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académicas y de vida.

Al Dr. Juan Soler, por haberme dado la oportunidad de comenzar esta
aventura. El apoyo y el tiempo que me ha brindado a lo largo de estos

años es invaluable.

Al Dr. Pablo Padilla y a la Dra. Lucero de Teresa, por su amistad, apoyo
y creer en mi académica y personalmente.

A todas esas personas que han estado involucradas directa o
indirectamente en este trabajo. Juan José, Óscar, José Luis, Antonia,
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Resumen

El objetivo principal de este trabajo es analizar las soluciones de una fa-
milia de ecuaciones diferenciales parciales (EDPs) lineales y no lineales de
tipo parabólico en R2N para N ≥ 3. En particular, estas ecuaciones pueden
usarse para describir la dinámica difusiva en un marco relativista. La real-
ización de este estudio está motivado tanto por la amplia gama de aplica-
ciones que tienen los modelos difusivos, aśı como por el poco entendimiento
que se tiene de las técnicas matemáticas involucradas dentro del contexto
relativista de los fenómenos de difusión.

De hecho, el término difusivo en los modelos a considerar no es uniforme-
mente eĺıptico y es espacialmente degenerado, es decir, hay ausencia de al-
gunas derivadas espaciales en el operador difusivo. Más aún, los coeficientes
de algunos de los modelos estudiados dentro de este trabajo dependen de
la variable temporal. Estas propiedades, y algunas otras que serán expli-
cadas con mayor detalle en lo subsecuente, hacen distinguir a los modelos en
cuestión con respecto a otros modelos difusivos estudiados en la literatura.
Por lo tanto, advertimos al lector que las técnicas que se usan comúnmente
para las EDPs de tipo parabólico puede que no sean aplicables dentro de
nuestro contexto.

El primer modelo que consideraremos, y también el más fundamental,
es la ecuación de Vlasov-Fokker-Planck relativista que fue introducida en
[2]. La solución de esta ecuación describe a la función de distribución de
una part́ıcula de prueba sometida a colisiones aleatorias con un medio de
fondo en equilibrio térmico (movimiento Browniano). Esta ecuación es una
generalización relativista de la ecuación de Vlasov-Fokker-Planck (VFP) en
el marco clásico (no relativista). Una razón para considerar la ecuación VFP
relativista es porque hay aplicaciones en las cuales no se pueden omitir los
efectos relativistas presentes, por ejemplo en astrof́ısica y en la f́ısica de los
plasmas. Vamos a describir estas aplicaciones con más detalle en el caṕıtulo
1.

A continuación damos un resumen de nuestros resultados principales en
esta tesis. En nuestro primer resultado, el teorema 3.2.1, mostramos que las
soluciones positivas fc de la ecuación VFP relativista convergen a las solu-
ciones f de la ecuación VFP en L∞loc([0,∞), L1(R2N )) cuando la velocidad de
la luz c→∞. Este resultado confirma el hecho de que la ecuación relativista
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es una generalización viable de la ecuación VFP en este contexto. La sección
3.5 está dedicada a la prueba de este resultado. El argumento principal está
basado en el uso de cotas a priori de los momentos de las soluciones a la
ecuación relativista y estimaciones en L1 de la diferencia entre una solución
relativista con una no relativista δf = fc−f . La evolución de esta diferencia
está descrita por una ecuación VFP no homogénea en la cual su parte princi-
pal coincide precisamente con el operador clásico de Fokker-Planck. Ésto es
conveniente porque tenemos a nuestra disposición la solución fundamental
de este operador. Usaremos el principio de Duhamel y algunas propiedades
de esta solución fundamental para obtener una cota apropiada en L1(R2N )
de la diferencia δf para conseguir el resultado deseado.

El siguiente resultado de importancia es el teorema 4.3.1, el cual está
enunciado y probado en la sección 4.3. En esta parte del trabajo mostramos
que las soluciones espacialmente homogéneas de la ecuación VFP relativista
convergen exponencialmente a su solución de equilibrio no trivial en L1(RN ).
Este resultado es válido solamente para valores pequeños de la temperatura
del medio. La demostración se hace a partir de un argumento tipo Lyapunov
—la entropia de la ecuación actúa como una función de Lyapunov— combi-
nado con la condición de curvatura de Bakry-Emery, un criterio que asegura
la validez de una desigualdad de Sobolev logaŕıtmica. Más aún, probamos
en la sección 4.4, teorema 4.4.1, que la convergencia exponencial en L2 se
da sin ningún tipo de restricción en la temperatura del baño térmico. En
este caso usamos un argumento análogo al anterior con un criterio distinto.
Mostramos que el operador eĺıptico de difusión tiene un gap espectral. Esta
condición implica la validez de una desigualdad de Poincaré la cual nos per-
mite probar el decaimiento exponencial deseado en tiempo de la norma L2

de las soluciones.

Los dos resultados antes mencionados son una extensión del argumento
que usamos originalmente en la referencia [3]:

Alcántara, J.A., Calogero, S.: Newtonian limit and trend to equilibrium for
the relativistic Fokker-Planck equation. J. Math. Phys. 54, 031502 (2013).

En la presente tesis, la existencia del ĺımite Newtoniano es probado en
dimensión arbitraria para condiciones iniciales que no tienen necesariamente
soporte compacto, mientras que en [3] se usaron condiciones iniciales con esa
propiedad en dimensión seis para simplificar el argumento. De hecho, en la
sección 3.6 damos parte del argumento original de la prueba de la existencia
del ĺımite Newtoniano para mostrar como la propiedad de propagación con
velocidad finita de las soluciones relativista ayuda a la simplificación antes
mencionada.

Los resultados que presentaremos a continuación conciernen al sistema
Vlasov-Nordström-Fokker-Planck (VNFP), un sistema no lineal de EDPs
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que se obtiene a partir del acoplamiento entre la ecuación VFP relativista
con una ecuación de onda. El sistema VNFP es un modelo de part́ıculas
autogravitantes que considera la presencia de difusión el cual fue introducido
en [2]. Los resultados presentados en este trabajo son una extensión de los
que están contenidos en la referencia [4]:

Alcántara, J.A., Calogero, S., Pankavich, S.: Spatially homogeneous solu-
tions of the Vlasov-Nordström-Fokker-Planck system. J. Differential. Eqs.
257, 3700–3729 (2014).

En el art́ıculo anterior consideramos al sistema VNFP sin fricción, mien-
tras que en esta tesis estudiamos una ecuación más general con un término
de fricción. Nuestro primer resultado para este sistema es el teorema 5.2.1 y
utilizamos toda la sección 5.2 para demostrarlo. Veremos que el problema de
Cauchy para soluciones espacialmente homogéneas del sistema VNFP tiene
una solución fuerte que es global en tiempo cuando todas las derivades hasta
orden dos tienen momentos finitos en L2 de orden δ+1

2 , para alguna δ > 1/2.
Más aún, mostramos que el sistema exhibe un comportamiento asintótico
no trivial. La función de densidad no se desvanece con o sin un término de
fricción, y el campo gravitacional φ diverge a −∞ conforme t → ∞. Los
hechos anteriores se siguen de la acotación uniforme en tiempo de los mo-
mentos de f en L1. Para probar la existencia de soluciones, introducimos un
esquema iterativo usando la ecuación lineal de Fokker-Planck y la ecuación
de Nordström asociadas al sistema y mostramos que la sucesión resultante
de este procedimiento converge a una solución del sistema VNFP. Para con-
seguir el resultado anterior, consideramos los problemas de Cauchy para
ambas ecuaciones cuando la función de densidad y el campo gravitacional
están dados, respectivamente. Es interesante mencionar que el problema
de Cauchy para el problema de la ecuación lineal de Fokker-Planck es es-
tudiado mediante técnicas de la teoŕıa de las ecuaciones estocásticas. En
la sección 5.3, nuestros resultados principales son las proposiciones 5.3.1–
5.3.2 y el corolario 5.3.1. Aqúı consideramos la ecuación de Fokker-Planck
ultra-relativista asociada a la ecuación VFP espacialmente homogénea. La
razón para hacer lo anterior se debe al comportamiento asintótico formal de
la ecuación bajo un reescalamiento adecuado. Este comportamiento sugiere
que el perfil asintótico (no trivial) de la densidad de las soluciones rela-
tivistas y ultra-relativistas debeŕıa ser el mismo, aún cuando no hemos sido
capaces de demostrarlo. Más aún, el perfil asintótico de la densidad para
la ecuación ultra-relativista se puede obtener expĺıcitamente. Para lograr lo
anterior solamente es necesario observar la relación que existe entre las solu-
ciones ultra-relativistas con las soluciones radiales de la ecuación del calor
en seis dimensiones.

Ahora queremos hablar acerca de algunos problemas abiertos referentes a
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la ecuación VFP relativista. Ciertamente el resultado más interesante para
obtener, y al mismo tiempo el más importante y desafiante, seŕıa encon-
trar la expresión expĺıcita de la solución fundamental de este modelo. Este
hecho no solamente ayudaŕıa a mejorar varios de nuestros resultados, sino
también permitiŕıa que otros resultados dentro del marco clásico pudiesen
ser extendidos al relativista. Más aún, el tener a nuestra disposición la
solución fundamental de la ecuación FP relativista nos permitiŕıa abordar
el problema de Cauchy para el sistema Vlasov-Nordström-Fokker-Planck sin
tener que usar métodos estocásticos, ya que uno puede eliminar el campo
gravitacional en el operador de colisiones de la ecuación VFP usando un
conveniente cambio de variables. De hecho, el término difusivo resultante
coincide con el operador eĺıptico sin dependencia del tiempo de la ecuación
VFP lineal. Un problema menos ambicioso y más asequible seŕıa obtener co-
tas precisas de esta solución fundamental. Ésto serviŕıa en particular para
quitar la hipótesis sobre el valor de la temperatura en nuestra prueba de
convergencia exponencial en tiempo al equilibrio en L1 de las soluciones a
la ecuación VFP relativista. Si el problema anterior fuese resuelto, entonces
podŕıamos considerar el problema de la convergencia para una familia de
ecuaciones VFP en el marco general de variedades Riemannianas. Con refe-
recia a el sistema Vlasov-Nordström-Fokker-Planck, hay varias direcciones
de investigación que se pueden seguir. Por ejemplo, determinar el perfil
asintótico de la función de densidad cuando las soluciones son espacialmente
homogéneas permanece como una pregunta importante a responder. La jus-
tificación de lo anterior es muy simple. El modelo presenta evidencia de
que los fenómenos relativistas pueden alcanzar un marco ultra-relativista
a partir de la evolución del sistema. Uno podŕıa empezar abordando este
problema desde un contexto más simple, es decir, estudiando soluciones ra-
diales del sistema como primer intento. Adoptar esta hipótesis es natural,
ya que se espera que la dependencia angular de las soluciones espacialmente
homogéneas desaparezca cuando t→∞. Aún en este caso, el problema sigue
siendo bastante dif́ıcil de resolver. Más aún, seŕıa muy interesante analizar
el problema de Cauchy para los sistemas VNFP relativista y ultra-relativista
con condiciones iniciales espacialmente no homogéneas. Probablemente si se
pudiese resolver este problema, uno encontraŕıa una manera sistemática de
abordar modelos relativistas de difusión más generales. En particular, uno
desea considerar las ecuaciones de Einstein en lugar de la ecuación de Nord-
ström. En este caso, la primer dificultad a superar es la condición de elip-
ticidad no uniforme combinada con la dependencia en tiempo de la métrica
Lorentziana asociada a las ecuaciones de Einstein. Por lo tanto, uno debe
considerar modelos VFP con diferentes geometŕıas. Ésto es una dirección
interesante para adoptar por si misma. Otros problemas a resolver seŕıan el
del ĺımite Newtoniano para el sistema VNFP y el de encontrar una tasa de
convergencia a su equilibrio. Finalmente, el sistema Vlasov-Maxwell-Fokker-
Planck (VMFP) es un modelo clásico que es usado para describir un plasma
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con colisiones aleatorias. Uno quisiera analizar varios de los problemas men-
cionados anteriormente para la versión relativista de este sistema. En esta
dirección se puede consultar [2, 113], donde se encuentran disponibles todos
los resultados probados hasta la fecha.

Concluimos este resumen con el siguiente esbozo del trabajo. La tesis está
dividida en cinco caṕıtulos y su contenido está organizado de la siguiente
forma. En el caṕıtulo 1, hacemos una reseña del concepto de difusión y
de algunos elementos básicos de la teoŕıa de la relatividad. En particular,
hacemos un breve compendio de algunos de los primeros resultados más
relevantes que se pueden encontrar en la teoŕıa de difusión relativista. El
caṕıtulo 2 está dedicado a recordar resultados importantes relacionados con
las soluciones de la ecuación VFP relativista, aśı como algunas propiedades
de estas soluciones que son consideradas en lo subsecuente. Estos resultados
fueron publicados en el art́ıculo [2]. En esta parte del trabajo también intro-
ducimos los sistemas VNFP y VMFP. En el caṕıtulo 3, el problema del ĺımite
Newtoniano para la ecuación relativista VFP es resuelto. En el caṕıtulo
4, analizamos el comportamiento asintótico de las soluciones espacialmente
homogéneas en los espacios L1 y L2. En el caṕıtulo 5, recopilamos nues-
tros resultados referentes al sistema VNFP para soluciones espacialmente
homogéneas e introducimos la ecuacón de FP ultra-relativista asociada al
sistema.
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Introduction

The main objective of this dissertation is the analysis of solutions to a class
of linear and non-linear parabolic partial differential equations (PDEs) in
R2N for N ≥ 3. In particular, these equations can be used to describe
diffusion dynamics in a relativistic setting. This study is motivated not only
by the vast range of applications of diffusion models, but also by the still
poor understanding of the mathematical techniques involved in this study.
In fact, the diffusion term in the models to be considered is non-uniformly
elliptic and spatially degenerate, i.e., some spatial derivatives are absent in
the diffusion operator. Moreover, for some of the models studied in this
thesis, the coefficients of the diffusion equation depend on the time variable.
These properties, and other which will be explained in more details in the
sequel, distinguish the models under discussion from the other diffusion
models studied in the literature and warn that the standard techniques for
parabolic PDEs might not apply to our framework.

The first and most fundamental diffusion model that we consider is the
relativistic Vlasov-Fokker-Planck equation introduced in [2]. The solution of
this equation describes the distribution function of a test particle undergoing
random collisions with a background medium in thermodynamical equilib-
rium (Brownian motion). This equation is a relativistic generalization of the
Vlasov-Fokker-Planck (VFP) equation in the classical (non-relativistic) set-
ting. One reason for considering the relativistic VFP equation is that there
are applications in which relativistic effects cannot be neglected, for instance
in astrophysics and in plasma physics. We shall describe these applications
in some details in Chapter 1 below.

This introduction continues with a summary of the main new results of
this thesis. In our first result, Theorem 3.2.1, we show that positive solutions
fc of the relativistic VFP equation converge in L∞loc([0,∞), L1(R2N )) to so-
lutions f of the VFP equation as the speed of light c→∞. The latter result
confirms that the relativistic equation is indeed a viable generalization of the
VFP equation in this context. Section 3.5 is dedicated to the proof of this
result. The main argument relies on the use of a priori bounds on the mo-
ments of solutions to the relativistic equation and direct estimates in L1 on
the difference δf = fc−f between relativistic and non-relativistic solutions.
The evolution of this difference is described by a non-homogeneous VFP
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equation, whose principal part coincides with the classical Fokker-Planck
operator. This is quite convenient because the fundamental solution of this
operator is available. Duhamel’s principle and some properties of this fun-
damental solution are employed to obtain the appropriate bound in L1(R2N )
on the difference δf to achieve the desired result.

Our next important result is Theorem 4.3.1, which is stated and proved
in section 4.3. Here we show that spatially homogeneous solutions of the
relativistic VFP equation converge exponentially fast towards a non-trivial
equilibrium in L1(RN ). The result is proved only for small values of the tem-
perature of the background medium. This is obtained by using a Lyapunov
type argument—the entropy of the equation acts as a Lyapunov function—
combined with the Bakry-Emery curvature bound condition, a criterion that
ensures the validity of a logarithmic Sobolev inequality. Moreover, we prove
in section 4.4, Theorem 4.4.1, that the exponential convergence holds in L2

without any restrictions on the temperature of the thermal bath. In this
case we use a similar approach but with a different criterion. We show that
the elliptic diffusion operator possesses a spectral gap. The latter condi-
tion implies the validity of a Poincaré inequality which allows to prove the
desired exponential decay in time of the L2 norm of solutions.

The two results mentioned above extend the original ones which can be
found in the reference [3]:

Alcántara, J.A., Calogero, S.: Newtonian limit and trend to equilibrium for
the relativistic Fokker-Planck equation. J. Math. Phys. 54, 031502 (2013).

In the present thesis, the Newtonian limit result is proved in any dimen-
sion and for initial data which do not necessarily have compact support,
while the latter property in dimension six was assumed for simplicity in [3].
In fact, we briefly recall part of the original proof of the Newtonian limit in
section 3.6 as an example of how the finite propagation speed of relativistic
solutions can be used.

The next results presented in this thesis concern the Vlasov-Nordström-
Fokker-Planck system (VNFP), a non-linear system of PDEs obtained by
coupling the relativistic VFP equation with a scalar wave equation. The
VNFP system is a toy model for the diffusion dynamics of self-gravitating
particles in the presence of diffusion which was introduced in [2]. The results
presented in this thesis extend those contained in the reference [4]:

Alcántara, J.A., Calogero, S., Pankavich, S.: Spatially homogeneous solu-
tions of the Vlasov-Nordström-Fokker-Planck system. J. Differential. Eqs.
257, 3700–3729 (2014).

In this article we consider the VNFP system without friction, while the
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present thesis contains a study of the more general equation with a fric-
tion term. The first result for this system is Theorem 5.2.1 and its proof is
carried out through all section 5.2. We show that the Cauchy problem for
spatially homogeneous solutions of the VNFP system has a unique global
in time strong solution when the derivatives up to order two of the initial
datum have finite moments in L2 of order δ+1

2 , for some δ > 1/2. More-
over, we show that the system exhibits a non-trivial asymptotic behavior.
The density function f does not vanish with or without a friction term, and
the gravitational scalar field φ diverges to −∞ as t → ∞. The latter facts
follow from the uniform in time boundedness of the moments of f in L1.
To prove the existence of solutions, we introduce an iterative scheme using
the linear Fokker-Planck equation and the Nordström equation associated
to the system and show that the resulting sequence converges to a solution
of the VNFP system. In order to achieve the previous result, we consider
the Cauchy problems for both equations when the density function and the
gravitational field are given, respectively. It is interesting to mention that
the Cauchy problem for the linear Fokker-Planck equation is studied using
techniques from the theory of stochastic differential equations. In Section
5.3, our main results are Propositions 5.3.1–5.3.2 and Corollary 5.3.1. Here,
the ultra-relativistic Fokker-Planck associated to the spatially homogeneous
relativistic VFP equation is considered. The reason to do so is the formal
limiting behavior of the equation under rescaling. This behavior suggests
that the (non-trivial) asymptotic density profile of solutions to the relativis-
tic and ultra-relativistic system should be the same, although we are not
able to rigorously prove it. Moreover, the asymptotic density profile for the
ultra-relativistic equation can be computed explicitly. The key observation
for the latter result is the direct relation between solutions of the ultra-
relativistic equation in three dimensions and solutions of the radial heat
equation in six dimensions.

Now we would like to discuss some important open questions concerning
the relativistic VFP. Certainly the most interesting result to obtain, and at
the same time the most important and challenging one, would be to find the
exact form of the fundamental solution associated to this relativistic model.
The latter not only might imply an improvement on several of our results,
but also would allow to extend some other known results from the classical
to the relativistic setting. Moreover, knowing the fundamental solution of
the relativistic FP equation would allow to treat the Cauchy problem for the
Vlasov-Nordström-Fokker-Planck system without using stochastic methods,
since one can avoid to deal with the explicit presence of the gravitational
field in the collision operator of the VFP equation by a suitable change
of variables. In fact, the resulting diffusion term coincides with the time
independent elliptic operator from the linear VFP equation. A less am-
bitious and more achievable problem would be to obtain adequate bounds
on this fundamental solution. This could help in particular to remove the
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small temperature assumption in our proof of exponential time convergence
towards the equilibrium of L1 solutions to the relativistic VFP equation.
More generally, if the latter problem was solved, then one could consider
the convergence problem for a wider class of VFP equations on Rieman-
nian manifolds. Concerning the Vlasov-Nordström-Fokker-Planck system,
there are several possible future research directions that one can undertake.
For instance, deriving the asymptotic profile for the density when solutions
are spatially homogeneous remains an important question to answer. The
reason that justifies the latter is simple. The model presents evidence that
relativistic phenomena can reach an ultra-relativistic regime from the evo-
lution of the system. One could approach this problem in a simpler context,
i.e., studying radial solutions of the system as a first step. This assumption
seems natural, since it is expected that the dependence on the angular vari-
ables of the spatially homogeneous solutions will disappear as t→∞. Even
in this case, the problem is still quite difficult to solve. Moreover, it would
be interesting to analyze the Cauchy problem for the relativistic (and the
ultra-relativistic) VNFP system with spatially inhomogeneous initial data.
Solving this problem would likely lead to find a systematic approach for more
general relativistic diffusion models. In particular, one wishes to consider
the Einstein equations instead of the Nordström field equation. Then, the
first difficulty to overcome is the non-uniform ellipticity condition combined
with the time dependency of the Lorentzian metric associated to the Ein-
stein equations. Therefore one must deal with VFP models with different
geometries. The latter is by itself an interesting direction to pursue. The
next problems to solve would be to obtain the Newtonian limit for the VNFP
system and to find a rate of convergence towards its equilibrium. Finally,
the Vlasov-Maxwell-Fokker-Planck (VMFP) system is a classical model that
is used to describe a plasma with random collisions. Clearly, one would like
to analyze several of the above mentioned problems for the relativistic ver-
sion of the system. All the available results for this system are contained in
[2, 113].

We conclude this introduction with a brief outline of this thesis. It is
divided in five chapters and its content is organized as follows. In chapter
1, we review the concept of diffusion and some basic elements of relativity.
In particular, we summarize some relevant results on relativistic diffusion
theory that can be found in the earlier literature. Chapter 2 is devoted to
recall some important results and properties of solutions of the relativistic
VFP equation that are considered through the dissertation. These results
have been published in the article [2]. We also introduce the VNFP and
the VMFP systems in this part of the work. In chapter 3, the Newtonian
limit problem for the relativistic VFP equation is solved. In chapter 4, the
analysis of the asymptotic behavior of spatially homogeneous relativistic
solutions is performed in the spaces L1 and L2. In chapter 5, we gather all
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our new results concerning the VNFP system in the spatially homogeneous
regime and we introduce the ultra-relativistic FP equation associated to this
system.
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Chapter 1

An Overview on
Mathematical Diffusion

The aim of the present chapter is to review some relevant aspects of diffusion
theory from the relativistic and classical (non-relativistic) perspectives. To
achieve this task, we need to recall some basic concepts and fundamental
ideas that have been developed from the appearance of the theory. One of
the main reasons to do so is that there is no systematic scheme available
to introduce diffusion in a relativistic context, since some of the well-known
features in the classical setting can not be adapted directly to this frame-
work. Therefore, the relativistic diffusion theory have not yet experienced
as much research progress as its classical counterpart. It is important to
remark that all of the material contained in this chapter will be informally
approached not only to seek as much clarity and insight on the subject as
possible, but also to cover most of the essential topics in this theory. The
chapter is divided in three sections. The first section is devoted to the foun-
dations of classical diffusion. The second section contains a brief exposition
of the basic elements in relativity theory. The final section is used to review
some of the current progress in relativistic diffusion.

1.1 Classical Diffusion and Related Topics

In this section we present some of the elements that constitute the classical
theory of diffusion. Our discussion will include certain historical facts and
specific fundamental contributions that characterize the theory and made
it possible. Since this subject is vast and covers various perspectives and
aspects, we are forced to exclude several essential topics, which are beyond
the scope of the current work. Therefore, we will only focus our attention on
those particular matters that are directly involved in the current progress
of diffusion theory when relativistic effects are accounted for. In the first
part of the section we discuss the intuitive notion of diffusion. Moreover,
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we recall how this phenomenon is formulated in the simplest case and re-
view some of the ideas that led to model diffusion in this manner. Then,
we approach the concept of Brownian motion and look at the impact and
consequences that it had on the theory.

Etymologically speaking, the word “diffusion” comes from the Latin word
diffundere which means to spread out. The latter implies that this concept
must be related to a particular kind of physical movement. In order to
illustrate this kind of motion, it is convenient to present a typical situation
in which this phenomenon is encountered:

“Consider a cup of hot coffee and pour some milk into it.”

After the milk was poured, we immediately observe how milk starts
spreading to regions where it has been absent. The specific mechanism in
which the milk spreads in the coffee allows to distinguish this phenomenon
from other types of motion, i.e., car traffic motion, the free fall of a body,
etc. Other common examples where diffusion phenomena are present are
given by the heat transfer problem, chemical reactions, the price behavior
of stocks in the financial market, propagation of ideas, migratory behavior
of some species, competition between species, etc. As a matter of fact, all
the previous examples can be generally treated in the following manner.
Consider a region which contains an ensemble of particles, then diffusion
can be defined as:

“The physical movement of this ensemble from areas of higher
concentration to areas of lower concentration of particles.”

One can notice that some of the examples given before apparently do not
belong to this description, which partially reflects how complex diffusion
actually is. This complexity can also be explained and justified through a
chronological review of the concept, since there are several historical factors
that influenced on the development of the diffusion theory. The main ideas to
model this collective motion are based on the assumptions that no particles
are lost while the motion occurs and the existence of a flux that is generated
by the concentration mechanism. This last aspect is the foundation of what
is known nowadays as Fick’s first and second laws of diffusion. These laws
state the following:

1. The flux generated by the motion is proportional to the negative of
the concentration gradient, i.e., J(t, x) = −D∇xφ(t, x).

2. The rate change of the density of particles in time is equal to the rate
change of the flux, i.e., ∂tφ(t, x) = ∇x · (D∇xφ(t, x)).

In the above laws, the vector (t, x) ∈ (0,∞) × R3 represents the particle
position at time t, while the function φ(t, x) describes the particle density
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on a region. The symbols ∂t, ∇x and ∇x· denote the time derivative and
the gradient and divergence operators, respectively. The constant D > 0 is
the diffusion coefficient. Since the value of D rates how particles move along
a region and depends on the properties of the latter, this fact might imply
that D = D(t, x). Moreover, we observe that only the collective behavior
of the particles is accounted for within these laws. This main feature of the
model will be clarified in the forthcoming. The equation derived in point 2
is known as the diffusion equation and in particular, it is the prototype of a
parabolic partial differential equation (PDE). The “parabolic” term comes
from the analogous procedure to classify linear second order PDEs just as in
the case of conic curves. In fact, the same transformations that are used in
the previous case can be applied to a linear parabolic PDE and as a result,
any second order parabolic equation with constant coefficients can always
be expressed as a diffusion one by the use of an integral factor.

Before presenting more details on the deduction of these laws, it is worth
to mention some previous work performed by Thomas Graham. Graham is
well-known from developing the dialysis technique, a method to separate the
components of a liquid through a membrane by diffusion in 1854. Another
of his notorious contributions comes from his research on diffusion in gases
and liquids, which was performed from 1828 to 1833. He realized that two
gases of different nature mix “equally” through each other and remain in
this state. Also, his experiment procedures led to a method that determines
the diffusion rates on gases. His main assumption was that volumes of gas
exchange were inversely proportional to the square root of their masses.
Moreover, he noted the difference between the diffusion rates on gases and
other mixtures. Unfortunately, his ideas were not adaptable to describe
those situations as well. Despite of this, Graham’s results have an additional
importance for the theory, Adolf Fick based his celebrated laws of diffusion
on his work in 1855. On the one hand, he considered Graham was neglecting
part of “the true nature” of the phenomenon, which led him to unsuccessful
experiments to describe diffusion of salt in its solvent. On the other hand,
Fick perceived diffusion as an analogue of heat conduction, which was a
remarkable and revolutionary approach for this phenomenon in that time.
The same analogy also helped Georg Simon Ohm for the case of electrical
conduction in 1827. Moreover, he defined what a flux is, a concept developed
for heat conduction, and used the same law as the one proposed by Jean
Fourier for this theory in 1822. That is the main reason why the simplest
diffusion equation is also known as the heat equation. Probably another
transcendent fact in his developments was the inclusion of a proportional
constant factor D, the diffusion constant. Basically, he assumed that this
factor only depends on the properties of the substance. Since this conception
of diffusion was completely different, Fick experienced rejection from his
ideas mainly due to two things:
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1. The lack of a strong basis from a theoretical and an experimental
perspective of his developments.

2. The sole idea of perceiving diffusion on liquids as transfer of heat in
solids was neither conceivable nor acceptable in those times.

For the previous point, we must consider the fact that the concept of
atoms and the current theory of particles were in their first development
stages. Despite of theses circumstances, Fick was able to take advantage
from the former atomic perspective to propose a diffusion model in which
only the collective behavior of particles was described. For the remaining
point, it is relevant to mention one fundamental matter in his procedures.
He obtained his experimental results in a stationary regime while trying to
explain a time dependent phenomenon. The fact by itself is a very good
example on the importance to study the existence of stationary solutions
for the corresponding evolution models not only for experimental purposes,
but also for theoretical and practical reasons.

Until now, we have only discussed some developments performed in the
theory from a “macroscopic” perspective, since the first achievements from a
“microscopic” perspective started to appear after Albert Einstein published
his celebrated works on the Brownian movement [62]. Before proceeding, it
is convenient to recall these concepts. The term microscopic comes from the
Greek words mikrós and skopéō which mean small and look, respectively.
Then, we define a microscopic scale as the size in which objects or events are
too small to be perceived at simple sight. Therefore, a microscope or any
other device is required to amplify what it is seen. On the opposite side,
events can be recorded at simple sight from a macroscopic scale. In our
previous discussion, all the research in chemical reactions and heat conduc-
tion was made by naked eye or by microscopes not accurate enough to have
a better perception of the phenomenon. Also, the concepts of atoms and
molecules were on their first phases, as previously mentioned. This explains
why the community did not adopt a microscopic description of diffusion nor
conceive it at this scale. The introduction of the concept known as Brownian
motion not only helped to generate new relevant fields of study in mathe-
matics and physics, but also served as a definitive confirmation that atoms
and molecules actually exist. This was further verified experimentally by
Jean Perrin in [114]. The first evidence of this singular motion was found by
botanist Robert Brown while studying particles of plant-pollen suspended
in liquid. He observed through a microscope that these particles moved in a
certain random way. Unfortunately, he could not explain nor determine the
mechanism by which these pollen particles were driven. After several years,
Albert Einstein gave an argument to guarantee the existence of atoms in
[93], which was based on a probabilistic approach. Afterwards, he realized
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this discovery might also explain the “Brownian molecular movement”, [62,
pags. 1, 19]. In the following, we present an edited version of the argument
given by Einstein in [62, pags. 13-15] to derive the diffusion equation in one
dimension due to its historical importance.

Consider n particles suspended in a liquid and assume that their move-
ment is mutually independent for any given interval of time. For a small
time τ , the proportion of particles experiencing a displacement between δ
and δ + dδ can be expressed as dn = nφ(δ)dδ, where φ(δ) is a probability
law that only differs from zero for very small values of δ and satisfies the
following properties

φ(δ) = φ(−δ),
∫ ∞
−∞

φ(δ)dδ = 1, D =
1

τ

∫ ∞
−∞

δ2

2
φ(δ)dδ.

Let ν = f(t, x) be the number of particles per unit of volume at position x
and time t. Since τ is very small, we can write f(x, t+ τ) = f(x, t) + τ∂tf .
Also, we estimate the distribution of the particles in the space variable at
time t+ τ from the distribution at time t and expand f(x+ δ, t) in powers
of δ. Then, we obtain the number of particles which are located at the time
t+ τ as follows

f(x, t+ τ) =

∫ ∞
−∞

f(x+ δ, t)φ(δ)dδ

= f + ∂xf

∫ ∞
−∞

δφ(δ)dδ + ∂2
xf

∫ ∞
−∞

δ2

2
φ(δ)dδ ,

where the remaining terms containing odd powers of δ vanish. The even
terms are neglected due to their small contribution compared with the pre-
ceding quantity. Finally, the above identity combined with the estimate in
time for f(x, t+ τ) lead us to the diffusion equation

∂tf = D∂2
xf,

from which one can easily conclude that

f(x, t) =
n

4πDt
e−

x2

4Dt

is a solution. Also, von Smoluchowski [64] and Sutherland [133] gave an
explanation of the Brownian motion by using the idea of random interac-
tion among particles. Further contributions on the matter were performed
by Langevin [104, 105], Fokker [68], Planck [117], Kramers [101] and Uhlen-
beck and Ornstein [135]. See [36, 144] for a review on the previous work.
We remark that this was not the first deduction of the heat equation by
probabilistic arguments, see [12, pags. 19-21]. The previous reference was
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the doctoral dissertation Théorie de la spéculation by Louis Bachelier. This
work is considered the first accomplishment in the Option Pricing Theory
and gave some of the mathematical foundations for the modern point of
view. Then, it should not be a surprise that a big part of the former and
current research concerning mathematical models in Finance and Economy
involves the use of several techniques based on diffusion. In fact, a Nobel
price in Economy was awarded to Robert C. Merton and Myron S. Scholes
for their contributions. In collaboration with Fischer Black, they obtained
the celebrated Black-Scholes model, a mathematical description of the price
variation of stock options in a financial market. For an introduction to some
of the basic and more advanced topics on the matter, see for instance [140].
For a full review and a more detailed discussion on all the previous and
further historical facts can be found in [116] and the references therein.

From the previous deduction of the heat equation some tools and concepts
of the modern theory can be recognized such as the use of Itô’s formula,
which relates a diffusion process with its infinitesimal generator, and the
assumption of independent increments in time, from which the continuity
of a Gaussian process could be obtained. Also, this argument provided the
main idea to study the collective dynamics of particles when the amount of
those is large, and in consequence, this behavior becomes very difficult to
be deterministically approached. Moreover, this new mathematical view of
diffusion phenomena led to rigorously develop the theory of stochastic pro-
cesses. The latter was possibly motivated from the fact that Einstein only
required to establish the existence of the transition probabilities governing
the trajectories of the particles, but he never proved that a Brownian mo-
tion actually existed. As a matter of fact, Norbert Wiener was the first to
construct the mathematical model for this motion, which is also known as
“the Wiener process”. Wiener approached the problem by defining an ap-
propriate measure from subsets of the space of continuous functions on [0, 1],
vanishing at 0. His main idea was based on recent progress in measure the-
ory due to Lebesgue and Borel, but Wiener used the Daniell integral, which
is equivalent to the integral in the sense of Lebesgue. This achievement is
outstanding since current notions of the Wiener process are formulated and
perceived as a stochastic object while Andrei Kolmogorov had not published
at this point his proposal on the foundations of probability theory. In fact,
Kolmogorov also defined probability through a measure on appropriate sub-
sets of Rd by using this integral. In addition, Wiener analyzed some of the
properties associated to the paths generated by the process, in which his
most remarkable result is the one concerning the nowhere differentiability of
the Brownian motion, and he also started to use the concept of stochastic
integration with respect to the Brownian motion only for time depending
integrands. See for instance [48, 93] for a more detailed discussion on the
matter and for an extended review on further contributions performed by
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Wiener.

