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Chapter 1

Introduction to the PhD Thesis

1.1 Introduction

Recent advances in computing and communication technologies boosted the bandwidth expansion
and the processing capabilities of personal computers and battery-powered terminals. These ad-
vances naturally yield a rapid growth of multimedia applications. In particular, video streaming
(e.g. mobile TV, video-calling, etc.) and image transmission comprise nowadays by far the largest
fraction of all the consumer traffic [1]. Thus, achieving high quality of service (QoS) for these
signals is of utmost importance and it is a challenging task since multimedia streams are usually
transmitted over error-prone channels such as the internet.

The majority of multimedia applications relies on state-of-the-art video codecs, such as H.264/
AVC (Advanced Video Coding) or H.265/HEVC (High Efficiency Video Coding). Among the
popular applications, we can mention video conferencing (e.g. Skype), video streaming services
(Youtube, Vimeo, iTunes Store) or Bluray discs. In addition, high-definition television broadcasts
over cable (DVB-C), satellite (DVB-S), handheld (DVB-H) and terrestrial (DVB-T) are also based
on this type of codec [2]. These codecs are block-based and, in general terms, split the image/video
signals into so called macroblocks which are coded using inter or intra prediction. Macroblocks
within a frame can be split into several slices [3, 4]. A slice forms the payload of a network
abstraction layer unit (NALU), which is a data sequence that can be decoded independently [5].
The loss of a NALU will therefore not affect other macroblocks within the current frame. However,
due to temporal interframe prediction, error propagation may occur.

In many common multimedia applications the retransmission of the lost data is not possible due
to real-time constraints (video-calling, sport events retransmissions, etc.) or lack of bandwidth.
Although the aforementioned standards include several error resilience tools, such as arbitrary slice
ordering (ASO) or flexible macroblock ordering (FMO) [6], error concealment (EC) techniques are
required and even mandatory when packet losses occur. EC algorithms try to recover the lost
signal at the decoder and without intervention of the encoder. In order to do this, these algorithms
reconstruct the signal from correctly received data and other available information. EC algorithms
can be classified into two categories:

1. Spatial EC (SEC) that relies on the information provided only by the current frame. It
mainly involves surrounding pixels that have been received and correctly decoded.

2. Temporal EC (TEC) which utilizes temporal information such as motion vectors and previous
or already available future frames.
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TEC usually provides higher performance since temporal correlations in video signals tend to
be higher than spatial ones. However, utilizing temporal information for the recovery of intracoded
frames is not always possible, since these are inserted mainly to reset the prediction error when
a change of scenes occurs. Thus, when the temporal information is unreliable or not available
at all, SEC techniques are employed. Note that the intracoded frames (or I-frames) serve as
prediction templates for intercoded frames. Thus, high quality reconstruction is desirable since
any reconstruction error will be propagated until the next I-frame arrives and resets the prediction
error.

Moreover, it is worth mentioning that SEC can be as well adapted to various image enhance-
ment applications, such as inpainting, object removal, superresolution or texture diffusion.

EC techniques are of utmost importance for mobile video-streaming (especially video-calling)
since video streams are in general highly compressed which favours error propagation. Applying
accurate EC algorithms to real-time video applications will greatly improve the visual quality,
especially during the hours of highly occupied bandwidth.

In this thesis we have studied the possibility of improving the reconstruction quality provided
by the state-of-the-art techniques. We have designed and implemented several reconstruction
algorithms applying different points of view. We have focused our attention on four main issues:

1. EC techniques based on spatial interpolation. These methods, in general, involve some
type of edge detection and multiple interpolations can be combined in order to obtain the
final reconstruction.

2. Algorithms that pursue the reconstruction by gathering data statistics from known sur-
rounding samples.

3. EC techniques carried out in a transformed domain. These techniques generally involve
an initial coarse estimation which is then iteratively refined.

4. High reconstruction quality is obtained if the missing region is divided into smaller areas
and reconstructed sequentially. In such a case, the filling order is of utmost importance
since error propagation is involved.

An exhaustive comparison with state-of-the-art algorithms is provided in order to asses the
quality of our techniques. In the simulations, we have considered different loss scenarios and
tested the performance over a large variety of images and video sequences. In fact, comparisons
so extensive are rare in other work on EC. We present quality evaluations with different error
patterns applied and values for each image as well as the overall average are also provided. In
order to measure the reconstruction quality, the classical peak signal-to-noise ratio (PSNR) is
utilized. Moreover, in order to better take into account the perceptual quality, the multiscale
structural similarity (MS-SSIM) index is employed [7]. The MS-SSIM index consists in measuring
the SSIM index for different image resolutions (obtained by low-pass filtering and subsampling).
The SSIM index aims at approximating the human visual system (HVS) response by looking for
similarities in luminance, contrast and structure [8]. It is worth mentioning that MS-SSIM is one
of the metrics most highly correlated with subjective scores [9].

This memory is divided in three chapters and is organized as follows. In Chapter 1, after this
introductory part, an overview of the four main research topics treated in this work is provided
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in the next subsections (1.1.1-1.1.4). In Section 1.2 we address the open problems and describe
the starting hypotheses that justify the elaboration of this work. The objectives of this thesis are
detailed in Section 1.3. In Section 1.4, the proposed techniques are briefly summarized. Chapter
2 consists of the publications that deal with the proposed objectives. The last Chapter is devoted
to conclusions and it outlines some important aspects to be taken into account in the future work.

Introducción

Los avances recientes en las tecnoloǵıas de la comunicación y la computación han propiciado la
expansión del ancho de banda y las capacidades de procesamiento de ordenadores, tabletas y
smartphones. Estos avances han supuesto un rápido crecimiento de las aplicaciones multimedia.
En concreto, el streaming de v́ıdeo (televisión móvil, videoconferencias, etc.) y la transmisión
de imágenes constituyen hoy en d́ıa la mayor parte del tráfico de datos [1]. Como consecuencia,
conseguir una alta calidad de servicio es de vital importancia puesto que las señales multimedia
se suelen transmitir por redes no fiables como Internet.

La mayoŕıa de las aplicaciones multimedia se basa en los codecs más avanzados, como el
H.264/ AVC (Advanced Video Coding) o el H.265/HEVC (High Efficiency Video Coding). Entre
las aplicaciones más populares, mencionar la videoconferencia (por ejemplo Skype), los servicios
de streaming de v́ıdeo (por ejemplo Youtube, Vimeo, iTunes Store) o los discos Bluray. Además,
los sistemas de transmisión de televisión de alta definición por cable (DVB-C), satélite (DVB-S),
móvil (DVB-H) y terrestre (DVB-T) también hacen uso de este tipo de codecs [2]. Estos codecs
emplean la codificación por bloques. En términos generales, las imágenes/v́ıdeo se descomponen en
los llamados macrobloques que se codifican utilizando inter- ó intrapredicción. Los macrobloques
de una trama se pueden agrupar en varios slices [3, 4]. Un slice forma el datagrama de la llamada
NALU (Network Abstraction Layer Unit), que es una secuencia de datos que se puede decodificar
de forma independiente [5]. Aśı, la pérdida de una NALU no afectará a otros macrobloques de la
misma trama. No obstante, debido a la predicción temporal (entre tramas), la propagación del
error es posible.

En muchas aplicaciones multimedia comunes la retransmisión de los datos perdidos no es
posible debido a las restricciones de tiempo real (videollamadas, retransmisiones deportivas, etc.)
o la falta de ancho de banda. Aunque los estándares, mencionados anteriormente, incluyen varias
herramientas de protección frente a errores como ASO (Arbitrary Slice Ordering) ó FMO (Flexible
Macroblock Ordering) [6], cuando se pierde un paquete es necesario emplear técnicas de mitigación
de errores o EC (en inglés: error concealment). Los algoritmos EC taratan de recuperar la señal
perdida utilizando los datos disponibles y se aplican en el decodificador, sin la intervención del
codificador. Los algoritmos EC se pueden clasificar en dos categoŕıas:

1. Técnicas EC espaciales (SEC, de Spatial EC ) que se basan en la información contenida
exclusivamente en el frame actual, es decir, en los ṕıxeles adyacentes que se han recibido y
decodificado correctamente.

2. Técnicas EC temporales (TEC, de Temporal EC ) que hacen uso de la información temporal
como los vectores de movimiento o las tramas pasadas y/o futuras.

TEC normalmente ofrece un mejor rendimiento puesto que las correlaciones temporales tien-
den a ser más fuertes que las espaciales. No obstante, utilizar la información temporal para la
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reconstrucción de tramas intracodificadas no siempre es posible, dado que este tipo de tramas
se inserta sobre todo para reiniciar el error de predicción cuando ocurren cambios de escenas.
Como consecuencia, cuando la información temporal no es fiable o ni siquiera está disponible, se
aplican las técnicas SEC. También notar que las tramas intracodificadas sirven como plantillas
de predicción para las tramas intercodificadas. Por lo tanto, es deseable obtener reconstrucciones
de alta calidad ya que los errores se propagarán hasta que una nueva trama intracodificada los
reinicie.

Además, mencionemos que SEC puede adaptarse también a diferentes aplicaciones de realce
de imágenes tales como inpainting, eliminación de objetos, superresolución o difusión de texturas.

Las técnicas EC son de importancia vital para videollamadas móviles ya que los flujos de datos
están fuertemente comprimidos lo cual favorece la propagación de errores. Emplear técnicas EC
de alta calidad para las aplicaciones de v́ıdeo en tiempo real supone una gran mejora en cuanto a
la calidad visual, especialmente durante las horas de alto uso del ancho de banda.

En esta tesis hemos estudiado la posibilidad de mejorar la calidad de reconstrucción de los algo-
ritmos EC del estado de arte. Hemos diseñado e implementado varios algoritmos de reconstrucción
aplicando diferentes puntos de vista. Nos hemos centrado en los siguientes cuatro aspectos:

1. Técnicas EC basadas en interpolación espacial. Estos métodos, en general, incluyen algún
tipo de detección de fronteras y es posible combinar múltiples interpolaciones para obtener
la reconstrucción final.

2. Algoritmos que consiguen la reconstrucción extrayendo la estad́ıstica a partir de las mues-
tras adyacentes que son conocidas.

3. Técnicas EC llevadas a cabo en el dominio transformado. Estas técnicas, en general,
parten de una estimación inicial de poca resolución que se refina iterativamente.

4. Reconstrucciones de alta calidad se pueden obtener si la región perdida se divide en áreas
más pequeñas y se reconstruye secuencialmente. En este caso, el orden de relleno es muy
importante puesto que tiene mucha influencia sobre la propagación de errores.

Se ha realizado una comparación exhaustiva con los algoritmos del estado de arte para poder
evaluar la calidad de nuestras técnicas. En las simulaciones hemos asumido diferentes escenarios
de pérdidas y hemos medido el rendimiento utilizando una gran variedad de imágenes y secuencias
de v́ıdeo. De hecho, unas comparaciones tan extensivas son escasas en otros trabajos. Se presentan
evaluaciones de calidad utilizando diferentes patrones de error y se proporcionan valores para cada
imagen aśı como el valor promedio. Para medir la calidad de reconstrucción, empleamos la medida
clásica de PSNR (peak signal-to-noise ratio). Además, para tener en cuenta también la calidad
perceptual, se emplea el ı́ndice MS-SSIM (multiscale structural similarity index ) [7]. El ı́ndice MS-
SSIM consiste en medir el ı́ndice SSIM para una imagen utilizando distintas resoluciones espaciales
(obtenidas mediante un filtrado paso-baja y submuestreo). El ı́ndice SSIM trata de aproximar la
respuesta del sistema visual humano mediante la búsqueda de similitudes en luminancia, constraste
y estructura [8]. Cabe mencionar que MS-SSIM es una de las medidas más correladas con la
evaluación sujetiva [9].

Esta memoria se divide en tres caṕıtulos y se estructura de la siguiente forma. En el Caṕıtulo 1,
después de esta parte introductoria, se ofrece una descripción general de los cuatro aspectos men-
cionados anteriormente (subsecciones 1.1.1-1.1.4). En la Sección 1.2 identificamos los problemas
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abiertos y describimos las hipótesis de partida que justifican la elaboración de este trabajo. Los
objetivos de esta tesis se detallan en la Sección 1.3. Un breve resumen de las técnicas propuestas
se halla en la Sección 1.4. El caṕıtulo 2 consiste en las publicaciones que tratan de los objetivos
propuestos. El último Caṕıtulo está dedicado a conclusiones donde además se esbozan algunos
aspectos importantes a tener en cuenta en el futuro.

1.1.1 Interpolation based EC

Various EC techniques have been already proposed for block-coded video/images. Many of them
are based on some type of pixel interpolation, trying to exploit the correlations between adjacent
pixels. In [10], a simple spatial interpolation is used. This technique aims at reconstructing
each lost pixel by spatial interpolation from the four nearest undamaged pixels. This approach
yields only moderate reconstruction quality but due to its computational inexpensiveness it is
used as part of the non-normative error concealment algorithm set for H.264/AVC [11]. However,
modern terminals are powerful enough to deal with much more complex EC algorithms without any
significant time delay or surcharge in hardware usage that could excessively drain their batteries.

Since high frequencies, such as edges, are visually more relevant than uniform textures [12],
more advanced interpolation techniques have been proposed exploiting directional features in the
neighbourhood of the missing area. The authors in [13] combined the edge recovery and selective
directional interpolation in order to achieve more visually pleasing reconstructions. However, the
edge detection is quite inaccurate yielding errors when more complex edge structures (e.g. with
a noisy background) are involved. A more robust edge detection based on a voting mechanism
was proposed in [14]. A directional interpolation approach is applied here if there are only a few
edges crossing the missing macroblock and a best-match approach is applied if the macroblock is
decided to contain fine texture. For this algorithm, and in general for all switching EC techniques,
a correct classification is crucial since an erroneous decision on the macroblock behaviour could
have a very negative effect on the final reconstruction [15, 16]. In addition, trying to match the
entire macroblock may generate artificial edges (the so called blocking). In [17], spatial direction
vectors are introduced to obtain more accurate edge directions.

In order to determine which edges and under which angle enter the missing area, it is con-
venient to examine not only the pixels directly adjacent to the corrupt region but also a wider
neighbourhood. Such an approach is treated in [18]. Sobel’s operator along with an adaptive
thresholding is applied in order to retain only significant edges. A weighted directional interpo-
lation is applied afterwards. In [19], the Hough transform, a powerful tool for edge description,
was used to set the angle for the directional interpolation. However, the performance drops when
multiple edges need to be connected. A more robust approach is proposed in [20] permitting to
connect several edges. This technique is highly adapted to consecutive block losses so it may suffer
from a lack of generality.

A pixel-wise sequential recovery based on Wiener filtering was proposed in [21]. The error
propagation is alleviated by a linear interpolation strategy. Another pixel-wise technique, that,
after determining the direction of the edge which traverses the pixel to be recovered, extrapolates
the missing pixel along the corresponding direction was introduced in [22]. However, as we will
show later, pixel by pixel recovery suffers from smoothing high frequency textures.
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1.1.2 Statistically driven EC

Interpolation based techniques are, in general, highly efficient. Problems occur when more complex
edges and fine textures are involved. Although edges and borders are visually very important, there
are other visual features that require more sophisticated description. In such cases, statistical
driven approaches, that consider the correlation among pixels, are more suitable. The modelling
of natural images as Markov random fields for EC was treated in [23]. This scheme produces
relatively small squared reconstruction errors at the expense of an oversmoothed (i.e. blurred)
reconstruction. The frames can be successfully modelled as AR processes, as in [24]. This work,
however, assumes that (small) groups of macroblocks can be modelled using the same AR process
which for low resolution videos or complex scenes may be inaccurate.

Bilateral filtering, exploiting a pair of Gaussian kernels, is treated in [25]. One kernel is em-
ployed to measure the similarity between the lost macroblock and the available surrounding area
(range distance filter) and the other one is applied to take into account their spatial separation (do-
main distance filter). It has been shown that penalizing the spatial distance may be deteriorative
[26] since the key issue is the selection of the appropriate variance for the kernels.

A patch-wise reconstruction technique based on sparse representation is treated in [27]. This
algorithm, based on boundary matching, applies a fixed `0-norm sparsity level and the entries
of the resulting sparse dictionary are combined using fixed weights. An improved sparsity based
scheme is proposed in [28]. Here, a computationally expensive double optimization approach is
involved.

Estimating a probability density function (pdf) from a given data set can also provide inter-
esting results. High performance is achieved by reconstructing the unknown samples by minimum
mean square error (MMSE) estimation [29]. The MMSE criterion can also be applied to reduce
the error propagation while decoding a corrupt video sequence [30]. In [31], a Gaussian mix-
ture model (GMM) is obtained from spatial and temporal surrounding information. This model,
however, requires an extensive offline training. A computationally lighter version is described in
[32].

1.1.3 EC in transformed domains

These techniques aim at recovering the missing samples by taking advantage of the fact that
the transform basis are well suited for modelling visual features. Usually, the missing region
and the surrounding available samples comprise the reconstruction area. Since the most popular
transforms in image/video communication (DCT, Fourier, etc.) are block-based, recovering the
reconstruction area will naturally yield the reconstruction of unknown samples.

An iterative technique for restoring the damaged areas, based on the method of projections
onto convex sets, is developed in [33]. It tries to preserve borders, applying constraints on edge
continuity and smoothness. It is a switching algorithm that depends on edge detection. An EC
algorithm based on DCT coefficients recovery is presented in [34]. Smoothness constraint on image
intensity is assumed. Another DCT based method is treated in [35]. The basic assumption is that,
if the set of pixels consisting of the missing block and its border pixels is transformed by DCT,
the high frequency coefficients obtained can be set to zero. Thus, a system of linear equations
can be used to solve this problem although the final reconstruction may lack in important high
frequency details.
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A multiscale estimation approach with a DCT pyramid is treated in [36]. The missing blocks
are recovered from low to high frequencies, starting from a low resolution image (low scale) and
refining the details in later approximations. During the reconstruction, Gaussian weights with
fixed bandwidth are used, regardless of the input data.

An alternative approach to image EC is the frequency selective extrapolation (FSE) proposed
in [37]. In particular, the complex-valued FSE implementation [38] can provide high quality
reconstructions with a low computational burden. This technique develops a signal model from
the set of Fourier basis functions which can be used to replace the unknown samples. An improved
version that deals with the orthogonality deficiency among windowed basis functions is described
in [39]. In [40], a simplified and computationally much lighter version is presented.

1.1.4 Filling order

Previous work on image recovery has shown that applying sequential recovery yields better re-
construction quality [41, 42, 43]. The lost region is divided into smaller blocks that are estimated
one by one following a certain order. The estimation, in turn, also relies on pixels that have been
already reconstructed. In general, the filling order is crucial [42] since errors can be propagated
throughout the lost area. Several filling orders have been proposed in the literature. Raster scan
or concentric layer filling use a fixed filling order. An adaptive filling order based on external
boundary matching criterion is treated in [44]. The method in [41] is based on the amount of the
correctly received pixels around the missing block. The more pixels there are, the higher is the
block priority. Although this recursive concealment performs considerably better than a single step
recovery, it does not distinguish between correctly received pixels and already extrapolated pixels.
This issue is dealt with in [42] by introducing a confidence parameter. This technique, however,
is based on isophotes and therefore prioritizes linear structures which may lead to considerable
error propagation. In [43], the confidence term is combined with a parameter based on fractional
derivative. This approach prioritizes strong edges which serves well for inpainting purposes but
may not be convenient for EC tasks. In fact, it is worth noticing that the majority of the work on
filling order is related to inpainting and the reconstruction error is neglected.

1.2 Starting hypotheses

In this section, we outline the main drawbacks of the different approaches treated in Section 1.1
and identify some related issues which deserve a more in-depth research.

• Interpolation based EC: The most sophisticated interpolators extract visual features from
the available surrounding area in order to find the right angle for the directional interpo-
lation. In addition, interpolations can be combined in order to avoid artefacts. However,
interpolation techniques that can be found in the literature perform rather modestly when
dealing with more complex edge structures and textures. In order to improve the recon-
struction quality, the following issues should be addressed:

◦ Edges that enter the missing area need to be precisely described. In order to do so,
a robust and accurate edge detection is crucial. Voting mechanisms based on Sobel’s
operator are inaccurate and highly affected by noise while Canny’s edge detector may
mask relevant edges due to the application of hysteresis.
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◦ In addition, not all the edges that enter the corrupt macroblock are equally relevant.
The (visually) clearer the edge, the more it should affect the final reconstruction.

• Statistically driven EC: These techniques aim at extracting signal statistics from the
available samples. In order to do so, several approaches are possible:

◦ Multimedia signals can be well modelled using a sparse representation from a dictio-
nary of prototypes. The problem formulation and the sparsity level are the key issues
here. Moreover, although there are efficient algorithms to solve problems with sparsity
constraints, the processing time is still too high for real-time applications given the
multidimensionality of image/video signals.

◦ For many EC techniques the estimation of a pdf from a given data set is the key issue.
Kernel density estimation (KDE) techniques, in general, can capture local statistics
more suitably than the GMM-based MMSE estimator. Nevertheless, a critical issue
related to KDE is the estimation of a suitable kernel bandwidth. In spite of the extensive
bibliography on bandwidth estimation, none of the techniques is oriented to multimedia
signal reconstruction.

• EC in a transformed domain: These techniques develop a signal model from the set of
basis functions (DCT, Fourier, etc.) which can be used to replace the unknown pixels.

◦ The state-of-the-art algorithms do not take into account the low-pass behaviour of
natural images. This leads to overfitting which can negatively affect the reconstruction
quality.

• In addition, sequential reconstruction, if applicable, provides better results than a single step
recovery. In this situation, the order in which the lost region is recursively filled will clearly
condition the resulting reconstruction. The majority of the work on filling order is related
to inpainting and the reconstruction error, which is the ultimate goal in EC, is neglected.

1.3 Objectives

The main goal of this thesis is to design and implement EC techniques that will outperform
state-of-the-art algorithms in terms of reconstruction quality. In the following, we will specify the
sub-objectives that permit us to accomplish the proposed challenge:

• Interpolation based EC

◦ To perform a robust edge analysis for directional interpolation. A scanning
procedure based on the Hough transform is developed in order to find the relevant edges
and the visually clearest ones are employed in an interpolation based reconstruction.

◦ To design an interpolation scheme able to reconstruct more complex edge
structures. Specifically, we will combine several interpolations according to a set of
weights. These weights are derived from the visual clearness associated to an edge and
are unique for every pixel within the missing macroblock.

• Statistically driven EC
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◦ To provide powerful tools for capturing local signal statistics. These statistics
will be then utilized to obtain high quality reconstructions. We will develop a sparse
linear predictor able to recover even the finest textures. Moreover, we will adapt KDE
to MMSE multimedia signal reconstruction.

• EC in transformed domain

◦ To improve the performance by considering the low-pass behaviour of nat-
ural images. The goal is to find a suitable way to incorporate this information into
existing EC scenarios.

• Filling order

◦ To design a novel filling order aimed to improve the performance of EC al-
gorithms. First, regions surrounded by a larger amount of available and reliable data
should be prioritized. Moreover, in order to determine the filling order, the reconstruc-
tion quality of the already concealed blocks should be considered.

1.4 Thesis proposals

In this section we provide a summary of the different techniques proposed in this thesis along with
a brief discussion about the obtained results.

1.4.1 Interpolation based EC: Spatial Error Concealment Based on Edge Vi-
sual Clearness for Image/Video Communication

In previous sections, we have addressed the issues related to interpolation-based concealment
techniques. In order to obtain an accurate reconstruction, a reliable description of the edges
affecting the lost area is required.

In this work, we propose an EC technique based on the concept of visual clearness of an edge.
We explore the directional behaviour in the neighbourhood of the missing area by applying a novel
scanning procedure.

• In order to estimate the angle of the directional interpolation, an edge detector must be
applied first to provide a binary edge map. In most cases, Sobel’s operator is utilized given
its simple implementation [13, 14, 18, 20, 45]. The resulting edge map can be further thinned
[20] but it still provides relatively low precision and is highly affected by noise. In our work,
we use Canny’s edge detector which is less sensible to noise as it first smooths the image by
filtering it with a Gaussian kernel. Moreover, due to its non-maximum suppression feature
the detected edges are clear and no additional thinning is required. However, extremely
strong edges may mask other relevant ones when applying thresholding during the edge
detection process. We solve this issue by applying a novel scanning procedure that isolates
those edges, making the edge detection more robust. A Hough transform [19, 20] is then
employed to obtain a suitable edge descriptor.

• The most advanced interpolation-based EC methods employ multiple directional interpola-
tions which are combined by clustering [13] or linear combination [14]. These approaches,
however, yield artefacts and oversmoothing. The proposed algorithm fixes this problem by
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assuming that pixels lying in the proximity of the prolongation of the edge tend to be more
influenced by the interpolation defined by the corresponding direction. We introduce the
concept of visual clearness of an edge that allows a robust selection of relevant edges and
is used to compute the pixel-wise weights that are used to combine the interpolations.

The results show that the proposed technique significantly outperforms other state-of-the-art
interpolation based EC algorithms, both on objective and subjective levels. Better quality is
achieved also with respect to other modern EC techniques, such as content adaptive EC [14] or
bilateral filtering [25], among others.

The journal article associated to this part is:

• J. Koloda, V. Sánchez and A.M. Peinado, ”Spatial Error Concealment Based on Edge Visual
Clearness for Image/Video Communication”, Circuits, Systems, and Signal Processing
(Springer), vol. 32, pp. 815-824, April 2013.

1.4.2 Statistically driven EC

1.4.2.1 Multimedia Signal Reconstruction by Sparse Linear Prediction

In order to exploit the inner correlations among samples, a signal/image model is required. Several
models can be found in the literature: Markov random fields [23, 46], fields of experts [47, 48],
autorregressive processes [24, 49, 50], Gaussian mixture models [31, 51] or hidden Markov models
[29, 52] The drawbacks of such approaches have been discussed in previous sections. In our work,
the correlations are modelled and exploited by means of vector linear prediction (LP).

• Since natural images can be locally non-stationary, we design a sparse LP that dynamically
adapts itself to the amount of useful and available data. In order to solve this sparsity
constrained problem more effectively, we apply convex relaxation [53] that allows to employ
efficient convex optimization tools [54].

◦ This approach can be extended to speech signals. We propose a new variant of the
least square autorregressive (LSAR) [55] method for speech reconstruction, which can
estimate via least squares the segment of missing samples. The LP model of speech is
assumed and a sparsity constraint on the AR coefficients is applied.

• A study on the distribution of the predictor coefficients is carried out which suggests a fast
exponential approximation of the sparsely distributed LP coefficients.

Experimental comparisons reveal that our proposal yields higher quality reconstructions of
complex structures and fine textures. The proposed method outperforms other state-of-the-art
techniques both on objective and subjective levels.

The journal and conference papers associated to this part are:

• J. Koloda, J. Østergaard, S.H. Jensen, A.M. Peinado and V. Sánchez, ”Sequential Error
Concealment for Video/Images by Sparse Linear Prediction”, IEEE Transaction on Mul-
timedia , vol. 4, pp. 957-969, June 2013.

• J. Koloda, A.M. Peinado and V. Sánchez, ”Speech Reconstruction by Sparse Linear Predic-
tion”, IberSPEECH, selected for publication in Communications in Computer and Informa-
tion Science (Springer), pp. 247-256, Madrid, Spain, November 2012.



CHAPTER 1. INTRODUCTION TO THE PHD THESIS 13

1.4.2.2 Multimedia Signal Reconstruction by Kernel-based MMSE

It can be noticed that the exponential approximation derived in the previous subsection consists in
a Nadaraya-Watson regressor with a fixed bandwidth. We can generalize this regressor by adopting
a multivariate kernel-based MMSE estimation framework. In fact, signal reconstruction can
be viewed as a regression problem, where the regressor can be expressed as an expectation over a
KDE-estimated probability density function [56]. However, the objectives of signal reconstruction
are quite different from those of KDE or regression. The goal of reconstruction is the estimation
of a specific group of samples rather than a global or even local fitting like in KDE or regression.

• As for any KDE problem, the main issue of kernel-based reconstruction is the estimation
of a suitable bandwidth, which, under our multidimensional formalism, becomes a matrix.
In spite of the extensive bibliography on bandwidth estimation (BE), there is no approach
specifically oriented to multimedia signal reconstruction. We propose a novel multivariate
bandwidth estimation method which is especially conceived for EC tasks.

