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Abstract: Phenolic compounds are responsible of the nutritional and sensory quality of extra-virgin
olive oil (EVOO). The composition of phenolic compounds in EVOO is related to the initial content of
phenolic compounds in the olive-fruit tissues and the activity of enzymes acting on these compounds
during the industrial process to produce the oil. In this work, the phenolic composition was studied
in six major cultivars grown in the same orchard under the same agronomical and environmental
conditions in an effort to test the effects of cultivars on phenolic composition in fruits and oils as
well as on transfer between matrices. The phenolic fractions were identified and quantified using
high-performance liquid chromatography-diode array detector-time-of-flight-mass spectrometry.
A total of 33 phenolic compounds were determined in the fruit samples and a total of 20 compounds
in their corresponding oils. Qualitative and quantitative differences in phenolic composition were
found among cultivars in both matrices, as well as regarding the transfer rate of phenolic compounds
from fruits to oil. The results also varied according to the different phenolic groups evaluated,
with secoiridoids registering the highest transfer rates from fruits to oils. Moreover, wide-ranging
differences have been noticed between cultivars for the transfer rates of secoiridoids (4.36%–65.63%
of total transfer rate) and for flavonoids (0.18%–0.67% of total transfer rate). ‘Picual’ was the cultivar
that transferred secoiridoids to oil at the highest rate, whereas ‘Changlot Real’ was the cultivar that
transferred flavonoids at the highest rates instead. Principal-component analysis confirmed a strong
genetic effect on the basis of the phenolic profile both in the olive fruits and in the oils.

Keywords: phenolic compounds; EVOO; olive fruit; six cultivars; transfer rates

1. Introduction

In the Mediterranean area, healthy, nutritional, and sensorial properties of olive oil have been
known for many centuries. Olive oil is considered the main fat source of the Mediterranean diet, and
it is appreciated for its characteristics such as: aroma, taste, color, and nutritive properties that are
distinguishable from other vegetable oils. The positive effects of extra-virgin olive oil (EVOO) are
likely due not only to the monounsaturated/saturated fatty acid ratio and tocopherols but also to
polyphenols. Indeed, many scientific studies have confirmed the healthy benefits of these antioxidant
compounds, including the reduction of the risk of coronary disease and of several chronic as well as
degenerative diseases such as atherosclerosis, cancer, and strokes [1]. Moreover, polyphenols strongly
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affect the sensory properties of EVOO such as the typical bitter and pungent taste [2,3], and contribute
to the stability of the oil against autoxidation [4].

The amount of polyphenols in EVOO vary, depending on several factors such as geographical
zone [5–8], agro-climatic conditions [9–11], degree of fruit ripeness [12] and the oil-extraction
process [2,3,13]. Additionally, the phenolic fraction of olive oil can greatly vary among cultivars [6,14],
although this aspect has been scarcely studied.

In the olive fruit, the main phenols are secoiridoids such as oleuropein and demethyloleuropein,
phenolic glycosides such as ligstroside, and hydroxycinnamic acid derivatives such as verbascoside [15].
During crushing and malaxing processes, oleuropein and demethyloleuropein are hydrolyzed by
endogenous β-glycosidases to 3,4-DHPEA-EDA and 3,4-DHPEA-EA. These newly formed substances
are the most abundant secoiridoids in olive oil [16]. Jerman Klen et al. (2012) [17], studying four
cultivars with the same ripening index (RI), demonstrated that during crushing and malaxation
in industrial-scale extraction systems, only 0.3%–1.5% of available phenols in olive fruits were
transferred to the oil, whereas the rest ended up in wastes. Another study made with one cultivar on a
laboratory-scale found that only 0.53% of phenolic compounds ended up in the olive oil [18].

The purpose of the present work was to study the transfer of single phenolic compounds from
fruits to oil at the laboratory scale, using six different cultivars grown in the same orchard under the
same agronomical and environmental conditions. The results support previous studies related to
cultivar effects on phenolic-compound transfer.

2. Results and Discussion

2.1. Quantitative Characterization of Phenolic Compounds

The phenolic compounds in olive fruits and oil were identified by the interpretation of their UV-Vis
and mass spectra provided by HPLC-DAD-TOF-MS and the information previously reported in the
literature. The base-peak chromatograms (BPCs) of two representative phenol extracts of both matrices
of the cultivar ‘Arbosana’, in negative ionization mode, are shown in Figure 1. The tentatively identified
phenolic compounds are summarized in Table 1, including retention times, m/z and molecular formula
together with their proposed identities. A total of 33 phenolic compounds were determined in the
fruit samples, and a total of 20 compounds were determined in their correspondent oils. Only five
compounds (hydroxytyrosol, diosmetin, apigenin, luteolin, and oleuropein aglycone isomer b) were
found both in the fruits and in the oil.

Quantification data of olive fruit and oil phenolic compounds for the six cultivars appear in Table 1.
As expected, for all cultivars, hydroxytyrosol glucoside and verbascoside were the major phenolic
compounds determined in ripe fruits. By contrast, oleuropein aglycone and deacetoxyoleuropein
aglycone isomers were the major compounds determined in olive oils. For all cultivars, significant
differences were found between the contents of phenolic compounds, both in fruits and in oil. In fact,
several papers have reported the genetic effect of the cultivar on the content of phenolic compounds in
the fruits as well as in the oil [6,19–21]. Overall, the total phenol contents showed low values in fruits
as well as in oils, likely due to the late fruit sampling time, as reported in a previous study [22].

‘Changlot Real’ olive fruits showed much higher total phenol content than in the rest of cultivars.
Meanwhile the oils of ‘Picual’, ‘Koroneiki’, and ‘Changlot Real’ registered the highest phenol content.
This finding highlights the strong effect of the extraction process on olive-oil phenolic content [23].
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Figure 1. Base peak chromatogram (BPC) of ‘Arbosana’ phenolic compounds of olive fruits (a) and olive oil (b), using HPLC-DAD-TOF-MS. Proposed phenolic 
compounds were numbered by elution order (See Table 1 for peak numbers). 

