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ABSTRACT 

 

IMPLEMENTATION OF MODELS FOR IMAGE PROCESSING 

APPLICATIONS WITH REAL-TIME CONSTRAINTS 

 

Pablo Guzmán Sánchez, MSc Computer Science 

University of Granada, 2015 

 

Supervisor: Eduardo Ros Vidal, Antonio Javier Díaz Alonso 

 

This work has diverse research branchs, one of them is the implementation for high 

performance computing, while the other branchs are focused on computer models and bio-

inspired algorithms. In this thesis, it has developed different computer vision models for 

application in automotive, biomedical applications and food industry. Therefore, the main 

contribution of this work is the applied component, which requires an efficient 

implementation and processing in specific purpose architectures (for embedded systems) 

or high performance (to provide results and simulations efficiently, eg shortening time in 

diagnosis and monitoring of diseases). 

 

This thesis is divided into five sections: 

 

In the first and second section consists in a brief introduction (English and Spanish 

respectively) to computer vision where it is explained the typical steps that are performed 

in this area to solve an especific problems. The third section proposes an adaptation of an 

efficient optical flow model in a hybrid architecture (focal plane and soft-processor), with 

the objective of developing a real time system that work as driver assistant and advises to 

the driver about vehicles in overtaking to avoid unexpected maneuvers that could cause an 

accident. The forth section of this thesis is focused on the field of ultrasound, where it will 

be exposed a method based on an evolutive algorithm for segmenting the carotid artery to 

obtain an accurate area estimation and determinate the degree of stenosis of the patient. 

Additionally it is proposed a model to estimate sub-pixel motion, in combination with other 

techniques, to measure the wall artery displacement in order to determinate possible 

pathologies of the subject. The fifth section of this thesis is focused to design an 

experimental system in real time to analyze images in field of food industry. This system 

is able to analyze and process images, in order to reject those products that are defective. 

The last section summarizes the final conclusions of this thesis and exposed future works. 
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RESUMEN 

 

IMPLEMENTACIÓN DE MODELOS DE PROCESAMIENTO DE 

IMÁGENES PARA APLICACIONES CON RESTRICCIONES DE 

TIEMPO REAL 

 

Pablo Guzmán Sánchez, MSc Ingeniería Informática 

Universidad de Granada, 2015 

 

Supervisor: Eduardo Ros Vidal, Antonio Javier Díaz Alonso 

 

Este trabajo contiene diversas líneas de investigación, una de ellas es la de implementación 

de esquemas de computación de altas prestaciones, otra de estas líneas se centra en modelos 

de computación y algoritmos bio-inspirados. En esta tesis doctoral se han desarrollado 

diversos modelos de visión para su aplicación en el automóvil, aplicaciones biomédicas y 

la industria de la alimentación. Por lo tanto, la contribución principal de este trabajo es su 

componente aplicada, que exige una implementación eficiente y en arquitecturas de 

procesamiento de propósito específico (para sistemas empotrados) o de altas prestaciones 

(para disponer de resultados y simulaciones de forma eficiente, por ejemplo acortando 

tiempos de diagnóstico y seguimiento de patologías).  

 

Esta tesis se estructura principalmente en cinco apartados:  

 

En la primer y sugundo apartado, se expone una breve introducción (en Ingles y Español 

respectivamente) a la visión por computador donde se explican los pasos típicos que se 

llevan a cabo en este campo para la resolución de problemas concretos. En el tercer 

apartado se propone una adaptación a un modelo eficiente de flujo óptico en una 

arquitectura híbrida (plano focal y soft-processor) empotrada con el objetivo de desarrollar 

un sistema que sirva como asistente de conducción  y advierta al conductor de vehículos 

en adelantamiento en tiempo real para evitar maniobras inoportunas que puedan provocar 

un accidente.  La cuarta parte de esta tesis se centra en el campo de los ultrasonidos, donde 

se expondrá un método basado en algoritmos evolutivos para la segmentación de la arteria 

carótida para obtener una precisa estimación del área y de esta manera determinar el grado 

de estenosis del paciente. Adicionalmente se propone un modelo de estimación de 

movimiento sub-pixel, en combinación con otras técnicas, para medir el desplazamiento 

de las arterias para determinar posibles patologías del sujeto. El quinto apartado de esta 
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tesis se focaliza en diseñar un sistema, en tiempo real, para el análisis de imágenes en el 

ámbito industrial. Dicho sistema es capaz de analizar y procesar imágenes, con el objetivo 

de rechazar aquellos productos que están defectuosos.  En el último apartado, se resumen 

las conclusiones finales de esta tesis y se proponen trabajos futuros.  
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1. INTRODUCTION 

 

1.1 GENERAL 

 

Machine Vision has been one of the most complex fields in computing. From the 70s, 

visual perception by computer has been studied and thanks to the new advances in 

technology; it has been possible to solve machine vision problems that previously were 

impossible from the computational point of view. It has even developed specific 

processing systems to execute computer vision applications in real time. The industry 

is one of the sectors where such kinds of systems have been very successful and thanks 

to those progresses in computer vision and the technology, it has been possible to 

develop advanced visual inspection systems for improving the production quality. 

These systems have been able to replace the human eye, to develop highly repetitive 

and well-defined tasks in a structured and controlled environment, which 20 years ago 

those systems were inconceivable. At the beginning those systems were designed to 

perform simple tasks due to its limitation in capacity and data processing models but in 

recent years has advanced significantly. Nowadays it can be found hybrid architectures 

including multi-core processors, DSP (Digital Signal Processor) and GPGPU (General-

Purpose Computing on Graphics Processing Units). This field is not limited only to 

industrial inspection, but covers a huge horizontal spectrum. 

 

Computer vision comes from a branch of artificial intelligence where make use of 

techniques such as pattern recognition, machine learning, prediction, etc. The purpose 

is to create a process capable of perceiving, analyzing, "thinking" and interacting in a 

controlled environment, with the objective of replacing tasks performed by humans. 

The advantages of using such systems are very wide such as cost reduction, precision, 

continued unsupervised processing system, avoid monotonous tasks, etc. Due this 

displine was created recentenly, computer vision lacks in many cases of own standards. 

Generically, cognitive vision can be structured similarly to this in visual perception of 

primates [KAN91] or humans [NAK95]. This structure consists of three sequential 

layers, where the previous stage provides information to the next one. Those stages are 

as follow: 

 

- Early Cognitive Vision: It is the first stage and its main rol consists in the 

extraction of space-time information from one or serveral images to feed back 

the next stage. The main challenge in this stage is the high degree of processing 

information due this operations are done in the pixel level. It can be cited for 
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example: Point of Interest [HAR88][SMI97], Edge detector [CAN83][CAN86], 

Local orientation píxel [KAS87a][BIG91], etc. 

 

- Intermediate Cognitive Vision: Consist in the combination of the extracted 

features in the previous stage to obtain other more complex. The degree of 

precision in this stage is crucial; due it is propagated to the next stage. As 

extracted features it can be cited: Optical Flow [FLE90][GAU02], Disparity 

[SOL01][MUH02], Local Descriptor [BAY06][LOW99], etc. 

 

- High-level Cognitive Vision: It is the last stage in the hierarchy and its 

responsibility is carry out high-level task as object recognition [DEA13], 

decision making, scene interpretation [THO94], etc. This stage is in charge to 

link the extracted vision features from the previous stage and the Artificial 

Intelligent (AI). 

 

The exposed hierarchy corresponds to a bio-inspired framework where it can be used 

to solve computer vision problems. However, in many occasion, it is not needed utilize 

the last stage in order to solve computer vision problems. Figure 1.1 shows an 

illustrative example where all the described stages are carry out to solve a hipotetical 

face detection application. 

 

 
                    (a)                                 (b)       (c)                              (d) 

Figure 1.1. Example of the diferent stages that involve a computer visión application. (a) Original image, 

(b) Early Cognitive Vision (Point of Interest), (c) Intermediate Cognitive Vision (Descriptors) and (d) 

High-level Cognitive Vision (Face Detection).  

 

Part of this thesis emerges from SAPVIA (Sistema Autónomo Programable de 

Visión Artificial, Autonomus Programable Artificial Vision System) project with the 

objective of developing an embedded application in an experimental plataform created 

by Anafocus (Innovaciones Microelectrónicas, S.L.). This application is focalized in 

ADAS (Advanced Driver Assistance Systems) field for helping to the driver and 

prevents road accidents. Inside the wide spectral range of ADAS applications, we focus 

in LDW (Lane Departure Warning) systems. This kind of systems must be able to detect 
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vehicles in the near lane and advice to the driver the danger of moving to this lane, as 

illustrates Figure 1.2. It is important to remark that the designed system is based on a 

focal plane able to performance in the analogic plane ultra-fast basic operations and an 

embedded processor to control tasks and digital processing. The exposed work deal 

with how co-design existing methods and adapt them to this platform.  

 

 

Figure 1.2. Illustration of BLIS (BLindspot Information Systems) system, developed by Ford. (Courtesy 

of Ford Motor Company). 

 

In addition with the previously described before, this thesis evolves thanks to 

ITREBA (Procesamiento de Imagen/Video en Tiempo Real para Exploración 

Biomédica Activa, Active Biomedical Exploration Image/Video Process in Real-Time) 

project. It expects develop a platform able to capture, process (obtain significant 

parameters) and show Ultrasound sequences images, where the experts can visualize 

the extracted parameter in previously registered sequences with the objective of 

tracking the evolution of the patients and the parameters over the time. One advantage 

of working with Ultrasound imaging is the non-invasive nature, relative cheap and 

portable.     

 

In the last decade has increased the cardiovascular diseases, this kind of diseases 

must be detected in time to avoid premature death.  The cardiovascular diseases are one 

of the three main causes of death in the world. One that must be emphasize is the called 

“silent killer” o Aneurism that takes millions of lives each years. An Aneurism can 

cause a rupture of the blood vessel and therefore an immediate death. The non-invasive 

technique more utilized to determinate the diameter of the blood vessel is Ultrasound 

imaging and it is used for determining if excess the regular diameter size. 
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The main problem in Ultrasound imaging is that requires of well-qualified staff to 

realize the exploration, make an interpretation of the obtained images and search the 

anomaly in the dynamic exploration process. It is not only obtain an image and process 

it; the exploration process is complex and the expert must interpret what is displayed to 

find the areas to realize a diagnosis or follow a disease over the time. This thesis 

analyzes existing techniques and proposes an alternative method to reduce the degree 

of specialization to measure, in a semiautomatic way, the diameter of the blood vessel. 

In addition it developed a method able to measure the dynamic features of the arteries 

to describe the radial motion and it possible association to specific diseases. The 

challenge in Ultrasound imaging is the high degree of noise in the signal, resulting quite 

complex apply classic techniques to determinate the wall vessel motion with high 

precision. 

 

As commented in the beginning of this section, computer vision has obtained a high 

impact in the industrial inspection and therefore it is a new challenge to cover in this 

work. The thesis finalize with the design of a high performance industrial inspection 

system to detect defective biscuits in the convey belt. As illustrative example of an 

automatic inspection system, Figure 1.3 shows one of these systems working on a 

conveyor belt to detect anomalies in plastic water bottles.    

 

 
Figure 1.3. An example of a Machine Vision inspection system installed in the production chain. 

(Courtesy of Cognex Corporation). 

 

This work represents a significant contribution in vision systems in industrial field. 

The combination of different algorithms and its implementation in real-time, in 

architectures of massively parallel processing, involves an increase of reliability and 

efficient availability of information.    
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1.2 SCIENTIFIC OBJECTIVES 

 

In this work, the hypothesis is based on that several classic computer vision algorithms 

bring an intrinsic limitation caused by the kind of information that is processed. The 

combination of information generates more precise results for a specific environment 

representation. The combination of different extracted modalities of a vision system is 

not a simple sum of them, but requires its integration and cross validation in diverse 

levels.       

      

In addition, the actual systems incorporate a processing speed that does not cover 

the real-time requirement for different applications. This affects the use in dynamic 

environment where the calculated estimations must be done efficiently to facilitate an 

agile perception-action cycle. An improvement on the vision systems performance 

involves its adaptation to any work environment where such information should be as 

requirement the real-time restriction. As work hypothesis, it is suggested the expansion 

of existent methods and adapt them in specific platforms to be processed in real-time, 

e.g. with the support of graphic processors (GPUs) or focal planes.     

   

The work hypothesis where are focused the effort of this doctoral thesis is that the 

computer vision application to applied fields is not imminent. Requires the adaptation 

of vision models to obtain real-time performance, implementation in architecture with 

limited performance (embedded system) and making use of robust methods in relation 

with the signal noise (in the case of the obtained images in Ultrasound). The application 

of computer vision model in these fields (automotive, bio-medicine and industrial 

inspection) allows design systems able to provide enough information to simplify the 

decision-making and make in an efficient way, for the operator (the driver in the case 

of automotive application and an doctor in the case of ultrasound exploration 

application) or in automatic way (in the case of automatic industrial inspection). The 

objectives of this investigation work are listed below:  

 

- Study of motion estimation models, segmentation, feature extraction and 

classification.  

 

- Development of models for the detection of overtaking vehicles.  

 

- Estimation of the dynamic properties of the artery.  
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- Segmentation and estimation of the diameter of the artery.  

 

- Study and implementation of a real-time system for industrial inspection.  

 

- Implementation of models in efficient processing platforms.  

 

1.3 PROJECT FRAMEWORK 

 

This thesis has been supported by two research projects, SAPVIA and ITREBA in 

which this thesis is based. Both projects have different objectives but at the same time 

those projects share a common denominator, high performance in signal processing 

architectures. A brief description of each project is carry out in this section. 

 

1.3.1 SAPVIA 

 

SAPVIA (Sistema Autónomo Programable de Visión Artificial, Ref. 1895) emerges as 

collaboration with the Spin-off Anafocus (Innovaciones Microelectrónicas) to design 

an ad-hoc application in an experimental embedded artificial vision system called Eye-

RIS. This application is involved in the ADAS (Advanced Driver Assistance Systems) 

field. ADAS systems, based on passive sensors, are considered a huge challenge due 

the degree of complexity. These systems must work in variable environments with 

several objects and different scenarios. ADAS systems are designed to help the driver 

and prevent possible accidents on the road, i.e., work as a support assistance system for 

the driver. The purpose of the cited virtual assistance is to detect vehicles overtaking in 

the adjacent lanes and to warn the driver about the risk of changing to another lane. The 

developed platform by Anafocus is based on a focal plane (analogic) able to realize 

low-level vision operations (early vision) with a high performance computation. The 

system is also equipped with a 32 bit soft processor to performance control task and 

digital processing. The work realized in this project lies in evaluate different computer 

vision models and apply co-design techniques to adapt it to Eye-RIS system. 
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1.3.2 ITREBA 

 

The Junta de Andalucía project ITREBA (Procesamiento de Imagen/Video en Tiempo 

Real para Exploración Biomédica Activa, TIC-5060) consists in the implementation of 

diverse computer vision techniques applied to Ultrasound imaging in medicine. 

Ultrasound techniques allow explore and determinate diverse patalogies in non-

invasive way. Due this kind of technique requires an active exploration the degree of 

specialization, therefore only a minority of doctors can utilize this technique because 

the need of specific formation. The manual extracted parameters during the exploration 

have a huge inter-operator and inter-exploration variability, this make that this 

technique must be utilized in a complementary way with others more invasive. For this 

reason, the fundamental objective in this project is the implementation of a video 

processing system in real-time to allow, in the frame of vascular explorations with 

Ultrasounds, different capacities: 

 

- Reduce the inter-operator and inter-exploration variability. 

 

- Significant parameters extraction in a semi-automatic, that will be evaluated 

with cross validation with respect the one taken manually by the expert.  

 

- Reduction of the degree of specialization. 

 

For this purpose, it will be developed a platform that capture the sequence 

exploration, process it and visualize the results overlapped in real-time. That is to say, 

it will be implemented a “augmented visualization” scheme where the specialist can 

visualize different parameters (overlapped) with the registered exploration sequence. 

This allows adopt different exploration strategies like evaluate the similitude of the 

image with respect another stored in a previous exploration. This kind of evaluations 

can be the measurement of the size or the morphology of an atheroma plaque.   

 

1.4 METHODS AND TOOLS 

 

The followed methodology utilized in this thesis combine the theoretical study, 

generating models that will be experimentally evaluated through its implementation in 

computer equipment. It will be follow a theoretical-practice methodology proper of 

engineering, where it will be covered scientific-technical advances. Besides it will 
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define testing bench to use a verification pattern and the validation of the developed 

systems. 

 

The methods implemented in this thesis have been done in different languages and 

development environment. To study the viability of the methods, it has been utilized 

MATLAB® environment to determinate the reliability and the robustness of the 

methods and integrate them into the system. The environment utilized in SAPVIA 

project was ECLIPSE, using different development languages. In the case of the NIOS 

II processor, the methods with non-high performance were developed in C while for 

algorithms with high performance requirement were developed in assembler (ASM). 

CFPP language was used to develop the algorithms in the focal plane; this language 

was created by Anafocus and let us develops the Q-Eye unit control.  Regarding to 

ITREBA project, the development environment was Microsoft Visual Studio 2010 

with. NET™ technology and OpenCL (Open Computing Language) to develop the 

massive parallel architecture GPU (Graphics Processing Unit).   

 

1.5 ORGANIZATION OF CHAPTERS 

 

The structure of this thesis is divided in three main chapters, as follow. Chapter 3 

describe how work the proposed novel vision system to detect overtaking vehicles. This 

chapter is divided in three sections, section 3.4 details the utilized architecture to 

develop the described system, section 3.5 introduces an efficient co-design to estimate 

optical flow in real time in this architecture and properly evaluated. Section 3.6 details 

the final system implementation to detect the overtaking vehicles with the pertinent 

evaluations and finally the conclusions are exposed in section 3.7. Chapter 4 focuses in 

two applications based on Ultrasound imaging, where section 4.2 is oriented to the 

segmentation of the artery in transversal section through an evolutionary algorithm and 

compared with the state of art. Section 4.3 exposed a novel method to determinate the 

radial motion in the vessel wall in longitudinal Ultrasound imaging. This method makes 

use of a combination of Block Matching, Variational Optical Flow and semi-elastic 

methods with the objective to obtain a robust sub-pixel estimation. The exposed method 

is also exhaustively evaluated with other methods to confirm its reliability. Chapter 5 

presents the role of computer vision in the food industry field where it is exposed a 

system able to analyze and to detect biscuits with presence of fractures to reject out the 

convey belt. Finally, chapter 6 discuses the obtained results and the obtained scientific 

contributions of this thesis.            
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2. INTRODUCCION 

 

2.1 GENERAL 

 

La Visión Artificial ha sido uno de los campos más complejos en la computación por 

ordenador. Desde la década de los 70 se ha estado estudiando la percepción visual por 

computador y gracias a los nuevos avances de la tecnología, hoy en día se pueden 

resolver problemas de visión artificial que antes resultaban imposibles desde el punto 

de vista computacional. Se han desarrollado incluso sistemas de procesamiento de 

propósito específico para la visión en tiempo real. La industria ha sido el sector donde, 

este tipo de sistemas, han tenido una gran acogida. Gracias a los avances en el campo 

de la visión artificial y la tecnología han hecho posible desarrollar sistemas de 

inspección visual, mejorando la calidad en la producción. Estos sistemas han sido 

capaces de reemplazar el ojo humano, para desarrollar tareas muy repetitivas y bien 

definidas en entornos estructurados y controlados, que hace 20 años eran impensables. 

Al principio fueron diseñados para realizar tareas sencillas, debido a su limitación en la 

capacidad y modelos de procesamiento de datos pero en los últimos años se ha avanzado 

significativamente. Hoy en día, se pueden encontrar arquitecturas híbridas que incluyen 

procesadores de varios núcleos, DSP (Digital Signal Processor) y GPGPU (General-

Purpose Computing on Graphics Processing Units). Este campo no está limitada sólo a 

la inspección industrial,  sino que abarca un inmenso espectro horizontal. 

 

La visión artificial surge como una rama de la inteligencia artificial en las que se 

emplean técnicas derivadas tales como reconocimiento de patrones, aprendizaje, 

predicción, etc. La finalidad de la visión artificial es la creación de un proceso capaz de 

percibir, analizar, “razonar” e interactuar en un entorno controlado, con el objetivo de 

sustituir tareas realizadas por el ser humano. Las ventajas del uso de este tipo de 

sistemas son muy amplias tales como reducción de costes, precisión, sistema 

continuado de procesamiento sin supervisión, eludir tareas monótonas a operarios, etc. 

Al tratarse de una disciplina con poco tiempo de vida, la visión artificial carece, en 

muchas ocasiones, de estándares propios. De forma genérica, la visión cognitiva se 

puede estructurar de forma similar a la presente en la percepción visual de los primates 

[KAN91] o la del ser humano [NAK95]. Dicha estructuración está compuesta por tres 

capas secuenciales, donde la etapa anterior provee información a la siguiente. Dicha 

etapas son las siguientes:  
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- Visión Cognitiva Temprana: Es la primera etapa y su rol principal consiste en 

extraer información espacio-temporal de una o varias imágenes consecutivas, 

para realimentar a la siguiente etapa. El principal reto que conlleva esta fase, es 

el alto volumen de información que se debe procesar dado que las operaciones 

se realizan a nivel de píxel. Como ejemplos podemos citar: Puntos de Interés 

[HAR88][SMI97], Detección de bordes [CAN83][CAN86],  Orientación local 

del píxel [KAS87a][BIG91], etc. 

 

- Visión Cognitiva Media: Consiste en la combinación de las características 

extraídas en la etapa anterior para obtener otras mas complejas. El grado de 

precisión de las características obtenidas es una gran responsabilidad de esta 

etapa, ya que el grado de precisión y robustez es propagado a la etapa posterior. 

Como características extraídas en esta etapa podemos citar las siguientes: Flujo 

óptico [FLE90][GAU02], Disparidad [SOL01][MUH02], Descriptores locales 

[BAY06][LOW99], etc.  

 

- Visión Cognitiva de Alto Nivel: Comprende la última etapa en la jerarquía y 

es la responsable de llevar tareas de alto nivel tales como reconocimiento de 

objetos [DEA13], interpretación de la escena [THO94], toma de decisiones, etc. 

Esta etapa es la encargada de enlazar las características de visión extraídas en la 

etapa anterior y la Inteligencia Artificial  (IA).  

 

La jerarquía expuesta corresponde a un marco bio-inspirado en el que nos podemos 

basar para resolver problemas pertinentes a la visión artificial. No obstante, en muchas 

ocasiones, no es necesario utilizar la última capa para solucionar tareas relacionadas 

con la visión. La Figura 2.1 muestra un ejemplo ilustrativo donde se llevan acabo las 

etapas previamente descritas para una hipotética aplicación de detección facial. 

 

 
                    (a)                          (b)       (c)                        (d) 

Figura 2.1. Ejemplo de las diferentes etapas que componen una aplicación de visión artificial. (a) Imagen 

original, (b) Visión Cognitiva Temprana (Puntos de interés), (c) Visión Cognitiva Media (Descriptores) 

y (d) Visión Cognitiva de Alto Nivel (Detección facial). 
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Parte de esta tesis surgió a partir de un proyecto denominado SAPVIA (Sistema 

Autónomo Programable de Visión Artificial) con el objetivo de implementar una 

aplicación embebida para una plataforma experimental desarrollada por Anafocus 

(Innovaciones Microelectrónicas, S.L.). Dicha aplicación está focalizada en el ámbito 

de los ADAS (Advanced Driver Assistance Systems) para la ayuda a la conducción y 

prevención de accidentes en carretera. Dentro del amplio espectro de los ADAS, nos 

centraremos en los sistemas LDW (Lane Departure Warning). Este tipo de sistemas 

deben ser capaces de detectar vehículos en el carril próximo al nuestro y advertir al 

conductor del peligro que conllevaría un cambio de carril, como ilustra la Figura 2.2. 

Como elemento a destacar, nuestro sistema se basa en un procesador de plano focal 

capaz de realizar operaciones básicas de alta velocidad en el plano analógico y de un 

procesador empotrado para tareas de control y procesamiento digital. El trabajo 

presentado versa sobre cómo adecuar los algoritmos existentes o los desarrollados 

mediante técnicas de co-diseño orientadas al presente dispositivo.  

 

 

Figura 2.2. Ilustración del funcionamiento del sistema BLIS (BLindspot Information Systems) 

desarrollado por Ford. (Cortesía de Ford Motor Company). 

 

Adicionalmente a lo descrito anteriormente, la tesis evoluciona gracias al proyecto 

de excelencia de la Junta de Andalucía ITREBA (Procesamiento de Imagen/Video en 

Tiempo Real para Exploración Biomédica Activa) en el que se pretende desarrollar una 

plataforma capaz de capturar, procesar (obtención de parámetros significativos) y 

mostrar secuencias de ultrasonidos. Donde los especialistas podrán visualizar los 

parámetros extraídos en las secuencias registradas previamente con el objetivo de 

realizar seguimientos de pacientes y la evolución de dichos parámetros en diversas 

monitorizaciones. Una de las ventajas de trabajar con dispositivos de ultrasonidos es 

que son técnicas de exploración no invasiva, relativamente barata y portátil.  
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En la última década se ha producido un incremento de enfermedades 

cardiovasculares que si no son detectadas a tiempo pueden producir la muerte. De hecho 

las patologías cardiovasculares se encuentran entre las tres principales causas de muerte 

evitable. Uno de los casos a destacar es el denominado “asesino silencioso” o 

Aneurisma que se cobra muchas vidas al cabo del año. Una aneurisma puede provocar 

la ruptura del vaso sanguíneo y producir la muerte instantáneamente. La técnica no 

invasiva más utilizada se basa en los ultrasonidos, para determinar si el diámetro del 

vaso excede el tamaño típico.  

 

El problema de las técnicas de ultrasonidos es que requieren de personal altamente 

especializado para realizar la exploración, interpretar las imágenes obtenidas y buscar 

el punto o anomalía durante ese proceso de exploración dinámico. Es decir, no se trata 

de obtener una imagen y luego procesarla, el mismo proceso de exploración es 

complejo, el especialista debe interpretar lo que está visualizando para encontrar las 

zonas que quiera revisar (y registrar) en las que puede tomar medidas en imágenes 

concretas, para hacer un diagnóstico o seguimiento de una patología. Se realizará un 

estudio de las técnicas existentes y de una propuesta que mejore la precisión para 

reducir el grado de especialización y poder medir semiautomáticamente el diámetro de 

los vasos. Adicionalmente implementaremos un sistema capaz de evaluar 

características dinámicas de las arterias para describir su movimiento radial y una 

posible asociación con determinadas patologías. El mayor reto en resolver este 

problema es el alto grado de ruido en la señal, resultando bastante complejo aplicar 

técnicas clásicas para determinar el movimiento de paredes de vasos con gran precisión. 

 

Como se ha comentado al inicio de esta sección, la visión artificial ha tenido un alto 

impacto en la inspección industrial y por lo tanto es un reto que pretende afrontar este 

trabajo, por ello esta tesis concluye con el desarrollo de un sistema de inspección 

industrial de alto rendimiento para detectar galletas defectuosas en la cadena de 

producción. Como ejemplo ilustrativo del funcionamiento de sistemas de inspección 

automatizados, la Figura 2.3 muestra uno de estos sistemas en pleno funcionamiento 

para la detección de anormalidades en los botellines de agua. 
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Figura 2.3. Un ejemplo de un sistema de inspección industrial basado en visión artificial instalado en la 

cadena de producción. (Cortesía de Microscan Systems Inc.). 

 

Este trabajo representa un avance significativo en los sistemas de visión en el ámbito 

industrial. La combinación de información entre diferentes algoritmos existentes y su 

implementación en tiempo real, en arquitecturas de procesamiento masivo, implican un 

incremento en la fiabilidad y disponibilidad eficiente de información que aportará el 

sistema. 

 

2.2 HIPÓTESIS Y OBJETIVOS CIENTÍFICOS 

 

En este trabajo de tesis, la hipótesis consiste en que muchos modelos de visión por 

computador clásicos conllevan una limitación intrínseca provocada por el tipo de 

información sobre la que trabajan. Una combinación de información produciría unos 

resultados más precisos para la representación de un entorno. La combinación de 

distintas modalidades extraídas de un sistema de visión no es una simple suma de ellas 

sino que requiere de su integración y validación cruzada a diversos niveles. 

 

Adicionalmente, los sistemas actuales poseen una velocidad de trabajo que no 

cumplen los requisitos de tiempo real impuestos por distintas aplicaciones, lo que afecta 

el uso en entornos dinámicos donde el cálculo de las estimaciones se debe hacer de 

forma eficiente para facilitar un ciclo de percepción-acción ágil. Una mejora de las 

prestaciones en los sistemas de visión implicaría su adaptación a cualquier entorno de 

trabajo donde dicha información sea como requisito el tiempo real. Con esta hipótesis 

de trabajo se plantea extender los modelos y adaptarlos a plataformas de tiempo real, 

por ejemplo con el apoyo de procesadores gráficos (GPUs) o planos focales. 

 

La hipótesis de trabajo en la que se centran los esfuerzos de esta tesis doctoral es que 

la aplicación de modelos de visión por computador a campos de aplicación no es 
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inmediata. Requiere de adaptaciones de modelos de visión para obtener funcionamiento 

en tiempo real, implementación en arquitecturas de prestaciones limitadas (en el ámbito 

de los sistemas empotrados) y utilización de modelos robustos frente a ruido de la señal 

(como en el caso de aplicación de modelos de visión a imágenes obtenidas con 

ultrasonidos). La aplicación de modelos de visión en estos campos (automóvil , 

biomédico e inspección industrial) permite diseñar sistemas capaces de suministrar 

información suficientemente rica para que la posterior toma de decisiones sea sencilla 

y pueda realizarse de forma eficaz por parte de un operador (el conductor en el caso de 

aplicación en automóviles y un especialista médico en el caso de aplicación en 

exploración con ultrasonidos) o de forma automática (en el caso de inspección industrial 

automatizada). Los objetivos de este trabajo de investigación son los siguientes: 

 

- Estudio de modelos de estimación de movimiento, segmentación, extracción de 

características y clasificación. 

 

- Desarrollo de modelos para la detección de vehículos en adelantamiento. 

 

- Estimación de las propiedades dinámicas de la arteria. 

 

- Segmentación y estimación del diámetro de la arteria.  

 

- Estudio e implementación de un sistema de inspección industrial en tiempo real. 

 

- Implementación de los modelos en plataformas de procesamiento eficiente. 

 

2.3 MARCO DE PROYECTOS 

 

Esta tesis ha sido soportada por dos proyectos de investigación, SAPVIA e ITREBA en 

los cuales se basa esta tesis. Ambos proyectos tienen objetivos muy diferentes pero al 

mismo tiempo comparten un denominador común, procesamiento de la señal en 

arquitecturas de altas prestaciones. A continuación se realizará una breve descripción 

de cada uno de los proyectos mencionados. 
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2.3.1 SAPVIA 

 

SAPVIA (Sistema Autónomo Programable de Visión Artificial, Ref. 1895) surge como 

una colaboración con el Spin-off Anafocus (Innovaciones Microelectrónicas, S.L.) con 

el propósito de diseñar una aplicación ad-hoc para un sistema experimental empotrado 

de visión artificial denominado Eye-IRIS. El ámbito de la aplicación de dicho sistema 

esta focalizado en el marco de los ADAS (Advanced Driver Assistance Systems). Los 

Sistemas ADAS, basados en sensores pasivos, están considerados como uno de los 

mayores retos actuales dentro del campo de la visión artificial, ya que nos encontramos 

en un ambiente muy variable con diversos objetos y diferentes escenarios. Este tipo de 

sistemas están orientados para la ayuda a la conducción y prevención de posibles 

accidentes en la carretera, es decir, funcionan como un asistente de apoyo para el 

conductor. La finalidad de dicho asistente virtual es la de detectar vehículos en el carril 

adyacente y advertir al conductor del peligro que conllevaría un cambio de carril. La 

plataforma desarrollada por Anafocus está basado en un procesador de plano focal 

(Analógico) capaz de realizar operaciones de baja visión (Visión Temprana) en dicho 

procesador a alta velocidad. El sistema esta también acompañado de un procesador de 

32 bits para tareas de control y procesamiento digital. El trabajo realizado en este 

proyecto consiste en evaluar diferentes modelos de visión y realizar técnicas de co-

diseño para adaptarlo a este dispositivo. 