Simulations reveal that the proposed technique achieves an average improvement of up to 1dB
(in terms of PSNR) with respect to the classical plug-in BE [57]. The improvement is even larger
with respect to a classical GMM-based MMSE reconstruction [31].

The articles associated to this part are:

• J. Koloda, A.M. Peinado and V. Sánchez, ”On the Application of Multivariate Kernel Density
Estimation to Image Error Concealment”, IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Vancouver, Canada, May 2013.

• J. Koloda, A.M. Peinado and V. Sánchez, ”Kernel-based MMSE Multimedia Signal Re-
construction and its Application to Spatial Error Concealment”, IEEE Transactions on
Multimedia , accepted.

1.4.3 EC in a transformed domain: Frequency Selective Extrapolation with
Residual Filtering

As mentioned in Section 1.1.3, various EC algorithms in a transformed domain have been pro-
posed. One of the most efficient is frequency selective extrapolation (FSE) [37], with its further
improvements regarding the fast complex-valued implementation [38] and orthogonality deficiency
compensation [39, 40]. FSE is carried out from a parametric model based on two-dimensional
basis functions. In our work, we will consider Fourier basis functions. FSE is an iterative proce-
dure that, iteration by iteration, updates the parametric model by maximizing the decrease of the
residual energy over the known neighbouring samples.

Natural images tend to be low-pass signals [58]. This is a priori knowledge not considered in the
original FSE algorithm which could be incorporated into it in order to improve both reconstruction
quality and robustness against overfitting. We propose a frequency weighting (filtering) to
exploit this a priori knowledge. A special low-pass filter is designed for such a purpose.

Experimental results show that the proposed method improves the reconstruction quality by
almost 1dB (in terms of PSNR) with negligible additional computational cost. This proposal
also suppresses the performance decrease after a critical number of iterations has been achieved,
making this technique much more robust against overfitting.

The article associated to this part is:
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• J. Koloda, J. Seiler, A. Kaup, V. Sánchez and A.M. Peinado, ”Frequency Selective Extrapo-
lation with Residual Filtering for Image Error Concealment”, IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, May 2014.

1.4.4 Improved filling order

Dividing the missing area into smaller blocks yields high quality reconstructions [41, 42]. In this
scenario, the filling order is of utmost importance since error propagation may occur. In order
to deal with this issue, we introduce a reliability parameter associated to each subblock. The
missing area is then concealed sequentially, prioritizing subblocks with higher reliabilities. When
a subblock is concealed, the reliabilities are recalculated and the reconstruction evolves from the
outer layer towards the centre of the missing area.

On the other hand, the majority of work on filling order is related to inpainting and object
removal and the reconstruction error is neglected. We propose a novel filling order approach that,
exploiting the reconstruction error, improves the quality reconstruction. Regions that yield
better reconstructions will be prioritized in order to reduce error propagation and achieve better
overall reconstruction quality.

The proposed method is applicable to a large variety of EC algorithms, providing improvements
of up to 1dB with respect to other state-of-the-art filling techniques.

The articles associated to this part are:

• J. Koloda, J. Østergaard, S.H. Jensen, A.M. Peinado and V. Sánchez, ”Sequential Error
Concealment for Video/Images by Weighted Template Matching”, IEEE Data Compression
Conference (DCC), Snowbird, Utah (USA), April 2012.

• J. Koloda, J. Seiler, A. Kaup, V. Sánchez and A.M. Peinado, ”An Error-based Recursive
Filling Ordering for Image Error Concealment”, IEEE Internationl Conference on Image
Processing (ICIP), Paris, France, October 2014.
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Abstract In this paper, we propose a technique for concealing missing image/video
blocks based on the concept of visual clearness of an edge. A scanning procedure
based on the Hough transform allows us to find the relevant edges, and the visu-
ally clearest ones are employed in an interpolation based reconstruction. Specifically,
several interpolations are combined according to a set of weights which allows the
reconstruction of more complex textures. These weights are derived from the visual
clearness associated to an edge and are unique for every pixel within the missing
macroblock. The resulting algorithm is quite efficient, simple, and competitive in
comparison with other state-of-the-art techniques.

Keywords Error concealment · Directional interpolation · Block-coded
image/video · Hough transform

1 Introduction

Multimedia transmission applications are prone to suffer from deterioration of QoS.
Due to strict real-time requirements, the retransmission of lost or severely damaged
packages can be impossible. The block-based video coding standard H.264/AVC has
introduced several error resilience mechanisms that draw on specific data organiza-
tion tools such as network abstraction layer units (NALU), flexible macroblock order-
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ing (FMO), or arbitrary slice ordering (ASO) [4, 17]. These tools allow the decoder to
apply error concealment (EC) algorithms [8], in order to achieve an acceptable visual
quality of the received stream.

The EC algorithms benefit from the fact that video signals are highly correlated,
spatially and/or temporally. This criterion is used to classify the EC algorithms into
two groups: spatial EC (SEC), which utilizes only the information provided by the
current frame, and temporal EC (TEC), which makes use of temporal information
such as motion vectors (MV). This classification is nonexcluding, and combining
temporal and spatial information leads to significant improvements [6]. However, the
most extended block-based coding standards, such as H.264 and MPEG-4, use both
intracoding (I-frames) and prediction (P/B-frames). Since the intracoded frames serve
as a “firewall”, that separates visually different scenes or resets the prediction error,
utilizing temporal information for their concealment could be risky. Therefore, SEC
techniques are the most suitable choice to conceal the I-frames [17]. Moreover, these
frames are employed as templates to predict several consecutive P/B-frames [4], so
a poor reconstruction of one I-frame would distort not only the frame itself but the
sequence of several frames in a row.

A simple technique for spatial concealment is bilinear interpolation [11]. Since
high-frequency features, such as edges, are visually more relevant than uniform tex-
tures, more advanced interpolation techniques have been proposed exploiting direc-
tional features in the neighborhood of the missing macroblock [5]. A reconstruction
of broken edges in the transformed domain is treated in [13]. In [9], the Hough trans-
form, a powerful tool for edge description, was used to set the angle for the interpo-
lation. However, the performance drops when multiple edges need to be connected.
A more robust approach is suggested in [2] permitting one to connect several edges.
Nevertheless, the technique is highly adapted to consecutive block loss, and so it
may suffer from a lack of generality. Moreover, the applied interpolation process is
rather simple and is unable to restore more complicated edges and textures. Restora-
tion of broken edges based on extrapolation is introduced in [19]. A block-matching
technique with a decision algorithm is treated in [10]. The algorithm restores suc-
cessfully fine textures although correct classification of the missing macroblock is
crucial. In addition, trying to match the entire macroblock may generate artificial
edges (the so-called blocking). This is partially solved by utilizing block-based bi-
lateral filtering [18]. Inpainting-based techniques are also used for quality texture
reconstruction [3]. Modeling an image as a Markov random field allowed the authors
in [12] to implement an efficient concealment algorithm. However, the reconstruction
of high-frequency features tends to oversmoothing.

In this paper, the concept of visual clearness associated to an edge is intro-
duced, and the most visually relevant edges are utilized for concealing missing im-
age/video blocks based on a weighted combination of directional interpolations. Fur-
thermore, we consider that pixels in the corrupted macroblock are not equally af-
fected by the interpolations, and so pixel-dependent weights need to be assigned
when combining these interpolations. The resulting technique is able to restore com-
plicated edges and more complex textures, thus providing high-quality reconstruc-
tions.

The paper is organized as follows. In Sect. 2, the concept of visual clearness asso-
ciated to an edge is introduced. Reconstruction based on the visually clearest direc-
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tions is described in Sect. 3, and simulation results and comparisons with other SEC
techniques are presented in Sect. 4. The last section is devoted to conclusions.

2 Visual Clearness Associated to an Edge

In this section, we establish a criterion to assess the importance of an edge. This
criterion is based on the visual clearness of a given edge. At the end of the section,
we will be able to introduce the parameter representing this visual clearness.

In order to obtain the relevant directions, it is necessary to explore first the di-
rectional behavior in the neighborhood of the missing macroblock. Thus, an edge
detection must be applied first to provide a binary edge map. For this purpose, we
use one of the most simple and efficient procedures, the Canny’s edge detector [1].
In comparison with other detectors, such as Sobel’s one, it is less sensible to noise
as it first smooths the image by filtering it with a Gaussian kernel. Moreover, due to
its nonmaximum suppression feature, the detected edges are clear, and no thinning
algorithm needs to be applied.

Next, the predominant directions need to be computed. For this purpose, a
gradient-based voting mechanism [10] has been widely used. However, the angular
resolution of such a technique is rather poor, and edges with the same directions but
different spatial location are treated as a single line. Instead, a Hough transform-based
procedure is applied.

The Hough transform provides simple yet powerful descriptors and is based on
the fact that many shapes can be expressed in a parametric form. In this paper, for the
sake of simplicity, we use a linear kernel that assumes that any line can be expressed
as

ρ = x cos θ + y sin θ, (1)

where ρ is the perpendicular distance between the line and the origin, and θ is the
slope of the normal. The Hough transform is applied to the binary image provided by
the edge detector. Thus, Eq. (1) involves that every pixel (x, y) that belongs to a linear
edge produces the same (ρ, θ ). Therefore, the set of pixels that comprise a linear
segment are transformed into a single point with position (within the transformed
matrix) indicated by the parameters ρ (row) and θ (column). Thus, the bidimensional
spatial domain (x, y) is transformed into a new domain (ρ, θ ) where the transform
value at each point (Hough coefficient, H(ρ, θ)) is directly related to the number of
pixels contained in the segment defined by (ρ, θ ).

Directional interpolation is based on the directional behavior of the missing mac-
roblock. Given the high spatial correlation, this behavior can be deduced from that of
its neighborhood. To explore it, a scanning is carried out as shown in Fig. 1. The pro-
posed scanning consists in moving a mask with the same dimensions as the lost mac-
roblock, pixel by pixel (scanning step of 1 pixel) along its four sides: top (Fig. 1(b)),
left, bottom, and right. At each step (or mask position), the Canny’s edge detector
is applied, and the Hough transform is calculated over the corresponding binary im-
age in order to find relevant edges. An edge is said to be relevant if its prolongation
crosses the missing macroblock. The direction of every relevant edge, θ , is stored in
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Fig. 1 Edge detection. (a) Received image with a missing macroblock, (b) top side scanning, (c) top side
edge detection without scanning

a set D. Note that if the available neighborhood were treated as a whole (as in [2]),
extremely strong edges would mask other relevant ones when applying thresholding
in the edge detection process (Fig. 1(c)). The scanning procedure isolates those edges,
making the edge detection more robust.

The candidates for relevant edges are found as follows. First, the strongest direc-
tion in every mask position is selected from the transformation matrix (the strength
of a direction is expressed by the Hough coefficient value). Then, using the infor-
mation provided by the Hough coefficient coordinates, θ (slope) and ρ (offset), we
can determine whether the edge crosses the corrupt macroblock. If it does, the edge
is considered relevant and stored in D, otherwise the direction is discarded, and the
next strongest one is examined. If none of the directions satisfies the aforementioned
condition, no direction is stored.

Due to the image resolution, perfectly straight lines might not lead to a single pair
(ρ, θ). Moreover, curved edges are treated as a set of linear segments with similar
(ρ, θ). Using a coarser resolution of the Hough transform, these (ρ, θ) pairs lead to
a single value of H allowing the edge to be treated as a single line. However, too
coarse resolutions introduce significant imprecision and should be avoided. In our
simulations, pixel-by-pixel resolution is applied for ρ and steps of 2o for θ .

Finally, we introduce the concept of visual clearness, σi , associated to an edge.
In order to define the visual clearness σi of an edge i, let Ei be the set of all pixels
that comprise the edge. We will then compute σi as the product of the strength of the
edge direction and the visual separation between the regions at both of its sides. The
strength of an edge is proportional to its associated Hough coefficient value (which
is proportional to the edge length), and the visual separation is given by the average
2D spatial gradient per edge pixel,

σi = Hi

1

|Ei |
|Ei |∑

j∈Ei

√
dx2

j + dy2
j , i = 1, . . . , |D|, (2)

where Hi is the associated Hough coefficient, dxj and dyj are the horizontal and
vertical gradients centred over the j th pixel of the edge, and |D| is the number of
relevant directions found by the scanning procedure.
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3 Reconstruction Based on the Visually Clearest Directions

Among the directions stored in the set D, the N visually clearest ones are selected.
That is, those edges with the N largest σi values are selected. The missing mac-
roblock is reconstructed by combining directional interpolations based on these N

selected directions. Previously, the N corresponding interpolations are computed as

Ii(x, y) = d2

d1 + d2
p

(i)
1 + d1

d1 + d2
p

(i)
2 , i = 1, . . . ,N, (3)

where the missing pixel p(x, y) is replaced by a weighted mean of p
(i)
1 and p

(i)
2 , the

two closest pixels in the ith direction that have been correctly received and decoded.
The variable d1 (d2) is the Euclidean distance between p and p

(i)
1 (p(i)

2 ).
Clear lines tend to be visually more important, so the N interpolations are com-

bined according to the visual clearness of their corresponding edges. Therefore, every
interpolation Ii has an associated weight defined as

wi = σi∑N
j=1 σj

. (4)

Scalar weights are widely used in state-of-the-art techniques that involve combi-
nation of interpolations [10]. In more complex environments where several directions
are present, this approach leads to oversmoothing. The proposed algorithm fixes this
problem by assuming that the interpolations are not equally relevant for every pixel of
the missing macroblock. In fact, pixels lying in the proximity of the prolongation of
an edge tend to be more influenced by the interpolation defined by the corresponding
direction. Therefore, every pixel has an associated weight computed as

πi(x, y) = 1 − δ2
i (x, y), (5)

where δi(x, y) is the normalized distance between the pixel p(x, y) and the line de-
fined by the ith edge. The normalization factor corresponds to the maximum distance
between a pixel and a line within a macroblock, that is, to the length of its diagonal.
The use of square power has been set heuristically since it provides better results.

Finally, the corrupt macroblock is reconstructed by means of a weighted superpo-
sition of N directional interpolations. That is, for every pixel p(x, y) of the missing
macroblock, we apply

p(x, y) =
N∑

i=1

wiπi(x, y)
∑N

j=1 wjπj (x, y)
Ii(x, y). (6)

Some of the state-of-the-art algorithms, such as [2, 5], divide the available neigh-
borhood into support regions. Thus, a pixel can be only interpolated relying on pixels
within the same support region. This hard division, however, may create artificial bor-
ders and false textures. Weights πi(x, y) smooth the transitions from one region to
another, preserving the continuity of the image signal.
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Finally, it should be noted that N is the maximum number of directions to be
used and is, by no means, mandatory. If there are fewer directions available or they
are not visually clear enough, the number of interpolations to be considered will be
less than N . The algorithm thus automatically adapts itself to the type of texture
surrounding the missing macroblock.

In summary, for each missing macroblock, the proposed algorithm can be resumed
as follows:

Step 1: perform the scanning at each side of the corrupt macroblock in order to obtain
the set of relevant directions D.

Step 2: compute the visual clearness for every relevant direction.

Step 3: select the N visually clearest directions and compute Ii (i = 1, . . . ,N) as
shown in Eq. (3).

Step 4: calculate the corresponding weighting factors ωi and πi(x, y) for i =
1, . . . ,N and for every missing pixel p(x, y).

Step 5: combine the N directional interpolations corresponding to the N visually
clearest directions by applying Eq. (6).

4 Simulation Results

The performance of the proposed algorithm is tested over the images of Lena
(512×512), Pirate (1024 × 1024), the first frame of Foreman sequence (288 × 352),
Office (592 × 896), Airplane (512 × 512), Zelda (512 × 512), Boat (512 × 512), and
House (256 × 256). The test is carried out for macroblock dimensions of 16 × 16,
and the rate of block loss is approximately 25 %, corresponding to a single packet
loss of a frame with dispersed slicing structure [4]. The reconstruction quality of the
proposed algorithm is compared with others, such as the bilinear interpolation (BIL)
[11], projections onto convex sets (POC) [13], SEC based on the Hough transform
(SHT) [2], content adaptive SEC (CAD) [10], directional extrapolation (EXT) [19],
nonnormative SEC for H.264/AVC codec (AVC) [14], an adaptive Markov random
fields method (MRF) [12], inpainting (INP) [3], and bilateral filtering [18].1 Our pro-
posal was tested for N = 2,N = 3,N = 4, and N = 5, where N is the number of
interpolations combined according to Eq. (6). In addition, larger scanning steps of
2 pixels (N2), 4 pixels (N4), and 8 pixels (N8) are also tested for N = 5.

In order to better take into account the perceptual quality, the multiscale structural
similarity (MS-SSIM) index [16] is used for comparison along with the objective
PSNR measure. Regarding MS-SSIM, the image is sequentially low-pass filtered and
subsampled, and so a set of images is obtained, including the original resolution.
Then, the SSIM index is applied for every subimage within the set. The SSIM index
aims at approximating the human visual system (HVS) response looking for similari-
ties in luminance, contrast, and structure [15]. This index can be seen as a convolution

1Implementations of most of these techniques, as well as the implementation of our algorithm, is available
online at [20].
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Table 1 PSNR values (in dB) and MS-SSIM values (scaled by 100) of test images reconstructed by
several algorithms. The best performances for each image are shown in boldface

PSNR MS-SSIM Lena Pirate Foreman Office Airplane Zelda Boat House

BIL 30.00 27.82 27.12 27.54 25.58 33.44 26.95 26.83
96.82 94.90 95.36 94.12 93.49 97.12 93.12 94.39

POC 28.04 26.42 28.49 27.56 26.18 29.91 26.05 27.38
93.17 91.85 93.82 93.62 93.87 92.51 92.63 92.22

SHT 30.55 28.12 28.09 27.58 25.62 33.45 27.20 28.41
97.13 95.18 95.94 94.09 93.41 97.22 93.21 96.20

CAD 31.96 28.44 34.85 29.29 27.41 34.01 27.73 31.11
97.38 95.38 98.30 96.12 95.70 97.74 94.29 97.37

EXT 29.10 27.57 29.59 27.72 26.23 32.14 26.63 27.38
95.83 94.89 97.18 94.84 95.36 96.73 94.01 93.98

AVC 30.42 28.74 29.11 29.99 27.79 34.43 28.25 28.37
96.72 95.62 97.06 96.07 95.90 97.63 94.95 94.92

MRF 32.17 29.52 32.99 29.77 27.98 35.03 27.91 30.08
97.75 96.33 98.21 96.45 96.12 98.03 94.92 96.89

INP 30.85 28.44 34.44 29.65 26.29 33.62 27.79 29.90
97.17 95.27 98.35 96.66 94.91 97.44 95.22 96.97

BLF 32.15 29.36 34.75 30.06 28.34 33.83 28.37 30.52
97.52 95.99 98.27 96.30 96.59 97.25 95.55 97.05

N = 2 32.46 29.60 34.93 30.98 28.51 35.07 28.44 31.30
98.00 96.55 98.37 97.15 96.72 98.26 95.82 97.46

N = 3 32.70 29.90 35.09 31.34 28.71 35.44 28.66 31.45
98.04 96.71 98.44 97.35 96.77 98.36 95.99 97.45

N = 4 32.74 29.98 35.15 31.44 28.76 35.67 28.77 31.47
98.06 96.77 98.49 97.37 96.82 98.44 96.11 97.47

N = 5 32.80 30.03 35.21 31.52 28.80 35.75 28.84 31.48
98.09 96.80 98.53 97.43 96.82 98.46 96.11 97.50

N2 = 5 32.58 29.98 35.00 31.50 28.77 35.72 28.81 31.46
97.91 96.53 98.40 97.39 96.66 98.36 96.03 97.36

N4 = 5 32.53 29.96 34.97 31.49 28.74 35.61 28.73 31.46
97.85 96.51 98.37 97.31 96.60 98.30 95.94 97.37

N8 = 5 32.28 29.76 34.64 31.47 28.62 35.36 28.50 31.45
97.66 96.48 98.22 97.33 96.64 98.24 95.69 97.36

of a fixed-sized mask with the residual error between the reference image and the con-
cealed image [7]. A unique mask size is used for each of the images within the testing
set. Thus, both fine and coarse textures and objects are taken into account.

The results in Table 1 show that the proposed algorithm outperforms the others for
all the tested images both in terms of PSNR and MS-SSIM. Note that the algorithm
performance saturates as N increases. In many cases, two directions are sufficient for
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Fig. 2 Subjective comparison of different algorithms for 16 × 16 pixels macroblocks. (a) Original image,
(b) corrupted image, (c) reconstructed image by CAD, (d) MRF, (e) INP, (f) BLF, (g) proposed algorithm
with N = 2, (h) N = 3, and (i) N = 4

a good reconstruction, and utilizing more directions might not achieve any consid-
erable improvement. In fact, Table 1 shows that even the simple reconstruction with
two directions provides better reconstruction quality than all the other state-of-the-
art techniques listed in the table. However, as a general rule, the more complex the
texture, the more directions should be considered.

In order to better illustrate the subjective quality, Fig. 2 shows a comparison of
the methods that provide the highest perceptual quality reconstructions (highest MS-
SSIM) in Table 1. We see that the superiority of our algorithm, in terms of PSNR, is
also corroborated at the subjective level.

Finally, the simulations reveal that the scanning procedure (including edge detec-
tion, Hough transform, and computing the visual clearness) comprises up to 90 %
of the overall computational load. Using pixel-by-pixel scanning is relatively com-
putationally expensive; however, in many cases, coarser resolutions would achieve
almost identical results. Increasing the scanning step to 4 pixels, the processing time
becomes similar or even lower than the processing time of more complex tested algo-
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rithms such as CAD, INP, or BLF. By applying 4-pixel scanning step the reconstruc-
tion quality is reduced in roughly 0.1 dB on average (in comparison to pixel-by-pixel
scanning) and still does outperform the other techniques for all the tested images.
Moreover, note that if we continue increasing the scanning step, the computational
load can be reduced even further with relatively moderate effect on the reconstruction
quality (see N8 in Table 1).

5 Conclusions

Block-based coding standards, such as H.264 and MPEG-4, are widely spread in
video transmission over packet based networks. However, the packetized stream suf-
fers from packet losses, and so some of the macroblocks are not received or decoded
properly. Moreover, as the aforementioned standards use interframe prediction, a sin-
gle packet loss could cause an error propagation, distorting the whole video sequence.
In this paper, we have developed an error concealment scheme that utilizes only the
spatial information of the current frame, making it specially suitable for reconstruc-
tion of I-blocks. The concept of visual clearness of an edge is introduced in order to
find a suitable set of weights that are used in a pixel-level weighted combination of
interpolations that allows one to reconstruct even nonlinear features more accurately.
The proposed algorithm shows a significant improvement while keeping a relatively
moderate computational complexity.

Regarding future work, the reconstruction of more complex visual features by
combining edge and texture reconstruction is a goal worth exploring.

Acknowledgements This work has been supported by the Spanish MEC/FEDER project TEC2010-
18009.
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Sequential Error Concealment for Video/Images by
Sparse Linear Prediction

Ján Koloda, Jan Østergaard, Senior Member, IEEE, Søren H. Jensen, Senior Member, IEEE,
Victoria Sánchez, Member, IEEE, and Antonio M. Peinado, Senior Member, IEEE

Abstract—In this paper, we propose a novel sequential error
concealment algorithm for video and images based on sparse
linear prediction. Block-based coding schemes in packet loss
environments are considered. Images are modelled by means
of linear prediction, and missing macroblocks are sequentially
reconstructed using the available groups of pixels. The optimal
predictor coefficients are computed by applying a missing data
regression imputation procedure with a sparsity constraint.
Moreover, an efficient procedure for the computation of these
coefficients based on an exponential approximation is also pro-
posed. Both techniques provide high-quality reconstructions and
outperform the state-of-the-art algorithms both in terms of PSNR
and MS-SSIM.

Index Terms—Block-coded images/video, convex optimiza-
tion, error concealment, missing data imputation, sparse
representation.

I. INTRODUCTION

B LOCK-BASED video coding standards, such as MPEG-4
or H.264/AVC, are widely used in multimedia applica-

tions. Video signals are split into macroblocks that are coded
using inter-or intraframe prediction. Quantization is carried
out in the DCT domain and lossless arithmetic compression is
applied [1]. This leads to low distortions at moderate bit-rates.
However, achieving high quality reception is a challenging
task since data streams are usually transmitted over error-prone
channels.
For real-time transmission applications, the H.264/AVC

standard has introduced several error resilience tools, such as
arbitrary slice order (ASO) and flexible macroblock ordering
(FMO) [2]. Macroblocks within a frame can be split into several
slices. A slice forms the payload of a network abstraction layer
unit (NALU), which is a data sequence that can be decoded
independently [1]. The loss of a NALU will therefore not affect
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other macroblocks within the current frame. However, due to
temporal interframe prediction, error propagation does occur.
H.264/AVC allows both bit-and packet-oriented delivery.

For bit-oriented transmissions, an error burst that surpasses
the channel-coding protection may result in loss of synchro-
nization as well as fatal data damage since H.264/AVC utilizes
variable length coding (VLC) or Exponential-Golomb coding
for lossless compression [3]. Errors would thus propagate
throughout the packet, making the current slice unusable. In
packet oriented delivery, damaged packets, containing NALUs,
are usually detected and discarded by network or transmission
layers. Also, there may be packets which are not received at all
due to congestion, routing problems, etc. In both cases, we are
facing the problem of the loss of, at least, one slice.
Error concealment (EC) techniques form a very challenging

field, since QoS is of utmost importance for the users. In many
cases, retransmission of lost data is not possible due to real-time
constraints or lack of bandwidth. This last case also applies to
additional transmission of media-specific forward error correc-
tion (FEC) codes which, in addition, may not be standard com-
pliant [4]. In contrast to channel coding techniques, which are
carried out at the encoder and are designed to minimize the
negative impact of packet losses, EC is applied at the decoder
and can significantly improve the quality of the received stream
[5]. EC algorithms can be classified into two categories: spa-
tial EC (SEC), which relies on the information provided within
the current frame and temporal EC (TEC), which utilizes tem-
poral information such as motion vectors (MV) and previous
or already available future frames. Some TEC techniques use
both temporal and spatial information for image restoration and
they are often referred to as combined or hybrid SEC/TEC al-
gorithms. Both categories, SEC and TEC, exploit the redun-
dancy due to the high spatial and temporal correlation within
a video sequence. Temporal correlations tend to be higher than
the spatial ones, so TEC techniques usually provide better re-
sults. This would be the straightforward choice when concealing
a P/B-frame (intercoded). However, utilizing temporal informa-
tion for the recovery of I-frames (intracoded) is not always pos-
sible, since they may be inserted to reset the prediction error
when a change of scene occurs. Thus, when all the available
temporal information belongs to a different scene or there is no
temporal information available, SEC algorithms are necessary.
Every I/P-frame in the video sequence usually serves as a pre-
diction template for, at least, one intercoded frame. Thus, high
quality concealment is required since any reconstruction error
will be propagated until the next I-frame arrives and resets the
prediction error.