Figure 1. Base peak chromatogram (BPC) of ‘Arbosana’ phenolic compounds of olive fruits (a) and olive oil (b), using HPLC-DAD-TOF-MS. Proposed phenolic
compounds were numbered by elution order (See Table 1 for peak numbers).
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Table 1. Phenolic compounds determined in olive fruits and oils extract by HPLC-DAD-TOF-MS, including retention time, m/z, formula, means of compounds by
cultivar, and total (mg/kg of fruit fresh weight (FrFW) or oil). Standard deviations (in parentheses); n.q. (not quantified); and n.i. (not identified).

Compounds a Rt min m/z Formula
Phenolic Content (mg/kg FrFW or mg/kg oil)

‘Arbequina’
Fruit Oil

‘Picual’
Fruit Oil

‘Sikitita’
Fruit Oil

‘Arbosana’
Fruit Oil

‘Changlot Real’
Fruit Oil

‘Koroneiki’
Fruit Oil

1 Vanillin isomer a 3 2.09 151 C8H8O3 n.i. 0.10
(0.01) n.i. 0.18

(0.01) n.i. 0.21
(0.02) n.i. 0.40

(0.01) n.i. 0.11
(0.01) n.i. 0.12

(0.01)

2 Hydroxytyrosol glucoside
isomer a 3 2.31 315 C14H20O8 n.i. n.i. n.i. n.i. n.i. n.i. n.i. n.i. 91.74

(7.53) n.i. n.i. n.i.

3 Hydroxytyrosol glucoside
isomer b 3 4.58 315 C14H20O8 n.i. n.i. n.i. n.i. 212.34

(23.07) n.i. n.i. n.i. n.i. n.i. n.i. n.i.

4 Hydroxytyrosol glucoside
isomer c 3 4.8 315 C14H20O8 n.i. n.i. 79.68

(7.89) n.i. 56.37
(2.04) n.i. n.i. n.i. 440.58

(40.67) n.i. 96.80
(7.09) n.i.

5 Hydroxytyrosol glucoside
isomer d 3 4.82 315 C14H20O8

257.39
(22.06) n.i. 58.32

(5.01) n.i. n.i. n.i. 276.71
(16.71) n.i. 433.30

(35.44) n.i. 114.74
(7.39) n.i.

6 Hydroxytyrosol 3 5.14 153 C8H10O3
62.91
(4.93)

0.29
(0.01)

107.97
(7.40)

1.12
(0.04)

85.16
(8.26)

0.83
(0.07)

73.41
(6.08)

1.39
(0.07)

73.53
(7.59)

1.63
(0.713)

61.61
(5.43)

1.57
(0.11)

7 Oleoside derivative isomer a 4 5.67 407 C17H28O11
20.22
(1.17) n.i. 12.26

(0.98) n.i. 19.80
(0.76) n.i. 24.33

(1.18) n.i. 23.36
(1.95) n.i. 17.67

(1.87) n.i.

8 Oleoside derivative isomer b 4 6.26 407 C17H28O11
57.93
(3.00) n.i. 231.21

(22.43) n.i. 72.07
(3.41) n.i. 71.31

(6.25) n.i. 63.80
(4.94) n.i. 52.48

(4.32) n.i.

9 Tyrosol glucoside 3 6.59 299 C14H20O7 n.i. n.i. n.i. n.i. 46.27
(3.88) n.i. n.i. n.i. 615.18

(49.57) n.i. n.i. n.i.

10 Vanillin isomer b 3 6.81 151 C8H8O3 n.i. 0.022
(0.001) n.i. n.i. n.i. 0.040

(0.004) n.i. 0.028
(0.002) n.i. n.i. n.i. n.i.

11 Tyrosol 3 7.28 137 C8H10O2 n.i. n.i. n.i. 1.99
(0.12) n.i. 2.28

(0.24) n.i. 2.06
(0.15) n.i. 10.25

(0.96) n.i. 3.46
(0.12)

12 p-coumaric acid 3 8.73 163 C8H8O3
27.88
(2.35) n.i. 27.51

(2.40) n.i. 61.71
(4.57) - 79.01

(5.59) n.i. 21.09
(2.03) n.i. 53.50

(3.19) n.i.

13 Vanillin isomer c 3 11.06 151 C8H8O3 n.i. 0.27
(0.03) n.i. n.i. n.i. 0.18

(0.02) n.i. 0.28
(0.02) n.i. n.i. n.i. n.i.

14 Oleuropein aglycone
derivative 1 11.44 377 C16H26O10

12.70
(0.42) n.i. 18.47

(1.12) n.i. 11.72
(0.87) - 21.01

(1.80) - 24.55
(2.38) n.i. 106.25

(9.67) n.i.

15 β-hydroxy-verbascoside
isomer a 3 12.06 639 C29H36O16 n.i. n.i. 5.22

(0.08) n.i. 11.40
(0.72) - 10.99

(0.54) - 16.96
(1.65) n.i. 5.99

(0.42) n.i.

16 β-hydroxy-verbascoside
isomer b 3 12.21 639 C29H36O16 n.i. n.i. 2.36

(0.07) n.i. 10.19
(0.79) - 14.02

(1.32) - 15.07
(0.77) n.i. 4.02

(0.40) n.i.

17 Demethyloleuropein 1 13.95 525 C24H30O13
9.75

(0.94) n.i. 23.68
(2.15) n.i. n.i. n.i. n.i. n.i. n.i. n.i. n.i. n.i.

18 Rutin 2 14.48 609 C27H30O16
110.16
(6.09) n.i. 19.48

(1.79) n.i. 114.34
(10.88) - 189.44

(18.01) - 20.27
(0.45) n.i. 113.53

(10.67) n.i.

