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1 Introduction

A complex space form is an n-dimensional Kähler manifold of constant holomorphic sectional curvature c.
A complete and simply connected complex space form is analytically isometric to a complex projective space CP n

if c > 0, a complex Euclidean space Cn if c D 0, or a complex hyperbolic space CHn if c < 0. The complex
projective and complex hyperbolic spaces are called non-flat complex space forms, since c ¤ 0, and the symbol
Mn.c/ is used to denote them when it is not necessary to distinguish them.

A real hypersurface M is an immersed submanifold with real codimension one in Mn.c/. The Kähler structure
(J;G), where J is the complex structure and G is the Kähler metric of Mn.c/, induces on M an almost contact
metric structure (�; '; �; g). The vector field � is called structure vector field and when it is an eigenvector of the
shape operator A with corresponding eigenvalue ˛ D g.A�; �/ the real hypersurface is called Hopf hypersurface.

The study of real hypersurfaces M in Mn.c/ was initiated by Takagi, who in [13] classified homogeneous real
hypersurfaces in CP n and divided them into six types, namely (A1), (A2), (B), (C ), (D) and (E). These real
hypersurfaces are Hopf ones with constant principal curvatures. In case of CHn, the study of real hypersurfaces
with constant principal curvatures was started by Montiel [7] and completed by Berndt in [1]. They are divided into
two types, namely (A) and (B), depending on the number of constant principal curvatures. The real hypersurfaces
found by them are homogeneous and Hopf.

Another important class of real hypersurfaces in Mn.c/, which are not Hopf, is the ruled hypersurfaces. They
are constructed in the following way: consider a regular curve 
 in Mn.c/ with tangent vector field X . Then at each
point of 
 there is a unique hyperplane of Mn.c/ cutting 
 in a way to be orthogonal to both X and JX . The union
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of all these hyperplanes is the ruled hypersurface. Equivalently, for ruled hypersurfaces in Mn.c/ we have that the
maximal holomorphic distribution D of M at any point, which consists of all the vectors orthogonal to � is integrable
and it has an integrable manifold Mn�1.c/, i.e g.AD;D/ D 0.

Last years many geometers have studied real hypersurfaces in Mn.c/ under certain geometric conditions. More
precisely, the structure Jacobi operator of them plays an important role in the study. Generally, the Jacobi operator
with respect to X on M is defined by R.�; X/X , where R is the Riemannian curvature of M . For X D � the Jacobi
operator is called structure Jacobi operator and is denoted by l D R� D R.�; �/�.

Another topic of great importance in the study of real hypersurfaces in non-flat complex space forms is the
study of them in terms of their generalized Tanaka-Webster connection. The notion of generalized Tanaka-Webster
connection was first introduced by Tanno in [14] in case of contact metric manifolds in the following way

OrXY D rXY C .rX�/.Y /� � �.Y /rX� � �.X/'Y:

In [2] Cho extended Tanno’s work by defining the generalized Tanaka-Webster connection of real hypersurfaces M
in Mn.c/ in the following way

Or
.k/

X
Y D rXY C g.'AX; Y /� � �.Y /'AX � k�.X/'Y; (1)

where X , Y are tangent to M and k is non-null real number.
The second author in [12] introduced the notion of k-th Cho operator corresponding to a vector field X as a

tensor field of type (1,1) defined in the following way

F
.k/

X
Y D g.'AX; Y /� � �.Y /'AX � k�.X/'Y: (2)

So relation (1) due to (2) becomes

Or
.k/

X
Y D rXY C F

.k/

X
Y: (3)

Notice that if X 2 D, the k-th Cho operator does not depend on k, so it is written FXY and is called Cho operator
associated to X .

In [12] the second author began the study of real hypersurfaces in CP n, n � 3, whose k-th Cho operator satisfies
commuting conditions with the structure Jacobi operator of them. More precisely, he classifed real hypersurfaces in
CP n, n � 3, whose structure Jacobi operator satisifies the commuting relation F .k/

�
l D lF

.k/

�
. Furthemore, he

also proved that the structure Jacobi operator commutes with the Cho operator, i.e. FX l D lFX , only for ruled
hypersurfaces in CP n, n � 3. The condition F .k/

X
l D lF

.k/

X
, for some X 2 TM is equivalent to rX l D Or

.k/

X
l .