1520-9210/$31.00 © 2013 IEEE
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Several SEC techniques have been proposed for block-coded
video/images. Many of them are based on some type of interpo-
lation, trying to exploit the correlations between adjacent pixels.
In [6], a simple spatial interpolation is used. In [7] a directional
extrapolation algorithm was proposed, which exploits the fact
that high frequencies, and especially edges, are visually themost
relevant features. An algorithm for preservation of edges and
borders in the transformed domain based on projections onto
convex sets has been also proposed [8]. A technique including
edge detectors combined with a Hough transform, a powerful
tool for edge description, was utilized in [9]. A more advanced
Hough transform based method was proposed in [10]. However,
the performance of these methods drops when multiple edges or
fine textures are involved. Modelling natural images as Markov
random fields for EC was treated in [11]. This scheme produces
relatively small squared reconstruction errors at the expense of
an oversmoothed (and, therefore, blurred) image. The authors
in [12] combined edge recovery and selective directional inter-
polation in order to achieve a more visually pleasing texture re-
construction. A content adaptive algorithm was introduced in
[13]. A simple interpolation is applied if there are only a few
edges crossing the missing macroblock and a best-match ap-
proach is applied if the macroblock is decided to contain tex-
ture. For this algorithm, and in general for all switching SEC
techniques, a correct classification is critical since an erroneous
decision on the macroblock behaviour could have a very nega-
tive effect on the final reconstruction. Inpainting-based methods
can also be adopted for SEC purposes [14], [15]. Sequential
pixel-wise recovery based on orientation adaptive interpolation
is treated in [16]. As we will show later, pixel by pixel recovery
usually suffers from smoothing high frequency textures. In [17],
Bayesian restoration is combined with DCT pyramid decom-
position. Bilateral filtering exploiting a pair of Gaussian ker-
nels is treated in [18]. The algorithm seems quite competitive
although some high frequency textures may be found overfil-
tered. Recently, SEC techniques in transform domains [19] have
shown promising results although ringing can be observed in
some cases.
TEC techniques take advantage of temporal and/or spatial

redundancy aswell. A joint video team (JVT) reference software
TEC algorithm includes frame copying and motion vector
copying [20]. A more advanced recovery of lost motion vectors
is based on the boundary matching algorithm (BMA) [21] that
minimizes the squared error between the outer boundary of the
lostmacroblock and the inner boundary ofmacroblocks found in
the reference frame. A slight modification of BMA, overlapping
BMA (OBMA), matches the outer boundaries of both the
missing macroblock and the reference, leading to more accurate
reconstructions [21]. These techniques, however, consider a
linear movement and assume that the entire macroblock has
been moved the same way. This issue is palliated by a multi-
hypothesis approach (based on BMA) [22] which, however,
lacks in generality. In [23], MV’s are estimated by a Lagrangian
interpolation of previously extrapolated MV’s. This technique
is entirely based on MV’s so maintaining spatial continuity
may be an issue. An edge-directed hybrid EC algorithm was
proposed in [24]. Strong edges are estimated first and regions
along these edges are recovered afterwards. Another combined

EC technique is presented in [25]. It is a modification of the
classic BMA under spatio-temporal constraints with an eventual
posterior refinement based on partial differential equations.
However, the improvement over the BMA is rather moderate.
A MAP estimator, using an adaptive Markov random field
process, is used to conceal the lost macroblocks in [26]. A
statistically driven technique, based on a Gaussian mixture
model is obtained in [27] from spatial and temporal surrounding
information. This model, however, requires an extensive offline
training. A computationally lighter version is described in
[28]. Interesting results are obtained in [29] where a sparse
representation based on local dictionaries is used for image
reconstruction. This method, however, lacks in flexibility when
complex textures are present and the concealment in scanning
order may not always be appropriate. Recently, refinement
technique [30] based on spatial and temporal AR models has
been proposed. However, it is highly dependent on the previous
MV estimate (using BMA, for example) and it assumes that
(small) groups of macroblocks can be modelled using the
same AR process which for low resolution videos or complex
scenes may be inaccurate.
In this paper we propose an error concealment technique that

automatically adapts itself to SEC [31], TEC or a combined
SEC/TEC scheme according to the available information. Our
proposal tries to fix or palliate some of the weak points of the
previously referenced work such as blurring, blocking or filling
order. The lost regions are recovered sequentially using a
linear predictor whose coefficients are estimated by an adaptive
procedure based on sparsity and a missing data imputation
approach. First, we formulate the problem of estimating the
predictor coefficients (only for SEC) as a convex optimization
problem and then we derive an efficient alternative based on
an exponential approximation. Although different exponential
estimators have been used in EC algorithms [17], [18], a
thorough treatment, combined with a linear prediction model,
sparse recovery and sequential filling is proposed in this paper.
This leads to a more generic and flexible EC technique. We also
show that our EC scheme can be straightforwardly extended
to also account for temporal correlations in video sequences
(TEC and SEC/TEC). The experimental results show that
our proposals provide better performance than other existing
state-of-the-art algorithms on a wide selection of images and
video sequences. In particular, the exponential approximation
provides the best perceptual results.
The paper is organized as follows. In Section II we formulate

the problem and introduce the linear prediction image model
employed in the optimization process as well as the estimator
(linear predictor) used for EC. The convex optimization based
error concealment algorithm and its exponential approximation
are presented in Section III. The model for video sequences is
treated in Section IV. Simulations results and comparisons with
other SEC and TEC techniques are presented in Section V. The
last section is devoted to conclusions.

II. LINEAR PREDICTION MODELLING AND ITS APPLICATION TO
ERROR CONCEALMENT

Our aim is to conceal a lost region by optimally exploiting the
correlations with the correctly received and decoded pixels in
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its neighbouring area. These correlations will be modelled and
exploited by means of vector linear prediction as it is described
in Section III.
The Sections II-A–II-C describe how this model can be suit-

ably estimated and applied to our concealment task.

A. Vector LP-Based Spatial Modelling

Let us assume that our image can be modelled as a stationary
random field. Then, we can expect that every pixel can be
linearly predicted from a small set of surrounding pixels. The
corresponding linear prediction (LP) model is defined by,

(1)

where are the LP coefficients, is the region of sur-
rounding pixels employed for prediction, and is the residual
error. We will assume integer pixel values belonging to

for each colour space component.
In our case, we are interested in LP-based reconstruction of

groups of lost pixels. Thus, it is convenient to re-formulate the
above LP spatial modelling into a vector form by replacing the
pixels in (1) by pixel vectors. Let be an arbitrarily
shaped group of pixels that we want to express in terms of our
LP model. Writing as a column vector, we have that ,
where is the number of pixels contained in . Also, let

be the set of all possible spatially shifted versions
of which are employed to predict it. Then, the whole region
employed to predict is,

(2)

Again, we can expect that prediction can be carried out with
a small number of neighbouring vectors. Now, (1) can be
extended to a vector form as follows,1

(3)

where is the corresponding vector of residuals and for
all .
The previous LP model can be applied to estimate from the

known neighbour vectors in region as,

(4)

In order to obtain optimal LP coefficients, the residual energy

(5)

is usually minimized by solving a system of normal equations.

1Note that the intraprediction scheme used the in H.264 codec is a particular
case of (3).

B. Application to Error Concealment: Sparse LP

Wewill denote as the set of known pixels and will denote
the set of lost pixels (see Fig. 1(a)). When applying the above
LP estimator of (4) to compute a lost group of pixels , we are
facing two problems:
1) Since is not known, it is not possible to find the residual
energy function exactly. In order to solve this
problem, a solution based on missing-data imputation is
proposed later in this section.

2) The region required for prediction is not known either.
Instead, we have to employ a support area of available
(correctly received and decoded) pixels which provides us
with a set containing available neighbour
vectors , that is,

(6)

Then, some pixels required for prediction in (4) may be
missing. Also, since the image is, in general, non-sta-
tionary, the support area may include a high number
of alien pixels not useful for predicting ( ,
typically). As a result, the usual least-squares solution
based on solving a system of normal equations is not
suitable in our case. Typically, this solution involves the
inversion of a huge correlation matrix of small
rank which would lead us to a poor solution. This small
rank indicates that the number of vectors useful
for prediction is quite small. In other words, we can say
that the solution we are seeking will
be a sparse vector.

In order to overcome this last problem, the classical least-
squares estimation of the LP coefficients can be replaced by a
joint optimization of the squared error of (5) and the level of
sparsity of the solution (typically represented by the -norm),
which leads to a sparse linear prediction (SLP) scheme [32].
This scheme yields an unconstrained minimization problem,
that we will represent as the following constrained optimization
[33]:

(7)

where is a parameter that controls the sparsity level and
is imposed to prevent negative pixels from the estimator (9)

which is introduced later in this section. Moreover, preliminary
experiments have shown that not using this last constraint would
yield a worse performance.
This optimization involves two problems that will be ad-

dressed in Section III. First, we have that the -norm is
non-convex and unfortunately also computationally infeasible
for problems of higher dimensions. This problem is usually
solved through convex relaxation. Second, we have the problem
of selecting a suitable maximum value for sparsity parameter
. We will shortly see that convex relaxation of (7) also
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Fig. 1. (a) Example of configuration for the vectors , and . denotes the set of known pixels and denotes the set of lost pixels. (b) Filling order for
sequential reconstruction with 2 2 patches . The regions illustrated by brighter level are recovered first.

provides a natural and smart solution to this issue which is
proposed in Section III.
The LP formulation in (7) provides us with an adaptive proce-

dure which dynamically obtains both the LP coefficients and the
region of support (defined by those vectors with )
for every image block . We still have the problem of being
unknown. As a consequence, the squared error cannot be
directly computed. In order to solve this, we will adopt a missing
data approach where lost pixels can be imputed from known
ones [34]. Instead of having a vector completely unknown, we
will consider that it contains both known and unknown pixels.
Without loss of generality, let be a group of pixels as shown in
Fig. 1(a). Let the vector consist of the two subvectors
and , where denotes the missing pixels and denotes cor-

rectly received and decoded pixels and can be seen as the spatial
context of . Every is split in a similar way, as shown
in Fig. 1(a). Since is (locally) stationary and , then we
can approximate the weights obtained from (7) by means of the
following procedure:

(8)

Section III will be devoted to the search for solutions to this
optimization problem.
Finally, according to (4) the concealed group of pixels, , can

be approximated by a linear combination of blocks within its
neighbourhood

(9)

where is the vector of optimal weights
(LP coefficients) obtained by (8).

C. Application to Error Concealment: Sequential Filling

The H.264/AVC encoder packetizes the stream by slices so a
loss of one packet implies a loss of, at least, one 16 16 mac-
roblock. Applying (9) to would lead to significant
imprecisions due to blocking as well as blurring since it is often
not possible to find a combination of ’s suitably matching

due to the high number of dimensions in . This means
that the residual error from (3) may still carry significant en-
ergy. This is the reason why the H.264/AVC standard also in-
cludes submacroblock prediction [3]. In order to manage with
this problem, we introduce sequential recovery. Thus, the mac-
roblock is recovered using a set of square patches
with . Pixel-wise reconstructions , as in
[16], may introduce considerable blurring when high frequen-
cies are involved (Fig. 11(b)). By using groups of pixels the cor-
relation within a group is better preserved and so is the texture
(Fig. 11(c)). Let us consider, without loss of generality,
and let include all the received and already recovered pixels
within the 6 6 block with the lost pixels placed in its centre,
as shown in Fig. 1(a). The macroblock is recovered sequentially
by filling it with obtained by applying (8) and (9). The filling
order is critical and it should preserve the continuity of image
structures [15]. In [15], the filling priorities of every patch are set
in order to maintain the continuity of isophotes and according
to the amount of information within the patch. Our proposal,
due to the shape of the context , can achieve an appropriate
filling order in a much simpler way by using contexts reliabili-
ties. We define the reliability of context as the sum of relia-
bilities of all its pixels. Initially, the reliability of a pixel is set to
1 if it has been correctly received and decoded. Missing pixels
have reliability zero. When a pixel is concealed, its reli-
ability is set to , where and is the number
of pixels contained in . We use in our simulations.
The lost region , whose context produces the highest relia-
bility, is recovered first. The reliability is non-increasing and the
reconstruction evolves from the outer layer towards the centre
of the missing macroblock. Fig. 1(b) shows the filling order of
a 16 16 macroblock using 2 2 patches. Note that the first
patches to be concealed are the corners as their contexts are the
largest ones, and thereby providing more reliable information
(which leads to a more accurate estimate of the LP coefficients).

III. LP PARAMETER ESTIMATION

The scheme proposed in the previous section requires the
computation of a set of LP coefficients by solving the optimiza-
tion problem of (8). In this section, we propose first a solution
based on convex relaxation. Then, we derive a computationally
less expensive algorithm by applying several approximations.
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Fig. 2. Histogram of pairs squared-error/weight for Lena. Logarithmic scale is employed for more clarity. For reconstruction purposes 2 2 patches are
used and loss pattern from Fig. 6(b) is applied.

A. SLP Via Convex Relaxation (SLP-C)

The main problem that arises when solving (8) is that the
-norm is non convex, so that this optimization usually requires

exhaustive search and is therefore computationally prohibitive.
Applying convex relaxation [35], the solution to the optimiza-
tion defined by (8) can be modified in terms of the -norm as
follows:

(10)

In our simulations, this optimization is solved by the primal-dual
interior point (IP) method [36].
The remaining problem is the selection of a suitable spar-

sity level (redefined under the -norm). In order to do this,
we will assume smoothness in the visual features of an image.
This implies that the reconstructed block should not contain any
singular features. In the particular case of luma, it means that
a reconstructed pixel could not be brighter (darker) than the
brightest (darkest) pixel in . This requires that (9) must be a
convex combination and it implies that . The resulting
technique will be referred to as SLP-C in the following.

B. SLP With Exponentially Distributed Weights (SLP-E)

Although there are efficient algorithms for solving convex
optimization problems, such as the IP method employed above,
the processing time still remains very high and far from real-
time. In this section we develop a fast approximation for solving
the minimization problem in (10). Specifically, we show that the
optimal weights obtained from (10) can be well modelled by
an exponential function.
According to (10), every context has a weight associ-

ated. Due to the high spatial correlation of an image, it is likely

that contexts that produce smaller squared error, , would gen-
erate larger weights, where we define the squared error asso-
ciated to a context as,

(11)

Fig. 2 represents the joint 2D histogram of pairs for
the image of Lena. The loss pattern applied is the one shown in
Fig. 6(b). The histogram suggests that there is an exponential
relationship between the squared errors and the weights .
With this in mind, we propose the following approximation for
the LP weights:

(12)

where is a decay factor that controls the slope of the expo-
nential and is a normalization factor that ensures the sparsity
constraint , that is,

(13)

Note that this normalization always forces the solution to have
the maximum value of sparsity considered in (10), i.e., .
The corresponding LP estimator is obtained by replacing the
optimal weights by their exponential approximation in
(9). The resulting EC technique will be referred to as SLP-E in
the following.
Let us analyze the approximation proposed in (12) and (13).

We can see that the exponential trend observed in Fig. 2 cannot
be written down as a single exponential function for the whole
image. In fact, the figure shows lots of exponential contours.
There are two reasons for this:
1) We must take into account the effect of the mild sparsity
constraint applied in (10). Thus, given several similar con-
texts (representing a certain context type) with small
quadratic errors (that is, relevant for reconstruction), the
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Fig. 3. Example of the exponential estimated by means of the optimal weights for two different patches.

Fig. 4. Comparison of the weights histograms obtained by SLP-E (red) and SLP-C (blue) for the image of Lena. The vertical axis uses a logarithmic scale for a
clearer visualization and has been fixed to 10 for the whole image.

optimization algorithm picks one context and suppresses
the others instead of using all of them. On the contrary, the
exponential approximation relaxes the sparsity constraint
and keeps all the relevant contexts.

2) We must also consider that Fig. 2 shows all the pairs
for all the patch linear predictors in the image.

However, clearly all these linear predictors are different
and must have a different factor , since this is the only
free parameter in (12).

Let us consider first the issue of obtaining a suitable value of
for each patch predictor. This factor is related to the squared

error and, therefore, to the local predictability of the image
signal. In order to estimate a suitable value of for every pre-
dictor, a logical solution is that of minimizing the prediction
error defined in (10) but constrained to the LP
weights defined by (12) and (13). Fig. 3 illustrates two examples
of the optimal weights and their corresponding exponential ap-
proximations with factors estimated as described above. In
the first example, the exponential function mainly follows the
most relevant optimal weights. However, in the second one, the
exponential approximation leads to weights which are smaller
than the optimal ones. In order to understand this, we must take

TABLE I
ESTIMATED VARIANCE (MEAN VALUE AND STANDARD DEVIATION)

FOR TESTED IMAGES

into account that there is a considerable number of zero-valued
optimal weights in the small squared error area, which is due,
as previously explained, to the mild sparsity constraint. On the
contrary, the exponential approximation introduces a sparsity
relaxation and the weight assigned to a certain type of context
is distributed among the contexts of that type through the nor-
malization in (13) and the selection of a suitable . We must
point out that the sparsity relaxation just described is quite lim-
ited. In order to see this, the histograms for both optimal and
exponential weights are depicted in Fig. 4. We can see that al-
though the exponential approximation reduces sparsity, most of
the weights are still close to zero.
Table I shows the mean value and the standard deviation of
for several tested images. minima have been obtained
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Fig. 5. Comparison of reconstructions obtained by different procedures. (a) Original frame. (b) Received frame. (c) Reconstruction by average MV replacement
. (d) Reconstruction by BMA . (e) Reconstruction by OBMA

. (f) Reconstruction by MHEC . (g) Reconstruction by SLP-E using spatial information
only . (h) Reconstruction by SLP-E using temporal information only .
(i) Reconstruction by SLP-E using both spatial and temporal information .

by exhaustive search. In the following and for the sake of com-
putational simplicity, a fixed value of will be used. Simula-
tions reveal that this simplification, along with the exponential
approximation, leads to a factor of 100 of computational saving
with respect to SLP-C. For natural images, values around
10 lead to visually good results (Fig. 7(b)). Larger values of
may lead to oversmoothing (Fig. 7(c)) while smaller values may
lead to numerical instability and should be avoided (Fig. 7(a))
(unless the image is extremely stationary).
Finally, we must also point out that the approach devel-

oped here can be alternatively interpreted as a non-para-
metric kernel-based regression, in particular, as a multivariate
Nadaraya-Watson estimator.

IV. TEMPORAL MODEL OF A VIDEO SEQUENCE

The importance of temporal correlations is reflected by the
fact that they are a crucial issue in video coding. However, in
the temporal domain, video signals tend to be non-stationary
due to motion. That is, the pixel in the current frame usu-
ally cannot be predicted using the pixels with the same location

in previous frames [37]. This can be palliated by applying mo-
tion compensation. In fact, the H.264/AVC standard encodes the
submacroblock belonging to the current P-frame as

(14)

where is the motion vector, is the residual error and
is the temporal lag to the reference frame . Note that de-

pends on visual properties of the video as well as the dimension
of the prediction buffer. Moreover, regardless of the buffer size,
the encoder selects the sparsest set of weights since only one ref-
erence submacroblock is taken into account. For B-frames and
P-frames where weighted prediction is applied, two reference
submacroblocks are utilized.
The estimation scheme of Section II can be straightforwardly

extended in order to account for both temporal and spatial corre-
lations. In this case, (3) could be seen as a generalization of (14).
The stationary region will now not only comprise pixels
from the current frame but also pixels from the previous frames.
As in the case of SEC, the stationary 3D region is unknown
and the whole support area needs to be searched. We will set
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Fig. 6. SEC for the image of Foreman (a) Original image, (b) Received data, (c) Reconstruction using CAD ,
(d) FSE , (e) SLP-E , (f) SLP-C

.

Fig. 7. EC with SLP-E for different values of : (a) , numeri-
cally unstable reconstructions are represented with white level, (b) ,
(c) .

the support area to include all the available neighbouring mac-
roblocks from the current frame (as in the previous section) and
all the corresponding macroblocks from the previous frame. For
the sequences of Foreman and Stefan, more than 99% of MV
have , so considering only the previous frame is a reason-
able simplification. Fig. 4 illustrates an example where the cor-
rupted frame utilizes dispersed slicing and the previous frame is
received without errors.
In practice, the loss of a NALU implies that residual errors as

well as motion vectors are lost (unless data partitioning is ap-
plied at the encoder side at the expense of a higher bit-rate) [3].
In order to obtain high quality predictions, the support area
should include all the motion compensated pixels located within
the corrupt macroblock. For a standard frame rate of 30 fps, the
motion vectors between two consecutive frames are likely to be
moderate. In fact, Fig. 9 shows the histograms of motion vec-
tors norm for four different 30-frame video sequences. It fol-
lows from the histograms that the support area composed as de-
scribed above covers more than 95% of motion vectors. In other

Fig. 8. Support area (grey 16 16 macroblocks) for combined TEC/SEC.
The striped macroblocks are lost.

words, in less than 5% of cases the motion compensated mac-
roblock lies (completely or partially) outside the support area
(MV amplitude greater than 16). For the sake of computational
simplicity, we assumed that the motion vectors were calculated
using only the previous frame. The more motion vectors that are
covered, the better reconstructions would be obtained as a more
complete set of motion compensated pixels (useful for predic-
tion) is used. However, the processing time increases with
so applying the proposed support area is a reasonable trade-off.
Using this support area, the weights will be computed in the
same way as in (12).
Note that pixels from the surroundings (within the current

frame) of the missing macroblock are also included. Thus, the
algorithm automatically decides whether to use SEC, TEC or
combined concealment. This is the consequence of dynamically
obtaining the LP coefficients and estimates the stationary area
, as discussed in Section II-B. For example, if the previous

frame belongs to a different scene, all relevant weights cal-
culated by (12) will most likely come from the current frame
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Fig. 9. Histogram of MV amplitudes for the video sequences of (a) Foreman, (b) News, (c) Stefan and (d) Bus. Motion vectors were obtained by minimizing the
residual error and applying full range search.

Fig. 10. Average weight per pixel from for the sequence of Stefan (a)–(b) and
Waterfall (c)–(d). The percentage indicates the total contribution from pixels
from the current frame ((a) and (c)) and from the previous frame ((b) and (d))
to the final reconstruction.

and the contribution of pixels from the previous (uncorrelated)
frame will be negligible. Nevertheless, temporal correlation is
usually higher than the spatial one and this phenomenon is ob-
served in the reconstruction process. Fig. 10 shows the average
weight associated with each pixel within the support area for
two different video sequences. We see that the contribution of

Fig. 11. Example of PSNR and MS-SSIM response to different image recon-
structions. (a) Received image, (b) reconstructed by orientation adaptive inter-
polation (OAI) [16] (c) recon-
structed using SLP-E (12) with

.

pixels belonging to the previous frame is considerably higher
than the contribution of those within the current frame. Sim-
ulations show that for standard video test samples, composed
by a single shot, the amount of information (pixels) gathered
from the previous frame is higher than 70%. Moreover, in some
particular cases there will be almost no good template matches
within the current frame, as shown in Figs. 10(c) and (d). Un-
like the pure spatio-temporal hybrid algorithms, our proposal is
applicable both for still images (or I-frames) and video. Since
temporal correlations tend to be higher than spatial correlations,
then smaller values of are preferred. Moreover, due to the
same reason, larger patches may be utilized to speed up the al-
gorithm and obtain higher quality reconstructions. Here, is
set to 5 and 8 8 patches are employed.
Fig. 5 shows a comparison of our proposal using only spa-

tial information, temporal information and a combination of
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TABLE II
PSNR VALUES (IN DB) AND MS-SSIM INDICES (SCALED BY 100) FOR TEST IMAGES RECONSTRUCTED BY SEVERAL ALGORITHMS FOR

BLOCK DIMENSIONS 16 16. THE BEST PERFORMANCES FOR EACH IMAGE ARE IN BOLD FACE

both with other techniques. In fact, it is observed, at both ob-
jective and subjective levels, that using only spatial informa-
tion achieves poorer quality. The improvement of the combined
method over the pure TEC is small, as can be also deduced from
Fig. 10. Nevertheless, including spatial information may pro-
vide a noticeable visual improvement as can be observed com-
paring Fig. 5(h) and (i).

V. SIMULATION RESULTS

In order to better take into account the perceptual quality, the
multi scale structural similarity (MS-SSIM) index [38] is used
for comparison along with the PSNR measure. In the former
case, the image is sequentially low-pass filtered and subsam-
pled, so a set of images is obtained, including the original resolu-
tion. Then, the SSIM index is applied for every subimage within
the set. The SSIM index aims at approximating the human visual
system (HVS) response looking for similarities in luminance,
contrast, and structure [39]. This index can be seen as a convo-
lution of a fixed-sized mask with the residual error between the
reference image and the concealed image [40]. A unique mask
size is used for each of the images within the set. Therefore fine
as well as coarse textures and objects are taken into account.
As shown in Fig. 11, the PSNR does not respond to per-

ceptual visual quality as well as the MS-SSIM index does,
since PSNR is a quality criterion merely based on the mean
squared error. In spite of that, the weights are obtained
according to the squared error (12) since the SSIM index tends
to marginalize the influence of changes in intensity [41]. This
is a desirable behaviour when measuring the overall perceptual
image quality but not when computing predictor coefficients.
Thus, the squared error is used when computing the weights
while the MS-SSIM index is preferred for an overall quality
measure.2

2Note that the MS-SSIM index lies in . In this section, we have scaled
the index by 100 in order to better illustrate the differences.

The performance of our proposals in SEC mode is tested on
the images of Lena (512 512), Barbara (512 512), Baboon
(512 512), Goldhill (576 720), Clown (512 512), Matlab
built-in images Cameraman (256 256), Office (592 896),
Tire (192 224) and the first frame of Foreman (288 352)
sequence. The test is carried out for 16 16 macroblocks and
the rate of block loss is approximately 25%, corresponding to
a single packet loss of a frame with dispersed slicing struc-
ture. We compare the performance with other SEC methods
such as bilinear interpolation (BIL) [6], projections onto convex
sets (POC) [8], directional extrapolation (EXT) [7], a Hough
transform based SEC (SHT) [10], content adaptive technique
(CAD) [13], non-normative SEC for H.264 (AVC) [42],Markov
random fields approach (MRF) [11], inpainting (INP) [15], bi-
lateral filtering (BLF) [18], frequency selective extrapolation
(FSE) [19] and orientation adaptive interpolation (OAI) [16].3

Both SLP via convex relaxation (SLP-C) and SLP with expo-
nentially distributed weights (SLP-E) are tested. In the simu-
lations, is set to 10 and grey level images are used. Note
that a pixel reconstructed by any of the aforementioned algo-
rithms is usually real-valued and does not necessarily belong to
. Thus, reconstructed pixels are rounded to the closest member
of . A subjective comparison of the different algorithms is
shown in Fig. 6. As can be seen in Table II, SLP-C provides the
best PSNR results as expected, but SLP-E outperforms all the
other technique for all the tested images in terms of MS-SSIM,
leading so to higher perceptual quality reconstructions. More-
over, the average MS-SSIM and PSNR are superior to those of
state-of-the-art algorithms. In addition, an oracle SPL-E (ORA)
is included, where the best (the value which provides the best
reconstruction) is applied for every patch, and it represents the
superior limit of the SPL-E performance.

3Implementations of most of these techniques, as well as the implementation
of our algorithm, is available online at [43].
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Fig. 12. Average PSNR (a) and MS-SSIM (b) values versus packet loss-rates averaged for all the tested video sequences. Tested procedures: SLP-E in the com-
bined SEC/TEC mode, BMA, OBMA and MHEC.

The proposed SLP-E technique in the combined SEC/TEC
mode is tested for H.264 coded video sequences of Foreman,
Stefan, Ice, Football, Bus, Irene, Flower and Highway. All
sequences employ the common intermediate format (CIF,
352 288) and they comprise 30 frames, where only the first
frame is intracoded and the remaining frames are predictive
coded. An aggressive block loss-rate is applied by utilizing
a dispersed slicing structure with two slices per frame (the
so-called chessboard structure, see Fig. 5(b)). In this scenario,
a loss of one packet implies a loss of 50% of the macroblocks
within a frame. However, note that our proposal can be easily
extended to other slicing modes. The quantization parameter
is set to 25 and the prediction buffer is one frame deep. Packet
losses are randomly generated at rates of 5%, 10%, 15% and
20%. For each packet loss rate (PLR), the sequence is trans-
mitted 20 times and the average PSNR and MS-SSIM values
are calculated. The proposed technique is compared with other
TEC algorithms, namely BMA [21], OBMA [21] and multi-hy-
pothesis EC (MHEC) [22]. The search range for BMA, OBMA
and MHEC is using the zero MV as the starting point,
i.e., BMA, OBMA, MHEC and our proposal all work with the
same information gathered from the previous frame. The pro-
posed SLP-E outperforms the other techniques for all the tested
sequences both in terms of PSNR and MS-SSIM. The results
for half of the eight sequences are shown in Table III. PSNR
and MS-SSIM values, averaged over all the tested sequences,
are shown in Fig. 12. Finally, a subjective comparison is shown
in Fig. 5.
Regarding the computational complexity, Table IV shows the

processing time ratios of [15], [24] and SLP-E to BMA. We
can observe that our proposal requires less processing time than
some of the state-of-the-art techniques. Moreover, the average
gains of [24] over BMA are approximately 2 dB for Foreman
and 1 dB for Irene and it outperforms [15] for both cases. Uti-
lizing the same simulation setup as in [24] (dispersed slicing,
quantization parameter set to 25 and PLR of 3%, 5%, 10% and
20%), SLP-E achieves average gains over BMA of 2.55 dB and
1.20 dB, respectively. Thus, SLP-E outperforms both [24] and
[15] with less computational burden. Due to the nature of our

TABLE III
AVERAGE PSNR AND MS-SSIM VALUES FOR DIFFERENT PLR FOR VIDEO
SEQUENCES OF FOREMAN, STEFAN, FOOTBALL AND ICE. TESTED PROCEDURES:

BMA, OBMA, MHEC AND SLP-E. THE BEST PERFORMANCES FOR
EACH SEQUENCE ARE IN BOLD FACE

TABLE IV
AVERAGE ERROR CONCEALMENT TIME FOR A

CORRUPTED FRAME COMPARED TO BMA

algorithm, the processing time per MB is approximately con-
stant regardless of the sequence and its resolution, as has been
confirmed by the simulations.
Finally, given a multi-scene sequence, the error may occur in

the border frame (usually intracoded). In such a case, MV based
techniques fail since they try to extract the concealment infor-
mation from the previous, and therefore uncorrelated, frame.
Modified BMA and OBMA are able to gather the information
from the current frame although the reconstructions tend to be
of poor quality since both algorithms seek the best match for
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the entire missing macroblock and this approach usually does
not lead to the lower residual energy. Note that the H.264/AVC
codec overcome this problem by allowing submacroblock pre-
diction. Moreover, OBMA cannot be applied for all the slicing
modes, e.g., this method is unable to conceal the chessboard loss
pattern utilizing only the spatial information. On the contrary,
due to the sequential filling and the dynamic adaptation to the
available information, none of the aforementioned scenarios is
an issue for our proposal in the combined SEC/TEC mode.

