatB$Domain, N_A = 1735, N_B = 1191,

+ N_ab = 601)

Estimation:
Feed Clo Lei
Total 578691.1756 70246.32319 51600.78973
Mean 248.8994 30.21347 22.19389
> CalDF(yA, yB, PiklA, Pik1B, DatA$Domain, DatB$Domain, N_A = 1735, N_B = 1191,

+ N_ab = 601, met = "raking")

Estimation:

Feed Clo Lei
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Total 578691.1763 70246.32328 51600.78979

Mean 248.8994 30.21347 22.19389

Note that, in this case, calibration estimators provide the same results irrespective of the distance
function employed. This is an interesting property that calibration estimators show only in the case in

which all the domain sizes are known and used for calibration (see Deville, 1993).

A2.3.5 Auxiliary information about additional variables

On the other hand, some of the estimators are defined such that they can incorporate auxiliary information

to the estimation process. This is the case of estimators (A2.12]), (A3.8) and (A3.10). Functions imple-

menting them are also able to manage auxiliary information. To achieve maximum flexibility, functions

implementing estimators (A2.12)), (A3.8) and (A3.10) are prepared to deal with auxiliary information

when it is available only in frame A, only in frame B or in both frames. For instance, auxiliary informa-
tion collected from frame A should be incorporated to functions through three arguments: xsAFrameA
and xsBFrameA, numeric vectors, matrices or data frames (depending on the number of auxiliary variables
in the frame); and XA, a numeric value or vector of length indicating population totals for the auxiliary
variables considered in frame A. Similarly, auxiliary information in frame B is incorporated to each
function through arguments xsAFrameB, xsBFrameB and XB. If auxiliary information is available in the
whole population, it must be indicated through parameters xsT and X. In the following example, one can

see how to calculate estimators using different type of auxiliary information

> #PEL, CalSF and CalDF estimators for the three main variables
> #using Income as auxiliary variable in frame A and Metres2 as auxiliary
> #variable in frame B assuming frame sizes known

> PEL(yA, yB, PiklA, Pik1B, DatA$Domain, DatB$Domain, N_A = 1735, N_B = 1191,

+ xsAFrameA = DatA$Inc, xsBFrameA = DatB$Inc, xsAFrameB = DatA$M2,

+ xsBFrameB = DatB$M2, XA = 4300260, XB = 176553)
Estimation:
Feed Clo Lei

Total 587742.7193 71809.56826 53094.20112
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Mean 246.3713 30.10129 22.25614

>

> CalSF(yA, yB, PiklA, Pik1lB, DatA$ProbB, DatB$ProbA, DatA$Domain, DatB$Domain,
+ N_A = 1735, N_B = 1191, xsAFrameA = DatA$Inc, xsBFrameA = DatB$Inc,

+ xsAFrameB = DatA$M2, xsBFrameB = DatB$M2, XA = 4300260, XB = 176553)

Estimation:

Feed Clo Lei
Total 582398.3181 70897.88438 52252.24741
Mean 247.5819 30.13922 22.21282
>

> CalDF(yA, yB, Pik1lA, Pik1B, DatA$Domain, DatB$Domain, N_A = 1735, N_B = 1191,

+ xsAFrameA = DatA$Inc, xsBFrameA = DatB$Inc, xsAFrameB = DatA$M2,

+ xsBFrameB = DatB$M2, XA = 4300260, XB = 176553)
Estimation:

Feed Clo Lei
Total 585185.4497 71194.61148 52346.43878

Mean 247.8075 30.14866 22.16705

> #Now, assume that overlap domain size is also known
> PEL(yA, yB, PiklA, Pik1B, DatA$Domain, DatB$Domain, N_A = 1735, N_B = 1191,
+ N_ab = 601, xsAFrameA = DatA$Inc, xsBFrameA = DatB$Inc,

+ xsAFrameB = DatA$M2, xsBFrameB = DatB$M2, XA = 4300260, XB = 176553)

Estimation:

Feed Clo Lei
Total 572611.6997 69991.74803 51737 .56089
Mean 246.2846 30.10398 22.25271

>
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> CalSF(yA, yB, PiklA, Pik1lB, DatA$ProbB, DatB$ProbA, DatA$Domain, DatB$Domain,
+ N_A = 1735, N_B = 1191, N_ab = 601, xsAFrameA = DatA$Inc, xsBFrameA = DatB$Inc,

+ xsAFrameB = DatA$M2, xsBFrameB = DatB$M2, XA = 4300260, XB = 176553)

Estimation:
Feed Clo Lei
Total 575636.7876 70076.78485 51628.27583
Mean 247 .5857 30.14055 22.20571
>
> CalDF(yA, yB, PiklA, Pik1B, DatA$Domain, DatB$Domain, N_A = 1735, N_B = 1191,
+ N_ab = 601, xsAFrameA = DatA$Inc, xsBFrameA = DatB$Inc,

+ xsAFrameB = DatA$M2, xsBFrameB = DatB$M2, XA = 4300260, XB = 176553)

Estimation:
Feed Clo Lei
Total 576630.7609 70102.0037 51477.16737

Mean 248.0132 30.1514 22.14072

A2.3.6 Interval estimation based on jackknife variance estimation

Finally, eight additional functions have been included, each of them calculating confidence intervals based
on jackknife variance estimator for each estimator. To carry out variance estimation using jackknife

method, in addition to parameters to calculate each specific estimator, user has to indicate through

arguments sdA and sdB the sampling design applied in each frame. Possible values are ”srs” (simple

)

random sampling without replacement), ”str” (stratified sampling), ”"pps” (probabilities proportional to

”

size sampling), "clu” (cluster sampling) or ”strclu” (stratified cluster sampling). Default is ”srs” for
both frames. If a stratified or a cluster sampling has been carried out in one of the frames, it is needed
to include information about the strata or the clusters. Furthermore, user is able to include a finite

population correction factor in each frame by turning to TRUE parameters fcpA and fcpB, set by default

to FALSE. Since main purpose of functions is to obtain confidence intervals, parameter conf_level is now
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mandatory. As noted, these functions can be used, for example, to make comparisons between efficiency

of estimators, as shown in next example.

> #Confidence intervals through jackknife for the three main variables

> #for estimators defined under the so called single frame approach with
> #a stratified random sampling in frame A and a simple random sampling
> #without replacement in frame B. Finite population correction factor

> #is required for frame A

> JackBKA (yA, yB, DatA$ProbA, DatB$ProbB, DatA$ProbB, DatB$ProbA, DatA$Domain,

+ DatB$Domain, conf_level = 0.95, sdA = "str", strA = DatA$Stratum, fcpA = TRUE)
Feed Clo Lei

Total 566434 .3200 68959.26705 50953.07583

Jack Upper End 610992.1346 74715.89841 54717.32664

Jack Lower End 521876.5055 63202.63570 47188.82502

Mean 247.8845 30.17814 22.29822

Jack Upper End 267.3840 32.69738 23.94555

Jack Lower End 228.3850 27.65891 20.65090

> JackSFRR(yA, yB, DatA$ProbA, DatB$ProbB, DatA$ProbB, DatB$ProbA, DatA$Domain,

+ DatB$Domain, N_A = 1735, N_B = 1191, conf_level = 0.95, sdA = "str",

+ strA = DatA$Stratum, fcpA = TRUE)
Feed Clo Lei

Total 584713.4070 71086.18669 52423.74035

Jack Upper End 619959.0338 76576.74587 55204.67760

Jack Lower End 549467.7802 65595.62751 49642.80309

Mean 248.2219 30.17743 22.25487

Jack Upper End 263.1843 32.50828 23.43543

Jack Lower End 233.2595 27.84659 21.07431

> JackCalSF(yA, yB, DatA$ProbA, DatB$ProbB, DatA$ProbB, DatB$ProbA, DatA$Domain,

+ DatB$Domain, N_A = 1735, N_B = 1191, N_ab = 601, conf_level = 0.95, sdA = "str",
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+ strA = DatA$Stratum, fcpA = TRUE)

Total

Jack Upper End 599105.

Jack Lower End 555221
Mean

Jack Upper End
Jack Lower End

>

B77163.

248.

257.

238.

Feed

6066 70173.
4275 73516.
.7858 66829
2424 30.
6798 31.
8051 28.

Clo
20412 51726.
53187 53165
.87636 50286
18202 22
62001 22
74403 21

Lei

19862

.97439

.42285

.24783

.86709

.62857

> #Same for a selection of dual frame estimators

> JackHartley (yA, yB, DatA$ProbA, DatB$ProbB, DatA$Domain, DatB$Domain,

+ conf_level = 0.95, sdA = "str",

Total 570867

Jack Upper End 610664.

Jack Lower End 531070.

Mean
Jack Upper End

Jack Lower End

> JackPML(yA, yB, DatA$ProbA, DatB$ProbB, DatA$Domain, DatB$Domain,

+ N_A =

+ fcpA = TRUE)

Total

Jack Upper End 626443.

Jack Lower End 562357.

Mean
Jack Upper End 261

Jack Lower End

> JackCalDF(yA, yB, DatA$ProbA, DatB$ProbB, DatA$Domain, DatB$Domain, N_A = 1735,

247.

265.

230.

594400.

248.

234.

Feed

.8042 69473.
7131 74907.
8954 64040.
9484 30.
2336 32.
6631 27.

1735, N_B = 1191, conf_level =

Feed

6320 72430.
7529 76885.
5111 67975.
0934 30.
L4677 32.
7191 28.

strA = DatA$Stratum, fcpA = TRUE)

Clo
86532 51284.
33129 54782
39934 47786
17499 22
53494 23
81504 20

0.95,

Clo
05834 53408
06491 56003
05176 50812
23115 22
09060

37171 21

23.

Lei

27265

.33083
.21447
.27460
.79393

. 75527

sdA = "str", strA = DatA$Stratum,

Lei

.30337

.77592

.83082

.29178

37509

.20847
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+ N_B = 1191, N_ab = 601, conf_level = 0.95, sdA = "str", strA = DatA$Stratum,
+ fcpA = TRUE)
Feed Clo Lei
Total 578895.6961 70230.11306 51570.55683
Jack Upper End 601626.7000 73614.66702 53037.42260
Jack Lower End 556164.6921 66845.55910 50103.69107
Mean 248.9874 30.20650 22.18088
Jack Upper End 258.7642 31.66222 22.81179

Jack Lower End 239.2106 28.75078 21.54997

A2.4 An application to a real telephone survey

In the example above data are separated into two data sets DatA and DatB containing domain information.
But in practice, it is common to have a joint data set including units from both samples in which there
is not a specific variable indicating the domain where each individual is placed. However, we can easily
split the dataset and format it, so functions of Frames2 can be applied. To illustrate how to do this, we
are going to use dataset Dat, which includes some of the variables collected in a real dual frame survey.

Data included in Dat comes from an opinion survey on the Andalusian population with respect to
immigration. This survey is conducted using telephone interviews on adults using two sampling frames:
one for landlines and another one for cell phones. From the landline frame, a stratified sample of size 1919
was drawn, while from the cell phone frame, a sample of size 483 is drawn using simple random sampling
without replacement. First-order inclusion probabilities were computed from a stratified random design in
the landline frame and modified taking into account the number of fixed lines and adults in the household.
In the cell phone frame first-order inclusion probabilities were computed and modified, given the number
of cell phone numbers per individual. At the time of data collection, frame sizes of land and cell phones
were 4,982,920 and 5,707,655, respectively, and the total population size was 6,350,916.

The data set includes information about 7 variables: Drawnby, which takes value 1 if the unit comes
from the landline sample and value 2 if it comes from the cell phone sample; Stratum, which indicates the
stratum each unit belongs to (for individuals in cell phone frame, value of this variable is NA); Opinion

the response to the question: ”"Do you think that immigrants currently living in Andalusia are quite a
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lot?” with value 1 representing ”yes” and value 0 representing "no”; Landline and Cell, which record
whether the unit possess a landline or a cell phone, respectively. First order inclusion probabilities are

also included in the data set.

> data(Dat)
> head(Dat,3)

Drawnby Stratum Opinion Landline Cell ProbLandline ProbCell

1 1 2 0 1 1 0.000673623 8.49e-05
2 1 5 1 1 1 0.002193297 5.86e-05
3 1 1 0 1 1 0.001831489 7.81e-05

From the data of this survey we wish to estimate the number of people in Andalusia thinking that
immigrants currently living in this region are quite a lot. In order to use functions of Frames2, we need

to split this dataset. The variables we will use to do this are Drawnby and Landline and Cell.

> attach(Dat)
> #We can split the original dataset in four new different

> #datasets, each one corresponding to one domain.

> DomainOnlyLandline <- Dat[Landline == 1 & Cell == 0,]
> DomainBothLandline <- Dat[Drawnby == 1 & Landline == 1 & Cell == 1,]
> DomainOnlyCell <- Dat[Landline == 0 & Cell == 1,]

> DomainBothCell <- Dat[Drawnby == 2 & Landline == 1 & Cell == 1,]

> #From the domain datasets, we can build frame datasets

> FrameLandline <- rbind(DomainOnlyLandline, DomainBothLandline)

> FrameCell <- rbind(DomainOnlyCell, DomainBothCell)

> #Finally, we only need to label domain of each unit using "a", "b",

> #llabll or Ilball
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> Domain <- c(rep("a", nrow(DomainOnlyLandline)), rep("ab", nrow(DomainBothLandline)))
> FramelLandline <- cbind(FramelLandline, Domain)

>

> Domain <- c(rep("b", nrow(DomainOnlyCell)), rep("ba", nrow(DomainBothCell)))

> FrameCell <- cbind(FrameCell, Domain)

Now dual frame estimators, as PML estimator, can be computed:

> summary (PML (FrameLandline$0pinion, FrameCell$0pinion, FrameLandline$ProbLandline,

+

FrameCell$ProbCell, Framelandline$Domain, FrameCell$Domain, N_A = 4982920,

+ N_B = 5707655))

Call:

PML(ysA = FramelLandline$0Opinion, ysB = FrameCell$0Opinion,
pi_A = FramelLandline$ProblLandline, pi_B = FrameCell$ProbCell,
domains_A = FramelLandline$Domain, domains_B = FrameCell$Domain,

N_A = 4982920, N_B = 5707655)

Estimation:
[,1]
Total 3.231325e+06

Mean 4.635634e-01

Variance Estimation:
[,1]
Var. Total 1.784362e+10

Var. Mean 3.672317e-04

Total Domain Estimations:
[,1]

Total dom. a 219145.1
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Total dom. ab 2318841.9
Total dom. b 1346646.1

Total dom. ba 1457501.0

Mean Domain Estimations:
[,1]
Mean dom. a 0.4438149
Mean dom. ab 0.4990548
Mean dom. b 0.4172797

Mean dom. ba 0.4674919

Parameters:

gamma 0.3211534

As overlap domain size is known, we can include additionally this information in the process and

compute more accurate estimators as CalDF and CalSF.

