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Dr. Jesús E. Dı́az Verdejo

Granada, 2015



Editorial: Universidad de Granada. Tesis Doctorales
Autor: Saeed A. M. Salah
ISBN: 978-84-9125-125-5
URI: http://hdl.handle.net/10481/40240 

http://hdl.handle.net/10481/40240
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Abstract

As telecommunication networks evolve rapidly in terms of scalability, complex-
ity and heterogeneity, the efficiency of incident management procedures and the
accuracy in the detection of anomalous behaviors are becoming important factors
that largely influence on the decision making process in large Information Technol-
ogy (IT) service companies. For this reason, these companies are doing big efforts
investing in new technologies and projects aimed at finding efficient management
solutions. One of the challenging issues for network and system management teams
is that of dealing with the huge amount of alerts generated by the managed systems
and networks. Currently, alerts correlation is the primary technique used to handle
this issue. Despite the big amount of research efforts that have been carried out in
the alerts correlation field, this is still an active research area in network manage-
ment. This is mainly due to the fact that the efficiency and robustness of the models
used and the algorithms proposed vary from system to system, but none of them
have already succeeded to provide an optimal solution to this problem in terms of
reducing and aggregating the number of alerts to a single alert per incident.

On the other hand, Incident Ticketing Systems (ITSs) play an important role in
maintaining modern telecommunication networks and have been mainly introduced
to assist in speeding up the incident recovery process and adding more advanced
functions to incident solving. As the bulk of the tickets are normally created manu-
ally, they constitute ideal candidates to be used into the alerts correlation procedure
to add more semantic information and human knowledge, coming from the man-
agement staff and also from the end users of the services (through Service Desks).
Although tickets reflect the business point of view of the incidents, to the best of
our knowledge, and despite its potential usefulness, few efforts have been devoted
to the incorporation of the information from an incident ticketing system into the
alerts correlation procedure itself.

In this work, we propose a generic tickets-alerts correlation architecture com-
posed of three main parts: alerts correlation, incident tickets correlation and tickets-
alerts correlation. In the alerts correlation part, a survey of the state-of-the-art in
alerts correlation techniques is first presented. Unlike other authors, we consider
here that the correlation process is a common problem for different fields in the
industry, and not only for network or security management. Thus, we focus on
showing the broad influence of this problem. Additionally, we suggest an alerts
correlation model capable of modeling current and prospective proposals. Finally,
we also review some of the most important commercial products currently avail-
able. In the incident tickets correlation part, we first check that, in many cases, the
handling of tickets by a management team is not completely systematic and may
be incoherent and inefficient. This way, irrelevant or redundant tickets for a same
incident are likely issued, thus creating a redundancy in the system that leads to in-



2

efficiencies. To handle this issue, we suggest a model aimed to correlate redundant
tickets in order to ideally reduce the information to a single ticket per incident. Us-
ing this model as a basis, we also develop and evaluate a methodology that assesses
the efficiency of a management team during the process of tickets creation and man-
agement. In the last part, we propose and test a model for the joint correlation of
tickets and alerts. Finally, we validate the proposed correlation models by evalu-
ating them with two datasets taken from a real incident ticketing system of an IT
service company, in order to analyze their applicability and usefulness by targeting
them at three main applications: how can the models be used to evaluate the tick-
ets creation process, how can the models be used to improve the alerts correlation
process, and finally, how to use them in evaluating the management team in terms
of their speed, accuracy and the influence of each management group in the whole
incident resolving process. These analyses can be leveraged for improving both the
management groups functioning and the policies for tickets creation and incident
management.

The results of this work show that incorporating the ticketing information in the
alerts correlation process will permit obtaining better correlation rates, i.e., a bigger
and more reliable reduction in the number of alerts. By using these models, decision
makers would get more accurate information about the real incidents happening in
the network and their descriptions, so that decisions and prioritization procedures
would be more precise. At the same time, the proposed methods are based on simple
elements and reasonings, making their applications in a real network management
system almost straightforward.



Resumen
Al mismo tiempo que las redes de telecomunicaciones evolucionan rápidamente
en términos de escalabilidad, complejidad y heterogeneidad, la eficiencia de los
procedimientos de gestión de incidentes y la precisión en la detección de compor-
tamientos anómalos se están convirtiendo en factores importantes que influyen en
gran medida en el proceso de toma de decisiones en las grandes empresas de ser-
vicios TIC. Por esta razón, estas empresas están haciendo grandes esfuerzos de in-
versión en nuevas tecnologı́as y proyectos encaminados a encontrar soluciones de
gestión eficientes. Una de las cuestiones más complejas de resolver y que va ganando
relevancia en este contexto es la de hacer frente a la enorme cantidad de alertas ge-
neradas por los sistemas y redes gestionadas. Actualmente, la correlación de alertas
es la principal técnica utilizada para resolver este problema. Sin embargo, a pesar
de la gran cantidad de trabajos de investigación que se han llevado a cabo en el
campo de la correlación de alertas, esta sigue siendo un área de investigación activa
en la gestión de redes. Esto se debe principalmente al hecho de que la eficiencia y
la robustez de los modelos utilizados y los algoritmos propuestos varı́an de un sis-
tema a otro, constatándose que aún no se ha alcanzado una solución óptima a este
problema en términos de reducción del número de alertas a una sola por incidente.

Por otro lado, los sistemas de gestión de incidentes mediante tiques (ITS, del
inglés Incident Ticketing System) juegan un papel importante en la gestión y man-
tenimiento de las redes modernas de telecomunicaciones. Estos se han introducido
principalmente para ayudar a acelerar el proceso de recuperación y para la incorpo-
ración de funciones avanzadas en la resolución de incidentes. Como la mayor parte
de los tiques se crean normalmente de forma manual, resultan candidatos ideales
para ser utilizados en el procedimiento de correlación de alertas, de modo que se
pueda añadir mayor información semántica proveniente del conocimiento experto
aportado por el personal de gestión, asi como también de los usuarios de los servi-
cios (a través de los centros de atención al cliente). Sin embargo, a pesar del aparente
potencial que podrı́a suponer utilizar estos sistemas de tiques en combinación con
los sistemas de correlación de alertas, podemos destacar el reducido número de in-
tentos, a nivel de investigación, para combinar ambas fuentes de información en un
sistema que mejore los actuales.

En este trabajo proponemos un sistema genérico de correlación de tiques y aler-
tas compuesto por tres partes principales: correlación de alertas, correlación de
tiques y correlación combinada de tiques y alertas. En relatión a la correlación de
alertas, se presenta en primer lugar una revisión del estado del arte. A diferencia
de otros autores, consideramos aquı́ que el proceso de correlación es un problema
común para diferentes campos de la industria, y no sólo para la gestión de redes o
la seguridad. Además, se sugiere un modelo genérico de correlación de alertas ca-
paz de incorporar las propuestas actuales y que es también suficientemente flexible
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para considerar propuestas futuras en este campo. Por último, también revisamos
algunos de los productos comerciales más importantes disponibles en la actuali-
dad. En relación a la correlación de tiques, comprobamos en primer lugar de forma
empı́rica que, en muchos casos, la gestión de los tiques por parte de un equipo de
gestión no es completamente sistemática y puede ser incoherente e ineficiente. De
esta manera, se pueden constatar ciertas problemáticas, como la aparición de tiques
irrelevantes o múltiples para un mismo incidente, creando ası́ una redundancia en el
sistema que conduce a ineficiencias. Para hacer frente a este problema, en esta tesis
se sugiere un modelo destinado a realizar la correlación de tiques redundantes con
el fin de reducir, idealmente, el número de tiques a uno solo por incidente. Usando
este modelo como base, también se desarrolla una metodologı́a que evalúa la efi-
cacia de un equipo de gestión durante el proceso de creación y gestión de tiques.
En la última parte, se propone y se evalúa un modelo para la correlación conjunta
de tiques y alertas. Finalmente, se validan los modelos de correlación propuestos
usando dos conjuntos de datos tomados de un sistema real de gestión de incidentes
con tiques de una empresa de servicios TIC, con el fin de analizar su utilidad en dos
aplicaciones principales: el uso de los modelos para mejorar el proceso de corre-
lación de alertas y su utilización para la evaluación del equipo de gestión de red
en términos de su velocidad, su precisión y su influencia en el proceso de gestión
de los incidentes. Estos análisis se pueden aprovechar para mejorar tanto el fun-
cionamiento de los equipos de gestión de red como las polı́ticas para la creación y
gestión de tiques.

Los resultados obtenidos a lo largo de este trabajo han reflejado que, incorpo-
rando la información de los tiques en el proceso de correlación de alertas, se ob-
tienen mejores tasas de correlación, esto es, una reducción mayor y más fiable en
el número de alertas. Por otra parte, los responsables de la gestión de red en las
compañı́as pueden obtener información más precisa sobre los incidentes reales que
suceden en la red y sus descripciones, por lo que las decisiones y procedimientos
de priorización serı́an más precisos. Al mismo tiempo, las metodologı́as se basan
en elementos y razonamientos simples, por lo que su aplicación en un sistema de
gestión de red real es prácticamente directa.
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Chapter 1
Introduction

The process of alerts correlation applied to the network management field consti-
tutes the main focus of this work. Essentially, alerts correlation is a complex process
aimed at establishing relationships between the alerts in order to summarize or ag-
gregate them. Knowing the basics of this context is a primary task in order to build
proposals and adequately situate them. For this reason, in this introduction chap-
ter, we first present the problem of alerts correlation, explaining the basic concepts
related to network management and its relevance in incidents’ solving. The goal of
this chapter is to clearly state the main hypothesis to be validated with this work.
After this, the motivations, additional hypotheses and the objectives are described.
This is followed by the research methodology and the main contributions. Finally,
an outline of the structure of this document is provided.

1.1 Network Management Concepts

Nowadays, communication networks are evolving rapidly in terms of scalability,
complexity, and heterogeneity. For example, an infrastructure for a current cor-
porate network may span over a large geographical area; encompass many tech-
nologies, multiple vendors’ equipments, and different types of subnetworks; run
a wide variety of applications and protocols; and operate under strict reliability
constraints. In the functioning of this type of networks, it is essential to provide
management mechanisms. Therefore, Network Management Systems, (NMSs), are
nowadays among the most important elements for the success in the functioning of
Information Technology (IT) service providers or IT departments in enterprises. The
maintenance and configuration of network devices, servers, and services, as well as
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the continuous monitoring of the operation of all the devices within the network are
the key elements of a NMS.

In the literature, several definitions of network management exist [5–7]. Most
of these definitions are provided by standardization organizations that use specific
terminology and aim their definitions at specific fields of application. However, the
most general and comprehensive definition of network management is found in [8],
being defined as:

“Network management refers to the activities, methods, procedures, and tools that
pertain to the operation, administration, maintenance, and provisioning of corporate net-
works. Operation deals with keeping the network (and the services that the network pro-
vides) up and running smoothly. It includes monitoring the network to spot problems as
soon as possible, ideally before users are affected. Administration deals with keeping track
of resources in the network and how they are assigned. It includes all the “housekeeping”
that is necessary to keep the network under control. Maintenance is concerned with per-
forming repairs and upgrades –for example, when a line card must be replaced, when a
router needs a new operating system image with a patch, when a new switch is added
to the network. Maintenance also involves corrective and preventive proactive measures
such as adjusting device parameters as needed and generally intervening as needed to
make the managed network run “better”. Provisioning is concerned with configuring re-
sources in the network to support a given service. For example, this might include setting
up the network so that a new customer can receive voice service.”

Network management has been attracting the attention of a growing number of
researchers over the past years. Researchers in both academic institutions and in-
dustrial sectors have invested big efforts in new technologies and projects aimed at
finding efficient management solutions in order to cope with the technological rev-
olution in the communication industry. Two reasons may be cited for this interest.
The first is the relevance of network management in economic terms; for many com-
panies today, the reliability of the IT services they use has become a critical factor
for reaching success in the business market. Due to the industry trend to focus on
the core business, IT services are in many cases outsourced to external companies.
To ensure that these IT services are provided in a reliable manner, a service contract
or Service Level Agreement (SLA) [9] is laid down between the customer and the IT
service provider. This contract specifies Quality of Service (QoS) parameters that
describe the performance of the service in question [10], which implies the use of a
NMS by the IT service provider. If the QoS parameters are not met, the agreement
usually considers certain penalties to cover the resulting consequences for the cus-
tomer. Anyway, whether IT services are outsourced or not, the accomplishment of
the required QoS becomes relevant in economic terms for the business. Thus, effec-
tive management procedures to provide this QoS may imply a significant increase
in productivity, through a better utilization of the available resources.
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The second reason for the interest of the scientific community in network man-
agement is the amount of different problems and challenges involved. In order to
provide a satisfactory solution for the network management, a lot of research might
be required in several areas of computer science such as computer networks, soft-
ware engineering, database systems, human machine interface and artificial intelli-
gence, among others.

Deploying efficient network management mechanisms, which is an inherently
difficult task and by no means an easy option in current corporate networks, is
expected to have the following benefits for IT service providers or IT departments
in enterprises [8, 11, 12].

• Reducing cost: Having a NMS increases profitability, as a management staff can
easily monitor and manage network outages, if any, and resolve them almost
immediately. Furthermore, instead of several groups managing each subnet-
work at every location, an appropriate NMS could permit the implementation
of a system with a management staff at a single location to control and manage
the entire network.

• Saving time: Network management helps a management staff to understand
the problems faced by customers quickly. Constant monitoring of networks
informs of any network errors that could imply fatal consequences for the
company. Besides, being well informed in advance allows to rectify and re-
solve these errors before they damage the reputation of the company as well.

• Increasing productivity: With NMS, all aspects of a corporate network includ-
ing hardware, software, and peripherals can be managed. All of these compo-
nents need to be able to communicate with each other. Should one go down,
the whole system could be impacted. NMS detects it so that there is no data
loss or productivity slowdown. So that, using NMSs, decision makers in IT ser-
vice providers or IT departments in enterprises can increase their productivity
and, ultimately, their profits.

• Increasing revenues: Increasing customer acquisition and retention, commonly
referred to as the Quality of Experience (QoE), becomes very important as well
as a significant challenge to the IT service providers with a goal to minimize
the customer churn yet maintaining their competitive edge. Thus, having an
efficient NMS will increase QoE. This will impact on the reputation of IT
service providers, and consequently, it will have a significant increase in their
revenues.

Despite the above benefits of network management, there are several issues that
present new challenges to current NMSs and must be dealt with in order to get the
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maximum benefits [11, 13–15]. First of all, as the size and complexity of communi-
cation networks continue to grow rapidly, this leads to an increase in the number of
elements that make up these networks. This will require better scalability enhance-
ment mechanisms on the designs of network management platforms. In this regard,
the used NMS must take care of how to make the configurations of these elements
more realizable. Second, as network infrastructures from various sectors converge,
heterogeneous network technologies must coexist and inter-work. NMSs must pro-
vide efficient mechanisms to implement such seamless integration, and hide the un-
derlying technological heterogeneity from end users. Third, the competitive nature
of IT service providers demands economical operation of networks. Consequently,
network management solutions must be more self-regulating and self-governing, in
order to be economically beneficial. In addition, they also must be kept simple and
elegant because, as the development of the Internet has evinced, only simple and
elegant solutions would dominate in large-scale heterogeneous networks. Last but
not least, as managed devices become more and more powerful, there is an increas-
ing pressure to exploit their processing capabilities in an efficient way. This also
leads to an increasing need for distributed or hierarchical NMSs.

1.2 Network Management Standards

In this section, we briefly bring together the basics of three network management
frameworks. They are FCAPS, Telecommunications Management Network (TMN), and
Information Technology Infrastructure Library (ITIL).

1.2.1 FCAPS Model

The FCAPS model is a major network management framework [8, 16]. It has been
created by the International Organization for Standardization (ISO) with the aim of
providing focus and consistency in the area of network management. FCAPS cate-
gorizes the working objectives that conform the backbone of network management
into five key functional areas: fault management, configuration management, account-
ing management, performance management and security management. The FCAPS
term is an acronym formed by the five initial letters of these functional areas that
are described below:

• Fault management: The goals and objectives of fault management include
early fault recognition, generating notifications when that recognition occurs,
isolation of negative effects, fault correction and logging of the corrections to
assist in improvement, among others.

• Configuration management: It is the process of organizing and maintaining
a consistent, repeatable, and audit-able information about all the hardware
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and software elements that make up the network. Thus, it includes all of
the configuration aspects of network elements such as resource initialization,
network provisioning, backup and restore, remote configuration, automated
software distribution, configuration file management, inventory management
and software management, among others.

• Accounting management: It provides the necessary mechanisms to make the
measurements of the use of network services and the determination of the as-
sociated costs to the IT service provider, and the charges to the customer for
such use. This process involves tracking network utilization information and
informing relevant users, departments, and authorities about the usage of re-
sources, and the associated costs. This makes the most effective use of the
systems available, and minimizes operational costs. Furthermore, accounting
management area is also responsible for ensuring that users are billed appro-
priately.

• Performance management: It is related with managing the overall perfor-
mance of the network, i.e., throughput monitoring, network bottlenecks de-
tection, and potential problems identification. A major part of the effort is to
identify what improvements will yield the greatest overall performance en-
hancement. Several statistics are gathered and analyzed to monitor a system
and network throughput. Examples of the statistics gathered include sys-
tem errors, utilization and response times, which are used to identify system
trends and plan for future use.

• Security management: This area covers the configuration and monitoring for
avoiding and minimizing security threats and violations. Examples of the
tasks that are managed in this area include securing the network, securing
management interfaces and creating audit trails, inspecting traffic payloads to
guard against viruses and trojan horses, enforcing policies that limit increases
in the amount of traffic to a particular destination or from a particular source
to guard against Denial of Service (DoS) attacks, “blacklisting” ports and net-
work addresses where suspicious traffic patterns are observed, and providing
the access to network devices and corporate resources to authorized individu-
als.

For a corporate network to be effectively utilized, it is indispensable that all of
these areas’ features are adequately managed and that there exists an integration
among the five management functional areas described above, i.e., the information
generated in one area may be useful in other areas and therefore should be available
for all.
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1.2.2 TMN Model

TMN [7, 17] is another well-known network management standard that is defined
by the International Telecommunication Union-Telecommunication (ITU-T) (formerly
CCITT). Unlike FCAPS, which divides the network management process into func-
tional areas, network management is mainly introduced here as a reference model
for a hierarchical network management approach. The main argument behind the
hierarchical approach is that it deals better with the complexity of management.
Therefore, the management functionality with its associated information, as de-
scribed by TMN, can be decomposed into four logical layers: the Element Manage-
ment Layer (EML), the Network Management Layer (NML), the Service Management
Layer (SML), and the Business Management Layer (BML). The TMN model segregates
the management responsibilities based on these layers. This makes it possible to
distribute these functions or applications over the multiple disciplines of IT service
providers or IT departments in enterprises, and use different operating systems, dif-
ferent databases and different programming languages. A brief discussion of each
of these layers is given below.

• Element Management Layer (EML): This layer mainly deals with vendor spe-
cific management functions and hides these functions from the network man-
agement layer. Examples of functions performed at this layer include de-
tection of equipment errors, measuring power consumption, measuring the
temperature of equipment, collecting statistical data for accounting purposes,
measuring the resources that are being used, like CPU-time, buffer space,
queue length, etc., logging event notifications and performance statistics and
defining interfaces for other network elements, among others.

• Network Management Layer (NML): The network management layer man-
ages relationships and dependencies between network elements, generally re-
quired to maintain end-to-end connectivity in the network. It mainly concerns
with keeping the network running as a whole, offering a holistic view of the
network among the multiple pieces of equipment and independently of device
types and vendors. Examples of functions performed at this layer include cre-
ation of the complete network view, creation of dedicated paths through the
network to support the QoS demands of end users, modification of routing
tables, monitoring of link utilization, optimizing network performance and
detection of root causes behind faults, among others.

• Service Management Layer (SML): It is concerned with the contractual as-
pects of services that are being provided to customers. Examples of the main
functions of this layer include service creation, service monitoring, service im-
plementation, order handling, QoS management (delay, loss, etc.), accounting,
addition and removal of users, maintenance of group addresses and invoicing,
among others.
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Figure 1.1: TMN logical layer architecture and its relationship with FCAPS model (taken
from [1]).

• Business Management Layer (BML): The business management layer can be
considered a goal-setting approach: “What are the objectives, and how can the
network (and network management specifically) help achieve them?”. This
includes high level planning, budgeting, goal setting, executive decisions and
business level agreements, among others.

In this context, the FCAPS model is considered an extension to the TMN model.
Each management layer in the TMN model is responsible for providing the appro-
priate FCAPS functionality according to the layer definition, and communicates
with the layers above and below it. Figure 1.1 shows the relationship between
the different layers of the TMN model as well as the relationship with the FCAPS
model.

1.2.3 ITIL

Currently, ITIL is the most widely adopted public framework to Information Tech-
nology Service Management (ITSM) in the world [18, 19]. ITIL is a set of best practices
standards that focuses on aligning IT services to meet business needs and goals. It
was originally developed by the United Kingdoms’s Central Computer Telecommu-
nications Agency and currently it is maintained by the Office of Government Com-
merce. By the mid 1990’s, ITIL became the world-wide de facto standard in ser-
vice management, which is currently considered as one of the fastest growing busi-
ness optimization initiatives distributed over the world. ITIL processes are being
adapted by organizations both big and small due to its ability to improve business
processes. Due to the fact that ITIL focuses on best practices, it can be adapted and
adopted in different ways according to specific individual organizations needs. One
of the primary factors leading to such rapid growth and adoption of ITIL are the
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benefits being reported by customers and users. ITIL is organized into sets of texts
that are defined by related functions: service support, service delivery, managerial,
software support, computer operations, security management, and environmental.
Besides the services and products, ITIL also includes materials for several purposes
such as training, qualifications, software tools, and user groups such as the IT Ser-
vice Management Forum .

The service management section of ITIL is made up of eleven different disci-
plines, split into two sections, Service Delivery and Service Support. ITIL service
delivery includes capacity management, SLA, continuity management, availability
management, and IT financial management. Whereas ITIL service support includes
configuration management, incident management, problem management, change
management, service desk and release management, among others.

In sum, a simple review of the three standards shows that FCAPS, TMN, and
ITIL all overlap in terms of the concepts that they address. It is true that they
share the same concepts. Yet, they do so at different levels of abstraction. The
FCAPS model primarily focuses on the concept of technology management. The
TMN model focuses on service management, and presents technology at a level that
the business can understand (not just the technical staff). The ITIL framework, on
the other hand, is all about how to run an efficient IT organization. Thus, ITIL
focuses on processes and workflows. Based on this, we can say that FCAPS started
with a technology centric view, TMN layers on top a service and business oriented
view, and ITIL added the process optimization and efficiency to the equation.

In the following sections, we look inside one of the main functional areas that the
above three management standards describe, i.e., fault management. We do focus
on this topic because the presented work in this thesis is centered around it.

1.3 Network Management Architecture

A thorough review in the literature reveals that researchers have described three
management architectures that might be deployed in corporate networks, depend-
ing on the size and internal policies of a company. These management architectures
are centralized, distributed and hierarchical [11, 20]. In a centralized management
architecture, there is only one manager responsible of collecting information from
all agents and controlling the entire network. This basic model is known in the
literature as simply a “manager-agents”. Distributed management encompass mul-
tiple managers; each one controls a portion of the network and may communicate
directly with other managers. Finally, the hierarchical architecture is considered as
a hybrid approach between both centralized and distributed managements. Here,
each manager locally manages a subset of network agents and it is assigned with a
given degree of responsibility.
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Figure 1.2: Manager/agents model of a network management architecture.

Although the three management architectures have different characteristics, they
all share the same basic structure and components. As illustrated in Figure 1.2,
there are five main components in a network management architecture: managers,
agents, network management protocols, Management Information Base (MIB) and a com-
munication model [11, 21]. In what follows we give a brief overview about each com-
ponent.

• Managers: The main concept of the network management platform is called
a manager or management entity. It is an application, typically with a user
interface, normally running in a management station located in a manage-
ment center of an IT company. This center focuses on the network manage-
ment operations and is called Network Operations Center (NOC). The main
key functions of the manager are: it collects network management data from
the agents and presents them for analysis by the management staff; it queries
agents and gets responses from them; it is able to configure equipments by
setting variables in agents; and it is able to acknowledge asynchronous events
from agents, among others.

It is worth to mention here that the work presented in this thesis mainly in-
troduces some contributions to help a management staff enhancing their op-
erations in the manager side, due to the fact that all the fault management
tasks are mainly handled by a management staff located at the manager side.
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Furthermore, the databases of alerts and tickets investigated in this work are
collected and maintained by the management staff of an IT service provider
or an IT department of an enterprise. So, the contributions of this thesis can
be leveraged by the management staff to efficiently handle the huge amount
of alerts that they receive every day. On the other hand, this thesis work does
not provide any contributions to enhance functioning and operation of any of
the other management components that are listed below.

• Agents: An agent is a program that is normally packaged within a managed
device or a network element, and that is in charge of monitoring that man-
aged device and communicates with the manager. In this context, a managed
device might be a workstation, router, switch or server, among others, that
requires some form of monitoring and management. Enabling the agent on
the managed device allows it to collect the management information from the
device and makes it available to the manager, both asynchronously or when it
is queried.

• MIBs: Every agent maintains its management information locally in a database
that describes the managed device parameters. This database, shared between
the agents and the manager, is commonly called MIB. Typically, a MIB con-
tains a standard set of statistical and control values defined for the managed
device. The manager uses this database to request the agent for specific infor-
mation and further translates the information as needed for the NMS.

• Network management protocol: The main purpose of the network manage-
ment protocol is to enable the exchange of information and commands of net-
work devices management and monitoring through a common language across
all devices. For example, the communication between the manager and the
agents is normally carried out by sending and receiving messages that are de-
fined by a management protocol. The following network management proto-
cols are the most widely adopted, all of them being defined by various Internet
Engineering Task Force (IETF) standards.

– Simple Network Management Protocol (SNMP) [22]: It is the most widely
deployed protocol. It is defined in the Request For Comment (RFC) 1157,
with the purpose of managing Internet and IP-based internetworks. Most
of the current professional-grade network devices come with a bundled
SNMP agent. These agents have to be enabled and configured to commu-
nicate with the SNMP manager. There are three versions of this protocol
currently available: SNMPv1, SNMPv2, and SNMPv3. They all share the
same basic structure and components, and they follow the same archi-
tecture. SNMPv1 and v2 are the most used versions of SNMP. SNMPv3
has recently started catching up as it is more secure when compared to
its older versions, but it has not still reached considerable market share.
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– Remote Network MONitoring (RMON) [23]: RMON is really an extension
to SNMP that was mainly designed for the management of network traf-
fic. It enables various network monitors and console systems to exchange
network-monitoring data. The RMON specification defines a set of statis-
tics and functions that can be exchanged between RMON-compliant con-
sole managers and network probes. To do that, nine types of information
are collected, including packets and bytes sent, packets dropped, statis-
tics by host, statistics by conversations between two sets of addresses, and
certain kinds of events that have occurred. It allows to find out how much
bandwidth or traffic each user is imposing on the network, or what web
sites are being accessed. Besides, notifications can be sent to the man-
ager in order to be aware of impending problems. There are two versions
currently available: RMONv1 and RMONv2 (sometimes referred to as
“RMON2”).

– Common Management Interface Protocol (CMIP) [24]: It is a network man-
agement protocol defined by the ISO/IEC 9595 and 9596 standards. It
is built on the Open Systems Interconnection (OSI) communication model
that defines how to create a common network management infrastruc-
ture. While both CMIP and the SNMP define network management stan-
dards, CMIP is far more complex. In contrast to the SNMP, which is
specifically designed for TCP/IP networks commonly used on corporate
networks, CMIP is really only used by some IT service providers for net-
work management. It was mainly proposed as a replacement for SNMP,
but has not been adopted by the networking community for widespread
implementation because of its complexity.

• Communication model: There are two well-known models for exchanging
data between the manager and the agent in a NMS: poll and push. The poll
model is based on the request/response paradigm (called data polling, or sim-
ply polling, in the SNMP management framework); the manager uses a re-
quest command to poll the agent in requesting information, and the polled
agent collects the requested information, and sends it back to the manager,
in a message that is called a response. In this approach, the data transfer is
always initiated by the manager, and the polling itself can be automatic or
user-initiated. In the push model, conversely, an agent first advertises what
MIB it supports, and what notifications it can generate; the management staff
then subscribe the manager to the data they are interested in, specify how of-
ten the manager should receive this data, and disconnect. Later on, each agent
individually takes the initiative to push data to the manager, either on a regu-
lar basis via a scheduler (e.g., for network monitoring) or asynchronously (e.g.,
to send notifications).
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Figure 1.3: The four steps of the fault management process.

The notifications are called traps in SNMP terminology. Traps are simply de-
fined as messages sent to the manager by an agent when something needs to be
reported. Basically, there are seven generic types of traps: a ColdStart trap means
that the agent has detected some changes in the configuration, for example, if a
server has a value in its BIOS changed before booting the operating system; a Warm-
Start trap signals that the system has been cut/restored; LinkDown/NodeDown and
LinkUp/NodeUp traps signify that communications through a Node/Link are out of
service or that have been restored; an AuthenticationFailure trap signals the manager
that a request has been received from an unauthorized source; a NeighborLoss trap
notifies that a relationship between two nodes has been broken; and the last one is
enterpriseSpecific that informs the manager of an event that occurred in a specific
piece of hardware/software defined by the vendor’s software. In this context, the
specific-type field will contain the MIB that is used to define the exact type of event
that has occurred.

It is worth mentioning here that not all notifications are treated equally during
the fault management process. They are classified by the management staff based on
internal policies, which are mainly based on their effects on the stability of the net-
work. Consequently, the work carried out in this thesis is targeted at specific types
of notifications, i.e., those having critical effects on the stability and functioning of
the network. In the following chapters, several mechanisms are used to distinguish
between these notifications. The aim is to choose relevant notifications and filter
out the remaining, i.e., the irrelevant ones.

1.4 The Fault Management Process

As illustrated in Figure 1.3, typical fault management systems use four steps to
break down the complicated task of identifying and resolving the faults [16]. They
are: fault detection, notifications’ generation, fault diagnosing, and fault resolution.

• Fault detection: It provides the capability to recognize faults and send noti-
fications whenever needed. For this purpose, it uses several mechanisms to
monitor devices and report activities occurred in the network. These activities
must be accurate, relevant and complete. In this context, two fault detection
modes can be configured within the NMS for collecting these activities, passive
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and active [16]. In the passive mode, the agents notify the manager when a pre-
configured condition has occurred. Passive fault management can track situa-
tions and devices’ conditions from nominal values, being the responsibility of
the management staff to pre-configure the agents with the business’ definition
of nominal activity. After all, if a device is non-functional, the agent will not
raise any notification to the manager. In active fault management, the man-
ager uses several probing mechanisms to check its connectivity with agents.
For example, the manager may send a network PING command to each agent
on a regular basis and listen for the reply. If the agent does not reply after
a pre-configured interval, the active monitoring will notify the management
staff of a managed device outage. For this reason, active fault management is
often also referred to as “up/down monitoring”. In all the cases, these data
gathering and error forwarding actions are components of the agent that is in-
stalled on a managed device. The agent will forward the error, usually through
trap or Syslog, to the manager for processing.

Small business networks with a small number of managed devices are not
likely to have an NMS in place to notify when a fault occurs. In these cases,
the basic mechanism for fault detection is not automated, and a fault is con-
sidered to appear when customers complain due to a change in the state of
their connections or services. Thus, they contact the appropriate personnel in
the IT management company or department –often through a service desk–
and notify them that they have noticed an anomaly on the network.

• Notifications’ generation: When a fault occurs and the fault information has
been forwarded to the manager, the manager has to accomplish some actions.
First, the error must be parsed and identified. Usually it is compared with
the pre-generated set of logical rules. When matches occur, the manager will
trigger a response such as a notification to the management staff using mecha-
nisms such as: sending notifications to the console, sending an email message,
sending an SMS message to a cell phone or pager or executing a script, among
others.

In this context, notifications are also referred to in the literature as alarms or
alerts [25, 26]. They are short messages with a specific textual format defined
by vendors of network equipments, and generated as an external manifesta-
tion of a potential failure or a disorder occurred in a managed device or service
of a corporate network or system. Typically, such alerts contain information
regarding the device or service that issues them and the event itself, i.e., the
creation and reception time, a description of the fault, the severity of the alert,
etc. Besides, alerts may provide information with different levels of detail:
specific data regarding the status of the devices or services and their config-
urations, or higher level details, with aggregated information gathered from
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several alerts. The management staff can monitor alerts in real-time, while
active and historical alerts are usually stored in a relational database.

• Fault diagnosing: It is the troubleshooting approach followed to track down
the problem, and to find the root cause behind the fault. For complicated
problems, fault isolation can involve substantial error analysis and deep diag-
nosis of the symptoms. These sorts of deep-dive problems can occur in large
networks with multiple management teams that manage devices within sepa-
rate but connected domains of management. Thus, the task of fault diagnos-
ing might involve reviewing alerts across multiple devices and across multiple
management domains.

• Fault resolution: Fault resolution is the last step in the process of fault man-
agement. Once the root cause of the problem is identified and detected, the
next step is to commit the corrective actions. Examples of these actions include
changes in the configuration of managed devices, automatic correction of po-
tential problem-cause conditions, automatic resolution of actual malfunctions
and detailed logging of system status, among others. In addition, some ap-
proval and personnel notifications are needed in order to disseminate theses
changes through some form of change management. Finally, tools and tech-
nology could exist to ensure that the changes are logged into a configuration
management database correctly and completely.

1.4.1 Main Roles in Fault Management

During the discussed fault management process, several actors, roles and functions
are involved:

• Service Desk (SD): It acts as a point of contact for phone calls and emails
from customers regarding IT issues and queries. The main responsibilities
of the Service Desk (SD) staff include receiving, logging and managing calls
from customers or employees via telephone or email, logging the fault in the
call log, performing the initial fault diagnostics, requesting technical support
when required, and updating records (call log, fault sheet) with the resolution,
among others.

• Management Staff (MS): It is the main technical staff that is responsible for
network management in general and, in particular, for solving network faults.
Regarding this last duty, its objective is to restore the service as soon as pos-
sible. Its responsibilities include analyzing alerts to identify faults, assisting
with classification and prioritization of faults, and taking fault resolution ac-
tions to restore service to customers, among others. The management staff
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may encompass three types of actors involved in the fault management pro-
cess. They are: fault reporters, staff members responsible for discovering and
informing about faults; fault resolvers, staff members responsible for carrying
out the resolution tasks; and solution validators, staff members responsible for
testing whether the applied solution is satisfactory or not.