Geometrically, this means that any eigenspace of l is preserved by F .k/
X

.
The purpose of this paper is to extend the previous work in case of three dimensional real hypersurfaces in

M2.c/ and in case of real hypersurfaces in CHn, n � 3. More precisely the following Theorems are proved:

Theorem 1.1. Every real hypersurface M in M2.c/, whose k-th Cho operator associated to � commutes with the
structure Jacobi operator, i.e. F .k/

�
l D lF

.k/

�
is a Hopf hypersurface. Furthermore, for any non-null constant k M

is locally congruent to:
i) a real hypersurface of type (A),

ii) or to a real hypersurface with A� D 0.

Theorem 1.2. Every real hypersurface M in CHn, n � 3, whose k-th Cho operator associated to � commutes with
the structure Jacobi operator, i.e. F .k/

�
l D lF

.k/

�
is a Hopf hypersurface. Furthermore, for any non-null constant k

M is locally congruent to:
i) a real hypersurface of type (A),

ii) or to a real hypersurface with A� D 0.

Theorem 1.3. Let M be a real hypersurface in M2.c/, whose Cho operator associated to any vector field X
orthogonal to � commutes with the structure Jacobi operator, i.e. FX l D lFX . Then M is locally congruent to a
ruled real hypersurface.
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Theorem 1.4. Let M be a real hypersurface in CHn, n � 3, whose Cho operator associated to any vector field
X orthogonal to � commutes with the structure Jacobi operator, i.e. FX l D lFX . Then M is locally congruent to a
ruled real hypersurface.

This paper is organized as follows: In Section 2 basic relations and results about real hypersurfaces in Mn.c/ are
provided. In Section 3 proofs of Theorems 1.1 and 1.2 are provided. Furthermore, a Proposition which holds for non-
Hopf hypersurfaces in Mn.c/, n � 3 is also presented. Finally, in Section 4 the proof of Theorem 1.3 is included.

Remark 1.5. As an immediate consequence of relation (3) we have that the condition of commutativity of the k-th
Cho operator with respect to any vector field X with the structure Jacobi operator is equivalent with the condition
of coincidence of the covariant and generalized Tanaka-Webster derivatives of the structure Jacobi operator, i.e.
Or
.k/

X
l D rX l . Therefore, from Theorems 1.1 and 1.3 there do not exist real hypersurfaces in M2.c/ such that

Or.k/l D rl for any k 2 R � f0g.

2 Preliminaries

Throughout this paper all manifolds, vector fields etc. are assumed to be of class C1 and all manifolds are assumed
to be connected. Furthermore, the real hypersurfaces M are supposed to be without boundary.

Let M be a real hypersurface immersed in .Mn.c/; G/ with complex structure J of constant holomorphic
sectional curvature c. Let N be a unit normal vector field on M and � D �JN the structure vector field of M.

For a vector field X tangent to M relation

JX D 'X C �.X/N

holds, where 'X and �.X/N are respectively the tangential and the normal component of JX . The Riemannian
connections r in Mn.c/ and r in M are related for any vector fields X , Y on M by

rXY D rXY C g.AX; Y /N;

where g is the Riemannian metric induced from the metric G.
The shape operator A of the real hypersurface M in Mn.c/ with respect to N is given by

rXN D �AX:

The real hypersurface M has an almost contact metric structure .'; �; �; g/ induced from J on Mn.c/, where ' is
the structure tensor which is a tensor field of type (1,1) and � is an 1-form on M such that

g.'X; Y / D G.JX; Y /; �.X/ D g.X; �/ D G.JX;N /:

Moreover, the following relations hold

'2X D �X C �.X/�; � ı ' D 0; '� D 0; �.�/ D 1;

g.'X; 'Y / D g.X; Y / � �.X/�.Y /; g.X; 'Y / D �g.'X; Y /:

The fact that J is parallel implies NrJ D 0. The last relation leads to

rX� D 'AX; .rX'/Y D �.Y /AX � g.AX; Y /�: (4)