 

2.3.2 ITREBA 

 

El proyecto de excelencia de la Junta de Andalucía ITREBA (Procesamiento de 

Imagen/Video en Tiempo Real para Exploración Biomédica Activa, TIC-5060) va 

dirigido a la implementación de técnicas de visión artificial aplicadas al marco de los 

ultrasonidos en el ámbito de la medicina. Las técnicas de ultrasonidos permiten 

exploraciar e identificar diversas patologías de forma no invasiva, pero al tratarse de 

una exploración activa requieren de un alto grado de especialización. Por ello sólo una 

minoría de médicos puede utilizar esta técnica, ya que precisan de formación específica. 

Los parámetros extraídos manualmente durante la exploración tienen una gran 

variabilidad inter-operador e inter-exploración, esto hace que esta técnica se utilice de 

forma complementaria con otras más invasivas. Por todo ello, el objetivo fundamental 

de este proyecto es la implementación de un sistema de procesamiento de video en 

tiempo real que permita, en el marco de exploraciones vasculares con ultrasonidos, 

varias capacidades: 
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- Reducir la variabilidad inter-operador e inter-exploración. 

 

- Extracción de parámetros significativos de forma automática (que evaluaremos 

con validación cruzada con respecto a los tomados manualmente por el 

especialista). 

 

- Reducción del alto grado de especialización exigido. 

 

Para ello se desarrollará una plataforma que reciba la secuencia de exploración, la 

procese y visualice los resultados superpuestos con la secuencia de exploración en 

tiempo real. Es decir se implementará un esquema de “visualización aumentada”, en el 

que el especialista pueda visualizar diversos parámetros (superpuestos) con la secuencia 

de exploración que está registrada. Esto le permitirá adoptar distintas estrategias de 

exploración como por ejemplo evaluar la similitud de la imagen (con respecto a otra 

almacenada en una exploración anterior) mientras está realizando una medida (como 

tamaño o morfología de una placa de ateroma) en el marco de una monitorización de 

una patología vascular con reconocimientos periódicos. 

 

2.4 MÉTODOS Y HERRAMIENTAS 

 

La metodología que se va a seguir en esta tesis combinará el estudio teórico, con la 

generación de modelos que serán validados experimentalmente mediante su 

programación en equipos informáticos. Se seguirá por tanto una metodología teórico-

práctica propia de una ingeniería, en la que se abordan de forma integrada avances 

científico-técnicos. Además, se definirán bancos de pruebas que sirvan como patrón de 

verificación y validación de los sistemas desarrollados.  

 

Las implementaciones algorítmicas realizadas en esta tesis se elaboraron en varios 

lenguajes y entornos de programación. Para estudios de viabilidad de los algoritmos, se 

hizo uso del entorno MATLAB® donde se evaluaban modelos de visión artificial con 

el objetivo de determinar la fiabilidad y robustez de los mismos e integrarlos 

posteriormente a nuestro sistema. En el caso del proyecto SAPVIA se realizaron 

implementaciones en el entorno ECLIPSE programando en diferentes lenguajes de 

programación en función de la plataforma a la que iba dirigida. En el caso de la 

programación para el procesador (soft-core) NIOS II de altera se implemento en C para 

rutinas que no requerían alto rendimiento, mientras que para algoritmos mas complejos 

se desarrollaron en ensamblador (ASM). La parte del código pertinente al plano focal 

se implemento en un lenguaje propio (CFPP) para programar  la unidad de control Q-
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Eye. A lo que respecta al proyecto ITREBA el entorno de desarrollo utilizado fue 

Microsoft Visual Studio 2010 conjunto al sistema .NET™ y OpenCL (Open Computing 

Language) como lenguaje de programación para la arquitectura de procesamiento 

masivo GPU (Graphics Processing Unit). 

 

2.5 ORGANIZACIÓN DE LOS CAPÍTULOS 

 

La estructura de este trabajo se divide en tres capítulos principales, de la siguiente 

manera. En el Capitulo 3 se describe el funcionamiento un sistema de visión novel para 

la detección de vehículos en adelantamiento. Este capítulo está dividido principalmente 

en tres secciones, la sección 3.4 detalla la arquitectura que se empleará para desarrollar 

el sistema propuesto, la sección 3.5 introduce un eficiente co-diseño para estimar flujo 

óptico en tiempo real en esta arquitectura con sus pertinentes evaluaciones. La sección 

3.6 detalla la implementación del sistema final para la detección de vehículos en 

adelantamiento con sus respectivas evaluaciones y finalmente se expondrá las 

conclusiones finales. El Capitulo 4 se centra en dos aplicaciones en el campo de 

imágenes por ultrasonidos, donde la sección 4.2 se centra en el marco de la 

segmentación de la arteria en transversal mediante un algoritmo evolutivo y es 

comparado con el estado de la técnica. La sección 4.3 se focaliza en el movimiento 

radial de las paredes de las arterias en imágenes de ultrasonidos longitudinales donde 

se propone una combinación hibrida de Block Matching y Flujo Óptico variacional y 

otras técnicas, con el objetivo de obtener una robusta estimación sub-pixel. Esta 

propuesta es también exhaustivamente evaluada con otros modelos para afianzar su 

robustez. El Capitulo 5 aborda la visión artificial en el campo de la industria alimenticia 

donde se expone un sistema capaz de analizar y detectar galletas que presentan fracturas 

para expulsarlas de la cinta transportadora. Finalmente, en el Capitulo 6 se discuten los 

resultados obtenidos y las contribuciones científicas de este trabajo.   
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3. ADVANCED DRIVER ASSISTANCE SYSTEMS 

 

3.1 INTRODUCTION  

 

The automotive industry invests substantial amounts of money in driver-security and 

driver-assistance systems as well as the governments to decrease the number of injured 

or fatalities on the road. This issue generates a great expectation to a wide range of 

beneficiaries where it can be cited for example the automotive industries that try to 

improve their car designs to be more attractive for the final user incorporating new 

systems to improve the security on the road, insurance companies also aim to minimize 

traffic accidents in order to maximize profit as well as the Governments that are direct 

beneficiaries due to the reduction of costs related with the road accidents (e.g. road 

repair, sanitary assistance, etc.) 

 

The purpose of this chapter is to design an overtaking detection system (a.k.a. LDW) 

based on visual motion cues that combines feature extraction, optical flow, solid-objects 

segmentation and geometry filtering, working with a low-cost compact architecture 

based on one focal plane and an on-chip embedded processor. The handicap to solve 

the overtaking detection is the implementation of an efficient motion estimator due to 

most applications based on technique requires work in real-time; hence, this restriction 

must be taken into account. Optical flow is the 2-D motion information obtained from 

a 3-D world. This motion representation is widespread well-known and applied in the 

science community to solve a wide variety of problems.  

 

It will be showed an efficient approach to estimate the motion velocity vectors with 

an architecture based on a focal plane processor combined on-chip with a 32 bits NIOS 

II processor. The presented approach relies on the simplification of the original optical 

flow model and its efficient implementation in a platform that combines an analog 

(focal-plane) and digital (NIOS II) processor. The system is fully functional and is 

organized in different stages where the early processing (focal plane) stage is mainly 

focus to pre-process the input image stream to reduce the computational cost in the 

post-processing (NIOS II) stage. It presented the employed co-design techniques and 

analyzes this novel architecture. The system’s performance and accuracy with respect 

to the different proposed approaches described in the literature will be evaluated. Also 

it will be discussed the advantages of the described approach as well as the degree of 

efficiency, which can be obtained from the focal plane processing capabilities of the 

system.  
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The second part of this work is focused to describe the proposed approach to solve 

the overtaking problem. The exposed solution is divided into two stages: firstly analog 

processing on the focal plane processor dedicated to image conditioning and relevant 

image-structure selection, and secondly, vehicle tracking and warning-signal 

generation by optical flow, using a simple digital microcontroller. Our model can detect 

an approaching vehicle (multiple-lane overtaking scenarios) and warn the driver about 

the risk of changing lane. Thanks to the use of tightly coupled analog and digital 

processors the system is able to perform this complex task in real time with very 

constrained computing resources. The described method has been validated with a 

sequence of more than 15,000 frames and is effective under different traffic situations 

as well as weather and illumination conditions.   

 

Our system is based on the Anafocus EYE-RIS™ platform [ROD08] applied to the 

detection of overtaking vehicles. The challenge of this work is to make use of a multi-

purpose machine-vision platform, with a basic set of pre-designed vision primitives, to 

develop an ad-hoc vision software engine in a standard processor to detect overtaking 

vehicles. The use of SIMD analog processing capabilities (focal plane) of the platform 

combined with an optimized computation in the digital processor is the key element 

that allows the development of the system with significantly constrained resources.  For 

this reason we have had to adapt the properties of the platform to design a suitable 

model to solve the problem in question, that is, to warn the driver about the risk of 

changing lane. In addition to this, it is important to note that our system goes beyond 

previous ones in terms of covering multiple driving situations and addressing the 

solution of image and motion artifacts not fully covered by previous works. This has 

motivated the inclusion of novel image-processing techniques as well as fusion with 

data concerning ego-vehicle kinematics. The final system validates a novel approach 

and the seldom-used advantage of mixed analog and digital processors and may provide 

relevant hints for mixed processing and processing optimization to interested readers. 

 

The Sections are organized as follows: Section 3.2 introduces a brief incentive 

scheme where details the importance of the Advance Driver Assistance Systems 

(ADAS) while Section 3.3 resumes the state of art in this field. The description of the 

material utilized, in this work and other works that belong to the state of art, is 

summarized in Section 3.4. The proposed method, to solve the overtaking detection, is 

described in depth in Section 3.5 where it will be detailed the implementation and 

evaluation of an ad hoc optical flow method in EyeRIS™ platform and the description 

of the introduced model to detect approaching vehicles. Also it is presented a novel 
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approach to increase the distance detection without extra computation; in Section 3.6.1 

the system is evaluated, taking into account the system performance, efficiency, 

distance detection and light conditions while Section 3.6.3 discuss the obtained results 

of the evaluated methods and finally Section 3.7 summarizes some conclusions and 

outlines for proposed future work.  

 

3.2 MOTIVATION 

 

Based on the data collected from CARE (Community Road Accident Database) 

[CAR14], the amount of accidents on the road (Figure 3.1) has not been decreased 

significantly from the last ten years. Such information makes us reflect on the 

importance of the new advances in technology to reduce the accidents. In the last 

decade, the automotive industry has spent a lot of effort and money on internal safe 

incorporating airbags, structures able to absorb the greatest possible energy of an impact 

or intelligent braking systems with the main objective of reducing fatal accidents.  

 

These advances in engineering are reflected in the reduction of 59% in fatalities and 

24% of injured people (Germany), as it is illustrated in Figure 3.1. In other words we 

can say that the figures reported one fatality for every 34 accidents in 1991, while in 

2012 a fatal victim are produced for every 83 accidents. On the other hand it is important 

to remark that the statistics report an accident decrease of 22% in Germany, 15% in 

Spain, 37% in United Kingdom and a 59% in France while in Italy has an increase of 

9%. Table 3.1 shows in more detail the increase or decrease of accidents, injured people 

and fatalities with respect ten years ago.  
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Figure 3.1. Evolution of road safety, in the last ten years, of the main countries belonging to the European 

Union. Fist row illustrate the accidents while second row shows the fatalities and injured people involved 

in an accident. 

 

Nowadays the industry is investing effort to prevent the accident and not only focus 

in the internal safe of the vehicle, with the objective of reducing the statistics showed 

before. Advanced Driver Assistance Systems (ADAS) is an innovative technology that 

would be unthinkable ten years ago. This technology works as a virtual co-pilot, which 

provides information to the driver in order to improve the quality of driving. The driver 

assistances are not only limited to provide information but also can take part of the 

driving task such set the speed limitation, adapt the headlamps, automatic parking 

system and so on. Actually, the drivers appreciate the importance of road safety as well 

as the automotive industry. For this reason, science has invested a great effort to provide 

solutions to improve the road safety, driving comfort and limit energy consumption.  
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Table 3.1. Increase/Decrease percentage with respect ten years ago (1991-2012) in accidents, injured 

people and fatalities involved in an accident of the main countries belonging to the European Union.  

Country Accidents Injured Fatalities 

Germany -22.20% -23.81%  -59.04% 

Spain         -15.29% -7.83%  -74.57% 

Italy 9.97% -0.001%  -59.03% 

United Kingdom -37.47% 2.40% -39.36% 

France -59.40% -9.2% -14.15% 

 

 

3.3 BACKGROUND MATERIAL AND RELATED WORK 

 

The automotive industry has proposed different sensors for driver-assistance systems, 

ranging from active sensors such as LIDAR or RADAR [GAV01] where the price and 

the information pollution (possible interferences with sensor of similar technology) 

makes be considered as a suboptimal solution, passive sensors such as cameras 

[DIA08a] [MOT04] [SON07] [SAK06], up to hybrid systems that combine active and 

passive sensors [ALE07]. Based on the interaction of the sensors, the driver assistances 

can be divided, based on the way that the sensor interacts with the system, into two 

main classes: Active and Passive systems. Active systems perform automatic 

intervention with the vehicle. The functions of active systems range from a simple 

braking when parking the vehicle before reaches the obstacle (e.g.: vehicle, wall, 

pedestrian, etc) or avoid collisions in dangerous situations. At high levels of refinement, 

these systems interact on the direction of steering, braking and engine control to avoid 

collision with obstacles. An example of these kinds of systems is the automatic parking 

designed by Lexus. Passive systems are those that are designed to provide information 

to the driver. These systems without active nature can be seen as a preliminary to the 

automatic driving of the vehicle, where only warn or suggest to the driver about the risk 

of a given driving maneuver. An example can be contemplated in the parking system 

designed by Bosh, where feeds back to the driver about the distance space during the 

parking maneuver by means of acoustic signals.  

 

In the proposed approach it will be uses a passive image sensor to design a lane-

change driver-assistance and blind-spot vehicle passive detection system integrated as 

part of an advanced driver-assistance system (ADAS). By lane-change driver assistance 

we mean a system capable of warning the driver about the risk of changing lane when 

a car is approaching from behind. This problem has been considered by different 

companies such as Mobileye [MOB09], Volvo [VOL09a] and Ficosa [FIC14], although 
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they have not reported any specific data about their systems’ performances or, for that 

matter, any benchmarking data. In the research field, different approaches have been 

proposed for this problem. Liu et al. [LIU07] suggest a feature detection model based 

on shadow detection and symmetry, while Bertozzi and Broggi introduce a generic 

obstacle detection [BLA07], making use of stereovision to detect objects pertaining to 

the road plane. Blanc et al. [BLA07] present a fast-feature-based method that extracts 

the horizontal edge and peak features in the image to recognize the front of a car by 

means of Support Vector Machine (SVM) classifiers.   

 

Most of the proposed solutions designed to detect overtaking vehicles are based on 

motion direction filtering (motion pattern segmentation). Díaz et al. [DIA08b] make 

use of a classical optical-flow method [LUC81] in a customized digital-signal processor 

to segment approaching vehicles and then, using a standard processor, track the target 

with a Kalman filter [WEL02]. Mota et al. [MOT04] expose a bio-inspired model based 

on the Reichardt correlator [HAS56], where the motion filtering (features correlation) 

is applied to the vertical structures in the scene. Song and Chen [SON01] suggest a 

combined method that mixes sparse feature extraction based on corners [HAR88] and 

a correlation matching technique [SON01] to estimate the motion vector components 

in order to filter the motion and estimate the horizon line in the scene, thus discarding 

objects that do not belong to this line. Sakurai et al. [SAK06] use a similar approach to 

obtain the displacement vectors by means of the Sum of Absolute Differences (SAD) 

matching algorithm with the help of the vanishing point to address the correlation 

search.  

 

3.4 MATERIAL AND METHODS 

 

Most of these approaches (described in the previous section) share one thing in 

common, the use of ad hoc hardware architecture designed to solve the problem. 

Commercial and non-commercial embedded machine-vision devices present a diverse 

variety of hardware architectures and technologies. Ficosa [FIC14] and Mobileye 

[MOB09] opt for an Application-Specific Integrated Circuit (ASIC) technology, which 

allows low prices (mass production) together with low power consumption compared 

to Field Programmable Gate Arrays (FPGAs). Díaz et al. [DIA08b] and Mota et al. 

[MOT04] make use of reconfigurable circuits (FPGA) to develop their system, with the 

disadvantage of high price but with the possibility of reprogramming the circuit, which 

cannot be done with ASIC technology. SIMD (Single Instruction Multiple Data) digital 

architectures are also present in machine-vision systems such as those proposed by 
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Broggi and Gregoretti [BRO96], which are composed of 256 processor elements 

designed to detect obstacles on the road [BER96]. Nowadays SIMD architectures are 

very relevant to machine vision due to their high performance in massive parallel 

processing as Graphical Processing Units (GPUs), which are able to solve complex 

mathematical models in real time [ZAC07], but they have the drawback of being 

expensive, using a lot of power and not being physically portable. On the other hand, 

SIMD analog architectures (focal plane) [ROD08] [DUD06a] [DUD06b] [FOL08] 

avoid such inconveniences (physically portable, low price and low power consumption) 

and provide high performance and fast prototyping in comparison with Digital Signal 

Processors (DSP), FPGA and standard processors [ZAR08]. This fine-grain 

architecture must work in cooperation with standard processors to solve coarse-grain 

tasks. This analog-digital architecture scheme provides an efficient, effective and fast 

co-design system to solve a wide range of machine-vision tasks.  

 

Analyzing the automotive industry economy, is well known that the prices cannot 

excess more than 50$ in the production cost. Taking all this factors into account as well 

as the economical industrial factors, Eye-RIS™ v1.2 platform, designed by Anafocus 

(Fig. 3.2.), is an excellent candidate for an embedded machine-vision solution to solve 

the exposed problem in this work as well as cover the automotive industry economical 

restriction. This vision architecture is a compact system that includes all the elements 

needed for capturing (sensing) images, enhancing sensor operation, processing the 

image stream in real-time, interpreting the information contained in such image flow 

and supporting decision-making based on the outcome of such interpretation.  

 

 
Figure 3.2. EyeRIS v1.3 smart camera designed by Anafocus 

 

Eye-RIS™ system is a multipurpose platform designed to cover the main low-level 

machine vision primitives with a competitive price in relation with the offered solutions 

in the market. The present commercial smart cameras provide a reduced collection of 

machine vision primitives in relation with the Eye-RIS system. On the other hand, we 
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can reuse the same architecture to develop another sort of application much faster that 

an ad-hoc FPGA solution. Other advantages obtained making use of the focal plane are 

the GOPS (Giga Operations per Second) and power consumption, where the focal plane 

[ROD08] [18] (250 GOPS) consumes 4mW per GOPS while in a DSP [OLO02][21] 

(4.3 GOPS) the obtained consumption is 231mW per GOPS. Eye-RIS™ system 

employs an innovative and proven architecture in which image-processing is 

accomplished following a hierarchical approach with two main levels (Fig. 3.3): 

 

Early-processing: This level comes right after signal acquisition. The basic tasks at 

this level are meant to extract useful information from the input image stream. Outputs 

of this level are reduced sets of data comprising image features such as object locations, 

shapes, edges, etc.  

 

Post-processing: Here, the amount of data is significantly smaller. Inputs are abstract 

entities in many cases, and tasks are meant to output complex decisions and to support 

action-taking. These tasks may involve complex algorithms within long computational 

flows and may require greater accuracy than early processing.  

 

 
Figure 3.3. Classical image processing (first row) and SIS image processing pipeline (last row). 

 

One unique characteristic of the Eye-RIS™ vision systems compared to other 

commercial solutions is that image acquisition and early-processing take place at the 

sensor, which is actually a Smart Image Sensor (SIS). In this device, image acquisition 

and pre-processing are performed simultaneously in all pixels of the SIS. Consequently, 
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images do not need to be downloaded from the sensor for the initial stages of the 

processing. This concept of concurrent sensing-processing extends the Image Sensor 

concept to the Smart Image Sensor one. The Smart Camera integrates a SIS named Q-

Eye (Fig. 3.4), which is a quarter CIF (aka QCIF, 176x144) resolution fully-

programmable SIS. It consists of an array of 176 x 144 cells plus a surrounding global 

circuitry. Each cell comprises multi-mode optical sensors, pixel memories, linear and 

non-linear analog processors and binary processors. Each cell is interconnected in 

several ways with its 8 neighboring cells, allowing for highly flexible, programmable, 

efficient, real-time image acquisition and spatial processing operations. In Smart Image 

Sensors, each local processor is merged with an optical sensor. This means that each 

pixel can both sense the corresponding spatial sample of the image and process this data 

in close interaction and cooperation with other pixels. 

 

 
Figure 3.4. Internal Q-Eye scheme. 

 

Eye-RIS™ v1.2 allows ultra-high processing speed beyond 1000 frames per second 

(fps) thanks to the incorporation of mixed-signal processing at the pixel level (enough 

light is assumed so that exposure time does not become a bottleneck). Processing speed 

is also application-dependent. Applications with intensive post-processing algorithms 

might present slower frame rates, since the performance may be constrained by the 

processing power of the embedded processor (NIOS II).  

 

On the other hand, the Eye-RIS™ Vision System is not conceived for implementing 

intensive, iterative gray-level processing tasks. This kind of models can be implemented 

using the embedded microprocessor but its limited computational power highly limits 

the complexity of the vision models that can be processed in real time. For this reason, 
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it is necessary to take advantage of the resources available in the architecture to develop 

the proposed approaches in this work, to estimate optical flow. The Q-Eye must be seen 

as a powerful resource for a further processing, i.e. early processing; for this reason, a 

digital post-processing is needed. After the information of interest is extracted the post-

processing level occurs in the NIOS II processor (32-bit RISC working at 70 MHz clock 

frequency), which is responsible for conducting more complex processing tasks with 

the reduced data set. Note that this digital processor has a basic design composed of a 

single arithmetic logic unit (ALU) without a floating-point unit (FPU) and a pipeline of 

6 stages. The performance of this soft-core configuration is up to 71 DMIPs 

(Dhrystones 2.1 benchmark) and therefore is quite constrained for image processing. 

In addition, this architecture can also capture information from external sensors through 

the different communication ports. This external information is extremely useful for 

achieving our objective. 

 

The presented architecture (Fig. 3.5) has several advantages compared to 

conventional smart cameras, but imposes some restrictions in programming, due to the 

analog nature of the SIS Q-Eye, that shall be understood and taken into consideration 

by application developers. Such restrictions are associated to the internal memories that 

belong to the Q-Eye sensor. These memories are analogies and suffer of leaks over the 

time and in each access or operation. This limitation must be taken into account in the 

co-design stage due it can produce loss in the image quality. Next section the proposed 

system is described in detail, basing on the architecture presented in this section, in 

order to detect vehicles in overtaking. 

 

 
Figure 3.5. Complete Eye-RIS™ scheme (image acquisition and processing). 
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3.5 SYSTEM DESCRIPTION 

 

Having given a brief outline of the working platform it will be described in detail the 

proposed model to detect a vehicle approaching from the rear and warn the driver about 

the risk of changing lane. As commented in Section 3.3, the use of passive sensors 

(optical sensors) has the advantage of being free of information pollution sensors, 

unlike RADAR or LIDAR systems. Thanks to the well-structured field of motion of the 

scene with the overtaking vehicle being clearly distinguished against the landscape, we 

have based our approach on the analysis of the patterns of motion presented on the 

image plane. One of the key issues in this work is to demonstrate that mixing analog-

digital processors with significantly constrained computing performance and low-

power consumption allows this task to be performed efficiently, and to demonstrate the 

co-design methodology between the analog and digital processor, together with useful 

generic methods to reduce computing complexity with a minimum degradation of 

accuracy. 

 

The introduced method, to solve the overtaking detection, is described in depth in 

this section where it will be detailed, in Section 3.5.1, the implementation and 

evaluation of an ad hoc optical flow method in EyeRIS™ platform while the 

explanation of the proposed model to detect approaching vehicles is described in 

Section 3.5.2 where it is evaluated in different scenarios and it will be also presented a 

novel approach to increase the distance detection without extra computation.  

 

3.5.1 Optical Flow Estimation 

 

The term Optical Flow refers to the visual phenomenon due to the apparent movement 

perceived when we move through a scene and/or regarding the objects moving within 

it. It represents the projection of the 3-D motion presented in the scene to the 2-D plane 

of the image sensor or the retina. Note that as a consequence of this protection, depth 

information is partially lost and the estimation of the 3-D scene structure and motion 

from the available 2-D field is a very complex task. Optical flow has been extensively 

studied in the computer vision community (see for instance [BAR92]). 

 

Different approaches have been proposed, in the scientific framework, to estimate 

the optical flow field. The most widely used ones are the gradient based methods. These 

methods are based on the constant-brightness assumption. An extended model is the 
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well-known local method described by Lucas and Kanade [LUC81]. Another classical 

model is the one proposed by Horn and Schunck [HOR81], which introduces a global 

constraint of smoothness to solve the aperture problem. An actual modification 

suggested by Brox and Bruhn [BROX04] formulates a new approach to solve the Horn 

and Schunck model’s Achilles heel, the linear smoothness constraint to satisfy the 

spatial coherence; Brox et al. introduce a non-lineal constraint of smoothness which 

preserves the optical flow boundaries. Another group of methods are based on local 

phase correlations. Those methods rely on how the effects of displacement in the spatial 

domain result in the frequency domain. As example of the use of phase information for 

optical flow it can be cited the work developed by Fleet and Jepson [FLE90] [FLE92]. 

Correlation techniques are also used in the motion component vector estimation, where 

block matching methods and similar schemes as the one proposed by Camus [CAM97] 

are valid alternatives. 

 

In addition to the model choice used to compute the optical flow, its performance 

and computing resource demands are key elements to develop an embedded system for 

real-world applications. In the framework of real-time computing approaches Díaz et 

al.  [DIA08b], making use of the Lucas and Kanade [LUC81] approach, developed an 

embedded system for lane-change decision aid in driving scenarios. Other authors as 

Mota et al. [MOT04] and Köhler [KOH09] propose bio-inspired models based on 

Reichardt correlators [HAS56] for the design of low cost approaches. In the framework 

of analog approaches, authors such as Stocker et al. [STO06] present a focal-plane 

aVLSI sensor to obtain the optical flow components based on the Horn and Schunck 

model [HOR81] while Mehta and Etienne-Cummings describe a solution based on a 

normal flow method [MEH06]. Matching techniques are present in the FPGA world 

where Niitsuma and Maruyama [NII05] introduce a high performance system able to 

estimate displacement vectors by means of SAD (Sum of Absolute Differences) 

matching algorithm. 

 

Following the results of [LIU98] [GAL98] [DIA08b], this work will be focused on 

Lucas and Kanade’s optical flow method [LUC81], which has been highlighted by the 

mentioned contributions as a good trade-off between accuracy and performance.  In this 

work we will focus to obtain a high computational performance (with low accuracy 

penalty), taking advantage of the analog and digital processors in Eye-RIS™ system to 

compute optical flow. It is important to remark that this system is a multipurpose 

machine vision architecture; hence it is not an ad-hoc embedded system to compute 

optical flow such [KOH09] [STO06] [MEH06] [NII05] which are designed exclusively 

for this task. 
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The description of the optical flow implementation and evaluation is organized as 

follows: Section A presents an introduction to the optical flow constraint equation of 

the Lucas and Kanade method used in this work. Section B describes the 

implementation of an efficient approach in Eye-RIS™ architecture while Section C, we 

suggest an approach based on local features to enhance the performance of the 

implemented algorithm. Section D details the co-design strategy used to carry out the 

implementation in Eye-RIS™ system. The evaluation of the different approaches is 

described in Section E and finally; our experimental results are presented in Section F. 

 

A. LUCAS AND KANADE MODEL FOR OPTICAL FLOW ESTIMATION 

 

This section introduces the basics to understand the concept of optical flow and the 

method used in this work. An ordered sequence of images allows the apparent motion 

estimation. The optical flow vector can be defined as a temporal variation in the image 

coordinates across the time, usually denoted as �⃗� = (𝑢, 𝑣), and is computed based on 

the spatio-temporal derivatives of the pixel luminance. To estimate optical flow, a 

constraint equation is needed. Hence, it typically formulates the constant-brightness 

hypothesis. The basis of this assumption is that the pixel brightness remains constant 

over the movement. Thus, we can model this hypothesis with the following expression: 

 

(
𝑑𝑓(𝑥(𝑡), 𝑦(𝑡), 𝑡)

𝑑𝑡
) = 0  

(3.1)  

where f represents the luminance values of each pixel in the image. Once the 

hypothesis is defined since (3.1), is expressed as a derivate of a function with respect 

to time. Appling the first order Taylor expansion we will obtain the optical flow 

constraint equation: 

𝑢𝑓𝑥 + 𝑣𝑓𝑦 + 𝑓𝑡 = 0   (3.2)  

 

where u and v are the optical flow components and the spatio-temporal derivates are 

represented by fx, fy and ft respectively. On the basis of the optical flow constraint 

equation, Lucas and Kanade [LUC81] proposed the minimization of the error Equation 

(3.2) using the sum of the least squares: 

 

𝐸(𝑢, 𝑣) =  ∑(𝑓𝑥(𝑖)𝑢 + 𝑓𝑦(𝑖)𝑣 + 𝑓𝑡(𝑖))
2

𝑖∈𝐵

    (3.3)  

The objective of minimize the error Equation (3.3) is to find the displacement 
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components vector 𝑢 and 𝑣, that minimize the differential error between the previous 

image warped (making use of the components vector 𝑢 and 𝑣) and the actual image. 

Hence the Equation (3.3) is minimized by partial derivations respect the optical flow 

vector �⃗� = (𝑢, 𝑣). The result is presented at Equation (3.4): 

 

[ 
𝑢
𝑣
 ] =

[
 
 
 
 

 

∑𝑓𝑥
2(𝑖)

𝑖∈𝐵

               ∑𝑓𝑥(𝑖)𝑓𝑦(𝑖)

𝑖∈𝐵

∑𝑓𝑥(𝑖)𝑓𝑦(𝑖)

𝑖∈𝐵

∑𝑓𝑦
2(𝑖)

𝑖∈𝐵

 

]
 
 
 
 
−1

[
 
 
 
  −∑𝑓𝑥𝑓𝑡

𝑖∈𝐵

−∑𝑓𝑦𝑓𝑡
𝑖∈𝐵

 

]
 
 
 
 

 
(3.4)  

where 𝑢 and 𝑣 are the optical flow components, the spatio-temporal derivates are 

represented by 𝑓𝑥, 𝑓𝑦 and 𝑓𝑡 respectively, and the subscript i is the i-th element of the 

integration block B. Through (3.4), we estimate the optical flow component vectors 

from a pair of images of a sequence. 

 

The Lucas and Kanade method has been chosen for two main reasons. At first, this 

method has been ranked with a very good accuracy vs. efficiency trade-off in other 

literature works [LIU98] [GAL98]. As second reason, it is due to the digital processing 

restrictions in Eye-RIS™ system as explained in section 3.4 that requires a low 

complexity model in order to achieve real-time operation. 

 

The next section describes how this model is simplified and optimized (in terms of 

processing speed) for its implementation in a NIOS II soft-core processor with the focal 

plane co-processing capability. 