• Additional roles: Additional first line support groups, such as configuration
management or change management specialists might be considered. Second
and third line support groups, including specialist support groups and exter-
nal suppliers might be also considered as necessary. Customers also should
keep the the service desk informed of any further changes to the state of the
affected equipment (sometimes computers start working again when different
faults are resolved).

1.4.2 The Role of Alerts Correlation in Fault Diagnosing

Alerts correlation is a widely accepted technology used by a management staff of an
IT service provider or an IT department of an enterprise for the purpose of speeding
up the fault diagnosing process. It is defined by Jacobson and Weissmann [25] as “a
conceptual interpretation of multiple alarms such that a new meaning is assigned to these
alarms. It is a generic process that underlies different network management tasks such as
context-dependent alarm filtering, alarm generalization, network fault diagnosing, gener-
ation of corrective actions, proactive maintenance, and network behavior trend analysis”.
Gardner and Harle [27] defined it as “the interpretation of multiple alarms so as to
increase the semantic information content associated with a reduced set of messages”.

This need for alerts correlation comes from several reasons. First, with the
growth of the managed networks, it is estimated that in the mid run, the NOC
of a medium size network might be receiving hundreds of alert notifications per
day, which will render the “manual” processing of all of them practically unfea-
sible. Also, it is worth to mention here that today’s monitoring platforms such as
HP OpenView [28] trigger a huge amount of so called normal-behavior alerts in
response to daily operational tasks that are not really associated to real network
faults, i.e., maintenance activities or software updates, among others. Thus, in or-
der to speed up the fault diagnosis process, it is necessary for the management staff
to filter out irrelevant alerts, summarize them if possible, and focus on the most
crucial ones. Second, alerts that are generated as a response to the detection of ma-
licious activities or faults do not usually include explicit information about their
root cause. Third, in collaborative systems, the diversity and heterogeneity of the
managed elements poses a significant challenge to the management staff, due to the
difficulty of converging alerts coming from multiple data sources in order to de-
velop coherent management strategies. Finally, many of the received alerts do not
contain original information of the fault. In fact, the occurrence of a single fault in
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the supervised network sometimes results in the reception of multiple alerts. Sev-
eral factors contribute to this situation: an agent may generate several alerts due to
a single fault; a fault may be intrinsically intermittent, what implies the sending of
an alert at each new occurrence; the fault may result in the sending of an alert each
time the service supplied by a managed device is invoked; a single fault may be de-
tected by multiple agents, each one of them emitting an alert; and, finally, the fault
of a given device may affect several other devices, causing the fault’s propagation.

The Problem of Alerts Correlation

There are some fundamental questions that need answers in order to improve the
states of affairs in the alerts correlation process: Which alerts can be filtered out?
How can the alerts be grouped and correlated? How can the alerts be prioritized
based on their severity? To answer these questions, different alerts correlation tech-
niques, algorithms and models coming from different design approaches have been
proposed in both industrial and research communities, each one having its own ad-
vantages and disadvantages. All of these correlation techniques try to handle in
an efficient way such a huge amount of alerts through a conceptual interpretation
of multiple alerts so that a new meaning is assigned to them or some of them are
grouped together. A detailed analysis of the alerts correlation process is covered in
Chapter 2.

Despite the big amount of research efforts that have been carried out in the alerts
correlation field, this is still an active research area in network management. This
is mainly due to the fact that the efficiency and robustness of the models used and
the algorithms proposed vary from system to system, but none of them have already
succeeded to provide an optimal solution to this problem in terms of reducing and
aggregating the number of alerts to a single alert per root cause [4, 29].

This thesis is focused on providing a novel approach to the problem of alerts
correlation, by means of incorporating a business process vision of the faults, as it
will be explained in what follows.

1.5 Incident Management

As previously mentioned, the main objective of this work is to incorporate business
and service information in the alerts correlation problem. Therefore, in order to
understand this necessity, in this context, the concept of incident is important. In
this section we give detailed information about the type of business information
found in incidents that will help to achieve the main objective of this thesis.

Citing the ITIL terminology, an incident can be defined as “an unplanned inter-
ruption of an IT service or reduction in the quality of an IT service. Failure of a configu-
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ration item that has not yet impacted service is also an incident” [18, 19]. For example,
a user that receives an error message when trying to run an application he/she has
never had problems with in the past, or a user that cannot access a new web site
would each be examples of individual incidents.

In ITIL, the fault management process is divided into two sub-processes: inci-
dent management and problem management. The objective of the incident manage-
ment process is to restore normal service operation as quickly as possible, and to
minimize the adverse impact on business operations, thus ensuring that the best
possible levels of service quality and availability are maintained. This process is
primarily aimed at the end user level. On the other hand, problem management
deals with resolving the underlying cause of one or more incidents. The focus of
problem management is to resolve the root cause of errors and to find permanent
solutions. Although every effort will be made to resolve the problem as quickly as
possible, this process is focused on the resolution of the problem rather than the
speed of the resolution. This process is executed at the enterprise level.

Incident Ticketing Systems

Incident Ticketing Systems (ITSs) referred to also as Trouble Ticketing Systems (TTSs)
in transitional FCAPS and TMN models, or SDs in ITIL (see Section 1.2), have been
introduced as a main tool to assist in the incident management process. They are
databases storing reports in a specific form-based structure, and tools to interact
with them in order to handle the information and process flow to create, update,
and resolve any network incident reported by customers, organization employees or
monitoring systems. They might also contain administrative information about cus-
tomers, workarounds to be applied for common incidents, and other similar data.

When using an ITS, an incident resolution begins with the documentation of an
incident within a ticket. The incident ticket may pass through several hands and
undergo various degrees of escalation with respect to fault severity or customer pri-
ority. Operations that can be performed on a collection of tickets include linking
them together if they refer to the same problem and performing statistical analysis
to report histories of device behavior and repairs. Basic functions of ITSs include
coordination of maintenance, repairing and testing activities, escalation of network
problems, operations to perform trend analysis, and the means to design special-
ized reports on network maintenance and behavior. These reports provide valuable
input for studying and evaluating SLAs with customers.

In this thesis, we are interested in exploring the potentials of the relationship be-
tween ITSs and alerts correlation systems. Some researchers [30, 31] have pointed
out the importance of ITSs for incident resolving, claiming that they should be ex-
tended with advanced functions to enhance the incident resolving process, as the
information contained in a ticket might be related to incidents generated by events
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that have already been identified as network failures. Others [32] mentioned that
it would be possible to use network status information from the ITS to filter and
aggregate alerts that are displayed on the alerts management console, as incident
tickets could potentially contain much further information of that alerts, which can
be useful for expert system analysis of current network alerts information.

1.6 Objectives and Hypothesis

The main objective of this work is to explore the potentials of the use of ticketing infor-
mation when incorporated into the alerts correlation process, and to check if the semantic
information contained in an ITS, when incorporated in the alerts correlation process, can
help in aggregating a higher percentage of alerts when compared with basic alerts corre-
lation systems that only use alerts as the main source of information.

In this context, introducing the ticketing information in the alerts correlation
techniques is similar to introducing business information coming from customers.
As a matter of fact, currently, customer satisfaction depends not only on the reac-
tive results from after-incident inquiries, but also on the proactive management of
the customer’s expectations. Thus, we expect that this type of information can re-
ally provide valuable input for maintaining and expanding the provider’s business.
Furthermore, ticketing information, which reflects the business perspectives of in-
cidents, is also richer from the semantic point of view, as they contain information
from users and the management staff. Thus, our intention is to incorporate human
knowledge and relevance into the alerts correlation process.

This general objective is divided into four specific objectives:

Obj1. To set up a framework to analyze ticketing information coming from an ITS.

Obj2. To propose a generic model for the correlation of tickets and alerts.

Obj3. To evaluate both the framework and the model to show their impacts and
limitations in the alerts correlation process.

Obj4. To use of the proposed method as an assessment tool.

The basic and fundamental hypothesis behind this work is that a single incident
generated by an unique cause can generate many alerts and tickets. Another hy-
pothesis backing up this work is that ITS information will potentially help in the
process of alerts correlation, acting as information provided by an expert system.
As the bulk of the tickets in ITSs are normally created manually, they constitute
ideal candidates to be used into the alerts correlation procedure to add more se-
mantic information and human knowledge, coming from the management staff and
also from the users of the services (through SD).
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The following hypotheses regarding the information provided by tickets in ITS
are also assumed:

1. There is a correlation between tickets themselves. It is possible that more than
one ticket exist for the same incident.

2. There is a correlation between alerts themselves. Similarly, the same incident
can generate many alerts.

3. Tickets recorded in the ITS are generated based on the problems and their
symptoms. Therefore, we argue that many records in the ITS database con-
tain information related to the incidents generated by events that have already
been identified as network failures observed as alerts. Thus, there exist some
correlation between alerts and tickets.

1.7 Methodology

During this work, we have followed the scientific methodology based on building
theoretical models and contrasting them with empirical data. These data consist
of a database from a real IT management company comprised of tickets and alerts
(described in Chapters 3, 5 and 6). We have faced an important problem due to
the fact that the database is not supervised, i.e., no information about ground truth
is present, so we have had to develop mechanisms to validate our results, as it will
be explained in the following chapters.

The work plan followed to accomplish the objectives of the thesis has comprised
the execution of several sequential phases along the research period. We briefly
describe the different phases and their objectives:

1. State-of-the-art phase: A state-of-the-art of both alerts correlation and tick-
ets correlation techniques has been first carried out by collecting information
from papers, tutorials and online resources, in order to make a classification
of the existing techniques and study their advantages and disadvantages.

2. Tickets exploration phase: Here, a preliminary exploration of the data con-
tained in the ITS database has been carried out. For this purpose, a statistical
analysis on the data was done in order to extract features such as tickets gener-
ation procedures, types of tickets, temporal properties, and types of attributes,
among others.

3. Tickets correlation phase: A methodology for organizing the information
provided by an ITS has been first suggested; this methodology has been de-
fined in the most possible general way. Then, based on it, a model to correlate
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redundant tickets in an ITS has been proposed. The aim is to reduce the num-
ber of records in the database without affecting the relevant information.

4. Alerts exploration phase: Here, a preliminary exploration of the data con-
tained in the alert database has been carried out. For this purpose, a statistical
analysis on the data has been done in order to extract features such as alert
flows, types of alerts, temporal properties, and types of attributes, among oth-
ers.

5. Alerts correlation phase: In order to enable the comparison between our de-
velopments and previous techniques, a reference system for alerts correlation
has been built by applying basic correlation techniques to the alert database
and then obtaining, processing, and analyzing the results.

6. Tickets-alerts correlation phase: In this phase, a generic tickets-alerts corre-
lation architecture has been suggested. It mainly consists of three modules: a
module for tickets correlation, other for alerts correlation and the last one for
tickets-alerts joint correlation.

7. Evaluation phase: Results obtained from the new correlation system have
been analyzed and interpreted. Furthermore, due to the lack of ground truth
information in the studied database, several validation methods adapted to
the problem have been developed. The results have also been compared with
those obtained from the basic alerts correlation method built in a previous
phase.

8. Application phase: In this phase, the applicability of the proposed tickets-
alerts correlation system has been analyzed by targeting it to some of the cur-
rent real management scenarios, mainly in alerts reduction and measuring
staff efficiency.

1.8 Main Contributions

The main contributions of this work are listed below:

1. A comprehensive state-of-the-art in alerts correlation techniques has been pro-
vided. It is based on a newly proposed taxonomy, and provides a global insight
on the different efforts made in this field from different research and industry
communities within the last few years.

2. A framework to describe the alerts correlation process has been suggested.
Based on it, all the stages, techniques, and methodologies that have been sug-
gested in the state-of-the-art have been also surveyed. In addition, a compre-
hensive study reviewing the most important existing alerts correlation tools,
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open source and commercial, that are currently available has been carried out.
Besides, we have analyzed their alignment with both the state-of-the-art and
the proposed alerts correlation process.

3. A tickets correlation model has been contributed. It is targeted at improving
the information provided by an ITS, aimed at reaching the ideal situation at
which just a single ticket per incident exists. Furthermore, some metrics to
measure the existing redundancy in an ITS have also been suggested, mainly
based on the proposed correlation method.

4. A model for the joint correlation of tickets and alerts has been suggested and
evaluated. In addition, the most important challenges that should be faced in
this process and the possible solutions have also been discussed and addressed
in detail.

5. Three possible application fields of the proposed models have been analyzed,
i.e., in the ITS assessment, in measuring staff efficiency during the incident
management process, and in reducing the number of resulting alerts in the
alerts correlation problem.
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1.9 Thesis Document Structure

This thesis document is divided into six chapters besides this introduction. They
are listed below followed by a brief summary of their contents.
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• Chapter 2 gives an overview of the current state-of-the-art in alerts correla-
tion techniques, providing basic concepts, theory, proposed models and frame-
works, and sources of information considered by different authors in the alerts
correlation process. In addition, it also provides a new taxonomy for alerts cor-
relation techniques that covers proposals coming from different research dis-
ciplines. Finally, we analyze existing alerts correlation techniques and make a
comparative study among them.

• Chapter 3 describes the tickets datasets in more detail, including the extrac-
tion of some useful statistics, figures and the different types of records. Then,
the same is done for the alerts datasets. Finally, this chapter discusses the pre-
liminary results that have be derived after implementing some experiments
that have been carried out for analyzing the process of the joint correlation
of tickets and alerts, and it describes the main difficulties that could appear
during the process of relating tickets, alerts, or both together.

• Chapter 4 proposes a framework to describe the alerts correlation process that
is capable of covering all the alerts correlation aspects discussed in Chapter 2.
It covers in more detail the different correlation components, their tasks and
the interconnection among them. Furthermore, it provides a comprehensive
comparison of existing commercial products that implement certain correla-
tion techniques. Three different applications for alerts correlation have been
considered here, namely NMSs, network and system security, and SCADA sys-
tems, and their alignment with the proposed alerts correlation process model
was shown.

• Chapter 5 first presents a novel model for incident tickets, that mainly fo-
cuses on the generic fields that appear in any ticket. A second model, based
on the previous one, is for the incident tickets correlation process. It mainly
focuses at merging redundant tickets to achieve the ideal situation at which
just a single ticket per incident exists. Finally, in this chapter we can find
a description of the case study used to validate the proposal by using some
suggested performance metrics.

• Chapter 6 describes a model for the joint correlation of tickets and alerts. A
detailed discussion of the different issues raised during this process is done,
mainly focusing on the database specificities. It also gives details about the
evaluation carried out by presenting a case study that consists of a database of
tickets and alerts taken from a real IT management company.

• Chapter 7 details the analysis of some possible application fields of the pro-
posed models suggested in Chapters 5 and 6, making special focus on alerts
reduction and evaluating staff performance in handling incidents.
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• Finally, Chapter 8 draws the general conclusions and summarizes the most
relevant parts of the thesis.





Chapter 2
State of the Art in Alerts Correlation
Techniques

2.1 Introduction

A lerts correlation is a process used in many fields of applications that analyzes
the alerts produced by managed devices of these applications and provides a more
succinct and high-level view of them in order to achieve several purposes. A thor-
ough review of the literature over the past few decades reveals that the majority
of the research efforts carried out in alerts correlation have mainly been originated
from three main applications: NMS, network and system security and SCADA (pro-
cess control systems). NMS is considered as one of the major applications of alerts
correlation, and it is the main focus of this work. It has been extensively used by the
research community to group and correlate alerts that have same root causes. Alerts
correlation is also vastly applied in the network and system security field, consid-
ering here the alerts produced by security devices and applications, e.g., Intrusion
Detection Systems (IDSs) or firewalls logs. Here, the aim is to produce compact at-
tack reports of the security status of a managed network without loosing security
relevant information. Finally, as in the NMS, the main purpose of the alerts corre-
lation in SCADA systems is to help in speeding up the fault diagnosing process and
discovering disturbances in production lines quickly.

Some of the existing alerts correlation techniques still rely at some point on a
manual processing, and depend on the expert knowledge of the members of a man-
agement staff. As a huge amount of alerts might be generated (alert floods), it could
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be very difficult for a management staff to manage them in a short period of time.
For this reason, recent and ongoing research efforts are going ahead in this disci-
pline trying to find efficient solutions for the alerts correlation problem in terms
of scalability and complexity. In this chapter, we review all this related work and
propose a new taxonomy for the alerts correlation techniques. Based on it, we also
make a comprehensive literature review providing a global insight of the different
efforts implemented in this field during the last few decades. Unlike the majority of
existing surveys in this field, which are biased to the network and system security
field, in this state-of-the-art, the scope was extended to cover many proposed alerts
correlation techniques coming also from both NMSs and SCADA systems.

This chapter is structured as follows: Section 2.2 reviews the proposed surveys,
models and frameworks related to the alerts correlation problem. Some concepts re-
lated to the alerts correlation process are discussed in Section 2.3. In Section 2.4, a
review of the different sources of information considered by different authors in the
correlation process is provided. An alerts correlation taxonomy is proposed in Sec-
tion 2.5. Finally, a comparative study of the existing alerts correlation techniques
is presented in Section 2.6.

2.2 Existing Alerts Correlation Surveys

In a thorough review of the literature we have found a considerable number of re-
search efforts trying to study the nature of the alerts correlation problem as a whole.
Some researchers [33–35] made a very comprehensive review of the state-of-the-art
in alerts correlation techniques and listed some of the existing tools proposed by
that time both for IDSs and NMSs. Others presented surveys of alerts correlation
techniques [36, 37] based on different proposed frameworks that consist of several
components, and covered the most recent techniques by that time. Regretfully, these
works are targeted to research proposals done only in the IDS field.

Elshoush et al. [38] focused on correlation algorithms proposed in collabora-
tive intelligent IDSs, and showed that current correlation techniques are inefficient.
They pointed out the necessity of some artificial intelligence and fuzzy logic tech-
niques to satisfy the growing demand of reliable, intelligent and flexible IDS. The
same conclusion was derived by Mirheidari et al. [4], that is, there were no opti-
mal solutions to solve the alerts correlation problem completely. They concluded
that each category of algorithms has its own advantages and disadvantages, and an
ideal correlation framework should leverage the strongest features of each category.
Their work was mainly focused on algorithms in correlation engines that can work
in practical enterprise networks.

In a more recent work, Hubballi et al. [39] made a state-of-the-art of the existing
false alarm minimization techniques in signature-based network IDS; and Beng et
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al. [40] compared existing alerts correlation models in IDS based on: (i) the con-
sidered attack scenario (single packet or multi-stage attack), (ii) their architecture
(either centralized or distributed), (iii) their accuracy for alert detection, (iv) the
load imposed by processing, and (v) the data required for testing purposes. They
concluded that a more flexible and intelligent IDS is required to complement cur-
rent IDSs by predicting the incoming alerts at sensor level and real time.

For the time being, it can be concluded that all of these contributions surveying
alerts correlation techniques mainly share the following limitations:

• They are biased to a specific application domain, normally management or
security, the security field being the dominant one.

• The existing alerts correlation models proposed in these cited works did not
take into account all the sources of information used by different authors (as
it will be discussed in Section 2.4).

In this chapter, an updated and comprehensive state-of-the-art in alerts correla-
tion techniques was made to cover the above limitations. In addition, a new taxon-
omy of the existing alerts correlation techniques was contributed, and as previously
mentioned, this taxonomy covers proposals coming from the three main different
applications: NMSs, network and system security and SCADA systems.

2.3 Concepts

The term “correlation” has been utilized in many diverse applications such as sci-
ence, engineering, biomedical and business, among others, and it has been assigned
to many definitions such as that in the work by Pouget and Dacier [33]: “an action to
carry back relations with each other”. Others as [41] make a formal definition of it as
“a measure of the relation between two or more variables”. In general, correlation can
be useful for giving a predictive degree of the relationship among features, that can
be exploited in practice.

Alerts correlation (also referred to in the literature as alarms or events correla-
tion) is one variant of correlation. It is a widely accepted technology for dealing
with events coming from many applications and disciplines, e.g., management in-
formation coming from large and complex telecommunication networks. The alerts
correlation process has also many definitions, but the most used was given by Jakob-
son and Weissmann in [25]: “a conceptual interpretation of multiple alarms such that
new meanings are assigned to them”. Gardner and Harle in [27] defined it as “the
interpretation of multiple alarms so as to increase the semantic information content as-
sociated with a reduced set of messages”. In these contexts, alerts are short messages
with a specific textual format defined by vendors, and triggered as external manifes-
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tations of a potential failure or a disorder occurring in any network element, service
or system of the managed network.

The following example illustrates the benefits of applying alerts correlation in
NMS. This example is essentially associated with the fault diagnosing process (Fig-
ure 1.3). A failure in a network element1 usually generates many alerts. Yet, only
one of them might be considered the indication of the root cause. This is due to the
fact that a failure condition of one network element may render other elements in-
accessible. In this situation, the polling agents are unable to access the element that
has the failure condition, and this motivates that other elements are also affected by
this situation. Alerts are then triggered by all of these affected elements indicating
that all of them are inaccessible. Thus, in this scenario, what the management staff
needs is a single root cause alert. In summary, the need for alerts correlation in
network management comes from different reasons:

• Alerts are triggered as a response to the detection of malicious activities, nor-
mal management activities, or real network faults. Therefore, they typically
contain descriptive information about the faults and their symptoms. Yet, they
do not usually include explicit information about the root causes of a fault.

• Management staff in an IT service provider or an IT department of an en-
terprise may receive hundreds of alerts per day. Most of them might have
been triggered as a response to normal-behavior events, i.e., software update
or maintenance activities. Therefore, it is necessary for them to filter out irrel-
evant alerts and focus only on fault-related ones.

• In distributed and collaborative managed systems, the diversity and hetero-
geneity of networking elements pose a significant challenge to the manage-
ment staff, due to the difficulty of converging alerts coming from multiple
data sources in order to develop coherent management strategies.

The promising technique that alleviates the above problems and translates alerts
into more understandable and thus usable information is alerts correlation.

2.4 Sources of Information

In this section, the data sources that could be used in the alerts correlation process
will be discussed. The alerts triggered by monitoring systems are first considered, as
they constitute the main source of information and they should obviously be present
in any alerts correlation system. Yet, there exists many other sources of information
that can greatly contribute to the correlation analysis. In this sense, different authors

1The term network element is used to refer to a device or a service.
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have proposed the use of a wide variety of data sources for information in order to
achieve their goals effectively and accurately. Here, an effort to review the most
relevant data sources that have been proposed for the correlation process is made.

2.4.1 Alerts Database

This database contains the alerts triggered by the network elements and detection
systems in the monitored environment. Alerts are considered the main source of
information for any correlation technique. They can either be triggered by network
management agents via management protocols through various mechanisms such
as traps (generated by SNMP), event reports (generated by CMIP) [24], or by IDSs
such as Snort [42] or GrIDS [43], or even by monitoring tools in SCADA systems.

2.4.2 Topological Information

The second most used sources of information in the alerts correlation process are
topology databases. The main purpose of topology information is to provide an ac-
curate representation of the monitored environment as a set of links and elements,
where the links are used to represent relationships between the elements. The rep-
resentation of the location of elements, and the direction and connectivity of links
are of particular relevance. The topology information contains extensive details of
elements structure such as switches, routers or servers, among others; configura-
tion parameters such as IP addresses and their matching to names, subnets, virtual
Local Area Networks (LANs); and host information such as operating system type
and open services. This information is typically gathered by polling agents and
stored in a database. For example, the authors in [44–46] used topological informa-
tion to correlate alerts in their proposed alerts correlation engines. They deployed
agents to collect such dynamic topological information.

In a more recent work, Calyam et al. [47] proposed a novel topology-aware
scheme that can be integrated into perfSONAR monitoring dashboards [48] for de-
tection and diagnosis of network-wide correlated anomaly events across multiple
domains. The proposed scheme has two main parts: an adaptive plateau detector to
generate anomaly events with low false alarms rate, and spatial and temporal anal-
yses that are applied and combined with topology information to detect correlated
events.

2.4.3 Vulnerabilities Database

This source of information has been mainly considered for its use in IDS. It stores
all well-known exploits and system vulnerability information, usually with the cor-
responding security solutions. Like in the topology database, it is built by collect-
ing the configuration information of the monitored resources, such as operating
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systems or network application services potentially susceptible to be exploited by
attackers. A clear example of using this information to solve the alerts correla-
tion problem is the Common Vulnerabilities and Exposures (CVE) project [49], that
is a well-known vulnerabilities database, free for public use. CVE is a dictionary
of publicly known information about security vulnerabilities and exposures. Gula
[50] illustrated how vulnerabilities information can elicit high quality alerts from a
huge amount of alerts that are primarily false alerts. Also, besides the topological
information, Jinqiao et al. [45] used CVE, bugtraq [51] and CERT [52] vulnerability
identifications for categorizing and sorting vulnerabilities in their proposed collab-
orative IDS called TRINETR. For each vulnerability reference, there is an associated
rule to specify the corresponding evaluation process or action. Porras et al. [53] pre-
sented M-Correlator, a comprehensive framework for IDS alerts correlation. The
system correlates alerts based on well-known vulnerabilities.

2.4.4 Incident Ticketing System (ITS)

Incident Ticketing Systems (ITSs) are the main workflow tools extensively used by
management staffs to track and report ongoing and resolved faults. In several con-
texts, they have been introduced to assist in speeding up the fault recovery process
and adding more advanced functions to maintain the networks [30, 54]. Here, ITSs
store tickets, that are usually generated either automatically by management tools
like network management platforms or manually by the management staff that cre-
ates tickets as a response to the reception of network alerts, or by the service desk,
as a consequence of customer calls.

Many of the records in ITSs contain information related to faults generated by
events identified as network failures. This makes it desirable to integrate tickets
in the process of alerts correlation, as they could implicitly act as information pro-
vided by an human expert. The incorporation of this new information into an alerts
correlation system would permit to alleviate management staff from decisions, as
well as it would allow to improve, speed up and prioritize the diagnosis of faults.
Lewis and Dreo [31] emphasized the importance of ITS, and clearly described these
research trends suggesting an extension of the ITS framework to provide advanced
functions in faults resolving and alerts correlation. Furthermore, Costa et al. [55]
used ITS information to get feedback from their proposed alarms correlation archi-
tecture, that was an adaptive and self-maintained alarms correlation system.

2.4.5 Ontology Database

Ontologies provide powerful constructs and constitute useful tools to deal with
such diverse knowledge as that coming from alerts. They include machine inter-
pretable definitions and formal specification of the concepts and relationships that
can exist between entities within a domain [56]. As an example of an application
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in our field of study, Xiao et al. [57] proposed an alerts correlation approach com-
posed of two parts. First, a new alerts ontology was constructed with the ability to
share and reuse information better and store data in a more reasonable way. Second,
they used attribute-based similarity methods and semantic distance when comput-
ing the similarity between alerts. Li and Tian [58] proposed an intrusion alerts
correlation system based on an ontology knowledge base, and introduced modules
for reducing redundant alerts to attack actions, using Intrusion Detection Message
Exchange Format (IDMEF) [59] and CVE standards. According to alerts information
and attacks knowledge, they used the reasoning power of ontologies to infer the cor-
relation of alerts. The same was also done by Coppolino et al. [60] who presented an
ontology-based approach for correlating IDS attack symptoms coming from diverse
information sources, and collected at different architectural levels.

2.4.6 Cases Database

This source of information is mainly used in the analysis of event and error mes-
sages. It stores cases or scenarios, each one representing a complete description of
a known fault, described by two different elements: situation and solution. The sit-
uation describes the context of the case, and consists of associated alerts; and the
solution gives reasons about why the fault has occurred and describes the suggested
steps to solve it. Each case consists of a set of patterns that can be matched with
a list of alerts. E.g., Long et al. [61] proposed a case-based reasoning approach for
alerts correlation. In this approach, the authors used a cases database to store all
cases that were constructed from training data. Also, Holub et al. [62] used a cases
database in their proposed run-time correlation engine to analyze log data and to
provide a mechanism for matching known faults in large volumes of data.

2.4.7 Knowledge Representation

An additional source of information is related to the use of rules or models that
somehow represent the relationships among alerts. These rules or models can be
explicitly set by experts or inferred from the analysis of the alerts by means of
learning procedures, usually from labeled samples (supervised learning). This way,
a knowledge representation allows to incorporate human knowledge in the alerts
correlation procedure or somehow mimic this knowledge. One of the most common
ways to express this information is through the use of expert rules. Most experts
are capable of expressing their knowledge in the form of rules for faults solving
tasks. The database includes a set of facts used to match against the IF (condition)
parts of rules stored in the knowledge-base. Other methods are related to the pat-
tern learning field, in which the knowledge is usually represented by a model (e.g.,
neural networks, Markov models, Bayesian networks). As an example of its use in
the security field, Kabiri and Ghorbani [63] proposed an intrusion alerts correla-
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tion system using a rule-based inference engine to derive the correlation between
alerts (using an inference engine and a working memory that constitutes an expert
system). The inference engine was implemented using a scenario-based knowledge
base, and the extraction of attack scenarios was performed by a security expert, be-
fore being stored in a knowledge-base to become operational.

2.5 Taxonomy of Alerts Correlation Techniques

After a thorough review of the literature, several efforts focused on providing tax-
onomies for alerts correlation techniques have been found. Most of them have
adopted a classification criteria based only on the used correlation methods [4, 34–
37]. For this reason, we consider that they are narrowed on a small picture with
limited scope. Thus, in this section we try to provide a global view of the alerts cor-
relation problem, taking into account additional aspects and not only the correla-
tion methods, i.e., the number of data sources, the application field of the correlation
techniques, and the architectural design of the system. The suggested taxonomy is
presented in Figure 2.1. In what follows, the scope of these aspects is described
below, giving more detailed information.

2.5.1 Number of Data Sources

Alerts correlation techniques can be classified according to the number of used data
sources. They can either accept the data from one input, i.e., a single data source,
or multiple inputs, i.e., more than one data sources (among those described in Sec-
tion 2.4).

Single Data Source Systems

Single data source systems are those in which the data comes from a single type of
sources of information. Note that this does not mean that the data should arrive
from a single network element. For example, an alerts database itself is consid-
ered as a single source of information despite alerts might be coming from various
network elements with different formats and natures.

Single source correlation techniques are usually built in for specific purposes
and applications. Although their main advantage is their simplicity, they do not
achieve optimal results from the correlation and they are not the best solution for
distributed and collaborative monitoring systems. Most of the existing commercial
alerts correlation tools that are listed in the tables in Section 4.3 use alerts databases
(Column 4) as the only source of information.
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Figure 2.1: A comprehensive taxonomy of alerts correlation techniques.

Multiple Data Sources Systems

In contrast to the case of single source systems, most of the proposed alerts corre-
lation techniques that depend on multiple-sources of information comes from sci-
entific research projects and not from the industry. As current monitoring systems
become more and more collaborative, there is a need for more advanced correlation
methods with better results in order to cope with this complexity in the managed
systems. Obviously, the cost of obtaining better results when multiple data sources
are used is a higher complexity in the alerts correlation systems, mainly due to the
heterogeneity of the different inputs. Moreover, they need extra amount of resources
when compared with single data source techniques.

Many significant examples of these techniques appear in the scientific literature
[46, 64–66]. These contributions proposed alerts correlation techniques considering
more than one type of data sources, namely alerts database, topology, and vulnera-
bility information.
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2.5.2 Type of Application

Typically, and as mentioned above, existing alerts correlation techniques are imple-
mented towards one application. Despite their potential use in many other fields,
we have detected three main fields of application where these techniques have been
proposed and evaluated: NMSs, network and system security, and SCADA systems.

Network Management Systems

NMSs are used by a management staff to carry out several management tasks such
as designing and configuring the network settings and functions; fault manage-
ment, which deals with faults, their effects and the solutions; performance man-
agement, which provides some performance metrics of the network status; and se-
curity and accountability management. As explained in Section 1.3, network man-
agement protocols are used for the interaction between network elements and the
NMS, SNMP [22] being the dominant. Recall that agents are processes running on
managed devices that collect information and send it as alerts (traps) to the man-
ager, where further processing is done before showing the information in a console.
Alerts correlation is mainly applied here to help the management staff in real-time
diagnosis and to speed up the faults diagnosing process. They have been extensively
used by the research community to group and correlate alerts that have same root
causes [55, 62, 67, 68].

Network and System Security

It is another important application field of alerts correlation. Here, it is used for
building a consolidated security picture of the whole monitored system. Alerts are
typically triggered by security elements such as network IDSs, host IDSs, firewalls
and anti-viruses, among others, as a response to discovering malicious or simply
anomalous activities. A high detection sensitivity of these security elements will
generate a massive amount of alerts, where some of them could really correspond
to normal-behavior events that are mistakenly considered as attacks (False Posi-
tives (FPs)). In this regard, alerts correlation helps security experts to verify the
validity of those alerts, and to build more succinct and high-level view of occurring
or attempted intrusions to detect complex or multi-step attack scenarios.

The main objective of alerts correlation techniques in this field is to produce
complete attack reports that coherently capture the set of activities on the moni-
tored system without losing security-relevant information. Thus, [45, 69–71] are
examples of alerts correlation techniques proposed in the network and system se-
curity field.
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SCADA (Process Control Systems)

SCADA systems are also considered as another relevant application field for alerts
correlation. In most manufacturing systems, there are a lot of switches, sensors and
actuators that could generate a huge amount of alerts in response to process dis-
turbances, attacks or failures. They are mainly used here to monitor and control
industrial, infrastructure or facility-based processes. Since manufacturing applica-
tions increase in complexity and scale, SCADA systems should incorporate efficient
mechanisms to identify the root cause of faults or processes disturbances. This is
essential for not delaying the decision making process. Existing alerts management
systems are really improved with the help of alerts correlation techniques, and a
number of research projects have been carried out to handle this issue. The works
in [72–74] are examples of alerts correlation techniques proposed in the field of
SCADA systems.

2.5.3 Correlation Method

As previously mentioned, over the past few decades, researchers and vendors, in a
joint effort with networking experts, have suggested many proposals coming from
different design approaches to solve the alerts correlation problem. Nevertheless,
alerts correlation is a complex multi-step transformation process, and the bulk of
the existing proposals operate only on partial aspects of the correlation process with
different correlation methods such as: alerts filtering, alerts aggregation and alerts
correlation. Here, a classification of the different techniques proposed in the field of
alerts correlation was made, that is based on the used correlation method. Yet, in-
stead of focusing on the mathematical tools or mechanisms used for the correlation
like others, we put our attention on the strategy followed by the different authors
to correlate alerts. Thus, three major categories have been identified: similarity-
based, sequential-based and case-based methods. For every of these categories, in
the following, a more detailed description, along with a survey of relevant proposed
research contributions will be provided. Table 2.1 shows a summary of these con-
tributions.