The ambient spaceMn.c/ is of constant holomorphic sectional curvature c and this results in the Gauss and Codazzi
equations to be given respectively by

R.X; Y /Z D
c

4
Œg.Y;Z/X � g.X;Z/Y C g.'Y;Z/'X (5)

�g.'X;Z/'Y � 2g.'X; Y /'Z�C g.AY;Z/AX � g.AX;Z/AY;
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324 K. Panagiotidou, J. de Dios Pérez

.rXA/Y � .rYA/X D
c

4
Œ�.X/'Y � �.Y /'X � 2g.'X; Y /��; (6)

where R denotes the Riemannian curvature tensor on M and X , Y , Z are any vector fields on M.
Relation (5) implies that the structure Jacobi operator l is given by

lX D
c

4
ŒX � �.X/��C ˛AX � �.AX/A�; (7)

for any X tangent vector to M , where ˛ D �.A�/.
The tangent space TPM , for every point P 2 M , can be decomposed as

TPM D spanf�g ˚ D;

where D D ker � D fX 2 TPM W �.X/ D 0g and is called (maximal) holomorphic distribution, (if n � 3). Due
to the above decomposition, the vector field A� can be written

A� D ˛� C ˇU;

where ˇ D j'r��j and U D � 1
ˇ
'r�� 2 ker.�/ is a unit vector field, provided that ˇ ¤ 0.

We provide the following Theorem which in case of CP n is owed to Maeda [6] and in case of CHn is owed to
Montiel [7] (also Corollary 2.3 in [9]).

Theorem 2.1. Let M be a Hopf hypersurface in Mn.c/, n � 2. Then
i) ˛ is constant.

ii) If W is a vector field which belongs to D such that AW D �W , then

.� �
˛

2
/A'W D .

�˛

2
C
c

4
/'W:

iii) If the vector field W satisfies AW D �W and A'W D �'W then

�� D
˛

2
.�C �/C

c

4
: (8)

Remark 2.2. In case of real hypersurfaces of dimension greater than three the third case of Theorem 2.1 occurs
when ˛2 C c ¤ 0, since in this case relation � ¤ ˛

2
holds. Furthermore, the first of (4) and (7) for X D W and

X D 'W respectively implies

rW � D �'W and r'W � D ��W; (9)

lW D .
c

4
C ˛�/W and l'W D .

c

4
C ˛�/'W: (10)

Remark 2.3. In case of three dimensional Hopf hypersurfaces we can always consider a local orthonormal basis
fW;'W; �g at some point P 2M such that AW D �W and A'W D �'W . So relations (8), (9) and (10) hold.

Finally, the following Theorem plays an important role in the study of real hypersurfaces in Mn.c/, which is due
to Okumura in case of CP n (see [10]) and to Montiel and Romero in case of CHn (see [8]). It provides the
classification of real hypersurfaces in Mn.c/, n � 2, whose shape operator commutes with the structure tensor field
'.

Theorem 2.4. Let M be a real hypersurface of Mn.c/, n � 2. Then A' D 'A, if and only if M is locally congruent
to a homogeneous real hypersurface of type (A). More precisely:
In case of CP n

.A1/ a geodesic hypersphere of radius r , where 0 < r < �
2

,
.A2/ a tube of radius r over a totally geodesic CP k ,.1 � k � n � 2/, where 0 < r < �

2
:

In case of CHn

.A0/ a horosphere in CHn, i.e a Montiel tube,

.A1/ a geodesic hypersphere or a tube over a totally geodesic complex hyperbolic hyperplane CHn�1,

.A2/ a tube over a totally geodesic CHk .1 � k � n � 2/.
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2.1 Auxilary facts about three dimensional real hypersurfaces in complex space
forms

Let M be a non-Hopf hypersurface in M2.c/ and fU; 'U; �g be a local orthonormal basis at some point P of M .
Then the following Lemma holds

Lemma 2.5. Let M be a non-Hopf real hypersurface in M2.c/. The following relations hold on M

AU D 
U C ı'U C ˇ�; A'U D ıU C �'U; A� D ˛� C ˇU; (11)

rU � D �ıU C 
'U; r'U � D ��U C ı'U; r�� D ˇ'U;

rUU D �1'U C ı�; r'UU D �2'U C ��; r�U D �3'U;

rU'U D ��1U � 
�; r'U'U D ��2U � ı�; r�'U D ��3U � ˇ�;

where ˛, ˇ, 
; ı; �; �1; �2; �3 are smooth functions on M and ˇ ¤ 0.