 

B. IMPLEMENTATION 

 

One important problem in optical flow methods is the amount of memory accesses and 

massive multiplications computed by the model. For this reason, a high optimization 

becomes necessary to obtain a reasonable system performance. In order to speed up the 

computation of the Lucas and Kanade model a Sparse Integration Block (SIB) approach 

is used in (3.4), as show in Figure 3.6. Note that each element of the matrix is composed 

by two derivatives multiplication (for instance 𝑓𝑦  multiply by 𝑓𝑡 ) and then sparsely 

added according the mask values. Each zero represents missing data and therefore 

multiplications that are not performed. This translates in high efficiency at reasonable 

accuracy requiring affordable computational resources. In our model, 9×9 and 5×5 SIBs 

are used. In the 9×9 SIB case, allows to reduce the computational load from 410 

multiplications per pixel to 130 multiplications. This represents an optimization of 
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68.29% in terms of computational operations and 69.13% in terms of memory accesses 

with regard to the original one. 

 
Figure 3.6. 5x5 Sparse Integration Block (SIB) representation. 

 

We apply the principle of vicinity, which assumes that any point in the image will 

have a similar value to those in its neighborhood. This principle will be used for the 

optical flow estimation for computation of only a quarter part of the pixel by 4:1 

subsampling. Hence, a calculated optical flow vector will be propagated to the 

neighborhood as shown in Figure 3.7 based on the spatial information coherence that 

says that close pixels tend to have similar optical flow values. This scheme is more 

accurate than a 4:1 input image sub-sampled pixel grid strategy because the optical flow 

estimation takes into account the original spatial-temporal derivates in the input images. 

With this approach, we obtain a factor gain up to four, compared with the original one. 

 

 
Figure 3.7. Neighborhood propagation illustration. 

 
Once the implementation is detailed, we evaluate the system performance with the 

different approaches. On one hand, the method was implemented in C with two 

different SIBs; on the other hand, the same implementation was optimized in assembler 

with different SIBs. Assembler optimization allows to avoid RAW dependencies, 

optimizes memory accesses in the pipelined data path, and avoids unnecessary stack 

accesses usually implemented by the C compiler, absolute registers control, loops 

unrolling, etc.  

 

Next, a performance study is carried out to evaluate the optimization evolution. 

Table 3.2, shows that the 5x5 SIB implemented in assembler, reaches a high 
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performance if we compare it with the 9x9 SIB versions. Obviously, this is due to the 

memory access increase as well as to the number of operations.  

 

Table 3.2. System performance evaluation obtained with a 176x144 spatial resolution. 

Integration Block Frame Rate  

(frames per second) 

L&K C 9x9 Integration Block  0.3 

L&K C 9x9 SIB 0.9 

L&K C 9x9 SIB and Propagation 3.6 

L&K ASM 9x9 SIB and Propagation 11.9 

L&K C 5x5 Integration Block 0.9 

L&K C 5x5 SIB 2.3 

L&K C 5x5 SIB and Propagation 8.8 

L&K ASM 5x5 SIB and Propagation 28.8 

 

Therefore, with these approaches, it can be concluded that the global gain obtained 

in a 9×9 version amounts to 40.47 the gain factor as show in Figure 3.8. On the other 

hand, applying these approaches to the 5×5 version, the gain factor is 31.4. The main 

reason why the 9×9 global gain is higher than 5×5 optimization is because the 5×5 

integration stage is significantly reduced (in a factor of 2.7), i.e., the original version 

uses 25 pixels (in the block) while the SIB version only takes into account 9 pixels; in 

the meantime the 9×9 is reduced to a 3.2, i.e., the original version analyzes 81 pixels 

while the SIB version analyzes only 25 pixels. Making use of the neighborhood 

propagation approach, the optical flow is calculated in a quarter of the sequence, which 

allows the achievement of such high gains. Figure 3.8 shows the gain factor evolution 

obtained in each approach and optimization as well as the global gain. 
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Figure 3.8. Comparison between the gains obtained in different integration blocks, after applying our 

approaches. Two different implementations are evaluated here, 5x5 (orange bars) and 9x9 (red bars). 

(Left to right) The first group of columns represents the Sparse Integration Block (SIB) factor gain; the 

second group shows the obtained gain after apply the optical flow 4:1 propagation. In the third column 

group figure the gain when the method is optimized in assembler while last column show total gain factor 

obtained after all the approaches are combined.   
 

It is convenient extrapolate the performance result to a regular PC processor, for 

instance the Intel Core 2 Duo, to make clear the constraints of the proposed architecture. 

For a comparative evaluation between NIOS II and an actual processor we make use of 

Dhrystone 2.1 [WEI84] benchmark. The NIOS II soft-core processor configuration (70 

MHz NIOS II/f) used in our test, obtains 71 DMIPS (Dhrystone MIPS) while an Intel 

Core 2 Duo 2.00 GHz processor obtains 4240 DMIPS (using only one of the processor 

cores). If we compare both processors an Intel Core 2 Duo obtains a gain factor of 59.7. 

Furthermore, Intel Core 2 Duo uses a superscalar architecture with two cores and 

support SIMD instructions (MMX and SSE) while NIOS II is a basic processor with a 

scalar architecture with a reduced instructions set (add, sub, mul, jmp, etc.). A study 

about different optimizations feasible on modern processor is shown in [ANG09]. 

Therefore, it is important to remark that, using the presented processor, we are much 

more constrained than using standard ones, and these has motivates to employ the 

proposed model modifications, analog processor utilization and optimizations 

techniques. 

 

C. PRE-SELECTION OF POINTS OF INTEREST TO SPEED-UP THE OPTICAL FLOW 

COMPUTATION 

 

The boundaries in an image are areas where optical flow can be more confidently 

estimated (unless they correspond to 3-D objects where occlusion problems are very 

common, though this case is less probable). These regions are rich in features; hence, 

the resulting estimation has more accuracy than in areas with poor contrast structure. 
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This is so because the Lucas and Kanade model collects weighted spatio-temporal 

structural information. If the local contrast structure is poor, the optical flow estimation 

confidence will be low. Instead of computing all the points and discarding unreliable 

points in a second stage, we can avoid the calculations of low confidence optical flow 

estimates by discarding these points a priori (using local contrast structure estimates). 

In order to take advantage of this issue, it will be used the Roberts Cross operator to 

localize the edges (local contrast maxima). The used kernels are shown in Figure 3.9.

  

 

+1 0  0 +1 

0 -1  -1 -1 

                                    (a)                                (b) 

Figure 3.9. Roberts Cross convolution filter. 

       

The sum of the absolute value of each convolution provides edge estimations, where 

each convolution operation obtains the maximum response when the edge angle reaches 

45° (Figure 3.9(a)) 135° (Figure 3.9(b)). The filtering procedure is implemented by 

applying a Gaussian filter to the edge response and thresholding it with the original 

signal. The described procedure is indicated in Equation (3.5): 

 

𝑓(𝑥) = {
1, 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝐸𝑑𝑔𝑒 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 < 𝐸𝑑𝑔𝑒 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 
0, 𝑒𝑙𝑠𝑒

 (3.5)  

 

Low contrast areas will not provide significant edges. This problem can be solved or 

reduced by locally performing modifications on the image intensity histograms, for 

instance by applying a 3×3 Laplacian convolution (aka Sharpen filter) that emphasizes 

the low-contrast areas. Figure 3.10 shows an image edge detection and a sharpen image 

edge detection. 

 

It can be observed that a higher edge density is obtained by applying the sharpen 

filter. In this example, Figure 3.10(a) has 13.49% of density, while Figure 3.10(b) 

provides a density of 38.20%. Usually, the edge binary map outputs are around 30 up 

to 40% in high edge density scenes, 50% in the worst case. Using the sharpen filter, this 

method is more prone to noise. To reduce this noise, we can use the focal plane 

computational primitives, such as binary dilatation and erosion. Applying successive 

erosions and dilatations to the binary output includes less noise and becomes sparser 

before computing the optical flow operations on the NIOS processor. A typical action 

to remove this noise is applying a 3×3 erosion filter followed by a 3×3 dilatation filter 

with a simple filled squared mask as structure element to remove single points. 
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(a) 

 
(b) 

Figure 3.10. (a) Image edge detection in the original image. (b) Image edge detection with a sharpen pre-

filtering. 

 

Once we have reached this point, the edge binary map will be integrated with the 

optical flow estimation with the objective of optimize the computation time. Since the 

points of interest are previously selected in the focal plane, this process is carried out 

on the fly without affecting the global performance. Figure 3.11 shows the evaluation 

of this approach. To carry out this experiment a synthetic density distribution is 

generated, by filling with 1’s from the beginning until the end of the binary mask and 

adding a 10% in each step. The first chart, Figure 3.11a, refers to the 5×5 SIB and the 

second one, Figure 3.11b, to the 9×9 SIB. In this experiment, the frame rate is measure 

while the edge binary mask density increases. This measurement starts from 10% of 

density until a density of 100%, i.e., the whole image. In both figures, different scene 

cases that can be found are remarked as well as the standard deviation by means of error 

bars. 
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      (a) 

 
     (b) 

Figure 3.11. (a) System performance using pre-selected points of interest and 5×5 SIB. (b) System 

performance using pre-selected points of interest and 9×9 SIB. Colored mark illustrates three typical 

scenarios using different image edge densities. The green mark makes reference to the best performance 

cases (scenes with low edge density), the blue one, to the most common density values (normal scenes) 

and the red mark, to the worst cases (scenes with high edge density). The error bar represents the standard 

deviation of the results for 10 trials. 

 

Analyzing the obtained results and taking into consideration that normal scenes have 

from 30% to 40% of density with a 35% as mean value, it can deduced that making use 

of 5×5 SIB, the frame rate can oscillate between 56 (red mark in Figure 3.11a) up to 70 

(green mark in Figure 3.11a) frames per second with a typical value of 62 fps (blue 

mark in Figure 3.11a). In the case of the 9×9, the frame rate is around 27 (red mark in 

Figure 3.11b) reaching up to 34 (green mark in Figure 3.11b) frames per second, taking 

into consideration 30 fps as the usual value (blue mark in Figure 3.11b). 
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After expose the proposed approach it can be concluded that it is suitable for real 

time computation beyond video-rate, (25 fps). The main advantage of studying optical 

flow in points of interest (in our case they are pre-selected edges) is the increase of 

performance. The gain obtained is around 2 in the worse cases, assuming these cases in 

scenes with a 50% of density. Considering the best cases, scenes with 30% of density, 

the gain will arise up to 2.6. As commented before, a common scene usually contains 

35% of density. Hence, we can conclude that the mean speed up gain is 2.3. This gain 

can be used to compute flow at higher frame-rate (and therefore, improve the optical 

flow accuracy [DIA08b]) or to include new functionalities into the processors towards 

final concrete applications. 

 

It is important to remark that NIOS II is able to handle 0.044 GOPS to compute 

optical flow while the focal plane processes 4.1 GOPS to smooth the image, obtain 

points of interest, and compute the optical flow regularization. To estimate the number 

of operations used in the focal plane, we carried out an equivalence of a digital 

processor (NIOS II) to perform the same functionality. Due the amount of operations 

involved in a previous (focal plane) and final stage (processor) to obtain optical flow, 

it can be concluded that the optical flow estimation could not be implemented in this 

architecture without the focal plane assistance. 

 

D. CO-DESIGN STRATEGY 

 

In previous sections, it was detailed the way to estimate optical flow as well as how 

such optical flow has been improved to speed up the optical flow estimations. In this 

section, a global description of the co-design implementation to estimate the motion 

vector components in the Eye-RIS™ system is introduced. As described before, the Q-

Eye sensor is a system able to process in the same physical layer where the image is 

captured (focal plane computation). For this reason, at the same time that the system 

captures the image, it can be processed and moved to the main memory to apply a post-

digital processing. 

 

After the image capture is done, the focal plane processes it with the proposed 

method to select edges, as described in the previous section, and applies a linear 

diffusion filter [WEI98] that works as smoothing filter of the captured image and 

improves the numerical computation of the image derivatives. The estimated edge map 

and the current and previously captured image on the sensor form part of the optical 

flow method to be computed in the digital processor. Once the optical flow is computed 

at the NIOS II processor, a linear diffusion filtering (regularization) is applied to the 
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optical flow components in the focal plane as indicated in Figure 3.12, to preserve the 

spatial coherence [HOR81]. Note that when we refer to “regularization”, means the 

process that performs the local averaging process and improves the spatial coherence 

based on the smoothness constraint. 

 

 
Figure 3.12. Initial Optical-flow Co-Design scheme used in Eye-RIS™ platform. 

 

An important factor to take into account is the exposure time when the image is 

captured. Adopting a sequential strategy, image acquisition, and NIOS processing being 

done sequentially (one after the other), is not convenient because it does not take 

advantage of the pipelined processing capabilities of the system. The focal plane (Q-

Eye) is able to work asynchronously with the processor, and the system will be able to 

capture and process in the focal plane at the same time that we are making use of the 

digital processor. To accomplish this, the exposure time, focal plane processing, and 

processor computing time must be taken into account. 

 

Furthermore, analog-based internal memories in the focal plane cannot retain the 

images for a long time due to transistors leakage. Taking into account that the mean 

value of an image stored in an internal focal plane memory, decreases around 0.8 LSBs 

every 40 ms. For this reason, prolonged storage leads generate significant degradation 

and must be avoid this practices in the co-design. In order to reduce this signal 

degradation as well as remain a constant sampling period, we must meet the following 

constraint, as indicated in expression (3.6): 

 

𝑃𝑇𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 < 𝐸𝑇 + 𝑃𝑇𝐹𝑜𝑐𝑎𝑙 𝑃𝑙𝑎𝑛𝑒  (3.6)  
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where the time of optic flow processing in NIOS II is 𝑃𝑇𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟, while 𝐸𝑇 is the 

capture exposure time and 𝑃𝑇𝐹𝑜𝑐𝑎𝑙 𝑃𝑙𝑎𝑛𝑒 is the focal plane processing time. 

 

The processing time, in the focal plane, takes approximately 3-40 µs per operation. 

Hence, this time can be considered negligible if it is compared with the exposure time 

or the processing time on the digital processor. Although the frame-rate is determined 

by 𝑃𝑇𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟, if large movements are presented in the scene, lower exposure times 

can be used to reduce the displacement. In this case, a slightly more complicated scheme 

is necessary to reduce, as much as possible, the time that each frame is stored in the 

analog memories. For this purpose, the optical flow process must be split in different 

stages. In the first stage, the 𝐼𝑡 image is captured by the focal plane at the same time as 

the partial optical flow estimation (half of the resolution) of a previous captured 

sequence 𝐼𝑡−2 and 𝐼𝑡−1, is carried out on the processor. The second stage captures 𝐼𝑡+1 

image and processes the unfinished optical flow calculation of the previous stage. The 

last stage transfers the optical flow vector components to the focal plane to apply the 

post-processing lineal diffusion filter, which acts as a Gaussian isotropic filter.  

 

Note that we do not have a continuous acquisition process where time between 

frames is fixed. Contrary, the acquisition process is handled (according to the scheme 

of Figure 3.13) to avoid the image degradation and preserve, as much as possible, the 

time interval between the captured images. 

 

Therefore estimating the flow only between pairs of consecutive frames is possible 

to avoid the problems previously explained. That is to say, the flow is computed 

between frames 𝐼𝑡−2  and 𝐼𝑡−1  and between frames 𝐼𝑡  and 𝐼𝑡+1  but the flow is not 

computed between frames 𝐼𝑡−1 and 𝐼𝑡  due the time interval can be different. This is 

because after compute optical flow another further processing algorithms could be 

applied. Figure 3.13 illustrates this process. 



 68 

 
Figure 3.13. Different stages to estimate optical flow in Eye-RIS™ system. 

 

3.5.2 Optical Flow Evaluation 

 

The purpose of this section is to evaluate and validate the suggested approaches 

described in the previous section. In this paper the error measure (3.7) will be the same 

that the used by Barron et al. [BAR92], which consists in the angular error estimation 

between the ground-truth optical flow vector and the estimated one:  

  

𝜓𝐸 = 𝑎𝑟𝑐𝑐𝑜𝑠(�⃗⃗�𝑐 ∙ �⃗⃗�𝑒) (3.7)  

 

where 𝜓𝐸 is the estimated error, �⃗⃗�𝑐 the true vector flow from the Ground-truth values, 

�⃗⃗�𝑒  the estimated vector flow. Note that this error metric is non-linear and combines 

information from the angular and magnitude error. Nevertheless it is frequently used 

and therefore has been used for the sake of comparison with other contributions 

available at the literature. 
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Once the angular error estimation procedure is defined, a study of the angular error 

is carried out on the simplified Lucas and Kanade approach described in this work. As 

a first step, the original model implementation is evaluated in software (Matlab), with 

the different proposed approaches and densities (100% and 48.5%) as shown in Table 

3.3. 

 

Table 3.3 Average angular error (AAE) and standard deviation (STD), in Yosemite sequence (without 

clouds), with the different approaches and densities on Matlab. 

Integration Block and Used Approach AAE 

100% 

STD 

100% 

AAE 

48.5% 

STD 

48.5% 

5x5 Barron’s implementation 11.01º 17.14 10.32º 17.40 

5x5 20.68º 21.75 20.38º 20.57 

9x9 14.75º 14.85 14.63º 14.16 

5x5 SIB 19.64º 20.72 19.34º 19.54 

9x9 SIB 14.09º 13.99 13.98º 13.33 

5x5 Propagation 20.74º 21.97 20.43º 20.84 

9x9 Propagation 14.73º 15.04 14.56º 14.32 

5x5 SIB + Propagation 19.71º 20.98 19.39º 19.86 

9x9 SIB +Propagation 14.08º 14.21 13.92º 13.51 

5x5 SIB Propagation + Regularization 𝜎 = 5.29 12.30º 12.18 12.10º 11.29 

9x9 SIB Propagation + Regularization 𝜎 = 5.29 10.51º 8.46 10.51º 8.12 

5x5 SIB Propagation + Regularization 𝜎 = 7.48 11.33º 10.26 11.17º 9.53 

9x9 SIB Propagation + Regularization 𝜎 = 7.48 9.89º 7.11 9.86º 6.75 

 

To compare the results of the different approaches, it will be compared with the 

implementation proposed by Barron [BAR92], where the optical flow is estimated 

making use of a temporal resolution of 5 images and 5×5 integration blocks. Table 3.3 

indicates that with a 9×9 integration block, obtains better results that working with a 

5×5 integration block and getting an error similar to the Barron’s implementation. 

Making use of large blocks, the model weights better the optical flow components but 

with the associated problem of the computation time. Comparing the angular error 

between sparse and non-sparse blocks, the table shows that the error is quite similar 

between them. Hence, by applying sparse integration blocks (SIB), the performance 

becomes higher regarding with the original one. 

 

As it was stated in Section 3.5.1.B, the main idea is to propagate the optical flow 

estimation to the neighborhood. The results obtained (Table 3.3) reveal that making use 

of this performance optimization; quite similar results are reached if we compare them 

with the non-propagated version. Hence, it can be said that this approach is totally valid 
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since the loss in accuracy is insignificant in both sparse and non-sparse integration 

block approaches. 

 

The last evaluation in Table 3.3, consists in determinate the error after apply the 

optical flow regularization (spatial coherence). In this way, small errors can be 

corrected, weighting them with the neighborhood. Due one of the most common 

smoothing filter used is the Gaussian convolution; this filter will be applied to the 

estimated optical flow and evaluated. Analyzing the experiment (Table 3.3), it can be 

deduced that the obtained results are better if the smoothing convolution filter is applied 

to the optical flow components. The angular error reduction is higher for small 

integration blocks, both sparse and non-sparse. While using larger masks, the error is 

lower, if we compare these masks with the smaller ones (5×5). This is due to the fact 

that, for the information collected in small blocks, the model weighted worse than in 

the case of masks with larger neighborhoods. Hence, applying the regularization to the 

result helps to weight again the vicinity, being therefore small mask based approaches 

more favored. If the obtained results are compared, after the regularization step, with 

respect the Barron’s implementation; the obtained results show quite similar angular 

errors but on the other hand the standard deviation is reduced more than a half. 

 

All the previous simplified approaches have been evaluated using Matlab code, with 

double floating point data representation, to illustrate the effect of the successive 

approaches. To obtain a realistic evaluation, the angular error will be estimated with the 

results obtained in the Eye-RIS™ system. In order to carry out these measurements, 

different integration blocks and post smoothing filters (regularization) are taken into 

account. In this evaluation, it will be assumed as valid all the approaches and 

simplifications evaluated before. Note that here a new filter, in the regularization step, 

is used. This filter, lineal diffusion filter [WEI98], implements a low-pass filter that 

emulates a Gaussian filter using the Resistive Grid module available on the SIS Q-Eye 

(focal plane). Due to the nature of the linear diffusion and its equivalence with the 

Gaussian filter [WEI98], the use this filter is more appropriate because it is more precise 

and exploits the advantages of the focal plane. Table 3.4 shows the measure the average 

angular error and standard deviation error with different densities (100% and 48.5%). 

It is important to remark that the optical flow estimation is developed making use of fix 

point arithmetic approach. 
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Table 3.4. Average angular error (AAE) and standard deviation (STD), in Yosemite sequence (without 

clouds), with the different approaches and densities on Eye-RIS™ system. 

Integration Block and Used Approach AAE 

100% 

STD 

100% 

AAE 

48.5% 

STD 

48.5% 

5x5 SIB 24.79º 20.12 23.45º 18.55 

9x9 SIB 17.10º 14.02 15.88º 12.59 

5x5 SIB + Propagation 24.84º 20.09 23.25º 18.41 

9x9 SIB +Propagation 17.14º 13.88 15.94º 12.55 

5x5 SIB Propagation + Regularization 𝜎 = 5.29 15.61º 12.01 13.12º 10.53 

9x9 SIB Propagation + Regularization 𝜎 = 5.29 13.06º 10.11 11.25º 8.86 

5x5 SIB Propagation + Regularization 𝜎 = 7.48 14.61º 10.63 12.24º 9.46 

9x9 SIB Propagation + Regularization 𝜎 = 7.48 13.09º 9.34 10.44º 7.87 

 

It can be concluded that after performing the angular error measurements of optical 

flow, the best result obtained is the 9x9 SIB with a lineal diffusion filter with σ = 5.29 

as shown in Table 3.4. The differences with the previous version (Table 3.3) are mainly 

produced because the method make use of fix point arithmetic of 32 bits in NIOS II, 

properly rescaled across the different processing operations to keep the relevant 

information. Note that, though bit-width and representation is significantly different 

than the purely software version (Matlab version), the results fit quite well to the 

previous data which validate our fixed-point implementation. 

 

3.5.3 Experimental Results 

 

In this section, the experimental results are presented with real sequences. To evaluate 

the optical flow results, it has been chosen a traffic sequence where the cars move 

through the scene. In this sequence, the optical flow has a clear interpretation and 

therefore, a qualitative evaluation can be done. The original sequence, Ettlinger-Tor, 

can be obtained from [INS10]. The optical flow estimation is carried out in different 

sequences applying both SIBs (5×5 and 9×9). To interpret the obtained results, the 

optical flow vector direction is encoded with a color (according to the colored frames 

of the different images) whereas the vector’s magnitude is expressed by the color 

intensity as shown in Figure 3.12. 
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Figure 3.12. Optical flow representation. The color corresponds with the direction of the optical flow 

vector while the magnitude is encoded as the color intensity. 

 

In the results shown below we can observe that the optical flow increases, as we 

increase the integration block (5×5 SIB and 9×9 SIB) sparse. To estimate the optical 

flow in Figure 3.13 and Figure 3.15 a lineal diffusion smoothing is applied to the image, 

equivalent to a Gaussian filter with σ = 2.5, while the optical flow regularization 

corresponds to a Gaussian filter with σ = 3.3.  

 

 
                               (a)                                     (b)                                        (c) 

 
                                    (d)                                    (e)                                        (f) 

Figure 3.13. Optical flow estimation in a traffic sequence. Flow field is overlaid with the original frame. 

In the first Row (a-c), the optical flow is estimated using 9 × 9 SIB. In the second Row (d-f), the optical 

flow is estimated using 5×5 SIB. 
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 In Section 3.5.1.C, it was proposed a method to obtain the image edge response in 

a focal plane with the objective of improve the optical flow performance, obtaining a 

mean gain of 2.3. Once the edge estimation is computed in the focal plane, 

morphological operations of dilatation and erosion are applied to the binary map (two 

dilatations and one erosion with a 3×3 kernel) to bring near the optical flow results to 

the obtained ones without the sparse estimation. Figure 3.14 shows the binary maps 

results after be processed in the focal plane. 

 

After the points of interest estimation, the motion vectors are calculated in the 

processor and post smoothed in the Q-Eye. The results of this procedure are shown in 

Figure 3.15. As can be observed, the output density is slightly lower if we compare it 

with previous results. 

 

   
                                             (a)                               (b)                                (c) 

Figure 3.14. Binary edge map processed, with the proposed method in section 3.5.1.C, in the focal 

plane. 

 

It can be concluded that making use of points of interest, the non-edge detection risk 

in areas of low contrast must be taken into consideration, due the proposed approach is 

unable to determinate the optical flow on those regions; as shown in Figure 3.15c,f. In 

the case of static cameras, other pre-selection schemes can be also used to reduce the 

input data stream (instead of local contrast structure), for instance local image change 

ratio (since most of the scenario will be static). When choosing a method to estimate 

optical flow, the most appropriate approach depends on the target application and 

scenario. If the application requires a dense optical flow without the risk of areas of low 

contrast, a 5×5 SIB shall be chosen. When the precision is a crucial factor, pre-selection 

of point of interest into the estimation of motion vector and using a 9×9 SIB is the best 

choice. If the time is an essential component, the option that best meets these 

requirements is using 5×5 SIB with points of interest pre-selection to estimate the 

optical flow. 
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                                      (a)                                          (b)                                         (c) 

   
                                         (d)                                        (e)                                        (f) 

Figure 3.15. Optical flow estimation, on edges, in a traffic sequence. The average edge density, in these 

images, is 42.5%. Flow field is overlaid with the original frame. In the first row (a–c), the optical flow is 

estimated using 9×9 SIB. In the second Row (d–f), the optical flow is estimated using 5×5 SIB. 

3.6  OVERTAKING DETECTION 

Once it has been detailed in depth the ad-hoc implementation to estimate optical flow 

on Eye-RIS™ architecture, this section is focused to describe in detail the followed 

scheme to detect overtaking cars on the road by mean of motion segmentation. Figure 

3.16 illustrates an overview of the introduced scheme in this section. To achieve our 

objective, information of interest (edges) is extracted in the focal plane, to estimate 

optical flow at those points and apply a filtering/clustering rule to segment potential 

vehicles in the digital processor; as described in Section A. After this pre-segmentation, 

Section B details a basic binary matching process to avoid any illumination and 

vibration effects that may affect the initial segmentation. Section C exposes the 

followed metric to reject those detected candidates that do not correspond to standard 

vehicle dimensions, while Section D details a projection filter to avoid false positives 

generated by the ego-motion pattern. Finally, in Section E, is proposed an extension of 

the described method with the objective of increase the distance detection. 
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Figure 3.16. Algorithm dataflow scheme showing the processing structure computing the different 

steps. 

 

A.   ESTIMATION OF POINTS OF INTEREST, OPTICAL FLOW AND PRE-SEGMENTATION 

 

In Section 3.5.1 was described in detail an optical-flow method based on points of 

interest (edges) and its real-time implementation on the Eye-RIS™ platform, clearly 

showing the benefits of a mixed analog-digital processing strategy. Taking full 

advantage of the focal-plane processing capabilities and parallel computing that can be 

carried out with the analog processor (focal plane) and digital processor (NIOS II). 

After applying different strategies of optimization, the introduced method obtains a gain 

optimization factor up to 40 in the optical flow implementation. 

 

The first step of the proposed scheme consists estimating the points of interest in the 

scene. The image is acquired and pre-processed at the same physical layer (the focal 

plane). Hence at this stage, the estimation of the points of interest and image smoothing 

are undertaken at the focal plane at the same time (in parallel) as the digital processor 

makes a partial optical-flow computation of the points of interest of previously captured 

frames. This stage is replicated to capture the next image of the sequence as well as to 

compute the remaining optical-flow part of the previously captured frames. After both 

stages, a regularization operation is applied to the estimated motion vectors to achieve 

spatial coherence, as described in section 3.5.1.D.  Figure 3.17 shows the results 

obtained with the Eye-RIS™ platform of a highway sequence after applying the 

described scheme.  
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                 (a)                     (b)                                   (c) 

Figure 3.17. (a) Original image of an overtaking scene on a highway; (b) estimated optical flow using 

the Eye-RIS™ platform; and (c) optical-flow representation. The color corresponds to the direction of 

the optical-flow vector while the magnitude is encoded as color intensity 

 

Once the optical-flow vectors have been estimated, the next step consists into apply 

a filtering process to segment potential approaching objects. This proposed filtering 

process is composed of three basic rules (tree decision scheme) that establish an initial 

spatial-temporal threshold, a motion direction filtering where the 𝑢 component must be 

greater than zero since the sensor is installed on the left side of the car, and finally, a 

rule to reject those vectors that seem to be generated when the Nyquist theorem is 

violated. Optical-flow vectors, that suffer this theorem violation, tend to invert the 

direction with a great magnitude and commonly one of the components of the vector is 

much bigger than the other. To eliminate those vectors, that present the features 

explained before, the component of the optical flow 𝑣 must be less than the absolute 

value of 𝑢. Such filtering rules, which generate the motion of interest (MOI) binary 

map, are described in equation (3.8), 

 

𝑀𝑂𝐼(𝑥, 𝑦)

{
  
 

  
 
0, 𝑖𝑓 (∑𝑓𝑥(𝑥, 𝑦) ∙ 𝑓𝑡(𝑥, 𝑦)

𝑖∈𝐵

)

2

+ (∑𝑓𝑦(𝑥, 𝑦) ∙ 𝑓𝑡(𝑥, 𝑦)

𝑖∈𝐵

)

2

<  Threshold

0, 𝑖𝑓  𝑢(𝑥, 𝑦) < 0 

0, 𝑖𝑓 𝑢(𝑥, 𝑦) < |𝑣(𝑥, 𝑦)|

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   

    

 (3.8) 

 

where 𝑓𝑥 , 𝑓𝑦  and 𝑓𝑡  represent the spatial-temporal derivates, 𝑢  represents the x 

optical flow component (horizontal component) and 𝑣 represents the y optical flow 

component (vertical motion). 

 

B.  BINARY MATCHING 

 

This stage aims to refine the previously obtained binary image to avoid illumination 

effects, violation of the Nyquist theorem (the video-rate is not sufficient to properly 
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describe the motion of close and/or fast objects) and vibration effects. To avoid the 

reported effects it is proposed a binary matching suitable for computation at the focal 

plane. Note that the utilized architecture is very constrained at the digital part; in order 

to achieve maximum performance of the system it is essential to take full advantage of 

the analog part. In addition, this also has the advantage of being more power efficient 

[ZAR08]. This binary matching consists of a spatial-temporal filtering, which takes into 

account previous MOI binary images (historical binary maps) obtained during the 

previous step, to compute a bitwise correlation between them. Assuming that the 

vehicle to be detected has a defined linear trajectory over time, a right-shift operation 

is applied to the historical binary maps and correlated (by means of a bitwise AND 

operator) with the previous historical maps to finally apply the last correlation with the 

estimated MOI calculated in the previous step. Equation (3.9) defines the described 

operations, 

 

𝑂𝑢𝑡𝑝𝑢𝑡 = (

(𝐹𝑙𝑜𝑜𝑑𝐹𝑖𝑙𝑙((𝑀𝑂𝐼⊕𝐵)⊝𝐵)) ∩

⋂ ⋃ 𝑅𝑖𝑔ℎ𝑡_𝑆ℎ𝑖𝑓𝑡(𝐻𝑖𝑠𝑡𝑀𝑎𝑝𝑡 , 𝑚) ⊕ 𝐵
2

𝑚=1
)

𝑛−1

𝑡=1

)⊕𝐵 

(3.9) 

 

where n is the number of historical maps saved, 𝑅𝑖𝑔ℎ𝑡_𝑆ℎ𝑖𝑓𝑡(𝐼𝑚𝑎𝑔𝑒,𝑚)  is a 

image shifting operation to the right 𝑚 times, 𝐹𝑙𝑜𝑜𝑑_𝐹𝑖𝑙𝑙 is a function that fills holes 

in a binary image, 𝐻𝑖𝑠𝑡𝑀𝑎𝑝𝑡  is the historical map at time t and ⊕  and ⊝  denote 

dilatation and erosion operations by a structuring element B respectively. In our case, 

this structuring element B is formed by a square of 3x3 matrix. To optimize this process, 

the historical maps will be stored in an internal memory (buffer) allocated in the focal 

plane. The historical buffer size must be taken into account because it is directly 

proportional to the detection of vehicle delay. In our configuration we have used a 

historical map buffer size of three. Once the output binary map has been estimated the 

historical map buffer is updated with the previously calculated MOI binary map. To 

clarify this process better, Figure 3.17 shows a sequence of three historical binary maps, 

MOI and the output obtained after applying the procedure described in Equation (3.9).  
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                                                             (a)                                     (b) 

Figure 3.17. (a) Three historical maps and an MOI map; (b) Output map produced. 