19 Hydroxytyrosol
acetate/3,4-DHPEA-AC 3 15.22 195 C10H12O4 n.i. 2.67

(0.20) n.i. n.i. n.i. 2.06
(0.14) n.i. 2.37

(0.08) n.i. n.i. n.i. n.i.

20 Luteolin glucoside isomer 2 15.4 447 C21H20O11
149.29
(10.75) n.i. 18.87

(0.70) n.i. 69.84
(3.29) n.i. 129.79

(12.63) n.i. 24.94
(2.42) n.i. 14.92

(0.74) n.i.
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Table 1. Cont.

Compounds a Rt min m/z Formula
Phenolic Content (mg/kg FrFW or mg/kg oil)

‘Arbequina’
Fruit Oil

‘Picual’
Fruit Oil

‘Sikitita’
Fruit Oil

‘Arbosana’
Fruit Oil

‘Changlot Real’
Fruit Oil

‘Koroneiki’
Fruit Oil

21 Verbascoside isomer a 3 15.61 623 C29H36O15
340.74
(33.43) n.i. 307.91

(25.61) n.i. 308.55
(13.75) n.i. 406.40

(28.24) n.i. 731.26
(59.36) n.i. 292.94

(27.97) n.i.

22 Verbascoside isomer b 3 16.96 623 C29H36O15
103.94
(8.40) n.i. 37.58

(3.75) n.i. 69.32
(4.01) n.i. 101.78

(8.34) n.i. 58.20
(4.96) n.i. 46.35

(4.59) n.i.

23 Apigenin rutinoside 2 17.95 577 C27H30O14
5.94

(0.39) n.i. 4.32
(0.41) n.i. 6.14

(0.50) n.i. 7.81
(0.70) n.i. n.i. n.i. 2.12

(0.23) n.i.

24 Oleuropein glucoside 1 18.05 701 C31H42O18 n.i. n.i. n.i. n.i. n.i. n.i. 24.98
(2.43) n.i. 3.50

(0.30) n.i. n.i. n.i.

25 Caffeoyl-6-oleoside 4 18.48 551 C25H28O14 n.i. n.i. 87.76
(8.34) n.i. 24.98

(2.42) n.i. n.i. n.i. n.i. n.i. n.i. n.i.

26 Oleuropein isomer a 1 18.87 539 C25H32O13 n.i. n.i. n.i. n.i. n.i. n.i. 7.82
(0.77) n.i. n.i. n.i. n.i. n.i.

27 Oleuropein isomer b 1 19.07 539 C25H32O13 n.i. n.i. 3.93
(0.28) n.i. n.i. n.i. 4.38

(0.23) n.i. 5.47
(0.59) n.i. n.i. n.i.

28 10-Hydroxyoleuropein
aglycone 1 19.38 335 C17H20O7 n.i. 0.71

(0.05) - 0.62
(0.04) n.i. 7.91

(0.86) n.i. 3.20
(0.27) n.i. 0.23

(0.02) n.i. 0.22
(0.02)

29 Oleuropein isomer c 1 19.53 539 C25H32O13
1.80

(0.09) n.i. 1.46
(0.14) n.i. n.i. n.i. n.i. n.i. 5.37

(0.18) n.i. 29.05
(2.21) n.i.

30 6-p-Coumaroyl secologanoside
isomer a 4 19.80 535 C25H28O13

58.93
(1.82) n.i. 176.42

(13.78) n.i. 50.38
(4.10) n.i. 45.13

(3.61) n.i. 9.89
(0.84) n.i. 14.29

(1.39) n.i.

31 Deacetoxyoleuropein aglycone
isomer a 1 19.87 319 C17H20O6 n.i. 7.77

(0.62) n.i. 1.26
(0.09) n.i. 12.14

(1.20) n.i. 29.86
(2.29) n.i. 2.14

(0.22) n.i. 2.90
(0.09)

32 Oleuropein isomer d 1 20.15 539 C25H32O13 n.i. n.i. n.i. n.i. 2.32
(0.17) n.i. n.i. n.i. n.i. n.i. n.i. n.i.

33 Oleuropein isomer e 1 20.47 539 C25H32O13
4.18

(0.17) n.i. n.i. n.i. n.i. n.i. n.i. n.i. n.i. n.i. n.i. n.i.

34 Oleuropein aglycone isomer a 1 20.59 377 C19H22O8 n.i. n.i. 4.29
(0.22) n.i. n.i. n.i. n.i. n.i. 9.52

(0.87) n.i. n.i. 12.22
(1.01)

35 6-p-Coumaroyl secologanoside
isomer b 4 20.72 535 C25H28O13

2.63
(0.26) n.i. 1.43

(0.11) n.i. n.i. n.i. 2.07
(0.19) n.i. n.i. n.i. n.i. n.i.

36 Oleuropein aglycone isomer b 1 20.86 377 C19H22O8 n.i. n.i. 9.89
(0.82) n.i. n.i. n.i. n.i. n.i. n.i. n.i. n.i. n.i.

37 Oleuropein isomer f 1 21.22 539 C25H32O13 n.i. n.i. 3.86
(0.29) n.i. n.i. n.i. n.i. n.i. n.i. n.i. n.i. n.i.

38 Luteolin 2 21.94 285 C15H10O6
25.42
(1.93)

3.51
(0.31)

47.50
(2.81)

1.93
(0.08)

68.53
(6.57)

3.19
(0.20)

33.01
(3.24)

3.65
(0.38)

18.60
(1.34)

2.20
(0.04)

18.44
(1.01)

1.31
(0.08)

39 Deacetoxyoleuropein aglycone
isomer b 1 22.29 319 C17H20O6 n.i. n.q. n.i. 1.09

(0.09) n.i. 0.11
(0.01) n.i. 0.71

(0.03) n.i. 0.05
(0.01) n.i. n.q.
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Table 1. Cont.