Remark 2.6. The proof of Lemma 2.5 is included in [11].

The structure Jacobi operator for X D U , X D 'U and X D � , due to (11), implies

lU D .
c

4
C ˛
 � ˇ2/U C ˛ı'U; l'U D ˛ıU C .

c

4
C ˛�/'U and l� D 0: (12)

The Codazzi equation (6) for X 2 fU; 'U g and Y D � because of Lemma 2.5 implies the following relations

Uˇ � �
 D ˛ı � 2ı�3; (13)

�ı D ˛
 C ˇ�1 C ı
2
C ��3 C

c

4
� 
� � 
�3 � ˇ

2; (14)

U˛ � �ˇ D �3ˇı; (15)

�� D ˛ı C ˇ�2 � 2ı�3; (16)

.'U /˛ D ˛ˇ C ˇ�3 � 3ˇ�; (17)

.'U /ˇ D ˛
 C ˇ�1 C 2ı
2
C
c

2
� 2
�C ˛�; (18)

and for X D U and Y D 'U

Uı � .'U /
 D ��1 � �1
 � ˇ
 � 2ı�2 � 2ˇ�; (19)

U� � .'U /ı D 
�2 C ˇı � �2� � 2ı�1: (20)

Furthermore, combination of the Gauss equation (5) with the formula of Riemannian curvature R.X; Y /Z D
rXrYZ � rYrXZ � rŒX;Y �Z, taking into account relations of Lemma 2.5 implies

U�2 � .'U /�1 D 2ı2 � 2
� � �21 � 
�3 � �
2
2 � ��3 � c: (21)

3 Proof of Theorems 1.1 and 1.2

3.1 Three dimensional real hypersurfaces in M2.c/

Let M be a three-dimensional real hypersurface in M2.c/ whose k-th Cho operator associated to � commutes with
the structure Jacobi operator, i.e.

F
.k/

�
lY D lF

.k/

�
Y;

for any Y 2 TM . The above relation due to (2) for X D � implies

k'lY D ˇg.'U; lY /� C ˇ�.Y /l'U C kl'Y: (22)
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Let N be the open subset of M such that

N D fP 2 M W ˇ ¤ 0 in a neighborhood of P g:

On N relation (22) for Y D � taking into account the third of (12) implies l'U D 0 and because of the latter relation
(22) for Y D 'U yields lU D 0. So on N relations l� D lU D l'U D 0 hold, i.e. l D 0 and due to Proposition 8
in [4] we conclude that N is empty. Thus, the following Proposition is proved:

Proposition 3.1. Every real hypersurface in M2.c/ whose structure Jacobi operator satisfies relation (22) is Hopf.

Because of the above Proposition relation of Theorem 2.1 and Remarks 2.2 and 2.3 hold.
Relation (22) for Y D W due to (10) results in

˛.� � �/ D 0:

Thus, locally either ˛ D 0 or � D �. If ˛ D 0 in case of CP 2 we have two cases:

1) if � ¤ � then M is locally congruent to a non-homegeneous real hypersurface considered as a tube of radius
r D �

4
over a holomorphic curve,

2) if � D � then M is locally congruent to a geodesic hypersphere of radius r D �
4

.

In case of CH2 if ˛ D 0 M is a Hopf hypersurface with A� D 0 (for the construction of such real hypersurfaces
see [5]).

If ˛ ¤ 0 then � D � and this implies
.A' � 'A/X D 0

for any X tangent to M. So due to Theorem 2.4 M is locally congruent to a real hypersurface of type (A) and this
completes the proof of Theorem 1.1.

3.2 Real hypersurfaces in CH n; n � 3

First we provide the following Proposition which holds for non-Hopf hypersurfaces in Mn.c/, n � 3.