Certainly Einstein exhibited that a connection between stochastic and
deterministic phenomena was possible, while Wiener obtained the necessary
results to develop a theory for the Brownian motion. But it was not until
Kolmogorov created a precise analytical scheme for the treatment of this
connection, when differential equations and stochastic processes started to
share a common framework. In particular, the foundations of the theory
of continuous Markov processes arose as a consequence from the previous
investigations. Recall that a Markov process evolves without dependence
from its past behavior if a precise knowledge of the present is given, since
the past and future of the process are conditionally independent. A Brow-
nian motion is the prototype of a continuous Markov process. Kolmogorov
was able to achieve the latter purpose by exploiting a fundamental relation
satisfied by the transition probabilities of a Markov process, the Chapman-
Kolmogorov equations. Then, he used the previous feature to define the
differential characteristics associated to the density of the process through a
limiting procedure. If these characteristics exist, the limits will be the cor-
responding coefficients of two equations known as the backward and forward
differential equations. Moreover, the probability density of the process is a
solution of these equations. The previous fact allows to study the existence
of a probability density for a Markov process without using its sample paths,
or equivalently, the existence of a fundamental solution for the differential
equation. For a Brownian motion, the forward equation corresponds to the
diffusion equation and the backward equation is the formal adjoint of the
latter. The introduction of these new methods to the theory of parabolic
PDEs was crucial for future developments, since it motivated the problem
of the existence of a fundamental solution for these equations. Later on,
Kolmogorov realized that a Markov processes can be seen as a semigroup,
where his former notion of differential characteristics is required to obtain
the infinitesimal generator of the semigroup. In the one dimensional case
and under appropriate growth and smoothness conditions on the coefficients,
William Feller thoroughly studied existence and uniqueness of solutions for
the backward and forward equations in the continuous and discontinuous
cases. Also, he applied methods of semigroup theory when the transition
probabilities of the process are stationary. See references [130, 132], where
a thorough memoir of the life and work of Kolmogorov was performed by
Shiryaev and a broad selection of essential papers due to Kolmogorov are
gathered, including those directly involved on the foundations of Markov
processes. See also [110, 115, 124], where the authors discuss Feller’s life
and achievements, and [65, 67, 147], where the authors cover the necessary
material of semigroup theory that is used for diffusion models.

Within the study of diffusion processes, Itô calculus is one of the most
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remarkable accomplishments in the theory. This new notion of calculus was
developed by Kiyoshi Itô and extends the classical calculus for the associated
trajectories of a diffusion process. To overcome the nowhere differentiable
issue of these trajectories, Itô created the theory of stochastic integration
and introduced the concept of stochastic differential equation (SDE) as a
tool to represent the infinitesimal behavior of the sample paths generated
by the process. This concept also connects the evolution of the process with
the parabolic PDE that governs it. As a first step, Itô proposed a large class
of integrands in L2 and proceeded by approximating the stochastic integral
with respect to a Brownian motion as a Riemann sum in this space. The
main argument involves using an isometry identity in L2 and the evaluation
of the integrand at the beginning of each interval. This is essential to obtain
the stochastic integral. Although this idea was not completely new, Itô
provided the remaining elements to the concept so it could become into a
useful tool. Actually, a SDE is an integral equation, since we only have the
notion of stochastic integration at our disposal, but it is always written in
differential notation as

dXt = b(Xt)dt+ σ(Xt)dWt,

where Wt represents a Brownian motion and σ(t, x), b(t, x), are measurable
functions. The second term in the right hand side of the above equality is the
stochastic integral while the first one is a deterministic integral. The idea to
define a SDE as before may have been motivated from a previous attempt to
construct the stochastic integral through an integration by parts formula for
deterministic integrands due to Wiener. Under similar conditions as in the
case of an ODE, Itô proved existence and uniqueness of solutions for a SDE
and furthermore, that any solution is a Markov process. Also, Itô realized
that a slight modification of the usual Leibniz rule applies in general. More
precisely, if Xt is a solution of an SDE and f ∈ C2, then

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)d 〈X〉t ,

where 〈X〉t is the quadratic variation of the process. The above expres-
sion, which is known as Itô’s formula, has several important consequences
in the theory of diffusion process. For instance, the infinitesimal generator
associated to the process can be obtained from a simple argument, which
is based on basic properties satisfied by the process. Moreover, solutions to
the backward and forward equations can be explicitly expressed in terms of
the process by using the expected values of its paths. In general, this for-
mula and all the ideas behind it not only provided a new tool and a renewed
perspective to the theory of Markov processes for further progress, but also
led to develop the modern probabilistic methods that allow to solve some
of the related problems in the theory. See [69] for a historical review on
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Itô’s work. Nowadays there are several textbooks available devoted to the
matter, for instance see [9, 11, 96, 111, 123] and [66, 67], where in the last
references some applications are included.

We conclude this section by recalling a very important aspect on models
based on the Brownian motion. The associated Fokker-Planck equations
exhibit infinite speeds of propagation which is an unphysical feature. To
overcome this unpleasant feature, Andreu, Caselles and Mazón have studied
a nonlinear model in [7], which is included in a family known as limited flux
diffusion equations. This model was obtained by Brenier in [19], where he
used optimal transportation arguments to deduce the model. The main idea
of the model consists on replacing the classical flux term in Fick’s laws by

J =
mcv√

m2c2 + |v|2
,

the relativistic velocity field with m = |φ| and v = ∇φ . Unfortunately, the
resulting equation does not possess other desired features to be considered
in a relativistic framework. Moreover, it is not clear if one could possibly
extend this model in the latter realm due to its nonlinear character. Finally,
there is another proposal which will be briefly discussed in the final section
of chapter.

1.2 Relativity

After the appearance of the celebrated work [63] by Albert Einstein in 1905,
the perception of space and time drastically changed in order to explain
phenomena where Newtonian physics might fail to apply. Those situations
occur when objects approach the speed of light or in the presence of strong
gravitational fields. Moreover, this new theory was developed in two phases:
in the special case where two objects move at constant speed in a straight
line, which corresponds to the theory of special relativity, and the general
one. In particular, a gravitational field can only be treated in the latter case.
Remarkably, this branch of physics arose from theoretical ideas in contrast
to other available physical theories. Roughly speaking, relativity is based
on two fundamental principles: the laws of physics are the same for “all”
the observers and the speed of light does not change. These principles lead
to one of the main features in the theory, time is a relative quantity. From
a classical perspective, time has an absolute character. This means that if
two objects move at different speeds, then the duration of the events can be
recorded using the same clock. The latter statement is true provided that
none of the objects moves with speed close to the speed of light. Otherwise,
time elapses differently for each motion. Fortunately, Lorentz transforma-
tions allow to describe how these differences are related. Table 1.1 compares
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Lorentz trans. Galilean trans.
t′ = γ(t− vx/c2) t′ = t
x′ = γ(x− vt) x′ = x− vt
y′ = y y′ = y
z′ = z z′ = z

Table 1.1: Lorentz and Galilean transformations in the x direction.

the explicit form of these transformations in the special relativistic case with
their classical analogues, the Galilean transformations. Here, c represents
the speed of light, v is the velocity in which the object is moving in the x
direction and γ = 1/

√
1− v2/c2 is Lorentz factor.

Another transcendent feature in relativity is that no body can move faster
than light. Intuitively, the body becomes heavier while approaching the
speed c. In fact, the latter could be deduced from the energy identity

E2 = mc2 = γm0c
2,

which was derived in [61]. In the previous equation, m0 corresponds to the
rest mass of the body. In case there is no motion, the energy of the body is
given by E2 = m0c

2, since γ = 1 at rest. Another relevant quantity is the
relativistic momentum of a body, which is defined as p = mv, since energy
can also be expressed in terms of this vector as E2 = (m0c

2)2 + (c|p|)2 and
(E/c, p) constitutes a four vector. The previous property not only makes
reference to a dimensional aspect, but also remarks an invariance attribute
under Lorentz transformations from its length. Since the notion of time
in relativity is different, it also means other notions, such as length, are
required to be adapted in this framework. In the usual sense, the square
length of a vector can be written as wT gw = w ·w = ‖w‖2, where g denotes
the identity matrix, w is a vector in R4 and wT is the transpose of w. In fact,
all the components of g are given by diag{1, 1, 1, 1}. In the special theory
of relativity, the matrix g is called the Minkowski metric (or simply metric
for short 1) and is given by diag{−1, 1, 1, 1}2. The minus component is re-
served for the time variable. The previous metric defines a new geometry
in four dimensions with different mathematical and physical properties. For
instance, there are three types of vectors that are characterized by the sign
of wT gw, negative for timelike vectors and positive for spacelike vectors, and
the case wT gw = 0 for null vectors. The origin is the point of intersection
between the future light cone and the past light cone generated by the set
of null vectors. Then, a vector is called future-directed if it belongs to the

1This is an extension of the concept in the sense of a pseudo Riemannian metric.
2Alternatively, one can use the convention diag{1,−1,−1,−1}.
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interior of future light cone, which corresponds to a timelike vector, or lies
in this cone. Similarly as before, one can defined past-directed vectors and
in both cases, we can also refer to those vectors as causal.

All the previous notions can be extended for an arbitrary dimension by
using a metric g with components diag{−1, 1, · · · , 1}, where the number of
positive entries are N ≥ 4. Even though the most relevant case is N = 3,
studying the previous situation in an arbitrary dimension can bring further
mathematical and physical useful information for different purposes. In fact,
it is necessary to consider other spaces rather than RN+1 to treat the case
when a gravitational field is present. Einstein approached this problem in
[60] for more general spaces that share similar properties with RN+1 in the
special relativistic case. His arguments relied on an existing extension for
smooth surfaces (or Riemannian manifolds in general). Now, we give a brief
description on how to develop this extension by restricting the argument to
the previous situation, since a similar procedure applies for the case of a
Riemannian manifold. Let S ⊂ RN be a smooth surface. Since S is differen-
tiable at each x ∈ S, there exists a tangent plane in an open neighborhood
of the point which locally inherits the vector space structure of RN . This
also means that a metric is available and is induced locally by the one from
RN . Then, we can completely cover S by a family of these neighborhoods in
order to obtain a vector space structure (called the tangent bundle) for the
whole surface. The latter construction is justified by two facts: the geometry
of the surface can be studied in an adequate manner and a new differential
calculus is obtained. Even though the previous argument is not completely
accurate, it contains the main ideas that are required to extend this imple-
mentation to the case of a smooth manifolds. In fact, a smooth manifold
is a topological set, which is completely covered by a family of open sets,
equipped with a differential structure assigned by smooth homeomorphisms
between open sets from the manifold to RN .

At this moment, there are several things to remark. First, considering the
case of a surface is restrictive, but it suffices for our purposes since several
features of this case can be incorporated in the general framework. More-
over, the algebraic structure of the vector spaces generated by the tangent
planes at each point of the surface (also referred as tangent spaces) will
allow to define certain geometrical quantities that have a fundamental role
in the required formulation of the main problem. Moreover, the notion of a
metric in a broader sense can be introduced in the previous situation. This
follows by replacing the usual metric in these tangent spaces with different
ones depending on the situation under study. For instance, this new metric
can be positive definite, which defines the metric of a Riemannian manifold
in a loose sense. The only possibility that concern us is when the metric
shares similar properties with the Minkowski metric. More precisely, this
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metric must have a signature {−,+, · · · ,+}, i.e., it has N positive eigenval-
ues and a negative one. Metrics possessing the previous property are known
as Lorentzian metrics and smooth manifolds equipped with this sort of met-
ric are referred as Lorentzian manifolds. The main idea in the theory of
general relativity is that the geometry of space-time changes in the presence
of gravitational forces. This phenomenon can be described with the same
elements and tools as in the case of a surface.

Before proceeding, it is convenient to introduce some notation. We use
xα = (t, x1, · · · , xN ) and xi = (x1, · · · , xN ) to denote a vector in RN+1

and its associated spacelike vector, respectively. The latter is done to make
distinction between Greek and Latin indices. Also, the components of a
vector will be referred with the same notation for each α = 0, 1, · · · , N , for
instance. If g stands for a metric in RN+1, then we write x · y = gαβx

αyβ

for each xα, yβ ∈ RN+1, i.e., the sum is understood over repeated indices.
This notation is known as the Einstein summation convention and it helps
to simplify computations and expressions. An element of the dual space of
RN+1 (a covector), or in general from any vector space of dimension N + 1,
will be denoted by xα. This will be congruent with our previous definitions
and it serves a purpose, which is known as lowering indices. Notice that
any covector has a representation in terms of xβ = gαβx

β, since gαβ is a
linear functional. Similarly, we can also raise indices to obtain a vector from
a covector as xα = gαβxβ, where gαβ = g−1 is the inverse of the metric
g, i.e., gαβgβγ = δαγ with δαγ is the Kronecker delta function. The previous
statement always holds true since all the components in the corresponding
diagonal matrix to obtain the signature are nonzero, i.e., the metric is non-
degenerate. It is important to remark that the previous elements not only
allow to introduce some of the required geometrical concepts in relativity,
but also make algebraic computations more efficient and simpler to perform
than with the standard notational conventions. In fact, all the geometric
objects in the theory depend on maps (also called tensors) that act on the
tangent spaces and their dual spaces. In addition, one can keep track on
which space the tensor is acting from the position of each index and express
it differently by simple operations, just as in the case of a vector, a covector
or the delta function.

Now that we have developed some of the elements required to work with
Lorentzian manifolds, we are ready to introduce the notions of relativity in
its general form. In order to include gravitational forces, Einstein extended
relativity based on the idea that the geometry of space-time was deformed by
the presence of matter generating these forces [60]. To achieve the latter, he
proposed a relation between the energy-momentum tensor Tαβ, a quantity
depending on the matter content, and the changes of curvature in space-
time, which are given in terms of the Ricci curvature tensor Rαβ. This
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relation is described by the Einstein field equations, which is a nonlinear
PDE system. In four dimensions [59], these equations can be expressed as

Rαβ −
1

2
Rgαβ + Λgαβ = 8πTαβ,

where g is the metric, Λ is the cosmological constant and R = gαβRαβ
is the scalar curvature. The speed of light and the gravitational constant
have been set equal to one. This system constitutes the cornerstone of
the general theory of relativity. The explicit PDE character of the system
comes from the definition of the Ricci tensor, it depends on derivative terms
of the metric up to order two, and the metric becomes the unknown part.
Therefore, one of the main problems in general relativity consists in finding
an appropriate metric that solves the Einstein equations. In the above
expression, Gαβ = Rαβ − 1

2Rgαβ is the Einstein tensor and measures the
curvature changes in the manifold. In particular for Λ = 0, the Minkowski
metric is solution of this system in the absence of matter, since Gαβ = 0
for this metric, i.e., Minkowski space-time is flat. Mathematically speaking,
this argument explains why a strong gravitational field can not be consider
in the special relativistic case. Another interesting feature of the system
concerns its conservation laws. Einstein equations must be divergence free
in the sense of Lorentzian manifolds when matter is present. This is a
consistency property that follows from the divergence free property for the
case T ≡ 0 and implies conservation of energy-momentum. See for instance
[121], where Rendall systematically discusses the topic and other related
ones in the theory.

1.3 Relativistic effects in Diffusion Phenomena

As previously reviewed, classical diffusion has been intensively researched
over the past decades leading to a considerable amount of progress. In con-
trast, the progress in relativistic diffusion is still in its early stages. There
are several factors that have made this situation a difficult task and might
explain why there is still no consistent and systematic approach of this
phenomenon. For instance, experiments to test any proposal are hard to
perform and as a consequence, all the available research on the area relies
on theoretical intuition. Since accepting infinite speeds of propagation in
a relativistic model is no longer an option, any attempt to mimic previous
progress on diffusion becomes challenging. Although the incorporation of
Lorentz invariance is fundamental, it also produces nontrivial technical and
conceptual issues which might cause the loss of other desired properties.
Fortunately, the information available at the moment can give us some en-
lightenment on certain aspects to be considered and the possible directions
that could be pursued. Probably the first accomplishment in the theory was
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achieved by Jüttner in [95]. He introduced the first generalization of the
Maxwell distribution function that accounts relativistic effects for a gas in
equilibrium. His deduction relied on a thermodynamical argument where
the Boltzmann entropy function was used. For a discussion on the matter
in a more general setting, Dunkel, Talkner and Hänggi considered relative
entropies depending on different invariant measures in [58]. In particular,
the analysis included the Jüttner distribution and a modified version of the
latter. Their approach allowed them to find desired symmetry properties
with respect to each associated measure, but the information was incon-
clusive to decide which distribution function is more convenient. See also
[40, 74, 78] for a further discussion on the matter.

Concerning the invariance under Lorentz transformations of the one par-
ticle distribution function in phase space, Van Kampen started the rigorous
treatment of the problem in [136]. Surprisingly, his approach only required
the motion of the particles and as a consequence, the distribution function
does not necessarily satisfy an equation of motion. In particular, the ideal
gas and the free particles3 cases were considered. Also, Van Kampen showed
that the current-density constitute a four-vector that satisfies the continuity
equation. See also [45, 134], where the authors discussed some of the issues
involved in the Lorentz invariance property for the one particle distribution,
reviewed different proposals in the literature and analyzed some inconsisten-
cies in previous arguments to show this invariance property. In fact, there
is still no agreement on how to demand Lorentz invariance in some of the
most common scenarios.

The appearance of stochastic processes as a theory to describe diffusion at
a particle level motivates to approach the relativistic analogue in this sense.
In particular, one wonders if it is possible to construct a relativistic process
to model this phenomenon satisfying the Markov property, since the latter
is desirable due to its theoretical and practical implications. For the special
theory of relativity, Dudley started a systematic study of Lorentz invariant
processes in [51]. He constructed these processes by defining a probability
measure on sets of trajectories that are invariant under the action of the
Lorentz group with speed less or equal than the speed of light. Moreover,
he obtained a detailed characterization of these processes, i.e., properties
with respect to the measure and the proper time4, the semigroups gener-
ated in phase space (the hyperboloid) and the diffusion processes in phase-
spacetime. The latter topic was already treated in [127] by Schay. Probably
the most remarkable result in this reference (Thm.11.3), and so far, states
that if one wants to work with Lorentz invariant Markov processes, then the

3Particles are not confined and do not interact.
4The time parameter or clock used along the path.
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process must have states in phase-spacetime. Therefore, the class of Lorentz
invariant processes in spacetime does not posses the Markov property. The
positive and negative implications are quite immediate and explain the slow
growth of the theory: there are at least two ways to define a relativistic
diffusion process without any certainty if one of those could lead to an ap-
propriate definition of the phenomenon. Independently from the previous
work, Hakim was also able to arrive at the same conclusions in [86, Prop. 2].
His arguments were based on previous ideas by  Lopuszaǹski in [107]. Both
authors noticed that the associated Fokker-Planck equation in spacetime
reduced to a conservation identity which automatically excluded the possi-
bility of having a Markov process. Also, Hakim approached the problem of
defining a relativistic stochastic process in phase space from two different
equivalent perspectives, one of those corresponds to the use of densities de-
pending on the proper time. See also [85]. It is important to remark that
there were no more attempts to extend the previous work nor to explore
several related questions concerning the topic for a very long time. At least
from a mathematical perspective, this could be explained by the fact that
even at this moment some of those problems are still difficult to solve. In
recent years, relativistic diffusion has attracted again the attention of some
researchers. In the following, we will review some of the recent progress in
the context of special and general relativity from a probabilistic perspective.

In the literature, stochastic differential equations are also referred as
Langevin equations and are useful to describe the microscopic behavior of
a phenomenon when random effects are assumed, see [72, 123]. Since the
microscopic behavior is directly connected with a Fokker-Planck equation
(this represents the collective or macroscopic dynamics), it is equivalent to
consider either case. The first relativistic generalization of the Langevin
equation was introduced in [44] by Debbasch, Mallick and Rivet in order
to extend the Ornstein-Uhlenbeck process in the special relativistic context.
Moreover, the Fokker-Planck equation associated to this process was found
and some numerical simulations were performed. The purpose of the latter
was to test the convergence of the evolution towards its equilibrium and to
verify their predictions on the specific form of this state under the assump-
tion of spatial homogeneity (no dependence on the position). Debbasch
extended the previous notion to the case of a curved space-time in [42]. In
particular, he analyzed in the spatially flat Friedmann-Robertson-Walker
metric and showed that a modified version of the Jüttner distribution func-
tion is an equilibrium state for the corresponding Fokker-Plank equation.
Later on in [43], Debbasch and Chevalier reviewed some of the main rela-
tivistic diffusion models that could be found in the literature at that moment
which motivated the work performed in [38]. In the latter reference, they
introduced a family of relativistic stochastic processes in which all of the
models previously discussed in [43] belong to this class.
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A similar program as the one described before was carried out by Dunkel
and Hänggi. In [55], the authors proposed a Langevin equation parametrized
by proper time and included effects of external forces. They made special
emphasis on the stochastic integration rule to derive three Fokker-Planck
equations with their corresponding steady states. Among these Fokker-
Planck models, there is only one in which the Jüttner distribution function
is the steady state of the system. In addition, some numerical simulations
were performed to compare each Fokker-Planck model in stationary regime.
A previous treatment of the problem was performed in [54] with a dimension
reduction. In [52], the aim of authors was to identify invariant stationary
momentum distributions for the classical and relativistic Brownian motions
by using an integral criterion in one dimension. This criterion allowed the
authors to obtain the transition probability distribution function for a Brow-
nian particle after collision. The purpose to do so was to recover further
information from the collision process among particles. In fact, their results
in the non-relativistic framework corroborated the fact that the Maxwellian
is the invariant distribution after particles had collided while in the relativis-
tic case, a modified version of the Jüttner distribution function was the one
to remain invariant. The previous situation might not be a coincidence as
their following work [56] showed. The authors in collaboration with Weber
studied how the relativistic Langevin equation changes under different time
parameters. In particular, they presented the relativistic Langevin equation
under the action of Lorentz transformations. Also, they showed that the
modified Jüttner distribution function arises as a steady state when this
Langevin equation is parametrized by the proper time. See for instance
[41], where further justification of this matter was achieved. See also the
treatment performed by Herrmann in [90] and by Haba in [79, 80, 81, 82]. A
thorough review from Dunkel and Hänggi on relativistic diffusion in special
relativity can be found in [53].

Accounting diffusion phenomena in the general relativity framework is a
very complicated task since the geometry of space and time is completely
determined by the Einstein field equations. As a consequence, the cou-
pling between these equations and the relativistic diffusion equation will
generally result to be inconsistent. In order to handle this issue, one must
confront some important aspects that are very difficult to experimentally
verify. For instance in [20], Calogero proposed a Lorentz invariant model in
which the addition of an appropriate cosmological scalar field in the Einstein
field equations was required. Also, the qualitative behavior of solutions for
the simplest cosmological model, the flat Robertson-Walker spacetime, was
studied. The main advantage of the approach used in [20] consists in the
simplicity of the argument to define diffusion, which is basically adding the
Laplace-Beltrami operator in the corresponding Vlasov equation (the free
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transport of particles case). See also [5, 21, 30] for further treatment of the
problem. In [77], Haba treated a similar situation as the previous one for the
ultra-relativistic problem on the hyperboloid with a modified version of the
Einstein field equations. The extra term in the previous system is justified
to compensate the coupling between models since there is an undetectable
part in the phenomenon, which is also the reason to consider a random in-
teraction. His analysis consisted on deriving ultra-relativistic solutions of
the model at finite temperature. The limiting behavior of solutions as the
temperature approached to zero was also accounted for in order to explicitly
calculate the extra term in the Einstein field equations. The main motiva-
tion to pursue this program was to describe the expansion of the universe
in different stages by means of diffusion. From a microscopical perspective,
Franchi and Le Jan proposed a generalization of the relativistic Markov
process constructed in [51] for the case of Lorentzian manifolds in [70]. The
main idea to obtain this relativistic process is very similar to the one used to
prove the existence of a Brownian motion on a Riemannian manifold. Also,
they gave the exact form of the infinitesimal generator of the process which
corresponds to the geodesic flow plus a Laplace operator. In particular, the
authors considered the Schwarzschild space and gave a detailed analysis of
the relativistic stochastic process in this case. See also [71, 84, 91].

Another interesting approach of the problem without the use of stochas-
tic arguments was performed by Chacón-Acosta and Kremer in [35]. They
were able to obtain two relativistic Fokker-Planck equations from a relativis-
tic version of the Boltzmann equation. As a first step, the authors performed
an approximation of the collision integral in the Boltzmann equation for a
relativistic gas and as a result, the values of the friction and diffusion co-
efficients for the Fokker-Planck operator followed from integral factors that
account the collisions experienced by the particles. Moreover, they consid-
ered the case where classical Brownian particles are mixed with a relativistic
gas in equilibrium. Then, they used the relativistic Boltzmann equation sat-
isfied by the Brownian particles distribution in terms of the relativistic gas
and proceeded similarly as in the previous situation.

As mentioned above, there is a second alternative to construct a model
for relativistic diffusion in space-time which involves to treat non-Markovian
processes. Unfortunately, this direction is less explored than the Marko-
vian case, which is also more natural to consider since diffusion depends
on previous states, i.e., the process should have memory of its past. Even
though classical diffusion models do not possess the desired finite propaga-
tion speed of particles and their associated stochastic processes only keep
record of their immediate past, these have proven to reasonably approxi-
mate the phenomenon under appropriate restrictions. Moreover, this could
explain and justify why the research on the matter still focuses on models
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based in parabolic equations. See for instance [100], where the authors ana-
lyzed some of the involved issues from these models. The previous reference
generated a controversy and in response, the following works [89, 99] were
published.

To our knowledge, there are two proposals in the literature as plausible
options to model relativistic diffusion from a non-Markovian perspective.
One of those involves using the telegraph equation [109] since its structure
not only resembles the simplest diffusion equation with an extra second or-
der term in time, but also the model predicts finite propagation speed from
its hyperbolic nature. As a consequence, solutions of this equation will show
similar behavior and properties from solutions of parabolic and hyperbolic
equations. Unfortunately, the latter also means that singular propagation
fronts will appear, which are not a physical part of the phenomenon. In
addition, the classical diffusion and wave equations can be recovered from
two different limiting procedures. Some further facts are also discussed in
[109] such as four derivations of the model, a method to find solutions, etc.
See also [97, 98]. The second approach of the problem was given in [57] by
Dunkel, Talkner and Hänggi. They used the fact that the probability tran-
sition densities in the non-relativistic case can be written as an integral in
terms of the total action per mass under appropriate boundary conditions.
Then, the extension to the relativistic case is straightforward and the re-
sulting process is not Markovian. Moreover, the new process has continuous
paths which is a main advantage in comparison with the telegraph equation.
Also, this perspective might open the possibility to characterize other kinds
of diffusion phenomena.



Chapter 2

The relativistic
Fokker-Planck equation

In this chapter we review some previous results obtained for a relativistic
generalization of a kinetic Fokker-Planck equation. The latter work is not
only our main motivation for the current presentation, but it is also the
foundation to study new mathematical challenges. One reason to consider
and analyze this generalization relies on the fact that essential relativistic
features are captured by the model. Moreover, the latter also allows to
introduce two relativistic systems of interest in gravitational and plasma
physics. This follows from coupling the Fokker-Planck dynamics to a non-
linear scalar mean-field in the gravitational case, the Nordström theory, and
to the Maxwell equations of electrodynamics in the case of plasmas.

2.1 Introduction

Fokker-Planck equations provide a continuous description for the stochastic
collective dynamics of a large amount of particles. The prototype model
and most basic example to consider is when the movement of each particle
is assumed to be governed by the Brownian motion, the random motion of
a test particle immersed in a fluid in thermodynamical equilibrium. If the
test particle is heavier than the molecules of the fluid, then it is possible
to approximate the microscopic forces acting on the test particle by two
driving mechanisms: diffusion and friction. Assuming that the mass of each
particle equals to one, the kinetic equation describing the evolution of the
distribution function for test particles is the following linear Fokker-Planck
(or Kramers) equation [123]:

(2.1) ∂tf + p · ∇xf = ∇p · (σ∇pf + βpf) .

Here the non-negative function f denotes the distribution of particles and
depends on the variables (t, x, p), where t > 0 is the time variable and
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(x, p) ∈ RN × RN are the phase-space coordinates that represent position
x and momentum p. The positive constants β and σ are the friction and
diffusion parameters, respectively. Equations like (2.1), or variants thereof,
have several applications in different fields of physics and engineering. In
astrophysics, for example, they model the effect of interstellar nebulae in a
galaxy [128] or even dark matter [108]. In plasma physics, these equations
take into account the effect of grazing close encounters among the ions (the
heavy particles) and the electrons.

A common strategy to derive Fokker-Planck type equations is to start
from a system of stochastic differential equations (SDEs) that represents
the microscopic behavior of each single particle. Then, it can be shown
that the probability law of the process solving the SDEs satisfies a parabolic
partial differential equation (PDE) of this kind. The latter easily follows
by applying standard results from the theory of stochastic calculus. For
instance, the system of SDEs associated to the kinetic equation (2.1) are
given by

(2.2) ẋ(t) = p(t), ṗ(t) = −βp(t) +
√

2σB(t),

where B(t) is a standard Brownian motion in RN , i.e., a Gaussian process
with covariance 〈B(t), B(t′)〉 = δ(t − t′) and centered at the origin. Then,
well-known results from Itô calculus allow to obtain equation (2.1) from sys-
tem (2.2), see [36, 96, 123] for details.

Despite of the fact that equation (2.1) provides a reasonable model for
describing diffusion in many situations, it also features an incompatible
property with the well-established physical law that prevents particles from
moving faster than light. In other words, the transport-diffusion term
−p · ∇xf + σ∆pf in (2.1) operates with infinite velocity: if particles are
initially distributed in a compact region of space, the probability to find
these particles everywhere will be instantaneously non-zero, i.e., the initial
distribution f(0, x, p) is compactly supported in the variable x and f > 0
for any (t, x, p) ∈ (0,∞) × RN × RN . The latter statement is equivalent
to say that some particles will travel faster than the speed of light. Recent
works in the mathematical and physical literature put forward two possible
solutions to eliminate this undesirable feature. One consists in replacing
the classical linear diffusive (Laplace) operator with a non-linear diffusion
term as performed in [7] for the so-called “ relativistic” heat equation. An-
other mathematically simpler solution is obtained by replacing (2.1) with
a model that is still linear and at the same time, it will turn out to be
consistent with the relativistic mechanics of particles, where the property
of finite propagation speed enters in a natural fashion. For the later case,
the physics literature abounds of proposals for what should represent the
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correct relativistic generalization of (2.1), see for instance [35, 55]. Thus
the first problem to confront is the choice of the relativistic Fokker-Planck
equation to consider. In this work, the following equation is analyzed:

(2.3) ∂tf + p̂ · ∇xf = ∇p · (σD∇pf + βfp) ,

where p̂ is the relativistic velocity and D is the relativistic diffusion matrix.
These quantities are given by

p̂ =
p√

1 + |p|2
, D =

I + p⊗ p√
1 + |p|2

.

The previous model coincides with one of the equations proposed in [55],
namely [55, Eq. (47)], and it is the subject of a recent series of papers by
Haba [79, 81, 78, 83]. In these references, several generalizations of (2.3) are
introduced, including models for massless particles, for particles with spin
and models with more general friction terms.

For applications in astrophysics (resp. plasma physics), it is necessary
to add the interaction of the particles with the self-generated gravitational
(resp. electric) field. In the non-relativistic case this leads to the non-linear
Vlasov-Poisson-Fokker-Planck system:

∂tf + p · ∇xf −∇xU · ∇pf = ∇p · (pf +∇pf) ,(2.4a)

∆xU = λρ, ρ(t, x) =

∫
RN
f(t, x, p) dp,(2.4b)

where we have set all the physical constants equal to one. When λ = 1,
the model corresponds to the gravitational case, while λ = −1 is used in
the plasma physics context. Sections 2.4–2.5 will be devoted to introduce
the relativistic generalizations for these models. In the gravitational case
we will couple the Fokker-Planck dynamics to a relativistic scalar theory of
gravity, the Nordström theory, which has already been used as a toy model
for Einstein’s theory of general relativity, see for instance [24, 28, 29, 129].
Unfortunately, there are fundamental difficulties in formulating a Fokker-
Planck theory in general relativity that are briefly recalled at the beginning
of Section 2.4. In order to avoid this issue, we consider instead a sim-
pler model, which we name the Vlasov-Nordström-Fokker-Planck system.
In the plasma physics case we couple the relativistic Fokker-Planck equa-
tion (2.3) to the Maxwell equations of electrodynamics. The resulting model
is named the Vlasov-Maxwell-Fokker-Planck system. We remark that this
model is different from the one considered in [16, 103, 146], which uses the
non-relativistic Fokker-Planck equation (2.1). The main result for both sys-
tems (with an external confining potential) is the existence of steady states
solutions for all possible values of the mass. We do so by variational tech-
niques inspired by [47]. Note that in the gravitational case the result can
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be improved in comparison with the one available for the Vlasov-Poisson-
Fokker-Planck system (2.4)λ=1, for which the existence of steady states is
only known for a properly small mass [18]. The main advantage of the
Vlasov-Nordström-Fokker-Planck system is that its energy is positive defi-
nite while in the non-relativistic framework is indefinite.

In Section 2.2, we derive the relativistic Fokker-Planck equation (2.3)
by showing that certain important physical properties satisfied by the non-
relativistic model (2.1) are maintained. For instance, the non-relativistic
equation (2.1) is invariant by Galilean transformations when β = 0, i.e., in
the absence of friction. In the case of equation (2.3), the Lorentz invariance
property, which is the relativistic analogue, will be automatically fulfilled
from the arguments that we will use. Note that in both cases, the friction
term breaks the equivalence of inertial reference systems. In Section 2.3,
we prove that solutions of equation (2.3) enjoy some other mathematically
and physically desirable features, in particular that they behave consistently
with the finite propagation speed of particles.

2.2 Derivation of the relativistic model

The purpose of this section is to justify the reason to choose equation (2.3)
as a relativistic generalization for equation (2.1). In particular, we will show
that it is possible to derive this model by merely demanding that certain
analogous physical properties of the non-relativistic case are maintained.
Otherwise, following a stochastic approach for this relativistic version as
in the case of equation (2.1) is problematic for at least two reasons. It is
not very clear how to define a “standard” relativistic Brownian motion and;
there are multiple ways to obtain a Fokker-Planck equation from a system
of SDEs when the diffusion matrix is not constant. For instance, the latter
situation already occurs in (2.3) while this is not an issue for equation (2.1).
It is equivalent to obtained the previous model from (2.2) by either using
Itô or Stratonovich calculus, since σ is constant. As a direct consequence of
these “ambiguities”, there exist different models in the literature which are
named “relativistic Fokker-Planck equation”, see [43, 53] for a review. For
the rest of the chapter, we will not refer to the system of SDEs associated to
the (relativistic) stochastic process since this will not be required. Despite
of this situation, it can be observed that our equation coincides with one of
the models derived in [53, 55] by stochastic calculus methods.