Compounds a Rt min m/z Formula
Phenolic Content (mg/kg FrFW or mg/kg oil)

‘Arbequina’
Fruit Oil

‘Picual’
Fruit Oil

‘Sikitita’
Fruit Oil

‘Arbosana’
Fruit Oil

‘Changlot Real’
Fruit Oil

‘Koroneiki’
Fruit Oil

40 Oleuropein aglycone c 1 22.48 377 C19H22O8 n.i. 0.68
(0.06) n.i. 1.76

(0.10) n.i. 1.02
(0.07) n.i. 0.32

(0.03) n.i. 0.94
(0.08) n.i. 1.98

(0.15)

41 Elenolic acid methyl ester 5 22.61 255 C12H16O6 n.i. 0.18
(0.01) n.i. 0.21

(0.02) n.i. 0.12
(0.01) n.i. 1.55

(0.15) n.i. n.i. n.i. -

42 Acetoxypinoresinol 6 23.3 415 C22H24O8 n.i. 13.04
(1.39) n.i. 0.13

(0.01) n.i. 8.27
(0.80) n.i. 11.70

(0.76) n.i. 7.00
(0.47) n.i. 5.88

(0.55)

43 Pinoresinol 6 23.93 357 C20H22O6 n.i. 0.46
(0.04) n.i. n.i. n.i. 0.42

(0.03) n.i. 0.81
(0.08) n.i. n.i. n.i. n.i.

44 Apigenin 2 24.62 269 C15H10O5
0.49

(0.03)
1.42

(0.04)
1.52

(0.09)
0.73

(0.02)
1.69

(0.17)
1.06

(0.06)
8.22

(0.92)
3.73

(0.21)
1.38

(0.04)
1.15

(0.02)
1.09

(0.07)
0.72

(0.05)

45 Diosmetin 2 25.54 299 C16H12O6
0.53

(0.05)
0.55

(0.03) n.i. n.q. 2.64
(0.26)

1.91
(0.08) n.i. 0.12

(0.01) n.i. n.q. n.i. n.q.

46 Oleuropein aglycone d 1 26.73 377 C19H22O8 n.i. 2.74
(0.19) n.i. 89.63

(7.49) n.i. 17.49
(1.76) n.i. 21.46

(2.92) n.i. 57.21
(4.83) n.i. 118.39

(16.09)

47 Oleuropein aglycone c 1 27.79 377 C19H22O8 n.i. 0.96
(0.07) n.i. 36.13

(3.41) n.i. 6.62
(0.35) n.i. 14.28

(1.11) n.i. 4.49
(0.22) n.i. 3.43

(0.30)

48 Ligstroside aglycone 1 28.76 361 C19H22O7 n.i. 0.54
(0.05) n.i. 32.08

(2.22) n.i. 0.45
(0.05) n.i. 1.20

(0.08) n.i. 3.72
(0.17) n.i. 3.56

(0.20)

Total 1265.33
(55.34)

35.92
(1.68)

1249.35
(53.14)

173.13
(8.66)

1318.03
(48.95)

66.33
(2.16)

1508.95
(43.54)

99.20
(4.55)

2699.89
(200.56)

155.76
(16.69)

1066.84
(47.69)

169.56
(7.65)

a Superscript numbers indicate phenolic groups: 1, secoiridoids; 2, flavonoids; 3, simple phenols; 4, oleosides; 5, elenolic acids; 6, lignans.
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2.2. Transfer of Phenolic Compounds from Fruits to Oil

Phenolic compounds in olive oil underwent marked changes with respect to fruits during oil
extraction. These changes, both qualitative and quantitative, were for different reasons.

2.2.1. Qualitative Changes

In the present study (Table 1) all glycoside phenols were transformed to their aglycone
forms, i.e., hydroxytyrosol glucoside, tyrosol glucoside, luteolin glucoside, and apigenin rutinoside.
In addition, other complex phenols were completely hydrolyzed to simple phenols, i.e., oleuropein,
demethyloleuropein, oleoside, and verbascoside. The complete transformation of those phenols
has previously been reported [17]. Such phenol transformation is the result of the activity of
many enzymes that are released during pressing and malaxation steps. In particular, polyphenol
oxidase could be responsible for an indirect oxidation of secoiridoids, and β-glucosidase could
play a role in the production of phenol-aglycones such as the deacetoxyoleuropein aglycone,
oleuropein aglycone, and their isomers (the main compounds in olive oil) by hydrolysis of oleuropein,
dimethyloleuropein, etc. [23–26]. However, some compounds such as ligstroside aglycone and lignans
(acetoxypinoresinol and pinoresinol) have curiously been determined in olive oil and not in olive
fruit. Ligstroside aglycone is logically the result of ligstroside degradation. It bears noting that
ligstroside has previously been detected [22] at early stages of fruit ripening, and then its concentration
decreased during ripening to undetectable levels. This could be due to the fact that ligstroside is
completely oxidized into other products when fruits ripen, whereas its respected aglycones found in
olive oil are the hydrolysis products of other compounds structurally related to ligstroside [18]. In the
case of acetoxypinoresinol and pinoresinol, few studies have reported the presence of such lignans
in fruits, although most have mentioned the higher amounts of lignans in virgin olive oils than in
olive fruits [27,28]. Brenes et al. [29] speculated that lignans might originate from the hydrolysis of
compounds similar to lignan linked to secoiridoid glucoside. Artajo et al. (2007) [23] explained the
presence of lignans only in oil by their lipidic character and by the fact that these compounds could be
releasable from the vegetable sources after hydrolysis treatments. However, their detection at certain
levels in olive stones suggests that lignans in olive oil could come from stones after crushing and
malaxation of the whole olive fruits [30].