VI. CONCLUSIONS

We have developed a sparse linear prediction estimator,
which recovers lost regions in images by filling them se-
quentially with a weighted combination of patches that are
extracted from the available neighborhood. The weights are
obtained by solving a convex optimization problem that arises
from a spatial image model. Moreover, we show that the
weights can be approximated by an exponential function, so
that the resulting method can be alternatively interpreted as
a kernel-based Nadaraya-Watson regression. The proposed
techniques automatically adapt themselves to SEC, TEC or a
combined scenario and can be thus successfully applied to both
still images and video sequences.
Our proposals achieve better PSNR and perceptual recon-

struction quality than other state-of-the-art techniques. SLP-C
is optimized for squared error so it achieves better PSNR than
the approximated method. Simulations reveal, however, that
SLP-E provides better MS-SSIM. Finally, by applying the
approximated algorithm SLP-E the processing time is reduced
in a factor of 100.
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Abstract. This paper proposes a new variant of the least square autore-
gressive (LSAR) method for speech reconstruction, which can estimate
via least squares a segment of missing samples by applying the linear
prediction (LP) model of speech. First, we show that the use of a single
high-order linear predictor can provide better results than the classic
LSAR techniques based on short- and long-term predictors without the
need of a pitch detector. However, this high-order predictor may reduce
the reconstruction performance due to estimation errors, especially in the
case of short pitch periods, and non-stationarity. In order to overcome
these problems, we propose the use of a sparse linear predictor which
resembles the classical speech model, based on short- and long-term cor-
relations, where many LP coefficients are zero. The experimental results
show the superiority of the proposed approach in both signal to noise
ratio and perceptual performance.

Keywords: Speech reconstruction, error concealment, sparse linear
prediction, least squares, autoregressive model.

1 Introduction

Speech Reconstruction is a subject that has been widely treated in the speech
community and which has a number of applications. Thus, we can mention audio
restoration, where short signal segments completely degraded must be recovered
from adjacent segments as it frequently occurs in old recordings. Also, in Voice-
over-IP (VoIP) systems based on intraframe codecs, the real time constraints
imposed by the transmission protocols may cause a packet loss problem which
finally results in the loss of speech segments.

In order to perform the reconstruction of a lost signal segment, some sort of sam-
ple interpolation or extrapolation using adjacent and correctly received samples
must be applied [1]. This can be a difficult task. Fortunately, in the case of speech
there exists a well-known signal production model based on linear prediction (LP)
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which is employed bymany reconstructionmethods. Thus,we have the least square
autoregressive (LSAR) method [2], which carries out an iterative interpolation of
the lost samples from the adjacent ones applying the LPmodel and a least squares
(LS) estimation. Other methods also based on LP focus on the estimation of the
LP excitation (LP residual) [3,4]. Also, the LP spectrum has been combined with
sinusoidal models of the excitation for signal extrapolation [5].

In this paper we will focus on the class of LSAR signal interpolators, where
the missing samples are LS-estimated according to a previous estimation of the
LP model. Although the basic LSAR [2] just uses a short-term predictor, better
results can be obtained when long-term prediction is also considered as it is
common practice in speech coding [6]. A first drawback of this approach is that
it requires the use of a pitch detector which may be affected by detection errors.
This can be avoided using a single high-order predictor which accounts for both
short- and long-term correlations. The prediction order must be large enough
as to cover the longest possible correlations (due to the longest possible pitch).
Although this approach increases the computational cost, we will show that it
results in a better reconstruction performance.

The use of a single high-order predictor for LSAR is a simple and compact
solution. However, it does not follow the classical speech model based on short-
and long-term predictors. This involves that many LP coefficients that are forced
to be zero by this speech model can have now non-zero values, which can be
interpreted as a sort of estimation noise. Also, it must be considered that a
high-order predictor may be more affected by non-stationarity. For example,
and as it is shown later, this effect can degrade the performance for the case
of relatively small pitch values since the LP order is likely much larger than
necessary. This problem has been recently addressed by the application of sparse
linear prediction (SLP) [7,8]. The SLP idea consists in the optimization of a single
high-order linear predictor which maintains as much as possible the high sparsity
level involved by the classical speech model. The underlying philosophy of SLP is
that of predicting the missing samples by employing as few adjacent samples as
possible. This idea has already been successfully applied by the authors to video
packet loss concealment [9] and will be adapted here to speech reconstruction
by LSAR methods.

The paper is organized as follows. Section 2 is devoted to the review and
analysis of LSAR techniques. Then, the proposed SLP method is developed in
Section 3 and the simulation results are shown and commented in Section 4.
Finally, the main conclusions are summarized.

2 Least Square Autoregressive (LSAR) Interpolation

Let us review now the basic LSAR interpolation algorithm of reference [2]. Ac-
cording to the linear prediction model of speech signals, a sample x(m) is mod-
eled as,

x(m) =

P∑

k=1

akx(m − k) + e(m) (1)
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Fig. 1. Matrix form of the residual for the LSAR algorithm

where ak are the model coefficients and e(m) is a zero mean excitation signal.
Let us assume that a received signal segment x = (x(0), x(1), ..., x(N − 1))T

contains a series of lost (unknown) samples xUk = (x(k), ..., x(k +M − 1)). The
objective is to reconstruct the missing samples xUk using the remaining known
samples and the LP model of the signal (1). Rearranging the LP model and
expanding it to a matrix notation we obtain the formulation displayed in Fig. 1,
which can be rewritten in a compact notation as,

e(xUk,a) = x − Xa (2)

The missing samples xUk are then reconstructed by minimizing the squared error
expressed as

ε = ‖e‖22 = eT e = xTx+ aTRxa − 2aTrx (3)

where Rx = XTX and rx = XTx. Note that ε is a function of two unknown
variables, the predictor coefficients a and the unknown segment xUk, whose re-
construction is the objective of this problem. Since (3) involves unknown terms
of fourth and cubic order, solving the problem by differentiating ε with respect
to the unknown vectors xUk and a would be mathematically impractical. An
estimation-maximization (EM) procedure is used instead. First, Eq. (2) is lin-
earized by setting the unknown samples to zero (estimation). This makes the
squared error e to be a function of the LP-coefficients a only. The coefficients
are then computed by minimizing ε, that is, by solving the usual set of normal
equations, which yields,

â = R−1
x rx. (4)

Finally, the unknown samples are reconstructed using the estimated LP coeffi-
cients. This approach can be iterated several times, although in most cases very
few iterations are needed.
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Fig. 2. SNR performance of LSAR (red) and Extended LSAR (blue). The Extended
LSAR is applied with P = 10 and Q = 1.

Given that voiced speech signals are quasi-periodic, a speech sample is highly
correlated with the neighboring ones as well as with the samples shifted by
one (or several) pitch period. In order to exploit these longer correlations, a
modification of the basic LSAR (Extended LSAR) which introduces a long-term
predictor was proposed in [6]. The speech model involved by the Extended LSAR
is,

x(m) =
P∑

k=1

akx(m − k) +

Q∑

k=−Q

pkx(m − T − k) + e(m), (5)

where Q is the order of the long term LP and T is the pitch period. This is the
underlying speech model employed somehow by many speech codecs and can be
solved again through the corresponding set of normal equations. An interesting
feature of this model is that we can consider that equation (5) contains a single
predictor with a high level of sparsity. This feature will be exploited in our
proposal.

As mentioned in the introduction section, the long-term correlations can be
also exploited by the basic LSAR if a prediction order P , large enough to cover
the longest possible correlations, is used. The main advantage of this solution is
that no pitch estimation is needed.

In order to asses both the basic LSAR and the Extended LSAR, Fig. 2 shows
the average SNR values obtained by both techniques for gaps of 6 ms separated
30 ms. The corresponding experimental setup will be described in Section 4. The
basic LSAR performance is plotted versus the LP order P , while the extended
one is only shown for typical values (P = 10, Q = 1, 13 coefficients). A first
comparison can be made for this typical LP orders. In this case, the Extended
LSAR not only outperforms LSAR for P = 10, but also for 20 coefficients. This
makes clear the need of including long-term correlations. However, it is also
observed that the performance can be meaningfully increased with the basic
LSAR by simply increasing the LP order. The order increase does not make
sense for the Extended LSAR since this would simply imply that the short-term
predictor would absorb the long-term one.
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The main conclusion that can be extracted from the above discussion is that
the basic LSAR must be employed if there are no strong computational con-
straints. However, it still has two problems:

1. Many LP coefficients, which are forced to be zero when the classical speech
model is applied, can have now non-zero values. In principle, this may es-
pecially affect the inter-pitch and post-pitch coefficients and could be inter-
preted as a sort of estimation noise.

2. When a large order P is applied, the estimated coefficients can be more af-
fected by the non-stationarity of the speech signal since more autocorrelation
coefficients are used in (4).

The effect of these problems over the SNR plot of Fig. 2 is a SNR decay for the
higher LP orders. In average, this decay starts after the average pitch value of
the speech corpus (57.80 samples).

In this paper, we propose a modification of the LSAR algorithm oriented
to mitigate the above problems by applying sparse linear prediction (SLP) for
LP predictor estimation. We can consider that this proposal combines the best
features of the basic LSAR with large P and Extended LSAR since it uses a
single compact predictor which does not require pitch estimation and tries to
keep the sparsity of Extended LSAR. SLP and the proposed modification to
LSAR are presented in the next section.

3 LSAR by Sparse Linear Prediction

As discussed in the previous section, our goal is the development of a new variant
of LSAR with a single large-order predictor which is, at the same time, highly
sparse. Thus, we have to minimize the squared error in (3), with respect to a,
with a sparsity constraint, that is,

minimize ε(a) =
∥∥aTRxa − 2aTrx

∥∥2

2
subject to ‖a‖0 ≤ δ0.

(6)

where the term xTx is not included in the optimization procedure since it com-
prises the DC component of the squared error. The main problem that arises
when solving (6) is that the �0-norm is non convex so that the global minimum is
usually found by exhaustive search and is therefore computationally prohibitive.
This problem has been thoroughly studied in compressive sensing theory and
can be efficiently solved by applying convex relaxation [10], i.e.

minimize ε(a) =
∥∥aTRxa − 2aTrx

∥∥2

2
subject to ‖a‖1 ≤ δ1.

(7)

The objective function, as well as the constraints, are both convex and the opti-
mization problem can be efficiently solved by a convex optimization algorithm.
In our simulations, we apply the primal-dual interior point (IP) method [11].
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The LP-coefficients obtained in the previous step are then used to re-estimate
the unknown samples xUk. This is carried out by inserting the obtained coef-
ficients a into Eq.(2) and minimizing the squared error ε with respect to xUk,
which is the only unknown variable the squared error now depends on. Note
that only the equations within the dashed lines in Fig. 1 are involved in the
minimization since the remaining ones are constant with respect to xUk. These
equations can be rearranged so that the excitation signal is a combination of
known and unknown samples:

e = A1xUk +A2xKn (8)

where the matrices A1 and A2 are both constructed using the LP-coefficients
a and xKn = (x(k − P ), . . . , x(k +M + P − 1))T (see ref. [2] for more details).
The total squared error is then given by,

‖e‖22 = eTe = (A1xUk +A2xKn)
T (A1xUk +A2xKn) (9)

The unknown samples xUk that minimize the squared error are obtained by
setting the derivative of the squared error function with respect to xUk to zero

∂eTe

∂xUk
= 2AT

1 A1xKn + 2AT
1 A2xKn (10)

Finally, from Eq.(10) we have

x̂Uk = −(AT
1 A1)

−1(AT
1 A2)xKn (11)

The sparsity restriction does not make sense in this case since xUk is not sparse
in general, although it can be solved via convex optimization with no restrictions.

In order to better illustrate the differences between the sparse approach and
the classic LSAR, let us analyze two particular cases of missing segment recon-
struction. The first case involves a voiced segment with pitch period equal to
32 samples. The pitch period is calculated over the clean (original) signal using
the Yin pitch detector [12]. In the second case, an unvoiced segment is recon-
structed. For both cases, we perform a reconstruction with 100 LP-coefficients
using LSAR and the proposed technique. The results are shown in Fig. 3. Figure
3(a) shows the obtained coefficients for the voiced segment. As expected, the
SLP-coefficients are much sparser than the coefficients obtained by LSAR while
providing a reconstruction with lower squared error. Moreover, the significant
elements of the LP-vector are concentrated around the position of 32, 64 and a
small contribution around 96. Note that the pitch period of the original signal
has been determined to be 32. Thus, the proposed SLP predictor adaptively
encounters the pitch value. The case of the unvoiced segment reconstruction is
shown in Fig. 3(b). Again, the LSAR coefficients vector is much less sparse while
generating a reconstruction with larger squared error. In this case, SLP automat-
ically concentrates the weights in the close proximity of the lost segment which
is coherent with the assumption that in unvoiced segments the most correlated
samples are the closest ones.
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(a)

(b)

Fig. 3. Example of distribution of the LP-coefficients obtained by LSAR (red) and
SLP (blue). (a) Voiced segment. (b) Unvoiced segment.

4 Simulation Results

The speech utterances used for testing comprise a subset of 400 sequences ex-
tracted from the geographic corpus of the Albayzin database [13]. All the speak-
ers, used for recording the database, are also present in our tested subset. Figure
4 shows a comparison of LSAR and the proposed SLP-based algorithm in terms
of SNR. The average SNR value over the 400 utterances is shown for different
LP orders. The proposed SLP technique is also tested for different levels of spar-
sity (controlled with parameter δ1). Moreover, the comparison is carried out for
missing segment lengths (Tgap) of 6 ms and 8 ms. The losses are produced every
30 ms and a 32 ms window, centered over the missing segment, is used for es-
timating the predictor. The window is eventually extended (up to the required
length) in cases where the sum of LP order and the duration of the gap is larger
than the 32 ms window. Finally, two iterations are employed for both cases.

The simulations reveal that the larger the LP order, the sparser it should be
in order to obtain better quality reconstructions. The average pitch period of
the tested subset is 57,80 so, for shorter LP orders, there is no need to impose
sparsity over the LP estimator. Note that weak sparsity restrictions approximate
the LSAR behavior for low order LP estimators. For LP orders above the aver-
age pitch period, the performance of the LSAR technique starts to decay while
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(a)

(b)

Fig. 4. Performance comparison, in terms of SNR, of LSAR and SLP with different
values of δ. Both algorithms are tested for different values of LP order and two iterations
are applied. (a) Tgap = 6 ms. (b) Tgap = 8 ms.
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our proposal eventually rises and then practically maintains the reconstruction
quality (with a very slight decay). This results confirm that the basic LSAR with
large prediction order may be affected by noise estimation and non-stationarity
and that the sparsity constraint helps to palliate these problems. Also, we can
conclude that the sparsity parameter δ1 could be set according to the LP order,
although in this paper we focused on obtaining a fixed estimator suitable for the
majority of pitch periods. Thus, a high order and highly sparse (small δ1) LP
estimator is preferred.

Table 1 shows the average values of SNR and PESQ (Perceptual Evaluation
of Speech Quality) obtained for different lengths of lost segments. The LP order
is set to 100 in order to include all possible pitch values in the database and
5 iterations are used. The proposed method outperforms the basic LSAR in all
cases and the difference in perceptual quality has an increasing trend with the
gap length.

Table 1. Average SNR and PESQ values for SLP and LSAR for different lost segment
lengths. The simulation is carried out for P = 100 with 5 iterations.

SNR Tgap = 4ms Tgap = 6ms Tgap = 8ms Tgap = 10ms
SLP 18.10 15.13 13.03 11.38
LSAR 17.47 14.41 12.34 10.67

PESQ
SLP 4.00 3.81 3.63 3.47
LSAR 3.91 3.72 3.51 3.34

5 Conclusions

We have proposed a modification of the LSAR speech reconstruction algorithm
which uses sparse linear prediction. The proposed approach has several advan-
tages as avoiding the use of pitch detectors, a better approximation to the sparse
classical model employed in speech coding, a better behavior for large pitch val-
ues (reducing the estimation noise) and less sensitivity to non-stationarities.
Applying convex relaxation allows to solve the minimization problem with spar-
sity constraint in a relatively efficient way. The proposed technique outperforms
the classic LSAR both at objective and perceptual level. Future work includes
the dynamic adaptation of the sparsity parameter δ1 to the instantaneous pitch
values and the LP order.
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ABSTRACT

This paper proposes a methodology for the application of
multivariate kernel density estimation (KDE) to MMSE-
based image/video error concealment (EC). We show that the
estimation of the kernel bandwidth matrix for EC must follow
a criterion different from that of typical KDE problems. In
particular, we propose a bandwidth built as the product of a
structure matrix and a scale factor obtained with a minimum
square error criterion. We show that our proposal can achieve
average PSNR improvements larger than 1 dB with respect to
other state-of-the-art techniques.

Index Terms— kernel estimation, error concealment

1. INTRODUCTION

Achieving high QoS in multimedia applications is a very chal-
lenging task since the transmission of multimedia contents
over error prone channels may lead to errors or data losses.
The most advanced and utilized image and video coding sys-
tems (JPEG, H.264/AVC, etc.) are block-based so these er-
rors result in a loss of one or several macroblocks. In or-
der to mitigate the effect of these losses, error concealment
(EC) algorithms can be applied at the decoder. They take ad-
vantage of spatial and/or temporal correlations within the re-
ceived stream to recover the missing data. For image commu-
nication or video transmission, when temporal information is
not available or relevant, only spatial EC (SEC) is applicable.

A simple and common SEC technique is bilinear interpo-
lation [1] which is defined as the default SEC method in the
H.264/AVC codec. In order to better preserve important vi-
sual features, such as edges, a more advanced technique based
on Markov random fields was proposed in [2]. In [3], a se-
quential pixel-wise method that draws on orientation adaptive
interpolation was introduced. Bilateral filtering that exploits
a pair of gaussian kernels is treated in [4]. A switching con-
tent adaptive SEC algorithm was proposed in [5]. Inpainting
methods have also been successfully applied to EC problems

This work has been supported by an FPU grant from the Spanish Min-
istry of Education and by the MICINN TEC2010-18009 project.

[6]. A Hough transform based technique that aims at recov-
ering edges based on their visual properties was proposed in
[7]. Also, SEC techniques in a transformed domain have been
recently proven to produce high-quality reconstructions [8].

In our previous paper [9] we proposed an EC technique
which estimates a lost group of pixels (patch) through lin-
ear prediction (LP). This method provided better results than
other state-of-the-art techniques such as [1]-[8]. The LP pre-
dictor is obtained by minimizing the square error between
a context vector containing the available pixels around the
missing patch and a linear combination of context vectors
taken from the neighbourhood. This optimization was carried
out under constraints of non-negativity and sparsity via con-
vex relaxation. We also showed that the resulting estimation
could be approximated by a multivariate Nadaraya-Watson
regression with a Gaussian kernel [10]. This kernel-based
view of sparse linear prediction offers a number of advan-
tages. In particular, it can be interpreted as a minimum mean
square error (MMSE) estimation where the required proba-
bilities have been obtained through kernel density estimation
(KDE) [11]. In this paper, we will exploit and generalize
this new point of view which will allow us to apply powerful
Bayesian tools to EC. Moreover, we will see that the goal of
signal reconstruction is quite different from that of regression.
Since the main problem in KDE is the estimation of the band-
width matrix H , this means that H must be computed with
a criterion different from the one usually applied for KDE
or regression. Thus, we will propose a method to obtain the
bandwidth which is specifically conceived for reconstruction.

The paper is organized as follows. The EC framework is
detailed in Section 2. The proposed algorithm is described in
Sections 3 and 4. Simulations results are discussed in Section
5. The last section is devoted to conclusions.

2. PREVIOUS WORK AND CONCEALMENT
FRAMEWORK

The concealment framework used along this paper will be the
same as that of reference [9]. In the following, we briefly
summarize it. Let L be the set of missing pixels. Our goal

1330978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



is the prediction of a vector z0 = (xt0,y
t
0)
t, where x0 is a

patch of lost pixels in L and y0 contains a set of (adjacent and
available) context pixels. Let S be the set of available pixels
which can be employed for prediction. We will consider all
the possible vectors zj (j = 1, . . . ,M ) that can be built in S
with the same shape and dimensionality as z0 (that is, zj =
(xtj ,y

t
j)
t). Then, the LP estimator for x0 can be written as,

x̂0 =
M∑
j=1

wjxj , (1)

where w = (w1, . . . , wM )t is the vector of LP coefficients.
We consider a block-based codec where the missing re-

gion L is a 16×16 macroblock and the support area S com-
prises all the available pixels within the neighbouring mac-
roblocks around L. In this paper, we will employ an error
pattern as shown in Fig. 3(a) which corresponds to a rate of
block loss of approximately 25% with dispersed slicing struc-
ture [12]. Note, however, that our technique can be straight-
forwardly extended to other error patterns. We will also con-
sider 2×2 patches x0 of missing pixels and the corresponding
context y0 will comprise all the available pixels within the
6×6 pixel neighbourhood centred in x0. Vectors zj replicate
the shape of z0. These configurations are shown in Fig. 1(a).
Moreover, macroblocks are concealed sequentially from the
outer layer towards the centre (see Fig.1(b)). This filling or-
der is based on a reliability parameter and it is detailed in [9].

In our previous work [9], the weights wj of Eq. (1) are
obtained by minimizing the following square error,

εy(w;y0) =

∥∥∥∥∥∥y0 −
M∑
j=1

wjyj

∥∥∥∥∥∥
2

2

(2)

along with non-negativity (w � 0) and sparsity constraints.
In [9], we also showed that these LP weights could be approx-
imated through the following exponential function,

wj = Cexp

(
−1

2

‖y0 − yj‖2

mσ2

)
, (3)

where σ2 is a decay factor (σ2 = 10 in [9]), m is the di-
mensionality of the context vectors, and C is a normalization
factor so that

∑
j wj = 1. The resulting estimation can be

viewed as a particular form of Nadaraya-Watson regression
which employs a multivariate Gaussian kernel with a scalar
bandwidth h =

√
mσ2. This new kernel-based point of view

is exploited in the following section.

3. THE KERNEL-BASED APPROACH

Kernel density estimation (KDE) is a non-parametric way for
the estimation of the probability density function (pdf) associ-
ated to a given random process from a set of observations. In
our case, we are interested in the pdf of z = (xt,yt)t from the
set of observations {zj ; j = 1, . . . ,M}. The corresponding

(a) (b)
Fig. 1. (a) Example of configuration for the vectors x, y and z. S
denotes the set of known pixels and L denotes the set of lost pixels.
(b) Filling order for sequential reconstruction with 2×2 patches. The
regions illustrated by brighter level are recovered first.

KDE estimate can be written as,

p(z) =
1

M

M∑
j=1

1

|H|
K
(
H−1(z− zj)

)
=

1

M

M∑
j=1

K
(j)
Z (z).

(4)
where K(u) = exp(−utu/2)/

√
2π is the (Gaussian) kernel

employed andH is the bandwidth matrix. A more convenient
form of the KDE estimator is given in the last part of Eq.
(4), where p(z) adopts the form of a Gaussian mixture model
(GMM) and K(j)

Z (z) represents a multivariate Gaussian with
mean zj and covarianceH which can be decomposed as,

H = HHt =

(
HXX HXY
HY X HY Y

)
. (5)

In the following, we will also refer toH as bandwidth matrix.
Once p(z) has been obtained, different Bayesian estima-

tion techniques can be carried out. In particular, we are in-
terested in the MMSE estimator of x0 given y0. Since the
KDE estimate has the form of a GMM, we can adapt the well-
known MMSE estimation formulae for GMM models [13],
obtaining

x̂0 = E[x|y0] =
∑M
j=1 wj(y0)µ

(j)
X|Y (y0) (6)

wj(y0) =
K

(j)
Y (y0)∑M

i=1K
(i)
Y (y0)

(7)

µ
(j)
X|Y (y0) = E[x|y0,yj ] = xj +HXYH−1Y Y (y0 − yj)(8)

where K(j)
Y (y) represents a multivariate Gaussian with mean

yj and covariance HY Y . The estimator just derived can be
interpreted as a multivariate generalization of the Nadaraya-
Watson regressor defined by Eqs. (1) and (3). Note that,
unlike the MMSE estimator in [13], our proposal does not
require an off-line GMM training and can be easily applied
on-line from the set of available vectors zj(j = 1, ...,M).

4. BANDWIDTH ESTIMATION

4.1. Classical KDE estimation

The most important issue in KDE problems is the bandwidth
estimation (BE). There exist several approaches for it. A pop-
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(a) (b)

Fig. 2. Example of εy = εy(β
2;y0) for two different patches using

scalar, diagonal and complete bandwidths.

ular and usually recommended approach is that of the so-
called plug-in methods [14]. The goal of these methods is
the minimization of the asymptotic mean integrated squared
error (AMISE).

In this paper, we will consider the plug-in method for mul-
tivariate KDE described in [15, 16]. In this case, it is consid-
ered that H = β2FZZ , where β2 is a scale factor and FZZ is
a structure matrix. If FZZ is known, the problem is reduced
to the estimation of the scale factor β2. This requires a quite
complex procedure whose details can be found in [15]. It is
interesting to note that if we decompose FZZ in the same way
as in (5) the conditional mean of Eq.(8) does not depend on
β2, that is,
µ

(j)
X|Y (y0) = E[x|y0,yj ] = xj + FXY F

−1
Y Y (y0 − yj) , (9)

In [15], FZZ is approximated by the covariance matrix CZZ
of the observed samples {zj ; j = 1, . . . ,M}.

4.2. A minimum square error (MSE) approach

The classical methods for BE in KDE (or regression) prob-
lems try to estimate a pdf suitable for the whole space of
observations [14]. However, the goal of reconstruction tech-
niques is to obtain an estimate of a specific patch x0 given its
known context y0. Thus, a BE procedure to be employed in
signal recovery problems should be oriented to be as accurate
as possible at the point of interest.

In this paper we propose that the criterion for BE should
be the same as the one employed for the sparse linear predic-
tion method in [9], that is, the minimization of the square error
of Eq. (2). This minimization is now constrained to weights
of the form given by Eq. (7). Since these weights only depend
on the bandwidth H, we can consider that the function to be
minimized is εy = εy(H;y0).

In order to carry the minimization of εy versus the band-
widthH we could apply some sort of optimization algorithm.
Some preliminary experiments (with a steepest descent pro-
cedure) have revealed that this type of solution yields an un-
stable convergence and poor results due to the large number
of parameters in matrix H. Only in the case of considering
a scalar bandwidth (that is, H = h2I , I identity matrix), we
could obtain acceptable results. However, even in this case,
the steepest descent solution was not worthwhile either since
the minimization of εy = εy(h

2;y0) was even much more
time-consuming than an exhaustive search within the typical
range of variation of h2.