Now, we require to recall some properties that the non-relativistic Fokker-
Planck equation (2.1) possesses. In fact, we focus on the following two:

(NR1) In the absence of friction, i.e., when β = 0, equation (2.1) is Galilean
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invariant1. The latter means that under the change of variables

t̃ = t , x̃ = x− ut, p̃ = p− u, f̃(t̃, x̃, p̃) = f(t, x, p),

f̃ is a solution of (2.1)β=0 if and only if f is a solution, ∀u ∈ RN .

(NR2) The Maxwellian distribution function

M (p) = e−β|p|
2/2σ

is a non-trivial static solution of (2.1). In fact, up to a multiplicative
constant, it is the only global equilibrium of the equation.

Now, we propose a relativistic generalization of (2.1) by requiring that
the relativistic analogues of the properties (NR1) and (NR2) hold. More
precisely, the relativistic Fokker-Planck equation should satisfy:

(R1) Invariance under Lorentz transformations in the absence of friction,
i.e., under the change of variables2

u0 =
√

1 + |u|2, t̃ = u0t− u · x , x̃ = x− ut+
u0 − 1

|u|2
u(u · x),

p̃ = p− u
√

1 + |p|2 +
u0 − 1

|u|2
u(u · p), f̃(t̃, x̃, p̃) = f(t, x, p),

f̃ is a solution of the frictionless equation if and only if f is a solution,
∀u ∈ RN .

(R2) The function J defined by

J (p) = e−γ
√

1+|p|2 ,

must be a static solution, for some constant γ > 0. J is known as
the Jüttner distribution (or relativistic Maxwellian).

In our opinion, the simplest and most natural way to obtain (R1) is the
following. Firstly we replace the transport term in the left hand side of (2.1)
by its relativistic counterpart

√
1 + |p|2 ∂t + p · ∇x =

N∑
µ=0

pµ∂µ = pµ∂µ,

with p0 =
√

1 + |p|2, p = (p1, · · · , pN ), ∂0 = ∂t and ∂i = ∂xi . Secondly
the diffusive operator ∆p = ∇p · ∇p on the right side of (2.1) is replaced

1The friction term∇p·(βpf) breaks the Galilean invariance of (2.1), since it corresponds
to the microscopic velocity-dependent force F = −βp(t) in (2.2).

2We fix c = 1, where c is the speed of light.
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by the Laplace-Beltrami (LB) operator ∆h
p over the Riemannian manifold

(RN , h), where h is the hyperbolic metric, the Riemannian metric induced
by the Minkowski metric ηµν = diag(−1, 1, · · · , 1) over the hyperboloid H =
{(p0, p) : p0 =

√
1 + |p|2}. The components of the metric in the base ∂pi⊗∂pj

of the linear space of second order covariant tensor fields on H are given by

hij = δij − p̂ip̂j , p̂ =
p

p0
,

where pk = δklp
l 3 and p0 = p0. The Lorentz invariance property of the

operator ∆h
p comes from the fact that a Lorentz transformation in the mo-

mentum variable corresponds to a translation over the hyperboloid H. Now,
let (h−1)ij = δij+pipj denote the inverse matrix of hij , i.e., (h−1)ikhkj = δij ,

with |h| = det(hij) = (1 + |p|2)−1. The action of the LB operator ∆h
p on

scalar functions is given by

(2.5) ∆h
pf =

1√
|h|
∂pi
(√
|h|(h−1)ij∂pjf

)
.

Therefore the frictionless relativistic Fokker-Planck equation is

∂tf + p̂ · ∇xf = σ∂pi

(
δij + pipj√

1 + |p|2
∂pjf

)
,(2.6)

where σ > 0 is the diffusion constant.

To achieve (R2), it is sufficient to add a friction term to the right hand
side of (2.6) of the form ∂pi(q

i(p)f) and such that the current

Ai = σ
δij + pipj√

1 + |p|2
∂pjf + qif

vanishes for f = J , since ∇xJ = 0. Using the following computations

∂plJ = −γJ pl

p0
,

δij + pipj√
1 + |p|2

pj = p0pi ,

(2.7)

δij + pipj√
1 + |p|2

∂pjJ = −γpiJ ,

we immediately see that Ai = 0 if and only if qi(p) = γσpi. Then, the
relativistic Fokker-Planck equation with friction is:

∂tf + p̂ · ∇xf = ∂pi

(
σ
δij + pipj√

1 + |p|2
∂pjf + βfpi

)
,(2.8)

3The position of the indexes (above or below) is changed using the Euclidean metric.
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where β = γσ is the friction parameter. Since all the results involving
equation (2.8) are independent from the value of the physical constants, we
set β = σ = γ = 1. Moreover, in order to guarantee the existence of an
equilibrium with finite mass in the whole space, we assume that the system
is subject to the action4 of an external confining potential V = V (x), and
write the equation in the following final form

(2.9) ∂tf + p̂ · ∇xf −∇xV · ∇pf = ∇p(D∇pf + pf),

where (t, x, p) ∈ (0,∞)× RN × RN , p̂ = p/p0 and D is the diffusion matrix

(2.10) Dij =
δij + pipj√

1 + |p|2
= (δij + pipj)(p0)−1,

with p0 =
√

1 + |p|2. Throughout the chapter we assume V ∈ C1 and

e−V ∈ L1(RN ).

To conclude this section, we remark that (2.8) coincides with one of the
equations proposed in [55], namely [55, Eq. (47)]. In this reference, the
authors derive three different relativistic Fokker-Planck equations starting
from a particular relativistic Langevin dynamics and using the pre-, mid-
and post-point rule of discretization for stochastic integrals, see also [53].
Equation (2.8) is the only one, among the equations introduced in [55],
that satisfies the properties (R1)-(R2) above. Our purpose in the following
section is to review previous results concerning this equation.

2.3 Properties of relativistic solutions

In this section, we prove some fundamental properties that solutions of equa-
tion (2.9) possess. Our first task is to establish an existence and uniqueness
result associated to the initial value problem of equation (2.9). To achieve
the latter, we will consider the Cauchy problem for the equation

(2.11) ∂th(t, x, p) +Ah(t, x, p) = 0, A = T − L,

with (t, x, p) ∈ (0,∞)× RN × RN and the operators T , L are given by

(2.12) T = v(p) · ∇x −∇xV · ∇p, L = ∆g
p +W,

4The action of the external potential is equivalent to that of a spatially dependent
friction term, which can be seen by writing (2.9) in the form

∂tf + p̂ · ∇xf = ∇p · (D∇pf + f (p+∇xV )).
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where ∆g
p is the LB operator with respect to the Riemannian metric g on

RN , see (2.5), and v,W are the vector fields

(2.13) Wh = g−1∇p log u · ∇ph, u =
√

det g−1e−E , v = ∇pE,

for some non-negative function E = E(p). The matrix g−1 stands for the
inverse matrix of g, i.e., gijgjk = δik

5. We assume that g,E, V ∈ C∞ and
e−E , e−V ∈ L1(RN ). The latter property allows to define the probability
measure µ as

dµ = Θ−1e−E−V dpdx, Θ =

∫
R2N

e−E(p)−V (x) dpdx.

The previous measure is used to establish our results on weighted Sobolev
spaces which will enable us to equivalently interpret those results in the
usual Sobolev ones by a simple transformation in terms of h in (2.11).

The main reasons to consider equation (2.11) as a first step to prove the
existence and uniqueness result for equation (2.9) are very simple. First,
equation (2.9) can be expressed as a particular case of equation (2.11). Also,
the main argument to deal with the degeneracy in p can not be applied
directly for any function V with low regularity. In fact, we require the
corresponding result for (2.11) when V ∈ C∞ and the initial data are C1

with compact support. From here, this result easily extends for the case
of equation (2.9). Before we state and prove the corresponding Cauchy
problem for (2.11), we gather some basic properties of the operators A, T
and L with respect to the measure µ.

Lemma 2.3.1. Assume that h, h1, h2 ∈ C∞, then the following holds

(a)
∫
R2NhTh dµ = 0;

(b)
∫
RNhLh e

−E dp = −
∫
RN g

ij ∂pih ∂pjh e
−E dp;

(c) A(h1h2) = h1Ah2 + h2Ah1 − 2gij∂pih1 ∂pjh2.

Proof. To proof (a), we use definition (2.12) and perform an integration by
parts to see that∫

R2N

h(v · ∇xh−∇xV · ∇ph)dµ =

∫
R2N

h2(v · ∇xV −∇xV · ∇pE)dµ

+

∫
R2N

(∇ph · ∇xV − v · ∇xh)hdµ,

5For notational convenience, we simply write (g−1)ij = gij in this case.
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and the assertion follows by the previous identity and the fact v(p) = ∇pE.
For the second statement, we account the definition of the LB operator (2.5)
and apply an integration by parts to the right hand side of (b) as follows∫

RN
h∆g

ph e
−Edp =

∫
RN
hgij∂pjh

(
∂piE +

1

2|g|
∂pi |g|

)
e−Edp

−
∫
RN
gij∂pih ∂pjh e

−E dp

= −
∫
RN
gij∂pih ∂pjh e

−E dp−
∫
RN
hWhe−E dp ,

where we used that

1

2|g|
∂pi |g| = −∂pi

(
log

1√
|g|

)
, ∇pE = −∇p log e−E ,

and det g−1 = 1/|g|. The proof of (c) follows directly by Leibniz’s rule.

Now we are ready to present one of the main results of this chapter.
The proof is based on the arguments performed in [87, Prop. 5.5] for the
non-relativistic Fokker-Planck equation (2.1) (with external potential), and
in [22, App. A], which studies the Cauchy problem for (2.11) when x ∈ Td
(the d−dimensional torus) without external potential.

Theorem 2.3.1. Assume that hin ∈ C1
c (RN ×RN ) and for all p ∈ RN , the

following conditions hold

det(∂pivj) 6= 0, ∂pi(g
ij∂pjE) ≤ ω, for some ω > 0,(2.14)

gij∂piE ∂pjE ≥ θ|∇pE|2, for some θ > 0,(2.15)

gij(p)

|p|2
→ 0, as |p| → ∞ ∀ i, j = 1, . . . d.(2.16)

Then, there exists a unique solution for the Cauchy problem associated to
equation (2.11) with initial datum given by h(0, x, p) = hin and

h ∈ C([0,∞), L2(dµ)).

Proof. Consider the operator A defined by (2.11)–(2.12) on the domain
D(A) = C∞c (R2N ) and denote H = L2(dµ). Our main goal is to show
that the closure of the operator A generates a contraction semigroup on H.
To achieve this purpose, it suffices to prove that A is accretive and the range
of A+ λI is dense in H for some λ > 0, see for instance [87, Sec. 5.2]. As a
direct consequence of (a)–(b) in Lemma 2.3.1, we see that A is accretive

〈h | Ah〉H = 〈h | Th〉H − 〈h | Lh〉H =

∫
R2N

gij∂pih ∂pjhdµ ≥ 0.
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In order to prove the remaining property, we will require to show that the
operator A is hypoelliptic. Let a =

√
g−1, the positive definite matrix such

that a2 = g−1. A direct computation shows that

−A =
N∑
i=1

Y 2
i + Y0,

where Y0 and Yi denote the vector fields

Y0h = (divpa) · a∇ph− gij∂piE ∂pjh− Th,
Yih = aki ∂pkh.

Then A is hypoelliptic if −A satisfies a rank 2 Hormander’s condition,
i.e., the vector fields {Yi, Zj} is a basis of R2N with Zi := [Y0, Yi]

6, see [92].
Observe that

Zi = Bk
i ∂pk + Cji ∂xj ,

where B is a N ×N matrix whose exact form is irrelevant for what follows
and Cji = aki ∂pkv

j , since v = ∇pE. Thus we are able to represent the linear
transformation {∂xi , ∂pj} → {Yk, Zl} by

F =

(
0 a
C B

)
,

whose determinant is |detF | = det a|detC| = det g|det(∂pkv
j)|, which is

positive because det(∂pivj) is non-zero by assumption and the claim follows.

Finally, we prove that the range of λ + A is dense in H for some λ > 0.
We must show that if h ∈ H is such that

(2.17) 〈h|(λ+A)f〉H = 0, for all f ∈ D(A),

then h = 0. Equation (2.17) is equivalent to state that h is a distributional
solution of

(λ+ T − L)h = 0.

Since the operator λ + T − L is hypoelliptic, this property implies that
h ∈ C∞ by definition. Now setting h1 = φ, h2 = φh in (c) of Lemma 2.3.1,
multiplying the previous identity by h, integrating over the whole domain
and using that

〈
h|(λ+A)(φ2h)

〉
H = 0, by (2.17), we obtain

λ

∫
φ2h2 dµ+

∫
gij∂pi(φh) ∂pj (φh) dµ =

∫
h2gij∂piφ∂pjφ dµ

−
∫
h2φTφdµ.(2.18)

6Here, [·, ·] denotes the usual Lie bracket and it is defined by [Y0, Yi] = Y0(Yi)− Yi(Y0)
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Let f = he−E/2−V/2. Then, we see that the second term in (2.18) can be
written in terms of f as follows∫

gij∂pi(φh) ∂pj (φh) dµ =

∫
gij∂pi(φf) ∂pj (φf)Θ−1 dpdx

+
1

4

∫
φ2h2gij∂piE ∂pjE dµ

+
1

2

∫
gij∂pi(φ

2f2) ∂pjEΘ−1 dp dx.

Also, performing an integration by parts in the last term allows to find that

1

2

∫
gij∂pi(φ

2f2) ∂pjEΘ−1 dpdx = −1

2

∫
φ2h2 ∂pi(g

ij∂pjE) dµ

≥ −ω
∫
φ2h2 dµ,

where we used the condition ∂pi(g
ij∂pjE) ≤ ω. Therefore, the identity (2.18)

leads to the inequality

(λ− ω)

∫
φ2h2 dµ+

1

4

∫
φ2h2gij∂piE ∂pjE dµ ≤

∫
h2gij∂piφ∂pjφ dµ

−
∫
h2φTφdµ.

Now, we introduce the sequence φ = φk(x, p) = ψ(x/k1)ψ(p/k2), with
k = (k1, k2) ∈ N2 and ψ ∈ C∞c , 0 ≤ ψ ≤ 1, ψ = 1 on B(0, 1/2) and
supp ψ ⊂ B(0, 1). From the previous identity, we obtain the bound

(λ− ω)

∫
φ2
kh

2 dµ+
1

4

∫
φ2
kh

2gij∂piE ∂pjE dµ ≤C
k2

2

∫
h2 sup

i,j
|gij |χ|p|<k2

dµ

+ | 〈φkh∇pE · ∇xφk, h〉H |
+ | 〈φkh∇xV · ∇pφk, h〉H |,(2.19)

for some C > 0. Using Young’s inequality, we can estimate the last two
terms of (2.19) as follows

| 〈φkh∇pE · ∇xφk, h〉 | ≤
C

k1

(
1

4ε1

∫
φ2
kh

2|∇pE|2dµ+ ε1

∫
h2dµ

)
,

| 〈φkh∇xV · ∇pφk, h〉 | ≤
Cζk1

k2

(
1

4ε2

∫
φ2
kh

2dµ+ ε2

∫
h2dµ

)
,

which are valid for all ε1, ε2 > 0, with ζk1 = sup|x|≤k1
{|∇xV |}. Now, we use

the values ε1 = C/(θk1) in the first line, ε2 = Cζk1/(4k2) in the second line
and invoke property (2.15) to get

λ− ω − 1

C

∫
φ2
kh

2dµ ≤ 1

k2
2

∫
h2 sup

i,j
|gij |χ|p|<k2

dµ+

(
1

k2
1

+
ζ2
k1

k2
2

)∫
h2dµ.
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Taking first the limit k2 → ∞ and then k1 → ∞, we see that h = 0 for
λ > ω + 1. This concludes the proof of the theorem.

As a consequence of the previous result, we are able to establish the
existence and uniqueness of solutions for the corresponding initial value
problem of equation (2.9) under weaker assumptions. We will only include
some details for simplicity.

Theorem 2.3.2. Given 0 ≤ fin ∈ L1, there exists a unique global solution
of equation (2.9) with initial datum f(0, x, p) = fin(x, p) and

0 ≤ f ∈ C([0,∞), L1(RN × RN )).

Proof. First, we verify that equation (2.9) can be written in the form (2.11).
Let f = e−E−V h, E(p) =

√
1 + |p|2 = p0 and g = D−1, which is given by

(2.10). Then, we notice that

∂tf + p̂ · ∇xf −∇xV · ∇pf = e−E−V [∂th+ p̂ · ∇xh−∇xV · ∇ph]

− e−E−V f [p̂ · ∇xV −∇xV · ∇pE]

= e−E−V [∂th+ p̂ · ∇xh−∇xV · ∇ph] ,

with p̂ = p/p0 = ∇p
√

1 + |p|2 = v, see (2.13), and also

∇p(D∇pf + pf) = ∂pi
(
Dij∂pj (he

−E−V ) + pif
)

= ∂pi
(
e−E−VDij∂pjh

)
= e−E−V ∂pi

(
Dij∂pjh

)
− e−E−VDij pi

p0
∂pjh ,

by using (2.7). Thus, h solves the equation

∂th+ p̂ · ∇xh−∇xV · ∇ph = ∂pi
(
Dij∂pjh

)
+Dij∂pi log e−p

0
∂pjh.(2.20)

Next, we consider the metric g given by

gij = p0δij −
pipj
p0

,

which satisfies

Dkjgjl =

(
δkj + pkpj√

1 + |p|2

)(
p0δjl −

pjpl
p0

)
= δkl + pkpl −

pkpl + pkpl|p|2

(p0)2
= δkl ,
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i.e., Dij is the inverse matrix of the metric g with det g = |g| = p0. Using
the definition of the LB operator (2.5), we perform the following calculation

∂pi

(√
|g|√
|g|
Dij∂pjh

)
=

1√
|g|
∂pi
(√
|g|Dij∂pjh

)
+ ∂pi

(
1√
|g|

)√
|g|Dij∂pjh

= ∆g
ph−Dij pi

2(p0)2
∂pjh

= ∆g
ph+Dij∂pi

(
log
√
|g|−1

)
∂pjh .

Combining equation (2.20) with the previous identity and bearing in mind
the fact |g|−1 = det g−1, we see that (2.9) takes the form (2.11) as stated.

Next, we approximate the external potential V (x) by a smooth function
and the initial datum by a sequence hin,m ≥ 0 of smooth functions with
compact support. By Theorem 2.3.1, we have that for each fixed m ∈ N
there exists a unique solution of equation (2.9) with fm ∈ C([0,∞), L2).
The previous result can be applied since it is easy to verify that conditions
(2.14)–(2.16) are fulfilled from the following quantities

Dij∂piE ∂pjE =
δij + pipj√

1 + |p|2
pj

p0

pi

p0
= |∇pp0|2p0 ≥ |∇pE|2,

Dij(p) ≈ 1 + |p|, ∂pi(D
ij∂pjp

0) = ∂pip
i = N,

∂pi

(
pj

p0

)
= ∂piv

j =
1

(p0)2

(
p0δij − pipj

p0

)
=

gij
(p0)2

,

where we used that E = p0 ≥ 1 and ∂pkp
0 = pk/p0 = vk. By standard

methods (see [31, 72, 137] for instance), one can prove the L1-contraction
property

‖fk − fm‖L1 ≤ ‖fin,k − fin,m‖L1 .

Thus the sequence fm converges in L1 to a solution. The uniqueness is also
a direct consequence of the L1-contraction property. The non-negativity
of regular solutions can be proved by studying the evolution of a suitable
regularization of sign(f) (see again [31, 72, 137]).

It is important to remark that the global existence and uniqueness of so-
lutions for equation (2.9) can be proven under lower regularity conditions.
For instance, see [139] for the case of the non-relativistic equation.

As previously mentioned, one of the main reasons to consider equation
(2.9) comes from the fact that this model is compatible with the desired
finite propagation speed of particles in relativity. In general, any kinetic
equation of the form

∂tf + v(p) · ∇xf = C[f ],
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will possess this propagation property if the vector field v and the operator
C (possibly non-linear) satisfy |v| ≤ 1 and∫

RN
C[f ](t, x, p)dp = 0.

In fact, for the proof of the result is required an intrinsic property that
solutions of the above equation satisfy. Define the functions

ρ(t, x) =

∫
RN

f dp, j(t, x) =

∫
RN

v(p) f dp,

and notice that ρ and j are related by the continuity equation

(2.21) ∂tρ+∇x · j = 0,

for all t ≥ 0 and x ∈ RN . Moreover, since |v| ≤ 1, then |j| ≤ ρ for f ≥ 0.
The latter fact provides the key point in the argument to obtain the result,
which is based on the celebrated uniqueness theorem for non-linear wave
equations due to Fritz John [94], see also [131]. Now, we are in position
to show that all the relevant relativistic kinetic equations have the finite
propagation speed property, if these equations can be expressed in terms of
the continuity equation (2.21).

Lemma 2.3.2. Assume that ρ, j ∈ C1 verify equation (2.21), |j| ≤ ρ and
ρ(0, x) = 0 for |x− x0| ≤ t0. Then ρ(t, x) = 0, for (t, x) ∈ Λ(t0, x0), where

Λ(t0, x0) = {(t, x) ∈ [0, t0]× RN : |x− x0| ≤ t0 − t}

is the past light cone with vertex on (t0, x0) and base on t = 0.

Proof. Consider the function

Φ(s, x) = t0 − [(t0 − s)2 + t−2
0 (2t0s− s2)|x− x0|2]1/2,

and the set Rs(t0, x0) = {(t, x) : t ≤ Φ(s, x), |x− x0| ≤ t0}. Notice that

(2.22) Φ(0, x) = 0, lim
s→t0

Φ(s, x) = t0 − |x− x0|, Φ||x−x0|=t0
= 0,

and
Λ(t0, x0) =

⋃
0≤s<t0

Rs(t0, x0).

Also, we define

ρ∩(s, x) = ρ(Φ(s, x), x), j∩(s, x) = j(Φ(s, x), x).

Since ρ, j satisfy (2.21), then ρ∩, j∩ verify the identity

∂sρ∩ = −∇ · j∩∂sΦ + ∂sj∩ · ∇xΦ.
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Next, we use (2.22) and perform some integrations by parts to see that∫
|x−x0|<t0

ρ∩(s, x) dx =

∫
|x−x0|<t0

∫ s

0
∂τρ∩(τ, x) dτ dx

=

∫
|x−x0|<t0

∫ s

0
(−∇ · j∩∂τΦ + ∂τ j∩ · ∇xΦ) dτ dx

=

∫
|x−x0|<t0

j∩ · ∇xΦ(s, x) dx ≤ θ(s)
∫

|x−x0|<t0

ρ∩(s, x) dx,

where the latter bound was obtained by using |j| ≤ ρ and the fact that for
all 0 ≤ s < t0

|∇xΦ(s, x)| = t−2
0 (2t0s− s2)|x− x0|

[(t0 − s)2 + t−2
0 (2t0s− s2)|x− x0|2]1/2

≤
√

2t0s− s2

t0
= θ(s).

Since θ(s) < 1 and ρ ≥ 0 is continuous, we conclude that∫
|x−x0|<t0

ρ∩ dx = 0⇒ ρ = 0 on Λ(t0, x0).

Notice that as a consequence of the previous result and the wave nature
of the transport equation (2.21), we obtain a similar result when the initial
datum ρ(0, x) is compactly supported. This observation leads to the finite
speed property of particles mentioned before.

In the remainder of the section, we assume that solutions of equation (2.9)
are smooth and decays rapidly at infinity. This allows to simplify some of
the computations in the following results. The generalization to the actual
regularity of solutions is achieved by introducing a suitable smooth positive
approximation fε, for which the following calculations hold up to error terms
that vanish in the limit toward a solution (i.e., ε→ 0). We refer to [18] for
the details of this procedure in the non-relativistic case.

Now, we prove the finite speed property of particles for the relativistic
Fokker-Planck model:

Proposition 2.3.1. If the initial datum for equation (2.9) satisfies fin = 0
for |x| > R and some R > 0, then f = 0 for |x| > R+ t and all t > 0.

Proof. Introduce the density and the current density

ρ(t, x) =

∫
RN
f(t, x, p) dp, j(t, x) =

∫
RN
p̂f(t, x, p) dp.
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Clearly, |j| ≤ ρ since p̂ = p/p0 ≤ 1. Also, the continuity equation (2.21)
holds. This is a direct consequence from the facts that equation (2.9) can
be written in the form

∂tf + p̂ · ∇xf = ∇p · (D∇pf + f (p+∇xV )),

and an application of the divergence theorem after an integration in the p
variable in the previous identity. Then, the result follows by Lemma 2.3.2.

In the end of the next chapter, we will use the previous property for an
alternative approach to obtain the boundedness control on the behavior of
relativistic solutions in the Newtonian limit problem for equation (2.9).

Now, we want to focus on two other relevant and fundamental aspects of
equation (2.9). The first one is concerned to the fact that the model does
not exhibit particles loss, which is meaningful from the physics perspective.
The second aspect is directly related to the convergence of solutions towards
the non-trivial equilibrium state of the equation, which is one of the main
subjects in this work. The latter problem will be treated in Chapter 4. In
order to obtain part of the information previously mentioned, we need to
recall some basic concepts. The positive part of a real-valued function σ is
σ+ = max(0, σ). For a non-negative density f , its mass is defined by

M [f ](t) =

∫
R2N

f(t, x, p) dp dx,(2.23)

and its free energy, or (relative) entropy functional is given by

Q[f ](t) =

∫
R2N

f(t, x, p)
(√

1 + |p|2 + V (x) + log f(t, x, p)
)

dpdx.(2.24)

The next proposition studies the evolution of the functionals M and Q.

Proposition 2.3.2. For any non-negative solution of equation (2.9), the
following properties are valid:

(i) The mass is constant: M [f(t)] = M [fin].

(ii) If Q+[fin] <∞, where

(2.25) Q+[f ] =

∫
R2N

f
(√

1 + |p|2 + V (x) + log+ f
)

dp dx,

then f log f ∈ C([0,∞), L1(R2N )) and the entropy identity holds

dQ
dt

= −4

∫
R2N

Dij(p)∂pi

(√
f/J

)
∂pj

(√
f/J

)
J dpdx,(2.26)
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where J (p) = e−
√

1+|p|2. In particular, we have that for all t > 0∫ t

0

∫
R2N

Dij(p)∂pi

(√
f/J

)
∂pj

(√
f/J

)
J dpdx ds <∞.

Proof. Proving the mass conservation property follows by a straightforward
application of the divergence theorem. As to the entropy identity (2.26), we
begin by computing

dQ
dt

=

∫
R2N

∂tf
(√

1 + |p|2 + V + log f
)

dpdx .

Next, we define ∂tf = FP [f ]−T [f ], which is justified by equation (2.9) and
where the operator T is given by (2.12) and the vector field by v(p) = p̂ =
p/p0. First, we see that∫

R2N

T [f ]
√

1 + |p|2 dpdx =

∫
R2N

(
p · ∇xf −

√
1 + |p|2∇xV · ∇pf dp

)
dx

=

∫
R2N

∇x · (pf) dp dx+

∫
R2N

p̂ · ∇xV f dpdx

=

∫
R2N

p̂ · ∇xV f dpdx,(2.27)

where we used the divergence theorem. For the integral of T [f ]V , we have∫
R2N

T [f ]V dpdx =

∫
R2N

(V p̂ · ∇xf − V∇xV · ∇pf) dpdx

= −
∫
R2N

∇xV · p̂f dpdx−
∫
Rd
∇p · (V∇xV f) dp dx

= −
∫
R2N

p̂ · ∇xV f dpdx.(2.28)

For the integral of T [f ] log f , we use that for z = (x, p) and a vector field A
such that ∇z ·A = 0, the following holds

∇z · [A (f log f − f)] = A log f · ∇zf

and therefore, taking A = (p̂,−∇xV ), we get∫
R2N

T [f ] (log f) dp dx =

∫
R2N

A log f · ∇zf dpdx

=

∫
R2N

∇z · [A(f log f − f)] dpdx = 0.(2.29)

Adding (2.27)–(2.29), we see that∫
R2N

T [f ]
(√

1 + |p|2 + V + log f
)

dpdx = 0.(2.30)
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Now, the contribution of the term FP [·] is integrated by parts to obtain∫
R2N

FP [f ]
(√

1 + |p|2 + V + log f
)

dpdx

=

∫
R2N

(√
1 + |p|2 + V + log f

)
∇p ·(fp+D∇pf) dp dx

= −
∫
R2N

(
p̂i +

1

f
∂pif

)(
fpi +Dij∂pjf

)
dp dx

= −
∫
R2N

1

f
Dij

(
fp̂i + ∂pif

) (
fp̂j + ∂pjf

)
dpdx,

where we used the identity

Dij p̂i =
δijpi + pj |p|2

1 + |p|2
= pj .

Accounting that

∂pk

(√
f/J

)
=

1

2
√
f/J

(J −1fp̂k + J −1∂pkf),

we obtain ∫
R2N

FP [f ]
(√

1 + |p|2 + V + log f
)

dp dx

= −4

∫
R2N

Dij(p)∂pi

(√
f/J

)
∂pj

(√
f/J

)
J dp dx.(2.31)

Adding (2.30) and (2.31) concludes the proof.

From the previous result, the conservation law (i) assures that there is
no loss of mass from the particles. Also, this mass conservation property of
f was essential to derive (2.26). This identity allows to interpret equation
(2.9) as a gradient flow for Q, or equivalently, the free energy functional
acts as a Lyapunov function for the dynamics generated by this equation.
In general, any f = α(x)J (p) is a critical point of Q by (2.26) when f
solves (2.9). This is a nice variational characterization that can be made
more precise. Recall that e−V ∈ L1. It is clear that, for each M > 0, there
exists a unique regular stationary solution with mass M of equation (2.9),
which is given by

f0(x, p) = mM (x, p) =
M

Θ
JV (x, p),(2.32a)

where

JV (x, p) = e−
√

1+|p|2−V , Θ =

∫
R2N

JV (x, p) dp dx.(2.32b)
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The regularity assertion on the solution is a consequence of the argument
used in Theorem 2.3.1. We proved that the operator L, defined by writing
equation (2.9) in the form ∂tf = Lf , is hypoelliptic provided that the exter-
nal potential V ∈ C∞. From this property, one obtains that the equilibria of
equation (2.9), which solve Lf = 0 , are automatically smooth. Moreover,
as in the non-relativistic case, one can prove that the equilibrium solution
is a minimizer of the entropy functional. To see this, we need first to recall
the following general result proved in [47, Lemma 1.1], which will also play
a crucial role in the following sections.

Lemma 2.3.3 ([47]). Let us consider a measurable set Ω ⊂ Rd and the
functional

H[g] =

∫
Ω
g(y) log g(y) dy +

∫
Ω
g(y)h(y) dy,(2.33)

with g ∈ L1(Ω) non-negative such that g(log g)+ ∈ L1(Ω). Assume that
h ∈ L1(Ω; g(y)dy) is such that e−h ∈ L1(Ω; dy), then g log g ∈ L1(Ω; dy) and

H[g]−H[mg] ≥
1

2

∫
Ω

(√
g(y)−

√
mg(y)

)2

dy,

where mg(y) =

∫
Ωg dy∫

Ωe
−h dy

e−h.

An immediate consequence of the previous lemma is the variational char-
acterization of mg(y) as a minimum of H:

Corollary 2.3.1. With the same hypotheses of Lemma 2.3.3,

H(M) = inf

{
H[g] : g ≥ 0, g ∈ L1(Ω),

∫
Ω
g(y) dy = M

}
is bounded from below for any M > 0 and

H(M) = H[ḡ] = M log

(
M∫

Ωe
−h dy

)
with ḡ = M

e−h∫
Ωe
−h dy

.

In fact, ḡ is the only minimum of H(g).

If we take d = 2N , y = (x, p), Ω = R2N , g = f and h =
√

1 + |p|2 + V ,
we have that ḡ = mM and H(g) = Q(f) by (2.32) and (2.33), respectively.
Thus, the next result follows directly from Lemma 2.3.3 and Corollary 2.3.1:

Corollary 2.3.2. Assume that f ∈ L1(R2N ) and e−V ∈ L1(RN ), with
f ≥ 0, are such that

Q+[f ] =

∫
R2N

f
(√

1 + |p|2 + V (x) + log+ f
)

dpdx <∞.
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Then,

Q[f ]−Q[mM ] ≥ 1

2

∫
R2N

(√
f(x, p)−

√
mM (x, p)

)2
dpdx,

and mM is the unique minimum of

Q(M) = inf

{
Q[f ] : 0 ≤ f ∈ L1(R2N ),

∫
R2N

f(x, p) dpdx = M, Q+[f ] <∞
}

= M log

[
M∫

R2N e
−(
√

1+|p|2+V ) dp dx

]
.

The previous result justifies the reason to consider the functional Q as
a Lyapunov function to study the trend to the equilibrium problem for
solutions of equation (2.9) that will be treated in Chapter 4. Also, in the next
sections we will generalize these results for the non-linear Vlasov-Nordström-
Fokker-Planck and Vlasov-Maxwell-Fokker-Planck systems.

2.4 The Vlasov-Nordström-Fokker Planck system

In the remainder of the chapter, we will consider two non-linear mean field
models built on the relativistic Fokker-Planck equation (2.9). Both models
generalize the Vlasov-Poisson-Fokker-Planck system in the plasma physics
and in the gravitational cases. For simplicity, we shall consider only the
three dimensional case, i.e., x, p ∈ R3 (the field equations change with the
dimension).

In this section, the corresponding relativistic model for the gravitational
case is introduced. Unfortunately, we will not do this in the framework of
general relativity (although this is the physically correct relativistic theory
of gravity), since the latter would lead to face fundamental difficulties. In
fact, modeling dissipative systems in general relativity is not yet understood,
not even at a formal level. The main reason is that the Einstein equations
by themselves imply that the mass/energy/momentum of the system must
be conserved7. To overcome this fundamental issue, we will propose an
alternative relativistic theory of gravity, the Nordström theory, which has
already been used in the collisionless case (without diffusion) as a simpler
model in comparison with the Einstein-Vlasov system [28, 129]. The result-
ing system—the Vlasov-Nordström-Fokker-Planck system—will be derived
from similar arguments as the ones applied in Section 2.2 for the relativistic

7The situation is similar to what happens in electrodynamics, where the Maxwell equa-
tions alone imply the conservation of charge (2.52) and therefore, the dynamics of the
coupled matter model must be compatible with it (which is true for the relativistic Fokker-
Planck equation considered in the previous section).
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Fokker-Planck equation.