> summary (CalDF (FrameLandline$Opinion, FrameCell$Opinion, FrameLandline$ProbLandline,
+ FrameCell$ProbCell, FrameLandline$Domain, FrameCell$Domain, N_A = 4982920,

+ N_B = 5707655, N_ab = 4339659))

Call:

CalDF (ysA = FramelLandline$Opinion, ysB = FrameCell$Opinion,
pi_A = FramelLandline$ProblLandline, pi_B = FrameCell$ProbCell,
domains_A = FrameLandline$Domain, domains_B = FrameCell$Domain,

N_A = 4982920, N_B = 5707655, N_ab = 4339659)

Estimation:
[,1]

Total 2.985028e+06
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Mean 4.700153e-01

Variance Estimation:
[,1]
Var. Total 1.478990e+10

Var. Mean 3.666844e-04

Parameters:

eta 0.7296841

>

> summary (CalSF(FrameLandline$Opinion, FrameCell$Opinion, FrameLandline$ProbLandline,
+ FrameCell$ProbCell, FrameLandline$ProbCell, FrameCell$ProbLandline,

+ Framelandline$Domain, FrameCell$Domain, N_A = 4982920, N_B = 5707655, N_ab = 4339659))

Call:
CalSF(ysA = FramelLandline$Opinion, ysB = FrameCell$Opinion,

pi_A = FrameLandline$ProbLandline, pi_B = FrameCell$ProbCell,

pik_ab_B = FrameLandline$ProbCell, pik_ba_A = FrameCell$ProbLandline,

domains_A = FramelLandline$Domain, domains_B FrameCell$Domain, N_A = 4982920,

N_B = 5707655, N_ab = 4339659)

Estimation:
[,1]
Total 2.986787e+06

Mean 4.702923e-01

Variance Estimation:
[,1]

Var. Total 1.442969e+10
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Var. Mean 3.577539e-04

Observe that as greater is the information included in the estimation process as greater is the accuracy

of the estimates.

A2.5 Summary

The statistical literature about dual frame surveys started around 1960 and its development has evolved
very quickly because these surveys are largely used by statistical agencies and private organizations to
decrease sampling costs and to reduce frame undercoverage errors that could occur with the use of a
single sampling frame.

Dual frame surveys can be more complicated to design and more complicated to analyze than those
that use one frame only. There are several estimators of the population total available in the statistical
literature. These estimators rely on weight adjustments to compensate the multiplicity of the units in
the overlap domain. Some of these estimators allow to handle different types of auxiliary information at
different levels. Nevertheless, none of the existing statistical software implements all of these estimators.

In this article we illustrate Frames2, a new R package for point and interval estimation in dual frame
context. Functions composing the package implement the most important estimators in the literature
for population totals and means. We include two procedures (Pseudo-Empirical-Likelihood approach
and calibration approach) to incorporate auxiliary information about frame sizes and also about one or
several auxiliary variables in one or two frames. Post-stratification, raking ratio or regression estimation
are all encompassed as particular cases of these estimation procedures. Additional functions for confidence
interval estimation based on the jackknife variance estimation have been included as well.

The functionalities of the package Frames2 have been illustrated using several data sets DatA, DatB and
Dat (included in the package) corresponding to different complex surveys. We envision future additions
to the package that will allow for extensions to more than two frames.

Finally, we would like to direct the reader to the package vignettes estimation (Estimation in a dual
frame context) and formatting.data (Splitting and formatting data in a dual frame context) for further

examples and background information.
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Multinomial logistic estimation in

dual frame surveys

Molina, D., Rueda, M., Arcos, A. and Ranalli, M. G. (2015)
Multinomial logistic estimation in dual frame surveys.

Statistics and Operations Research Transactions (SORT), Vol. 39, Number 2, pp. 309 - 336.

Abstract

We consider estimation techniques from dual frame surveys in the case of estimation of proportions
when the variable of interest has multinomial outcomes. We propose to describe the joint distribution
of the class indicators by a multinomial logistic model. Logistic generalized regression estimators and
model calibration estimators are introduced for class frequencies in a population. Theoretical asymptotic
properties of the proposed estimators are shown and discussed. Monte Carlo experiments are also carried
out to compare the efficiency of the proposed procedures for finite size samples and in presence of different
sets of auxiliary variables. The simulation studies indicate that the multinomial logistic formulation
yields better results than the classical estimators that implicitly assume individual linear models for the

variables. The proposed methods are also applied in an attitude survey.
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A3.1 Introduction

Sampling theory for finite populations usually assumes the existence of one sampling frame containing all
population units. Then, a probability sample is drawn according to a sampling design and information
collected is used for estimation and inference purposes. To ensure quality of the results obtained, the
sampling frame must contain every single unit of population of interest (that is, it must be complete)
and it must be updated as well. Otherwise, estimates could be affected by a serious bias due to the
non-representativeness of the frame and, therefore, of the selected sample. Unfortunately, this is not
an easy task: populations are constantly changing, with new units entering and exiting the population

frequently, so getting a good sampling frame can be difficult.

The dual frame approach tries to solve the aforementioned problems. This approach assumes that two
frames are available for sampling and that, overall, they cover the entire target population. A sample is
selected from each frame using a, possibly different, sampling design. Much attention has been devoted
to the introduction of different ways of combining estimates coming from the different frames. See the
seminal papers by Hartley (1962), Fuller and Burmeister (1972), Bankier (1986) and Kalton and Anderson
(1986). However, these techniques were originally proposed to estimate means and totals of quantitative
variables, and although their extension to the estimation of proportions in multinomial response variables
is possible, it requires further investigation. Questionnaire items with multinomial outcomes are quite
common in public opinion research, marketing research, and official surveys: estimating the proportion of
voters in favour of each political party, based on a political opinion survey, is just one practical example
of this procedure. Items where respondents must select one in a series of options can be modeled by a
multinomial distribution. Lehtonen and Veijanen (1998a) present estimators for a proportion which use

logistic regression.

This paper focuses on the estimation of proportions for multinomial response variables when data
come from two sampling frames. The proposed approach is motivated by a study on immigration. After
describing the survey of opinions and attitudes of the Andalusian population regarding immigration, in
Section alternative estimators for the proportions are proposed following different approaches and
their main theoretical properties are studied. A simulation study is also carried out to study their finite
size sample properties. The results from the application to this dual frame attitude survey are then

presented in Section 9.
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A3.2 Study background: the 2013 Survey on opinions and atti-
tudes of the Andalusian population regarding immigration

The 2013 Survey on opinions and attitudes of the Andalusian population regarding immigration (OPIA)
is a population-based survey conducted by the TESA, a public scientific research institute for social
sciences. The aim of the survey is to reflect the opinion of the Andalusian population with regard to
various aspects of immigration and refugee policies in Spain and towards immigrants as a group. This
survey is based on telephone interviews on a sample of adults drawn from both landline and mobile
phone frames. Taking into account the time and budget available, 2402 interviews were performed by
professional interviewers. The number of interviews to be conducted via landline and via mobile phone
was determined by calculating the optimal proportion (in the sense of minimum variance) for each frame,
taking into account costs and the percentage of possession of each type of device (following Hartley
(1962)). As a result, final sample sizes were 1919 for landline and 483 for mobile. Interviews were carried
out by the Statistics and Surveys sections of IESA from April, 22 to May, 13, 2013, using Computer
Assisted Telephone Interviewing (CATI) data input techniques. Sample sizes are reported in Table
The landline sample was also stratified by provinces in the region of Andalusia, as shown in Table
Cell-phone interviews were carried out with no control over the distribution by provinces owing to the
difficulty of determining the location of this type of telephone. Hence, more interviews were performed
in the most populated provinces than in the less populated ones.

Table A3.1: Sample sizes for the OPIA survey. Landline and Mobile in the columns refer to the frame
the interview comes from, while in the rows, they refer to the domain in which the units actually reside
(type of user).

Landline Mobile

Domain Sample Sample Total
Both 1727 237 1964
Mobile 246 246
Landline 192 192
Total 1919 483 2402

At the time of data collection, frame sizes of landline and mobile were 4,982,920 and 5,707,655, respec-
tively, and the total population size was 6,350,916 (source ICT-H 2012, Survey on the Equipment and

Use of Information and Communication Technologies in Households, INE, National Statistical Institute,
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Table A3.2: Stratification in land-phone sample

Province Almeria Cadiz Coérdoba Granada Huelva Jaén Mélaga Sevilla
Population(*) 353787 767370 508258 558087 308941 423548 872011 1190918
Sample 262 210 252 256 275 263 207 194

(¥) Those estimates can be found on the INE website: http://www.ine.es

Spain). Auxiliary information about the user’s sex and age is also available from the ICT-H 2012 survey.
The total number of individuals in each domain (landline, mobile and both users) for every possible com-
bination of values of the auxiliary variables is therefore known. The information about these auxiliary

variables is displayed in Table

One of the most important response variables in this study is related to the “attitude towards im-
migration”. The variable is the answer to the following question: And in relation to the number of
immigrants currently living in Andalusia, do you think there are ...?: Too many, A reasonable number,
Too few, No reply. In the following sections we review approaches available in the literature to address
the issue of estimating the distribution of a multiple choice type of variable in the population using a dual
frame survey. We then illustrate our proposal to fully account for the nature of the response variable and

the auxiliary information available.

Table A3.3: Population data for variables sex and age

Both Landline Mobile Total
Males
18 - 29 428,750 0 188,172 616,922
30 - 44 724,435 4,259 298,416 1027,110
45 - 59 603,338 59,385 135,981 798,704
> 60 396,626 206,410 94,729 697,765
Females

18 - 29 480,151 0 115,472 595,623
30 - 44 658,984 17,673 289,106 965,763
45 - 59 601,478 39,362 141,553 782,393
> 60 445,897 316,172 104,567 866,636

(*) Source: Survey of Information Technologies in Households (INE)
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A3.3 Existing approaches to estimation of class frequencies in

dual frame surveys

We employ the notation considered in Rao and Wu (2010). Let U denote a finite population with N units,
U={1,...,k,...,N} and let A and B be two sampling-frames. Let A be the set of population units in
frame A and B the set of population units in frame B. The population of interest, U, may be divided
into three mutually exclusive domains, a = AN B¢, b = A°NB and ab = AN B. Because the population
units in the overlap domain ab can be sampled in either survey or both surveys, it is convenient to create
a duplicate domain ba = BN A, which is identical to ab = ANB, to denote the domain in the overlapping
area coming from frame B. Let N, Na, Ng, Ny, Ny, Ngp, Ny, be the number of population units in
U, A, B, a, b, ab, ba, respectively. We assume that N4, Ng and N, are known, so the population size

N = Ny + Np — Ny is also known. This is also the situation in our motivating dataset.

We consider the estimation of class frequencies of a discrete response variable. Assume that we collect
data from respondents who provide a single choice from a list of alternatives. We code these alternatives
1,2,...,m. Therefore, consider a discrete m-valued survey variable y. The objective is to estimate the
frequency distribution of y in the population U. To estimate this frequency distribution, we define a class
of indicators z; (i = 1,...,m) such that, for each unit k € U, zx; = 1 if y = ¢ and zx; = 0 otherwise. Our
problem thus, is to estimate the proportions P; = N1 > ke Zkiy for i =1,2,... m. Such proportions
are such that

Py = N"YZui + 1 Zapi + (1 = 0) Zpai + Zi), (A3.1)

where 0 <n <1and Zu; = > 1 Zkis Zabi = D peap Zkis Lbai = D pepa Zhi a0d Zyi = D 1 2

Two probability samples s 4 and sp are drawn independently from frame A and frame B of sizes n 4 and
npg, respectively. Each design induces first-order inclusion probabilities 74, and wpg, respectively, and
sampling weights dax, = 1/mar and dgx, = 1/7k. The sample s4 can be post-stratified as s4 = s, U Sqp,
where s, = s4 Na and sqp = 54 N (ab). Similarly, sg = sp U Spq, where s, = sp Nb and s, = sp N (ba).
Note that s, and sp, are both from the same domain ab, but s, is part of the frame A sample and sy,
is part of the frame B sample. Then, assuming that duplicated units (i.e. s4 N sp) cannot be identified
and that this event has a negligible chance to happen, we let s = s4 U sg. Note that this is a reasonable

assumption in the OPIA survey at hand.
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The Hartley (1962) estimator of P;, for i = 1,2,...,m, is given by
Pri(n) = N (Zai + 0 Zai + (1 = 1) Zvai + Zs), (A3.2)

where ZAai => kes, d Ak 2k is the expansion estimator for the population count of category ¢ in domain a

and similarly for the other domains. If we let

dAk ka‘ € Sq

o ndak if k € sap
dk B (1 — ’I])dBk ka € Spa <A33)

dBk ka € Sp

then PHi(n) = N_l(ZkGSA dpzki + Y pesy Qpzki) = N_l(X:kGS dfz;). Since the population count in

each domain is estimated by its expansion estimator, PHi(n) is an unbiased estimator of P; for a given 7.

Fuller and Burmeister (1972) proposed modifying Hartley’s estimator by incorporating additional

information regarding estimation of the overlap domain. The resulting estimator is:
Prpi(B1,82) = NN (Zai + B1Zai + (1 = B1) Zvai + Zui + Bo(Nab — Nua)) (A3.4)

where Nab = Zkesab dar and Nba = Zkesba dpy. Coefficients 81 and (2 are selected to minimize
V(pFBi(ﬂl, B2)). In this case, and as with Hartley’s estimator, a new set of weights must be calculated
for each response variable. This leads to possible inconsistencies among the estimated proportions, which
is particularly relevant when dealing with multinomial outcomes. In addition, optimal values depend
on covariances among Horvitz-Thompson estimators, which may be difficult to compute in practice and,

finally, it is also possible to obtain values of 8; outside the range [0, 1].

Skinner and Rao (1996) propose a modification of the estimator proposed by Fuller and Burmeister
(1972) for simple random sampling to handle complex designs. They introduce a pseudo maximum
likelihood (PML) estimator that does not achieve optimality like the FB estimator, but it can be written
as a linear combination of the observations and the same set of weights can be used for all variables of

interest:

Zai + % Zapi(0) + ———22——2 7,

o) = N1 [ NaZ B0, NEMHO) o Ne = NEYEO)
7 Na Nab(a) Nb
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where Zabi(é‘) = 0Z i + (1- G)Zbai, Nab(e) = 0N, + (1- G)Nba and N(ﬁML(H) is the smallest root of

the quadratic equation
[6/Np + (1= 0)/Nala?® = 1+ 0Nu/Np + (1 0) Ny /Na | & + Ny = 0.