In order to overcome these problems, in this paper we pro-
pose a BE procedure as follows:

1. We will adopt the same assumption as in the plug-in BE
method described above based on the use of a scale fac-
tor β2 and a known structure FZZ , that is,H = β2FZZ .

2. Then, since FZZ is fixed, the weights are only functions
of β2 (that is, wj = wj(β

2;y0)), so that the square er-
ror to be minimized εy = εy(β

2;y0) also depends only
on the scale factor β2. Therefore, the corresponding
minimization is feasible by exhaustive search within
the typical range of variation of β2.

In order to carry out an efficient exhaustive search, we can
define a set of auxiliary weights as follows,

w̃j(y0) = exp
(
(y0 − yj)

tF−1Y Y (y0 − yj)
)
. (10)

These auxiliary weights do not depend on β2 and can be pre-
computed. Then, during the exhaustive search, the weights
(Eq.(7)) for every value of β2 can be efficiently obtained as,

wj(β
2;y0) =

(w̃j(y0))
1/β2∑M

i=1(w̃i(y0))1/β
2
. (11)

Finally, once the optimal value of β2 and its corresponding
weights have been obtained, the unknown patch x0 can be
estimated through Eqs. (6) and (9).

Several approaches for BE are adopted depending on the
selection of the structure matrix FZZ according to its level of
complexity [17]:

1. A scalar bandwidth FZZ = σ2
ZI , where σ2

Z is the vari-
ance of the available pixels (in set S). This approach
can be reduced to the algorithm described in [9] by
forcing β2σ2

Z = 10m.

2. A diagonal bandwidth FZZ = diag(CZZ)I .

3. A complete bandwidth FZZ = CZZ , as in [15].

Figure 2(a) shows examples of the error curve εy(β2;y0), ob-
tained during the minimization procedure, for all three ap-
proaches. Scalar and diagonal bandwidths produce almost
identical results since µ

(j)
X|Y (y0) = xj for both cases and the

diagonal of the correlation matrix CZZ tends to be uniform.
Simulations reveal that both configurations tend to smooth
high frequency textures (see Fig. 3(b)). On the other hand,
complete bandwidth matrices can recover fine textures with
high accuracy (see Fig.3(c)), although sometimes they show
an unexpected behaviour (see Fig. 2(b)). A possible ex-
planation is that the minimization of εy(β2;y0) is equiva-
lent to the maximization of the corresponding PSNR only if
FY Y = σ2

ZI . Moreover, the scalar (and diagonal) approach
is more robust against non-stationarity. In this case, an inac-
curate selection of the structure matrix FZZ = σ2

ZI can be
corrected by modifying β2, since H = β2σ2

ZI . This, how-
ever, is not possible for complete structure matrices. Thus,
in order to achieve a compromise between texture reconstruc-
tion and PSNR, we will also test a combination of scalar and
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SEC
Lena Goldhill Barbara Average

PSNR
MS-

PSNR
MS-

PSNR
MS-

PSNR
MS-

SSIM SSIM SSIM SSIM

[1] 30.42 96.56 31.27 95.65 26.85 94.87 28.57 95.04
[5] 31.96 97.25 30.24 94.53 27.39 96.20 29.46 95.71
[2] 32.17 97.64 31.12 95.71 27.99 96.00 29.57 95.99
[4] 32.15 97.44 30.91 95.52 29.91 97.04 30.22 96.39
[6] 30.85 97.08 30.40 95.21 28.03 95.72 29.23 95.69
[7] 32.70 97.96 31.66 96.35 28.41 97.37 30.28 96.74
[3] 32.82 97.65 31.54 95.62 29.66 97.07 30.35 96.08
[8] 32.72 97.80 31.78 96.14 30.84 97.64 30.50 96.56
[9] 32.55 97.97 31.72 96.43 30.80 98.01 30.55 96.98
KDS 32.22 98.02 31.43 96.40 30.84 98.11 30.51 97.00
MSS 32.84 98.11 32.03 96.67 31.33 98.25 31.20 97.27
MSD 32.87 98.11 32.02 96.66 31.35 98.26 31.21 97.28
MSC 32.69 98.00 32.14 96.77 31.77 98.35 31.24 97.28
MSX 33.00 98.18 32.17 96.84 32.22 98.55 31.43 97.40

Table 1. PSNR values (in dB) and MS-SSIM indices (scaled by
100) for test images reconstructed by several algorithms for block
dimensions 16 × 16. The best performances for each image are in
bold face.

complete bandwidths where the complete bandwidth matrix is
employed to compute the conditional means µ

(j)
X|Y (y0) (Eq.

(8)) and the scalar bandwidth for the weights wj (Eq. (7)).

5. EXPERIMENTAL RESULTS

In order to reflect the perceptual quality of the reconstruc-
tions, the multi-scale structural similarity (MS-SSIM) index
[18] is used for comparison along with the objective PSNR
measure. MS-SSIM is a weighted combination of SSIM
indices computed over different image resolutions. Thus,
coarse structures as well as fine textures are taken into ac-
count. SSIM index aims at approximating the human visual
system response looking for similarities in structure, contrast
and intensity [19].

The performance of our different proposals is tested on the
images of Lena (512×512), Goldhill (720×576), Foreman
(352×288), Barbara (512×512), Baboon (512×512), Clown
(512×512), Tire (205×232), Pirate (1024×1024), Boat
(512×512) and Peppers (384×512). We will use the frame-
work described in Section 2. For our MSE approaches, β2

is searched exhaustively within the range [0, 2] with steps of
0.01. First, we test the performance of the scalar bandwidth
using the classical KDE (KDS) of Section 4.1 and our MSE
approach (MSS) and compare them with our previous expo-
nential sparse linear prediction (SLP) algorithm [9], which
we will use as a reference (marked in Table 1). Table 1 shows
that KDS performs considerably worse than MSS and it
provides virtually no improvement over [9]. Thus, in the fol-
lowing, we focus on the MSE approach for scalar bandwidth
as well as diagonal (MSD) and complete (MSC) bandwidth
matrices. Moreover, we also use the combined scenario with
scalar and complete bandwidths (MSX ) as described at the
end of Section 4.2. We compare our proposals with other
state-of-the-art SEC techniques [1]-[9].

Table 1 shows the results in terms of PSNR and MS-SSIM
for the images of Lena, Goldhill and Barbara as well as the

(a) (b)

(c) (d)
Fig. 3. Subjective comparison for a fraction of Goldhill. (a) Re-
ceived data. (b) Reconstruction using scalar bandwidth (MSS). (c)
Reconstruction using complete bandwidth matrix (MSC ). (d) Re-
constructed by [8].

average performance over all ten tested images. The results
confirm our hypothesis that the KDS approach is not EC ori-
ented. On the other hand, all of our MSE proposals outper-
form the other techniques, including our previous exponen-
tial SLP. In addition, scalar and diagonal bandwidths produce
almost identical results. The complete bandwidth performs
better on average although is inferior in some particular cases
(e.g. Lena). Finally, the combination of the high quality re-
constructions produced by complete bandwidth with the good
behaviour of the scalar one produces the best result both on
subjective and objective levels. A subjective comparison is
shown in Fig.3.

Due to the efficient implementation of the exhaustive
search, carried out utilizing precomputed weights (Eqs. (10)
and (11)), the computational complexity is only moderately
increased with respect to SLP for all the MSE proposals.
This increment of complexity is reflected in the reconstruc-
tion quality which is improved in 0.9dB on average (for
MSX ). The KDS approach, on the other hand, requires up to
half an hour per macroblock and therefore is computationally
prohibitive for on-line applications.

6. CONCLUSIONS

We have proposed a framework for image EC based on a gen-
eralization of the Nadaraya-Watson estimator with an MSE-
based bandwidth estimation. We have shown that this MSE
criterion achieves a performance significantly better than that
of classical KDE with pdf matching. Using a simple scalar
bandwidth we achieve an average improvement over [9] of
0.7dB. This improvement is later incremented up to almost
1dB by combining the robustness of the scalar bandwidth with
the accurate reconstructions of fine textures produced by com-
plete bandwidth matrices. Ongoing work is focused on a more
accurate selection of the bandwidth matrix structure.
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1

Kernel-based MMSE multimedia signal
reconstruction and its application to spatial error

concealment
Ján Koloda, Student Member, IEEE, Antonio M. Peinado, Senior Member, IEEE,

and Victoria Sánchez, Member, IEEE

Abstract—This paper proposes a novel approach for multi-
media signal reconstruction based on kernel density estimation
(KDE). We make use of a vector formalism in which vectors
consist of a first subvector containing a set of missing samples and
a second one containing a set of available context samples. The
missing subvector is reconstructed by a minimum mean square
error estimator which employs a probability density function
(pdf) obtained by KDE. As in any kernel-based method, the main
issue to deal with is the estimation of an appropriate kernel
bandwidth. We propose an adaptive procedure for bandwidth
estimation (BE) especially conceived for signal reconstruction.
Thus, unlike general KDE or kernel-based regression, which
try to obtain a general fit, the focus of this BE procedure is
on the specific missing subvector. Also, in order to exploit local
signal correlations, our BE proposal adopts a scaling approach
in which the bandwidth is computed as the local covariance
matrix scaled by two factors. These two scale factors are
obtained by minimization of two different approximations to the
reconstruction error. The resulting reconstruction methodology is
tested on a spatial error concealment (EC) application in which
intracoded images have been transmitted through an error prone
channel. The experimental results show the superiority of the
proposed approach over a wide range of existing EC techniques.

Index Terms—kernel density estimation, bandwidth estimation,
multimedia signal reconstruction, spatial error concealment

I. INTRODUCTION

THE estimation of a probability density function (pdf)
from a given data set is a necessary step in many

multimedia signal processing applications [1]. A classical
widespread approach is the one based on the assumption that
the signal statistics can be appropriately modelled by a certain
parametric pdf, so that the pdf estimation is reduced to the
computation of the model parameters from training data. This
approach has two critical issues which may make it inaccurate:
the suitability of the selected model and the availability of
sufficient data for model training. On the contrary, in non-
parametric methods such as kernel density estimation (KDE),
the available data set itself determines the structure of the
pdf, avoiding the need for a model selection. Examples of
multimedia applications, such as regression, classification,
tracking, segmentation, super-resolution, reconstruction or, in
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particular, error concealment, where KDE has been success-
fully employed can be found in [1]–[6].

In KDE, a kernel function is repeated at every data point and
the combination of the resulting replicas generates the desired
pdf estimate. There are two issues that must be addressed in
order to solve a KDE problem: the selection of the kernel
function and the estimation of a suitable kernel width (usually
known as bandwidth), being this last issue the most critical
one [7]. While the typical approach involves the estimation of
a single global bandwidth for the whole pdf [8], in many cases,
e.g. multimedia signals, one global bandwidth is not sufficient
since data statistics are not homogeneous and a global fit to
the entire data set could be considerably inaccurate. Variable-
bandwidth kernel estimation improves the performance of
kernel estimators by focusing the kernel bandwidth to the local
data statistics [3].

In this paper we will deal with the problem of signal
reconstruction, that is, the estimation of a group of missing
signal samples given its known context under a kernel-based
point of view. In principle, signal reconstruction can be viewed
as a regression problem, where the regressor can be expressed
as an expectation over a KDE pdf estimate [9]. However, the
objectives of signal reconstruction are significantly different
from those of KDE or regression. First, the goal of recon-
struction is the estimation of a specific group of samples rather
than a global or even a local fitting like in KDE or regression.
Second, an accurate reconstruction, able to reproduce fine
signal details, must preserve local signal correlations. This
issue is especially relevant in the case of multimedia signals. In
order to achieve both goals, we will adopt a multidimensional
framework where a group of adjacent signal samples are
arranged in a multidimensional vector [10] [11]. This multi-
dimensional formalism will allow a suitable signal correlation
modelling as well as the interpretation of the reconstruction
problem as the estimation of a single vector in the missing
data subspace.

As for any KDE problem, the main issue of kernel-based
reconstruction will also be the estimation of a suitable band-
width, which, under the multidimensional formalism, becomes
a matrix. Bandwidth estimation methods can be classified into
two main categories [12]: quality-of-fit methods and plug-
in methods. The first category employs cross validation. The
bandwidth is estimated on a subset of samples and then
validated on the remaining ones. Usually, a least squares
criterion is followed. The plug-in techniques optimize the
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fit between the real density function and its kernel-based
approximation by minimizing the mean integrated square error
(MISE). Other pdf error criteria can also be utilized [13].

In spite of the extensive bibliography on bandwidth esti-
mation, none of the above mentioned categories is oriented
to multimedia signal reconstruction. In the following sections
we will propose a methodology for signal reconstruction
based on KDE with variable bandwidth which has been
especially conceived for this task. This methodology can be
summarized in three points. First, the signal reconstructor
derives from a minimum mean square error (MMSE) estimator
based on KDE. Second, the criteria for the estimation of
the corresponding bandwidth matrix will be derived from
a comparison with the linear MMSE (LMMSE) estimator.
Finally, in order to mitigate the problem of the large number of
parameters to be estimated in a full bandwidth matrix, we will
propose a submatrix scaling approach where the bandwidth
is obtained from a structure matrix (which accounts for the
signal correlations) which is adapted by applying different
scale factors at submatrix level.

Although the proposed methodology is general and appli-
cable to any mono- or multi-dimensional signal, we will test
its utility over an error concealment (EC) application and, in
particular, we will consider the concealment of intra-coded
images transmitted over a lossy channel with application to
spatial EC in video signals. It is worth noticing that non-
parametric methods and kernel regression have been scarcely
researched within the image/video processing field [6]. More-
over, EC applications based on KDE are even scarcer. In this
line, we can mention the bilateral kernel regression proposed
in [14] which employs a pair of spatial and radiometric kernels
that are used to filter the degraded image. This approach,
however, neglects the correlations between the positions of
the pixels and their values, and the reconstruction of periodic
textures may be penalized as pointed out in [6] and [15],
respectively. Also a sequential Bayesian approach using a
DCT pyramid is treated in [11]. Here, fixed bandwidth values
are applied regardless of the input data. Unlike our proposal,
these EC techniques utilize scalar bandwidths that do not take
into account the correlations between adjacent pixels so fine
textures may be recovered inaccurately.

The paper is organized as follows. Section II describes the
multidimensional framework that will be used throughout the
paper and the experimental setup for the image EC application.
Kernel-based MMSE estimation is introduced in Section III.
In Section IV, a scaling approach for bandwidth estimation
oriented to signal recovery is proposed. The simulation results
are presented and discussed in Section V. The last Section is
devoted to conclusions.

II. MULTIDIMENSIONAL FORMALISM AND IMAGE ERROR
CONCEALMENT

The utility of a multidimensional formalism for multimedia
signal reconstruction was already justified in the introduction
section and has been previously employed in other related
work [10] [11] [15] [16]. In this section, this formalism is
summarized along with its particularization to an EC applica-
tion where groups of pixels in an intra-coded image, which

(a) (b)

Fig. 1. (a) Example of configuration for the vectors x, y and z.
(b) Filling order for sequential reconstruction with 2×2 patches. The
regions illustrated by brighter level are recovered first.

have been lost due to an error-prone transmission channel,
must be reconstructed.

We consider a setR of adjacent samples (e.g., a segment for
1D signals or a region for 2D signals). We also consider that
this segment is degraded in some way, so it finally contains
both missing and available samples. Let L and S be the sets of
adjacent missing samples and available samples, respectively,
so that R = L⋃S.

Our goal is the estimation of a vector x0 ⊂ L of lost
samples. In our scheme, we consider that x0 is part of a larger
vector z0 = (xt0,y

t
0)t, where y0 ⊂ S is a context vector which

contains a set of available samples adjacent to those of x0. A
2D-signal example of configuration for z0 is illustrated in Fig.
1(a). Additionally, we will consider all the possible available
vectors zj (j = 1, . . . ,M ) that can be built in S with the same
configuration, that is, the same shape and dimensionality as z0.
Therefore, every zj can be decomposed in the same way as
z0, that is, zj = (xtj ,y

t
j)
t. This is also illustrated in Fig. 1(a).

In the following, xj and yj (j = 1, . . . ,M ) will be referred
to as prototype vectors and context vectors, respectively.

As mentioned, the proposed kernel-based methodology for
signal reconstruction will be tested over an EC application
for intra-coded images transmitted over a lossy channel. The
corresponding implementation details are the same as those
described in [15] and are briefly summarized here. We consider
a block-based codec where the missing region L is a 16× 16
macroblock and the support area S comprises all the available
pixels within the neighbouring 16×16 macroblocks around L.
We will employ an error pattern as shown in Fig. 8(a) which
corresponds to a single packet loss of a frame with dispersed
slicing structure, leading to a block loss rate of approximately
25% [15]. Moreover, random losses with the same rate will
also be employed. Figure 5(a) shows an example of random
loss. It must be pointed out that the techniques proposed
along this paper can be straightforwardly extended to other
error patterns or other applications, such as inpainting and, in
general, signal recovery applications.

We will consider that the missing subvector x0 is a 2 × 2
patch of pixels, and its corresponding context vector y0 will
comprise all the available pixels within the 6 × 6 pixel
neighbourhood centred at x0, as described in [15]. This yields
4 dimensions for x0, and from 16 up to 32 dimensions for its
context y0. Vectors zj replicate the shape and dimensionality
of z0. These configurations are also shown in Figure 1(a).
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This figure also reveals that the inner samples in L cannot be
directly estimated since there are no context samples around
them. In order to overcome this problem, missing vectors in
set L are reconstructed by applying a filling procedure (see
[15] for details) where estimates are sequentially obtained
from the outer layer of L towards its centre. Thus, samples
already reconstructed can be considered available (that is, they
are moved to set S), allowing so the reconstruction of inner
samples. This sequential filling is illustrated in Fig. 1(b).

III. KERNEL-BASED MMSE ESTIMATION

As mentioned in the introduction section, our goal is to
obtain an MMSE estimate E[x|y0] of the missing vector x0

given its context y0. In order to do so, a characterization
of the signal statistical behaviour is required. In particular,
we will consider the random vector variable z = (xt,yt)t

corresponding to the sample configuration defined by x0

and y0 as explained in Section II. If the probability density
function (pdf) associated to z is available, then the desired
MMSE estimate can be obtained from it. In this section, we
explore the application of KDE for this task.

KDE provides an estimate of the pdf associated to the
random variable z given a set of observed vectors {zj ; j =
1, . . . ,M} in a non parametric way, that is, avoiding any
assumption about the original pdf. This is carried out by
replicating a basic kernel function K(u) at the observed
vectors and summing as follows,

p(z) =
1

M

M∑

j=1

1

|H|K
(
H−1(z − zj)

)
=

1

M

M∑

j=1

K
(j)
Z (z).

(1)
Matrix H , commonly known as bandwidth, plays a key role
in KDE methods since it controls the smoothness of the
resulting pdf. We will assume a Gaussian kernel K(u) =
exp(−utu/2)/

√
2π in the rest of the paper. In Eq. (1) we

have also introduced a simplified notation where K(j)
Z (z) is a

multivariate Gaussian with mean zj and covarianceH = HHt

which will be also referred to as bandwidth for simplicity. This
bandwidth can be decomposed as,

H =

(
HXX HXY
HY X HY Y

)
. (2)

The knowledge of p(z) allows the application of Bayesian
techniques and, in particular, MMSE estimation. In order to
do that, it is convenient to observe that the pdf of Eq. (1)
has the form of Gaussian mixture model (GMM) with equal
a priori probabilities and covariance matrices (1/M and H,
respectively). Then, we can straightforwardly adapt the well-
known expressions for the MMSE estimator of x0 given y0

under GMM modelling [10], which for our case are [16],

x̂0 = E[x|y0] =
∑M
j=1 wj(y0)µ

(j)
X|Y (y0) (3)

wj(y0) =
K

(j)
Y (y0)

∑M
i=1K

(i)
Y (y0)

(4)

µ
(j)
X|Y (y0) = E[x|y0,yj ] = xj +HXYH−1

Y Y (y0 − yj) (5)

where K(j)
Y (y) is the marginal kernel for y, with mean yj and

covariance HY Y . In the following, we will refer to Eqs. (3)-
(5) as K-MMSE estimator (kernel-based MMSE estimator). It
is worth noticing that, unlike the MMSE estimator in [10],
the K-MMSE estimator can be applied on-line from the set
of observations (without the need of any a priori pdf model),
although it will require an estimate of the bandwidth matrix
H. This issue is dealt with in the next section.

The K-MMSE estimator can be expressed more compactly
as,

x̂0 = x̃0 +HXYH−1
Y Y (y0 − ỹ0) (6)

where x̃0 and ỹ0 are vectors linearly predicted from the sets
of prototype and context vectors, respectively, that is,

x̃0 =
M∑

j=1

wj(y0)xj (7)

ỹ0 =
M∑

j=1

wj(y0)yj . (8)

Note that when x and y are independent variables (HXY = 0),
then the K-MMSE estimator is reduced to a multivariate
Nadaraya-Watson (NW) regressor (x̂0 = x̃0) with bandwidth
matrix HY Y . Therefore, we can say that the K-MMSE estima-
tor consists of two terms. The first one, the predicted vector
x̃0 of Eq. (7), is a NW estimate of x0. For a Gaussian kernel,
the prediction weights wj are computed as,

wj(y0) =
exp

(
− 1

2 (y0 − yj)tH−1
Y Y (y0 − yj)

)
∑M
i=1 exp

(
− 1

2 (y0 − yi)tH−1
Y Y (y0 − yi)

) . (9)

The second term of Eq. (6) is a correction vector where the
unpredictable part of y0 is transformed into subspace x.

Like in all kernel-based problems, the key point will be the
estimation of the kernel bandwidth. In the following section
we will focus on this issue and propose a bandwidth matrix
estimation methodology especially oriented to multimedia
signal reconstruction and able to dynamically adapt itself to
the local characteristics of the data.

IV. BANDWIDTH ESTIMATION FOR SIGNAL
RECONSTRUCTION

The estimation of the bandwidth is the key issue in KDE (or
kernel-based regression) problems, where a pdf suitable for the
whole space of observations is usually desired [8]. However,
the goal of signal reconstruction is to obtain an estimate of
a specific vector x0 given its known context y0, where, in
general, the signal will be non-stationary. Thus, a bandwidth
estimation (BE) procedure for signal recovery should focus
on the point of interest. This can be easily understood if we
take into account that the weights wj of Eq. (4) that control
the contribution of every observation zj can be alternatively
written as,

wj(y0) =
K

(0)
Y (yj)∑M

i=1K
(0)
Y (yi)

(j = 1, ...,M) (10)

where K(0)
Y (y) represents a multivariate Gaussian with mean

y0 and covariance HY Y . Then, instead of having a GMM
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Fig. 2. Monodimensional example of prediction weight computation.
The weights (marked with black points) can be obtained by evaluating
kernel replicas K(j)

Y (y) at y0 or, alternatively, a single kernel K(0)
Y (y)

at yj (j = 1, ...,M ).

model for the whole space of observations which is evaluated
at point y0, we can consider that we have a single Gaussian
centred at y0 and evaluated at every observed context yj . This
is illustrated in Fig. 2 for the case of a monodimensional
subvector y. The figure makes it clear that the important
issue here is the bandwidth of the kernel centred at y0,
which controls the similarity of the observed contexts yj
(j = 1, ...,M) with y0.

Also, we must point out the importance of using a mul-
tivariate kernel with a complete bandwidth matrix in signal
reconstruction problems. Most of the literature on BE for KDE
deals with the estimation of a scalar bandwidth. This type of
bandwidth is enough for controlling the smoothness of the
KDE-estimated pdf. Thus, too large bandwidths may produce
significant bias whereas too small ones may cause large
estimation variance [17]. However, in the case of multivariate
kernels, we must also consider that a full bandwidth matrix,
capable of capturing the correlations between the samples
of pattern z in the neighbourhood of z0, may be useful to
reconstruct fine signal textures.

In order to obtain the required full bandwidth matrix, we
will see later in this section that reconstruction error criteria
must be established. The corresponding error functions could
be directly minimized versus H by means of an optimization
algorithm. Some preliminary experiments with a steepest de-
scent procedure have revealed that this type of solution yields
an unstable convergence and poor results due to the large
number of parameters in matrix H, which, in our case, can
have hundreds of different elements.

This problem of a large number of parameters to be es-
timated is commonly solved by scaling [8] [18] [19]. The
underlying assumption of this approach is that the bandwidth
can be expressed as H = βF , where β is a scale factor
and F is a structure matrix which represents the correlations
between samples in z. A suitable candidate for F [18] [19]
is the covariance matrix CZZ of z, which can be easily
estimated from the observed data zj (j = 1, . . . ,M ). Thus,
the clear advantage of the scaling approach is that the only free
parameter to be optimized is the scale factor. In this section
we will propose a multivariate BE method which also adopts
a scaling approach although introducing two different scale
factors. This new scaling approach is based on the performance

analysis developed in the following subsection.

A. K-MMSE estimator performance analysis

The performance of a given estimator is commonly evalu-
ated by means of its mean square error (MSE). At the point
of interest y0, the MSE is [20],

MSE(y0) = E[‖x− x̂0‖2|y0]. (11)

The computation of this error would require the knowledge of
the true local pdf p(x|y0). Obviously, this is not the case of our
K-MMSE estimator, where, in fact, we are trying to estimate
the local signal statistics. As an alternative, we will consider
here the similarity of our K-MMSE estimator, as expressed in
Eq. (6), with a linear MMSE (LMMSE) estimator [21] with
mean vector z̃0 = (x̃t0, ỹ

t
0)t. If the true local second-order

statistics around this mean vector are described by a covariance
matrix ΣZZ and we decompose this matrix in the same way
as in Eq. (2), then the LMMSE estimate of vector x given its
context y is,

µL(y) = x̃0 + ΣXY Σ−1
Y Y (y − ỹ0) . (12)

On the other hand, if we consider that the estimator of Eq. (6)
can be extended to vectors y in the vicinity of y0, then we
can express,

x̂(y) = x̃0 +HXYH−1
Y Y (y − ỹ0) . (13)

We observe that the only difference between both estimators
resides in the transformations applied to the difference vector
∆ = y − ỹ0. These transformations will be noted as TΣ =
ΣXY Σ−1

Y Y and TH = HXYH−1
Y Y . Since the LMMSE estimator

is the optimal one for a given mean and covariance [21],
an alternative criterion for the estimation of the bandwidth
parameters could be the minimization of the following mean
square error,

E(H) = E[ε(H;y)] (14)

where

ε(H;y) = ‖µL(y)− x̂(y)‖2 = ‖(TΣ − TH) ∆‖2 . (15)

The minimization of E with respect to H is obviously infea-
sible since our problem is precisely that TΣ is unknown (and
it cannot be reliably estimated due to the likely lack of local
samples). However, the square error of Eq.(15) still provides
two useful hints about how the bandwidth should be obtained:

1) The first hint is obvious: TH should be as similar as
possible to TΣ.

2) Since, in general, TΣ 6= TH, the K-MMSE estima-
tor only coincides with the LMMSE estimator when
‖∆‖2 = 0, that is, when y = ỹ0. This fact suggests
us that ỹ0 (which is also a function of H) should be as
close as possible to the point of interest y0.

In the next subsection we propose a double scaling scheme
which will allow us to exploit these hints even with an
unknown TΣ.
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B. Covariance submatrix scaling

As previously mentioned, the estimation of matrix H in-
volves a large number of parameters which makes the multi-
variate BE problem particularly complicated. While scaling a
structure matrix by a single scale factor may provide a simple
solution, the partition of the bandwidth matrix shown in Eq.
(2), which divides H into the four submatrices employed by
the K-MMSE estimator, suggests a new scaling scheme where
different scale factors (βXX , βY Y , βXY , βY X ) are applied
to different submatrices. Adopting the sample covariance as
structure matrix, the bandwidth matrix is,

H =

(
βXXCXX βXY CXY
βY XCY X βY Y CY Y

)
. (16)

Considering the symmetry constraint for H, we have that
βXY = βY X . Substituting (16) in Eq. (6), we obtain the
following estimator,

x̂0 = x̃0 + αCXY C
−1
Y Y (y0 − ỹ0) (17)

where α = βXY /βY Y . We can observe that this estimator
only requires two bandwidth parameters, α, which appears
explicitly in the estimator (Eq. (17)), and βY Y , which is
required to compute the weights of Eq. (9) which, in turn,
are required to compute the prediction vectors x̃0 and ỹ0 (Eq.
(7) and (8)). For the sake of simplicity, it is noted βY Y = β
in the following, so that x̃0 = x̃0(β) and ỹ0 = ỹ0(β).