In the present case, we assume that the space-time is given by the pseudo-
Riemannian manifold (R4, g), with Lorentzian metric

g = e2φη,

where η, φ : R4 → R are the Minkowski metric and the gravitational field,
respectively. Let (t, x1, x2, x3) be a system of coordinates which set the
Minkowski metric in the canonical form ηµν = diag(−1, 1, 1, 1). Then

g = −e2φdt2 + e2φδijdx
idxj .(2.34)

The geodesics of the metric (2.34) are the solutions of the ODE system

dt

ds
= p0,

dxi

ds
= pi,

dpµ

ds
= −Γµνσp

νpσ,(2.35)

where s is the geodesic parameter and Γµνσ are the Christoffel symbols of g,
which are explicitly obtained as follows

Γµνσ =
1

2
gµγ (∂νgσγ + ∂σgνγ − ∂γgνσ)

= gµγ (gσγ∂νφ+ gνγ∂σφ− gνσ∂γφ)

= δµσ∂νφ+ δµν ∂σφ− e−2φηµγ∂γφgνσ .(2.36)

Here, we used that the inverse of g takes the form gµν = e−2φηµν . Now,
consider a system of particles with unit mass that move along the geodesic
curves. The geodesic motion reflects the physical property that the particles
interact only through the gravitational field. If we want to interpret pµ as
a four-momentum vector for the particles, we need to impose that pµ has
length equal to −1, i.e., gµνp

µpν = −1. This entails

p0 =
√
e−2φ + |p|2, |p|2 = δijp

ipj .(2.37)

Let f(t, x, p), x = (x1, x2, x3) and p = (p1, p2, p3), be the distribution
function of particles in the position x at time t with four-momentum vector
pµ = (p0, p) = (

√
e−2φ + |p|2, p). Having assumed that the solutions of

(2.35) are the particles trajectories, we obtain that f satisfies the equation

p0∂tf + p · ∇xf − Γiµνp
µpν∂pif = 0,

where p0 is given by (2.37). Next, we substitute (2.36) in the previous
equation to obtain the Vlasov equation for collisionless particles

p0∂tf + p · ∇xf −
[
2 (p0∂tφ+ p · ∇xφ) p+ e−2φ∇xφ

]
· ∇pf = 0.
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In order to obtain the corresponding Fokker-Planck equation, we need to
add appropriate diffusion and friction terms in the right hand side of this
equation. Motivated by the discussion in Section 2.2, the LB operator ∆h

pf
for the diffusion term appears to be adequate in this case, where h is the
metric induced by (2.34) over the hyperboloid p0 =

√
e−2φ + |p|2. It can be

verified that

hij = e2φ

(
δij −

pipj
e−2φ + |p|2

)
,

with pi = δijp
j8, |h| = deth =

(
e−2φ + |p|2

)−1
e4φ and inverse matrix

(h−1)ij = e−2φδij + pipj .

Therefore,

∆h
pf =

1√
|h|
∂pi
(√
|h|(h−1)ij∂pjf

)
= p0∂pi

(
e−2φδij + pipj√
e−2φ + |p|2

∂pjf

)
.

Then, the Fokker-Planck equation in the absence of friction adopts the form

(2.38a) Sf −

[
2Sφp+

e−2φ∇xφ√
e−2φ + |p|2

]
· ∇pf = ∂pi

(
e−2φδij + pipj√
e−2φ + |p|2

∂pjf

)
,

where

(2.38b) Su = ∂tu+
p√

e−2φ + |p|2
· ∇xu.

For the gravitational field φ, we postulate the non-linear wave equation

2φ := ∂2
t φ−∆xφ = −e6φ

∫
R3

f(t, x, p)√
e−2φ + |p|2

dp,(2.38c)

which has been justified in [24]. Now, doing the change of variables f̃(t, x, p) =
f(t, x, e−2φp), the system (2.38) takes the form

∂tf̃ +∇p
(√

e2φ + |p|2
)
· ∇xf̃ −∇x

(√
e2φ + |p|2

)
· ∇pf̃

= ∂pi
(

Λijφ (p)∂pj f̃
)
,(2.39a)

2φ = −e2φ

∫
R3

f̃(t, x, p)√
e2φ + |p|2

dp,(2.39b)

8Although the metric g is not Euclidean, we keep using the metric δij for moving up
and down indexes.
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where

(2.39c) Λijφ (p) =
e4φδij + e2φpipj√

e2φ + |p|2
.

The system (2.39) is the Vlasov-Nordström-Fokker-Planck system in the
absence of friction. It is invariant under the Lorentz type transformations
given in [26]. To introduce a friction term, we first notice that for any
time independent scalar function φ0 = φ0(x) (not necessarily a solution of
equation (2.39b)), the left hand side of (2.39a) vanishes when the density f̃
is given by

f̃ = f̃0(x, p) = e−
√
e2φ0+|p|2 .

This suggests that a friction term of the form ∇p · (qf̃) should be used on
the right side of (2.39a), if it satisfies

Λijφ (p)∂pj f̃ + qif̃ = 0, if f̃ = e−
√
e2φ+|p|2 .

It can be verified that q = e2φp. Adding this friction term and an external
potential to (2.39a), we get

∂tf +∇p
(√

e2φ + |p|2
)
· ∇xf −∇x

(√
e2φ + |p|2 + V (x)

)
· ∇pf(2.40a)

= ∂pi
(

Λijφ (p)∂pjf + e2φpif
)
,

2φ = −e2φ

∫
R3

f(t, x, p)√
e2φ + |p|2

dp,(2.40b)

where Λijφ (p) is given by (2.39c) and the tilde is removed for notational
simplicity. The system (2.40) will be called the Vlasov-Nordström-Fokker-
Planck (VNFP) system.

In the following, we discuss some of the properties that remain valid for
this non-linear system. First, we prove the mass conservation and the en-
tropy identity for time-dependent solutions. For the latter, it is important
to remark that the existence of solutions is still an open problem in general
and therefore, the analysis of the time-dependent solutions that we will per-
form is only formal. This matter will be approached in the final chapter for
particular solutions of the form f(t, x, p) = f(t, p), φ(t, x) = φ(t) (the spa-
tially homogeneous case). Then, we refer as “regular solution” to a pair of
functions which are sufficiently regular to enable the calculations. In addi-
tion, we assume that solutions of VNFP system are such that eφ is bounded
in any finite interval of time. This is true as soon as the initial data for the
field equation (2.40b) are bounded and f ≥ 0. To see this, note that regular
solutions of (2.40b) verify φ = φhom + ψ, where ψ solves (2.40b) with zero
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initial data and φhom solves the linear wave equation 2φhom = 0 with the
same data as φ. Since the right hand side of (2.40b) is non-positive, then
ψ ≤ 0, and therefore, eφ = eφhomeψ ≤ eφhom is bounded as claimed. Finally,
we will also show that steady states for VNFP system exist.

The mass of regular solutions of VNFP is defined again by (2.23), with
f ≥ 0, and the corresponding free energy for this case is given by

K[f, φ, ∂tφ] =

∫
R6

f

(√
e2φ + |p|2 + V (x) + log f

)
dpdx

+
1

2

∫
R3

(
|∂tφ|2 + |∇xφ|2

)
dx

= Q[f, φ] + I[φ, ∂tφ].(2.41)

Notice that the energy part I of the entropy functional is non-negative,
in contrast to what happens in the gravitational VPFP system, the non-
relativistic analogue. We will exploit this advantage when we treat the
existence of steady states for the VNFP system.

In the following result, we gather some properties of the VNFP system
which are the extension for those ones proven for the linear case:

Proposition 2.4.1. For regular solutions of (2.40), we have:

(i) M(t) ≡constant.

(ii) The entropy functional satisfies

dK
dt

= −4

∫
R6

Λijφ (p)∂pi

(√
f/J φ

)
∂pj

(√
f/J φ

)
J φ dp dx,(2.42)

where J φ(x, p) = e−
√
e2φ+|p|2.

(iii) Let e−V ∈ L1(R3). Then, the static solutions of VNFP system with
mass M > 0 are of the form

(2.43a) (f0(x, p), φ0(x)) = (mM (x, p), φ0(x)),

where

(2.43b) mM =
M

Θ
JV , JV = e−

√
e2φ0+|p|2−V , Θ = ‖JV ‖L1 ,

and φ0 solves

(2.43c) ∆φ0 = e2φ0

∫
R3

mM (x, p)√
e2φ0 + |p|2

dp.
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Proof. The proof of (i) is straightforward. To show that identity (2.42) in
(ii) holds, we first observe that

dI
dt

=

∫
R3

(
∂tφ∂

2
t φ+∇xφ · ∇∂tφ

)
dx

=

∫
R3

∂tφ2φ dx = −
∫
R6

fe2φ∂tφ√
e2φ + |p|2

dpdx,

due to an integration by parts and the field equation (2.40b). On the other
hand, we compute the time derivative of Q to see that

(2.44)
dQ
dt

=

∫
R6

∂tf

(√
e2φ + |p|2 + V + log f

)
dp dx− dI

dt
,

where the specific form of I ′ and the mass conservation property were used.
For the remaining term in (2.44), we use again that ∂tf = FP [f ] − T [f ],
where T = ∇p(

√
e2φ + |p|2) · ∇x − ∇x(

√
e2φ + |p|2 + V ) · ∇p. Similarly as

in the proof of Proposition 2.3.2, we have that the integrals containing the
transport term T satisfy∫

R6

T [f ]
√
e2φ + |p|2 dp dx =

∫
R6

∇xV · pf√
e2φ + |p|2

dp dx,∫
R6

T [f ] log f dpdx = 0,∫
R6

T [f ]V dp dx = −
∫
R6

∇xV · pf√
e2φ + |p|2

dp dx.

The previous identities imply that there is no contribution from the term
involving T [f ] in (2.44). Finally, we perform an integration by parts in the
integral containing the diffusive term to obtain∫

R6

FP [f ]

(√
e2φ + |p|2 + V + log f

)
dpdx

= −
∫
R6

(
p̂i +

1

f
∂pif

)(
e2φfpi + Λijφ (p)∂pjf

)
dpdx

= −4

∫
R6

J φΛijφ (p)∂pi

(√
f/J φ

)
∂pj

(√
f/J φ

)
dp dx,

where we used that

e2φpj = Λijφ (p)p̂i and ∂pk

(√
f/J φ

)
=

(J φ)−1

2
√
f/J φ

(
fp̂k + ∂pkf

)
.

This concludes the proof of (ii). For the last statement, we notice that
JV ∈ L1(R6), because eφ0 is bounded. Also, we see that static solutions
must have the form f0(x, p) = α(x)J φ0(x, p) by (ii), i.e., K′ = 0 and

Λijφ (p)∂pi

(√
f/J φ

)
∂pj

(√
f/J φ

)
≥ 0,
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since Λijφ (p) is positive definite. Substituting in (2.40a), we obtain

p · (∇α+ α∇xV ) = 0,

and therefore, α = Ce−V .

In comparison with the linear case, it is not clear if the previous result will
be useful to determine the long time asymptotic behavior of solutions from
system (2.40) or any other related matter, since there are several technical
issues to overcome. The first challenge arises from the lack of diffusion in
the x variable. A similar argument to prove existence of solutions as the one
shown in the previous section does not apply for the linear equation (2.40a)
when the field φ is given. This situation is already difficult for the treatment
of the trend to the equilibrium for the relativistic Fokker-Planck equation.
Even in a simpler regime (the spatially homogeneous case), this is a non-
trivial problem for the VNFP system. The presence of the time variable in
the coefficients for the latter transforms the original trend problem into one
where the convergence is towards a self similar-profile (there is no steady
state). Fortunately, some answers can be obtained for the latter problem as
we will see in the final chapter.

In the following, we treat the existence of steady state solutions for the
system (2.40). It is important to mention that the latter problem for the
VPFP system in the gravitational case has not been completely solved. So
far, there is only a small mass result which is proven in [18]. The authors of
the previous reference use a fixed point argument inspired by the arguments
contained in [49, 50]. This argument also applies mutatis mutandis to the
VNFP system as follows.

Consider the equation for the gravitational potential of steady states,
equation (2.43c), which can be written in terms of u = −φ0 as

(2.45) ∆u = −e−2u−V M

Θ

∫
R3

e−
√
e−2u+|p|2√

e−2u + |p|2
dp.

Next, define the solution operator K of (2.45) as the convolution of the right
hand side of this equation with 1/(4π|x|). By standard estimates, one can
prove that for M small enough, the operator K is a contraction in the space
X = {v ∈ L∞(R3) : 0 ≤ v ≤ 1} and by the fixed point theorem, we obtain:

Proposition 2.4.2. There exists M0 > 0 such that equation (2.45) has a
unique solution u ∈ L∞ for all M < M0. This solution defines a steady
state for the VNFP system, through (2.43), and satisfies lim|x|→∞ u = 0.

However, the latter result can be considerably improved in the relativistic
case. In fact, we will show the existence of steady states for all masses. Let



2.4 The Vlasov-Nordström-Fokker Planck system 45

us denote

ΓM = {f : R6 → R : 0 ≤ f ∈ L1(R6) , ‖f‖L1(R6) = M , Q+[f ] <∞},

where Q+ is similarly defined as in (2.25) by using the definition of Q in
(2.41). Additionally, we recall the definition of the space D1(R3) which is

D1(R3) = {φ ∈ L1
loc(R3) : ∇φ ∈ L2 and φ vanishes at infinity},

where the vanishing condition at infinity on φ means that for all a > 0, the
set {x ∈ R3 : |φ(x)| > a} has finite Lebesgue measure. Functions in the
space D1(R3) satisfy the Sobolev inequality

(2.46) ‖φ‖L6 ≤ η‖∇φ‖L2 , η =
2√
3
π−2/3,

see [106, Thm. 8.3]. Now, we are ready to prove the following:

Theorem 2.4.1. There exists at least one solution9 φ0 of (2.43c) for all
M > 0. Moreover, the corresponding steady state, given by (2.43b), is a
minimizer of the entropy functional:

K(M) = inf{K(f, φ, ψ) , f ∈ ΓM , φ ∈ D1(R3) , ψ ∈ L2(R3)},

where K is defined by (2.41), i.e., K(M) = K(mM , φ0, 0).

Proof. First, we notice that

K(M) = inf
ΓM×D1

E(f, φ),

where E(f, φ) = K(f, φ, 0). We divide the proof in five steps.

Step 1: K(M) is bounded. It is easy to see that

(2.47) E(f, φ) ≥
∫
R6

f(|p|+ V (x) + log f) dp dx.

Using Lemma 2.3.3 with g = f , h = |p|+ V , Ω = R6, we have that

E(f, φ) ≥M log

(
M∫

R6e−|p|−V dp dx

)
.

Step 2: Weak convergence of minimizing sequences. Let (fn, φn) be a
minimizing sequence. Since φn is uniformly bounded in D1, and by the
Sobolev inequality (2.46), there exists a subsequence, still denoted by φn,
and φ0 ∈ D1 such that

(2.48) φn⇀φ0 in L6 and ∇xφn ⇀ ∇xφ0 in L2.

9By Proposition 2.4.2, the solution is unique for M small.



46 The relativistic Fokker-Planck equation

In order to establish the weak convergence of fn in L1, we use the argument
developed in [47, pag. 129]. Let us show first that fn does not concentrate.
If it did, we could find ε > 0, a bounded sequence xn ∈ R3 and a sequence
Rn →∞ such that∫

|xn−x|≤Rn
fn(x, p) dp dx = ε, for all n ∈ N.

Splitting E in two integrals and applying independently inequality (2.47)
and Lemma 2.3.3 to each term, we obtain

E(fn, φn) ≥
∫
|x−xn|>Rn

fn(log fn + |p|+ V (x)) dp dx

+

∫
|xn−x|≤Rn

fn(log fn + |p|+ V (x)) dp dx

≥(M − ε) log

(
M − ε∫

|xn−x|>Rne
−|p|−V dp dx

)

+ ε log

(
ε∫

|xn−x|≤Rne
−|p|−V dpdx

)
.(2.49)

Since e−|p|−V ∈ L1, the following relations hold

lim
n→∞

∫
|xn−x|>Rn

e−|p|−V dp dx = 0,

and lim
n→∞

∫
|xn−x|≤Rn

e−|p|−V dp dx = ‖e−|p|−V ‖L1(R6).

Therefore, inequality (2.49) implies that E(fn, φn) → ∞ as n → ∞. This
contradicts the fact that (fn, φn) is a minimizing sequence. Now, we prove
that fn is tight. If not, for all R0 > 0 we can find ε > 0 and R > R0 with
the following property

lim
n→∞

∫
|x|+|p|>R

fn dp dx > ε.

Whence, we have the estimate

E(fn, φn) ≥

(∫
|x|+|p|>R

fn dpdx

)[
log

∫
|x|+|p|>R

fn dp dx

− log

∫
|x|+|p|>R

e−|p|−V dpdx
]
,

again by (2.47) and Lemma 2.3.3. This implies that

lim
R→∞

∫
|x|+|p|>R

e−|p|−V dp dx ≥ εe−K(M)/ε > 0,
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and contradicts the fact that e−|p|−V ∈ L1. We conclude that there exists
f0 ∈ L1 and a subsequence fn such that

fn ⇀ f0 in L1.

Step 3: Pointwise convergence of minimizing sequences. As proven in
[106, Cor. 8.7], the weak convergence (2.48) implies that

(2.50) φn → φ0, pointwise a.e.,

again up to the extraction of a subsequence. Moreover, by the argument
used in [29, Lemma 5], we may assume that φn ≤ 0 almost everywhere.
Intuitively, this is a direct consequence from the fact that (fn, φ

−
n ) turns

to be a minimizing sequence if (fn, φn) is, where σ− = min(0, σ). Next,
we show that fn converges pointwise a.e. (up to subsequences). Given a
minimizing sequence (fn, φn), define

mn =
M∫

R6e
−
√
e2φn+|p|2−V dp dx

e−
√
e2φn+|p|2−V .

By Lemma 2.3.3, we know that

E(fn, φn)− E(mn, φn) ≥ 1

2

∫
R6

(
√
fn −

√
mn)2 dp dx.

This implies from one hand that (mn, φn) is again a minimizing sequence
and, on the other hand, that limn→∞(fn − mn) = 0 pointwise a.e. after
extracting a suitable subsequence. Moreover, since

e−
√
e2φn+|p|2−V → e−

√
e2φ0+|p|2−V , pointwise a.e.,

due to (2.50), and∫
R6

e−
√
e2φn+|p|2−V dp dx→

∫
R6

e−
√
e2φ0+|p|2−V dpdx,

which follows by the dominated convergence theorem, i.e., φn ≤ 0 and
e−|p|−V ∈ L1, we obtain

fn →
M∫

R6e−
√
e2φ0+|p|2−V dpdx

e−
√
e2φ0+|p|2−V , pointwise a.e.,

since mn and fn have the same limit. In particular, we notice that f0 is
strictly positive and bounded.

Step 4: (f0, φ0) is a minimizer. We prove that E is weakly lower semi-
continuous. Clearly

lim inf
n→∞

∫
|∇xφn|2 dx ≥

∫
|∇xφ0|2 dx.
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Moreover, Fatou’s lemma (fn ≥ 0) allows to obtain

lim inf
n→∞

∫
fn(
√
e2φn + |p|2 + V + log fn) ≥

∫
f0(
√
e2φ0 + |p|2 + V + log f0),

and the claim follows: K(M) = E(f0, φ0).

Step 5: (f0, φ0) is a steady state of the VNFP system. Since we already
proved in step 3 that

f0 =
M∫

R6e−
√
e2φ0+|p|2−V dp dx

e−
√
e2φ0+|p|2−V ,

we only need to show that φ0 solves the non-linear elliptic equation (2.43c).
To this purpose we define φh = φ0 +hη, where η = η(x) is any C∞ function
with compact support and h ∈ R. Using that 0 < f0 <∞ and φ0 ≤ 0, it is
straightforward to show that E(f0, φh) is differentiable in h. The derivative
at h = 0 must vanish and this entails that φ0 solves

∆φ0 = e2φ0

∫
R3

f0√
e2φ0 + |p|2

dp dx

in the sense of distributions. This completes the proof of the theorem.

2.5 The Vlasov-Maxwell-Fokker-Planck system

In this final section we present the corresponding relativistic generalization
in the plasma physics context of the Vlasov-Poisson-Fokker-Planck system.
Although this system will not be treated in the forthcoming chapters, we
consider relevant to review those results which also apply in this case. The
model is obtained by coupling the relativistic Fokker-Planck equation

∂tf + p̂ · ∇xf + F · ∇pf = ∂pi
(
Dij∂pjf + fpi

)
,(2.51a)

with the system of Maxwell equations given by10

(2.51b)
∂tE = ∇x ∧B − j, (i) ∇x · E = ρ, (ii)
∂tB = −∇x ∧ E, (iii) ∇x ·B = 0, (iv)

where the Lorentz force field F : [0,∞) × R3 × R3 → R3 (with external
potential V ), the relativistic velocity field and the diffusion matrix are

F = E + p̂×B −∇xV, p̂ =
p√

1 + |p|2
, Dij =

δij + pipj√
1 + |p|2

.(2.51c)

10Up to a suitable normalization of the physical constants.
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The functions E,B : [0,∞) × R3 → R3 represent the electric and the mag-
netic fields, respectively, and the charge and current density that generate
the previous fields are given by

(2.51d) ρ(t, x) =

∫
R3

f(t, x, p) dp, j =

∫
R3

p̂f(t, x, p) dp.

Notice that (ρ, j) satisfies the local conservation of charge

(2.52) ∂tρ+∇x · j = 0,

as a direct consequence of (2.51a), which makes it consistent to couple the
Maxwell equations and the Fokker-Planck equation. The system (2.51) will
be called the (relativistic) Vlasov-Maxwell-Fokker-Planck system, or VMFP
for short. As mentioned above, it generalizes the Vlasov-Poisson-Fokker-
Plank (VPFP) system in the plasma physics case. Therefore, system (2.51)
takes into account relativistic effects in a plasma, such as the propagation
of electromagnetic waves. It is important to remark that there exist other
models in the literature which are named “Vlasov-Maxwell-Fokker-Planck”,
see [16, 103, 146]. These systems couple Maxwell’s equations to the non-
relativistic Fokker-Planck equation (2.1) or the variant where the velocity p
in (2.1) is replaced by the relativistic counterpart p̂ defined above in (2.51c).
It is important to remark that in [113], the authors proved the first ex-
istence and uniqueness result of system (2.51) for the “one and one-half
dimensional” case, i.e., when x ∈ R, p ∈ R2. Unfortunately, this is the
only existence result available in the literature for the evolution problem.
Then, we will again present our results assuming the necessary regularity to
perform the calculations.

Similarly as before, the mass for solutions of (2.51) is given by (2.23),
with f ≥ 0, and the entropy functional for this case is

K[f,E,B] = Q[f ] + I[E,B],(2.53)

where the functionals Q and I are given by (2.24) and

I[E,B] =
1

2

∫
R3

(
|E|2 + |B|2

)
dx.

Now, we are in position to prove the corresponding properties for solutions
of the VMFP system:

Proposition 2.5.1. For regular solutions of (2.51) we have the following:

(i) The mass is preserved: M(t) = const.

(ii) The entropy functional satisfies

dK
dt

= −4

∫
R6

Dij(p)∂pi

(√
f/J

)
∂pj

(√
f/J

)
J dpdx.(2.54)
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(iii) Let e−V ∈ L1(R3). Regular static solutions of (2.51) with mass M
verify

(f0(x, p), E0(x), B0(x)) = (mM (x, p),−∇U(x), 0),(2.55a)

where

(2.55b) mM =
M

Θ
JV e

−U , Θ =

∫
R6

e−U(x)JV (x, p) dpdx,

JV is given by (2.32b) and U is a solution of

(2.55c) −∆U = ρ, ρ =

∫
R3

mM (x, p) dp.

Proof. Proving (i) is straightforward. To achieve (ii), we use (2.53) and
notice that

dK
dt

=

∫
R6

∂tf
(√

1 + |p|2 + V + log f
)

dpdx+
dI
dt
.

Let ∂tf = FP [f ] − T [f ], where in this case we have to employ (2.51c) for
the operator T [·]. Therefore, it only remains to calculate the derivative of
I[E,B] and the part of dQ/dt containing the term E + p̂×B in T [·], since
the other terms from T [·] and FP [·] are the same as in the linear case, cf.
Proposition 2.3.2. Using (2.51bi) and (2.51biii), we have

dI
dt

=

∫
R3

(E · ∂tE +B · ∂tB) dx

=

∫
R3

(E · (∇x ∧B − j) +B · (−∇x ∧ E)) dx

=

∫
R3

[
(E · (∇x ∧B)−B · (∇x ∧ E))− E · j

]
dx

=

∫
R3

∇x
(

(B × E)− E · j
)

dx = −
∫
R3

E · j dx .

Moreover, using the fact that V and E do not depend on p and the identities
∇p · (p̂×B) = 0 and

∇p · [(E + p̂×B) (f log f − f)] = (E + p̂×B) log f · ∇pf,

we obtain ∫
R6

(E + p̂×B) · ∇pf (log f + V ) dp dx =∫
R6

∇p · [(E + p̂×B) (f log f − f + V f)]dpdx.
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We also have∫
R6

√
1 + |p|2 (E + p̂×B) · ∇pf dp dx = −

∫
R6

p̂ · (E + p̂×B) f dpdx

= −
∫
R3

E · j dx.

The second equality in the above identity is due to the definition of the
current density j and the orthogonality between p̂ and p̂ × B. Then, the
proof of (ii) follows. To show (iii), we first notice that combining the fact
∂tB0 ≡ 0 and equation (2.51biii) implies that there exists a function U(x)
such that E0 = −∇U(x). Using (2.51bii), we obtain −∆U = ρ. Moreover,
observe that the distribution function adopts the form f0(x, p) = α(x)J (p)
for some non-negative function α = α(x) as a consequence of (2.54) applied
to a static solution. In particular, j = 0 (since it is the integral of an odd
function) and the equations for the field B0 are equivalent to ∇ × B0 =
∇ · B0 = 0⇒ B0 ≡ 0. Now replacing f0 = αJ , E0 = −∇U and B0 = 0 in
(2.51a) we obtain

p̂ · ∇α+ αp̂ · ∇(U + V ) = 0.

It is clear that the only non-trivial regular solution of the previous equation
is α = Ce−U−V , where C is any positive constant. The value C = M/Θ
follows by the definition of M .

Now, we prove the existence of (regular) static solutions for system (2.51).
In particular, we show that the free energy functional (2.53) subject to

∇ · E = ρ, ∇ ·B = 0,

∫
R6

f dp dx = M,

attains its minimum exactly in the static solution of (2.51) with mass M .
The following proof generalizes the one given in [47, Prop. 2.2] for the VPFP
system. Note that the variational problem for VMFP differs from that of
VPFP studied in [47] in two aspects. Firstly, the electromagnetic field ap-
pears as an independent variable in the entropy functional, while for VPFP
the electric field is given by the convolution product of ρ with 1/(4π|x|).
Secondly, the local constraints ∇ · E = ρ, ∇ · B = 0 are required in the
variational problem for VMFP. Nevertheless, we will be able to reduce the
problem at hand to the equivalent one for the VPFP system considered
in [47]. In particular, we will show that the above minimization problem
is equivalent to minimizing a reduced entropy functional Kred that resem-
bles the free energy in the non-relativistic case. To this purpose we use the
following simple result.

Lemma 2.5.1. The solutions of the variational problem

inf
h∈D
R(h) = inf

h∈D

∫
R3

|h|2 dx,
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where D = {h ∈ L2(R3) : ∇h = g}, g ∈ L1(R3), are of the form h = −∇U ,
where −∆U = g.

Proof. Let φ be a test function. The first variation of R evaluated on a
critical point has to vanish, which implies

d

dt
R(h+ tφ) |t=0 =

∫
R3

d

dt
|h+ tφ|2 |t=0 dx =

∫
R3

2h · φ dx = 0.

In particular, consider test functions of the form φ = ∇∧ v, which entails

0 =

∫
R3

h · ∇ ∧ v dx = −
∫
R3

∇∧ h · v dx,

for all v ∈ C∞c (R3). From here we infer that ∇∧h = 0 and as a consequence,
there exists U such that h = −∇U . Substituting this value in ∇ · h = g
allows to conclude the proof.

Next, let X = X1 ×X2, where the sets X1, X2 are defined as follows

X1 =
{
f ∈ L1(R6) : f ≥ 0, ‖f‖L1(R6) = M, Q+[f ] <∞

}
,

X2 =
{

(E,B) ∈ L2(R3)× L2(R3) : ∇ · E = ρ, ∇ ·B = 0
}
,

with Q+[f ] given by (2.25). Also, we consider the functional

Kred(f) =

∫
R6

f

(√
1 + |p|2 +

1

2
U + V + log f

)
dpdx,

and the restrictions ρ =
∫
R3f dp and −∆U = ρ. Now, we are able to

establish the following result:

Proposition 2.5.2. Let e−V ∈ L1(R3) and

K(M) = inf
X

{
K[f,E,B]

}
.

Then, the following conditions hold:

(i) K(M) = infX1 {Kred(f)};

(ii) K(M) is bounded from below for any M > 0;

(iii) The minimizer is unique and K(M) = Kred(mM ), where mM is given
by (2.55).

Proof. To show (i), we see that the minimum (if it exists) verifies

K(M) = inf
X
{K(f,E,B)} = inf

X1

{
inf
X2

{I(E,B)}+Q(f)

}
ρ=

∫
f dp

= inf
X1

{
1

2

∫
R3

|∇U |2 dx+Q(f)

}
ρ=

∫
f dp

= inf
X1

{Kred(f)} ,
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since by Lemma 2.5.1, for g1 = ρ and g2 = 0, we have E = −∇U , −∆U = ρ
and B = −∇Ũ , −∆Ũ = 0, which implies Ũ ≡ 0. Also, we have that

1

2

∫
R3

|∇U |2 dx = −1

2

∫
R3

U∆U dx =
1

2

∫
R3

ρU dx =

∫
R6

1

2
fU dpdx,

and the original problem is therefore reduced to minimize the functional
Kred(f), which, up to substituting

√
1 + |p|2 with |p|2/2, coincides with the

free energy in the non-relativistic case. Thus the claims (ii) and (iii) can be
established as in [47, Prop. 2.2].

To conclude this section, it is important to remark that the existence
of steady states for the VMFP system can also be established by studying
directly equation (2.55c), as done in [76] for the non-relativistic case. The
non-existence results proved there when e−V /∈ L1 (see also [47]) remain
valid in the relativistic case as well.
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Chapter 3

The Newtonian Limit

The aim of this chapter consists on relating solutions of the relativistic
Fokker-Planck model that was presented in the previous chapter with those
solutions of its associated classical counterpart, the Vlasov-Fokker-Planck
equation (VFP). In order to achieve this task, we consider the relativistic
equation in terms of a parameter c, which could be though as the speed of
light. Then, we show that these relativistic solutions converge to solutions
of the VFP equation in the L1 sense as c → ∞. As a consequence of this
procedure, we obtain the Newtonian limit of this equation which validates
the model as a genuine relativistic generalization of the VFP equation.

3.1 Review of some previous results

When relativistic effects become a relevant part to describe particle motion,
one should use a model where at least some essential relativistic features
are present. For instance, particles must exhibit finite propagation speed
without exceeding the speed of light c and time can no longer be treated
as an absolute quantity, since these considerations are part of the main
foundations of the theory. If a classical counterpart is available, it would
be desirable to recover this model from the relativistic one in some sort of
sense. This requirement comes from the fact that classical mechanics can be
though as a limiting case of relativity [122]. Roughly speaking, this should
follow by allowing particles to have unbounded speeds. More precisely, if
we consider the speed of light c as a parameter and let c → ∞, at least
formally, the resulting model from the limiting process, if one exists, must
be the classical one. This is the central point of the chapter with respect
to the relativistic generalization of the Fokker-Planck equation considered
in the previous chapter with an explicit dependance on the parameter c.
The previous procedure is known as the Newtonian limit of a relativistic
model [121]. There are some works in the literature within the framework
of the gravitational theory where the authors have accomplished to prove
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the existence of a Newtonian limit in their corresponding cases. In [119],
Rein and Rendall considered spherically symmetric classical solutions of the
Vlasov-Einstein system (VE). They proved that these solutions converge
uniformly to solutions of the Vlasov-Poisson system (VP), locally in time,
for arbitrary initial data with compact support on the position variable and
requiring one moment on the particle density. Also, the previous situation
still holds globally in time for small initial data. This result is quite re-
markable since the latter was achieved for the most representative model in
relativity. In [120], Rendall improved the previous result in a more general
setting. He showed that there exist families of asymptotically flat solutions
of the VE system depending on the speed of light which converge to the VP
system. A more related work in this direction was developed by Frittelli
and Reula in [73] where they showed that given a Newtonian solution, it is
possible to construct a family of solutions for the Einstein field equations. In
[118], Reimold extends some results concerning the Newtonian limit prob-
lem in general relativity by using the frame theory of Ehlers. In the context
of plasma physics, Schaeffer was able to show that solutions of the relativis-
tic Vlasov-Maxwell system converge to solutions of the VP system in [126]
under certain regularity conditions on the initial data. In order to prove
this convergence, he used a representation formula for the Maxwell’s equa-
tions that allowed him to have the required control on the limiting behavior
of solutions. A similar argument was applied by Calogero and Lee for the
Nordström-Vlasov system to obtain its non-relativistic limit in [27], another
generalization of the VP system in the astrophysics case. Finally, we would
like to mention that the Newtonian limit for a relativistic version of the
Boltzmann equation was obtained by one of the previous authors in [25].
The importance of the latter result is due to the fact that the Boltzmann
equation [75] is one of the most representative models in kinetic theory to
account collisions among particles.

3.2 Statement of the result

In this section we present the main result of this chapter, Theorem 3.2.1,
which not only relates solutions of equations (3.1) and (3.2), but also states
some sufficient assumptions to obtain this connection. Also, we make some
comments on the result and summarize the strategy to prove it.

Now, we proceed by recalling that for non-relativistic particles with mass
m > 0 and in suitable physical units, the Vlasov-Fokker-Planck equation
adopts the following form

(3.1) ∂tf + p · ∇xf = ∆pf +
θ

m
∇p · (pf), θ =

1

kT
.

Here, f = f(t, x, p) ≥ 0 stands for the one-particle distribution function
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in phase space while the independent variables are the time t ≥ 0, the po-
sition of the particle x ∈ RN and its momentum p ∈ RN . Notice that in
the definition of the dimensional constant θ, T represents the temperature
of the thermal bath and k is the Boltzmann’s constant. The main reason to
present equation (3.1) in this particular form is motivated by our interest
in kinetic theory. We interpret its left hand side as transport phenomena
while its right one is a collision operator depending only in the momentum
variable. We emphasize that this particular choice to measure collisions is
made for simplicity since a different approach can be carried out by using a
Boltzmann type operator [25, 75].

As we have seen in the previous chapter, the main interest to study the
Newtonian model (3.1) comes from astrophysics as well as from the plasma
physics case. Unfortunately, this model does not possess relevant relativistic
properties as the ones mentioned before, In fact, there are not several models
available in the literature to account relativistic phenomena when random
collisions are not neglected. As justified in the previous chapter, a relativistic
generalization of equation (3.1) in the same physical units is written as

(3.2) ∂tf +mc
p

p0
· ∇xf = ∂pi

(
Dij∂pjf +

θ

m
pif

)
,

where D is the diffusion matrix given by

(3.3) Dij =
mc

p0

(
δij +

pipj

m2c2

)
, p0 =

√
m2c2 + |p|2 ,

and c > 0. We interpret the parameter c as the speed of light when its corre-
sponding value is substituted. In this case, the Jüttner distribution function
reads as J = e−θcp

0
which corresponds to the nontrivial equilibrium state

of equation (3.2). As we have seen in the previous chapter, equation (3.2)
seems to be a reasonable relativistic generalization of (3.1) since the model
gathers several desirable relativistic properties. Fortunately, we can provide
further justification of this matter. In fact, we will prove that (3.1) is in-
deed the correct Newtonian limit of (3.2). More precisely, we will show that
solutions of (3.2) converge in L1 to solutions of (3.1) as c → ∞. Finally,
the forthcoming analysis for Newtonian limit problem will be made in the
following sections.