Recently, Rao and Wu (2010) extended the Pseudo-Empirical-Likelihood approach (PEL) proposed
by Wu (2006) from one-frame surveys to dual-frame surveys following a stratification approach. In

particular,

Pppri(0) = (Na/N) Zaip + 0(Nab/N) Zapip + (1 — 0)(Nav/N Zaip + (No/N) Ziip, (A3.6)

where 0 € (0,1) is a fixed constant to be specified and éaip = ZkeSa DPak Zki s Z,ip = Zkesbﬁbkzki and
éabip = Zke%b DabkZki = Zm‘p- The p-weights maximize the pseudo empirical likelihood and verify
Zk@a Par = 1, Zke%b Papk = 1, Zkesba Prak = 1, ZkESb Ppr. = 1, and the additional constraint induced
by the common domain mean Zlbip = ébaip (see Rao and Wu (2010) for more details). Note that
can be rewritten as:

Ppiri = (Na/N) Zaip + (Nav/N) Zaip + (No/N) Zuip, (A3.7)
so the estimator does not depend on explicitly on 6 and its value only affects the estimator éaip for the

population mean of the overlapping domain.

Ranalli et al. (2015) used calibration procedures for estimation from dual frame sampling assuming
that some kind of auxiliary information is available. For example, assuming that there are p auxiliary
variables, x = (Z1, ..., Zpk) is the value taken by such auxiliary variables on unit k. It is assumed that
the vector of population totals of the auxiliary variables, t, =}, .;; Zx is also known. In this context,

the dual frame calibration estimator can be defined as follows,

Poapri = N (Y dP" z) (A3.8)
kes
where weights d,’? F are chosen to be as close as possible to basic design weights and, at the same time,

satisfy benchmark constraints on the auxiliary variables, i.e. they are such that

: DF 0 . DF_. _
gg}l G(di;",dy), subject to Z dy "z, = ty,
kE kes kes
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with G(-,-) a given distance measure.

When inclusion probabilities in domain ab are known for both frames, and not just for the frame
from which the unit is selected, single-frame methods (Banker (1986), Kalton and Anderson (1986)),
which combine the observations into a single dataset and adjust the weights in the intersection domain
for multiplicity, can also be used. To adjust for multiplicity, the weights are defined as follows for all

units in frame A and in frame B,

~ dak ka’ ca
di = (l/dAk+1/dBk)_1 if k € ab
dBr ifkecb

In this context, BKA single frame estimator (Banker (1986), Kalton and Anderson (1986)) is given by

Ppxai=N"" (Z dyzki + Z d}ﬂki) =N"! (Z Czkzki) . (A3.9)

kEsa kEsp kes

Single frame weights are the same for all response variables, and so estimators are internally consistent.

A calibration estimator under the single-frame approach can be defined as follows:

Pcaspi=N"" (Z dfFZkz> (A3.10)
kes
with weights d3”" verifying that min}_, . G(d3F, dy) subject to >pes di @y = t,. The single-frame
approach requires the knowledge of the design weight of a unit for both frames, not just for the one in
which the unit was selected. Given this information, multiplicity can be adjusted for using sampling
weights only. Therefore, unlike the dual frame methods, they do not require calculation of 5. Single-
frame estimators are usually more efficient than dual-frame estimators, and this can be explained by the
extra-information they incorporate in the estimation process. The estimators presented in this Section

can be computed using the R-package Frames2 (Arcos et al. (2015)).
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A3.4 Estimation of class frequencies using multinomial logistic

regression

Auxiliary information is often available in survey sampling. This information, which may come from past
censuses or from other administrative sources, can be used to obtain more accurate estimators. Then,
other than the values of the variables of interest and of the auxiliary variables for k € s, assume we also
know the distribution or at least some summary statistics of the auxiliary variables in the population.
We consider that the population under study y = (y1,...,yn)7 is the determination of a set of super-

population random variables Y = (Y7, ..., Yn)% s.t.

exp(z!B;)

i = P(Ye = i|xy) = E(Zpilxy) = ’
ZT':l,..-,m exp(mglgT)

1=1,...,m,

that is, we use the multinomial logistic model to relate y and . Let 3 be the parameter vector
(BF,...,8L)T. In the following sections we introduce new estimators for the population proportions
P;. To this end, as a first step, we need to consider estimation of the superpopulation parameter 3 using

the sample s.

A3.4.1 Case I: The same set of auxiliary variables is available for all popula-

tion units

Suppose that for each unit in the population we have information about one vector of auxiliary variables
x. In this case, for each unit k € U we know the value of x). In addition, for each unit k € s, we observe
the value of the main variable y; and we denote by (21, 2k2, -, Zkm ) the multinomial trial observed for
this unit k.

We can estimate 3 by maximizing the m-weighted log-likelihood (Godambe and Thompson (1986),
Sarndal et al. (1992)) given by

le(B)= Y (Z dzki 0 s + Y djzgiIn mﬂ) . (A3.11)

kEsa kesp
This approach is usually motivated by first defining a census-level parameter 3;;, obtained by max-

imizing the likelihood over all units in the population, i.e. £y (B8) = > ,_; . > pcy 2ki Inpigi. Then,

.....
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BO obtained using the the w-weighted likelihood (A3.11)) is its design based estimate. Computing ﬁo
usually requires numerical procedures, and Fisher scoring or Newton-Raphson often work rather well.

Most statistical packages include a multinomial logit procedure that can handle weights.

Given the estimate BO of B, we consider the following auxiliary variable

exp(x] B?)
ZT:l,...,m eXP(fB;{ﬂ?)

PR = Hiy = (A3.12)

Please note that these p values are different from those involved in the definition of estimator (A3.6).
Since the vector xj, is known for all units of the population U, the values pf, are available for all kK € U

and we propose to use such values to define a new estimator for P;,

ﬁ]\l/)[‘ivz = N7} < Z Pri + Z dp(2ki — PRs) + Z dp (zri — p%)) (A3.13)

keU k€Esa kEsp
= N ( Z P + ZdZ(Zki - piz)) :
keU kes

We observe that this estimator takes the same model-assisted form as the MLGREG estimator proposed
in Lehtonen and Veijanen (1998a), but here it is adjusted to account for the dual frame sampling setting.
The subscript M L stands for Multinomial-Logistic and the superscript DW stands Dual frame setting

and auxiliary information available from the Whole population.

Note that we cannot compute ), ., pj; in without knowing xj for each k € U, i.e. we need
the value of the auxiliary variables for each individual in the population. This assumption can be quite
restrictive; nonetheless, it can be relaxed. For example, if we have two discrete or categorical variables,
we only need the population counts in the two-way contingency table. In human populations, sizes of
certain demographic groups are known and are used often as auxiliary information. This is also the case

in the OPIA survey and this information can be retrieved from the last column in Table [AZ.3]

An important way to incorporate available auxiliary information is given by calibration estimation
(Deville and Sarndal (1992)), that seeks for new weights that are close (in some sense) to the basic design
weights and that, at the same time, match benchmark constraints on auxiliary information. We have
reviewed in the previous section extension of linear calibration to the dual frame setting. Here, using the

idea of model calibration introduced by Wu and Sitter (2001a), we propose the following model calibration
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estimator (the subscript M LC stands for Multinomial-Logistic and Calibration, and the superscript DW

stands Dual frame setting and auxiliary information available from the Whole population), given by

Pitoi =N wiz + > wize) = N7HO D wizk),

kE€sa ke€sp kes
where wp minimizes ), o G(wy, d)+> e, G(wy,dy) = >, c, G(wy, dy) for a distance measure G-, -)

as those considered in Deville and Sérndal (1992), subject to:

szpzizzpzh ZwZ:Naa sz:Nba

kEs keU k€sq kesy

Z wyp = NNy, and Z wy = (1 — 1) Ngp.

kEsap kE€spa

Suppose, now, that for each unit in the population inclusion probabilities in domain ab are known for
both frames, and not just for the frame from which the unit is selected. In this situation, the single-frame
approach can also be used to propose new multinomial logistic estimators. First, we calculate B by

maximizing the m-weighted log-likelihood given by

gd(,@) = Z Z szki In Mki- (A314)

i=1,...,m kEs

. . _ exp(wzéz') ;
We use the new auxiliary variable py; = fig; = T3 to define a new estimator (the
>ore1. mexp(xi Br)

subscript M L stands for Multinomial-Logistic and the superscript SW stands Single frame setting and

auxiliary information available from the Whole population):

P, = N7 < Z Pri + Z di(2ki — Pri) + Z di (21 — ﬁki)) (A3.15)

keU k€sa kE€sp
= N7 < > Bri+ Y di(zki — ﬁki)) :
keU kes

Note that dj, weights are used in the formulation of the estimator (A3.15) and also in the likelihood
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function (A3.14)).

Model calibration can be also used to define a single-frame estimator (the subscript M LC' stands for
Multinomial-Logistic and Calibration, and the superscript SW stands Single frame setting and auxiliary

information available from the Whole population):

Pillos = NN ez + Y nzn) = N O ipzn),
k€Esa k€sp kEs
where @y, minimizes ), . = G(wx, Jk)+2ke53 G (g, dy) = > okes G, dy,) for a distance measure G(-, -)

satisfying the usual conditions specified in the calibration paradigm subject to:

Zﬁ)kﬁki = Zﬁki: Z Wy = Ng, Z wy =N, and Z Wy = Ngp.

keEs keU k€Esq keEsy k€sab U Sba

Note that when inclusion probabilities are known for both frames, it is possible to calculate single and

dual frame type estimators.

A3.4.2 Case II: Two different sets of auxiliary variables are available accord-

ing the frame considered

Now we consider a different situation: the auxiliary information is available separately in each frame. In
this case, for each unit k& € A we have an auxiliary vector x4 and for each unit k& € B we have another
auxiliary vector g, where the components of 4 and xp can be different. Indeed in the OPIA survey
the two sets of auxiliary variables coincide. Nonetheless, we will leave the treatment general and provide

two proposals based on the dual frame approach to handle this situation as well.

In this case, we can use the available auxiliary information to fit a multinomial logistic model separately

in each frame. For each k € A, using data from s4 we can compute

exp(x,6")

Zr:l,...m@ exp(mgkﬁf)

Py = (A3.16)
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where we estimate 84 by maximizing (4, (84) =>",_, . > kesq AAkzri In gy Similarly we obtain pB

.....

for k € B, and define for each ¢ = 1, ..., m the following regression estimator:

POf, =N (Zpﬁi 0 P+ Q=)D pE+> pEt
a ab ba b

+ Z(z;ﬂ- — Phi)dar +1 Z(Zki — i) dak+

Sa Sab
+1@ =)D (zki — pi)dpr + Y (ki — pkBi>dBk> :
Sba Sp
As in the previous section, the subscript M L stands for Multinomial-Logistic, while the superscript DF’
stands now for Dual frame setting and auxiliary information available from the Frames. To compute
ﬁAD/Zl we only need to know the total number of individuals in each domain (a, b and ab) for every

possible combination of values of the auxiliary variables in the cases where discrete variables have been

used as auxiliary information. In the OPIA survey this information is obtained from Table 3.
A calibration estimator in this setting can be defined under the dual frame approach as follows,

Piloi=N"' O whzei+ Y wizk) = N 1O wizw), (A3.17)
kEsa kesp k€Es

where the subscript M LC stands for Multinomial-Logistic and Calibration, and the superscript DF
stands Dual frame setting and auxiliary information available from the Frames. Weights wj are such

that
min Y G(wj,dar) + Y Gwi,dpr) st

k€Esa k€Esp

> wipg =Y v+ > pits

k€sa kca ke€ab
*x, B __ B B
E wipg; = (1 —n) E Pl T E P>
kEsp ke€ba keb
* *
E wk. = Na, E wk = ]Vb7
k€Esq kEsy

Z wi = NNy and Z wy = (1 — 1) Ngp,

kEsab kEspa
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where pﬁi are the estimated probabilities defined in (A3.16)) and pfi are their analogous in frame B.

A3.5 Properties of proposed estimators

To show the asymptotic properties of the proposed estimators PDW PA[/}%VC, P, If’]\S/[VLVC, pPhF IE’JQIZC,
we adapt and place ourselves in the asymptotic framework of Isaki and Fuller (1982), in which the dual-
frame finite population U and the sampling designs p4(-) and pp(-) are embedded into a sequence of such
populations and designs indexed by N, {Un,pay(:),pBy(-)}, with N — co. We will assume therefore,
that N4, and Np, tend to infinity and that also n4, and np, tend to infinity as N — co. We will
further assume that N, > 0 and N, > 0. In addition na, /nxy — ¢1 € (0,1), where ny = na, + npy,
No/Na — co €(0,1), Ny/Np — c3 € (0,1) as N — oco. Subscript N may be dropped for ease of notation,
although all limiting processes are understood as N — co. Stochastic orders O,(-) and o,(-) are with
respect to the aforementioned sequences of designs. The constant 7 € (0,1) is kept fixed over repeated
sampling.

We first discuss the theoretical properties of PA’?[EVC and then move to the other estimators, be-
cause these can be dealt with using slight modifications of this more general setting. Let u(xy, ;) =
exp(e0;)/ > —y  nexp(xi,), fori=1,...,m. In order to prove our results, we make the following

technical assumptions.

Al. Let By be census level parameter estimate obtained by mazimizing the likelihood ¢y (B) = Zi:l,... m D key Zhi 1N g

Assume that B = limn_.. Bu exists and that 3° = By + Op(n;/Q)'

2. For each xy, |Ou(xy, 0;)/00;] < fi1(xk, Bi) for 8; in a neighborhood of B; and f1(xk,B;) = O(1), for

t=1,...,m.

8. For each xy, max; j» |0%u(xy, 0;)/00;0;/| < fo(xk, Bi) for 0; in a neighborhood of B; and fa(xy, B3;) =
o), fori=1,...,m.

M. The auziliary variables  have bounded fourth moments.

K. For any study variable & with bounded fourth moment, the sampling designs are such that for the

normalized Hartley estimators of € = N~1 > kev Sk @ central limit theorem holds, i.e.

N (€ — &) BN(0,V(Ex)),
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where EH =N1Y, codiée and V(EH) = V(fa +77§ab) +V((1- n)gba +§b)- The latter can be consistently

estimated by ’U(EH) = v(ga + nfab) +o((1- n)é,a + Eb).