Different bandwidths can be obtained depending on the
selected type of structure matrix [22]. Under the scaling
approach adopted here, the structure and, therefore, the band-
width, is determined by the type of covariance matrix. The
following options will be considered here:

1) A scalar bandwidth (K-MMSES): CZZ = σ2
ZI , where

σ2
Z can be computed as the variance of the available

samples in set S .
2) A diagonal bandwidth (K-MMSED): CZZ is forced to

be diagonal by retaining only the diagonal elements of
the sample covariance matrix.

3) A complete bandwidth (K-MMSEC): CZZ is employed
as directly obtained from the observed data, as in [18].

Note that if the bandwidth is scalar or diagonal, then βXY = 0,
α = 0, and the second term in Eq. (17) is also zero. Then,
the K-MMSE estimator is reduced to a multivariate Nadaraya-
Watson estimator. Therefore, only K-MMSEC will be able to
exploit the cross-correlations between context y and vector x.
A particular case of K-MMSEC corresponds to the use of a
single scale factor, that is, βXY = βY Y = β, which involves
α = 1 [16].

C. Bandwidth parameter estimation

As mentioned above, the bandwidth scaling scheme pro-
posed in Eq. (16) reduces our BE problem to the estimation
of two parameters, α and β. Let us consider first the estima-
tion of β. According to the LMMSE approximation criterion
discussed in the previous subsection, ỹ0 should be as close
as possible to the point of interest y0. Since the prediction
vector ỹ0 only depends on the scale factor β (as deduced from
Eq.(9) by making HY Y = βCY Y ), then this parameter can be

Fig. 3. Example of εy = εy(β) using scalar, diagonal and complete
bandwidths.

obtained from the minimization of the following prediction
square error,

εy(β) = ‖y0 − ỹ0‖2 =

∥∥∥∥∥∥
y0 −

M∑

j=1

wjyj

∥∥∥∥∥∥

2

. (18)

The square error function εy(β) defined above is a non
linear function whose minimization can be easily solved by
any of the multiple optimization algorithms that can be found
in the literature. However, if the expected range of variation of
the scale factor β is small, an exhaustive search in this range
will be more efficient. In particular, this will be the case of the
image reconstruction experiments developed in the following
section. Another argument in favour of an exhaustive search
is that it can be efficiently implemented [16]. In order to do
so, we can define a set of auxiliary weights as follows,

w̃j(y0) = exp

(
−1

2
(y0 − yj)tC−1

Y Y (y0 − yj)
)
. (19)

These auxiliary weights correspond to those of Eq. (9) except
for the contribution of the scale factor β, which has been
removed. Therefore, they do not depend on β and can be
precomputed. Then, during the exhaustive search, the weights
(Eq.(9)) for every value of β can be efficiently obtained as,

wj(β;y0) =
(w̃j(y0))1/β

∑M
i=1(w̃i(y0))1/β

. (20)

Figure 3 shows an example of the error curve εy =
εy(β) for the three types of bandwidth. Scalar and diago-
nal bandwidths produce almost identical square errors since
µ

(j)
X|Y (y0) = xj for both cases and the elements in the

diagonal of the correlation matrix CZZ tend to be equal.
Typically, scalar and diagonal bandwidths will involve smaller
minima than complete bandwidths as illustrated in the figure.
This can be explained by the fact that, in this last case, weights
wj (Eq. (4)) are computed according to the Mahalanobis
distance (through the complete bandwidth matrix) unlike the
case of a scalar bandwidth, which involves an Euclidean
distance, which, in fact, is the minimization criterion. In
other words, scalar bandwidths are more coherent with the
minimization of the square error εy (which, in turn, is directly
associated to a PSNR measure). However, as we will show
later in section V-A, a scalar bandwidth tends to smooth high
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Fig. 4. Example of correction vectors corresponding to β and α.
The situation in (a) is enlarged in (b). S0 is a set of observed vectors
close to the original vector z0

frequency textures while complete bandwidth matrices will be
capable of recovering fine textures through the exploitation of
intercorrelations.

Once β and the prediction vectors, ỹ0 and x̃0, have been
obtained, let us consider the other bandwidth parameter, α.
This parameter controls the contribution of the second term in
Eq. (17). In order to illustrate the effect of this second term,
let us consider the example of Fig. 4(a), where x and y are
both monodimensional random variables related by a function
f(·) plus a zero-mean noise ε, that is,

x = f(y) + ε. (21)

The ellipse in Fig. 4(a) represents a Gaussian model of the
observed data zj (j = 1, . . . ,M ) with covariance CZZ defined
by variances σ2

X and σ2
Y , and cross-covariance σXY . Let us

consider first that CZZ is scaled by a single scale factor β,
that is, H = βCZZ , so α = 1. Then, according to Eq.
(17), the initial NW estimate (x̃0, ỹ0) is corrected along a
line with slope σXY/σ2

Y . This is illustrated in Fig. 4(b). The
approximation α = 1 is, in general, inaccurate since the
local slope of f(y) around y0 may be considerably different.
Then, factor α allows a better approximation of f(y) in the
neighbourhood of the initial estimate (x̃0, ỹ0) (as illustrated in
Fig. 4(b)) since it controls the (hyper)direction in which the
linear correction term in Eq. (17) is applied.

In order to estimate α, we consider again the comparison
with the LMMSE estimator made in section IV-A. In our
submatrix scaling framework, we see that α can be employed
to make TH = αCXY C

−1
Y Y as close as possible to TΣ.

As mentioned previously, TΣ is not known, so α cannot
be directly optimized. However, since β and the prediction

vectors have been already obtained, it is possible to estimate
α by minimizing the following approximation to the MSE of
Eq. (11) in the vicinity of y0,

εx(α) =
1

|I0|
∑

i∈I0
‖xi − x̂i‖2 =

1

|I0|
∑

i∈I0
(xi − x̂i)t (xi − x̂i)

(22)
where

x̂i = x̃0 + αCXY C
−1
Y Y (yi − ỹ0) (23)

and

I0 = {i ∈ {1, ...,M}|yi ∈ S0},
S0 = {yi|yi close to y0, i = 1, ...,M}. (24)

Finally, solving dεx/dα = 0, we obtain the following
analytical solution for α,

α =

∑
i∈I0 (xi − x̃0)

t
CXY C

−1
Y Y (yi − ỹ0)

∑
i∈I0 (yi − ỹ0)

t (
CXY C

−1
Y Y

)t (
CXY C

−1
Y Y

)
(yi − ỹ0)

.

(25)
Defining the set S0 of neighbouring vectors is not a straight-

forward task since several criteria are possible. In the rest of
the work we will consider S0 as the set of the N closest
context vectors yj to y0, according to the Euclidean distance.
The selection of N will be discussed in the next section.

Finally, the reconstruction algorithm is summarized as fol-
lows:

1) Compute β by minimizing εy(β) employing the auxil-
iary weights of Eq. (20).

2) Define set S0. The N = |S0| closest neighbouring
vectors are used for the estimation of α.

3) Compute α according to Eq. (25).
4) Finally, the missing sample vector x0 is reconstructed

according to Eq. (17).

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS FOR
IMAGE ERROR CONCEALMENT

A. K-MMSE estimator implementation

In this section we will use and test the techniques developed
in the previous sections for the particular application of image
error concealment. As mentioned in section IV-B, we will
consider three different types of sample covariance matrices
(which have been adopted as structure matrices) which yield
three different types of K-MMSE estimators. Thus, we have
K-MMSES for a scalar bandwidth, K-MMSED for a diagonal
covariance matrix, and K-MMSEC for a complete covariance
matrix. K-MMSES and K-MMSED are two types of NW
estimators since they do not use the second term of Eq. (17),
so the only bandwidth parameter to be estimated is β. As also
mentioned in section IV-B, only complete bandwidth matrices
can exploit correlations among pixels inside vector z. This
fact will allow better reconstructions than those provided by
scalar or diagonal bandwidths as illustrated in the example of
Fig. 5.

First, let us analyze the selection of S0. On one hand, N
should be as small as possible in order to select an homoge-
neous set of observations. On the other hand, the more vectors
are employed the better is the average computed in Eq.(22).
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(a) (b) (c)

Fig. 5. Subjective comparison for a fraction of Goldhill. (a) Received
data. (b) Reconstruction using scalar bandwidth (K-MMSES). (c)
Reconstruction using complete bandwidth matrix (K-MMSEC ). The
most outstanding differences are marked with yellow boxes.

The selection of size N will require a compromise between
these two facts. Let Nz , Nx and Ny be the dimensionality
of z, x and y, respectively (Nx = 4 and Ny = 16 to 32).
The estimated value of x0 belongs to an Nx-dimensional
subspace (within the Nz-dimensional space) defined by the
known coordinates y0 (note that Nz = Nx + Ny). Thus,
from a geometric point of view, since we need a single
point in an Nz-dimensional space, we are looking for the
intersection of this Nx-dimensional subspace with an Ny-
dimensional subspace defined by the points within the set S0.
The minimum number of points required to define an Ny-
dimensional subspace is Ny + 1. Thus, in order to get an
homogeneous set of observations we will dynamically employ
the N = Ny+1 closest observations to y0. Figure 6 shows the
average PSNR computed over the validating set of 24 images
by Kodak [23] using dispersed error pattern. We compare the
performance when a fixed value of N is employed and our
proposal of dynamic selection. It can be seen that defining S0

dynamically with N = Ny + 1 yields the best performance.
It can be also observed that N = 20 achieves the best result
when using a fixed value for N . It is worth mentioning that
the average value of Ny over the employed images is 19.

Although the most general form proposed for K-MMSEC
requires the estimation of the two bandwidth parameters, α
and β, we will also consider the simplified case where α is
not estimated by fixing it to 1. This approximation is supported
by the histogram of Fig. 7 where we can observe that typical
values of α are distributed around 1. This case will be referred
to as K-MMSE1

C and it is equivalent to considering that the
scale factor for CXY is the same as that computed for CY Y ,
that is, βXY = β as already mentioned in section IV-B.

In subsection IV-C we discussed the mismatch problem that
arose from the fact that, in the case of K-MMSEC , the weights
wj were computed with a Mahalanobis distance criterion
while we are evaluating performance through PSNR (which
involves an Euclidean distance criterion). This mismatch only
disappears in the case of scalar bandwidth, which is coherent
with the Euclidean distance criterion. For the case of K-
MMSEC , this mismatch problem can be palliated by applying
a combined procedure as follows. First, we compute x̃0 using
a scalar bandwidth, that is, the weights wj are computed
according to the Euclidean distance, which is directly related

Fig. 6. Average PSNR (in dB) for the Kodak set using fixed and
dynamic values of N = |S0|. Dispersed error pattern is employed.

Fig. 7. Histogram of α for K-MMSEC obtained for the image of
Lena

to the square error criterion εy . Then, a complete bandwidth
matrix is used just to compute the correction term of Eq. (17).
This new approach will be referred to as K-MMSE+, and K-
MMSE1

+ for the case of α = 1 fixed.

As already mentioned, K-MMSE+ is more PSNR oriented
than K-MMSEC . Therefore, it can be expected that its initial
estimate ỹ0 is considerably closer to y0. This means that the
correction term in Eq. (17) is expected to be relatively small
and, therefore, the use of α provides only minor improve-
ments. This is not the case of K-MMSEC , where the distance
between ỹ0 and y0 can be significant and the correction term
should lead to more important improvements. In fact, our
simulations show that the average power of the correction
term (averaged over all the tested images, see Section V-B)
in the case of K-MMSEC is more than four times larger
than that of K-MMSE+. An initial estimate ỹ0 as close as
possible to y0 was also one of the conditions deduced in
section IV-A for an accurate K-MMSE estimate. However, this
condition, directly related to PSNR, may lead to wasting useful
correlations among pixels. Employing PSNR as an objective
visual similarity criterion can neglect spatial correlations in
order to minimize the square error. As anticipated in Fig. 5,
this can yield poorer texture reconstructions. This issue will
be analyzed in more detail in the next subsection.
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(a) (b) (c)

(d) (e) (f)

Fig. 8. Subjective comparison for a fraction of Barbara. (a) Received
data. (b) Reconstruction by SLP-E. (c) Reconstruction by K-MMSES .
(d) Reconstruction by K-MMSED . (e) Reconstruction by K-MMSEC .
(f) Reconstruction by K-MMSE+.

B. Experimental results

The performance of the reconstruction techniques pre-
sented in the previous sections will be evaluated over
the spatial error concealment application described in Sec-
tion II for block-coded images. The testing images are:
Lena (512×512), Goldhill (720×576), Foreman (352×288),
Barbara (512×512), Baboon (512×512), Clown (512×512),
Tire (205×232), Pirate (1024×1024), Boat (512×512) and
Peppers (384×512). In the simulations, β is searched exhaus-
tively within the range [0, 2] with steps of 0.01.

We compare the performance with other spatial EC meth-
ods, namely projections onto convex sets (POC) [24], direc-
tional extrapolation (EXT) [25], a Hough transform based
SEC (HTS) [26], content adaptive technique (CAD) [27], non-
normative SEC for H.264/AVC (AVC) [28], multi-dimensional
adaptive SEC (MDA) [29], Markov random fields approach
(MRF) [30], inpainting (INP) [31], bilateral filtering (BLF)
[14], edge recovery technique based on visual clearness (EVC)
[32], orientation adaptive interpolation (OAI) [33], frequency
selective extrapolation (FSE) [34] and our previous exponen-
tial approximation to sparse linear prediction (SLP-E) [15].

Additionally, we are interested in showing two important
advantages of our approach for signal reconstruction. First,
that our BE proposal is superior to a classical adaptive plug-
in BE approach. Thus, we have also tested our K-MMSE
estimator with the BE technique described in reference [18]
(labelled as KDE in Table I). Also, we want to demonstrate
that our non-parametric K-MMSE approach can capture local
statistics more suitably (and provide better results) than a clas-
sical MMSE estimator based on off-line statistics. Thus, we
have adapted the GMM-based MMSE estimator described in
reference [10] to the multidimensional formalism described in
Section II: vectors have 6×6 dimensions which are adapted to

(a) (b)

(c) (d)

(e) (f)

Fig. 9. Subjective comparison for a fraction of Clown. (a) Received
data. (b) Reconstruction by OAI. (c) Reconstruction by K-MMSEC .
(d) Reconstruction by K-MMSE+. (e) Reconstruction by K-MMSE1

C .
(f) Reconstruction by K-MMSE1

+.

every specific estimate by marginalization [10]. Since we are
interested in checking whether this GMM/MMSE estimator
could surpass our K-MMSE proposal independently of the
suitability of the training data, the GMM has been trained
with 529937 vectors obtained from the original (not corrupted)
testing images, so that we can consider it a sort of oracle
GMM model. From our experiments, we have observed that
the performance of this method converges for 1024 Gaussians.
Also, note that this number approximates the number of
observations employed by our K-MMSE methods. Thus, this is
the number of Gaussians employed for comparison purposes.
The resulting technique will be referred to as GMM in the
following. 1

Table I shows a PSNR comparison of the tested techniques
for dispersed and random losses. Figures 8 and 9 show
some reconstruction examples in order to assess the subjective
performance of our proposals. It can be observed that our K-
MMSE proposals outperform other state-of-the art techniques
in terms of PSNR. The comparison with KDE and GMM is
particularly interesting since it confirms that K-MMSE can
better capture the local signal statistics. Also, as expected,
we observe that K-MMSES and K-MMSED lead to almost
identical results and that the best performance is achieved by
K-MMSE+ and K-MMSEC .

Since K-MMSES provides the initial estimate (x̃0, ỹ0) for
K-MMSE+, we can say that the application of the correction
term in Eq. (17) helps to improve the reconstruction quality

1Implementations of most of these techniques, as well as the implementa-
tion of our algorithm, is available online at [35].
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SEC Lena Goldhill Foreman Barbara Baboon Clown Tire Pirate Boat Peppers Average
(a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b)

POC 28.04 - 28.50 - 28.49 - 24.30 - 24.63 - 24.36 - 23.92 - 26.42 - 26.05 - 28.68 - 26.34 -
EXT 29.10 - 29.57 - 29.59 - 25.62 - 24.76 - 26.30 - 23.40 - 27.57 - 26.63 - 30.76 - 27.33 -
HTS 30.55 - 29.97 - 28.09 - 26.41 - 24.11 - 27.62 - 24.25 - 28.12 - 27.20 - 29.72 - 27.60 -
CAD 31.96 - 30.24 - 34.85 - 27.39 - 25.16 - 29.12 - 27.53 - 28.44 - 27.73 - 32.20 - 29.46 -
AVC 30.42 - 31.27 - 29.11 - 26.85 - 25.42 - 28.55 - 24.99 - 28.74 - 28.25 - 32.13 - 28.57 -
MDA 32.80 - 31.56 - 31.79 - 27.81 - 25.77 - 28.80 - 26.36 - 29.36 - 28.62 - 33.43 - 29.63 -
MRF 32.17 31.10 31.12 29.81 32.98 31.07 27.99 27.67 26.14 26.12 28.23 27.47 27.00 26.09 29.52 28.13 27.91 27.00 32.59 28.27 29.57 28.27
INP 30.85 30.01 30.40 29.06 34.44 31.65 28.03 27.86 25.10 24.97 27.89 27.14 27.33 25.23 28.44 27.35 27.79 26.72 32.13 27.35 29.23 27.94
BLF 32.15 30.59 30.91 29.40 34.75 28.72 29.91 28.19 26.05 25.68 28.73 26.83 28.77 26.17 29.36 27.38 28.37 26.92 33.17 27.38 30.22 27.91
EVC 32.70 - 31.66 - 35.09 - 28.41 - 26.00 - 29.51 - 27.58 - 29.90 - 28.66 - 33.29 - 30.28 -
OAI 32.82 30.47 31.54 28.59 35.03 27.05 29.66 27.51 26.06 24.39 29.75 27.26 27.42 26.75 29.90 27.30 29.50 26.69 34.84 30.38 30.35 27.64
FSE 32.72 31.32 31.78 30.26 34.18 31.70 30.84 29.47 26.02 25.88 29.19 27.76 28.31 27.38 29.64 28.01 28.87 27.61 33.48 30.56 30.50 29.00
SLP-E 32.36 31.61 31.72 30.29 35.78 32.75 30.80 30.13 26.02 25.49 29.70 27.88 28.33 26.42 29.63 28.44 28.54 27.70 33.94 30.61 30.68 29.13
GMM 31.70 30.74 31.82 30.43 31.82 30.49 27.46 27.64 25.60 25.50 30.12 28.33 28.56 27.23 30.37 28.37 28.94 28.08 34.64 32.57 30.10 28.99
KDE 32.22 31.27 31.43 30.01 35.57 31.09 30.84 29.02 24.68 25.96 29.98 27.45 28.22 26.20 29.51 28.20 28.77 27.39 33.86 29.93 30.51 28.65
K-MMSES 32.84 32.22 32.03 30.47 36.16 32.48 31.33 30.97 26.15 26.14 30.79 28.12 28.62 28.82 30.15 28.77 29.34 28.44 34.59 31.27 31.20 29.77
K-MMSED 32.87 32.23 32.01 30.44 36.18 32.69 31.35 30.87 26.14 26.13 30.83 28.13 28.58 28.52 30.16 28.76 29.36 28.47 34.55 31.23 31.21 29.78
K-MMSEC 33.08 32.60 32.17 30.54 36.21 33.71 32.00 31.28 26.31 26.16 31.28 28.38 29.00 28.30 30.17 28.97 29.90 28.39 34.70 32.20 31.48 30.06
K-MMSE+ 32.96 32.70 32.08 30.37 36.18 33.71 32.25 31.11 26.37 26.20 31.00 28.32 29.13 27.98 30.39 28.90 29.50 28.48 35.00 32.52 31.48 30.04
K-MMSE1

C 32.69 31.86 32.14 30.70 35.69 33.79 31.77 31.01 26.26 26.31 30.82 28.41 28.55 28.86 30.12 28.68 29.70 28.17 34.68 32.07 31.24 29.93
K-MMSE1

+ 33.00 32.32 32.16 30.58 35.89 33.95 32.22 30.79 26.38 26.36 30.99 27.91 28.54 27.83 30.39 28.90 29.64 28.37 35.07 32.39 31.43 29.94

TABLE I
PSNR VALUES (IN DB) FOR TEST IMAGES RECONSTRUCTED BY SEVERAL ALGORITHMS FOR BLOCK DIMENSIONS 16 × 16. DISPERSED

ERROR PATTERN (A) AND RANDOM LOSSES (B) ARE APPLIED. THE BEST PERFORMANCES FOR EACH IMAGE ARE IN BOLD FACE.

in this case. On the other hand, K-MMSEC can achieve
similar or even better results while providing higher quality
reconstructions of complicated textures and fine details as
shown in Figs. 5(c) or 8(e) and as already remarked in the
previous subsection.

Figure 9 shows that assuming α = 1 can be a reasonable
simplification for the case of K-MMSE+ since the recon-
struction quality and the PSNR are deteriorated negligibly.
However, this approximation yields a more prejudicial effect
over K-MMSEC , as reflected also in Table I.

SLP-E GMM KDE K-MMSES K-MMSEC K-MMSE1
C

1.00 9.53 695.46 3.56 4.04 3.87

TABLE II
AVERAGE ERROR CONCEALMENT TIME PER MACROBLOCK

COMPARED TO SLP-E.

Finally, regarding the computational complexity, Table II
shows the processing time ratios of GMM, KDE, K-MMSES
(the simplest proposal), K-MMSEC (the most complex one)
and K-MMSE1

C to SLP-E. It follows that our proposals are
computationally more expensive than SLP-E since bandwidth
estimation is involved. This complexity increase is reflected on
the reconstruction quality which is improved by up to 1dB on
average, as shown in Table I. On the other hand, our proposals
require less than half the processing time with respect to
GMM. Classic KDE is, by far, the most time consuming
technique and even impractical for real applications.

VI. CONCLUSIONS

In this paper, we have proposed a multidimensional kernel-
based MMSE technique for multimedia signal reconstruction.
The most important issue in any KDE problem is the selection
of a suitable bandwidth. Thus, a procedure for bandwidth esti-
mation especially oriented to this reconstruction task has been
proposed. Our proposal introduces a bandwidth matrix which

is built by scaling a structure matrix which, in our case, is the
covariance of the locally available data. The autocovariance
and the cross-covariance submatrices of this structure matrix
are scaled independently, and each scale factor is estimated
by minimizing a specific type of reconstruction error. The
corresponding optimization criteria have been derived from
a comparison of the proposed K-MMSE estimator with an
LMMSE estimator. Our proposal has been tested over an
image error concealment application. An average improvement
of up to 1dB is achieved with respect to a classical plug-
in bandwidth estimation. The improvement is even larger
with respect to a classical GMM-based MMSE reconstruction.
Finally, several simplifications, affecting the structure matrix
and/or the bandwidth estimation procedure, have been applied.
Some of these simplifications have been shown to provide
PSNR results similar to the complete formulation, although
with a noticeable degradation in the reconstruction of fine
textures.

Ongoing work is focused on the application of the proposed
kernel-based MMSE estimation to video reconstruction.
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ABSTRACT

The purpose of signal extrapolation is to estimate unknown
signal parts from known samples. This task is especially im-
portant for error concealment in image and video communi-
cation. For obtaining a high quality reconstruction, assump-
tions have to be made about the underlying signal in order to
solve this underdetermined problem. Among existent recon-
struction algorithms, frequency selective extrapolation (FSE)
achieves high performance by assuming that image signals
can be sparsely represented in the frequency domain. How-
ever, FSE does not take into account the low-pass behaviour
of natural images. In this paper, we propose a modified FSE
that takes this prior knowledge into account for the modelling,
yielding significant PSNR gains.

Index Terms— Image processing, error concealment

1. INTRODUCTION

Signal reconstruction is a very challenging task for many mul-
timedia applications where the quality of the received data is
of utmost importance. A common example is the transmis-
sion of image/video signals over error prone channels which
may yield block losses. The lost areas need to be concealed
employing the information provided by the correctly received
data. There are several examples of efficient error conceal-
ment (EC) techniques applied to image communication. The
EC algorithm proposed in [1] is based on Markov random
fields and focuses on preserving visually important features,
such as edges. Bilateral filtering that exploits a pair of gaus-
sian kernels is treated in [2]. In [3], the lost region is recov-
ered through sparse linear prediction. Moreover, inpainting
[4] can also be employed for concealment purposes.

An alternative approach to image EC is the frequency
selective extrapolation (FSE) proposed in [5]. In particu-
lar, the complex-valued FSE implementation [6] can provide
high quality reconstructions with a low computational bur-
den. This technique develops a signal model from the set
of Fourier basis functions which can be used to replace the

This work has been supported by an FPU grant from the Spanish Min-
istry of Education and by the MICINN TEC2010-18009 project.

unknown samples. Although this FSE algorithm basically
consists in determining frequency components, it does not
exploit any a priori knowledge regarding the typical spectrum
of natural images, which may result in high-frequency arti-
facts. In this paper, we propose the introduction of a low-pass
filtering in the FSE iterative procedure which can efficiently
account for this fact, increasing the FSE performance while
maintaining a low computational cost.

The paper is organized as follows. In Section 2, we pro-
vide a short review of the FSE algorithm. Our proposal, based
on residual filtering, is described in Section 3. Experimental
results are discussed in Section 4. The last section is devoted
to conclusions.

2. FREQUENCY SELECTIVE EXTRAPOLATION

Our proposal is a modification of the complex-valued imple-
mentation of FSE [6]. This approach is able to robustly recon-
struct various image contents at very high quality [6, 5, 7]. We
briefly summarize it in this section.

During the extrapolation process of FSE, the image is di-
vided into blocks of equal size. Besides the block actually
containing areas to be reconstructed, neighbouring samples
belonging to adjacent blocks are taken into account, as well.
All the considered samples make up the so called extrapola-
tion area L (an example is shown in Fig. 1). The size of area
L is M ×N samples and the signals in this area are indexed
by spatial variables m and n. All samples in area L belong to
one of the three following groups: the known samples built up
support area A, all unknown samples belong to the loss area
B (located at the centre of L) and all samples from neigh-
bouring blocks that have been extrapolated before belong to
the reconstructed areaR.

FSE extrapolation is carried out from a parametric model

g(m,n) =
∑

(k,l)∈K
ck,lϕk,l(m,n). (1)

This is a weighted superposition of two-dimensional basis
functions ϕk,l (m,n) with weights ck,l. In this work we will
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Fig. 1. Extrapolation area L as union of support area A, recon-
structed area R, and loss area B. The currently processed block
(marked by the red dashed line) is located in the centre.

employ Fourier functions,

ϕk,l(m,n) =
1

MN
e

2πj
M kme

2πj
N ln. (2)

As described in detail in [6], the model generation is per-
formed iteratively, with the initial model g(0)(m,n) being 0,
which involves that coefficients c(0)k,l are also set to 0. At every
iteration, one of the possible basis functions is selected. After
estimating the corresponding weight, it is added to the model
that has been generated so far. In order to determine the best
basis function and its weight at every iteration ν, the residual

r(ν)(m,n) =
(
s(m,n)− g(ν)(m,n)

)
· b(m,n) (3)

between the available signal s(m,n) and the current model
g(ν)(m,n) generated so far is regarded. Window b(m,n) is
zero for (m,n) ∈ B and one otherwise in order to ensure that
unknown pixels are not used.

The best function ϕu,v(m,n) at this iteration, conve-
niently weighted by a factor ∆cu,v , will be the one which
can better approximate this residual. Let us suppose that we
already know this function. Then, the corresponding model
coefficient will be updated as

c(ν+1)
u,v = c(ν)u,v + γ∆cu,v (4)

and the residual for the next iteration will be

r(ν+1)
u,v (m,n) =

(
r(ν)(m,n)−∆cu,vϕu,v(m,n)

)
· b(m,n).