2.2.2. Quantitative Changes

For both matrices (fruit and olive oil), the total phenolic contents were determined,
adding together the individual phenolic contents detected by HPLC-DAD-TOF-MS. For a better
understanding of the transference of the individual phenolic compounds from olive fruits to
oils, the compounds were grouped into six classes: secoiridoids (oleuropein and isomers,
oleuropein glucoside, demethyloleuropein, oleuropein aglycone derivative, oleuropein aglycone and
isomers, 10-hydroxyoleuropein aglycone, deacetoxyoleuropein aglycone and isomers, and ligstroside
aglycone), flavonoids (luteolin glucoside and isomers, luteolin, apigenin rutinoside, apigenin, rutin,
and diosmetin), simple phenols (hydroxytyrosol glucoside and isomers, hydroxytyrosol acetate,
hydroxytyrosol, tyrosol glucoside, tyrosol, verbascoside and isomers, β-hydroxyverbascoside and
isomers, p-coumaric acid, and vanillin and isomers), oleosides (6-p-coumaroylsecologanoside and
isomers, caffeoyl-6-oleoside, and oleoside derivative and isomers), elenolic acid (elenolic acid methyl
ester), and lignans (pinoresinol, acetoxypinoresinol).

In Figure 2a,b, the groups and total phenolic contents are expressed with the same unit mg/kg of
fruit fresh weight (FrFW) for both matrices (fruits and olive oil). Figure 2b also presents the phenol
transfer rates between fruits and oil of the six different cultivars. Those rates have been calculated
and expressed as a percentage of initial phenolic content of fresh olive fruits taking into account
the percentage of olive oil produced from one kilogram of olive fruits. In general terms, a very
low percentage of total phenols were transferred from fruits to oils for all cultivars (0.38%–1.95%).
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The result agrees with a previous report where only 0.3%–1.5% of available phenols were transferred
to olive oil, whereas the rest ended up in wastes (>40%), depending on the extraction process [17].
In the present study, the total phenol transfer rate varied markedly among cultivars, although the same
abencor-system extraction was used to produce the oil for all cultivars. Thus, the hypothesis of the
effect of the extraction process could be discarded. Notably, cultivars with lower phenol-transfer rates
coincided with those that presented a high percentage of moisture in fruit and vice versa (moisture
data not shown); that is, ‘Arbequina’ and ‘Changlot Real’ presented the lowest transfer rates (0.38%
and 0.45%) simultaneously with the highest fruit moisture (67%–72%), whereas ‘Picual’ and ‘Koroneiki’
showed the highest transfer rates (1.85% and 1.95%) and the lowest fruit moisture (62% for both).
Olive-oil phenolic compounds are amphiphilic in nature and are more soluble in the water than in
the oil phase [31]. In addition, during oil extraction from olives, phenolic compounds are distributed
between the oil and aqueous phases [32]. Therefore, and because all the samples analyzed received
the same irrigation and precipitation, it can be conjectured that the fruit moisture of each cultivar
negatively affects the transfer of phenolic compounds to the oil. Because water uptake is cultivar
dependent [33], this result could highlight the influence of the genetic factor in the transfer of phenolic
compounds from olive fruit to oil.
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Among all phenolic groups, secoiridoids were the compounds with the highest transfer rate from
fruits to oil, followed by flavonoids and simple phenols (Figure 2b). In fact, secoiridoids, which are the
most lipophilic compounds, may have undergone semi-degradation during crushing and malaxation, but
this large phenolic group was still present in the oil in their aglycone forms. The dominance of secoiridoid
derivatives, followed by flavonoids and phenolic alcohols in oil have also been reported by Artajo et al.
(2007) [23] and Jerman Klen et al. (2015) [18]. By contrast, the low transfer of flavonoids is presumably
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due to the fact that rutin, the major flavonoid found in olive fruits, is completely wasted in water without
many alterations, such as hydrolysis and/or other degradation reactions, during the oil process [17,23,34].
The oleoside groups completely disappeared in oil, perhaps due to their above-mentioned degradation
pathways to simple phenols. On the contrary, a new group of lignans appeared in the oil, and the
appearance of this group was explained above for pinoresinol and acetoxypinoresinol.

Furthermore, no clear differences were detected in the transfer rates of simple phenols among
cultivars (0.06%–0.10%). However, sharp differences were registered for secoiridoids (4.36%–65.63%)
and for flavonoids (0.18%–0.67%) in terms of transfer rates. In fact, secoiridoids had high transfer
rates in ‘Picual’ cultivar, as did flavonoids in ‘Changlot Real’ cultivar. This trend was not correlated
with the original contents of secoiridoids and flavonoids in fruits of those cultivars, contradicting the
deduction that more phenols in fruits would lead automatically to more phenols in oil. The result
found is probably due to the amphiphilic character of those phenolic groups in interaction with the
humidity of each cultivar.

2.3. Chemometric Analysis

PCA was applied to the contents of different phenolic groups’ and to total phenols of olive fruits
as well as oils at the same time. The first (PC1) and second (PC2) principal components described
more than 77.60% of the data variability for all cases of the analysis. PC1 was clearly linked to fruits
and oil secoiridoids, fruit and oil flavonoids, oil lignans, and oil total phenols, whereas PC2 was
correlated to fruit and oil simple phenols, fruits oleosides, and total fruit phenols (Figure 3). Notably,
the chemometric analysis showed that phenolic groups and total phenolic contents of fruits and oils
were responsible for the discrimination of almost all cultivars (Figure 4). In fact, the different cultivars
were greatly separated, except for ‘Arbequina’, ‘Sikitita’, and ‘Arbosana’. This result again confirms the
high genetic variability in the phenolic compound profiles in olive fruits [35,36] as well as oil [37,38].
The difficulty of distinguishing the cultivars ‘Arbequina’, ‘Sikitita’ and ‘Arbosana’ is no doubt due
to the proximity of their phenolic profiles. In fact, ‘Arbequina’ and ‘Sikitita’ are genetically related
(‘Sikitita’ comes from a cross between ‘Picual’ ˆ ‘Arbequina’ [39]), and a higher degree of similarity of
‘Sikitita’ oil phenol composition with the ‘Arbequina’ than with the ‘Picual’ parent has previously been
reported [40]. ‘Arbequina’ and ‘Arbosana’ originated from the same geographical area (Catalonia,
Spain) and thus could also be genetically related [41].
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3. Materials and Methods

