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códigos, se han convertido para mı́ en verdaderos amigos. Gracias a Omar, Juan

Antonio, Jose Manuel, Samuel, Sebastiano, Carlos, Clara y Pablo, porque sin vuestra
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Chapter 1

General introduction

The nervous system is considered, up to date, the most efficient natural device

for information-processing. Even the simplest neural architectures of small inverte-

brates seem to surpass the capacity of the latest state-of-the-art human technology

to handle and process information. Thanks to the nervous system, living organisms

are able to deal with dynamically changing external stimuli and to respond ac-

cordingly, enhancing the probability of success in many vital tasks such as feeding,

escaping from a predator, or reproduction. As the organisms have evolved to more

complicated living forms, their nervous systems have also become more sophisticated

and has acquired a robust hierarchical architecture, anatomically and functionally

speaking. The development of the brain, as the central unit of the nervous system,

has implied an enormous improvement in the abilities of higher animals to solve

high-level problems, and even a notable capacity for learning in the case of mam-

mals. The particular case of humans is the clearest example of what the ultimate

implications of such machinery of information processing are: language and social

interactions of high level, logical thinking, Science, Poetry or Music are only a few

examples that come to mind.

Some of the most prominent useful characteristics of the nervous system for

the processing of information have captured the attention of many researchers from

different fields in the past century. For instance, the first attempts to design artificial

devices which presented some of the advantages of actual neural systems yielded a

great development of new emerging fields, such as robotics and computer science. An

important number of computational strategies and highly optimized algorithms were

developed, some of them concerning categorization of images, optimization problems

in science and engineering, or the design of human-centric computer interfaces (see,

for instance, (Cabestany et al., 2009)). In spite of these advances, our knowledge

about the strategies that constitute the key to the efficiency of actual neural systems

is still shallow.

1
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In the last few decades, however, there has been a notable effort to investigate in

deep what the computational strategies that the nervous system employs to perform

adequately are. The discipline emerging from such an effort, commonly known as

Computational Neuroscience, studies the nervous system from the point of view of

its functionality in order to uncover some of these basic computational strategies.

To achieve this purpose, it relies both on mathematical models of individual neu-

rons and networks, and on experimental data which help to develop these models.

Typically, experimental studies on their own are not enough to completely address

how information processing occurs, because neural systems are only partially ob-

servable with the current electrophysiology and imaging techniques. In addition, a

significant part of the complex phenomenology associated with brain functions may

be the result of the collective effect of many interacting elements (of about ∼ 1010,

when such elements are considered to be neurons), a possibility that can not be

experimentally controlled.

In situations in which the relevant magnitudes are not accessible via experimen-

tal techniques, mathematical models may constitute a useful mechanism to analyze

the role of different variables in the system under study, and could serve as a com-

plementary method to obtain information about how the brain works. Moreover,

from a more pragmatical point of view, Computational Neuroscience methods can

be of great utility to predict the outcome of experiments. The process of designing

an experiment to test a hypothesis involves making predictions about what the pos-

sible results of such an experiment might be, and to work out the implications of

each one of these possible results. This is commonly a difficult task in most biologi-

cal systems, especially in those which, as the brain, involve many interacting parts.

Therefore, as a consequence of being a tool for prediction, Computational Neuro-

science methods may be highly useful to design new experiments. Finally, in many

cases mathematical models are able to provide new insights and hypotheses that

are suitable to be tested experimentally. Indeed, a model may reveal assumptions

about the system that were not fully appreciated in experiments.

Due to this feedback between model and experiment, Computational Neuro-

science has become a highly interdisciplinary field, in which experimentalists coming

from biological sciences and more theoretically-oriented researchers have contributed

to the recent increasing advance in the field. This methodology is reflected, for in-

stance, in the mathematical neuron model by Hodgkin and Huxley in 1952, designed

to quantitatively describe the membrane properties recorded in electrophysiological

experiments in the giant squid’s axon (Hodgkin and Huxley, 1952b). This model

is one of the most successful and representative mathematical descriptions in neu-

roscience, and constituted a prominent advance in the field. In the last decades,

indeed, a wide variety of neuron models have been built in order to improve, or sim-
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plify, the mathematical paradigm of Hodgkin and Huxley (Izhikevich, 2004), and to

extend its applicability to other neural media.

The development of attractor neural network models constitutes another inter-

esting example, from a more theoretical point of view, of the recent advance of

Computational Neuroscience. Since most neural systems are constituted by a large

number of minimal working units – neurons –, it is sometimes useful to adopt the-

oretical tools from Statistical Mechanics to achieve a successful description of the

system under study. Typically, Statistical Mechanics deals with large systems of

stochastically interacting microscopic elements (such as gasses, magnets, swarms,

spin glasses, or vehicles in traffic models, to name a few). This discipline abandons

any ambition to solve exactly all the involved equations of motion at the microscopic

level, and it uses the individual microscopic laws to describe the emergent collective

behavior of the system via a set of macroscopic observables (Marro and Dickman,

1999; Cortes, 2005). Under some assumptions, neural systems may be studied within

this theoretical level of description. A notable example are the so called attractor

neural networks (ANN), and in particular the Hopfield model of associative memory

(Hopfield, 1982) which illustrates one of the simplest manners in which collective

neural computation may work.

Within this theoretical framework, neurons are considered to be the fundamen-

tal computational engines for information processing and coding, with the synapses

treated as mere connections between neurons across which the information is trans-

mitted. Such a traditional view, however, may turn out to be excessively simplistic,

since many recent works indicate that synapses participate actively in the processing

of information in the brain. In the last few years, for instance, it has been reported

that the strength of synaptic connections may vary on short time scales depending

on presynaptic activity (Abbott et al., 1997; Tsodyks and Markram, 1997; Abbott

and Regehr, 2004). It has also been found that such variations can be used to process

information in a nontrivial way (Abbott et al., 1997). This finding indicates that,

in addition to neurons, synapses may have an active role in neural computations.

The possibility to have activity-dependent synaptic modifications on short time

scales is usually known as short-term plasticity (Zucker and Regehr, 2002; Hempel

et al., 2000), and the synapses which display such behavior are called dynamic

synapses. According to underlying biophysical process involved, there are two major

mechanisms responsible for short-term plasticity: the so called short-term depression

(STD) and short-term facilitation (STF). The former is responsible of the decrease

of the postsynaptic response under repetitive presynaptic stimulation, whereas the

latter induces an increment of the postsynaptic response for the same type of stim-

ulus.

The complete computational and functional implications of STD and STF are
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not clear yet, although these processes could be of vital importance in the processing

of information in neural systems. Very recent studies have shown, for instance, that

the presence of STD has a strong influence on the dynamics of neural systems, and

is implicated in membrane gain control (Abbott et al., 1997), maintenance of high

activity states in the cortex (Romani et al., 2006), storage of information in attractor

neural networks (Bibitchkov et al., 2002; Torres et al., 2002), detection of coincident

signals (Pantic et al., 2003), or the appearance of switching between different activity

patterns in recurrent neural networks, which could be related with spontaneous

voltage transitions in cortical areas (Pantic et al., 2002; Holcman and Tsodyks,

2006). Most of these studies, however, do not take into account the effects produced

by STF, which is also present in most of the brain structures analyzed in these works.

This constitutes a highly relevant issue, because STD and STF have a priori opposite

effects on the postsynaptic response, and taking into account STF could notably

affect the behavior of a neural system with depressing synapses. Moreover, the

consideration of both mechanisms together could reveal novel emergent phenomena

caused by the interplay between STD and STF. Indeed, such interplay could help

to explain several features of actual neural systems which remain far from being

totally understood. Some of these features include the detection of weak signals over

a broad range of network activity levels (Abbott et al., 1997), the ability of neural

circuitry to optimally store and retrieve information while maintaining an efficient

processing of signals (Pantic et al., 2003), or the level of irregularity observed even

in highly synchronized neural dynamics, such as the heterogeneity of the duration

of high activity states during series of up-down cortical transitions (Anderson et al.,

2000). In spite of its possible implications on all these phenomena, the study of the

interplay between STD and STF in different neural systems has not been addressed

in detail up to date.

Within the framework given above, the aim of this thesis is to in-

vestigate the role and implications of the interplay between short-term

synaptic depression and facilitation on the computational properties of

several neural systems of interest.

Main objectives of the thesis

The work presented in this thesis pursues, as has been already stated, to study

the effects of short-term plasticity mechanisms on the behavior of neural systems.

In most of the cases, the analysis developed along the following has been achieved

both theoretically and numerically, and employing different levels of mathematical

description for both neurons and synapses. More concretely, the main research

objectives that we have attempted to achieve within this thesis are the following:
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• To gain a deeper understanding of the influence of several biophysical synaptic

mechanisms (such as STD and STF) on the abilities of typical neural systems

to detect and process relevant information embedded in neural noisy envi-

ronments. This constitutes a highly relevant issue since, although it is well

known that short-term synaptic plasticity has a strong effect on the ampli-

tude of the postsynaptic response to an incoming stimulus, its implications on

actual cortical computations (in which a certain level of background noisy ac-

tivity is commonly present) remain far from being explained. Moreover, STD

and STF have been reported to occur widespread through the cortex (Thom-

son and Deuchars, 1994). Therefore, without a complete characterization of

such influence of STD and STF, future theoretical predictions and estimations

concerning actual neural computations in cortical media could be wrong.

• To investigate the effect of the possible competition and interplay between

STD and STF (and other mechanisms which could be also present in actual

neural structures) on the emergent behavior of neural systems. Such study

constitutes an essential part in the characterization of the effects of short-term

synaptic plasticity in realistic conditions, and may also be useful to identify

new emergent phenomena which would have not been found if each synap-

tic mechanism were studied individually (and, therefore, which would be a

consequence of such interplay).

• To address the role of short-term synaptic mechanisms in several collective

behaviors of relevance, such as in associative memory tasks or in the coherent

dynamics constituting the up and down voltage transitions observed in the

cortex. In particular, since it is considered that these two phenomena strongly

depend on synaptic properties, a detailed analysis of the influence of STD and

STF on these behaviors could highlight the origin of several concrete features

not explained yet.

Structure of the thesis

The study presented in this thesis is structured as follows: chapter 2 constitutes

a basic general introduction to the biology of neural systems. Once the biological

background has been provided, chapter 3 aims to introduce the reader into the

framework of Computational Neuroscience and to expose the basic features of short-

term synaptic plasticity at the mathematical level. After that, in the following

chapters the original contributions of this thesis are presented. For instance, chapter

4 is concerned with the analysis of the role of STD and STF in the detection of

coincident signals of neurons embedded in an environment of noisy activity. This
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study is extended in chapter 5, where we investigate the interplay between STD,

STF, and other adaptive mechanisms in the detection of weak signals. Chapter 6

presents the consequences of introducing short-term plasticity in the synapses of

a large population of interconnected neurons which presents associative memory

properties. In chapter 7, the dynamics of a neural population presenting complex

switching of neural activity is analyzed, highlighting the influence of short-term

plasticity mechanisms. Finally, in chapter 8 the main conclusions of the work are

presented, and the implications for future research are outlined.

The thesis is also structured from low to high complexity of the neural system

under study. Chapters 4 and 5, for instance, concern small perceptron-like neural

circuits, in which the aim is to analyze the input-output relation (i.e., the transmis-

sion of information from a presynaptic neural population to a postsynaptic neuron).

On the other hand, chapters 6 and 7 are focused on large recurrent neural popula-

tions of interconnected neurons, in which the cooperativity between neuronal and

synaptic effects produce nontrivial and novel collective phenomena that are analyzed

in detail.

From the point of view of the biological realism of the mathematical models

employed, however, the thesis is top-down structured: chapters 4 and 5, for instance,

consider realistic (although still very simplified) mathematical models of neurons and

synapses, while in chapter 6 an Ising-like model of binary neurons, which is useful

to describe associative memory properties, is employed. Finally, a coarse-grained

description (namely, a rate model) of a homogeneous neural population is assumed in

chapter 7 to study the role of short-term plasticity on the complex switching series of

cortical activity. Therefore, from a methodological point of view, the more complex

the neural system addressed, the simpler the mathematical model considered for its

study.

In the following, some brief details concerning each chapter are presented, in-

cluding the original contributions of this thesis (mainly, chapters 4-7):

In chapter 2 we present a brief physiological review of the nervous system.

This review covers the biological aspects employed in the subsequent chapters, and

provides some useful references for the interested reader. The chapter starts with

an exposition of the main parts of the central nervous system, focusing on the

particular case of the cerebral cortex. After that, some basic features of neurons

are explained, and finally the main aspects of the synapses are reviewed, paying

special attention to the biophysical mechanisms which induce the different short-

term plasticity mechanisms. Such review is highly convenient to understand the

effect of short-term synaptic mechanisms on the computational properties of different

neural systems which, as we have already explained, is the goal of this thesis.

In chapter 3 a review of some mathematical paradigms commonly used to model
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neural systems is presented, to complement the biological introduction of chapter

2. We briefly cover several neuron models of interest, starting from highly detailed

neural paradigms (such as the Hodgkin-Huxley neuron model) and finishing with

very simplified ones (such as the binary neuron). After that, some mathematical

descriptions of the synapses are presented, including some of the models of short-

term plasticity which will be employed in the following chapters. Finally, different

approaches to model large neural populations are sketched out as well.

Once the biological background and the methods have been introduced in chap-

ters 2 and 3, we start to study the role of STD and STF in very simple neural

systems. In particular, chapter 4 is concerned with detection of correlated inputs

by simple neural circuits with short-term plasticity in noisy environments. More pre-

cisely, using a realistic model of depressing and facilitating synapses , we studied the

conditions in which a postsynaptic neuron efficiently detects temporal coincidences

of spikes which arrive from N different presynaptic neurons at a certain frequency f.

A numerical and analytical treatment of this system showed that: i) STF enhances

the detection of correlated signals arriving from a subset of presynaptic excitatory

neurons, and ii) the presence of STF yields a better detection of firing rate changes in

the presynaptic activity. We also observed that facilitation determines the existence

of an optimal input frequency which allows the best performance for a wide (maxi-

mum) range of the neuron firing threshold. This optimal frequency can be controlled

by means of facilitation parameters. Finally, we showed that these results are robust

even for very noisy signals and in the presence of synaptic fluctuations produced by

the stochastic release of some molecules involved in synaptic transmission (the so

called neurotransmitters).

In chapter 5, we extended the analysis of chapter 4 by studying the detection of

weak stimuli by spiking (integrate-and-fire) neurons in the presence of a certain level

of noisy background neural activity affecting the postsynaptic response via dynamic

synapses. Employing mean-field techniques as well as numerical simulations, we

found that there are two possible noise levels which optimize signal transmission

(such phenomena is referred here as bimodal resonance). This new finding is in

contrast with the classical theory of stochastic resonance, which is able to predict

only one optimal level of noise for the detection of weak signals. We found that

the complex interplay between adaptive neuron threshold and activity-dependent

synaptic mechanisms is responsible for this new phenomenology. Our results were

confirmed by employing a realistic FitzHugh-Nagumo neuron model, which displays

threshold variability within its own dynamics, as well as by considering more realistic

synaptic models. We also supported our findings with recent experimental data of

stochastic resonance in the human tactile blink reflex.

Our next step was to extend the study to models of large neural populations.
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Concretely, in chapter 6 we studied, analytically and employing Monte Carlo simu-

lations, the influence of the competition between several activity-dependent synaptic

processes, such as STF and STD, on the maximum memory storage capacity in an

attractor neural network. In contrast with the case of synaptic depression, which

drastically reduces the capacity of the network to store and retrieve “static” activity

patterns, synaptic facilitation enhances the storage capacity in different contexts. In

particular, we found optimal values of the relevant synaptic parameters (such as the

neurotransmitter release probability or the characteristic facilitation time constant)

for which the storage capacity can be maximal and similar to the one obtained with

static synapses, that is, without activity-dependent processes. We concluded that

depressing synapses with a certain level of facilitation allow to recover the good

retrieval properties of networks with static synapses while maintaining the nonlin-

ear characteristics of dynamic synapses, convenient for information processing and

coding.

After the analysis of retrieval abilities of neural networks with dynamic synapses,

which may be seen as steady state properties, we focused in the effect of STD on

the dynamics of the activity of neural populations. In particular, in chapter 7 we

addressed the study of the voltage transitions between up and down states observed

in cortical areas in the brain, which constitute a paradigmatic example of complex

coherent neural dynamics. We study this phenomenon via a biologically motivated

stochastic model of up and down transitions. The model employed was a simple

bistable rate model, where the synaptic current is modulated by short-term synaptic

processes (such as STD) which introduce stochasticity and temporal correlations.

A complete analysis of our model, both with theoretical approaches and numerical

simulations, showed the appearance of complex transitions between high (up) and

low (down) neural activity states, driven by the synaptic noise, with permanence

times in the up state distributed according to a power-law. These results are in

agreement with recent experimental observations in up and down transitions in

cortical activity which indicate the onset emergence of criticality in the hopping

dynamics between collective neural states.

Finally, in chapter 8 the main conclusions of this thesis are presented, focusing

on the role of the interplay between short-term depression and facilitation in the

computational and functional properties of different neural systems at different levels

of description. The possible implications of this interplay on several brain tasks

and behavior, and also the future research lines that this thesis may suggest, are

summarized as well.



Chapter 2

Basic biological principles

In this chapter, we will introduce several biological concepts of interest concerning

actual neural systems. More precisely, we will review some well known features

of the central nervous system and its constituting elements, namely neurons and

synapses. The aim of such review is to introduce the reader to a basic biological

framework which may be convenient for a complete understanding of the results

presented in this thesis.

2.1 Introduction

The nervous system is a hierarchical structure which spreads over the whole body.

It is basically constituted by specialized nerve cells called neurons, which process

the information coming from the senses in a complex manner, and glial cells, which

support neurons in their task by, for instance, supplying nutrients to them. In the

case of humans as well as other mammals, the nervous system can be divided broadly

into two categories: the central nervous system (CNS) and the peripheral nervous

system (PNS). The CNS is the main and more complex structure and constitutes

the largest part of the nervous system, whereas the PNS is constituted by all the

structures that do not lie directly in the CNS, such as the nerves. The CNS is

roughly constituted by several parts, and ultimately, by large populations of neu-

rons interconnected between them. In this section, some basic concepts about the

nervous system, including a classification of the CNS regions in mammals and a

basic description of neurons and synapses, will be briefly laid out. The anatomical

and physiological requirements to understand the work presented in this thesis will

be covered by these brief descriptions. However, the reader is invited to deepen

into more specific textbooks (see the bibliography at the end of the chapter, and in

particular (Kandel et al., 2000; Bear et al., 2006; http://neuroscience.uth.tmc.edu))

in order to gain a broader understanding of neural structures and functions.

9
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Figure 2.1: The seven main structures of the CNS of humans. The medulla oblongata,

the pons and the midbrain constitutes a region called brain stem, which is also indicated

in the figure.

2.2 The central nervous system

Basically, the CNS is a bilateral and essentially symmetrical structure with seven

main parts: the spinal cord, medulla oblongata, pons, midbrain, cerebellum, dien-

cephalon, and the cerebral hemispheres. According to the current beliefs in modern

Neuroscience, each one of these regions is specialized for different specific functions

(Kandel et al., 2000). The seven main structures of the CNS are illustrated in figure

2.1, while some details concerning their functionality are given below:

• The spinal cord is a long, thin, tubular bundle of nervous tissue and support

cells, enclosed within and protected by the vertebral column. It is the most

caudal part of the CNS, and receives and processes sensory information from

the skin, joints and muscles of the limbs and trunk, thus acting as a transmissor

between the CNS and the rest of the body. It also controls the movements of

the limbs and the trunk. As we ascend through the spinal cord, we arrive at

a region called the brain stem, composed by the medulla oblongata, the pons

and the midbrain.

• The medulla oblongata is located immediately above the spinal cord, and is

one of the structures constituting the brain stem. It contains several neuronal

centers which are responsible for vital autonomic functions, such as breathing,

digestion, and the control of heartbeats.
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• The pons is a structure of the brain stem, and lies above the medulla oblon-

gata. It coordinates information between the cerebral hemispheres and the

cerebellum, and plays a role also in the regulation of respiration. More pre-

cisely, the anterior portion of the pons contains a large number of neuronal

clusters, known as the pontine nuclei, that relay information about movement

and sensation from the cerebral cortex to the cerebellum, while the posterior

portion contains structures involved in breathing, taste, and sleep.

• The midbrain is the smallest part of the brain stem, and is located above the

pons. Neurons of this part control many sensory and motor function, and link

other parts involved in motor tasks, such as the cerebellum, the basal ganglia,

and the cerebral hemispheres. The midbrain also contains components of the

auditory and visual system. It is involved, for instance, in controlling eye

movements and auditory reflexes.

• The cerebellum lies behind the pons, and is connected to the brain stem by sev-

eral major fiber tracts called peduncles. The cerebellum contains a far greater

number of neurons than any other single subdivision in the brain, including

the cerebral hemispheres. Nevertheless, it is constituted by a relatively small

number of neuron types, and as a consequence of that its circuitry is well

understood. This structure plays an important role in the integration of sen-

sory perception, receiving somatosensory information from the spinal cord. It

is also important in many coordination and motor control tasks, such as the

maintenance of the posture and the coordination of head and eye movements.

Finally, the cerebellum is also involved in fine tuning the movements of muscle

and in the learning of motor skills.

• The diencephalon is located above the midbrain and contains two structures:

the thalamus and the hypothalamus. The thalamus processes most of the sen-

sory information (except the olfactory) reaching the cerebral cortex from the

rest of the CNS. It also takes part in the gating and modulation of this sensory

information, rather than being a simple transmissor of sensory stimuli. The

hypothalamus regulates several functions that are essential for homeostasis

and reproduction. Examples of these functions include growth, eating, drink-

ing or maternal behavior, to name a few. It constitutes, in general, a basic

control structure of different autonomic, endocrine, and visceral functions.

• The cerebral hemispheres are constituted by a heavily wrinkled outer layer,

the cerebral cortex, and three deep-lying structures: the basal ganglia, the

hippocampus, and the amygdaloid nuclei. These four structures have quite
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different functions: the basal ganglia is involved in the regulation of the mo-

tor performance, the hippocampus participates in certain aspects of memory

storage, the amygdaloid nuclei coordinate autonomic and endocrine responses

of emotional states, and the cerebral cortex is responsible for high cognitive

abilities in humans and other mammals.

Other classifications are possible, although the vast majority of them distinguish

three major parts of the CNS: the spinal cord, the brain stem - cerebellum, and the

cerebral hemispheres. Most of the neural systems and situations analyzed in this

thesis are assumed to correspond to cortical regions, and for this reason some basic

concepts about the cerebral cortex will be reviewed in the following.

2.3 The cerebral cortex

The cerebral cortex, also called neocortex within the classification adopted here, is

basically concerned with cognitive functioning. Thus, while most of the vital func-

tions are mediated and controlled by different regions of the spinal cord, brain stem,

and diencephalon, the majority of executions and actions of our everyday life are

mediated by the cerebral cortex. It is constituted by a highly convoluted thin layer

structure of 2 ∼ 4 mm of thickness (Kandel et al., 2000). The concrete function for

this convoluted form is still unknown, although it has been suggested that it could be

the maximization of the cortical area. From an anatomical point of view, the cortex

can be divided into four regions or lobes: frontal, parietal, temporal, and occipital

(see the scheme of figure 2.2). These four regions have different functional specializa-

tions. The frontal lobe, for instance, is concerned with planning future actions and

with the control of movement. In fact, a subdivision of the frontal lobe called the

prefrontal cortex is known to play an important role in planning immediate actions,

via the maintenance of information coded in the form of a relatively high level of

persistent activity, phenomenon which is known as working memory (Fuster, 1995;

Goldman-Rakic, 1995; Sanchez-Vives and McCormick, 2000). The parietal lobe is

related with somatic sensation, with forming a body image, and with relating the

image of the own body with extrapersonal space. The occipital lobe plays a main

role in vision, by processing the information arriving from the retina. Finally, the

temporal lobe processes the auditory information, and it is also involved in certain

aspects of language comprehension, learning and memory. The four lobes also in-

teract with other structures of the cerebral hemispheres, such as the hippocampus

and the amygdaloid nuclei, in order to perform computations concerning learning,

memory, and emotion.

Although the four lobes are quite different regarding their function, the internal
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Figure 2.2: The four lobes of the human cortex.

anatomical details of the cortex are fairly homogeneous along the lobes, and even

among different species. For instance, the thickness of the cortex is roughly constant

for all the cortical regions1. Globally, the most striking feature of the cortex is that

it is anatomically and functionally organized in cell layers. Although the number

of layers and their functional details may vary depending on the cortical region

considered, a typical picture consists in a cortical surface composed by six layers.

In addition to this structure, interconnected neurons within the layers are grouped

in cell assemblies called columns, across which the information is thought to be

processed.

To understand how sensory information is processed and coded (and how it

is employed to make predictions about the real world) in these structures, it is

necessary to identify the minimal units of information processing of the brain, and

to understand how they work. In the next section, we briefly describe the basic

features of neurons, which are usually thought to be such minimal units.

1Several differences can be found, though. For instance, the cortical thickness of humans is

slightly greater in the occipital lobe than in other regions (Bear et al., 2006; Kandel et al., 2000).

However, these differences should not impede neuroscientists to describe, as a first approach, the

cerebral cortex as a largely homogeneous structure.



2.4. Neurons 14

Soma

Dendrites Nucleus

Axon
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Figure 2.3: A typical scheme of a neuron, showing its main parts: a number of tree-like

processes called dendrites, the soma or cell body (which contains the cellular nucleus as

well as other organelles), and a long process called the axon, which ends with button-like

structures (the synaptic buttons or synaptic terminals).

2.4 Neurons

Neurons are the specialized nerve cells constituting the nervous system. They are

responsible for the processing and transmission of information by means of electrical

and/or chemical signaling. Although there are multiple types of neurons, as we will

see below, one can establish certain features common to all neurons. A typical

neuron, for instance, has three well defined structures: soma, axon and dendrites

(see figure 2.3). The soma, or cell body, is the metabolic center of the cell. It contains

the cellular nucleus as well as other important organelles, such as the endoplasmatic

reticulum or the mythocondria. The cell body usually gives rise to two kind of

processes (that is, projections of tissue from the cell body): the dendrites and the

axon. Dendrites are short tree-like processes which are responsible of receiving

signals from other neurons. The axon, on the other hand, is a single long process

that extends away from the cell body, and serves to conduct signals to other neurons.

The length of the axon ranges from 0.1 mm to 3 m (Kandel et al., 2000), allowing

neurons to communicate between them through long distances. The axon ends

in button-like structures called presynaptic terminals, which are typically close to

some specific receptors located in the soma or dendrites of other neurons. The
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space between the presynaptic terminals of one neuron and the receptors of the

other neuron establishes a connection between them, and such connection is called

(chemical) synapse.

The picture presented above constitutes the traditional description of a neuron,

which includes the basic features of nerve cells. It is worth noting, however, that

neurons can display a high variability in their morphology, structure and function,

as we will see in the following section.

2.4.1 Classification of neurons

Neurons constitute the basic units of information processing in many areas of the

nervous system. Since such areas are commonly involved in quite differentiated

functions, it is plausible to think that neurons of each region have specialized fea-

tures which serve to optimize their computations. Indeed, the huge quantity of well

differentiated neurons allows to establish a large number of neuronal classes, and

also multiple criteria for these classifications. A complete description of all possible

classifications is out of the scope of this chapter, and therefore we will just briefly

mention some classifications of interest.

Attending to their functionality, for instance, neurons can be classified in the

following categories:

• Sensory neurons, which convey information from tissues and organs into the

CNS.

• Motor neurons, which transmit signals from the CNS to different kinds of

effector cells, such as muscle and gland cells.

• Interneurons, which connect neurons within specific regions in the CNS, and

perform computations to elaborate the response to a stimulus.

In general, one of the features that most distinguishes one neuron from another is

their morphology. This was already appreciated by Ramón y Cajal in his pioneering

works (see, for instance, (Ramon y Cajal, 1977)) a century ago. In a concise manner,

and on the basis of morphology, neurons can be classified into three large groups:

unipolar, bipolar, and multipolar (see figure 2.4).

• Unipolar neurons are the simplest nerve cells since they have a single pri-

mary process. This process usually gives rise to many branches, including the

axon and the dendrites. Unipolar cells are common in the nervous system of

invertebrates.
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Figure 2.4: Different types of neurons attending to their morphology. From left to right:

unipolar neuron, bipolar neuron, and multipolar neuron (concretely, a pyramidal neuron).

Some details concerning the different parts of the cells are also denoted in the figure for

each neuron type.

• Bipolar neurons are characterized by a soma from which two processes arise.

One of the processes gives rise to dendritic terminals, and the other constitutes

the axon. Most of the sensory neurons fall into this category.

• Multipolar neurons are constituted by a soma and multiple processes that arise

from it. Typically, one of these processes corresponds to the axon, and the

other ones are dendrites. Multipolar cells vary greatly in shape, and are the

predominant neuron type in the CNS of vertebrates. It is worth noting that the

existence of multiple processes in these neurons may have strong implications

for the topological properties of networks constituted by multipolar neurons.

Additional classification criteria for neurons include those focusing on the particular

location of neurons in the nervous system, on the specific discharge patterns, or in

the chemical transmitters that neurons produce, to name a few. In the following,

unless it is explicitly specified, we will consider interneuron multipolar cells as our

basic neuron paradigm.
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2.4.2 Generation of neural signals: the action potential

Neurons generate and transmit signals in the form of action potentials. The action

potential (AP) is a self-regenerating electrical signal, originated in the soma, whose

amplitude does not attenuate as it moves down the axon (due to some reinforcement

mechanisms). This signal takes the form of a well located peak of electrical activity

which moves towards the end of the axon, where the information will be transmitted

to other neurons. The AP, also called spike, is the primary electrical signal generated

by neurons, although it also occurs in other types of excitable cells, such as cardiac

muscle cells (Keener and Sneyd, 2008) or fibroblasts (Roos et al., 1997; Harks et al.,

2003).

The biophysical mechanism responsible for the generation and propagation of a

neural AP strongly relies on the flow of ions through voltage-gated channels located

in the neuron membrane. At rest, there is an excess of positive charges (cations) on

the outside of the neuron membrane, and an excess of negative charges (anions) on

the inside. The most abundant ions found outside the membrane, in the extracellular

medium, are Na+ and Cl−, whereas typical ions which are found inside the cell

include K+ and several organic anions. All these ions are distributed in such a way

that the distribution of charges mentioned above is maintained, with the help of

active ion pumps spread out along the membrane.

This separation of charges gives rise to a difference of electrical potential across

the membrane, called the membrane potential. In absence of stimuli from other

neurons, and for most types of neurons, the membrane potential is at rest, and

takes a typical value of −65 mV , as can be easily measured in experiments and/or

calculated via the Nernst and Goldman equations (Koch, 1999). In the presence

of external signals from other neurons, however, this equilibrium is disturbed. An

external signal arriving to a neuron is reflected in the opening of ion channels and

the subsequent influx of ions (positive or negative) through these channels into the

cell. A net influx of positive charges into the neuron makes the membrane potential

tend to be less negative, a tendency which is known as depolarization. On the

other hand, a net influx of negative charges into the neuron increases the separation

of charges across the membrane, and therefore the membrane potential moves to

more negative values. This phenomenon is called hyperpolarization of the neuron

membrane potential.