Similarity-based Methods

Similarity-based techniques aim at reducing the total number of alerts by cluster-
ing and aggregating them using similarities in their attributes. Each triggered alert
has several associated attributes or fields, e.g., in NMS an alert contains these basic
attributes: source and destination IP addresses, source and destination port num-
bers, protocols, alert description and timestamps information, among others. The
main assumption behind this method is that similar alerts tend to have the same
root causes or similar effects on the monitored system. How to define similarity
measures is the key factor and plays a critical role for such kind of techniques. To
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Alerts correlation techniques

Classification References for contributions

Number of data
sources

Single As illustrated in column 4, Table 4.1, Table 4.2, Table 4.3

Multiple
Zhuang et al.[64], Chang et al.[65],
Hu et al.[66], Chyssler et al.[46]

Type of
application

NMSs
Costa et al.[55], Gruschke et al.[67],
Holub et al.[62], Klinger et al.[68]

network and system security
Jinqiao et al.[45], Alserhani et al.[69], Qin et al.[70],
Valeur et al.[71]

SCADA (process control systems) Chen et al.[72], Carcano et al.[73], Sayegh et al.[74]

Correlation
method

Similarity-based
methods

Attribute
Valdes et al.[26], Lee et al.[75], Siraj et al.[76],
Zhuang et al.[64], Debar et al.[77], Julisch et al.[78],
Julisch et al.[79], Cuppens [80]

Temporal
Jakobson et al.[81], Ma et al.[82], Qin et al.[83],
Morin et al.[84], Kelkar et al.[85], Zhu et al.[86],
Ahmadinejad et al.[87], Bateni et al.[88]

Sequential-based
methods

Pre/Post
conditions

Zhaowen et al.[89], Ning et al.[90], Xiao et al.[91],
Alserhani et al.[69], Alserhani et al.[92]

Graphs
Gruschke et al.[67], Roschke et al.[93], Wang et al.[94],
Li et al.[95], Jian et al. [96]

Codebook Yemini et al.[97], Klinger et al.[68]

Markov
models

Ourston et al.[98], Farhadi et al.[99],
Xin et al.[100], Zhicai et al.[101]

Bayesian
networks

Steinder et al.[102], Qin et al.[70],
Marchetti et al.[103], Harahap et al.[104]

Neural
networks

Zhu et al.[86], Zhou et al.[105]

Others Lagzian et al.[106], AlMamory et al.[107], Alsubhi et al.[108]

Case-based
methods

Expert based
Expert rules Cronk et al.[109], Lor [110], Jector et al.[111]

Pre-defined
scenarios

Cuppens et al.[112], Kemmer et al.[113], Eckmann et al.[114],
Liu et al.[115], Cheung et al.[116]

Inferred
knowledge

Agrawal et al.[117], Lagzian et al.[106], Smith et al.[118],
Katipally et al. [119], Sadoddin et al.[120], Tongyan et al.[121],
Jian et al.[122], Sizu et al.[123]

Type of
architecture

Centralized Jinqiao et al.[45]

Distributed Mohamed et al.[124], Khatoun et al.[125]

Hierarchical Tian et al.[126], Qin et al.[127]

Table 2.1: Taxonomy and summary of proposed examples of alerts correlation techniques.

answer this question, several similarity measures have been proposed by many re-
searchers, and some of them are discussed below. The aim of this is to define the
suitable similarity function for each attribute, because attributes may have differ-
ent weights and effects on the correlation process and may need different criteria to
calculate these weights. E.g., the similarity between two alerts having the same IP
address might be different if they share the same subnetwork address or the same
port number.

Techniques that belong to this category exhibit many advantages. First, they
are usually implemented with lightweight algorithms with lower complexity than
those in other categories, mainly because these algorithms are based on simple log-
ical comparisons. Second, this category has proven its effectiveness in reducing the
total number of alerts, which is an essential step in the correlation process, given
the usually large number of alerts reported to a management staff. Third, they have
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high correlation accuracy. Last but not least, they are efficient in the handling of
false alerts. However, these techniques also have some weaknesses. The most im-
portant one is that they simply work on the attributes level and cannot detect causal
relationships between alerts, in order to discover the root causes for the faults.

Similarity-based correlation techniques can be grouped into two categories: those
based on attributes similarities and those based on temporal information. Next, the
most common proposals followed by different authors in both groups are described.

Attribute-based: Attribute-based similarity correlation techniques correlate alerts
by defining similarity measures between some of their attributes or features. Here,
several different attributes have been used, like source and destination IPs, times-
tamps, ports, kind of service or users, among others. A similarity measure is typ-
ically calculated by computing certain metrics, such as Euclidean, Mahalanobis,
Minkowski or Manhattan distance functions. The resulting scores, when compared
with threshold values, determine if these alerts are to be correlated or not. Choos-
ing the suitable distance measure might increase the overall performance of the
correlation process, as two alerts might be close or far depending on the considered
distance function.

A lot of contributions using these techniques have appeared in the literature,
as they are the most widely deployed. Indeed, there exist a lot of variations in the
nature of the applied technique, despite the use of a certain similarity metric for the
correlation. Some relevant examples of these variations are described next.

Valdes and Skinner [26] presented a probabilistic method to correlate alerts
based on a proposed mathematical framework that is able to find the minimum
similarity specification to fuse alerts from multiple sensors. The method consid-
ered appropriate attributes contained in alerts reports as features for a multivariate
matching algorithm. Only those features that overlap are taken into account for the
overall similarity calculation. For every matching feature, they defined an appro-
priate similarity function with range zero (mismatch) to one (perfect match), and
the overall similarity is calculated using a predefined equation. Alerts are corre-
lated with a high degree of attribute similarity if there is a match; otherwise, a new
thread is generated. Depending on the situation, they incorporated the expectation
of match values (which are used to compute a weighted average of the similarity
over the overlapping features), as well as a minimum match specification that un-
conditionally rejects a match if any feature fails to match at the minimum specified
value. For each new alert, they computed the similarity for existing meta alerts, and
merged the newly created alert with the best matching meta alert, as long as the
match passes a threshold value. They realized a reduction of one-half to two-thirds
in alert volume in a live environment.



48 Chapter 2. State of the Art in Alerts Correlation Techniques

Other approaches like [64, 75–77] adopted different similarity metrics based on
the Euclidean distance, pre-assigned different similarity scores for every attribute
or other mechanisms such as alphabetical, bit-by-bit, and MAX value comparisons,
respectively.

On the other hand, Julisch et al. [78, 79] proposed the principle of dissimilarity
measure instead of similarity. They defined a dissimilarity function that takes two
alerts as input, and returns a numerical value that indicates how adequately these
alerts can be modeled by a single generalized alert. Here, dissimilarity is inversely
related to similarity, i.e., if the numerical value is very small the two alerts have
higher correlation and they can be modeled by a generalized alert. They tried to
use a wide variety of attribute types, including numerical, categorical, time and
free-text attributes to aggregate alerts.

Instead of using mathematical formulas for calculating the similarity measures,
Cuppens [80] defined the similarity relationship by using expert rules applied for
four selected attributes: classification, time, source and target. For every attribute
they designed a set of expert rules to make the aggregation and correlation.

Temporal-based: Besides using attributes similarity information, temporal-based
similarity techniques [81–85] use some form of temporal time constraints to find
the relationships between alerts in specific time periods. The idea behind temporal-
based similarity alerts correlation techniques is to recognize that alerts caused by
the same fault are likely to be observed within a short time after the fault occur-
rence. The simplest method of temporal correlation relies on time-windows, where
only alerts occurring within a time-window are to be correlated. Two alerts are cor-
related if their temporal similarity is higher than a predefined threshold. Correlated
alerts are then signaled as hyper-alerts.

Here, most of the proposed systems uses pairwise alerts correlation in which
each new alert is checked with a number of previously received alerts to find possi-
ble correlations. To speed up the checking process, some alert selection policies are
defined to control the way in which this checking is done. Thus, different window-
based selection policies are proposed by different authors such as: select all [86],
window-based random selection [87], and random directed selection [88]. Window-
based selection policies use a limited time window with a number of sliding time
slots, and select alerts from this time window for checking with the current alert.

The main advantage of the temporal alerts correlation is the speed in the cor-
relation process, as it reduces the number of alerts triggered by the management
devices. However, the main disadvantage of these approaches is that they are deter-
ministic, what limits their applicability.
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Sequential-based Methods

At a first glance, it is observed that the bulk of the work done in this category was
restricted to the network and system security field. We consider that the main rea-
son is that these methods are useful to model and analyze complex attack scenarios
from the sequence of individual events or steps that are a part of the same attack
and they use the causality relationships among alerts. Here, pre-conditions are de-
fined as the necessary requirements that must exist for an attack to be successful,
and the consequences of the attack are defined as the effects that appear after a
specific attack or a part of it has occurred. This relationship is mainly represented
as a logical formula using combinations of predicates of logical operators such as
AND/OR connectives.

The main advantages of the techniques belonging to this category are: First, they
are scalable in terms of their ability to potentially uncover the causal relationship
among alerts, not being restricted to known attack scenarios. Second, the correla-
tion results are easy to understand and directly reflect the possible attack scenarios.
On the other hand, their accuracy is low and the correlation results may contain a
large number of false correlations, this being for two possible reasons: either the
logical predicates are not well configured or the quality of the sensors’ alerts is not
adequate.

Sequential correlation can be subdivided into several major categories, depend-
ing on how they represent the modeled scenarios: pre/post conditions, graphs,
codebook, Markov models, Bayesian networks, neural networks, and other tech-
niques. We give a more detailed discussion about each one of them in what follows.

Pre/Post conditions: In this category, the correlation process tries to find causal re-
lationships among alerts through their pre and post conditions. The main assump-
tion here is that older alerts prepare for the later ones. If post conditions of an alert
satisfy the pre-conditions of another alert, they are correlated. As an example, sup-
pose an attack against sadmind, a remote administration tool. A scanning attack
may discover User Datagram Protocol (UDP) services vulnerable to certain buffer
overflow attacks. Then, the predicate UDPVulnerableToBOF (VictimIP, VictimPort)
can be used to represent the attacker’s discovery (the consequence of the attack), i.e.,
that the host having the Internet Protocol (IP) address VictimIP runs a sadmind ser-
vice at UDP port VictimPort and that the service is vulnerable to the buffer overflow
attack.

Many proposals have been suggested in this category. Zhaowen et al. [89] pro-
posed RIAC, a real time alerts correlation system that employs distributed agents
to collect alerts information on-line and adopts a pre/post correlation method to
analyze and discover attack scenarios and intrusion intents behind alerts. The as-
sumption here states that the components of the attacks are usually not isolated, but
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related at different stages of the attacks, with the early ones preparing for the later
ones. By using logical predicates, they introduced the notion of hyper alerts. Each
hyper-alert represents the prerequisite and the consequence of each type of alert,
and consists of a tuple (fact, prerequisite, consequence), where fact is the set of alerts
attribute names, and prerequisite and consequence are two different sets, each one
consisting of a logical combination of predicates expressed as mathematical condi-
tions on variables contained in the set fact.

Ning et al. [90] also published a similar work. They presented TIAA, a toolkit
for constructing attack scenarios by using predicates as the basic constructs to rep-
resent the prerequisites and (possible) consequences of attacks. The main difference
between TIAA and JIGSAW, a correlation tool proposed by Templeton and Levittby
in [128], is that the former allows partial satisfaction of prerequisites, while the later
requires all the capabilities being satisfied to correlate alerts.

Xiao et al. [91] proposed an alerts correlation model based on attribute-based
similarity and prerequisites and consequences of attacks to fuse alerts that can re-
duce redundant alerts and recognize complicated attack scenarios. To do that, they
firstly made use of a fuzzy clustering algorithm to divide the alerts in approximately
equal sets, and then they adopted the method of correlating alerts based on prereq-
uisites and consequences of attacks.

Alserhani et al. [69] developed a rule-based correlation language termed MARS,
Multi-stage Attack Recognition System, based on the phenomena of cause/effect
that is basically used in plan recognition models. Later on, the same author with
others proposed in [92] an alerts correlation and aggregation framework based on
a requires/provides model. Their main objective in this work was to discover the
logical relationships between atomic alerts potentially incorporated in multi-stage
attacks.

Graphs: In graph-based alerts correlation techniques, the relationships among
alerts can be represented as a directed acyclic graph where the set of nodes represent
alerts and the edges connecting those nodes represent the temporal relationship of
the connected alerts (nodes) [129]. The purpose of mapping alerts into graphs is to
collect the sequential information among them.

This category of techniques has several advantages. First, graphs are relatively
easy to generate from whatever management models, especially from object-oriented
system models with relations or associations between objects. Second, the oper-
ations permitted on graphs can be implemented in a robust manner, e.g., adding
or deleting objects and dependencies are easy tasks. Third, graphs are naturally
manageable in a distributed manner, as objects and dependencies can be added or
deleted by different management staffs independently. However, these techniques
require an accurate knowledge of current dependencies among abstract and physi-
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cal system components. Therefore, their efficiency and accuracy mainly depend on
a prior specification of how a failure condition or alert in a given monitored system
is related to failure conditions or alerts in other systems.

A clear example of using graphs to solve the alerts correlation problem is illus-
trated in [67], where the authors proposed an events correlation approach for faults
localization in NMS based on dependency graphs. It consists of two components:
nodes or objects, which reflect the managed objects in the system, and edges, that
collect the functional dependencies between the managed objects. Two objects are
correlated if a failure in one of them causes a failure in the other. The proposed al-
gorithm works as follows: First, each received alert is mapped to its corresponding
object, which is signaled as faulty in the dependency graph. Next, a breadth-first
searching process is started from the initial dependent objects through the whole
dependency graph looking for objects from which all (or many) initial objects de-
pend on. These common dependent objects are forwarded as a condensed event.
Finally, the algorithm assigns one of two states to the objects of the dependency
graph: faulty or correct.

Instead of using a breadth-first search process like in [67], some authors de-
ployed different well-known searching algorithms in order to find the shortest path
between two nodes in a graph such as a Floyd-Warshall algorithm, used in [93], a
queue qraph, used in [94], and a bipartite graph, used in [95].

In a more recent work, Jian et al. [96] proposed a novel measure for assessing
the structural correlations to estimate the correlation score of a node in large-scale
graph data sets with events. This measure applies hitting time to aggregate the
proximity among nodes that have the same event.

Codebook: Codebook techniques encode the relationship between network faults
and their symptoms by creating a matrix of problem codes that represent the de-
pendency among observable symptoms and the underlying problems [97]. The ba-
sic idea of this category is that problem events are viewed as messages generated
by the monitored system and encoded as a set of alarms that they cause. Thus, the
problem of correlation is viewed as decoding these alarms to identify the message.
The coding technique proceeds in two phases. In the codebook selection phase, an
optimal subset of alarms, the codebook, is selected to be monitored. This code-
book is selected to optimally pinpoint the problems of interest and ensure a re-
quired level of noise insensitivity. The codebook is basically a matrix representation,
where events/alerts are represented as rows, and the symptoms of the problems as
columns. The matrix contains binary digits (either 0 or 1). The value of 1 at the
ith position of the matrix generated for problem j indicates a cause-effect implica-
tion between problem j and symptom i. In other words, a one in the matrix denotes
the appearance of a particular symptom, and a zero denotes that the symptom has
not been observed. Distinction among problems is measured by the Hamming dis-
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tance between their codes. In the decoding phase, observed alarms are analyzed to
identify the problems that caused them.

These techniques are efficient in terms of speed and accuracy in detecting net-
work problems, because they are performed only once to detect the root causes.
However, they are not suitable for dynamic networks, because any change in the
network topology requires regenerating the codebook, which is a time consuming
process. Furthermore, they mainly depend on expert knowledge to construct the
codebook matrix, which is also time consuming, error prone and tedious.

Klinger et al. [68] described a novel approach to event correlation in networks
based on these coding techniques. First, by using the Hamming distance they re-
duced the size of the codebook to contain a smaller set of symptoms capable of
accomplishing a desired level of distinction among problems. They defined two
metrics to calculate the distance, one is used for deterministic correlation, where the
codebook matrix contains either 0 or 1, and the other for probabilistic correlation,
where the codebook matrix contains weights in the range [0-1], representing the
probability of having a relationship between symptoms and problems. According
to their claims, their approach tries to solve some performance issues that existing
codebook techniques faced in that time while dealing with high rates of symptom
losses and false alarms.

Markov models: A Markov model is a stochastic production model composed of
discrete states and a matrix of state transition probabilities associated with each
state [130]. In a particular state, an outcome or observation can be generated ac-
cording to a separate probability distribution associated with the state. In addition,
every state has a vector of observable symbol probabilities. Once that a model is de-
fined and their associated probabilities obtained by training the model, a sequence
of events can be evaluated, thus obtaining a probability. This probability is formerly
compared to a threshold value to decide if a correlation is present or not. Hidden
Markov Models (HMMs) [131] are an important variant where only the outcomes
and not the internal states are visible to an external observer.

Most of the implemented alerts correlation techniques in this category are fo-
cused on the network and system security field and concentrated on HMM. Ourston
et al. [98] claimed that HMMs are particularly useful and well-suited to address the
multi-step attack problems through its prerequisites when there is an order for the
actions constituting the attack (that is, for the cases where one action must precede
or follow another action in order to be effective).

Markov-based techniques are especially well suited to address problems with a
sequential nature. Yet, the main drawback of these models is the amount of data
needed for suitably training them and their dependence on tuning parameters, i.e.,
the detection threshold for deciding whether an alert should be correlated or not.
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Examples such as [99–101] proposed alerts correlation systems in IDS using a
HMM that mine the stream of alerts and extract the current attack scenario.

Bayesian networks: Bayesian network models, also known as belief networks (or
Bayes nets for short), are one of the most powerful probabilistic graphical models
[132]. These graphical structures are used to represent knowledge about an un-
certain domain. Bayesian networks are mainly specified by two components: (i) A
graphical component composed of a directed acyclic graph where vertices represent
events and edges represent relations between events; and (ii) a numerical compo-
nent consisting of a quantification of different links in the graph by a conditional
probability distribution of each node in the context of its parents. In particular,
each node in the graph represents a random variable, while the edges between the
nodes represent probabilistic dependencies among the corresponding random vari-
ables. A Bayesian network consists of several parameters, i.e., prior probability of
parent node’s states and a set of conditional probability tables associated with child
nodes. The main purpose of the conditional probability table is to encode the prior
knowledge between a child node and its parent node.

In the alerts correlation problem, the probabilistic relationships among a large
number of alerts are represented in order to work out a probabilistic inference from
them. Given certain symptoms (received as alerts), a Bayesian network can be used
to compute the probability that a specific problem have happened.

Bayesian networks provide several advantages when applied to solve the alerts
correlation problem. First, the speed of correlation is high. Second, they can in-
corporate prior knowledge and expertise by populating the conditional probability
tables. Third, they are convenient to introduce partial evidence and find the prob-
ability of unobserved variables. Fourth, they are also capable of being adapted to
new evidence and knowledge by updates through network propagation. Finally, the
correlation output is a probability, rather than a binary result from a logical combi-
nation. However, this method needs a large number of training events to obtain the
prior probabilities and the correlation relies on experts’ knowledge. Furthermore, a
probabilistic inference in a Bayesian network is NP-hard, i.e., efficient solutions for
large networks are difficult to implement in practice.

The works in [70, 102–104] are examples of correlation techniques based on
Bayesian mechanisms to determine the likelihood of any two alerts for being cor-
related.

Neural networks: Artificial neural networks are generally presented as systems
of interconnected processing elements called neurons working jointly to solve spe-
cific problems. The neurons are interconnected to each others according to a model
inspired by the neural system existing in the human brain. Each neuron is con-
sidered as a simple autonomous processing unit, provided with local memory and
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unidirectional channels for the communication with other neurons. An artificial
neural network is typically defined by three types of parameters: (i) the intercon-
nection pattern between the different layers of neurons; (ii) the learning process for
updating the weights of the interconnections; and (iii) the activation function that
converts a neuron’s weighted input to its output activation [133].

The utility of these models relies on the fact that they can be used to infer a
function from observations. Thus, they are typically useful in applications where
the complexity of the data or task makes the design of such a function by hand
impractical, or to find patterns in data where non-linear dependency exists between
inputs and outputs.

The most important issue in artificial neural networks is the learning phase
that can be accomplished by continuously adjusting the inter-neuron connection
strengths (weights) until the overall network yields the desired results for the ob-
servations in the training set. The learning process is based on the iteration over the
training set until a satisfactory optimum operating point or a predefined threshold
is reached.

Mainly, there are three major learning paradigms, each corresponding to a par-
ticular abstract learning task. These are supervised learning, unsupervised learning
and reinforcement learning. In unsupervised training, hidden neurons find an opti-
mum operating point by themselves, without external influence. Supervised train-
ing requires that the network is given sample input and output patterns to learn.
Reinforcement learning differs from supervised learning in that correct input/out-
put pairs are never presented, nor sub-optimal actions explicitly corrected.

There are several advantages in using an artificial neural network based ap-
proach. First, they can be made tolerant against noise in the input. Second, they
have better properties than other techniques to generalize the results. This means
that a trained network could classify data from the same class as the learning data
that it has never seen before. Third, an artificial neural network can acquire knowl-
edge straight from the data without the need for an human expert to build up sets
of domain rules and facts. Fourth, once trained, artificial neural networks can be
very fast, accurate and have high precision for near real-time applications. Last but
not least, they may also use a type of dimensionality reduction in feeding data dur-
ing the learning phase, that allows to input large amounts of information without
efficiency bottlenecks. Yet, they share some weaknesses. The training process to
tune its weights may take long sessions. Moreover, there are no particular rules to
guide the selection of the number of layers and the number of neurons in each layer;
hence, a trial and error process should be performed during the training period un-
til the network finally stabilizes.

Artificial neural networks have been used to solve the alerts correlation problem
in several approaches. E.g., in [86, 105] the authors proposed alerts correlation



2.5. Taxonomy of Alerts Correlation Techniques 55

techniques using artificial neural networks. The first one is targeted to discover
attack strategies whereas the second is targeted to handle the faults detection and
identification method for systems.

Other methods: Besides the major correlation methods cited above, some research
efforts suggesting alternative methods were found such as the use of context-free
grammars [107], where the authors proposed an alerts post-processing and correla-
tion method for the detection of multi-step intrusions. They called it Alerts Parser.
In this method, alerts are treated as tokens, and a modified version of the Left-to-
Right parser algorithm is used to generate parsing trees representing the scenario in
the alerts. In addition, they used an attribute context-free grammar for representing
the multi-step attacks.

Alsubhi et al. [108] used fuzzy logic methods to classify alerts. They mainly
proposed FuzMet, a novel IDS alerts management system that takes several metrics
as an input such as the applicability of the attack, the importance of the victim, the
relationship between the alerts under evaluation and previous alerts, and the social
activities between the attackers and the victims, and after that, it generates a report
scoring alerts based on their severities.

Case-based Methods

Case-based reasoning methods rely on the existence of a knowledge-base system
composed by known scenario templates or past cases, that are expressed either by
human intervention using expert rules or correlation languages [109, 110, 112, 116]
or inferred by using machine learning or data mining techniques [106, 118, 119].
Thus, any case-based reasoning method can be described by a cyclic system that
consists of four processes: retrieval, reuse, revise and, finally, retain methods.

The main two questions here are: which are the key attributes of a case? And
which attributes should be used to index and access a case? There are two main
ways to adapt past cases: reuse the past case solution (transformational reuse) and
reuse the past method that constructed the solution (derivational reuse). Several
case matching algorithms have been implemented to retrieve the matched case such
as nearest neighbor, inductive and knowledge-based indexing.

When a problem is successfully solved, the solution (or its parts) is stored in a
knowledge base, called the base case. When a new case is raised, the system searches
the cases database for the most similar cases having the same symptoms. When
a matching case is found, its associated solution is retrieved and used to suggest
solutions to the current problem. If it is successfully solved, this solution or certain
parts from it that are likely to be useful in the future are stored. When an attempt to
solve a problem fails, then the reason for the failure is identified and “remembered”
in order to avoid a recurrence of such a mistake. Therefore, case-based methods use
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to keep updating the database with the new observed scenarios through some kind
of inference mechanism or expert intervention.

Case-based reasoning methods are efficient in solving well-known problems spec-
ifying a complete action plan of previously observed scenarios. Therefore, these ap-
proaches can help a management staff to discover all the possible scenarios includ-
ing potential solutions. However, building a database containing a comprehensive
set of problems and solutions is not always an easy task. Furthermore, case-based
reasoning methods are not able to identify problems not previously observed. In
addition, time inefficiency may make them unusable in real-time correlation sys-
tems.

The existing solutions belonging to this method can be grouped in two main
categories: expert based and inferred knowledge.

Expert based: Expert based techniques build the knowledge database from hu-
man intervention. This knowledge is formulated either by using expert rules or
predefined scenarios. They tend to imitate the knowledge of a human, that might
be either resulting from experience, or from understanding the system behavior
from its principles. One of the main difficulties of this approach is the persistency,
because updating the knowledge-base according to the evolution of a system is a
problem that has to be taken into account when components are subject to frequent
changes (topological or functional).

As said, there are two main possibilities to build the database: using expert rules
or pre-defined scenarios. In the following we explain in more details and list some
contributions for each one of them.

Expert rules: Expert rules or rule-based systems are one of the most dominant
methods among all existing alerts correlation techniques. They have been intro-
duced by many researchers and mostly applied in various commercial correlation
systems. This approach develops the knowledge as conditional, if-then rules. These
sets of rules are matched to events when they come in. Each rule consists of two
expressions that are well-formed formulas of predicate calculus linked by an impli-
cation connective (⇒). The left side of each rule contains a prerequisite that must
be satisfied, so that the rule is applicable. The right side describes the action to
be executed if the rule is applied. There are two types of rule matching, i.e., exact
and partial matching. In exact rule matching, the whole left hand side of the rule
must be matched before determining which action should be triggered; while in
partial matching, the action is determined if some, but not all, of these conditions
are fulfilled.

Rule-based methods are appropriate for systems whose configuration is rarely
altered. Moreover, they are simpler, modularized and easy to maintain when ap-
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plied to small systems. However, they have some weaknesses. First, the high cost
of implementation and adaptation to changes make it difficult to apply these strate-
gies to large systems (with a potentially large amount of alerts). Second, they are
inefficient in dealing with inaccurate information or unseen problems.

Cronk et al. [109] divided a rule-based system into three levels: (i) control level,
as an inference engine that determines how the rules are applied from the knowl-
edge base to solve a given problem; (ii) knowledge level, that is a database repository
for all the knowledge about the system in the form of declarative knowledge; and
(iii) a data level, that is a global database that contains the data about problems
being dealt with.

Lor [110] proposed a new method to organize system rules by distinguishing
between core and customized knowledge. According to his judge, the customized
knowledge allows to accurately isolate a fault from the selected group of system en-
tities. The correlation rules are organized as composite event definitions, as another
work suggested in [111]. In this approach, unlike others, the distinction is made
between primitive events, i.e., alarms and composite events.

Pre-defined scenarios: Like the rule-based methods, pre-defined scenarios is a
methodology that acquires manual knowledge. Here, a specific language is used to
implement well-defined scenarios. A huge number of correlation languages have
been proposed, especially in the network and system security field, related to the
specification of attack scenarios. To build these attack sequences, a straightforward
way is to first predefine some attack scenario templates. This approach starts with
the hypothesis that alerts belonging to one fault have similar attribute values (e.g.,
source IP address). If various alerts contribute to the construction of a predefined
scenario, they should be correlated.

The advantage of this method is that the correlation result is easy to understand
and can help security experts to discover all scenarios variants. However, sometimes
it is not easy to exhaustively list all attack sequence templates and consequently
they fail to be generic. Another limitation of these methods is that novel attack pat-
terns or obfuscation methods created by attackers may cause that the corresponding
attack scenarios are not recognized.

Cuppens and Ortalo [112] presented an attack description language called LAM-
BDA, used to describe with logical expressions the effects and conditions of an at-
tack starting from the variable state of a victim system. In LAMBDA, an attack is
specified using five fields: (i) attack pre-condition: a logical condition that specifies
the conditions to be fulfilled for the success of the attack; (ii) attack post-condition:
a logical condition that specifies the effects of the attack when it succeeds; (iii) at-
tack scenario: the combination of events that the intruder performs when executing
an attack; (iv) detection scenario: the combination of events that are necessary to
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detect an occurrence of the attack; and (v) verification scenario: a combination of
events to be launched to check if the attack has succeeded. In LAMBDA, several at-
tack specifications can be merged automatically by comparing pre/post conditions.
This enables tracing the progress of an attack to a system. Using an attack history,
the system can estimate what actions are to be performed by the attacker.

Unlike in [112], where five fields are used to specify an attack, in the State Tran-
sition Analysis Technique (STAT) proposed by Kemmer and Vigna [113], an attack
has an initial state and at least one ending state. States are characterized by means of
assertions, which are predicates on some system security aspects. Attacks modeled
using STAT techniques are represented using the STATL language, which was pro-
posed by the same authors in [114]. STATL is an extensible state/transition based
attack description language designed to support intrusion detection scenarios. This
language allows describing computer penetrations as sequences of actions that an
attacker performs to compromise a computer system. The high-level alert patterns
and alerts correlation rules are organized as expert knowledge.

Liu et al. [115] proposed an alerts correlation model based on the use of a
finite automata for the specification of the scenarios. In this model, they gener-
ated three kinds of high-level view of attacks: process-critical scenarios, attacker-
critical scenarios and victim-critical scenarios. In process-critical scenarios, a non-
deterministic finite automata is used to model the intrusion process that takes place
between an attacker and a victim. In attacker-critical scenario, the scenario rebuilds
the intrusion process that an attacker implemented towards the whole target net-
work. Finally, victim-critical scenarios rebuild the intrusion actions implemented
towards a specific system. According to their judge, the model can generate scenar-
ios that are much more directly-perceived.

Cheung et al. [116] proposed a correlated attack modeling language, called
CAML. It aims at modeling multistep attack scenarios by representing them as
trees. Each scenario is subsequently divided into sub-goals or modules. A module
specification consists of three sections, namely, activity, pre-condition, and post-
condition. To support event-driven inferences, the activity section is used to specify
a list of events needed to trigger the module. After that, it identifies logical steps
(sub-goals) in attack scenarios and specifies some relationships among these steps:
temporal, attribute values, and prerequisites. Each module is linked to others by
using pre/post conditions to recognize attack scenarios.

Inferred knowledge: Expert knowledge-based systems can be built by using infer-
ence methods with machine learning algorithms. Here, explicit symbolic classifica-
tion rules are automatically constructed from some training cases. The classification
rule learning task can be defined as follows: Given a set of training examples (alerts
or meta alerts for which the classification is known), find a set of classification rules
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that can be used for prediction or classification of new instances, i.e., new incoming
alerts or meta alerts.

The main advantage of these methods is that there are no assumptions about
the model that will be used in the correlation process, as it is really learned from
training instances. Yet, it is really difficult to find representative datasets for the
training. Furthermore, a big issue is to make the models capable of generalizing the
results for events not observed in the training dataset. Finally, the main drawback
of these methods is the computational load implicit in the process, which usually
makes them unsuitable for real time systems.

Some contributions have been done in this line, like the work of Smith et al.
[118]. In this work, they suggested an alerts correlation system based on unsuper-
vised machine learning algorithms. It is implemented in two stages. First, alerts
are grouped together so that each group forms one step of an attack. Second, the
groups created at the first stage are combined in such a way that each combination
of groups contain alerts for a complete attack process.

Some other researchers have used data mining techniques to automate the pro-
cess of finding meaningful activities and interesting features from training datasets
and build the knowledge base [106, 120–123, 134–136]. Data mining is a set of
techniques and tools used for the non-trivial process of extracting and representing
implicit knowledge. Specifically, Katipally et al. [119] used data mining techniques
to generate association rules and build predefined attack scenarios that are used for
predicting multistage attacks.

Sadoddin and Ghorabani [120] proposed a framework for real time alerts corre-
lation that incorporates two techniques: one for aggregating alerts into structured
patterns, and other for incremental mining of frequent structured patterns. In the
proposed framework they used time-sensitive statistical analysis to find the rela-
tionships between alerts. These were maintained in an efficient data structure and
updated incrementally to reflect the latest trends of patterns.

2.5.4 Type of Architecture

Alerts correlation techniques can also be classified based on the type of architecture
they use. Different architectures have been proposed in the literature to enable the
effective aggregation and correlation of alerts. We classify these architectures as
centralized, distributed and hierarchical.

Centralized

In centralized alerts correlation approaches such as the work done by Jinqiao et al.
[45], the data collection is done locally by the different network agents and then
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reported as alerts to a central management server where the correlation analysis is
done. Correlation algorithms in this architecture are simpler, easier to implement
and can correlate overall alerts quickly. Yet, their scalability is limited and their
main drawback is that there exists a single point of failure.

Distributed

During the past few years, many researchers have concluded that the alerts corre-
lation process should be carried out in a distributed fashion. According to their
claims, this need for a distributed alerts correlation architecture, or completely dis-
tributed architecture as mentioned in the literature, emerges from the fact that cur-
rent and perspective communication networks are expected to increase their size,
complexity, speed and the level of heterogeneity. For this reason, using centralized
correlation architectures for processing large volumes of correlation information
would be computationally prohibitive and unfeasible. Therefore, distributed alerts
correlation techniques that would allow the management of correlation agents to
reach the solution collectively are necessary.

In these systems, alerts or high level meta alerts are exchanged, aggregated
and correlated in a completely cooperative and distributed fashion. All agents are
equally weighted, and there are no hierarchical ranks among them. Besides data
collection, a partial correlation is done locally by every agent. All agents keep com-
municating to each other’s using some form of distributed protocols, e.g., Peer-to-
Peer (P2P) protocols or others. Information from that partial correlation carried out
at certain agents could be used by others for optimizing their own correlation. To
do that, typically a central correlation unit is randomly selected amongst all agents.
Each agent has the chance to be selected as a central unit. When the central unit
collapses, another alerts correlation unit can substitute it.

This architecture prominently enhances the scalability and the fault tolerance,
when compared with a centralized architecture, since the correlation process is dis-
tributed amongst several correlation agents. However, there are some issues that
need to be solved. First, it consumes more bandwidth due to the information shar-
ing. Second, there is no coherent and consolidated view of the whole system, be-
cause the computations are distributed among several entities. Third, load balanc-
ing is considered an important issue in this type of architecture, because some man-
agement correlation agents may be overloaded in comparison with others. Finally,
the requirements and complexity of hardware and implementation are higher.