Before proceeding, we establish some conventions for the rest of the chap-
ter. For notational convenience, we set (x, p) = z and R2N = Rd. We hope
that all the related quantities are clear from the context. For instance,

|z| = |(x, p)|, dz = dp dx, ∇z = (∇x,∇p), . . . , etc.

Now, we are in position to state the main result of this chapter:
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Theorem 3.2.1. Let f, fc ∈ C2((0,∞)× Rd) be positive solutions of equa-
tions (3.1) and (3.2), respectively, with non negative initial data f in, f inc .
Assume that the initial datum f inc satisfies

‖f inc − f in‖L1 → 0 as c→∞ ,

Γω,γ [f inc ] :=

∫
Rd

[
|∇zf inc |2 + |z|ω|∇xf inc |2 + |z|γ |∇pf inc |2

]
dz <∞,(3.4)

for some γ, ω such that γ > d+ 2 and ω > d+ 4. Then fc(t)→ f(t) in L1

as c→∞, uniformly on every compact interval of time.

As one could expect, a similar result as the previous one should hold with
less restrictive assumptions. For instance, if the exact form of fundamental
solution of (3.2) was known, we might be able to dispense of condition (3.4).
Instead, we need to use the fundamental solution of equation (3.1) and con-
dition (3.4) turns out to be sufficient to control the required estimates. In
fact, any strategy in a similar direction would involve a more careful and
detailed analysis.

From a physical perspective, the previous theorem is a very natural con-
sequence for any valid relativistic model. The L1 framework is one of the
most physically relevant scenarios for these models since particle loss is not
expected as c→∞, i.e., mass is a conserved quantity. Also, Theorem 3.2.1
is the most rigorous result available for this relativistic model.

In order to prove Theorem 3.2.1, we will follow the next strategy:

• First, we show that solutions of equation (3.2) will inherit the bound
(3.4). This boundedness property is very important since it enables to
control the behavior of the solution in the limit.

• Next, we consider the difference δf between solutions of equations
(3.1)–(3.2). This leads to analyze the time evolution of the nonho-
mogeneous FP equation (3.8). At this point, Duhamel’s principle will
become crucial since we can exploit the available representation for-
mula for this equation which essentially is given in terms of the initial
condition of δf and derivative terms of fc.

• Finally, we estimate the L1 norm of δf using property (3.4), the rep-
resentation formula derived in the previous step and a simple inter-
polation argument. The previous estimation allows to take the limit
c→∞ and conclude the result.

We will divide the previous analysis in three sections: one in which we will
obtain the required a priori estimates mentioned in the first step, another
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one in which we will derive the nonhomogeneous FP equation and recall
some useful properties of the fundamental solution associated to equation
(3.1), and the following one where the convergence will be proved.

In order to avoid some technical difficulties, which could possibly be dealt
with, we will work with smooth solutions of (3.1)–(3.2) throughout the chap-
ter. In the final section of the chapter, we will sketch the argument developed
in [2] when a compact support assumption on the initial datum is consid-
ered. We will perform this because we can encounter an improvement on
the estimations for this case.

3.3 A Priori Bounds

In this section we begin our analysis on the Newtonian limit problem for the
relativistic equation (3.2). In order to obtain the desired L1 convergence,
we will show that ‖fc− f‖L1 can be bounded in terms of Γω,γ [fc]. Although
this condition seems to be too strong, the main strategy to prove Theorem
3.2.1 (Section 3.4) will clarify this assumption. Therefore, we require to
show that any solution of the relativistic Fokker-Planck equation inherits
the boundedness property of the initial data (3.4). The following result has
been adapted from one we proved in [2] for our present situation:

Lemma 3.3.1. Let fc be a solution of equation (3.2) with initial datum
satisfying property (3.4) for all γ ≥ 2 and γ < ω. Then, Γω,γ [fc(t)] < ∞
holds for all γ, ω ≥ 0 and t > 0.

Proof. We start the proof by defining the vector functions v = ∇pf and
u = ∇xf . Now we proceed to prove the assertion. The latter will be
performed in two steps. First, we exploit the fact that the corresponding
bound for u does not require to estimate terms containing v. Then, the
estimate for the integral containing the term |(x, p)|γ |v|2 will follow by using
the bound from the previous step and a similar reasoning.

1. Observe that each component of u satisfies equation (3.2) since the
coefficients of this equation do not depend explicitly on the x variable,
or equivalently,

(3.5) ∂tu+mc
p

p0
· ∇xu = ∂pi

(
Dij∂pju+

θ

m
piu

)
.

Then, we can multiply (3.5) by |(x, p)|ωu and integrate the resulting
expression over Rd to obtain the next identity

∂t

∫
Rd
|(x, p)|ω|u|2 dz =−mc

∫
Rd
|z|ω p

p0
· ∇x|u|2 dz

+ 2

∫
Rd
|z|ω∂pi(Dij∂pju+ βpiu) · u dz .(3.6)
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Notice that the right hand side of equality (3.6) can be integrated by
parts. As a consequence, the first term can be bounded as follows

−mc
∫
Rd
|(x, p)|ω p

p0
· ∇x|u|2 dp dx = ωmc

∫
Rd
|z|ω−2x · p

p0
|u|2 dz

≤ ω
∫
Rd
|z|ω|u|2 dz ,

where we used that |p|, |x| ≤ |z| and mc ≤ p0. Proceeding similarly as
before and using that ∂pi(p

i|(x, p)|ω) = (N |(x, p)|ω + ω|(x, p)|ω−2|p|2),
the third term in (3.6) is estimated as follows

2β

∫
Rd
|z|ω∂pi(piu) · u dp dx = β

∫
Rd

[
d|z|ω − ∂pi(pi|z|ω)

]
|u|2 dz

= β

∫
Rd

(
N |z|ω − ω|p|2|z|ω−2

)
|u|2 dz

≤ βN
∫
Rd
|z|ω|u|2 dz .

The last inequality holds since d = 2N and the term containing the ω
factor in the second line is negative. In order to treat the remaining
term in (3.6), we need to account the fact that Dij∂piu ∂pju ≥ 0 and
the inequality

∂pj (|(x, p)|ω−2piD
ij) = ∂pj

(
|z|ω−2pi

mc

p0

[
δij +

pipj

m2c2

])
= (mc)−1∂pj (|z|ω−2pjp0)

≤ (mc)−1[(ω − 2 +N)p0|z|ω−2 + |z|ω−1]

. (1 + |z|)|z|ω−2 ,

where we used definition (3.3), c > 1 and |p| ≤ p0 to obtain this.
Therefore, we have that

2

∫
Rd
|z|ω∂pi(Dij∂pju) · u dp dx =

ω

mc

∫
Rd
∂pj (|z|ω−2pjp

0)|u|2 dz

− 2

∫
Rd
|z|ωDij∂pju · ∂piu dz

. ω

∫
Rd

(1 + |z|)|z|ω−2|u|2 dz .

Collecting all the above estimates, we find that the following holds for
the left hand side of (3.6)

∂t

∫
Rd
|z|ω|u|2 dz .

∫
Rd
|z|ω|u|2 dz + ω

∫
Rd

(1 + |z|)|z|ω−2|u|2 dz .(*)
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A direct application of Gronwall’s inequality in the above estimate for
ω = 0 lead us to ∫

Rd
|∇zfc|2 dz .

∫
Rd
|∇zf inc |2 dz .

In order to prove the general case, we first consider ω ≥ 2. It is
straightforward to show that

∂t

∫
Rd
|z|ω|u|2 dz .

∫
Rd

(1 + |z|ω)|u|2 dz ,

since we can estimate the integral containing the term (1 + |z|)|z|ω−2

in (*) by splitting this expression in two terms, one for |z| < 1 and the
other for |z| ≥ 1. Therefore, the bound for the integral of |(x, p)|ω|u|2
similarly follows as in the case ω = 0 .

Finally, let R, k, α > 0 such that α + k = ω. Under these conditions
we are able to find the bound∫

Rd
|z|α|u|2 dz ≤ Rα

∫
Rd
|u|2 dz +R−k

∫
Rd
|z|ω|u|2 dz

.
(
‖u‖2L2(Rd)

) k
ω

(∫
Rd
|z|ω|u|2 dz

)α
ω

.
∫
Rd
|u|2 dz +

∫
Rd
|z|ω|u|2 dz,

where we applied Young’s inequality with r = ω/k and s = ω/α, see
[65] for instance, and made the choice

R =

(∫
Rd |z|

ω|u|2 dz∫
Rd |u|2 dz

) 1
ω

.

Thus, the remaining cases are achieved by applying the above inter-
polation between ω = 0, 2.

2. First, we differentiate equation (3.2) with respect to pk and obtain
that for each k = 1, · · · , N , the following holds

∂tvk +mc
p

p0
· ∇xvk = ∂pi

[
Dij∂pjvk + βpivk

]
−mc∂pk

(
p

p0

)
· u+ ∂pi

[
∂pk(Dij)vj

]
+ βvk ,(3.7)

where vk is the kth component of v and β = θ
m . In order to bound the

integral of |(x, p)|γ |v|2, we will use a similar argument as in the pre-
vious step. Since equation (3.7) contains terms that we have already
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treated, we can give a first bound as follows

∂t

∫
Rd
|z|γ |v|2 dz ≤ [β(N + 2) + γ]

∫
Rd
|z|γ |v|2 dz

+
γ

mc

∫
Rd
∂pj (|z|γ−2pjp0)|v|2 dz

− 2mc

∫
Rd
|z|γ∂pk

(
pi

p0

)
∂xif∂pkf dz

− 2γ

∫
Rd
|z|γ−2pi∂pk(Dij)∂pjf∂pkf dz

− 2

∫
Rd
|z|γ∂pk(Dij)∂pjf∂pi(∂pkf) dz

= I1 + I2 + I3 + I4 + I5 .

Notice that I1 + I2 can be treated as in the previous step. To estimate
I3, we take into account that∣∣∣∣∂pk ( pip0

)
uivk

∣∣∣∣ =

∣∣∣∣ukvkp0
− piuip

kvk
(p0)3

∣∣∣∣ . |u||v|p0
.
|u||v|
mc

,

which was obtained from the fact that mc, |p| < p0 and applying
Young’s inequality with r = s = 2. Then, we have

I3 = −2mc

∫
Rd
|z|γ∂pk

(
pi

p0

)
∂xif∂pkf dz .

∫
Rd
|z|γ(|v|2 + |u|2) dz .

Recall that γ < ω which implies that the term |z|γ |u|2 contained in
the last integral is bounded. Now, observe that I4 satisfies

−2γ

∫
Rd
|z|γ−2pi∂pk(Dij)∂pjf∂pkf dz = −2γ

∫
Rd

|z|γ−2|p|2

mcp0
|v|2 dz ,

since

pi∂pk(Dij)vjvk =

(
|p|2δjk + pjpk

mcp0
− pim

2c2δij + pipj

mc(p0)2
· p

k

p0

)
vjvk

=

(
|p|2δjk + pjpk

mcp0
− pkpi

(p0)2
Dij

)
vjvk

=

(
|p|2δjk + pjpk

mcp0
− pjpk

mcp0

)
vjvk =

|p|2

mcp0
|v|2 .

Here, definition (3.3) and property piDij = pjp0/mc were used. In
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order to treat I5, we first split ∂pk(Dij)∂pjf∂pi∂pkf as follows

∂pk(Dij)∂pjf∂pi∂pkf =

[
(piδjk + pjδik)

mcp0
− pkDij

(p0)2

]
∂pjf∂pi∂pkf

=
pi

mcp0
∂pkf∂pi∂pkf +

pj

mcp0
∂pjf∂pk∂pkf

− mcpk

(p0)3

[
∂pjf∂pj∂pkf +

pipj

m2c2
∂pjf∂pi∂pkf

]
.

Next, we see that the contribution to I5 of the last term in the above
identity will be∫

Rd
|z|γ pipjpk

mc(p0)3
∂pjf∂pi∂pkf = −1

2

∫
Rd
∂pi

[
|z|γ pipjpk

mc(p0)3

]
vjvk dz .

The previous identity is a result of an integration by parts and the
use of the symmetry property from pipjpk. Also, we observe that the
second term of ∂pk(Dij) satisfies∫

Rd
|z|γ pj

mcp0
∂pjf∂pk∂pkf dz = −

∫
Rd
∂pk

[
|z|γpj

mcp0

]
vjvk dz

−
∫
Rd

|z|γpj

mcp0
∂pk(vj)vk dz .

Notice that the last term in this identity will cancel out with the corre-
sponding first term of ∂pk(Dij). Using the definition of I5, combining
all the above identities and applying an integration by parts in the
third term of ∂pk(Dij), we obtain

I5 =
1

mc

∫
Rd

(
2∂pk

[
|z|γpj

p0

]
− ∂pi

[
|z|γpipjpk

(p0)3

])
∂pkf∂pjf dz

−mc
∫
Rd
∂pk

[
|z|γpk

(p0)3

]
|v|2 dz

≤ 1

mc

∫
Rd

(
2∂pk

[
|z|γpj

p0

]
− ∂pi

[
|z|γpipjpk

(p0)3

])
∂pkf∂pjf dz

+
3

mc

∫
Rd

|z|γ

p0
|v|2 dz ,

where we used

∂pk

[
|z|γpk

(p0)3

]
=
N |z|γ + γ|p|2|z|γ−2

(p0)3
− 3|p|2|z|γ

(p0)5
,

and p0 ≥ |p|,mc. For simplicity, we define the matrix

∆jk = (p0)3

(
2∂pk

[
|(x, p)|γpj

p0

]
− ∂pi

[
|(x, p)|γpipjpk

(p0)3

])
.
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and state that the next inequality holds

∆jk∂pjf∂pkf − 2(p0)2γ|z|γ−2|p|2|v|2 ≤ 2(p0)2|(x, p)|γ |v|2 .

As a consequence of this inequality, we see that

I4 + I5 ≤
5

m

∫
Rd

|z|γ

p0
|v|2 dz ,

where the fact c > 1 was used, and the claim follows as in part 1. In
order to prove the remaining statement, we notice that

∆jkvjvk = (p0)3

(
2∂pk

[
|z|γpj

p0

]
− ∂pi

[
|z|γpipjpk

(p0)3

])
vjvk

= 2(p0)2|z|γ |v|2 + pjpkvjvk
(
2γ(p0)2|z|γ−2 − 2|z|γ

)
+ pjpkvjvk

(
3|z|γ |p|

2

(p0)2
− (N + 2)|z|γ − γ|p|2|z|γ−2

)
≤ 2(p0)2|z|γ |v|2 + 2γ(pkvk)

2(p0)2|z|γ−2 − (pkvk)
2(γ +N + 1)|z|γ

≤ 2(p0)2|z|γ |v|2 + 2γ(p0)2|z|γ−2|p|2|v|2 ,

where we used pjvjp
kvk = (pkvk)

2 ≥ 0 and (|p|/p0)2 ≤ 1. This last
argument completes the proof of the Lemma.

It is important to remark that we made sure that all the above estimates
do not depend explicitly on any positive power of c. As a consequence,
Γω,γ [fc(t)] will remain bounded in any compact interval of time as c → ∞
since the asymptotic behavior is controlled by a bounded quantity, Γω,γ [f inc ].

3.4 A Nonhomogeneous FP Equation

In this section, we derive a nonhomogeneous Fokker-Planck equation related
to our convergence problem. The main reason to consider this equation is
due to the fact that a representation formula for solutions can be easily
obtained. Although this formula can not be completely given in terms of
the initial data, it will turn out that combining the bounds derived in the
previous section while estimating the L1 norm of the solution of this non-
homogeneous problem is sufficient to prove Theorem 3.2.1. We will achieve
this objective by means of the Duhamel’s principle since the explicit form of
the fundamental solution from the homogeneous problem is available. We
will also recall some properties of this fundamental solution which are re-
quired in the next section. We must proceed in this manner to overcome
the fact that the exact form of the fundamental solution of equation (3.2)
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still remains unknown.

We begin by considering the function δf = f − fc, where f and fc are
solutions of (3.1) and (3.2), respectively. It is easy to show that δf is a
smooth solution of

(3.8) ∂tδf + p · ∇xδf = ∆pδf +
θ

m
∇p · (p δf) + gc ,

where

gc = ∆pfc − ∂pi
(
Dij∂pjfc

)
+

[
mc

p0
− 1

]
p · ∇xfc

= ∂pi
(
[δij −Dij ]∂pjfc

)
+

[
mc

p0
− 1

]
p · ∇xfc .

Now, recall that the classical Fokker-Planck equation (3.1) has an explicit
representation of its fundamental solution. Let F(t, x, p, y, w) denote this
two point Green function. Its exact form is given by

F(t, x, p, y, w) =

[
β exp{βt}/4π√
a(2β,t)t−a2(β,t)

]d
exp

{
b(t, x, p, y, w)− |β(x−y)+(p−w)|2

4t

}
,

with β = θ/m, a(β, t) = exp{βt}−1
β and

b(t, x, p, y, w) =− |a(β, t) {β(x− y) + (p− w)}+ t(w − p exp {βt})|2

ta(2β, t)− a2(β, t)
,

see [138, Eq. (2.5)], and satisfies the following properties

(3.9)

∫
Rd
F(t, z, y, w) dp dx = 1 ,

|∇wF|(t− s, z, y, w) ≤ C(α, β)√
t− s

F(t− s, αz, αy, αw) ,

with 0 < α < 1, see [138, eqs. (2.8), (2.30)]. Then, any solution of (3.1) can
be written in terms of F as follows

f(t, x, p) =

∫
Rd
F(t, x, p, y, w)f(0, y, w) dw dy .

Since (3.8) reduces to (3.1) when gc = 0, Duhamel’s principle entails that
solutions of (3.8) can be expressed as

δf(t, x, p) =

∫
Rd
F(t, x, p, y, w)δf(0, y, w) dw dy

+

∫ t

0

∫
Rd
F(t− s, x, p, y, w)gc(s, y, w) dw dy ds ,(3.10)
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for t ≥ s. Notice that the last term in the above identity contains a second
order term. In order to avoid this inconvenient, we defineXi = (δij−Dij)∂wj
and perform an integration by parts in the w variable on this term∫

Rd
F ∂wi(Xifc) dw dy = −

∫
Rd
∂wiF Xifc dw dy.

Since gc = ∂pi(X
ifc) +

[
mc
p0 − 1

]
p · ∇xfc, the above identity allows to

express (3.10) as

δf =

∫
Rd
F(t, x, p, y, w)δf(0, y, w) dw dy

−
∫ t

0

∫
Rd
∇wF(t− s, x, p, y, w) ·Xfc(s, y, w) dw dy ds

+

∫ t

0

∫
Rd
F(t− s, x, p, y, w)

[mc
w0
− 1
]
w · ∇yfc(s, y, w) dw dy ds .(3.11)

Observe that the latter expression is more suitable to control in the limit
for any compact interval of time due to (3.9).

3.5 Convergence towards classical solutions

Now, we are in position to prove Theorem 3.2.1 by using all the information
developed in the previous sections. In order to prove the result, we must
show that the last two terms in (3.11) converge to zero in L1 as c→∞ since
we already know that this happens for the term δf(0). The main strategy
to achieve the latter consists on giving an explicit rate of convergence for
this term. This will be possible due to the explicit dependence on c from
the gc term in the representation formula (3.11) and the finiteness property
of Γω,γ [fc(t)] given by Lemma 3.3.1, where Γω,γ is defined by (3.4).

We begin the proof by estimating the following quantities

∣∣∣1− mc

w0

∣∣∣ =

∣∣∣∣∣
√
m2c2 + |w|2 −mc√
m2c2 + |w|2

∣∣∣∣∣ =
|w|2

w0(w0 +mc)
.
|w|
c
,

|X(fc)| ≤ sup
i,j
|δij −Dij ||∇wfc| = sup

i,j

∣∣∣∣(1− mc

w0

)
δij − wiwj

w0mc

∣∣∣∣ |∇wfc|
(3.12)

. c−1|w||∇wfc| .

By (3.11) and the above inequalities, we see that the L1 norm of δf can
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be estimated as follows

‖δfc(t)‖L1 .
∫
Rd

(∫
Rd
F(t, z, y, w) dz

)
|δf(0, y, w)| dw dy

+
1

c

∫ t

0

∫
Rd
|w|2|∇yfc|

(∫
Rd
F(t− s, z, y, w)dz

)
dw dy ds

+
1

c

∫ t

0

∫
Rd
|w||∇wfc|

(∫
Rd
|∇wF|(t− s, z, y, w)dz

)
dw dy ds,

where we used z = (x, p) for simplicity. Taking into account that the funda-
mental solution F satisfies (3.9), the right hand side of the above inequality
can be bounded by

‖δf(0)‖L1 +
1

c

∫ t

0
‖|w|2∇yfc‖L1 +

1√
t− s

‖|w|∇wfc‖L1ds .(3.13)

In order to conclude the result, we need to bound (3.13) in terms of the
L2 moments of the gradient since by Lemma 3.3.1, this moments are finite.
First, we interpolate∫

Rd
|w||∇wfc|dw dy ≤

∫
|(y,w)|≥1

|(y, w)||∇wfc|dw dy +

∫
|(y,w)|<1

|∇wfc|dw dy

.

(∫ ∞
1

rd+1−γdr

) 1
2

‖|(y, w)|
γ
2∇wfc‖L2(Rd)

+

(∫
Rd
|∇wfc|2dw dy

) 1
2

,

and for γ > d+ 2, the integral on the left hand side is finite. By exactly the
same argument we see that∫

Rd
|w|2|∇yfc| dw dy . ‖∇yfc‖L2(Rd) +

∥∥∥|(y, w)|
ω
2∇yfc

∥∥∥
L2(Rd)

,

is also finite for ω > d+ 4. Using these estimates in (3.13), we find that

‖δf(t)‖L1 . ‖δf(0)‖L1 +O(1/c) .

Therefore, δf(t) → 0 in L1(Rd) as c → ∞ for every compact interval of
time. This concludes the proof of Theorem 3.2.1.

3.6 Some Remarks

As we have previously seen, the use of momenta to estimate ∇xfc and ∇pfc
is essential in order to obtain the result. The different weight condition is a
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consequence of the degeneracy in the variable x of equation (3.2). Also, the
fundamental solution of equation (3.1) helped to complete the argument.
Probably if the fundamental solution of equation (3.2) was at our disposal,
then some conditions could be weakened or dispensed of.

Now, we conclude the chapter by presenting some modifications in the
argument made above to obtain the Newtonian limit that only needs mo-
menta in p. To achieve the latter, we also require that the initial data are
compactly supported in the x variable. First, we address that Lemma 3.3.1
can be proved for the case where Γω,γ only depends on momenta in p by
following a similar argument as in [3] for d = 6. Also, notice that (3.12) can
also be estimated as follows∣∣∣1− mc

w0

∣∣∣ . |w|2
c2

, |X(fc)| .
|w|2

c2
|∇wfc| ,

and now the factor c−2 is crucial for the bound of the L1 norm of δf(t). By
(3.11) and the above estimates we have

‖δf(t)‖L1 . ‖δf(0)‖L1 +
1

c2

∫ t

0

∫
Rd
|w|3|∇yfc| dw dy ds

+
1

c2

∫ t

0

1√
t− s

∫
Rd
|w|2|∇wfc| dw dy ds .

Before proceeding by an interpolation argument, we observe that by the
finite propagation speed property for the relativistic Fokker-Planck equation
(3.2), see Proposition 2.3.1, we have that fc = 0 for |y| ≥ R+ct when f inc = 0
for |y| > R. From here, the dimension becomes relevant. Set d = 6. Whence∫

R6

|w|2|∇wfc| dw dy ≤
∫
|y|.c

∫
|w|<1

|∇wfc| dw dy +

∫
|y|.c

∫
|w|≥1

|w|2|∇wfc| dw dy

. c3/2
(
‖∇wfc‖L2(R6) + ‖|w|

γ
2∇wfc‖L2(R6)

)
,

and the integral on the left hand side is O(c3/2). Here we used that for γ > 7∫ ∞
1

r6−γdr <∞.

Similarly, the following holds for ω > 9∫
R6

|w|3|∇yfc| dw dy . c3/2
(
‖∇yfc‖L2(R6) + ‖|w|

ω
2∇yfc‖L2(R6)

)
.

Then, combining all the above estimates allows to conclude

‖δf(t)‖L1 . ‖δf(0)‖L1 +O(1/
√
c),
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and the result follows for this case. Notice that in the latter case (d = 6),
7 < γ ≤ d+ 2 and 9 < ω ≤ d+ 4 although the rate of convergence is slightly
worse. This means that we can dispense of one moment with the compact
support property assumption. Unfortunately, the above argument can only
be used for d ≤ 6 since the powers of c in the bounds increase with the
dimension. The bright side of this fact is that the physically relevant case
is when the dimension is six.
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Chapter 4

Trend to the equilibrium

In this chapter the long time behavior of solutions for the relativistic Fokker-
Planck equation is treated. We will show that these solutions converge
exponentially towards the Jüttner distribution function in Lq for q = 1, 2.
Due to the main difficulties exhibited by the model, the latter problem will
be analyzed in the spatially homogeneous case. Moreover, it is shown that
the L1 convergence depends on the values of the parameter θ while in the
remaining case, no restrictions are encountered at all.

4.1 Background of the problem

In several fields of science and industry the study of evolution systems is
highly required. Several models to describe some of these situations have
been proposed, analyzed and tested using different tools and perspectives.
Also, when a phenomenon in question reaches and remains in certain states
of interest, one pays particular attention on how the latter has occurred.
For example, if we consider an object falling, then the “ground” state and
its position at each instant of time are desired to describe. Under several
assumptions, this problem has been deeply studied and in its simplest case,
it is known as the free fall motion. Another typical and similar situation
illustrating certain mathematical aspects of interest is the movement of a
pendulum. In this case, a weighted body is attached to a string, rigid or
not, and suspended from a pivot in order this body can swing freely. The
simplest case to consider is the sideways motion with a rigid string and
gravity as the only acting force. At least three equilibrium states can be
identified in the previous situation depending on the mechanism of the pivot
and the initial position and velocity of the body: a cyclic state and two ones
without motion. The only possible state having mathematical similarities
with our current case is the one when the pendulum points towards the same
direction as the gravitational field. Both of the previously described profiles
are commonly known as stationary or steady states, since their behavior
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remain invariant with respect to time after their corresponding evolutions
reach them. When diffusion, transport and friction are present, Fokker-
Planck type models arise in a natural manner as a proposal to describe
these phenomena. In particular, these models exhibit desired equilibrium
states which are physically relevant as the ones previously mentioned. A
quite general Fokker-Planck equation gathering several scenarios of interest
for the theory is given by

(FP) ∂tf + v(p) · ∇xf = ∇p · (D[∇pf +∇pEf ]) , t > 0, (x, p) ∈ R2N ,

where f(t, x, p) can be though as a density of particles, D = D(p) is the
corresponding diffusion matrix, E(p) stands for the energy of each single
particle, or also known as the microscopic energy of the system, and v(p)
is the velocity field of the particles. Notice that equations (3.1) and (3.2)
are particular cases of the previous equation. Also, it is worth mentioning
that the particular form in which we introduced the previous model is more
suitable for the convergence analysis that we will develop. Moreover, when
considering the spatially homogeneous case, i.e., f(t, x, p) = f(t, p), and
the values of the diffusion matrix and the microscopic energy are D = Id
and E(p) = |p|2/2, equation (FP) becomes into the simplest model in the
Fokker-Plank class. In general, one can directly verify that the functions
0 and e−E (up to a multiplicative constant, fixed by the total mass of the
system) are equilibrium states of equation (FP). This implies that the non-
trivial equilibrium state for equation (3.1), or equivalently for equation (FP)
with D ≡ Id and E(p) = θ|p|2/(2m), is the Maxwellian distribution function.
Then, one might wonder if f reaches either of these states when t → ∞ in
some sort of sense. In the case of an affirmative answer, it could be useful to
know the rate of convergence. Observe that the equilibrium state e−E is a
conserved quantity and solutions of equation (FP) preserve mass. Therefore,
the L1 convergence becomes a relevant and meaningful case to analyze even
though it is the most difficult and delicate one. There are some criteria in
the literature that can be applied to some of the previous models to ensure
an exponential rate of convergence. In the spatially homogeneous case [13],
Bakry and Emery exploit the geometry behind (FP) by transforming this
equation into a diffusive operator in a Riemannian manifold. Then, they
define an appropriate positive field operator through the infinitesimal gen-
erator of the diffusion process. They found that the problem can be reduced
to study the bound from below of an extended version of the Ricci tensor
in terms of the metric, which led to a geometric notion. This criterion is
known as the Bakry-Emery bound condition and guarantees the convergence
towards the non-trivial equilibrium state in the L1 sense. In [10], the authors
propose different relative entropies to prove the exponential convergence of
solutions by deriving Bakry-Emery type conditions from elementary argu-
ments. In addition, they obtain a family of convex Sobolev inequalities



4.1 Background of the problem 73

associated to these entropies. In [34], Carrillo and Toscani proved that ex-
ponential convergence in L1 holds for the simplest Fokker-Planck equation.
Their approach allows them to cover different Sobolev spaces. In this case,
the fundamental solution of the equation is available and its properties are
fully exploited to achieve their results. It is interesting to remark that the
previous authors were able to adapt their arguments for the porous medium
equation in [33], where they proved that solutions converge to a self-similar
profile in L1 with polynomial rate. In the case where D = Id, E(p) = |p|2/2
and v = p in equation (FP), the exponential convergence problem has been
solved using two different techniques. In [88], Hérau and Nier used spec-
tral analysis tools for hypoelliptic operators and showed the existence of
a spectral gap in the spectrum of the Fokker-Planck operator, which im-
plies the stated convergence. In [139], Villani considered a modified entropy
functional for equation (FP). He gave appropriate estimates to bound the
derivative of this entropy combined with the validity of a logarithmic Sobolev
inequality with respect to the invariant measure of the equation. See also
[46]. In the case where solutions of equation (FP) are confined in a torus
(i.e., x ∈ T3), Calogero was able to show in [22] the exponential trend in the
L1 norm to e−E as t → ∞ under suitable conditions on v, E and D. His
arguments were inspired by similar ideas as the ones presented in [139], but
those relied on the Riemannian structure of the problem. As a consequence,
he also obtained a refined and systematic approach to formulate this expo-
nential convergence problem from simple geometrical conditions.

Now, we describe our strategy to prove the exponential convergence to-
wards the equilibrium in L1 and L2 for spatially homogeneous solutions of
the relativistic Fokker-Planck equation. First, we transform the original
equation into the equivalent one in a Riemannian manifold and prove all
our statements within this formulation. For the L1 case, we will follow an
entropy argument combined with the Bakry-Emery bound condition. The
main idea is to find an appropriate functional that acts as a Lyapunov func-
tion for the relativistic solutions and exponentially converges to the equi-
librium as t → ∞. This will be achieved by obtaining an identity for the
time derivative of the entropy and by verifying that a logarithmic Sobolev
inequality holds. The latter will be ensured by the Bakry-Emery condition
for certain values of the parameter θ > 0. The reason to proceed in this
manner comes from two essential facts. On the one hand, the exponential
rate of the entropy provides an exponential bound in time for the L1 norm
between a solution and the equilibrium. On the other hand, second order
estimates in time of the entropy lead to the exponential rate for the time
derivative and as a consequence, the rate for the entropy and the validity of
the logarithmic Sobolev inequality are obtained. In other words, the Bakry-
Emery condition is a simpler and sufficient second order condition to verify
than performing the analysis described before, since we will only require to



74 Trend to the equilibrium

calculate and bound elementary expressions. For the L2 case, our approach
is based on spectral arguments. We will show that the first non-zero eigen-
value of the elliptic operator associated to the relativistic Fokker-Planck
equation is positive. From this fact, we will obtain a Poincaré inequality
and proceed similarly as in the L1 case. The main difference is that the L2

norm will now act as a Lyapunov function for relativistic solutions in this
space. In general, finding this eigenvalue or equivalently, the spectral gap
for an elliptic operator can be a hard task. As the problem states, one tries
to show that the operator has a finite gap in its spectrum from 0 to the fol-
lowing part of it (possibly continuous). Probably the simplest example for
elliptic of operators in dimension greater than one is given by the Laplacian
−∆ under appropriate considerations, see for instance [65, 106]. Finding
bounds for the spectral gap is also useful. In [37], Chen and Wang used the
variational characterization of the problem for elliptic operators in Rd and
gave estimates of the gap by probabilistic methods. In [141], Wang studies
the existence and non-existence of the spectral gap for elliptic operators in
a connected, non-compact Riemannian manifold from which he particularly
treats the case in Rd. The author found a useful lower bound for the exis-
tence of the gap in terms of the radial part of the operator, which reduces
the original problem into the one where a basic integrability condition has
to be verified. In fact, we are able to apply his result to our present situation.

In the next section, we recall the equivalent formulation of the relativistic
Fokker-Planck equation in a Riemannian manifold performed in Chapter 2.

4.2 The Spatially Homogeneous case

In this chapter, we focus our analysis on spatially homogeneous solutions of
the linear relativistic Fokker-Planck equation from the previous chapter. In
this case, these solutions satisfy

(4.1) ∂tf(t, p) = ∂pi

(
Dij∂pjf(t, p) +

θ

m
pif(t, p)

)
,

with (t, p) ∈ (0,∞) × RN and f(t, p) ≥ 0. Recall that the diffusion matrix
and the microscopic energy are defined by

Dij =
mc

p0

(
δij +

pipj

m2c2

)
, p0 =

√
m2c2 + |p|2 .

The reason to express the above equation in terms of the parameters relies
on the fact that our result in L1 depends on them. Also, the treatment of
the convergence problem is simplified by the spatial homogeneity assump-
tion. As a matter of fact, results from [22] should hold when x ∈ TN since
this has already been done for N = 3. In the previous reference, the author
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extends the approach that we will present. In particular, one of the required
estimates to apply his results will be performed in the next section.

As previously seen in Chapter 2, equation (4.1) can be written in terms of
the Jüttner distribution function J = e−θcp

0
by using the change of variable

f = J h. As we will see in the forthcoming sections, this formulation is more
adequate to establish the trend to the equilibrium J . In fact, the explicit
form of equation (4.1) in terms of h is

∂th(t, p) = ∂pi
(
Dij∂pjh(t, p)

)
− θ

m
p · ∇p h(t, p) .(4.2)

Equivalently, the previous equation can also be interpreted as a Fokker-
Plank operator with a Riemannian structure as

∂th = ∆g
ph+Wh,(4.3)

where ∆g
p is the Laplace-Beltrami operator with respect to the metric g and

Wh = W i∂pih represents a transport operator. The metric g and the vector
field W are given by

gij =
1

mc

(
p0δij −

pipj
p0

)
, W i = −1 + 2θcp0

2mcp0
pi .

It is important to remark that the right hand side of (4.3) is also referred in
the literature as the Witten Laplacian, see [145]. We recall that the matrix
Dij is the inverse of the metric g with det g = |g| = p0/mc, i.e., Dkjgjl = δkl .
Also, note that

Wh = W i∂pih = DikWk∂pih = g(W,∂ph) ,

with Wk = gklW
l. In fact, we are able to give a more accurate expression

of this field as follows

gklW
l = −1 + 2θcp0

2(mc)2p0

(
p0δkl −

pkpl
p0

)
pl = −1 + 2θcp0

2(p0)2
pk ,

= −1

2
∂pk log p0 − θc∂pkp0 = ∂pkw ,

where w = log u and u denotes the function

(4.4) u =
e−θcp

0√
|g|

=

√
mc

p0
e−θcp

0
.