 

As commented above, it is important to note that this step takes advantage of focal-

plane resources and processing capabilities to accomplish this process. For instance, the 

focal plane is able to process a bitwise operation between two images in 2.93 μs while 

the NIOS II takes 0.18 ms to perform the same operation, i.e. the focal plane is up to 64 

times faster than NIOS II in this kind of processing. Thus it is important to remark the 

relevance of the presence of the focal plane in this architecture and its optimized use. 

 

C. OBJECT DETECTION AND DIMENSION FILTERING 

 

Once the refined binary map has been obtained during the previous step the system 

must locate the detected object and analyze it to determine whether it corresponds to a 

real vehicle and reject those objects that are outside the area of interest. A common case 

occurs on bridges, where cars travelling in different directions may be detected by the 

system. For this reason it is needed the prevention of this kind of situation by assuming 

a flat road and focusing only on those objects that belong on the road. To this end extra 

information, from the binary map, must be extracted. The focal plane provides 

primitives for the extraction of blobs that help us to identify the dimension and position 

of the blob. This extracted information must be converted from a 2D projection to a 3D 

coordinated scenario system. It is well known that it is possible to estimate the distance 

of a point belonging to a plane, as suggested by Gat [GAT05]. To determine the 3D 

coordinates of an object that belongs on a plane, it is needed to know the intrinsic and 

extrinsic camera parameters, as illustrated in Figure 5. 

 

 
Figure 3.18 Illustration of the camera parameters needed to estimate distances from the camera. 
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Extrapolating the method described by Gat [GAT05], as suggested by Escalera 

[ESC01] [29] to take into account the angle tilt, the distance from the bottom of an 

object to the camera can be described as follow, 

 

𝐷 = 𝐻 ∙
𝑓 + 𝑦 ∙ tan 𝜃 

𝑓 ∙ tan 𝜃 − 𝑦
  (3.10) 

 

where 𝐷 is the distance to a point on the plane, 𝐻 is the camera height, 𝑓 is the focal 

distance, 𝑦 the vertical coordinate in the image and 𝜃 the angle formed between the 

focal distance and the plane. Observing Equation 3.10, it can be deduced that the 

maximum estimated distance is the infinity, this case occur when the denominator 

become to zero. This paper does not concentrate on specifically measuring the distance 

of a detected object but rather to measure the width and height of such an object and 

discard those that are not vehicle sized. To arrive at these measurements the 

proportionality rule can be used, where the width of an object in a 3D world is 

proportional to the width projected in a 2D image and the distance of such an object is 

proportional to the focal distance, as shown in Figure 3.19. By solving this equation 

gives: 

 

𝑊 = 𝐷 ∙
𝑤

𝑓
 (3.11) 

 

where 𝑊 is the real width of an object, 𝐷 the distance to the object, 𝑤 the width in 

pixels in the image and 𝑓 the focal distance. It is important to note that the estimated 

Equation (3.11) will be equivalent to estimate the object height. Now those objects 

detected that do not satisfy vehicle dimensions can be discarded. Furthermore, via 

Equation 3.11 it can be also discarded those objects that do not belong to the road since 

measurements made above the horizon line will give negatives values. 

 

 
Figure 3.19. Illustration describing the parameters involved in obtaining object width. 

 

In some cases, due to low contrast in certain areas in the image, the object detected 

may be split into pieces, as shown in Figure 3.20(a). Therefore, before estimating the 

real dimension of the detected object, it is important to merge the sparse detected blobs 
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to determine the dimensions, as proposed before in Equation (3.11). This clustering 

algorithm is based on the Euclidian distance that will merge recursively those blobs that 

satisfy the distance restriction; in our case the maximum distance was set to 25 pixels. 

The results after applying this algorithm are illustrated in Figure 3.20. 

 

  
             (a)                            (b) 

Figure 3.20. (a) Blobs obtained after the binary matching step; (b) Blob obtained when the clustering 

algorithm is applied. 

 

In addition to the explained in this subsection it is important to remark that those 

detected vehicles, in non adjacent lanes, could be rejected by mean lateral distance 

discrimination, as shown in [ESC01]. Due to in certain occasions some drivers commit 

traffic violations when changing lanes, endangering the road safety, it is preferable do 

not reject such detected vehicles. In the last row of Figure 3.26, the sequence of vehicle 

overtaking detection screenshots illustrates how the system is able to detect vehicles in 

non-adjacent lanes.  

 

D. EGOMOTION FILTERING 

 

Egomotion can be defined as the motion pattern generated by the observer’s own 

displacement in relation to static objects in a scene. When the observer follows a linear 

path the motion generated is in the opposite direction to that of an object approaching 

the observer. If the observer does not follow a linear path, for instance when a car turns 

left with a camera fixed on the left side, part of the scene will generate egomotion with 

similar features to the ones generated by an approaching vehicle and therefore cause a 

false positive (see Figure 3.21). For this reason it must be activated a mechanism able 

to determine when this situation occurs and discard such false positives.  

 

 



 81 

 
Figure 3.21 Optical-flow scenario when the car turns left and the camera is fixed on the rear view mirror 

on the left side of the car. 

 

Since the scene is a perspective projection this property can be used to discard false 

positives generated by egomotion, as explained previously. Based on the line equation 

it can be described a “linear classifier” that determines whether the centroid of a 

detected object belongs to the area of interest, as shown in Figure 3.22. The parameters 

that describe the line, slope and y-intercept are conditioned by the higher vehicle’s 

centroid along the 2D image space. In Equation (3.12) the output estimates whether an 

object is in the area of interest (AOI), 

  

𝑆𝑖𝑔𝑛 =  
𝑚 ∙ 𝑥 + 𝑛 − 𝑦

|𝑚 ∙ 𝑥 + 𝑛 − 𝑦|
 (3.12) 

 

where m is the slope, n is the y-intercept and x and y the Cartesian coordinates of the 

centroid object. 

 

  
Figure 3.22. Area classification representation, where positive values indicate objects out of the AOI 

while negative values indicate objects within the AOI. 

 

This approach is not enough in certain circumstances however: when the car turns 

on a roundabout or takes a sharp bend, for instance, projection filtering cannot discard 

most of the false positives (note that this issue is not solved by other similar approaches 

based on image processing [DIA08a][MOT04][SON07]). For this reason it was added 

an external sensor able to detect such scenarios as taking bends or other turning actions. 

A simple gyroscope is the most suitable sensor to solve our problem since it provides 

the angular speed directly. For implementation in a commercial system this sensor 
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could easily be replaced by a CAN-bus connection to the vehicle network, which reads 

this information directly from the vehicle sensors. The information is used to adapt the 

projection filter to the new circumstance, thus limiting the classification area 

adaptively. Figure 3.23 shows the two points (p1 and p2) that define the line described 

in the calibration stage and the newly estimated position of p1 (p1’) when a vehicle 

turns to the left. The newly estimated position of 𝑝1 is defined as follow, 

 

𝑝1′ = 𝑝1 + 𝐴𝑛𝑔𝑢𝑙𝑎𝑟𝑆𝑝𝑒𝑒𝑑 ∙ 𝐹𝑎𝑐𝑡𝑜𝑟 (3.13) 
 

where 𝑝1′  is the new coordinate of p1 in the Y axis, 𝑝1 is the original position, 

𝐴𝑛𝑔𝑢𝑙𝑎𝑟𝑆𝑝𝑒𝑒𝑑 is the information provided from the sensor and 𝐹𝑎𝑐𝑡𝑜𝑟 is a constant 

gain value. The 𝐹𝑎𝑐𝑡𝑜𝑟 variable in Equation (3.13) is an empirical fixed value where 

vary depending of intrinsic and extrinsic camera parameters, image resolution and the 

estimated line to reject possible false negatives. In our tests this value was fixed at 

1,000. 

 
Figure 3.23. Example of projection filtering adaptation on a road scenario. 

 

 

E. INCREASED VEHICLE DETECTION DISTANCE 

  

The Eye-RIS™ system is able to capture images with low exposure times, thus 

obtaining high frame rates of up to 10,000 fps. The concomitant problem in road scenes 

when making use of a high frame rate is that the motion of approaching vehicles at a 

distance from the camera is hardly noticeable. This can be solved by means of a higher 

image resolution, but the Eye-RIS™ platform is constrained to QCIF resolution 

(176×144). Static objects closer to the camera, on the other hand, move faster than 

distant objects, i.e. the egomotion patterns based on static objects depend on the 

distance and speed as well as the trajectory. Hence it must be taken this into account 

the rejection of bad optical-flow estimations of objects close to the camera: the exposure 

time must be inversely proportional to the speed of the car and the distance to the object. 

To address both aims, obtaining valid optical-flow estimations from near objects and 

detecting objects in motion distant from the camera, it is proposed a splitting scheme 
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of the sequence into different exposure times to satisfy such restrictions. The concept 

of this introduced solution is shown in Figure 3.24, where the left hemisphere of the 

sequence computes the optical flow with 𝐼𝑡 and 𝐼𝑡+2 frames while to estimate optical 

flow in the right hemisphere 𝐼𝑡+1 and 𝐼𝑡+2 frames are used. This calls for a frame-rate 

adaptation mechanism. Note that this mechanism is possible thanks to the complete 

control of the triggering of image acquisition (as opposed to cameras with a periodic 

and fixed image-acquisition trigger). This system is capable of controlling the 

acquisition process according to the scenario and producing a non-periodic, adaptable 

image-acquisition process that optimizes the processing time and system delays and 

tunes to the motion range of the scene.  

 

 
Figure 3.24. Adaptable frame rate in the scene; sample split period in a sequence. 

 

Figure 3.24 shows an overlap area within both hemispheres. The interest of such 

overlapping is because the sequence may have an uncertainty area in which the left 

hemisphere may represent incorrect optical-flow estimation due to the vehicle’s speed, 

while the right hemisphere may represent the correct estimations. The opposite may 

also occur, i.e. the vehicle is moving slowly and so the right hemisphere cannot detect 

it but the left one can. Hence this overlapping area is the result of the combination, 

bitwise OR, of both MOI hemispheres (For more details about MOI see Section 

3.5.2.B). The choice of the size of the hemisphere and the frame rate adaptation are 

related to the extrinsic parameters of the camera. In our case these camera parameters 

are shown in Table 3.5. In the next section this proposed approach is evaluated. 
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Table 3.5. Extrinsic and intrinsic camera parameters used in our tests. 

Camera Parameters Values 

Height 98 cm 

Row Tilt 14º 

Yaw Tilt 5º 

Left Hemisphere Width 96 pixels 

Right Hemisphere Width 105 pixels 

Overlap Width 32 pixels 

Focal Distance 8 mm 

 

3.6.1  System Evaluation and Results 

 

In Section 3.5.2 was described each step of the proposed algorithm with a novel 

adaptive mechanism to discard false positives generated by the egomotion as well as a 

complementary approach, detailed in Section 3, to increase the range detection. Now 

the system is evaluated quantitatively. Firstly, the system performance is estimated to 

determine the number of frames per second (frame rate) in different scenes that our 

implementation is able to process with the Eye-RIS™ platform. Precision is another 

factor that will be studied in this section to determine accuracy by means of an 

assessment of the exposed system on the highway with diverse elements in the scene. 

Distance detection is then contrasted with several tests at different speeds on a closed 

track, including the complementary mechanisms to increase the detection distance 

described in Section 3.5.2.E, and finally the system is evaluated in low-light conditions, 

where it is described the pertinent modifications to work under these conditions. 

 

A. SYSTEM PERFORMANCE AND PRECISION EVALUATION 

 

At first it will be evaluated the performance of the described algorithm in the Eye-RIS™ 

platform and estimated the frame rate that the system is able to process. To measure 

processing time it will be evaluated in five different road scene sequences, previously 

recorded with a total of 2,404 images. Figure 3.25 shows the frame rate that the system 

is able to process in typical road sequences, the rate ranging in the worst case from 22.8 

to 31 fps (a mean frame-rate of 26.9 and a standard deviation of 3.1). Having evaluated 

the results of the performance of the proposed system it can be concluded that the 

system is capable to work in real-time and is suitable for application in this field. It’s 

important to note that in field tests were carried out obtaining similar results.   
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Figure 3.25. Frame rate obtained for different road scenes in which the vertical bar error indicates the 

deviation. 

 

As far as precision is concerned, the platform was tested on the road to determine 

the robustness of the proposed algorithm. To accomplish this formal test it was analyzed 

a continuous video sequence of 15,168 frames while driving on a highway at 80-100 

km/h, during which the system detected 76 overtaking cars (positive warnings, or true 

positives), 14 frames with false positives and no missing vehicles (no false negative). 

In other words, it can be said that the system is 100% reliable with regard to sensitivity 

(i.e. all overtaking vehicles were detected). The sensitivity of the system SENSI = 

TP/(TP+FN), where TP is the number of true positives and FN the number of false 

negatives. 
 

B. DISTANCE DETECTION EVALUATION 

 

To judge the maximum distance car detection with the described system several tests 

were undertook with different relative overtaking speeds (20, 40 and 60 km/h) and 

different left-hemisphere delays, as explained in Section 3.5.2.E. The measurements 

were made on a private driving circuit with visual marks on the road to measure distance 

between objects. Distance measurement at each relative speed was assessed with three 

different left-hemisphere delays. Each measurement was made three times to obtain a 

consistent estimation. These assessments were reproduced with the same extrinsic and 

intrinsic parameters as those used in the road test. Figure 3.26 shows the mean distance 

detection, taking into account the three speeds in the test evaluation compared to the 

left-hemisphere delay. The chart reveals that distance detection increases concomitantly 

with the delay applied to the left hemisphere. The main reason for not evaluating more 

than three frame delays is because it was found, by trial and error, that the system 

becomes less stable; i.e. it is more likely to obtain false positives due to the Nyquist 

theorem violation caused in the optical flow estimation. For this reason, it was decided 

that the optimal delay value is three. 
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Figure 3.26. Mean distance detection in relation to the left-hemisphere delay; the vertical bars indicate 

measurement error. 

 

The detection distance establishes driver reaction time to maneuver if necessary. 
Table 3.6 shows the reaction time in relation to relative speed, taking into account our 
distance detection with three delays in the left hemisphere. Reaction time decreases 
with relative speed. According to the research of Green [GRE00], the worst reaction 
time to overcome is estimated at 1.5 seconds; in our case reaction time is due the 
steering action taking less time (1.35 sec). With the collected information it can be 
assumed that the system is able to warn the driver in time.  
 

Table 3.6. Driver reaction time in relation to the relative speed, taking into account our distance detection 

(26.7 meters).  
Relative Speed Reaction Time 

20 Km/h 4.86 s 

40 Km/h 2.4 s 

60 Km/h 1.6 s 

 
The commercial device to detect overtaking developed by Ford [ICA09], has an 

overtaking detection range of 20 meters, while that proposed by Volvo [VOL09b] is 

able to detect within 9.5 meters and the Audi [ICA09] system works over a range of 50 

meters. As shown in Figure 3.28, the system is able to detect at a mean range of 26.7 

meters for the case of 3-frames hemisphere delay. To extend this range, detection is 

possible using different optical parameters such as working with higher focal distances 

for example. In our experiments it was used an 8mm optic. When a longer focal distance 

(16 mm) was used, however, the system could not cover the area closest to the vehicle 

and so in order to cover a longer range without losing the near range a dual system with 

different optical parameters would be required.  
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C. SYSTEM FEASIBILITY IN LOW-LIGHT CONDITIONS 

 

Driving-assistance systems for vehicle detection in low-light conditions are usually 

based on the detection of light emitted by headlights, taillights and brake lights. When 

detecting cars approaching from the rear, O'Malley [OMA08] proposes a solution based 

on the HSV space and symmetry of the position of lights to detect vehicles. Due to the 

hypothesis used, this approach is focused primarily on the detection of cars rather than 

other vehicles such as motorcycles. In the case of frontal detection, Alcantarilla et al 

[ALC08] describe a method capable of detecting vehicles according to headlight 

features that are classified by a linear classifier based on SVM and takes into account 

distance detection to rule out those vehicles above the horizon line.  

 

In our system the proposed algorithm requires no major modifications because it is 

possible to estimate the optical flow generated by the headlamps without taking into 

account other features of the car. In our tests the focal plane was responsible for 

integrating the image in the High Dynamic Range (HDR) using four images with 

different exposure times (with a total integration time of 12.9 ms) to cover a wide gray-

level range in all areas. After several tests in low-light conditions it was found that the 

system worked properly when the lighting was higher than 90 lux. It was also decided 

to avoid the width filter in low-light conditions (Section 3.5.2.C) because the light 

emitted by the headlight (on most occasion) reflected on the road, thus distorting the 

car’s proportions, as shown in Figure 3.27(a). It is important to point out that this effect 

may be controlled by the type of road surface, the illumination of the scene and weather 

conditions. In order to detect vehicles in these conditions it was used a photo-resistance 

to determine the degree of illumination in the scene and change the restrictions of our 

algorithm. After avoiding the vehicle width filter restriction the system works properly, 

as shown in Figure 3.27(b). At the current state, a qualitative evaluation of the 

feasibility of the system in such low-visibility conditions is required but, as shown, the 

results so far are promising and thus our preliminary conclusion is that the system is 

able to work in low-light conditions as well as normal lighting. This issue will be 

addressed more fully in the future.  
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                    (a)                                       (b) 

Figure 3.27. Rain scene in low-light condition; (a) Vehicle detected and discarded by the width filter; 

(b) Vehicle detected as valid after removing the width filter. 

3.6.2  Discussion 

 

 In this and previous tests it was noticed that the false positives were generated by the 

wagon-wheel effect [FIN84], where motion direction appears to be opposite to the real 

one. This effect is generated by the violation of the Nyquist theorem and the system 

generates a false positive when the wagon-wheel effect is present and the detected area 

has similar car dimensions (crash barrier, vegetation, shadows etc.). These cases can be 

ruled out by using further refining schemes, taking into account the egomotion patterns 

and the speed of our vehicle, though this must be left for future investigation. Figure 

3.28 shows some samples of the results in different real overtaking scenarios while 

Figure 3.29 shows detected false positives and discarded false positives as described in 

Section 3.5.2.C.  

 

 
Figure 3.28. Example of true positive detections with our algorithm on a true scenario. 

 



 89 

 

Figure 3.29. Example of false positive detections (first row) and false positives rejected by our approach 

(second row). 

 

3.7 CONCLUSIONS 

 

Advanced driver-aid systems have begun to play an important role in the automotive 

industry in recent years. A driver-assistance system has been described and designed to 

detect approaching vehicles and warn the driver about the risk of changing lane. Hybrid 

architecture based on a computing focal plane and an on-chip digital processor is used 

to implement this system. The implementation of the proposed model on this single-

chip system is a challenge in itself, only made possible by taking full advantage of the 

parallel computing resources at the focal-plane and the sequential digital processor. The 

model has been built on the basis of different stages that are implemented on the focal-

plane layer and the digital processing resources, depending on their inherent 

characteristics.   

 

The described system relies on optical flow to pre-segment approaching objects, 

after which a final segmentation is carried out on the focal plane and is subsequently 

evaluated following dimension criteria to discard those that are not vehicle sized. It has 

been also discussed the effect produced by egomotion when the vehicle turns left on 

sharp bends or roundabouts and offer a suitable solution based on an external 

complementary sensor. An inexpensive computational approach to increase the 

distance of detection is described as well. Finally the whole system is evaluated taking 

into account its performance, precision, distance detection and the illumination of the 

scene. It can be concluded that the results are quite promising when bearing in mind the 

difficulty of this problem. Furthermore, it is worth mentioning that the whole capturing 

and computing engine is implemented with a single chip, i.e. system-on-a-chip 

approach. In the evaluation section it is emphasized that all the overtaking cars were 

detected (no false negatives) making the system very reliable. The false positive cases 

are affordable because the system will only provide a warning signal if the driver starts 

a lane-change maneuver.  
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In future research will be focused on wagon-wheel effect detection to further 

optimize the accuracy of our approach and also to address the quantitative evaluation 

of the system in adverse weather conditions as well as night-time scenarios.  
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4. ULTRASOUND IMAGING 

 

4.1 INTRODUCCION 

 

Vascular ultrasound exploration has been a popular technique widely used in medical 

sector. One of the advantages that motivates this technology is its non-invasive nature, 

low price, and the existence of portable systems. Ultrasound, also known as 

ultrasonography or ecosonography is the procedure to obtain echoes of the high-

frequency waves, generated by ultrasound transducers, colliding on a body or object 

such as tissues, veins, arteries, organs, etc. and translate them into images in order to 

perform a medical diagnosis. Knowing the speed of propagation of the wave, ultrasonic 

in this case, the time of flight can be measured and hence estimate the distance of the 

collided objects. In this type of technology, it is assumed as the average propagation 

speed to 1540 m/s; that is the one that corresponds to the soft tissues. This assumption 

produces small errors in the estimation of the distance due the wave travel through 

different tissues (different propagation media). 

 

The received echoes, originally emitted from the transducer, are the response of the 

collision over different type of surfaces, producing different types of echoes depending 

on the surface reflections. In the case of a soft surface, the reflection will be specular 

(the exit angle formed with a standard to the surface, is equal to the input according to 

Snell's law). While in the case of a rough surface, it will diffuse reflection type (Scatter). 

There are also cases where the wave is refracted or absorbed, as is the case of bone-

absorbing signal. The relative ratio of the reflected and transmitted power depends on 

the change in acoustic impedance between two materials. The reflected ultrasound is 

proportional to the change in acoustic impedance, i.e., as greater is the acoustic 

impedance change, the proportion of the reflected wave will be higher. Such echoes are 

registered by the hardware producing black and white anatomical images. This imaging 

technique can be used to detect and evaluate different diseases related with arterial 

walls, presence of thrombus in a vein, or other vascular pathologies.  

 

But Ultrasound imaging has also drawbacks, the images produced are very noisy and 

thus their interpretation requires highly skill personnel. The inter-exploration and inter-

specialist variability in the data acquired from Ultrasound explorations is very high. 

This motivates the development of new models and techniques that facilitate diagnosis 

from an ultrasound exploration. For instance, tools to semi-automatically segment the 

artery within an ultrasound image, or even tools to track the artery motion (which is a 
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dynamic parameter impossible to estimate from a static image). This part of the PhD 

describes tools developed for these purposes. The other drawback of the ultrasound 

exploration is the fact that it is done by an expert in a closed loop, i.e., the specialist 

moves the ultrasound probe according to the interpretation of the images on the screen. 

Thus semi-automatic segmenting tools need to work in real-time if they aim to be used 

in this framework. Then, wall motion tracking tools (as the one developed also in this 

PhD) can be used with recorded sequences, but their processing needs to be done 

efficiently to allow the specialist to evaluate if the extracted parameter is acceptable or 

a new recording is necessary (while the patient is still being explored), and this requires 

it to be done in a few seconds or maximum minutes. 

 

 

Figure 4.1. The ranking results that lead the causes of death in the world. 

 

It is important to remark that arterial diseases are considered one of the main causes 

of premature death in the developed world. There are several risk factors associated 

with the development of arterial diseases, but it has been widely accepted that alcohol, 

tobacco and an inadequate nutrition are one of the main causes. According to data 

obtained from the World Health Organization [WHO14], the main diseases related to 

premature mortality with cardiovascular basis are shown in Figure 4.1 where the first 

cause of mortality covers 12.8 percent and a total of 25.6 percent of all deaths in relation 

with cardiovascular problems. 
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4.2 ARTERY SEGMENTATION IN ULTRASOUND IMAGING 

 

4.2.1 Motivation 

 

In medical imaging, one of the most important topics, which usually turns into a 

complex task, is image segmentation. Diagnosis based on the measurement of the 

dimensions of the artery allows experts to identify diseases, such as aneurysm. This 

disease produces an oversizing in the artery with the risk of a possible rupture. Hence, 

a good segmentation of the artery based on Ultrasound (US) imaging is important, as it 

is used for diagnosing different vascular pathologies, such as aneurysm. US imaging 

represents a crucial medical tool to measure any oversize of the artery given its 

noninvasive nature, instead of other invasive techniques that make the use of contrast 

agents. These other techniques are inefficient and expensive as regards their actual cost, 

in terms of time consumption, and regarding the need for human resources with specific 

skills. Though US-based explorations require highly specialized personnel, approaches, 

such as the one described here, aim to create a valid tool, even for not so highly 

specialized staff. 

 

This chapter is focused on segmenting the outer side of the artery in US imaging, in 

an easy way, reducing the requirement for specific training, also reducing in this way the 

inter-intra-specialist variability and, thus, increasing the reliability of the measurements 

of the diameter of the artery. Semiautomatic measurement schemes, such as the one 

described in this work, also aim to facilitate the US exploration process, making it 

suitable even for medical personnel with less specific exploration skills. Figure 4.2 shows 

an example of a manual segmentation in typical US software. At first, the artery is detected, 

and the frame is frozen to be analyzed. On this static image, the expert measures, by 

means of two perpendicular lines, the diameter of the artery. This technique becomes 

quite rudimentary, because it requires a certain degree of specialization, and even so, 

the final measurement depends on the current manual skill during the measurement 

estimation. This leads to high inter-intra-specialist evaluation variability.  
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Figure 4.2. Typical manually-driven measurement in ultrasound (US) software (TeleMed) to determinate 

the diameter of the artery. 

 

The main contribution of this work is the proposal of a novel method based on the 

geometric nature of the artery, which adopts elliptical shapes. This method is able to 

segment the artery more accurately than other models proposed in the literature. The 

optimization of the seed ellipse parameters is done with an evolutionary optimization 

approach. Due to the high computational cost of the evolutionary models, it will make 

use of massive parallel architectures and present-day complex algorithms to carry out 

the segmentation in a reasonable time. The described approach is evaluated and 

compared with other well-known segmentation techniques, obtaining very promising 

results in comparison with the state-of-the-art.  

 

The chapter is organized as follows: Section 4.2.2 describe a brief state of art 

introduction on method based in evolutionary segmentation with ellipses while Section 

4.2.3 introduces a detailed explanation of four common segmentation techniques to 

evaluate the quality of the described approach. Section 4.2.4 is described the proposed 

technique and detailed the graphics processing unit (GPU) implementation of the 

suggested method, the obtained performance and a comparison with a parallel CPU 

implementation. Section 4.2.5 compares the accuracy of the introduced method with 

respect to the state-of-the-art approaches, while Section 4.2.6 will discuss the obtained 

results of the evaluated methods and finally Section 4.2.7 summarizes some 

conclusions. 
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4.2.2 Background Material and Related Work 

 

Nowadays, many solutions have been proposed in natural imaging to detect ellipses. 

One of them is the approach introduced by Yao et al. [YAO05], where the possibility 

of making use of a multi-population genetic algorithm, which turns out to be a more 

robust and faster solution than classic methods, such as the Randomized Hough 

transform (RHT) [MCL98], was demonstrated. Similar works have been carried out by 

Lutton and Martinez [LUT94] or Mainzer [MAI02]. In these works, genetic algorithms 

were also used to detect ellipses in natural images. This kind of method cannot be 

extrapolated to the US domain because of the existence of several artifacts, such as not-

well-defined edges, noise and the presence of high discontinuities in the edges, etc. It 

is also important to remark that those approaches are only based on the binary domain 

and focused on natural images. In the US framework, an approach also based on ellipse 

estimation has been recently introduced by Moursi and Sakka [MOU09]. This method 

first applies a segmentation to obtain an early approximation of the ellipse parameters 

and is subordinated to the pre-segmentation stage; if this stage fails, the rest of the 

segmentation stages will also fail. In Section (4.2.3) are detailed also other popular 

techniques utilized in medical segmentation field and evaluated with the proposed one. 

 

4.2.3 Material and Methods 

 

In this subsection, the most common segmentation methods in medicine will be briefly 

described and compared with the submitted approach.  

 

A. PARAMETRIC ACTIVE CONTOUR (SNAKES) 

 

Kass et al. [KAS87b] introduce a model that consists in parameterizing the curve based 

on the topology of the image and the internal features of the curve. Given a curve 

v(s) = [x(s), y(s)], s ∈ [0,1], the objective is to fit such a curve to the nearest contour. 

Hence, Equation (4.1) is minimized. 

 

𝐹𝑇𝑜𝑡𝑎𝑙 = ∫ 𝐹𝑖𝑛𝑡(𝑣(𝑠))
1

0

+ 𝐹𝑒𝑥𝑡(𝑣(𝑠)) + 𝐹𝑐𝑜𝑛𝑠𝑡(𝑣(𝑠))𝑑𝑠 + 𝐹𝐵𝑎𝑙𝑙𝑜𝑜𝑛(𝑣(𝑠)) 
 

(4.1) 

 

where 𝐹𝑖𝑛𝑡(𝑣(𝑠)) is the internal force,  𝐹𝑒𝑥𝑡(𝑣(𝑠)) the external force,  𝐹𝑐𝑜𝑛𝑠𝑡(𝑣(𝑠))  

another external force (e.g., one given by the user) and 𝐹𝐵𝑎𝑙𝑙𝑜𝑜𝑛(𝑣(𝑠)) an external force 
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that provides expansion or contraction to the contour. The internal force can be defined 

as in Equation (4.2). 

𝐹𝑖𝑛𝑡 = 𝐹𝑐𝑜𝑛𝑡 + 𝐹𝑐𝑢𝑟𝑣 = 𝛼(𝑠) 
𝑑𝑣

𝑑𝑠
− 𝛽(𝑠) 

𝑑2𝑣

𝑑𝑠2
 

 
(4.2) 

 

The first term, 𝐹𝑐𝑜𝑛𝑡, minimizes the length of the arc and 𝛼 controls the elasticity of 

the contour. On the other hand, the second term, 𝐸𝑐𝑢𝑟𝑣, minimizes the curve, and 𝛽 

handles the flexibility and smoothness of the contour. 

 

The original approach [KAS87b] was prone to problems when the initialization was 

far away from the solution. The use of the external force 𝐹𝑒𝑥𝑡(𝑣(𝑠)) aims to minimize 

this problem. As Xu and Prince [XUU98] propose, expanding the external force field 

equation with a model that produces vector diffusion Equation (4.3) called gradient 

vector flow. 