Mohamed and Basir [124] proposed a distributed alarms correlation and faults
identification approach. They divided the network topology into disjoint manage-
ment domains, and each management domain is assigned to a dedicated intelligent
agent, responsible for monitoring and collecting alarms within its management do-
main. All agents use majority vote rule to determine the root cause of network
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malfunctioning. Khatoun et al. [125] proposed a decentralized alerts correlation
technique to detect distributed DoS attacks. It is based on a P2P architecture that
correlates alerts produced by various IDSs and provides a high-level view of at-
tempted intrusions. Each IDS supervises its subnetwork and is also a peer inserted
in a P2P system that conforms the global collaborative IDS. A distributed hash table
is used to efficiently route resource information about the potential victims, and to
share data about possible attacks among peers.

Hierarchical

Hierarchical architectures are also called hierarchical distributed architectures be-
cause they embed a form of distributed architecture in its design. Here, the corre-
lation process is performed in a hierarchical and cumulative way [127]. Unlike in a
distributed architecture, the management agents in the hierarchical model are dis-
tributed across different levels. The management agents are located and partitioned
into multiple groups, according to different features such as geography, adminis-
trative control, and others. Within each group there is a horizontal communication
among peer agents, and vertical communication among agents in different levels.
The output of their correlation results are passed upward where higher level ded-
icated correlation units are found. They correlate alerts from both their own level
and their children nodes. Then, the correlated alerts are passed upward to a higher
level for sharing and further analysis. This process continues until reaching the root,
where a central correlation unit collects all the correlation views that were done in
lower levels to build a global correlation picture.

Hierarchical architectures are somehow a form of distributed architectures, so
they share the same advantages with the latter, regarding scalability and fault tol-
erance. Yet, they outperform the distributed architectures in terms of coordination
and communication costs, especially when very large systems are being managed.
Furthermore, their deployment is simpler. On the other hand, in these architec-
tures, the correlation units of the higher levels in the hierarchy still limit the scal-
ability of the correlation system, and their failure can stop the functioning of their
whole sub-tree.

Tian et al. [126] proposed a hierarchical alerts correlation algorithm for intrusion
alerts. It consists of three stages. First, IDS sensors data are aggregated. Second,
some local correlation units correlate alerts and build the local correlation graph.
Third, the centralized alerts correlation unit constructs the global correlation graph
via the local correlation results.
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2.6 Comparative Study of Alerts Correlation Techniqu-
es

As shown before, researchers and vendors have proposed and used many different
design paradigms for implementing alerts correlation techniques. To the best of our
knowledge, there are still no comprehensive comparative studies of alerts correla-
tion techniques except some efforts done by few researchers. However, these works
typically only consider one application area, e.g., the security field, and cover only
a subset of the literature related to their work. According to our opinion, there are
some reasons for that. First, as a consequence of using a wide diversity of methods,
a comparative analysis of alerts correlation techniques becomes a difficult, tedious
and sometimes an error prone task. This is because these correlation methods have
their own philosophy for dealing with the alerts correlation problem. They have
their own capabilities, strengths and weaknesses. As a consequence, some correla-
tion techniques perform well in some situations and others outperform in other sit-
uations. Second, researchers use different methods for validating their ideas. There
is no standard performance strategy or benchmarks for evaluating these techniques.
Third, the evaluations are applied on different datasets; mostly built ad-hoc for the
considered method. At the time of writing this document, we did not find a pub-
licly available dataset explicitly designed for testing alerts correlation algorithms.
Finally, many different authors use the same terminology to refer to different alerts
correlation operations. Therefore, some authors talk about alarms correlation when
referring to the clustering and fusion process, while others call correlation to the
process of creating new scenarios. This issue makes the task of building a compara-
tive study a complex and possibly infeasible task. For this reason, the few compar-
ative study proposals that we have found have either limited the study to a number
of papers or are biased toward a specific application. In the following, we describe
these efforts.

Yusof et al. [2] suggested six capability criteria for evaluating alerts correlation
techniques. Their work focused on the security field and, specifically, on IDS. The
proposed capabilities are: alerts reduction, alerts clustering, identification of mul-
tistep attacks, reduction of false alerts, detection of known attacks and detection
of unknown attacks. They first classified alerts correlation techniques into four
groups: (i) Similarity-based, (ii) Pre-defined attack scenarios, (iii) Pre-requisites
and consequences of individual attacks, and (iv) Statistical causality. Then, they
made a relationship with the capability measures.

Their conclusions were the following. First, similarity-based alerts correlation
techniques have the ability to perform alerts reduction, alerts clustering, and detec-
tion of known attacks; whereas they fail to reduce false positives and detect multi-
step and unknown attacks. Second, pre-defined attack scenarios correlation tech-
niques have the same results as similarity-based techniques. Third, pre-requisites
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Technique-name
Alerts
reduction

Alerts
clustering

Multi-step
attacks

Reduction of false
positives

Detection of known
attacks

Detection of unknown
attacks

Similarity-based YES YES NO NO YES NO
Pre-defined attack scenarios YES YES NO NO YES NO
Pre-requiste and consequences
of individual attacks

YES YES NO NO YES NO

Statistical causuality YES YES NO NO YES YES

Table 2.2: Alerts correlation technique versus proposed capability criteria (capable = YES,
incapable = NO), taken from Yusof et al. [2].

and consequences of individual attacks correlation techniques have the ability to do
alerts reduction, alerts clustering, false positives reduction, and detection of multi-
step and known attacks. Finally, statistical causality techniques are the only cat-
egory that has the ability to detect known and unknown attack scenarios, besides
alerts reduction and clustering. However, they fail to reduce false positives and
detect multi-step attacks. In summary, the overall conclusion that they extracted
from this analysis is that further improvements should be done on the process of
detecting known, unknown and multi-step attacks, as these capability criteria shall
overcome a large number of false alerts problem. Table 2.2 summarizes their anal-
ysis.

Siraj et al. [3] suggested a comparative study covering only the most represen-
tative work in the alerts correlation area related to the security field. Since the cor-
relation process is a multi-step complex task that consists of many operations, they
decided to choose five of them to make the comparison. Their selected operations
were: normalization, verification, aggregation, correlation, and attack scenario anal-
ysis. Their conclusions were the following: First, statistical and probability based
techniques suggested in the discussed papers cover all the operations and, for this
reason, they are considered as the top category of alerts correlation techniques. Sec-
ond, statistical and some of the rule-based techniques cover four operations and are
thus considered as the next top most category. Others such as case-based, proba-
bilistic, and some rule based techniques only cover three operations and are then
considered as the third top most category. The category that lies at the end of the
ranking is the model-based techniques. Table 2.3 summarizes their conclusions in
more detail.

As shown in Table 2.4, Mirheidari et al. [4] provided a comparison among three
main categories of algorithms, similarity-based, knowledge-based and statistical-
based. They concluded that each category has its own advantages and disadvan-
tages. Thus, any good solution for the alerts correlation problem should use a hybrid
approach gathering more than one category of algorithms.

Sadoddin et al. [36] classified the alerts correlation techniques in IDSs into
three categories. They were knowledge-base methods (that includes rule-based
and scenario-based techniques), statistical-based and temporal-based techniques.
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Techniques
Operations

Normalization Verification Aggregation Correlation Attack scenario analysis
Rule-based (case 1) YES NO YES YES NO
Rule-based (case 2) NO YES YES YES YES
Rule-based (case 3) YES YES YES YES NO
Rule-based (case 4) NO YES YES YES NO
Rule-based (case 5) NO NO YES YES NO
Model-based NO NO YES YES NO
Statistical-based YES YES YES YES NO
Probabilistic-based YES NO NO YES YES
Probabilistic-based & Case-based NO NO YES YES YES
Statistical and Probability-based YES YES YES YES YES

Table 2.3: Comparative analysis of existing alerts correlation techniques (capable = YES,
incapable = NO), taken from Siraj et al. [3].

Charactaristics \Techniques Similarity-based Knowledge-based Statistical-based
Combining alerts from various sensors YES YES NO
Requiring prior knowledge YES YES NO
Detecting false alerts YES YES Guessing
Detecting multi-stage attacks Hardly YES Guessing
Find new attacks YES NO YES
Error rate Average Low High

Table 2.4: Comparison of existing alerts correlation algorithms (capable = YES, incapable =
NO), taken from Mirheidari et al. [4].

They concluded that the last two approaches are capable of correlating alerts re-
lated to unknown attacks, while scenario-based and rule-based correlation meth-
ods are capable to detect known attack scenarios, as they are solely dependent on
predefined attack scenarios and rules in the knowledge base of the system, respec-
tively. Knowledge-based correlation methods have higher accuracy than statistical
and temporal techniques, which are very time consuming. In addition, statistical
and temporal correlation methods fail to discover causality relationships between
noisy alerts or when there are deliberate delays planned by an attacker among the
low-level alerts.

Abouabdalla et al. [137] summarized several research efforts that were dealing
with the false positives reduction task within the IDS area. They concluded that
not all researchers deal with the false positives reduction issue in the same way.
Some of them work on the IDS level and try to improve the detection efficiency and,
as a consequence, this lead to a reduction of the false alerts and an increment of
the detection accuracy at the sensor level. Others work at a higher level than the
IDS and study other important data like the actual behavior of network traffic and
firewall and router logs. They concluded that, with all the benefits obtained from
the proposed methods, there is still not a perfect method and some weak points still
remain. For instance, when similarity-based techniques are used to remove false
positives, the analyst does not discover the actual reasons of IDSs having triggered
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these alerts. Therefore, this will be only one step further to reduce the false positives
alerts. On the other hand, scenario-based techniques are also inefficient in reducing
false positives, mainly because this process is enforced to be done in real time so
that the response will be more effective. At last, they observed that different authors
use the same false positives reduction terminology to refer to different concepts.
Some authors refer to it as data mining and clustering, while others mentioned false
positives reduction as the process of correlation. As a consequence, some form of
standardization is needed to clarify false positives reduction terminology.

To conclude this section, it is observed that, up to now, the alerts correlation
process is still an active area of research in both NMSs and network and system
security fields. Despite the big amount of efforts done in this field, there is no clear
agreement between researchers and vendors on how to formulate efficient solutions
and what the performance criteria that determine their effectiveness are. This is the
reason why it is not possible to find any generic architectures and benchmarks for
evaluating them. From the above comparative studies, the following conclusions
are derived.

1. Similarity-based techniques: Most techniques belonging to this category share
these characteristics:

• They are simple, i.e., most of similarity-based algorithms use simple math-
ematical functions to calculate distances between two alerts based on
their features. Therefore, they have higher performance in terms of pro-
cessing speed, and give results faster than others.

• They are generic. All of these algorithms can be applied and imple-
mented in a wide variety of tools and scenarios. As it will be described
later on in Section 4.3, we have checked the existence of several tools and
systems that utilize and apply them in their designs.

• These techniques are performing well when applied to some correlation
operations such as alerts reduction, clustering, aggregation and pattern
matching, mainly because they operate on the attribute level and will
provide valuable results.

• They are scalable and can give good results regardless of the size of the
dataset, as they do not rely on a prior knowledge.

• The detection accuracy is low. When applied to the NMSs field for discov-
ering root causes or to the security field to discover attack scenarios, they
do not give a high detection rate. As a consequence, many researchers
use them as a first step of the correlation process before applying other
methods.

• They can detect very simple known attacks, but usually they fail to detect
false positives, multi-step and unknown attack scenarios.
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2. Sequential-based techniques: Most techniques belonging to this category
share these characteristics:

• The majority of these techniques use complex correlation algorithms to
discover root causes or attack scenarios.

• They are scalable and can operate with unseen problems.

• The detection accuracy is high; they can detect known problems accu-
rately and precisely.

• These techniques perform better in network and system security than
in NMSs, except codebook based ones, as they are mainly designed to
discover root causes in NMSs.

• Finally, they can detect false positives and unknown attacks.

3. Case-based techniques: Most techniques belonging to this category share
these characteristics:

• They perform well in static environments, where the system behaviors
and topological information remain unchanged, as they build the corre-
lation based on previous cases and predefined scenarios.

• They have higher accuracy for detecting well-known problems and have
the ability to specify a complete action plan.

• The scalability is a big issue, because it is inversely proportional to the
accuracy. They do not provide answers for new problems. Therefore,
they have higher complexity in implementation.

• They do not perform well when applied to real time systems, since in
these types of systems the response should be very fast. These techniques
need considerable time to retrieve the most similar case, especially when
the database is large.

• Last but not least, they fail to reduce false positives and detect multi-step
and unknown attacks.



Chapter 3
Problem Statement: A Case Study

The main objective of this chapter is to carry out a preliminary exploration of
some tickets and alerts datasets in order to provide insights about their structures
and specificities such as the types of records they contain, the relationships among
tickets, among alerts, and between both tickets and alerts. We are also interested
in revealing the potential difficulties that should be circumvented to address the
objective of this work. Thus, we start describing the ITS system in more detail,
analyzing the structure and the information in tickets and alerts and obtaining some
basic statistics for them. Next, an analysis of the potential relationships between
tickets, alerts and both together is made. In this analysis, temporary and similarity
based links are explored. Finally, we describe the main difficulties that should be
faced and solved for finding a successful solution to the correlation of tickets and
alerts.

The case study considered here is the network, event data and procedures han-
dled by the IT management company we are collaborating with. It should be pointed
out that it is difficult to access to this kind of information, as there are no ITS data
from companies publicly available. On the one hand, vendors do not publish these
data due to competitive issues. On the other hand, network management teams
have also the same lack of motivation for publishing them, because this information
is considered confidential and its publications might lead to security issues. We
have only found a few research and educational oriented networks that make their
ITS data publicly accessible on the Internet [138, 139], although they do not meet
all the required properties for the objective of this thesis work.
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In our case study, the handling of alerts and tickets is made by two different de-
partments: management staffs, in charge of the effective supervision of the network
and, subsequently, the alerts; and service desk staffs that attend the requests and
complaints from customers. Both departments have the capability to create tickets,
although management staffs do it mainly as a response to alerts generated by some
network failure or malfunctioning, while the service desk staffs create tickets from
the end user complaints. This is an important fact, from the point of view of the
work carried out in this thesis, as it is expected that the tickets created by manage-
ment staffs contain some information related to the alerts triggering them, while the
tickets created by service desk staffs can provide richer information regarding the
ongoing incidents, but no information regarding technical details or alerts.

The remainder of this chapter is organized as follows. Section 3.1 provides a
detailed description of both the alerts and the tickets datasets considered in this
work. Section 3.2 illustrates the difficulties and the challenges that appear during
the process of relating tickets, alerts and both of them. Finally, Section 3.3 presents
preliminary results of some implemented correlation scenarios.

3.1 Datasets

The experimental data is composed of two different datasets of tickets and alerts,
namely Dataset 1 (DS1) and Dataset 2 (DS2), that belong to the ITS of a same cor-
porate network, but are generated by two different staff members belonging to two
different outsourcing companies. The company that outsources the management of
the ITS system is in charge of the management of a regional network formed by a
large number of governmental sectors such as academic institutions, health centers
and service centers, among others. For privacy reasons, and considering that we are
working with sensitive issues regarding management efficiency, we keep some ad-
ministrative information regarding the management companies hidden, such as the
companies names and the regional network in charge of these companies (the hid-
den information are covered by black boxes in all snapshots that are listed below).

3.1.1 Tickets Datasets Description

DS1 is composed of both tickets and alerts for the whole year of 2011, with a total
set of 19,162 raw tickets. It is necessary to mention here that we have obtained DS1
from the first outsourcing company split into twelve batches, which are separated
in time, each one for every month. On the other hand, tickets in DS2 are obtained
from the second outsourcing company as one large batch file of six months, from
October 2013 to the end of March 2014, with a total set of 9,612 raw tickets.

Table 3.1 gives an overview of some useful statistics of tickets found in both
datasets. As previously mentioned and emphasized in the table, there are two main
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tickets of DS1 tickets of DS2
Total # of tickets 19,162 9,612
Mean # of tickets per month 1,596.8 1,602
Mean # of affected elements per ticket 1.4 1.42
Mean # of ticket identities per ticket 1.2 1.39

Percentage of created
tickets / management group

MS 45% 54%
SD1 44% 39%
SD2 11% 7%

Mean ticket lifetime [h:m:s] 22:48:02 33:41:37
Minimum ticket lifetime [h:m:s] 00:00:24 00:00:23
Maximum ticket lifetime [h:m:s] 1244:09:42 1397:13:27
Ticket intensity [ tickets per hour] 2.22 2.19

Table 3.1: Some statistics of the tickets in both companies’ datasets, DS1 and DS2.

management groups that have the responsibility to manually create tickets: MS is
the management staff that creates tickets in response to receiving network alerts,
while the staff belonging to the SD group creates tickets in response to receiving
customer calls. In the case study we are considering, the SD group is further split
into two subgroups, SD1 and SD2. SD1 is mainly referred to as call center level 1,
whereas SD2 is referred to as call center level 2. Besides the above table, Figure 3.1
shows the number of tickets created in each month for DS1. We observe that both
datasets are almost similar. The mean number of tickets per month and the mean
number of tickets per hour, i.e., ticket intensity are 1,596.8 and 2.22 for DS1, and
1,602 and 2.19 for DS2, respectively. Furthermore, the mean number of affected
elements and ticket identities are also quite similar in both datasets. As will be
explained later on in this chapter, an affected element is defined as the number of
network systems or devices affected in the problem reported in the ticket, and ticket
identity refers to an unique identity of the ticket in the database. Finally, we observe
that the number of tickets generated by MS is slightly higher in DS2.

Some snapshots of tickets, as shown in the ITS platform, are illustrated in Fig-
ures 3.2 to 3.5, showing the different types of tickets’ fields with some values.

The tickets in both datasets share the same structure and format. There are
293 different attributes that describe every ticket with three different data formats:
strings, numbers and booleans. We have found that a large number of the attributes
are not important for the work carried out in this thesis, or contain empty data, so
we have decided to filter them out. In order to do that, with the help of the manage-
ment staff, we classified these attributes into 5 categories based on the information
that they contain. These categories and the most relevant attributes are explained
below giving more detailed information.

• Management groups information: This category mainly contains information
about the management groups that are involved in the ticket management pro-
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Figure 3.1: Total number of tickets in DS1, for each month.

Figure 3.2: A snapshot taken from the ITS system that shows the information of an incident
and its affected elements as reported in a ticket.

Figure 3.3: A snapshot taken from the ITS system that shows some administrative informa-
tion about the affected users as reported in a ticket.
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Figure 3.4: A snapshot taken from the ITS system that shows the solution description and
the workaround carried out to solve an incident as reported by a ticket.

cess, either ticket creation, ticket resolution or ticket acknowledgment. The
most relevant attributes of this category are:

– ASSIGNEE GROUP: It refers to the identity of the member/group who
created the ticket.

– GR DINAMICO SEDES: This attribute represents a list of names of staff
members who are located in a specific geographical area.

– ASSIGNEED TO GROUP: It is a string that represents the name of the
management group that is involved in solving an incident reported by a
ticket.

– ZASSIGNEDGROUPID: It refers to the group identity of the staff mem-
bers who are involved in solving an incident reported by a ticket. This
attributes takes an integer number.

• Timestamps: There exist several attributes related to the lifetime of the ticket
(from creation to validation). This category of attributes will help to track the
contents of the tickets and also to make some statistical analysis on them. All
of the timestamps attributes are in epoch time format, defined as the number
of seconds that have elapsed since 00:00:00 Coordinated Universal Time. The
following list of attributes are the most important ones.

– TICKET CREATION TIME: It refers to the instant at which the ticket is
created by a ticket creator.

– TICEKT RESOLUTION TIME: It is the instant at which the ticket is marked
as resolved by a ticket resolver.

– TICKET VALIDATION TIME: This timestamp refers to the instant at which
the ticket is marked as validated by a ticket validator.
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Figure 3.5: A snapshot of some samples of tickets taken from DS1.

– TICKET ASSIGNEED TIME: It represents the instant at which the ticket
is re-assigned to the appropriate management group/member by either
ticket creator or ticket resolver, assuming that there exist multiple man-
agement groups or members involved in resolving the same incident.

• Topological information: The following list of attributes contains the most
relevant topological data that provide information about the origin of the
problem within the managed corporate network.

– ORGANISMO (organization): It contains the name of the main organi-
zation in the managed corporate network that is affected by an incident
reported by a ticket.

– NOMBRE SEDE (headquarter): It is a string that refers to name of the
headquarter that corresponds to the main organization. It is worth to
mention here that every organization has multiple headquarters that are
separated geographically.

– CODIGO POSTAL (postal code): It is a string that refers to the area code
of the headquarter.

– SEDE (affected element/service identity): It refers to the affected element
or service inside the headquarter. In the managed corporate network the
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topology resembles the organizational structure, thus using a hierarchi-
cal approach. For example, the format of the SEDE field is anonymously
represented as XXX-YYY-ZZZ, where the first three letters, XXX, refer to
the first three letters of the organization name, the second three letters,
YYY, refer to the first three letters of the headquarter, and finally, the last
three refer to the identity of the affected element or service in the head-
quarter. Consequently, the most important and relevant field that collects
all of the topological information about the location of the incident is the
SEDE attribute.

• Problem description: With the help of this category of attributes, we can un-
derstand the problem reported in the ticket. Some important attributes be-
longing to this category are:

– CASE ID (ticket identity): Every ticket in the database has a unique iden-
tifier, called CASE ID. This attribute is a fixed length string that consists
of 15 digits; the first two are fixed letters, HD, and the remaining are
integers, e.g., HD0000000442623.

– DESCRIPTION: This attributes contains a human written text of variable
length that describes the problem.

– SUMMARY: This field may take a value from a predefined list of values
that exactly describe the type of the problem, e.g., “Sin servicio de datos
en el centro” (no data service at the center).

– ROOT CAUSE: It is a string that represents the root cause of the problem.

• Solution: A large number of attributes that contain useful information about
the solution description for a specific problem. Among these relevant at-
tributes we can find:

– OBSERVACIONES (Observations): It contains text with a human written
format that describes all the observations and comments reported by the
ticket resolvers.

– WORK LOG: It contains the same information as the OBSERVACIONES
attribute, but it may also contain all the possible solutions that have been
applied by the different tickets resolvers and their results.

– SOLUTION DESCRIPTION: It represents a description of the final solu-
tion applied to solve the problem.

– SOLUTION SUMMARY: It represents a summary of the applied solution.
It may also contain a summary of the information described in the SOLU-
TION DESCRIPTION field.
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• Ticket severity: The following attributes are related to the ticket severity, and
they give useful information about the ticket in terms of its severity and its
relation with the SLA:

– CRITICIDAD SERVICIO (service severity): It is a boolean that represents
whether the reported incident is affecting a critical or non critical ser-
vice/s.

– PRIORITY: It is an integer that gives the priority level of a ticket. It may
take a number from 0 to 5, being 0 the lowest priority and 5 the highest
priority.

– NUM SERVICIOSAFEC (number of affected services): It is an integer that
gives the number of services or elements affected by the reported inci-
dent.

– CRITICIDAD (severity): It gives information about the severity of a ticket.
It may take one of four different values: “baja” (low), “alta” (high), “me-
dia” (medium) or “crı́tica” (critical).

Coming back to Table 3.1, it is worth to recall here that, besides to the main
ticket identifier (CASE ID field), a ticket may contain identifiers of other tickets
that are somehow related to it. For this reason, the mean number of ticket identities
is greater than one. The same is also valid for the affected elements, that are referred
to also as SEDEs in the list of ticket’s attributes that are described above. A ticket
may contain, besides the main affected element (SEDE field), other SEDEs that share
the same root cause. Thus, the number of SEDEs per ticket may also be greater than
one.

3.1.2 Alerts Datasets Description

Like the tickets, DS1 also contains alerts for the whole year of 2011, with a total set
of 8,198,052 raw alerts. In addition, alerts are obtained from the first outsourcing
company split into twelve batches that are separated in time, each one for every
month. Alerts for DS2 are obtained from the second outsourcing company as one
large batch file of six months, with a total set of 1,703,662 raw alerts.

Figure 3.6 illustrates a snapshot of a sample of alerts log as captured by the HP
OpenView platform that is currently deployed in the managed corporate network
environment, and the information included in each alert is presented in a fixed
structured format as illustrated in Figure 3.7.

The alerts collected by the HP OpenView in the IT management company trace
has the following characteristics.
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1. Alerts are generated by two different procedures: (i) polling, in which HP
OpenView Operations Support Systems (OSS) software tries to contact an in-
terface/node and actively collects information or (ii) trap, in which the agents
generate alerts (SNMP traps) that are collected by the OSS.

2. Alerts corresponding to Cisco/Teldat/Generic agent interface equipments are
generated by traps. The rest are generated by polling.

3. The alerts fields are tab separated. The important fields are:

• Node: This is the affected element (SEDE) that generates the alert.

• Creation timestamp: It is the instant at which the alert has been gener-
ated.

• Reception timestamp: It is the instant that refers to the reception of the
alert at the OSS.

• Resolution timestamp: It is the instant that refers to the resolution of the
alert.

• Alert description: Here, there are several sub-fields:

– Element type: Type IF indicates that an interface has gone to state
DOWN or UP. Type Node indicates that a node has gone UP or DOWN

– Root cause: Information about the affected element and the interface
that have caused the problem.

– Sev: Severity of the alert. Possible values are major, minor, critical,
normal, informative, etc.

– Generic: It represents the generic code of a trap. For all alerts gener-
ated by HP OpenView (polling) the value is equal to 6.

– Specific: It refers to the specific code of the trap. For all alerts gener-
ated by HP OpenView (polling) there are two codes: one for inter-
face up and other for interface down.

– Enterprise: It is the Object ID in the MIB of the affected element in the
alert. In the alerts generated by HP OpenView it is set to the value
.1.3.6.1.4.1.11.2.17.1

In addition, we have obtained the alerts of DS2 from the second outsourcing
company after having some preprocessing operations carried out by the manage-
ment staff. For this reason, we have found that the mean number of alerts per hour,
i.e., alert intensity, is 384 for DS2, lower than that for DS1, which is 935.8. Be-
sides, the mean number of affected elements (SEDEs) per alert is very similar in
both datasets, 1.2 (DS1) and 1.15 (DS2). Every alert may contain other affected ele-
ments besides the main one. This occurs due to the fact that during the management
of the corporate network there are intermediate nodes called gateways that collect
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Figure 3.6: A snapshot of some samples of alerts log as captured by HP OpenView platform
that is currently deployed in the managed corporate network.

Figure 3.7: Format of an alert taken from the DS1 dataset.

information from low level nodes and aggregate them into one alert. Thus, in this
type of alerts, the node attribute represents the identity of the gateway and the root
cause field may contain other identities for low level nodes.

Figure 3.8 illustrates the format of the alerts related to DS2 dataset. We observe
the level of preprocessing applied here by the management staff to filter all the
unnecessary fields.
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Figure 3.8: Format of an alert taken from the DS2 dataset.

3.2 Insights from Datasets

A major inconvenient to deal with these raw datasets for research purposes is the
lack of a “ground truth”, i.e., a set of labeled incidents with their corresponding
alerts and tickets is not available. Furthermore, and as it will be explained in the
following sections, we have found that not all the tickets/alerts are related to real
incidents and that some of the tickets/alerts present incoherent, irrelevant or null
values. At this point, in order to clarify the nature of the problem, we dig even more
into the datasets in order to classify the different types of tickets and alerts, in an
attempt to use this information for solving the core problem of this thesis. Next
subsections present the information extracted from this study.

3.2.1 Types of Tickets

With a deep manual exploration of the tickets and after many consultations with the
management staff, we were able to capture several types of tickets that have different
levels of granularity for describing the reported incidents. This has motivated us to
study all of these types and try to understand the cause of their existence. We first
analyzed the different types of tickets starting from the following hypothesis: in
ideal situations, the main target of any ITS system is to register accurate and fully
filled informational tickets for describing the incidents as completely as possible.
Based on this assumption, in the following, we list all of the types of tickets that we
have found, and give some real samples extracted from the case study in order to
give details about each one of them.

• Malformed or void tickets: During the process of analyzing the attributes of
tickets, we have noticed that some mandatory attributes have incomplete or
inaccurate information about the described incident. With the help of the
management staff, we defined these tickets as malformed or void, because they
are created erroneously either due to a failure in the network management
tool, that automatically could generate such kind of tickets, or due to a mis-
behavior of any member of the management staff. Figure 3.9 illustrates a
snapshot of some samples of malformed tickets extracted from the investi-
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Figure 3.9: A snapshot of some samples of malformed tickets extracted from the DS1 tickets
dataset.

gated case study. It is obvious from these samples that most of mandatory
ticket attributes are empty such as DESCRIPTION, TICKET RESOLUTION
TIME, SEDE and WORK LOG, among others. According to the management
staff, these attributes are necessary and should contain accurate and full in-
formation about the ongoing incidents in order to be valid. In our case, it is
hard to get useful information from these tickets regarding the incident and
its resolution.

• Irrelevant tickets: Besides the malformed tickets, and after manually analyzing
other subset of tickets, we have found that despite that they contain full in-
formation in all relevant fields, these tickets contain information not related
to real network incidents. Consequently, and after validating several samples
with the management staff, we called these tickets as irrelevant from the point
view of real network incidents.

We have found that, in the studied tickets, or even generically in any ITS sys-
tem, it is usual that some tickets are created to record issues not directly re-
lated to network incidents but to contain information about some other infor-
mation as, for example, the availability of a new software release in certain
network nodes or scheduled maintenance activities. For example, in the case
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Figure 3.10: A snapshot of some samples of irrelevant tickets extracted from the DS1 tickets
dataset.

study considered here, and after discussing this issue with the management
staff, they have informed us that they usually use several keywords and terms
to distinguish irrelevant tickets such as “swap terminal” or “change technol-
ogy”, among others. Figure 3.10 illustrates a snapshot of some samples of
irrelevant tickets that are extracted from the case study. For more insights, the
ticket marked with the arrow has a description “averı́a de terminal” (terminal
down), and the solution summary is “swap terminal” without any further in-
formation. Thus, we claim that this type of tickets are created for solving non
network incident-related problems. Furthermore, we observed that a high per-
centage of these tickets are mainly created by the service desk staff, and not
by the management one. This also emphasizes that they are not created as a
response to network incidents or to network alerts neither.

• Duplicated tickets: Due to the fact that tickets in the ITS might be created
and managed by different management groups or even by different members
within the same group, we have detected that ITS could contain overlapped or
duplicated tickets created for the same incident. This issue might happen due
to the format of the Node name field in the alerts datasets and the SEDE field in
the tickets datasets. We have found that for several alerts that share the same
SEDE prefix and have differences in the last number, management staff could
create duplicated tickets, each one for every alert type. For example, Node
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Figure 3.11: A snapshot of some samples of duplicated tickets extracted from the DS1 tick-
ets dataset.

name of alert 1 is QQQ-MMM-WWW-01 and Node name of alert 2 is QQQ-
MMM-WWW-02. Thus, in the ticket dataset we may have two tickets, one
for every alert that share the same SEDE, QQQ-MMM-WWW. Furthermore,
as illustrated in Figure 3.11 that gives some samples of duplicated tickets ex-
tracted from the ITS dataset and created by two different management groups,
the ticket marked with the arrow has written in its SOLUTION SUMMARY at-
tribute the following text “DUPLICADA CON LA HD0000000446103”. It is
explicitly mentioned here that this ticket is a duplicated one. This is also a
clear indicator that there exist duplicated tickets.

Furthermore, and after discussing this issue with the management staff, we
have concluded that the creation of duplicated tickets might happen due to
the lack of coordination or centralization in the tickets creation process. For
example, if an element of the network is down, i.e., a router, the staff at SD1
may receive calls from end users complaining about some problems in access-
ing services or applications affected by this element. Consequently, a ticket
containing some preliminary information about the ongoing incident is cre-
ated by staff members belonging to the SD1 group. At the same time, the
management staff may receive alerts triggered by the same element announc-
ing the existence of the same incident. Consequently, the staff creates another



3.2. Insights from Datasets 81

Figure 3.12: A snapshot of some samples of related tickets extracted from the DS1 tickets
dataset.

ticket related to the same incident. Therefore, this lack of coordination be-
tween different groups can lead to the creation of many duplicated tickets.

• Related tickets: For more complicated scenarios, we have found that the man-
agement staff may create related tickets in which several tickets might be
linked to each other if they are related to the same root cause. We have found
that this process normally happens when the management staff decides that an
ongoing incident is related to another one that has an active ticket. Therefore,
they create a new ticket and make a reference to the other one. Furthermore,
we have found that there are different methods that could be used by man-
agement staff to relate tickets. For example, Figure 3.12 shows a snapshot
of some samples of related tickets. In these samples, the management staff
refers a ticket to another one just by writing some administrative information
such as affected elements, affected services or ticket identities among others,
or by using some keywords like “MASIVA” (MASSIVE) and “PROACTIVA”
(PROACTIVE) (see the tickets marked with arrows for the representation of
both cases).
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Type of alert Classification Type of alert Classification Type of alert Classification
NodeDown Yes CardRemoved No FlappingInterface Informative
HSRPStateChange Yes tCyberTechTrap No CiscoColdStart No
Reiterado Yes ConnectionDown No alarma2 No
ManagementAddressICMPResponseTimeHigh Yes linkStatusTrap No CarrierTraficoOK V3 No
CarrierTraficoError V3 Yes alarma53 No CustomPollMajor No
BGPEstablished Maybe SNMPWarmStart No IslandGroupDown No
BGPBackwardTransition Yes dataPortStatusTrap No RateCorrelation No
IetfVrrpStateChange Yes ascEvoStatusNotif V2 No alarma3 No
jnxPowerSupplyFailure Yes jnxFruPowerOn No CardInserted No
PowerSupplyOutOfRangeOrMalfunctioning Yes DuplicateCorrelation No alarma5 No
SNMPLinkUp No NnmHealthOverallStatus No CarrierTraficoSaturado V3 No
SNMPLinkDown Maybe radarDetectTrap No CiscoFRURemoved No
AddressNotResponding Maybe jnxPowerSupplyOK No CustomPollCritical No
SNMPColdStart No alarma47 No CustomPollCritical No
CiscoLinkDown No alarma48 No CustomPolledInstanceOutOfRange No
CiscoLinkUp No alarma49 No CustomPolledInstanceOutOfRange No
InterfaceDown Maybe alarma50 No CiscoFRUInserted No
jnxFruOnline No TrapStorm No alarma4 No
jnxFruInsertion No DDOS Conex seg esp OK No

Table 3.2: Types of alerts and their classifications (critical (Yes)/ non critical (No)) carried
out with the help of the management staff.