For small perturbations, the neuron is able to recover its equilibrium situation

passively once the stimulus has finished. However, if the depolarization is sufficiently

strong, the response of the neuron to the stimulus becomes active. More specifically,

when the depolarization reaches a certain threshold value of the membrane potential

(also called the firing threshold), a number of voltage-gated Na+ channels open
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Figure 2.5: First published intracellular recording of an AP, obtained in 1939 by Hodgkin

and Huxley from the squid giant axon. The vertical scale indicates, in millivolts, the

potential of the internal electrode used to perform the recording. Adapted from (Hodgkin

and Huxley, 1939).

rapidly. This causes a net influx of positive charge into the neuron that produces a

further depolarization. This strong depolarization causes more voltage-gated Na+

channels to open, increasing even more the depolarization, and this leads to a fast

feedback loop which drives the membrane potential towards values close to the Na+

equilibrium potential. When the membrane potential is approaching this limit, two

processes start to actively repolarize the membrane potential towards its resting

value. The first one is the closing of a high number of voltage-gated Na+ channels

via several inactivation processes. The second one is the opening of voltage-gated

K+ channels that produce an increasing efflux of K+. These two effects together

lead to a net current of positive charge from the neuron to the extracellular medium,

resulting in a fast hyperpolarization of the membrane potential which is kept until

the resting potential is reached.

This whole process describes the generation of an AP, and as we stated before, it

takes place at the soma of a neuron. Once an AP is generated, it propagates along

the axon due to the existence of many voltage-gated channels distributed along

the membrane. The AP constitutes the main electrical signal that neurons use to

communicate between them, and the understanding of how basic biophysical mech-

anisms allow its generation constitutes one of the highest achievements of modern

Neuroscience.

Although of vital importance, the generation of an AP does not ensure the

transmission of information from one neuron to another. When an AP reaches the
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presynaptic terminals at the end of the axon, a number of biophysical processes

take place in the synapses in order to transmit the information encoded in the AP

to other neurons; this constitutes the synaptic transmission.

2.5 Synapses

The communication between neurons is mediated by specific structures called synapses.

A synapse establish a connection between two neurons: a neuron that sends signals

in the form of APs, which is called the presynaptic neuron, and a neuron which

receives these signals, called the postsynaptic neuron. A typical neuron establishes

about 1000 synaptic connections. Since the human brain contains about 1011 neu-

rons approximately, this makes a total of 1014 synaptic connections in the whole

brain. Therefore, neural systems are often described and modelled as large net-

works of densely interconnected elements. In this section some of the main features

of synapses will be reviewed.

2.5.1 Classification of synapses

Although the function of all synapses is to transmit information between neurons,

the manner in which this transmission is performed is not the same for all synaptic

connections. We will briefly describe here some basic classifications of synapses

according to: 1) the biophysical mechanism involved in the transmission, 2) the

location of the connection along the cell body, and 3) the effect produced on the

postsynaptic neuron.

1. According to the general biophysical mechanism involved in the transmission of

information, the synapses can be either electrical or chemical. In an electrical

synapse, the presynaptic and postsynaptic membranes, separated by approxi-

mately 3.5 nm (Kandel et al., 2000), are joined by specific protein structures

called gap junctions. These protein structures are specialized ionic channels

that connect the cytoplasm of both cells. When an AP arrives at the gap

junction, the fast variation of the membrane potential induces the opening of

these ionic channels, and the diffusion of ions through them from one neuron

to the other. The influx of ions into the postsynaptic neuron causes a depolar-

ization (or hyperpolarization) which, depending on the concrete situation, can

yield the generation (or inhibition) of an AP. A remarkable characteristic of

electrical synapses is that, due to the fact that the information is transmitted

directly by the flow of current from one cell to the other, electrical synapses

are bidirectional.
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Figure 2.6: Classification of synapses according to the biophysical mechanism implicated

in the transmission. Left: Electrical synapse, which allows for a bidirectional transmission

of information between two nearby neurons. Such transmission involves the flux of intra-

cellular ions (blue dots) through protein structures called gap junctions (in green). Right:

Chemical synapse, in which the transmission occurs via the influx of calcium ions (red

dots) into the presynaptic terminal, induced by the arrival of an AP to this terminal. The

Ca2+ induces the release of neurotransmitters (green dots), contained in synaptic vesicles

located at the ready releasable pool, to the synaptic cleft. After that, neurotransmitters

bind to specific postsynaptic receptors (in green), and these receptors allow the entrance

of extracellular ions such as Na+ and K+ (blue dots). The used vesicles are replaced by

other vesicles coming from the reserve pool (depicted as a close region delimited by blue

lines on the figure), or recycled to be used again. See the main text for details.

In chemical synapses, on the other hand, the separation between the presy-

naptic and postsynaptic cells is larger than in electrical synapses, of about

20 ∼ 40 nm approximately. Due to this space, called the synaptic cleft, the

cells are not in physical contact with each other. The transmission of infor-

mation occurs then as follows (see right panel of figure 2.6): when an AP

arrives at the end of the presynaptic axon, it induces the influx of Ca2+ into

the presynaptic terminals. These Ca2+ ions induce the fusion of some vesicles

(located in a ready releasable pool near the membrane) with the presynaptic

membrane. These vesicles contain specific chemical messengers called neu-

rotransmitters and, as a consequence of the fusion, a large amount of these

neurotransmitters is released to the synaptic cleft. After that, the released

neurotransmitters diffuse towards the postsynaptic membrane and can bind

to specific receptors located there. This induces the opening of ion channels

on the postsynaptic membrane and the consequent influx of ions from the ex-

tracellular medium, which causes a modification of the postsynaptic membrane

potential. A net influx of positive ions induces an excitatory postsynaptic cur-
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Figure 2.7: Different types of synapses, according to the concrete structures in which the

presynaptic terminals and the postsynaptic receptors are located. In the figure, one can

observe dendrodendritic, axoaxonic, axosomatic and axodendritic connections.

rent (EPSC) which causes depolarization, while a net influx of negative ions

induces an inhibitory postsynaptic current (IPSC) which tends to hyperpolar-

ize the postsynaptic membrane. Finally, the released vesicles are replaced by

other vesicles stored in the so called reserve pool, which is located at a certain

distance from the ready releasable pool, or recycled via other mechanisms.

The transmission for chemical synapses is, therefore, unidirectional.

Chemical synapses are commonly found, for instance, in the long distance

connections between neurons, which are responsible for the high connectivity

observed in nervous systems. In the following, and unless the contrary is

specified, we will employ the term synapse to refer to chemical synapses.

2. According to the type of presynaptic and postsynaptic structure, synapses

can be classified into several categories as well. Typically, the cellular struc-

tures which can house presynaptic terminals are the axon and the dendrites,

while postsynaptic receptors can be located in the axon, the dendrites, or the

soma of the postsynaptic cell. When presynaptic terminals are located in the

axon, synapses can be axo-dendritic, axo-axonic, or axo-somatic, depending on

the structure that houses the receptors. Similarly, dendro-dendritic, dendro-

axonic, or dendro-somatic synapses have also been found (Pinault et al., 1997).

Figure 2.7 illustrates examples of several synaptic connections attending to this

classification.

3. Finally, and attending to the effect produced on the postsynaptic neuron,

synapses can be either excitatory or inhibitory. In excitatory synapses, the

release of neurotransmitters and their binding to postsynaptic receptors pro-
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duces a depolarization of the postsynaptic membrane potential. This depolar-

ization is typically due to the influx of Na+ or Ca2+ ions through postsynaptic

ion channels, which open due to the binding of the neurotransmitter to the

receptors. In inhibitory synapses, on the contrary, the binding of the neu-

rotransmitters to postsynaptic receptors induces a hyperpolarization in the

postsynaptic membrane potential, typically via an efflux of K+ ions from the

cell to the extracellular medium or the influx of Cl− ions into the cell.

The effects of excitatory and inhibitory synapses does not depend only on the

type of neurotransmitter, but on the specific postsynaptic receptors. For in-

stance, while the mayor neurotransmitter involved in excitatory synapses is

glutamate, the effect produced on the postsynaptic neuron strongly depends

on the type of receptor. There exist mainly two kinds of receptors associ-

ated with glutamate: AMPA receptors, which have a fast (∼ 3 ms) kinet-

ics, and NMDA receptors, with a much slower kinetics of about ∼ 100 ms

(Koch and Segev, 1998). Therefore, the excitatory postsynaptic current can

constitute a short event (for AMPA receptors) or be consistent in time (for

NMDA receptors). Similarly, the most common neurotransmitter found in

inhibitory synapses, gamma-aminobutyric acid (GABA), can bind to fast re-

ceptors (namely GABAa receptors) or slow ones (namely GABAb receptors),

producing instantaneous or prolonged hyperpolarizations in the postsynaptic

cell.

It is worth noting that, in the vast majority of neural circuits (such as whose

of the hippocampus or several cortical regions), each neuron displays only one

type of synapse: their connections are either excitatory or inhibitory (see,

for instance, (Sossin et al., 1990)). This phenomenological principle is known

as Dale’s law, in honor of the neuroscientist Henry Dale. As a consequence

of this principle, neurons themselves can be classified as either excitatory or

inhibitory neurons, a classification which turns out to be quite useful to study,

for instance, cortical layers.

2.5.2 Synaptic plasticity

One of the most relevant properties of synapses, due to its possible relationship

with high-level brain functions, is the so called synaptic plasticity. This property

reflects the ability of synapses to change their strength and adapt themselves as a

function of external signals coming from other neural areas or even from the senses.

It has been reported that synaptic plastic mofidications occur in many kinds of

synapses, and via multiple biophysical mechanisms (Bear and Malenka, 1994; Song

et al., 2000; Abbott and Nelson, 2000; Tsodyks and Markram, 1997). Attending to
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the time scale on which the modification of the synaptic strength occurs, one can

distinguish between long-term plasticity and short-term plasticity. In the following

we will describe some of the main features of both types of synaptic plasticity.

A. Long-term plasticity

Long-term plasticity is concerned with modifications in the strength of the synapses

which occur on a time scale of minutes or more. These long-term synaptic modifica-

tions depends on pre- and postsynaptic activity, and they may lead to an increase or

a decrease of the synaptic weight. The corresponding processes for these two situa-

tions are known as long-term potentiation (LTP) and long-term depression (LTD),

respectively. According to experimental evidences, long-term modifications could

occur via two general mechanisms: the alteration of existing synaptic proteins, or

the regulation of gene transcription mediated by second messengers (Kandel et al.,

2000). This second mechanism can be triggered by protein phosphorylation, which

takes longer and lasts longer, providing the mechanism for long-lasting memory stor-

age. From a general point of view, the biophysical mechanisms that provide long-

term modifications at synapses are still debated, although the common assumptions

include changes in the release probability of neurotransmitters, insertion or removal

of postsynaptic receptors, or changes in the conductance of these receptors, to name

a few.

Probably, the most relevant implications of long-term synaptic modifications are

learning and memory. It is commonly established that, as a consequence of synaptic

plasticity, the brain is able to acquire new information and to store it for retrieval in

subsequent situations, which yield the appearance of memories. This hypothesis has

been addressed by multiple psychophysical and in vitro experimental studies (Bliss

and Collingridge, 1993; Malenka and Nicoll, 1999; Lynch, 2004), and recent in vivo

experiments have confirmed it (Gruart et al., 2006).

The relation between changes in synaptic strength and memory can be under-

stood by means of the hebbian prescription. In 1943, Donald Hebb established a

physiological principle which states that, when two interconnected neurons generate

APs strongly correlated in time, the synaptic connection between these two neurons

is strengthed (Hebb, 1949). In other words, when two neurons communicate via APs

very frequently, the synapses that link them become more reliable and stronger. This

principle, known currently as Hebb’s rule, states the physiological basis of learning,

since it explains how neural activity is able to induce biophysical changes on the

synapses that may influence the performance of the brain in later situations. In this

context, attractor neural network (ANN) models were of much help to understand

the deepest implications of Hebb’s rule in the performance of associative memory

tasks, as we will see in the chapter concerning methods and models.
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EPSP

Figure 2.8: Scheme of the basic mechanism of STD. Left: A first AP induces, via an

influx of Ca2+ into the cell, the fusion of a certain number of vesicles with the membrane,

and the release of their neurotransmitters into the synaptic cleft. The binding of the

neurotransmitters to the postsynaptic receptors causes a flux of extracellular ions into

the postsynaptic cell, and this induces an EPSP. Right: After a relatively short period of

time, a second AP arrives at the presynaptic terminal. Since the neuron needs some time

to replenish the resources of the ready releasable pool, the amount of neurotransmitter

released will be lower than in the case of the first AP. As a consequence, a smaller number

of postsynaptic receptors open, and therefore the EPSP will be smaller than the first one.

B. Short-term plasticity

Synapses have been traditionally treated as static identities, with the only pos-

sible modification of synaptic strength due to a slow learning process. In the last

decades, however, it has been reported that the amplitude of postsynaptic potentials

at short time scales depends on presynaptic activity (Zador and Dobrunz, 1997; Ab-

bott and Regehr, 2004; Bertram et al., 1996). This finding indicates that synaptic

strengths can vary at such time scales (of the order of milliseconds). Synapses which

present this property are called short-term activity-dependent synapses, or simply

dynamic synapses. The two mayor mechanisms responsible for activity-dependent

plasticity are known as short-term synaptic depression and short-term synaptic fa-

cilitation.

Short-term depression (STD) is a synapse-level biophysical mechanism that in-

duces a decrease in the postsynaptic response for repetitive presynaptic stimuli

(Zador and Dobrunz, 1997; Abbott et al., 1997). From a biophysical point of view,

STD is a consequence of the limited number of neurotransmitter vesicles which are
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Figure 2.9: Scheme of the mechanism of STF. Left: A first AP induces, via the influx

of Ca2+ into the cell, the fusion of a certain number of vesicles and the release of their

neurotransmitters into the synaptic cleft. The binding of the neurotransmitters to the

postsynaptic receptors causes a flux of extracellular ions into the postsynaptic cell, and

this induces an EPSP. Right: After a relatively short period of time, a second AP arrives

at the presynaptic terminal. This induces a new influx of extracellular Ca2+ into the

presynaptic terminal, which still houses a residual amount of Ca2+ from the first AP.

Since the concentration of presynaptic Ca2+ is larger than before, a higher amount of

neurotransmitter will be released, and as a consequence the EPSP will be larger than the

first one.

located in the ready releasable pool of the presynaptic terminals. A number of these

vesicles can fuse with the membrane each time an AP arrives at the presynaptic ter-

minal (as explained above), releasing neurotransmitters to the synaptic cleft. The

fused vesicles are then substituted by new ones coming from the reserve pool (or

generated by other mechanisms) after a certain interval of time. If the presynaptic

stimulation has a high frequency, however, the neuron may not be able to restore

the vesicles of the ready releasable pool before a new AP arrives at the terminal.

In that case, the neuron is not able to efficiently transmit the incoming APs (the

synapse is fatigued) and the postsynaptic response becomes weaker. This process,

which characterizes the STD, occurs in the cortex at time scales of several hundreds

of milliseconds (Tsodyks and Markram, 1997), which is the approximate mean time

employed by the neuron to restore the ready releasable pool of its presynaptic ter-

minals.

The mechanism of short-term facilitation (STF), on the other hand, induces an

increment in the postsynaptic response of repetitive presynaptic stimuli (Bertram
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et al., 1996). It is also a synapse-level mechanism, and it can occur simultaneously

with STD (as usually occurs indeed). Attending at the involved biophysical mecha-

nism, STF takes into account that, after the arrival of an AP to the synapse and the

corresponding influx of Ca2+ into the cell, a certain quantity of these ions remains in

the presynaptic terminals near the ready releasable pool. This residual calcium may

remain until the arrival of a second AP, if the frequency of the stimulus is sufficiently

high. The residual Ca2+ ions are added to those that entered into the cell due to

the arrival of the second AP to the synapse. As a consequence of this increment

in the concentration of cytosolic Ca2+ near the ready releasable pool, the number

of neurotransmitter vesicles that can fuse with the membrane is larger than for the

first AP, and therefore the postsynaptic response is strengthed. This increment of

the postsynaptic current occurs on a time scale of several hundreds of milliseconds

(Tsodyks et al., 1998).

The mechanism of STD has been found to be involved in several complex be-

haviors observed in actual neural systems, such as selective attention (Buia and

Tiesinga, 2005), up and down cortical transitions (Pantic et al., 2002; Holcman and

Tsodyks, 2006), or cortical gain control (Abbott et al., 1997), to name a few. On

the other hand, STF has been the focus of little attention until now, although very

recent studies reveal that it could have a role in working memory tasks (Romani

et al., 2006) or in slow oscillations (Melamed et al., 2008). However, a complete

analysis of the effects that STF could have, either treated in isolation or consid-

ered together with STD, on the dynamics of neural systems is still lacking, and it

constitutes one of the objectives of this thesis. The main functional characteristics

and consequences of STD and STF, as well as several mathematical models of both

mechanisms, will be covered in the next chapter.



Chapter 3

Methods in computational

neuroscience

In this chapter we briefly review some of the most common mathematical descrip-

tions of neurons, synapses and networks used in the literature. This includes the

mathematical models and nonlinear systems used in chapters 4-7 for the study of

some particular neural systems of interest, and which constitutes the original con-

tributions of this thesis to the field.

3.1 Introduction

For many decades, different theoretical and computational tools have been used to

construct mathematical models of neural systems, in order to analyze and interprete

experimental data and perform a deeper study of the phenomena occurring in the

brain. There exists an increasing wide variety of simulation platforms which allow

to model neural systems up to some level of detail. Several of these platforms, such

as NEURON and GENESIS, can be employed to build biological structures ranging

from subcellular components and chemical reactions to complex models of single

neurons, simulations of large neural networks, and system-level models (Hines and

Carnevale, 1997; Bower and Beeman, 1994). Some of these platforms also support

parallelization, which results in a great advantage when working on computers with

multiple processors or with supercomputers.

However, these available simulation platforms present several inconveniences,

concerning for instance the versatility in the modeling of some particular neural

systems and the lack of optimization of the algorithms used in each particular sit-

uation. In the case of simulations of large neural systems, such as those performed

in the Blue Brain Project, these points are of vital importance to permit simula-

tions of thousands of interconnected neurons modelled in a quite realistic manner

27
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(Markram, 2004). For these reasons, it is sometimes convenient to build specific

programs for the particular neural system under study, and this requires a certain

level of knowledge about the state-of-the-art of neural modeling.

In this chapter, we briefly introduce some mathematical models commonly em-

ployed in the literature for the study of neural systems. The chapter is structured as

follows: first, we present some neural modeling paradigms of interest, starting with

the more realistic neuron models and finishing with the simpler ones, and discussing

briefly their biophysical relevance. After that, we present some basic mathematical

approaches for synaptic transmission. Here, we will focus in some descriptions re-

garding activity-dependent synapses. Finally, we shortly review some of the basic

models of large populations of interconnected neurons, and we discuss their range

of application to model different actual large scale structures in the brain.

3.2 Neuron models

It is well established that the nervous system can process the information at subcel-

lular, cellular, network and system levels. The time scale for any of these processes

ranges from milliseconds to many hours or more. To identify a minimal unit of

information processing in such a framework is, therefore, not trivial. A widespread

view, which we will follow here, considers neurons as the basic units of information

processing in neural systems.

In the last few decades, a significant number of mathematical descriptions of neu-

rons have been developed to understand and simulate the behavior of these excitable

cells. Nowadays, there exist models for a great number of particular neurons, such

as pyramidal neurons, interneurons, Purkinje cells, granule cells, or different types of

motoneurons, to name a few (see, for instance, (http://senselab.med.yale.edu/modeldb)).

In addition, each neuron can be described in different levels of detail, which can

include nonlinear membrane properties, dendritic integration and morphology, or

multicompartmental modeling (Koch, 1999). However, a complete description of

the neuron models available in the literature, or even a detailed description of the

main ones for each class of neuron is beyond the scope of this chapter. Here we will

describe a small number of generic (that is, not neuron-specific) neuron modeling

paradigms, which are commonly used in the literature to describe, in a simpli-

fied way, a wide variety of neural systems. In particular, we will focus on single-

compartmental models, that is, the membrane potential of the neuron is described

by a single variable V (t). Multi-compartmental descriptions, on the contrary, divide

the neuron into several isopotential compartments and consider a variable Vi(t) to

describe the dynamics of the membrane potential of each compartment, thus allow-

ing to take into account the precise morphology of the neuron. The extension from
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single to multi-compartmental descriptions is, in most of the cases, a straitforward

procedure and will not be considered here.

3.2.1 The Hodgkin-Huxley model

The main signals that neurons employ to communicate among each other are the

APs. Because of that, there was a huge effort in the past century to understand

the principles for the generation of these rapid changes in the voltage of the cell

membrane. At present, it is well known that the biophysical processes underlying the

generation of APs are the result of the competition of different ionic currents flowing

across the cell membrane. Neuron membranes contain several types of voltage-

dependent ionic channels (such as sodium, potassium and calcium channels), and

the dynamics of these channels can also depend on the concentration of specific ions.

Under a mathematical point of view, these ionic currents may be easily modelled

using the Ohm’s law, with parameters obtained by fitting with voltage current clamp

experiments. In addition, a voltage-independent leakage current, which takes into

account other ionic currents (that are difficult to describe experimentally), is often

considered to fit the model to concrete experimental realizations. As a consequence

of the flow of all these ionic currents, voltage changes are generated and propagated

across the membrane.

The process roughly described above was modelled for the first time in 1952 by

Hodgkin and Huxley (Hodgkin and Huxley, 1952b). It constitutes a paradigmatical

model for the generation of APs, and it assumes that the membrane potential of the

cell is described by the set of nonlinear differential equations

Cm
dV (t)

dt
= GL[VL − V (t)] + GNam(t)3h(t)[VNa − V (t)] + GKn(t)4[VK − V (t)] + I(t)

dm(t)

dt
=

m∞(V ) − m(t)

τm(V )

dh(t)

dt
=

h∞(V ) − h(t)

τh(V )

dn(t)

dt
=

n∞(V ) − n(t)

τn(V )
,

(3.1)

where V (t) is the membrane potential and m(t), h(t), n(t) are phenomenological

variables which describe the activation and inactivation of the ionic conductances.

The so called Hodgkin-Huxley (HH) model, as presented above, considers two ac-
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tive channels (a Na+ channel and a K+ channel), and a passive leakage channel L.

The parameter Cm is the capacitance of the membrane, I(t) is the external current

arriving to the neuron, and Gi, Vi are, respectively, the maximum conductance and

reversal potential of the corresponding ionic channel i. Finally, the steady state

values of the active conductance variables m∞, h∞, n∞ and the time constants

τm, τh, τn for channel activation and inactivation have a nonlinear voltage depen-

dence, typically through sigmoidal or exponential functions, whose parameters can

be fitted from experimental data.

In general, HH-type neuron models are one of the most successful phenomenolog-

ical descriptions of neural activity. As it is presented here, it describes a wide range

of phenomenology observed in actual neurons, such as tonic and phasic regimes

for the generation of APs, subthreshold oscillations, bursting behavior, or chaotic

dynamics, to name a few (Izhikevich, 2004). It can also be easily improved by consid-

ering additional ionic currents, which increase the success of the model at emulating

the activity patterns of actual neurons. However, the high number of variables in-

volved in equations (3.1), as well as the nonlinearities which they present, implies

that obtaining a theoretical solution of the model, even approximate, is not possi-

ble. In addition to that, until recently the Hodgkin-Huxley model was considered

prohibitive from a computational point of view when simulating large populations

of neurons, due to the high number of operations needed to numerically compute a

single step of the neural dynamics. For these reasons, a great number of simplified

models have been developed in the literature. Such models lose certain realistic

features of neural activity present in the HH model, but are simple enough to be

implemented in simulations of large systems, and some of them are even analytically

tractable by employing certain approximations.

3.2.2 The FitzHugh-Nagumo model

The FitzHugh-Nagumo (FHN) neuron model describes the excitation properties of

the neurons without taking into account a detailed representation of intracellular

ionic currents or other biophysically realistic considerations (FitzHugh, 1969; Koch,

1999). Instead of this, the dynamics is described by a set of two coupled differential

equations (whose nonlinearities are polynomical) for the membrane potential (V )

and a slower auxiliary variable (W ). The model is commonly presented as

ǫ
dV (t)

dt
= V (t)[V (t) − a][1 − V (t)] − W (t) + I(t)

dW (t)

dt
= bV (t) − W (t),

(3.2)
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Figure 3.1: Left: a typical AP generated by the Hodgkin-Huxley model when a constant

current I(t) is injected. The resting potential was set to V = 0. Right: temporal evolution

of the variables m, n, h during the generation of the AP depicted in the left panel of the

figure.

where I(t) is the input current, and a, b, ǫ are parameters which can be tuned to

set the model in different dynamical regimes, such as excitable, bistable and oscil-

latory. This versatility of regimes and dynamical properties make the FHN model

a good choice not only to simulate neurons, but a significative quantity of excitable

and bistable systems. Some versions of the FHN description may be analytically

derived from the HH neuron model (Abbott and Kepler, 1990), after making several

assumptions about the kinetics of activation and inactivation time constants (for

instance, considering that the dynamics of m(t) is very fast compared to those of

n(t) and h(t)).

As a consequence of its low dimensionality, the FHN model is commonly studied

from the point of view of dynamical systems theory. This fact, together with its

capacity to generate APs, allows to consider the FHN model as a useful paradigm

to describe an excitable medium. Moreover, due to its capacity to exhibit rebound

spiking, threshold variability, and other nonlinear excitable properties, the FHN

neuron model is one of the most employed simplified descriptions of neural activity.

It also allows for (partial) analytical treatment in some cases, as for instance the

calculation of its nonequilibrium potential, which explores several of its excitable

properties (Izus et al., 1998).

3.2.3 The Izhikevich model

The use of a simplified neuron model implies neglecting some physiologically realistic

neural features (present, for instance, in the HH model) in order to gain analyti-



3.2. Neuron models 32

cal tractability or computational efficiency. It is, therefore, an important issue in

computational neuroscience to find computationally-fast models which also show as

many realistic neural features as possible. One of the models that best fits this

compromise is the Izhikevich neuron model (Izhikevich, 2004). It is described by

the following set of equations

dV (t)

dt
= αV (t)2 + βV (t) + γ − W (t) + I(t)

dW (t)

dt
= a[bV (t) − W (t)],

(3.3)

where I(t) represents an external input current and α, β, γ, a, b are parameters

of the model. In addition to these equations, there is an auxiliary condition for the

generation of the AP: if the membrane voltage exceeds a certain threshold Vth, a spike

is generated and the variables V (t) and W (t) are reset to c and W (t)+d, respectively,

where c, d are model parameters. Summarizing, the model is constituted by two

differential equations, seven parameters and one resetting condition. A parameter

space of seven dimensions makes this model difficult to analyze in detail. On the

other hand, this huge parameter space allows the model to exhibit a rich repertoire

of phenomena (also observed in actual neurons in different brain areas), such as

spike frequency adaptation, spike latency, or inhibition-induced spiking and bursting

(Izhikevich, 2004). Therefore, if we know the value of the parameters which allow

for a desired set of neural features to be present, this model becomes one of the most

convenient in order to simulate large neural populations with a realistic single-cell

behavior.

The auxiliary condition for the generation of APs sets the Izhikevich model into

the category of the threshold-firing neuron models, in opposition with the previous

models in which the mechanisms for the generation of APs are included in the

proper dynamics of the system. Threshold-firing neuron models precise an external

auxiliary condition for the generation of APs, but on the other hand this condition

simplifies the nonlinearities of the model equations, allowing to have computationally

faster and simpler models of neurons.

3.2.4 The integrate and fire model

The integrate and fire (IF) model constitutes the paradigm of the threshold-firing

neuron models. It was introduced by Lapicque in 1907 (Lapicque, 1097; Brunel and

van Rossum, 2007) as a highly simplified model which presented the most basic

features of actual neurons. Employing a threshold-firing condition, it reduces the

complexity of the HH model to a single differential equation, which has the form
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τm
dV (t)

dt
= −V (t) + Rm I(t), (3.4)

where I(t) is the input current and τm is the membrane time constant, which is

related with the membrane resistance Rm and the membrane capacitance Cm by the

expression τm = RmCm. The auxiliary condition states that, when the membrane

potential exceeds the threshold Vth, an AP is generated, and the membrane potential

is reset to a resting value Vr and remains in it for a short period of time τref , the

absolute refractory period.

The simplicity of this model implies that only a few realistic neural features

are preserved, such as tonic spiking and integrating capacities. Therefore, one must

take into account that most of the phenomenology observed in actual neural systems

could not be reflected by circuits built with IF neuron models (Feng, 2001; Izhikevich,

2004). However, this model presents some advantages from a theoretical point of

view, since in many cases one can analytically solve the dynamics of IF neurons,

or at least to find approximate solutions by employing mean-field techniques. For

instance, if the input current is sufficiently simple, it is possible to find adequate

solutions which yields magnitudes of interest, such as the mean firing rate or the

coefficient of variation of the neural activity (Tuckwell, 1989).

On the other hand, the IF model can be easily extended to include more bio-

physically realistic features, such as neural adaptation, bursting activity, resonance

properties, or spike latency, to name a few (Izhikevich, 2004, 2001; Ermentrout,

1996). In addition, the parameters employed in the basic IF model are physiologi-

cally meaningful (such as the membrane resistance Rm, the refractory time τref , or

the membrane threshold Vth), and therefore they can be measured directly in exper-

iments and give a good fitting values of the parameters. For all these reasons, the

IF neuron model is one of the most studied and used in the literature. The question

about its usefulness to reflect realistic neural behavior in particular circumstances

should be always taken into account, through (Feng, 2001; Shinomoto et al., 1999).

3.2.5 The McCulloch-Pitts model

The McCulloch-Pitts (MP) paradigm was the first computational model of the so

called artificial neurons. According to this mathematical description, the neurons

are modelled as two-state functions, and the time is commonly considered in discrete

steps. The model is then described by the dynamics

S(t + 1) = Θ[R I(t) − θ] (3.5)

where Θ(x) = 1 if x > 0, and Θ(x) = 0 otherwise, represents the Heaviside step

function. The input current is given by I(t), R is the input resistance, and θ is
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Figure 3.2: Tonic spiking neural activity for different neural models, as a result of the

injection of a constant current. From top to bottom: Hodgkin-Huxley, FitzHugh-Nagumo,

Izhikevich and integrate-and-fire models. For all models (except the FHN, which is not

displayed in mV ) the resting potential was set to V = −65 mV .

a threshold parameter. This models defines the so called binary neurons, that is,

neurons that can be firing (S(t) = 1) or silent (S(t) = 0) at a certain time t. Several

variants are popular in the literature, such as considering the code S = {+1,−1}
instead of S = {+1, 0} for the binary variables, or employing a probabilistic version

where the step function is substituted by a smooth sigmoidal function and the deter-

ministic dynamics (3.5) is substituted by a probabilistic one. Despite its simplicity,

or perhaps because of it, this model and its variations have been extensively studied
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in the literature. It is, for instance, commonly employed to construct perceptrons

and other artificial intelligence structures, since it is computationally the fastest

neuron model available.

Some variants of this neuron model are also used to describe neural systems

employing the tools of Statistical Mechanics, because their simplicity usually allows

for a theoretical treatment of large networks of simple binary elements – neurons (see

section 3.4, which is focused on large network models). For instance, the Hopfield

model, which considers a variant of the MP neuron model and constitutes one of

the simplest descriptions of neural networks, can be analytically studied employing

mean-field approaches from Statistical Mechanics due to its similarity with Ising-like

models (Peretto, 1992; Amit, 1989). This constitutes a great advantage, and it is

of special interest for studying large neural networks, where it is not uncommon to

observe emergent cooperative behavior (such as the property of associative memory).

Since this, however, is not always the case, one should consider more realistic models

in order to test the results obtained with systems constituted by MP-like neurons.