3.1. Chemicals and Reagents

Standard compounds such as hydroxytyrosol, tyrosol, luteolin, apigenin, and pinoresinol were
purchased from Sigma-Aldrich (St. Louis, MO, USA), and oleuropein from Extrasynthèse (Lyon,
France). Methanol reagent was from Panreac (Barcelona, Spain). HPLC-grade acetonitrile and acetic
acid (assayed at >99.5%) used for preparing mobile phases were from Labscan (Dublin, Ireland) and
Fluka (Switzerland), respectively. Distilled water with a resistance of 18.2 MΩ was deionized in a
Milli-Q system (Millipore, Bedford, MA, USA). The stock solutions containing these analytes were
prepared in methanol. All chemicals were of analytical reagent grade and used as received. All the
solutions were stored in dark flasks at ´20 ˝C until used.

3.2. Samples

Olives from the cultivars ‘Arbosana’, ‘Koroneiki’, ‘Picual’, ‘Sikitita’, ‘Arbequina’, and ‘Changlot
Real’ were harvested at the same time in mid-December from the same olive orchards in “IFAPA,
Centro Alameda del Obispo” in Córdoba, Spain (37˝51'36.5"N 4˝47'53.7"W). These cultivars were
selected as some of the most widely used in new orchards currently cultivated in Spain, highly
productive, and well adapted to modern olive-growing techniques. Only healthy fruits without any
kind of disease or physical damage were processed. Olive-oil samples were prepared at the laboratory
scale using the Abencor system (Comercial Abengoa, S.A., Seville, Spain) equipped with a hammer
crusher, malaxer, and centrifuge that simulates the industrial process of EVOO production. Malaxation
was carried out at 25 ˝C for 30 min and centrifugation of the kneaded paste was performed in a basket
centrifuge at 3500 rpm for 1 min. After centrifugation, the oils were decanted, paper filtered, and
transferred into dark glass bottles until analysis.

3.3. Extraction of Phenolic Compounds from Olive Fruits and Oils

First, 2 g of fresh olive fruits (FrF) were crushed and extracted via Ultra-Turrax IKA T18 basic with
30 mL of MeOH/H2O (80/20), and afterwards the sample was placed in an ultrasonic bath (10 min)
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and centrifuged at 4500 rpm for 15 min. Next, the supernatant was removed, and the extraction was
repeated twice more. The supernatants were collected and the extract was then evaporated. Then, the
extract was reconstituted with 20 mL of acidified water (at pH 2.3) and washed up twice with 40 mL of
hexane to remove the possible oil. Then 40 mL of methanol was added to the aqueous solution and
evaporated again. Finally, the extract was reconstituted with 2 mL of MeOH/H2O (50/50).

The polar fraction of olive oil was extracted as described elsewhere [7] with some modifications.
Briefly, 2 g of oil sample were weighed and washed with 3 mL of hexane. Afterwards, 2 mL of methanol:
water (60/40) were added, the mixture was vortexed and then centrifuged at 3000 rpm for 5 min. Then,
the supernatant was removed, and the extraction was repeated twice more. The polar extract was
evaporated in a rotary evaporator. The residue was dissolved in 0.25 mL of MeOH/H2O (50/50).

3.4. Determination of Phenolic Compounds by HPLC-DAD-TOF-MS

HPLC analyses were carried out using an Agilent 1200 series Rapid Resolution Liquid
Chromatograph (Agilent Technologies, Santa Clara, CA, USA). The phenolic fractions were separated
in a Poroshell 120 EC-C18 analytical column (4.6 mm ˆ 100 mm, 2.7 µm). The gradient eluent was
used at flow rate of 0.8 mL/min, following the method described by Talhaoui et al. [42]. The column
temperature was maintained at 25 ˝C and the injection volume was 2.5 µL.

In addition, the HPLC system was coupled to a micrOTOF (Bruker Daltonics, Bremen, Germany),
an orthogonal-accelerated TOF mass spectrometer, using an electrospray interface (model G1607A
from Agilent Technologies, Palo Alto, CA, USA). The effluent from the HPLC column was split using a
T-type phase separator before being introduced into the mass spectrometer (split ratio = 1:3). Analysis
parameters were set using a negative-ion mode with spectra acquired over a mass range from m/z 50
to 1000. The optimum values of the ESI-MS parameters were: capillary voltage, +4.5 kV; drying gas
temperature, 190 ˝C; drying gas flow, 9.0 L/min; and nebulizing gas pressure, 2 bars. The accurate
mass data on the molecular ions was processed through Data Analysis 4.0 software (Bruker Daltonics,
Bremen, Germany), which provided a list of possible elemental formulae via the Smart Formula Editor.
The Smart Formula Editor uses a CHNO algorithm, which provides standard functionalities such as
minimum/maximum elemental range, electron configuration and ring-plus double-bond equivalents,
as well as a sophisticated comparison of the theoretical with the measured isotope pattern (Sigma
Value) for increased confidence in the suggested molecular formula. The quantification was carried
out using Bruker Compass Target Analysis 1.2 software for compound screening (Bruker Daltonics,
Bremen, Germany).