Then Wh = g(∂ph, ∂p log u) = ∂p log uh. This formulation was already used
and justified in Chapter 2. In order to recover all the results in terms of f ,
we require to define the probability measure dµθ as

dµθ = Z−1e−θcp
0
dp, Z =

∫
RN

e−θcp
0
dp ,
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and consider all the involved spaces weighted with this measure. In addi-
tion, we assume that a solution of (4.3) is normalized with respect to the
probability measure µθ:

‖h‖L1(dµθ) =

∫
RN

h dµθ = 1,

since this normalization can always be achieved by rescaling the solution.

4.3 The Bakry-Emery Condition

In this section, we show that the exponential trend to the equilibrium in
L1 for solutions of (4.1) holds for θ > θ0 > 0, where the value of θ0 will
be characterized in our main result. The strategy to achieve this purpose
is using an equivalent notion of convergence in terms of equation (4.3) and
the weighted space L1(dµθ). The latter will be given by an appropriate
functional D[h](t) that acts as a Lyapunov function for (4.3) and converges
exponentially to zero. The key point in the argument comes from the fact
that the first variation of D will satisfy a Gronwall’s inequality for θ > θ0

that will be guaranteed by the Bakry-Emery condition.

Now, we proceed by presenting the entropy and the dissipation functionals
which are defined by

D[h] =

∫
RN

h log h dµθ, I[h] =

∫
RN

g(∂ph, ∂p log h) dµθ .

Theses functionals are related by the identity

(4.5)
d

dt
D[h](t) =

∫
RN

(∂th+ ∂th log h) dµθ = −I[h](t) ,

which justifies the Lyapunov character of D since I ≥ 0 due to h > 0 and
g(∂ph, ∂p log h) = h−1g(∂ph, ∂ph) ≥ 0. In order to verify this identity, we
compute∫

RN
∂th dµθ = −Z−1

∫
RN
Dij∂pjh∂pi

(
e−θcp

0
)
dp−

∫
RN

Whdµθ

= θc

∫
RN

Dij pi
p0
∂pjh dµθ −

θ

m

∫
RN

pj∂pjh dµθ

= 0 ,

where we used equation (4.2)1 and the following properties

∂ple
−θcp0

= −e−θcp0 θc

p0
pl, Dijpj =

mc

p0

(
δij +

pipj

m2c2

)
pj =

p0

mc
pi .

1Equivalently, we could use (4.3), but recall that the second order operator in (4.2) is
not a LB operator. See the proof of Theorem 2.3.2
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The identity for ∂th was expected in agreement to the fact that solutions of
(4.1) preserve mass. Similarly, we have∫
RN
∂th log h dµθ = −Z−1

∫
RN
Dij∂pjh∂pi

(
e−θcp

0
log h

)
dp−

∫
RN

log hWhdµθ

= −
∫
RN

g(∂ph, ∂p log h) dµθ

= −I[h](t) .

In fact, it can be shown that the operator L = ∆
(g)
p + W is symmetric in

L2(dµθ) from the above identity. For instance, see [22, Lemma 2] for the
treatment in the general case of equation (FP).

At this point we are ready to introduce the notion of convergence that
we will adopt. We say a solution of (4.3) converges to an equilibrium in the
entropic sense if D[h] → D[1] = 0 as t → ∞. The rate of convergence is
exponential if there exists λ > 0 such that D[h] = O(e−λt) as t → ∞. A
sufficient condition for exponential decay of the entropy is the validity of the
following logarithmic Sobolev inequality:

(4.6)

∫
RN

h log h dµθ ≤ α
∫
RN

g(∂ph, ∂p log h) dµθ ,

for some α > 0, and for all sufficiently smooth probability densities h (not
necessarily solutions of (4.3)). In order to show the sufficiency of the above
inequality, we use (4.6) in (4.5) to obtain

d

dt
D[h] ≤ − 1

α
D[h]⇒ D[h] . exp(−t/α) .

The main reason to adopt this notion of convergence relies on the fact
that the convergence in L1(dµθ) is achieved by using the Ciszár-Kullback
inequality, see [39]. The previous inequality states that

‖h− 1‖L1(dµθ) ≤
√

2D ,

and as an immediate consequence, we obtain the convergence of h to the
equilibrium in L1(dµθ) with exponential factor (2α)−1, or equivalently, a
solution of (4.1) satisfies

(4.7) ‖f(t)−JM‖L1(dp) . e−t/(2α),

where JM = M
Z J denotes the Jüttner distribution function with mass M .

Now it is clear that D provides a natural convergence notion to an equilib-
rium for solutions of the relativistic Fokker-Planck equation (4.1) by (4.7).
Thus, the problem of the exponential trend to the equilibrium in L1 has been
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reduced to prove that (4.6) holds. Fortunately, the latter statement can be
answered affirmatively, but only for certain values of θ. Before we proceed,
it is convenient to give a brief argument that explains why it is possible to
prove inequality (4.6). In particular, the latter shows that the exponential
convergence of D implies (4.6) and also, it will allow to introduce a concept
that is required in the proof of this Sobolev inequality.

First, observe that the functional D is non-negative and decreasing with
respect to t. Then, it is expected that this functional converges to its mini-
mum value if I[h]→ 0 as t→∞. In order to prove this, we could compute
its time derivative. We avoid to do so since the exact form of I′ will not be
used in our forthcoming analysis. We are content with stating that if the
next identity holds

(4.8)
d

dt
I[h](t) ≤ −εI[h](t) ,

then in particular inequality (4.6) will follow. To prove this, we use that
D[h]→ 0 as t→∞ and see that

D[h](0) =

∫ ∞
0

I[h](s) ds ≤ αI[h](0) ,

which is precisely the assertion. The crucial part to obtain inequality (4.8)
comes from an appropriate bound of the Bakry-Emery-Ricci tensor given by

(4.9) R̃ic = Ric−∇2
p log u ,

where u is the function defined by (4.4) and Ric and ∇2
p log u are the Ricci

tensor and the Hessian with respect to the metric g, respectively. More
precisely, if R̃ic satisfies the Bakry- Emery curvature bound condition

(4.10) R̃ic ≥ 1

2α
g ,

then (4.8) holds. As a matter of fact, I′ is constituted by an integral only

depending on R̃ic and another non-positive integral term. Now we have
that in particular (4.6) follows by our previous argument. See [13, 14] for
instance. Condition (4.10) can be thought as a generalized notion of strong
convexity with respect to the metric g.

Now, we are position to prove the main result of this section:

Theorem 4.3.1. There exists a positive value θ0 such that the logarithmic
Sobolev inequality (4.6) is valid for any θ > θ0, with constant α given by

1

2α
=

 P(mc) = 2θmc2−7
2mc2

, if N = 3, θ0 < θ ≤ 4
mc2

,

P (γ(θ, d)) , if N = 3, θ > 4
mc2

, or N 6= 3, θ > θ0,
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where

γ(θ,N) =
mc

αN

(
2θmc2 +

√
4θ2k2c2 − 3αNβN

)
,

for some constants αN , βN that only depend on the dimension, and P is
the rational function

P(x) =
2θcx3 − αNx2 + 2θk2cx− βNk2

4mcx3
.

Proof. The proof is carried out by using the Bakry-Emery curvature bound
condition (4.10). First, we recall that the Ricci tensor of g is given by

Ricij = ∂pkΓkij − ∂pjΓkik + ΓkijΓ
l
kl − ΓlikΓ

k
jl ,(4.11)

where Γlij are the Christoffel symbols of the second kind associated to the
metric g. These symbols are obtained from the following relation

Γlij =
Dlk

2

(
∂pjgki + ∂pigkj − ∂pkgij

)
.

For convenience, we recall that p0 =
√
m2c2 + |p|2 and

gij =
1

mc

(
p0δij −

pipj
p0

)
.

In order to obtain Γlij , we compute

∂plgrs = ∂pl

[
p0

mc

(
δrs −

prps
(p0)2

)]
=
plgrs
(p0)2

+
2plprps
mc(p0)3

− δlspr + δlrps
mcp0

= alrs + blrs + clrs .(4.12)

Observe that the terms blrs in Γlij are equal and the sum of the terms clrs
contribute

−
δjkpi + δjipk

mcp0
− δikpj + δijpk

mcp0
+
δkipj + δkjpi

mcp0
= −2δijpk

mcp0
.

Then, we see that

Γlij =
Dlk

2

(
pjgik + pigkj

(p0)2
− pkgij

(p0)2
+

2pkpipj
mc(p0)3

− 2pkδij
mcp0

)
=

1

2

[
pjδ

l
i + piδ

l
j

(p0)2
−Dlk pkgij

(p0)2
− 2Dlk pk

mc(p0)2

(
p0δij −

pipj
p0

)]

=
1

2

(
pjδ

l
i + piδ

l
j

(p0)2
− 3pl

mcp0
gij

)
=
pjδ

l
i + piδ

l
j

2(p0)2
− 3pl

2m2c2

(
δij −

pipj
(p0)2

)
,
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where we used the definition of g, the inverse property of the matrix D
with respect to g and the identity Dlkpk = plp0/mc. Now, we are ready
to perform the necessary calculations to obtain the Ricci tensor. The first
term in the definition of Ric (4.11) is

2∂pkΓkij = ∂pk

(
pjδ

k
i + piδ

k
j

(p0)2
− 3pk

mcp0
gij

)

=
2δij
(p0)2

−
2(pjδ

k
i + piδ

k
j )pk

(p0)4
− ∂pk

(
3pk

mcp0
gij

)
=

2mc

(p0)3
gij −

2pipj
(p0)4

− ∂pk
(

3pk

mcp0

)
gij −

3pk

mcp0
∂pk (gij) ,

where the definition of the metric g was used again. The last two terms in
the above identity can be estimated by using (4.12) as follows

∂pk

(
3pk

mcp0
gij

)
=

3d

mcp0
gij +

3pk

mcp0

[
2pkpipj
mc(p0)3

−
δikpj + δjkpi

mcp0

]
=

3d

mcp0
gij −

6pipj
(p0)4

.

Notice that two terms cancel out while estimating the above quantity. The
latter implies that

2∂pkΓkij =
2mc

(p0)3
gij +

4pipj
(p0)4

− 3N

mcp0
gij .

Similarly as above, we have that

2∂pjΓ
k
ik = ∂pj

[
pkδ

k
i + piδ

k
k

(p0)2
− 3pk

m2c2

(
δik −

pipk
(p0)2

)]
= (N − 2)∂pj

(
pi

(p0)2

)
= (N − 2)

(
δij

(p0)2
− 2pipj

(p0)4

)
= (N − 2)

mc

(p0)3
gij − (N − 2)

pipj
(p0)4

,

and

2∂pkΓkij − 2∂pjΓ
k
ik = (N + 2)

pipj
(p0)4

− 3N

mcp0
gij − (N − 4)

mc

(p0)3
gij .(4.13)

Now, the remaining terms in (4.11) are obtained as follows

4ΓkijΓ
l
kl =

(
pjδ

k
i + piδ

k
j

(p0)2
− 3pk

mcp0
gij

)
(N − 2)

pk
(p0)2

= (N − 2)

(
2pipj
(p0)4

− 3|p|2

mc(p0)3
gij

)
,
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and

4ΓlikΓ
k
jl =

(
pkδ

l
i + piδ

l
k

(p0)2
− 3pl

mcp0
gik

)(
plδ

k
j + pjδ

k
l

(p0)2
− 3pk

mcp0
gjl

)

= (N + 12)
pipj
(p0)4

− 6
|p|2δli + pip

l

mc(p0)3
gjl = (N + 6)

pipj
(p0)4

− 6|p|2

mc(p0)3
gij .

The previous quantities lead us to

4ΓkijΓ
l
kl − 4ΓlikΓ

k
jl = (N − 10)

pipj
(p0)4

− 3(N − 4)|p|2

mc(p0)3
gij .

Therefore, we can combine the identity given above with (4.13) to see
that the Ricci tensor (4.11) with respect to g is

Ricij = 3(N − 2)
pipj

4(p0)4
− 2(N − 4)m2c2 + 6N + 3(N − 4)|p|2

4mcp0
gij

= 3(N − 2)
δij

4(p0)2
− 2(N − 1)m2c2 + 3(3N − 4)(p0)2

4mc(p0)3
gij .(4.14)

In order to calculate the hessian of log u, we recall that

∂pkw = ∂pj log u = Wj = −pj
1 + 2θcp0

2(p0)2
,

and compute the second order derivatives of the above expression as follows

∂pi∂pj log u = −∂pi
(
pj

1 + 2θcp0

2(p0)2

)
= −δij

(
1 + 2θcp0

2(p0)2

)
− θcpipj

(p0)3
+

2pipj
(p0)2

(
1 + 2θcp0

2(p0)2

)
=

pipj
2(p0)4

− 2m2c2

2mcp0
gij

(
1 + 2θcp0

2(p0)2

)
,

where the definitions of the metric g and p0 were used. Similarly as above,
we see that the remaining term is obtained as follows

Γkij∂pk log u =
1

2

(
pjδ

k
i + piδ

k
j

(p0)2
− 3pk

mcp0
gij

)
Wk

= −1

2

(
2pipj
(p0)2

− 3|p|2

mcp0
gij

)(
1 + 2θcp0

2(p0)2

)
= −1

2

(
2δij −

3(p0)2 −m2c2

mcp0
gij

)(
1 + 2θcp0

2(p0)2

)
.
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Then, the hessian of log u in local coordinates is

(∇2
pw)ij = ∂pi∂pj log u− Γkij∂pk log u

= (1 + θcp0)
δij

(p0)2
− mc gij

2(p0)3
−
(

3(p0)2 +m2c2

2mcp0

)(
1 + 2θcp0

2(p0)2

)
gij

= (1 + θcp0)
δij

(p0)2
− 3m2c2 + 3(p0)2 + 2θcp0(m2c2 + 3(p0)2)

4mc(p0)3
gij ,

where we used the definition of g and the following identity

pipj
2(p0)4

+ δij

(
1 + 2θcp0

2(p0)2

)
= δij

(
1 + θcp0

(p0)2

)
− δij

2(p0)2
+

pipj
2(p0)4

.

Finally, using definition (4.9) and the explicit expression of (∇2
pw)ij that

was obtained before combined with (4.14), we find that

R̃icij = Ricij − (∇2
pw)ij

=
6θc(p0)3 − α(p0)2 + 2θm2c3p0 − βm2c2

4mc(p0)3
gij +

aN − 4cθp0

4(p0)2
δij ,

where α = 3(3N − 5), β = 2N − 5 and aN = 3(N − 3) − 1 for N ≥ 2, and
α = −3, β = −3, a1 = −4 and g ≡ mc/p0 for N = 1, since Ric ≡ 0.

In order to bound R̃icij from below in terms of the metric g, we require
the following estimate

p0

mc
|X|2 ≥ g(X,X) =

1

mcp0

[
(mc|X|)2 + (|p||X|)2 − (p ·X)2

]
≥ mc

p0
|X|2,

which is valid for all X ∈ RN . For N ≤ 3, we use the right hand side
of the above inequality to bound the term containing aN in R̃ic since aN is
negative. The upper bound of g is used to absorb the corresponding positive
term aN + 1 for N ≥ 4. This is possible by noticing that β = βN + aN + 1.
The previous information enables to obtain the following lower bound

R̃ic(X,X) ≥
[
2θc(p0)3 − αN (p0)2 + 2θm2c3p0 − βNm2c2

] g(X,X)

4mc(p0)3

=P(p0)g(X,X) ,

where

(4.15) (αN , βN ) =


(1 , −3) if N = 1 ,

(6N − 5 , 2N − 5) if N = 2, 3 ,

(9N − 14 , 4−N) if N ≥ 4 .
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Now, we proceed to prove that min{P(p0) | p0 ≥ mc} is strictly positive
if and only if θ > θ0 which follows by a standard procedure. First, notice
that the positivity of P holds if the polynomial Q defined by

Q(x, θ) = 2θcx3 − αNx2 + 2θk2cx− βNk2 ,

remains positive for θ > θ0 and x ≥ k, with k = mc. We remark that if
θ ≥ θ1, then

Q(x, θ)−Q(x, θ1) = 2cx(x2 + k2)(θ − θ1) ≥ 0 ,

and as consequence, the value of θ0 is unique and the minimum possible
one in which Q(x, θ0) ≥ 0 holds for all x ≥ k. In order to show the latter
property, we will use the critical points of the derivative of Q

d

dx
Q(x, θ) = 6θcx2 − 2αNx+ 2θk2c , R∓ =

αN ∓
√
α2
N − 12(θck)2

6θc
.

Also, the sign of Q(0, θ) = −βNk2 is required and the fact that there exists
at least one real root x1 is relevant (the degree of Q(x, θ) is three). From
here, the analysis is divided in two cases.

Let N 6= 3. Notice that Q(0, θ) = −βNk2 ≥ 0 by (4.15), which implies
that x1 ≤ 0. When θ ≥ αN√

12ck
, x1 is the only real root of Q since R∓

are complex or equal. This implies the positivity of Q from the increasing
property with respect to θ. Therefore, the value of θ0 is given by either
k > R+(θ0) or Q(R+, θ0) = 0. In the latter case, R+ must have multiplicity
two from its global minimum property for x > 0. For the case N = 1,
it is easy to show that there exists θ0 > 0 such that Q(R+, θ0) = 0 and
k < R+(θ0). This is justified by the fact that k can not be a root of Q, since
Q(k, θ) = k2(4θck+2) > 0 for all θ > 0, and if k ≥ R+, the value of Q(R+, θ0)
will remain strictly positive due to the monotonicity of Q with respect to θ.
Therefore, θ0 is given by Q(R+, θ0) = 0 with θ0 <

α1
4ck . The existence is a

consequence of the intermediate value theorem. Now, for N 6= 1, 3, notice
that k can be a root of Q since

Q(k, θ) = k2(4θck − αN − βN ) = 0 ⇔ θ =
γN
2ck

=
4N − 5

2ck
.

Next, we see that the condition k ≥ R+(θ) leads to

(6θck − αN )2 − α2
N + 12(θck)2 = (6θck)2 + 12(θck)2 − 12αNθck ≥ 0 ,

which implies θ ≥ αN
4ck . We state that the choice θ∗ = γN

2ck and k ≥ R+ can
not hold simultaneously unless N = 4, i.e., k can not be the biggest root of
Q, nor one with multiplicity two. This assertion comes from the following

αN
4ck
≥ αN + βN

4ck
=
γN
2ck

,
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since in this situation βN ≤ 0 by (4.15). Then, we also find in this case that
the value of θ0 is given by Q(R+, θ0) = 0 with γN

2ck < θ0 ≤ αN
4ck .

For N = 3, we have the reversed inequality for the condition k ≥ R+(θ),
since α3

4ck ≤
α3+β3

4ck and β3 = 1. Using the fact the value R+(θ) corre-
sponds to the global minimum of Q for x ≥ R+(θ), the latter implies that
Q is increasing in the same interval. Now, it is straightforward to show
that Q(k, α3

4ck ) < 0 and due to the monotonicity of Q with respect to θ,
θ0 = γ3

2ck must be selected. In fact, Q(x, θ0) = 7
k (x − k)(x − x1)(x − x2),

with x1,2 = k
7 (3 ±

√
2) < k. We remark that this is the only possible case

in which two different intervals of the parameter θ give two different global
minimums of P for x ≥ k. In particular, P(k) is the corresponding min-
imum for θ0 < θ ≤ 4

ck . Therefore, we can conclude that P(x) > 0 and
min{P(x)) |x > k} > 0, for all θ > θ0 and N ≥ 1.

In order to obtain the value of (2α)−1, we have to calculate the global
minimum of P in [mc,∞). From the previous step, we already know that
this minimum corresponds to one of the critical points of P. Then, we
differentiate P to see that

d

dx
P(x) =

(
6θcx2 − 2αNx+ 2θk2c

)
x− 3Q(x)

4kx4

=
αNx

2 − 4θk2cx+ 3βNk
2

4kx4

=
αN (x− γ−)(x− γ+)

4kx4
, γ∓ =

k

αN

(
2θkc∓

√
4θ2k2c2 − 3αNβN

)
.

Notice that γ− ≤ 0 < γ+ for N 6= 3, and γ∓ > 0 for N = 3. Then, the
minimum is achieved at P(γ+) for all the cases, except when N = 3 and

7
2ck = θ0 < θ ≤ 4

kc . In this case, P(x) attains its minimum at k. This
follows from the increasing property of the function g1(θ) = k2− γ2

−(θ) with
respect to θ and the decreasing one from g2(θ) = k2 − γ2

+(θ). In fact

g′2 = −2γ+γ
′
+ = −γ−γ′+

6k2β3

α3γ2
−

= − 6k4β3

(α3)3γ2
−

(
2kc+

4θk2c2√
4θ2k2c2 − 3α3β3

)(
2θkc−

√
4θ2k2c2 − 3α3β3

)
= − ck5(6β3)2

(α3)2γ2
−

√
4θ2k2c2 − 3α3β3

< 0.

Now, it is straightforward to show that g2(θ0) > 0, since 7 +
√

10 < 13
and γ+ = k for θ = 4

kc . A similar computation proves that g′1 > 0. Since

g1(θ0) > 0, d
dxP(x) only changes sign when g2 does. This justifies that

P(k) is a minimum for θ0 < θ ≤ 4
kc . It is important to mention that the
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other case where an explicit value of the parameter can be obtained is N = 4
with θ0 = 11

2kc since β4 = 0 and zero is a root for P.

We conclude this section with some final remarks. Theorem 4.3.1 ensures
an exponential rate of convergence towards the equilibrium for small tem-
peratures of the thermal bath since θ ∼ T−1 and θ > θ0. Although there
are several criteria in the literature for the validity of logarithmic Sobolev
inequalities, we were unable to find one that applies for the case independent
of θ > 0. In order to prove exponential decay in L1 for all temperatures,
one might need to improve the Bakry-Emery curvature bound condition or
use a different strategy. For instance in [142, 143], the author considers
the possibility of having negative bounds for (4.9). This suggests that a
more detailed analysis on ∇2

pw might be fruitful. In [10], the authors study
this convergence problem for several circumstances including perturbed and
non-symmetric Fokker-Planck operators which might also lead to obtain a
logarithmic Sobolev for the original operator. We mentioned all these facts
because it is reasonable to believe that the exponential convergence for all
possible values of θ > 0 might hold. The results presented in this section
are a good starting point.

4.4 Exponential convergence in L2

In this section we show that the exponential convergence towards the equi-
librium holds without any restrictions in the possible values of the parameter
θ > 0 if the L1 framework is abandoned. To achieve the latter, we consider
the functional

L[h] =

∫
RN

h2 dµθ = ‖h‖2L2(dµθ),

which will act as our new Lyapunov function and the weighted L2(dµθ)
space is our new framework. We proceed to compute the time derivative of
L[h − 1] in order to verify that solutions of (4.3) are decreasing along this
functional. Using (4.3) and integrating by parts, we obtain the following

d

dt
L[h− 1](t) = 2

∫
RN

(h− 1)∂th dµθ = −2

∫
RN

g(∂ph, ∂ph) dµθ

− 2

∫
RN

[
Dij∂pjh ∂pi

(
e−θcp

0
)
eθcp

0
+Wh

]
(h− 1)dµθ

= −2

∫
RN

g(∂ph, ∂ph) dµθ .

To show the exponential decay rate of L[h − 1] to the equilibrium, it is
sufficient to prove that the following Poincaré inequality

(4.16)

∫
RN

(h− 1)2dµθ ≤ λ
∫
RN

g(∂ph, ∂ph) dµθ, for some λ > 0 ,
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holds for all sufficiently smooth probability densities h. The validity of the
Poincaré inequality (4.16) is equivalent to prove the existence of a spectral
gap for the operator defined by the right hand side of equation (4.3). More
precisely, the spectral gap of this operator is characterized by

λ1 = inf

{ ∫
RN g(∂pf, ∂pf) dµθ

‖f‖2
L2(dµθ)

− ‖f‖2
L1(dµθ)

: f ∈ C1 ∩ L2(dµθ), f 6= constant

}
,

and it is said to exist if λ1 > 0. The latter identity is an extension of
Raleigh’s formula for symmetric elliptic operators in bounded domains with
Dirichlet boundary conditions, see [65]. In our present situation, recall that
h > 0 and ‖h‖L1(dµθ) = 1. These conditions imply

‖h‖2L2(dµθ) − ‖h‖
2
L1(dµθ) = ‖h− 1‖2L2(dµθ),

and inequality (4.16) would follow if λ1 > 0.

Instead of analyzing the intrinsic variational problem to establish the ex-
istence of this spectral gap, we will achieve the latter by applying a criterion
due to Wang, see [141]. To do so, we need to consider the operator

(4.17) Lh = aij∂pi∂pjh+ bj∂pjh , p ∈ RN ,

and define the following functions

γ(r) = sup
|p|=r

r[Tr(a(p)) + p · b(p)]
aijpipj

− 1

r
, α(r) = inf

|p|=r

aijpipj
r2

,

C(r) =

∫ r

1
γ(s)ds, for r > 0.

Then by [141, Th.3.1], the spectral gap for the operator (4.17) is strictly
positive provided that there exists a positive function y ∈ C([1,∞)) such
that

sup
t≥1

Gy(t) = sup
t≥1

{
1

y(t)

∫ t

1
e−C(r)

∫ ∞
r

eC(s) y(s)

α(s)
ds dr

}
<∞.

Before proceeding, it is insightful to briefly recall the idea to prove this
criterion. We avoid to give the complete proof of this result because it
is quite technical and none of the methods are used in the present work.
In [141], the author shows how to bound λ1 from below in terms of the
smallest eigenvalue of the Neumann problem for −L in BR(0), the ball of
radius R > 0 centered at 0, and

λc(r) = inf

{∫
RN

g(∂pf, ∂pf) dµθ : ‖f‖2L2(dµθ) = 1 f ∈ C1, f = 0 in Br(0)

}
.
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Then, the author obtains a characterization of the essential spectrum of L in
terms of limr→∞ λ

c(r) > 0, which makes the estimate λc(r) > 0 relevant for
the existence of the spectral gap. Also, we can notice from the conditions
on α, γ and C that it is enough to consider radial functions for the estimate
on λ1. In fact, the function defined by

g(|x|) =

∫ |x|
1

e−C(r)

∫ ∞
r

eC(s) y(s)

α(s)
ds dr,

satisfies

Lg ≤ −y(|x|), for |x| ≥ 1, if

∫ ∞
1

eC(s) y(s)

α(s)
ds <∞,

and this condition will ensure λc(1) > 0.

Finally, we are able to state and prove the following result:

Theorem 4.4.1. The Poincaré inequality (4.16) holds for all θ > 0.

Proof. In the particular case of equation (4.3), the corresponding coefficients
of the operator (4.17) read as

aij = Dij =
mc

p0

(
δij +

pipj

m2c2

)
, bj =

Npj

mcp0
− θ

m
pj ,

with p0(|p|) =
√
m2c2 + |p|2. Here, we used the equivalent form of (4.3),

namely, equation (4.2). Now, by using the above values we compute the
quantities

Tr(a(p)) + p · b(p) =
Np0

mc
+
|p|2

mcp0
− θ|p|2

m
,

aijpipj
r2

=
mc

r2p0

(
|p|2 +

|p|4

m2c2

)
=
|p|2p0

r2mc
,

which allow to explicitly obtain for r > 0

γ(r) =
N − 1

r
+

r

(p0)2
− cθr

p0
, α(r) =

p0(r)

mc
.

Next, we observe that

γ(r) =
d

dr

[
(N − 1) log r + log p0 − cθp0

]
,

and as a consequence,

C(r) =

∫ r

1
γ(s)ds = (N − 1) log r + log p0(r)− cθp0(r) + C,
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with C representing an integration constant. Then,

e−C(r) =
ecp

0(r)−C

rN−1p0(r)
, and

eC(s)

α(s)
= mc sN−1e−cp

0(s)+C .

Therefore, the associate function Gy(t) for the operator (4.17) in the current
situation is given by

Gy(t) =
mc

y(t)

∫ t

1

ecθp
0(r)

rN−1p0(r)

∫ ∞
r

e−cθp
0(s)sN−1y(s) ds dr.

Now, we choose y(t) = eβt

tN−1 with β < cθ. Since p0(s) =
√
m2c2 + s2 ≥ s,

notice that
βs− cθp0(s) ≤ (β − cθ)s,

and for r ≥ 1, the following inequality holds

p0(r)− r =
m2c2

p0(r) + r
≤ m2c2

p0(1) + 1
=
√
m2c2 + 1− 1.

The above facts allow to bound Gy as follows

Gy(t) ≤
mc

y(t)

∫ t

1

ecθp
0(r)

rN

∫ ∞
r

e(β−cθ)s ds dr

=
mc

(cθ − β)y(t)

∫ t

1
ecθ[p

0(r)−r] e
βr

rN
dr

≤ mc

cθ − β
ecθ(
√
m2c2+1−1) t

N−1

eβt

∫ t

1

eβr

rN
dr.

Now, using L’Hôpital’s rule and the fundamental theorem of calculus, we
see that

lim
t→∞

∫ t
1
eβr

rd
dr

eβt

tN−1

= lim
t→∞

eβt

tN

β eβt

tN−1 − (N − 1) e
βt

tN

= lim
t→∞

1

βt−N + 1
= 0 ,

which guarantees that supt≥1Gy(t) <∞. Then, we are in position to apply
the result by Wang and conclude that the spectral gap for (4.17) is positive.

Finally, we remark that the Poincaré inequality (4.16) can also be proven
by showing the existence of a spectral gap for elliptic operators, but using
a different criterion which can be found in [15]. This result was established
by Angst in [8].



Chapter 5

The Vlasov-Nordström-
Fokker-Planck
System

In the present chapter, we consider the existence and uniqueness problem
of solutions for the Vlasov-Nordström-Fokker-Planck (VNFP) system. Due
to the high technical difficulties exhibited by the system, our results are
established in the spatially homogeneous regime. Additionally, we study
the asymptotic behavior of the system and prove that solutions possess a
non-trivial profile, even in the absence of friction. Finally, we introduce
the ultra-relativistic Fokker-Planck equation associated to the relativistic
model. The reason to do this is justified by the fact that the admissible
future attractors for the particle density in the VNFP system might be
given by this model. In fact, we derive an explicit representation formula
for solutions of this ultra-relativistic equation which enables to identify the
candidate for the possible asymptotic profile of the density function for the
VNFP system.

5.1 Introduction

The Vlasov-Nordström-Fokker-Planck system describes the evolution of the
self-gravitating matter experiencing collisions with a fixed background of
particles in the framework of a relativistic scalar theory of gravitation. One
of the main motivations to consider this system is to obtain a consistent
approach to model diffusion dynamics of particle systems when relativistic
effects are present. There is already a proposal in the context of General
Relativity [20], but due to the well-known complexity of the Einstein field
equations, it seems wiser to face a simpler situation as a first step. The
VNFP system has the advantage to capture some of the essential features
of relativistic gravitational systems undergoing diffusion: the hyperbolic
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character of the field equation, the invariance under Lorentz transforma-
tions and the space-time dependence of the diffusion matrix. These fea-
tures distinguish the model under study from the Vlasov- Poisson-Fokker-
Planck system, which is the non-relativistic analogue of the VNFP sys-
tem [17, 18, 32, 47, 50, 76, 112]. While the non-relativistic problem has been
intensively investigated for a long time, the interest on relativistic diffusion
models has only recently started to increase [2, 20, 55, 53, 70, 90, 91, 113].
For these reasons, this chapter has a certain level of importance in what
concerns to the development of this field. We recall from Chapter 2 that the
VNFP system can be expressed as follows

∂tf +∇p
(√

e2φ + |p|2
)
· ∇xf −∇x

(√
e2φ + |p|2

)
· ∇pf(VFP)

= σe2φ∂pi

(
e2φδij + pipj√
e2φ + |p|2

∂pjf

)
,

∂2
t φ−∆xφ = −e2φ

∫
R3

f√
e2φ + |p|2

dp, t > 0, x ∈ R3, p ∈ R3 ,(N)

where f = f(t, x, p) is the density of particles in phase space, φ = φ(t, x) is
the Nordström gravitational potential generated by the particles,

√
e2φ + |p|2

is the microscopic energy of the system and σ > 0 is a diffusion constant.
The remaining physical constants have been set equal to one, i.e., the speed
of light c, the mass m of the particles and the gravitational constant G. The
physical interpretation of a solution of (VFP)-(N) is as follows: Space-time
is curved by the action of gravitational forces and is given by the mani-
fold (R4, g), where g is the conformal Minkowskian metric g = exp(2φ)η
and η is the Minkowski metric. It is worth to mention that in the colli-
sionless case (σ = 0), the VNFP system reduces to the Nordström-Vlasov
system [28, 23], a toy model for the full general relativistic Einstein-Vlasov
system [6]. In contrast to the collisionless case, particles undergoing diffusion
no longer move along the geodesics of space-time. Instead, their trajectories
are defined through a system of stochastic differential equations naturally
associated to the Fokker-Planck equation (VFP) via Itô formula.

The results in this part of the work concern the global existence and
uniqueness of spatially homogeneous solutions (f = f(t, p), φ = φ(t)) for
system (VFP)-(N) and their asymptotic behavior as t → ∞. Remarkably,
and in contrast to the non-relativistic case [32], we find that the particle
density f does not vanish as t → ∞ in the absence of friction, as one
would expect from a diffusion model without this term. In fact, the latest
mentioned property of the density resides in the long time behavior of the
gravitational potential φ, since it blows-up to −∞ as t→∞ and it implies
that the action of the diffusion operator in the right side of (VFP) without
the drift term becomes weaker and weaker as t → ∞. This mechanism
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can be identified in a simpler context while considering the non-autonomous
heat equation

(NH) ∂tu = λ(t)∆xu, t > 0, x ∈ R3 ,

where λ(t) is a smooth positive function integrable on (0,∞). Upon intro-
ducing the change of variables τ(t) =

∫ t
0 λ(s) ds, equation (NH) transforms

into the standard, autonomous heat equation. It follows that the solution
of (NH) with initial datum u(0, x) = uin(x) is given in terms of the heat
kernel by

u(t, x) =
1

(4πτ(t))3/2

∫
R3

u0(y) e
− |x−y|

2

4τ(t) dy.

Hence, as t→∞,

u(t, x) ∼ 1

(4πτ∞)3/2

∫
R3

u0c(y) e−
|x−y|2
4τ∞ dy ,

where

τ∞ = lim
t→∞

τ(t) =

∫ ∞
0

λ(s) ds <∞ ,

i.e., the solution has a non-trivial asymptotic profile. Therefore, we can
interpret the diffusion coefficient e2φ in the right hand side of (VFP) as
a new scale in time for the spatially homogeneous case. Then, one might
expect as in the previous example that the profile in the absence of a drift
term might be related to solutions of

(UR) ∂tf = e2φ∂pi

(
pipj

|p|
∂pjf

)
,

the ultra-relativistic Fokker-Planck equation associated to the relativistic
Fokker-Planck equation without drift, since the diffusion matrix coincides
in the limit with the relativistic one. It is important to remark that the
energy of an ultra-relativistic particle is almost completely determined by
its momentum |p|. The latter justifies why we refer to (UR) as an ultra-
relativistic model since the microscopic energy for the relativistic particles
in the case we will consider is

√
e2φ + |p|2 ≈ |p| as t→∞.