3.3 Synapse models

In actual neural systems, neurons are interconnected by means of synapses, as we

have explained in section 2.5. Synaptic connections display multiple forms and func-

tions, and surpass the number of neurons by a factor of 103 ∼ 104 in the neocortex,

for instance (Kandel et al., 2000). Because of this, neural systems are usually de-

scribed as highly connected networks of excitable elements. This high connectivity

is responsible for most of the emergent collective phenomena observed in the brain,

and constitutes one of the most well-known features of neural tissue. Appropriate

mathematical descriptions of synapses are, therefore, of vital importance to study

such emergent collective properties. It is useless to model a neural system employing

only realistic mathematical descriptions for neurons if realistic considerations about

the synapses are not taken into account.

In this section we briefly review some of the basic mathematical models of

synapses which are commonly used in the literature. As we have already seen,

synapses can be classified depending on the presynaptic and postsynaptic cellular

structures involved in signal transmission. Here, for simplicity purposes, we will as-

sume that neurons are modelled as point excitable elements, and therefore the clas-

sification of synapses as a function of morphological aspects is not considered. We

start by presenting some mathematical models for electrical and chemical synapses.

After that, we will focus on mathematical models concerning several dynamical

properties of synapses.
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3.3.1 Electrical synapses

In an electrical synapse, the presynaptic and postsynaptic membranes are joined

by specific protein structures, the gap junctions. These protein structures connect

the cytoplasm of both cells, allowing the direct flux of ions between them. As a

consequence, signals in the form of APs or even in the form of electrotonic (that is,

subthreshold) signals can be transmitted from one cell to the other.

Electrical synapses can be modelled in a simple and direct manner employing

Ohm’s law. Concretely, the synaptic current received by neuron i from neuron j is

given by

Iij(t) = Gij [Vi(t) − Vj(t)], (3.6)

where Vk is the membrane potential of neuron k, and Gij is the maximal synap-

tic conductance. This conductance is considered constant for electrical synapses,

and thus the synaptic current is directly proportional to the difference between the

presynaptic and postsynaptic membrane potential. The above expression also takes

into account the bidirectional nature of electric synapses. Equation (3.6), therefore,

describes electrical synapses adequately by taking into account the passive diffusion

of ions through the gap junctions.

Electrical synapses are commonly used in the modeling of neural networks with

nearest-neighbors connections, where neurons are precisely located in space and

close enough to each other (Rabinovich et al., 1999). The existence of such nearest-

neighbors interactions can explain different kinds of complex collective behavior

observed in the brain, such as synchrony or pattern formation (Rabinovich et al.,

1999; Varona et al., 2001). However, the high degree of connectivity of most neurons,

which is responsible of a wide variety of collective phenomena observed in the brain,

is not only due to electrical synapses, but to the existence of a high number of

long-range connections which are typically constituted by chemical synapses.

3.3.2 Chemical synapses

In most neural systems, neurons are densely connected among each other, yielding

a complex network structure in which information is processed. In the vast major-

ity of the cases, the connections of this network correspond to chemical synapses1.

The basic features of synapses and their biophysical mechanisms have been already

introduced in chapter 2. Here we will review some models of synapses which are

commonly used in the literature (see, for instance, (Chapeau-Blondeau and Cham-

1In the following, unless specified otherwise, we will refer chemical synapses simply as synapses.
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bet, 1995)). Concretely, we will focus on three levels of description: 1) ion channel

kinetics, 2) synaptic conductance dynamics, and 3) synaptic weights.

1. Ion channel kinetics: A realistic description of synaptic transmission should

include details about postsynaptic receptors and the opening-closing kinetics

of the ionic channels involved. For instance, according to the model proposed

in (Destexhe et al.), the binding of neurotransmitter molecules T with a post-

synaptic receptor R to give the bounded form of postsynaptic receptors RT ∗

follows a first order kinetic scheme

R + T

k2

⇆

k1

RT ∗ (3.7)

where k1 and k2 are the binding and unbinding rates, respectively. The bind-

ing of transmitter to a postsynaptic receptor directly gates the opening of

a particular ion channel of electric conductance gc. Then, the total synap-

tic conductance through all channels of a synapse is G(t) = gcnc(t), where

nc(t) is the number of bound receptors (or, similarly, open channels) at time

t. In addition, it is generally assumed that, after the arrival of an AP to

the presynaptic terminal at time t0, the density of neurotransmitters in the

synaptic cleft varies in time as an alpha function α(t − t0). Common choices

for the alpha function used in the literature includes α(t) = t
τ2 exp(−t/τ),

with τ being a characteristic time scale for the neurotransmitter inactivation,

or α(t) = 1
τd−τr

[exp(−t/τd)− exp(−t/τr)], with τd, τr being the decay and rise

time scales of neurotransmitter concentration, respectively. By considering an

extra factor Q conveniently dimensioned, one can write the transmitter pulse

probability due to the arrival of an AP to the presynaptic terminal at time t0

as q(t) = Qα(t − t0).

According to this scheme, at time t a bound receptor has a probability per unit

time k2 of becoming unbound, and an unbound receptor has a probability per

unit time k1q(t) of becoming bound (assuming that an AP arrives at presy-

naptic terminals at t0). Now, considering a number of postsynaptic receptors

N sufficiently large, the number of bound receptors follows the dynamics

dnc(t)

dt
= k1 q(t) [N − nc(t)] − k2nc(t) (3.8)

and the total synaptic conductance varies in time as

dG(t)

dt
= −k2 G(t) + [G − G(t)] k1 q(t) (3.9)
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with G ≡ gcN being the maximum (or saturating) value of the conductance.

Equation (3.9) constitutes the continuum limit of the discrete stochastic ki-

netics discussed above, and its validity can be considered acceptable only for

sufficiently large N . In general, for a pulse-like function q(t) that starts at

t = t0, the conductance G(t) also has a pulse-like shape which starts at t = t0.

If q(t) has a typical duration of ∼ τq, then the rise time of G(t) is approxi-

mately τq. For t sufficiently larger than τq, i.e. when q(t) has vanished, the

decay of G(t) is exponential with a time constant 1/k2. Equation (3.9), there-

fore, relates the level of ion channel kinetics with the synaptic conductance

level, as we will see below.

2. Synaptic conductance dynamics: In most cases, when one is interested in mod-

eling the behavior of neural systems at a cellular level, the consideration of the

detailed kinetics of postsynaptic receptors may be avoided for simplicity. One

can simply consider the temporal evolution of the conductance G(t) as the

evolution of a coarse-grained quantity, provided that the resulting dynamics

coincides qualitatively with those described by equation (3.9). The simplest

way to do this is considering a linear dynamics for the conductance, such as

the one proposed in (Wilson and Bower, 1989). According to this model, the

synaptic conductance evolves as

τG
dG(t)

dt
= −G(t) + GW

∑

k

δ(t − tk) (3.10)

where τG is the conductance time scale, and W is a parameter that takes into

account the strength of the synapse. The sum
∑

k δ(t − tk) runs over the

instants in which the k − th AP arrives at the synapse (which occurs at time

tk). We have assumed here that the neurotransmitter transmitter pulse is no

longer modeled as an alpha function, but as a simpler delta function centered

at the time at which the AP arrives at the presynaptic terminal. It is worth

noting that equation 3.10 is assumed here as our basic description of a synapse,

while for the ion channel kinetics level a similar equation is found only when

the number of postsynaptic receptors is large enough.

The conductance time scale τG can vary significatively, depending on the type

of postsynaptic receptors under consideration. For instance, AMPA recep-

tors of excitatory synapses usually have a fast kinetics, with the correspond-

ing time scale around τA ∼ 3 ms. On the other hand, NMDA receptors,

that have a much slower kinetics, are usually modeled with a time scale of

τN ∼ 100 ms. The same can be applied to GABAa and GABAb receptors of

inhibitory synapses, which have fast and slow kinetics respectively.
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3. Synaptic weights: Finally, in order to obtain a minimal model of synaptic

transmission, one can assume that the kinetics of the postsynaptic receptors, as

well as the diffusion of neurotransmitters in the synaptic cleft, is instantaneous.

This can be done by considering the limit τG → 0 in equation (3.10), leading

to

G(t) = GW
∑

k

δ(t − tk). (3.11)

In this equation, G is usually incorporated into W to reduce the parameters

of the model. Therefore, the synapse is mostly characterized by the synaptic

weight W , which modulates the strength of the contribution of the k-th AP

to the dynamics of the postsynaptic neuron.

Although this delta-type synaptic transmission may be an oversimplification in

a significative number of situations, it can be a good approximation in systems

whose synapses present only postsynaptic receptors with fast kinetics (such as

AMPA or GABAa synapses). In addition, this simplified model allows one

to obtain analytical descriptions of the dynamics of large neural networks, as

for instance the mean-field solution of certain models of associative memory

(Hopfield, 1982; Amit et al., 1987). We will briefly review some of these models

later in this chapter.

Independently of the level of detail considered in the modeling of synapses, the

general picture presented in these models treats synapses as static elements, in the

sense that the contribution of a synapse to the postsynaptic potential is given by a

fixed synaptic weight. However, we have already seen in the previous chapter that

synaptic weights are not time-independent, and can vary both on long time scales

and short time scales. The variation in short time scales (also known as short-term

plasticity) is particularly interesting for information processing purposes, as we will

see below.

3.3.3 Dynamic synapses

It has been found in the last decade that synaptic strength can vary on short time

scales depending on the presynaptic activity (Abbott et al., 1997; Tsodyks and

Markram, 1997). Synapses presenting such activity-dependent dynamics are also

known as dynamic synapses, and are mostly characterized by two mechanisms that

we have already introduced in section 2.5.2: short-term depression (STD) and short-

term facilitation (STF). In this section, some mathematical descriptions of these

mechanisms will be briefly reviewed.
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Figure 3.3: Effect of STD on the postsynaptic response according to the model (Tsodyks

and Markram, 1997). (A) EPSC vs time for a depressing synapse (τrec = 800 ms, USE =

0.5, τin = 5 ms) receiving a presynaptic spike train of firing rate 50 Hz. The decrement

of the peak amplitude with time is due to synaptic fatigue, as explained in the main text.

(B) Steady-state amplitude of the EPSC, as a function of the presynaptic firing rate, for

different values of τrec. Other parameters are USE = 0.5 and τin = 5 ms. For simplicity,

we have considered that the EPSC is given by EPSC = C y(t), with C being a constant.
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Figure 3.4: Effect of STF on the postsynaptic response according to the model

(Tsodyks and Markram, 1997). (A) EPSC vs time for a typical facilitating synapse

(τrec = 100 ms, τfac = 500 ms, USE = 0.03, τin = 5 ms) receiving a presynaptic

spike train of firing rate 50 Hz. (B) Steady-state amplitude of the EPSC, as a func-

tion of the presynaptic firing rate, for different values of τfac. Other parameters are

τrec = 100 ms, USE = 0.03 and τin = 5 ms. For simplicity, we have considered that the

EPSC is given by EPSC = C y(t), with C being a constant.
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A. Deterministic description:

One of the most successful models of dynamic synapses is the one proposed in

(Tsodyks and Markram, 1997; Tsodyks et al., 1998). This model presents a phe-

nomenological coarse-grained description of synaptic resources (neurotransmitters),

via a set of coupled differential equations. According to this model, the dynamical

state of a synapse i is described by

dxi(t)

dt
=

zi(t)

τrec

− ui(t)xi(t)
∑

k

δ(t − tk)

dyi(t)

dt
= −yi(t)

τin
+ ui(t)xi(t)

∑

k

δ(t − tk)

dzi(t)

dt
=

yi(t)

τin

− zi(t)

τrec

,

(3.12)

where the variables xi(t), yi(t), zi(t) denote the fraction of neurotransmitters in a

recovered, active and inactive state, respectively. To be more precise, xi(t) repre-

sents the fraction of neurotransmitters that are located in the vesicles of the ready

releasable pool at time t, whereas yi(t) denotes the fraction of neurotransmitters that

are bound to receptors of the postsynaptic cell at time t, and therefore are contribut-

ing to the transmission of an AP. The variable zi(t) is an auxiliary quantity to ensure

a proper normalization (note from the above equation that xi(t) + yi(t) + zi(t) = 1

for any value of t). The time constant τrec determines the working time scale of

STD, and τin is the inactivation time constant of the postsynaptic receptors. In this

model, depressing synapses are obtained for ui(t) = USE constant (which represents

the maximum fraction of neurotransmitters which can be released after the arrival

of a single presynaptic spike). The sum over delta functions in equation (3.12) takes

into account the arrival of each AP of the presynaptic spike train to the presynaptic

terminal. For low values of τrec (compared with the typical inter-spike time interval)

the variable xi(t) quickly approaches its resting value xi = 1. In the limit τrec → 0

one has xi(t) = 1 ∀ t, which correspond to the case of the classical description of a

synapse with fixed strength, also called static synapse (see discussion above).

The mechanism of STF can be introduced in this general model by considering

that ui(t) has its own dynamics related with the influx of Ca2+ into the cytosol

of the presynaptic terminals from the extracellular medium and the intracellular

endoplasmatic reticulum every time an AP arrives. According to (Tsodyks et al.,

1998), this dynamics is given by

dui(t)

dt
=

USE − ui(t)

τfac

+ USE [1 − ui(t)]
∑

k

δ(t − tk). (3.13)

In absence of stimuli, the variable ui(t) tends to its lower limit value USE with a



3.3. Synapse models 42

typical decay time of τfac, whereas the arrival of presynaptic APs, denoted by the

second term in the right-hand side of equation (3.13), increase temporally its value.

In the limit of τfac → 0 the resting value ui(t) = USE ∀ t is obtained, supressing all

the STF effects, and therefore one recovers a pure depressing synapse (if τrec > 0)

or a static synapse (if τrec = 0).

Equations (3.12-3.13) constitute a close phenomenological description of activity

dependent short-term synaptic mechanisms. Some of the main functional proper-

ties of STD and STF can be understood via these equations. One may assume,

for instance, a presynaptic excitatory neuron connected to a postsynaptic one via a

depressing synapse (that is, equations (3.12-3.13) with τrec > 0 and τfac = 0). We

also assume that the presynaptic neuron fires APs periodically, being T the time

interval between two successive presynaptic spikes and f ≡ 1/T the corresponding

presynaptic firing rate. In this simple situation, analytical solutions of the model

can be obtained easily (Tsodyks et al., 1998). Figure 3.3 shows that the effect of

repetitive presynaptic stimulation in the presence of STD is a decrease of the EPSC,

until a stationary EPSC value is reached. This effect is observed in experimental in

vitro recordings, and numerical simulations of the model presented above nicely fits

such behavior (Tsodyks and Markram, 1997). The decrease in the EPSC occurs be-

cause a high-frequency input can lead to synaptic fatigue. Such fatigue weakens the

strength of the synapse2 and, as a result, the postsynaptic response becomes weaker.

A straightforward consequence is that this filtering effect depends on the presynaptic

firing rate, in such a way that higher firing rates induce stronger decreases of the

EPSC. A similar effect can be obtained also by increasing the value of τrec (which is a

measure of the mean time employed by the synapses in refilling the ready releasable

pool) instead of the presynaptic firing rate. As a consequence of such effects, STD

provides a synapse-level mechanism to control the gain of postsynaptic responses in

an activity dependent manner (Abbott et al., 1997).

On the other hand, the inclusion of STF induces an increment in the postsy-

naptic response under repetitive presynaptic stimuli. This can be seen by setting

τrec > 0 and τfac > 0 in the model and analyzing the effect of a presynaptic periodic

stimulation in the EPSC in the presence of STD and STF (see figure 3.4). The

particular stationary value of the postsynaptic response depends on the presynaptic

firing rate and/or the facilitation time constant τfac. When both STD and STF

mechanisms are considered together, a competition between the two a priori op-

posite tendencies can occur. In this particular situation, a maximum value of the

postsynaptic response is obtained for certain value of the presynaptic firing rate, as

the figure 3.4 shows. The implications of the coexistence of STD and STF for more

2In the sense that the amount of available neurotransmitters decreases.
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elaborated (and biophysically relevant) systems is one of the main objectives of this

thesis, and will be studied in detail in the following chapters.

B. Stochastic description:

Dynamic synapses can be modelled using more realistic considerations. For in-

stance, it is known that real synapses have a stochastic nature (Dobrunz and Stevens,

1997) and their fluctuations can play an important role in neural computation (Do-

brunz and Stevens, 1997; Zador, 1998). Therefore, they should be taken into account

in order to design more realistic models of dynamic synapses. A simple description

that extends the synaptic STD model exposed above to include the effects due to

synaptic stochasticity is presented in (de la Rocha and Parga, 2005). This intrinsi-

cally stochastic model considers that each connection between neurons has a number

of functional contacts, or synaptic buttons, and this number is randomly chosen (for

each particular connection) following a Gaussian distribution of mean M and stan-

dard deviation ∆M . In addition, the strength of each individual synaptic button is

also randomly determined following a Gaussian distribution of mean J and stan-

dard deviation ∆J . The release of a neurotransmitter vesicle from a synaptic button

to the synaptic cleft (when an AP arrives at the button) is modeled as a random

event. After that release, the recovering of the synaptic button is considered as a

probabilistic event following a Poisson distribution with a typical time τrec. This

probabilistic model gives the same mean values for the EPSC as the model given

by equations (3.12-3.13), but the fluctuations differ from the deterministic model,

providing a higher level of description for the fluctuations of dynamic synapses. De-

tails on the performance of this stochastic model of dynamic synapses can be seen

in (de la Rocha and Parga, 2005).

3.4 Network models

In the two previous sections, we have reviewed some of the basic mathematical de-

scriptions of neurons and synapses commonly used in the literature. In addition to

appropriately select some of these models, there exists several important issues in

the modeling and study of neural systems: the concrete topology of the underlying

network (all to all connected, random sparsely connected, or small-world topology,

for instance (Torres et al., 2004; Johnson et al., 2008)), considering or not spatially

located neurons (with implications on the delay time and synchronization prop-

erties (Rabinovich et al., 1999)), or including several types of neural populations

(inhibitory, excitatory) which compete with each other (Brunel, 2000), to name a

few.
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Since, in some cases, numerical simulations of large networks of interconnected

neurons could be computationally expensive, it is also highly relevant to identify

models of neural networks which could, in some sense, be analytically tractable.

Mean-field network approaches as well as approximate expressions for the macro-

scopical magnitudes of interest, or even a qualitative description of the different

regimes of behavior of the system, are of great importance when working with mod-

els of a high number of interconnected neurons. In this section we will review some

representative examples of mathematical models of neural networks, describing its

main features and possible analytical approaches.

3.4.1 The rate model

The most simple manner to model the activity of a large population of interconnected

neurons is to employ a simple dynamical system describing the global activity of

the network. This approach, which defines the so called rate models, describes the

temporal evolution of the network mean firing rate (that is, the average over neurons

of the number of AP per unit of time). Within this description, the dynamics of the

system is given by a single differential equation:

τr
dr(t)

dt
= −r(t) + S(I(t) − θ) (3.14)

where r(t) resembles the network mean firing rate, τr is a time constant, θ is a

threshold, and S(x) is a transduction function, which gives the effect that the global

synaptic currents I(t) causes in the mean firing rate. Usually, S(x) takes the form

of a threshold-linear function or a sigmoidal function. The global synaptic cur-

rent includes both external stimuli coming from sensory receptors (or from other

neural populations) and recurrent currents generated internally in the population

considered. Therefore, the global current is given by

I(t) = Iext(t) + J r(t − d) (3.15)

where Iext(t) is the external input and the second term takes into account the recur-

rent current, with J being the total synaptic coupling factor. The parameter d is

positive and denotes a possible time delay due to spatial extension of the network,

for instance, although it is commonly set to zero for simplicity.

Rate models of neural activity constitutes the simplest option to model a neu-

ral population, although such simplicity neglects most of the complex features of

the system under study. They are useful, however, to model the interaction be-

tween different neural populations with different characteristics (employing several

variables: r1(t), r2(t), r3(t) ...), and to obtain analytical results for the stationary

states by solving the corresponding set of coupled equations. It is worthy to note
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Figure 3.5: Dynamics of two coupled neural populations (one constituted by excitatory

neurons and the other by inhibitory neurons) described with rate models. (Top) Basic

scheme of the system considered. The global current for the excitatory population is

given by Ie(t) = Iinput + JEE re + JEI ri, and for the inhibitory population one has

Ii(t) = JIE re + JII ri. The variables re, ri denotes the firing rate of the excitatory

and inhibitory population, respectively, and Jab is the (fixed) synaptic strength of the

connection between the presynaptic population b and the postsynaptic population a. (B)

For some values of the model parameters, the system displays periodic oscillations of

activity, induced by the competition between excitation and inhibition (see (Wilson and

Cowan, 1972) for a detailed analysis).

that, although the model is able to show oscillatory synchronized behavior (that is,

a periodic dynamics of r(t)), the internal structure of such dynamics is not reflected

(since the dynamics of individual neurons is not considered). Therefore, the model

works with the implicit assumption of spontaneous activity, and its predictions will

fail when correlations between neurons are important for the dynamics (for instance,

when certain types of neural synchronization emerge in the dynamics of the system

(Brunel, 2000; Brunel and Hansel, 2006)).
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Figure 3.6: Dynamics of a spiking neural network constituted by excitatory IF neurons,

connected in an all-to-all manner. (A) Temporal evolution of the network mean firing

rate when a weak external input is injected into every neuron. The resulting activity is

asynchronous, as can be also seen in panel (B), which shows a raster plot of the activity of

a small group of neurons of the system. Panels (C) and (D) present the same study, but

considering a strong external input injected into every neuron. In these conditions, the

dynamics of the network activity becomes highly synchronized, and displays the so called

population bursts.

3.4.2 The spiking network model

The simulation of large neural networks is usually carried out by simply considering

a large number of interconnected neurons, described with computationally efficient

neuron and synapse models. This strategy is commonly denoted as spiking network

model, since it is constituted by a network of interconnected spiking neurons 3. Here

we will focus on networks of IF neurons, which are convenient to numerically simulate

large neural populations due to the computational efficiency of this neuron model.

In addition, the mathematical simplicity of the IF neuron allows to obtain analytical

3The term spiking neuron reflects the capacity of a neuron model to generate well defined APs

or spikes, in opposition with the McCulloch-Pitts neuron model in which a spike is represented

roughly with a binary value s = +1.
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expressions of the network activity for several situations of interest, and assuming

certain approximations. Therefore, IF spiking networks constitutes a useful tool to

investigate network dynamics as a first step, in order to translate their predictions

into networks built with more complicated and detailed neuronal paradigms.

The system is constituted by N interconnected neurons, modelled with N dif-

ferential equations of the form

τm
dVi(t)

dt
= −Vi(t) + Ii(t), i = 1, ...N (3.16)

where Vi(t) represents the membrane potential of the i− th neuron of the network,

Ii(t) is the input current on the same neuron, and τm is the membrane time constant.

As it is explained in the section 3.2.4, a spike is generated by the i− th neuron when

the membrane potential reaches certain threshold value, that is, when Vi(t) ≥ Vth,

and after that the voltage is set to Vi(t) = Vr during a refractory time τref . The input

current Ii(t) is usually composed of a term corresponding to a external stimuli and

a term associated with the signals arriving from the other neurons in the network,

namely Ii(t) = Iext
i (t)+Irec

i (t). While the expression of the external stimuli strongly

depends on the particular modeling interest, the recurrent part is in general given

by

Irec
i (t) =

N∑

j 6=i

Nt∑

k=1

τmJ δ(t − tkj − d), (3.17)

where the first sum is extended to all neurons in the network, and the second sum

takes into account the signals (spikes) arriving to the i − th neuron from the other

neurons in the network. The parameter J denotes the synaptic strength, which is

assumed here to be the same for all synapses and also fixed in time. Also, equa-

tion (3.17) considers that synaptic transmission occurs instantly and, therefore, is

described by delta functions, that is, rise and decay synaptic times are zero (see

section 3.3.2 for details). Finally, it is worthy to note that the resulting network

is fully-connected (that is, each neuron is connected to all the other neurons of the

network), although other network topologies can be included easily.

In addition to be computationally convenient, the system described above allows

a mean-field treatment that proportionates a theoretical description of the network

dynamics and statistics up to some level. For instance, the network mean firing

rate, coefficient of variation (CV), or even the probability distribution of inter-spike-

intervals (also called ISI distributions) can be obtained for this type of networks

(Tuckwell, 1989; Brunel, 2000). The stability properties of the solutions can be

theoretically studied as well by employing different techniques (Brunel, 2000; Brunel

and Hansel, 2006).
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Figure 3.7: The Hopfield model, although of vital importance for the understanding of

several brain processes such as associative memory, is also employed in the framework

of artificial intelligence. In particular, it can be used to reconstruct previously stored

images starting from impaired or incomplete versions of such images (Peretto, 1992).

More elaborated versions, which take into account several synaptic considerations, allow

for the classification and categorization of images, as well (Cortes et al., 2005).

This model, although allows to employ biophysically meaningful descriptions of

neurons and synapses, is not convenient to assess the effect of certain collective prop-

erties of the neural systems. In particular, considering a single synaptic strength

value J for all synapses constitutes a strong simplification in order to study cer-

tain neural features. The phenomenon of associative memory, for instance, strongly

relies on synaptic modifications at large time scales, thus leading to certain level

of synaptic heterogeneity. One of the strategies employed to study this issue is to

consider several spiking network populations, and introducing inhomogeneity among

the synapses of the different populations. This strategy, however, increases significa-

tively the complexity and number of parameters of the system, and the extraction

of useful information from the mean-field treatment becomes significantly more dif-

ficult. A simpler manner to address this issue in a theoretical manner is to employ

tools from Statistical Mechanics on simplified neural network models, as we will see

in the next section.
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3.4.3 The Hopfield model

As we have briefly mentioned above, there are several interesting features of actual

neural systems that cannot be achieved by considering networks with a single synap-

tic strength value J for all synapses of the network. One of the most astonishing is

the phenomenon known as associative memory, which has been extensively studied

in the literature (Hertz et al., 1991; Peretto, 1992; Hopfield, 1982). By virtue of

this phenomenon, neural networks are able to retrieve information previously stored

by simply presenting an input information sufficiently similar to the one previously

stored.

Before analyzing in deep this property, we have to briefly review the physiological

implications of learning. As we have mentioned in section 2.5.2, the Hebb’s rule

establishes the relation between the reinforcement of a synapse and the level of

correlation in the activity of the two neurons linked by such synapse (Hebb, 1949).

That is, reiterative activity is able to induce long-term plastic modifications which

lead to specific changes in the synaptic weights. Synaptic reinforcements induced by

neural activity have been measured in a wide variety of experimental situations, both

in vivo and in vitro, as well as in psychophysical experiments (see, for instance, (Bliss

and Collingridge, 1993; Malenka and Nicoll, 1999; Gruart et al., 2006)). However,

the way these changes in synaptic weights lead to memory is not well understood

yet. In the following, we will present a hypothesis which is well established in the

computational neuroscience community.

It is generally assumed that when we contemplate a picture, meet a friendly face

or experience a sensation, certain groups of neurons in the cortex start to fire. If

this firing is prolonged enough, it will produce a strengthen in synapses connecting

active neurons, as the hebbian rule states. As an example, let S1 and S2 be two

of these active neurons, then the synaptic connection J12 which links them will be

increased in strength in a certain quantity J12 → J12 + δ, with δ > 0 (for simplicity,

we assume here a symmetric connection, that is, J12 = J21). Later, if we experience

a similar sensation, some (but not all) of the neurons which were previously active

will start firing again. This partial reactivation will drive the network, due to the

prior selective reinforcement of synapses, towards the original pattern of activity

associated with the first experience (which therefore has become an attractor of the

dynamics of the system). In our previous example, if S1 is firing in the new situation

but S2 is not, the previous reinforcement of the connection J12 will increase the signal

strength that S2 receives from S1, and as a consequence S2 will start firing. The

phenomenon described above is known in the literature as associative memory, and

constitutes a paradigmatical example of emergent large-scale phenomena induced

by cooperativity between microscopic elements —neurons and synapses.
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The first mathematical model which quantitatively demonstrated the plausibility

of associative memory was developed independently by Amari (Amari, 1972) and

Hopfield (Hopfield, 1982), although nowadays it is commonly referred as the Hopfield

model. The model is constituted by N binary (McCulloch-Pitts like) neurons, which

evolve in discrete time steps according to some probabilistic rule

Prob[si(t + 1) = 1] = S[βhi(t)], (3.18)

where si(t) represent the activity state of the i − th neuron of the network, being

si(t) = −1 a silent neuron and si(t) = +1 a firing neuron. The function S(x)

represents a sigmoidal function which ranges from −1 to +1, as for instance S(x) =

tanh(x). The parameter β ≡ 1/T is related with the level of stochasticity in the

network, with T being the temperature of the system —in the sense of the Statistical

Mechanics theory. The local field hi(t) of the i− th neuron, which can be identified

as the input current to that neuron, is expressed as

hi(t) =

N∑

j 6=i

Jijsj . (3.19)

In order to store a given number P of memories or activity patterns, the synaptic

intensities Jij have to take convenient values. They are usually chosen to follow a

simple hebbian rule, expressed in the following form

Jij =
1

N

P∑

µ=1

ξµ
i ξµ

j , (3.20)

where ξµ
i = ±1 is the activity of the i − th neuron for the µ − th stored pattern.

Via equation (3.20), a number P of activity patterns can be stored in the synaptic

weights Jij , ∀ i, j ǫ [1, 2, ...N ]. It is worthy to note that the hebbian rule here ex-

posed is symmetric, that is, Jij = Jji, ∀ i, j. Although this hypothesis is far from

being biophysically realistic, it is quite useful from a theoretical point of view, since it

allows to employ here some of the mathematical tools of Statistical Mechanics of dis-

ordered systems. In particular, the stationary state of the system is characterized by

a Gibbs-like probability distribution P (s) ∼ exp(−βH(s)), with H(s) = −1
2

∑
i hi(t)

being the equilibrium hamiltonian of the system (see, for instance, (Peretto, 1992)).

The storage of a given pattern of activity in the synaptic weights Jij yields the

appearance of two attractor in the dynamics of the system. Concretely, when a

pattern µ is stored, an attractor associated with such pattern appears, and also an

attractor associated with the corresponding antipattern (ξµ
i → −ξµ

i , ∀ i). However,

since antipatterns do not provide new information to be retrieved, they are usually

ignored in the computations of storage capacity of Hopfield networks. Due to this
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association between stored activity patterns and dynamical attractors, Hopfield-like

models are commonly denoted as attractor neural networks (ANN) in the literature.

How can an ANN exhibit associative memory properties? When one sets an

initial condition similar enough to one stored pattern µ, we are setting an initial

condition for the dynamics of the system which is located, in the phase space of the

system, within the basin of attraction of the stored pattern µ. As a consequence of

that, the activity of the system will rapidly tend to the attractor µ and the stored

information will be retrieved. This retrieval property mimics the associative capac-

ities of the brain to recover previously learned information and complete memories

from partial or incomplete information about them. The degree of similarity of a

certain state of the network with a given pattern µ is usually measured by defining

the overlap function with such pattern, that is

mµ(t) ≡ 1

N

N∑

i=1

si(t)ξ
µ
i . (3.21)

The Hopfield model can be analytically solved within the Statistical Mechanics the-

ory for spin-glasses, by using a mean-field replica trick (Amit et al., 1987). This

mean-field treatment allows to characterize the phases of the system, the stabil-

ity of such phases, or the maximum storage capacity of the model, for instance.

Although the steady state of the general model defined above represents an equi-

librium system in the sense of the Statistical Mechanics, some nonequilibrium ver-

sions of such model can be studied by using for instance effective hamiltonians or

different approaches, giving theoretical predictions which fits quite well with numer-

ical simulations. Some interesting situations, such as the presence of fast synaptic

mechanisms which strongly alters the dynamics of the system, fall into this class of

nonequilibrium frameworks. Therefore, the Hopfield model constitutes not only a

highly useful neural network model (from the conceptual point of view), but also a

relevant model for the Statistical Physics community, with a significative number of

interesting collective properties and emergent behaviors.