Assumption Af] requires consistency of parameter estimates defined by weighted estimating equations
to their census level counterpart. See e.g. Binder (1983). We will first state the properties of I:’Al/)[‘ivc for
the Euclidean distance. In fact, in this case an analytic solution to the constrained distance minimization

problem exists and is given by

PR, = N {zdzzki (St Zd2ﬁ2i>Td?} |
kes keU kes
where pY;, = (8x(a), dx(ab), ok (ba), 6, (b),ps;)T is a vector that contains pP, defined in and a
set of indicator variables — dx(a), 0k (ab), ok (ba), 6k (b) — implicitly used in the benchmark constraints. In
particular, d;(a) takes value 1 if unit & € U belongs to domain a and 0 otherwise. Then  , _;; 6x(a) = Na.
The other indicator variables are defined similarly. In addition, &5 = (3o, doBr o) ™ (O res daPhizhi);
i.e. it is the vector of coefficients of the generalized regression of zx; on py, similar to the case of classical
model calibration for one frame only (see Wu and Sitter (2001a)). Then from calibration theory (see
Deville and Sarndal, 1992), it is well known that all other calibration estimators that use different
distance functions are equivalent to ﬁﬁ%g, under additional regularity conditions on the shape of the

distance function itself.

Theorem 1. Under assumptions A@f@ ﬁﬁ%g’l s design /ny-consistent for P; in the sense that
BGDW —-1/2
vici — Fi = Op(ny / )

and has the following asymptotic distribution

DGDW
Pyrci— P ¢

- =N(0,1)
Voo (P27

where Vm(ﬁl\c}}%g) = N2V (toip) and teig = > kes dreri is the Hartley estimator of the population total

[e]

of the census-level residuals ex; = z; — iy o, and of = (X kev ﬂziﬂz{)_l(ZkeU 5, 2k:), where fi5, is
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like py,; but with py, replaced by its population counterpart

o exp(zy Bui)
i~ : A3.18
le Zr:l,“.,m eXp(wgﬁUT‘) ( )

In addition, let éy; = z; — ﬁz?df Then, V(t elH) can be consistently estimated by

(PJ\C/T}IBE’[;) = N~ 21}( ezH
= N7? U( kes, QAkeri + N kes b dAkém') + (A3.19)
+v ((1 ) Zkesb dBréri + Zkesb dBkekl) } .

Proof. Using the same approach developed in Montanari and Ranalli (2005) and similarly to Wu and

Sitter (2001Db), it is easy to show that by assumptions A[6}-A[7] and A9}-A[L0]

N_l Z kpkz Zpkz _1/2)7

kes keU

using a first order Taylor expansion of pu(xy, ,C:]f) at Bf = Bui, and that &) —af = Op(n]_vl/2) because &
is just a function of population means of variables with finite fourth moments, that can be consistently

estimated by their Hartley counterparts. Using A|§|» and a second order Taylor expansion of p(xy, B;’ )
at /65 = ﬁUiv

N Z WPri — ZPM Z Rk — Zﬂm ) + Op(nyh)-

kEs keU kes keU

Then,

T
PERE = NUY dizi + N (Y0 At = Yo diiins) o + Op(ni))
kes keU kes

and the first part of the result is proven.

Now, from assumption O(teirr) = V(tein) + op(ny'). Since p3, = pf, + O (an/Q), éri =

3/)

eri + Op(n 1/2) and v(t ezH) =o(t EZH) +op(ny then the argument follows.

Note that, given the asymptotic equivalence of calibration and generalized regression estimation,
analytic variance estimator in can be used to estimate the variance of ]31\1/)[% also when using
different distance functions.

Now, PIQEV can be seen as a particular case of ﬁﬁ%gl in which p7, includes only p7,, and &7 is only
pDW

a scalar and is set exactly equal to 1. Therefore, 7 is consistent for P; and asymptotically normal
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with VOO(PAD/[EV) =N _2V(fei i), where census-level residuals are given here by ey; = zp; — uy,. Variance
estimation can again be conducted by plugging sample level estimated residuals in given in this
case by ér; = 2p — Dy,

Estimator PD¥, is in all similar to PD'Y,, the only difference is in the fact that coefficient estimates for
the multinomial model are obtained separately from the two frames and, therefore, we have two separate
model calibration constraints. In this case the vector of auxiliary variables used in the calibration proce-
dure can be written as ﬁ‘,?i’B and contains p,’;‘i, pkBZ- and the other indicator variables used in the benchmark
constraints: for example ﬁ,‘?i’B = (8k(a), 0k (ab), 61 (ba), 61 (b), [6k(a) + Sk (ab)|piy, [6k(b) + Ok (ba)|pB)T.

To encompass this situation, it is enough to change assumption Aff] accordingly and assume that the
two sets of population parameters 84 and 3% are consistently estimated by ,éA and BB and that these
samples fits and the finite population fits share a common finite limit. Then, it is easy to show that
PJ\’?IEC is design consistent and the variance of its asymptotic normal distribution can again be written
in terms of the variance of the population total of residuals. In particular, Vi (}Sj\cj%gl) = N2V (tein)
and to;g = > kes dyey; is the Hartley estimator of the population total of the census-level residuals given
here by ey; = zi — (1F) L. o, where ﬂ?i’B is like ﬁﬁi’B but with pf and p? replaced by their population
counterparts, similarly to . Analytic variance estimation can be conducted by using sample level

estimates of the residuals. In particular, by using éy; = zx; — (ﬁ‘;’B)Tdi in formula (A3.19).

Now, similarly as for PHW and PLW,, PHE can be seen as a particular case of P{PE, in which pf,

includes only p’,ji’B, with pflﬁB = pﬁi if k € sy and p?i’B = pkBi if k € sp, and &; is again a scalar here
and its value is set exactly equal to 1. Therefore, it is consistent for P; and asymptotically normal with
Voo (PHF) = N2V (fe551), where census-level residuals are given here by ej; = zpi — u?i’B7 and ,u?i’B is
the census level fit corresponding to p’,:i’B. Variance estimation can again be conducted by using sample
level estimated residuals in equation given by ér; = zk; — pﬁi if k€ sq and ép; = 2p; — pfi if
k € sp.

The calibration estimator PAS;[VEC is very similar to P]@EVC, the only differences are (i) in the set of
basic design weights employed in the calibration procedure: for PS5, we use dy, and (ii) p, is replaced
by Pri in the definition of the vector py;. Once these changes are incorporated across assumption A@ and
assumption reflects the fact that we are now dealing with Bankier-Kalton-Anderson type estimators,
instead of Hartley estimators, then all the results can be proven. The variance of the asymptotic distri-

bution of PASJVEC is given by Vo (ﬁﬁ%‘gl) = N72V(ty) and to; = Y okes dyer; is the single-frame estimator
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of the population total of the census-level residuals e; = zx; — ﬂfiai, and where fix; is like pg; but with

pri replaced by its population counterpart

Jipi = exp(z} Bui)
Zr:l,m,m eXp(wgﬁUT')

In addition, let ér; = 2z — Pr;&. Then, V(tei) can be consistently estimated so that v(ﬁﬁivgz) =

N_2'U(£éi).

A3.6 Selection of the optimal weight

In the previous sections we have considered a fixed value 0 < n < 1. Selection of parameter 7 is an
important issue in dual frame estimators, because the efficiency of the estimator relies heavily on this
value (see Lohr (2009b) for a review). Hartley (1962) proposed choosing 7 to minimize the variance of
the estimator in . Using the same idea, we can derive the optimal value of n for each proposed
multinomial logistic estimator by minimizing its asymptotic variance with respect to 1. However, as
the optimal value for the Hartley estimator, such optimal values would depend on unknown population
quantities, such as variances and covariances that, when estimated from sample data, would make the
final estimator depend on the values of the variable of interest. This implies a need to recompute an
optimal n for each value i = 1,...,m and for each variable of interest y, which will be inconvenient
in practice for statistical agencies conducting surveys with several variables, other than introducing a
lack in coherence among estimates that is particularly relevant when dealing with multinomial outcomes
(namely, >, P; can be # 1).

Skinner and Rao (1996) suggested choosing

N,NgV(NE)
NoNpV(NE) + NyN4V (NA)

NSR =

or alternatively
V(Ng)
VNG +V(NG)

NsSRr2 =

being V(Nﬁ,) and V(Nﬁ) the variances of the estimated sizes of domain ab based on samples s4 and sp

respectively. These two proposals provide a value for n that does not depend on the sample values of y.
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In this way, resulting estimator uses the same n for all variables of interest, even if variances V(N ;})) and

V(N B) are unknown and must be estimated from the data.

Brick et al. (2006) propose using the simple value 7 = 1/2 in their dual-frame study in which frame
A was a landline telephone frame and frame B was a cell-phone frame. For this purpose, the value of
n = 1/2 is frequently recommended (see, for example, Mecatti (2007)). Another simple choice for 7 is
given by Wﬁff% (see Skinner and Rao (1996) or Lohr and Rao (2000)).

A3.7 Jackknife variance estimation

In this section we explore the possibility of using jackknife methods to estimate the variance of the
proposed estimators as an alternative to the analytic variance estimators considered in Section 5. The
jackknife approach is a common replication method for variance estimation that can be used in complex
surveys for different types of estimators (see e.g. Wolter (2007) for an introduction to jackknife). For the

sake of brevity, in this section all estimators are denoted by Bii=1,--,m.

If we consider a non clustered and non stratified design, the Jackknife estimator for the variance of

P; may be given by

. nyg —1 A —A np —1 B, . B
0y (B) = Vit + VP = == 3T (BMg) = PL)P + 22— 3 (PP — P’ (A3.20)
gEsa JjE€sn

where PA(g) is the value taken by estimator P; after dropping unit g from s, and ﬁ? is the average of
PA(g) values. Each value PA(g) is computed by fitting a new model that does not consider the g — th
sample unit. I:’iB (j) and ?? are defined similarly.

In the case of a stratified design in both frames, let frame A be divided into H strata and let stratum

h has N 45 observation units of which n 4, are sampled. Similarly, frame B has L strata, stratum [ has

Np,; observation units of which npg; are sampled. Then, a jackknife variance estimator of 1’5z is given by

vf']t(]%) _ VJstA + VjetB _

H L
nap —1 A —Ah ng — 1 ~ ) —BI
=Y o D (Pl =Py = Y (PP - Py ) (A3.21)
h=1 AN gesan =1 "Bl e
Bl
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where ]%-A(hg) is the value taken by estimator P, after dropping unit g of stratum h from sample s4p,
F?h is the average of these n 45 values; PiB (lj) and ﬁfl are defined similarly.

In case of a non stratified design in one frame and a stratified design in the other one, previous
methods can be combined to obtain the corresponding jackknife estimator of the variance.

Alternatively, a finite-population correction can be considered, as described in Ranalli et al. (2015),

resulting in the following jackknife variance estimators:

nag—1 A ng —1 B

(L=7a) D (P(9) =P )* + w178 Y (BPG) -PY) (A3.22)

geESsA JEsB

UJC(H) = A

for non stratified designs in frames, where T4 = i > res, TAk and similarly for Tp, and

H
s ~ NAR — 1 _ ~ —Ah
Vi(P) = Y (L =7an) Y (P (hg) - P}

h=1 Ah gES AR

L
ng — 1 _ A . —BI
+3° LZBI (1—7p) > (BP(j)—P;)? (A3.23)

=1 JESBIL

for a stratified design in each frame, where T4 = ﬁ ZkEsAh g and similarly for 7.
A non clustered sampling design is assumed subsequently. No new principles are involved in the
application of jackknife methodology to clustered samples. We simple work with the ultimate cluster

rather than elementary units (see e.g. Wolter (2007)).

A3.8 Monte Carlo simulation experiments

For our simulation study we use the hsbdemo data set (http://www.ats.ucla. edu/stat/data/hsbdemo.dta).
The data set contains variables on 200 students. The outcome variable is prog, program type, a three-

level categorical variable whose categories are academic, general, vocation. The predictor variables

are social economic status, ses, a three-level categorical variable and a mathematical score, math, a con-
tinuous variable. We estimate a multinomial logistic regression model. We create a new data set with 50
copies of the predictor variables ses and math and with the predicted values for the variable prog (the
category with highest probability). The simulated populations, namely POP1, have, therefore, dimension

N = 10000.
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Units are randomly assigned to the two frames, A and B, according to three different scenarios
depending on the overlap domain size N,,. We first generate N normal random numbers, e, k= 1,..., N
and data is sorted by such random numbers. Then, the first N, records of the ordered dataset are
considered as the values of the domain a, the N, subsequent records as the values belonging to domain
b and the last N, records as the values of the domain ab. The first scenario has a small overlap domain
size N4, =1000 and the resulting sizes of the two frames are N4=6000 and Np=>5000. The second and the
third scenario have respectively medium and large overlap domain size. The resulting frame sizes in the
second scenario are given by N4=6000 and Np=7000 and the overlap domain size is N,;,=3000, while
for the third scenario we have N4=8000, Np=7000 and N,,=5000. In POP1, we compute all estimators
using as auxiliary information ses and math.

On the other hand, POP2 is built first by assigning units to the frames and second by fitting a
multinomial logistic regression model separately in each frame. In frame A, ses and math have been
considered as auxiliary variables and in frame B the auxiliary variables are ses and write (a score in
writing). To be able to fit a separated model in each frame we consider that the units composing the
overlap domain can be equally divided into two groups, each one coming from a frame. So half of the
overlap domain units are used to fit a multinomial logistic regression model in frame A and the remaining
ones are considered when fitting the multinomial logistic model in frame B. POP2 is built with the

predicted values from the two multinomial logistic model. In this population, we compute 1—:’]\[4”2/7 PJ\’?[EVC,

F . .
Lc estimators using as

PSW and PJ@V{C estimators using as z-variable ses (Case I), and PL% and PL
x g-variables ses and math and as xp-variables ses and write (Case II).

Samples of schools from frame A are selected by means of Midzuno sampling, with inclusion proba-
bilities proportional to the size of the school the student belongs to. All students in the selected schools
are included in the sample. The variable cid is an indicator of school. Samples from frame B are selected
by means of simple random sampling. For each scenario, we draw a combination of sample sizes for frame
A and frame B, as follows: ny4 = 180 and ng = 232.

We have two populations, three sizes of the overlap domain and different sets of auxiliary variables.

We compute the BKA estimator in , for the purpose of comparison. The Pseudo Empirical
Likelihood estimator (PEL) proposed in Rao and Wu (2010) and the dual frame and the single frame

calibration estimator (Pcal pr and p(ja[SF) proposed in Ranalli et al. (2015) are also computed using

the auxiliary information as previously mentioned (in POP1 ses and math for both estimators and in
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POP2 as z 4-variable ses and math and as xp-variable ses and write for Pcamp estimator and as
x-variable ses for pcalgp estimator). When needed (and for comparative purposes) the value of n has
been estimated using 7 = v(Nya )/ (v(Nap) +v(Npa)) (see for example Rao and Wu, 2010) for all compared
estimators, where ’U(Nab) is an estimate of the variance of the Horvitz-Thompson estimator Nab for the
size of overlap domain, and similarly for U(Nba).