 

𝐹𝑒𝑥𝑡 = ∫∫𝜇(𝑢𝑥
2 + 𝑢𝑦

2 + 𝑣𝑥
2 + 𝑣𝑦

2) + (𝑓𝑥
2 + 𝑓𝑦

2)((𝑢 − 𝑓𝑥)
2 + (𝑣 − 𝑓𝑦)

2)𝑑𝑥𝑑𝑦  
(4.3) 

 

where 𝜇 is a non-negative weight that provides the degree of smoothness, 𝑓𝑥 and 𝑓𝑦 

are the initial external force vectors and (𝑢, 𝑣) the new estimated vectors. The last term 

is motivated by the approach of L. Cohen and I. Cohen [COH93], which included a new 

extra external force able to inflate or deflate the shape of the contour, and it is defined 

in Equation (4.4), where 𝛾 ∈ [−1, 1], causing the negative values to be a deflation of 

the shape and the positive ones an inflation. This method has been used, for instance, 

to approximate the Gallbladder’s shape [CIE10], to segment tumors in livers [CVA05], 

segmentation of masses from breast US images [JUM10] or to segment skin cancer 

[TAN09]. 

𝐹𝐵𝑎𝑙𝑙𝑜𝑜𝑛(𝑠) = 𝛾�⃗⃗⃗�(𝑠)  
(4.4) 

 

B.  REGION-BASED ACTIVE CONTOUR MODEL (ACM) 

 

Zhang et al. [ZHA10a] proposed a novel method that allows a selective segmentation 

by means of a combination of the geodesic active contour [CAS97] and the Chan–Vese 

methods [CHA01]. This model makes use of the Signed Pressure Force (SPF), i.e., it 

modulates the expansion or contraction force of the region of interest, as indicated in 

Equation (4.5). 
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𝑆𝑃𝐹 =  
𝑢0 −

𝑐1 + 𝑐2
2

 

max {|𝑢0 −
𝑐1 + 𝑐2
2

|}
 

 
(4.5) 

 

where 𝑢0  is the original image and 𝑐1 and 𝑐2 are the means of the internal and 

external regions of the level set. SPF works as a constraint of the region. Hence, Zhang 

et al. [ZHA10a] removed the weight by the SPF function in geodesic active contour 

Equation (4.6), where g(|𝛻𝐼|) is the diffusivity function, 𝜙 the active contour, 𝑓 the 

balloon force, which allows one to control the shrinking or expanding of the contour, 

and 𝜙 a constant to control the diffusion on weak edges. 

 
𝜕𝜙

𝜕𝑡
= 𝑔(|∇𝐼|) ∙ |∇𝜙| ∙ (𝑑𝑖𝑣 (

∇𝜙

|∇𝜙|
) + 𝑓) + 𝛼 ∙ ∇𝑔(|∇𝐼|)T ∙ ∇𝜙  

 
(4.6) 

 
𝜕𝜙

𝜕𝑡
= 𝑆𝑃𝐹 ∙ |∇𝜙|  

 
(4.7) 

 

The Chan–Vese method has no problem with the leaks; for that reason, ∇g(|∇I|)T ∙

∇ϕ  is removed, because it is no longer needed. Furthermore, the diffusion term in the 

original Equation (4.6) was substituted by a Gaussian convolution. Hence, the final 

equation after the modifications explained above is simplified as indicated in Equation 

(4.7). 

 

C.  SEGMENTATION BASED ON FUZZY C-MEAN CLUSTERING 

 

Fuzzy C-mean (FCM) [DUN73] has become a popular method for segmentation in 

medical imaging. Abdel-Dayem and El-Sakka [ABD07] make use of this method to 

segment the carotid in US imaging, where the features that make up the clustering data 

are formed by the intensity, mean and standard deviation of a 5×5 block. Once the 

feature vector is extracted per each pixel, the FCM is used to segment the image into 

three classes. Finally, the user selects the desired segmented area, and by means of 

morphological reconstruction [VIN93], the selected area will be extracted from the rest. 

 

D.  ACTIVE SHAPE MODELS (ASM) 

 

Incorporating shape prior knowledge has been one of the most recent advances in 

segmentation in the last decade. Cootes et al. [COO95] proposed a statistical method 
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for the shape that can be deformed with respect to the mean through the most relevant 

eigenvectors (P) and a parameter, b, as indicated in Equation (4.8). 

 

𝑥 = �̅� + 𝑃 ∙ 𝑏  (4.8) 

The objective of this method is to estimate the parameters to locate the desired object 

to be segmented by means of matching each landmark with the previously trained 

normalized gradient profiles and solving linear equations to estimate the desired 

parameters in a multi-scale strategy. Those parameters are the translation in the x and 

y axis, scale, rotation and deformation Equation (4.9). Due to the robustness of this 

method, has been considered in many fields for instance in face tracking [ZHA08] or 

Tibia bone segmentation in US images [HEE01]. In this evaluation test, seven different 

kinds of artery topologies were trained in four scales and twelve landmarks per scale, 

which is enough to cover the common cases. 

 

𝑣 = {𝑡𝑥, 𝑡𝑦 , 𝑠, 𝜃, 𝑏}  (4.9) 

4.2.4 System Description 

 

As an alternative to the described methods to segment the artery based on US images, 

the proposed approach is based on a well-known stochastic technique. The description 

of the introduced method is organized as follows: Section A presents an introduction to 

the evolutionary utilized scheme focused to solve the segmentation issue. Section B 

describes the extracted features from the US images with the objective of address the 

evolutionary algorithm through the solution space while Section C, explains the ad-hoc 

objective function and finally Section D describes the implementation of the suggested 

approach on GPU and its performance evaluation. 

 

A. EVOLUTIONARY SCHEME 

 

Storn and Price [STO97] designed a method based on an evolution scheme to find 

optimal parameters in a subset of the solutions space, called Differential Evolution 

(DE). This method has demonstrated that working on low-dimensional problems 

[HAN06], a good performance is obtained. The main objective of the proposed 

segmentation method is to find the parameters of a given ellipse that better fit in the 

boundaries of the artery. This optimization problem is addressed using DE to obtain the 

parameters (𝑥𝑐, 𝑦𝑐 , 𝑎, 𝑏, 𝜃) that define ellipse Equation (4.10), as indicated in Figure 4.3. 
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𝑥(𝑡) = 𝑥𝑐 + 𝑎 ∙ cos 𝑡 ∙ cos 𝜃 − 𝑏 ∙ sin 𝑡 ∙ sin 𝜃 

𝑦(𝑡) = 𝑦𝑐 + 𝑎 ∙ cos 𝑡 ∙ sin 𝜃 − 𝑏 ∙ sin 𝑡 ∙ cos 𝜃  
 

(4.10) 

 

where 𝑥𝑐  and 𝑦𝑐  are the center coordinates of the ellipse, 𝑎 and b the minor and 

major axis, 𝜃 the angle with respect to the x-axis and the major axis of the ellipse and t 

a parameter that varies within the range [0 − 𝜋]. 

 

The pseudo-code of DE is shown in Algorithm 4.1, where the InitPopulation is a 

function that initializes the population in a bounded space defined by the maximum and 

minimum values of the parameters (MaxPar and MinPar). The fitness function 

(GetFitness) defines how well the parameters of the agents fit with the desired function 

(see Section 4.2.4.C for more information about the fitness function). To provide an 

exploration option to the population in each generation, a mutation operator (Mutate) 

is included. The new mutated agent is defined in Equation (4.11); where agents of the 

same generation (�⃗�, �⃗⃗�, 𝑐) are used to estimate the new one, with a desired mutation 

factor (F).  

 

�⃗⃗� = �⃗�  ∙ 𝐹 (�⃗⃗� − 𝑐)  (4.11) 

 

Algorithm 4.1. Differential evolution (DE) pseudocode implementation. 

1 Population = InitPopulation(MaxPar,MinPar); 

2 FitPop = GetFitness(Population); 

3 BestAgent = GetBestAgent(Population); 

4 while (NumIter < NumIterMax) 

5 MutPop = Mutate(Population,BestAgent,F);  

6 CrPop = Cross(Population,MutPop,CR);  

7 FitCr = GetFitness(CrPop); 

8 Population = Replace(Population,CRPop,FitCr,FitPop); 

9 BestAgent = GetBestAgent(Population); 

10 NumIter = NumIter + 1; 

11 end while 

12 return BestAgent 
 

Different approaches of this operator will be evaluated in Section 4.2.5. Another 

important exploration mechanism is the one provided by the cross-operator (Cross), 

where the mutated agents will be mixed with the current generation with a probability 

factor, CR (Cross Rate). 
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Figure 4.3. Illustration fitted in the boundaries of an artery by means an ellipse. 

 

At this point, the main parameter optimization method used in this paper has been 

defined. The next subsection will detail the features extracted in the US image used by 

the DE model to find the desired ellipse parameters that define the best contour of the 

artery. This search will be led by an ad hoc multi-objective function, as explained in 

Subsection 4.2.4.C, to solve this problem. 

 

B. FEATURE EXTRACTION 

 

To address the DE method over the solution space and estimate the parameters that 

obtain the best ellipse fitting over the artery, it is necessary to extract features that make 

it easier to find the desired solution. At first, the proposed approach must estimate the 

potential 𝑥𝑐 and 𝑦𝑐 parameters, which define the center of the ellipse by means of the 

method described by Loy and Zelinsky [LOY03], known as fast radial symmetry (FRS). 

This algorithm is based on a voting system, which determines the positive and negative 

affected pixels, 𝑝±𝑣𝑒, through the norm of the gradient, 𝑔(𝑝), at point 𝑝 using a ratio of 

size 𝑛 , the orientation projection image, 𝑂 (𝑝±𝑣𝑒(𝑝)) , and the magnitude projection 

image, 𝑀(𝑝±𝑣𝑒(𝑝)). 

𝑝±𝑣𝑒(𝑝) = 𝑝 ± 𝑟𝑜𝑢𝑛𝑑 (
𝑔(𝑝)

‖𝑔(𝑝)‖
𝑛)  

 
(4.12) 

 

𝑂𝑛 (𝑝±𝑣𝑒(𝑝)) = 𝑂𝑛 (𝑝±𝑣𝑒(𝑝))  ± 1   
(4.13) 

a b
Xc,Yc
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𝑀𝑛 (𝑝±𝑣𝑒(𝑝)) = 𝑀𝑛 (𝑝±𝑣𝑒(𝑝))  ± ‖𝑔(𝑝)‖   
(4.14) 

 

To determinate the saliency map, 𝑆, Equation (4.16), the result of Equation (4.15) is 

convolved with a Gaussian to remove any undesired noise. Parameter 𝛼 in Equation 

(4.15) acts as a gain factor of the saliency map to allow the enhancement of low contrast 

voting gradients. 

 

𝐹𝑛(𝑝) = ‖𝑂𝑛(𝑝)‖
(𝛼)𝑀𝑛(𝑝)   

(4.15) 

 

𝑆 = ∑𝐹𝑛 ∗ 𝐺𝜎
𝑛∈𝑁

   
(4.16) 

 

As opposed in the original version of this method, the normalization of Equations 

(4.13) and (4.14) and the integration of 𝑆 Equation (4.16) are not performed. These 

changes are done so as to obtain a faster implementation, as explained in Subsection 

4.2.4.D. Figure 4.4b shows an example of the output obtained after applying the FRS 

algorithm to an US image.  

 

 
 

(a) (b) 

Figure 4.4. (a) Original image and (b) saliency map after applying fast radial symmetry. 

 

At this point, one of the functions that will drive the DE method to optimize 

parameters 𝑥𝑐 and 𝑦𝑐 has been described. The guidance functions to obtain 𝑎, 𝑏 and 𝜃 

parameters in expression Equation (4.10) will be based on edge features, in this case, 

on the pixel orientation, gradient and binarized edges. The pixel orientation is estimated 

by means of the eigenvector with a high eigenvalue of the first order structure tensor J 
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Equation (4.17), where 𝐼𝑥 , 𝐼𝑦  and 𝐼𝑥𝑦  denote the spatial derivates and 𝐺𝜎  a Gaussian 

convolution for each spatial derivate. 

 

𝐽 = 𝐺𝜎 ∗ [
𝐼𝑥
2 𝐼𝑥𝑦

2

𝐼𝑥𝑦
2 𝐼𝑦

2 ]  
 

(4.17) 

 

One of the main problems of working with US images is the amount of speckle noise. 

Yongjian and Acton [YON02] described a solution to reduce the speckle noise, named  

Speckle Reducing Anisotropic Diffusion (SRAD), where a non-linear diffusion method 

to estimate the strength of the edges in US images through instantaneous Coefficient of 

Variation (ICOV) Equation (4.18) is suggested. To obtain the degree of exchange in the 

diffusion scheme, Yongjian and Acton use mechanism Equation (4.19), where the 

diffusion becomes zero in areas with highly contrasted edges and the opposite case when 

the area is flat. Parameter �̃� determinates the level of speckle noise, and therefore, it 

allows the control of the diffusion over time in Image (I). 

 

 

𝑞(𝑥) = √
|
1
2
|∇𝐼(𝑥)|2 −

1
16
 (∇2𝐼(𝑥))2|

(𝐼(𝑥) +
1
4
∇2𝐼(𝑥))

2   

 
(4.18) 

 

𝑐(𝑞(𝑥)) =
1

(1 +
|𝑞(𝑥)2 − �̃�(𝑥)2|
�̃�(𝑥)2(1 + �̃�(𝑥)2)

)
  

 
(4.19) 

 

Such noise will interfere in the pixel orientation estimation, as shown in Figure 4.5b. 

To avoid this artifact, the SRAD method will be applied with the objective of removing 

the noise and the texture generated by the tissue to obtain a clear pixel orientation, as 

illustrated in Figure 4.5d. 
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(a) 
 

(b) 

 
(c) 

 
(d) 

Figure 4.5. (a) Original US image; (b) pixel orientation of the original image; (c) SRAD smoothing; (d) 

pixel orientation of the smoothed (SRAD) image. In b and c, the pixel local orientation is represented 

with colors with respect to the color reference frame. 

 

However, this information is not enough yet to address the search. Given the large 

solution space provided by the pixel orientation, edge information will be incorporated 

to define the echogenicity. A change of different tissue structures, such as muscle to fat 

or artery layers to blood, provides a high degree of echogenicity. For this reason, the 

Logarithmic Image Processing (LIP) edge detector [PAL06] is used. This detector 

makes use of the logarithm derivatives [DEN95] with the objective of enhancing such 

areas as much as possible. Figure 4.6a shows the US image filtered by the SRAD 

method, while Figure 4.6b illustrates the obtained result after applying the LIP-Sobel 

gradient. The non-max suppression [CAN86] results are shown in Figure 4.6c and 

finally; the binary map (Figure 4.6d) after thresholding the non-max suppression output 

is included. 

 



 104 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.6. (a) US image smoothed with SRAD; (b) LIP-Sobel gradient; (c) non-max suppression 

applied to LIP-Sobel gradient estimation; (d) binary representation of the edges. 

 

C. ELLIPSE PARAMETER ESTIMATION 

 

Once the features that will drive the evolutionary method to obtain the parameters 

(𝑥𝑐 , 𝑦𝑐, 𝑎, 𝑏, 𝜃) that define ellipse Equation (4.10) have been defined, the fitness function 

of the DE algorithm will be described in this section. The proposed method intends to 

minimize the angle difference between the norm vectors of the ellipse and the pixel 

orientation of the image and, at the same time, to maximize the gradient and the binary 

edge of the artery and maximize the centricity through FRS. To solve this problem, the 

method exposed by Hajela and Lin [HAJ92] is adopted, where the approach follows a 

strategy based on weights for each different objective to integrate them into a unique 

fitness function. The proposed implementation makes use of a penalty scheme that 

penalizes points of the ellipse where clear orientation, gradient or edge Equations 

(4.21)–(4.23) do not exist. This penalization will be adaptive, by means of Equation 

(4.20), where the degree of penalization is defined by the Euclidean norm of the axis of 

the ellipse and its ratio aspect. A weight factor will be also included to this penalization. 

After an empirical evaluation, it was demonstrated that by setting those values to 𝑊𝑜 =

−90, 𝑊𝑔 = −1 and 𝑊𝑏 = −1, the method obtains reasonable results. 
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𝐷𝑝 = 
√𝑎2 + 𝑏2

𝑟𝑎𝑡𝑖𝑜
  

 
(4.20) 

 

𝑓𝑜(�⃗⃗�𝑡 , �⃗�𝑡 , 𝐷𝑟) =

{
 
 

 
 𝑖𝑓 �⃗�𝑡  ≠ 𝑁𝐴𝑁

1

𝐴𝑣(�⃗⃗�𝑡 , �⃗�𝑡) +  𝜀 
 

𝑒𝑙𝑠𝑒  𝑊𝑜 ∙ 𝐷𝑝

  

 
(4.21) 

 

𝑓𝑔(𝐺𝑣 , 𝐷𝑟) = {

𝑖𝑓 𝐺𝑣 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝐺𝑣
 
 

 𝑒𝑙𝑠𝑒 𝑊𝑔 ∙ 𝐷𝑝

  

 
(4.22) 

 

𝑓𝑏(𝐵𝑣 , 𝐷𝑟) = {

𝑖𝑓 𝐵𝑣 = 1 𝐵𝑣
 
 

 𝑒𝑙𝑠𝑒 𝑊𝑏 ∙ 𝐷𝑝

  

 
(4.23) 

 

𝑓𝐹𝑅𝑆(𝑥𝑐 , 𝑦𝑐) = 𝐹𝑅𝑆(𝑥𝑐 , 𝑦𝑐)   
(4.24) 

 

The first objective function Equation (4.21) is the orientation error, 𝑓𝑜 , which 

estimates the generated angle between the norms of the ellipse vector, (�⃗⃗�𝑡), and the 

pixel orientation, (�⃗�𝑡), vector by means of function 𝐴𝑣, which defines the angle between 

both vectors. The second objective function, 𝑓𝑔, Equation (4.22), aims to find shapes 

with a higher echogenicity given by the LIP-Sobel gradient, 𝐺𝑣. To avoid the gradient 

generated by small variations in the intensity of the image, a threshold scheme is 

utilized. The function is set to the gradient if the threshold is higher than a defined value; 

otherwise, a penalization is applied to avoid the discontinuity in the shape of the ellipse 

and the gradient map. The third objective function, 𝑓𝑏, Equation (4.23), acts in a similar 

way as the previous one, but in this case, a binary map, 𝐵𝑣, is used. Finally, the fourth 

objective function, 𝑓𝐹𝑅𝑆, Equation (4.24), will guide the ellipse into the center of the 

artery using the FRS map. Once all the objective functions have been defined, the 

fitness function can be expressed as shown in Equation (4.25), where the weights, 

𝛼1, 𝛼2, 𝛼3, 𝛼4, are incorporated for each respective objective function. After empirical 

tests, it was found that those values fixed to 𝛼1 = 100, 𝛼2 = 2, 𝛼3 = 100, 𝛼4 = 30 of 

the exposed method achieve satisfactory results. 
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𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟−1 (𝛼1∑𝑓𝑜(�⃗⃗�𝑡 , �⃗�𝑡 , 𝐷𝑟)

𝜋

𝑡=0

+ 𝛼2∑𝑓𝑔(𝐺𝑣(𝑥(𝑡), 𝑦(𝑡)), 𝐷𝑟)

𝜋

𝑡=0

+ 𝛼3∑𝑓𝑏(𝐵𝑣(𝑥(𝑡), 𝑦(𝑡)), 𝐷𝑟)

𝜋

𝑡=0

+ 𝛼4𝑓𝐹𝑅𝑆(𝑥𝑐 , 𝑦𝑐)) 

 
(4.25) 

 

D. GPU IMPLEMENTATION 

 

One of the main problems when making use of evolutionary schemes is the computation 

cost, because it requires many iterations (generations) and a considerable number of 

individual members in each population. To avoid this limitation, a well-known parallel 

computing architecture, GPU (graphics processing unit), is utilized. The GPU used to 

evaluate the proposed implementation is NVidia GTX 580 (Fermi architecture; NVidia 

Corporation, Santa Clara, Calif., US), and it is equipped with 512 processing cores. In 

this section, the same implementation is also compared with an Intel i7 CPU 950 (Intel 

Corporation, Santa Clara, Calif., US) that incorporates eight cores (four cores with two 

logic-cores per each physical one). The technology used to develop the methods, in 

both architectures, is Open Computing Language (OpenCL), motivated by its degree of 

versatility to be executed in different platforms. At this point, the implementation will 

be briefly described and the differences with other methods in literature will be listed. 

 

The differential evolution method has a 100% parallel nature and is very suitable for 

parallel architectures, such as GPUs [DEV10][ZHU11][ZHU10], The adopted scheme 

is similar to the one described in [DEV10], with the difference being that the XorShift 

pseudorandom number generator [MAR03] is used instead of generating random vectors 

in the host in each generation, with the objective of speeding up the performance. In the 

evaluation of the proposed method, it is important to remark that unlike other 

approaches; the advantage of the parallelism on a CPU was taken into account (making 

use of all cores in parallel) to evaluate, in the most equitable way, the performance of 

both architectures (GPU and CPU). It has been demonstrated [MAL08] that the number 

of agents (the size of the DE population of solutions) matters; a small number of agents 

can produce an early convergence. Therefore, an assessment is carried out by taking into 

consideration the number of agents compared to the number of generations. Figure 4.7 

shows the performance evaluation considering the number of agents and number of 

generations in the CPU (Figure 4.7a) and GPU (Figure 4.7b). In Figure 4.8, the gain 

factor obtained on the GPU with respect to the CPU is illustrated, and it shows a 

significant gain in performance (up to 54 times faster). After some experimental tests, 
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it was noticed that the use of 4,096 agents and 200 generations is enough to ensure the 

convergence to an optimized solution. 

 

 
Figure 4.7. Time consumption of the differential evolution algorithm in a (a) parallel CPU and (b) a 

GPU implementation.  

 

 
Figure 4.8. The factor obtained on the GPU with respect to the parallel CPU implementation. 

 
Once DE is evaluated in terms of computational speed on a GPU and parallel CPU, 

the feature extraction implementation in the US images (256×256) on the GPU is 

detailed. The parallel implementation of the SRAD and FRS methods will be explained 

in more detail, but the rest of the methods will not be described here, because their 

implementation is trivial and does not represent any kind of novelty. Nevertheless, all 

the performance rates of the specific modules are benchmarked in Table 4.1. 
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Table 4.1. Computation time evaluation of the main methods used in the described algorithm on the 

graphics processing unit (GPU) and parallel CPU implementation. AOS, additive operator splitting; FRS, 

fast radial symmetry. 

Method GPU Time CPU (8 cores) Time 

SRAD-AOS 5 iterations 7.65 ms 13.58 ms 

FRS 3.78 ms - 

Pixel Orientation 1.14 ms 6.95 ms 

Non-Max Suppression 0.16 ms 2.29 ms 

LIP-Sobel Gradient 0.11 ms 1.42 ms 

 

SRAD, as well as non-lineal diffusion methods in general, is very expensive in 

computation terms. Weickert [WEI08][WEI98] proposed a semi-implicit scheme to 

speed up this kind of method: denominated additive operator splitting (AOS). In a recent 

work, Cao et al. [CAO09] exposed a SRAD GPU implementation based on an AOS 

scheme. To solve the tridiagonal matrix system, which is involved in the AOS method, 

Cao et al. utilized the cyclic reduction (CR) [HOC65] method. In this work, the parallel 

cyclic reduction (PCR) [HOC81] technique was chosen, due to the fact that it has an 

impact on the processing gain factor [ZHA10b] in comparison with CR. This approach 

is a mix of processing techniques, where each system is executed in parallel, and the 

elements of the system are solved into an iterative parallel scheme. 

 

On the other hand, the FRS algorithm presents a sequential processing that becomes 

quite difficult to parallelize on a GPU. To solve this problem, Glavtchev et al. [GLA11] 

proposed a smart solution whose computation time becomes invariant to voting size 

ratio Equation (4.12). To solve the voting integration bottleneck, Glavtchev et al. 

delegated this task to Open Graphics Library (OpenGL) by means of 3D primitives. 

Since this solution is totally focused on being solved on a GPU, the equivalent CPU 

implementation cannot be performed. Regarding the LIP-Sobel method and post-

processing stages (close to the LIP-Canny model), the developed approach was done in 

a similar way as in the work presented by Palomar et al. [PAL10], but in the last stage, 

only applying non-max suppression [CAN86] and omitting the hysteresis stage. 

 

Finally, to conclude this section, the global time consumption is estimated. Choosing 

a population of 4,096 agents and 200 generations in the evolutionary scheme and the 

image processing analysis (detailed in Section 4.2.4.B), the whole computation time 

takes 300 ms per image. It is important to remark that in this processing time, the image 
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transferences to the GPU and other minor algorithms, such as casting, range change, 

non-max suppression, thresholding, etc., are also included. 

 

4.2.5 System Evaluation and Results 

 

In this evaluation, the US images were acquired from two different US devices with the 

objective of evaluating the methods in a non-constrained platform. Those devices are a 

Siemens Antares (128 lines; Siemens AG, Munich, Germany) and a TeleMed Echo 

Blaster (64 lines; Telemed UAB, Vilnius, Lithuania). One of the most significant 

differences between these pieces of US equipment is their resolution (double resolution 

in Siemens with respect to the TeleMed device). To determine the accuracy of the 

methods, the well-known F-measure estimator Equations (4.26)–(4.28) are used. This 

estimator evaluates a benchmark dataset of 40 US images of different patients and areas, 

with their respective ground truth (where an expert marked it manually, point by point). 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
#𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖fi𝑒𝑑 𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑖𝑥𝑒𝑙𝑠

#𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝐺𝑇
  

 
(4.26) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
#𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖fi𝑒𝑑 𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑖𝑥𝑒𝑙𝑠

#𝑝𝑖𝑥𝑒𝑙𝑠 𝑐𝑙𝑎𝑠𝑠𝑖fi𝑒𝑑 𝑎𝑠 𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑
  

 
(4.27) 

 

𝐹 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∙
𝑟𝑒𝑐𝑎𝑙𝑙 ∙  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 +  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
  

 
(4.28) 

 

The stochastic method differential evolution was described in Section 4.2.4.A, which 

states that the mutation operator aids the model to explore the space solution through 

Equation (4.11). To determine the most appropriate strategy mutation, different mutation 

models Equations (4.29)–(4.32) with the exposed metrics Equations (4.26)–(4.28) are 

evaluated. 

 

(1) DE/Best/1: 

 

�⃗⃗�𝑖 = �⃗�𝐵𝑒𝑠𝑡 + 𝐹 ∙ (�⃗�𝑖 − �⃗�𝑟𝑎𝑛𝑑1)   
(4.29) 

(2) DE/Current to Best/1: 

 

�⃗⃗�𝑖 = �⃗�𝑖 + 𝐹 ∙ (�⃗�𝐵𝑒𝑠𝑡 − �⃗�𝑖) + 𝐹 ∙ (�⃗�𝑟𝑎𝑛𝑑1 − �⃗�𝑟𝑎𝑛𝑑2)  
(4.30) 
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(3) DE/Current to Best/2: 

 

�⃗⃗�𝑖 = �⃗�𝑖 + 𝐹 ∙ (�⃗�𝐵𝑒𝑠𝑡 − �⃗�𝑖) + 𝐹 ∙ (�⃗�𝐵𝑒𝑠𝑡 − �⃗�𝑟𝑎𝑛𝑑1)  
(4.31) 

(4) DE/Rand/1 

 

�⃗⃗�𝑖 = �⃗�𝑖 + 𝐹 ∙ (�⃗�𝑟𝑎𝑛𝑑1 − �⃗�𝑟𝑎𝑛𝑑2)  
(4.32) 

 

where �⃗⃗�𝑖 denotes the mutated vector, �⃗�𝐵𝑒𝑠𝑡 the best agent in the current generation, 

�⃗�𝑖  the current agent and �⃗�𝑟𝑎𝑛𝑑1  and �⃗�𝑟𝑎𝑛𝑑2  the random vectors in the evaluated 

generation. Figure 4.9 shows the obtained segmentation results with different mutation 

operators. To perform this test, the experiment has been repeated 10 times (per each 

operator) and the mean of the obtained results has been computed. It can be observed 

that the best mutation operation can have an impact of about 3% in precision and almost 

1% in the F-measure with respect to the worst case. 

 

 
Figure 4.9. The evaluation of the proposed method with different mutation schemes with  

respect to the ground truth (manually marked) with its respective standard deviations (after 10 trials in 

each set up). 

 

It is clearly demonstrated (Figure 4.9) that the scheme Current to Best 1 Equation 

(4.30) is the best option, providing also a small standard deviation, while Rand 1 and 

Current to Best 2 schemes provide the worst results. To validate the proposed extracted 

features and to quantify the repercussion of each one, the impact of the combination of 

the features of each image is evaluated (Figure 4.10). It can be observed that the use of 

the binary mask and the edge information is not enough to find the desired parameters. 

The orientation feature improves the accuracy of the method up to 30% more than 
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making use of the other features. This means that it becomes the most important 

characteristic in the described method. The rest of the features aid in refining the 

accuracy of the model and reduce the standard deviation in the results. 

 

 
 

Figure 4.10. Evaluation of the proposed method with different features mixed (left) without orientation 

and (right) including the orientation feature. 

 

Finally, a last evaluation is carried out, where the results of the alternative methods 

(Section 4.2.3) and the proposed approach (Section 4.2.4) are compared. Figure 4.11 

reveals that the presented method obtains the best results, and not only in the F-measure 

metric, but also in the recall and precision. In the Discussion Section, some examples 

of the results of this comparative evaluation are shown. Furthermore, the suggested 

method has an improvement in the F-measure of 3%, 5% in recall and 2% in precision 

with respect to active shape models (ASMs). In the case of the comparison with respect 

to the parametric snake method, the obtained improvement is about 4% in the F-

measure, 7% in recall and 2% in precision. 
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Figure 4.11. The final comparative results of the F-measure, recall and precision with respect to other 

state-of-the-art methods. ASM, active shape model. 

 

To obtain a more detailed evaluation between the proposed method and the second 

best in the ranking, both methods are compared by means of a Bland–Altman plot. 

Figure 4.12 shows the difference between the proposed method and the second best 

results (ASM) and their averages. The middle line indicates the average difference of 

both methods, whereas the upper and lower lines represent the 95% limits of agreement 

with the 16.97% with respect to the mean difference. It can be concluded that Figure 

4.12 shows an overall good agreement of the amplitudes between the presented method 

and the reference one (ASM). 

 

 
Figure 4.12. The Bland–Altman figure comparing the best two obtained results (the proposed one and 

ASM). 
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4.2.6 Discussion 

 

After the evaluation performed in the previous section, some results obtained with the 

assessed segmentation methods are exhibited, and the pros and cons of each model are 

discussed. Figure 4.13a,b shows the ground truth (red color) that defines the area of the 

artery. The other one, Figure 4.13c–l, illustrates the results obtained by the different 

methods, where the green color illustrates the false positives, the false negatives are 

marked in blue color and cyan indicates the correct segmentation. Fuzzy C-mean 

(Figure 4.13c,d) and ACM (Figure 4.13e,f) produce leaks in the segmentation, because 

these methods are not appropriate when the US image produces shadows (a quite 

common artifact). On the other hand, methods that preserve the shape (parametric 

snake, ASM and the proposed one) are more robust for handling the leaks, as is 

illustrated in Figure 4.13g,l, where such an artifact is not produced. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

Figure 4.13. (a,b) Original US images with the ground truth marked in red; (c,d) fuzzy C-mean; (e,f) 

active contour model; (g,h) parametric snake; (i,j) active shape model; (k,l) proposed method. Please see 

the main text for the meaning of each color. 
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Comparing the group of methods that preserve the shape, it is important to remark 

that the parametric snake model provides different results in relation with its parameter 

settings (thus, it is sensitive to its internal configuration parameters). Another 

inconvenience occurs in the initialization of the method, which must be done close to 

the final solution. Those problems vanish with the ASM method, where the variation 

of the shape is defined in the training stage (avoiding parameter sensitivity), and its 

space search is longer than parametric snake, through its multi-scale scheme. The 

suggested method does not require the training stage (unlike ASM), because it is based 

on the geometric nature of the artery, the ellipse. 