(5)
Factor γ in Eq.(4) is introduced to compensate the orthogo-
nality deficiency of the proposed framework [7]. Coefficient
∆cu,v is estimated by minimizing a weighted square error ob-
tained from this last residual as

E(ν+1)
u,v =

∑

(m,n)∈L
w(m,n)

∣∣∣r(ν+1)
u,v (m,n)

∣∣∣
2

. (6)

Finally, the desired coefficient is

∆cu,v =

∑

(m,n)∈L
r(ν)(m,n)ϕ∗u,v(m,n)w(m,n)

∑

(m,n)∈L
ϕ∗u,v(m,n)w(m,n)ϕu,v(m,n)

(7)

which can be interpreted as a weighted projection coeffi-
cient of r(ν)(m,n) on ϕu,v(m,n), The weighting function
w(m,n) can be defined as [5]

w(m,n) =





ρ̂

√
(m−M−1

2 )
2
+(n−N−1

2 )
2

∀ (m,n) ∈ A
δρ̂

√
(m−M−1

2 )
2
+(n−N−1

2 )
2

∀ (m,n) ∈ R
0 ∀ (m,n) ∈ B

.

(8)
Using this function, the influence of each sample on the model
generation can be controlled according to its position. This is
also the reason why the weighting function is divided into
three different parts. As all unknown samples cannot con-
tribute to the model generation, they have to be excluded from
the calculations. Accordingly, their weight in area B is set to
0. For the known samples, an exponentially decaying weight
is used for reducing their influence with increasing distance
to the area to be extrapolated in the current block. Parameter
ρ̂ controls the speed of the decay. As samples from neigh-
bouring blocks that are originally not known but have been
extrapolated before are not as reliable as originally available
samples, the influence for these samples is weighted by an
extra factor δ ∈ [0, 1].

The remaining issue is the determination of the best func-
tion ϕu,v(m,n). In order to do so, we must consider that,
in fact, the projection coefficient and the square error can be
computed for every basis function ϕk,l(m,n). Furthermore,
considering the orthogonality principle, every square error
E

(ν+1)
k,l can be decomposed as the square error determined

for the previous iteration E(ν) minus the achieved decrease
of square error, which is defined as [5],

∆E
(ν)
k,l = |∆ck,l|2

∑

(m,n)∈L
ϕ∗k,l(m,n)w(m,n)ϕk,l(m,n). (9)

The basis function can be selected now as the one which max-
imizes this decrease, that is,

(u, v) = argmax
(k,l)

∆E
(ν)
k,l . (10)

After the model generation has finished, all the samples
that are originally not known are taken from the model and
inserted at the corresponding positions of the incomplete orig-
inal signal.

3. FSE WITH RESIDUAL FILTERING

It is well known that low frequencies are likely to yield larger
Fourier coefficients than high ones in natural images [8, 9].
This is an a priori knowledge not considered in the original
FSE algorithm which could be incorporated into it in order
to improve both reconstruction quality and robustness. Thus,
in the same way as the knowledge about spatial influence is
controlled with weights w(m,n), we propose here the use of
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Fig. 2. One-dimensional profile of the filter H of size 64×64 with
f0 = 0.0098 and G = 292.9.

a frequency weighting (filtering) which, applied to the resid-
uals, can exploit this a priori knowledge about frequency im-
portance. In order to do so, it is convenient to express both
residuals and square errors in the frequency domain.

3.1. FSE in the frequency domain

FSE can be efficiently implemented and easily viewed in the
frequency domain [6]. Let us consider the spatially-weighted
version of the residual,

r(ν)w (m,n) = w(m,n)r(ν)(m,n). (11)

Then, from Eq. (7), the projection coefficient for function
ϕk,l(m,n) can be expressed as

∆ck,l = MN
R

(ν)
w (k, l)

W (0, 0)
, (12)

where R(ν)
w (k, l) and W (k, l) are the DFTs of r(ν)w (m,n) and

w(m,n), respectively. Also, the decrease of square error can
be expressed as,

∆E
(ν)
k,l =

|R(ν)
w (k, l)|2
W (0, 0)

. (13)

Finally, from Eq. (5), it is easily deduced that

R(ν+1)
w (k, l) = R(ν)

w (k, l)− 1

MN
∆cu,vW (k − u, l − v),

(14)
which provides the weighted residual required for the next
iteration directly in the frequency domain. Equations (12)-
(14) provide an efficient implementation of FSE, since it can
be fully carried out in the frequency domain.

3.2. Filtering the weighted residual (XFSE)

We can see that the evolution of the iterative procedure relies
on the computation carried out in Eqs. (12) and (13), that
is, on the weighted residual R(ν)

w (k, l). Therefore, a possible
way of incorporating the a priori knowledge about the low-
pass behaviour of natural images can be the low-pass filtering
of the residual in these equations, that is,

∆ck,l = MN
R

(ν)
w (k, l)H(k, l)

W (0, 0)
, (15)

(a) (b)

Fig. 3. Performance overview in terms of (a) PSNR and (b) residual
energy E(ν) of FSE and XFSE for the images of Peppers (blue), Boat
(red) and Goldhill (green). Dispersed error pattern is employed.

∆E
(ν)
k,l =

|R(ν)
w (k, l)H(k, l)|2

W (0, 0)
, (16)

where H(k, l) is even, real-valued and non-negative, and rep-
resents the frequency response of the applied low-pass filter.
The rest of the procedure can be kept unaltered. The resulting
procedure will be referred to as XFSE in the following.

The main issue to be addressed now is the low-pass fil-
ter selection. After some preliminary experiments, we have
applied a filter with the following circularly symmetric fre-
quency response,

H(k, l) =

log

[
G f0

2π
1[

f2
0+( k

M )
2
+( l

N )
2
]3/2

]

log
(

G
2πf2

0

) . (17)

This filter is inspired on the average power spectral density of
natural (isotropic) images given in [8], modified with a gain
factor G, smoothed by logarithm, and normalized to provide
H(0, 0) = 1. Parameter f0 controls the bandwidth. A one-
dimensional profile of this filter is shown in Fig. 2.

Let us analyze now the effect of this filter over the square
error decrease. At every FSE iteration, the basis function that
produces the largest decrease in the residual energy ∆E

(ν)
k,l is

selected. However, this may lead to overfitting since the re-
construction quality decreases once a critical number of iter-
ations is achieved [7], while the weighted residual error E(ν)

keeps falling (see Fig.3(a)). In order to prevent this overfit-
ting, when several basis functions yield a comparable (max-
imum) decrease ∆E

(ν)
k,l , the introduced filtering favours the

lowest frequencies. This is illustrated in Fig. 3(b), where we
can see that XFSE yields higher weighted residual error E(ν)

but, however, improves the reconstruction quality.
Regarding the projection coefficient ∆cu,v for the se-

lected function, since H(k, l) ≤ 1, the filter acts as a weight-
ing factor that reduces the contribution of high frequencies
to the reconstructed signal. This does not mean that high
frequencies are avoided, since if a high frequency is a clear
candidate to be included in the signal model, this frequency
will appear again in subsequent iterations. However, if it is
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(a) (b) (c) (d)

Fig. 4. Subjective comparison for a fraction of Peppers. (a) Orig-
inal image. (b) Received data. (c) Reconstruction by FSE. (d) Re-
construction by XFSE.

not, it will only appear spuriously, and its contribution to the
final signal model will be negligible.

Since H(u, v) ≤ 1, we can alternatively see our filter-
ing as a dynamic reduction of the orthogonality deficiency
compensation factor γ. As shown in [7], smaller compensa-
tion factors yield a better convergence (slower performance
decrease after a certain number of iterations) although more
iterations are required to achieve maximum performance. Al-
though we will frequently find that H(u, v)γ � γ, during
the first iterations low frequencies with high H(k, l) tend to
be selected, so there will be only little penalization in recon-
struction quality. On the other hand, in later iterations higher
frequencies are selected in order to tune fine details. For these
frequencies, the effective orthogonality deficiency compensa-
tion factor H(u, v)γ is smaller and the convergence is im-
proved as remarked above. This is shown in the next section.

4. EXPERIMENTAL RESULTS

The performance of our proposal is tested on the images of
Peppers (384×512), Boat (512×512) and Goldhill (720×576).
In addition, the set of 24 images (768×512) by Kodak [10]
is also used. We will employ a dispersed error pattern with
a block loss rate of around 25% (see [3] for details). In ad-
dition, consecutive block losses (50% loss rate) will also be
considered (see Fig. 4(b)). The blocks are considered to have
dimensions of 16×16 pixels and the size of L is 48×48. We
compare the performance with other spatial EC techniques,
namely EC based on Markov random field (MRF) [1], in-
painting (INP) [4], bilateral filtering (BLF) [2] and sparse
linear prediction (SLP) [3].

To set up the filter, the gain factorG has been heuristically
set to 292.9 in order to guarantee that the filter frequency re-
sponse is always positive. On the other hand, the filter band-
width is usually expressed as f0 = α/2π and the value of α
is around 0.06 [8] leading to f0 = 0.0098 which involves a
3dB-cutoff bin of 2.17 forN = M = 64. The remaining FSE
parameters are set according to [6], with γ = 0.25.

A comparison of XFSE and FSE is shown in Fig.4. By ap-
plying the residual filtering, the performance is improved on

MRF INP BLF SLP FSEmax XFSEfse XFSEmax

Peppers (a) 32.59 33.13 33.17 33.94 33.58 33.91 34.13
(b) 25.04 25.28 25.43 24.64 25.47 26.18 26.24

Boat (a) 27.91 27.79 28.37 28.54 28.90 29.02 29.22
(b) 23.07 22.69 22.85 22.48 23.75 23.97 24.16

Goldhill (a) 31.12 30.40 30.91 31.72 31.79 32.10 32.24
(b) 26.09 25.82 24.49 26.19 26.56 27.00 27.05

Kodak (a) 29.61 28.76 29.64 29.92 30.45 30.54 30.69
(b) 24.76 24.38 24.83 24.84 25.30 25.63 25.71

Table 1. PSNR values (in dB, whole images) for test images recon-
structed by several algorithms. The average PSNR for the Kodak set
is also included. Dispersed error pattern (a) and consecutive losses
(b) are applied. The best performances are in bold face.

(a) (b)

Fig. 5. Performance comparison for (a) dispersed and (b) con-
secutive losses. The PSNR for Peppers (blue), Boat (red), Gold-
hill (green) and the average PSNR for the Kodak set (magenta) are
shown.

average by approximately 0.4dB. This improvement is even
higher when consecutive block losses are considered. Also, it
is observed that the performance decrease with high a number
of iterations is alleviated. Note that although XFSE achieves
the maximum performance using more iterations than FSE,
XFSE already outperforms FSE at the number of iterations
for which FSE reaches its maximum PSNR. This behaviour
is also reflected in Table 1.

Table 1 shows a PSNR comparison of the tested tech-
niques for dispersed and consecutive losses. The best perfor-
mance of FSE (FSEmax) is compared to the best performance
of XFSE (XFSEmax) as well as to XFSE using the same num-
ber of iterations as FSEmax (XFSEfse). Our proposal outper-
forms other state-of-the-art techniques and improves the re-
construction quality with respect to FSE by up to 0.5dB for
dispersed losses and 0.7dB for consecutive losses. Finally,
simulations reveal that the processing time is increased by ap-
proximately only 13%.

5. CONCLUSIONS

We have proposed the introduction of the prior knowledge
about the natural image spectra into the FSE algorithm. This
is achieved by filtering the residual error by a specifically de-
signed low-pass filter. Better convergence and gains of up to
0.7dB with respect to the original FSE are achieved with a
marginal additional computational cost.
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Abstract

In this paper we propose a novel spatial error concealment algorithm for video and
images based on convex optimization. Block-based coding schemes in packet loss
environment are considered. Missing macroblocks are sequentially reconstructed by
filling them with a weighted set of templates extracted from the available neighbour-
hood. Moreover, a fast approximation of the optimization method is proposed. The
technique produces high quality reconstructions that outperforms the state-of-the-art
algorithms both in terms of PSNR and MS-SSIM.

1 Introduction
Block-based video coding standards, such as MPEG-4 or H.264/AVC, are widely used in
recent multimedia applications. Video signals are split into macroblocks that are coded
using inter- or intraframe prediction. Quantization is carried out in the DCT domain and
lossless arithmetic compression is applied [1]. This leads to low distortions at moderate bit-
rates. However, achieving high quality reception is a challenging task since data streams
are usually transmitted over error-prone channels.

The H.264/AVC standard has introduced several error resilience tools, such as arbitrary
slice order or flexible macroblock ordering. Macroblocks within a frame are split into one
or more slices. A slice forms the payload of a network abstraction layer unit (NALU),
which is a data sequence that can be decoded independently [1]. Video streams are packe-
tized by NALUs so the loss of a packet would lead to the loss of, at least, one macroblock.

Error concealment (EC) techniques form a very challenging field, since QoS is of ut-
most importance for the users. In many cases, retransmission of lost data is not possible
due to real-time constraints of the application or lack of bandwidth. In contrast to error
resilience, which is carried out at the encoder, EC is applied at the decoder. EC algorithms
can be classified into two categories: Spatial EC (SEC), which relies on the information
provided within the current frame and Temporal EC (TEC), that utilizes temporal infor-
mation such as motion vectors (MV) and previous/future frames. Both categories exploit
redundancy due to high spatial and temporal correlation within a video sequence. Tempo-
ral correlation tends to be higher than the spatial correlation, so TEC techniques usually

This work has been supported by the Spanish MEC/FEDER project TEC 2010-18009.
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provide better results. This would be the straightforward choice when concealing a P/B-
frame (intercoded). However, utilizing temporal information for the recovery of I-frames
(intracoded) is not always possible, since these are inserted mainly to reset the prediction
error when a change of scene occurs. Thus, when all the available temporal information
belongs to different scene or there is no temporal information available, SEC algorithms are
preferred. Every I/P-frame in the video sequence usually serves as a prediction template
for, at least, one intercoded frame. Thus, high quality concealment is required since any
reconstruction error will be propagated until the next I-frame arrives.

Several SEC techniques have been proposed for block-coded video/images. In [2], a
simple spatial interpolation is used. In [3] a directional extrapolation algorithm was pro-
posed, which exploits the fact that high frequencies and especially edges are visually the
most relevant features. More advanced techniques including edge detectors combined with
a Hough transform were utilized in [4]. Modelling natural images as Markov random fields
for error concealment purposes was treated in [5]. The authors in [6] combined edge recov-
ery and selective directional interpolation in order to achieve a more visually pleasing tex-
ture reconstruction. Patch-based texture recovery was introduced in [7]. Inpainting-based
methods can also be adopted for SEC purposes [8] [9]. Sequential pixel-wise recovery
based on orientation adaptive interpolation is treated in [10]. In [11], sequential Bayesian
restoration is combined with DCT pyarmid decomposition. Recently, SEC techniques in
transform domains have shown promising results [12].

In this paper we propose a spatial error concealment technique, where the lost regions
are recovered sequentially using templates that are extracted from the available neighbour-
hood and combined according to a proper set of weights. First, we formulate the problem
as a convex optimization problem and then we derive a fast approximation. We compare
our proposals to the existing state-of-the-art algorithms on a wide selection of images and
show that both in terms of PSNR and MS-SSIM our proposals provide better results.

The paper is organized as follows. In Section 2 we formulate the problem. The pro-
posed algorithm is described in Section 3. Simulations results and comparisons with other
SEC techniques are presented in Section 4. The last section is devoted to conclusions.

2 Problem Formulation
Our aim is to conceal the lost region, L, by exploiting only the correctly received pixels in
the neighbouring support area, S.

2.1 Spatial model of an image
We define the image as a quasi-stationary signal that is locally generated by means of a
stationary AR process [13]. Thus, the pixel z(i, j) located at position (i, j) is generated as
a linear combination of those in its neighbourhood: 1

z(i, j) =
∑

(k,l)∈N
w(k,l)z(k, l) + ν(i, j), (1)

whereN is the stationary surrounding area of z(i, j) and ν(i, j) is the residual error, which
is often modelled as independent and identically distributed Gaussian noise N(0, σ2

N). In
1Note that the intracoding scheme in H.264/AVC [1] can be seen as particular case of (1).
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this work, however, we do not impose any specific type of distribution upon the noise.
We will assume that the pixel values are in the range [0; 255] for each colour space

component. Thus, the autocorrelation is non-negative regardless of the lag, i.e. w(k,l) ≥ 0,
where w(k,l) denotes the scalar weight associated with pixel z(k, l), and that will be used
for reconstruction of the pixel z(i, j).

2.2 Weighted template matching (WTM)
Let z be an arbitrarily shaped group of stationary pixels. Writing z as a column vector
we have z ∈ Ψn, where Ψ is the [0; 255] subset of integers. We will now extend the AR
formulation of (1) to vectors z. First, let Z be the set of all shifted versions of z within

the stationary neighbourhood so that
|Z|⋃
j=1

zj = N and |zj
⋂

zk| < |zj| for any j 6= k, i.e.

no two z’s completely overlap. Thus, a group of lost pixels zi can be expressed as a linear
combination of neighbouring vectors as,

zi =

|Z|∑

j=1

wjzj + νi. (2)

The (unpredictable) residual error νi is independent of the surrounding pixels and it is
therefore not possible to exactly recover zi. In order to perform the concealment, the vector
w = [w1, ..., w|Z|]T of scalar weights must first be computed in a way the residual error,
νi, is minimized. Since the image is, in general, non-stationary, the support area S may
include more pixels than those contained in the stationary neighbourhood N of zi, so the
Yule-Walker equations cannot be directly applied. However, the missing block, zi, depends
only on the set of zj’s belonging to the stationary neighbourhood N . Since the location of
these zj’s is unknown the entire support area needs to be searched. The set Z is therefore
extended, so

⋃
zj = S. Including more information than required for the generating AR

process will, by definition, not lead to better results. Thus, given the search area S, we are
seeking the sparsest solution among all the w’s that minimizes the squared prediction error.
Specifically, we need to solve the following optimization problem:

f(δ) = min
w∈W(δ)

‖zi −
|Z|∑

j=1

wjzj‖22

W(δ) = {w| ‖w‖0 ≤ δ and w � 0},
(3)

where δ ∈ N is the sparsity. The sparsity level of the sparsest solution is then given by

δ∗ = min{argmin
δ

f(δ)}. (4)

The sparsest solution w∗ is the one corresponding to δ∗.

3 Proposed Algorithms
In this section, we first propose a SEC technique based on convex optimization. Then, we
derive a computationally less expensive algorithm by applying several approximations.
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3.1 WTM via convex relaxation
The optimization problem defined by (3) and (4) can be rewritten as

minimize ‖w‖0

subject to ‖zi −
|Z|∑

j=1

wjzj‖22 = γ and w � 0,
(5)

where γ is the squared `2-norm of the residual error from (2). The minimization over the
`0-”norm” usually requires exhaustive search and is therefore computationally expensive.
Using convex relaxation [14], (5) can be written in terms of the `1-norm

minimize ‖w‖1

subject to ‖zi −
|Z|∑

j=1

wjzj‖22 = γ and w � 0.
(6)

The residual energy γ is usually not known in advance, so we rewrite (6) as a joint mini-
mization problem

f(δ) = min
w∈W(δ)

‖zi −
|Z|∑

j=1

wjzj‖22

W(δ) = {w| ‖w‖1 ≤ δ and w � 0},
(7)

δ∗ = min{argmin
δ

f(δ)}. (8)

Eqs. (7) and (8), however, cannot be applied directly as zi is unknown, since it constitutes
the lost region. Let us consider, without loss of generality, zi to be the group of pixels as
shown in Fig. 1(a). Note that zi can be split into two subsets: xi, which contains only the
missing pixels and yi, which is formed only by received and correctly decoded pixels and
can be seen as the spatial context of xi. All zj ∈ Z are split in a similar way, as shown in
Fig. 1(a). Since zi is (locally) stationary and yi ⊂ zi then the weights obtained in (7) and
(8) will be identical to the weights obtained by

g(δ) = min
w
‖yi −

|Z|∑

j=1

wjyj‖22

W(δ) = {w| ‖w‖1 ≤ δ and w � 0}.
(9)

δ∗ = min{argmin
δ

g(δ)} = min{argmin
δ

f(δ)}. (10)

Finally, according to (2) the concealed group of pixels, x̂i, can be approximated by a linear
combination of blocks within its stationary neighbourhood

x̂i =

|Z|∑

j=1

w∗jxj. (11)

Computing the sparsity level δ∗ of w∗ (10) for every xi is computationally expensive. In-
stead, we estimate the sparsity by assuming smoothness in the visual features of an image.
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a b

Figure 1: (a) Example of configuration for the vectors x, y and z. S denotes the set of known pixels
and L denotes the set of lost pixels. (b) Filling order for sequential reconstruction with 2×2 patches
(p = 2). The regions illustrated by brighter level are recovered first.

In the particular case of luma, it means that a reconstructed pixel could not be brighter
(darker) than the brightest (darkest) pixel in S. This requires that (11) must be a convex
combination and it implies that δ = 1. Finally, (9) and (10) can be reduced to

minimize
w

‖yi −
|Z|∑

j=1

wjyj‖22

subject to ‖w‖1 ≤ 1 and w � 0.

(12)

The H.264/AVC coder packetizes the stream by slices so a loss of one packet implies
a loss of, at least, one 16×16 macroblock. Applying (11) for xi ∈ Ψ 16×16 would lead to
significant imprecisions as well as blurring since it is often not possible to find a combi-
nation of xj’s that matches xi well enough in the entire Ψ 16×16 space. It implies that the
residual error from (2) carries significant energy. In order to manage with this problem,
we introduce sequential recovery. Thus, the macroblock is recovered using a set of square
patches x̂i ∈ Ψ p×p with 1 ≤ p ≤ 16. Pixel-wise reconstructions, as in [10], may intro-
duce considerable blurring when high frequencies are involved (Fig. 4b). Using larger
templates, the correlation within a template is better preserved and so is the texture (Fig.
4c). Let us consider, without loss of generality, p = 2 and let yi include all the received
or already recovered pixels within the 6×6 pixel neighbourhood of xi, as shown in Fig.
1(a). The macroblock is recovered sequentially by filling it with x̂i obtained by applying
(12) and (11). The filling order is crucial for a high quality recovery and we base it on the
reliability of yi. We define the reliability of the context yi, ρi, as the sum of reliabilities of
its pixels. The reliability of a pixel is set to 1 if it has been correctly received and decoded.
Missing pixels have zero reliability. When a pixel x ∈ xi is concealed, its reliability is set
to αρi/m, where 0 < α < 1 and m is the number of pixels contained in yi. We use α = 0.9
in our simulations. The lost region x̂i, whose context yi produces the highest reliability, is
recovered first. The reliability is non-increasing and the reconstruction evolves from the
outer layer towards the centre of the corrupt macroblock. Fig. 1(b) shows the filling order
of a 16×16 macroblock using 2×2 templates. Note that the first squares to be concealed
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are the corners as their contexts are the largest, providing thus more reliable information
which leads to a more accurate estimate of the weights.

3.2 WTM with exponentially distributed weights
Although there are efficient algorithms for solving convex optimization problems, the pro-
cessing time remains high. In this section we develop a fast approximation for solving
the minimization problem in (12). Specifically, we show that the weights w∗ can be well
modelled by an exponential distribution.

According to (12), every context yj provides a weight w∗j . Due to the high spatial
correlation of an image, it is likely that contexts that produce smaller square error, εj ,
would generate larger weights, where

εj =
‖yi − yj‖22

m
. (13)

a b c

Figure 2: Distribution of weights as a function of ε for (a) ”Peppers”, (b) ”Cameraman” and (c)
”Barbara”.

The weights w∗j , obtained by (12), for three different concealed images are shown in
Fig. 2 as a function of εj . The error pattern applied is the one shown in Fig. 3(b). Note that
the weights appear to be exponentially decaying. There is, however, a cluster of relatively
low weights associated with small quadratic errors. The mild sparsity constraint in (12)
implies that given two candidate templates with similar quadratic error, the optimization
algorithm picks one and suppresses the other instead of using them both. Since the con-
tribution of templates with very small weights to the final reconstruction is negligible, we
will approximate the distribution of the weights by an exponential distribution, i.e.,

ŵj = exp(−1

2

εj
σ2

), (14)

where ŵj is the approximated w∗j and σ2 is the variance of the distribution and can be
estimated for each macroblock (or each patch). For the sake of computational simplicity a
fixed value of σ2 is used. In order to find the appropriate σ2, we minimize the following
penalty function:

π(σ2) =

|Z|∑

j=1

(ŵj − w∗j )2w∗j =

|Z|∑

j=1

(exp(−1

2

εj
σ2

)− w∗j )2w∗j . (15)
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Note that each term in the sum is scaled by w∗j in order to reduce the influence of the
small weights. Given an image, we obtain a set of estimated variances, one per patch, by
minimizing the penalty function in (15). Table 1 shows the mean and the median values
for the majority of the tested images. For natural images, values around 10 lead to visually
good results (Fig. 5b). Larger values of σ2 lead to oversmoothing (Fig. 5c) while small
values can lead to numerical instability and should be avoided (Fig. 5a) (unless there are
extremely good candidate templates).

Finally, the weights are normalized and the missing area xi is estimated as

x̂i =
1

∑|Z|
j=1 ŵj

|Z|∑

j=1

ŵjxj. (16)

a b c

d e f

Figure 3: SEC for the image of ”Foreman” (a) Original image, (b) Received data, (c) Reconstruc-
tion using CAD (PSNR = 31.46dB, MS-SSIM = 97.54), (d) FSE (PSNR = 34.17dB, MS-SSIM =
98.03), (e) WTE (PSNR = 35.46dB, MS-SSIM = 98.73), (f) WTC (PSNR = 35.48dB, MS-SSIM =
98.68).

σ2 Barbara Lena Office Peppers Foreman Cameraman Average
mean 13.59 10.53 12.13 5.52 6.80 12.59 10.19
median 5.00 5.00 3.00 1.00 3.00 2.00 4.00

Table 1: Estimated variance for tested images

4 Simulation Results
In order to better take into account the perceptual quality, the multi scale structural simi-
larity (MS-SSIM) index [15] is used for comparison along with the PSNR measure. In the
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a b c

Figure 4: (a) Received image, (b) reconstructed by OAI (PSNR = 27,22, MS-SSIM = 92,47) (c)
reconstructed using (14) and (16) with p = 2 (PSNR = 25,56, MS-SSIM = 94,76).

a b c

Figure 5: EC for different variances σ2: (a) σ2 = 0.5, numerically unstable reconstructions are
represented with white level, (b) σ2 = 10, (c) σ2 = 50.

BIL EXT SHT CAD AVC MRF INP FSE OAI WTE WTC
Average (PSNR) 26.75 27.41 27.01 28.09 27.77 29.37 28.94 30.48 30.28 30.71 31.18
Average (MS-SSIM) 93.93 95.03 94.29 94.84 95.14 96.31 95.42 96.69 96.28 97.32 96.86
Lena (PSNR) 30.00 29.39 30.47 30.44 30.42 31.89 30.88 32.72 32.83 32.55 32.85
Lena (MS-SSIM) 96.66 96.47 96.97 96.59 96.57 97.68 96.60 97.79 97.63 97.94 97.74
Peppers (PSNR) 29.47 30.24 29.68 31.26 32.13 32.76 32.16 33.48 34.53 33.95 34.35
Peppers (MS-SSIM) 94.90 96.86 95.26 96.84 97.26 97.86 97.29 97.99 98.39 98.42 98.23
Foreman (PSNR) 27.12 29.26 28.34 31.46 29.11 33.87 33.87 34.17 34.87 35.46 35.48
Foreman (MS-SSIM) 95.24 97.17 95.77 97.54 96.96 98.36 98.25 98.03 98.66 98.73 98.68
Barbara (PSNR) 26.19 26.85 25.85 26.78 26.40 27.74 28.04 30.84 29.37 30.79 31.91
Barbara (MS-SSIM) 95.26 94.88 95.57 95.77 95.10 96.29 95.81 97.72 96.81 97.95 98.19
Office (PSNR) 27.54 30.00 27.32 29.43 27.55 29.76 29.64 31.32 30.39 31.34 32.06
Office (MS-SSIM) 94.00 94.94 94.00 95.73 95.96 96.64 96.38 96.98 96.12 97.43 97.41
Baboon (PSNR) 24.15 24.72 24.14 24.92 25.42 25.17 25.06 26.02 26.15 26.02 26.21
Baboon (MS-SSIM) 88.84 91.35 88.69 91.80 91.92 91.94 90.90 93.27 92.69 93.33 93.39
Cameraman (PSNR) 25.96 25.05 26.16 25.96 26.14 26.41 25.96 27.44 27.00 27.24 27.26
Cameraman (MS-SSIM) 93.91 94.47 94.09 94.84 94.04 95.10 93.18 94.84 94.79 96.92 93.76
Tire (PSNR) 23.59 23.82 24.10 24.47 24.99 27.37 25.93 27.87 27.06 28.33 29.32
Tire (MS-SSIM) 92.63 94.09 93.97 89.59 93.28 96.60 94.92 96.91 95.11 97.80 97.46

Table 2: PSNR values (in dB) and MS-SSIM indices (scaled by 100) for test images reconstructed
by several algorithms for block dimensions 16 × 16. The best performances for each image are put
in bold face (excluding the results for the more computationally expensive algorithm WTC).

former case, the image is sequentially low-pass filtered and subsampled so a set of images
is obtained, including the original resolution. Then, the SSIM index is applied for every
subimage within the set. The SSIM index aims at approximating the human visual system

166



(HVS) response looking for similarities in luminance, contrast, and structure [15]. This
index can be seen as a convolution of a fixed-sized mask with the residual error between
the reference image and the concealed image [16]. A unique mask size is used for each
of the images within the set so fine as well as coarse textures and objects are taken into
account.