3.4.4 The neural field model

The neuron models introduced previously consider explicitely the dynamics of indi-

vidual neurons, or small populations of them. Since they constitute a good descrip-

tion for small homogeneous structures, the lack of spatial metric on these models

may be an inconvenient when modeling large-scale structures such as a macroscopic

volume of the cortex. Since the number of neurons and synapses in even a small piece

of cortex is immense, the use of large-scale models of the cortex is sometimes more

convenient. A popular choice is to take a continuum limit and interprete the neural
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Figure 3.8: Left: An activity profile of a hexagonal pattern emerging beyond a Turing

instability in a two-dimensional neural field model with short-range excitation and long-

range inhibition. Right: A spatially localized 3-bump solution in a two-dimensional neural

field model. Figure and caption have been taken from (Coombes, 2006).

activity as a magnitude which varies smoothly in space and time. Such approach

is of big help to model situations in which spatial structuring of the neural activity

becomes relevant, such as the pattern formation of electrical activity in large scale

cortical regions. The models that work at this level are called neural field models,

and relies on tissue level equations that describe the spatiotemporal evolution of

coarse grained variables, such as the mean firing rate of neural populations.

One of the basic neural field models was presented in (Wilson and Cowan, 1973).

Following this model, the neural field φ(x, t), which represents the local activity at

time t of a population of neurons located at position x, evolves according to

τ
∂φ(x, t)

∂t
= −φ(x, t) +

∫ ∞

−∞
dy W (y) S[φ(x − y, t − |y|/v)] (3.22)

where τ is a constant related with the temporal decay of the neural field and S(x)

is the transduction function, which relates the input entering to a neuron with the

activity caused by this input. The function W (y), also referred as the synaptic

footprint, gives the strength of the connections between two neurons separated by a

distance y, where it is generally assumed that the system is spatially homogeneous

and isotropic. One of the most common assumptions is to consider that W (y) fol-

lows a Mexican hat dependence, which implies local excitation and distal inhibition

(Amari, 1975, 1977). It is worthy to note that the neural field variable inside the

integral is delayed in time, due to the finite speed v of signal traveling over a distance

y.

Neural field models have been used to investigate EEG rhythms, visual halluci-

nations, mechanisms for short term memory and motion perception, to name a few

(Coombes, 2006; Ermentrout and Cowan, 1979; Bresslof, 2001). Despite its util-
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ity, this kind of models present certain inconveniences, though. For instance, the

nonlocal characteristics of neural field models make it difficult to obtain analytical

results, even approximate. Therefore, this description strongly relies on numerical

simulations to work, and this must be taken into account when considering the level

of detail presented by the model, in order to keep the computation time within

reasonable limits.



Chapter 4

Spike coincidence detection

In this chapter, we start presenting our original results concerning the study of the

influence of short-term synaptic plasticity mechanisms in the computational prop-

erties of different neural systems of interest. Our first contribution has been the

analysis of the effect of STD and STF in a basic information processing task: the

detection of correlated signals in an environment of noisy activity. Since cortical

activity is usually quite irregular, to understand the effect of short-term synaptic

plasticity in the detection of correlated signals under such noisy conditions consti-

tutes a highly relevant issue.

4.1 Introduction

It is widely known that in vivo cortical neurons usually present a high temporal

irregularity in their firing patterns (Softky and Koch, 1993; Compte et al., 2003;

Renart et al., 2007; Barbieri and Brunel, 2007). Such irregular behavior is observed

at spontaneous activity levels, as well as in high persistent cortical states (Softky

and Koch, 1993; Compte et al., 2003). The origin of this irregularity remains far to

be understood, although several explanations concerning balanced states of network

activity have been proposed (van Vreeswijk and Sompolinsky, 1996). It is commonly

assumed that the irregularity of cortical states may constitute an advantage to

several neural tasks, such as detecting weak signals (Ho and Destexhe, 2000; Fellous

et al., 2003) (see also chapter 5) or switching between patterns of neural activity

(Pantic et al., 2002; Torres et al., 2007) (see also chapter 7). Because of this, the

study of the biophysical mechanisms involved in the transmission of signals in neural

noisy environments constitute a relevant issue.

This transmission of meaningful information embedded in noisy inputs, however,

may be strongly dependent of several synaptic processes, such as short-term depres-

sion and facilitation, which could modulate the postsynaptic response in different

54
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manners. As we already introduced in chapter 2, the first of these mechanisms con-

siders that the amount of available neurotransmitters in the synaptic buttons is lim-

ited and, therefore, the neuron needs some time to recover these synaptic resources

in order to transmit the next incoming spike. As a consequence, the dynamics of the

synapse is affected by an activity-dependent mechanism which produces non-linear

effects in the postsynaptic response. This picture differs from the classical synaptic

description which considers the synaptic strengths as static identities, with the only

possible time modification due to a slow learning process (Hopfield, 1982). More-

over, it is well known that short-term depression plays an important role in several

emerging phenomena in the brain, such as selective attention (Buia and Tiesinga,

2005; McAdams and Maunsell, 1999) and cortical gain control (Abbott et al., 1997),

and it is responsible for the complex switching behavior between activity patterns

observed in neural network models with depressing synapses (Pantic et al., 2002;

Cortes et al., 2006). However, a complete theoretical study of other synaptic mech-

anisms, as synaptic facilitation – which compete with depression during synaptic

transmission in networks of pyramidal neurons – is still lacking. Synaptic facilita-

tion is produced by the influx of calcium ions into the cell through voltage-sensitive

channels which favors the neurotransmitter vesicle depletion. This has been reported

to be relevant for synchrony and selective attention (Buia and Tiesinga, 2005), and

in the detection of bursts of action potentials (AP) (Matveev and Wang, 2000; Des-

texhe and Marder, 2004). One would expect, therefore, that synaptic facilitation

had a positive effect, for instance, in the efficient transmission of temporal correla-

tions between spike trains arriving from different synapses. This feature, known as

synaptic coincidence detection (CD), has been measured in vivo in cortical neurons

and related with some dynamical processes which affect to neuron firing thresh-

olds (Azouz and Gray, 2000), so that it seems to be an important mechanism for

efficient transmission of information in actual neural media.

In this chapter, we used the phenomenological model of dynamic synapses orig-

inally introduced in (Tsodyks et al., 1998) (see also chapter 3), which includes de-

pressing and facilitating mechanisms, to explore the consequences of the cooperative

effect of both in spike CD tasks. That is, we computed the regions, in the space

of the relevant parameters, in which a postsynaptic neuron can efficiently detect

temporal coincidences of spikes arriving from N different afferents. The aim of such

study is to determine the range of the parameters which defines the dynamic of the

synapses and the neuron for which the performance of the neural system in such

experiments is improved. Our study shows that facilitation enhances the detection

of correlated spikes and firing rate changes in situations for which the mechanism of

depression alone does not perform well. These main results are robust and persist

even when one decreases the degree of correlation between the afferents or consider
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Figure 4.1: Scheme of the system under study. The postsynaptic neuron (in yellow)

receives signals from N presynaptic neurons. A certain subset of M (< N) neurons (in

green) fire APs strongly correlated in time, while the rest of neurons fire independently

of each other (in blue). This may be appreciated in the time series of APs next to each

neuron in the plot. The aim is to analyze the conditions in which the postsynaptic signal

is able to detect the coincident inputs (that is, the signal term) within a uncorrelated

background activity (which acts as a noise term).

more realistic situations, as for instance, stochastic individual synapses (Dobrunz

and Stevens, 1997; de la Rocha and Parga, 2005). Synaptic facilitation also deter-

mines the existence of an optimal frequency which allows the best performance for

a wide range of values of the neuron firing threshold. The location of this opti-

mal frequency can also be controlled by means of facilitation control parameters.

This property could be important for actual neural media, constituted by neurons

which presents heterogeneity in their firing thresholds (Azouz and Gray, 2000), to

efficiently process information codified, for instance, at this frequency.

4.2 The model

The system under study is schematized in figure 4.1. We consider a postsynap-

tic neuron which receives signals from N presynaptic neurons through excitatory

synapses. As a first approximation to model experimental data, we assume that
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the stimulus received by a particular neuron, as a consequence of the overall neu-

ral activity, is modeled by a spike train following a Poisson distribution with mean

frequency f (see (Tsodyks et al., 1998) for details). According to the phenomeno-

logical model presented in (Tsodyks and Markram, 1997) (and already introduced

in chapter 3), we consider that the state of the synapse i is governed by the system

of equations
dxi

dt
=

zi

τrec
− Ui(t)xiδ(t − tsp)

dyi

dt
= − yi

τin
+ Ui(t)xiδ(t − tsp)

dzi

dt
=

yi

τin
− zi

τrec
,

(4.1)

where xi,yi,zi are the fraction of neurotransmitters in a recovered, active and in-

active state, respectively. Here, τin and τrec are the inactivation and recovery time

constants, respectively. Depressing synapses are obtained for Ui(t) = USE constant,

which represents the maximum amount of neurotransmitters which can be released

(activated) after the arrival of each presynaptic spike. The delta functions appear-

ing in (4.1) consider that an AP arrives at the synapse in a fixed time t = tsp.

Typical values of these parameters in cortical depressing synapses are τin = 3 ms,

τrec = 800 ms, and USE = 0.5 (Tsodyks and Markram, 1997).

The synaptic facilitation mechanism can be introduced assuming that Ui(t) has

its own dynamics related with the release of calcium from intracellular stores and

the influx of calcium from the extracellular medium each time an AP arrives. Here,

we consider the dynamics proposed in (Tsodyks and Markram, 1997), that is,

Ui(t) ≡ ui(t)(1 − USE) + USE (4.2)

with
dui(t)

dt
= −ui(t)

τfac
+ USE[1 − ui(t)]δ(t − tsp). (4.3)

Here, ui(t) is a dynamical variable which takes into account the amount of calcium

ions entering into the presynaptic neuron near the synapse due to the opening of

voltage-sensitive ion channels when the AP reaches this region (Bertram et al.,

1996). These ions can usually bind to some acceptor which gates and facilitates

the release of neurotransmitters. A typical value for the facilitation time constant

is τfac = 530 ms (Markram et al., 1998). The variable Ui(t) in (4.2) represents

then the maximum fraction of neurotransmitters that can be activated, either by

the arriving of a presynaptic spike (USE) and by means of facilitating mechanisms

(i.e., ui(t)(1 − USE)).

One can think that the postsynaptic current generated in a particular synapse is

proportional to the fraction of neurotransmitters which are in the active state, that
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is, Ii = ASE · yi, where ASE is the maximum postsynaptic current that can be gen-

erated 1. Hereafter, we will choose ASE ≈ 42.5 pA which is within the physiological

range and gives an optimal system performance for Vth = 13 mV. In fact, we used

this value of Vth because is very near to the mean value threshold measured in some

cortical areas (Azouz and Gray, 2000). The total postsynaptic current, generated

by signals arriving from the N excitatory synapses, can be written, therefore, as

Itotal =
∑N

i=1 Ii. This current generates a postsynaptic membrane potential which

we modeled using an integration-and-fire (IF) neuron model, i.e.,

τm
dV

dt
= −V + RinItotal, (4.4)

where Rin = 0.1 GΩ and τm = 15 ms are, respectively, the input resistance and the

membrane time constant. These typical values have been taken also from pyramidal

cells (Tsodyks and Markram, 1997). The IF neuron model assumes that, once the

membrane potential reaches a certain threshold Vth, above the resting potential

Vrest = 0, an AP is generated and V (t) is reset to zero. We assume, in addition, the

existence of a refractory period of τref = 5 ms during which V (t) remains in zero

after the generation of each postsynaptic AP.

4.3 Results

We have studied first the postsynaptic response of a neuron receiving input signals

from N = 1000 excitatory synapses, with a subset of M = 200 synapses stimulated

by identical spike trains with mean frequency f . These strongly correlated afferents

fire spikes which are synchronized in time and we consider them as a signal term.

The remaining N − M synapses receive uncorrelated spike trains (also with mean

frequency f) which constitute, therefore, a noisy background of activity which is

added to the signal. We have investigated, both analytically and numerically, spike

coincidence detection (CD) experiments. Our interest is to determine the values of

the synapse and neuron parameters for which the postsynaptic neuron can detect

the embedded signal, i.e., its response is strongly correlated with the input signal.

A typical CD experiment is illustrated in Fig. 4.2. This shows the effect of

including facilitation compared with the situation in which only depression is con-

sidered. For relatively high values of the parameter USE, the system presents good

performance in the CD of the incoming signals for both cases, and the simulations

1Note that it is the synaptic conductance, rather than the synaptic current, which depends on

ASE · y(t). Our assumption for the current, however, is a good approximation when the membrane

potential V (t) is below the firing threshold Vth and τm ≫ τin, so that V (t) remains constant during

the temporal variation of the synaptic conductance.
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Figure 4.2: Response of a postsynaptic neuron receiving a Poisson spike train (Top panel)

at frequency of 10 Hz from N = 1000 presynaptic neurons through dynamic synapses.

Left and right panels correspond, respectively, to the case of depressing and facilitating

synapses. In the simulations, USE takes the values 0.5 (middle panel) and 0.01 (bottom

panel), respectively, and the threshold is fixed to 13mV . The figure shows that facilitation

enhances CD tasks for relatively low values of USE .

do not show any remarkable differences when one includes facilitation. The reason is

that the facilitation term becomes irrelevant in equation 4.2 for high values of USE ,

and depression is the only mechanism contributing to the dynamics. For small USE ,

however, the detection of the signal is improved in the presence of the facilitating

mechanism. In fact, when USE takes low values, the contribution of depression to

Ui(t) – which gives the strength of the synapse – becomes irrelevant. In this situ-

ation, facilitation still contributes to maintain Ui(t) highly enough to allow a good

performance on the CD task.

For a more general evaluation and quantification of the role of the facilitating

mechanism, one may compute the fraction of errors that occur in the detection of

the presynaptic signal by the postsynaptic neuron, as a function of the incoming

frequency f and the neuron threshold Vth. These 2-dimensional CD error maps give

a better perspective of the regions, in the space of the relevant parameters, where

the system has good performance. Thus, for each pair (f, Vth), one can compute,

in the stationary regime and during a large temporal interval T, 1) the number of

coincidence-input-events produced by strongly correlated signals through M presy-

naptic neurons, namely Ninputs ≡ f · T , 2) the number of output spikes in the post-

synaptic neuron which occur immediately within a time-window of ∆ = 5 ms after
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Figure 4.3: Panel A shows a typical coincidence detection map, as defined in the text,

with depressing synapses (USE = 0.5, τrec = 800 and τfac = 0). Panel B depicts the

corresponding temporal behavior of the postsynaptic membrane potential for several sit-

uations marked in the map with labels. It shows examples of failures in the detection (a),

successful detections or hits (b) and false spikes (c). Situations (a) and (c) correspond in

the map to high error zones.

each coincidence-input-event, that is Nhits,
2 3) the number of output spikes which

are not hits, Nfalses, and finally 4) the number of coincidence-input-events which

did not result in output spikes within the time window ∆, namely Nfailures (Pantic

et al., 2003). The fraction of errors is then defined as

E(f, Vth) ≡
Nfailures + Nfalses

Ninputs
. (4.5)

Analytical expressions for the quantities appearing in (4.5) have been obtained by

integration of the model equations (4.1-4.4) and their derivation is explained in the

following section.

4.3.1 Mean-field calculations

Motivated by the preliminary numerical simulations presented in the previous sec-

tion, we derive here analytical expressions for the functions appearing in the defi-

nition of the error function (4.5). This error function will be used to theoretically

obtain the regions for good spike coincidence detection in the (f, Vth) parameter

space.

2The specific value of ∆ is not too critical for the results found if moderated values are used.

In particular, it is convenient to have ∆ ∼ τref since this is a natural window for spike detection.
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First, we assume that the total presynaptic current can be divided in two terms:

a signal term containing the correlated embedded signal and a noise term formed

by the background of uncorrelated spikes.

A. Noise contribution

To take into account the noise generated by N − M uncorrelated spikes trains,

we assume that the current at time t = t∗ + τ generated by a single spike arriving

to the synapse i at time t∗ is given by a simplified alpha function (when we have

considered that the rise time constant is small enough), that is,

Ii(τ, t
∗) = Ipeak exp(−τ/τin) (4.6)

where Ipeak represents the averaged stationary EPSC amplitude obtained after stim-

ulation with a periodic spike train, assumption that we also suppose valid for Poisson

distributed spike train. After this consideration, one easily obtains from equations

(4.1-4.3) that

Ipeak = ASE
U∞(1 − exp(−1/fτrec))

1 − (1 − U∞) exp(−1/fτrec)
(4.7)

with U∞ = u∞(1−USE)+USE , where u∞ is the value of u(t) in the stationary state

(t → ∞). For a periodic spike train, u∞ is given by

u∞ = USE
exp(−1/fτfac)

1 − (1 − USE) exp(−1/fτfac)
. (4.8)

We can compute the mean noise contribution of the current and fluctuations using

the standard expressions

Inoise ≡ 〈I〉,
σ2

Inoise
≡ 〈I2〉 − 〈I〉2.

(4.9)

From these definitions and using the central limit theorem we obtain

Inoise = (N − M)ASEfτinU∞
1 − exp(−1/fτrec)

1 − (1 − U∞) exp(−1/fτrec)
(4.10)

where we assumed that τin ≪ τrec (for details on this calculation for periodic and

poissonian spike trains see appendix A). If we neglect fluctuations (σInoise
= 0), we

can write Vnoise = RinInoise. Using this expression one can compute Nfalses taken into

account that false firing occurs when Vnoise > Vth so by a direct integration of equa-

tion (4.4) in a period of time T gives Nfalses ≈ T/{τref−τm ln(1−Vth/Vnoise)} (Koch,

1999). Now using that f = Ninputs/T, we finally obtain as in (Pantic et al., 2003)

Nfalses =
Θ(Vnoise − Vth)Ninputs

f(τref − τm ln(1 − Vth/Vnoise))
(4.11)
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where Θ(x) is the Heaviside step function, which takes into account that for Vnoise <

Vth, one obtains Nfalses = 0.

To take into account fluctuations of Inoise one can use the so called hazard func-

tion approximation (Plesser and Gerstner, 2000) but it has been reported that it

gives the same results than those obtained using the formula (4.11) for high fre-

quencies and, on the contrary to the expression (4.11), it does not work properly for

small frequencies (see details in (Pantic et al., 2003)). Therefore, hereafter we will

neglect fluctuations in Inoise and use (4.11) as an approximatively valid expression

to analytically compute Nfalses.

B. Signal contribution

To analyse the signal contribution (arising from M coincident spikes) we used

the same method developed in (Pantic et al., 2003) for the case of only-depressing

synapses. That is, assuming that V (0; t∗) is the membrane potential at t = t∗ when

M coincident spikes arrive, by direct integration of the equation (4.4) the membrane

potential at time t = t∗ + τ is

V (τ ; t∗) = eτ/τm

{
V (0; t∗) +

RinMIpeak

τmα
[eατ − 1]

}
(4.12)

where α = τin−τm

τinτm
and Ipeak is given by (4.7) and it includes all the effects due to

synaptic depression and facilitation. If the next signal event (that is, the next M

coincident spikes) occurs at t = t′ one can obtain the following recurrence relation:

V (0; t′) = e∆t/τm

{
V (0; t∗) +

RinMIpeak

τmα
[eα∆t − 1]

}
(4.13)

with ∆t = t′−t∗, which allows for computing the stationary value for the membrane

potential at the exact time of the signal-event arrival (see also (Kistler and van

Hemmen, 1999)), that is:

Vst = e−∆t/τm
RinMIpeak

τmα

eα∆t − 1

(1 − e−∆t/τm)
. (4.14)

We define Vsignal as the maximum of the membrane potential reached between the

arrival of two consecutive signal events separated by a time ∆t. This can be easily

computed from equation (4.12) with V (0, t∗) being replaced by Vst:

Vsignal =

[
τm(1 − exp(−1/fτm))

τin(1 − exp(−1/fτin))

] τm
τin−τm

RinMIpeak, (4.15)

where we consider τ = ∆t ⋍ 1/f.
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The expression of Vsignal allows for an evaluation of the number of failures as-

suming that Nfailures = Ninputs − Nhits. Then, one obtains by direct integration of

equation (4.4) an using the same reasoning that for Nfalse case that

Nfailures = Ninputs

[
1 − Θ(Vnoise + Vsignal − Vth)

f [τref − τm ln(1 − (Vth − Vsignal)/Vnoise)]

]
, (4.16)

where we have considered a hit event every time Vnoise +Vsignal reach Vth. Note that

from (4.16) if Vnoise + Vsignal < Vth we will have Nfailures = Ninputs. Expression for

Nfalses, Nfailures allows for theoretically compute the fraction of errors, as defined

in equation (4.5), in the CD maps for different situations of interest.

4.3.2 Detection of strongly correlated signals

In order to characterize the CD abilities of the system, we have computed both the-

oretical and numerical CD maps using the error function (4.5) for different values of

the neuron and synapse relevant parameters. An illustrative example of these maps

is shown in Fig. 4.3A. The light area corresponds to regions where the postsynaptic

neuron is able to efficiently detect the coincidence-input-events, and to generate a

postsynaptic response strongly correlated with the embedded signal (see time series

”b” on Fig. 4.3B). Simulations show that this low error situation mainly occurs for

E . 0.6. Dark areas, however, are regions with a high percentage of errors (E > 1).

These errors can be produced, for instance, when Nfailures is large (see time series

”a” on Fig. 4.3B), which occurs for Vth very large (grey areas), or when Nfalses

increases (see time series ”c” on Fig. 4.3B), normally for small Vth, such that any

current can produce a false event (black areas).

On the other hand, figure 4.4 depicts the role of the inclusion of synaptic facili-

tation on signal detection compared with the situation of only-depressing synapses.

For a fixed value of the facilitation time constant τfac, there is a clear dependence

on USE in the signal detection properties of the system. When its value increases

(from top to bottom) the width of the light area enlarges and spreads to the right,

allowing a better CD for regions with high thresholds. The left panels correspond to

numerical simulations whereas the central panels are the same error function evalu-

ated using the analytical formulas derived in section 4.3.1. The figure also shows the

good agreement between theory and simulations. In the right panels, we computed

the same CD maps but considering only the mechanism of synaptic depression.

One observes that for only depression and a limited amount of neurotransmitters

(USE < 0.5), the low-error region is narrower, and one has a large region of good

detection only for USE near to one. Similar results are found when one fixes USE

and varies τfac.
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Figure 4.4: Coincidence detection maps for a system with facilitating synapses with

τfac = 530 ms (left and center panels). The values of USE were, from top to bottom,

0.002, 0.05 and 0.5, respectively. The effect of increasing USE was the spreading of the

region of good CD (light zone) to the right. Simulations (left) confirm the analytical

results (center). In the right panels are presented the same CD maps for τfac = 0, that is,

the case of only-depressing synapses.

A better quantification of the role of synaptic facilitation can be visualized by

computing the area of the light zones in the CD maps (low error zones, that is,

E(f, Vth) < E0 = 0.5), and study the influence of τfac and USE on the size of this

area. Large light areas will indicate good performance of the system for a large

variety of working frequencies and neuron firing thresholds. For this purpose we

defined the quantity

F = 1 − 1

A

∫

Vth

∫

f

Θ[E(f, Vth) − E0]dVthdf, (4.17)

which gives the fraction of area with small errors over the whole map. Here, A =
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Figure 4.5: Fraction of area for good signal detection (that is, the region in which the

error is below a certain value E0) as a function of τfac (left plot) or USE (right plot), with

E0 = 0.5. Both maps show quantitatively that the inclusion of facilitation enlarges the

area in which the signal is efficiently transmitted (note that the case of only-depressing

synapses corresponds to τfac = 0). The window considered to calculate the area was

fǫ[1, 80] , Vthǫ[1, 35].

∫
Vth

∫
f
dVthdf is the total area of the map and Θ(x) is the step function. Figure 4.5

shows the dependence of F with τfac (left panel) and USE (right panel). Since F is

an increasing function of τfac (left panel) and the only-depression case corresponds

to τfac = 0, one conclude that the inclusion of facilitation leads to a higher area of

good CD in the maps, for different values of USE . Similar results are found when

one study F as a function of USE (right panel). In this graph, the lowest curve

corresponds to the case of only-depressing synapses (τfac = 0), and one observes

that the addition of facilitation always leads to a higher F for any value of USE .

These results are also robust for different values of E0 and different sizes of the

(f, Vth)-window which we use to calculate the total area. All these results show

that, for the same value of the amount of activated neurotransmitters, the overall

performance of the system is better with facilitation than if one only considers

depressing mechanisms. This conclusion can be also observed when one fixes USE

and varies the facilitation time constant τfac. A large value for τfac means an increase

in the duration of the facilitating effect. As a consequence, the region for good

detection enlarges compared with the situation of only depression, in special when

the fraction of available resources is not too high.

A detailed observation of Fig. 4.4 also reveals the existence of a certain fre-

quency, namely fopt which allows a good performance for a wide (maximum) range

of values of Vth. The center map in Fig. 4.4, for instance, shows a good perfor-
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Figure 4.6: Behavior of the error function E(f, Vth), as defined in the text, for USE = 0.05

and three different values of Vth, namely, 10 mV (solid line), 13 mV (dashed line) and

17 mV (dotted line). Left (Right) panel corresponds to depression-facilitation (only-

depression) case. In the left panel, one can see a small region of frequencies (around

∼ 10 Hz) that allow to have zero error for the three threshold values considered. Indeed,

there is a maximum interval of threshold values from 9 to 18 mV such that, this small

region of frequencies tends to a single “optimal” frequency around 7 Hz.

mance in detecting signal frequencies around 7 Hz for a threshold ranging from 8

to 18 mV. The existence of this optimal frequency can be seen more clearly if we

take several sections of the CD maps, with Vth fixed at certain value, as it is shown

in Fig. 4.6. For depressing-facilitating synapses (left panel in the figure) there is

a certain frequency value (∼ 7 Hz) for which the error is zero for very different

voltage threshold values within the range (10−17 mV ). This feature is not found in

the case of only-depressing synapses (right panel in the figure). Theoretically, fopt

can be computed from the analytical expression for Vsignal and Vnoise (see section

4.3.1) taking into account that, in general, it appears at relatively low frequencies.

At these frequencies, the low error zone is obtained for Vth ∈ [Vnoise, Vnoise + Vsignal].

Maximizing this range gives fopt, as the solution of the equation

∣∣∣∣
∂Vsignal(f)

∂f

∣∣∣∣
f=fopt

= 0. (4.18)

A more detailed study using (4.18) reveals that fopt decreases for increasing

values of USE , or τfac, as it is shown in Fig. 4.7 (Left panel). One also observes

that the range of thresholds which allow for a good CD at fopt, which corresponds

to ∆Vth ≈ Vsignal(fopt), increases with USE , or τfac (cf. Fig. 4.7 right panel). In the

limit τfac ≫ 1, one expects, therefore, the larger ∆Vth at fopt near zero. For low
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Figure 4.7: Dependence of fopt and ∆Vth (that is, the corresponding threshold-window

of good CD) with the facilitation parameters τfac and USE. The graph show that fopt can

be tuned by means of the facilitation parameters. The figure also shows the agreement

between theory (lines) and simulations (symbols).

levels of facilitation, however, there is a critical value of τfac, such that ∆Vth at fopt

starts to become lower than ∆Vth at zero frequency, and we have, then, fopt = 0

(data not shown). For only-depressing synapses, i.e., τfac = 0, one has always

fopt = 0. The conclusion is that a moderate level of facilitation is needed in order to

have a non-zero fopt. The possibility to tune this optimal frequency by means of the

facilitation parameters could be important, for instance, to understand how actual

neural systems – where different types of neurons may have non-identical firing

thresholds – can self-organize to efficiently detect and process correlated signals at

this optimal frequency.

By direct observation of the CD maps (for instance, the ones in figure 4.4),

one also observes that, at certain threshold, there is a range of working frequencies,

namely ∆f, within which the neuron is able to efficiently detect and process incoming

signals (with errors, for instance, less than 0.5). The study of the variation of ∆f in

the presence of facilitation and/or depression tell us, for instance, the ability of the

neuron to detect or not complex signals that include many frequencies. In Fig. 4.8

we have performed this analysis for a fixed threshold around Vth = 13 mV – which is

within the physiological range in cortical neurons – and study the system behavior

for fixed USE and varying τfac and vice versa. The figure shows (left panel) that

∆f decreases with USE for the case of only-depressing synapses, and even vanishes

for USE < 0.05. However, if the facilitating mechanism is also present, the system

is able to recover the good performance by increasing the facilitation time constant.
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Figure 4.8: Variation of ∆f, as defined in the text, for different values of USE and τfac.

Left panel: ∆f as a function of τfac for three fixed values of USE. Right panel: ∆f as a

function of USE for three fixed values of τfac. In all cases Vth was set to 13mV. In both

panels the only-depression case corresponds to τfac = 0.

The figure also reveals (right panel) that facilitation always enlarges the maximum

range of frequencies for any fixed value of USE . We conclude, therefore, that for any

values of the synapse parameters the inclusion of facilitation improves the detection

towards wider ranges of frequencies. Note that there is an abrupt change, from

zero to nonzero values of ∆f, in both panels of the figure 4.8 when one varies the

synapse parameters USE or τfac. The reason is that the analysis has been performed

for Vth fixed around V ∗ = 13 mV. Then, one has ∆f = 0 for values of USE and τfac

such that the region of good detection occurs at thresholds smaller than V ∗ and,

therefore, none frequency range is detected at V ∗. Otherwise, non-zero ∆f start to

appear when, by increasing USE or τfac, the light area of the map spreads to higher

threshold values and reaches V ∗.

4.3.3 The effect of jitter and synaptic fluctuations

The study of the detection of coincident signals which arrive from different presy-

naptic neurons has been treated in the previous section in an approximate way, i.e.,

the embedding signal was constituted by fully correlated temporal events that pro-

duce synchronized responses. In real situations, however, the incoming signals from

different synapses do not produce strong correlated postsynaptic responses, mainly

due to stochasticity during transmission through individual synapses (Dobrunz and

Stevens, 1997). The model we used for synaptic transmission does not allow to

consider these fluctuations because is deterministic. In this section, however, we

explored how the main conclusions reported before are not affected by the inclusion
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of some desynchronization (jitter) in the signal term which induces fluctuations in

the postsynaptic response. We also studied in detail CD tasks with a more realistic

stochastic synapse model which naturally induces such fluctuations in its dynamics.

A. The effect of jitter:

A first step to artificially introduce synaptic fluctuations, or other sources of

noise in our system, is to assume a signal term, in the synaptic current, constituted

by the effect of M presynaptic events that arrive at random times ti, distributed

around certain time t0. We used here, for instance, a Gaussian distribution p(ti)

with a certain standard deviation or jitter σ. In the following, we consider the im-

plications of this assumption to test the validity of the results previously obtained,

and to investigate the effect of the jitter in the detection of signals that are not fully

correlated in time.