Proposition 3.2. There do not exist real hypersurfaces M in Mn.c/, n � 3, whose shape operator is given by

AU D .
ˇ2

˛
�
c

4˛
/U C ˇ�; A'U D �

c

4˛
'U and A� D ˛� C ˇU;

if r�U D �3'U , where �3 D g.r�U; 'U / and ˛, ˇ are non-vanishing functions on M.

Proof. The inner product of Codazzi equation, because of the relation for the shape operator yields:

ˇ2�3

˛
D ˇ�1 C

c

4˛
.
ˇ2

˛
�
c

4˛
/; for X D U and Y D � with 'U ; (23)

.'U /ˇ D ˇ2 C ˇ�1 C
c

2˛
.
ˇ2

˛
�
c

4˛
/; for X D 'U and Y D � with U due to (23); (24)

.'U /˛ D ˇ.˛ C �3 C
3c

4˛
/; for X D 'U and Y D � with �; (25)

�˛ D
4˛2ˇ�2

c
; for X D 'U and Y D � with 'U ; (26)

.'U /.
ˇ2

˛
�
c

4˛
/ D ˇ.

ˇ2

˛
C
ˇ�1

˛
�
3c

4˛
/; for X D U and Y D 'U with U ; (27)
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U˛ D
4˛ˇ2�2

c
; for X D U and Y D 'U with 'U ; (28)

U˛ D �ˇ D
4˛ˇ2�2

c
; for X D U and Y D � with � due to (28); (29)

Uˇ D ˇ�2.
4ˇ2

c
C 1/; for X D U and Y D � with U due to (26) and (29); (30)

where �1 D g.rUU; 'U /, �2 D g.r'UU; 'U / and �3 D g.r�U; 'U /.
Relation (27), because of (23), (25) and (24), yields:

�3 D �4˛; (31)

and so relation (23) becomes:

ˇ�1 D
c

4˛
.
c

4˛
�
ˇ2

˛
/ � 4ˇ2: (32)

The Riemannian curvature on M satisfies relation (5) and on the other hand is given by R.X; Y /Z D rXrYZ �
rYrXZ � rŒX;Y �Z. The combination and the inner product of these two relations for X D Z D U , Y D � with
'U and X D �, Y D 'U , Z D U with 'U , owing to r�.'U / D .r�'/U C 'r�U and the second of (4) implies
respectively:

U�3 � ��1 D �2.
ˇ2

˛
�
c

4˛
� �3/; (33)

.'U /�3 � ��2 D �1.�3 C
c

4˛
/C ˇ.�3 �

c

2˛
/: (34)

Differentiating (31) and (32) with respect to U and � respectively and substituting in (33) and due to (29), (26) and
(31) we obtain:

�2.c � 2ˇ
2
� 4˛2/ D 0: (35)

Owing to (35), suppose that �2 ¤ 0 then 2ˇ2 C 4˛2 D c. Differentiation of the last relation along � and taking into
account (29), (26) and 2ˇ2 C 4˛2 D c yields �2 D 0, which is a contradiction.

Thus, �2 D 0 and relations (30), (29) and (26) become:

U˛ D Uˇ D �˛ D �ˇ D 0:

Using the above relations and (31) we obtain:

ŒU; ��˛ D U.�˛/ � �.U˛/ D 0;

ŒU; ��˛ D .rU � � r�U/˛ D
1

4˛
.4ˇ2 C 16˛2 � c/.'U /˛:

Combining the last two relations we have:

.4ˇ2 C 16˛2 � c/.'U /˛ D 0:

Suppose that .'U /˛ ¤ 0 then the above relation implies 16˛2 C 4ˇ2 D c. Differentiating the last relation with
respect to 'U and taking into account (25), (24), (31), (32) and c D 16˛2 C 4ˇ2, implies: ˛2 D 0, which is
impossible.