Quantification was made according to the linear calibration curves of standard compounds.
Different calibration curves were prepared using the following standards: oleuropein, hydroxytyrosol,
tyrosol, apigenin, luteolin, and pinoresinol. All calibration curves showed good linearity among
different concentrations. The calibration plots revealed good correlation between peak areas and
analyte concentrations, and the regression coefficients in all cases were higher than 0.995. Limit
of detection (LOD) was found to be within the range 0.053–0.233 µg/mL whereas the limit of
quantification (LOQ) was within 0.175–0.679 µg/mL.

3.5. Statistical Analysis

All the statistical analyses (ANOVA and principal-component analysis) were performed using
Statistica 8.0 software (2001, StatSoft, Tulsa, OK, USA). Samples were collected from three trees per
cultivar and all assays were run in triplicate. Significant statistical differences among treatments
(p < 0.01) were assessed by Tukey’s honest significant-difference multiple comparisons. Values of
different results of phenolic compounds were expressed as the means mg/kg fresh fruits weight
(FrFW), and as the means mg/kg olive oil. The principal-components analysis (PCA) was performed
to detect structure in the relationships between variables, allowing the classification and the separation
of each cultivar.
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4. Conclusions

In summary, phenolic compounds displayed sharp qualitative and quantitative differences among
the cultivars considered in the present study and among olive fruits and olive oils. Specifically, after
fruit processing, new compounds appeared in oil, notably aglycone forms because of the partial or
total degradation during oil process of some original compounds detected in fruits, or totally new
structures such as lignans. The phenolic transfer rate did not surpass 2% in all cultivars; however,
pronounced differences among cultivars in transfer rates were detected in total phenol and individual
phenolic groups. These results clearly reveal the genetic contribution to olive phenolic content and
composition as well as their transfer between olive fruits and oil.
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20. Dağdelen, A.; Tümen, G.; Ozcan, M.M.; Dündar, E. Phenolics profiles of olive fruits (Olea europaea L.) and
oils from ‘Ayvalık’, ‘Domat’ and ‘Gemlik’ varieties at different ripening stages. Food Chem. 2013, 136, 41–45.
[CrossRef] [PubMed]

21. Ryan, D.; Robards, K. Phenolic compounds in olives. Analyst 1998, 123, 31R–44R. [CrossRef]
22. Talhaoui, N.; Gómez-Caravaca, A.M.; Leon, L.; de la Rosa, R.; Fernandez-Gutierrez, A.; Segura-Carretero, A.

Pattern of variation of fruit traits and phenol content in olive fruits from six different cultivars. J. Agric.
Food Chem. 2015, 63, 10466–10476. [CrossRef] [PubMed]

23. Artajo, L.-S.; Romero, M.-P.; Suárez, M.; Motilva, M.-J. Partition of phenolic compounds during the virgin
olive oil industrial extraction process. Eur. Food Res. Technol. 2007, 225, 617–625. [CrossRef]

24. Frankel, E.; Bakhouche, A.; Lozano-Sánchez, J.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Literature
review on production process to obtain extra virgin olive oil enriched in bioactive compounds. Potential use
of byproducts as alternative sources of polyphenols. J. Agric. Food Chem. 2013, 61, 5179–5188. [CrossRef]
[PubMed]

25. Sánchez de Medina, V.; Priego-Capote, F.; de Castro, M.D.L. Characterization of monovarietal virgin olive
oils by phenols profiling. Talanta 2015, 132, 424–432. [CrossRef] [PubMed]

26. Servili, M.; Selvaggini, R.; Esposto, S.; Taticchi, A.; Montedoro, G.; Morozzi, G. Health and sensory properties
of virgin olive oil hydrophilic phenols: Agronomic and technological aspects of production that affect their
occurrence in the oil. J. Chromatogr. A 2004, 1054, 113–127. [CrossRef]

27. Goulas, V.; Charisiadis, P.; Gerothanassis, I.; Manganaris, G. Classification, biotransformation and antioxidant
activity of olive fruit biophenols: A review. Curr. Bioact. Compd. 2012, 8, 232–239. [CrossRef]

28. Obied, H.K.; Karuso, P.; Prenzler, P.D.; Robards, K. Novel secoiridoids with antioxidant activity from
Australian olive mill waste. J. Agric. Food Chem. 2007, 55, 2848–2853. [CrossRef] [PubMed]

29. Brenes, M.; Hidalgo, F.J.; García, A.; Rios, J.J.; García, P.; Zamora, R.; Garrido, A. Pinoresinol and
1-acetoxypinoresinol, two new phenolic compounds identified in olive oil. J. Am. Oil Chem. Soc. 2000, 77,
715–720. [CrossRef]

http://dx.doi.org/10.3989/gya.2008.v59.i4.528
http://dx.doi.org/10.1007/s10787-008-8014-y
http://www.ncbi.nlm.nih.gov/pubmed/19234678
http://dx.doi.org/10.1002/jsfa.3707
http://dx.doi.org/10.1186/1471-2229-12-162
http://www.ncbi.nlm.nih.gov/pubmed/22963618
http://dx.doi.org/10.3390/12081679
http://www.ncbi.nlm.nih.gov/pubmed/17960082
http://dx.doi.org/10.1016/j.lwt.2012.03.029
http://dx.doi.org/10.1021/jf506353z
http://www.ncbi.nlm.nih.gov/pubmed/25891748
http://dx.doi.org/10.1016/j.scienta.2006.12.036
http://dx.doi.org/10.1016/j.foodchem.2012.07.046
http://www.ncbi.nlm.nih.gov/pubmed/23017390
http://dx.doi.org/10.1039/a708920a
http://dx.doi.org/10.1021/acs.jafc.5b04315
http://www.ncbi.nlm.nih.gov/pubmed/26509962
http://dx.doi.org/10.1007/s00217-006-0456-0
http://dx.doi.org/10.1021/jf400806z
http://www.ncbi.nlm.nih.gov/pubmed/23656613
http://dx.doi.org/10.1016/j.talanta.2014.09.039
http://www.ncbi.nlm.nih.gov/pubmed/25476327
http://dx.doi.org/10.1016/S0021-9673(04)01423-2
http://dx.doi.org/10.2174/157340712802762465
http://dx.doi.org/10.1021/jf063300u
http://www.ncbi.nlm.nih.gov/pubmed/17373814
http://dx.doi.org/10.1007/s11746-000-0115-4