 

As demonstrated in Section 4.2.5, the proposed approach reaches a good accuracy 

(obtaining an improvement with respect to ASM of 16.97%, as shown in the Bland–

Altman figure (Figure 4.11), and obtains an excellent GPU performance (up to 54 times 

faster than the parallel CPU implementation), as demonstrated in Section 4.2.4.D. 

Finally, to conclude the discussion chapter, some accomplished results with the 

introduced method in different patients and topologies of the artery are illustrated 

(Figure 4.14). 

 

 
    (a) 

 
(b) 

 
(c) 

 
(d) 

 
   (e) 

 
(f) 

 
(g) 

 
(h) 

Figure 4.14. Some results obtained with the proposed method in different patients. 
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4.2.7 Conclusions 

 

In this work, a method based on an evolutionary approach for optimizing different kinds 

of features to fit an ellipse that best defines the edges of the artery has been proposed. 

It has been demonstrated that it can be computed efficiently making intensive use of a 

GPU platform. Its high accuracy in relation with other state-of-the-art methods is also 

highlighted. 

 

The submitted approach outperforms other methods, not only in terms of accuracy, 

but also because in comparison with the ASM method, the suggested method does not 

require any kind of previous training stage. Another advantage that must be remarked 

upon is that the proposed method supports large search spaces, unlike ASM or parametric 

snakes, which need to be initialized close to the final solution. 

 

4.3 ARTERIAL WALL TRACKING 

 

4.3.1 Motivation 

 

Estimating the variation of motion in the artery for vascular characterization [BON00] 

is a new technique that helps doctors to detect specific diseases. Other non-invasive 

techniques such as Ankle Brachial Pressure Index (ABPI) [YAO69] or Augmentation 

Index (AIx) have been used to estimate parameters (blood pressure) that are associated 

with peripheral vascular diseases. For example, Mortensen et al. [MOR09] 

demonstrated the relation of AIx and the Marfan syndrome, the role that involves AIx 

in the hypertension field [SHI08] and the increase of the arterial stiffness in human 

subjects with Type 1 diabetes mellitus [WILK00]. The way to estimate the pressure 

parameters becomes very limited due to the fact that such measures cannot be estimated 

in other parts of the body besides the carotid artery where we have an easy access with 

US. Arterial pressure and arterial wall motion are related since estimating the pressure 

requires measuring the variation of the diameter of the artery, as it is indicated in 

Equation (4.34). The importance of the wall motion artery’s characterization has been 

also discussed by several authors who have demonstrated that radial [BON00, RAM03, 

KAN98, BON96] and longitudinal [ZAN12, ZAN10] [CIN06] motion are promising 

indicators to be associated with certain diseases or pathologies.  
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Existing commercial solutions such as Tissue Doppler Imaging (TDI) focus on the 

velocity measurement of the myocardial motion using Doppler principles. This 

technique has been extended to other applications in echocardiography [BON00, 

RAM03], to determine the mechanical properties of vessels by means of TDI. The main 

problems with using TDI are that the motion vector measurement can only be done in 

parallel to the direction of the ultrasound beam, TDI measures absolute tissue velocity, 

and it is not able to distinguish all passive motion [HOO06].  

 

The chapter is organized as follows: Section 4.3.2 describe a brief state of art 

introduction on method artery tracking. In Section 4.3.3 introduces a detailed 

explanation of the evaluated models, the process to generate the ground truth estimation 

and the combination of the methods that will be evaluated and compared in Section 

4.3.4. In Section 4.3.5, the obtained results of the evaluated methods will be discussed 

and finally, Section 4.3.6 summarizes some conclusions and outlines for future work.  

 

4.3.2 Background Material and Related Work 

 

Different solutions have been proposed to characterize the wall artery motion directly 

from ultrasound images in order to complement the information about motion patterns 

extracted from B-mode US. Image intensity correlation techniques have been widely 

used in ultrasound due to their robustness under noisy environments. Golemati et al. 

[GOL12] compared the displacement error produced in block matching [DUF95] and 

optical flow [LUC81, HOR81] methods over a simulated dataset. The matching feature 

is also an important factor, where Soleimani [SOL11] demonstrates that by including 

the gradient in the local search, the method results improve. The inclusion of a Kalman 

filter [KAL60] to update the reference block and the displacement vector [ZAH13, 

GAS01] has been also evaluated. This method becomes useful when the registered data 

is corrupted by significant amounts of noise, but in cases where the information is not 

corrupted at all, the filter does not improve the accuracy of the system rather produces 

over-smoothing. Other authors [BEU11, VAP11] go one step further and not only 

measure the displacement of the wall, but also include the Pulse Wave Velocity (PWV) 

to estimate the pressure by mean Moens-Korteweg Equation (4.33), that relates the 

PWV to the elasticity of the arterial wall: 

 

𝑃𝑊𝑉 = √
𝐴0
𝜌

𝜕𝑃

𝜕𝐴
 (4.33) 
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where Ao is the arterial diameter in the diastole, ρ is the density of blood, ∂A is the 

variation of the diameter over time (determined using cross-correlation in 

[BEU11,VAP11]) with respect to the artery in resting position, and ∂P is the difference 

in the pressure with respect to the end-diastolic pressure P(0). The pressure produced 

in the artery can be estimated using 𝑃𝑊𝑉, as shown in Equation (4.34): 

 

𝜕𝑃 =
𝜌 ∙ 𝑃𝑊𝑉2

𝐴0
𝜕𝐴 (4.34) 

 

Compared to previous works, our method supports sub-pixel accuracy and 

incorporate collective motion information to define the wall artery motion. The major 

contribution of this paper is the evaluation of different methods and how they can be 

integrated to better address our problem of estimating the change in diameter ∂A. In this 

work, in order to enhance existing motion tracking methods, a combination of similarity 

transformation, non-rigid deformations, statistical filtering, and hybrid motion 

estimation techniques are proposed. In this way, it will be possible to estimate useful 

parameters instead of using more expensive and invasive methods that put the patient’s 

well-being at risk. 

4.3.3 Material and Methods 

 

In this section, the methodological ‘building blocks’ used in this Thesis will be first 

briefly described. Then, the performance of the methods in different analysis pipelines 

will be evaluated. 

 

A. EVALUATED METHODS 

 

A.1 Block Matching 

 

The block matching (BM) technique has been a very popular method in the ultrasound 

field because it provides a robust estimation of the motion by means of comparing the 

similarity between blocks of different images. One of the uses of motion estimation via 

BM technique is the one proposed by Basarab [BAS08], where the elastography map is 

estimated to show hidden objects such as cysts or cancer tumors in ultrasound imaging. 

This work uses a multiscale scheme to avoid errors in the motion estimation and to 

obtain a low sub-pixel resolution. It is important to remark that normalized cross 

correlation (NCC) block matching method is one of the most popular techniques 
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utilized in ultrasound tracking [ZAN12, ZAN10, CIN06, GAS102, CIN05]. In our 

evaluation, it was decided to make use of Lewis method [LEW95] due to the fact that 

the obtained performance is much superior to the original one (approximately 15 times 

faster). Lewis method consists of a modification of the NCC technique where the 

similarity is given by Equation (4.35): 

 

∑ (𝐼1(𝑖, 𝑗) − 𝐼1̅) ∙ (𝐼2(𝑥 + 𝑖, 𝑦 + 𝑗) − 𝐼2̅)(𝑖,𝑗)𝜖𝑊

√∑ (𝐼1(𝑖, 𝑗) − 𝐼1̅)
2 ∙ ∑ (𝐼2(𝑥 + 𝑖, 𝑦 + 𝑗) − 𝐼2̅)

2
(𝑖,𝑗)𝜖𝑊(𝑖,𝑗)𝜖𝑊

2
 

(4.35) 

 

where I1 is the reference block with size W, I2 is the image where the correlation is 

carried out, 𝐼1̅ and 𝐼2̅ are their respective means. The numerator in Equation (4.35) can 

be sees as a convolution (as in Equation (4.36)) between two images, 𝑓(𝑖, 𝑗) =

𝐼1(𝑖, 𝑗) − 𝐼1̅  and 𝑡(𝑖, 𝑗) = 𝐼2(𝑖, 𝑗) − 𝐼2̅ , and can be efficiently solved by means of a 

Fourier convolution: 

 

∑ 𝑓(𝑖, 𝑗) ∙ 𝑡(𝑥 + 𝑖, 𝑦 + 𝑗)

(𝑖,𝑗)𝜖𝑊

 (4.36) 

 

On the other hand, the denominator of Equation (4.35) must be solved efficiently. 

Lewis [LEW95] proposed the use of the integral of the image technique to compute it 

efficiently and reduce the computation cost.  

 

A.2 Optical Flow 

 

The temporal variation in an ordered sequence of images allows the estimation of the 

optical flow 2D vector, usually denoted as �⃗� = (𝑢, 𝑣), and is computed based on the 

constant-brightness hypothesis, which assumes that the pixel brightness remains 

constant over time. This leads to the formulation of the famous optical flow constraint 

Equation (4.37): 

𝑢𝑓𝑥 + 𝑣𝑓𝑦 + 𝑓𝑡 = 0 (4.37) 

where u and v are the optical flow components and the spatio-temporal derivates are 

represented by fx, fy and ft respectively. It is important to remark that in the two 

considered optical flow methods (described in this Section), the texture domain of the 

image was used, as proposed by Wedel et al. [WED08], so as to avoid problems with 

the brightness assumption.  
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A.2.1. OPTICAL FLOW: LUCAS AND KANADE 

 

On the basis of the optical flow constraint equation, Lucas and Kanade [LUC81] 

proposed the minimization of the error Equation (4.38) using the sum of the least 

squares: 

𝐸(𝑢, 𝑣) =∑(𝑓𝑥(𝑖)𝑢 + 𝑓𝑦(𝑖)𝑣 + 𝑓𝑡(𝑖))
2

𝑖∈𝐵

 (4.38) 

 

Equation (4.38) is minimized by taking the partial derivatives with respect to the 

optical flow vector v⃗⃗. The resulting �⃗�  minimizes the differential error between the 

previous image and the current image and is given is presented in Equation (4.39): 

 

�⃗� =

[
 
 
 
 ∑𝑓𝑥

2(𝑖)

𝑖∈𝐵

∑𝑓𝑥(𝑖)𝑓𝑦(𝑖)

𝑖∈𝐵

∑𝑓𝑥(𝑖)𝑓𝑦(𝑖)

𝑖∈𝐵

∑𝑓𝑦
2(𝑖)

𝑖∈𝐵 ]
 
 
 
 
−1

[
 
 
 
 −∑𝑓𝑥(𝑖)𝑓𝑡(𝑖)

𝑖∈𝐵

−∑𝑓𝑦(𝑖)𝑓𝑡(𝑖)

𝑖∈𝐵 ]
 
 
 
 

 (4.39) 

 

where �⃗� is the optical flow vector, the spatio-temporal derivates are represented by 

fx, fy and ft respectively, and the subscript i is the i-th element of the integration block 

B.  

A.2.2 OPTICAL FLOW: ANISOTROPIC TV-L1 

 

The anisotropic optical flow Equation (4.40), introduced by Werlberger et al. [WER09], 

is an extension of the popular method TV-L1 optical flow [ZAC07], which is based on 

a regularized propagation technique similar to the one proposed by Horn and Schunck 

[HOR81]. Werlberger introduces an anisotropic diffusor that does not propagate values 

through the edges, with better preserves image structure. In this case, the original 

formulation was changed in order to reduce the computation cost in the last term of 

Equation (4.40), where possible artifacts (e.g., occlusions) can be rectified over the time 

incorporating feedback from previous optical flow: 
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𝑚𝑖𝑛�⃗⃗⃗�,�⃗⃗� 𝑠𝑢𝑝 |𝑝𝑑|≤1 {∫ ∑ [(𝐷
1
2⁄ ∇𝑢𝑑) ∙ 𝑝𝑑 − 𝜀

|𝑝𝑑|
2

2
+
1

2𝜃
(𝑢𝑑 − 𝑣𝑑)

2]

2

𝑑=1

+ 𝛿|𝜌(�⃗�(�⃗�))|
Ω

+ 
𝜆

2
∫(𝑢′𝑑 − 𝑢𝑑)

2𝑑�⃗�
Ω

}                                        

(4.40) 

where 𝐷
1
2⁄ = exp (−α|∇𝐼|𝛽)n⃗⃗n⃗⃗𝑇 + n⃗⃗┴n⃗⃗┴

𝑇
), n⃗⃗ =  

∇𝐼

|∇𝐼|
 as the normal vector, and n⃗⃗┴ 

the tangent vector of a given point. 𝑢𝑑 is the optical flow vector and 𝑢′𝑑 is the previous 

warped optical flow [BRO04, ANA89].  

 

A.3 Kalman Filter 

 

In noisy systems, the Kalman Filter [KAL60] has been proposed due to its robustness 

and efficiency. This method is based on a statistical approach to determine the current 

estimation of a linear system from a collection of previous observations over time as 

described in Equation (4.41):  

 

�̂�𝑘 = 𝐴�̂�𝑘−1 + 𝐵𝑢𝑘−1 + 𝑤𝑘−1 (4.41) 

 

where �̂�𝑘  is the predicted estimation in the current time k,  �̂�𝑘−1  is the previous 

observation, 𝐴 and 𝐵 describe the transition and control matrix respectably, 𝑢𝑘−1 is the 

control signal, and 𝑤𝑘−1, the process noise of the system.  

 

A.4 Similarity Transformation 

 

Incorporating shape prior knowledge has become common practice in segmentation 

methods in the last decades. Cootes et al. [COO95] introduce a statistical method able 

to deform a contour by means of weighting relevant eigenvectors (P) by shape 

parameters (b) with the objective of adapting the contour to a desired object in the 

image, as shown in Equation (4.42): 

 

𝑥 = �̅� + 𝑃 ∙ 𝑏 (4.42) 

 

The objective of this method is estimating the shape parameters as well as the pose 

parameters (translation in x and y-axis, scale, rotation) that locate the desired object to 

be segmented in Equation (4.43): 
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𝑣 = {𝑡𝑥, 𝑡𝑦 , 𝑠, 𝜃, 𝑏} (4.43) 

 

These parameters are found by means of matching each landmark with the previous 

trained normalized gradient profiles and solving linear equations [HAM03]. In our 

work, we will not adopt the statistically-based deformations, thus the local deformation 

terms can be discarded. In other words, we neglect the shape variability encoded in b 

and focus on estimating the remaining pose parameters only. Therefore, Equation (4.42) 

is no longer needed in our approach and we only utilize the weighted similarity 

transformation proposed in [HAM03]. Such a similarity transformation is obtained by 

means of the weighted sum minimization in Equation (4.44): 

𝐸 = (𝑥1 − 𝑀(𝑠, 𝜃)[𝑥2] − 𝑡)𝑇𝑊(𝑥1 − 𝑀(𝑠, 𝜃)[𝑥2] − 𝑡) (4.44) 

where:  

𝑀(𝑠, 𝜃) [
𝑥
𝑦] = (

(𝑠 ∙ 𝑐𝑜𝑠𝜃) ∙ 𝑥 − (𝑠 ∙ 𝑠𝑖𝑛𝜃) ∙ 𝑦

(𝑠 ∙ 𝑠𝑖𝑛𝜃) ∙ 𝑥 + (𝑠 ∙ 𝑐𝑜𝑠𝜃) ∙ 𝑦
),  

𝑡 = (𝑡𝑥, 𝑡𝑦 , . . . , 𝑡𝑥, 𝑡𝑦)
𝑇 

  (4.45) 

𝑥1 is the origin point and 𝑥2 the translated point, 𝑠 the scale, 𝜃 the rotation, 𝑡 the 

translation vector, and W is a diagonal matrix of weights for each point. 

 

A.5 Soft Body Dynamics 

 

Soft body models have been widely used in computer science to carry out realistic 

physical simulations of motion and deformable objects. Rather than a statistically-based 

deformation model in Equation (4.43), this work will focus on the popular mass-spring 

model, which is based on a mesh of nodes (masses) and connected by means of elastic 

links (springs). The basis of this method relies on Hooke’s law, to simulate the spring 

force, and the second Newton’s law to simulate the dynamics by time integration. In 

this work, a simplification of the idea introduced by Hamarneh et al. [HAM03] will be 

adopted. The authors describe a system in Equation (4.46) that involves forces 

generated by the springs’ system, in Equation (4.47), in a controlled environment 

(Equation (4.48)) allowing for speedup/slowdown of the velocity of the mesh’s nodes:  

𝑓𝑖 = 𝑓𝑖
𝐻𝑜𝑜𝑘𝑒 + 𝑓𝑖

𝑉𝑖𝑠𝑐𝑜𝑢𝑠 (4.46) 

𝑓𝑖
𝐻𝑜𝑜𝑘𝑒 = −𝑘𝑠(‖𝑥𝑖 − 𝑥𝑗‖ − 𝑟𝑖𝑗)

𝑥𝑖 − 𝑥𝑗

‖𝑥𝑖 − 𝑥𝑗‖
− (𝑘𝑑(𝑣𝑖 − 𝑣𝑗)

𝑇 𝑥𝑖 − 𝑥𝑗

‖𝑥𝑖 − 𝑥𝑗‖
)
𝑥𝑖 − 𝑥𝑗

‖𝑥𝑖 − 𝑥𝑗‖
 (4.47) 
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𝑓𝑖
𝑉𝑖𝑠𝑐𝑜𝑢𝑠 = −𝑘𝑣𝑣𝑖 (4.48) 

 

where 𝑓𝑖 is the final estimated force, 𝑘𝑠 the Hooke’s spring constant, 𝑥𝑖 the Cartesian 

coordinate of the i-th node, 𝑟𝑖𝑗 the rest length associated to a link between two nodes, 

𝑘𝑑 the damping constant, 𝑘𝑣 the viscosity coefficient, and 𝑣𝑖 as the velocity of the i-th 

node. Once the nodes’ force is obtained, it is possible to estimate the acceleration, 

velocity, and position of each node by means of the iterative scheme in Equation (4.49):  

 

𝑎𝑖 =
𝑓𝑖
𝑚𝑖

 

𝑣𝑖 = 𝑣𝑖
𝑜𝑙𝑑 + 𝑎𝑖∆𝑡 

𝑥𝑖 = 𝑥𝑖
𝑜𝑙𝑑 + 𝑣𝑖∆𝑡 

(4.49) 

 

where 𝑎𝑖  is the acceleration, 𝑓𝑖  the force described in Equation (4.46), 𝑣𝑖  the 

velocity, 𝑥𝑖 the position, and ∆𝑡 the time interval. 

 

B. GROUND TRUTH ESTIMATION VIA ULTRASOUND SIMULATION 

 

To evaluate the proposed methods, the Field II Ultrasound MATLAB library [JEN96] 

was used to generate nine sequences simulating the wall displacement of the common 

carotid artery. Each sequence involves a complete cycle of the cardiac system with a 

frequency of 25 Hz per cycle. These simulations were generated with 1024 physical 

elements, a transducer center frequency of 5 MHz, 100 MHz of sampling frequency, 

and 64 active elements. The sequences are based on three different topologies as shown 

in Figure 4.15, where diverse amplitudes of motion are used, as explained later in this 

section. Although these synthetic images are clearer than real US artery images, having 

the ground-truth motion allows quantitative evaluation metrics to compare different 

methods. We include also the simulation parameters used to produce these synthetic 

sequences (Table 4.2) to facilitate the reproduction of our results. 
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Figure 4.15. Ultrasound images used in the data set test, generated by Field II U.S. simulator. 

Following the steps of Stoitsis et al. [STO08], that describe a mathematical 

mechanical deformation model of the arterial wall as a separable method in space and 

time, this paper will simulate the radial and longitudinal displacement of the artery by 

means of Equations (4.50) and (4.51), which is a simplification of the original method.  

𝑟𝑡(𝑡) =∏(𝑡0, 𝑡1) ∙ sin
2
𝜋 ∙ 𝑡

𝑐 ∙ 𝑇
+∏(𝑡1, 𝑡2) ∙ (𝑎 + 𝑏 ∙ 𝑡) (4.50) 

∏(𝑡𝑖 , 𝑡𝑗) = 𝑓 ∙ (1 + tanh(𝑑 ∙ (𝑡 − 𝑡𝑖))) ∙ (1 + tanh(𝑑 ∙ (𝑡𝑗 − 𝑡))) (4.51) 

 

where 𝑎 and 𝑓 determinate the amplitude of the waveform, b defines the slope in the 

second part of the curve, 𝑐 and 𝑇 are coefficients that control the initial part of the 

curve, 𝑑 determines the wall artery speed, 𝑡1 and 𝑡2 correspond to the duration of the 

first and second pulse of the waveform and 𝑡 is the time variable. In the generated data 

set, the chosen parameters are shown in Table 4.2, where different values of 𝑓 let us 

control the amplitude of the artery displacement. For each generated artery topology, 

three values of 𝑓  will be applied to produce different radial and longitudinal 

displacements. 

Table 4.2. Wall Displacement Simulation Parameters utilized in our experiments. 

Parameter Value 

𝑎 15.14 
𝑏 −0.64 
𝑐 1.5 
𝑡1 0.25t 
𝑡2 0.65t 
𝑑 
𝑓 

1.22 
0.06, 0.12, 0.25 

𝑇 1 
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4.3.4 System Description 

 

Following the introduction of the methodological building blocks in the previous 

section, the described combination of methods to be evaluated in Section 3 will be 

explained in detail. To estimate the motion of the wall of the artery, two optical flow 

methods and the block matching approach proposed by Lewis [LEW95] will be 

evaluated.  

 

One of the main problems in classical block matching techniques is the sub-pixel 

accuracy. To handle this problem in an efficient way, other authors [CHA10, CHI07] 

describe a combination of optical flow and block matching, in order to increase the 

motion vector precision. This approach relies on estimating firstly the motion vector by 

means of the block matching technique, and then applying a warping [BRO04, ANA89] 

to the block and computing the optical flow to estimate the sub-pixel information (as 

shown in Figure 4.16).  

 

 
 

Figure 4.16. Block matching with sub-pixel accuracy by means of the optical flow scheme. 

Most of the wall artery tracking papers take into account the tracking individually 

[GOL12, GAS10] but do not consider all the tracking points as a set of data that define 

a semi-rigid object in motion. In this paper we use all tracked points when estimating 

the similarity transformation parameters (rotation, scale, and translation), as explained 

in Section A.6. This method obtains all the motion vectors for all point and estimates 

the transformation parameters by means of Equation (4.45). One of the advantages of 

this method is the robustness against noise, allowing the computation of the parameters 

that define the transformation even with some wrong (or outlier) motion vectors. Figure 

4.17 describes the steps that define this proposed scheme.  

 

 
Figure 4.17. Similarity transformation given the motion vectors obtained with the hybrid BM-optical 

flow method.  
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When the similarity transformation is applied, it produces an error in the position 

transformation. This artifact happened because the method considers the systolic-

diastolic-systolic transition as a scale-translation transformation over time. To reduce 

this error, rather than using the statistical shape deformation model of Equation (4.42), 

a physically-based simulation method (Soft Body, Section A.7) could be included to 

the upper and lower set of points (individually) that track the artery, as indicated in 

Figure 4.18a. The pipeline of this approach is illustrated in Figure 4.18b. 

 

 

 
(a) 

 

 
(b) 

Figure 4.18. (a) Pipeline of the proposed method with physics simulation (mass-spring) and (b) 

Illustration of the spring connections in an ultrasound image. 

Finally, the KF (Kalman Filter, Section A.5) will be incorporated into this 

evaluation. This filter was previously used by Gastounioti et al. [GAS10] to increase 

the accuracy of tracking the wall artery tracking. In this particular case, the KF will be 

incorporated into different proposed schemes as described by Figure 4.19 with the 

objective of being evaluated a posteriori in Section 4.3.5 as well as the other described 

schemes. It is important to note that in our evaluations a simple updating scheme was 

Block 
Matching 

Warping 
Optical 
Flow 

Similarity 
Transformation 

Mass 
Spring 
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added to update the reference block (the initial tracked block) in each frame of the 

sequence, as shown in Equation (4.52):  

 

𝐵𝑛𝑒𝑤_𝑟𝑒𝑓 = 𝛼 ∙ 𝐵𝑜𝑙𝑑_𝑟𝑒𝑓 + (1 − 𝛼) ∙ 𝐵𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 (4.52) 

 

where 𝐵𝑛𝑒𝑤_𝑟𝑒𝑓  is the new estimated reference block, 𝐵𝑜𝑙𝑑_𝑟𝑒𝑓 the old referenced 

block, 𝐵𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 is the estimated displaced block, and 𝛼 is the parameter that controls 

the amount of information that remains from the old reference block; we empirically 

set 𝛼 to 0.98. 

 

 
 

Figure 4.19. Incorporation of Kalman Filter in the previously proposed schemes. Each scheme is 

encoded with a different color. 

 

4.3.5 System Evaluation and Results 

 

As described in Section 4.3.3.B, we generated a set of nine sequences that simulate the 

wall artery motion with different amplitudes and topologies. The displacement of the 

wall of the artery, in our evaluation set, varies from 2.50 up to 9 pixels. To evaluate the 

proposed methods in Section 4.3.4, a similar metric as the one used by Golemati et al. 

[GOL12] will be used. In our evaluation, each sequence contained 84 frames and 

involved three cardiac cycles. To obtain an impartial evaluation, six different positions 

(a total of 54 evaluations per method) will be evaluated in each sequence and the 

Cartesian coordinate error Equations (4.53)–(4.55) and the diameter error over the time 

Equation (4.56) will be measured by mean of root-mean-squared error (RMSE):  
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𝜀�̅�𝑜𝑛𝑔 = √
1

𝑁 ∙ 𝑀
∑ ∑(𝑥(𝑖, 𝑗) − 𝑥′(𝑖, 𝑗))2

𝑁−1

𝑖=0

𝑀−1

𝑗=0

 (4.53) 

𝜀�̅�𝑎𝑑 = √
1

𝑁 ∙ 𝑀
∑ ∑(𝑦(𝑖, 𝑗) − 𝑦′(𝑖, 𝑗))2

𝑁−1

𝑖=0

𝑀−1

𝑗=0

 (4.54) 

𝜀�̅� = √
1

𝑁 ∙ 𝑀
∑ ∑(‖𝑝(𝑖, 𝑗) − 𝑝′(𝑖, 𝑗)‖2)

𝑁−1

𝑖=0

𝑀−1

𝑗=0

 (4.55) 

𝜀�̅� = √
1

𝑁
2
∙ 𝑀

∑ ∑(𝑑(𝑖, 𝑗) − 𝑑′(𝑖, 𝑗))2

𝑁
2
−1

𝑖=0

𝑀−1

𝑗=0

 (4.56) 

 

where 𝑥(𝑖, 𝑗), 𝑦(𝑖, 𝑗) and 𝑝(𝑖, 𝑗) are the i-th x, y and (x,y) coordinates in the j-th 

frame of the sequence with its respective ground truth 𝑥′(𝑖, 𝑗), 𝑦′(𝑖, 𝑗), 𝑝′(𝑖, 𝑗) and 

𝑑(𝑖, 𝑗) is the estimated diameter of the artery and its ground truth 𝑑′(𝑖, 𝑗). N is the 

number of points, in our case, six points, and M is the number of frames per sequence. 

Our evaluation uses five motion models: Lucas and Kanade, Anisotropic Huber L1, BM 

(Lewis method), BM + Lucas & Kanade, and BM + Anisotropic Huber TV-L1. For 

each motion model, the methods described in Section 4.3.4 will be used. These methods 

include the similarity transformation (ST), the Kalman filter (KF), and the mass-spring 

(MS) physics based model. The motion methods will also be evaluated individually as 

shown in Table 4.3.  

Table 4.3. Evaluated models where the used methods are indicated. Not all the combinations have been 

used because some of them were nonsensical. 

Methods ST KF MS 

M1    
M2  x  
M3 x   
M4 x x  
M5 x  x 
M6 x x x 
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Figure 4.20. Longitudinal error results after being evaluated with different methods. 

 

At first, the estimated longitudinal error will be evaluated by means of Equation 

(4.53), in our evaluation set (Section 4.3.3.B). As can be appreciated in Figure 4.20, the 

methods that make use of the Lucas and Kanade algorithm generate the highest number 

of errors. This is due to the fact that this method does not handle properly the aperture 

problem compared to the other motion evaluated methods. M1 with block matching and 

M5 method with anisotropic TV-L1 motion estimation produce the best results in the 

longitudinal motion estimation. In some plots the errors values are above the maximum 

values of the plot. We have reduced the plot range to better discriminate among the 

other approaches. 

 

In the radial motion evaluation (Figure 4.21) computed by means of Equation (4.54), 

the methods with Lucas and Kanade obtain again worse results. But unlike the 

longitudinal evaluation, the mix of block matching and anisotropic TV-L1 obtain the 

best results and a lower deviation with respect to the best results of the block matching 

approaches, achieving almost 50% less error. It is important to remark that in both 

evaluations (longitudinal and radial), the inclusion of the mass-spring method (M5–

M6) helps, in general, to reduce the position error. 
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Figure 4.21. Radial error results after being evaluated with different methods. 

 

A global position evaluation (Figure 4.22) is carried out by Equation (4.55), where 

the radial and longitudinal displacement is taken into account. In general, the block 

matching (M1 version) and anisotropic TV-L1 methods achieve the best results with 

the difference that BM generates less standard deviation in the error among different 

evaluated sequences.  

 

 
Figure 4.22. Position error results after being evaluated with different methods.  
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It is important to obtain a method capable of achieving good position precision. In 

our case, it is not critical to estimate the evolution of the diameter of the artery over 

time with a model that generates a small deviation on the elastomer’s position (±1 

pixel). To evaluate the most significant parameter, the diameter of the elastomer over 

time, estimations obtained from Equation (4.56) will be evaluated in our assessment set 

(Figure 4.23). The results reveal that the best method is the combination of block 

matching and anisotropic TV-L1 (M5). If we compare it with the previous results that 

evaluate the position error, the best solution (BM-M1) generates 3.1 times higher error 

than the new best solution obtained. The combination of optical flow and block 

matching obtain almost two times higher precision than the methods working 

individually. 
 

 
Figure 4.23. Diameter error results after being evaluated with different methods.  

After evaluating the different described approaches, it can be observed that the 

inclusion of the Kalman filter (M2, M4 and M6) provides worse results with respect to 

the other approaches. The methods that include the similarity transformation reduce the 

error up to 14% in some proposed approaches. After incorporating the soft body model, 

an increase of 13% in the precision is obtained in the last method (BM and anisotropic 

TV-L1). Finally, it can be concluded that a combination of optical flow and block 

matching and the M5 scheme becomes the most precise technique to estimate the 

desired parameter.  

 

To show a more detailed evaluation between the best method and other results, a 

Bland-Altman plot is produced. Figure 4.24 shows the difference between the best 
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methods with other evaluated methods and their averages. The middle line indicates the 

average difference of both methods, whereas the upper and lower lines represent 95% 

limits of agreement with 15.80% (Figure 4.24a), 49.78% (Figure 4.24b), 33.66% 

(Figure 4.24c), and 78.39% (Figure 4.24d) of window (defined by 1.96 times the 

standard deviation with respect to the mean difference) displacement with respect to the 

origin coordinate. It can be concluded from Figure 4.24 that there is an overall good 

agreement of the amplitudes between the BM and anisotropic TV-L1 (M5) method and 

the reference ones. To facilitate the evaluation, further tabulated results are listed in the 

Appendix A. In the next section, the obtained results will be discussed and the method 

will be evaluated in real cases with different human subjects in vivo, with the objective 

of validating this technique. 

 

  
(a) (b) 

  
(c) (d) 

Figure 4.24. Bland-Altman figure, where the best obtained results block matching & anisotropic TV-L1 

(M5) are compared with (a) block matching (M1), (b) block matching (M5), (c) anisotropic TV-L1 (M3), 

and (d) anisotropic TV-L1 (M5).  
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4.3.6 Discussion 

 

In this section, the proposed approaches and the impact of each method in different 

evaluations will be discussed. Figures 4.25 and 4.26 show the described evaluations in 

two different sequences, in order to illustrate the response of the methods under 

different motion variations.  