This chapter proceeds as follows. In the next section, we state and prove
a global existence and uniqueness theorem for the VNFP system. Then,
we derive the asymptotic behavior of the scalar field, which in particular
φ → −∞, as t → ∞, linearly in time, and show that the particle density
f does not vanish as t → ∞. Since the elliptic part of the relativistic
Fokker-Planck equation is not uniformly elliptic and has time dependent
coefficients, the standard theory for parabolic equations does not apply in
our case and we shall need to rely on stochastic methods to prove existence
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of solutions. Section 5.3 is devoted to the study of the time asymptotic
behavior of the particle density in the ultra-relativistic regime. The main
result of this section is Theorem 5.3.2, where we show that solutions of
equation (UR) with a drift term satisfy f → f∞ in L∞ as t → ∞, where
f∞(p) > 0 is given by the solution of the linear ultra-relativistic Fokker-
Planck equation evaluated at the finite time T = ‖e2φ‖L1 . In particular, we
are able to compute this limit f∞ explicitly. The arguments used for the
proof of this result are based on those performed for solutions of equation
(UR) in [3]. It remains as a very interesting and challenging open problem
to prove the analogous result for the long time behavior of solutions in the
purely relativistic case.

5.2 Global existence and uniqueness

The VNFP system in the spatially homogeneous case becomes

∂tf = e2φ∂pi

(
e2φδij + pipj√
e2φ + |p|2

∂pjf + pif

)
,(5.1)

φ̈ = −e2φ

∫
R3

f√
e2φ + |p|2

dp, t > 0, p ∈ R3 ,(5.2)

by setting σ = 1 in (VFP). In this section, we prove the corresponding
global existence and uniqueness result of solutions for the previous system
in the Banach space X defined as

X = {g : R3 → R : g ∈ L1 ∩ L2, ∇g ∈ L2, and p→ |p|g(p) ∈ L1} .

The main strategy to accomplish this purpose is to show that there exists
an appropriate sequence of functions that converges to a solution of the
VNFP system. In particular, this sequence is given by an iterative scheme
procedure. In order to define the iterative scheme, we require to study the
Cauchy problems for the nonlinear equation (5.2), when f is known, and
for the associated linear equation of (5.1). Although the last problem is not
particularly difficult in this case, the argument relies on the use of stochastic
methods to obtain the result. We remark that this is probably one of the
main difficulties to overcome for the general model. Also, we will derive
essential bounds to establish the asymptotic behavior of solutions as well as
conditions to ensure uniqueness. Now, the main result of this section reads
as follows:

Theorem 5.2.1. Given (fin, φin, ψin) ∈ X × R2, with fin ≥ 0 a.e., there
exists a solution of (5.1)–(5.2) such that

(f(0, p), φ(0), φ̇(0)) = (fin, φin, ψin)
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and

(f, φ) ∈ L∞((0,∞);X)× C1((0,∞)) ∩W 2,∞
loc ([0,∞)).

Moreover, there exist constants α, β, ε, C > 0 such that

(5.3) − C − α t ≤ φ(t) ≤ C − β t, |φ̇(t)| < C, −Ce−α t ≤ φ̈(t) ≤ 0 ,

(5.4) µ({p : |f(t, p)| > ε)}) > C,

where µ denotes the Lebesgue measure, f ≥ 0 a.e. and the total mass is
conserved, i.e.,

‖f(t)‖L1(R3) = ‖fin‖L1(R3) .

Finally, if the initial datum fin satisfies

(5.5)

∫
R3

(1 + |p|2)δ+1
[
|∇pfin|2 + |∇2

pfin|2
]
dp <∞ ,

for some δ > 1/2, then the estimate

(5.6)

∫
R3

(1 + |p|2)δ+1|∇pf |2 dp+ (1 + t)−1

∫
R3

(1 + |p|2)δ+1|∇2
pf |2 dp < C ,

holds for all t > 0, and the solution is unique.

Notice that estimate (5.4) shows that f does not vanish, not even asymp-
totically so. The crucial ingredient to prove (5.4) is the uniform estimate∫
R3 |p|f dp ≤ C, which is a direct consequence of the field decay, see (5.15).

We also remark this estimate remains valid even in the absence of friction
with no difference in the argument between cases. A very intuitive, simple
and formal computation explains this fact. We can see e2φ in equation (5.1)
as time rescaling factor and as a consequence, equation (5.1) becomes into
one to be solved in finite time due to the L1 integrability property of this
factor inherited from estimates (5.3). This is the main reason to consider
the associated ultra-relativistic model (UR) with or without a drift term.

Since the proof of Theorem 5.2.1 is considerably long, we divide it into
several subsections for a more systematic and comprehensive reading.

5.2.1 The Nordström equation

In this section, we devote our attention to study the Cauchy problem for
the Nordström field equation

φ̈(t) = −Hf (t, φ), t > 0 ,(5.7a)

φ(0) = φin, φ̇(0) = ψin ,(5.7b)
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with

(5.7c) Hf (t, φ) = e2φ

∫
R3

f

p0
dp , p0 = p0(φ, p) =

√
e2φ + |p|2 ,

where we assume that 0 ≤ f ∈ C((0,∞);L1(R3)) is given. Let us begin
with some observations concerning the above system. Since the function
x → e2x/p0(x, p) is convex and monotonically increasing, with derivative
(e2x + 2|p|2)/(p0)3, we obtain the following estimate

|Hf (t, φ2)−Hf (t, φ1)| ≤ ∂φHf (t, φ∗)|φ2 − φ1|

= e2φ∗ |φ2 − φ1|
∫
R3

f(t, p)
e2φ∗ + 2|p|2

(e2φ∗ + |p|2)3/2
dp

≤ 2‖f(t)‖L1(R3)e
φ∗ |φ2 − φ1| ,(5.8)

where φ∗ = max{φ1, φ2}. Next, we transform equation (5.7a) into a system
of the form ẏ = F (t, y) by using the change of variables

ψ = φ̇, y = (φ, ψ), F (t, y) = (y2,−Hf (t, y1)).

From the regularity assumption on f and estimate (5.8), the function F is
uniformly continuous for t > 0 and locally Lipschitz in y. Then, it follows by
Picard’s theorem that the Cauchy problem (5.7) has a unique local classical
solution. Moreover, it is straightforward to obtain the following estimates

−Kf (t)eφ(t) ≤ −Hf (t, φ) = φ̈(t) ≤ 0 ,(5.9a)

ψin −Kf (t)

∫ t

0
eφ(s) ds ≤ φ̇(t) ≤ ψin ,(5.9b)

ψint+ φin −Kf (t)

∫ t

0

∫ s

0
eφ(τ) dτ ds ≤ φ(t) ≤ ψint+ φin ,(5.9c)

where

(5.10) Kf (t) = sup
s∈(0,t)

‖f(s)‖L1(R3) .

These estimates imply that φ ∈W 2,∞((0, T )), with the following bound

(5.11) ‖φ‖W 2,∞((0,T )) ≤ CTKf (T ) ,

for all T > 0. Hence we have proven the following result:

Proposition 5.2.1. The Cauchy problem (5.7) has a unique global solution
φ ∈ C2((0,∞)). Moreover, this solution satisfies the bounds (5.9)–(5.11),
for all t ∈ [0, T ] and T > 0.

In order to end this section, we remark some facts concerning the asymp-
totic behavior of φ. Under additional conditions on f , we can ensure that
φ→ −∞ as t→∞. We do not do so since this circumstance arises naturally
when considering the global existence in time for the VNFP system. The
argument used for the VNFP system can be easily adapted in this situation.
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5.2.2 The linear Fokker-Planck equation

In this section, we assume φ ∈ C2((0,∞))∩W 1,∞
loc ([0,∞)) is given and denote

by D[φ] the diffusion matrix with entries

Dij [φ] =
e2φδij + pipj√
e2φ + |p|2

= (e2φδij + pipj)(p0)−1 ,

where p0 = (e2φ + |p|2)1/2. Now, we consider the Cauchy problem for the
linear Fokker-Planck equation

∂tf = e2φ∂pi(D
ij [φ]∂pjf + pif), t > 0, p ∈ R3 ,(5.12a)

f(0, p) = fin(p),(5.12b)

The purpose of this subsection is to prove the following result:

Proposition 5.2.2. Given 0 ≤ fin ∈ C2
c (R3), there exists a unique classical

solution of the Cauchy problem (5.12), with f > 0. Moreover, f satisfies

(5.13) ‖f(t)‖L1(R3) = ‖fin‖L1(R3) , ‖f(t)‖Lq(R3) ≤ Ceα(t)‖fin‖Lq(R3) ,

for all q > 1, where

(5.14) α(t) = C

∫ t

0
Qφ(s) ds , Qφ(t) = e2φ(t) + eφ(t) + (φ̇(t))+,

and (z)+ = min(0, z). Finally, for all γ ≥ 0, there exists a constant C > 0,
which depends only on γ, such that∫

R3

(p0)2γ
(
f + |∇pf |2

)
dp ≤ Ceα(t)

∫
R3

(p0)2γ
(
fin + |∇pfin|2

)
dp ,(5.15)

(5.16) ‖(p0)γ∇2
pf‖2L2 ≤ Ceα(t)

(
‖(p0)γ∇2

pfin‖2L2 +

∫ t

0
‖(p0)γ∇pf‖2L2 ds

)
.

Proof. We divide the proof in several steps. In order to prove existence,
we employ methods from the theory of stochastic differential equations and
diffusion processes developed in [11]. Our objective is to show that the
system

(5.17) dP = b(s, P ) ds+G(s, P ) · dW , P (t;x, t) = p .

admits a unique solution P (s;x, t) for any t ∈ [−T, 0] and t ≤ s ≤ 0. Here,
dW denotes the standard Wiener process, G(s, p) is the positive definite
matrix with entries

Gij =

√
2eφ̄(s)

(p0)1/2

(
eφ̄(s)δij +

pipj

eφ̄(s) + p0

)
, p0 =

√
e2φ̄(s) + |p|2 ,
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and the vector field b is given by

b = e2φ̄∂pj (D
ij [φ̄]) + e2φ̄pj .

According to the theory of stochastic differential equations, system (5.17)
has associated the following backward Kolmogorov equation

∂tf̄ + bi∂pi f̄ +
1

2
dij∂pi∂pj f̄ = 0, t < 0, p ∈ R3,(5.18a)

f̄(0, p) = fin(p),(5.18b)

with dij = GikGkj . Also, the Feynman-Kac formula ensures that

(5.19) f̄(t, p) = E[fin(P (0, p; t))]

is a candidate to be a classical positive solution of problem (5.18) in [−T, 0].
Then, we require to adhere our formulation in terms of the previous setting
as follows. For t < 0 and p ∈ R3, we define the functions

f̄(t, p) = e−3τ(−t)f(−t, p), φ̄(t) = φ(−t), τ(t) =

∫ t

0
e2φ(s) ds,

and multiply (5.12a) by the integral factor e−3τ(t) to transform the Cauchy
problem (5.12) into (5.18), where

bi(t, p) =
3e2φ̄

p0
pi + e2φ̄pi, dij(t, p) = 2e2φ̄Dij [φ̄] .

Notice that

e−2φ̄p0|p|4GilGlj = 2e2φ̄|p|4δij + 2pipj |p|2(eφ̄ − p0)2 + 4eφ̄pipj |p|2(p0 − eφ̄)

= 2(e2φ̄|p|4δij + pipj |p|4) = 2Dij [φ̄]|p|4p0 ,

and as a consequence, G is the unique square root of d. Next, we need to
find growth estimates on b, G and their first and second derivatives. To
achieve this, we will heavily use the fact that e2φ̄, |p|2 ≤ (p0)2 = e2φ̄ + |p|2.
Then, we see that

|b(t, p)|+ |G(t, p)| ≤ Ce2φ̄ + e
φ̄
2

(
Ceφ̄ + |p|

)
.

Now, we compute

∂pjb
i(t, p) =

3e2φ̄

(p0)3

(
δij(p0)2 − pipj

)
+ e2φ̄δij ,

∂pk∂pjb
i(t, p) = − 3e2φ̄

(p0)5

(
(δijpk + δikpj − δjkpi)(p0)2 + 3pkpipj

)
,
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and whence we see that for every i, j, k, the following bounds hold

|∂pjbi(t, p)| ≤ C
e2φ̄

(p0)3
((p0)2 + |p|2) + Ce2φ̄ ≤ C(eφ̄ + e2φ̄) ,

|∂pk∂pjbi(t, p)| ≤ C
|p|

(p0)3
((p0)2 + |p|2) ≤ C.

Similarly, we obtain

∂pkG
ij(t, p) =

eφ̄(p0)−5/2

√
2(eφ̄ + p0)2

[
2(p0)2(eφ̄ + p0)(δikp

j + δjkp
i)

−pkpipjeφ̄ − 3pkp
ipjp0 − eφ̄(eφ̄ + p0)2pkδ

ij
]
,

where we used

∂pk(δijeφ̄(eφ̄ + p0) + pipj) = δikpj + δjkpi + δijpk
eφ̄

p0
,

∂pk((p0)1/2(eφ̄ + p0)) = pk
(3p0 + eφ̄)

2(p0)3/2
.

Therefore, we have that for every i, j, k,

|∂pkG
ij(t, p)| ≤ C e

φ̄/2(p0)−2

(eφ̄ + p0)2

[
|p|
(
p0
)2 (

eφ̄ + p0
)

+ eφ̄|p|
(
eφ̄ + p0

)2
]

≤ Ceφ̄/2 .

As before, second derivatives can be bounded using similar estimates.

Finally, let T > 0 be fixed. Then, |b(t, p)| + |G(t, p)| ≤ CT (1 + |p|), and
the first and second derivatives of b and G with respect to p are uniformly
bounded for t ∈ [−T, 0]. These estimates are exactly those ones required to
apply [11, Th. 9.4.4] and conclude that (5.19) is a classical solution of (5.18).
From here, the existence and uniqueness property for solutions of (5.12) fol-
lows by transforming back into the original variables and by applying the
estimate that will be performed on ‖f(t)‖L2(R3) to the difference of two so-
lutions, for instance.

Next, we show that classical solutions satisfy the estimates (5.13). Let
ξ ∈ C∞c ([0,∞)) be a non-increasing function such that

ξ(r) =

{
1 if 0 ≤ r ≤ 1 ,

0 if r ≥ 2 ,
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and define the function ξn(p) = ξ( |p|n ), for p ∈ R3 and n ∈ N, with n ≥ 1.
Then, ξn ∈ C∞c (R3) is a cut-off function satisfying the following properties

ξn(p) =

{
1 if |p| ≤ n ,
0 if |p| ≥ 2n ,

which clearly implies that 0 ≤ ξn ≤ 1 . Also, we have that |∇pξn| ≤ C/n
and |∆pξn| ≤ C/n2. By a direct computation, we obtain

d

dt

∫
R3

ξnf
q dp =− q(q − 1)e2φ

∫
R3

ξnf
q−2Dij [φ]∂pif∂pjf dp

+ e2φ

∫
R3

f q
[
∂pj (D

ij [φ]∂piξn)− pi∂piξn
]
dp

+ 3(q − 1)e2φ

∫
R3

f qξndp ,(5.20)

for all q ≥ 1. By the positivity of D, the first term in the right side of (5.20)
is non-positive. From the properties of the cutoff function, the term in
square brackets in the last integral satisfies

[. . . ] ≤ CT
n
, for all t ∈ [0, T ] and all T > 0 .

Hence, using again the properties of the cut-off function and Gronwall’s
inequality, identity (5.20) is bounded as follows

‖f(t)‖Lq(R3) ≤ CT .

Substituting again in (5.20), we obtain the following inequalities

‖fin‖L1(R3) −
CT
n
≤ ‖f(t)‖L1(R3) ≤ ‖fin‖L1(R3) +

CT
n
,

‖f(t)‖Lq(R3) ≤ e
3

(q−1)
q

τ(t)‖fin‖Lq(R3) +
CT
n
,

which allow to conclude (5.13) by taking the limit n→∞. In order to prove
estimates (5.15)–(5.16), we present a formal proof; all the computations can
be rigorously made by introducing the cut-off function ξ as above.

Taking the time derivative of (e2φ+ |p|2)γf , integrating this quantity over
R3 and using equation (5.12a), we obtain

d

dt

∫
R3

(e2φ + |p|2)γ f dp = 2γe2φφ̇

∫
R3

(e2φ + |p|2)γ−1 f dp

+ e2φ

∫
R3

(e2φ + |p|2)γ ∂pi(D
ij [φ]∂pjf + pif) dp .
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In order to bound the right hand side of the previous identity, we perform
an integration by parts and use the following identity

pi∂pi [(e
2φ + |p|2)γ ] = 2γ|p|2(e2φ + |p|2)γ−1 > 0,

to see that

d

dt
‖(p0)2γf‖L1 ≤ C(φ̇)+

∫
R3

(p0)2γf dp− e2φ

∫
R3

pi∂pi [(p
0)2γ ] f dp

+ e2φ

∫
R3

∂pj
{
Dij [φ]∂pi [(p

0)2γ ]
}
f dp

≤ C(φ̇)+‖(p0)2γf‖L1 + e2φ

∫
R3

∂pj
{
Dij [φ]∂pi [(p

0)2γ ]
}
f dp .

Here, (·)+ denotes the positive part. The bracketed portion ∂pj{...} of the
second term in the above inequality requires to recall that ∂pjD

ij [φ] = 3pi/p0

and the next computation

∂pj∂pi [(e
2φ + |p|2)γ ] = 4γ(γ − 1)pipj(e2φ + |p|2)γ−2 + 2γδij(e2φ + |p|2)γ−1 ,

so we can obtain the bound

∂pj{. . . } = 6γ(e2φ + |p|2)γ−1/2 + 4γ(γ − 1/2)(e2φ + |p|2)γ−3/2|p|2

≤ Ce−φ(e2φ + |p|2)γ .

From the previous inequality, we find

d

dt

∫
R3

(e2φ + |p|2)γ f dp ≤ C(eφ + (φ̇)+)

∫
R3

(e2φ + |p|2)γ f dp ,

which again by Gronwall’s inequality the following estimate holds∫
R3

(e2φ + |p|2)γ f dp ≤ C exp

(
C

∫ t

0
Qφ(s) ds

)
.

As to the estimate on ∇pf , we recall that (p0)2 = e2φ + |p|2 and compute

d

dt

∫
R3

(p0)2γ |∇pf |2 dp = 2γe2φφ̇

∫
R3

(p0)2(γ−1)|∇pf |2 dp

+ 5e2φ

∫
R3

(p0)2γ |∇pf |2 dp

− e2φ

∫
R3

pi∂pi [(p
0)2γ ]|∇pf |2 dp

+ 2e2φ

∫
R3

(p0)2γ∇pf · ∇p(∂pi(Dij [φ]∂pjf)) dp︸ ︷︷ ︸
(∗)

.(5.21)
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Similarly as in the previous case, we will be able to show that

d

dt

∫
R3

(p0)2γ |∇pf |2 dp ≤ C(e2φ + eφ + (φ̇)+)

∫
R3

(p0)2γ |∇pf |2 dp,

since we already know how to handle the first three terms in (5.21) and after
bounding the remaining one, an application of Gronwall’s inequality will lead
us to complete the proof of (5.15). Now, we estimate (∗) in (5.21). To do so,
we first integrate by parts in the variable pi and then, after straightforward
calculations, we obtain

(∗) = I1 + I2 + I3 + I4 ,

where

I1 = −2e2φ

∫
R3

(e2φ + |p|2)γDij [φ]∂pi∇pf · ∂pj∇pf dp ,

I2 = −4γe2φ

∫
R3

(e2φ + |p|2)γAjk[φ]∂pjf ∂pkf dp ,

I3 = 2γe2φ

∫
R3

∇p · (p (e2φ + |p|2)γ−1/2)|∇pf |2 dp ,

I4 = −2e2φ

∫
R3

(e2φ + |p|2)γ∂pi∂pkf(∂pkD
ij [φ])∂pjf dp ,

and

Ajk[φ] =
pi∂pkD

ij

(p0)2
=
pi(p

iδjk + pjδik)

(e2φ + |p|2)3/2
− pipkD

ij

(e2φ + |p|2)2
= δjk

|p|2

(p0)3
.(5.22)

By the positivity of D and A, we have I1 + I2 ≤ 0. In I3, we compute

∇p · (p (p0)2γ−1) = 3(p0)2γ−1 + (2γ − 1)(p0)2γ−3|p|2 ≤ Ce−φ(p0)2γ ,

and thus the integral I3 is bounded by

I3 ≤ Ceφ
∫
R3

(e2φ + |p|2)γ |∇pf |2 dp .

The integral I4 requires some further work. Integrating by parts with respect
to the pk derivative in the ∂pi∂pkf term, we obtain

I4 = 2e2φ

∫
R3

(e2φ + |p|2)γ(∆pD
ij [φ])∂pif∂pjf

+ 4γe2φ

∫
R3

(e2φ + |p|2)γBij∂pif ∂pjf

+ 2e2φ

∫
R3

(e2φ + |p|2)γ∂pif(∂pkD
ij)∂pj∂pkf dp ,
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where

Bij =
p · ∇pDij [φ]

(e2φ + |p|2)
=

2pipj

(e2φ + |p|2)3/2
− |p|2

(e2φ + |p|2)2
Dij [φ] ,(5.23)

∆pD
ij [φ] =

1√
e2φ + |p|2

(
2δij − 4pipj

e2φ + |p|2

)
− 3e2φ

(e2φ + |p|2)2
Dij [φ] .

By the symmetry of D, the last integral is equal to −I4 and thus we have
obtained

I4 = I4A + I4B,

where

I4A = e2φ

∫
R3

(e2φ + |p|2)γ(∆pD
ij [φ])∂pif∂pjf dp ,

I4B = 2γe2φ

∫
R3

(e2φ + |p|2)γBij∂pif ∂pjf dp .

Due to the positivity of Dij and the Cauchy-Schwarz inequality, it is
straightforward to obtain the bounds

(5.24) Bijxixj ≤ Ce−φ|x|2, ∆pD
ij [φ]xixj ≤ Ce−φ|x|2 ,

for all x ∈ R3, and as a consequence, we have

I4 ≤ Ceφ
∫
R3

(e2φ + |p|2)γ |∇pf |2 dp .

Collecting all the above estimates, we find that the term (∗) in (5.21)
satisfies

(5.25) (∗) ≤ Ceφ
∫
R3

(e2φ + |p|2)γ |∇pf |2 dp ,

which is the remaining bound to complete the proof of (5.15).

To prove (5.16), we use that gk = ∂pkf satisfies, for all k = 1, 2, 3,

∂tgk = e2φ∂pi(D
ij∂pjgk + pigk) + e2φgk + e2φ∂pi [(∂pkD

ij)gj ]

= e2φFP[gk] + e2φgk + e2φ∂pi [(∂pkD
ij)gj ] ,

and thus

d

dt

∫
R3

(p0)2γ∇pgk · ∇pgk = 2γe2φφ̇

∫
R3

(e2φ + |p|2)γ−1∇pgk · ∇pgk dp

+ 2e2φ

∫
R3

(p0)2γ∇pgk · ∇p (FP[gk] + gk) dp

+ 2e2φ

∫
R3

(p0)2γ∇pgk · ∇p{∂pi [(∂pkDij)gj ]} dp

= II + III + IV .(5.26)
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The term II + III can be treated in a similar manner as (∗) in (5.21),
with f replaced by gk, and thus by (5.25), it satisfies the bound

II + III ≤ C((φ̇)+ + eφ + e2φ)

∫
R3

(e2φ + |p|2)γ ∇pgk · ∇pgk dp

≤ C((φ̇)+ + eφ + e2φ)

∫
R3

(e2φ + |p|2)γ |∇2
pf |2 dp .(5.27)

Expanding the term IV in (5.26) we obtain

IV = 2e2φ

∫
R3

(e2φ + |p|2)γ ∇pgk · ∇p(∂pi∂pkDij)gj dp

+ 2e2φ

∫
R3

(e2φ + |p|2)γ(∂pi∂pkD
ij)∇pgk · ∇pgj dp

+ 2e2φ

∫
R3

(e2φ + |p|2)γ ∇pgk · ∇p(∂pkDij)∂pigj dp

+ 2e2φ

∫
R3

(e2φ + |p|2)γ(∂pkD
ij)∇pgk · ∇p∂pigj dp

= IV1 + IV2 + IV3 + IV4 .(5.28)

In IV4, we integrate by parts in the pi derivative acting on gj and obtain

IV4 = −4γe2φ

∫
R3

(e2φ + |p|2)γ−1(pi∂pkD
ij)∇pgk · ∇pgj dp

− 2e2φ

∫
R3

(e2φ + |p|2)γ(∂pi∂pkD
ij)∇pgk · ∇pgj dp(5.29)

− 2e2φ

∫
R3

(e2φ + |p|2)γ(∂pkD
ij)∇p∂pigk · ∇pgj dp

= IV4A + IV4B + IV4C .(5.30)

Note that IV2 + IV4B = 0. In IV4C we integrate by parts in the pk

derivative within gk = ∂pkf , so that

IV4C = 4γe2φ

∫
R3

(e2φ + |p|2)γ−1(pk∂pkD
ij)∇pgi · ∇pgj dp

+ 2e2φ

∫
R3

(e2φ + |p|2)γ(∆pD
ij)∇pgi · ∇pgj dp

+ 2e2φ

∫
R3

(e2φ + |p|2)γ(∂pkD
ij)∇pgi · ∇p∂pjgk dp.

By the symmetry of D, the third term in the right hand side of the latter
equation equals −IV4C , hence

IV4C = e2φ

∫
R3

(e2φ + |p|2)γ(∆pD
ij)∇pgi · ∇pgj

+ 2γe2φ

∫
R3

(e2φ + |p|2)γ−1(pk∂pkD
ij)∇pgi · ∇pgj dp.(5.31)
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Substituting (5.31) into (5.30) and then, returning to (5.28) we obtain

IV = 2e2φ

∫
R3

(e2φ + |p|2)γ∇p(∂pi∂pkDij) · (∇pgk)gj dp

+ 2e2φ

∫
R3

(e2φ + |p|2)γ∇p(∂pkDij) · ∇pgk∂pigj dp

+ e2φ

∫
R3

(e2φ + |p|2)γ(∆pD
ij)∇pgi · ∇pgj dp

− 4γe2φ

∫
R3

(e2φ + |p|2)γAjk∇pg
k · ∇pgj dp

+ 2γe2φ

∫
R3

(e2φ + |p|2)γBij∇pgi · ∇pgj dp,(5.32)

where Ajk and Bij are given by (5.22), (5.23). Recall that A is positive
definite and that the estimates (5.24) hold. Furthermore, using the following
estimates

(5.33) |∂pk∂plDij | ≤ Ce−φ, |∇p(∂pi∂pkDij)| ≤ Ce−2φ ,

we see that equation (5.32) entails

IV ≤ C
∫
R3

(p0)2γ |∇pgk| |gj | dp+ Ceφ
∫
R3

(p0)2γ(|∇pgk|+ |∇pgi|)|∇pgj | dp

≤ C
(∫

R3

(e2φ + |p|2)γ |∇2
pf |2 dp

)1/2(∫
R3

(e2φ + |p|2)γ |∇pf |2 dp
)1/2

+ eφ
∫
R3

(e2φ + |p|2)γ |∇2
pf |2 dp,

(5.34)

where we used Hölder’s inequality in the last step. Now, we substitute the
bounds (5.27) and (5.34) into (5.26) in order to obtain

d

dt

∫
R3

(p0)2γ |∇2
pf |2 dp ≤ C(e2φ + eφ + (φ̇)+)

∫
R3

(p0)2γ |∇2
pf |2 dp

+ C

(∫
R3

(p0)2γ |∇2
pf |2 dp

) 1
2
(∫

R3

(p0)2γ |∇pf |2 dp
) 1

2

,

and therefore

d

dt

(∫
R3

(e2φ + |p|2)γ |∇2
pf |2 dp

) 1
2

≤ CQφ(s)

(∫
R3

(e2φ + |p|2)γ |∇2
pf |2 dp

) 1
2

+ C

(∫
R3

(e2φ + |p|2)γ |∇pf |2 dp
) 1

2

,
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which by Gronwall’s inequality gives (5.16). To conclude the proof, we show
the validity of estimates (5.33). For our convenience, we recall that the
diffusion matrix is given by

Dij [φ] =
e2φδij + pipj√
e2φ + |p|2

,

which clearly is bounded by p0 =
√
e2φ + |p|2. The first derivatives of D are

given by

∂pkD
ij =

δikp
j + δjkp

i√
e2φ + |p|2

−
(pk/p

0)(δikp
j + δjkp

i)

e2φ + |p|2

=
δikp

j + δjkp
i√

e2φ + |p|2
− pkD

ij

e2φ + |p|2
,(5.35)

and therefore,

∂pkD
ij ≤ C |p|

p0
+
|p|2

(p0)2
≤ C ,

where we used the boundedness property of D. Moreover

∂pk∂plD
ij =

δikδ
j
l + δjkδ

i
l√

e2φ + |p|2
−

(δikp
j + δjkp

i)pl

(e2φ + |p|2)3/2

−
∂plD

ijpk

e2φ + |p|2
− Dijδkl
e2φ + |p|2

+
2Dijpkpl

(e2φ + |p|2)2
,

and each term in the right hand side is bounded in modulus by Ce−φ, which
proves the first estimate in (5.33). Furthermore

∂pl(∂pk∂piD
ij) = −3

δjkpl + δjlpk + δklp
j

(e2φ + |p|2)3/2
− 9

pjpkpl
(e2φ + |p|3)5/2

,

and each term in the right hand side is bounded in modulus by Ce−2φ, which
proves the second estimate in (5.33).

We would like to finish this section by making some comments:

• The above proof can be used to show the existence and uniqueness of
solutions of (5.12a) without friction with some slight modifications.

• It would be interesting if some improvements could be made while
estimating (5.21). For instance, the use of a lower derivative bound
instead of (5.33) would allow us to obtain a better regularity while
dealing with the long time behavior of solutions of the VNFP system.
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• As we mentioned in the introduction, there a no analytical results
that cover our former situation and it does not seem likely that there
is an easy way to develop one without the use of stochastic methods.
That is why the importance of the previous result. In fact, in order
to cover different growth conditions on the coefficients or considering
coefficients with singularities in unbounded domains, it appears more
reasonable to make use of stochastic tools rather than the analytical
ones. A good example of this situation can be found in [125].

5.2.3 Existence

In this section, we prove the existence of solutions for the VNFP system
(5.1)–(5.2). The procedure is quite standard. First, we define an iterative
scheme using the linear Fokker-Planck equation (5.12) and the Nordström
equation (5.7) with regular initial data, since we can use a density argument
to obtain the general result in our context. Next, we employ properties
(5.11) and (5.13) in order to obtain weak convergence of the sequence de-
fined in the previous step and then, a compactness argument will be applied
to show that this sequence will converge to a solution of VNFP system in
L2(R3)×C1(0, T ). Finally, we will also prove that the mass of f is conserved
from the weak convergence in L1 of the sequence.

Let 0 ≤ fin ∈ C2
c (R3) and T > 0 be given. We consider the sequence

(fn, φn) which will be defined iteratively as follows:

• For n = 0, we set (f0, φ0) = (fin, φin).

• Assuming that the pair (fn, φn) is given, we define (fn+1, φn+1) as the
unique solution of the system

∂tfn+1 = e2φn∂pi(D
ij [φn]∂pjfn+1 + pifn+1), fn+1(0, p) = fin(p),

φ̈n+1 = −H(t, φn+1, fn+1), (φn+1(0), φ̇n+1(0)) = (φin, ψin),

where

H(t, φn+1, fn+1) = e2φn+1

∫
R3

fn+1√
e2φn+1 + |p|2

dp.

It follows by an induction argument and propositions 5.2.1–5.2.2 that the
sequence (fn, φn) consists of smooth functions. Moreover, by (5.13),

‖fn(t)‖L1(R3) = ‖fin‖L1(R3), ‖fn(t)‖L2(R3) ≤ Ceα(T )‖fin‖L2(R3),

and therefore the function Kfn(t) given by (5.10) is equibounded along the
sequence fn. Thus, we have by (5.11) that

‖φn‖W 2,∞((0,T )) ≤ CT .
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We infer that the function Qφn(t) given by (5.14) is equibounded along
the sequence φn. Hence, using (5.15) we see that

‖∇pfn(t)‖L2(R3) +

∫
R3

|p|fn(t) dp ≤ CT , for all t ∈ [0, T ].

It follows that there exist

f ∈ L∞((0, T );H1(R3)), φ ∈W 2,∞((0, T )),

and a subsequence, still denoted by (fn, φn), such that

fn ⇀ f in L2((0, T )× R3), φn
∗
⇀ φ in W 2,∞(0, T ), as n→∞.

By a standard diagonal sequence argument, we can choose (fn, φn) to be
independent of T > 0. Moreover, we also have

fn(t, ·) ⇀ f(t, ·) in H1(R3) for all t ∈ [0, T ].

By compactness, we may extract a subsequence fn(t, ·) and (φn, φ̇n) such
that converge strongly in L2(R3) and uniformly on [0, T ], respectively. This
convergence is strong enough to pass to the limit in the equations and con-
clude that (f, φ) is a solution of the spatially homogeneous VNFP system
(5.1)–(5.2). Also, we deduce that f ∈ L∞

(
(0, T ];L1(R3) ∩ L2(R3)

)
and

φ ∈ C1. Next, we show that fn(t, ·) ⇀ f(t, ·) in L1(R3) (up to subse-
quences) which in particular implies the mass conservation of f . First, it is
immediate that fn is equibounded, due to mass conservation. Also, if δ > 0
and Ω ⊂ R3 is any measurable set, with |Ω| < δ, we have∫

Ω
fn dp ≤ ‖fn‖L2(R3)(δ)

1/2 ,

and as a consequence, the sequence does not concentrate due to boundedness
of fn in L2(R3). Moreover, the sequence is tight, because |p| fn is bounded
in L1(R3) and for every ball centered at the origin of radius r > 0, we have∫

R3/Br(0)
fn dp ≤

1

r

∫
R3/Br(0)

|p|fn dp.

Then, the Dunford-Pettis theorem ensures the weak convergence in L1(R3)
of the sequence fn(t, ·) for t ∈ (0, T ].

5.2.4 Uniform estimates and asymptotic behavior of the field

In this section, we extend our previous results to the case where t ∈ (0,∞)
uniformly, which will imply that

|p|f ∈ L∞
(
(0,∞);L1(R3)

)
f,∇pf ∈ L∞

(
(0,∞);L2(R2)

)
.
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Moreover, we establish estimate (5.3) and prove that (5.6) holds when the
initial data satisfy (5.5). The latter is an immediate consequence of showing
that φ(t) → −∞ as t → ∞, since the latter is necessary in order to obtain
α(t) <∞ in (5.14) for all t > 0 (α(t) is increasing). In fact, we have that φ̇
is decreasing which implies that the limit

φ̇∞ = lim
t→∞

φ̇(t)

exists. The following lemma describes the asymptotic behavior of φ̇(t), which
in particular ensures that lim

t→∞
φ̇(t) = −∞ can not occur:

Lemma 5.2.1. Let (f, φ) be a solution of (5.1)–(5.2). Then, under the
same assumptions as in Theorem 5.2.1, we have φ̇∞ < 0.