Int. J. Mol. Sci. 2016, 17, 337 14 of 14

30. Oliveras López, M.J.; Innocenti, M.; Ieri, F.; Giaccherini, C.; Romani, A.; Mulinacci, N. HPLC/DAD/ESI/MS
detection of lignans from Spanish and Italian Olea europaea L. fruits. J. Food Compos. Anal. 2008, 21, 62–70.
[CrossRef]

31. Benito, M.; Lasa, J.M.; Gracia, P.; Oria, R.; Abenoza, M.; Varona, L.; Sánchez-Gimeno, A.C. Olive oil quality
and ripening in super-high-density ‘Arbequina’ orchard. J. Sci. Food Agric. 2013, 93, 2207–2220. [CrossRef]
[PubMed]

32. Rodis, P.S.; Karathanos, V.T.; Mantzavinou, A. Partitioning of olive oil antioxidants between oil and water
phases. J. Agric. Food Chem. 2002, 50, 596–601. [CrossRef] [PubMed]

33. Kirkham, M.B. Water Use in Crop Production; Kirkham, M.B., Ed.; The Haworth Press: Philadelphia, PA,
USA, 1999.

34. Artajo, L.-S.; Romero, M.P.; Motilva, M.J. Transfer of phenolic compounds during olive oil extraction in
relation to ripening stage of the fruit. J. Sci. Food Agric. 2006, 86, 518–527. [CrossRef]

35. Bouaziz, M.; Jemai, H.; Khabou, W.; Sayadi, S. Oil content, phenolic profiling and antioxidant potential of
Tunisian olive drupes. J. Sci. Food Agric. 2010, 90, 1750–1758. [CrossRef] [PubMed]

36. Morelló, J.-R.; Romero, M.-P.; Motilva, M.-J. Effect of the maturation process of the olive fruit on the phenolic
fraction of drupes and oils from ‘Arbequina’, ‘Farga’, and ‘Morrut’ Cultivars. J. Agric. Food Chem. 2004, 52,
6002–6009. [CrossRef] [PubMed]

37. Rivas, A.; Sanchez-Ortiz, A.; Jimenez, B.; García-Moyano, J.; Lorenzo, M.L. Phenolic acid content and sensory
properties of two Spanish monovarietal virgin olive oils. Eur. J. Lipid Sci. Technol. 2013, 115, 621–630.
[CrossRef]

38. Rotondi, A.; Alfei, B.; Magli, M.; Pannelli, G. Influence of genetic matrix and crop year on chemical and
sensory profiles of Italian monovarietal extra-virgin olive oils. J. Sci. Food Agric. 2010, 90, 2641–2648.
[CrossRef] [PubMed]

39. Rallo, L.; Barranco, D.; de la Rosa, R.; León, L. ‘Chiquitita’ Olive. HortScience 2008, 43, 529–531.
40. Garcia-Gonzalez, D.; Tena, N.; Aparicio, R. Quality characterization of the new virgin olive oil var. ‘Sikitita’

by phenols and volatile compounds. J. Agric. Food Chem. 2010, 58, 8357–8364. [CrossRef] [PubMed]
41. Rallo, L.; Barranco, D.; Caballero, J.M.; del Río, C.; Martín, A.; Tous, J.; Trujillo, I. Variedades de Olivo en España;

Rallo, L., Barranco, D., Caballero, J.M., del Río, C., Martín, A., Tous, J., Trujillo, I., Eds.; Mundi-Pren.; Junta
de Andalucía, MAPA: Madrid, Spain, 2005.

42. Talhaoui, N.; Gómez-Caravaca, A.M.; León, L.; de la Rosa, R.; Segura-Carretero, A.; Fernández-Gutiérrez, A.
Determination of phenolic compounds of ‘Sikitita’ olive leaves by HPLC-DAD-TOF-MS. Comparison with
its parents ‘Arbequina’ and ‘Picual’ olive leaves. LWT-Food Sci. Technol. 2014, 58, 28–34. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jfca.2007.04.012
http://dx.doi.org/10.1002/jsfa.6028
http://www.ncbi.nlm.nih.gov/pubmed/23413119
http://dx.doi.org/10.1021/jf010864j
http://www.ncbi.nlm.nih.gov/pubmed/11804535
http://dx.doi.org/10.1002/jsfa.2384
http://dx.doi.org/10.1002/jsfa.4013
http://www.ncbi.nlm.nih.gov/pubmed/20564435
http://dx.doi.org/10.1021/jf035300p
http://www.ncbi.nlm.nih.gov/pubmed/15366855
http://dx.doi.org/10.1002/ejlt.201200371
http://dx.doi.org/10.1002/jsfa.4133
http://www.ncbi.nlm.nih.gov/pubmed/20737415
http://dx.doi.org/10.1021/jf101316d
http://www.ncbi.nlm.nih.gov/pubmed/20593825
http://dx.doi.org/10.1016/j.lwt.2014.03.014
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Results and Discussion 
	Quantitative Characterization of Phenolic Compounds 
	Transfer of Phenolic Compounds from Fruits to Oil 
	Qualitative Changes 
	Quantitative Changes 

	Chemometric Analysis 

	Materials and Methods 
	Chemicals and Reagents 
	Samples 
	Extraction of Phenolic Compounds from Olive Fruits and Oils 
	Determination of Phenolic Compounds by HPLC-DAD-TOF-MS 
	Statistical Analysis 

	Conclusions 