3.2.2 Types of Alerts

As in the case of ITS, after carefully exploring the alerts datasets, we were able to
identify up to 56 different types of alerts. Due to the fact that current monitoring
systems are very sensitive, a huge amount of alerts are generated as a result of criti-
cal or even non critical issues. In fact, alerts in NMS are usually classified according
to their severity and/or criticality. Thus, not all the alerts equally affect the stability
of the managed system and, thus, the management staff may be prone to ignore or
postpone the creation of a ticket for non critical alerts, especially if they are busy
trying to solve an incident with higher priority.

As explained in Chapter 2, a large volume of the alerts in the alerts dataset are
classified as normal, duplicated or related to the same root cause. Table 3.2 shows
a list of types of alerts in the studied alerts datasets, classified according to their
relevance as labeled by the management staff. A large part of the generated alerts
are classified as normal alerts and the management staff does not open a ticket for
their occurrence.

During the classification process, we have observed that, even though the staff
members have a deep knowledge of the managed corporate network, they do not
have a clear classification of alerts. Some alerts are clearly classified as critical,
others as non critical and the remaining mainly depend on several internal policies
and issues. Therefore, the alert classification made by the management staff will
help to focus on important alerts only with some degree of confidence.

3.3 A Preliminary Tickets-Alerts Correlation

In this section, and after exploring both alerts and tickets datasets, we discuss in
more detail all the preliminary analysis that have been carried out for the purpose
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of relating tickets with alerts, and the main difficulties that we have faced during
this process. Our purpose was to identify the main challenges that should have to
be solved during this thesis development.

We have started with a simple correlation scenario that uses a temporal and at-
tribute based similarity method to correlate tickets with alerts. This scenario takes
the creation time of a ticket as a reference point and searches backward for corre-
lated alerts that have some attributes in common, mainly the same affected element,
i.e., Node name field of an alert equals to the SEDE field of a ticket. The main reason-
ing behind this analysis is that alerts are firstly generated by managed devices and
after that management staff decides to open a ticket or not. Thus, the normal behav-
ior is that in which alerts appear earlier than tickets at the management console. In
this experiment, we have selected a sample of one week of tickets, taken randomly
from DS1, namely in March. The experiment was repeated many times, using a
variable time window by changing the beginning and the end of the time window
for alerts. For the beginning of the research, the time window is extended with an
added number of days. The same also applied for the end of the window, but here we
considered three scenarios depending on the different timestamps found in tickets:
TICKET CREATION TIME (tCT ), TICKET RESOLUTION TIME (tRT ), and TICKET
VALIDATION TIME (tV T ). The experiments were repeated for each of these times-
tamps and the results were compared. The correlation results are shown in Fig-
ures 3.13 to 3.15. These figures represent the mean number of correlated alerts per
ticket, percentage of tickets correlated with alerts and percentage of alerts corre-
lated with tickets, respectively. The first measure is calculated as the total number
of correlated alerts divided by the total number of correlated tickets. The second
one is calculated as the number of correlated tickets divided by the number of raw
tickets in the study period, i.e., one week. Finally, the last measure was calculated
as the number of correlated alerts divided by the number of alerts in the considered
time window.

From these results, we observe that the process of the joint correlation of alerts
and tickets is not straightforward. As we have seen, even though the time window
is extended to approximately one month, there exist a large portion of tickets and
alerts that are not correlated, i.e., 85% for the alerts dataset. As a second interesting
finding from these results, note that the mean number of correlated alerts per ticket
increases as we forward from ticket creation time towards resolution or validation
times. This means that part of the correlated alerts appeared after the creation of
the corresponding ticket, i.e., during the ticket lifetime, from ticket’s creation to
validation.

We also performed a second preliminary experiment to check whether there are
duplicated or related tickets in the correlated subset. The results, that are shown
in Figure 3.16, represent the amount of alerts correlated with at least two different
tickets considering only a sample of raw tickets of one day that are also taken from



84 Chapter 3. Problem Statement: A Case Study

Figure 3.13: Mean number of correlated alerts per ticket in the studied period.

Figure 3.14: Percentage of tickets correlated with alerts in the studied period.

the same month. The results emphasize that there is a level of redundancy in the
ITS system, i.e., in some cases there are several tickets created for the same incident.
This redundancy has a negative effect on the correlation process, because in this
example, alerts are counted many times (one for each correlated ticket).

As the above preliminary results showed that a large portion of tickets and alerts
are not related, this point stimulated us to extend the time window to consider the
whole alerts dataset. The results, that are shown in Table 3.3, were surprising as
there is about 40% of tickets that are not correlated with at least one alert from
the amount of alerts of the whole year of DS1 dataset. So, we had some doubts
that there is some incoherency in the datasets, or a large number of records in the
tickets datasets were not related to real incidents. Furthermore, the mean number of
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Figure 3.15: Percentage of alerts correlated with tickets in the studied period.

Figure 3.16: Number of alerts correlated with at least two different tickets in the studied
period.

Amount of tickets in the study period (one week) 347
Mean amount of alerts in the study period 160,360
Amount of tickets which have at least a correlated alert 229
Total number of correlated alerts in the studied period 20,318
Mean number of correlated alerts per ticket 88.7
Percentage of tickets correlated with alerts 61.06%
Percentage of alerts correlated with tickets 12.67%

Table 3.3: Correlation results for other correlation scenarios.

correlated alerts per ticket is really high, i.e., 88.7, because we have found that many
alerts are flapping in the considered time window. Other statistics were obtained in
order to find how many affected elements matched in both datasets. Table 3.4 gives
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Total number of unique node names in the alerts dataset 8,561
Total number of unique node names in tickets dataset 7,132
Total number of matched node names found in both datasets 5,746
Number of non matched node names found only in alerts dataset 2,815
Number of non matched node names found only in tickets dataset 1,386
Percentage of non matched node names with respect to alerts dataset 32.9%
Percentage of non matched node names with respect to tickets dataset 19.4%

Table 3.4: Some useful analytical results about the matched and non matched affected ele-
ments found in both alerts and tickets datasets.

some useful statistics about the matched and non matched list of affected elements
extracted from the whole dataset of DS1, tickets and alerts. From these numbers, we
observed that there is about a 32.5% of affected elements that belong to the alerts of
DS1 dataset and are not matched with any of those extracted from the DS1 tickets
dataset. This means that, in the process of correlating alerts with tickets, we expect
to have a high percentage of alerts not correlated with tickets. The same is also
valid for tickets, in which about 19.4% of the affected elements that belong to the
tickets dataset are not matched with any of those extracted from the alerts dataset.
Thus, this analysis pointed out to an important issue: there is a significant portion
of both datasets that is irrelevant from the point of view of incident solving and,
consequently, should be removed from the whole procedure.

In order to study the behavior of the correlated subsets of alerts and tickets,
some useful delay values were tested. As illustrated in Figure 3.17, four different
delay measures are defined. They are Delay 1, Delay 2, Delay 3 and Delay 4. Delay
1 is calculated as the time difference between the creation time of a ticket and the
minimum creation time among correlated alerts. Delay 2 is measured as the delay
between the creation time of a ticket and the maximum creation time among cor-
related alerts. The same is also valid for Delays 3 and 4, but here the values are
calculated based on the resolution times of both tickets and alerts. For the same
subset of tickets and alerts of the previous experiments, we calculated the mean
values and standard deviations of these delays. The results are shown in Table 3.5
for two cases. Case 1 considers all correlated alerts created before the validation of
the ticket, while, case 2 also considers the alerts that are resolved after the valida-
tion of the ticket. For case 1, in average, Delay 1 is 6.89 h, Delay 2 is -7.65 h, Delay
3 is 23.5 h and finally Delay 4 is 13.7 h. The delay values for case 2 are almost the
same as in case 1, but here there are few samples having Delay 4 negative, meaning
that some alerts are still active after validating their correlated tickets.

3.3.1 Conclusions from the Preliminary Analysis

These sets of experiments besides others not mentioned here emphasized that the
process of the joint correlation of alerts and tickets is not an easy task. Several
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Figure 3.17: Implemented scenario for the purpose of analyzing several delay values.

Delay 1 Delay 2 Delay 3 Delay 4

case1
Mean 6.89 -7.65 23.6 13.7

SD 14.2 28.4 36.2 20.5

case2
Mean 6.89 -11.9 23.6 8.4

SD 14.2 35.2 36.2 23.1

Table 3.5: Values of some delay measures of the joint correlation of alerts and tickets.

issues could appear that may have a negative effect on the correlation results. As a
consequence, they must be resolved before applying any joint correlation method.

After exploring the tickets datasets, we observed that there are different types
of tickets: malformed, irrelevant, duplicated or related. Malformed and irrelevant
tickets are not related to real network incidents and, consequently, they are not
related to any alerts from the alerts dataset. Duplicated and related tickets share
the same reported incident, so that they are expected to correlate with the same
set of alerts, leading to inconsistencies in the results. Furthermore, tickets may
encompass a large number of attributes, many of them being not related to incident
solving, as they only contain informative data for administrative issues.

Alerts datasets also present similar problems. We observed that a high percent-
age of alerts are classified by the management staff as normal (non critical), others
as critical, and some of them depend on internal policies. We have found that a large
part of the alerts are not related to tickets, even those that are classified as critical.

Finally, after applying the variable time window to correlate tickets with alerts,
we have found that there are no clear parameters for the window definition when
correlating alerts with tickets. Choosing the beginning and the end of the time win-
dow will have a great effect on the correlation results and the correlation accuracy
as well. For example, using a large time window may lead to many correlated alerts
but, at the same time, the number of FPs will be increased as the scenario may
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consider correlated alerts for other tickets. On the other hand, using small time
windows, the percentage of correlated subsets might be very low and the correla-
tion accuracy will be high in terms of True Positives (TPs), but raising a high number
of True Negatives (TNs) as well.

In the following chapters we tackle all of the above issues by suggesting three
different correlation models. In Chapter 4, we propose a generic model for the pro-
cess of alerts correlation. We consider here all of the stages that are necessary for
any alerts correlation method that includes filtering, aggregating, correlation and
prioritization of alerts. The same is carried out in Chapter 5, but here the proposed
correlation process is targeted at the tickets in the ITS. The aim is to filter mal-
formed and irrelevant tickets, and to correlate overlapped and related tickets that
share the same root cause. Finally, in Chapter 6, we propose a model for the joint
correlation of alerts and tickets starting from the output of previously proposed
models. The aim of this last model is to correlate a high percentage of alerts with
tickets keeping the accuracy at higher levels.



Chapter 4
A Generic Model for the Alerts
Correlation Process

4.1 Introduction

M any authors have described in their works the process of alerts correlation.
While some of them consider the different stages of this process, like the works in
[63, 64, 66, 71, 72, 93], they normally focus on proposing and evaluating a multi-
component alerts correlation system, tool, method or algorithm. We claim that pre-
vious works do not completely aim at providing a comprehensive enough view of
the whole process of alerts correlation, mainly because they only present a descrip-
tion of this process as an introduction for describing a specific approach and, in
many cases, their point of view is biased towards the techniques that they propose.
In this chapter, we suggest an alerts correlation model that is intended to survey
all the stages, techniques and methodologies suggested in the state-of-the-art (see
Chapter 2), trying to achieve the following two main contributions:

• First, as mentioned in Chapter 2, due to the complexity of the correlation
process, most of the proposed models conceptualize it as a set of interrelated
processes linked to each other sequentially. Each correlation component per-
forms its tasks locally and sends the results to the next one in a sequential
process, without knowing what other components have done. We suggest that
this sequentiality does not fit well in the correlation process and, accordingly,
in this chapter we give arguments for that and present a new model that con-
siders feedback mechanisms.
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Figure 4.1: Proposed model for the alerts correlation process.

• Second, we make a comprehensive study that reviews the most important ex-
isting alerts correlation tools, both open source and commercial, that are cur-
rently available, and analyze their alignment with both the state-of-the-art
presented in Chapter 2 and the architectural model proposed here.

This chapter is structured as follows. In Section 4.2, we propose the cited generic
model for the alerts correlation process. In Section 4.3 we present the comparison
of existing commercial products that implement certain correlation techniques.

4.2 A Model for the Alerts Correlation Process

After a thorough analysis of the techniques and models in Chapter 2, we propose
a comprehensive model for the process followed to correlate alerts. As shown in
Figure 4.1, it is composed of four modules:

• Alerts preprocessing module: It accepts raw alerts and converts them into a uni-
fied data format understandable by other modules.

• Alerts reduction module: This module is intended to filter and validate alerts.

• Alerts correlation module: It aggregates similar alerts and converts them into a
higher level view.

• Alerts prioritization module: It analyzes the severity of alerts on the system and
provides a classification methodology.

The correlation model proposed in this chapter has two main features. First, it
tries to generalize the usual model by selecting the most important correlation mod-
ules generally accepted by the research community in several applications. Note
that the scope of the correlation model proposed here is generic, which means that
it tries to cover all the aspects of alerts correlation. Nevertheless, it implies that
it is not mandatory for any existing implementation to consider all of them. Sec-
ond, the alerts correlation process is not represented as a sequential process, but
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it is iterative. Iterations are considered between the alerts reduction and the alerts
correlation modules by means of a feedback mechanism between them, aimed at
refining their outputs. This feedback mechanism is leveraged to enhance the alerts
correlation process in the process of discovering root causes or malicious activities
efficiently, due to the fact that, in many real problems, it is quite complicated to
identify the causes of a network problem in a single iteration.

In order to assess the iterations in this model, an especial type of alert is defined:
a representative alert. These are alerts resulting from an iteration in the modules of
reduction and correlation. Representative alerts are generated as outputs from the
alerts correlation module, and are supposed to be returned and fed back as inputs
to the alerts reduction module, where the correlation process repeats itself again.
Thus, a representative alert is supposed to represent (substitute) a set of correlated
alerts after one of the steps of the overall alerts correlation procedures.

This iterative nature of the model is well-suited for complex or hierarchical sce-
narios, in which multiple reduction and correlation phases are required. This way,
representative alerts can be considered as new alerts that can be filtered and corre-
lated again consequently to produce new representative alerts that can possibly feed
the system in new iterations. This mechanism can ease the procedures, simplify the
required correlation techniques and, subsequently, improve the results.

The convenience for this iterative process can be clarified by analyzing two ex-
amples taken from the network and system security field. As a first case, consider a
distributed DoS attack being targeted to a network segment or server. Here, many
alerts may be generated at different border routers or links warning about an in-
crease in the traffic. To ease the detection of this attack and to provide some insights
on its impact, many steps of reduction and correlation for the alerts can be consid-
ered, each one targeted to a different geographic scope of the influence of the attack.
For example, a first step would be targeted at generating representative alerts for the
routers and links in a subnetwork level. A second iteration would check the scope
of the attack at an operator level.

A second case that could illustrate the usefulness of the feedback mechanism is
a low-rate scan attack. This kind of attacks are characterized by the scanning of
ports at multiple targets at a very low rate, so that detection mechanisms could be
bypassed. Yet, while each host is scanned for a reduced number of ports with high
scanning period, a visualization of the events in the whole network might reveal a
lot of scans in a relatively short period of time, but targeted at many different hosts.
In this scenario, one of the detection approaches should go through two different
steps of reduction and correlation for the generated alerts. One of the steps should
focus on the generation of representative alerts for one of the dimensions of the
problem, i.e., correlation of many connection attempts from a single computer or
subnet to the different hosts being monitored. After this, representative alerts are
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generated, and a second iteration should focus on the existence of multiple events
of this type in the whole network.

In the next subsections, a detailed description of these modules and their in-
ternal phases are provided. Furthermore, as a survey, several significative research
efforts related to these phases are also detailed.

4.2.1 Alerts Preprocessing

Currently, in order to provide a better network monitoring and give a global view of
intrusion activities, most of the organizations use collaborative and heterogeneous
monitoring systems from different vendors. Examples of such monitoring systems
are NMS, host IDS, network IDS, firewalls, anti-virus systems, etc. These systems
detect abnormality conditions of monitored networks by using different detection
methods and, consequently, they generate alerts with different data formats. The
alerts preprocessing module implements the necessary processes that are used to
clean and transform all raw alerts into an unified and integrated format in order to
be understood by other modules.

Davis and Clark [140] presented a review of the state-of-the-art on data prepro-
cessing techniques used by anomaly-based network IDSs. They divided the tech-
niques into different groups according to the network traffic features used for de-
tection, e.g., packet header anomaly detection, protocol anomaly detection, content
anomaly detection, etc. They concluded that these techniques are valid for NMSs,
but they are insufficient for the security field, since attackers use other methods such
as web-based attacks and crafted application data that may need more complicated
preprocessing operations.

As shown in Figure 4.2, the preprocessing module can be mainly divided into
two phases: normalization and feature construction, which are discussed below.

Normalization

A normalization phase is first executed to convert heterogeneous alerts from multi-
ple sources into a standard format that is acceptable by other modules. For example,
Holub et al. [62] used generic log adapters to convert the events from various logs
to the common base event format [141] before using them in their proposed corre-
lation engine for system monitoring and testing.

Another relevant example widely used in network IDSs and implemented by the
IETF in cooperation with the Intrusion Detection Working Group is IDMEF [59]. It
is a kind of reporting language that uses an object-oriented representation to model
the alert data generated by IDSs. Each alert is translated into a vector of attributes
with the following contents: {Alert ID, Sensor ID, Detection time, Source IP Address,
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Figure 4.2: Architecture of the alerts preprocessing module.

SourcePort, Destination IP address, Destination port, Service Protocol, Alert Type}. One
of the main goals of the IDMEF model is to be able to express relationships between
alerts, and exchange procedures for sharing information of interest to intrusion de-
tection and response systems and to the management systems that may need to in-
teract with them. Document Type Definition (DTD) has been proposed to describe the
IDMEF model data format, with an implementation that uses the Extensible Markup
Language (XML).

Feature Construction

Since the monitoring systems might omit some of the fields expected in the normal-
ized format of the alerts (i.e., start time, end time), the feature construction phase
aims to supply, as accurately as possible, the missing attributes in alerts, and also
to create additional features by using different methods, i.e., time-based statistical
measures, that would have better discriminative ability than the initial features set.

This issue has been treated in many research contributions. To solve it, some
authors have suggested the use of ontology databases consisting of attribute-value
pairs for different types of nodes to provide the global information necessary for
the feature construction process. For example, IDMEF [59] has strong features that
make it able to do this function properly. There are three different time classes de-
fined in the IDMEF standard: CreateTime (the time at which the alert is created),
DetectTime (the time at which the events producing an alert are detected), and the
AnalyzerTime (the time at which the alert is sent by the IDS to the correlation sys-
tem). By using different approximation functions, the missing time attributes are
substituted, provided that network equipment clocks are synchronized by, for ex-
ample, using Network Time Protocol (NTP) [142].
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Figure 4.3: Architecture of the alerts reduction module.

4.2.2 Alerts Reduction

As previously discussed, network monitoring and detection systems may overwhelm
staff when triggering a huge number of alerts, especially if many of them are redun-
dant or there is a considerable number of false positives (normal events being pre-
dicted as abnormal) [143]. Being able to filter out and to validate a high percentage
of those uninteresting alerts increases the accuracy of the correlation process and
the efficiency as well.

As shown in Figure 4.3, the alerts reduction module is composed of two main
phases: Filtering, where redundant, duplicated and uninteresting alerts are removed;
and validation, aimed at making a first assessment of whether an alert is a true or
false positive.

Filtering

The preprocessed alerts are fed as inputs to the filtering phase, where uninteresting
and redundant alerts are filtered out. In the literature, we can find two types of
filters: pre-defined and inferred filters. Pre-defined filters are rules defined by experts
and are updated manually. As an example, one of the components of the correlation
engine proposed in [84] is a powerful filtering scheme called composite filtering,
defined as a set of basic and composite filters organized in a logical tree. Filters are
applied in depth-first search order where a descendant filter is considered to be a
refinement of the ascendant filter.

On the other hand, inferred filters are learned by some kind of inference method.
They adapt the rules periodically or on demand by using filtering algorithms that
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have the ability to use some topological network information that is mainly stored
in a topology database. Lin et al. [144] proposed an inferred alarm filtering system
capable of classifying alarms with high confidence. Chyssler et al. [46] proposed an
automatic filter detector based on Naive Bayesian learning that is designed to filter
syslog records by using a trained classifier that looks at the words contained in the
alerts.

Validation

Alerts validation is one of the most relevant and sensitive tasks in the correlation
process. The main function of the validation phase is to make a first assessment
of the validity of each alert according to its effect on the overall monitored sys-
tem. In order to actively and accurately distinguish true alerts from FPs, the vali-
dation process uses several sources of information and tries to find the logical con-
nections among them. To do that, it extensively makes a deep comparison among
all the available sources of information, and then evaluates the coherency between
alerts and the monitored system. Here, the main sources of information used by
authors are the alerts themselves, which contain useful information about the op-
erating systems, network services and others, and a vulnerabilities database, which
stores known exploits and system vulnerabilities information, together with the cor-
responding security solutions. The validation process is performed by using passive
or active techniques.

Passive techniques carry out the checking of the validity of an alert by using
prior information stored in vulnerabilities or topology databases. For example, for
remote attacks, passive methods might be used to check whether malicious packets
can possibly reach the target, given the network topology and the firewall configu-
ration rules. The main advantage of these techniques is that it is not necessary to
perform additional network data collection, thus not interfering with the normal
operation of the network. In addition, it is not necessary to perform additional tests
that delay the notification to the management staff or the start of active counter-
measures. Their main disadvantage is that it is not easy to promptly update the
databases; there is a potential difference between the state stored in them and the
actual status of the network. Furthermore, the type of information that can be gath-
ered in advance is limited. For example, in the network and system security field,
when the signature of an attack is matched against a packet sent to a vulnerable
target, the attack could fail for a large number of other reasons (e.g., an incorrect
offset for a buffer overflow exploit).

Active techniques update the vulnerabilities database automatically by using
several real time scanning tools that actively monitor the whole network and up-
date the system state information that gives a correct view about the current status
of the network, and then they update the vulnerability database whenever neces-
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sary. For example, one possible approach to carry out active validation in IDSs is
to leverage vulnerability scanners [71]. When an attack has been detected, a scan-
ner can be used to check for the vulnerability that this attack attempts to exploit.
These techniques have still some drawbacks when compared to passive techniques:
they may generate some extra alerts, and they also consume more bandwidth and
network resources. Furthermore, the scanning process could make some services
crash.

Some authors like Xiao et al. [91] adopted a compromise solution that collects
together the advantages of both passive and active techniques. Firstly, they col-
lected the configuration information of resources in the protected network to form
the vulnerability base of resources, and then they periodically scanned the whole
protected network.

Note that this phase normally involves extensive analysis and processing, im-
plying high load procedures. Thus, for performance issues, the validation phase is
located after the filtering phase.

4.2.3 Alerts Correlation

The alerts correlation module is at the heart of the whole correlation process. It
receives alerts from the alerts reduction module and tries to find out the logical
relationships among them, in order to give a higher level and coherent view of the
status of the monitored network and discover the root causes. Figure 4.4 shows
the structure of the alerts correlation module. Here, the process is divided into two
phases, the aggregation phase, in which alerts that are expected to share the same
root cause are merged, and the cause identification phase, in which a higher level
processing is handled to generate representative alerts, i.e., alerts that have higher
level and richer information about the root causes of a problem.

Aggregation

As said, the target of the alerts aggregation phase is to merge multiple alerts that
share the same root cause. Thus, this phase receives alerts from the alerts reduction
module and tries to compare them with previously existent or aggregated alerts.
The meaning of the new alerts is an induced generalization of those used for the
aggregation. Alerts in a given group are supposed to be similar to each other and
dissimilar to those in other groups. For example, the works presented in [26, 64, 75–
77, 87, 88] used attribute and temporal-based similarity to find the relationships
among alerts. Here, certain metrics are first used to compute the similarity among
alerts, and then the resulting scores, when compared with some threshold values,
determine if these alerts are to be aggregated or not. Sometimes, it is necessary for
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Figure 4.4: Architecture of the alerts correlation module.

the aggregation process to obtain topological information, which is mainly stored,
as mentioned in Chapter 2, in a topology database.

Cause Identification

The cause identification phase receives the aggregated alerts generated by the aggre-
gation process and tries to discover and recognize the logical relationships among
them. Although this phase may not have a significant effect in reducing the number
of alerts, its main purpose is to convert these aggregated alerts into representative
alerts, that have more meaningful and semantic contents when compared with the
previous ones. In order to correlate aggregated alerts and produce representative
alerts, the cause identification phase may use several sources of information like a
vulnerability database or knowledge representation (see Section 2.4). For exam-
ple, the works in [109, 110, 112, 116] propose correlation systems that used knowl-
edge representation methods to correlate alerts, while the works in [45, 53, 71] are
some examples of correlation techniques that used the vulnerabilities databases to
correlate alerts. In general, this module might implement any combination of the
techniques detailed in Chapter 2.

The output of the alerts correlation module has two main destinations: one is the
input to the next module, i.e., alerts prioritization for further processing; the other
is entering in a cyclic feedback process and being introduced again in the alerts
reduction module for filtering and validation. As previously justified, this cyclic
process enriches the correlation process with extra information.
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Figure 4.5: Architecture of the alerts prioritization module.

4.2.4 Alerts Prioritization

The last module of the proposed correlation model is called alerts prioritization.
Its purpose is to analyze representative alerts received from the alerts correlation
module and to classify them based on their severity. As shown in Figure 4.5, the
alerts prioritization module can be divided into two main phases: severity analysis
and classification.

Severity Analysis

The purpose of the severity analysis phase is to determine the importance of the
network alerts or representative alerts. The severity analysis is a complicated task
that needs several sources of information to determine the criticality of a particular
alert in the overall system. Certain sources of information, like cases, vulnerability
and network topology databases might be useful to provide information about the
causes, their descriptions, their dependencies on the operating systems and hard-
ware and software platforms, among others. The severity analysis results depend
on the nature of the services and the network being monitored. As an example, a
mission impact intrusion report correlation system, M-Correlator, implemented by
Porras et al. [53], focused on intrusion attacks. Here, the system is used to classify
alerts based on severity and take appropriate actions to deal with each one of the
alert classes.

Classification

In this final phase, representative alerts are classified based on their severity mea-
surements. The output of this phase is usually sent to a network expert as a re-
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port containing alerts and their relevance. In order to efficiently classify alerts, the
classification phase may use several sources of information like the cases database
or the ITS (see Section 2.4). As these databases contain historical information of
previously resolved problems, they might be considered here to help in the alert
classification process.

In [53], the classification is done by assigning a relevance score for each alert,
that is produced through a comparison of the alert target’s known topology against
the vulnerability requirements of the incident type. Next, a priority calculation is
performed per alert to indicate (i) the degree to which the alert is targeted at critical
assets; (ii) the amount of interest the user has registered for this alert type, and (iii)
an overall incident rank is assigned to each alert, that brings together the priority of
the alert with the likelihood of success.

Zomlot et al. [145] presented a method to classify intrusion alerts using an ex-
tended Dempster-Shafer theory [146]. The proposed method first calculates confi-
dence scores for hypotheses on an alerts correlation graph, and then it prioritizes
the results based on these scores. According to their judge, the computed scores
derived from the proposed method provide an effective ranking for the correlated
alerts based on the correlations’ trustworthiness.

Alsubhi and others [147] proposed two techniques, one for alert rescoring and
prioritization based on a fuzzy logic inference mechanism, and another to show
the early steps of the attackers. Wallin et al. [148] proposed a neural network-
based approach for alarm filtering and prioritization by using the knowledge gained
from alarm flow properties and trouble ticketing information. Jiang et al. [149]
proposed a novel peer review mechanism based on rule based systems to rank the
importance of alerts resulting in the top ranked alerts being more likely to be true
positives. After comparing a metric value against a threshold to generate alerts,
the algorithm compares the value with the equivalent thresholds from many other
rules to determine the importance of alerts. The output of the classification phase
is sent to the network operator as a report that usually contains the causes ordered
by severities.

4.3 Existing Alerts Correlation Tools

In this section, some of the alerts correlation systems currently in use are described.
The main intention here is not to provide a complete list of the existing tools, but
to make a comparison that allows to check which of the previously described tech-
niques are used in deployed alerts correlation systems and which ones are not.

We first classify the correlation tools based on their application field, as dis-
cussed in Chapter 2. Some network management tools are listed in Table 4.1. Some
of the most important security tools are listed in Table 4.2, and Table 4.3 collects
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some of the SCADA management systems. In these tables, the “Sources of informa-
tion (alignment with Section 2.4)” indicates the type of the input data used in the
evaluated tool. The “License” column indicates if the tool is commercial,“Comm.”,
or open source with General Public License (GPL). The “Version” column provides
the tool’s version evaluated here. The specific correlation operations and techniques
of each tool are listed in the column “Correlation techniques (alignment with Sec-
tion 2.5.3)”. The alerts correlation modules used in these tools are listed in the
column “Correlation process model (alignment with Section 4.2)”. Finally, the web-
page for the tool is listed in the column “Homepage”.

4.3.1 Network Management Tools

Table 4.1 summarizes the relevant information for some of the most widely de-
ployed network management tools. In particular, the main focus is on the types of
inputs and the correlation techniques used.

Some remarks related to Table 4.1 worth mentioning. First, the majority of these
tools are implemented by important private companies like HP, IBM and others.
Therefore, most of them are commercially distributed. Second, most of them were
implemented to deal with a single type of information sources (Section 2.4), which
are alerts with different formats. Third, a large number of these tools implement an
expert rules correlation engine. Besides, they use very simple versions of correlation
operations such as alerts reduction, clustering, aggregation, etc. We think that the
main reason for that is because these tools were not initially designed to deal with
alerts correlation specifically, that is, they were implemented for system monitoring
and diagnostics purposes. Some of them have implemented other correlation en-
gines, but they have proprietary methods that prevent us from clearly understand
which kind of correlation approaches were implemented. But, generally speaking,
and according to the data sheets, it seems that they mostly use rule-based correla-
tion approaches. Fourth, we notice that there is a big gap between the sophisticated
correlation techniques that are presented in the research, and revised in Section 2.5,
and those implemented in these tools. In our opinion, this big gap results from
the fact that the industrial and research communities have different algorithms de-
sign goals. The research community usually propose algorithms to prove some re-
search ideas, so the algorithms may be very complex in terms of processing time
and resource consumption, whereas private companies goal is to build scalable and
efficient tools with lightweight algorithms. Furthermore, it seems that they imple-
mented correlation techniques that will save implementation time and cost, in order
to enter the market quickly. Thus, most of the commercial tools simply handle only
one type of information sources, as illustrated in Table 4.1 –Column 4–, and this
can be related to the lack of complex correlation techniques.
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4.3.2 Network and System Security Tools

Similar observations result from Table 4.2, that lists a number of security tools.
First, some of these tools are open source like Snort and Bro; others are commercial
like Bitacora and Net Forensics Console. Second, the majority of these tools were
designed to accept Snort alerts and Syslog messages as input formats. Therefore,
they were implemented for specific purposes. Third, like in the case of NMS tools,
most of the listed security tools have implemented simple correlation operations
like filtering, pattern matching, validation and others. Some of them, like Snort and
OSSIM, have implemented more complex mechanisms, as rule based correlation
techniques. Finally, the security tools present the same issue as the NMS tools re-
garding the design gap between the complexities of the correlation techniques that
were suggested by the research community compared to what is implemented in
these tools.

4.3.3 SCADA Tools

With regard to Table 4.3, that contains some of the current SCADA management
systems, some observations were also derived. First, unlike the NMS and network
and system security tools, we observe that alerts correlation in SCADA systems still
needs much work to be done in both industrial and research sectors. Second, the
majority of these tools are commercial with free-trial versions. Third, they were
implemented for various industrial applications that accept various alarms formats.
Last but not least, after a thorough review of the data sheets of these products it has
been found that most of them mainly use attribute based similarity for doing several
operations like filtering, aggregation and prioritization to discover root causes.
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Chapter 5
A Model for Incident Tickets Correlation

5.1 Introduction

As explained in Section 1.5, ITSs have been introduced as a main tool to assist in
the incident management process [30–32]. They are databases that store reports in
a specific form-based structure, and a set of tools enabling actions to create, update
and resolve any network incident reported by customers, organization employees,
or monitoring systems. They might also contain administrative information about
customers, workarounds to be applied for common incidents, and other similar
data.

Normally, there are two main different procedures for creating incident tickets.
On the one hand, they can be created by the management staff in response to a
network failure discovered by management software, e.g., alerts from OpenView
[28] or other network management platforms. On the other hand, they can also be
created by the SD staff in response to a call from an end user facing problems in
accessing some services or applications (for more information see Section 1.4.1).

An incident resolution begins with the creation of a ticket that contains the in-
formation describing the ongoing incident. Next, the ticket may be sequentially
reassigned to several technical groups involved in the incident solving procedure.
Finally, it is validated when the incident is completely solved and, optionally, a
crosscheck of the solution is made. Therefore, the ticket may pass through several
hands and undergo various degrees of escalation with respect to incident severity
or customer priority before being completely acknowledged.
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Although ITSs play an important role in the incident management, the process
of creating the tickets is not completely systematic and may be incoherent and in-
efficient. For example, the management team may create so-called irrelevant tickets,
i.e., tickets that do not reflect the existence of an actual network problem; or it may
create multiple tickets that are related to the same incident. It is also possible that
different staff groups or departments in a company create different tickets for a sin-
gle incident, as pointed out in Section 3.2.1.

In this chapter, we propose a model for incident tickets correlation. The main
objective of the correlation of tickets is to ideally obtain a single ticket per incident.
This single ticket should merge all the information contained in an ITS regarding
the incident. The remainder of this chapter is organized as follows. Section 5.2
summarizes the research efforts done in the tickets management and correlation
field. Section 5.3 presents an incident ticket lifecycle, while a model for incident
tickets is proposed and discussed in Section 5.4. In Section 5.5 we explore how to
enhance the information obtained from an ITS by means of developing a correlation
method specifically designed for tickets. Finally, the proposed correlation method
is experimentally evaluated in Section 5.6.

5.2 Related Work

A thorough review of the literature on tickets management and correlation shows
several research tendencies, as emphasized by Lewis and Dreo [31]. In this survey,
the authors analyzed the challenges and research trends for extending ITSs for the
automatic generation of tickets, the diagnosis of faults and the correlation of mul-
tiple views of network incidents and behavior. For this, Lewis and Dreo suggested
various techniques, such as the use of filtering and grouping of tickets with respect
to language, function, time, and topology; the use of rule-based reasoning or case-
based reasoning for acquisition and representation of fault diagnostics knowledge;
or the use of fuzzy logic for correlating multiple views of network incidents.