So .'U /˛ D 0. Then, relations (25), (31) and (32) imply: c D 4˛2 and ˇ�1 D ˛2 � 5ˇ2. On the other
hand from relation (34), because of (31), we obtain: �1 D �2ˇ. Substitution of �1 in ˇ�1 D ˛2 � 5ˇ2 yields:
3ˇ2 D ˛2. Taking the covariant derivative along 'U of 3ˇ2 D ˛2, because of (24), we conclude: ˇ D 0 which is a
contradiction and this completes the proof of the present Proposition.
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Let M be a real hypersurface in CHn, n � 3, whose structure Jacobi operator commutes with the k-th Cho operator
associated to �. In this case relation (22) also holds. In CHn relation c D �4 holds.

Let N be the open subset of M such that

N D fP 2 M W ˇ ¤ 0 in a neighborhood of P g:

Following similar steps to those in case of three dimensional real hypersurfaces and taking into account relation (7)
for X D U and X D 'U we obtain lU D l'U D 0. If ˛ ¤ 0 the latter implies

AU D .
ˇ2 C 1

˛
/U C ˇ� and A'U D

1

˛
'U:

The above relation leads to the conclusion that DU , which is the orthogonal complement to spanfU; 'U; �g, is
A-invariant.

Let Z 2 DU such that AZ D tZ then relation (22) for Y D Z implies 'lZ D l'Z. The last one because of
relation (7) yields ˛.'A � A'/Z D 0 and this results in 'AZ D A'Z. Since AZ D tZ we obtain A'Z D t'Z,
for anyZ 2 DU . The inner product of Codazzi equation for anyX D Z 2 DU and Y D � with U and � respectively
implies

.
ˇ2 C 1

˛
� t /g.r�U;Z/ D 0 and Z˛ D ˇg.r�U;Z/:

Suppose that t1 D g.r�U;Z/ ¤ 0 then the above relation implies t D ˇ2C1
˛

. The inner product of the Codazzi
equation for X D � and Y D U with Z yields g.rUU;Z/ D g.rUZ;U / D 0. Furthermore, the inner product of
Codazzi equation for X D U and Y D Z with � and U because of the latter yields

Zˇ D 0 and Z.
ˇ2 C 1

˛
/ D 0:

The last relation taking into account relations of Zˇ and Z˛ results in t1 D 0, which is a contradiction. Therefore,
we have that g.r�U;Z/ D 0 and that r�U D �3'U .

Due to Proposition 3.2 we conclude that on N relation ˛ D 0 holds. Relation (7) for X D 'U implies l'U D
�'U . On the other hand relation (22) for Y D � results in l'U D 0. Combination of the last two relations leads to
a contradiction. Thus, N is empty and the following Proposition is proved:

Proposition 3.3. Every real hypersurface in CHn, n � 3, whose structure Jacobi operator satisfies relation (22),
is Hopf.

Since M is a Hopf hypersurface we consider two cases
Case I: ˛2 � 4 ¤ 0.
In this case relations of Theorem 2.1 and remark 2.2 hold. Following similar steps to those of the case of three
dimensional real hypersurfaces we obtain

˛.� � �/ D 0:

So we have A'X D 'AX and Theorem 2.4 holds.
Case II: ˛2 � 4 D 0.
Suppose that � ¤ 1 then A'W D �'W and (8) results in � D 1. Following similar steps as in the previous case we
lead to a contradiction.

Therefore, � D 1 is the only eigenvalue for all vector fields in D and M is locally congruent to a horosphere and
this completes the proof of Theorem 1.2.

Remark 3.4. For real hypersurfaces in CHn of dimension greater than three it is known that none of real
hypersurfaces of type (A) satisfy ˛ D 0, but the authors do not know if there exist Hopf hypersurfaces with
vanishing ˛.
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4 Proof of Theorem 1.3

Let M be a three-dimensional real hypersurface in M2.c/ whose k-th Cho operator associated to any vector X 2 D
commutes with the structure Jacobi operator, i.e.