We start by computing the excitatory postsynaptic current generated in a synapse

i due to a single presynaptic AP occurring at time ti, i.e.,

Ii(t) = Ipeak exp[−(t − ti)/τin], t > ti, (4.19)

where Ipeak is the steady-state maximum current through a synapse obtained after

stimulation with a periodic spike train (see section 4.3.1 for details). Since ti is a

Gaussian distributed stochastic variable with 〈ti〉 = t0 and standard deviation σ,

qi(t) ≡ exp[−(t − ti)/τin] (with t fixed) is also a random variable with range [0, 1]

and probability distribution given by

P[qi(t)] =
2τin

qi(t) erfc
(
− t−t0√

2σ

) 1√
2πσ

exp

[
−(t − t0 + τin ln[qi(t)])

2

2σ2

]
, (4.20)

where erfc(x) = 1− erf(x) and erf(x) is the error function. One can easily compute

the two first moments for P[qi(t)], i.e.:

〈qi(t)〉q = exp

[
1

2
(σ/τin)2 − (t − t0)/τin

] erfc
[

σ2−(t−t0)τin√
2στin

]

erfc
[
− t−t0√

2σ

] , (4.21)

〈
[qi(t)]

2
〉

q
= exp

[
2(σ/τin)2 − 2(t − t0)/τin

] 1 + erf
[
−2σ2+(t−t0)τin√

2στin

]

erfc
(
− t−t0√

2σ

) , (4.22)

with 〈f(q)〉q ≡
∫

dqf(q)P(q). In the case of many afferents, the total postsynaptic

current is I(t) = Ipeak

∑ν(t)
i=1 qi(t). Here, 1 ≤ ν(t) ≤ M is the fraction of the M

afferents in which the AP has already generated a postsynaptic response at time t,

and it is given by ν(t) ≈ M
∫ t

−∞ p(ti)dti. This number depends on time due to the
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existence of the jitter that desynchronizes the postsynaptic effect of the AP in all

afferents. For t ≪ t0, ν(t) is, therefore, small but for t near to and large than t0,

ν(t) is high and we can use the central limit theorem to obtain:

I(t) = Ipeakξ(t, t0), (4.23)

where ξ(t, t0) is a Gaussian variable with mean and variance given by

〈ξ(t, t0)〉ξ = ν(t) 〈q(t)〉q (4.24)

and

σ2
ξ = ν(t)[

〈
q2(t)

〉
q
− 〈q(t)〉2q], (4.25)

with ν(t) = M
2

[
erf
(

t−t0
σ

)
+ 1
]
. We will use, hereafter, this analytical approach to

compute CD maps of a jittered signal.

Since ν(t) needs to be high to use the central limit theorem, one expects that

the theoretical current defined by equations (4.23-4.25) will fit better the numerical

results for t > t0. In fact, this is depicted in Fig. 4.9, where the analytically computed

current after the arrival of M jittered APs (grey dots) is compared with the simulated

current (red curve), for different values of the jitter σ and different values of the

inactivation time constant τin. The figure shows the good agreement between the

theoretically and numerically computed currents. One observes, moreover, that the

effect of increasing the jitter is the temporal spreading of the current so that the

signal influence occurs during a large period of time but with a smaller amplitude.

This will cause a small decreasing in the capacity of the system to detect spikes.

On the other hand, if we fix the jitter the effect of increasing τin is the appearance

of longer tails for t > t0, which would be a desirable effect since the response to

the next incoming AP will be higher. However, no changes are detected in the

amplitude of the current when τin is modified. Note that the effect of jitter does not

depend on other parameters driving the dynamics of synapses, as USE, τrec or τfac,

which only affect to the amplitude Ipeak (see section 4.3.1). One should not expect,

therefore, a strong effect of jitter on the emergent properties due to facilitation

and/or depression.

In order to compute CD maps, we have to calculate the voltage generated by the

jittered signal, so that we have to integrate the Langevin equation

τm
dV

dt
= −V + RinIpeak

∑

t0

ξ(t, t0). (4.26)

Here the sum extends to a train of events, each one consisting of M jittered AP

centered around a particular instant of time t0 in the event train. In order to give

a first approximation to the solution of this equation, the EPSC fluctuations are
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Figure 4.9: Excitatory postsynaptic current generated in a neuron which receives an

single AP through M = 200 synapses. In each presynaptic neuron, the AP occurs at

different times ti which are Gaussian distributed around t0 = 300 ms. The figure shows

that the effect of jitter is the spreading of the current curve, whereas an increment in

the inactivation time constant causes longer right tails. Numerical results (lines) are in

concordance with the analytical derivation of the current (dots) (see main text for an

explanation).

neglected. Therefore, the factor ξ(t, t0) is now a Gaussian function of time, centered

at t0 for each event in the train. Using standard methods and assuming a periodic

train of events that occur at times t0 = 0, 1/f, 2/f, . . . , one can easily integrate the

equation (4.26) to obtain

V (t) = exp(−t/τm)

[
exp(−1/fτm)

W (1/f)

1 − exp(−1/fτm)
+ W (t)

]
(4.27)

where

W (t) =
Rin

τm

∫ t

0

exp(t′/τm)I(t′)dt′ (4.28)

and

I(t) = Ipeak 〈ξ(t, 0)〉 , (4.29)
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which determines the temporal evolution of the postsynaptic membrane potential.

Simulations show that this expression is also valid for Poisson distributed event

trains (data not shown). One can use (4.27) then to evaluate the CD maps similarly

to the case of σ = 0 (non-jittered events). Indeed, as it is shown in section 4.3.1,

to do that is necessary the evaluation of the maximum value of V (t) generated by

the signal term, i.e. Vm, during the signal event duration. In the practice, this can

be analytically done only in the case of σ = 0. For σ 6= 0, Vm must be numerically

computed from (4.27).

The maps for the detection of strongly jittered events (σ = 3 ms) are presented

in Fig. 4.10 (top panels), for the case of only-depressing (left) and depressing-

facilitating synapses (right). An important conclusion is that the CD maps here

are qualitatively the same than those obtained previously in the zero-jitter case (cf.

Fig. 4.4). Increasing the value of the jitter yields to a decreasing of the area of good

performance, as one could expect. This effect in the light zone is not too dramatic

for σ . 4, however. The jitter also causes a small delay to reach the membrane

threshold, as it is shown in Fig. 4.9 where one has the event at t0 = 300 ms and

the maximum of the generated current occurs at t = t0 + δt. This fact turns into an

increment in the number of failures and false hits. This effect should be considered

in the numerical counting of hits, failures and falses, specially for high values of the

jitter.

B. Intrinsic stochastic synapses:

Other possible source of noise to consider in our signal-detection analysis is the

existence of fluctuations during synaptic transmission due, mainly, to the intrinsic

dynamics of the synapses. To take into account this source of intrinsic synaptic

noise, we used the model of stochastic transmission in individual synapses reported

in (de la Rocha and Parga, 2005), which accounts the release of neurotransmitters

in a single synapse as a stochastic event3. The CD maps obtained using this model

are shown in Fig. 4.10 (bottom panels), for only-depressing (left) and depressing-

facilitating (right) synapses. For a comparison with top panels, in this model we

chose parameters ASE = 32 pA, USE = 0.02 and τrec = 200 ms, which are within the

physiological range (Markram et al., 1998). We make this choice to obtain the same

qualitatively behavior than the previous model with jittered signals, for the case of

depressing synapses. Although this stochastic model introduces additional source

of noise which makes the input-output correlation weaker and, therefore, the error

in detection is slightly higher, one can see that the effect of including facilitation

3See also some details concerning this model in section 3.3.3.
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Figure 4.10: The effect of jitter and synaptic fluctuations on coincidence detection maps.

Top panels shows CD maps corresponding to highly jittered signals (σ = 3 ms) for only-

depressing (left panel, τfac = 0) and depressing-facilitating synapses (right panel, τfac =

1000 ms). The maps have been obtained with the postsynaptic membrane potential

computed with the expression (4.27). The effect of the jitter is a small and non-relevant

decreasing of the good CD regions. Other synapse parameters were ASE = 42 pA, τrec =

800 ms and USE = 0.1. The bottom panels show the same CD maps obtained with a

stochastic synapse model assuming six functional contacts per synapse and one released

vesicle per functional contact (see also section 3.3.3). Similarly to top panels, differences

between only-depressing (left, τfac = 0 ms ) and depressing-facilitating synapses (right

panel, τfac = 1300 ms) are shown. Other synapse parameters in this case were ASE =

32 pA, τrec = 200 ms and USE = 0.02. In all panels, the solid line delimits regions where

E(f, Vth) < 0.6 (light areas).

is also the same. That is, it induces the spreading of the region of good detection

(light area) towards high threshold values.

We conclude, therefore, that the general results obtained in section 4.3.2 are

robust for a more realistic treatment of the input presynaptic trains, including the

case of jittered signals, and more realistic model of synapses with realistic stochastic

release of neurotransmitters.
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4.3.4 Detection of presynaptic firing rate changes

In the analysis we have performed until now in this chapter, we have considered the

overall presynaptic firing rate as a fixed parameter. This assumption is not realistic

enough when one studies actual neural systems, and an interesting possibility is

to consider the firing rate as a dynamic variable, as it happens in real neuronal

tissue. The rate changes in the presynaptic neuron, during normal functioning,

leads to a transient behavior in the excitatory postsynaptic potential (EPSP) which

could cause a burst or an AP in the postsynaptic neuron (Tsodyks and Markram,

1997; Pantic et al., 2003; Abbott et al., 1997). The question that arises then is if the

postsynaptic neuron is able to detect synchronous changes (increases) in the afferent

firing rates. This property have been found, in previous works, only for depressing

synapses and not for static synapses (Pantic et al., 2003). Another question is if

synaptic facilitation could have some positive effect in the detection of these rates

changes by the postsynaptic neuron. In this section we address these questions by

studying the effect of increasing facilitation in spite of depression in the optimal

detection, by the postsynaptic neuron, of rate changes in the presynaptic neurons.

To start, we assume a population of N = 1000 afferents firing uncorrelated Pois-

son spike trains with a certain frequency f into a postsynaptic neuron. In addition,

we consider that this population changes its mean firing rate every 1000 ms. Figure

4.11 shows a comparison in the subsequent output of the postsynaptic neuron for

the case of facilitating and depressing synapses. The threshold for firing was fixed

in Vth = 17 ms and USE = 0.1 (which are within the physiological range). Simula-

tions show that facilitating synapses (τfac = 500 ms) allow for a better detection of

rate changes, and over a larger range of frequencies, than depressing synapses. In

general, the regions in which depressing and facilitating synapses perform well can

vary and this strongly depends on the given values of Use, τrec and τfac. Thus, there

are special situations where facilitation is needed to detect presynaptic rate changes

and vice versa.

A simple theoretical approach, which has been used previously in the case of

depressing synapses (Pantic et al., 2003) and agrees qualitatively with simulations

(data not shown), can help us to find the regions in which firing rate changes are

detected. To obtain such transient behavior, which allows rate-change detection,

the threshold of the postsynaptic neuron must satisfy Cf2ω(f1) > Vth > Cf2ω(f2),

where f1 is the initial rate, f2 is the firing rate after the change, C = RinNτin and

ω(f) is the stationary postsynaptic current strength for a given frequency. From the

system of equations (4.1) and following a reasoning similar to the strategy used in

section 4.3.1, one can easily obtain

ω(f) =
ASEU∞

1 + fτrecU∞
(4.30)
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Figure 4.11: Detection of firing rate changes with depressing and facilitating synapses.

The top panel shows the mean firing rate of the N = 1000 presynaptic neurons as a func-

tion of time. Middle and bottom panels show the response of the postsynaptic membrane

potential for facilitating and depressing cases, respectively. In these simulations param-

eters were USE = 0.1 and τfac = 500 ms(0 ms) for the facilitating (depressing) case,

respectively. According to our results, detection of variations onto lower frequencies are

not possible only with these synaptic mechanisms.

where U∞ is the steady state valued of U(t). If now we fix the frequency step

δf = f2−f1, the resulting expressions will only depend on f1. Since for large enough

frequencies Cf2ω(f1) is a decreasing function of f1 and Cf2ω(f2) is an increasing

function of f2 (and therefore of f1), these two tendencies will converge for some f1.

This leads to a close area of good rate change detection between the two curves.

These two theoretical functions depends on the synapse relevant parameters and,

therefore, allows for a theoretical treatment of the regions in which firing rate changes

can be detected, depending on the balance between depression and facilitation.

4.4 Discussion

In this chapter, we have presented a detailed theoretical and numerical study of

how the competition between synaptic facilitation and depression affects the neural
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detection of temporal correlations between different presynaptic neurons in a back-

ground of uncorrelated noise. Our study shows that the inclusion of the facilitation

mechanisms enhances the performance of cortical neural systems to perform this

task, for a wide range of frequencies and neuron thresholds and for any possible

values of the parameters which define the dynamics of the synapses, namely, USE ,

τfac and τrec. In particular, we have shown that the transmission of information,

codified in spike trains through the synapses, is enhanced and the detection of firing

rate changes is also improved compared with the case of only-depressing synapses.

Thus, contrary to what happens with only depression, the presence of facilitation

makes not necessary to have a high value for the maximum amount of active neu-

rotransmitters to efficiently detect correlated signals. This would lead us to think

that facilitation has a crucial role in the processing of information through synapses

even when the neuron does not have enough synaptic resources.

Facilitation also determines the existence of an optimal frequency which allows

good performance for a wide range of neuron firing thresholds. In particular, these

results could be important to understand how actual neural systems – where different

types of neurons with non-identical firing thresholds are connected in a complex

way – can self-organize to efficiently detect and process relevant information (Azouz

and Gray, 2000). Thus, the existence of this optimal frequency could be related

with recent experimental findings which reveals the existence of similar optimal

frequencies in the presence of facilitation in the heterogeneous pyramidal network

of the prefrontal cortex (Wang et al., 2006).

We have also seen that, although important, it is not crucial to have a strong

correlation between the different presynaptic afferents to have a good detection of

signals, and our results also fulfill for noisy signals. This is of special relevance since

it is well known that the intrinsic stochasticity of actual synapses causes fluctuations

that disrupt the synchrony between the afferents and produce a highly fluctuating

postsynaptic response (Dobrunz and Stevens, 1997). To account for that more

precisely, we have study the role of the balance between synaptic facilitation and

depression with a more realistic stochastic model of synaptic transmission (de la

Rocha and Parga, 2005). The results of this analysis have shown that our main

conclusions also fulfill for this case.

We have considered in this chapter that the signal term and the noise term are

described by the same EPSC maximal amplitude ASE and the same mean firing rate

f . However, this is not always the case when one considers actual neural systems.

In some circumstances, for instance, the signal term is sensibly different than the

noise term. To take into account this possibility, the particularly interesting case of

detection of weak slow signals in highly noisy environments will be treated in the

next chapter.



Chapter 5

Bimodal resonances

The study presented in chapter 4 concerning CD tasks in the presence of noisy

activity may be extended to several situations of interest, such as the detection

of weak (subthreshold) signals in noisy environments. Following the general lines

established in this thesis, in this chapter we analyze the effect of the interplay

between short-term synaptic processes and adaptive properties of neurons in the

detection of weak signals embedded in a background of noisy neural activity, by

employing a stochastic resonance formalism.

5.1 Introduction

It is known that a certain level of noise can enhance the detection of weak in-

put signals for some nonlinear systems. This phenomenon, known as stochastic

resonance (SR), is characterized by the presence of a peak, or a bell-shaped depen-

dence, in some information transfer measurement as a function of the noise intensity

(Gammaitoni et al., 1998; Wiesenfeld and Moss, 1995; Lindner et al., 2004). More

precisely, for low noise levels the system is not able to detect the signal due to its

small amplitude. For moderate noise levels, however, the noise is able to enhance

the signal up to a certain detection threshold, and this makes the system respond

in a highly correlated fashion with the signal (and a peak of information transfer

appears). Finally, for too high noise levels the output is dominated by the noise and

the signal is not detected.

Stochastic resonance has been measured in a wide variety of physical and bi-

ological systems, including bidirectional ring lasers (McNamara et al., 1988), elec-

tronic circuits (Fauve and Heslot, 1983), crayfish mechanoreceptor (Wiesenfeld et al.,

1994), or voltage-dependent ion channels (Bezrukov and Vodyanoy, 1995). In the

brain, it has been found in different types of sensory neurons (Longtin et al., 1991;

Greenwood et al., 2000), in the hippocampus (Stancey and Durand, 2000), in the

77
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brain stem (Yasuda et al., 2008), and in some cortical areas (Chialvo and Apkarian,

1993; Ho and Destexhe, 2000; Manjarrez et al., 2002; Fellous et al., 2003). Although

SR behavior has been extensively studied in many works, most of them assume a

controlled source of noise that affects the dynamics of the system additively and,

in some cases, without temporal correlations. Such assumption is no longer valid

in in vivo experiments in actual neural systems, where noise is the result of the

inherent activity of the medium (which could be, for instance, the highly irregular

spontaneous activity of other cortical regions projecting to the structure of inter-

est) and, therefore, not easily controlled by the experimentalist. The effect of such

stochasticity on the dynamics of a particular neuron could, indeed, involve details

concerning concrete biological mechanisms not considered yet. In particular, since

neurons receive signals from its neighbors though synapses, the concrete characteris-

tics of synapses may strongly influence the SR properties of in vivo neural circuits. It

is known, for instance, that actual synapses present activity dependent mechanisms,

such as short-term depression (STD) and short-term facilitation (STF), that may

strongly modify the postsynaptic neural response in a nontrivial way. The former

of these mechanisms considers that the amount of neurotransmitter ready to be re-

leased – due to the arrival of an action potential (AP) – is limited, and the synapse

needs some time to recover these resources in order to transmit the next incoming

AP. Synaptic facilitation, on the other hand, has an opposite effect and increases

the postsynaptic response under repetitive presynaptic stimulation. Such increment

is mediated by the influx of calcium ions into the presynaptic terminal (Bertram

et al., 1996). The competition between STD and STF may be highly relevant in

signal detection in noisy environments, as for instance in cortical gain control (Ab-

bott et al., 1997) or in spike coincidence detection (Mejias and Torres, 2008), and

therefore they could have a main role in SR tasks.

In addition to these synaptic mechanisms, the dynamics of the neuron firing

threshold due to slow membrane depolarizations – namely, adaptive thresholds –

constitutes another important issue to be considered in SR phenomena in neural

media. Indeed, high cortical activity levels could provoke such slow depolarizations

and affect the excitability properties of the neuron, and therefore its information

transmission properties. In cat striate cortex, for instance, the existence of adaptive

neural thresholds seems to play an important role in stimulus orientation by reducing

cellular sensitivity to slow depolarizations (Azouz and Gray, 2000, 2003). Adaptive

thresholds mechanisms have been captured by a number of neuron models (Hodgkin

and Huxley, 1952a,b; Noble, 1966; Fricker et al., 1999; Kobayashi et al., 2009).

However, the complex interplay between dynamic synapses and adaptive thresholds

has caught little attention from researchers, despite the computational implications

that it may have in SR properties of actual neural systems.
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In this chapter, we use a phenomenological model of dynamic synapses and a

standard integrate-and-fire (IF) neuron model with an input-dependent threshold to

study the interaction between adaptive threshold, STD and STF in the detection of

weak (subthreshold) signals under a noisy environment. More precisely, we consider

a system of N presynaptic neurons which transmit APs, within a Poisson distribu-

tion with mean frequency fn, to a postsynaptic neuron through dynamic synapses.

In these conditions, a weak and low-frequency sinusoidal signal is also transmitted to

the postsynaptic neuron to study its response and the conditions in which SR occurs.

Our results show that new phenomena can emerge as a consequence of the interplay

between the adaptive threshold and short-term synaptic processes. Concretely, this

interplay induces the appearance of a second resonance peak at relatively high fre-

quencies, which coexists with the standard SR peak located at low frequencies. The

coexistence of these two resonance peaks allows the system to efficiently detect in-

coming weak signals for two well defined network noise levels. The precise frequency

at which each one of these two resonance peaks appear is determined by the particu-

lar values of the relevant parameters involved in the dynamics of the synapses. Our

main results are confirmed by employing a more realistic FitzHugh-Nagumo (FHN)

neural model (which possesses an intrinsic adaptive threshold mechanism), as well

as by considering more realistic stochastic synaptic models and poissonian-like weak

input signals. Finally, we have compared the results of our study with recent ex-

perimental data which seems to shows two stochastic resonance peaks in the human

tactile blink reflex (Yasuda et al., 2008).

5.2 Model and methods

The system under study is schematized in figure 5.1. It consists of a postsynaptic

neuron which receives both a slow, weak external signal -for simplicity, considered

periodical- and the uncorrelated activity of a network of N excitatory neurons. The

membrane potential V (t) of the postsynaptic neuron is assumed as in the IF neuron

model, namely

τm
dV (t)

dt
= −V (t) + RinI(t) (5.1)

where τm is the membrane time constant, and the neural input or excitatory post-

synaptic current (EPSC) is given by I(t), which is multiplied here by the input

resistance Rin. Due to the input current I(t), the membrane potential V (t) depolar-

izes, and when it reaches a certain threshold θ an AP is generated. The membrane

potential is then reset to its resting value Vr for a short period of time, called the

absolute refractory period, namely τref .
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Figure 5.1: Schematic plot of the system considered in our study. The postsynaptic

neuron (in yellow) receives a weak input periodic signal, and is exposed to the noisy

background activity of other neurons (in blue). These neurons transmit Poissonian spike

trains of frequency fn through dynamic synapses. The aim is to determine how the

properties of these synapses can influence the detection of the weak signal by a postsynaptic

neuron having nonlinear membrane excitability properties.

We also assume that the neural input consists of two terms, namely I(t) = S(t)+

In(t). The first term, S(t) ≡ ds sin(2πfst), is the input weak signal, with frequency

fs and amplitude ds. The second term is the total synaptic current generated by

N uncorrelated presynaptic neurons, namely In(t) ≡ ∑N
i=1 Ii(t). This accounts for

the noisy current induced by the other neurons in the network, and its level is

controlled by the mean firing rate of the network fn. This noisy current involves

an activity-dependence of the synaptic strength as proposed in a phenomenological

model presented in (Tsodyks and Markram, 1997). According to this model, as we

have already seen in section 3.3.3, the state of the synapse i is governed by the

system of equations
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dxi(t)

dt
=

zi(t)

τrec
− ui(t) xi(t) δ(t − tsp)

dyi(t)

dt
= −yi(t)

τin
+ ui(t) xi(t) δ(t − tsp)

dzi(t)

dt
=

yi(t)

τin
− zi(t)

τrec
,

(5.2)

where xi(t),yi(t),zi(t) are the fraction of neurotransmitter in a recovered, active and

inactive state, respectively (see (Tsodyks and Markram, 1997) for details). Here,

τin and τrec are the synapse inactivation and active neurotransmitter recovery time

constants, respectively. The delta functions in equation (5.2) take into account

that an AP arrives to the synapse at some fixed time t = tsp. On the other hand,

ui(t) is an auxiliary variable such that ui(t)xi(t) stands for the fraction of available

neurotransmitter that is released after the arrival of a presynaptic AP at time t or,

from a probabilistic point of view, the neurotransmitter release probability at that

time. Synaptic facilitation is introduced by considering the following dynamics for

ui(t):

dui(t)

dt
=

USE − ui(t)

τfac
+ USE [1 − ui(t)] δ(t − tsp). (5.3)

This equation considers the influx of calcium ions into the neuron near the synapse

through voltage-sensitive ion channels. These ions usually can bind to some molec-

ular receptor which gates and facilitates the release of neurotransmitters (Bertram

et al., 1996). Pure depressing synapses correspond to ui(t) = USE constant (which

is also obtained in the limit τfac → 0), where USE is the neurotransmitter release

probability without the facilitation mechanism. Within this model, the excitatory

postsynaptic current generated in the synapse i is considered to be proportional to

the amount of active neurotransmitter (i.e., that which has been released into the

synaptic cleft after the arrival of an AP), namely Ii(t) = ASE yi(t).

As can be easily checked in equations (5.2-5.3), in activity dependent or dynamic

synapses, the degree of synaptic depression and facilitation increases with τrec and

τfac, respectively, and these levels are also controlled by USE . On the other hand,

static synapses (i.e., when synapses are not activity dependent) are obtained for

τrec, τfac → 0.

To complete the description of the system, we assume that the firing threshold

θ of the postsynaptic neuron follows the dynamics

τθ
dθ(t)

dt
= −θ(t) + δ + RinI(t). (5.4)
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where τθ is the threshold variation time scale and δ is a small positive constant.

This dynamics implies that, in steady state conditions, the firing threshold displays

approximately a linear dependence with the steady state postsynaptic membrane

potential V ≡ RinI, with I being the steady state EPSC. This property has been

observed in many neural media1, and it is known as adaptive threshold (Azouz and

Gray, 2003; Hodgkin and Huxley, 1952a; Fricker et al., 1999). To obtain a slow

threshold dynamics as is reported in (Azouz and Gray, 2003), we set τθ = 800 ms

(although other values are also possible and yield the same results for our study).

The parameter δ ensures that the firing threshold lies above the mean membrane

potential V , and it guarantees that the output spiking activity is driven by the

current fluctuations which lead to fast depolarizations (Azouz and Gray, 2003).

Moreover, we assume that the signal S(t) is too weak to have an appreciable effect

on the value of the threshold, and therefore we set V = RinI ≃ RinIn in equation

(5.4). To ensure physiological values of the neuron threshold, we also impose a

minimum value for the firing threshold of θm = 7 mV. In the following, unless

specified otherwise, we choose N = 200, τm = 10 ms, Rin = 0.1 GΩ, Vr = 0,

τref = 5 ms, fs = 5 Hz, ds = 10 pA, and τin = 3 ms, values which are within the

physiological range for cortical neurons.

Using our IF neuron model with adaptive threshold, we have studied the level

of background noisy activity received by a postsynaptic neuron which improves its

ability to detect an incoming weak signal. This signal is considered weak in the sense

that, if the level of noise is zero or sufficiently low, the neuron does not generate

APs strongly correlated with the signal (Stemmler, 1996). In order to quantify the

level of coherence between the input signal S(t) and the response of the postsynaptic

neuron, we employed a cross-correlation function defined as in (Collins et al., 1995),

that is,

C0 ≡ 〈S(t)R(t)〉 =
1

T

∫ T

0

S(t)R(t)dt, (5.5)

where T is the total recording time of each trial, typically much greater than the sig-

nal period f−1
s , and R(t) is the instantaneous firing rate of the postsynaptic neuron.

This type of cross-correlation functions have been extensively used in the literature

to measure the input-output dependence in neuron models and experiments (see,

for instance, (Palm et al., 1988; Collins et al., 1995; Yasuda et al., 2008)).

1The linear dependence which equation (5.4) implies also holds for more realistic neuron models,

as we will show later on.
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Figure 5.2: Mean EPSC as a function of the mean firing rate fn, with USE = 0.5,

ASE = 70 pA and τrec = 500 ms. Numerical simulations (symbols) are supported by

mean field results (lines). In the inset, we can see the good agreement between mean field

and simulations for the EPSC fluctuations.

5.3 Results

5.3.1 Mean-field calculations

One can easily derive an analytical expression for the cross-correlation measure C0

between the response of the postsynaptic neuron and the weak input signal, in

the presence of noisy activity. In order to achieve that, first we will obtain the

expressions for the noisy EPSC with dynamic synapses, for both the deterministic

model and the stochastic model. After that, we will obtain the expression for the

mean firing rate of the IF postsynaptic neuron in the presence of such noisy EPSC,

and we will use this expression to obtain a mean-field formula for C0.

Following the same procedure that the one employed in chapter 4, we consider

a population of N presynaptic neurons firing uncorrelated Poisson spike trains at a

certain frequency fn. We also assume that the synaptic current Ii(t) generated by

an AP arriving at time t∗ in a particular synapse i is proportional to the fraction of

active neurotransmitters in that synapse, namely, yi(t) (cf equation (5.2)). In this

situation (see also section 4.3.1 and appendix A) the postsynaptic current at time

t = t∗ + τ is given by

Ii(τ, t
∗) = Ip exp(−τ/τin), (5.6)

where Ip is the peak value of the EPSC, reached at time t = t∗. Considering
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a stimulation with a stationary Poissonian AP train, the peak value Ip can be

substituted by an averaged stationary EPSC amplitude. One easily obtains from

equations (5.2-5.3) that

Ip = ASE u∞x∞ (5.7)

where u∞ and x∞ are, respectively, the facilitation and depression variables in the

stationary state, and their expressions are given by

u∞ =
USE + USE τfac fn

1 + USE τfac fn
, (5.8)

x∞ =
1

1 + u∞ τrec fn

. (5.9)

Using the fact that N is large enough, the mean current of the presynaptic

population and its fluctuations are given by

In = NfnτinIp (5.10)

σ2
n =

1

2
Nfnτin(Ip)

2 (5.11)

where we assumed that τin ≪ τrec. Equations (5.10) and (5.11) allow to characterize

the noisy input from the presynaptic neurons. The dependence of these quantities

with fn is shown in figure 5.2. It is worthy to note that, although we have assumed

a poissonian distribution for the spike trains, the mean-field approach considered

here holds for other distributions of the spike trains (Mejias and Torres, 2008), as

long as presynaptic neurons remain uncorrelated in time and their number is large

enough.

With these expressions, one can obtain the mean firing rate of the postsynaptic

neuron by solving the Fokker-Planck equation associated with the dynamics of the

membrane potential (see appendix B, and also (Tuckwell, 1989; Brunel, 2000)). We

define the quantities

yθ(t) =
θ − RinIn + S(t)

Rinσn
(5.12)

yr(t) =
Vr − RinIn + S(t)

Rinσn
, (5.13)

and assume that the weak signal S(t) evolves slowly compared with the neuron

dynamics. The firing rate of the postsynaptic neuron is then given by (see also

appendix B)

R(t) =

[
τref + τm

∫ yθ(t)

yr(t)

dz
√

π exp(z2)(1 + erf(z))

]−1

. (5.14)
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Figure 5.3: (A) Characteristic curve of SR as a function of the mean network rate fn.

Numerical simulations of the model (symbols) agree with our mean-field theory (solid

line). (B) The input signal and several time series (marked as a, b, c) of the postsynaptic

membrane potential V (t) for different input noise frequencies. This is for static synapses

(τrec = τfac = 0), USE = 0.4, ASE = 120 pA, fs = 3 Hz and a fixed threshold θ = 10 mV .

For the case in which we have an adaptive threshold, we set dθ(t)
dt

= 0 on equation

(5.4) to obtain the steady state value θ = δ + RinIn, with In given by equation

(5.10). On the other hand, for the fixed threshold approach we simply set θ =

Vth. Equation (5.14), together with the expressions of the EPSC and the threshold

conditions obtained above, allows to evaluate (5.5) and to obtain

C0(ν) =

∫ 1/fs

0

fsds sin(2πfs)

[
τref + τm

∫ yθ(t)

yr(t)

dk
√

π exp(k2)(1 + erf(k))

]−1

dt,

(5.15)

where we have set T = 1/fs. By evaluating numerically this expression, one obtains

analytical curves for the input-output correlation which can be compared with the

results from numerical simulations of the system sketched in figure 5.1.

5.3.2 Emergence of bimodal resonances with STD

As we have mentioned before, the phenomenon of stochastic resonance has been mea-

sured in neurons under different conditions and, in particular, in the cortex (Rudolph

and Destexhe, 2001; Fellous et al., 2003; Ho and Destexhe, 2000; Manjarrez et al.,

2002). An example of stochastic resonance in the case of a presynaptic population

with static synapses is shown in figure 5.3. For low noise frequencies, the neuron

is not able to fire, and therefore, to detect the weak signal. This is reflected in the

fact that C0 takes low values. However, when the noise frequency is increased, both
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noise and signal terms contribute to make the system follow the signal, that is, the

neuron response becomes highly correlated with the stimulus. As a consequence of

this, a maximum value of C0 is reached. Beyond that point, the activity of the presy-

naptic neurons produces a high and noisy postsynaptic response, which impedes the

postsynaptic neuron to detect the weak signal, and therefore the cross-correlation

function C0 decays with its characteristic shape.

This typical resonance behavior appears when synapses do not show any fast

variability in their strength, or when the variation is only due to a slow learning

processes, which we do not consider here. However, we must take into account

that actual synapses show activity-dependent variability at short time scales, and

this feature could modify the response of the postsynaptic neuron to the signal.