Proof. Let

M = ‖f(t)‖L1(R3) = ‖fin‖L1(R3), E(t) =

∫
f
√
e2φ + |p|2 dp+

1

2
φ̇2 ,

be the mass and the energy of the solution constructed in Section 5.2.3.
Recall that E(t) <∞ due to (5.15). By Hölder’s inequality,

M2 ≤

(∫
R3

f√
e2φ + |p|2

dp

)(∫
R3

f
√
e2φ + |p|2 dp

)

≤

(∫
R3

f√
e2φ + |p|2

dp

)
E(t) .(5.36)

Now, by a direct formal computation we have

Ė(t) =

∫
R3

∂tf
√
e2φ + |p|2 dp+ φ̇φ̈+

∫
R3

fe2φφ̇√
e2φ + |p|2

dp

= 3e2φ

∫
R3

f dp−
∫
R3

e2φ|p|2f√
e2φ + |p|2

dp

≤ 3e2φ

∫
R3

f dp ,

whence

(5.37) E(t) ≤ E(0) + 3M

∫ t

0
e2φ(s) ds.

The previous inequality holds for the solution constructed in the previous
section, as it follows by applying the above formal calculation to the sequence
(fn, φn) and then passing to the (strong) limit as n → ∞. Using (5.37)
in (5.36), we arrive at∫

R3

f√
e2φ + |p|2

dp ≥ M2

E(0) + 3M
∫ t

0 e
2φ(s)ds

.
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Using the previous inequality yields

φ̈ = −e2φ

∫
f√

e2φ + |p|2
dp ≤ − M2e2φ

E(0) + 3M
∫ t

0 e
2φ(s)ds

= −M
3

d

dt
log

[
E(0) + 3M

∫ t

0
e2φ(s)ds

]
,

which by an integration in time, the following bound for φ̇ is obtained

(5.38) φ̇(t) ≤ φ̇(0)− M

3
log

[
E(0) + 3M

∫ t

0
e2φ(s)ds

]
+
M

3
log E(0).

If φ̇∞ ≥ 0, then φ̇ is positive for all t ∈ [0,∞), since φ̇ is decreasing by the
fact φ̈ < 0. Hence the right side of (5.38) tends to −∞ as t→∞ since the
integral inside the log function diverges to infinity, which contradicts our
initial assumption. Thus φ̇∞ < 0 must hold.

The previous lemma easily yields the desired estimates. In fact, since
φ̇∞ < 0 and φ̇ is decreasing, there exists t0 ≥ 0 such that φ̇(t) < φ̇(t0) < 0,
for all t ≥ t0. Hence

φ(t) = φ(t0) +

∫ t

t0

φ̇(s) ds ≤
(
φ(t0) + |φ̇(t0)|t0

)
− |φ̇(t0)|t,

and therefore, φ(t) ≤ C − β t holds for some β,C > 0. Using this fact
within (5.9), we obtain (5.3). Finally, since Qφ(t) = e2φ(t) +eφ(t) +(φ̇(t))+ =
e2φ(t) + eφ(t), for t ≥ t0, we have∫ ∞

0
Qφ(t) dt ≤ C

(
1 +

∫ ∞
t0

e−β t dt

)
< C,

and then, estimates |p|f, |∇pf |2 ∈ L∞
(
(0,∞);L1(R3)

)
and (5.6) follows

from (5.15)–(5.16).

5.2.5 Non-vanishing property

Now, we proceed to show that the asymptotic behavior in time of the density
function f in the VNFP system is non-trivial. Since f is uniformly bounded
in L1(R3) ∩ L2(R3), estimate (5.4) will follow if we are able to prove the
following bound

(5.39) ‖f(t)‖Lq(R3) ≥ C, for some q ∈ (1, 2).
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The previous lower bound condition is known as the p, q, r-Theorem, see
[106] for details. To establish (5.39), we first note that for all R > 0

0 < M =

∫
R3

f dp ≤
∫
|p|≤R

f dp+
1

R

∫
|p|≥R

|p|f dp

≤ (4π)
1− 1

q ‖f(t)‖Lq(R3)R
3− 3

q +
1

R

∫
R3

|p|f dp.

To optimize the previous inequality, we choose

R =

[
(4π)

1
q
−1 ∫

R3 |p|f dp
(3− 3

q )‖f(t)‖Lq(R3)

] q
4q−3

,

which allows to obtain the estimate

M ≤ C‖f(t)‖
q

4q−3

Lq(R3)

(∫
R3

|p|f dp
) 3(q−1)

4q−3

.

Since
∫
R3 |p|f dp ≤ C, identity (5.39) follows.

5.2.6 Uniqueness

The purpose of this section is to prove the uniqueness of solutions for the
VNFP system stated in Theorem 5.2.1. Due to the nonlinear character of
the system, conditions (5.6) and δ > 1/2 are sufficient to ensure that at most
one solution exist. It is unclear if the latter conditions are also necessary,
but we hope that when the proof is presented, the difficulty to use weaker
conditions can become evident. We will proceed by deriving a homogenous
Gronwall’s type inequality on the difference of two solutions with the same
initial data. For brevity, we limit ourselves to a formal derivation assuming
all the regularity of solutions for the forthcoming computations. However,
after regularizing with a mollifying test function ξ ∈ C∞c ((0, T )×R3) of the
form ξ(t, p) = θ(t)µ(p), for an appropriate choice of θ and µ, one may work
with only the proven regularity of solutions and make the proof completely
rigorous (an example of an application of this argument can be found for
instance in [18]).

Let δ > 1/2 be given and (f1, φ1), (f2, φ2), be two regular solutions of the
VNFP system (5.1)–(5.2) with the same initial data. Define h = f1−f2 and
ψ = φ1 − φ2, for simplicity on our calculations. First, we compute the time
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evolution of h as follows

1

2

d

dt

∫
R3

(1 + |p|2)δh2dp = e2φ1

∫
R3

(1 + |p|2)δh∂pi(D
ij [φ1]∂pjh+ pih) dp

+

∫
R3

∂pi
[
(e2φ1Dij [φ1]− e2φ2Dij [φ2])∂pjf2

]
× (1 + |p|2)δh dp

+ (e2φ1 − e2φ2)

∫
R3

(1 + |p|2)δh∂pi(p
if2) dp

= I1 + I2 + I3 .

Integrating by parts and using the positivity of D, the first integral in the
above identity satisfies

I1

e2φ1
≤ 3

2

∫
R3

(1 + |p|2)δh2 dp+ δ

∫
R3

∂pj
[
(1 + |p|2)δ−1piD

ij [φ1]
]
h2 dp .

Using the properties of Dij [φ1], we notice that

∂pj
[
(1 + |p|2)δ−1piD

ij [φ1]
]

= ∂pj

[
(1 + |p|2)δ−1pj

√
e2φ1 + |p|2

]
≤ (δ − 1)|p|2(1 + |p|2)δ−2(e2φ1 + |p|2)√

e2φ1 + |p|2

+
4(1 + |p|2)δ−1(e2φ1 + |p|2)√

e2φ1 + |p|2

≤ CT
(1 + |p|2)δ

eφ1
,

and as a consequence, we are able to find the following bound

I1 ≤ CT ‖(1 + |p|2)
δ
2 (f1 − f2)(t)‖2L2(R3).

In order to bound the second integral I2, we require the bounds

|e2φ1Dij [φ1]− e2φ2Dij [φ2]| ≤ CT
√

1 + |p|2 |ψ| ,(5.40) ∣∣∣∂pi (e2φ1Dij [φ1]− e2φ2Dij [φ2]
)∣∣∣ ≤ CT |ψ| ,(5.41)

and Hölder’s inequality. Then, we see that

I2 ≤ CT |ψ|
∫
R3

(1 + |p|2)δ|h|
(
|∇pf2|+

√
1 + |p|2|∇2

pf2|
)
dp

≤ CT |ψ|
(∫

R3

(1 + |p|2)δh2 dp

)1/2

×

[(∫
R3

(1 + |p|2)δ|∇pf2|2 dp
)1/2

+

(∫
R3

(1 + |p|2)δ+1|∇2
pf2|2 dp

)1/2
]

≤ CT |ψ| · ‖(1 + |p|2)
δ
2h(t)‖L2(R3) ≤ CT

(
|ψ|2 + ‖(1 + |p|2)

δ
2h(t)‖2L2(R3)

)
,
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where we used (5.6) for the term in square brackets. To prove inequalities
(5.40) and (5.41), we use (5.35), straightforward estimates and the Mean
Value Theorem as follows. First, we calculate and bound

∂pi
(
e2φ1Dij [φ1]− e2φ2Dij [φ2]

)
= (e2φ1 − e2φ2)∂pi

(
Dij [φ1]

)
+ e2φ2∂pi

(
Dij [φ1]−Dij [φ2]

)
≤ |e2φ1 − e2φ2 | 3|p|√

e2φ1 + |p|2

+ e2φ2

∣∣∣∣∣ 3pj√
e2φ1 + |p|2

− 3pj√
e2φ2 + |p|2

∣∣∣∣∣
≤ C|e2φ1 − e2φ2 | ,

where we used∣∣∣∣∣ 1√
e2φ1 + |p|2

− 1√
e2φ2 + |p|2

∣∣∣∣∣ ≤ |e2φ1 − e2φ2 |(
√
e2φ2 + |p|2

√
e2φ1 + |p|2)−1√

e2φ1 + |p|2 +
√
e2φ2 + |p|2

≤ |e2φ1 − e2φ2 |(|p|
√
e2φ2 + |p|2)−1√
e2φ2 + |p|2

≤ |e2φ1 − e2φ2 |(|p|e2φ2)−1 ,

since
√
e2φ1 + |p|2 +

√
e2φ2 + |p|2 ≥

√
e2φk + |p|2 ≥ |p|, eφk , for k = 1, 2,

and (5.41) is proved. Next, we consider the function L(x) = e2xDij [x] and
compute

L′(x) = 2(e2xδij + pipj)
e2x

p0
+
[
2δij(p0)2 − (e2xδij + pipj)

] e4x

(p0)3
.

Thus, for all bounded x

|L′(x)| ≤ C(p0)2 e
2x

p0
+ C(p0)2 e4x

(p0)3
≤ Cp0e2x ≤ C(1 + |p|) .

For the last integral,

I3 ≤ |e2φ1 − e2φ2 |
∫
R3

(1 + |p|2)δ(3|h||f2|+ |h||p||∇f2|) dp

≤ CT |ψ|‖(1 + |p|2)
δ
2h(t)‖L2(R3)

×
(
‖(1 + |p|2)

δ
2 f2(t)‖L2(R3) + ‖(1 + |p|2)

δ+1
2 ∇f2(t)‖L2(R3)

)
≤ CT

(
|ψ|2 + ‖(1 + |p|2)

δ
2h(t)‖2L2(R3)

)
.

Combining I1, I2 and I3, we have the bound

‖(1+ |p|2)
δ
2h(t)‖2L2(R3) ≤ CT

(∫ t

0
‖(1 + |p|2)

δ
2h(s)‖2L2(R3) ds+ ‖ψ‖2L∞(0,t)

)
.
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Recalling the definitions of h, ψ, and using Gronwall’s inequality in the
previous inequality, we obtain

(5.42) ‖(1 + |p|2)
δ
2 (f1 − f2)(t)‖L2(R3) ≤ CT ‖φ1 − φ2‖L∞((0,t)).

Finally, we compute the time evolution of the difference φ1 − φ2 and
integrate it twice to obtain

φ1 − φ2 = −
∫ t

0

∫ s

0

∫
R3

(
f1e

2φ1√
e2φ1 + |p|2

− f2e
2φ2√

e2φ2 + |p|2

)
dp dτ ds

= −
∫ t

0

∫ s

0

∫
R3

f1

(
e2φ1√

e2φ1 + |p|2
− e2φ2√

e2φ2 + |p|2

)
dp dτ ds

−
∫ t

0

∫ s

0

∫
R3

e2φ2√
e2φ2 + |p|2

(f1 − f2) dp dτ ds

= I4 + I5.

In the first integral, we simply use the Mean Value Theorem so that∣∣∣∣∣ e2φ1√
e2φ1 + |p|2

− e2φ2√
e2φ2 + |p|2

∣∣∣∣∣ ≤ CT |φ1 − φ2|.

Next, we use the fact f ∈ L∞((0, T );L1(R3)) and see that we are able to
estimate I4 as follows

I4 ≤ CT
∫ t

0
‖φ1 − φ2‖L∞((0,s)) ds.

For I5, we use Hölder’s inequality, so that∫
R3

h√
e2φ2 + |p|2

dp =

∫
R3

(e2φ2 + |p|2)−
1+δ

2

(
h(e2φ2 + |p|2)

δ
2

)
dp

≤
(∫

R3

(e2φ2 + |p|2)−(1+δ) dp

) 1
2

‖(e2φ2 + |p|2)
δ
2h(t)‖L2

≤ CT ‖(1 + |p|2)
δ
2h(t)‖L2(R3),

where we used δ > 1/2 in order to have a finite term in the second line.
Hence, recalling the definition of ψ = φ1 − φ2 and collecting the estimates
obtained for I4 and I5, we find the following bound

(5.43) |ψ(t)| ≤ CT
∫ t

0

(
‖ψ‖L∞((0,s)) + sup

τ∈(0,s)
‖(1 + |p|2)

δ
2h(τ)‖L2(R3)

)
ds.

Finally, using (5.42) within (5.43) we have that

‖φ1 − φ2‖L∞((0,t)) ≤ CT
∫ t

0
‖φ1 − φ2‖L∞((0,s)) ds ,

holds for all t ∈ [0, T ) and conclude that φ1 = φ2 and f1 = f2 a.e. on
[0, T ]× R3, for all T > 0 again by Gronwall’s inequality.
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5.3 The ultra-relativistic case

In this section, we devote our attention to the long time behavior of solutions
of the ultra-relativistic Fokker-Planck equation associated to the relativis-
tic model considered in the previous section. The main properties of the
gravitational potential φ that are required in the forthcoming analysis are
smoothness of φ and

lim
t→+∞

φ(t) = −∞ ,

∫ ∞

0
e2φ(t) dt <∞ ,

which also holds for solutions of the VNFP system. In order to achieve this
goal, we first consider a reduced equation which arises by setting φ ≡ −∞,
or e2φ ≡ 0 within the diffusion matrix D[φ]. This is motivated by the pre-
vious result in which we found that e2φ(t) → 0 as t → ∞ for solutions of
VNFP, and hence one expects the asymptotic behavior of the density f to
mimic that of a solution to the reduced equation. Unfortunately, we are not
able to prove this conjecture, but we think the contents in this section might
lead to obtain the result in the future.

We begin this section by investigating the existence problem of solutions
for the ultra-relativistic Fokker-Planck equation (URFP)

(5.44) ∂tg = ∂pi
(
Dij
∞∂pjg

)
, t > 0, p ∈ R3,

where

Dij
∞ = lim

φ→−∞
Dij [φ] = lim

φ→−∞

e2φδij + pipj√
e2φ + |p|2

=
pipj

|p|
.

We will see that for any given initial datum in an adequate functional
space, equation (5.44) launches a unique solution. Before we accurately
state and prove this result, we prefer to roughly justify why this equation
is an ultra-relativistic model for the relativistic Fokker-Planck equation in
which the diffusion matrix is given by Dij [φ] in (5.44) instead of Dij

∞, i.e.,

(5.45) ∂tg = ∂pi
(
Dij [φ]∂pjg

)
, t > 0, p ∈ R3.

Given a particle with mass m, we denote by c the speed of light and its
relativistic energy by E =

√
(pc)2 + (mc2)2, where pc is the momentum of

the particle. We say that the particle is ultra-relativistic when its relativistic
energy can be approximated by its momentum, i.e., E ∼ pc. The latter can
occur when either the mass is very small in comparison with its momentum
or pc � mc2. In our present situation, the relativistic microscopic energy
p0 =

√
e2φ + |p|2 approaches |p| as time goes to infinity, where we have set

m = c = 1. From a formal perspective, one expects that solutions of this
equation are similar to the ones of relativistic Fokker-Planck equation (5.45)
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for large times due to the limiting behavior of the matrix D. Therefore,
giving an explicit representation of solutions for equation (5.44) could be
useful to compare both models. In fact, we will see that this representation
can be written in terms of the αth modified Bessel function of the first kind
Iα[x], see [1, Eq. 9.6.19, pag. 376], defined by

Iα[x] =
1

π

∫ π

0
ex cos θ cos(αθ) dθ, α ∈ N .(5.46)

Now, we are ready to state and prove our first result of this section which
ensures the existence of a unique solution for equation (5.44) under suitable
conditions:

Proposition 5.3.1. Let gin ∈ L1(R3) be given and expressed in spherical
coordinates as gin = gin(r, ω), where r > 0 and ω = p/r ∈ S2. Then, there
exists a unique global solution g of (5.44) which satisfies g(0, p) = gin(p)
and g ∈ L∞((0,∞);L1(R3)), where

(5.47) g(t, r, ω) =
e−

r
t

tr

∫ ∞
0

gin(z, ω)ze−
z
t I2

[
2

√
rz

t

]
dz,

and I2[x] is given by (5.46). Moreover, if gin ≥ 0 and gin ∈ Lγ(R3), then
g(t, p) = g(t, r, ω) ≥ 0 and g(t, ·) ∈ Lγ(R3). Finally, the following estimate
holds

(5.48) ‖g(t)‖Lγ(R3) ≤ ‖gin‖Lγ(R3),

for any γ ∈ [1,∞], with equality for γ = 1.

Proof. First, let us consider smooth initial data, since we are able to use a
standard approximation procedure to obtain the general result. Next, we
derive some properties of (5.44). Notice that the operator

(5.49) Lu = ∂pi

(
pipj

|p|
∂pju

)
is purely radial, i.e., it is invariant under rotations. In order to prove this,
we consider an orthogonal matrix Q = [qij ] and define the functions v and
w which are related by the identity v(p) = w(z), where z = Qp. By the
chain rule, we can compute the following derivatives

∂piv(t, p) = qki∂zkw(t, Qp),

and combining this fact with |z| = |Qp| = |p|, we find that

Lv = 3
pi

|p|
∂piv +

pipj

|p|
∂pi∂pjv = 3

qki p
i

|p|
∂zkw +

qki p
iqlj p

j

|p|
∂zk∂zlw

= 3
zk

|z|
∂zkw +

zkzl

|z|
∂zk∂zlw = Lw.
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The previous argument implies that the angular variables can be treated
as constant parameters, i.e., fixing ω ∈ S2 and defining vωin(r) = gin(r, ω), it
is enough to find a solution of equation (5.49) in terms of v(p) = vω(t, r).
To achieve this purpose, we take into account the following quantities

∂r

∂pj
=
pj
r
,

∂v

∂pj
= ∂rv

ω pj
r
,

∂2v

∂pi∂pj
= ∂2

rv
ω pipj
r2

+ ∂rv
ω

(
δij
r
− pipj

r3

)
,

and substitute in (5.49) to see that

pipj

|p|
∂pi∂pjv + 3

pi

|p|
∂piv =

pipj

r

[
∂2
rv
ω pipj
r2

+ ∂rv
ω

(
δij
r
− pipj

r3

)]
+ 3

pipi
r2

∂rv
ω,

which implies that vω(t, r) is solution of

(5.50) ∂tv = r∂2
rv + 3∂rv, vω(0, r) = vωin(r).

Therefore, a solution g(t, p) = g(t, r, ω) of our original problem is given by
g(t, r, ω) = vω(t, r).

Next, we derive a representation formula for solutions of the spherically
symmetric heat equation in six dimensions which will automatically imply
the existence and uniqueness of solutions for equation (5.44). Let u(t, x) be
the solution of the Cauchy problem

∂tu = ∆u, t > 0, x ∈ R6,

u(0, x) = uin(x), x ∈ R6.

Solutions of the previous system are explicitly given by

(5.51) u(t, x) =
1

(4πt)3

∫
R6

e−
|x−y|2

4t uin(y) dy.

Recall that spherically symmetric solutions of the heat equation in six
dimensions, i.e., u(t, x) = u(t, w) with w = |x|, satisfy

(5.52) ∂tu = ∂2
wu +

5

w
∂wu.

Actually, the reason to consider this solution is simple: Observe that if u
solves (5.52), then vω(t, r) = u(t, 2

√
r) solves (5.50). In fact, since ∂tg = ∂tu,

∂rg = 2w−1∂wu and ∂2
rg = 4w−2∂2

wu− 4w−3∂wu, we see that

∂tu = r∂2
rg + 3∂rg =

w2

4

(
4

w2
∂2
wg−

4

w3
∂wu

)
+

6

w
∂wu

= ∂2
wu +

5

w
∂wu = ∂tu .
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Returning to the representation formula problem, let u(0, x) = uin(w) be
spherically symmetric, with |x| = w and passing to hyperspherical coordi-
nates in the integral on the right side of (5.51), we obtain

u(t, w) =
e−

w2

4t

(4πt)3

∫
R6

e−
(|y|2−2y·x)

4t uin(|y|) dy

=
8π2

3

e−
w2

4t

(4πt)3

∫ ∞
0

uin(s) e−
s2

4t s5

∫ π

0
exp

(
ws cos θ

2t

)
sin4 θ dθ ds.(5.53)

Evaluating the angular integral gives∫ π

0
exp

(
ws cos θ

2t

)
sin4 θ dθ =

3t

ws

∫ π

0
exp

(
ws cos θ

2t

)
sin θ sin(2θ) dθ

= 3

(
2t

ws

)2 ∫ π

0
exp

(
ws cos θ

2t

)
cos(2θ) dθ

= 12π

(
t

ws

)2

I2

[ws
2t

]
,

where I2[x] is given by (5.46) for α = 2. Substituting this expression
into (5.53), we obtain

(5.54) u(t, w) =
1

2

e−
w2

4t

w2t

∫ ∞
0

uin(s)e−
s2

4t s3 I2

[ws
2t

]
ds .

Now, we can proceed to prove formula (5.47). By making the substitution
w = 2

√
r and the change of variables s = 2

√
z in (5.54), the solution of the

3-dimensional ultra-relativistic Fokker-Planck equation (5.44) with initial
datum gin(p) = vωin(z) is given by (5.47) as claimed.

Finally, we prove assertion (5.48). Observe that g(t, p) = g(t, r, ω) given
by (5.47) belongs to L∞((0,∞);L1(R3)) for initial data in L1(R3). The
latter fact is equivalent to prove that g preserves mass, i.e., we have equality
in (5.48). this property is obtained from the following∫

R3

g(t, p) dp =

∫
S2

∫ ∞
0

r2g(t, r, ω) dr dω

=
1

t

∫
S2

∫ ∞
0

z gin(z, ω)

(∫ ∞
0

re−
r
t
− z
t I2

[
2

√
rz

t

]
dr

)
dz dω .

The integral within round brackets equals ez/ttz as a consequence of its
Gaussian character. Thus∫

R3

g(t, p) dp =

∫
S2

∫ ∞
0

z2gin(z, ω) dz dω,
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Figure 5.1: Numerical depiction of a spherically symmetric solution g(t, q) of the ultra-relativistic
Fokker-Planck equation (5.44) for constant values of t, from t = 0.1 (top curve) until t = 0.5
(bottom curve), and initial datum gin(q) = e−q .

and ‖g(t)‖L1(R3) = ‖gin‖L1(R3) follows. Similarly, it is easy to prove that
g(t, p) given by (5.47) satisfies estimate (5.48) by using again the Gaussian
character of the kernel

K(r, z) = e−
r
t
− z
t I2

[
2

√
rz

t

]
,

and Hölder’s inequality as in the case of equation (5.51) for any dimension.

As a direct consequence of identity (5.47), solutions of equation (5.44)
are spherically symmetric when the initial data also possess the previous
property. Figure 5.1 shows a numerical simulation for certain values of t
for a spherically symmetric solution with initial datum gin(q) = e−q. In
particular, we will see that Proposition 5.3.2 is an extension for solutions
within this class of a modified version of equation (5.47) (with or without
a drift term). In fact, the preceding result already allows to answer the
analogous question for the ultra-relativistic system with a scalar field and
friction term using a simple change of variables.

Corollary 5.3.1. Assume hin(p) ∈ L1(R3), with hin(p) ≥ 0. Solutions of

∂th = e2φ∂pi

(
pipj

|p|
∂pjh+ pih

)
, t > 0, p ∈ R3,(5.55)

h(0, p) = hin(p),

are given by

(5.56) h(t, p) = e3τ(t)g(σ(t), q(t, p)),
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where

τ(t) =

∫ t

0
e2φ(s) ds, σ(t) = eτ(t) − 1, q(t, p) = eτ(t)p,

and g(σ, q) is the corresponding solution of equation (5.44) with the same
initial datum. Moreover, we have the representation formula

(5.57) h(t, p) =
e

3τ(t)− r(t)
σ(t)

σ(t)r(t)

∫ ∞
0

hin(z, ω)ze
− z
σ(t) I2

[
2

√
r(t)z

σ(t)

]
dz ,

where r(t) = eτ(t)|p|.

Proof. The result follows by using an appropriate integral factor and by
rescaling time and momentum to account the friction term and the gravita-
tional potential, respectively. Let

τ(t) =

∫ t

0
e2φ(s) ds, σ(t) = eτ(t) − 1 =

∫ t

0
eτ(s)e2φ(s) ds, q(t, p) = eτ(t)p .

and make the change of variables h(t, p) = e3τ(t)h̃(t, q(t, p)). Then, both
sides of (5.55) transforms into

∂th = 3e3τe2φh̃+ e3τ
(
∂th̃+ e2φq · ∇qh̃

)
,

and

e2φ∂pi

(
pih+

pipj

|p|
∂pjh

)
= 3e3τe2φh̃+ e3τe2φq · ∇qh̃

+ e3τe2φ∂pi

(
qiqj

|q|
∂qj h̃

)
= ∂th− e3τ∂th̃+ e3τe2φeτ∂qi

(
qiqj

|q|
∂qj h̃

)
,

where we used the fact ∇ph = eτ∇qh̃. Next, we use definition (5.49) and
dσ/dt = e2φeτ to see that the resulting equation for h̃ is

∂th̃ = (σ)′∂qiLh̃ .

Once again, we apply another change of variables in time σ = eτ − 1
and h̃(t, q) = g(σ, q), since ∂th̃∂σt = ∂σg and hence, the unknown function
g(σ, q) satisfies the parabolic equation

∂σg = ∂qi

(
qiqj

|q|
∂qjg

)
,

and any solution h must be of the form (5.56). Finally, the representation
of solutions follows in view of Proposition 5.3.1.
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It is clear that following similar lines as in the previous proof can be used
to obtain a representation formula for the corresponding URFP equation
without friction. In fact, we have that

h(t, p) = g(τ(t), p),

is the solution of equation

(5.58) ∂th = e2φ∂pi

(
pipj

|p|
∂pjh

)
,

with non-negative initial datum h(0, p) = hin(p) ∈ L1(R3). Surprisingly,
this model exhibits a nontrivial asymptotic profile as t→∞. Basically, the
factor e2φ prevents solutions to vanish in the absence of friction as a result
of its integrability in (0,∞), since this quantity is part of the time rescaling
τ in the previous proposition. Then, the resulting self-similar solution can
be interpreted as an intermediate stage. More precisely, the L1 norm of e2φ

is finite, but it could be large enough so that solutions of (5.58) are close
to zero in the limit. In the case of equation (5.55), see Proposition (5.3.2)
below, the profile could be close to the ultra-relativistic Jüttner distribution
function e−|p|1 depending on the size of

∥∥e2φ
∥∥
L1 .

Before stating and proving our next result, it is convenient to introduce
some notation. Given φ = φ(t) such that e2φ ∈ L1((0,∞)), and a function
u = u(p) with the representation u(p) = u(r, ω) in spherical coordinates, we
define the operator

(5.59a) Tφ[u] =
e3T−R

S

SR

∫ ∞
0

u(z, ω)ze−
z
S I2

[
2

√
Rz

S

]
dz ,

where

(5.59b) T = ‖e2φ‖L1(R3), S = eT − 1 R = eT r.

Also, we recall some bounds satisfied by the modified Bessel function
(5.46), see eqns. (9.6.7), (9.7.1), (9.6.26), pags. 375, 377, in [1], [102]: for
α ∈ N, there exists C > 0 such that

Iα[x] ≤ Cxα, for x ≤ 1,(5.60)

Iα[x] ≤ Cx−1/2ex ≤ Cex, for x ≥ 1,(5.61)

I ′α[x] = Iα−1[x]− α

x
Iα[x].(5.62)

Given a solution h of (5.55), we want to show that the long time asymp-
totic profile of h is exactly (5.59). To avoid the need of technical estimates
on Bessel functions in Lebesgue spaces, we choose to study the limit in the
L∞ norm. Now, we are in position to prove the main result of this section.

1This function is also known in the literature as the Laplace distribution function.
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Proposition 5.3.2. Let φ = φ(t) be such that e2φ ∈ L1((0,∞)) and h(t, p)
be the positive solution of (5.55) with initial datum h(0, p) = hin(r, ω), cf.
Corollary 5.3.1. We assume that the spherically symmetric function h̄in(r) =
supω∈S2 hin(r, ω) satisfies

(5.63)

∫ ∞
0

r(1 + r)2h̄in(r) dr <∞ .

Then, for all t > 1,

(5.64) ‖h(t)− Tφ[hin]‖L∞(R3) ≤ C
∫ ∞
t

e2φ(s) ds,

where C depends on τ(1) and T .

Proof. By (5.57) and the definition of T (5.59), we have

h− Tφ[hin] =
e2τ(t)

σ(t)r

∫ ∞
0

z hin(z, ω) I2

[
2

√
r(t)z

σ(t)

]
e
− r(t)+z

σ(t) dz

− e2T

Sr

∫ ∞
0

z hin(z, ω) I2

[
2

√
Rz

S

]
e−

R+z
S dz

=
1

r

∫ ∞
0

zhin(z, ω) [H(τ(t), r, z)−H(T, r, z)] dz,

where

H(τ, r, z) := (σ̄(τ))−1e
2τ− e

τ r+z
σ̄(τ) I2

[
2
√
eτ

σ̄(τ)

√
rz

]
, σ̄(τ) = eτ − 1 .

Since t > 1, and τ(t) is increasing, we have τ1 := τ(1) < τ(t) < T . By the
Mean Value Theorem, we estimate

|h− Tφ[hin]| ≤ (T − τ(t))
1

r

∫ ∞
0

hin(z, ω) sup
τ∈(τ1,T )

|∂τH(τ, q, z)|z dz,

with

T − τ(t) =

∫ ∞
t

e2φ(s)ds.

We prove below that

(5.65)
1

r
sup

τ∈(τ1,T )
|∂τH(τ, r, z)| ≤ C(1 + z)2.

Hence, assumption (5.63) allows to obtain

|h− Tφ[hin]| ≤ (T − τ(t))

∫ ∞
0

h̄in(z)z(1 + z)2 dz ≤ C
∫ ∞
t

e2φ(s)ds,
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which proves (5.64). It remains to establish (5.65). First, we consider the
following quantities

γ(τ) =
d

dτ

eτ/2

σ̄(τ)
=

eτ/2

2σ̄(τ)
− eτ/2eτ

σ̄2(τ)
= − eτ/2

2σ̄2(τ)
(eτ + 1)

β(τ) =
σ̄(τ)

e
2τ− eτ r+z

σ̄(τ)

d

dτ

e
2τ− e

τ r+z
σ̄(τ)

σ̄(τ)
= 2− eτ

σ̄(τ)

[
r − eτr + z

σ̄(τ)
+ 1

]
=

2σ̄2(τ)− eτ σ̄(τ) + eτ (r + z)

σ̄2(τ)
.

Using the recurrence relation (5.62) and the previous calculations, we find

σ̄(τ)∂τH

e
2τ− eτ r+z

σ̄(τ)

= β(τ)I2

[
2
√
eτ

σ̄(τ)

√
rz

]
+ 2
√
rzγ(τ)I ′2

[
2
√
eτ

σ̄(τ)

√
rz

]
=

(
β(τ) +

eτ + 1

σ̄(τ)

)
I2

[
2
√
eτ

σ̄(τ)

√
rz

]
+ 2
√
rzγ(τ)I1

[
2
√
eτ

σ̄(τ)

√
rz

]
.

Notice that for τ ∈ (τ1, T ) and 2
√
eτrz ≤ σ̄(τ), the bound (5.60) satisfied

by the modified Bessel function combined with the following identities

γ(τ)
2
√
eτ

σ̄(τ)
= −(eτ + 1)

eτ

σ̄3(τ)
, β(τ) +

eτ + 1

σ̄(τ)
≤ eτ

σ̄(τ)

(
2 +

r + z

σ̄(τ)

)
,

allows to deduce the estimate

1

r
|∂τH| ≤ C

e4τ

σ̄4
z

(
1 +

r + z

σ̄(τ)

)
exp

{
−e

τr + z

σ̄(τ)

}
≤ Cz(1 + r + z).

For 2
√
eτrz ≥ σ̄(τ), the bound (5.61) implies that

1

r
|∂τH| ≤ C

e2τ

σ̄2

(
1

r
+

1 + z/r

σ̄(τ)
+

√
z/
√
r

σ̄(τ)

)
exp

{
−(
√
eτr −

√
z)2

σ(τ)

}
≤ C(1 + z)2,

for τ ∈ (τ1, T ). Therefore, we have

sup
τ∈(τ1,T )

1

r
|∂τH(τ, r, z)| ≤ C(1 + z)2,

as desired. This completes the proof of the proposition.

We remark that condition (5.63) is slightly stronger than requiring a
bounded first moment of hin(p) in L1(R3). In particular, if hin is spher-
ically symmetric, then (5.63) is automatically implied by any initial data
hin ∈ X satisfying (5.5). Also, the analogue result holds for solutions of
equation (5.58) by following similar lines as in the previous result, see [4].



122 The Vlasov-Nordström-Fokker-Planck System



Bibliography

[1] Abramowitz, M., Stegun, I.: Handbook of mathematical functions with
formulas, graphs, and mathematical tables. National Bureau of Stan-
dards Applied Mathematics Series 55, tenth printing, (1972)
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[107]  Lopuszaǹski, J.: Relativisierung der theorie der stochastischen
prozesse, Acta Phys. Polon. 12, 87–99 (1953)

[108] Ma, C.-P., Bertschinger, E.: A cosmological kinetic theory for the evo-
lution of cold dark matter halos with substructure: Quasi-linear theory,
The Astroph. J., 612, 28–49 (2004)

[109] Masoliver, J. Weiss, G.H.: Finite-velocity diffusion, Eur. J. Phys. 17,
190–196 (1996)

[110] Nualart, D.: Kolmogorov and Probability Theory, Arbor 178, 607–619
(2004)

[111] Øksendal, B.: Stochastic Differential Equations, Universitext,
Springer-Verlag, New York, fifth edition, 2000.

[112] Ono, K.: Global existence of regular solutions for the Vlasov-Poisson-
Fokker-Planck system, J. Math. Anal. Appl. 263, 626–636 (2001)

[113] Pankavich, S., Michalowski, N.: Global classical solutions for
the one-and-one-half dimensional relativistic Vlasov-Maxwell-Fokker-
Planck system, Kin. Rel. Mod. 8, 169–199 (2015)

[114] Perrin, J.: Mouvement brownien et réalité moléculaire, Ann. Chim.
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