For each estimator, we compute the percent relative bias RB% = E Mc(ff —Y)/Y %100, the percent
relative mean squared error RMSE% = Eyc[(Y — Y)?]/Y?2 % 100, based on 1000 simulation runs, for
each category of the main variable prog.

The percent relative biases are negligible in all cases (the results on RB are not included for brevity),
so efficiency comparisons can be based on variances. Table displays the relative efficiency of proposed
estimators with respect to BKA estimator. From this table we can see that, consistently with theoretical
findings, the performance in terms of efficiency of the estimators is essentially driven by the model
employed. When the auxiliary varibles are used in a calibration process using a linear model (]5@(” SF,
Poap F) or through a pseudo-empirical likelihood method (PEL), the efficiency increases with respect to
the BKA estimator, which does not use auxiliary information or any model. As expected, a most effective
situation arises when the auxiliary variables are also used through a multinomial model (PHY, IE’JQEVC,
P, PR, PRE and PRE,).

In general, the best results in efficiency are achieved by the Pﬁlzc estimator and the efficiency increases
as the size of the overlap domain increases, particularly for POP2. As a consequence of the ignorability
of the frames the units belong to when modelling the relation between the response and the auxiliary
variables, there is not a relevant difference in efficiency between estimators using a multinomial model in
the whole population and estimators using a multinomial model in each frame.

We now turn to the evaluation of the precision of the proposed estimators by means of confidence
intervals. We obtain the 95% confidence intervals based on a normal distribution and the jackknife
variance estimator proposed in Section 7 with finite-population correction. Table shows the average
length reduction of 95% confidence intervals and the empirical coverage probability over 1000 simulation
runs in each category of the main variable. The confidence interval lengths of proposed estimators have
been compared with the confidence interval lengths of their linear calibration counterparts using the
same amount of auxiliary information. That is, PA’?[%V, 131\%107 PA“";[VE and P]\%VEC have been compared with

Pcasr and Pﬁlz and PJ\I/}’ZC have been compared with Pogipr.
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From Table we conclude that all the proposed estimators considerably reduce the length of the
confidence intervals obtained, with respect to the linear calibration estimators. The empirical coverage
is very close to the nominal level. It is observed that the estimates based on the joint estimation of the
parameter 8 (PHY, pj\z;%v@ ]5]\54‘2/ and PJ\%VEC) have a somewhat lower coverage than the others.

Looking at the effect of the choice of 7 (in relative bias and relative mean squared error), we have
repeated the simulation study (for all populations and scenarios) using alternative values for n. In
particular, other than that used previously, i.e.

v(Ng3)

NSR2 = — =5/ =~ 1>
o(NB) +v(Nz)

we have considered a fixed value 7 = 1 and one estimated following Skinner and Rao (1996):

N,Npv(NE)
N,Npv(NB) + NyNsv(NA)

NSR =

See Section for details and guidelines on choosing a value for 7. Table shows (only when
the overlap domain size is Medium, for space reason) that there is a little effect of these three different
estimates for 7 on the behaviour of the considered estimators. We can conclude that the available auxiliary
information and the way in which it is included in the estimation procedure play a much more relevant

role than the choice of a value for 7.

A3.9 Application to the Survey on Opinions and Attitudes of
the Andalusian Population regarding Immigration (OPIA)

2013

To examine the performance of the proposed estimation methods in practice, we have applied them to
the dataset from the OPIA survey. The main variable in this study is related to the “attitude towards
immigration”. The variable is the answer to the following question: And in relation to the number of
immigrants currently living in Andalusia, do you think there are ...?7: Too many, A reasonable number,
Too few, No reply.

We have considered the same set of auxiliary variables (sex and age) in the two frames. To incorporate



146 APPENDIX A3

information about sex into estimation process two indicator variables (one for males and another one for
females) were created. Similarly, four age classes were established and each respondent was assigned to
one of them. Corresponding indicator variables were used, then, for the analysis. Necessary population
information about these variables for calculating proposed estimators is displayed in Table Note
that both auxiliary variables sex and age are available from the two frames. In this case, the population
counts in the two-way contingence table are known in each domain.

Table [A3.7] shows point and jackknife confidence estimation for proposed estimators. Length reduc-
tion in jackknife confidence interval for each estimator regarding same interval for BKA estimator is also
displayed. In keeping with results obtained from simulation experiments, reduction is quite significative
for all estimators whatever the category of the main variable. Calibration approach achieves most impor-
tant reductions in length, with single frame calibration presenting the best results. On the other hand,
using ]3]3‘2/, p]\%vg and Pﬁf estimators the length reduction is less noticeable.

Table shows point estimation for proposed estimators by sex and age. Analyzing results by gen-
der, it is noticeable that there are more males than females thinking that there are too many immigrants
in Andalusia and that females are more reticent to answer the question than males.

On the other hand, it is worth noting that perception that there are too many immigrants in Andalusia
increases together with age. So, while most of the people in the 18-29 age group think that the number
of immigrants in Andalusia is reasonable, most part of people aged 45 years or over think that there are
too many. The age group where the non-response is higher is the one including people aged 60 years or

over.

A3.10 Conclusions

Data collected from surveys are often organized into discrete categories. Analyzing such categorical data
from a complex survey often requires specialized techniques. To improve the accuracy of estimation
procedures, a survey statistician often makes use of the auxiliary data available from administrative
registers and other sources.

Generalized regression is a popular design-based method used in the production of descriptive statistics
from survey data. Although the Generalized regression estimator is design-consistent regardless of the

form of the assisting model, a linear model is not the best choice for multinomial response variables. For



MULTINOMIAL LOGISTIC ESTIMATION IN DUAL FRAME SURVEYS 147

such variables we introduce a class of multinomial logistic generalized regression estimators when data
are obtained from samples from different frames.

We introduce a new approach to the model assisted estimation of population class of frequencies in dual
frame surveys. We propose a class of logistic estimators based on multinomial logistic models describing
the joint distribution of the category indicators in the total population or in each frame separately. We
also consider different ways of combining estimates coming from the two frames.

The type of sample design used in practice drives the user to choose between Dual-Frame or Single-
Frame approaches. The Single-Frame approach requires additional information in the overlapping domain
that is not always easy to take in practical applications.

As for calibration, it seems clear that the better for efficiency is to incorporate it, regardless of whether
or not a logistics model is used.

As for the model, apart from the advantage provided by the fact that the estimates of proportions for
each category add to one, our simulation study suggests that it is preferable to use it.

As for the type of model, in most practical applications it will be almost entirely forced, depending on
the auxiliary information available and, more specifically, on the availability of auxiliary variable totals
for domains, for frames or for the entire population.

To compute the proposed estimators, we have assumed to know the values of auxiliary variables for
each individual in the population, which can be quite a restrictive assumption. Indeed, to compute the
proposed estimators we need to know the count of each value of the auxiliary variable vector in the
population. This is a very frequent situation that arises, for example, when categorical variables (as the
gender or the professional status of the individual) or quantitative categorized variables (as the age of
the individual, grouped in classes) are used as auxiliary information in a survey. In this context, we
do not have a complete list of individuals but still the proposed estimators can be computed since the
population information needed can be found in databases of national statistical organisms. In fact, in
this case, we only need to know the population count in the multi-way contingency table. This is also
the situation in the application to data from the Survey on Opinions and Attitudes of the Andalusian
Population regarding Immigration explored in Section

Here we have considered two frames. The extension to more than two frames is under study as well.
One important issue when dealing with more than two frames is that of using a proper notation (see Lohr

and Rao (2006) and Singh and Mecatti (2011)). A first simple way around is the one, also considered
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in Rao and Wu (2010), in which weights from the multiplicity estimator of Mecatti (2007) are used as
starting weights and calibration is applied straightforwardly. More complicated is the issue of accounting
for different levels of frame information, although we believe that Singh and Mecatti (2011) may provide

a good starting point.
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Table A3.4: Relative efficiency (respect to the BKA estimator) of compared estimators. POP1 and POP2

POP1 POP2

acad. gen. voc. acad. gen. voc.

Medium

Ppxa 100.00 100.00 100.00  100.00 100.00 100.00
Poasr 14994 142.21 13230  152.77 145.10 129.26
Pppr,  217.89 135.87 177.26  175.94 146.75 148.75
Poupr 213.91 134.83 175.14  175.03 146.84 147.59
POW  347.02 181.43 252.42  204.46 194.97 148.32
PLW. 356.87 181.05 258.60  209.29 192.64 153.29
P3W 34812 181.25 252.44  205.63 194.71 148.82
Py, 35810 180.97 258.85  210.22 192.32 153.70
PHEY 350.18 187.65 257.22  207.83 251.93 147.44
POHF. 35893 186.31 263.52 214.76 250.13 153.44

Small

Ppxa 100.00 100.00 100.00  100.00 100.00 100.00
Poasr 15530 137.56 140.60  152.77 142.46 137.70
Pppr 23255 147.36 198.25  179.24 149.26 158.30
Poapr 21050 134.54 179.08  182.73 150.09 160.65
PLW 33143 163.16 247.64 165.45 146.32 157.70
PO, 353.76 163.06 265.66  176.59 146.83 166.11
P3W 33175 163.33 248.08  166.09 146.83 157.60
P3W.  353.77 163.17 265.85 176.78 146.99 165.93
POE 34394 164.70 257.75  170.24 150.15 154.31
POHE.  365.15 163.94 27528  184.50 150.24 164.51

Large

Pgga  100.00 100.00 100.00  100.00 100.00 100.00
Pogsr 147.60 130.53 138.13  152.25 121.61 125.29
Pppr 19348 124.99 17321  163.71 142.12 149.74
Poapr 19210 125.72 170.56  165.55 153.62 161.09
POV 354.00 161.79 256.45  303.59 118.57 269.38
POW. 37174 161.23 266.64 307.98 123.76 282.16
PYW 356.73 161.87 257.40  302.59 119.33 269.14
PyW.  375.21 161.38 267.54  306.81 124.75 281.93
POY 362.07 168.39 265.88  344.86 130.46 370.90
POY. 37611 167.22 274.78  348.03 137.80 379.38




150

APPENDIX A3

Table A3.5: Length reduction (in percent, %) of proposed estimator with respect to linear calibration estimators
using the same amount of auxiliary information (P]{%;V, pov, Py and PfIVLVC have been compared with Pcgaisr
and PL¥ and P} - have been compared with Poaipr). Coverage (in percent, %) of jackknife confidence intervals.

POPL.

HDW
Pyt
DW
Pirre
SW
Pirr

Length reduction Cov

acad. gen. voc. acad. gen. voc.

Medium

10.31 25.44 30.91 94.5 939 949
9.90 28.28 32.78 95.2 939 945
10.59 25.73 31.18 94.8 94.1 95.0
9.95 28.34 32.82 95.0 93.8 94.5
8.83 33.04 16.41 95.8 96.0 95.5
8.11 35.23 18.24 959 95.3 95.1

Small
9.14 23.76 28.25 95.0 93.2 95.2
8.78 26.86 30.41 94.1 934 936
9.43 24.04 28.52 94.5 935 94.0
8.81 26.89 30.43 94.8 925 94.2
6.98 24.64 13.09 96.3 95.0 95.9
6.30 27.15 15.32 96.6 94.6 95.1
Large

10.11 25.45 30.71 94.2 935 939
9.34 28.24 32.38 94.1 934 936
10.64 25.94 31.14 94.5 935 94.0
9.71 28.51 32.62 94.8 925 94.2
10.18 35.37 17.96 96.3 95.0 959
9.29 37.39 19.45 96.6 94.6 95.1
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Table A3.6: Relative efficiency (respect to the BKA estimator) of compared estimator for 7srz =
V(Noa)/(V(Nap) + v(Nea)), isk = NaNBv(Nea)/(NoNav(Nap) + NaNpv(Nea)) and 110 = % Overlap domain
size Medium.

POP1 POP2

acad. gen. voc. acad. gen. voc.

POW fispy 347.02 181.43 25242  204.46 194.97 148.32
fsr  348.45 181.32 252.88  205.14 194.69 148.71
My 347.27 181.30 25257  204.69 194.91 148.32
PDW

DWW figpe 356.87 181.05 258.60  209.29 192.64 153.29
Ask  358.65 181.01 259.21  209.78 192.36 153.62
M2 35711 180.91 258.76  209.48 192.54 153.26

PDE figpy 35018 187.65 257.22  207.83 251.93 147.44
fisg  351.57 187.70 257.90  207.85 249.31 147.45
M2 350.34 187.45 257.33  208.03 251.91 147.50

PDF . fgre 358.93 186.31 263.52 214.76 250.13 153.44
Asg  360.76 186.46 264.35 214.57 247.50 153.26
M2 21502 250.07 153.52 18244 148.19 163.36
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Table A3.7: Point and 95% confidence level estimation of proportions using several methods for Jackknife
variance estimation. Length reduction (in percent, %) respect to the BKA estimator. Main variable:

” Amount of immigration”

In relation to the number of immigrants currently

living in Andalusia, do you think there are ...?

Estimator PROP

Py
Pirte
v
Piftc
PiL
Piiic

PaY
PEY,
P
PoE

DF
MLC

Py
Pite
Py
Piftc
Pir
Piiic

Py
Piite
Py
Pifte
P
Piiic

Length
LB UB  LEN reduction
Too many
42.75 39.76 45.74 5.98 14.33
41.23 38.78 43.68 4.90 29.80
42.89 39.94 45.84 5.90 15.47
41.41 39.03 43.79 4.76 31.81
42.61 39.64 45.58 5.94 14.90
41.16 38.67 43.65 4.98 28.65
A reasonable number
45.24 42.27 48.20 5.93 12.28
46.57 44.11 49.03 4.92 27.22
45.09 42.17 48.01 5.84 13.61
46.40 44.02 48.78 4.76 29.59
45.45 42.49 48.41 5.92 12.43
46.68 44.17 49.18 5.01 25.89
Too few
6.06 4.55 7.58 3.03 15.36
5.77 4.58 6.97 2.39 33.24
6.05 4.56 7.54 2.98 16.76
5.76 4.61 6.91 2.30 35.75
6.13 4.62 7.64 3.02 15.64
5.63 4.46 6.80 2.34 34.64
No reply

5.95 4.65 7.25 2.60 12.75
6.43 5.27 7.58 2.31 22.48
5.96 4.67 7.25 2.58 13.42
6.43 5.30 7.56 2.26 24.16
5.80 4.51 7.10 2.59 13.09
6.54 5.33 7.74 241 19.13
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Table A3.8: Point estimation of proportions by sex and age. Main variable: “Amount of immigration”

Estimator

PJVIL
PMLC
PJWL
PMLC
P]ML

P]MLC’

DW
PML

P]MLC
PML
PSW
P]WL

PMLC

P]WL
P]MLC

SW
PML

P
P]V[L

P]WLC

PML
P
PML
PMLC
PML

PaYc

In relation to the number of immigrants currently

living in Andalusia, do you think there are ...?