FX lY D lFXY;

for any Y 2 TM . The above relation due to (2) for X 2 D implies

g.'AX; lY /� D ��.Y /l'AX: (36)

Suppose M is a Hopf hypersurface then Theorem 2.1 and remarks 2.2 and 2.3 hold.
Relation (36) for Y D � implies

l'AX D 0; for X 2 D: (37)

Relation (37) for X D W and X D 'W because of (10) yields respectively

�.
c

4
C ˛�/ D 0 and �.

c

4
C ˛�/ D 0:

Combination of the above two relations implies that � D � and so A'X D 'AX , for any X 2 TM . Thus, because
of Theorem 2.4 M is locally congruent to a real hypersurface of type (A). Furthermore, the above relation results in

�.
c

4˛
C ˛�/ D 0:

Therefore, locally either relation � D 0 or relation � D � c
4˛

holds. Substitution of the previous values in (8) and
taking into account � D � leads to a contradiction. Therefore, we conclude:

Proposition 4.1. There do not exist Hopf hypersurfaces in M2.c/ whose Cho operator corresponding to any X 2 D
commutes with the structure Jacobi operator.

Next we examine non-Hopf hypersurfaces. Let fU; 'U; �g be a local orthonormal basis at some point P 2 M. The
shape operator with respect to this basis is given by (11).

Relation (36) for Y D � implies

l'AX D 0; for X 2 D: (38)

The inner product of relation (38) for X D 'U with U due to (11) and (12) yields

˛ı D 0 and �.
c

4
C ˛
 � ˇ2/ D 0:

Suppose that � ¤ 0 then the latter implies that c
4
C ˛
 � ˇ2 D 0 and the first of (12) results in lU D 0. Relation

(38) for X D U implies 
.c
4
C ˛�/ D 0. If 
 ¤ 0 the last relastion results in c

4
C ˛� D 0 and the second of (12)

leads to l'U D 0. So the structure Jacobi operator vanishes identically and because of Proposition 8 in [4] we obtain
a contradiction. Therefore, 
 D 0 and ˇ2 D c

4
. Differentiation of the latter with respect to 'U implies .'U /ˇ D 0

and relation (18) implies

ˇ�1 C
c

2
C ˛� D 0: (39)

Furthermore, differentiating 
 D 0 with respect to 'U and taking into account relation (19) yields

�1 D 2ˇ: (40)

Relations (13), (15) due to 
 D 0 and ˇ2 D c
4

implies

U˛ D Uˇ D �ˇ D �
 D 0:
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Differentiation of (39) with respect to U because of the above relation yields ˛.U�/ D 0. Suppose that U� ¤ 0 then
the latter implies ˛ D 0 and relation (39) because of (40) and ˇ2 D c

4
results in c D 0, which is a contradiction. So

U� D 0 and relation (20) results in �2 D 0.
Concluding we have the following

ˇ2 D
c

4
; �1 D 2ˇ; 
 D �2 D 0 and � ¤ 0:

Relation (14), taking into account all the above relations, yields ��3C c
2
D 0. Relation (21), taking into account all

the previous relations, implies that c D 0, which is a contradiction.
So, on M relation � D 0 holds and relation (38) for X D U implies 
 D 0. Therefore, the shape operator

becomes
A� D ˛� C ˇU; AU D ˇ�; A'U D 0:

So M is a ruled real hypesurface and this completes the proof of Theorem 1.3.

4.1 Real hypersurfaces in CH n; n � 3

Let M be a real hypersurface in CHn, n � 3, whose structure Jacobi operator commutes with the Cho operator
associated to any vector field X 2 D. In this case relation (36) and relation c D �4 hold.

Let M be a Hopf hypersurface. We consider the following two cases:
Case I: ˛2 � 4 ¤ 0.
In this case relations of Theorem 2.1 and remark 2.2 hold. Following similar steps to those in the proof of
Theorem 1.3 it is proved that there do not exist Hopf hypersurfaces in CHn; n � 3, whose structure Jacobi operator
commutes with Cho operator associated to X 2 D.
Case II: ˛2 � 4 D 0.
If � ¤ 1 then because of Theorem 2.1 we have A'W D �'W and relation (8) implies � D 1. Relation (36) for
Y D � yields l'AX D 0, for any X 2 D. The latter for X D W and for X D 'W respectively implies � D 0 and
� D 1

2
. Combination of the last two relations gives a contradiction.

Thus, � D 1 is the only eigenvalue for all vector fields X 2 D. In this case following similar steps to those of
the case of � ¤ 1 results in 1 D 0, which is impossible.