A similar work was done by Johnson, who proposed the RFC 1297 [32]. This re-
port mainly discussed the most important extensions that can improve the network
operations efficiency, and emphasized the importance of ITSs for network manage-
ment teams. Nevertheless, it did not provide a methodology to analyze the contents
of a ticket itself.

Dreo [150] went forward and proposed the use of tickets correlation for the dis-
covery of problems and the access to problem-solving expertise. One of the main
conclusions of Dreo’s work is that a high-quality tickets correlation needs to use
good models for the functional and topological aspects of any network service.

Miao et al. [151, 152] focused on enhancing the ticket management lifecycle
by proposing a unified ticket generation model that characterizes the lifecycle of a
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ticket using both the content and the routing sequence of the ticket, and a Markov
model-based approach to predict the resolver of the ticket based on the expert group
that previously processed it. The aim was to enhance the routing and minimize the
number of transfer steps before it reaches a resolver.

Tang et al. [153] suggested an automatic approach to discover the false nega-
tives from those incident tickets that are created by humans in order to improve the
configurations of the monitoring system. They applied a text classification model
for analyzing the descriptions of tickets and identifying the corresponding system
issues.

The work done by Li et al. [154] was intended to give an estimate of the mean
effort for an incident ticket, by means of a two-stages approach. First, a meta-model
was proposed, and some handling priority rules were used to compute what the
authors call “attention duration”. Then, a maximum likelihood approach was used
to estimate the mean effort for a ticket class by using such attention information.

However, in spite of the above works about tickets management, there is not
much work focused on tickets correlation in the literature, except for some prelim-
inary works that were done in order to achieve different specific purposes. Next, a
summary of these efforts is presented.

Some authors tried to correlate the tickets in an ITS with another sources of
information, as in [155–158]. In these papers, the authors proposed models to cor-
relate two types of tickets, the resource tickets, that are created by the monitoring
system, and the service tickets, that are generated by the management teams. Their
main goal was trying to improve the accuracy and effectiveness of the management
process in real time. The authors concluded that tickets overlapping is one of the
main challenges for their models, but they did not provide any solutions to handle
it.

A similar work was also proposed in [159–162], in which the authors used simple
tickets preprocessing operations to reduce the total number of tickets before corre-
lating them. Nevertheless, the focus of these papers was to study and characterize
the nature and causes of routing changes and the observed instability. Therefore,
they did not deeply analyze ITSs, and the correlation of the tickets was not targeted
at reaching one ticket per incident.

Other approaches used different techniques to process the tickets and extract the
description of the incidents, like the one of Potharaju et al. [54]. In this work, the
authors proposed NetSieve, a system that analyzes natural language text in tickets
to infer the problem symptoms, troubleshooting activities and resolution actions.
They used statistical natural language processing, knowledge representation and
ontology modeling to achieve these goals.
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Medem et al. [163] used machine learning techniques to process the tickets and
extract a concise description of the incidents. To do that, they modeled each ticket as
a vector of keywords whose frequencies are used as weights to create a hierarchical
clustering. The resulting clusters are used to correlate the tickets and extract the
incident. However, despite the usefulness of clustering tickets that share the same
keywords, it was limited to just some free-text fields and ignored some important
features such as timestamps and topological information.

In addition to the papers described above, some researchers used ITSs for other
purposes. For example, Tanaka [164] and Pándi [165] made some statistical mea-
surements and characterized tickets from several networks taken as case studies.
From these analyses, the authors proposed some recommendations to enhance the
performance of ITSs and their use in the context of SLA. They also presented a com-
prehensive and detailed taxonomy for the categorization of equipments, services,
and users affected by events. However, in their work they did not focus on prepro-
cessing operations or the correlation of tickets from the point of view of reducing
the number of tickets per incident.

Other authors used ITSs as an assessment tool to validate their research ideas.
This is the case of the work done by Huang et al. [166]. They proposed to use
network-wide analysis of routing information to diagnose network disruptions. In a
similar work, Labovitz et al. [167] made an experimental study of Internet stability
and the origins of failure in Internet backbones utilizing the information provided
by an ITS.

Finally, despite the availability of many commercial service desk products, such
as HP Service Center [28], ServiceNow [168], BMC Remedy [169], or Tivoli SCCD
[170], few efforts have been devoted to enhance the tickets creation process itself.
Most of these tools use their own procedures for resolving network incidents and
enhancing the whole system to comply with SLAs. For the time being, and to the
best of our knowledge, the procedures used for incident tickets correlation in these
tools are not publically available, because vendors are not interested in publishing
them and, therefore, they keep them hidden from the public due to competitive is-
sues. So, the inherited complexity of these tools makes it difficult to inspect which
type of correlation operation they use, if any.

In summary, as previously mentioned, some authors pointed out an important
problem during the process of handling the tickets in ITSs, that is, the redundancy
in creating tickets; all tickets that have the same root cause should be correlated.
Furthermore, other authors argued that good models for tickets’ correlation need
to use the functional and topological aspects of any network service or element.
Consequently, the main objective of this chapter is to propose a model to correlate
incident tickets that targets at improving the ITSs to achieve the ideal situation
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at which just a single ticket per incident exists. Furthermore, the topological and
temporal information are used as the main dimensions to achieve this purpose.

To the best of our knowledge, there are no systematic methods currently avail-
able for improving the efficiency of the tickets creation process. Previous work on
ITSs has focused on improving the whole system to achieve the corresponding SLAs.
Notwithstanding with this, few efforts have been devoted to optimize the efficiency
of the tickets creation process itself that, at the same time, would improve the over-
all task of solving the incidents. In our opinion, this is partly due to the fact that
the ticketing information is confidential, and this fact hides both the real tickets
and the used procedures from the research community. Furthermore, as previously
mentioned, vendors are not interested in publishing neither the data nor the proce-
dures due to competitive issues, while management teams either do not keep track
of this data or treat it as confidential information due to similar motives. Therefore,
in this context, we present three main contributions in this chapter.

• First, a novel model for an incident ticket is proposed. Unlike others, we try to
make the model as general as possible by focusing only on the generic fields
that appear in tickets such as staff information, temporal and topological in-
formation, etc.

• Second, we propose an incident tickets correlation model targeted at improv-
ing the ITS to achieve the ideal situation at which just a single ticket per in-
cident exists. The topological and temporal information are used as the main
dimensions for the proposed tickets correlation process.

• Third, we propose some metrics used to measure the redundancy in the ITS,
according to the proposed correlation method. These metrics are then used to
evaluate the procedures for creating tickets.

5.3 The Incident Ticket Lifecycle

As previously discussed, the principal motivation of this work is to find mechanisms
for building a simple and manageable system to deal with incidents in a network.
ITSs are a main tool used to record and report incidents within an operational sys-
tem. Therefore, they are considered as a main tool for tracking resolution activi-
ties associated with incidents. For this reason, the work presented here will rely
on the management of tickets, under the hypothesis that they are the best tool for
representing an incident lifecycle. Nevertheless, it is worth to mention here that,
although there is a direct relationship between tickets and incident lifecycles, there
could exist significant differences between them that will be discussed in what fol-
lows.
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Figure 5.1: Generic incident ticket lifecycle.

For these reasons, the starting point is the understanding of such a ticket lifecy-
cle. Thus, in Figure 5.1 a new generic incident ticket lifecycle is proposed. It con-
sists of the different stages and actions involved in handling with the ticket. They
are: ticket creation, ticket assignment, ticket management, ticket reassignment, ticket res-
olution and ticket validation. In what follows, the different stages and their functions
are described in more detail.

• Ticket creation: An incident ticket is created by a management staff or a SD
staff, here denoted as ticket creator, either: (i) in response to the reception
of network alerts triggered by proactive network monitoring systems due to
service disruptions or failures of network elements; or (ii) in response to calls
or notifications, typically coming from customer care units or directly from
end users who face technical problems in the access to services or applications.

In a normal situation, the time elapsed between the origin of an incident and
its corresponding ticket creation time should not be long, although in many
situations it can be in the range of minutes or hours, especially when tickets
are created manually and not by an automated system. In these situations,
the ticket creator may register the timestamp corresponding to the incident as
reported by the monitoring systems, or the time when a customer reported a
failure or a management team member detected it.

• Ticket assignment: After being created, a ticket is then handed off to an ap-
propriate technical person or group in the company, denoted as ticket resolver,
who is expected to resolve the incident.
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• Ticket management: This is the main stage in the incident ticket lifecycle.
During it, the ticket resolver analyzes the incident reported in the ticket, finds
potential solutions, tests them and reports the results.

• Ticket reassignment: It could happen that the ticket resolver, after having
investigated the incident –and possibly having also applied several solutions–
detects that the incident solution is out of the scope of his/her responsibilities.
In this situation, the ticket resolver will again hand off the ticket to another
group for its management. This process is the ticket reassignment. In general,
when this happens, a ticket can be managed by N different ticket resolvers,
and, therefore, it can go through the ticket management stage several times.

Normally, before doing a reassignment, the ticket resolver registers in a work-
log (on the ticket itself) the different activities carried out to solve the incident
and his/her results.

• Ticket resolution: Once the incident reported on the ticket is solved or a work-
around is discovered, the ticket resolver registers the final solution and the
corresponding tests and results that are applied to the ticket. Finally, he/she
notifies that the incident is resolved.

• Ticket validation: After the ticket resolution, the ticket may arrive to an-
other member or group, denoted as ticket validator. It is in charge of verify-
ing whether the solution is satisfactory or not. If it is validated, the ticket
is usually saved in a ticket history database that is commonly used to build
knowledge for future incidents. On the contrary, if the ticket solution is not
validated, the ticket is reassigned again to a ticket resolver. Therefore, the
ticket lifetime can be defined as the time elapsed between the creation of a
ticket and its resolution or validation in some cases.

5.4 A Model for Incident Tickets

ITSs produce tickets in different and heterogeneous formats, containing a wide vari-
ety of fields with several possible values for them. Some of these fields are inherent
to the operation of the ITS, and therefore, they could be considered as generic fields.
Others are specific, i.e., they collect specific requirements established by the differ-
ent management teams.

As mentioned in the related work section, it has been detected that there are no
successful efforts in the research literature to develop a model for incidents. Here,
a generic model for an incident ticket is defined. It mainly focuses on the generic
fields that appear in all the tickets, assuming that every one will contain these com-
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mon fields. The proposed model is based on two main categories of common fields.
In what follows, a more detailed explanation about these categories is presented:

• Timestamps fields: This category contains the most important time indexes
that are mainly related to the lifecycle of the tickets.

– Ticket creation time for ticket i (tCTi ): It is the instant at which the ticket
creator generates the ticket in the ITS.

– Ticket resolution time for ticket i (tRTi ): This time is recorded on the ticket
when the solution for the ticket is notified by the ticket resolver to the
ticket validator.

– Ticket validation time for ticket i (tV Ti ): It represents the instant at which
the ticket validator acknowledges the solution given to the incident, and
optionally, he/she sends the ticket to the ticket history database for fu-
ture use.

For every ticket i, we define a list of timestamps T T Si as:

T T Si = {tCTi , tRTi , tV Ti }

• Identifiers’ fields: This category of fields in a ticket is used to univocally iden-
tify the ticket in the database, associate it to the different ticket resolvers in-
volved in the ticket management stages, and also relate it with the network
elements affected by the incident reported in the ticket.

For each ticket i, we identify three types of field lists:

– Ticket IDs (TIDs): Each ticket in the database has a unique identifier that
is typically an alphanumeric value representing the unique reference of
the ticket itself. We will refer to this identifier as the main ticket ID.

Although there is a unique main ticket ID field in a ticket, during the
management stage, ticket creators/resolvers normally may directly or in-
directly mention the main ticket IDs of other tickets. This reference is
usually included in other fields, especially those with free text format,
such as incident description, worklog, or incident resolution fields. For
this reason, we also consider a list of ticket IDs extracted from these fields
and containing all these related identifiers. For every ticket i, we have the
following list:
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T T IDi = {T ID1
i ,T ID

2
i , ...,T ID

n
i }

where T ID1
i is the main ticket ID for ticket i.

– Group IDs (GIDs): Due to the fact that every ticket can be managed by
different ticket resolvers during its lifecycle, the tickets contain informa-
tion about them.

Here, a list of ticket resolvers (TR) involved in the management of a ticket
is defined. Every ticket resolver j that is involved in the management of
ticket i is identified by TRji , resulting in the list:

T TRi = {TR1
i ,T R

2
i , ...,T R

m
i }

where TR1
i is the identifier for the first ticket resolver of the ticket, that is,

the ticket resolver chosen by the ticket creator in the assignment action
for the ticket i.

– Object IDs (OIDs): Each node, service, component or element in a network
is usually referred to with an unique identifier, usually a string, called the
object ID. When an incident is detected in a network, the corresponding
ticket is associated with the identifier of an object of the network that
is called the main object ID. In addition, in the ticket creation process or
during the ticket management stage, the ticket creators/resolvers usually
include other object IDs, mainly in the incident description, worklog, or
the incident resolution fields, that are related to the incident described
by the ticket. Thus, a list of object IDs for every ticket i that contains all
the previously described objects’ identifiers is defined as:

T OIDi = {OID1
i ,OID

2
i , ...,OID

l
i }

where OID1
i is the main object ID for ticket i.

In summary, the proposed model represents a ticket by a tuple containing the
following elements (note that every element is really a list of values):

Ti = {T T Si ,T T IDi ,T TRi ,T OIDi } (5.1)

It should be pointed out that tickets normally include many other fields not
considered in the suggested model, e.g., the priority of the ticket. Just to simplify
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the proposed model, we have only included those fields that will be used in advance
for the correlation process algorithms proposed here. Yet, an extension of the model
to include additional information is straightforward.

5.5 The Incident Tickets Correlation Process

In this section, a tickets correlation process is proposed. It is aimed to enhance
the information provided by the ITS, trying to rebuild the ITS database in order to
obtain, for every incident in the network, only one ticket containing accurate and
aggregated information about every incident.

The proposed global procedure can be decomposed in three main phases: tick-
ets preprocessing, tickets reduction and tickets correlation (Figure 5.2). Thus, starting
from a set θ of O original tickets stored in the ITS, a first preprocessing step is re-
quired in order to normalize the tickets and extract the relevant features, as it will
be explained next. Here, the preprocessing phase is also divided into two subphases:
normalization and parameterization. After that, the processed tickets are entered into
the tickets reduction phase to filter irrelevant tickets that are not related to real net-
work incidents. The resulting set, ρ, composed of P tickets, is then passed through
the tickets correlation procedures to produce a new set, δ, composed of G suppos-
edly de-correlated tickets (that is, the final set of tickets). The set δ is expected to
contain a single ticket per incident. As shown in Figure 5.2, the proposed correla-
tion procedure can be further split into two subphases: local correlation and global
correlation, each of them targeted at removing the redundant tickets according to
different properties. In the following subsections, a more detailed discussion about
each step is provided.

5.5.1 Tickets Preprocessing

The first step for dealing with the original ITS database, θ, is to apply a prepro-
cessing mechanism aimed to obtain, in a proper format, the tickets that are relevant
from the point of view of incident solving. The model that was previously proposed
and defined in Section 5.4 –Equation (5.1)– is initially extracted for every ticket. To
do this, the preprocessing phase is divided into two subphases:

Normalization

Here, tickets are first converted into a common format that is acceptable by the other
phases. Tickets that do not pass the normalization step are filtered out. Therefore,
in this step malformed and void tickets are filtered. Recall from Chapter 3 that mal-
formed tickets are those erroneously created either due to a failure in the network
management tool, that automatically could generate such kind of tickets, or due to
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Figure 5.2: The proposed tickets correlation process.

a misbehavior of any member of the management staff, so that they could create
tickets without complete or accurate information. Void tickets are those tickets that
have a number of required fields filled with empty data, mainly those describing
the affected nodes, services, or the resolution time. Malformed and void tickets are
erroneously created and they should be removed from the whole procedure.

Parameterization

In this step, the list of parameters for the proposed ticket model is extracted, as
illustrated in Equation (5.1). To do this, for every ticket we extract these relevant
fields: main object ID (OID1

i ), main ticket ID (T ID1
i ), first ticket resolver ID (TR1

i ),
and the list of timestamps (T T Si ). These are normally mapped in a ticket field, so
they are directly extracted from their corresponding fields in the tickets. The other
identifiers in the model, e.g., T ID2

i , OID2
i , or TR2

i , are extracted by using pattern
matching methods to search for the occurrence of keywords and text conformation
to given formats in other ticket fields; normally in incident description, worklogs,
and solution fields.

5.5.2 Tickets Reduction

In this phase, we select only network incident-related tickets. Note that there are
many tickets in the ITS that have not really been created because of an incident oc-
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currence. As explained in Chapter 3, there exist irrelevant tickets, i.e., those that are
not related to real network incidents. In many ITSs, it is usual that some tickets are
created to record issues not directly related to network incidents but to contain in-
formation about some other issues as, for example, the availability of a new software
release in certain network nodes or maintenance activities. These irrelevant tickets
are not directly related to network incidents and, therefore, should be also removed
to carry out the correlation. To identify these tickets, a list of keywords provided
by the management staff is used and any matching procedure could be followed for
this purpose.

After applying the above three steps, the output of this phase is a set ρ of P
tickets, {Ti}, in the standard form given in Equation (5.1).

ρ = {T1,T2, ...,TP }

5.5.3 Tickets Correlation

The tickets’ correlation phase has two main goals. First, it is used to reduce the total
number of tickets by substituting every subset of tickets that share some common
properties into a single one that is termed the representative ticket for that subset.
Second, the correlation process is expected to increase the semantic information
of the data on the tickets. This means that a representative ticket will contain more
accurate information about the real incident than the bunch of tickets taken as input
to this phase. This is mainly because the information provided by a representative
ticket summarizes all the information in the tickets related to the same incident.

The tickets correlation phase is divided into two subphases: local and global cor-
relations. In the following a more detailed description of each one of them is pre-
sented.

Local Correlation

Local correlation is used to correlate tickets that collect information about different
problems reported for the same network node or service that really correspond to
the same incident. The main hypothesis here is that if several tickets have the same
main object ID and they overlap in time, those tickets are related to the same inci-
dent, and thus, should be correlated. We call this process a local correlation process
because it works on a per-node level and ignores any tickets potentially related to
the same incident but reported for different main object IDs. These representative
tickets will be treated as the input to the next subphase, global correlation.

For the local correlation process, we propose an algorithm that takes several
overlapped tickets having the same main object ID and reduce them to a single ticket,
T ′R, termed local representative ticket. The algorithm is explained in what follows.
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Suppose that, from the complete tickets database, we identify the subsets Sk ⊂
ρ, each composed of a number Nk of incident tickets Sk = {T1,T2, ...,TNk }, so that
∪∀kSk = ρ and Si

⋂
Sj = ∅,∀i , j. Each subset Sk is composed of several tickets in ρ

that share the following properties:

• They have the same main object ID, i.e.,

OID1
i =OID1

j ,∀i, j ∈ [1,Nk]

• They overlap in time; that is, for every ticket Ti ∈ Sk, there is at least another
ticket Tj ∈ Sk so that their intervals [tCTi , tRTi ] and [tCTj , tRTj ] overlap, i.e.,{

{tCTi ≤ tCTj ≤ tRTi } ∨ {t
CT
j ≤ tCTi ≤ tRTj }

}
= true

• There are no time gaps between them, i.e.,

∀t ∈
{
mini∈[1,Nk]{tCTi },maxi∈[1,Nk]{tRTi }

}
, there exists at least one active ticket.

where an active ticket at time t is defined as a ticket that has a creation time
previous than t, and a resolution time after than t.

For every subset Sk, the correlation algorithm creates a local representative ticket,
T ′k , that will replace all the tickets in Sk, following these rules:

t′k
CT =mini∈[1,Nk]{tCTi } (5.2)

t′k
RT =maxi∈[1,Nk]{tRTi } (5.3)

t′k
V T =maxi∈[1,Nk]{tV Ti } (5.4)

T ′k
x =

Nk⋃
i=1

T xi ,where x = {T ID,T R,OID} (5.5)

OID ′k
1 =OID1

i ,∀i (5.6)

Note that the value for the fields T ′k
T ID , T ′k

T R, and T ′k
OID is extracted as the union

(concatenation without repetition) of the corresponding lists in the tickets from the
subset Sk. This means that, in the local representative ticket, the meaning of T ID ′i

1

and TR′i
1 as the main ticket and ticket resolver IDs is lost. However, the value OID ′i

1

still represents the main object ID, as this value is the same for every ticket in Sk.
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Figure 5.3: Local correlation example: a) original tickets, b) local representative ticket.

It must also be noted that it could happen that a subset Sk is composed by a
single ticket, in case that this ticket is not overlapped with any other in ρ for the
same main object ID. In such a case, this ticket is itself the representative ticket for
that subset.

The output of this local correlation process is a set ξ of L local representative
tickets, each one representing a different subset Sk ⊂ ρ.

ξ = {T ′1,T
′
2, ...,T

′
L}

The operation of the algorithm can be explained through a simplified example as
shown in Figure 5.3. In this example we consider one subset, Sk composed of three
tickets (Nk = 3). As depicted in Figure 5.3a), the creation time of the ticket T2 (tCT2 )
occurs during the interval [tCT1 , tRT1 ]; besides, T3 is created (tCT3 ) within the interval
[tCT2 , tRT2 ]; finally, these three tickets have the same main object ID (node x), i.e.,
OID1

1 =OID1
2 =OID1

3 = x. Thus, T1, T2, and T3 , according to the proposed method,
should be locally correlated into the representative ticket T ′r , as shown in Figure
5.3b, where t′r

CT = mini∈[1,3]{tCTi } = tCT1 and t′r
RT = maxi∈[1,3]{tRTi } = tRT3 . Besides,

T ′r
T ID , T ′r

T R, and T ′r
OID would be extracted as the union of the corresponding lists

in T1, T2, and T3.

Global Correlation

After having correlated the overlapping tickets related to the same main object ID
(local correlation), here the proposed correlation process is extended to consider
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other tickets with different main object IDs, leading to a global correlation. The
aim now is to identify tickets reporting problems in different nodes or services but
corresponding to the same incident.

In the ticket creation process or along the resolution of the incident, ticket cre-
ators/resolvers usually include information in a ticket about other tickets (TIDs) or
other objects in the network (OIDs) that are related to the incident described by the
ticket. This information appears, for a ticket Ti , in the lists T T IDi and T OIDi .

In a first approach, we could say that two tickets Ti and Tj are related to the same
incident if they refer to a common OID or TID in any of the considered lists, that is,
if at least one of the following conditions is fulfilled

Condition1 : ∃T ID ∈ {T T IDi

⋂
T T IDj }

Condition2 : ∃OID ∈ {T OIDi

⋂
T OIDj }

Note that although we impose this restriction, the simple existence of a common
TID/OID value in two tickets does not necessarily imply a relationship between
them. Indeed, it is common that a ticket includes a reference to other TID/OID
where a workaround for solving the incident can be found. For this reason, an
additional constraint for relating two tickets to the same incident is imposed here,
that is temporal overlapping.

Finally, we make a final assumption. We assume that the transitive property is
valid in the relationships among tickets, i.e., if tickets Ti and Tj are related, and
tickets Tj and Tk are also related, then tickets Ti , Tj , and Tk are all related.

The global correlation has the same target as the local correlation, that is, to
obtain only one ticket per incident; however, as a difference in this case, it will
be referred to different main object IDs. Therefore, it is considered as an almost
identical process as the local correlation, in which every subset of related tickets in
ξ is substituted by a single global representative ticket, denoted as T .The complete
algorithm is described in what follows.

Suppose that, from the set ξ, we identify different subsets Ck ⊂ ξ, such that⋃
∀kCk = ξ and Ci

⋂
Cj = ∅,∀i , j. Each subset Ck is composed by a number N ′k of

local representative tickets Ck = {T ′1,T
′
2, ...,T

′
Nk
}, namely all the tickets contained in

Ck share the following properties:

• Every local representative ticket T ′i ⊂ Ck is related to at least one local repre-
sentative ticket T ′j ⊂ Ck, i.e.,{

{T ′i
T ID⋂

T ′j
T ID}

⋃
{T ′i

OID⋂
T ′j
OID}

}
, ∅,∀i, j ∈ [1,Nk]
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• They are overlapped in time, that is, for every ticket T ′i ∈ Ck, there is at least
another ticket T ′j ∈ Ck so that their intervals [t′i

CT , t′i
RT ] and [t′j

CT , t′j
RT ] are

overlapped, i.e.,{
{t′i
CT ≤ t′j

CT ≤ t′i
RT } ∨ {t′j

CT ≤ t′i
CT ≤ t′j

RT }
}

= true

• There are no time gaps between them, i.e.,

∀t ∈
{
mini∈[1,Nk]{t′i

CT },maxi∈[1,Nk]{t′i
RT }

}
, there exists at least one active ticket.

As in the local correlation process, the global correlation process creates a global
representative ticket, T k, for the subset of tickets Ck, which will replace all the tickets
in Ck, according to the following rules:

t
CT
k =mini∈[1,Nk]{t′i

CT } (5.7)

t
RT
k =maxi∈[1,Nk]{t′i

RT } (5.8)

t
V T
k =maxi∈[1,Nk]{t′i

V T } (5.9)

T
x
k =

Nk⋃
i=1

T ′i
x,where x = {T ID,T R,OID} (5.10)

It is important to mention here that the values for the fields T
T ID
k , T

TR
k , and T

OID
k

are extracted as the union of the corresponding fields in the tickets from the subset
Ck. After this process, the meaning of OID ′i

1, T ID ′i
1, and TR′i

1 as the main object,
ticket and ticket resolver IDs are lost.

As in the case of local correlation, Figure 5.4 shows an example of the appli-
cation of the algorithm using three tickets, N ′k = 3. As depicted in Figure 5.4a),
T ′1
OID = {x,m,w,z}, T ′2OID = {y,w,z}, and finally T ′3

OID = {y,k}. T ′1 and T ′2 are re-
lated since they have two OIDs in common, namely w and z, and they temporally
overlap. Furthermore, T2 and T3 are also related since they have one OID in com-
mon, namely y, and they are temporally overlapped. Therefore, the three local rep-
resentative tickets are correlated into a global representative ticket T r as illustrated in
Figure 5.4b) having tCTr = mini∈[1,3]{t′i

CT } = t′1
CT , tRTr = maxi∈[1,3]{t′i

RT } = t′3
RT and

finally T r (OID/T ID) = {x,y,m,w,z,k}, where T r (OID/T ID) is the list of OIDs and TIDs
extracted as the union (concatenation without repetition) of the corresponding lists
in the correlated tickets.

The output of this global correlation is a set δ of G tickets, that is composed by
the list of representative tickets, each one for every different subset Ck ⊂ ξ.



5.6. Experimental Results 121

Figure 5.4: Global correlation example: a) original tickets, b) global representative ticket.

δ = {T 1,T 2, ...,T G}

Ideally, if all the incidents have been reported in the ITS, every one of these
representative tickets is expected to represent a single incident in the network, i.e.,
G = I , where I is the total number of incidents.

5.6 Experimental Results

For the experimental results to validate the model proposed here, we have used the
datasets described in Chapter 3, DS1 and DS2. As a first step in the experimental
evaluation, an alignment of the fields of tickets in both datasets is done with the
proposed ticket model fields. This correspondence is presented in Table 5.1. In
these datasets, the alignment has been done easily since each selected field clearly
matches with a field in the proposed ticket model. This fact emphasizes the gener-
ality and simplicity of the proposed model that consists of the most common fields
that are found in any ITS.

5.6.1 Performance Indicators

Before describing the experimental evaluation, we also suggest some performance
metrics that help to evaluate the efficiency of the proposed correlation algorithms.

The process of normalizing the metrics is not straightforward, as there are two
different types of tickets defined here, i.e., those extracted from the original database,
and the representative tickets that are produced by the correlation process using the
proposed correlation algorithms. For this reason, the estimation of the metrics will
depend on each phase, where there are different input entries, i.e., malformed, void
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Company ITS field
Incident ticket

model field
TICKET CREATION TIME tCTi
TICKET RESOLUTION TIME tRTi
TICKET VALIDATION TIME tV Ti
SEDE OID1

i

CASE ID TID1
i

ASSIGNED TO GROUP TR1
i

Table 5.1: Alignment of the considered ITS fields with the proposed incident ticket model
fields.

and irrelevant tickets should be extracted from the original database during the pre-
processing and reduction phases, locally correlated tickets should be extracted from
the filtered database and replaced by their representatives; and finally, globally cor-
related tickets should also be extracted and replaced from the locally correlated
database.

The global process is depicted in Figure 5.5. Recall from our previous defini-
tion that O is the number of records in the original database θ; P is the number of
records in the filtered database, ρ, i.e., after having removed malformed, void and
irrelevant tickets; L is the number of records in the locally correlated database, ξ,
i.e., after having substituted each subset of locally correlated tickets by a local rep-
resentative ticket; and finally, G is the number of records in the globally correlated
database, δ, i.e., after having substituted each subset of globally correlated tickets
for a global representative ticket. In every step, part of the tickets is removed from
the input, as they are supposed to be useless for incident solving (preprocessing
and reduction)1 or redundant (local and global correlation). In the latter case, al-
though the original tickets are removed, a new representative ticket summarizing
each subset of correlated tickets is introduced. Therefore, in order to assess each of
the involved steps, a measure concerning the percentage of tickets that are removed
in each phase has been defined.

• The tickets reduction percentage for the preprocessing and reduction phases,
ϕP , is defined as:

ϕP = (
O − P
O

) · 100 (5.11)

1For simplicity, from now on, the word preprocessing will be used to refer to both phases, pre-
processing and reduction.
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Figure 5.5: Evolution of the number of tickets along the proposed system.

• Similarly, the tickets reduction percentage for the local correlation phase, ϕL,
is defined as:

ϕL = (
P −L
P

) · 100 (5.12)

• Finally, the tickets reduction percentage for the global correlation phase, ϕG,
is defined as:

ϕG = (
L−G
L

) · 100 (5.13)

After doing all of the above steps, the main hypothesis is that the remaining
number of tickets in the processed database, G, approximately equals the number
of incidents, I . Thus, I � G. Therefore, the overall tickets’ reduction percentage,
ϕoverall , is defined as:

ϕoverall = (
O −G
O

) · 100 (5.14)

It should be noted that:

1−ϕoverall = (1−ϕP )(1−ϕL)(1−ϕG) (5.15)
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Figure 5.6: Reduction percentage of irrelevant tickets extracted from both datasets.

5.6.2 Evaluating the Tickets Preprocessing Phase

The above parameters are used as performance indicators to measure the reduc-
tion percentages and the overall efficiency of the tickets’ creation process in both
datasets. As indicated above, DS1 is kept split into months and the results for each
one of them are shown separately, besides the results obtained from DS2.

In our case, after many consultations with the management staff responsible of
the considered ITS datasets, the criterion to label a ticket as malformed or void
is to identify those which have one or more of these fields with an empty value:
main Object ID, resolution time or incident description. Furthermore, we identified
the tickets that contain any word from a specific list of keywords built with the help
of the management staff as irrelevant. The list of keywords used is {swap/change
terminal, change battery, update software, scheduled maintenance, change technology}.

After applying the preprocessing methodology presented in Subsection 5.5.1
to extract incident-related tickets, Figure 5.6 illustrates the reduction percentage of
irrelevant tickets (ϕP ) for each month of DS1 and DS2. On average, 11.4% (DS1)
and 15.6% (DS2), respectively, of the original tickets are considered irrelevant from
the point of view of incident solving. The final number of incident-related tickets
after completing the preprocessing phase is P=17,008 (DS1) and 8,105 (DS2), re-
spectively. Although many of the irrelevant tickets are really created by the man-
agement team, either by management staff or SD, it is clear from the DS1 results
that the analyzed ITS had several malfunctionings, especially during May, July and
August, due to the high rate of such kind of tickets. So, we conclude that the be-
havior of the management team regarding the creation of irrelevant tickets is not
stable during the whole year, being specially affected during holiday periods. This
methodology would point to a revision of the configuration of the platform in order
to improve its performance.
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Also, we conclude that, in the case study, both the ITS and the management
team always generate a large number of tickets that are not related to real network
incidents. These types of tickets may have negative effects on the performance of
the ITS as a whole, because creating such kind of tickets consume time and labor
work, which are two important factors that affect the revenue and QoS of the IT
department of an enterprise or an IT service provider.

5.6.3 Evaluating the Tickets Correlation Phase

Here, the local and global correlation processes are evaluated separately in order to
analyze the effect of each of them on the whole system.

A. Evaluating the Local Correlation Algorithm

In order to extract the locally correlated tickets, the correlation algorithm that was
discussed in Subsection 5.5.3 is applied to the filtered databases. Recall that, the
main assumption here is that two tickets are locally correlated if they share the
same main object ID and they temporally overlap. The evaluation phase is divided
in two subsections. First, we analyze the datasets and extract the results. Second,
we present two methods to validate the correlation results.

A.1. Results for the Local Correlation

The reduction percentage of locally correlated tickets (ϕL), extracted for each month
in DS1 and for the whole period in DS2, is shown in Figure 5.7. Furthermore, Ta-
ble 5.2 gives an overview of some useful statistics for each month of DS1 and also
for DS2: the number of processed tickets, P ; the number of obtained local repre-
sentative tickets, L; the reduction percentage, ϕL; and some information related to
the locally correlated subsets, i.e., the number of tickets that have been correlated,
the number of subsets of correlated tickets (representative subsets) and the size of
the subsets (mean and standard deviation, SD). From these results we found that
the proposed local correlation algorithm is able to discover, on average, more than
14.4% (DS1) and 10.7% (DS2) of the created tickets as redundant tickets. Further-
more, we observed from the DS1 results that the behavior of the management team
regarding locally correlated tickets during the whole year is somehow stable with
few variations in the second half of the year, where about 21% of the tickets are
considered redundant.

A.2. Validation Process

As the investigated databases are unsupervised, i.e., they do not have tags indicating
the incident associated to every ticket, there is an inherent difficulty in the valida-
tion process itself. Notwithstanding with this, here we try to validate the usefulness
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Figure 5.7: Reduction percentage of locally correlated tickets extracted from both datasets.

dataset period
# input tickets

(P)
# output tickets

(L)
ϕL

locally correlated subsets
# correlated

tickets
# representative

subsets
# tickets/subset

Mean SD

DS1

Jan 1,756 1,598 8.99% 270 112 2.41 0.83
Feb 1,784 1,621 9.14% 275 112 2.46 1.30
Mar 2,008 1,827 9.01% 308 127 2.43 1.50
Apr 1,524 1,378 9.58% 241 95 2.54 1.76
May 622 535 13.98% 136 49 2.78 1.95
Jun 1,808 1,662 8.08% 248 102 2.43 0.64
Jul 1,273 1,143 10.2% 223 93 2.39 1.07
Aug 602 420 30.2% 240 58 4.14 6.19
Sep 1,045 774 25.9% 392 121 3.24 3.38
Oct 1,764 1,450 17.8% 545 231 2.36 1.31
Nov 1,491 1,235 17.2% 443 187 2.37 2.08
Dec 1,331 1,164 12.5% 308 141 2.18 0.82

DS2 6M 8,105 7,240 10.7% 1,569 704 2.23 0.64

Table 5.2: Local correlation results for both datasets.

of the proposed local correlation algorithm using two different validation methods.
First, the results are reviewed under the hypothesis that, in any ITS, if several tickets
have the same main object ID (node, service, location, etc.), they overlap in time, and
they are resolved at almost the same time, we can assume that they really belong
to the same incident. Hence, a study of the distribution of the delay for resolution
times for each subset of locally correlated tickets could help to validate the proposed
correlation process.