ALL MALES FEMALES 18-29 30-44 45-59 > 60
Too many
42.75 46.46 39.15 32.46 44.29 46.03 45.14
41.23 43.64 38.97 30.97 42.07 43.31 46.58
42.89 46.74 39.11 32.76 43.89 46.44 45.85
41.41 43.79 39.19 31.55 41.61 43.87 45.77
42.61 44.45 39.16 31.99 41.69 43.56 48.13
41.16 43.55 38.96 30.01 42.14 43.28 48.56
A reasonable number
45.24 42.31 48.10 59.82 40.71 40.72 44.47
46.57 44.39  48.74 61.97 44.44 42.72 43.25
45.09 42.04  48.11 59.62 40.90 40.68 43.70
46.40 44.14  48.63 61.49 44.67 42.64 43.61
45.45 44.02 48.35 60.42 43.98 42.81 42.11
46.68 44.59  48.78 63.21 44.46 42.56 41.65
Too few
6.06 6.75 5.35 3.77 9.84 6.18 2.82
5.77 6.68 4.92 3.29 7.58 6.73 2.80
6.05 6.64 5.47 3.79 9.89 6.12 2.83
5.76 6.67 4.92 3.39 7.62 6.66 2.95
6.13 6.58 5.11 3.50 817 6.37 2.39
5.63 6.46 4.81 2.92 746 6.77 2.35
No reply
5.95 4.47 7.39 3.95 5.16 7.06 7.56
6.43 5.28 7.37 3.76 591 7.24 7.37
5.96 4.58 7.31 3.83 532 6.76 7.62
6.43 5.41 7.26 3.57 6.10 6.84 7.67
5.80 4.95 7.38 4.09 6.15 7.25 17.36
6.54 5.39 7.45 3.86 593 7.39 T7.44
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Estimation of proportions for class
frequencies with ordinal outcomes in
multiple frame surveys with complex

sampling designs

Rueda, M., Arcos, A., Molina, D. and Ranalli, M. G. (2016)
Estimation of proportions for class frequencies with ordinal outcomes in multiple frame surveys with
complex sampling designs.

Survey Research Methods. In review process.

Abstract

Surveys usually include questions where individuals should select one in a series of possible options
which can be somehow ordered. This kind of items are particularly frequent in social, marketing and
opinion surveys where, usually, respondents are asked to indicate their degree of agreement with a list of

sentences through a Likert or any other measurement scale. On the other hand, multiple frame surveys
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are becoming a widely used method to decrease bias due to undercoverage of the target population. In
this work, we propose statistical techniques for handling ordinal data coming from a multiple frame survey
using complex sampling designs. Our aim is to estimate proportions when the variable of interest has
ordinal outcomes. We propose to describe the joint distribution of the class indicators by an ordinal model.
Several estimators are constructed following model assisted generalized regression and model calibration
techniques. Theoretical properties are investigated for these estimators. Simulation studies with different
sampling procedures are considered to evaluate the performance of the proposed estimators via the
empirical relative bias and the empirical relative efficiency. Empirical coverage of confidence intervals
and their lengths are computed using jackknife techniques for variance estimation. An application to real

survey data is also included.

A4.1 Introduction

Multiple frame surveys were first introduced by Hartley (1962) as a device for reducing data collection
costs without affecting the accuracy of the results with respect to single frame surveys. Since then,
multiple frame sampling theory has experienced a noticeable development and several estimators for the
total of a continuous variable have been proposed. First proposals were formulated in a dual frame
context, i.e. for the case where two frames are available for sampling. Hartley (1962) himself proposed
the first dual frame estimator, which was improved by Lund (1968) and Fuller and Burmeister (1972).
Bankier (1986) and Kalton and Anderson (1986) and Skinner (1991) proposed dual frame estimators
based on new techniques. Skinner and Rao (1996) and Rao and Wu (2010) applied likelihood methods
to compute estimators that perform well in complex designs. More recently, Ranalli et al. (2015) and
Elkasabi et al. (2015) used calibration techniques to derive estimators in the dual frame context.

In recent years, a number of works has arisen that focus on the estimation in cases with three or more
sampling frames. Lohr and Rao (2006) extended some of the estimators proposed so far to the multiple-
frame setting. Mecatti (2007) used a new approach based on the multiplicity of each unit (i.e. in the
number of frames the unit is included in) to propose an estimator which is easy to compute. Multiplicity
is also used by Rao and Wu (2010) to provide an extension of the pseudo empirical likelihood estimator to
the case of more than two frames. In 2011, Singh and Mecatti suggested a class of multiplicity estimators

that encompasses all the multiple frames estimators available in the literature by suitably specifying a
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set of parameters.

Popularity of multiple frame surveys has increased among scientific community along last years and
now they are widely used both in statistical agencies and in private organizations. From 2000 to the
present, there has been a steady increase in the use of telephone surveys, which have replaced all other
data collection methods (the majority of which were face-to-face interviews). In some subject areas (e.g.,
electoral studies), face-to-face surveys have been completely ousted by telephone interviewing. Moreover,
studies have reported improved results from phone surveys compared with face-to-face interviews (Abascal
et al., 2012). Telephone surveys also present some drawbacks with regard to coverage, due to the absence
of a telephone in some households and the generalized use of mobile phones, which are sometimes replacing
fixed (land) lines entirely (see Trujillo et al., 2005). The potential for coverage error as a result of the
exponential growth of the cell phone-only population has been a key point in the increasing of the use
of a dual-frame approach when conducting telephone surveys. An example of a phone survey using both
a landline and a cell frame to ensure the highest possible coverage of the eligible population is the 2014
U.S. National Survey of Latinos (Lopez et al., 2014). Jackson et al. (2014) and McMillen et al. (2015)
compared the estimates obtained through a dual frame survey with those computed using a single frame
survey, with similar results. Surveys where data are collected from three sampling frames are also used in
practice. Tachan et al. (1993) used a three frame survey to reach the homeless population of Washington
D.C. metropolitan area. Frames in this survey were composed of homeless shelters, soup kitchens and
street areas. On the other hand, the Canadian Community Health Survey conducted by Statistics Canada
(2003) is based on a area frame, a list frame and a RDD frame.

The internet has become a very important data source that offers inexpensive ways to collect informa-
tion. Couper (2000) analyzes the issues and challenges related with web surveys concluding that this kind
of surveys already offer enormous potential for survey researchers which is likely only to improve with
time. Within multiple frame context, Lohr (2010) points that web surveys will play a very important
role in the future development of multiple frame surveys. So, in the near future it is very likely that dual
frame surveys consisting of a cell and a landline frame evolve to multiple frame surveys incorporating a
third frame of web users.

Surveys in general, and multiple frame surveys in particular, usually include questions in which the
respondents have to indicate their opinion or their degree of agreement with a statement by selecting one

of a list of given options. This is the case, eparticularly, in surveys focused on health, marketing and
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public opinion topics. In most situations, the Likert scale is used to scale the possible responses or these
are such that they can be somehow ordered according to a particular criteria (e.g., from the worst to the
best opinion). The main aim is to estimate the proportion of individuals selecting each option. Although
classical multiple frame estimators can be used, the estimates they provide are inconsistent since they
do not add up to 1 through all the categories. In the dual frame setting, Molina et al. (2015) developed
some logistic multinomial estimators but they may not be a good choice either, since for ordinal variables
the distance between adjacent categories is unknown and cannot be assumed as equal, which is a basic

assumption in the multinomial approach.

In this context, the ordinal logit model (OLM) offers a great power for the estimation. The most
popular OLM is the cumulative logit model, where categories of the variable of interest are divided into
two groups: the first one containing a particular category together with all categories lying below, and
the second one including categories above that particular category. When working with cumulative logit
models it is common to assume the proportional odds (PO) property, which establishes that the distance
between categories, even though unknown, is equivalent. That is, for each predictor variable the estimated
cumulative odds of being at or below a particular level of the response variable are assumed to be the
same across all the ordinal categories. Assuming this property leads to a more parsimonious model and,
consequently, to simpler interpretations. The cumulative OLM with PO property is considered as the
default ordinal regression model in the most common used statistical softwares, such as SPSS, SAS or

Stata.

Although ordinal regression models have been extensively used in sociological, medical and educational

applications, its use for parameter estimation in finite populations sampling is very sparse.

This article proceeds as follows: Section 2 introduces the problem of estimating the proportions of an
ordinal response variable in a multiple frame context, reviewing the existing approaches for estimation. In
section 3, we propose some estimators based on the ordinal logistic regression for estimating proportions of
a response with ordinal outcomes using model assisted and model calibrated techniques. Main theoretical
properties of the proposed estimators are studied in section 4. Performance of the estimators will be
measured through simulation experiments in section 5. Finally, we check how the estimators work in
a real context by applying them to data corresponding to a survey on perceptions of immigration in a

certain region in section 6.
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A4.2 Existing approaches for estimating proportions of a vari-

able with ordinal outcomes in a multiple frame context

We will employ the notation used in Mecatti (2007). Let U be a finite population composed of N
units labeled from 1 to N, U = {1,...,k,..., N} and let A;,..., A,,...,Ag be a collection of Q > 2
overlapping frames of sizes INi,...,Ngy,...,Ng, all of them can be incomplete but it is assumed that
overall they cover the entire target population U. Let the index sets K be the subsets of the range of
the frame index ¢ = 1,...,Q. For every index set K C {1,...,q,...,Q} a domain is defined as the set
Dk = (NgexAq) N(Nggx Ag), where ¢ denotes the complement of a set. Assume that we collect data from
respondents who provide a single choice from a list of ordered alternatives. We code these alternatives
as 1,2,...,m, with 1 < 2 < --- < m. Therefore, consider a discrete m-valued survey variable y and we
denote y; the value observed for the k-th individual of the population. The objective is to estimate the
frequency distribution of y in the population U. To estimate this frequency distribution, we define a class
of indicators z; (i = 1,...,m) such that for each unit k € U zx; = 1 if yx = 7 and z; = 0 otherwise. Our

problem thus, is to estimate the population proportion for each i, that is

1
Pi:Nszi, i=1,2,...,m. (Ad.1)
keU

Note that these proportions can be rewritten as follows

Q
1 Zki .
Pt:ﬁ E E mk’ 121,2,...,m, (A42)
q=1keU,

where my, indicates the number of frames unit &£ belongs to, i.e. the multiplicity of k.

Let s be a sample drawn from frame A, under a particular sampling design p,(s,), independently
for g =1,...,Q and let m(q) and 7 (g) be the first and second order inclusion probabilities under this
sampling design, respectively. Let di(q) = 1/m;(g) be the sampling weight for units in frame g. Let n,
be the size of sample s, and that s = Uys,. For ease of notation, we will drop (¢) from probabilities and

weights, i.e. we will consider 7, = 7 (q), T = 7ri(q) and dy, = di(q), when this is not ambiguous.

Lohr and Rao (2006) formulated the multiple frame extension of some of the estimators originally

proposed for the dual frame case, as the one proposed by Hartley (1962, 1974) or by Fuller and Burmeister
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(1972). Although the optimal version of these estimators is asymptotically efficient, it is not internally
consistent since a different set of weights is sued for each response variable. Moreover, it is often unstable
in small or moderate samples with more than two frames because the optimal estimated parameters
involved in the computation of the estimators are functions of large estimated covariances matrices.
Lohr and Rao (2006) also followed the so called single frame approach used by Kalton and Anderson to

proposed a single frame estimator in a multiple frame context. This estimator is in the form:

A 1
keEs
with di¥4 = 7,7, where 7, = 3° o>k Tk(¢'). To compute this estimator it is necessary to know not only
the number of frames each unit belongs to, but also the specific frames the unit is included in. This can

be an important drawback particularly if misclassification issues are present.

Lohr and Rao also proposed the following pseudo-maximum likelihood estimator for the multiple

frame context:

. 1
Pryri = > zwidi M (), (Ad.4)
kes

where the weights df ™% can be defined as

dPML —d NK&k(I{)
ko (a) =di(a)f(9) K;K > e FO)RRG)

with f(q) = m%, being def f.(q) the design effect for variable z in the ¢-th frame. Values Ni (q)
can be computed as Nk (q) = > kes, W (@)0k(K), with 6, (K) the indicator variable for domain K that
takes the value 1 whether unit k£ belongs to domain K and 0 otherwise. The estimated domain sizes Nk
are the solution of a system of non linear equations. The pseudo maximum likelihood is consistent and

usually works well in practical situations but it is complex to compute for a general sampling design,

since numerical procedures are required to obtain the values Ng-.

Mecatti (2007) also considered a single frame approach and proposed the following estimator

- 1
Py = N Z: Zridp (A4.5)
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with dé/[ = dj/my,. The previous estimator, often called single frame multiplicity estimator, only requires
the knowledge of the multiplicity of each unit, i.e. the number of frames the unit is included, no matter
which these frames are. This estimator can be adjusted using a raking ratio approach to get a single frame
raking ratio multiplicity estimator where a new set of weights, resulting from an iterative procedure, is

used.

In 2011, Singh and Mecatti proposed a composite multiplicity estimator, which generalizes the single

frame multiplicity estimator. This estimator can be written as

A 1
kes
where
dCM _ Aedy + (1 — )\k)de
k p—
with

Syl m/m(@)m(@) (1 - m(e)
ol = mby — 228 )m(q/) (1 - mi(g)

Usually, additional information about auxiliary variables is available in surveys. Let , = (241, 42, - . ., Zgp, )’
be a set of p, auxiliary variables observed in the g-th frame, so the vector xgx = (Zq1k, Tg2ks - - - > Tapyk)’
includes the values of the variables x, for the unit k of frame ¢. Auxiliary variables may differ in each

frame, i.e. x4 # x,, for ¢,r = 1,...,Q,q # r. For the sample coming from frame g, the values of the

variables (yx, Xqx) are observed. Equivalently, (2x1, ..., Zki, - - -, Zkm, Xqk) are known.

Rao and Wu (2010) followed a single frame multiplicity based approach to extend the pseudo empirical
likelihood estimator for the mean of a variable to the multiple frame setting. This estimator can be

computed as

PPELi = szipk(Q) (A4~7)
keEs

with pg(¢) maximizing the likelihood function
Q
Zq:l

Nq
lpEL(P1;---,PQ) = S Zdiw log[px (q)]
s kes
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subject to
Zpk(Q) =1
kes
Zpk(Q)Xk =z
kes
being & = (Z1, %2, ..., Tp) the vector of the population means of variables x,, which are assumed in this

case to be the same in all frames.