In particular, since STD is a mechanism that usually modulates the high frequency

inputs, one can wonder about its effect in the SR curve. In fact, our results show that

this effect is quite notorious as can be viewed in figure 5.4A. The figure shows the

emergence of bimodal resonances in the presence of STD. More precisely, in addition

to the standard SR peak, a second resonance peak appears at high frequencies and

moves towards lower frequency values as the degree of depression increases. This

second peak allows the system to efficiently detect the weak input signal among a

wide range of high frequencies (note the logarithmic scale on fn). Therefore, this

new resonance peak reflects that the neuron is able to properly detect the incoming

signal for both low and high values of the mean network rates. This phenomenology

is quite robust and can also be obtained by using other SR measurements, such as

the signal-to-noise ratio (as defined, for instance, in (McNamara and Wiesenfeld,

1989)) (data not shown).

We also observe that the location of the second resonance peak has a nonlin-

ear dependence with τrec. To better visualize this effect we plot in figure 5.4B the

behavior of f ∗, defined as the noise frequency value at which the second resonance

peak is located, as a function of τrec. We can observe in this figure that data from

numerical simulation agrees with our mean-field prediction. In the following and

unless specifically specified, we have considered a time window of ∼ 10 seconds for

the simulations of the SR curves, and we have averaged each data point over 30

trials.

5.3.3 Bimodal resonances with STF

As well as STD, the facilitation mechanism is able to modulate the intensity of

the postsynaptic response in a nonlinear manner for given presynaptic conditions.

Following a similar reasoning to the one considered above, we expect synaptic facil-

itation to have and important effect in the signal detection properties of the post-
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Figure 5.4: (A) Bimodal SR curves for several values of τrec, considering USE = 0.4

and ASE = 120 pA. This shows that the effect of STD in stochastic resonance is the

production of a second resonance peak at certain frequency f∗ which decreases when τrec

is increased. This is illustrated in panel (B), where the inset is a semi-logarithmic plot of

the same data. (C) Bimodal SR curves for different values of τfac, with USE = 0.1 and

ASE = 350 pA. The panel (D) illustrates a decrease of the frequency f+ at which the first

resonance peak appears as τfac is increased. The inset in (D) is a semi-logarithmic plot

of the same data. In all panels, data from numerical simulations (denoted with symbols)

show a good agreement with mean-field predictions (denoted with lines).

synaptic neuron under noisy conditions. This effect is shown in figure 5.4C where,

depending on the value of τfac, the resonance peak located at low frequencies can

be tuned among different values of fn. It is worthy to note that the appearance

of the low frequency peak is not induced by the presence of depression or facilita-

tion mechanisms in the synapse, since it also appears for static synapses (see figure

5.3A). Therefore, it corresponds to the standard SR phenomena observed in many

excitable nonlinear systems. However, its precise location in the frequency range
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is influenced by STF. Concretely, since the effect of facilitation is to potentiate the

postsynaptic response, one should expect that levels of noise which are too low to

cause high C0 values with static synapses would, in the presence of STF, contribute

to the resonance. On the other hand, the noise frequency values which were optimal

to cause SR in absence of STF, becomes too high in the presence of STF and pro-

voke a decrease in C0. Considering these two effects together, one should expect a

displacement of the first resonance peak towards lower values of fn as τfac increases,

which is what we observe in simulations. Since the position of the first peak is

highly sensitive to the value of τfac, STF could have an important role for a precise

discrimination of the network noisy activity level needed for the optimal detection

of weak signals. The second peak, which is mainly caused by the depression mecha-

nism, does not change its position when τfac is varied, due to the prevalence of the

STD effect over the STF at high frequencies. The dependence of the position of the

low frequency peak, namely f+, with the facilitation characteristic time is shown in

the figure 5.4D.

5.3.4 The role of adaptive neuron threshold

The appearance of these bimodal resonances is not exclusively due to the dynamical

characteristics of synapses. Considering adaptive thresholds is of vital importance

for the emergence of bimodal resonances. To illustrate this, we have computed

SR curves for different values of τrec and an IF neuron with fixed firing threshold

(that is, an input-independent threshold), namely Vth. The result is shown in figure

5.5A, where one can see that STD is not able to induce a second resonance peak

when neuron threshold is considered independent of the mean membrane potential.

Instead of this, we found that C0 does not decay from its peak value to zero for

high fn values, but it stabilizes at a steady value C∗
0(τrec). Such high steady value

means that some level of coherence between the weak signal and the postsynaptic

response is maintained for arbitrarily high mean rates. It is worthy to note that, for

a particular value of τrec (500 ms in the figure), the value of C∗
0 obtained is similar

to its peak value, thus allowing a good detection over a wide range of background

firing rate values.

This saturation of C0 for strong enough STD, which is due to the oversimpli-

fication assumed by the IF model with fixed threshold, can be easily explained as

follows. Firstly, our simulations show that, in order to have large values of C0, a nec-

essary condition is that In ≈ Vth/Rin, with In being the mean noisy input current2.

2If In ≪ Vth/Rin the postsynaptic neuron is not firing at all, and if In ≫ Vth/Rin the postsy-

naptic neuron is firing all the time.
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Figure 5.5: (A) SR curves for an IF neuron model with fixed threshold θ = 8 mV receiving

a weak signal and a noisy input modulated by depressing synapses, for USE = 0.5, ASE =

90 pA and different values of τrec. This shows that ignoring the adaptive threshold can

lead to drastic modifications in the performance of the system (cf. figure 5.4A, see also the

main text for details). Numerical simulations (symbols) are consistent with a mean field

approach (lines). (B) Schematic plot to illustrate how a resonance peak appears when

the amplitude of the voltage variations induced by synaptic current fluctuations (that is,

σ ≡ Rinσn) is comparable with the barrier height ∆Φ (see main text). In the case of an IF

neuron model with adaptive threshold and in the presence of dynamic synapses, this occurs

at two frequency values separated by a frequency range where σ ≫ ∆Φ ≡ ∆Φd (which

induces sustained spiking activity and therefore decreases the coherence C0 between the

two maxima). For an IF neuron model with fixed threshold, however, σ is comparable with

∆Φs only for a single frequency value which explains the emergence of a single resonance

peak.

Secondly, in the presence of STD and for high background noise rate, the mean noisy

input current In saturates at certain value I∞ ≡ limfn→∞ In – see expressions for

the mean and peak value of the postsynaptic current in section 5.3.1 – which is in-

finity for τrec = 0 and decreases as τrec increases. Moreover, for τrec sufficiently high
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(strong depression), the mean noisy current is near to its asymptotic value I∞, for a

finite and relatively low noise frequency fn. As a consequence, there is a sufficiently

high value of τrec for which In ≈ I∞ ≈ Vth/Rin, for high enough presynaptic firing

rate. In this situation an optimal C0 value will be maintained over a wide range of

network firing rates, as the figure 5.5A shows.

Since short-term synaptic mechanisms alone are not able to induce bimodal

resonances in simple IF neurons with fixed threshold, as we have already seen, a

plausible hypothesis is that this two-peak resonant behavior emerges from the inter-

play between these synaptic mechanisms and adaptive thresholds. To illustrate this

hypothesis, we can sketch a simple explanation of such cooperative effect by con-

sidering that, for an excitable system displaying SR, a resonance peak is obtained

when the strength of the fluctuations is approximately equal to some potential bar-

rier height (McNamara and Wiesenfeld, 1989). That is, if we define in our system

the barrier height as ∆Φ ≡ θ − RinIn (that is, the distance in voltage between the

mean membrane potential and the firing threshold), a resonance peak will appear

each time the condition Rinσn ≃ ∆Φ is satisfied (i.e., when the current fluctuations

are of order of the barrier height). Considering a threshold dependence such as the

one defined in equation (5.4) in the steady state, the barrier height takes the value

of a small constant (∆Φ ≡ ∆Φd ≃ δ) for large enough fn. Since the dependence of

Rinσn with fn is non-monotonic for dynamic synapses (see section 5.3.1 and figure

5.2 for details), plotting together the expressions of Rinσn and ∆Φd as a function of

fn shows two well located crossing points, as the top panels of figure 5.5B illustrate.

Each one of these crossing points is associated then with a maximum in C0 (as

we have argued above), and therefore a bimodal resonance is obtained. The local

minimum in C0 is due to a high number of erratic firings of the postsynaptic neu-

ron, which is caused by high values of the current fluctuations (compared with the

barrier height) around the point where the local minimum appears. This feature is

depicted in the top-left panel of figure 5.5B with a double-head arrow. Without such

large current fluctuations, the local minimum of C0 would vanish and the bimodal

resonance would be lost. On the other hand, for the case of an IF neuron with fixed

threshold, the barrier height ∆Φ ≡ ∆Φs is a monotonically decreasing function of

fn. In these conditions, a single crossing point between Rinσn and ∆Φs is obtained3,

and therefore the SR curve presents a single peak, as the bottom panels of figure

5.5B show.

3For certain sets of values of the model parameters, two crossing points between the level of

EPSC fluctuations and the barrier height can be also found for a fixed neuron threshold. However,

in such situations ∆Φs is large and comparable with σ. As a consequence, the local minimum of

C0 cannot be obtained, and the SR curve remains with the characteristic single-peak shape.
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Figure 5.6: (A) Phase diagram, obtained from our mean-field approach, which shows

different regimes of the behavior of the system, for USE = 0.1 and ASE = 120 pA. Labels

P0, P1, P2 denote, respectively, regions in which zero, one, or two resonance peaks occur.

The region P2’ denotes values of the synaptic parameters for which a second resonance

appears, but at a frequency too high to be considered realistic (that is, f∗ > 1/τref =

200 Hz). For τrec → 0 the typical single resonance peak is recovered. (B) Bimodal

resonances obtained for a realistic signal (a poissonian spike train influenced by STD

mechanisms), with USE = 0.5 and τfac = 0.

The appearance of bimodal resonances gives a high versatility to neurons as

weak signals detectors. In actual neural media, populations of neurons could take

advantage of such versatility, and they could use the high heterogeneity of synaptic

properties (Wang et al., 2006) to organize groups of neurons with non-resonance,

single-resonance or two-resonance peak behavior. A phase diagram, which locates

the repertoire of different behaviors in the space of synaptic relevant parameters, is

shown in figure 5.6A. For realistic synaptic conditions, the three types of behavior

are accessible. The region P2’ corresponds initially to two resonances, but the second

resonance is usually located in an extremely high network rate (f ∗ > 200 Hz), which

means that the second resonance does not occur in realistic conditions. If we increase

τrec (for a given value of τfac), the system pass from a single-peak resonance behavior

(region P2’) for low τrec, to the bimodal resonance phase P2 (because increasing τrec

implies lowering f ∗). After that, the system reaches a single-peak behavior again

(due to the fusion of the two peaks of the bimodal resonance into just one peak,

namely region P1). Finally, increasing τrec even more would lead to a decrement of

the detection ability of the neuron, leading to the zero-resonance phase (labeled as

P0 in the figure).
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5.3.5 Further analysis with more realistic considerations

A. Poissonian signal term

The fact that we considered a simplified neuron model allowed us to make an

analytical treatment, which confirmed the numerical results both for STD and STF,

as we have already seen. However, we should consider whether bimodal resonances

appear in more realistic conditions. For instance, so far we assumed (as a first

approximation) that the signal term was a sinusoidal function of weak amplitude

and slow frequency. It is well known, however, that in vivo neural signals are usually

encoded in spike trains. Moreover, since these presynaptic spike trains affect the

postsynaptic neuron via the synapses, STD mechanisms should, a priori, affect the

signal term as well. To account for this and to test our results in more realistic

conditions, we consider a signal term given by S(t) = dsy(t), where ds = 7 pA is

the amplitude of the signal, and y(t) introduces STD on the signal (see equation

(5.2)). We also assume a poissonian train of pulses of frequency fs = 5 Hz for the

signal. The consideration of this more realistic signal term does not have a dramatic

effect on the resonant behavior of the neuron, as can be seen in figure 5.6B. Indeed,

STD induces, as before, the appearance of a second resonance peak. This second

resonance peak also appears for the same range of values of τrec and fn than before,

which implies that our results are robust with this more realistic assumption for the

signal term.

B. More realistic neuron models

The emergence of bimodal resonances is also maintained when one considers a

more realistic neuron model to simulate the response of the postsynaptic neuron.

Although we have employed an adaptive threshold to include some of the nonlinear

features of actual neurons into the IF neuron model, it should be convenient to test

our findings by considering an intrinsic nonlinear neuron model which could present

this type of threshold variability without additional ingredients. A common simple

model employed in the literature to describe the nonlinear excitability properties of

actual neurons is the FitzHugh-Nagumo neuron model (Koch, 1999), which can be

defined as

τm
dv(t)

dt
= τm ǫ [v(t)(v(t) − a)(1 − v(t)) − w(t)] + S(t) + R In(t)

dw(t)

dt
= b v(t) − c w(t),

(5.16)
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Figure 5.7: (A) Numerical SR curves for a postsynaptic FHN neuron model receiving

a weak signal and uncorrelated background noisy activity of frequency fn, for τfac = 0,

USE = 0.5, ASE = 15 pA and different values of τrec. In order to estimate the firing times

of the FHN model, the dynamics of the variable v(t) was thresholded at v = 0.8. (B)

Estimation of the neuron firing threshold for different values of the constant input current

µ, and employing two different measures (see the main text for details). (C) Numerical

SR curves for several τrec values and USE = 0.5, when a more realistic stochastic model

for the synapses is employed (see main text). We set the parameters of the stochastic

model in M = 50, J = 3 pA, ∆M = 0.1 and ∆J = 1 pA. (D) Comparison of the standard

deviation of the synaptic current for the two synaptic models employed in our study. The

conditions are the same than those in panel C and τrec = 100 ms. Although the difference

between the predictions of these two models is about 60 % for high frequencies, similar

bimodal resonances are obtained in both cases.

where v(t) represents the postsynaptic membrane potential, w(t) is a slow recov-

ery variable related with the refractory time, and a = 0.001, b = 3.5 ms−1, c =

1 ms−1, ǫ = 1000 ms−1 are parameters of the model. With this choice of values

for the parameters, the model is set in the excitable regime, the (dimensionless)
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voltage v(t) = 1 corresponds to 100mV and time is given in ms. We also consider

R = 0.1 GΩ/mV and τm = 10 ms, which lie within the physiological range of actual

cortical neurons. The terms S(t) and In(t) are described as before, with ds = 5. We

have performed numerical simulations of the system schematized in figure 5.1, but

considering now this FHN model for the membrane potential of the postsynaptic

neuron. The results are shown in figure 5.7A, which illustrates that for large enough

values of τrec a bimodal resonance also appears. The location of the second peak

moves towards lower values of fn as τrec increases, as it was found with the IF model

with adaptive threshold. The range of values of the noisy frequency fn at which the

second peak is located is also the same than in the previous model.

It is necessary to demonstrate here that the FHN model presents several thresh-

old variability properties which are similar to those we assumed for the IF neuron

model with adaptive threshold. In order to check this, we define two types of tempo-

ral stimuli that the postsynaptic neuron can receive (in addition to the weak signal):

h1(t) and h2(t). The first stimulus, h1(t), consists in a train of narrow (∼ 2 ms)

square pulses of frequency fs (that is, the same frequency as the signal). We impose

that each one of these pulses arrives to the postsynaptic neuron every time the weak

signal S(t) reaches its maximum value, namely ds. Similarly, the other type of stim-

ulus, h2(t), consists in a train of narrow (∼ 2 ms) square pulses also of frequency

fs, but in this case each pulse arrives at the postsynaptic neuron when S(t) = −ds

(that is, every time the signal takes its lowest value). We also set a constant in-

put µ, in such a way that the total input to the postsynaptic neuron is given by

S(t) + µ + h1(t) + h2(t). For a given fixed value of µ, we can determine the value

of the neural firing threshold by increasing the strength of the stimulus h1(t) (that

is, the height of the narrow pulses) until an AP is generated as a consequence of

such stimulus. This measure of the firing threshold will be denoted as θ1. Similarly,

we can perform a second estimation of the neuron threshold, namely θ2, by varying

the strength of h2(t) until an AP is generated in response to this second stimulus.

Both estimations of the firing threshold, as a function of the constant input µ, are

shown in figure 5.7B. The figure illustrates two major features of the excitability

properties of the FHN neuron model. The first one is that, independently of the

value of µ, both estimations give almost identical results for the value of the neural

firing threshold of the FHN neuron model. Since the only distinction between the

stimuli h1(t) and h2(t) is a difference in amplitude of 2 ds, which is due to the signal

term, this result indicates that the weak signal does not influence the value of the

firing threshold (independently of the value of the constant input µ). This confirms

the assumption we made for the IF model in equation (5.4). The second major

feature illustrated by the figure 5.7B is that the value of the firing threshold varies

with µ as θ ≃ C + µ, with C being a constant. This dependence coincides with
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the expression for the steady state of the firing threshold obtained from equation

(5.4), which we assumed for the IF model with adaptive threshold. Therefore, the

hypothesis we made on the modeling of the threshold variability for the IF model is

appropriate as is confirmed by using more realistic neuron models, such as the FHN

model (which incorporates nonlinear excitability properties).

C. More realistic synapse models

The robustness and generality of our previous results can be also tested by con-

sidering a more realistic model for the activity-dependent synaptic mechanisms. For

instance, until now we have treated the synapses employing a deterministic model

of dynamic synapses for the sake of simplicity. However, it is known that actual

synapses have a stochastic nature (Dobrunz and Stevens, 1997) and their fluctua-

tions can play an important role in neural computation (Dobrunz and Stevens, 1997;

Zador, 1998), and therefore they should be taken into account. In particular, since

the SR curves depend strongly on the noise properties, it is important to consider

the additional source of noise due to synaptic fluctuations, since this could lead to a

very different emergent behavior in the system. To see the influence of such fluctua-

tions in our analysis, we have simulated our system using an intrinsically stochastic

model of dynamic synapses presented in (de la Rocha and Parga, 2005). This model

considers that each connection between neurons has a finite number of functional

contacts, or synaptic buttons, and this number is randomly chosen (for each partic-

ular connection) from a Gaussian distribution of mean M and standard deviation

∆M . In addition, the strength of each individual synaptic button is also randomly

determined from a Gaussian distribution of mean J and standard deviation ∆J .

The release of a neurotransmitter vesicle from a synaptic button to the synaptic

cleft, when an AP arrives at the button, is modeled as a random event. After that

release, the recovering of the synaptic button is considered as a probabilistic event

following a Poisson distribution with a typical time τrec. This probabilistic model

gives the same mean values for the EPSC, but the fluctuations differ from the de-

terministic model of dynamic synapses (de la Rocha et al., 2004). Concretely, the

EPSC fluctuations for an uncorrelated noisy input are now given by (see also figure

5.7D)

σ2
n = NMJ2u∞x∞fn

[
1 + ∆2

J +
u∞ [M(1 + ∆2

M) − 1]

1 + u∞τrecfn(1 − u∞/2)

]
. (5.17)

As it is shown in figure 5.7C, this stochastic model induces the same phenomenology

during SR experiments as those for the deterministic model described by (5.2-5.3).

That is, for the case of static synapses, a single resonance peak at low frequencies

is obtained as usual, and when τrec is increased, a second peak appears at high
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Figure 5.8: Comparison between experimental data from (Yasuda et al., 2008) and nu-

merical simulations of the FHN neuron model and an stochastic dynamic synapse model

with J = 3 pA, ∆J = 1 pA, M = 50, ∆M = 0.1, USE = 0.5 and τrec = 500 ms. We

assumed a linear relationship between auditory noise intensity and the mean firing rate

(fn = a1An + a2, with (a1, a2) = (6,−370) for An ≥ 60dB and (a1, a2) = (0.1,−2.5) for

An < 60 dB), although other dependences are possible and also show good agreement

between experiments and simulations with realistic parameter values. Each simulation

point has been averaged over 100 trials. The inset shows the same data in a linear scale.

frequencies, with the resonance peak location moving towards low noise rates. We

also tested our results by considering a conductance based description of the synaptic

current, leading to the appearance of bimodal resonances as well (data not shown).

5.3.6 Experimental evidences of bimodal resonances

While this bimodal resonance behavior could be difficult to measure directly in in

vivo cellular recordings, several experimental methodologies are available to study

the occurrence of this phenomenology in actual systems. For instance, recent exper-

imental studies (Yasuda et al., 2008; Simons-Weidenmaier et al., 2006) have shown

that STD has a strong impact in the detection of weak tactile signals by caudal

pontine reticular nucleus (PnC) neurons. This region of the brain stem is responsi-

ble for auditory startle reflex (Lingenhohl and Friauf, 1994), and thus an auditory

noisy input may act as a noise term, enhancing the tactile blink reflex response to

stimuli (Yasuda et al., 2008). In addition, as well as STD, some adaptation processes
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of the neuron membrane potential seem to play a role in this brain area (Lingenhohl

and Friauf, 1994; Pilz and Schnitzler, 1996). As a consequence of these factors, PnC

would be an excellent brain structure to search for the existence of bimodal reso-

nances similar to those we have theoretically obtained. With this in mind, we have

compared the predictions of our study with experimental data4 taken from (Yasuda

et al., 2008). In this work it is reported that the ability of air-puff stimulations to

an eyelid (input) to induce blinks (output) is improved by the addition of auditory

white noise. To measure this improvement, a cross-correlation parameter equivalent

to the one we used is employed. As one can see in figure 5.8, experimental data

show clear evidences of two resonance peaks. These resonances are well explained

with our FHN model receiving a weak signal and a noisy current modulated by

STD, as indicates the good fitting between experiments and our simulation results.

In order to relate the auditory noise intensity An (measured in dB) with the mean

firing rate fn, we assumed two separate regions in the noise domain (An ≥ 60dB

and An < 60dB), and we also considered a linear relationship An = a1 fn + a2 for

each region. This distinction was done in order to separate the effect of giant PnC

neurons with medium (An < 60dB) and high (An > 60dB) detection threshold (Lin-

genhohl and Friauf, 1994). However, other types of dependence (such as a linear

dependence for all the range of An) are also plausible and does not affect the ap-

pearance of bimodal resonances from the experimental data. These results suggest

that PnC neurons actually employ the two-resonance phenomena to increase their

ability to detect weak tactile inputs over different auditory noise levels.

5.4 Discussion

It is widely known that noise can have relevant and positive effects in many nonlinear

systems in nature. These effects include noise-induced phase transitions (van den

Broeck et al., 1994, 1997), stochastic dynamics of domain growth (Ibanes et al.,

2000), or multiple types of stochastic resonance (McNamara and Wiesenfeld, 1989;

Wiesenfeld et al., 1994; Collins et al., 1995), to name a few. The particular case

of stochastic resonance has been widely studied in the context of biological sys-

tems (Wiesenfeld et al., 1994; Bezrukov and Vodyanoy, 1995), and in particular in

the brain. More precisely, stochastic resonance phenomena could occur in many

brain areas, such as the cortex (Ho and Destexhe, 2000; Manjarrez et al., 2002;

Fellous et al., 2003), the hippocampus (Stancey and Durand, 2000), or the brain

4We have employed the experimental data from Table 1 of Ref. (Yasuda et al., 2008), and we

obtained the values of the cross-correlation function following the same protocol that the authors

used in this work.
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stem (Yasuda et al., 2008). Therefore, it is highly relevant to understand the in-

fluence that some features of actual neural systems could have in the emergence of

stochastic resonance phenomena.

Short-term synaptic mechanisms are, in this framework, a good candidate to

consider. It is known, for instance, that both STD and STF play an important

role in the transmission of relevant correlations between neurons in noisy environ-

ments (Mejias and Torres, 2008), in the temporal maintenance of information in

persistent states of working memory tasks (Mongillo et al., 2008), in the recall of

stored memories on attractor neural networks (Mejias and Torres, 2009b), or in the

switching behavior between neural activity patterns (Torres et al., 2007). However,

the interplay between these two mechanisms, or between them and other adaptation

processes of neurons, has not been fully addressed yet.

In this chapter we have considered the role of dynamic synapses in the detection

of weak signals by neurons embedded in neural networks, via a stochastic reso-

nance formalism. To the best of our knowledge, this is the first study that shows

the dramatic effect of the interplay between the dynamical nature of synapses and

adaptive threshold mechanisms on the stochastic resonance properties of neurons.

More precisely, we have demonstrated that this interplay originates the appearance

of bimodal resonances, where the location of the resonances in the frequency domain

is related with the relevant synaptic parameters. In addition, to test our findings

we have used several neuron and synapse models, as well as a number of realis-

tic considerations such as poissonian input spike trains (both for signal and noise

terms), for instance. While such bimodal resonances have been found in several

systems (Tessone et al., 2006; Volkov et al., 2003), their occurrence in neural media

has not been reported up to date.

Recent studies (Zalanyi et al., 2001; Yasuda et al., 2008) have also suggested a

relevant role of STD in neural stochastic resonance, but the emergence of bimodal

resonances, which is the crucial point of our study, is missed in these works. Our

findings are also supported by experimental data taken from (Yasuda et al., 2008),

and by other experimental works (Lugo et al., 2008). Several questions should

be experimentally tested, though. An interesting prediction to test is, for instance,

whether STF has the effect on the first resonance peak predicted by our results. This

gives an idea of the relevance of the dynamics of intracellular calcium in processing

weak signals at spontaneous activity states, which are common in cortical areas. The

observed dependences of the position of the peaks with the synaptic characteristic

time scales could be confirmed experimentally as well. Finally, the question of how

these bimodal resonances can be measured in actual cortical structures, and its

effect in the collective dynamics of large cortical neural networks, constitutes an

interesting issue that still remains open.



Chapter 6

Storage capacity of attractor

neural networks

In this chapter we extend the study of the two previous chapters, concerning the

effects of STD and STF in the processing of information in small neural circuits,

to the case of large recurrent networks of neurons. Concretely, we focus on the

role of short-term synaptic plasticity in the storage capacity and retrieval abilities

of attractor neural networks, which constitute a prominent example of emergent

collective behavior of neural systems.

6.1 Introduction

One interesting topic which arises in the study of biologically motivated neural sys-

tems is how dynamical processes affecting the synapses in different time scales can

influence the collective behavior of large neural assemblies. A well known example

is the slow change in the synaptic strength due to a learning process of activity

patterns, that can be modelled as a neural network which includes a hebbian pre-

scription for the synaptic intensities (Hebb, 1949) (see also section 3.4.3). As a

consequence of this process, the network is able to retrieve previously learned pat-

terns, mimicking the associative memory tasks which occur in the brain (Amari,

1972; Hopfield, 1982; Amit et al., 1987). The maximum number of such patterns

(Mmax), per neuron, that the network is able to store without having significant

errors in the recovery task is called the critical (or maximum) storage capacity of

the system. This capacity is commonly denoted by the ratio αc ≡ Mmax/N , with

N being the number of neurons in the network. It is well known that the criti-

cal storage capacity is affected by certain considerations about real neural systems,

such as constraints in the range of values of the synaptic strength (Fusi and Abbott,

2007), the mean activity level of the stored patterns (Tsodyks and Feigelman, 1988;
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Amit and Tsodyks, 1991), or the topology of the network (McGraw and Menzinger,

2003; Torres et al., 2004). None of these works take into account, however, that the

synaptic strength also varies in short-time scales producing a fluctuating response

which can be depressed (synaptic depression) or enhanced (synaptic facilitation)

depending on the presynaptic activity (Abbott et al., 1997; Markram et al., 1998;

Tsodyks et al., 1998), which defines the so called dynamic synapses (as we have

explained in the previous chapters).

Short-term depression and facilitation have been proposed as dynamical pro-

cesses responsible for many kinds of complex behavior found in neural systems. For

instance, recent theoretical works have reported the importance of these mecha-

nisms in the appearance of periodic and chaotic switching between stored activity

patterns (Pantic et al., 2002; Torres et al., 2007), which could be related to the os-

cillations between up and down cortical states (Holcman and Tsodyks, 2006). They

are also responsible for the generation of persistent activity in working memories

(Romani et al., 2006; Barak and Tsodyks, 2007; Mongillo et al., 2008), and enhance

the detection of correlated inputs in a background of noisy activity under different

conditions (Mejias and Torres, 2008) (see also chapter 4). As discussed in section

2.5.2, synaptic depression occurs due to the existence of a limited amount of neuro-

transmitter vesicles in the synaptic button, ready to be released into the synaptic

cleft if a presynaptic action potential (AP) arrives. This produces, for a high fre-

quency stimulus, a decrease of the postsynaptic response – which is a measure of

the synaptic strength – as is shown in (Abbott et al., 1997) and in chapter 3. On

the other hand, synaptic facilitation takes into account the effect of the influx of

extracellular calcium ions into the neuron near the synapse after the arrival of each

presynaptic AP (Bertram et al., 1996). As discussed previously, these ions bind to

some receptors which favors the neurotransmitter vesicle depletion, in such a way

that the postsynaptic response increases for successive APs (Kamiya and Zucker,

1994). Facilitation, therefore, increases the synaptic strength for high frequency

presynaptic stimuli. The effect of the competition between these two a priory op-

posite mechanisms has been shown to be highly relevant in the emergent behavior

of attractor neural networks (ANN) with activity-dependent dynamic synapses with

a finite number of stored patterns (Torres et al., 2007). However, until now the

effect of such competition in the critical storage capacity has not been reported.

Only very recently, a few studies have analyzed this particularly interesting issue for

depressing synapses, and showed that the critical storage capacity of stable memory

patterns is severely reduced in this case (Bibitchkov et al., 2002; Torres et al., 2002;

Matsumoto et al., 2007). Our aim in this chapter is to compute the critical storage

capacity of an ANN, with both depressing and facilitating mechanisms competing in

the synapses, to quantitatively analyse the effect of including facilitation in the sys-
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tem. We demonstrate that synaptic facilitation improves the storage capacity with

respect to the case of depressing synapses, for a certain range of the synaptic param-

eters. Moreover, if the level of depression is not too large, facilitation can increase

the critical storage capacity, reaching in some cases the value obtained with static

synapses – which is the maximum that one can obtain considering a hebbian learn-

ing rule with unbiased random patterns in a fully connected network. Our results

suggest that a certain level of facilitation in the synapses might be positive for an

efficient memory retrieval, while the function of strongly depressed synapses could

be more oriented to other tasks concerning, for instance, the dynamical processing

of data.