As shown in Fig. 4, the PSNR does not respond to perceptual visual quality as well
as the MS-SSIM index does. In spite of that, the weights w∗ are obtained according to the
squared error (14) since the SSIM index tends to marginalize the influence of changes in
intensity [15]. This is a desirable behaviour when measuring the perceptual image quality
but not when finding candidate templates. Thus, the squared error is used when computing
the weights while the MS-SSIM index is preferred for an overall quality measure. 2

The performance of the proposed algorithm is tested on the images of ”Lena” (512 ×
512), ”Barbara” (512 × 512), ”Baboon” (512 × 512), Matlab built-in images ”Peppers”
(384 × 512), ”Office” (592 × 896), ”Cameraman” (256 × 256), ”Tire” (192 × 224) and
the first frame of ”Foreman” (288 × 352) sequence. The test is carried out for macroblock
dimensions of 16×16 and the rate of block loss is approximately 25%, corresponding to a
single packet loss of a frame with dispersed slicing structure. We compare the performance
with other SEC methods such as bilinear interpolation (BIL) [2], directional extrapolation
(EXT) [3], a Hough transform based SEC (SHT) [4], content adaptive technique (CAD) [7],
non-normative SEC for H.264 (AVC) [17], Markov random fields approach (MRF) [5], in-
painting (INP) [9], frequency selective extrapolation (FSE) [12] and orientation adaptive
interpolation (OAI) [10]. Both WTM via convex relaxation (WTC) and WTM with expo-
nentially distributed weights (WTE) are tested. In the simulations, σ2 is set to 10 and grey
level images are used. Note that a pixel reconstructed by any of the aforementioned algo-
rithms is usually real-valued and does not necessarily belong to Ψ . Thus, for comparison
purposes, reconstructed pixels are rounded to the closest member of Ψ . Subjective com-
parison of different algorithms is shown in Fig. 3. As can be seen in Table 2, the proposed
technique outperforms the others for all the tested images in terms of MS-SSIM. Moreover,
the average MS-SSIM and PSNR are superior to those of state-of-the-art algorithms.

5 Conclusions
We have developed a weighted template matching algorithm, which recovers lost regions
in images by filling them sequentially with a weighted combination of templates that are
extracted from the available neighbourhood. The weights are obtained by solving a convex
optimization problem that arises from a spatial image model. Alternatively, we show that
the weights can be approximated by an exponential distribution. Our proposals achieve
better PSNR and perceptual reconstruction quality than other state-of-the-art techniques.
WTC is optimized for squared error so it achieves better PSNR than the approximated
method. Simulations reveal, however, that WTE provides better MS-SSIM. Finally, by
applying the approximated algorithm the processing time is reduced in a factor of 100.

Ongoing research is devoted to the extension of our algorithm into error concealment
problems in the temporal domain.

2Note that the MS-SSIM index lies between [-1; 1]. In this section, we have scaled the index by 100 in
order to better illustrate the differences.
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ABSTRACT

Many image error concealment (EC) algorithms can be em-
ployed to reconstruct a lost region by dividing it into a set of
(sub)blocks which are estimated from a set of known context
pixels. In turn, these former pixels may have been previously
obtained by estimation. In this situation, the order in which
the lost region is recursively filled will clearly condition the
resulting reconstruction. This paper proposes a novel filling
order aimed to improve the performance of EC algorithms
that are applied recursively over the lost area. It takes into
account the reconstruction quality of the already concealed
blocks in order to determine the filling order. Blocks sur-
rounded by known pixels or by high quality reconstructions
are prioritized. The proposed technique is applicable to a
wide range of EC algorithms and achieves an improvement
of up to 1dB (in PSNR) with negligible additional computa-
tional load.

Index Terms— Error Concealment, Recursive Recovery,
Filling Order

1. INTRODUCTION

Signal reconstruction is a very challenging task for many mul-
timedia applications where the quality of the received data is
of utmost importance. A common example is the transmis-
sion of image/video signals over error prone channels which
may yield block losses. These lost areas need to be con-
cealed employing the information provided by the correctly
received data. Examples of efficient error concealment (EC)
techniques applied in image communication can be found in
[1, 2, 3, 4].

Previous work has shown that applying recursive recov-
ery yields better reconstruction quality [2, 5]. The lost region
is divided into smaller blocks that are estimated one by one
following a certain order. The estimation, in turn, also relies
on pixels that have been already reconstructed. In general,
the filling order for image reconstruction is crucial [6] since

This work has been supported by an FPU grant from the Spanish Min-
istry of Education and by the MICINN TEC2010-18009 project.

errors can be propagated throughout the lost area. Several fill-
ing order techniques have been proposed [6]. Raster scan or
concentric layer filling use a fixed filling order. The method
in [5] is based on the amount of the correctly received pix-
els around the missing block. The more pixels there are, the
higher is the block priority. Although this recursive conceal-
ment performs considerably better than a single step recov-
ery, it does not distinguish between correctly received pixels
and already extrapolated pixels. This issue is dealt with in
[6] by introducing a confidence parameter. This technique,
however, is based on isophotes and therefore prioritizes lin-
ear structures which may lead to considerable error propaga-
tion. In [7], the confidence term is combined with a param-
eter based on fractional derivative. This approach prioritizes
strong edges which serves well for inpainting purposes but
may not be convenient for EC tasks. In fact, it is worth notic-
ing that the majority of the work on filling order is related to
inpainting and the reconstruction error is neglected.

In this paper, we will adopt the framework described in
[2], which proposes a filling order specifically designed for
EC. It makes use of a pixel reliability parameter which is then
employed to compute block priorities. This reliability-based
sequential filling will be referred to as RSF in the following.
In this work, we now propose to employ the reconstruction
error to determine the filling order. Regions that yield bet-
ter reconstructions will be prioritized in order to reduce error
propagation and achieve better overall reconstruction quality.

The paper is organized as follows. The recursive filling
framework is detailed in Section 2. The proposed technique
is described in Section 3. Simulations results are discussed in
Section 4. The last section is devoted to conclusions.

2. PREVIOUS WORK AND RECURSIVE FILLING
FRAMEWORK

Let us consider an image region R as shown in Fig. 1 which
comprises the region of lost pixels, L, and the support area of
available pixels, S. Several state-of-the-art techniques con-
ceal the lost area L by reconstructing the entire image region
R and then cutting out the pixels of interest (see [2, 3, 8, 9,
10], among others). These concealment techniques are usu-



Fig. 1. Example of configuration for the vectors x, y and z. S
denotes the set of known pixels and L denotes the set of lost pixels.

ally carried out by minimizing a reconstruction error over the
support area S and then, exploiting the high spatial correla-
tion within natural images, it is assumed that the reconstruc-
tion error over the lost area L is also minimized.

In order to achieve better reconstruction quality, the lost
area L can be concealed recursively using smaller blocks xi

such that L =

N−1⋃

i=1

xi, where N is the number of blocks that

comprise the lost area L. We can also associate a group of
pixels, called spatial context, yi ∈ S to every block xi. Many
EC algorithms reconstruct the whole area zi = [xi,yi] and
then the region of interest, xi, is cut out. An example of such
a configuration, with yi comprising all the available pixels
within the 6×6 neighbourhood centred in xi, is shown in Fig.
1. As shown in [2], this size of yi is well suited for error
concealment. Employing a recursive approach yields better
reconstruction quality [2, 5]. It is due to the fact that the re-
covery of larger areas is usually less accurate since they may
contain multiple objects and different textures. Targeting the
concealment on smaller areas involves more homogeneous
data which yields lower reconstruction errors.

One of the filling order approaches, specifically designed
for EC tasks, is RSF [2]. We briefly summarize it here. Given
a pixel p, its reliability ρ is set according to

ρ(p) = 1 if p is correctly received
ρ(p) = 0 if p is lost and unknown
0 < ρ(p) < 1 if p is already concealed

(1)

The filling order is determined by a priority parameter so
that the block with the highest priority is recovered first. Let
us denote Yi the set of pixels belonging to a spatial context
yi. The priority parameter π of a block xi is computed as

πi =
∑

p∈Yi

ρ(p). (2)

According to Eq.(2), the priority depends on the amount of
pixels around xi and on their reliabilities. Finally, the block
xu to be reconstructed at the current step is determined as

u = argmax
i

(πi). (3)

After xu is estimated, the reliabilities of its pixels are set
to the average reliability of the pixels within the correspond-
ing spatial context yu decreased by a constant α, i.e.,

ρ(q) =
πu
|Yu|

α =
α

|Yu|
∑

p∈Yu

ρ(p); q ∈ Xu (4)

where Xu is the set of pixels belonging to the block xu and
0 ≤ α ≤ 1. We will employ α = 0.9 (as in [2]). The con-
cealed block xu is then moved from the region of lost pixels
L to the support area S.

From Eq.(4) it is clear that the reliability is a decreasing
parameter as the lost region is recursively filled. Moreover,
low priority blocks produce less reliable pixels. This filling
order not only distinguishes between correctly received pixels
and the concealed ones but it also assigns high reliability to
the pixels that have been concealed using reliable pixels.

However, none of the aforementioned filling order ap-
proaches, including RSF, takes into account the reconstruc-
tion quality. This behaviour favours error propagation. In
order to solve this issue, regions that yield high quality re-
constructions should be given higher priorities. This way we
reduce the propagation of the reconstruction error, produced
by low quality concealment, throughout the lost area. We will
adopt the same framework as for RSF and we modify it so the
reconstruction errors are considered.

3. THE PROPOSED METHOD

As already mentioned, many state-of-the-art techniques con-
ceal the lost area by minimizing a reconstruction error crite-
rion over yi (e.g. sum of absolute differences, squared error,
etc.). This error, normalized by the number of pixels within
yi, may be different for every EC algorithm and we will de-
note it as εy(yi). It follows that the dynamic range and the
mean value of the reconstruction error may significantly vary
among different EC techniques.

In this paper, we will follow the assumption of the under-
lying EC algorithms that minimizing εy(yi) yields also the
minimum error εx(xi) over xi. In order to take into account
the reconstruction quality, we modify the update of the relia-
bility parameter, defined in Eq.(4), as follows

ρ(q) =

(
πu
|Yu|

α

)
f(εy(yu)); q ∈ Xu (5)

where f(εy) is a penalty function that additionally decreases
the reliability according to the reconstruction error with εy ∈
R+. Let us now analyze how this function should behave:

1. Perfect reconstructions (εy = 0) should not be penal-
ized, i.e. f(0) = 1.



2. It should be monotonously decreasing. The larger the
reconstruction error, the higher the penalization.

3. In order to prevent any block to be hard or even impos-
sible to be selected, the penalization should yield non-
zero reliabilities even for large reconstruction errors. In
other words, the lower boundary of the function should
be larger than zero.

A suitable candidate, fulfilling all the aforementioned
conditions, is the following function

f(εy) =
1

1 + exp
(
− δ
εy

) (6)

where δ is a scale parameter that controls the smoothness of
the penalization. Smaller values of δ yield a sharper decrease
while larger values produce a more forgiving function (see
Fig. 2). As already remarked, the mean value and the dy-
namic range of the reconstruction error may be different for
different EC algorithms. In order to make the penalization al-
gorithm independent of the EC algorithm, a suitable selection
of δ, which scales the reconstruction error, is required.

Let us denote ε̄y the average value of the reconstruction
error for a given EC technique. Then, we impose that re-
constructions that produce lower error than the average one
should not be penalized. Since the penalization function
(Eq.(6)) is continuous and monotonously decreasing, it is
equal to 1 (no penalization) if and only if the reconstruction
error is zero. Thus, in order to relax this condition, we apply
a tolerance factor τ of 0.1% (τ = 0.001). This implies that
reconstruction errors below ε̄y will be penalized by no more
than 0.1%, i.e. f(εy) ≥ 0.999,∀εy ≤ ε̄y . Introducing the
tolerance factor and rearranging Eq.(6) we obtain

δ = −ε̄y log

(
1

1− τ − 1

)
. (7)

The average reconstruction error ε̄y for different EC tech-
niques are calculated using the images of Lena (512×512),
Soccer (512×480), Peppers (512×384), Baboon (512×512)
and Cameraman (256×256). Since these images are em-
ployed here for validation purposes, they will not be utilized
to measure the performance later in Section 4.

Note that according to Eqs.(6) and (7) the penalization de-
pends on the ratio between the observed error and the average.
Thus, for instance, reconstructions that yield errors twice as
large as the average are penalized by the same amount, re-
gardless of the EC algorithm. It follows that the proposed
recursive filling technique adapts itself to the algorithm in-
volved.

4. SIMULATIONS AND RESULTS

The performance of our proposal is tested on the images of
Foreman (352×288), Boat (512×512), Goldhill (720×576)
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Fig. 2. Penalty function f(a) for different values of δ.

Barbara (512×512) and Tire (232×205). In addition, the set
of 24 images (768×512) by Kodak [11] is also used. We have
tested different filling order (FO) techniques: concentric layer
FO (CLF), gradient guided FO (GGF) [7], parallel FO (PFO)
[5], RSF [2] and the proposed error-based recursive filling or-
dering (ε-RF). We have applied these techniques to different
EC algorithms, namely overlapping boundary matching algo-
rithm (OBMA) [8] (with the corresponding reconstruction er-
ror described in Eq.(3) of the reference), multi-hypothesis EC
(MHEC) [9] (Eq.(1) in [9]), sparse linear prediction (SLP) [2]
(Eq.(10) in [2]) and frequency selective extrapolation (FSE)
[3] (Eq.(8) in [3]). We have also included an oracle trial
(ORA) using the optimal value of δ which maximizes the
PSNR for every image (found by exhaustive search). Dis-
persed error pattern and consecutive losses have been applied,
as shown in Fig. 3(b) and Fig. 4(b), respectively.

Table 1 shows the results in terms of PSNR (in dB) for
the dispersed error pattern. In Table 2, we apply consecu-
tive losses and we compare our proposal with RSF, which
performs the best among the previous FO techniques tested.
By applying our proposal, the best reconstruction quality is
achieved. In fact, the proposed technique outperforms RSF by
more than 1dB in some cases and with negligible additional
computational load, as shown later. Moreover, the proposed
value for δ (Eq.(7)) differs on average only marginally from
the performance achieved by the optimal value of δ.

Figures 3 and 4 show the subjective comparison for the
images of Boat and Foreman using SLP and MHEC, respec-
tively. The reduction of error propagation, reflected on PSNR,
yields as well reconstructions with fewer and less noticeable
artifacts.

Regarding the computational complexity, the additional
burden, with respect to RSF, is due to the evaluation of the
penalty term (Eq.(6)) and the update of the pixels reliabilities.
Simulations reveal that the computational cost is increased
only from 0.5% to 1.5% of the total burden, depending on the
considered EC algorithm.

5. CONCLUSIONS

In this paper, we have proposed a recursive ordering approach
that takes into account the reconstruction quality. We have
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Fig. 3. Subjective comparison for a fraction of Boat (reconstructed
by SLP). (a) Original image. (b) Received data. (c) Reconstructed
using RSF. (d) Reconstructed using ε-RF. The most outstanding dif-
ferences are marked with yellow boxes.

(a) (b)

(c) (d)

Fig. 4. Subjective comparison for the image of Foreman (recon-
structed by MHEC). (a) Original image. (b) Received data. (c) Re-
constructed using RSF. (d) Reconstructed using ε-RF. The most out-
standing differences are marked with yellow boxes.

CLF GGF PFO RSF ε-RF ORA

OBMA
ε̄y = 6.95

33.00 33.22 34.74 34.85 35.14 35.48 Foreman
27.51 27.19 27.91 28.13 28.69 28.85 Boat
29.96 29.76 30.61 30.60 30.85 30.96 Goldhill
30.01 29.10 30.17 30.32 30.66 30.79 Barbara
27.13 27.04 27.44 27.21 28.48 28.72 Tire
29.52 29.26 30.17 30.22 30.83 30.96 Average
28.87 28.52 29.07 29.18 29.35 29.37 Kodak

MHEC
ε̄y = 5.62

34.02 33.69 35.08 35.63 35.63 36.40 Foreman
28.01 27.73 28.51 28.67 29.27 29.33 Boat
31.01 30.54 31.29 31.26 31.60 31.67 Goldhill
30.66 29.23 30.83 30.93 31.14 31.36 Barbara
27.51 26.56 27.54 27.90 28.33 28.64 Tire
30.24 29.55 30.65 30.88 31.28 31.48 Average
29.68 29.23 29.86 29.93 30.09 30.11 Kodak

SLP
ε̄y = 4.65

34.27 33.17 35.05 35.38 35.75 36.11 Foreman
28.30 27.83 28.65 28.89 29.49 29.55 Boat
31.45 30.89 31.69 31.88 31.97 31.98 Goldhill
30.62 29.65 30.85 30.96 31.22 31.29 Barbara
27.81 27.91 28.26 28.45 28.87 28.87 Tire
30.49 29.89 30.90 31.11 31.42 31.56 Average
29.89 29.43 30.02 30.08 30.24 30.24 Kodak

FSE
ε̄y = 0.59

33.08 32.15 33.05 33.15 33.17 33.42 Foreman
28.68 28.45 28.71 28.73 28.83 28.89 Boat
31.47 31.15 31.36 31.38 31.50 31.50 Goldhill
30.85 30.53 30.88 31.01 31.09 31.09 Barbara
28.06 28.64 28.69 28.70 28.91 28.93 Tire
30.43 30.18 30.53 30.59 30.76 30.77 Average
29.98 29.78 30.00 30.05 30.15 30.17 Kodak

Table 1. PSNR values (in dB, whole images) for test images re-
constructed by several algorithms using dispersed error pattern (the
average error ε̄y is also indicated). The average PSNR for the images
listed in the table as well as the average for the Kodak set are also
included. Different filling orders are applied: concentric layers FO
(CLF), gradient guided FO (GGF), parallel FO (PFO), reliability-
based FO (RSF), the proposed error-based FO (ε-RF) and ε-RF us-
ing the optimal value of δ (ORA). The best performances (excluding
the oracle trial) are in bold face.

Foreman Boat Goldhill Barbara Tire Kodak

OBMA 26.72 22.14 25.11 24.56 20.66 23.93 RSF
27.94 22.54 25.43 25.14 21.53 24.08 ε-RF

MHEC 26.54 22.57 25.56 24.91 20.61 24.38 RSF
28.25 22.84 25.90 25.55 21.67 24.57 ε-RF

SLP 27.68 22.90 26.20 25.01 20.52 24.66 RSF
28.08 22.88 26.41 25.80 21.39 24.86 ε-RF

FSE 26.20 23.24 25.80 25.15 21.94 24.50 RSF
26.61 23.39 25.84 25.61 22.48 24.50 ε-RF

Table 2. PSNR values for test images reconstructed by several al-
gorithms using consecutive error pattern. The average PSNR for the
Kodak set is also included. The filling orders RSF and the proposed
ε-RF are employed. The best performances are in bold face.

introduced a penalty function that maps the reconstruction er-
ror into a penalization factor that controls pixel reliabilities.
Blocks that are surrounded by high quality reconstructions,
i.e., by more reliable pixels, are prioritized. The proposed
technique is applicable to any EC algorithm that recovers the
lost pixels by reconstructing a wider area and then cutting out
the region of interest. Improvements of up to 1dB (in PSNR)
are achieved with respect to RSF with only marginal increase
in computational complexity. Ongoing work is focused on a
more accurate filling order that exploits local data statistics.
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Chapter 3

Conclusions and Future Work

3.1 Conclusions

This thesis has been focused on designing reconstruction algorithms that outperform other state-
of-the-art EC techniques for image/video communication. In order to do so, we have adopted
different approaches. In this section, we briefly summarize the four research topics tackled in this
thesis.

• First, we have have dealt with interpolation based EC. The main problem here is the lack
of robustness and the inability to recover complex edges. We have tackled these issues by
introducing a novel scanning procedure which, along with the Hough transform, provides a
robust and accurate descriptor of the relevant edges around the missing area. Moreover, since
this area can be affected by multiple edges, several directional interpolations are employed
in order to obtain the final reconstruction. These interpolations are combined using a set
of weights unique for each missing pixel. We have introduced a visual clearness parameter
associated to every edge which is used to estimate these weights. This proposal successfully
recovers complex edges and significantly outperforms other state-of-the-art interpolation
based EC techniques.

• The second main area, addressed in this thesis, is to take advantage of local data statistics
in order to recover the missing samples. We have proposed a vector linear prediction scheme
which, under a sparsity constraint, dynamically adapts itself to the amount of available and
useful data. This scheme has been tested for image, video and also speech transmission ap-
plications. The method can be further simplified by adopting an exponential approximation.
By doing so, comparable or better performance is obtained with much less computational
burden. This approach can be generalized by adopting a multivariate kernel-based MMSE
framework. The key issue consists in a novel kernel bandwidth estimation, especially oriented
to multimedia signal reconstruction. These proposals provide high quality reconstructions
of complex structures and fine textures, both on objective and subjective levels.

• Third, we have studied EC in transformed domain. Natural images are low-pass signals and
we have proposed to use this information in order to improve the reconstruction quality. This
is achieved by introducing a residual frequency filtering into the existing frequency selective
extrapolation algorithm. For every iteration, this filtering affects the selection of the best
fitting basis function and the update of the corresponding Fourier coefficient. This approach
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almost completely suppresses the overfitting, present in the original FSE algorithm, and
provides an improvement of up to 1dB (in terms of PSNR) with respect to FSE.

• Finally, we have proposed a novel filling ordering, especially conceived for EC tasks. Regions
with lower reconstruction errors are prioritized in order to achieve better overall reconstruc-
tion quality. Reconstruction error is estimated from the available samples and a penalty
function is introduced in order to reduce error propagation. Simulations reveal that improve-
ments of up to 1dB (in terms of PSNR) are achieved with marginal additional computational
cost. This approach is also applicable to a large variety of EC techniques.

Moreover, in order to encourage reproducible research, we have made the implementations
of our techniques and various EC algorithms available online at [59]. By publishing the source
codes we hope to contribute to the advances in image reconstruction since obtaining a thorough
benchmark will be easier.

Conclusiones

Esta tesis se ha centrado en el diseño de técnicas de reconstrucción cuyo rendimiento supere
a los algoritmos EC del estado de arte. Durante la fase de diseño se han adoptado diferentes
aproximaciones. En esta sección se ofrece un breve resumen de las cuatro aproximaciones tratadas
en esta tesis:

• En primer lugar hemos trabajado con técnicas EC basadas en interpolación. Su mayor
problema es la falta de robustez y la incapacidad de reconstruir bordes más comlejos. Hemos
tratado de resolver este problema introduciendo un procedimiento novedoso de barrido que,
aplicando la transformada de Hough, proporciona un descriptor robusto y preciso de las
fronteras relevantes alrededor de la región perdida. Además, como esta región puede verse
afectada por múltiples fronteras, empleamos varias interpolaciones con el fin de obtener la
reconstrucción final. Estas interpolaciones se combinan utilizando un conjunto de pesos que
son únicos para cada pixel. Hemos introducido el parámetro de claridad visual que se asocia
a cada frontera y que se utiliza para estimar los pesos. Esta técnica es capaz de recuperar
fronteras complejas y proporciona un rendimiento considerablemente superior al resto de
técnicas EC del estado de arte basadas en interpolación.

• La segunda área, considerada en esta tesis, es reconstruir las muestras perdidas aprovechando
la estad́ıstica local. Hemos propuesto un esquema de predicción lineal vectorial que, bajo las
condiciones de sparsity, se adapta dinámicamente a la cantidad de muestras disponibles. El
esquema se ha aplicado a la transmisión de imágenes, v́ıdeo y también voz. Este método se
puede simplificar aplicando una aproximación exponencial. Aśı se consigue un rendimiento
similar o incluso superior al esquema original pero con una carga computacional significativa-
mente menor. Este esquema se puede generalizar adoptando un marco MMSE multivariado
basado en kernels. El aspecto clave consiste en una novedosa estimación del ancho de banda,
orientada especialmente a la reconstrucción de señales multimedia. Las técnicas propuestas
ofrecen altas calidades de reconstrucción de estructuras complejas y texturas finas, tanto en
el plano objetivo como sujetivo.

• En tercer lugar hemos estudiado los algoritmos EC en el dominio transformado. Las imágenes
naturales suelen ser señales paso-baja aśı que hemos propuesto utilizar esta información
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con el fin de mejorar la calidad de reconstrucción. Hemos modificado el algoritmo FSE
(frequency selective extrapolation) introduciendo un filtrado de frecuencias residuales. En
cada iteración, este filtrado afecta el proceso de selección de la mejor función base y la
actualización del correspondiente coeficiente de Fourier. Esta aproximación elimina casi por
completo el overfitting, presente en el algoritmo FSE original, y produce una mejora de hasta
1dB (en términos de PSNR) con respecto a FSE.

• Por último, hemos propuesto un algoritmo de orden de relleno especialmente diseñado para
EC. Se tiende a priorizar regiones con menor error de reconstrucción para conseguir una
calidad de reconstrucción global más alta. El error de reconstrucción se estima a partir de las
muestras disponibles y se introduce una función de penalización para reducir la propagación
de errores. Experimentalmente se ha conseguido una mejora de hasta 1dB (en términos de
PSNR) con un coste computacional adicional mı́nimo. Cabe mencionar que esta propuesta
es aplicable a una amplia gama de algoritmos EC.

Además, para propiciar la investigación reproducible, hemos publicado las implementaciones de
nuestras técnicas y de otros algoritmos del estado de arte. Los códigos fuente se pueden descargar
en [59]. Esperamos que la publicación de los códigos contribuya a los avances en la investigación de
reconstrucción de imágenes dado que obtener una comparación exhaustiva con el resto de técnicas
será mucho más asequible.

3.2 Future work

Having developed the techniques presented in this thesis, various research topics have arisen to be
further explored.

Kernel-based MMSE can be employed to improve the filling order. It can provide
an estimation of the reconstruction error that will determine the filling priorities.

A thorough study on the low-pass filter, used in our improved FSE algorithm, is desirable.
It could provide further improvements and this approach could be later generalized to any signal
source. It is also worth exploring an adaptive filtering that would control the evolution of the FSE
algorithm according to the spectral features of the residual energy.

EC techniques can be extended to other related applications, such as inpainting, ob-
ject removal, superresolution or texture diffusion. The objective of such applications is a visually
plausible result and not the minimization of an error criterion between the original and recon-
structed signal. In fact, there is no well-defined unique solution [60]. It is worth exploring the
possibility of modifying the proposed algorithms so they can be employed in the aforementioned
applications.

It has been shown that the techniques proposed in this thesis can successfully recover corrupt
images and video streams, leading to high quality reconstructions. That means that the received
streams still contain a significant amount of redundancy. This issue can be further studied in order
to propose new compression algorithms for multimedia signals.



CHAPTER 3. CONCLUSIONS AND FUTURE WORK 106



Bibliography

[1] Ericsson Mobility Report:, “On the pulse of the networked society,”
http://www.ericsson.com/ericsson-mobility-report, June 2013.
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