Calibration is also a well-known technique to deal with auxiliary information in estimation. Ranalli et
al. (2015) proposed different calibration estimators for the dual frame case, which can be easily extended
to the multiple frame context. A calibration estimator in the case of more than two sampling frames can
be defined as

~ 1
Peari = 5 Z zpdfy AP (A4.8)
kes

where dkCAL are such that they minimize ), G (dkCAL, d{cw ), where G(-,-) is a particular distance func-

tion, subject to

> oA =Ny q=1,..,Q
keEs

deCAquk(sk(Aq) = txq7 q= 17 (X3 Qv
kes

where 65 (A,) is the indicator variable that takes value 1 if unit & is in frame ¢ and zero otherwise, and

t.q are the population totals of x,.

Recently, Elkasabi et al. (2015) proposed a joint calibration estimator for the dual frame case that

can be easily extended to the case of three or more frames. The estimator is in the form

- 1
Piepi = > zkid]F (A4.9)
kes

with d/“F = dj.(1 + N'x},) and

N = (Z Xgk — Y dkxk>/ (Z dkxkx;> h

keU kes kes

As for Ppgp;, the same set of auxiliary variables © = (21, x2, ..., Zp) is assumed to be known in all frames.
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A4.3 Proposed estimators for responses with ordinal outcomes

Estimators reviewed in the previous section were originally formulated for estimating parameters (usually
a total or a mean) of a continuous variable. They can be used also for estimating proportions of an ordinal
variable although final estimates may likely be inconsistent, in the sense that they can take value outside
the interval [0;1] and they may not add up to 1. Moreover, they are not taking into account the extra
information we have from the order among categories. In this case, an approach based on an ordinal
logistic model (OLM) seems to be more appropriate. Within OLMs, the most widely used one is the
cumulative ordinal logistic model, which assumes a linear model for the logit of cumulative probabilities

for the categories of y. See Agresti (2007) for a good review on ordinal logistic models.

Under this scenario, we can exploit superpopulation models for inference from sample surveys. A
superpopulation model is a way of formalizing the relationship between a target variable and auxiliary
data. Superpopulation models have been used in sociological and electoral studies Cassel et al.(1997)
used the superpopulation approach to estimate the average customer satisfaction, Pavia and Larraz (2012)
used superpopulation models in electoral polls,...) Traditionally, linear regression models have been used
to incorporate auxiliary information. As it is well known in sociological literature (Winship and Mare,

1984), for qualitative variables a linear model is unrealistic.

Considering the most general case, where auxiliary information differs by frame, we consider a different
superpopulation ordinal logistic model in each frame. So, in frame ¢, the logit transformation of the

cumulative probabilities can be written as follows

. . P(yk < 7,) .
logitlog( P < =log ——"—2L =qa! a =1,.. -1 =1,... A4.10
ogitlog(P(yx < i)) = log Pl +B{xqr, i=1..m—-1 q¢=1,...,0Q, ( )
where af is a scalar and 8] = (87, .. ,ﬁgqi). This expression can be rewritten as

q q
P(yk S Z) _ exp(ai +16iqu)

- Ci=1,..m—1, q=1,....0Q. A4.11
1+ exp(af + Blxgk) 4 Q ( )

We assume that, in frame ¢, the finite population under study y = (y1,...,yn)’ is the determina-

tion of the superpopulation random variable vector Y = (Y7,...,Yy)’, that can be described by the
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superpopulation model, &, s.t.

_exp(ai+Byxqr) i1
. 1+ 1437 ) =
1 (xqr) = P(Yi = i[xqr) = B¢, (Zyilxqr) = exp(ai+8{%q1)
exp(af +08{xqx) exp(ad_+B7_xq1) i_o m
Itexp(af+8ixqrk) Ttexp(al +B7 xq1)’ " — <o
(A4.12)

Here E¢, denotes the expected value with respect to the model in frame ¢ and we assume that Y} are

conditionally independent given x,;. An important property that is usually assumed to be accomplished

is the proportional odds property. According to this property, effects of the predictors are the same across

categories. This implies that 37 = 37, i.e. parameters associated to independent variables are fixed and

independent of the category considered. Then, the superpopulation model can be rewritten as
exp(ad+B7%41) i=1

i (kqr) = P(Ve = ilxge) = Be, (Zualege) = § 7o 2man)

exp(ad+B8ixq,)  exp(ef ;+B89%qk) i—=9
14-exp(af+B9xqk) 14exp(af_;+8%%qr)’ "

y ey

(A4.13)

Usually, population parameters af and 37 involved in the model &, are unknown and should be
estimated using sample information. Different procedures, as weighted least squares (Goldberger, 1964)
or maximum likelihood, can be used to this end. Under the latter, we can obtain the maximum likelihood

estimates for the parameter 8¢ = (o, ..., a? ,3?) by maximizing the following function
1 m Y

007 = > > diziilog pf (xgk, 07), (A4.14)

i=1,...,m k€sq
and we denote it by 69 = (d’f,...,dgn,,@q). Under certain conditions the m-weighted log-likelihood
estimator is consistent for 7 (Nordberg, 1989). Using these maximum likelihood estimates, we can

define an estimator for probabilities for each category as follows:

_exp(af+B"xqr) i=1
Pl = Al(xgy) = 4 TP L) o . (A4.15)
exp(6d+8 %)  exp(&f_;+B8 xqx) . —9 m

1+exp(dg+quqk) 1+exp(dg71+ﬁqqu) ’

These estimated probabilities can be used to define the following model assisted estimators:
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Q q
Prray; = % (Z Z % - szid,ﬂ/[ + szidkM> , i=1,...m (A4.16)

q=1keU kes keEs

Q q
Parazi = % (Z Z %}: - % szidk + szld,lc‘/[> , i=1,..m (A4.17)

q=1keU kes kes

with M = > kes k. To formulate both estimators we have adapted the approach used by Lehtonen and
Veijanen (1998a) to estimate class frequencies of a variable with multinomial outcomes in a single frame
context to the case of an ordinal response variable in a multiple frame setup. Estimated probabilities in
the sum over the population in estimator Paray; are weighted by multiplicities my to avoid overestimation
issues. For this same reason, weights dﬁ/[ are used in the sample sums. Such weighing is intended to make
the estimator consistent in the sense that its categories add up to 1. Estimator PM A2 is very similar to
Py A1i, with the only difference of using original design weights dj in one of the sample sums. Due to

this, and to ensure the consistency of the estimator, adjustment factor N/ M is used.

It is important to note that, since different auxiliary information is considered in each frame, we need

to adjust ¢ different models, each one based on the set of auxiliary variables of the specific frame.

Treating probabilities p{, as auxiliary variables, we can include them in the estimation process through
a model calibration approach (Wu and Sitter (2001a) introduce model calibration in a classical one frame

survey). The resulting model calibration estimator can be written as

N 1 wy
P i = = —k i ) = 1, e, m, A4.18
MC1 N kge mkzk 1 m ( )

where weights wj, are chosen so that they minimize ), G (wy,dy), subject to

In the first group of @ calibration constraints, regarding frame sizes, multiplicities my, are used to properly
weight indicator variables d;(A,) and so, to cancel any overestimation problem. The same reasoning may

be applied to the second group of constraints, where the auxiliary variables are also weighted by my.
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Alternatively to (A4.14), model parameters for the g-th frame can be estimated maximizing the

following loglikelihood function

007 = > > di i log pf (xgk, 07), (A4.19)

i=1,...,m k€sq

yielding to the probability estimates

eXp(d:qJﬁth*qu) i=1
Dl = il (xgr) = § TR T : (A4.20)
exp(@iq_i_gA xgx)  exp(&jf 1+ﬁ qu =2 m
1+exp(&:q+ﬁ*qqu) 1+exp(ai71+ﬁ Xqk) ey
The following calibration estimator can be defined
R 1 . )
Pricai = Nzwkzki’ i=1,...,m (A4.21)

kes

where, in this case, the weights wj are such that they minimize ), . G (w,’;, dé”) subject to

> wide(Ag) =Ny, q=1,...,Q

kes

Zwkpkq5k Zpkqék g=1,...,Q, i=1,..m.

keEs keU

Unlike those in IE’MCU, constraints for this calibration estimator do not involve multiplicities. Over-
estimation issues are eliminated, then, by considering d (which are already weighted by my) as the
starting weights for the calibration. Therefore, resulting weights wj should be near to those starting

weights so they already take into account the multiplicity while still fulfilling the calibration constraints.

A4.4 Properties of the proposed estimators

In this section we describe the main properties of the proposed estimators. We adapt the asymptotic
framework of Isaki and Fuller (1982) to a multiple frame context, in which the finite population U
and the sampling designs p1(-),p2(-),...,po(-) are embedded into a sequence of such populations and

designs indexed by N, {Un,p1y(-),p2x (), sDon (1)}, with N — oco. We will assume, thus, that



ESTIMATION OF PROPORTIONS FOR CLASS FREQUENCIES WITH ORDINAL... 167

Niy,Nay,...,Ng, tend to infinity and that n;,,ng,,...,nQ, also tend to infinity when N — oo.
Furthermore, we will assume all domains Dg being non-empty, K C {1,...,q,..,Q}. Additionally,
Ngn /NN — ¢ € (0,1),g = 1,...,Q, where ny = Zqul ngy a8 N — oo. All limiting processes are
understood as N — oo, so we drop subscript N for ease of notation. Stochastic orders O,(-) and op(+)

are with respect to the aforementioned sequences of designs.

We first discuss the theoretical properties of PMCQ and then move to the other estimators, be-

cause these can be dealt with using slight modifications of this more general case. Let u](xqx,09) =

exp(ad+B87xqr) explaf_;+B%qk) . _
Trexp(aT+Bx,r) ~ THexplal, +8%xy0)" fori=1,....,mand ¢ = 1,...,Q. In order to prove our results, we

make a set of technical assumptions reported in Appendix

Theorem 2. Under assumptions A@» estimator ﬁMcgi 1s design \/n -consistent for P; in the sense
that

3 —1/2

FﬁJCQz }D O ( / %

and has the following asymptotic distribution

Pyooi — B

= £N(0,1)
Voo (Pric2i)

where

Ve (Prrca) = 3 D0 | 30 30 vl e ) (el (A4.22)

g=1 \keU,leU,
with M = m—mpm and ef; = zri—puf (Xqk, 04) By, and Bjyy = 375 cpr, (1 (%1, 03)%) ™ (X ew, 11 (xq107)21i)-
In addition, let é];, = Zki—pZiBf, being Bf = (Zkesq di\/[pzf) (Zkes d¥pi.zii). Then, Voo(ﬁMcgi) can

be consistently estimated by

Q
o(Prronr) = Z > @)

kesglesy

Proof. See Appendix [A4.7.2]
Estimator PMCl is similar to pMCQ. The only differences are (i) PMC‘l uses original design weights
dy, as starting weights for the calibration, correcting with multiplicities mj where necessary to avoid

overestimating issues and (ii) probability estimates p}. are used as auxiliary information instead of ng.
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On the other hand, PM 41 and PM A2 can be seen as particular cases of ISMcgi in which BfU is a scalar
equal to 1 for all i and all ¢ and, again, estimates pj, are used as auxiliary information. In both estimators
population sum of probabilities is weighted by my to correct for the multiplicity. The main difference
between estimator I:’MAQ and estimator PJWAl is that in I:’MAQ the term Zqul Zkqu ,ug(qu) is estimated
by % Zkespiidk instead of by ZkespiidkM as in the latter. Despite of these particularities, a similar

procedure to the one used with Prrco can be considered to prove the results.

A4.5 Monte Carlo Simulation Experiments

We now compare empirically the performance of the proposed estimators with respect to alternative
estimators via Monte Carlo experiments, which have been carried out by using the freeware statistical
program R.

We have considered a three frame setting, say frames A, B and C, where three normal variables have
been simulated: a first one following a A(30, 3), which is categorized considering 4 ordered levels to create
the ordinal response variable, y, (for simplicity, we have coded the levels as 1, 2, 3 and 4, considering 1
< 2 < 3 < 4) and another two which play the role of auxiliary variables: z; and z. These two auxiliary
variables are generated controlling their correlation with the response variable (taking advantage of the
fact that response variable has been generated from a continuous variable). In this first scenario, the
correlation between the response y and the auxiliary variables x; and x5 has been set at 0.85. We have
generated N = 10000 observations for each of the three variables involved in the study. Population ratios
of the levels of response variable are: 0.1, 0.2, 0.3 and 0.4, respectively.

Domain sizes were defined beforehand and then each unit was randomly assigned to one of these
domains. As a result, three overlapping frames of sizes Ny = 5500, Ng = 6000 and No = 5000 were
obtained. Three samples of sizes ny = 360,np = 464 and nc = 728 were independently drawn, one
from each frame, considering Midzuno sampling designs in frames A and C and a simple random sam-
pling design in frame B. Sample from frame A was drawn with probabilities proportional to a normally
distributed variable with mean 1000 and standard deviation 250. On the other hand, sample from frame
C was drawn considering inclusion probabilities proportional to another normally distributed variables
with mean 5000 and standard deviation 500. In this scenario, the two ordinal model-assisted estimators

(PMA1 and PMA2) and the two ordinal model-calibrated estimators (PMC1 and PMC2) were computed.
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For comparison purposes, we also compute Kalton-Anderson (KA), multiplicity (M), composite multi-
plicity (CM) and calibration (CAL) estimators. For the estimators using auxiliary information (CAL,
PMA1, PMA2, PMC1 and PMC2) we have considered different sets of variables: x; in frame A, x5 in
frame B and both z; and x5 in frame C.

For each estimator, we compute the percent relative bias RB% = EMC(P—P)/P* 100 and the percent
relative mean squared error RMSE% = Epo[(P — P)?]/P?+100 for each category of the variable y based
on 1000 simulation runs. We have used RM SE% to calculate percent relative efficiency gain with respect

to multiplicity estimator (results are presented in Table [A4.1)).