6.2 The model

Our starting point is a fully connected network of N binary neurons whose state s ≡
{si = 0, 1; ∀i = 1, . . . , N} follows a probabilistic Little (parallel and synchronous)

dynamics (Peretto, 1992):

Prob[si(t + 1) = 1] =
1

2
{1 + tanh[2β(hi(s, t) − θi)]} ∀i = 1 . . .N, (6.1)

where hi(s, t) is the local field or the total input synaptic current to neuron i, namely

hi(s, t) =
∑

j 6=i

ωijxj(t)Fj(t)sj(t). (6.2)

Here, β = T−1 is a temperature or noise parameter (i.e., for β → ∞ we have a de-

terministic dynamics in equation (6.1)), and θi represents the neuron firing thresh-

old. The coefficients ωij are fixed maximal synaptic conductances, consequence of

the slow learning process of M memory patterns of activity. In the following we

will choose a hebbian prescription for such learning via the standard covariance

rule (Tsodyks and Feigelman, 1988)

ωij =
1

Nf(1 − f)

M∑

µ=1

(ξµ
i − f)(ξµ

j − f), (6.3)

where {ξµ
i = 0, 1; i = 1 . . .N} represents the M stored random patterns with mean

activity 〈ξµ
i 〉 = f = 1/2. On the other hand, the variables xj , Fj appearing in

hi describe the short-term depression and facilitation synaptic mechanisms, respec-

tively. For simplicity, we assume that these variables evolve according to the discrete
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dynamics1 (Tsodyks et al., 1998; Torres et al., 2002)

xj(t + 1) = xj(t) +
1 − xj(t)

τrec

− USEFj(t)xj(t)sj(t) (6.4)

uj(t + 1) = uj(t) +
USE − uj(t)

τfac

+ USE(1 − uj(t))sj(t), (6.5)

where uj(t) ≡ USEFj(t). Here, USE represents the maximum fraction of neurotrans-

mitters which can be released in absence of facilitation each time a presynaptic AP

arrives to the synapse, and τrec, τfac are, respectively, the time constants for depress-

ing and facilitating processes. The dynamics (6.4-6.5) allows to recover the critical

storage capacity of the standard Hopfield model (αc ≃ 0.138) (Amit et al., 1987)

for static synapses, that is, when xi = Fi = 1, ∀ i, t. By a simple inspection of

equations (6.4-6.5), this limit corresponds to the case of τrec, τfac ≪ 1 which makes

xj and uj ∀j to quickly reach their maximum values, namely 1 and USE, and implies

xj = Fj = 1 ∀j, t2. In this limit one has the relation 2[hi(s, t)− θi] = hH
i (s, t) where

hH
i (s, t) stands for the local field of the classic Hopfield model with zero threshold,

which assumes a {−1, +1} code for the neuron states and implies for θi the form

θi =
1

2

∑

j 6=i

ωij . (6.6)

Instead, we used in this chapter the {1, 0} code because it is more related with

biology and allows for a clear separation of the synaptic current hi(s, t) from the

neuron threshold θi and, therefore, it enables one to study the effect of synaptic

depression and facilitation alone, without including other adaptive effects related,

for instance, with threshold dynamics.

6.3 Results

6.3.1 Mean-field analysis

From the definition of hi(s, t) and equations (6.3) and (6.6), we obtain

2[hi(s, t) − θi] =
∑

µ

ǫµ
i mµ(s, t) − 2αxi(t)Fi(t)si(t) + α (6.7)

1A continuous version of this dynamics for the synapses, together with a sequential updating

of neuron states, also gives a similar behavior of the system.
2Note that, more precisely, the static synapse limit is obtained for τrec, τfac → 0, but due to

the discrete dynamics represented by equations (6.4-6.5) one can have some dynamical instabilities

during the simulation of the map for very small time constants. However, a continuous version of

the dynamics (6.4-6.5) or considering only steady-state conditions (as we assume in this chapter)

allows to consider without any problem that limit.
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where α ≡ M
N

, ǫµ
i ≡ 2ξµ

i − 1, and mµ(s, t) ≡ 1
N

∑
j ǫµ

j [2xj(t)Fj(t)sj(t) − 1].

We assume now that the system reaches some stationary state (t → ∞) which

corresponds to a fixed point of the dynamics. In order to work with the term

xi(t)Fi(t)si(t) and to obtain an approximately valid mean field theory, we also as-

sume that the working temperature (T ) in the system is very small (to avoid as

much as possible thermal fluctuations). This hypothesis is reasonable because our

goal is to compute maximum storage capacity, so at the end we have to perform the

limit T → 0. One has then two possible scenarios:

(a) T = 0. The state of the system is quenched and it does not present any

temporal fluctuations in si. Therefore, one can assume that in each site si takes

a fixed value (namely s∞i = 1, 0) for all times. We can then evaluate the fixed

point in equations (6.4) and (6.5) as a function of s∞i and obtain (Matsumoto

et al., 2007)

Fi =
1 + τfacs

∞
i

1 + USE τfac s∞i
; xi =

1

1 + USEFi τrec s∞i
. (6.8)

Taking into account that s∞i takes the values {0, 1}, we can simplify the ex-

pression for the product xiFisi, leading to

xiFisi =
γ′

1 + γγ′ s
∞
i (6.9)

where γ ≡ USEτrec and γ′ ≡ 1+τfac

1+USEτfac
. One can easily check that the static

limit (Hopfield model) is obtained again for τrec, τfac → 0 which implies γ →
0, γ′ → 1, respectively.

(b) T ≃ 0 (1 ≪ β < ∞). For very low temperatures and in the steady state, the

typical time interval between thermal fluctuations is very large compared with

τrec and τfac, due to the exponential dependency on β for the probability to

have such fluctuations, so between two consecutive fluctuations the condition

(6.9) still holds3. Therefore, averaging (6.9) over all temporal fluctuations of

si during a large time window ∆t → ∞ in the steady state, one has

xiFisi ≃
γ′

1 + γγ′ 〈si〉t , (6.10)

with 〈si〉t ≡ lim∆t→∞
1

∆t

∑t0+∆t
t=t0

si(t). Note that 〈si〉t = s∞i for T = 0 and we

recover (6.9), so it is reasonable to assume that the approach (6.10) holds for

low (non-zero) temperatures.

3Note, for instance, that if neuron i is in the state s∞i = 1 (one has hi > θi) the probability to

fluctuate to the state 1−s∞i = 0 is 1−p with p given by (6.1), which gives (1−p) ∼ e−2β(hi−θi) ≪ 1.

Similarly, if s∞i = 0 (hi < θi) the probability to fluctuate to the state s∞i = 1 is p ∼ e2β(hi−θi)

which is also exponentially small.
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In order to compute the critical storage capacity let us consider this second scenario,

namely the case of β very large and finite. In the limit of N, M → ∞ with α = M/N

finite, one can assume the standard mean-field approach si ≈ 〈si〉, which is a good

approximation for systems involving long-range interactions as in the case we are

considering here, that is, a fully connected network. Under this assumption one has

〈si〉t = 〈si〉 and the steady-state condition (6.10) allows to write mµ(s) ≈ mµ ≡
1
N

∑
j ǫµ

j [2 γ′

1+γγ′
〈sj〉 − 1]. This quantity is related with the usual mean-field overlap

function mµ ≡ 1
N

∑
j ǫµ

j 〈σj〉 (where σj = 2sj − 1) by the expression

mµ =
γ′

1 + γγ′m
µ −

(
1 − γ′

1 + γγ′

)
Bµ, (6.11)

where Bµ ≡ 1
N

∑
j ǫµ

j is typically of order O
(

1√
N

)
for random unbiased patterns.

Expression (6.11) can be used to calculate the steady state mean-field equations

for the system if one assumes that the system reaches a steady state in which the

network has a macroscopic overlap with a particular pattern, the so called condensed

pattern, with the remaining M − 1 being of order O(1/
√

N). In the following and

without loss of generality, we choose µ = 1 as the condensed pattern.

Using the probability (6.1) in the steady state, it is easy to compute 〈si〉 to

obtain, for the mean-field overlap function,

mµ =
1

N

∑

i

ǫµ
i tanh [2β(hi − θi)] . (6.12)

If we neglect the self-energy terms in (6.7) then 2(hi−θi) ≃
∑

ν ǫν
i m

ν . Inserting this

into equation (6.12) for µ = 1 and using (6.11), the steady state mean-field equation

for m1 ≡ m reads

m =

〈〈
tanh

[
β

(
γ′

1 + γγ′m + ζ

)]〉〉
(6.13)

where 〈〈· · ·〉〉 indicates an average over a distribution P(ζ). Here, ζ is a gaussian

white noise due to the effect of M −1 non-condensed patterns, and it is obtained, as

we will explain later, taking the limit N → ∞ in the term
∑

µ6=1 ǫ1
i ǫ

µ
i mµ. To derive

equation 6.13, we employed the expression m1 ≃ γ′

1+γγ′
m1 for the condensed pat-

tern, after neglecting the O(1/
√

N) contribution in (6.11). Similarly and following

standard techniques, one can compute the spin-glass order parameter in our prob-

abilistic approach, that is, q ≡ 1
N

∑
i tanh2 [2β (hi − θi)] (see for instance, (Hertz

et al., 1991)) which gives

q =

〈〈
tanh2

[
β

(
γ′

1 + γγ′m + ζ

)]〉〉
, (6.14)

and the pattern interference parameter r ≡ 1
α

∑M
µ6=1(m

µ)2, which in this limit be-

comes

r =
q

(
1 − β γ′

1+γγ′
(1 − q)

)2 . (6.15)
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Equations (6.13-6.15) for m, q and r constitute the mean-field solution of the model.

However, we must characterize the distribution P(ζ) to have a complete solution.

In the derivation of equations (6.13-6.15), we can obtain an explicit expression for

ζ from the variable

ζi ≡
∑

µ6=1

ǫ1
i ǫ

µ
i m

µ, (6.16)

after taking the limit N → ∞ and self-averaging over the distribution of random

unbiased patterns. Considering equation (6.11), ζi can be written as a combination

of the variables z1 ≡ 1√
αr

∑
µ6=1 ǫ1

i ǫ
µ
i mµ and z2 ≡ 1√

α

∑
µ6=1 ǫ1

i ǫ
µ
i B

µ, and in the limit of

interest explained above, both can be considered as uncorrelated gaussian random

variables N[0, 1]. In fact, we have

ζ =
√

αr
γ′

1 + γγ′ z1 −
√

α

(
1 − γ′

1 + γγ′

)
z2 ≡ C1z1 − C2z2. (6.17)

For simplicity in the calculations, it is convenient to rewrite ζ as ζ ≡ ζ
C1

. Since

z1, z2 are normal-distributed, we can compute the probability distribution P(ζ) em-

ploying standard techniques, that is, P(ζ) =
∫ ∫

δ
[
ζ − z1 + C2

C1
z2

]
p(z1)p(z2)dz1dz2

where p(z) is the normal distribution N[0, 1]. Computing this integral yields P(ζ) =

N [0, σ2], that is, a gaussian distribution with zero mean and variance σ2 = 1+C2
2/C

2
1 .

This allows to consider

ζ ≈ γ′

1 + γγ′

(
αr + α

(
1 + γγ′ − γ′

γ′

)2
)1/2

z (6.18)

where z is a normal-distributed variable N[0, 1].

Finally, the mean-field equations (after introducing the rescaled inverse of the

temperature β̂ ≡ γ′

1+γγ′
β) take the form

m =

〈〈
tanh



β̂



m + z

√

αr + α

(
1 + γγ′ − γ′

γ′

)2







〉〉

(6.19)

q =

〈〈
tanh2



β̂



m + z

√

αr + α

(
1 + γγ′ − γ′

γ′

)2







〉〉

(6.20)

r =
q

(
1 − β̂(1 − q)

)2 . (6.21)

The equations (6.19-6.21) constitute the complete mean-field solution of the system

for a working temperature near to zero 1 ≪ β < ∞. It is noticeable that the

effect of including synaptic depression competing with facilitation is not a simple

rescaling of temperature (marked by the presence of β̂) compared with the case of
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the classical static Hopfield model. On the contrary, the dynamics of the synapses

affects in a different manner the signal and noise terms produced by the interference

of the remaining (M − 1) patterns. This becomes evident in the explicit expression

of the noise term (6.18). As we will see below, our results show that this term has

a strong influence on the critical storage capacity when depression and facilitation

are present, producing a non-trivial behavior.

Although equations (6.19-6.21) have been derived assuming 1 ≪ β < ∞, one can

give some arguments to extend their validity for any T if the system reaches a steady

state (for instance, a recall, non-recall or a spin-glass state). In fact, for relatively

high temperatures (and sufficiently low values of τrec and τfac) the dynamics (6.4-

6.5) for both xi(t) and ui(t) is mainly driven for the fluctuating term which contains

si(t), instead of the deterministic exponential behavior with time constants τrec and

τfac. Under this condition a plausible hypothesis is to consider both xi(t) and uj(t)

as binary variables which follow the probabilistic dynamics of si(t) and fluctuate in

time between only two possible values, namely x(1) (u(1)) when si(t) = 1, and x(0)

(u(0)) when si(t) = 0. A possible choice (but not the only one) for x(1,0) (u(1,0)) is

the two steady state values of xi(t) (ui(t)) at T = 0 – see expressions in equation

(6.8). This choice implies avoiding any temporal correlations or memory introduced

by τrec or τfac in the values of xi(t) and ui(t). Considering these assumptions one

has4

xi(t) ≈ 1 +
(

1
1+γγ′

− 1
)

si(t)

Fi(t) = ui

USE
≈ 1 + (γ′ − 1)si(t),

(6.22)

which gives again

xi(t)Fi(t)si(t) =
γ′

1 + γγ′ si(t) ∀t. (6.23)

Note that in (6.23) there is now a dependency on t compared with the case of (6.9).

Now computing 〈si(t)〉 in the steady state using (6.1), as in the standard Hopfield

model, one obtains again equations (6.19-6.21) which are, therefore, approximately

valid for all the range of temperatures of interest5. However, this strongly relies on

the assumption that a fixed point solution will be reached, and in general this may

not be true for relatively large values of τrec and τfac. In this situation, some sta-

tionary oscillatory states can emerge as a result of the presence of depression and/or

facilitation (see, for instance, (Pantic et al., 2002; Torres et al., 2007)). Concretely,

4Note that the effect of facilitation and/or depression in this approach is to change the size of

the fluctuation between these two values for xi(t) and ui(t). For instance, for τrec, τfac → 0 one

has x(1) = x(0) = 1 and u(1) = u(0) = USE, so xi(t) and ui(t) do not fluctuate.
5Some preliminary results in the limit of α → 0 have confirmed the validity of (6.19-6.21) for

any value of T < Tc, if the system reaches a stable fixed point (see appendix C).
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the appearance of these oscillatory states is a consequence of the temporal correla-

tions driven by the deterministic part of the dynamics (6.4-6.5). This deterministic

part, which is coupled with the stochastic fluctuations driven by sj , can destabilize

the fixed point steady states. As a consequence, the system starts to continuously

jump between these metastable states. In this study, since we are interested in com-

puting the maximum storage capacity, and this quantity is evaluated at T = 0, we

will not find these oscillatory solutions and the mean-field theory remains valid.

In general, equations. (6.19-6.21) cannot be solved analytically. However, one

can still get some information about the critical storage capacity because this is

computed for β → ∞ (the zero temperature limit). In this situation one can perform

the substitutions

∫
dz√
2π

exp(−z2/2) tanh[β̂(az + b)] ≃ erf

(
b

a
√

2

)

∫
dz√
2π

exp(−z2/2)
(
1 − tanh2[β̂(az + b)]

)
≃ 1

aβ̂

√
2

π
exp

(
− b2

2a2

)
.

(6.24)

This allows to write down the following expressions

m ≃ erf(y) (6.25)

q ≃ 1 − 1

aβ̂

√
2

π
exp(−y2), (6.26)

where the variable y is given by

y ≡ b

a
√

2
≡ m
(

2αr + 2α
(

1+γγ′−γ′

γ′

)2
)1/2

(6.27)

Employing these approaches together with equation. (6.21) ones obtains a simplified

expression for the complete solution, namely

y




√√√√2α

(
1 +

(
1 + γγ′ − γ′

γ′

)2
)

+
2√
π

exp(−y2)


 = erf(y), (6.28)

where we assumed r ≃ 1 in order to get a closed expression. This assumption works

well as an approximation since r ≃ 1 in the memory phase. equation. (6.28) allows

to compute the maximal storage capacity for different synaptic conditions, as we will

see below, including the competition between synaptic depression and facilitation.
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Figure 6.1: Criterion chosen for the calculation of αc in Monte Carlo simulations. Each

panel shows, for USE = 0.05, 0.5, 0.7 (from top to bottom), a numerical estimate of the

critical storage capacity, obtained by averaging the stationary value of the macroscopic

overlap (solid line) over many realizations of the stored patterns (dots). The value of

αc corresponds to the crossing point between the averaged overlap and the dashed line

m = 0.75 that we used as a criterion for good retrieval of the condensed pattern. Other

synaptic parameters were τrec = 2 and τfac = 200.

6.3.2 Maximum storage capacity

In order to obtain the critical storage capacity αc for a given set of values of the

synaptic parameters, we have to find the maximal value of α for which nontrivial

solutions (y 6= 0) appear. More specifically, we look for the maximal value of α for

which the stationary value of the macroscopic overlap is m ≥ 0.75. This criterion,

which is usually taken for the numerical evaluation of the critical storage capacity

in simulations, is illustrated for three different numerical examples in Fig. 6.1.

The figure shows that the value of the critical storage capacity depends on the

synaptic parameters, as it was found in (Torres et al., 2002; Bibitchkov et al., 2002;

Matsumoto et al., 2007). In these works, the inclusion of synaptic dynamics (in

particular, synaptic depression) led to a monotonic decrease of the critical storage



6.3. Results 109

 0.16

 0.12

 0.08

 0.04

 0.5 0.3 0.1

α c

USE

τfac=0 
=1 
=20

 1

 0.75

 0.5

 0.5 0.3 0.1

S
N

R

USE

A B

τfac=0 
=1

=20

Figure 6.2: (A) Critical storage capacity αc as a function of USE for fixed τrec = 2

and different values of τfac. The inclusion of facilitation causes the appearance of a non-

monotonic behavior of the critical capacity of the network as a function of USE and τfac,

with a maximum which reaches the limit of static synapses (αc ≃ 0.138). Different symbols

correspond to numerical simulations of a network with N = 3000 neurons and different

synaptic parameters. (B) Behavior of SNR, as defined in the text, for the same value

of parameters as in panel A. This shows the origin of the non-monotonic behavior of the

critical storage capacity found for different values of the synapse parameters.

capacity of the network as one increases the synaptic parameters τrec and USE . This

decrease was found to be caused by the loss of stability of the memory fixed points

of the system, in the presence of depression. In Fig. 6.1, however, we see that

intermediate values of USE give higher values of αc, suggesting the possibility of a

non-monotonic dependence of αc on USE, which is mainly due to the presence of

facilitation.

A more detailed analysis of this phenomenon is shown in Fig. 6.2A. The fig-

ure shows that the inclusion of synaptic facilitation in a network with depressing

synapses (τrec = 2, fixed) induces the appearance of a non-monotonic behavior of

αc with a maximum value for a given U∗
SE which depends on τfac. The figure also

shows the good agreement of our mean-field theory with simulation of a network

of N = 3000 neurons (symbols). In the particular case of τfac = 0, we recover

the results reported in (Torres et al., 2002), that is, the fact that the static limit

αc ≃ 0.138 is only obtained for τrecUSE = 0. However, if we include the possibility

of synaptic facilitation in the synapses, one can obtain αc ≃ 0.138 for τrecUSE > 0,

(that is, for synapses with a certain level of depression). This implies that dynamic

synapses are not only convenient for dynamical processing of information in real

neurons (Abbott et al., 1997; Abbott and Regehr, 2004), or to explain the appear-
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Figure 6.3: Left: αc as a function of τrec, for different values of τfac. Facilitation in-

duces the appearance of non-monotonic dependences in the critical storage capacity with

a maximum which reaches the limit of static synapses. Right: αc as a function of τfac,

for different τrec. For τrec relatively small, αc takes high values for the whole range of

values of τfac. The inset shows a detail near the maximum of the mean field curves. Other

parameters used in simulations were USE = 0.2 and N = 3000.

ance of global oscillations and other emergent phenomena in neural systems (Torres

et al., 2007; Pantic et al., 2002; Holcman and Tsodyks, 2006). In fact, an optimal

balance between depression and facilitation is necessary to recover the high retrieval

properties of networks with static synapses.

We can also obtain a non-monotonic behavior of αc if we fix USE and vary the

other synaptic parameters, as it is shown in Fig. 6.3. As a function of τrec, the

critical storage capacity reaches the classical static limit for a certain nontrivial

τrec value if facilitation is present. As a function of τfac, the classical limit is also

obtained providing that depression is not too strong (see, for instance, the curve for

τrec = 10 in right panel of Fig. 6.3, where a large depression time constant induces

lower αc values). The figure also shows the good agreement of mean-field curves and

simulations (symbols). The appearance of these maxima in Figs. 6.2A and 6.3 can be

explained due to the competition between depression and facilitation mechanisms.

That is, once the system has arrived to a fixed point of the dynamics, the effect

of depression and facilitation is mainly a modification of the (fixed) strength of

the synapses. Depression produces a decrease of the synaptic strength when the

presynaptic neuron is active all the time. As a consequence, and compared with

the static case, the pattern destabilizes for lower values of the noise produced by

the interference with other patterns. This leads to a lower critical storage capacity

value (Bibitchkov et al., 2002; Torres et al., 2002). Facilitation, however, has the
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opposite effect as it increases the synaptic strength. Therefore, facilitation can

enlarge the critical storage capacity for a given level of noise with respect to the

depressing case. The increase in the synaptic strength due to facilitation can only

be induced until it reaches the static synapse strength limit – because the product

xiFi in (6.2) cannot be larger than one. Thus, one can think that since these two

mechanisms are regulated by different parameters, their competition would lead to

the appearance of a maximum in αc. This argument is not sufficient to explain the

appearance of such a maximum since one has to consider that such competition

affects both the signal term and the noise produced by the interference with other

patterns. Only the consideration of the cooperative effect of all these mechanisms

can explain the appearance of a maximum in αc, as it is observed.

To measure how the relative strength of the signal compared with the noise

is affected by the competition between these two synaptic mechanisms one can

compute, for instance, the ratio between the signal and noise contributions to the

overlap (see equation. (6.19)), that is

SNR ≡ 1

1 +
(

1+γγ′−γ′

γ′

)2

,
(6.29)

where we used r ≈ 1 and m ≈ 1 which is a good approximation at T = 0. For static

synapses one has SNR = 1. One can now understand the maximum appearing in

figure 6.2A, for certain values of τfac and τrec, as a function of USE, by inspection of

figure 6.2B. If one plots SNR as a function of USE one observes that it also has a

maximum at a certain value U∗
SE , where SNR = 1, which is the value corresponding

to the static synapse limit (in the figure, this maximum appears at U∗
SE ≈ 0.33

for τrec = 2, τfac = 20). Therefore, it matches with the maximum observed in the

behavior of αc for the same value of the synaptic parameters (see figure 6.2A). For

other values of τrec, τfac and USE , the shape of the SNR should be different but,

similarly to the previous example, it can easily explain the non-monotonic behavior

of αc as a function of all these parameters.

In general, we can see that large values of αc appear when USE and τrec have

moderate values, and large enough τfac. These values coincide qualitatively well

with those described in facilitating synapses of some cortical areas, where USE is

low compared with the corresponding values found in depressing synapses, and τrec

is several times lower than τfac (Markram et al., 1998). To have such a relatively low

value for USE is important because it allows for a stronger recovery of the synaptic

strength due to facilitation. In addition, it is worthy to note that obtaining high αc

values is possible for a wide range of synaptic conditions, as it is shown in right panel

of Fig. 6.3 and more explicitly in Fig 6.4. For instance, high capacities (αc ≥ 0.1)

can be obtained for very different values of τfac. Since actual synapses usually present
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Figure 6.4: Left: Surface plots of the critical storage capacity αc as a function of different

synaptic parameters, for fixed τrec = 2 (top), τrec = 50 (middle) and USE = 0.02 (bottom).

Right: Contour plots which correspond to the surfaces on the left. Regions inside the lines

corresponds to a set of parameters for which the critical storage capacity is high. Middle

and bottom panels correspond to a more realistic set of parameters (if one assumes that

the Monte Carlo step is of order of a typical refractory period of 2 ms), and they illustrate

that high capacities are obtained for a realistic values of the synaptic parameters. As

one can see, the inclusion of facilitation is able to double the critical storage capacity for

certain situations (see main text).

a high heterogeneity in the degree of depression τrec, and even more in the degree of

facilitation τfac (see, for instance, (Markram et al., 1998; Wang et al., 2006)), our

results predict high values of αc for realistic conditions. This is shown in middle
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Figure 6.5: Memory retrieval under external stimulus for a network of N = 400 neurons

with dynamic synapses. The network is stimulated with a periodic weak input train

(middle panel) which, in the memory phase, is able to induce the retrieval of a certain

activity pattern (constructed in a band-like fashion to allow a clearer visualization). The

value of USE is slowly incremented in time (bottom panel) while the synaptic parameters

τrec = 2 and τfac = 20 remain fixed. Good retrieval occurs only for a certain window of

values of USE, which shows a non-monotonic dependency of αc(USE).

and bottom panels of Fig. 6.4 where the high critical storage capacity is mainly

obtained for a wide range of τfac (concretely, for τfac > 10) around USE = 0.02,

and τrec = 50. Assuming that our Monte Carlo time step is comparable with a

typical refractory period of 2 ms, these values would correspond to USE = 0.02,

τrec = 100 ms and τfac > 20 ms, which are within the range of realistic values in

several cortical areas (Markram et al., 1998). Actual neural systems could, indeed,

take advantage of this peculiarity to preserve a possible fine tuning of the degree of

facilitation for other purposes, such as a fast dynamical processing of data, while an

optimal recall of the memories is conserved.

The improvement in the critical storage capacity for these realistic values (USE =

0.02, τrec = 100ms and τfac > 20 ms) in comparison with the case of only depressing

synapses is highly significant. Looking at bottom panels of Fig. 6.4, for instance,

one can see that the critical storage capacity reaches αc ≃ 0.138 for the parameter

values mentioned above. However, if we consider only the effect due to depressing

synapses (that is, we set τfac = 0), we obtain αc ≃ 0.07. That is, the capacity

decreases around 50% of its value with facilitation. This indicates that facilitation

could have a highly important role in the storage and recall of memories.
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As an illustrative example of the implications of the results reported above, let

us consider a system constituted by a network of N fully connected neurons which

receive an additional weak external input during a very short period of time. The

total synaptic current to each neuron i then becomes hi(s, t)+hext
i (t). If the system

is in the memory phase, we expect the external input to drive the system towards

a stationary attractor state {ξµ0

i }. We will also consider that the input stimulus

occurs periodically in time as follows

hext
i (t) =

{
hξµ0

i tn ≤ t < (tn + δt) ∀n = 0, . . . , Ninputs

0 otherwise
(6.30)

where h ≪ 1 is the amplitude of the weak input, tn is the time at which the n−th

input event occurs, δt is the duration of a single input event and T = tn+1−tn is the

period of the stimulus. If the system is in the memory phase, the stimulus will lead

the system into the µ0 − th attractor and the memory retrieval will be successful.

Otherwise, for large number of stored patterns, namely M > αcN the system will

fall in a spin-glass state characterized by a mixture of a high number of patterns, and

the retrieval will have failed. We explored how certain synapse parameters affects

the retrieval process under this type of stimulus. This is shown in Fig. 6.5 for a

network of N = 400 neurons and M = 48 patterns (α = 0.12), with the pattern µ0

constituted by consecutive groups —100 neurons each— of alternate firing and silent

neurons, and the remaining M −1 being random unbiased patterns. As an example,

we consider dynamic synapses with fixed characteristic time constants τrec = 2 and

τfac = 20, and USE varying in time for the whole duration of the stimulus. The

figure shows that facilitation, which induces the appearance of a non-monotonic

relation αc(USE), allows for a good response to the external weak stimulus for a

certain window of values of USE. In particular, for values of USE ≃ 0.4 the stimulus

is able to drive the system towards the attractor and recover the corresponding

memory pattern µ0. The range of values of USE at which the system retrieves the

pattern coincides with those between the points at which the line α = 0.12 crosses

the critical mean-field line αc(USE) showed in Fig. 6.2 for τrec = 2 and τfac = 20. A

similar type of behavior also occurs fixing USE and τrec and varying now τfac (data

not shown), which also shows the main role of facilitation in memory recall.

6.3.3 Basins of attraction

The effect caused by dynamic synapses does not only affect the stability of fixed

points of the system, which gives us the critical storage capacity, but also the dy-

namics of the network. This has been recently investigated for the case of a single

stored pattern (α → 0) at finite temperature (Torres et al., 2007). For many pat-

terns, however, the interference among them can influence the behavior of the system
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Figure 6.6: Basins of attraction of a neural network in the presence of dynamic synapses.

We can see that facilitation enlarges the basins of attraction with respect to synapses with

only depressing mechanisms. This allows to retrieve the previously stored patterns even

if the initial condition for the network is only weakly correlated with the corresponding

pattern. Parameter values are USE = 0.2 and τrec = 5.

near the attractors due to the appearance of many local minima associated to spin-

glass states (Amit et al., 1987). To analyse this effect, we can define the basin of

attraction of an activity pattern µ as the minimal value for the initial condition,

namely mµ
c , that allows the system to tend to this attractor (Bibitchkov et al., 2002;

Matsumoto et al., 2007). The measure of the basins of attraction is highly relevant

because the system will not easily tend to the stored attractors if their basins are

too shallow. Since we know that dynamic synapses have indeed a notable effect in

the dynamics of the network at finite β, we expect them to influence the dynamics

also at β → ∞, and therefore modify the basins of attraction in some way. We

have explored this issue, and the results are shown in Fig. 6.6. We can see that

the inclusion of facilitation in a network of depressing synapses leads to an incre-

ment of the basins of attraction. Since basins of attraction are associated with the

error-correcting ability of the system6, our results show that networks with facilitat-

ing synapses are adequate for recovering patterns, even from initial conditions only

6The error-correcting ability resembles the capacity of an attractor neural network to properly

recognize an activity pattern when the given initial condition is not strongly correlated with the

corresponding pattern.
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weakly correlated with the patterns. One can conclude, therefore, that facilitation

increases the stability of the fixed points by increasing the basins, and this leads to

a higher critical storage capacity, as we have reported previously.

6.4 Discussion

In this chapter we have focused on the role of the competition between several synap-

tic activity-dependent mechanisms, such as short-term depression and facilitation, in

the capacity of attractor neural networks to store and retrieve information codified

as activity patterns. Previous studies have found that depressing synapses drasti-

cally reduce the capacity of the network to properly retrieve patterns (Bibitchkov

et al., 2002; Torres et al., 2002; Matsumoto et al., 2007). These results highlight the

role of depression on the processing of spatio-temporal information at short time

scales (which allows for the appearance of dynamical memories), in detriment of its

function in stable recall necessary for memory-oriented tasks. The consideration of

additional potentiating mechanisms, such as synaptic facilitation, turns out to be

convenient then for memory recall in these dynamical conditions, reaching in some

cases the static limit αc ≃ 0.138. This leads to think that synaptic facilitation could

have a crucial role in the performance of memory retrieval tasks, while maintaining

the well known nonlinear properties of dynamic synapses, convenient for information

processing and coding (Abbott and Regehr, 2004).

Our results also indicate that the range of parameters for which facilitation al-

lows to have a good memory performance is notably wide, and therefore, these

benefits can be achieved without a precise fine tuning of the synaptic parameters

of the model. For instance, it is well known that dynamic synapses, and in par-

ticular facilitating synapses, usually present a high heterogeneity in their concrete

characteristics (Markram et al., 1998; Wang et al., 2006). Since the conditions for

which we found high critical storage capacities for random unbiased patterns (i.e,

αc > 0.1) are very general, in the framework of our model, this can support the

idea that actual neural systems could indeed take advantage of this fact to perform

additional tasks –which are considerably different from a dynamical point of view –

while the optimal access to memories is maintained.

Although we have derived a mean-field theory for unbiased random patterns

f = 0.5, there exist other mean-field approaches in the literature which can cor-

roborate our main conclusions about storage capacity and can be useful to extend

our study for other types of stored patterns. One can employ, for instance, the

mean-field theory developed in (Shiino and Fukai, 1993) valid also for other values

of f , or the one presented in (Tsodyks and Feigelman, 1988). Our approximate

theory presents, however, several differences which we consider of convenience here.
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Concretely, the fact that it allows to work with a network with temperature, even

in an approximate way, represents a significant practical advantage. It could, in

principle, be a good approximation for high temperatures, and preliminary results

confirm this hypothesis ((Mejias et al., 2009), see also appendix C). In addition, the

assumption of having the same threshold level for all neurons, as is done in (Tsodyks

and Feigelman, 1988), seems to be too restrictive for the modeling of biologically

motivated neural networks due to the well known variability observed in the voltage

threshold of actual neurons (Azouz and Gray, 2000). In this chapter, however, this

experimental fact is taken into account by considering a threshold θi given by (6.6)

for each neuron, an assumption which considers such variability and also induces

the existence of the noise term Bµ (which, as we have seen, has a strong effect in

the behavior of αc.)