 

Figure 4.25 corresponds to a simulation that produces a maximum displacement of 

18 pixels (the variation in displacement between the upper and lower arterial wall), 

while Figure 4.26 generates a maximum wall displacement of 5 pixels. As was 

discussed in the previous section, the Lucas and Kanade method is not the most 

appropriate algorithm to register the motion in US images as illustrated in Figures 

4.25a,b and 4.26a,b. When displacement vectors are long, the optical flow based 

techniques are not the most convenient ones, because these methods have a maximum 

limit to determine the motion vector (thus improving the working range would require 

multi-scale schemes such as [BAR12]) as illustrated in Figure 4.25d.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 4.25. Diameter evolution over time evaluated in a sequence with long displacements using (a) 

Lucas-Kanade, (b) block matching & Lucas-Kanade, (c) block matching, (d) anisotropic TV-L1, and (e) 

block matching & anisotropic TV-L1. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 14.26. Diameter evolution over time evaluated in a sequence with small displacements evaluated 

with (a) Lucas-Kanade, (b) Block Matching & Lucas-Kanade, (c) Block Matching, (d) Anisotropic TV-

L1, and (e) Block Matching & Anisotropic TV-L1. 
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(a) 

 
(b) 

 
(c) 

Figure 4.27. Diameter evolution of the common carotid artery (CCA) in real ultrasound data in different 

subjects where first row (a) correspond to a healthy patient and the last two rows (b–c) belong to patients 

with presence of atheroma plaques.  

Moreover, Block Matching techniques do not have this limitation, but produce rough 

results and allow no sub-pixel precision (Figures 4.25c and 4.26c). A good solution is 

the combination of correlation and optical flow techniques to avoid this displacement 

limitation and obtain sub-pixel precision (Figures 4.25c and 4.26c), acquiring twice 

more precision than with only block matching method (approx. 0.25 pixel error), but 

with the inconvenience of increased computation time. The inclusion of Kalman filters 

does not significantly increase or decrease the results, but it is interesting to include it 

in hypothetical cases when the system has a severe disturbance and noise. The main 

problem with the use of this filter is that, depending on the settings of the parameters, 

the signal may be over smoothed and shifted in relation with the desired one.  
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At this point, the proposed methods have been evaluated on synthetic US B-Mode 

imaging. To demonstrate and validate that the best approach is able to work in real 

sequences, it is evaluated in different subjects in the common carotid artery as shown 

in Figure 4.27. In this brief evaluation, a healthy patient (Figure 4.27a) was involved, 

whose diameter motion curves showed clearly the dicrotic peak (attributed to the elastic 

recoil of the aorta and aortic valve) while the other two patients (with presence of 

atheroma plaque) the dicrotic peak is absent (Figure 4.27b,c). 

 

4.3.7 Conclusions 

 

The objective of this work was the design, evaluation and comparison of methods able 

to characterize arterial wall motion. A set of methods has been evaluated with the 

objective of determining which approach better handles our problem, the estimation of 

the diameter of the artery over time. The motion methods were selected according to 

the obtained results in other works, with the goal of comparing our approach against 

these other methods and evaluating its accuracy. It has been demonstrated that our 

described combination of methods based on similarity transformation, non-rigid 

deformations, statistical filtering, and hybrid motion estimation techniques enhance 

existing state of the art approaches, up to 2.5 times more accurate than state of art 

techniques. 

 

Synthetic US sequences with different patterns of motion were generated to allow 

quantitative comparative analysis of different methods and combination of 

techniques. Our experiments involve a total of 1620 evaluations within nine simulated 

sequences of 84 frames each and four error metrics. In fact, the assessment 

that appropriate integration of different techniques has a clear impact on the 

final performance represents an important contribution of this work. Another advantage 

that must be remarked is that the proposed methods supports large displacement vectors 

unlike optical flow techniques that are limited in working range and require multi-scale 

schemes. 
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5. INDUSTRIAL INSPECTION 

 

5.1 INTRODUCCTION  

Since the industrial evolution promoted by General Motors in the 60s, with the 

introduction of Programmable Logic Controllers (PLCs), the industry stacked in terms 

of new technology innovations. At the beginning of the 80s, a new technology started 

to be introduced slowly and without being noticed in the industry. Such new technology 

is nowadays named machine vision. Those systems are able to replace the human eye 

(with a low price investment) providing robustness, reliability, and fast processing. For 

this reason, the industry has been one of the sectors where this technology has been 

widely accepted. In industry, quality control has become an essential factor where it is 

required robust, fast and reliable systems. Currently there are many applications, 

making use of machine vision, focused in quality control in order to detect product 

defects, surface imperfections, detection of non-installed parts, etc. 

 

 

Figure 5.1. Inspection system to detect imperfections of the products on the conveyor belt. (Courtesy of 

Cognex Corp.). 

In the early stage of this technology, the performed tasks were very basic due to the 

bottleneck in the data processing performance and therefore the developed tasks were 

quite rudimentary. Nowadays, thanks to the advance of the technology, it has been 

possible to develop visual inspection systems able to realize complex machine vision 

tasks and hence, to improve the quality of the inspection in the line production as shows 

Figure 5.1. These advances are composed of hybrid architecture that includes multi-

core processing, DSP (Digital Signal Processor) and GPGPU (General-Purpose 

Computing on Graphics Processing Units) with the objective of providing high image 

processing performance.  
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5.2 QUALITY INSPECTION  

 

5.2.1 Motivation 

 

In this work, a machine vision system able to inspect biscuits in the line production, as 

illustrates Figure 5.2, to detect those ones that present fractures and reject them from 

the transport belt is presented. The proposed method consists of a collection of steps 

that involves biscuit segmentation, crack detection, feature extraction, and 

classification. Each defined step is also evaluated in deep to determinate its accuracy 

and demonstrates that the described approach is efficient at solving the problem. In 

order to speed up the computation time, our approach is implemented on a GPU 

architecture obtaining a higher processing speed in comparison with a CPU 

implementation. The great challenge of using GPU architectures is the adaptation of 

sequential methods to be executed in parallel. Therefore, this paper is also focused on 

using the appropriate methods that better fit this parallel architecture in order to solve 

this problem.   

 

 

Figure 5.2. A Maria© biscuit on the top of the custard in the production line (Courtesy of Dhul© 

Company). 

 

The chapter is organized as follows: Section 5.2.2 introduces a detailed description 

of the proposed model to detect and extract the features that define the fractures in a 

biscuit; also, the classification stage to determinate the quality of the product is 

described; in Section 5.2.3, the described method is evaluated in depth in order to 

determine its accuracy and measures of the computation cost in different hardware 

architectures are also provided; and finally, Section 5.2.4 summarizes some conclusions 

and outlines for future works.  
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5.2.2  Background Material and Related Work 

 

Currently, there are many applications making use of machine vision systems in the 

quality control and optimization area. These applications are focused on detecting 

defects in products, surface imperfections, incorrect installed parts in the assembly, etc. 

In the textile quality control area, Mark et al [MAK06] make use of a frame grabber 

(Matrox) to detect imperfections in woven fabrics using a combination of Gabor 

wavelet network and morphological operations. Other types of techniques, based on 3D 

reconstructions, are also used to inspect the surface. One example is the one exposed 

by Abbott et al [ABB00], where they handle tridimensional reconstruction techniques, 

by laser, to estimate the optimal cutting position of wood studying the surface. Other 

topics related with surface inspection are present, e.g., the exposed solution by Vitrià et 

al [VIT07]. The proposed system is able to inspect the surface of the cork stoppers and 

classify them into different categories in order to determine the quality of the cork. The 

features that describe the quality are based on the presented crack in the surface. The 

author segments the image by means of an adaptive threshold technique, analyzes the 

blob features (area, length, perimeter, convex perimeter, compactness, roughness, 

elongation, etc.) and catalogs the cork stopper by means of a Bayesian classification. 

 

Machine vision systems are also present in the food industry, for example the ad-hoc 

architecture, based on a FPGA, designed by Peterson [PEA09]. This high-speed 

inspection system determines the quality of grains through the study of valleys in the 

intensity signal. Making use of the same platform, Haff et al [HAF10] create a high-

speed pistachio classifier analyzing the color histogram. Another example is the work 

described by Riquelme et al [SUN00], where olives are classified in order to determine 

their quality be means of color segmentation and morphological features. Also, more 

complicated quality inspections have been carried out, as is the case described by Sun 

[SUN00, SUN03]. This inspection system has the objective of analyzing the topping 

percentage and dispersion of the ingredients on pizzas by mean of segmentation 

techniques and statistical distributions over the pizza base. Other example is the work 

proposed by Blasco et al. [BLA09] where designed a complete vision system to sort 

automatically the pomegranate in the conveyor belt by mean of statistical color 

information. In relation with the presented work we must cite the exposed work of Senni 

et al. [SEN14], in this article the author describes a computer vision system based on 

infrared cameras in order to detect foreign object in biscuits using template matching.  

With the purpose of extending more information about this food inspection, we suggest 
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to the reader this collection of books [SUN12, SUN11, GRA03] where a wide range of 

visual food inspection subjects can be obtained. 

 

After the brief overview about the importance and usefulness of machine vision in 

the industry, we will introduce a specific problem and demonstrate how to solve it with 

the objective of showing how useful are the architectures based on massive parallel 

processing (GPU) and comparing our approach with classical parallel and sequential 

(CPU) processing.  

 

5.2.3  Material and Methods 

 

Our system consists of a CMOS camera uEye 1240ML, lens of 8 mm of focal distance 

and a distance from the camera to the biscuit of 25.5 mm. The environment where was 

taken the dataset samples was illuminated with halogen lamps (5500° Kelvin) giving 

1206 Lux. The processing unit utilized to process the images was an NVidia© (580 

GTX) GPU. Nowadays, GPUs are an essential hardware tool in computer vision due to 

the high computational performance. The main problem of efficiently making use of 

this kind of architectures is taking advantage of their inherent parallel processing. On 

one hand, they can lead to outstanding performance in algorithms with a parallel nature. 

But in the case of sequential algorithms, they need to be parallelized (if possible at all) 

in order to take any advantage. This problem of taking full advantage of parallel 

processing architectures has become a hot topic in the computer vision research field. 

One of main motivations of this work was to demonstrate the possibility of making use 

of parallel processing of algorithms that have a sequential nature.  

 

 

Figure 5.3. Architecture processing illustration used in this work. 

In this paper, an industrial problem will be solved with a parallel architecture 

following the scheme shown in Figure 5.3. This process involves a sensor to capture 

the image that will be processed in the GPU to extract features and determine, in another 

stage, whether the biscuit passes the quality control or not. Once, the discarding 

decision has been taken, the product needs to be dropped out from the production line, 

the pertinent actions need to be carried out, i.e., sending a signal to the PLC to reject 

the product.     
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This work will be focused in the “cognitive processing” and the decision making 

stage as illustrated in Figure 5.4. The first step is focused on the biscuit segmentation 

in order to mark the area of interest and to remove information that does not belong to 

it. The second step involves the detection of possible fractures in the biscuits. After 

enhancing the fracture related features, the third step will be extracting the features in 

the area that has been previously segmented and finally, to use such information to 

determine the quality of the product by means of a classifier.   

 

Figure 5.4.  Data flow scheme showing the whole process through different steps. 

 

A.  BISCUIT SEGMENTATION 

 

The first step in the presented scheme is to perform the biscuit segmentation inside of 

the recipient in order to drop out external non-related information that can mislead the 

feature extraction step. To carry out this step, color segmentation techniques will be 

used. This topic has been very common in computer vision, for instance, in skin 

segmentation to detect faces [VEZ03] and up to robotic applications segmenting desired 

objects such as a ball [WAS02]. In the color segmentation field, a huge variety of 

methods to classify the desired color can be found; in this case, we aim for a method 

inherently parallel to better suit the GPU processing architecture. Non-parametric 

methods become fast in the classification task since they can be built using a LUT (Look 

Up Table) with the density of probabilities. This makes these approaches very attractive 

in computational time terms and GPU-friendly. A fast approach to estimate the density 

function is the one introduced by Parzen [PAR62] that allows the use of different 

kernels. The method described here will make use of the most common Parzen kernels 

[DEV82]: Hyper Sphere (5.1), Hyper Cube (5.2), and Gaussian (5.3), 

 

𝑃(𝑋|𝑤𝑖) =
1

𝑁𝑖
∙ ∑ {

𝑣𝑝
−1 𝑖𝑓 {𝑋|𝛿𝐸(𝑋, 𝑍𝑖 

𝑚) ≤ 𝜌𝑖}

0    𝑖𝑓 {𝑋|𝛿𝐸(𝑋, 𝑍𝑖 
𝑚) > 𝜌𝑖}

𝑁𝑖

𝑚=1

 (5.1) 
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𝑃(𝑋|𝑤𝑖) =
1

𝑁𝑖
∙ ∑ {

(2𝜌𝑖)
−𝑑  𝑖𝑓 {𝑋|𝛿𝑇(𝑋, 𝑍𝑖 

𝑚) ≤ 𝜌𝑖}

0           𝑖𝑓 {𝑋|𝛿𝑇(𝑋, 𝑍𝑖 
𝑚) > 𝜌𝑖}

𝑁𝑖

𝑚=1

 (5.2) 

 

𝑃(𝑋|𝑤𝑖) =
1

𝑁𝑖 ∙ ∏ 𝜌𝑖
𝑑
𝑖=1 ∙ (2𝜋)

𝑑
2

∑∏exp {−
1

2
(
𝑋𝑖 − 𝑍𝑖

𝑚

𝜌𝑖
)

2

}

𝑑

𝑖=1

𝑁𝑖

𝑚=1

 (5.3) 

 

where 𝑁𝑖  is the number of prototypes, 𝑣𝑝  is the volume of the sphere, 𝛿𝐸(𝑋, 𝑍𝑖 
𝑚) 

denotes the Euclidean distance, 𝜌𝑖  is the Parzen window width, 𝛿𝑇(𝑋, 𝑍𝑖 
𝑚)  is the 

Chebyshev distance, and 𝑑 the number of dimensions.  

 

To improve the quality of color segmentation, a modified ROF model [RUD92] will 

be used but with the incorporation of the weighted function as shown in (5.4), to 

preserve diffusion over the edges. In our case, we use a similar weighted function as in 

Unger et al [UNG08], but with the extension of multiple channels (5.5). To speed up 

this model, it has been decided to adopt a similar approach as the one introduced by 

Chambolle [CHA04], with the inclusion of an adaptive diffusion scheme [ZHU08], 

where formulates the total variation minimization as a primal dual algorithm.   
 

∫|∇𝑢|
Ω

𝑔(𝑥) +
𝜆

2
 (𝑢 − 𝑓) 2𝑑Ω (5.4) 

 

𝑔(𝑥) =  𝑒
−𝛽(

∑ |∇𝑢𝑖|
𝑁𝐶
𝑖=1
𝑁𝐶

)

𝛼

 
(5.5) 

 

In Equation (5.4), 𝑢 is the desired cleaned image, 𝑓 the original image, and 𝜆 ∈ [0,1] 

the regulation parameter, while in Equation (5.5), 𝛼  and 𝛽  denote parameters that 

define the weighted function, 𝑁𝐶 denotes the number of channels (in our case 𝑁𝐶 = 3), 

and |∇𝑢𝑖| is the norm of channel i. After applying Equation (5.4) to the image, the result 

is a denoised image as illustrated by Figure 5.4.    
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   (a)                             (b) 

Figure 5.4. (a) Original image. (b) Clean image after applying Equation (4) with 𝛼 = 0.58, 𝛽 = 0.55, 𝜆 = 

0.9.  

Once the image has been denoised, the next step in the introduced method is the 

segmentation. To carry out the binary segmentation, we will use the method by Under 

et al [UNG08] with a modification, in order to include the anisotropic diffusion 

[WER09] as indicated in Equation (5.6),  

 

𝑚𝑖𝑛𝑢,𝑣 𝑠𝑢𝑝 |�⃗�|≤1 {∫ (𝐷
1
2⁄ ∇𝑢) ∙ 𝑝 − 𝜀

|𝑝|2

2
+
1

2𝜃
(𝑢 − 𝑣)2 +

Ω

|𝑣 − 𝑓|𝑑Ω} (5.6) 

 

𝑓 = − 𝑙𝑜𝑔(𝑝𝑟𝑜𝑏(𝐹𝑜𝑟𝑒𝐺𝑟𝑜𝑢𝑛𝑑)) + 𝑙𝑜𝑔(𝑝𝑟𝑜𝑏(𝐵𝑎𝑐𝑘𝐺𝑟𝑜𝑢𝑛𝑑)) (5.7) 

 

where 𝐷
1
2⁄ = exp (−α|∇𝐼|𝛽)n⃗⃗n⃗⃗𝑇 + n⃗⃗┴n⃗⃗┴

𝑇
), n⃗⃗ =  

∇𝐼

|∇𝐼|
 as the normal vector, n⃗⃗┴ the tangent 

vector of a given point, 𝑢 is the segmented image, 𝑣 an intermediate variable, 𝑝 is the 

re-projection vector, and 𝑓  the logarithmic likelihood of the background (tub and 

cream) and foreground (the biscuit). In order to evaluate the submitted segmentation 

method and to determine the more appropriate color space, in Section 5.4 we will 

evaluate the methods in three different color spaces RGB, Spherical (Fig 5.5.a), and 

HSV (Fig 5.5.b). For more information about HSV and Spherical color spaces, we have 

included the equations of these transformations in Appendix A.  

 

  
(a) (b) 

Figure 5.5. Illustration of spherical color representation θ ∈ [
3𝜋

2
,
𝜋

2
] respect φ ∈ [0,

𝜋

2
] and ρ = 300 and 

HSV color representation H ∈ [0,1] and S ∈ [0,1]. 
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The advantage of using Spherical color space is that the visible color spectrum can 

be represented in two dimensions rejecting the intensity. This simplification allows us 

to pre-build a two dimension Look-Up-Table (LUT), where the input of the LUT is 

defined by the color space coordinates in the matrix (LUT) and the output is the density 

of probabilities that define if a color is considered as Background (Tub and Cream) or 

Foreground (Biscuit). Making use of the LUT, let us save in memory reservation in the 

GPU and computation time to estimate the likelihoods. Scaling the "2D-LUT" in a 

360x360 floating point matrix, the memory used is 0.49 MB. In the case of making use 

of a 3D-LUT of 360x360x360, the total used memory rises up to 177.97 MB, hence the 

2D-LUT version obtains a reduction factor of 363.20. With the purpose of generating a 

multimodal probabilistic map, the Mean shift [COM02] method is used to cluster the 

selected color and generate its likelihoods as illustrated by Figure 5.6, where it an 

example of the generated 2D-LUT (Foreground and Background) is shown. 

  
(a) (b) 

Figure 5.6. (a) Foreground and (b) Background density of probabilities in the Spherical color domain 

generated with Gaussian Parzen Kernel. 

 

The presence of holes or fractures in the biscuit (with low intensity) can produce 

mistakes in the segmentation as illustrated in Figure 5.7. This motivates the use of 

morphological operations to fill those holes, but this operation is not trivial on the GPU. 

Removing sparse points in a binary image is an easy task, since it can be done using the 

Opening morph operant (Erosion and Dilatation), but filling the holes is not trivial on 

the GPU. In the sequential programing field, Robison and Whelan [ROB04] proposed 

a fast method, considered one of the fastest methods that exist nowadays. On the GPU 

field, we have only found the method introduced by Karas [KAR10], adapting the 

sequential reconstruction [VINC93] scheme, and the extension of Teodoro et al. 

[TEO12], that adopts a modification of the previous method to speed up the 

convergence [VINC93].   
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                       (a)   (b)    (c) 

Figure 5.7. (a) Original image, (b) Pre-segmented image using Equation (6) in spherical color domain, 

(c) Results after applying hole filling method. 

 

In our case, we are working in the binary domain and those algorithms are designed 

to work in gray scale and therefore, they are not suitable to solve our problem. To carry 

out the hole-filling algorithm on the GPU, the utilized approach will be based on the 

CCL (Connected-Component Labeling) method [KAL11]. One of the main reasons for 

this is because it does not need any kind of atomic access. The first step of the method 

consists in realizing a bitwise “not” operation into the binary image and applying the 

CCL algorithm, following the strategy proposed in [KAL11]. The second step consists 

on collecting the blob indexes belonging to the boundary of the binary image and 

marking them as 1 into a LUT vector, with the same size of the image and previously 

initialized to zero, at the position determined by the blob index. The third step involves 

the use of the LUT vector to be consulted while the exposed method scans the previous 

processed labeled image to write into another image the value inside the LUT vector; 

e.g., if a label is read and contains a value equal to 5, the 5th position in the LUT will 

be read and the pertinent value is written into the output image. The last step of the 

explained algorithm consists of the application of a bitwise “not” operation to the image 

obtained in the previous step. To better understand the process of the method, Figure 

5.8 shows a short example of the different steps of the algorithm. 
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Figure 5.8. Illustration of the proposed method for hole-filling in a binary image. 

 

Once the biscuit has been segmented, with the goal of selecting relevant information 

from the studied object, suitable features will be extracted in order to classify the biscuit 

following a quality criterion. In our case, such quality criteria consist in the rejection of 

broken biscuits. 

 

B.  FEATURE EXTRACTION AND FRACTURE DETECTION 

 

Once the desired object in the image (in our case the biscuit) has been segmented, the 

objective is to enhance and detect potential cracks (fractures) in the captured image. 

The detection of fractures has been widely studied in the machine vision field due to 

the importance of creating an automatic and autonomous system able to replace the 

human eye. As a brief overview about this topic, we can refer to methods such as the 

introduced by Subirat [SUB06], where 2D wavelets are used in a multi-scale scheme to 

locate cracks on the pavement. Sinha and Fieguth [SIN06] make use of a two-step 

algorithm, local-global, where the first step involves statistical properties (local) of the 

image to extract candidates and the second step applies cleaning and linking operations 

(global) to merge the cracks. A general method to detect fractures comes from Han et 

al [HAN10] that introduced a feature estimation based on the Hough transformation 

[HOU62, DUD72] of different gradient responses, based on 20x20 pixels blocks, with 

the incorporation of an SVM [COR95] (Support Vector Machine) classifier to 

determinate whether a block is a crack or not. In the biscuit crack detection field, we 

have only found the method exposed by Nashat et al [NAS11, NAS14] in which they 

extract the potential fractures from the absolute difference of the red and blue channel 

and apply the Hough transformation to obtain a pyramidal feature extraction, to train 

and classify with SVM, in order to determinate the areas with fractures.  

 

In the exposed approach, we will make use of the logarithmic inverse (5.8) on the 

gray scale of the image to enhance the crack candidates. Areas with low intensity are 

potential zones where the cracks are defined due to the “absorption” of the light. An 

example of the enhancement of potential cracks is illustrated in Figure 5.9 where it can 

be observed how the logarithmic inverse of the image enhances better than an inverse 

operation (i.e. Subtraction of the maximum value in an n-bit image, in our case 255, 

and the original image).    
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(a)                      (b)                                     (c)                             

Figure 5.9. (a) Original Image. (b) Logarithmic inverse operation in gray level with n=100. (c) Inverse 

operation in gray level. 

 

𝐿𝑜𝑔 𝐼𝑛𝑣 = 𝑛 ∙ log(𝑚) − 𝑛 ∙ log(𝐼𝑚𝑔 + 1) (5.8) 

 

In Equation (5.8), n is the parameter that controls the flexion of the generated curve. 

To better understand how the n parameter affects to the results in (5.8), Figure 5.10 

illustrates the output with different values of n. 

 
(a)            (b)                       (c)                      (d) 

Figure 5.10. Logarithmic inverse with (a) n= 50, (b) n= 100, (c) n= 150, (d) n= 200. 

 

After applying Equation (5.8) to the image (Figure 5.11.a), the Top-hat (5.9) 

morphological operation is carried out to enhance the cracks. This operation has the 

objective of highlighting the valleys, as shown in Figure 5.11.b, and of removing high 

responses such as the ones present in biscuit and tub edges. In Equation (5.9), ⨁ and 

⊝ denote dilatation and erosion operations by a structuring element B. At this point, 

we could have used a threshold but instead of this, a DoG (Difference of Gaussian) 

filter will be applied before the threshold step to enhance the edge and remove undesired 

frequencies, acting as a band-pass filter (Figure 5.11.c).  
 

𝑇𝑜𝑝 ℎ𝑎𝑡 = (𝐼𝑚𝑔 ⊝ 𝐵)⨁𝐵 − 𝐼𝑚𝑔 (5.9) 
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(a) (b) 

  

(c) (d) 

 

Figure 5.11. (a) Logarithmic inverse operation in gray level with n=100 (2). (b) Top hat with B structure 

of 7x7, (c) DoG with ℴ1= 3  ℴ2= 6 and (d) the final result after removing all the non-desired information 

by means of the output of the previous step (color segmentation).  

 

The Hough transform has been quite popular in order to detect cracks [NAS11,  

HAN10, SIN06], but the cited methods require a previous thresholding step to work in 

the binary domain. To avoid such step, our approach will use the bi-dimensional Radon 

transform [FID85]. This method (5.10) consists in the integral transformation of a 

function over a set of straight lines L with respect to the arc length t, 
 

𝑅(𝜃, 𝑠) = ∫ 𝑓((𝑡 sin 𝜃 + 𝑠 cos 𝜃), (𝑠 sin 𝜃 − 𝑡 cos 𝜃))𝑑𝑡
∞

−∞

 (5.10) 

 

where 𝑠 is the minimum distance from the line to the origin and 𝜃 is the angle formed 

by the straight line with respect the x-axis. One of the most important drawbacks of this 

method is the computation cost, in order to avoid this problem our approach adopts the 

steps of Mendl et al. [UNG08] that introduces an efficient implementation on GPU. In 

order to extract the features vector that describes the biscuit, we will compute the 

histogram of the Radon Transformation. Figure 5.12.a-c shows the obtained Radon 

transform of a correct biscuit and the estimated normalized histogram while Figure 

5.12.b-d illustrates the related outputs of a biscuit with the presence of a fracture. 
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(c) (d) 

Figure 5.12. Radon Transformation in a biscuit (a) without the presence of cracks or anomalies with its 

pertinent (c) normalized histogram (64-bins) output and (b) the Radon Transformation of a biscuit with 

the presence of cracks and its (d) normalized histogram (64-bins). 

 

C.  CLASSIFICATION 

 

Support Vector Machine (SVM) [COR95] is a widely used classification technique that 

has received great attention [YUA05, RUA13] in many different fields. This method 

consists of a transformation of the data dimension to a higher dimension space by means 

of a kernel function in order to facilitate the linear separation. Once the transformation 

to a higher dimension representation space is done, SVM aims to find a hyperplane that 

separates two classes, minimizing the classification error and maximizing the margin 

of separation between the hyperplane and the closest points. In order to contrast the 

obtained results using SVM techniques, we have also included in the evaluation the 

decision tree method C4.5 [QUI93]. 

 

Once we have described the classifiers used in this work, the projection techniques 

utilized in our evaluation will be detailed. Linear Discriminant Analysis (LDA) [FIS36] 

has been an important technique in pattern recognition; this method aims to minimize 

the dispersion of the inter-class distance while maximizing the intra-class one. Also, an 

extension of the LDA technique that consists of a non-linear generalization of LDA will 

be evaluated. The cited LDA extension, Kernel Discriminant Analysis (KDA) 

[MIK99], is based on the kernel trick that is based on the generation of a mapping 

function that allows the transformation of a given space into another one. Besides, the 

Principal Component Analysis (PCA) [JOL86] technique has been considered to be 
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taken into account. In this method, the individuality of the classes is not taken into 

account and the projection to another space is carried out by means of the Eigen-vectors 

with higher Eigen-values of the covariance matrix. As described before with the LDA 

extension based on kernels (KDA), there is also an equivalent to PCA, called KPCA 

[SCH98]. This method will be included in our evaluation as well. 

5.3 SYSTEM EVALUATION AND RESULTS 

Section 5.3 described in detail the proposed steps to perform the classification of an 

undesired product following a quality criterion, in this case fractures, by means of 

feature extraction in the image. In this section, the exposed method will be evaluated 

globally and also specifically as regards the different stages, i.e., segmentation, feature 

extraction, and classification. 

 

A.  SEGMENTATION EVALUATION 

 

In order to evaluate the accuracy of the Parzen kernels and the Total Variation method 

with different color spaces, we will make use of the F-Measure estimator (5.13), as 

detailed in [BRU11]. To generate the evaluation dataset (ground truth), a collection of 

five biscuits have been segmented by hand in order to estimate the F-Measure value. 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
#𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖fi𝑒𝑑 𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑖𝑥𝑒𝑙𝑠

#𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝐺𝑇
 (5.11) 

 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
#𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖fi𝑒𝑑 𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑖𝑥𝑒𝑙𝑠

#𝑝𝑖𝑥𝑒𝑙𝑠 𝑐𝑙𝑎𝑠𝑠𝑖fi𝑒𝑑 𝑎𝑠 𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑
 (5.12) 

 

 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∙
𝑟𝑒𝑐𝑎𝑙𝑙 ∙  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 +  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
∙ 100 (5.13) 

 

Once different Parzen Kernels (Gaussian, Sphere and Cube) in standalone and 

making use of the Total Variation method in different color spaces (RGB, HSV and 

Spherical) have been applied, the obtained results in this evaluation are shown in Table 

5.1. It is clear that the inclusion of intensity information in color segmentation is not 

very appropriate because the methods that split the intensity channel obtain better 

results. In the case of the Spherical domain, it also leads to good results but avoiding 

such information (intensity), the accuracy increases. Another point to be remarked is 
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that the inclusion of the denoising stage leads to improvements that in some cases 

represent accuracy increases up to 8%.     

 

Table 5.1. F-Measure results in different color spaces and Parzen Kernels. The results marked in bold 

correspond to the best results obtained in each approach (highest value per column). 

Color 

Spaces 

Methods Parzen 

% 

Denoised 

 Parzen % 

Ani-TV-L1 

Seg. % 

Denoised 

Ani-TV-L1 

Seg %. 

 

RGB 

Hyper Cube Kernel 96.28  97.12  97.42  97.51  

Hyper Sphere Kernel 96.70  97.57  97.47  97.79  

Gaussian Kernel 96.72  97.57  97.47  97.90  

 

HSV 

Hyper Cube Kernel 87.01  93.87  93.87  95.87  

Hyper Sphere Kernel 88.00  94.10  94.10  95.80  

Gaussian Kernel 88.20  94.10  94.10  95.80  

 

HS 

Hyper Cube Kernel  90.42   98.60  98.51       98.60  

Hyper Sphere Kernel  93.70   98.58       98.50       98.58  

Gaussian Kernel  93.71   98.59       98.50       98.59  

Spherical  

(𝜌, 𝜃, 𝜑) 

Hyper Cube Kernel    96.73   98.07  97.95       98.07  

Hyper Sphere Kernel    96.88   97.98       97.86       97.98  

Gaussian Kernel    95.83   97.97       97.88       97.97  

Spherical  

(𝜃, 𝜑) 

Hyper Cube Kernel  98.06   98.47       98.68       98.72  

Hyper Sphere Kernel    98.03  98.46  98.66       98.72  

Gaussian Kernel    98.02   98.47  98.59       98.74  

 

 

It has been demonstrated that working in the spherical color domain, the obtained 

results are much better than working in RGB or HSV color space. Also, different Parzen 

windows kernels have been compared, concluding that the best kernel is the Gaussian 

one in conjunction with the Anisotropic Total Variation segmentation method. Besides, 

it has been verified that by denoising the image, the accuracy of the method increases. 

Figure 5.13 shows the best-obtained results after evaluating the biscuit segmentation 

with different approaches.  
 