Table A4.1: % Relative bias (in italics) and % relative efficiency, with respect to multiplicity estimator for each
estimator. Corresponding equation in parentheses. pyx, = 0.85, pyx, = 0.85

1 2 3 4 min max mean

M 20.08  0.19 0.0 -0.10 0.0f 0.19 0.10
100.00 100.00 100.00 100.00 100.00 100.00 100.00

KA 20.14  0.16 0.05 -0.09 0.05 0.16 0.11
107.00 104.11 104.47 104.26 104.11 107.00 104.96

M 0.1 016 0.07 -0.10 0.07 0.6 0.12
106.71 103.84 104.16 103.92 103.84 106.71 104.65

CAL (A48)  -045 0.2 021 -0.17 017 043 026

134.47 113.68 99.41 173.16 99.41 173.16 130.18

PMAL1 (A4.16) 0.71 -0.12  -0.51 0.11 0.11 0.71 0.51
190.77 132.25 119.69 216.48 119.69 216.48 164.79

PMA2 (A4.17) 0.09 0.6 -0.01 -0.10 0.01 0.16  0.09
166.77 122.88 114.08 179.71 114.08 179.71 145.86

PMC1 (A4.18) -0.08 0.13 0.03 -0.07 0.03 0.13 0.08
183.79 129.51 121.54 19299 121.54 192.99 156.95

PMC2 (A4.21) -0.10 0.14 0.02 -0.06 0.02 0.14 0.08
184.70 129.50 121.75 195.23 121.75 195.23 157.79

From results of table we can conclude that bias for all the estimators considered is negligible.
Equally, we can observe that estimators using auxiliary variables perform better than the estimators that

do not use any extra information. All the proposed ordinal estimators work better than the classical
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calibration estimator, which assume an underlying linear model. Whatever the proposed estimators,
we can see that the largest mean efficiency gain with respect to multiplicity estimator is achieved in
category 4, which is the category with the largest population proportion. Within the group of proposed
estimators, PMA1 is the estimator which shows the largest efficiency gain. On the other hand, no
significative differences can be detected between the two calibration estimators proposed.

To determine the effect of varying association between response and auxiliary variables, we are going
to consider new scenarios with different correlation levels between y and z; and x5. In the first scenario
created, correlation between y and x; has been decreased with respect to the initial situation to 0.65.
On the other hand, correlation between y and 2 has been set to 0.5. In the second scenario, correlation
levels between y and x; and between y and x5 are set to 0.4 and 0.7, respectively. We have run 1000
repetitions keeping the same sample sizes for the three frames. Relative bias is not significant in any case

and so only relative efficiency with respect to multiplicity estimator is displayed in table

Table A4.2: % Relative efficiency with respect to multiplicity estimator of compared estimators considering
different association levels between y and x1 and x2

1 2 3 4 min max mean

pyx, = 0.65, pyx, = 0.5.
PMA1 125.15 110.56 104.16 133.48 104.16 133.48 118.33
PMA2 119.00 106.49 102.14 123.58 102.14 123.58 112.80
PMC1 126.53 107.40 103.46 130.77 103.46 130.77 117.04
PMC2 125.96 107.18 103.21 130.84 103.21 130.84 116.79

pyx, =04, pyx, =0.7.
PMA1 122.54 110.27 106.44 133.53 106.44 133.53 118.19
PMA2 116.57 105.99 103.36 124.20 103.36 124.20 112.53
PMC1 124.35 107.16 104.99 131.43 104.99 131.43 116.98
PMC2 123.59 106.97 104.80 131.60 104.80 131.60 116.74

We observe that proposed estimators have a gain in efficiency in comparison to the customary mul-
tiplicity estimator when the association between the auxiliary variables and the main variable is also
moderated. If correlation decreases, then the improvement of course of using the model is less impor-
tant. As in the previous scenario, gain in efficiency for category 4 is quite relevant compared with the 3

remaining categories.
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A4.5.1 Application to real data

In addition to simulation studies, we have utilized a set of real data to check the performance of the
proposed estimators. Data come from a survey on opinions of the Andalusian population towards immi-
gration conducted in 2013 by an Andalusian research institute focusing on social studies. In this survey,
the institute conducting the survey decided to carry out telephone interviews with adults using two sam-
pling frames: one of landlines (frame A) and another one of cell phones (frame B). Finally, n = 1853

telephone interviews were performed.

At the time of data collection, frame sizes were known (extracted from ICT-H 2012, Survey on
the Equipment and Use of Information and Communication Technologies in Households, INE, National
Statistical Institute, Spain). Landline frame was stratified by provinces in region of Andalusia and then
a stratified sample of size ny = 1468 was drawn. In cell phone frame a simple random sample of size

np = 385 was selected by using a random digit dialing (RDD) method.

We have considered two different response variables related with attitudes regarding immigration.

) 4

The first one is “The place you prefer for living is a place with...” where possible options are “...few

“

immigrants”, “...some immigrants” or “...many immigrants”. The second main variable is the response
to question “Do you consider that immigrants have nothing, little, quite a few or much in common with
you?” As auxiliary information we use the sex and the age (categorized by considering 4 age classes) of

interviewed people in each frame. Population data for auxiliary variables is available from table

Together with the proposed estimators, we have calculated some additional estimators for comparison
purposes as multiplicity (M), Kalton-Anderson (KA), composite multiplicity (CM), calibration (CAL))
and joint calibration (JCE) estimators. For CAL and JCE we have used also the sex and the age of
the individuals as auxiliary variables to get comparable results. Note these estimators are the alterna-
tives available given the same amount of auxiliary information but both estimators work well when the
relationship between main and auxiliary variable is strongly linear.

Table [A4.4] shows point estimation for compared estimators for the two main variables. We have used
the jackknife procedure described in Lohr and Rao (2000) to estimate variance of estimators and then
a 95 % confidence interval has been computed. Results of lower bound, upper bound and lengths of

intervals are also includes in the table.

In both cases, average length of confidence intervals of all proposed estimators is smaller than average
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Table A4.3: Population data for variables sex and age

Both Landline Cell

Men

18 - 29 428750 0 188172
30 - 44 724435 4259 298416
45 - 59 603338 59385 135981
> 60 396626 206410 94729

Women

18 -29 480151 0 115472
30 - 44 658984 17673 289106
45 - 59 601478 39362 141553
> 60 445897 316172 104567

lengths of confidence intervals of classical estimators.

A4.6 Conclusions

In this paper we have introduced a flexible way of using auxiliary information when estimating propor-
tions for an ordinal variable using a multiple frame survey. We have worked within the model-assisted
framework for finite population inference and proposed estimators using both the generalized regression
and the calibration approach. In both cases, we have relaxed the assumption of a linear regression model
and considered ordinal regression models. Weighted likelihood methods have been employed to obtain
design consistent parameter estimates. The proprieties of the proposed estimators have been investigated
theoretically and via simulation studies.

The performance of the proposed ordinal estimators is good under a variety of sampling designs.
Our main findings show that it is important to include auxiliary information into the estimation process
to increase efficiency. Of course, the gain in efficiency depends on the strength of the relationship of
the auxiliary variables with the variable of interest. In addition, it is also important to account for the
ordinal nature of the variable of interest and, therefore, employ suitable models. In fact, the proposed
estimators outperform classical calibration methods that, implicitly, employ a linear regression model.
In this regard, a methodology that is often used to incorporate auxiliary information in sample surveys
is post-stratification; it should be noted that it is just a particular case of calibration and, therefore, we

have shown that it is possible to use auxiliary information in a more efficient way when the variable of
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interest is ordinal. This has been highlighted also in the application to real data from a dual frame survey
on attitudes towards immigration: the calibration estimator in this case is essentially an adaptation of
post-stratification to multiple frame surveys. The proposed ordinal model-assisted estimators provide all
a sensible reduction on the length on the confidence intervals for the estimated proportions compared to

all other estimators.

A4.7 Appendix - Assumptions and proof of Theorem 4.1.

A4.7.1 Assumptions

/. Let 0}, be the census level parameter estimate obtained by mazimizing the likelihood

ly(09) = Z szilogu?(quﬁ")-

i=1,...,m keUy

Assume that 09 = limn_, 0F; exists and that 07 = 0, + Op(n;,l/Q), qg=1,...,Q.

A. For each xq1, Op(Xqk,t)/0t is continuous in t and |Ou(Xqk, t)/0t| < f1(Xqk,09) for t in a neighbor-

hood of 89 and f1(xqx,07) = O(1), fori=1,...,m;g=1,...,Q.

M. For each X5, O*u(Xgk,t)/0t;t;r is continuous in t and max; j |0 u(Xqr, t)/0titj| < fo(xgk, 07) for

t in a neighborhood of 09 and fa(xqk,07) = O(1), fori=1,...,m;g=1,...,Q.
M. The auziliary variables x have bounded fourth moments.

AO0. For any study variable £& with bounded fourth moment, the sampling designs are such that for the

normalized multiplicity estimators of € = N~1 > wev &k a central limit theorem holds, i.e.
Vi (€ — &) SN0,V (Eu)),

where éM =N e, dit.

Al. Let Biy; =3 cpr (1 (Xqn, GqU)Q)_l(Ekqu i (Xq, 0F)zki). Assume that Bf =limy_, By, exists,
and the sampling designs are such that Bjy, can be consistently estimated by Bf fori=1,..m;q =

1., 0.
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A4.7.2 Proof of Theorem 4.1.

Estimator PMcgi can be rewritten in the form

Q

~ 1 1 * 1 * >

s = Dl (St - St w3 (St X i) -
kes g=1 \keU kes q=1 kEU /CEsq

with pii = (3k(Aq), Pii0k(Ag))-

Now, using the same approach developed in Montanari and Ranalli (2005), it is easy to show that by

assumption All1} BY — BY, = o(1); and by assumptions A|§|» and AEI»

~ Z > piloi(A Z A P8 (Ag) = Op(n~1/?),

q 1keU q 1 kes

using a first order Taylor expansion of p(xqs, éq) at 69 = 0},. Using A|§|» and a second order Taylor

expansion of (g, 09) at 89 = 67,

Q Q Q
*ZZPZ‘% ZZ ai'pio (A ZZ% 4y) %ZZ K0 (Ag) = Op(n ™)
q=1 ke qg=1keU q=1 ke

q=1keU

Thus,

e =y Dttt 3 3 (S wit - St 7

kes keU kes

where uk is like pkq but with p 7 replaced by its population counterpart MZ'ZI Consequently

E (PMCQZ — E ZdMZkz P
kEs

and

A 1
Vo(Prrczi) = Vol > (zki — pd (g, 03)) By
keEs

Under assumption estimator & >, o A (zri—pd (zqr, 0F;)) BY; is asymptotic normal distributed,
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so we can conclude that estimator PMCU is also asymptotic normal distributed.
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Table A4.4: Point and 95% confidence level estimation of percentages using Jackknife variance estimation.
Auxiliary variables: Sex and Age.

Do you consider that immigrants have nothing,
little, something, quite a few

or much in common with you?

The place you prefer for living is a place with...

Estimator PROP

KA

CAL
JCE
PMA1
PMA2
PMC1
PMC2

KA
CM
CAL
JCE
PMA1
PMA2
PMC1
PMC2

KA
CM
CAL
JCE
PMA1
PMA2
PMC1
PMC2

LB

UB

LEN

...few immigrants

45.26
44.70
44.92
44.43
44.97
45.29
45.60
44.55
44.67

41.93
41.60
41.84
41.47
42.03
42.24
42.33
41.67
41.73

48.58
47.78
48.00
47.39
47.90
48.32
48.86
47.42
47.60

GLOTOD D UTOTO O O
IO
[t TR0 1~

...so0me immagrants

48.36
49.18
48.65
49.46
48.80
48.51
48.13
49.50
49.30

45.03
46.07
45.56
46.45
45.86
45.47
44.86
46.55
46.22

51.67
52.27
51.72
52.48
51.72
51.54
51.39
52.45
52.37

PN NG DO
—OUTO0O =S
S ISToOR

...many tmmagrants

PN DD
=Y = SR Y ORIy )
XAJSWDLwd

4.68
4.62
4.83
4.68
4.78
4.67
4.60
4.56
4.58

6.38
7.62
6.43
7.51
7.67
7.72
7.93
7.33
7.47

0L D000 Dk
COoORSIORSSR

Estimator

KA
CM
CAL
JCE
PMA1
PMA2
PMC1
PMC2

KA
CM
CAL
JCE
PMA1
PMA2
PMC1
PMC2

KA
CM
CAL
JCE
PMA1
PMA2
PMC1
PMC2

KA
CM
CAL
JCE
PMA1
PMA2
PMC1
PMC2

KA
CM
CAL
JCE
PMA1
PMA2
PMC1
PMC2

PROP LB UB LEN
Nothing
12.13  9.80 14.45 4.65
11.09 9.08 13.08 4.01
12.15  9.96 14.34 4.38
11.37 9.41 13.33 3.92
11.34 947 13.20 3.73
12.18 10.04 14.31 4.27
12.50 10.17 14.82 4.65
11.41 9.54 13.26 3.71
11.63 9.64 13.60 3.96
Little
27.87 24.94 30.80 5.87
27.92 25.20 30.63 5.43
28.02 25.29 30.74 5.45
28.59 25.92 31.25 5.33
28.60 25.96 31.24 5.28
28.73 26.03 31.43 5.40
28.45 25.55 31.33 5.78
28.42 25.83 31.00 5.16
28.39 25.72 31.06 5.34
Something
10.86 8.78 12.93 4.15
10.99 9.03 12.93 3.90
10.65 8.74 12.56 3.82
10.83 9.00 12.65 3.65
10.47 8.68 12.26 3.58
10.75 8.86 12.62 3.76
10.81 8.78 12.83 4.05
10.80 9.01 12.58 3.57
10.79 8.99 12.59 3.60
Quite a few
29.30 26.29 32.29 5.99
29.82 27.00 32.63 5.62
29.33 26.54 32.10 5.56
29.09 26.42 31.75 5.33
28.94 26.34 31.54 5.20
28.90 26.22 31.58 5.36
28.88 25.98 31.77 5.78
29.14 26.54 31.73 5.18
29.04 26.43 31.65 5.22
Much
19.84 17.22 22.45 5.23
20.19 17.72 22.65 4.93
19.85 17.43 22.25 4.83
20.11 17.76 2247 4.71
20.64 18.22 23.05 4.82
19.43 17.08 21.78 4.70
19.36 16.82 21.90 5.08
20.23 17.90 22.56 4.67
20.14 17.78 22.50 4.72




ESTIMATION OF PROPORTIONS FOR CLASS FREQUENCIES WITH ORDINAL...

The place you prefer for living is a place with...

REDUCTION

...some immigrants

...many immaigrants

Estimator

...few immigrants
PMA1 8.65
PMA2 1.86
PMC1 13.50
PMC2 11.79

8.66
1.76
11.26
7.40

10.40

2.67
19.04
15.33

MEAN

9.24
2.10
14.60
11.51
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Table A4.5: Relative length reduction in % of the 95% confidence intervals of the proposed estimators

with respect to the multiplicity estimator.

Do you consider that immigrants have nothing,
little, something, quite a few or much in common with you?

Estimator REDUCTION

Nothing Little Something Quite a few Much MEAN
PMA1 8.15 7.94 9.43 10.52 10.23 9.25
PMA2 -0.05 1.44 2.45 3.50 2.96 2.06
PMC1 20.09 11.98 13.98 13.52 10.79 14.07
PMC2 14.78  9.03 13.33 12.90 9.72 11.95

Table A4.6: Relative length reduction in % of the 95% confidence intervals of the proposed estimators

with respect to the multiplicity estimator.
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