This analysis is applied to the two datasets; for three randomly selected months
of DS1 (Jan., June, Dec.) and for DS2. Figure 5.8 illustrates the distribution of the
mean delay between the local representative ticket resolution time and the mean
value of the resolution times for all the tickets in the subset, that is:

t′k
RT − 1

Nk

∑Nk
i=1 t

RT
i , ∀Ti ⊂ Sk



5.6. Experimental Results 127

Figure 5.8: Distribution of the mean delay among resolution times of tickets belonging to
locally correlated groups, for subsets from both datasets.

This is an indicator of the dispersion of the resolution times for the correlated
tickets. From this figure, we observe that the delay distribution of both datasets,
the three selected months in DS1 and the whole period in DS2, is very similar. The
graph is decreasing nearly exponentially with an average of more than 54.5% (DS1)
of the subsets having all the related tickets resolved within one hour between them;
more than 68.8% are resolved within the first 8 hours and so on. For DS2, 58% of
the subsets having all the related tickets resolved within one hour between them,
and about 72% are resolved within the first eight hours. We found that more than
80% of the subsets of correlated tickets (81.3%, 86.3%, and 89.4%, respectively for
DS1 and 88.9% for DS2) contain tickets with differences in the resolution times
lower than one day. This analysis applied on two different datasets (generated by
staff following different management procedures) is a good indicator of the correct
behavior of the proposed correlation algorithm.

In an additional validation, besides the delay analysis described above, we ran-
domly selected 100 samples from the locally correlated subsets; 20 from each of the
three selected months of DS1, and 40 from DS2. Here we divided the analysis into
two groups, those subsets with a delay lower than or equal to one day and those
subsets with a delay greater than one day. Half of the samples are taken from the
first group, while the other half of the samples are taken from the second one. Fig-
ure 5.9 represents a histogram of the number of correlated tickets per subset for
the selected samples. For each sample subset, we manually inspected all the tickets
and checked whether they can be considered as a TP or FP. In order to do that, we
looked at the fields in the tickets that contain text-free information, especially those
that characterize any incident such as incident description, worklog history, and so-
lution description, and checked whether they share the same incident symptoms or
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Figure 5.9: Histogram of the number of tickets per subset for the selected samples from
both datasets.

not. The correlation results showed that all of the samples taken from both datasets
and belonging to both groups (delay less than or equal to one day and delay greater
than one day) are validated as TP. Therefore, we argue that the accuracy of the local
correlation algorithm is high, not finding FPs in the sampling process considering
samples from both groups. Thus, we conclude that the proposed local correlation
algorithm can correlate any subset of locally correlated tickets into a local represen-
tative one that correctly describes the incident with a high confidence (efficiency is
100% for the sampled subset). This finding emphasizes our claim that in any ITS, if
several tickets have the same main Object ID and they temporally overlap, there is a
high probability that they really belong to the same incident and, therefore, should
be correlated.

B. Evaluating the Global Correlation Algorithm

The global correlation algorithm discussed in Section 5.5.3 is applied to the locally
correlated datasets, ξ, i.e., after every locally correlated subset is replaced by a local
representative ticket. As previously explained, DS1 is kept split into months and
any border issues that could happen between two consecutive months are ignored.
As in the local correlation phase, the evaluation process is divided into two sub-
sections. First, we provide general results and extract several findings. Second, the
same methods as in the previous subsection are used to validate the results.

B.1. Results for the Global Correlation

Figure 5.10 shows the reduction percentage of globally correlated tickets (ϕG) that
are extracted from the locally correlated dataset ξ. Furthermore, Table 5.3 gives
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Figure 5.10: Reduction percentage of globally correlated tickets extracted from both
datasets.

dataset period
# input local repr.

tickets (L)
# output tickets

(G)
ϕG

globally correlated subsets
# correlated

tickets
# representative

subsets
# tickets/subset

Mean SD

DS1

Jan 1,598 1,516 5.13% 128 46 2.78 1.62
Feb 1,621 1,546 4.63% 118 43 2.74 1.28
Mar 1,827 1,765 3.39% 99 37 2.68 1.65
Apr 1,378 1,312 4.79% 98 32 3.06 3.31
May 535 493 7.85% 46 4 11.5 19.0
Jun 1,662 1,565 5.84% 157 60 2.62 1.82
Jul 1,143 1,111 2.79% 59 27 2.19 0.42
Aug 420 413 1.67% 14 7 2.0 0.49
Sep 774 761 1.67% 23 10 2.30 0.67
Oct 1,450 1,380 4.83% 107 37 2.89 2.14
Nov 1,235 1,179 4.53% 82 26 3.15 4.75
Dec 1,164 1,140 2.06% 39 15 2.60 1.12

DS2 6M 7,240 6,922 4.39% 516 198 2.6 2.42

Table 5.3: Global correlation results for both datasets.

an overview of the same statistics that are discussed in Table 5.2, for each month
of DS1 and also for DS2. But, here, the input is the number of local representative
tickets, L; the output is the number of global representative tickets, G; and the
reduction percentage is, ϕG. From these results we can extract some conclusions.
First, as a general finding, we observe that there is another level of redundancy
in which the proposed global correlation algorithm is able to discover, on average,
about 4.1% (DS1) and 4.4% (DS2) of the local representative tickets as redundant
tickets. Second, through a manual inspection of some samples of globally correlated
tickets for both datasets, we observe that the management staff usually uses either
TID or OID fields to relate tickets to each other and sometimes they use both in the
same ticket.

The final number of tickets in the globally correlated database,G, is 14,181 (DS1)
and 6,922 (DS2), which is also supposed to be the number of incidents, I .
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Figure 5.11: Distribution of the mean delay among resolution times of representative tickets
belonging to globally correlated groups, for subsets from both datasets.

B.2. Validation Process

Here, the same validation methods as in the local correlation are used to validate
the results from the global correlation algorithm. Figure 5.11 illustrates the delay
results. From this figure we observe that for DS1, on average, more than 86.5% of
the subsets have tickets with differences in resolution times lower than one day and
for DS2, more than 88.1%. Again, this finding is useful, since we have two datasets
with different properties and that have coherent results of the global correlation.
This points to the validity of the proposed global correlation algorithm.

Second, for the sampling validation process, as in the local correlation process,
the analysis was divided into two groups, those correlated subsets with delay lower
than or equal to one day and those with delay greater than one day. Again, half
of the samples are taken from the first group, while the other half of the samples
are taken from the second one. We show the validation results for 55 samples from
DS1, which are also randomly selected except for December, since we have only
15 subsets in this month (we selected all of them), and 40 samples are taken from
DS2 with a total of 95 samples. The histogram in Figure 5.12 shows, for both
datasets, the number of samples vs. the number of local representative tickets that
they contain. The correlation results show that all of the samples taken from both
datasets and belonging to the first group are validated as TP, whereas five samples
from the second one –three from DS1 and two from DS2– are validated as FPs.

Regarding the five samples validated as FPs, we found out that the management
staff sometimes refers to previous solved tickets if the ongoing incident has mainly
the same preliminary symptoms. Additionally, sometimes ticket creators relate a
ticket with others just by writing TID or OID in some fields and do not describe the
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Figure 5.12: Histogram of the number of locally representative tickets per subset for the
selected samples from both datasets.

incident very well which makes it difficult to decide whether they are really related
or not. Thus, these not clearly correlated tickets are counted as FPs.

As a conclusion, the global correlation algorithm efficiency is really high (100%
of the sampled subset) in the first group and 90% (DS1) / 95% (DS2) in the second
one. On average, the global correlation algorithm efficiency for both datasets is
around 95%.

5.6.4 Evaluating the Convergence of the Algorithms

We are also interested in evaluating the convergence of the algorithms when the
provided datasets are split and the process is applied separately on the different
subsets. This analysis is relevant, since the correlation process could be parallelized.
Figure 5.13 illustrates the strategy that has been followed to evaluate the stability.
Here, DS2 was split into two parts: those tickets created by the management staff
and those created by the SDs; SD1 and SD2. The local correlation algorithm is ap-
plied on each part separately (left part in Figure 5.13), and the results are obtained
and analyzed. Next, the local correlation algorithm is again applied to the already
correlated tickets of both parts and compared the results with those extracted from
the whole dataset (right part in Figure 5.13). The same was done for the global
correlation algorithm as well. Table 5.4 shows the local/global correlation results
of each part of the experiment. The number of local representative tickets of both
datasets (L1+L2) is 7,398, while the number of representative tickets for the output
of the local correlation algorithm applied on L1+L2 is 7,240, which is exactly the
same result obtained in the previous experiments in Section 5.6.3 for the whole
dataset, DS2. Regarding the global correlation, the number of input tickets of both
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Figure 5.13: Algorithms stability evaluation chart.

correlation
process

dataset
# of input

tickets
# of output

tickets

reduction
percentage

ϕ

correlated subsets
# correlated

tickets
# representative

subsets
# tickets/subset
Mean SD

LC
DS2-MS 4,929 4,456 ϕL = 9.6% 907 434 2.1 0.37
DS2-SD 3,176 2,942 ϕL = 7.36% 402 168 2.4 0.95

LC-both L1+L2 7,398 7,240 ϕL = 2.1%

GC
DS2-MS 4,456 4,310 ϕG = 3.1% 259 113 2.29 1.07
DS2-SD 2,942 2,825 ϕG = 3.87% 174 57 3.05 3.8

GC-both G1+G2 7,135 6,922 ϕG = 2.9%

Table 5.4: Correlation results for local and global correlation algorithms for the stability
analysis.

datasets (G1+G2) is 7,135, and the output of the global correlation algorithm ap-
plied on this dataset (G3) is 6,922 global representative tickets. We can check that
this is also the same result presented in Section 5.6.3. Therefore, we conclude that,
as expected, the results from local and global correlation algorithms are stable and
independent on whether it is applied over a partitioned dataset.

5.7 Chapter’s Conclusions

Along this chapter, we proposed a novel, simple, and effective approach to correlate
and merge incident tickets in an ITS. The approach is based on a generic model
for the tickets that preserves and categorizes the relevant information and enables
the comparison of their properties with relatively simple functions. No additional
sources of information, apart from the tickets themselves and the information they
contain, is required during the merging procedure. Despite its simplicity, the model
has revealed to be useful to reduce the number of tickets generated and handled by
ITS users, which is a desirable target in order to improve the workflow in a manage-
ment company.
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The experiments on two different datasets from a real company have shown that
contrary to what is expected, there is a significant amount of redundant tickets be-
ing generated by the different actors in the ITS. The proposed model and method
can be easily incorporated in the in-production systems, not allowing the genera-
tion of additional tickets when a related one is active, or automatically removing
those detected as redundant. The first is quite straightforward for the local level of
the algorithm, which can be applied in real-time at the time of the creation of the
ticket. The global phase uses information that could not be available at the time of
the creation of the ticket but added later and, therefore, would imply an a posteriori
filtering of the tickets.

The proposed algorithms are iterative in the sense that they keep merging tickets
as far as there exist at least two overlapping tickets that should be merged according
to the selected criterions. This does not represent any problem either from the con-
vergence or stability points of view, as a single final solution exists and it is always
reached. This is due to the transitive nature of the merging procedure.





Chapter 6
A Model for the Joint Correlation of
Tickets and Alerts

As discussed in previous chapters, it is notable that, despite the fact that many
of the records in ITSs contain rich semantic information related to incidents, to the
best of our knowledge, only reduced efforts have been devoted to the incorporation
of this information in the alerts correlation procedure. Some research efforts such
as those in [25, 30, 31, 55] have pointed to the importance of ticket information for
incident resolving, claiming that ITSs can be extended with advanced functions to
enhance the incident resolving process. Their main argument is that the informa-
tion in tickets are related to incidents generated by events that have already been
identified as network failures. Other efforts such as those in [54, 153, 159–162, 171]
tried to correlate alerts with tickets to achieve specific purposes, such as studying
and characterizing the nature and causes of routing changes, and the observed net-
work instability. These efforts, despite their potential usefulness in obtaining statis-
tical measures to study the nature of the incidents and their effects on the network
stability, have not been devoted to the joint correlation of ticketing information and
alerts, with the goal of reducing the number of redundant alerts and the significance
of the resulting events by using the tickets relevance feedback.

In this chapter, a generic correlation model aimed to establish a relationship be-
tween alerts and tickets is first presented. This model works as a basic building
block for some parts of the whole correlation system. Then, based on this model,
a lightweight algorithm for the joint correlation of alerts and tickets is also pro-
posed and implemented. Then, a comparative study between the results we obtain
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and those obtained by a applying basic correlation techniques that only use alert
databases is carried out.

The structure of the chapter is as follows. A basic model for event correlation is
presented in Section 6.1. Based on this model, a complete system for tickets-alerts
correlation is proposed and discussed in Section 6.2. A thorough explanation of the
proposed tickets-alerts correlation model, challenges and suggested solutions are
explained in Section 6.3. The correlation model is experimentally tested and eval-
uated through the database of tickets and alerts from an IT management company
in Section 6.4.

6.1 A Basic Model for Events Correlation

Before discussing the tickets-alerts correlation process in more detail, in this section
we give a brief overview about a basic event correlation model that will be used as
a building block for the correlation process. It is worth to mention that the basic
correlation model proposed here is derived from the one suggested in Chapter 5
to correlate tickets. Yet, we now refer to the correlated entities generically as events
instead of tickets, as we use this term to refer to both alerts and tickets interchange-
ably. Therefore, instead of proposing a new terminology to describe the correlation
model and its events, we somehow adapt the same terminology proposed in that
chapter.

In this basic correlation model, as previously stated, we first consider both the
appearance of alerts in the NMS and the generation of tickets in the ITS system as
generic events. This way, whenever an incident takes place in a monitored network,
a set of different events related to that incident appear. Let us denote as I the set
of m different events that appear as a consequence of an incident occurring in a
network, I = {e1, e1, · · · , em}. Every event ei has a different duration, that spans from
the instant of its creation or appearance, that we will call event creation time, tCTei ,
to the instant at which this event disappears or is resolved, which we call event
resolution time, tRTei .

In addition, every event ei is associated to a list of one or more affected elements
of the network, referred to as the object IDs of that event. For example, in a “node
down” alert, the identity of the node of the network that has gone down is the af-
fected object ID of that event. An event could have several affected object IDs. For
example, if a ticket is created due to the failure of several nodes in a network, all
of them are really the affected object IDs for that event. In general, we will say that
every event ei will have a set of affected object IDs, Ei , that is a list of the different
identifiers of the network object IDs, applications, services, etc., affected by the in-
cident described in that event. An identifier here could be an IP address, a node
name, an application name, etc.
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Figure 6.1: Correlation of m events belonging to the same incident into a representative
event.

Furthermore, every event ei will be also specified by an event description, Di ,
that is usually a free text field describing the own event, its effects on the network,
and/or the root cause for its appearance.

In this scenario, we are interested in the correlation of all the events that belong
to an incident I , so that a single event could represent the whole incident. We refer
to this single event as the representative event for incident I , eR. To be coherent
with the description of the set I , the duration of the event eR should span from the
event creation time of the first event of the incident to the last event resolution time
observed in the set of events for that incident. Figure 6.1 shows an example of
this definition, where a set of m events belonging to the incident I are represented
by a single representative event eR. It is worth to mention here that, in realistic
scenarios, the duration of the representative event could not correspond with the
incident duration, mainly due to the fact that when the incident starts, a delay could
occur until the first event appear, and the same could happen when the incident
finishes, that is, it might be usual to have a delay between the end of the incident
and the closing (resolution) of a ticket. Thus, we define a Forward Offset Delay, FOD
(Figure 6.1), as the delay between the start of incident (SoI) and the time at which
the first event appears. In addition, we define a Backward Offset Delay, BOD, i.e.,
the delay between the end of the incident (EoI) and the end of all the related events.
Note that BOD could take a negative value, in case that the last event ends before
the own incident. For example, if we consider that the events are tickets created and
closed manually by staff members, it could happen that they believe that an incident
has finished while it is still active. In this case, they would close the ticket (the end
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of the event), thus making BOD to take a negative value. We will consider these two
delays in the tickets-alerts correlation model suggested in the next section.

6.1.1 Basic Correlation Method

Suppose now that we have a set of m events and we do not have any information
about the incidents they are related to. We are interested in obtaining the same
number of representative events as the incidents that originated those events. In
order to do this, in this basic model for event correlation, we assume this hypothesis:

Two events that (i) have a similar description or have an affected object ID in common,
i.e., are related to at least a common network node or service, and (ii) happen simultane-
ously in time, will likely belong to the same incident.

Mathematically, the first condition, i.e., the similarity in the description or the
affected object IDs of two events ei and ej , can be described by the following expres-
sion:

{Ei ∩Ej}
⋃
{Di ∩Dj} , ∅ (6.1)

while the second condition, i.e., the simultaneous occurrence of two events ei and
ej , is given by: {

{tCTei ≤ t
CT
ej ≤ t

RT
ei } ∨ {t

CT
ej ≤ t

CT
ei ≤ t

RT
ej }

}
= true (6.2)

In our basic correlation algorithm, if the above two rules are fulfilled by any
group of l events, we derive that all of them are related to the same incident, and
we simply aggregate them into one representative event, eR, having the following
properties (see Figure 6.1):

tCTeR =mini∈[1,l]{tCTei } (6.3)

tRTeR =maxi∈[1,l]{tRTei } (6.4)

EeR =
l⋃
i=1

Ei (6.5)

DeR =
l⋃
i=1

Di (6.6)

We join all the descriptionsDi of the different events and the set of event affected
object IDs, Ei , as we consider that any information in one of the events of an incident
will complement the information provided in other events of the same incident.
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Figure 6.2: Proposed architecture for the tickets-alerts correlation system.

6.2 Tickets-Alerts Correlation System

Figure 6.2 shows the architecture of the proposed tickets-alerts correlation system.
It mainly consists of three modules: a module for tickets correlation, other for alerts
correlation and the last one for tickets-alerts joint correlation. Later on, we will
justify why we split the processing in these three modules. The tickets correlation
module is represented in the upper part of the figure. Here, we follow the same
methodology proposed in Chapter 5 to correlate tickets. A set of raw tickets, TR,
obtained from the ITS, is entered as input to the tickets preprocessing and reduc-
tion phases to extract only incident-related tickets. The resulting processed set, TP ,
is then passed through a tickets correlation phase that produces a new set of global
representative tickets, TC . Every global representative ticket, which is ideally ex-
pected to represent a single incident, contains the summary of a group of correlated
tickets.

The lower part in Figure 6.2 represents the alerts correlation module. Here, a
set of raw alerts, AR, is entered as input to the alerts preprocessing and reduction
phases to extract only incident-related alerts, as will be explained next. The result-
ing processed set, AP , is then passed through an alerts correlation phase based on
the basic model for events correlation (Section 6.1), that produces a new setAC , that
is, the final set of global representative alerts. As in the tickets correlation module,
every global representative alert is expected to ideally represent a single incident,
and contains a summary of the information provided by a group of correlated alerts.

Finally, the right part in Figure 6.2 represents the tickets-alerts correlation mod-
ule. Here, the outputs of the alerts and tickets correlation modules, AC and TC , are
entered as inputs, and the processing is done according to the correlation model that
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is presented in Section 6.3. The aim is to produce a final set of incidents, SI , that
will more accurately represent the real incidents in the network when compared
with methods that only take into account alerts correlation. As in Chapter 5, where
the details of the tickets correlation model were explained, in the following sub-
sections we provide a more detailed discussion about the alerts and tickets-alerts
correlation modules.

6.2.1 Alerts Correlation Module

As previously explained (see Chapter 3), alerts are usually generated by network
elements and obtained by management platforms, e.g., HP OpenView, using man-
agement protocols such as SNMP (Chapter 2). Each alert is a short message with
a specific textual format defined by equipment vendors, and generated as an ex-
ternal manifestation of a potential failure, or a disorder occurring in an equipment
of the managed network or system (Figures 3.7 and 3.8). Typically, alerts contain
the same relevant information as that described in our basic model presented in Sec-
tion 6.1, such as: (i) affected object ID identifier, e.g., node name and interface name,
(ii) the timing information of the alert, i.e., the creation and resolution times, iii) a
description of the fault, i.e., the root cause and the severity of the alert, among oth-
ers. Besides, alerts may provide information with different levels of details, such as
specific data regarding the status of the devices and their configurations, or higher
level details, with aggregated information gathered from several alerts.

Alerts are first passed to both preprocessing and reduction modules, with the
aim of normalizing the alerts, selecting only incident-related and filtering normal-
behavior ones that are generated in response to daily operational tasks that are not
really associated to real network incidents, i.e., maintenance activities or software
updates, among others.

The output of the alerts preprocessing and reduction phases is fed into the alerts
correlation module. Here, we use the basic events correlation model (Section 6.1)
in two steps. First, we consider only alerts that are related to a single affected object
ID and, in a second step, we incorporate those alerts that are related to a list of mul-
tiple affected object IDs. These last alerts are normally generated by intermediate
network object IDs that are really doing a correlation of other alerts and generating
a new one with the summarized information.

It is remarkable to say that, traditionally, this is the only module that has been
implemented in network alerts correlation systems, and a lot of research efforts
have been devoted to study it (Chapter 2). In our case, we are not as interested
in refining this module as in evaluating if the incorporation of tickets information
would improve the alerts correlation process. For this reason, and for the sake of
easiness, we have opted for this implementation.
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Figure 6.3: Example of alerts reduction using the proposed model.

6.2.2 Tickets-Alerts Correlation Module

This module works with the information provided by both the alerts and tickets
correlation modules. As previously stated, we are interested in evaluating whether
introducing this module would result in a benefit in the correlation process.

Our intuition is that the tickets can introduce relevant information in the proce-
dure, incorporating human knowledge and significance to the events. An example
of a scenario revealing this is depicted in Figure 6.3. We observe in the first timeline
the result from an alerts correlation process performed with our basic correlation
algorithm, where three groups of alerts are summarized in three global representa-
tive alerts: AR1, AR2 and AR3. The second timeline represents the output from the
tickets correlation process, where a single global representative ticket TR has been
obtained. The third timeline represents the time duration of the incident that gen-
erated the different events (alerts and tickets). Note that the alerts in this incident
appear intermittently in time, and that this makes the correlation process to con-
sider that they are not overlapped in time and, thus, they are not likely to belong to
the same incident. However, the existence of ticket makes it possible to observe the
concurrence in time between the three groups of alerts and the ticket, thus allowing
the correlation of all of them to represent a single incident.

In what follows, we show that applying the basic event correlation model for
both tickets and alerts is not straightforward, and describe the problems that appear
and our proposals to tackle them.
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6.3 Tickets-Alerts Correlation Model

In order to apply the basic event correlation model suggested in Section 6.1 to
correlate both tickets and alerts, it is important first to understand the specificities
of both tickets and alerts, and then properly adapt the correlation algorithm. In
the following, we first discuss the specific issues to be taken into account, and then
present our proposal for the correlation algorithm.

• Tickets provide better semantic information than alerts: As shown in Chapter 5,
although tickets might be automatically generated by the NMS (automatic
tickets), they are usually generated manually by the members of the staff either
as a response to alerts or from customers’ complaints. Every ticket represents
a complete record of an incident to be used by the management staff during
the incident management lifecycle.

Normally, tickets contain more semantic information about the incidents than
alerts. First, every ticket contains many free text fields that are used by ticket
creators and resolvers to describe the incident, its possible causes and the so-
lutions applied to solve it. In alerts, these fields are normally automatically
generated by network facilities and thus, the semantic information is very re-
stricted to a list of possible values. Second, tickets are generated by humans
when alert events are considered so important that a record is needed for an in-
cident, or when an user is somehow affected in its normal usage of the network
or services. For example, the appearance of alerts regarding non production
services, or generated by low-priority nodes in a network, or warning alerts
of low-priority should not cause the creation of tickets, as these events should
not be considered as incidents.

Thus, tickets are expected to provide better information than alerts for iden-
tifying the actual number of incidents that occur in a network. If we assume
that the number of incidents derived from a tickets correlation process is IT ,
the number of incidents pointed out by an alerts correlation process is IA, and
the number of real incidents is Iactual , we expect to have the following relation:

Iactual < IT � IA

For this reason, we will show in our correlation algorithm that we pay more
attention to tickets when deciding the number of incidents.

• Alerts provide better temporal information than tickets: In contrast with our
higher confidence in the semantic information contained in tickets, we claim
that the temporal information found in them is less trustable than that pro-
vided by alerts. This is due to the fact that, in the ITS system, a large number
of the tickets are created or closed manually by the management staff and,
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thus, their responsiveness is not as fast as in the alerts management system,
where alerts are generated automatically in few milliseconds when an event
is perceived. So, for determining the beginning and the end instants of an
incident, we consider that the timestamps provided by the alerts are the best
approximation.

Going back to Figure 6.2 in which we show the complete system, note that
instead of considering both tickets and alerts as general events and apply our
basic event correlation algorithm to the complete set, we separate both into
two processes. This will allow us to determine and identify the number of dif-
ferent incidents (and their semantic information) from the tickets correlation
process, and adjust their temporal information from the feedback provided
by the alerts correlation process. In summary, the output of tickets correla-
tion is refined with the alerts correlation output, in order to adjust the time
information of the incidents pointed out by tickets.

• Dealing with border effects and the existence of consecutive incidents: As previ-
ously mentioned, it is expected to have some temporary misalignment be-
tween the start and the end of an incident, and the creation and resolution
times of the associated ticket(s) due to, presumably, human response times.
This effect has been included in the basic correlation model through the pa-
rameters FOD and BOD. At first sight (Figure 6.4), the problem with these
two delays is that it is possible to exclude or include events related or not re-
ally related, respectively, to the ongoing incident in the representative event
and, therefore, in the incident as perceived after the correlation process. As
depicted in the example in Figure 6.4, depending on whether the first event
in the events line is an alert or a ticket, it is even possible the appearance of
two different incidents at the beginning, while two different incidents can be
merged at the end. On the other hand, it is also possible for the management
staff to prematurely close a ticket if they have the perception that the problem
is solved, thus resulting in a negative value for BOD. In this case, it is highly
probable that another ticket really related to the same incident appears after
some delay. In fact, this is exactly the former situation in case the first event in
the events line is a ticket. To handle this situation, our main argument is that
there is a high probability that potentially correlated events that occur in the
proximity of other representative events really belong to the same incident.
This way, the simultaneity condition –Equation (6.2)– used to merge events is
relaxed by using FOD and BOD as thresholds to cover alerts and tickets in the
proximity as included in the same incident.

From the point of view of the correlation method, the major impact is expected
to arise from the “orphan” alerts, that is, from that alerts at the beginning or
the end of an incident that are not assigned to it due to the border effects.
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Figure 6.4: Potential effects of FOD and BOD on the correlation results.

Figure 6.5: Example showing the problem of directly applying the basic event correlation
model on two consecutive incidents.

Therefore, some experimental tuning is needed to estimate the values for both
FOD and BOD. Obviously, this will be addressed in the experimental setup.

Nevertheless, the scenario can become a bit more complex when consecutive
incidents appear. The problem is how to discriminate between any two con-
secutive incidents having some properties in common, i.e., how to correctly
separate between events that could correspond to both incidents or even de-
ciding that both incidents are the same and should be merged. In order to
clarify this point, we show an example in Figure 6.5. Here, we assume that
we have two really consecutive incidents, I1, I2, each one starting and ending
at the instants shown in the incidents timeline. We also have a sequence of
events, each one starting and ending as shown in the events timeline. Fur-
thermore, we assume that each of these events is related either to I1 or I2. If
we apply the basic event correlation model suggested in Section 6.1, we will
get two global representative events, eR1 and eR2, respectively, as shown in the
third timeline (Rep. events) that, at the same time, will be considered as the in-
cidents from our point of view. If we look carefully at this example, we observe
that some events are discarded from the correlation process and they are not
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correlated, simply because they are not overlapped with any other event. We
can assume that the non overlapped events belong to other different incidents,
in which case we would have ended up with seven different incidents, far more
than the actual two incidents. Thus, directly applying the basic event correla-
tion model in this example would lead to inaccuracies, especially when alert
events are considered, because, as mentioned above, alerts may appear earlier
than tickets and might not be overlapped with them, not being considered in
the correlation process.

In addition, note that there is another problem when consecutive incidents
are considered as in our example. We must decide the specific incident, if
any, to which the events in between both belong to. In our example, there
are three events between eR1 and eR1. The choice of the assignment between
event-incident modify the temporal duration of both incidents, thus affecting
the accuracy of the system.

6.3.1 Tickets-Alerts Correlation Algorithm

To handle all of the above issues, the basic correlation model is modified to consider
non overlapped subsets of tickets and alerts as explained before. As shown in Fig-
ure 6.1, FOD and BOD will be used as extra time delays thresholds, so that an event
is correlated to a representative event, eR, that is active in the time interval [tCT , tRT ]
if that event accomplishes Equation (6.1), that is, it satisfies the similarity criteria,
and is active in the interval

[tCT −FOD,tRT +BOD]

Note that, with the expansion of the intervals with FOD and BOD, it could hap-
pen that the extended intervals of two consecutive incidents sharing some affected
object IDs might overlap. In this case, two operations are considered: (i) any poten-
tially related event falling in these intervals will be assigned to the representative
event with lower time distance, and (ii) the incidents will be merged only if, after
adding the in-between events, they are overlapped. Thus, extended intervals are
not considered valid for merging incidents simply based on the new limits.

It is obvious that the selection of the values FOD and BOD directly affects to
the performance of the correlation algorithm. In Section 6.4 we will show how to
experimentally determine optimal values for these parameters and how they affect
the overall results.

In summary, we propose an algorithm (Algorithm 1) that starts from an empty
list of incidents and consists of two iterations. First, it takes every representative
ticket from the correlated ITS database. It is worth to mention that, as the result of
the tickets correlation, neither of those tickets are overlapped in time and having at
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least one object ID or ticket ID in common. For each incident (or global represen-
tative ticket), the different model parameters are extracted (creation and resolution
times, affected object IDs and descriptions). After that, the algorithm searches for
correlated global representative alerts. Every correlated ticket has a list of corre-
lated alerts assigned to it and the temporary limits (SoI and EoI) of the incidents
are revisited according to the new information. Second, after extracting a tuple of
correlated tickets and alerts, in a second iteration, the algorithm takes every corre-
lated ticket and its associated list of correlated alerts and searches for other tickets
having at least one alert in common. The target of this second step is to join the
global representative tickets that resulted overlapped and sharing one or more ob-
ject IDs after adding the alerts in the first step. All matched tickets are aggregated
into one having all the information included in the whole group. Finally, SoI and
EoI are determined by, respectively, taking the first of the creation times of any of
the alerts in the correlated set or the ticket creation time (line 36 in Algorithm 1),
and the last of the resolution times of any of the alerts or the ticket resolution time
(line 37 in Algorithm 1). The final output is a set of k incidents SI , such that
SI = {I1, I2, ..., Ik}, being a single incident: I = {TC ,AC ,TE ,TD}, where TC and AC are
the subsets of correlated tickets and alerts for this incident, respectively, TE is the
list of affected object IDs, and TD is the description of the incident. This set SI is the
estimation of the actual incidents represented by all the events (tickets and alerts).

6.4 Experimental Results

Once the basic model and the methods to handle the challenges in tickets-alerts cor-
relation are described, next we present the experimental assessment of the proposal
applied to the set of alerts and tickets presented as dataset DS2 (see Table 3.1).
Then, we analyze the results and give several findings.

6.4.1 Real Scenario: Dataset and Preprocessing

As explained in Chapter 3, the lack of labeled data can introduce some confusion in
the interpretation of the results, as not all the real alerts are to generate tickets, due
to the fact that the management staff can consider them irrelevant at a given time.
In fact, alerts in NMS are usually classified according to their severity and/or criti-
cality (Table 3.2). Thus, not all the alerts present the same effects on the stability of
the managed system and the management staff is prone to ignore or postpone the
creation of a ticket for non critical alerts, especially if they are busy trying to solve
an incident with higher priority. As a consequence, even if the number of tickets
were accurate, not all the alerts would be correlated to a ticket, i.e., to an incident,
which could be interpreted as a failure in the proposed method.
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Algorithm 1 Tickets-alerts joint correlation

1: procedure TicketsAlertsCorrelation

2: Initialize: incidentList()=null, FOD, BOD
3: loop . First step: for each representative ticket
4: ticket = getNewRepresentativeTicket( )
5: L = listOfAlerts(ticket)
6: TCT = getTicketCreationTime(ticket)
7: TRT = getTicketResolutionTime(ticket)
8: TE = getListAffectedobject IDs(ticket)
9: TD = getListDescriptions(ticket)

10: loop
11: alert = getNewIncidentAlert( )
12: ACT = getAlertCreationTime (alert)
13: ART = getAlertResolutionTime(alert)
14: AE = getAlertAffectedElement(alert)
15: AD = getAlertDescription(alert)
16: if (ACT ≥ TCT −FOD and ART ≤ TRT +BOD)and (AE ∈ TE orAD ∈ TD)
17: L.add (alert)
18: end if
19: SoI = min(getFirstCreationTimeAlerts(L),TCT )
20: EoI = max(getLastResolutionTimeAlerts(L),TRT )
21: for i = 1 to m . Second step: merge newly related tickets
22: Ti=getCorrelatedTicket()
23: Li=getlistOfCorrelatedAlerts(Ti)
24: TCT i=getTicketCreationTime(Ti)
25: TRT i=getTicketResolutionTime(Ti)
26: for j = i + 1 to m
27: Tj= getOtherCorrelatedTicket( )
28: Lj= getlistOfCorrelatedAlerts(Tj)
29: if Lj ∩Li , ∅ then
30: Li .add(Lj)
31: TEi .add(TEj)
32: TDi .add(TDj)
33: del Tj ,Lj
34: CT = getTicketCreationTime(T)
35: RT = getTicketResolutionTime(T)
36: SoI = min(getFirstCreationTimeAlerts(Li), TCT , CT )
37: EoI = max(getLastResolutionTimeAlerts(Li),TRT , RT )
38: end if
39: end for
40: end for
41: incidentList.add (SoI, EoI, TEi , TDi)
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DS2 Alerts Tickets

Total number of records 1,703,662 9,162
Mean number of affected object IDs/record 1.15 1.42
Number of records after preprocessing and reduction 913,042 8,105
Number of relevant records 7,436 520 (348 MS/172 SD)
Number of representatives (before joint correlation) 1,539 432 (286 MS/146 SD)
Mean number of records/repr. set 4.8 1.2

Table 6.1: Some useful statistics of both the alerts and tickets taken from DS2.