In order to better understand the impact of each method in the segmentation, in the 

Appendix, the reader can observe the obtained F-Measure with different window sizes 

and methods. It is important to note that by making use of the Gaussian Kernel, the 

segmentation becomes more stable, providing more flexibility when selecting the 

windows width as it is illustrated in the Appendix.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.13. Best obtained results with (a) Parzen (b) Denoised Parzen (c) Ani-TV-L1 (d) Denoised Ani-

TV-L1 through Spherical (𝜃, 𝜑) color space. 

 

B. FEATURE EXTRACTION AND CLASSIFICATION EVALUATION 

 

Once the best segmentation method has been evaluated and determined, the accuracy 

of the extracted features will be evaluated. For this evaluation, the Leave-One-Out 

Cross-Validation (LOOCV) index will be the one used to measure the efficiency with 

the inclusion of the Radon transformation versus the Top-hat feature extraction over 50 

different patterns. LOOCV is used when a low number of samples are available; it takes 

only one sample data as test and the rest of the samples as training data. This is repeated 

as many times as samples are available, each time taking a different sample as test data. 

The total generated error (5.14) consists of the integration of the classification errors 

with the original data. The main reason for using this evaluation technique is because 

the obtained error helps us to determine the features that perform better classification 

scores, in our case; it determines the histogram size and justifies the use of Radon 

transformation in the suggested method.   

 

𝐸𝑟𝑟𝑜𝑟 =
100

𝑁
∑𝐸𝑟𝑟𝑜𝑟𝑖

𝑁

𝑖=1

 (5.14) 
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As it was commented in Section 5.3.3, the popular SVM and C45 techniques will be 

used with three different projection methods (LDA, KDA, and KPCA). At first, the 

histogram of the Top-Hat features is evaluated over different histogram sizes and 

combination of techniques, as illustrated in Table 5.2. In general, it can be observed 

that the increment of the histogram size improves the accuracy globally. The best 

obtained results belong to the combination of the KPCA/PCA projection and SVM 

using Gaussian kernels.   

Table 5.2. LOOCV results combining different projections and classification techniques with different 

Top-Hat histogram sizes.  

Classifier Histogr

am 128 

bins 

(Error 

%) 

Histogra

m 

64 bins 

(Error %) 

Histogra

m 

32 bins 

(Error %)   

Histogra

m 

16 bins 

(Error %) 

Histogra

m 

8 bins 

(Error %) 

Histogra

m 

4 bins 

(Error %) 

SVM 8.7  11.91  12.20  10.78   12.78  23.03  

C45 12.53 12.41  12.32 12.28  12.45   12.45  

PCA-SVM 0.24  0.24  0.24  0.24  0.24  0.24  

PCA-C45 12.41  12.86  13.16  12.49  12.41  12.45  

LDA-SVM 32.15  34.27  25.94  17.11  23.65  25.94  

LDA-C45 12.74  12.95  12.61  12.49  12.36   12.53   

KDA-SVM 2.20  1.99  6.16  4.45  12.11  12.36  

KDA-C45 12.24  12.24  12.24  12.24 12.24  12.24  

KPCA-SVM 0.24  0.24  0.24  0.24  4.20  1.19  

KPCA-C45 12.24  12.24   12.36  12.49  12.66  13.07   

 

The same evaluation is carried out with the histogram of the Radon transformation 

as shown in Table 5.3. As in the previous results, the increase of the histogram size 

represents a global increment in accuracy but the best obtained result give 0% in the 

LOOV metric, in the case of the combination of the KDA and SVM techniques. It is 

also important to remark that the use of Radon transformation to generate the histogram 

performs much better than the Top-hat histogram. In the case of SVM without 

projection, the performance is up to 72 times more accurate or in the case of SVM with 

KPCA, accomplishing up to 6 times higher accuracy. 
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Table 5.3. Obtained LOOCV results combining different projections and classification techniques with 

different Radon histogram sizes.  

Classifier Histogr

am 128 

bins 

(Error 

%) 

Histogra

m 

64 bins 

(Error %) 

Histogra

m 

32 bins 

(Error %) 

Histogra

m 

16 bins 

(Error %) 

Histogra

m 

8 bins 

(Error %) 

Histogra

m 

4 bins 

(Error %) 

SVM 0.12  0.24  2.12  2.12  4.49  6.66  

C45 12.28  12.28  12.28  12.32  12.41  16.15  

PCA-SVM 0.12 0.24 2.12  2.12  4.33  6.66  

PCA-C45 12.86  13.24  12.82  12.32  12.57  12.28  

LDA-SVM 24.19  31.77  20.78  10.62  13.45  30.57  

LDA-C45 12.99  12.70  12.49  12.32  12.45  13.41  

KDA-SVM  0  0.08  0.12  0.16  0.16  0.58  

KDA-C45 12.28  12.24  12.24  12.24  12.24  12.36  

KPCA-SVM 0.04  0.24  0.12  0.12  0.24  0.29  

KPCA-C45 12.24  12.28  12.24  12.24  12.24  12.24  

 

 

 

C.  GPU EVALUATION. 

 

One of the main problems in computer vision is the high computation cost of many 

models. In the case of variational methods (5.4, 5.6), they have an iterative nature and 

require more computation time than other techniques. To avoid this limitation, a GPU 

is used to evaluate the suggested implementation, in this work an NVidia© GTX 580 

(Fermi architecture; NVidia Corporation, Santa Clara, Calif., US) equipped with 512 

processing cores was used. To contrast the obtained results on GPU, the same 

implementation is also compared with an Intel i7 CPU 950 (Intel Corporation, Santa 

Clara, Calif., US) with eight cores (four cores with two logic-cores per each physical 

one). We have declined to use Open Computing Language (OpenCL) due to its degree 

of versatility to be executed in different platforms. It is important to point out that, 

unlike in other articles, the parallelism of the CPU (using all cores) has been taken into 

account to assess the performance of both architectures (GPU and CPU). 
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Table 5.4. Computation time evaluation of the main methods used in our algorithm on GPU and parallel 

CPU implementation. 

Method GPU  

Time (ms) 

 8-cores CPU 

Time (ms) 

1-core CPU 

Time (ms) 

TV-L2 Denosing  

(5 iterations, RGB) 

10.61   73.48  462.42  

Ani-TV-L1 Huber 

Segmentation (20 iterations) 

9.4   93.96  544.74  

Morphological Reconstruction  2.18   4.67 23.03  

Top-Hat (6x6 Block size) 1.61   11.06  61.15   

DoG 1.96   10.19  58.55  

Log-Inv 0.10   0.37  1.82 

Radon Transformation 5.31    48.03   1958.10   

RGB2Spherical  0.14    1.61  8.60  

 

In order to compare the proposed Morphological reconstruction method, in the 

binary domain, other methods have been also evaluated. Those methods are the ones 

based on the implemented function in Matlab (imfill) and the DownHill [ROB04] 

method where the measured computation times are 58.78 ms and 75.33 ms respectively, 

i.e. 27 and 34 times faster correspondingly. These results reveal the importance of using 

parallel architectures to speed up the processing time. 

 

The total computation time to determine the patterns that defines the quality of the 

product is 44.43 ms (GPU), 545.12 ms (8-cores CPU), and 3477.51 ms (1-core CPU). 

In other words, the system is able to analyze up to 22 images per second on GPU, 

allowing working with transport belts at the speed of 2 m/s and obtaining a speed gain 

factor of 12.26 with respect to the 8-cores CPU execution and 78.26 in relation with the 

1-core CPU execution. These results demonstrate the importance of the GPUs to 

execute heavy computational loads in real-time. In the case that further performance is 

needed, it could be viable by means of current GPUs. For example, the Nvidia Titan 

Black GPU provides a performance 3.49 times faster as regards computation speed and 

1.7 times faster with respect to the memory speed in comparison with the GPU used in 

this work. With these performance improvements, we would expect to further increase 

the computation speed up to ≈ 4-6 times faster, i.e., ≈ 88-132 images per second. 
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5.4 CONCLUSIONS 

Industrial visual inspection is playing an important role in the present years. In this 

work, we have presented and evaluated a method able to segment and determine the 

presence of cracks or missing parts of the biscuit. A massive parallel architecture was 

used to implement this system to demonstrate the importance of this kind of 

architectures in visual inspection. Our system relies on a collection of steps where at 

first, biscuit color segmentation is performed with the objective of centering the 

attention in the biscuit area. The second step of the proposed method consists in the 

potential crack detections in the biscuit, focusing the detections only in the previous 

segmentation. The third step involves the extraction of features by means of the Radon 

histogram to finally classify and decide whether the product is suitable or should be 

rejected according to the defined quality criteria.  

 

The suggested steps of the exposed method have been evaluated, in the case of the 

segmentation step. The evaluation has compared different color spaces with different 

Parzen kernels and the incorporation of Anisotropic Total Variation formulation to 

improve the segmentation (5% of improvement with respect the worse segmentation) 

giving a total of 60 different evaluations. Also, it has been proposed a novel method to 

fill holes in the binary domain on GPU.  The accuracy in the classification has been 

evaluated by means of the Radon Histogram, in comparison with another type of 

feature. In this evaluation, two kinds of classification methods over four kinds of 

projection techniques have been tested, giving a total of 120 evaluations over 50 

different samples. It has been demonstrated that including projection techniques 

significantly improves the accuracy, giving 0% of error in the classification. It can be 

concluded that the incorporation of variational methods improves the segmentation and 

the use of the Radon transform is an appropriate domain to extract features. Finally, it 

is important to remark the importance of the incorporation of the GPU to industrial 

inspection, where a performance speed up of 12.26 with respect the CPU 

implementation is obtained, i.e., with the GPU implementation the system is able to 

analyze 22 images per second while with the parallel CPU implementation, it is only 

able to process around 2 images per second.  

 

In a future research, this work is to be extended to another kind of products and 

utilizing stereo vision or structure from motion techniques to incorporate additional 

information to the system. 
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6. CONCLUSIONS AND MAIN CONTRIBUTIONS 

 

6.1 SUMMARY 

 

The main purpose of this work was to investigate the most appropriate computer vision 

techniques and their implementations in real-time, in different architectures, to solve 

different problems in the industry. Some of the computer vision models that have been 

evaluated and implemented are shown below: 

 

- Optical Flow (Lucas & Kanade and Anisotropic TV-L1).  

 

- Block Matching (Lewis Method). 

 

- Local Features (Fast Radial Symmetry, Pixel Orientation, LIP-SOBEL, DoG, 

TopHat, etc). 

 

- Image Denoising (TV-L2 and SRAD). 

 

- Domain Transformation (Radon and Fourier Transformation). 

 

- Segmentation (Anisotropic TV-L1 Huber, Parzen and Active Shape Models). 

 

- Morphological Reconstruction. 

 

Those techniques have been previously evaluated with other methods, not cited in 

this work, before the implementation to ensure that the obtained robustness was fulfilled 

the application specifications and determinate those methods that can be parallelized on 

massive parallel architectures. The implementation of computer vision methods is a 

challenge; not all techniques have a parallel nature computation and require different 

designs to be implemented in a parallel architecture. One example of this problem is 

the SRAD method, which includes the AOS diffusion scheme that has not a parallel 

nature or the case of Fast Radial Symmetry where the voting scheme can be substituted 

with OpenGL techniques to make use of the advantages in the GPU.     
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6.2 SCIENTIFIC OBJECTIVES AND DEGREE OF COMPLIANCE 

 

After the exposition of this work, we will breafly revisit the proposed objectives 

exposed in Chapter 1.2 to highlight the achievements and how they are related with the 

work objectives. It is important to remark that all the objectives have been reached. The 

objectives in this research work are:  

 

- Study of motion estimation models, segmentation, feature extraction and 

classification. (Chapters 3, 4 and 5). 

 

- Development of models for the detection of overtaking vehicles. (Chapter 

3.5.2). 

 

- Estimation of the dynamic properties of the artery. (Chapter 4.3). 

 

- Segmentation and estimation of the diameter of the artery. (Chapter 4.2). 

 

- Study and implementation of a real-time system for industrial inspection. 

(Chapter 5). 

 

- Implementation of models in efficient processing platforms. (Chapters 3, 4 and 

5). 

 

6.3 FUTURE WORK 

 

Future work will address the study of how to include more relevant cues in the optical 

flow in order to increase the speed and solve large displacement problems. Also, include 

more advanced methods to segment the obtained motion. Other point that could be of 

interest is the inclusion of Active Shape Model features into the Differential Evolution 

method such Block Matching into the objective function with the objective of 

improving the segmentation and the search in the solution space. In addition it is also 

of interest exploring the possibility of including Stereo Vision or structure from motion 

in the industrial inspection field with the objective of increase the collected information.    
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6.4 SCIENTIFIC PRODUCCTION 

 

Throughout of this thesis, it has been studied the following: (1) how to estimate Optical 

Flow efficiently with in a hybrid (analogic and digital) architecture [GUZ10]; (2) 

detection of overtaking vehicles in real-time with a low-cost architecture [GUZ11]; (3) 

arterial segmentation by means of an evolutive method and local features [GUZ14a]; 

(4) sub-pixel arterial wall tracking in Ultrasound images [GUZ14b] and (5) visual 

industrial inspection to detect defective biscuits in the chain production [GUZ14c]. 

Published papers (including a pending publication) are: 

Journal Publications:  

 

 Guzmán, P.; Díaz, J.; Agís, R.; Ros, E. Optical Flow in a Smart Sensor Based on 

Hybrid Analog-Digital Architecture. Sensors 2010, 10, 2975-2994. 

 Guzmán, P., Díaz, J., Ralli, J., Agís, R., & Ros, E. (2011). Low-cost sensor to detect 

overtaking based on optical flow. Machine Vision and Applications, 1-13. 

 Ralli, J., Díaz, J., Guzmán, P., & Ros, E. (2012). Experimental Study of Image 

Representation Spaces in Variational Disparity Calculation. EURASIP Journal on 

Advances in Signal Processing, 2012(1), 254. 

 Guzman, P., Ros, R., & Ros, E. (2014, February). Artery Segmentation in 

Ultrasound Images Based on an Evolutionary Scheme. In Informatics (Vol. 1, No. 

1, pp. 52-71).  

 

 Guzman, P., Hamarneh, G., Ros, R., & Ros, E. (2014). Arterial Mechanical Motion 

Estimation Based on a Semi-Rigid Body Deformation Approach. Sensors, 14(6), 

9429-9450. 

 

 Guzman, P., Agis R., Ros E. Machine Vision Inspection of Defective Biscuits in 

Real-Time. (Pending of Journal review).  

 

Conferences:  

 

 Agís Rodrigo, Díaz Javier, Ortigosa Pilar, Guzmán Pablo, Ros Eduardo: Optical 

Flow Reliability Model Approximated with RBF. IWANN (2) 2011: 90-97. 
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Books:  

 

 Prieto, A. Periféricos Avanzados. Chapter: Smart Cameras: Sensores ópticos 

avanzados para aplicaciones industriales de visión. Pablo Guzmán Sánchez, 

Rodrigo Agís Melero, Ester Martín Garzón. ISBN: 978-84-15452-03-4. 

 

6.5 MAIN CONTRIBUTIONS  

 

At this point, we highlight the main contributions of this work. 

 We have adapted an optical flow method and efficiently implemented in an 

embedded architecture with low computational resources, in combination with 

the focal plane processing at the sensor level. 

 We have adopted a co-design strategy to develop a novel system, based on a 

low cost camera, able to detect vehicles overtaking in real time. It has also been 

tested in real-world conditions obtaining very promising results. 

 We have develop a method to segment the cross section of the artery in 

Ultrasound images using an evolutionary scheme, based on local features, 

achieving better results than other alternative segmentation techniques. 

 We have designed a dual motion estimation method (Block Matching and 

Optical Flow) to track the arterial wall in longitudinal Ultrasound imaging, 

obtaining more accuracy than current alternative techniques. 

 We have developed using a co-design strategy a robust vision inspection system 

to work in the industrial field with the purpose of inspecting the quality and 

detecting defective biscuits in the chain production. The exposed scheme has 

demonstrated to be a very effective approach by combining transforming image 

domain and advanced classification techniques. 

 We have efficiently used massive parallel processing architectures by adapting 

vision models to the specific features of these architectures. Using this strategy 

we have obtained outstanding performance results compared to the direct 

implementation on general purpose architecures. 
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 We have developed a computer vision "Framework" on GPU that includes 360 

kernels with a total of 13,000 lines of code. This framework allows an easy co-

design of computer vision systems and re-using the code to develop new 

algorithms. 
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7. CONCLUSIONES Y CONTRIBUCIONES PRINCIPALES  

 

7.1 SUMARIO 

 

El principal proposito de esta tesis fue investigar las técnicas de vision por computador 

mas propicias y su implementacion en tiempo real, en diferentes arquitecturas para 

resolver diferentes problemas en el ambito industrial. A continuacion se mostrará 

algunos de los modelos de vision que han sido evaluados e implementados. 

 

- Flujo Óptico (Lucas & Kanade y Anisotrópico TV-L1).  

 

- Block Matching (Lewis Method). 

 

- Características locales (Fast Radial Symmetry, Orientacion del Píxel, LIP-

SOBEL, DoG, TopHat, etc). 

 

- Limpieza de imágenes (TV-L2 y SRAD). 

 

- Transformación a otros dominios (Radon y la transformada de Fourier). 

 

- Segmentación (Anisotrópic TV-L1 Huber, Parzen y Active Shape Models). 

 

- Reconstrucción Morfológica. 

 

Estas técnicas han sido previamente evaluadas con otros modelos, no citados en este 

trabajo, antes de la implementacion con el objetivo de asegurarnos la robustez y 

determiner aquellos morelos que se pueden paralelizar en arquitecturas de computacion 

masiva paralela. La implementación de modelos de vision por computador supone un 

reto, debido a que no todas las técnicas tienen una naturaleza de computacion paralela 

y se require que rediseñar para que se pueda computar en arquitecturas paralelas. Un 

ejemplo de este problema es el que presenta el modelo SRAD que incluye el esquema 

de difusión AOS y no presenta una naturaleza paralela o en el caso de Fast Radial 

Symmetry utiliza un esquema de votacion bastante costoso y puede ser sustituido con 

técnicas de OpenGL para hacer uso de las ventajas de la GPU. 
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7.2 OBJETIVOS CIENTIFICOS Y SU GRADO DE CUMPLIMIENTO 

 

Tras haber expuesto el trabajo realizado en esta tesis, elaboraremos un breve análisis de 

los objtetivos propuestos en el capitulo 2.2 para remarcar en que puntos se han cubierto. 

Cabe destacar que dichos objetivos han sido cubiertos completamente. Los objetivos 

mencionados en este trabajo de investigación son los siguientes: 

 

- Estudio de modelos de estimación de movimiento, segmentación, extracción de 

características y clasificación. (Capítulos 3, 4 y 5). 

 

- Desarrollo de modelos para la detección de vehículos en adelantamiento. 

(Capitulo 3.5.2) 

 

- Estimación de las propiedades dinámicas de la arteria. (Capítulo 4.3) 

 

- Segmentación y estimación del diámetro de la arteria. (Capítulos 4.2) 

 

- Estudio e implementación de un sistema de inspección industrial en tiempo real. 

(Capítulo 5). 

 

- Implementación de los modelos en plataformas de procesamiento eficiente. 

(Capítulos 3, 4 y 5). 

 

7.3 TRABAJO FUTURO 

 

El objetivo para trabajo futuro consiste en incluir nuevas caracteristicas para acelerar el 

procesamiento y resolver grandes desplazamientos. Tambien se planterá en incluir 

métodos avanzados para segmentar el movimiento. Otro punto que puede ser de interés 

es incluir partes del modelo de Active Shape Model en el algoritmo de Evolucion 

Diferencial, como por ejemplo Block Matching dentro de la función objetivo para 

mejorar la segmentación y la búsqueda en el espacio de soluciones. Adicionalmente 

podría ser interesante explorar la posibilidad de incluir visión stereo o  Structure from 

Motion en el campo de la inspección industrial con el objetivo de incrementar 

información.   
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7.4 PRODUCCIÓN CIENTIFICA 

 

A lo largo de esta tesis, se ha estudiado lo siguiente: (1) como estimar eficientemente 

Flujo Óptico  en una arquitectura híbrida (Analógica y Digital) [GUZ10]; (2) detección 

de vehículos en adelantamiento en tiempo real con una arquitectura de bajo coste 

[GUZ11]; (3) segmentación de la arteria mediante características locales y un algoritmo 

evolutivo [GUZ14a]. Tracking sub-pixel de la pared arterial [GUZ14b] y (5) Inspeccion 

industrial visual para detectar galletas defectuosas en la cadena de producción 

[GUZ14c]. Las publicaciones, incluyendo las pendientes de revisión, son las siguientes: 

 

Publicaciones:  

 

 Guzmán, P.; Díaz, J.; Agís, R.; Ros, E. Optical Flow in a Smart Sensor Based on 

Hybrid Analog-Digital Architecture. Sensors 2010, 10, 2975-2994. 

 Guzmán, P., Díaz, J., Ralli, J., Agís, R., & Ros, E. (2011). Low-cost sensor to detect 

overtaking based on optical flow. Machine Vision and Applications, 1-13. 

 Ralli, J., Díaz, J., Guzmán, P., & Ros, E. (2012). Experimental Study of Image 

Representation Spaces in Variational Disparity Calculation. EURASIP Journal on 

Advances in Signal Processing, 2012(1), 254. 

 Guzman, P., Ros, R., & Ros, E. (2014, February). Artery Segmentation in 

Ultrasound Images Based on an Evolutionary Scheme. In Informatics (Vol. 1, No. 

1, pp. 52-71).  

 

 Guzman, P., Hamarneh, G., Ros, R., & Ros, E. (2014). Arterial Mechanical Motion 

Estimation Based on a Semi-Rigid Body Deformation Approach. Sensors, 14(6), 

9429-9450. 

 

 Guzman, P., Agis R., Ros E. Machine Vision Inspection of Defective Biscuits in 

Real-Time. (Pendiente de revision en la revista Elsevier, Food Engineering).  

 

Conferencias:  

 

 Agís Rodrigo, Díaz Javier, Ortigosa Pilar, Guzmán Pablo, Ros Eduardo: Optical 

Flow Reliability Model Approximated with RBF. IWANN (2) 2011: 90-97. 
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Libros:  

 

 Prieto, A. Periféricos Avanzados. Capitulo: Smart Cameras: Sensores ópticos 

avanzados para aplicaciones industriales de visión. Pablo Guzmán Sánchez, 

Rodrigo Agís Melero, Ester Martín Garzón. ISBN: 978-84-15452-03-4. 

 

7.5 CONTRIBUCIONES PRINCIPALES  
 

En este apartado se presentarán las principales contribuciones llevadas a cabo en este 

trabajo. 

 Se ha demostrado la capacidad de desarrollar un metodo eficiente de Flujo 

Óptico en una arquitectura empotrada con pocos recursos computaciones en 

combinacion con un plano focal.  

 Mediante el uso de una cámara inteligente de bajo coste, se ha demostrado que 

es posible diseñar un sistema capaz de detectar vehículos en adelantamiento en 

tiempo real. Tambien se ha probado en condiciones reales obteniendo unos 

resultados muy prometedores.  

 Se ha validado la segmentación de arterias en sección transversal en 

Ultrasonidos utilizando un esquema evolutivo, dirigido mediante las 

características locales, obteniendo mejores resultados que otras técnicas 

populares de segmentación.   

 Se ha diseñado un método dual de estimación de movimiento (Block Matching 

y Flujo Óptico) para estimar el desplazamiento de la pared de la arteria en 

sección longuitudinal en Ultrasonidos, obteniendo mejores resultados que 

técnicas actuales.   

 Se ha probado que factible co-diseñar un sistema robusto de inspección 

automática por visión artificial para trabajar en el ámbito de la industria, con el 

propósito de determinar la calidad y detectar galletas con defectos en la línea de 

producción. El esquema propuesto ha sido evaluado y se ha demostrado que 

tiene una gran robustez combinando el dominio de la imagen y haciendo uso de 

avanzados técnicas de clasificación.  

 Se ha hecho uso de arquitecturas de procesamiento masivo de forma eficiente, 

adaptando modelos de visión a las características de dichas arquitecturas. 
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Mediante esta estrategia hemos obtenido un rendimiento notable en 

comparación con la implementación en arquitecturas de propósito general. 

 Se ha desarrollado un marco de trabajo basado en visión por computador en 

GPU que incluye 360 kernels con un total de 13.000 lineas de código. El 

propósito de este marco de trabajo es facilitar el co-diseño de algoritmos de 

visión y reutilizar código para otros futuros algoritmos. 
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APPENDIX A. TRACKING RESULTS 

 

Table A1. Longitudinal error results after being evaluated with different methods. 

Methods M1 M2 M3 M4 M5 M6 

Lucas & Kanade 62.87 16.95 59.98 73.91 75.99 42.52 
BM+ Lucas & Kanade 52.79 45.05 57.41 39.51 29.76 19.48 

BM 1.10 1.15 1.68 1.68 1.27 1.28 
Anisotropic Huber-L1 1.43 1.42 1.56 1.56 1.12 1.12 

BM + Anisotropic Huber-L1 1.73 1.62 1.88 1.87 1.52 1.51 

 

Table A2. Radial error results after being evaluated with different methods. 

Methods M1 M2 M3 M4 M5 M6 

Lucas & Kanade 7.89 2.37 4.96 8.50 4.93 3.33 
BM+ Lucas & Kanade 4.69 4.42 3.96 2.77 1.84 1.08 

BM 0.52 0.88 0.63 0.64 0.64 0.64 
Anisotropic Huber-L1 0.59 1.35 0.57 0.57 0.57 0.57 

BM + Anisotropic Huber-L1 0.25 0.24 0.26 0.28 0.21 0.21 

 

Table A3. Position Error results after being evaluated with different methods. 

Methods M1 M2 M3 M4 M5 M6 

Lucas & Kanade 63.75 17.38 60.66 75.02 76.37 42.99 
BM+ Lucas & Kanade 53.35 45.51 57.63 39.68 29.86 19.55 

BM 1.30 1.49 1.80 1.81 1.49 1.50 
Anisotropic Huber-L1 1.55 1.48 1.67 1.67 1.30 1.31 

BM + Anisotropic Huber-L1 1.75 1.64 1.89 1.89 1.54 1.53 
 

Table A4. Diameter error results after being evaluated with different methods. 

Methods M1 M2 M3 M4 M5 M6 

Lucas & Kanade 4.36 3.08 3.79 3.70 2.52 2.89 
BM+ Lucas & Kanade 9.30 5.79 2.52 2.25 1.44 1.02 

BM 0.65 0.86 0.44 0.48 0.43 0.44 
Anisotropic Huber-L1 0.47 0.47 0.37 0.42 0.38 0.38 

BM + Anisotropic Huber-L1 0.26 0.28 0.26 0.35 0.20 0.21 
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APPENDIX B. HSV AND SPHERICAL COLOR SPACES  

RGB-Spherical color conversion: 

 

𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙(𝜌, 𝜃, 𝜑) =

{
 
 

 
 𝜌 =  √𝑅

2 + 𝐺2 + 𝐵2

𝜃 =  tan−1
𝐺

𝑅

𝜑 =  cos−1
𝐵

𝜌

 (B.1) 

 

 

RGB-HSV color conversion: 

 

𝑉𝑀𝑎𝑥 = max(𝑅, 𝐺, 𝐵) 

𝑉𝑀𝑖𝑛 = min (𝑅, 𝐺, 𝐵) 

∆= 𝑉𝑀𝑎𝑥 − 𝑉𝑀𝑖𝑛 

 

𝐻 =

{
 
 

 
     60 ∙ (

𝐺 − 𝐵

∆
𝑚𝑜𝑑6) 𝑖𝑓 𝑉𝑀𝑎𝑥 = 𝑅

60 ∙ (
𝐵 − 𝑅

∆
+ 2) 𝑖𝑓 𝑉𝑀𝑎𝑥 = 𝐺

60 ∙ (
𝑅 − 𝐺

∆
+ 4) 𝑖𝑓 𝑉𝑀𝑎𝑥 = 𝐵

 

 

𝑆 = {

0            𝑖𝑓 ∆= 0
∆ 

𝑉𝑀𝑎𝑥
     𝑖𝑓 ∆ ! = 0

 

 

𝑉 = 𝑉𝑀𝑎𝑥 

(B.2) 
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APPENDIX C. SEGMENTATION: F-MEASURE VS. PARZEN WINDOW 

WIDTH 

 

 
 (a) 

 
(b) 

 
(c) 

Figure. C.1 Plot of the Logarithmic Inverse F-Measure with respect to the Parzen window width ρ in 

different Kernels (a) HyperCube, (b) HyperSphere, and (c) Gaussian in Spherical color space. 
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APPENDIX D. SOME EXAMPLES OF THE TRAINING DATA SET 

 

      

      

      

      
 

Figure. D.1. The first row corresponds to the positive cases (high quality samples) and the rest of the 

rows belong to some negative cases in the training data set. 

 

APPENDIX F. ACRONYMS AND ABBREVIATIONS LIST. 

 

AAE: Average Angular Error  

 

ABPI: Ankle Brachial Pressure Index 

 

ACM: Region-Based Active Contour Model  

 

ADAS: Advanced Driver Assistance System 

 

AI: Artificial Intelligence 
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AIx: Augmentation Index 

 

ALU: Arithmetic Logic Unit 

 

AOI: Area Of Interest 

 

AOS: Additive Operator Splitting 

 

ASIC: Application-Specific Integrated Circuit  

 

ASM: Active Shape Models  

 

BLIS: BLindspot Information Systems 

 

BM: Block Matching 

 

CARE: Community Road Accident Database 

 

CCA: Common Carotid Artery  

 

CR: Cyclic Reduction 

 

DE: Differential Evolution 

 

DMIPS: Dhrystone MIPS 

 

DSP: Digital Signal Processor 

 

FCM: Fuzzy C-mean  

 

FPGA: Field Programmable Gate Arrays  

 

FPS: Frame Per Second 

 

FPU: Floating-Point Unit  

 

FRS: Fast Radial Symmetry 
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GOPS: Giga Operations per Second 

 

GPGPU: General-Purpose Computing on Graphics Processing Units 

 

GPU: Graphics Processing Units 

 

HDR: High Dynamic Range  

 

ICOV: Instantaneous Coefficient Of Variation  

 

ITREBA: Procesamiento de Imagen/Video en Tiempo Real para Exploración 

Biomédica Activa 

 

KF: Kalman Filter 

 

LDW: Lane Departure Warning 

 

LIDAR: Laser Imaging Detection and Ranging 

 

LIP: Logarithmic Image Processing  

 

MIPS: Million of Instructions Per Second  

 

MMX: MultiMedia eXtension 

 

MOI: Motion Of Interest  

 

MS: Mass-Spring 

 

NCC: Normalized Cross Correlation  

 

OpenCL: Open Computing Language 

 

PCR: Parallel Cyclic Reduction 

 

PWV: Pulse Wave Velocity  

 

QCIF: Quarter Common Intermediate Format 
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RADAR: Radio Detection and Ranging 

 

RHT: Randomized Hough Transform 

 

RISC: Reduced Instruction Set Computer  

 

RMSE: Root Mean Squared Error 

 

SAD: Sum of Absolute Differences 

 

SAPVIA: Sistema Autónomo Programable de Visión Artificial 

 

SIB: Sparse Integration Block  

 

SIMD: Single Instruction, Multiple Data 

 

SIS: Smart Image Sensor 

 

SPF: Signed Pressure Force 

 

SRAD: Speckle Reducing Anisotropic Diffusion  

 

SSE: Streaming SIMD Extensions 

 

ST: Similarity Transformation  

 

STD: Standard Deviation 

 

SVM: Support Vector Machine  

 

TDI: Tissue Doppler Imaging  

 

TV: Total Variation  

 

US: UltraSound 

 

 

http://es.wikipedia.org/wiki/SIMD
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