Therefore, the following Proposition is proved.

Proposition 4.2. There do not exist Hopf hypersurfaces in CHn; n � 3, whose structure Jacobi operator commutes
with Cho operator associated to any X 2 D.

Next, we examine non-Hopf hypersurface in CHn; n � 3, whose structure Jacobi operator commutes with Cho
operator associated to any X 2 D, i.e. relation (36) holds. Relation (36) for Y D � since l� D 0 yields l'AX D 0,
for any X 2 D. The latter due to relation (7) implies

� 'AX C ˛A'AX C ˛ˇg.A'U;X/� C ˇ2g.A'U;X/U D 0; for any X 2 D. (41)

The inner product of relation (41) for any X orthogonal to fU; �g results in

g.AX; 'X/ D 0:

The above relation for X D 'U implies g.AU; 'U / D g.A'U;U / D 0. Relation (41) for X D U due to the last
relation yields

'AU D ˛A'AU:

The inner product of relation (41) for any X 2 D with U because of the above relation results in

g..1C ˇ2/A'U � 'AU;X/ D 0:
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So the vector field .1 C ˇ2/A'U � 'AU has no component in D and since g..1 C ˇ2/A'U � 'AU; �/ D 0 we
conclude that

'AU D .1C ˇ2/A'U: (42)

Let DU be the orthogonal complement to spanfU; 'U; �g. The inner product of relation (36) for X 2 D with Y 2
DU implies g.A'Y � ˛A'AY;X/ D 0. So the vector field A'Y � ˛A'AY has no component on D and since
g.A'Y � ˛A'AY; �/ D ˛ˇg.A'U; Y /� we conclude that

A'Y � ˛A'AY D ˛ˇg.A'U; Y /�; (43)

for any Y 2 DU . Combination of relation (41) for Y 2 DU with above relation implies A'Y C ˇ2g.A'U; Y /U �
'AY D 0. The inner product of the latter with 'U taking into account relation (42) implies

.1C ˇ2/g.'A'U; Y / D 0;

for any Y 2 DU . The above relation for Y D 'Y results in g.A'U; Y / D 0. So A'U has no component in DU and
because of (42) AU also has no component in DU . The latter implies that DU is invariant by A. Furthemore, the
shape operator on U and 'U takes the form

AU D .ˇ2 C 1/�U C ˇ� and A'U D �'U:

Relation (41) for X D 'U because of the above yields

�.1 � ˛�/ D 0:

If .1 � ˛�/ ¤ 0 then � D 0 and A'U D 0 and AU D ˇ�. Consider a vector field Z 2 DU such that AZ D tZ.
Combination of relations (41) and (43) for X D Z results in A'Z D t'Z. Thus, relation (41) for X D Z yields
t .1 � t˛/ D 0.

If 1 � t˛ ¤ 0 then t D 0 and M is a ruled hypersurface.
If 1 � t˛ D 0 it is obvious that ˛ ¤ 0 and this results in t D 1

˛
. The inner product of Codazzi equation for

X D Z and Y D � with U and for X D � and Y D U with Z respectively implies

Zˇ D
1

˛
g.r�U;Z/ Zˇ D ˇg.rUZ;U /:

The inner product of Codazzi equation for X D U and Y D Z with � due to the above relations results in Zˇ D 0
and so g.r�U;Z/ D 0. The latter implies r�U has only component on 'U . The inner product of Codazzi equation
for X D U and Y D 'U with U implies g.rU'U;U / D 0. So the inner product of Codazzi equation for X D U
and Y D � with 'U results in ˇ2 C 1 D 0, which is contradiction.

So the remaining case is that of � D 1
˛

. The shape operator in this case has the form

AU D
1C ˇ2

˛
U C ˇ� A'U D

1

˛
'U:

In this case we also have that DU is A-invariant and '-invariant. So if AZ D tZ then A'Z D t'Z. Following
similar steps as in the proof of Theorem 1.2 we conclude that the struture Jacobi operator of such real hypersurfaces
does not commute with the Cho operator associated to any X 2 D and this completes the proof of Theorem 1.4.
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