To tackle with this situation, we have checked the performance of the correlation
method presented here with an especial subset of events, that is, we only consider
relevant incidents. By relevant incidents we refer to those affecting the operation of
the network in a critical way and that, consequently, must present associated tick-
ets. According to the technical procedures of the company, two are the situations
in which an alert should mandatorily trigger a ticket from the management staff:
critical alerts, which are those really affecting critical object IDs; and massive alerts,
which are alerts automatically generated by the NMS as a response for a big number
of alerts from topologically related object IDs in the network. The first situation is
identified by using a list of network nodes (the critical ones) and the type of criti-
cal alerts (i.e. NodeDown, InterfaceDown) so that a critical alert in a critical node
should generate a ticket by the management staff. Therefore, the main criterion for
measuring the performance of the proposed correlation procedure can be stated as

All the relevant alerts should be assigned to tickets.

Some relevant figures for DS2 –both the tickets and the alerts– handled during
the phases previous to the tickets-alerts correlation are provided in Table 6.1. It is
remarkable that we distinguish between tickets generated by the Management Staff ,
(MS), and Service Desk, (SD), to ease the assessment of the results.

6.4.2 Experimental Tuning and Validation

As explained in Section 6.3, it is necessary to consider some “border effects” in the
correlation procedure due to potential misalignments between the real timing of
an incident and its manifestation in tickets and alerts, probably due to the humans
involved not being reactive enough. To handle this, it is necessary to obtain an esti-
mate for FOD, that is, the maximum accepted time from the appearance of the first
alert of an incident and its corresponding ticket, and for BOD, that is, the maxi-
mum accepted time from the end of the incident and the closing of the ticket. For
this, a set of experiments was carried out by varying the value for FOD and BOD.
The percentage of alerts correlated to tickets as a function of the value for FOD and
BOD is presented in Figure 6.6. As shown, as FOD increases also the percentage
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Figure 6.6: Percentage of correlated alerts at different values of FOD and BOD.

of correlated alerts does, which would imply that, the greater FOD is, the best the
correlation. But this might be an erroneous conclusion, as big values for FOD would
merge together independent incidents involving some common affected object ID.
On the other hand, having big delays is not reasonable in ticket creation for crit-
ical incidents. Therefore, a careful analysis of the results taking into account the
tickets/alerts that resulted inappropriately merged (correlation errors) is required.
Anyway, taking into account the shape of the graph in Figure 6.6, we selected FOD
= 4 h as the initial candidate to start with testing. Therefore, we try to assess the va-
lidity of the results regarding the correlated object IDs by inspecting some samples
next.

Regarding BOD, as shown in Figure 6.6, there is no relevant influence of this
value in the results. This was somehow expected, as the delay in the validation of
the last ticket should be mainly associated to a lack of related alerts, and not to their
existence.

Validation of the Correlated Sets

As previously stated, the dataset lacks of a ground truth to relate the existing in-
cidents with their corresponding alerts and tickets. Furthermore, manually label-
ing the dataset is unaffordable. Thus, validating the results is not straightforward.
To overcome this issue, we validate our correlation results by manually inspecting
many samples and applying the knowledge and rules of thumb provided by the
company management staff, which helped us during this procedure. Thus, for the
cases that were not clear enough for us, we got additional feedback from the com-
pany.
First, a set of 100 randomly chosen incident samples of correlated tickets and alerts
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Ticket lifetime 58.8 h
Incident lifetime 81.4 h
Number of repr. alerts/ sample 5.5
Number of alerts/ repr. alerts 4.8
DP R 33.3 h

Table 6.2: Mean values for some variables for the correlated subset.

Figure 6.7: Number of false positives at different values of FOD.

were considered and studied manually, for FOD = 4 h and BOD = 0 h. Previously,
some statistics (Table 6.2) were collected from the correlated subset; we define some
of them in the next sections. We found that 99 of them were undoubtedly classified
as correctly correlated. The remaining sample is not a clear case, as there is not
enough information in the ticket and the alerts as to decide whether they are re-
lated or not. Thus, assuming the worst case, there is a single error in 100 samples,
providing an estimated value of 99% of a posteriori accuracy, that is, 99% of the
found correlations are correct at this operation point.

For the 100 chosen samples, we have studied them by varying the value of FOD,
starting at FOD = 0.025 h, that leads to removing/adding some events in each inci-
dent, providing the values in Figure 6.7 for the number of FPs for which we found
inappropriately assigned events for some samples. Consequently, after combining
the information from Figures 6.6 and 6.7 it is evident that a value for FOD = 1 h
represents the best compromise in the case study we are considering here. In this
case, choosing FOD = 1 h will obtain high correlation percentage with zero FPs.

As this sampled validation is not enough, we went deeper and followed another
strategy. As explained in Section 6.3, one of the most conflictive cases for the corre-
lation was related to consecutive incidents. To be more confident about the results
and have an insight on this particular case, we can consider the delay between the
maximum resolution time among all the previous tickets (TP i) having the same af-
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DS2 Alerts Tickets

Number of initial alerts/tickets 7,436 348
Number of representatives alerts/tickets 1,539 286
Number of initial alerts/tickets correlated 5,686 302
Number of representatives alerts/tickets correlated 1,178 215
Percentage of representatives alerts/tickets correlated 76.5% 75.5%
Number of correlated incidents 215

Table 6.3: Correlation results considering only tickets created by the management staff (MS
group).

fected object ID as the current one, and the first appeared alert of the current ticket.
This delay value, labeled DP R in Table 6.2, was calculated as:

DP R = tCTAc −maxi∈[1,m]{tRTTP i }

where the first term represents the creation time of the first alert related to the
current ticket, and the second term represents the maximum resolution time among
all the previous tickets having the same affected object ID.

In our case, DP R has a mean value of 33.3 h, which is significantly greater than
the selected value for FOD. This can be interpreted as a clear indication that the
first appeared alert is related to the current incident and not to a previous one for
the selected value FOD = 1 h.

After choosing the value for FOD, the correlation results taking into account
only the tickets created by management staff are presented in Table 6.3. As shown,
around 75% of the tickets and alerts potentially related to relevant incidents are
correlated. For the tickets, this means that 75% of them are really related to relevant
incidents, which provides no further information on the quality of the correlation
itself, as the remaining 25% could be related to the critical nodes, but not to a critical
episode. On the other hand, having only 76.5% of relevant alerts correlated to a
ticket is, at first sight, not a very good result, although it represents and advance
as no other similar system has been described. Anyway, this result needs a deeper
analysis in order to find the potential causes for such a figure, what is addressed
next.

Analysis of the Non Correlated Alerts

Although the effectiveness of the proposed technique in terms of improperly cor-
related events has shown to be high, around 1/4 of the relevant alerts are not as-
signed tickets, what requires further analysis. According to the protocols in use at
the company, all of the considered alerts should have generated tickets from the
management staff. This incoherency can be initially attributed to the fact that the
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Working shift % of relevant alerts % of non correlated alerts

RS 50.6% 53%
AS 16.9% 28%
NS 32.5% 19%

Table 6.4: Distribution of the number of alerts over working shifts.

proposed method is not accurate enough. But an improper application of that pol-
icy or some problems with the staff could also explain it. Therefore, we analyzed
those non correlated alerts taking into account three potentially influential factors:
(i) the working shift at the time of their creation, (ii) alert durations and (iii) the
interarrival delay of alerts having the same main object ID.

The working shifts can reveal relevant information, as the fact that the number
of persons in charge of the management is not the same for all the shifts and also the
workload is different. After some consultation to the company, we found that there
are three working shifts in a day: the morning shift (RS) from 7:00 AM to 15:00 PM;
the afternoon shift (AS), from 15:00 PM to 23:00 PM; and the night shift (NS) from
23:00 PM to 7:00 AM. Furthermore, the characteristics of the working shifts change
during weekends or holidays.

The analysis of non correlated relevant alerts as a function of the working shift
is summarized in Table 6.4. As shown, there exist differences in the working shift
regarding the distributions of incidents (alerts) and the percentage of non corre-
lated alerts. Thus, while almost half of the alerts appear during the busiest working
shift, that is, RS, the same percentage of non correlated alerts appear. Neverthe-
less, during AS, the percentage of non correlated alerts is not in consonance with
the percentage of existing alerts, which can imply a shortage in personnel for AS or
an improper behavior during it. The opposite occurs during NS. Anyway, the dif-
ferences are not significant enough as to explain the appearance of non correlated
alerts.

An additional analysis of the duration of the non correlated alerts was made,
showing the results provided in Figure 6.8. As a first conclusion, we observed that
about 70% of them present a duration lower than 10 m. This means that the alert
is shown as active only for at most 10 m in the management staff console. With the
help of the management staff, we reached to the conclusion that this is an acceptable
threshold value to distinguish between normal-behavior and relevant alerts before
triggering the ticket creation, and also that the dedication of the staff to other tasks
can hide these kind of short alerts.

Finally, for alerts having a duration greater than 10 m, we analyzed the inter-
arrival delay between consecutive alerts having the same main object ID in order
to see if they are created close in time or there is a time gap between them. Fig-
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Figure 6.8: Histogram of non correlated representative alerts vs. alert duration.

Figure 6.9: Interarrival delay between consecutive non correlated alerts having the same
main object ID.

ure 6.9 shows the histogram of the interarrival delays. We found that less than 10%
of them were repeated within 2 days, that is, most of them appear and, despite its
long or short duration, no additional alerts related to the same affected main object
ID appear in at least two days. This means that the alert is scaling down in the list
of active alerts on the management staff console. Therefore, we conclude that the
lack of an associated ticket can be possibly attributed to the existence of a “window
of opportunity” for the creation of the tickets. Thus, if an alert does not trigger a
ticket within a given period and it is not repeated, it is likely that it will not trigger
a ticket at all. After discussing this question with the company’s management staff,
they partially agreed with this observation.

Additionally, besides the above conclusion for the last subset, we found that
about 38% of the non correlated alerts included names for main object IDs not con-
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Figure 6.10: Distribution of alerts.

forming to the naming convention in use. After consulting with the management
staff we were informed that these types of IDs, despite classified as critical ones,
have special functions not being used by other object IDs. So, the management staff
does not usually open tickets for those types of affected object IDs. That is, we were
initially provided with an inaccurate list of critical nodes.

As a resume, Figure 6.10 shows the results from the assessment of both corre-
lated and non correlated alerts. It is worth to note that, if we accept that alerts last-
ing less than 10 minutes are prone to be ignored, only 7.05% of the initial represen-
tative alerts remain non correlated without an explanation. Considering those with
names conforming the critical nodes list, the percentage of non correlated alerts is
considerably reduced to a 4.37%.

6.5 Chapter’s Conclusions

In this chapter, we proposed a model for the joint correlation of tickets and alerts
in network management. One of the main drives for the proposed method is to
enhance usual alerts correlation methods under the assumption that the tickets
provide additional relevant information about incidents. This information is also
richer from the semantic point of view, as they contain information from users and
network administrator, thus, incorporating human knowledge and relevance into
the process.

The algorithm was implemented and validated through a series of experiments
that showed that the accuracy of the algorithm mainly depends on the value of FOD,
which is the overriding factor in determining the number of False Positives, (FPs). In
our case, we got the best correlation results for the tested dataset with FOD = 1 h.
Consequently, we conclude that, choosing the right value of FOD is an important
task and may affect on both the accuracy and the performance of the system. At
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the same time, the proposed method is based on simple object IDs and reasoning,
making its application in a real NMS almost straightforwardly.

Due to the fact that the dataset tested here is not supervised, i.e., no information
about ground truth is present, we developed our own mechanisms to validate the
results that are mainly based on inspecting many samples manually. In this regard,
the validation method applied here considered a subset of alerts and tickets for
which we were confident about their correlations.





Chapter 7
Applications of the System

As revealed in the different results and conclusions drawn from Chapters 3 to
6, the process of handling the tickets by a management team is not completely sys-
tematic and may be incoherent. While there exists a large number of commercial
tools for ITS focused on improving the whole system to meet SLAs, regretfully, only
few efforts have been devoted to improve the efficiency of the tickets generation
process itself. This, at the same time, would improve the overall task of solving the
incidents, having a direct effect on the stability of the managed network as well.

In this chapter, three possible applications of the tickets and alerts correlation
are presented. First, using the proposed models as an ITS assessment tool, ana-
lysts can obtain some insights about the efficiency of the management teams and
the processes they use, in particular for the first stage of the ticket management
lifecycle, i.e., the ticket creation. Second, the suggested models can also be used to
measure the staff efficiency in the incident management process, in which they can
help analysts to answer several questions: Do SD systems help in the tickets-alerts
correlation process? Do the different working shifts behave the same? How fast/ac-
curate is the staff? among others. The results can be useful from the point of view
of enhancing both the management teams and the policies for tickets creation.

The third candidate application is targeted at the alerts correlation problem. The
proposed tickets-alerts correlation model can help the management staff to aggre-
gate a higher percentage of alerts and to speed up the incident resolution process.

In order to check the usability of these proposals, the proposed models have
been applied to a case study composed of alerts and tickets taken from the database
DS1, already explained in Chapter 3.
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The three following sections will describe in detail each of these applications.

7.1 ITS Processes Assessment

As a first application, the proposed tickets correlation method can be used as an
assessment tool for measuring the quality of the tickets creation process. According
to the proposed method, the efficiency was measured by obtaining the three levels
of tickets reduction, e.g. preprocessing, local and global (Section 5.5). For each
level, the reduction rate was calculated separately, since there are different types of
entries in each one.

As shown in Figure 3.1, the whole process consists of three main steps. First,
malformed and irrelevant tickets are filtered. Second, the number of tickets is re-
duced by substituting each subset of locally correlated tickets into a local repre-
sentative ticket, using for that purpose the local correlation algorithm discussed in
Section 5.5.3. Third, the total amount of tickets is decreased by using the global
correlation algorithm proposed in Section 5.5.3 to obtain a global representative
ticket for each subset of globally correlated tickets. The procedure takes the orig-
inal ticket database (θ) as an input and provides the processed database (δ) as an
output, presenting the different performance indicators for each step.

The efficiency of the process of creation of tickets (E) for every step x (prepro-
cessing and reduction, local, global, overall process) can be defined as:

Ex = 100−ϕx, where x = P ,L,G,overall (7.1)

where ϕx is calculated from Equations (5.11) to (5.14).

The ideal ITS would be that in which the number of tickets generated equals the
number of incidents, i.e., I �O. In this case, according to Equation (5.14), ϕoverall =
0%, that is, there would be no malformed, irrelevant and redundant tickets and,
therefore, Eoverall = 100%.

The efficiency results obtained when the algorithms are applied to the DS1 da-
taset are shown in Figure 7.1, where it is noticeable the high number of irrelevant
tickets (up to 16% in May). From the point of view of the ITS, irrelevant tickets
should have not been created, as they are not related to incidents and/or do not
contain the minimum required information to be useful for incident solving. An
inspection of those irrelevant tickets shows that many of them are not related to in-
cident solving but to other issues, i.e., administrative ones. This could be considered
a misuse of the ITS depending on the active policies.

Also in Figure 7.1, a major redundancy in tickets can be found at the local level,
that is not reasonable from the management’s point of view as the related tickets
are created overlapped in time for the same affected object ID. If the results are ana-
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Figure 7.1: Percentage of tickets removed in each step for DS1: irrelevant tickets, local
correlation reduction, global correlation reduction, final number of global representative
tickets (incidents).

Figure 7.2: Average number of tickets created per incident in DS1.

lyzed from a different point of view, a significant indicator would be the relationship
between the number of incident-related tickets (P) and the number of incidents (I).
Assuming that G is approximately equal to I , Figure 7.2 shows the mean number
of tickets created for every incident. On average, there are 1.23 tickets per incident
after filtering malformed and irrelevant tickets. This means that there is room for
improvement in the creation and handling of the tickets.

In real situations, the three levels of redundancy could have different effects on
the overall efficiency of the IT company, e.g., the cost of creating irrelevant tick-
ets may not have the same weight as local or global redundant tickets. Therefore,
instead of considering the overall efficiency –Equation (7.1)–, the different partial
efficiency measures can be used in a weighted form to evaluate the impact of each
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level of redundancy. This way, it would be possible to account for several reasons
that play important roles, such as the degree of coordination between management
groups, especially in a multi-team or multi-shift environment; updates on the calls
and incidents coming on no matter who worked last on this particular incident; in-
cidents extended over shifts; incidents that might be addressed by several different
teams in the same shift; the mean time between correlated tickets that might be used
as a good indicator of the behavior of the management team for creating such kinds
of redundant tickets and others like incident severity and SLA. Next, we highlight
how to obtain some of these metrics.

7.1.1 Insights from Tickets Management Groups

As a complement to the assessment of the overall performance, it would be interest-
ing to evaluate the amount of redundancy in the tickets creation process contributed
by each of the management groups. Doing so might considerably help in identifying
procedural problems and failures in coordination. Thus, in the following subsec-
tions, the behavior of each of the management groups was studied separately, and
analyzed based on its relation to the overall performance according to the proposed
correlation model. As noted earlier, there are three groups that have the right to
manually create tickets; they are MS, SD1, and SD2. The first one is the manage-
ment staff that creates tickets according to network alerts, while the last two are the
service desks, that create tickets as a response to received customer calls.

Insights from Preprocessing Analysis

Figure 7.3 shows the distribution of irrelevant tickets generated by the three man-
agement groups. From the figure, only 1% of irrelevant tickets are created by
Management Staff (MS), while up to 73% by SD1 and finally 26% by SD2. Thus,
we can conclude that SD1 presents very low efficiency in the tickets generation pro-
cess due to the creation of a high amount of unnecessary tickets: more than 3/4
of irrelevant tickets was created by staff members belonging to this group. These
figures point to a potential fault in the procedures used by them. Nevertheless, the
nature of SD1 can partially explain this extremely high value compared to the oth-
ers. As noted previously, SD1 is classified by the company as a call center level 1;
that is, it is the first department that receives customers’ calls. Consequently, the
staff may create a large number of irrelevant tickets because they may receive many
calls made by customers complaining about non-existent or non-networking related
problems and/or providing insufficient information to properly identify the fault as
a result of the customers not having enough knowledge about the normal operation
of the system they are working with. Anyway, a review of the procedures used by
this group is advisable. On the opposite side, the MS group created few irrelevant
tickets, what is coherent with the procedures, as the staff belonging to this manage-
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Figure 7.3: Distribution of irrelevant tickets created by each management group.

Figure 7.4: Distribution of locally correlated tickets as generated by the three management
groups.

ment group creates tickets based only on receiving alerts and, thus, the chances of
creating irrelevant tickets are lower.

Insights from the Local Correlation Analysis

Once those malformed and irrelevant tickets are filtered, the local correlation is
used to identify the tickets that can be merged at this stage. Figure 7.4 illustrates
the distribution of these tickets according to the creator group. We observe that, on
average, more than 65% of the locally redundant tickets are created by MS, 26.6%
by SD1, and finally 8.4% by SD2. Unlike in the case of unnecessary tickets, a high
percentage of these redundant tickets were created by the staff members belong-
ing to MS, i.e., most of the redundancy is somehow related to MS. In order to check
whether the problem arises from tickets being created by more than one group or by
duplicated tickets from the same group, an additional analysis was made. We take
each group of locally correlated tickets, that is, those tickets that will be merged
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Figure 7.5: Distribution of the number of locally correlated subsets as generated by man-
agement groups.

together by the local correlation algorithm, and examine whether they were created
by the same or by different management groups.

The results for the three randomly chosen months, shown in Figure 7.5, reveal
that, on average, more than 73.5% of the locally correlated subsets included tickets
generated by a single group. This is a surprising result, as redundancy was expected
to be mainly generated due to the existence of different management groups, each
of them generating tickets for the same incident. As shown in Figure 7.6, a deeper
insight into these results reveals that, from these subsets, 72.8% (mean value) of
them are due to MS, 22.1% to SD1, and 5.1% to SD2. Obviously, the procedures
used for tickets creation by MS should be revised.

Keeping on with the original analysis, 26.2% of the locally correlated subsets
include tickets created from two groups, while only 0.3% of them were generated
from the three groups. A manual inspection of many samples revealed that, as ex-
pected, the bulk of tickets coming from two different groups involved MS and SD1.
Obviously, this is due to a lack of coordination between management groups (inter-
management). For example, if a given element of the network is down, i.e., a router,
the staff at SD1 may receive calls from end users complaining about some problems
in accessing services or applications affected by this element. Consequently, a ticket
containing some preliminary information about the ongoing incident is created. At
the same time, the staff at MS may receive alerts triggered by the same element an-
nouncing the existence of the same incident. Consequently, the staff creates another
ticket related to the same incident. Therefore, this lack of coordination between
different groups can lead to the creation of many redundant tickets.

In the above mentioned scenarios, the local correlation algorithm could be easily
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Figure 7.6: Distribution of the number of locally correlated subsets having only one group
ID as creator of the tickets.

Figure 7.7: Distribution of globally correlated tickets as generated by the three management
groups.

implemented in real time as a filter to detect these situations and avoid creating
additional tickets that are a duplicate of an active one.

Insights from the Global Correlation Analysis

Similarly to the local analysis, Figure 7.7 illustrates the distribution of the glob-
ally correlated tickets for the three management groups. As in the local case, it is
MS who is responsible for the majority of the redundant tickets (64%), followed by
SD1 (30%) and SD2 (6%). The analysis of the sources for groups of related tickets
is summarized in Figure 7.8, with similar behavior to the case of local correlation.
Thus, more than 70% of the groups of related tickets contain tickets that were cre-
ated by the same management group, again with MS being the dominant one (up to
69.3% of them). A manual inspection of many samples of globally correlated sub-
sets reveals that staff at MS normally relate several tickets to each other if they are
located nearly in the same network region. For example, the MS may receive many
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Figure 7.8: Distribution of the number of globally correlated subsets as generated by man-
agement groups.

Figure 7.9: Distribution of the number of globally correlated subsets having only one group
ID as creator of the tickets.

alerts triggered from two different network elements located nearly in the same geo-
graphical region. Consequently, they create two different tickets related to the same
incident. The remaining subsets contain tickets created by two different group IDs,
namely MS and SD1. As before, this can be due to the lack of coordination between
the management groups involved in incident resolving tasks.

7.2 Measuring Staff Efficiency

A second good candidate application for the proposed tickets-alerts correlation mod-
el is providing some insights on how to evaluate the efficiency of a management
staff. The proposed models can help analysts in answering several questions such
as: Do Service Desks help in the correlation process? How fast/accurate is the staff?
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Database Alerts Tickets

Number of initial alerts/tickets 7436 520
Number of representatives alerts/tickets 1539 432
Number of initial alerts/tickets correlated 6104 346
Number of representatives alerts/tickets correlated 1261 259
Percentage of representatives alerts/tickets correlated 82% 60%
Number of correlated incidents 259

Table 7.1: Correlation results for relevant tickets created by both groups: the management
staff (MS) and the service desk staff (SD).

among others. In the following subsections we study in more detail all of these
questions.

7.2.1 Service Desk Systems

If the tickets that are related to both MS and SD are considered, it might be inter-
esting to check whether SD systems play an important role in the incident solving
process by applying the correlation algorithm to the tickets created by both groups.
The results, shown in Table 7.1, when compared with those in Table 6.3, that con-
tains correlation results for only tickets created by the MS group, evidence that the
proposed tickets-alerts correlation model is capable of correlating 25.6% of SD tick-
ets, and increasing the number of correlated representatives alerts in an additional
5.5% (82%-76.5%).

Therefore, the main conclusions derived from this analysis are: (i) SD systems
are meaningful to assist in the incident solving problem and are not just a call center
for handling customer calls and complaints; and (ii) the proposed method is able to
incorporate relevant information, that is not available from any other source, into
the correlation process, thus improving the quality of the results and reducing the
number of elements at the output.

7.2.2 Staff Accuracy and Speed

Another possible application for the proposed system is to provide some insights on
how to evaluate the efficiency of the management staff during the incident resolving
process. The proposed system might help analysts in answering several questions
related to the quality of the management, as: Do all the working shifts and manage-
ment groups behave in the same way? How fast/accurate is the staff? An example
regarding the first question has already been considered in Section 6.4.2, revealing
a lower performance than expected for AS working shift.

As an additional example, consider the case in which the analysts are interested
in measuring the reaction time of the management staffs, a group of persons or even
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an individual member of the staff, in dealing with incidents. For this, some mea-
sures could be useful such as how much time the management staff needs to open
a ticket for an ongoing incident, i.e., the delay between the first appeared alert and
the first ticket creation time of an incident. In this case, the average value obtained
from the considered case study is 3.2 hours. But, if we need to measure how much
time the management staff needs to close a ticket for an already resolved incident,
the delay between the first resolved alert and the last resolved ticket related to an
incident can be measured. In the considered case study, the mean value for this
magnitude is 112.4 hours, that is certainly a big value. Similarly, other measures
from the model can be used and interpreted.

7.3 Alerts Reduction

As concluded in Chapter 2, alerts correlation is still an active research area in
both NMS and network and system security. The proposed tickets-alerts correla-
tion model is a strong candidate to be used in this field, to increase the reduction
percentage of alerts that overwhelm the management staff, and also to enrich the se-
mantic information from both technical staff and end users in the alerts correlation
process.

The results regarding the capabilities of the tickets-alerts correlation provided in
Section 6.4.2 are a clear indicator of the potentialities of the proposed method. As
shown in Table 6.3, there is a big reduction in the number of representative alerts,
that is, in the number of different alerts after alert clustering when including the
information from the tickets. In fact, from the initial 1539 alerts to consider, 1178
of them are clustered in 215 incidents, with an average of 5.47 representative alerts
per incident. Therefore, the number of final alert sets to consider is of only 576,
that is, a third part of the original correlated set and 1/12 of the original number of
alerts. Furthermore, the analysis of the alerts that could not be correlated evidences
a low confidence on its relevance.

These results confirm our intuition regarding related alerts not overlapped in
time (Figure 6.3) and the inclusion of additional relationships created by tickets.
Therefore, we conclude from this interesting finding that incorporating tickets in-
formation in the alerts correlation process will definitely help in reducing a higher
percentage of related alerts.

Nevertheless, it is important to mention here that not all of the potentialities of
the system have been used, as the tickets from SD have not been considered during
the assessment of the method. As a matter of fact, the information in these tickets
can be far more significant than that in the MS tickets, as they incorporate the end
users perception of the incident.
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7.4 Chapter’s Conclusions

Along this chapter, we have described through a case study that the proposed cor-
relation models can be used as an assessment tool to provide some insights about
the management staff’s efficiency at the tickets creation and incidents handling pro-
cesses. This way, it is possible to identify some deficiencies in the procedures, poli-
cies or behaviors of the different actors involved in the ITS management process,
enabling corrective actions to be taken and evaluated. Second, the models might
also be used to reduce the number of alerts in the alerts correlation problem. Incor-
porating ticketing information in the alerts correlation process will definitely help
in reducing a higher percentage of related alerts as compared with generic alerts
correlation techniques that only use the alert database as the main source of infor-
mation.

Finally, the main argument of this work is that by simplifying the analysis of
incident tickets and incorporating their information in the alerts correlation pro-
cess, analysts can assess the procedures in order to increase enterprise’s profits and
management staffs can organize their works and speed up the incident resolving
process.





Chapter 8
Conclusions

O ver the past few years, telecommunication networks have evolved rapidly in
terms of scalability and complexity, leading to a significant increase in the number
of network elements. This has motivated that management teams have had to deal
with massive amounts of monitoring data. This problem has itself stimulated them
to think about methods and techniques that make them able to manage, monitor
and follow up all these data rapidly and accurately. Consequently, the alerts corre-
lation concept has emerged and it is considered as one of the promising methods
that have been proposed to handle the huge amount of alerts generated by monitor-
ing systems.

In this thesis, first, we have reviewed the research efforts carried out in the alerts
correlation field, and provided a classification for them based on the type of ap-
plication, the number of data sources, the correlation method used and the type
of architecture. We have shown that it is possible to classify the alerts correlation
techniques as belonging to different applications: NMS, network and system secu-
rity and SCADA systems.

Afterwards, we have carefully studied the design architecture behind the exist-
ing alerts correlation techniques and found that most of them formulated the cor-
relation process as a sequential process. We claim that this sequentiality does not
describe the alerts correlation process well enough. Therefore, we have proposed
a comprehensive alerts correlation model with feedback mechanisms that also con-
siders all the sources of information that could be used in the alerts correlation
process.
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In addition, we have made a review of some available correlation tools, intended
for three different applications: NMS, network and system security and SCADA
systems. We have noticed that there is a big gap between the complexities behind
the alerts correlation techniques suggested by the research community and those
that are really implemented in the commercial or freely available tools.

Also, we have found that, despite the big amount of efforts having been done
in the alerts correlation field, it is still an active area of research in both NMS and
network and system security applications. Furthermore, we have noticed that there
is not a clear agreement among researchers and vendors on how to formulate effi-
cient solutions. Therefore, most of the existing solutions have their own limitations,
such as the lack of standard benchmarks for evaluating and comparing them; archi-
tecture and scalability concerns, in which a large number of solutions are based on
centralized architectures that have a limited scalability; and finally detection accu-
racy, in which the existing alerts correlation techniques are to be improved in this
area.

Regarding ITSs, we have first reviewed the research efforts carried out in the
tickets correlation field, and found out that there is a lack of works focusing in the
tickets correlation process or in the process of the joint correlation of tickets and
alerts.

Second, we have proposed a novel, simple, and effective approach to correlate
and merge incident tickets. The approach is based on a generic model for the tick-
ets that preserves and categorizes the relevant information and enables the com-
parison of their properties with relatively simple functions. No additional sources
of information, apart from the tickets themselves and the information they con-
tain, is required during the merging procedure. Despite its simplicity, the model
has revealed to be useful for reducing the number of tickets generated and handled
by ITS users, what is a desirable target in order to improve the workflow in an IT
department of an enterprise or an IT service provider.

Third, the experiments carried out on two different datasets from a real IT man-
agement company have shown that, contrary to what we expected, there exists a sig-
nificant amount of malformed, irrelevant and redundant tickets being generated by
the different actors in the ITS. On the one hand, the results of the tickets preprocess-
ing and reduction phases have shown that part of the original tickets is considered
irrelevant from the point of view of incident solving. On the other hand, the pro-
posed tickets correlation model –Chapter 5– can discover two levels of redundancy
in creating tickets: local and global. For the local level, the proposed local corre-
lation algorithm was able to discover a significant number of tickets as redundant
tickets. The same is also valid for the global correlation level, in which the output
of the global correlation algorithm has shown that there is another higher level of
redundancy, i.e., part of the local representative tickets is considered as redundant.
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Fourth, due to the fact that the datasets tested here are not supervised, i.e., no
information about ground truth is present, we have developed our own mechanisms
to validate the results that are mainly based on inspecting many correlation samples
manually and proposing several temporal analysis measures.

Fifth, after applying the proposed validation methods, the results have shown
that, first, the local correlation algorithm is able to correlate any subset of locally
correlated tickets into a local representative one that correctly describes the inci-
dent with very high accuracy. The same is also valid for the global correlation al-
gorithm efficiency, as it can correlate any subset of local representative tickets into
a global representative one that correctly describes the incident with high accuracy.
Regarding the samples validated as FPs, we have noticed that the management staff
sometimes refers to previous solved tickets if the ongoing incident has mainly the
same preliminary symptoms, despite the related tickets being really associated to
the same incident or not.

Sixth, the proposed incident tickets correlation model can be easily incorporated
in production systems, not allowing the generation of additional tickets when a
related one is active, or automatically removing those detected as redundant. The
first task is quite straightforward for the local correlation algorithm, that can be
applied in real time at creation of the ticket. The global level uses information that
could not be available at the time of the creation of the ticket but added later and,
therefore, would imply a posterior filtering of the tickets.

Finally, as an additional use of the model and the proposed procedure, we have
also described through a case study how it can be used as an assessment tool to pro-
vide some measures about the management staff’s efficiency at the tickets creation
process. This way, it would be possible to identify some deficiencies in the proce-
dures, policies, or behaviors of the different actors involved in the ITS management
process, enabling corrective actions to be taken and evaluated.

Regarding the joint correlation of tickets and alerts, we have checked that part
of the potentialities for improving current ITSs can be attributed to the different
nature of the information provided by some of the actors, i.e., information gathered
from automatically generated alerts vs. information from customers, that are com-
plementary. We have demonstrated that the mixture of these sources of information
produces a better alerts reduction rate and adds more semantic information in the
process of correlating tickets with alerts as well. As an extension of this idea, we
have proposed a model for the joint correlation of tickets and alerts, and shown that
the correlation process in this type of systems is not straightforward and many chal-
lenges might be appeared that could lower the accuracy of the correlation results.

The most important challenge that we have faced during this process is that we
are dealing with two databases, alerts and tickets, having different characteristics.
On the one hand, tickets contain more semantic information about incidents than



172 Chapter 8. Conclusions

alerts, but, on the other hand, the temporal information they contain is less trustable
than that provided by alerts. We have solved this issue by refining the output of the
tickets correlation with the alerts correlation output, in order to adjust the timing
information of the incidents pointed out by the tickets.

Another challenge is how to deal with border effects and the existence of consec-
utive incidents, in which alerts at the beginning or the end of an incident that are
not assigned to it might be related. To solve this issue, a series of experiments were
carried out to tune the two thresholds’ values, FOD and BOD, that are suggested
for this purpose. The results have shown that the accuracy of the algorithm mainly
depends on FOD and changing the value of BOD does not have any effect on the
correlation results. Thus, the value for FOD is the overriding factor that determines
the accuracy of the proposed algorithm.

Finally, the experimental results have shown that the number of tickets and
alerts correctly correlated by the algorithm increases when tickets from the SD
group are added to those from the MS one. We have concluded from this interest-
ing finding that incorporating ticketing information in the alerts correlation process
will definitely help in reducing a higher percentage of related alerts, i.e., having a
significant increase in the alerts correlation rate.
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