In order to treat the effect of dynamic synapses, and concretely of short-term

depression and facilitation, we have employed a simple model for synapse dynam-

ics (Tsodyks et al., 1998). The predictions of this model agree with the experimental

data from cortical slices, as one can see in (Markram et al., 1998) (see explanation

in the results section). However, there are more realistic models which could be

used to test our results. It is known, for example, that the stochastic nature of

the transmitter release could play an important role in synaptic fluctuations (Do-

brunz and Stevens, 1997). Models which take into account this stochasticity (such

as (de la Rocha and Parga, 2005)) could be used to test our results with fluctuat-

ing synapses, although the complexity of such stochastic models would not allow to

develop a simple mean-field theory, even approximate.

It is also known that dynamic thresholds are responsible for several complex phe-

nomena in ANN (Horn and Usher, 1989), that could be similar to the ones observed

in ANN with dynamic synapses (Pantic et al., 2002; Torres et al., 2007). This could

lead us to think about the influence of dynamical thresholds in the network critical

storage capacity, and its relation with the results presented here. While this is an

interesting issue not reported yet, it is worth noting that although dynamical thresh-

olds also induce the appearance of oscillatory states similar to the case of dynamical

synapses, a direct mathematical relation between the dynamics of thresholds, as

the model reported in (Horn and Usher, 1989) and the phenomenological model

of dynamical synapses by (Tsodyks et al., 1998) cannot be derived (see discussion

about this important issue in (Pantic et al., 2002)).

Finally, and attending to the dynamics and error-correcting abilities, the ef-

fect of synaptic depression on the basins of attraction has been previously studied

(Bibitchkov et al., 2002; Matsumoto et al., 2007). In these works, neural networks

with a general inhibitory contribution are considered, and several assumptions such

as a fixed threshold value for all neurons are made. On the other hand, our study
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considers general networks in which excitation and inhibition are treated in the same

way (in particular, our neurons are not purely excitatory or inhibitory), and each

neuron possesses its own particular threshold value which is also in agreement with

several experimental evidences (Azouz and Gray, 2000). Our study shows that facil-

itation enlarges the basins of attraction compared with the case of only depressing

synapses. As a consequence, we find that a convenient balance between synaptic

depression and facilitation is necessary for neural networks to work optimally at dif-

ferent dynamical tasks. This is in agreement with recent experimental results which

show a heterogeneous level of depression and facilitation in real synapses (Markram

et al., 1998; Wang et al., 2006).



Chapter 7

Up and down critical dynamics

To finish with the original contributions presented in this thesis, we extend the study

of the implications of short-term plasticity in the behavior of large populations of

neurons. More precisely, in this chapter we investigate the role of STD and synaptic

stochasticity in the voltage transitions observed in actual cortical structures, which

seems to present some characteristics typically found in systems at criticality.

7.1 Introduction

Neural systems, even in the absence of external stimuli, can exhibit a wide variety

of coherent collective behaviors, as in vivo and in vitro experiments show (Steriade

et al., 1993a; Arieli et al., 1996; Sanchez-Vives and McCormick, 2000). One of the

most prominent examples is the spontaneous transition between two different volt-

age states, namely up and down states, observed in simultaneous individual single

neuron recordings as well as in local field measures (see figure 7.1). Such behavior,

which is generated within the cortex, may provide a framework for neural com-

putations (McCormick, 2005), and could also coordinate some sleep rhythms into

a coherent rhythmic sequence of recurring cortical and thalamocortical activities

(Sanchez-Vives and McCormick, 2000; Steriade et al., 1993c,b). The phenomenon

of up and down transitions has been measured in a number of situations, such as

in the primary visual cortex of anesthetized animals (Lampl et al., 1999; Anderson

et al., 2000), during slow-wave sleep (Steriade et al., 1993c,b,a), in the somatosensory

cortex of awake animals (Petersen et al., 2003), or in slice preparation under dif-

ferent experimental protocols (Sanchez-Vives and McCormick, 2000; Cossart et al.,

2003; Shu et al., 2003), to name a few. The origin of such structured neuronal ac-

tivity is still unclear, although several studies have shown that both intrinsic cell

properties (Mayor and Tank, 2004; Loewenstein et al., 2005; Parga and Abbott,

2007) and the high level of recurrency present in actual neural circuits (Sanchez-

119
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Vives and McCormick, 2000; Steriade et al., 2001; Holcman and Tsodyks, 2006) may

contribute to the generation of up and down transitions. In particular, the contri-

bution that reverberations in recurrent neural networks may have in the appearance

of these transitions could depend strongly on synaptic properties. It is known, for

instance, that excitatory synapses with a slow dynamics (such as synapses medi-

ated by NMDA receptors) may play a relevant role in the generation of persistent

activity or up cortical states (Wang, 1999). On the other hand, several modeling

studies indicate that activity-dependent synaptic mechanisms, such as short-term

synaptic depression and facilitation, can induce voltage transitions between up and

down neural states as well (Pantic et al., 2002; Holcman and Tsodyks, 2006; Torres

et al., 2007; Melamed et al., 2008).

Many crucial points about the understanding of up and down transitions are,

however, still lacking. For instance, in vivo experiments in the cat visual cortex show

that the permanence times in the depolarized or up state present a high variability,

and can range from a scale of milliseconds to seconds (Lampl et al., 1999). Such

complexity in the time series of the neuron membrane potentials remains far to be

explained, and could reflect scale invariance in permanence times, which could be

indicative of criticality. In fact, there are many recent studies that have shown criti-

cality in different contexts in the brain (Eguiluz et al., 2005; Beggs and Plenz, 2003),

as well as in neural network models which present self-organization and criticality

properties (Lazar et al., 2007; Gomez et al., 2009; Lazar et al., 2009).

To study in detail this relevant issue, we propose in this chapter a minimal model

for up and down transitions in neural media. We consider a simple bistable rate

model whose stable solutions represent two possible voltage states of the mean mem-

brane potential of the network. More precisely, such states correspond, respectively,

to high and low levels of activity in the network (that is, the up and down cortical

states). In addition, we consider that the synaptic connections between neurons

of the network present short-term synaptic depression (STD) mechanisms, which

introduce temporal correlations, as well as synaptic stochasticity, in the dynamics

of the system (Abbott et al., 1997; Zador and Dobrunz, 1997; Dobrunz and Stevens,

1997; Zador, 1998). A complete analysis of this simple mathematical model depicts

(both numerically and within a theoretical probabilistic approach) the appearance

of power-law dependences in the distribution of permanence times in the up state.

Our results show that the appearance of such scale free distributions is due to the

complex interplay between several factors including synaptic stochasticity and the

temporal correlations introduced by STD. The emergence of power-law dependences

could explain the high variability in permanence times in the up state suggested by

experiments (Lampl et al., 1999), and is in agreement with preliminary results found

in in vivo recordings (de Franciscis et al., 2009).
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Figure 7.1: Typical simultaneous recordings of up and down transitions in two different

types of neurons in vivo. The histogram to the left of each one shows the amount of

time the cell spends at each value of membrane potential. Both cells switch between

two preferred membrane potentials, one very hyperpolarized (down state), and one more

depolarized (up state). In both cells, the up state is only a few millivolts from the action

potential threshold. Usually, membrane potential fluctuations around the up state are

of higher amplitude, whereas the down state is relatively free of noise. Both figure and

caption have been taken and adapted from (Wilson, 2008).

7.2 Model

Our starting point is a bistable rate model, which mimics the dynamics of the

electrical activity of a population of interconnected excitatory neurons (although it

can be easily extended to other situations) with two stable levels of activity. The

model has the form (Wilson and Cowan, 1972)

τν
dν(t)

dt
= −ν(t) + νmS[Jx(t)ν(t) − θ] + ζ(t), (7.1)

where ν(t) is the mean firing rate of the (homogeneous) neural population, νm is the

maximum level of activity which can be reached by the population (in absence of

noise), J(> 0) is the synaptic coupling strength in absence of STD, and θ is the firing

threshold of the neurons in the population. The variable ζ(t) is a Gaussian white

noise of zero mean and variance δ2, which takes into account the inner stochasticity of

the neural population (caused by other sources of uncontrolled noise in the system).

The parameter τν is the population time constant, which may be assumed to be

around the duration of the synaptic current pulse (Gerstner, 2000; Gerstner and

Kistler, 2002). For simplicity, we set τν ∼ 1 ms. The term S(z) ≡ 1
2
(1 + tanh(z))
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represents the transduction function, which gives the nonlinear effect that the mean

postsynaptic current (coming from recurrent connections of the neural population)

induces in the network mean firing rate. Employing this form for S(z), the up and

down stable levels of activity correspond to ν ≃ νm and ν ≃ 0, respectively.

On the other hand, the variable x(t) in equation. (7.1) takes into account the

dynamical modification of the strength of the synaptic connections during short time

scales due to high network activity, and it is usually named short-term synaptic

plasticity. Based on the model proposed in (Abbott et al., 1997; Tsodyks and

Markram, 1997) for short-term depression, we assume that x(t) evolves according

to
dx(t)

dt
=

1 − x(t)

τr
− ux(t)ν(t) +

D

τr
ξ(t), (7.2)

where τr is the characteristic time scale of the STD mechanism, and u is a parameter

related with the reliability of the synaptic transmission. According to experimental

measurements for these parameters in the somatosensory cortex of the rat (Tsodyks

and Markram, 1997), we set τr = 1000 ms and u = 0.6. The last term on the

right hand side of equation (7.2) is added to the original model in (Tsodyks and

Markram, 1997) to include some level of stochasticity in this, otherwise, determin-

istic description of synaptic transmission. The parameter D controls the strength

of this fluctuating term, and ξ(t) is a Gaussian white noise with zero mean and

variance one.

Equations (7.1) and (7.2) constitute our minimal model of an excitatory neural

network with stochastic depressing synapses. A typical time series of the dynamics

of the model, for the case of deterministic synapses (that is, D = 0), is depicted in

figure 7.2A. In this case, the mean firing rate of the population is characterized by

a periodic switching between up and down states. This type of periodic behavior

was already found and analyzed in previous studies (Pantic et al., 2002; Holcman

and Tsodyks, 2006; Parga and Abbott, 2007) and yields bimodal histograms for the

mean firing rate of the neural population (see figure 7.2B), as the experiments indi-

cate (Sanchez-Vives and McCormick, 2000). However, these approaches ignore the

stochastic nature of synaptic transmission, which seems to be crucial for information

processing in neural systems (Dobrunz and Stevens, 1997; Zador, 1998; de la Rocha

and Parga, 2005). Considering a certain level of synaptic stochasticity in addition

to STD in our model, one obtains a qualitatively different emergent behavior, as

is shown in figure 7.2C for D = 20 ms1/2. The mean firing rate presents then a

complex switching between up and down states, and in particular involves a high

variability in the permanence times in the up state, as indicated by the power-law

dependences in the probability distribution of permanence times depicted in figure

7.4. Experimental evidences of irregularity in the duration of the up states in the cat
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Figure 7.2: (A) Time series of the mean firing rate of the neural population for de-

terministic depressing synapses. The temporal evolution of the variable x is also plot-

ted for illustration purposes. (B) Histogram of the mean firing rate, which shows the

existence of two well defined states of activity in ν ∼ 1 Hz and ν ∼ 5 Hz, corre-

sponding to the down and up states respectively. The values of the parameters are

J = 1.2 mV/Hz, τr = 1000 ms, u = 0.6, D = 0, δ = 0.3 ms−1/2 and νmax = 5 Hz.

(C) Same as (A), but with a certain level of intrinsic stochasticity on the dynamics of the

synapses (concretely, we set D = 20 ms1/2). The two-headed arrow shows a typical inter-

val of permanence in the up state, denoted by T . (D) Same as (B), but for D = 20 ms1/2.

The other parameters take the same values as in (A) and (B).

visual cortex also support these preliminary observations (Lampl et al., 1999). In

the next section, we present a theoretical probabilistic approach to explain the emer-

gence of such irregularity in the permanence times and the corresponding power-law

distributions.

7.3 Results

7.3.1 Theoretical analysis

The simplifications assumed by our model allows to obtain some analytical deriva-

tions for the quantities of interest, and concretely for the probability distributions of

permanence times in the up state, denoted by P (T ). Bistable systems in the presence

of different sources of noise have been theoretically studied in detail in many works

(Pechukas and Hanggi, 1994; Madureira et al., 1995; Ping, 2006; Dong-Xi et al.,
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2008; Tu and Grinstein, 2005). Here, however, we present a probabilistic approach

which is very appropriate for the computation of the distribution of permanence

times.

A. The potential function

In order to compute the potential function Φ(ν, x), from which one can derive

the dynamics of ν, one can see that, for realistic values of τr, the dynamics of x is

very slow compared to that of ν. We therefore can write equation (7.1) as

ν̇ = −∂νΦ(ν, x) + ζ(t) (7.3)

Φ(ν, x) =
1

2
ν(ν − νm) − νm

2Jx
log cosh(Jxν − θ), (7.4)

where we have adiabatically eliminated x from the dynamics of ν. The extrema of

Φ are given then by the solutions of the equation

ν =
1

2
νm[1 + tanh(Jxν − θ)] ≡ f(ν) (7.5)

In the following, we choose θ = Jx0ν0, with ν0 ≡ 1
2
νm and x0 ≡ 1/(1+uτrν0). With

this choice, one can easily check from equation (7.4) that the potential becomes

symmetric in ν around ν0 when x ≃ x0.

Equation (7.5) may have one or three solutions, depending on the slope of the

hyperbolic tangent and on the value of θ. In order to obtain three solutions of (7.5)

(that is, the bistable regime) the maximal slope of the hyperbolic tangent must be

large enough, concretely the condition Jxν0 > 1 must be fulfilled. In addition, the

threshold term must be not too small or too large so that f(ν) has three crossing

points with the straight line ν, rather than one. This last condition can be written

as f(ν1) > ν1 and f(ν2) < ν2, where ν1,2 are the values where the curvature of the

hyperbolic tangent is maximal and minimal, respectively. The points ν1,2 can be

easily computed from the third derivative of f(ν):

f ′′′(ν) = −νmJ3x3 1 − 3 tanh2(Jxν − Jx0ν0)

cosh2(Jxν − Jx0ν0)
. (7.6)

By setting f ′′′(ν) = 0 we obtain

ν1,2 =
ν0x0

x
± tanh−1(

√
1/3)

Jx
. (7.7)

Using now these values for ν1,2, the conditions f(ν1) > ν1 and f(ν2) < ν2 can be

written as

−ν0

√
1/3 +

1

Jx
tanh−1(

√
1/3) <

ν0x0

x
− ν0 < ν0

√
1/3 − 1

Jx
tanh−1(

√
1/3), (7.8)
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which implies that, in order to have one maxima and two minima in Φ(ν, x), the

variable x must be in the range x1 < x < x2, where

x1 ≡
ν0x0 + 1

J
tanh−1(

√
1/3)

ν0(1 +
√

1/3)
, x2 ≡

ν0x0 − 1
J

tanh−1(
√

1/3)

ν0(1 −
√

1/3)
. (7.9)

From equation (7.9), one can see that the range of x that allows to have three

extrema in the potential is

∆x ≡ x2 − x1 = 3

(
x0

√
1/3 − 1

Jν0
tanh−1(

√
1/3)

)
. (7.10)

The condition ∆x > 0 implies Jx0ν0 & 1.14 which is, therefore, a necessary condition

to obtain a double well potential1 for some value of x. Assuming that this condition

is satisfied, three different shapes for the potential function Φ(ν, x) can be found, as

the figure 7.3A illustrates. When x < x1 the potential function presents only one

minimum, located around ν ≃ 0. Similarly, for x2 < x the potential presents also

a single minimum, but now located around ν ≃ νm. Finally, for x1 < x < x2 the

potential will take a double well shape, with the maximum being located around

ν ≃ ν0 and the minima located around ν ≃ 0 and ν ≃ νm, respectively.

It is worthy to note that moreover x1 < x0 < x2, with x0 being the mean value of

x. Due to this, if the range ∆x is small compared with the fluctuations of x, namely

σx, the potential function will spend most of the time in the regimes x < x1 and

x2 < x, with the double well regime appearing only when the system tries to jump

from one of these regimes to the other (that is, when x ≃ x0). A direct consequence

of this is that the mean firing rate will be basically switching between the up and

down states (that is, ν ≃ 0 and ν ≃ νm), and that this switching will be driven

by the dynamics of x, as it was illustrated in figure 7.2. Therefore, one expects

that the distribution of permanence times of ν in the up (down) state, becomes

approximately equal to the distribution of permanence times of x in the x > x0

(x < x0) regime, as long as ∆x ≪ σx is satisfied2. Due to this equivalence, in order

to compute P (T ) we only need to compute the distribution of permanence times of

the variable x in the x > x0 regime, denoted as Px(T ).

1One can find, however, a small discrepancy between our approximate prediction and the actual

properties of Φ(ν, x). Plotting directly the potential as a function of ν reveals that the condition

to obtain a double well potential for x ≃ x0 is Jx0ν0 > 1, rather than Jx0ν0 > 1.14.
2It should be noted that, since x is a fraction of available neurotransmitters, its value should

be kept within the range [0, 1]. In practice, this means that the value of σx must not be too large,

so in order to make ∆x ≪ σx one has to restrict to ∆x small. In the results presented here, x

remain in its realistic range of values, and imposing ad hoc restrictions in such a way that x is

always within the range [0, 1] does not affect the results obtained here.
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B. Distribution of permanence times

In order to compute the distribution of permanence times of x in the x > x0 (or

x < x0) regime, one can assume that the firing rate takes its mean value ν ≃ ν0

in equation (7.2). This is a reasonable approach since x is much slower than ν for

realistic values of the parameters. Considering this approach, and after the rescaling

z ≡ (1 + uτrν0)x − 1, equation (7.2) can be written as

dz(t)

dt
= −z(t)

τ
+

D

τ
ξ(t) (7.11)

which is the equation of the Ornstein-Uhlenbeck (OU) process (see (van Kampen,

1990) for details), with τ ≡ τr/(1 + uτrν0) being the correlation time and z0 ≡
z(x0) = 0. Therefore, computing the distribution of permanence times in the up

state for our system is equivalent to obtain the distribution of the so called ruin

times3 for the OU process (Chandrasekhar, 1943; Newman, 2005). The strategy

employed here to calculate the distribution of ruin times is based on the relation

between the ruin time and the first passage time, which is the typical time that a

stochastic process needs to arrive at a certain threshold value when starting from

a certain initial condition (Newman, 2005). Because of the symmetry of the OU

process, the distribution of ruin times are equivalent when considering excursions of

the variable z in the z < 0 region or in the z > 0 region. If we consider excursions

in the z < 0 region, we can set a small positive threshold ǫ near zero (that is,

0 < ǫ ≪ 1), in such a way that the typical ruin time will be approximately equal to

the corresponding first passage time, as the figure 7.3B illustrates. The excursions

in the region z > 0 typically lead to very short first passage times (since ǫ is too

small) which we will not take into account in our calculations by considering only

large enough ruin times.

The first passage time for the OU process with a small threshold ǫ can be per-

formed by using the relation

P(ǫ, T |0, 0) =

∫ T

0

dt P(ǫ, T |ǫ, t) ρ(t), (7.12)

where P(a, ta|b, tb) is the conditional probability distribution of the OU process, and

ρ(t) is the first passage time distribution. This equation can be solved by taking

into account the following property of the Laplace transformation

f1(t) =

∫ t

0

dt′ f2(t − t′) f3(t
′) =⇒ f̂1(s) = f̂2(s) f̂3(s), (7.13)

3If we consider a stochastic process y(t) starting at t = t0 from y = y0, the ruin time is defined

as the interval t1 − t0, where t1 is the time at which y(t) returns to y0 for the first time. Since y(t)

is a stochastic process, the ruin times are stochastic quantities which follow a certain probability

distribution.
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Figure 7.3: (A) Potential function Φ(ν, x), as a function of the mean firing rate ν and

for different values of x. One can appreciate the different regimes explained in the main

text. Other parameters are J = 1.1 mV/Hz, τr = 1000 ms, u = 0.6 and νm = 5 Hz.

(B) An Ornstein-Uhlenbeck (OU) process (see equation (7.11)) with τ = 1000 ms and

D = 20 ms1/2. A typical return event (with return time T ) and a first passage event (with

first passage time T ′) are indicated for illustrative purposes. For the first passage time,

the threshold (depicted as a blue dashed line) was fixed at 0.15.

where f̂i(s) is the Laplace transform of fi(t). By solving the Fokker-Planck equation

associated with equation (7.11), one can obtain the conditional probability for the

OU process

P(z2, t2|z1, t1) =
1√

2πσ2
x[1 − exp(−2∆t/τ)]

exp

{
− [z2 − z1 exp(−∆t/τ)]2

2σ2
x[1 − exp(−2∆t/τ)]

}

(7.14)

where ∆t ≡ t2 − t1 > 0, and σx ≡ D/
√

2τ being the standard deviation of x. From

expression (7.14), and assuming that τ is large enough, one arrives at

P(ǫ, T |0, 0) ≃ 1√
4πσ2

x T/τ
exp

(
− ǫ2τ

4σ2
xT

)

P(ǫ, T |ǫ, t′) ≃ 1√
4πσ2

x (T−t′)/τ
exp

(
− ǫ2(T−t′)

4σ2
xτ

)
.

(7.15)

We denote f1(T ) ≡ P(ǫ, T |0, 0) and f2(T−t′) ≡ P(ǫ, T |ǫ, t′). Employing the Laplace

transformation in f1(T ) and f2(T − t′) the following expressions are obtained

f̂1(s) =
√

τ
4sσ2

x
exp

(
−
√

ǫ2τs/σ2
x

)

f̂2(s) = τ/
√

ǫ2 + 4sτσ2
x.

(7.16)
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Now, taking into account the property (7.13) in equation (7.12), the expression for

ρ̂(s) is

ρ̂(s) =

√
ǫ2 + 4sτσ2

x

4sτσ2
x

exp
(
−
√

ǫ2τs/σ2
x

)
. (7.17)

Finally, for small ǫ one can approximate ǫ2 + 4sτσ2
x ≃ 4sτσ2

x. With this approxima-

tion, one can easily perform the inverse Laplace transformation to equation (7.17)

and obtain the distribution of first passage times for the OU process

ρ(T ) =

√
ǫ2τ

4πσ2
x

T−3/2 exp

(
− ǫ2τ

4σ2
xT

)
. (7.18)

In order to obtain now the distribution of ruin times of the OU process, one has to

consider large values of T (as we argue above) and a small (but positive) value of

ǫ, which leads to ρ(T ) ∼ T−3/2. The distribution of ruin times of the variable x,

namely Px(T ), and therefore, the distribution of permanence times in the up state,

namely P (T ), for our system are also given by

P (T ) ∼ T−3/2, (7.19)

which corresponds to a power-law probability distribution for T , as we argued above.

7.3.2 Statistics of up and down transitions

The above results allow us to analytically compute the probability distributions of

the permanence times in the up state, and to study the influence that the differ-

ent parameters have on these distributions. A first study of interest, for instance,

concerns the effect of the synaptic noise strength D on the dynamics of the neural

population. As we have already explained, when deterministic synapses are consid-

ered (that is, D = 0) the dynamics of the mean firing rate becomes quasi periodic,

as it was reported in (Pantic et al., 2002; Holcman and Tsodyks, 2006; Torres et al.,

2007), for instance. This type of dynamics naturally leads to exponential distribu-

tions for the permanence times4. When D is increased, however, the stochasticity of

the synapses leads to the appearance of power-law distributions for the permanence

times in the up state, as we have theoretically stated above. This behavior is shown

in figure 7.4, where low values of D corresponds to exponential distributions for

4More precisely, for D = 0 our model is similar (except for the term ζ(t)) to the one analyzed in

(Holcman and Tsodyks, 2006), which shows periodic oscillations of the network mean firing rate.

In the case of our model with D = 0, the term ζ(t) introduces certain level of stochasticity which

turns these periodic oscillations into quasi-periodic oscillations. This leads to the exponential

distributions for the permanence times in the up state.
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Figure 7.4: Probability distributions of permanence times in the up state, obtained with

numerical simulations, for different values of the noise strength D. One can see that

high values of D lead to the appearance of power-law distributions P (T ) ∼ T−γ with

γ = 3/2, as the mean-field solution predicts. For numerical simulations, we employed time

series of 106 ms and averaged over 100 trials. The values of the other parameters were

J = 1.1 mV/Hz, u = 0.6, τr = 1000 ms, δ = 0.3 ms−1/2 and νm = 5 Hz. To compute

P (T ), we have considered that the up state has been reached during a period T (with

T > 2 ms) if ν > ηνm during this period. We set η = 0.8.

P (T ), while larger values of D give P (T ) ∼ T−3/2 as predicted by our theoretical

predictions. Such power-law distributions may explain the high variability of per-

manence times in the up state (that ranges from 50 ms to 1000 ms), which has been

observed in in vivo experiments in the cat visual cortex (Lampl et al., 1999). On the

contrary, exponential-like distributions, obtained for the case of having D = 0, are

not able to explain this variability. Our predictions also coincide qualitatively well

with preliminary experimental studies which find similar power-law dependences for

the permanence times in the up state (de Franciscis et al., 2009).

For a better characterization of the dynamics of the system, one can use, for

instance, other statistical magnitudes such as the autocorrelation function C(t′) of

ν, which can be defined as

C(t′) ≡ 〈ν(t + t′)ν(t) − ν(t)ν(t′)〉 . (7.20)

Here, 〈· · · 〉 indicates a temporal average. The autocorrelation function is depicted in

figure 7.5A for the case of deterministic depressing synapses (D = 0) and stochastic

depressing synapses (D = 20 ms1/2). C(t′) presents, for D = 0, two well located

peaks at t′ ≃ ±200 ms, which indicates a strong periodicity of the time series (as can
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Figure 7.5: (A) Autocorrelation function of the mean firing rate for deterministic (D = 0)

and stochastic (D = 20 ms1/2) synapses, in the presence of STD. (B) Power spectra of the

mean firing rate for the two cases illustrated in (A). For both panels, we have averaged

over 105 time series of 106 ms each, and we have fixed J = 1.1 mV/Hz, u = 0.6, τr =

1000 ms, δ = 0.3 ms−1/2 and νm = 5 Hz.

be seen in figure 7.2A). On the contrary, the inclusion of a certain level of intrinsic

stochasticity in the dynamics of x introduces more pronounced temporal correlations

in the dynamics of the system. This fact reflects the existence of long permanence

stays in the up state, which occurs with more probability for high enough values of

D, as we have already discussed.

The spectral properties of the dynamics can be analyzed as well, via the power

spectrum defined as

F (f) ≡
∫

C(t′) exp(2πift)dt. (7.21)

As one could expect, the power spectrum of the case D = 0 presents a pronounced

peak around a certain frequency, which in the particular case presented in the fig-

ure 7.5B is f ∼ 5 Hz. The power spectrum for higher values of D shows however

different properties than the case D = 0. For instance, the figure 7.5B (which con-

siders D = 20 ms1/2) indicates an approximated power-law behavior for the power

spectrum, F (f) ∼ f−β with β ≃ 1.7. This scale-free dependence can be understood

by considering that, if P (T ) is algebraic with exponent γ, the corresponding power

spectrum becomes also algebraic with exponent β, where the equation γ +β = 3 re-

lates both exponents (Tu and Grinstein, 2005). In our particular case, since γ ≃ 1.5,

one obtains a theoretical prediction of β ≃ 1.5 for the exponent of the power spec-

trum. The theoretical relation between P (T ) and F (f) exposed above, however,

is only valid under the so called single interval approximation, which implies that

the integration variable t in equation (7.21) is smaller than the permanence time
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Figure 7.6: (A) Probability distributions of permanence times in the up state, for different

values of δ. Other parameters are J = 1.1 mV/Hz, u = 0.6, τr = 1000 ms, D = 20 ms1/2

and νm = 5 Hz. (B) Same as in (A), but for different values of u. The other parameters

take the same values as in (A), except for δ = 0.3 ms−1/2. (C) Probability distribution

P (T ) as a function of T and τr. The three different regimes are shown with different

colors (see main text for details). Other parameters are J = 1.1 mV/Hz, u = 0.6, D =

20 ms1/2, δ = 0.3 ms−1/2 and νm = 5 Hz. For all panels, we have averaged over 100

times series of 106 ms each.

T (see (Tu and Grinstein, 2005) for details). This condition does not strictly hold

for our system (where T ranges over several scales), and therefore it may introduce

deviations in the theoretically predicted value of β (which is around β ≃ 1.5) with

respect to the value found in simulations (of around β ≃ 1.7).

Besides the level of synaptic stochasticity, i.e. D, other parameters of the model

could have an important effect on the dynamics as well. The parameter δ, for

instance, controls the level of stochasticity of the dynamics of ν, and therefore

one should expect that increasing its value could strongly influence the probability

distribution P (T ). This is shown in figure 7.6A, where an increase of δ disrupts the

appearance of power-law dependences, and exponential distributions appear instead.

This change in P (T ) is due to the fact that high levels of the additive noise δ make

the system to jump more frequently from one state to the other, and therefore long

stays in the up state (and thus distributions with long power-law tails) rarely occur.

The parameters involving the dynamics of x also affect the probability distribu-

tions P (T ). The parameter u, for instance, is responsible for the modulation of x
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via the mean firing rate ν (see equation (7.2)), and therefore it can influence both

the dynamics of x and ν. As one may see in figure 7.6B, when u takes low values a

bump in P (T ) emerges for high T . Such deviation from the power-law dependence

indicates that long stays in the up state occur more frequently than in the power-law

case. Attending at equation (7.2), one can see that an increase of the mean firing

rate ν decreases the variable x via the parameter u. Therefore, if u takes lower

values the decrement of x will be smaller. As a consequence, the stays of x in the

x0 ≪ x regime will last longer, and the stays of the system in the up state will also

last longer, causing the observed deviation from the power-law tendency. It should

be noted, however, that the values of u which allow the appearance of power-law

dependences in P (T ) for our model agree with the values of u measured in actual

cortical media where up and down transitions are observed (Tsodyks and Markram,

1997).

Finally, the dependence of the dynamics of the system with the STD time con-

stant τr constitutes also an interesting and relevant issue. In order to clarify this,

we have analyzed in detail the effect that varying τr has on the probability distri-

bution of permanence times. The results are shown in figure 7.6C, where one can

distinguish three different regimes as a function of the particular value of τr. For

low τr (red region in the figure), the probability distributions show an exponential

decay for large permanence times. The reason for this decay is that, for low τr, the

variable x does not perform long excursions in the region x0 ≪ x, and therefore

the probability to have large values of T decreases and the power law behavior for

P (T ) is not obtained. As τr is increased, long excursions for x begin to occur, and

we obtain a power law behavior P (T ) ∼ T−3/2 (green region in the figure). Finally,

one can appreciate that, for even larger values of τr (blue region in the figure), the

probability distribution of permanence times in the up state presents a power law

dependence P (T ) ∼ T−γ(τr) with γ(τr) > 3/2, being an increasing function of τr.

Such dependence can not be explained by our previous theoretical predictions, based

in the assumption that the system is in the bistable regime, and deserves a detailed

analysis which will be exposed in the next section.

7.3.3 Further analysis

In section 7.3.1, we established several conditions which, in principle, had to be

fulfilled in order to obtain power law dependences for P (T ). In particular, our pre-

vious analysis indicates that the condition Jx0ν0 > 1 must hold in order to have

a potential function Φ(ν, x) with three extrema (bistable regime). However, as we

will see in the following, power law expressions for P (T ) may appear even if the

potential function has only one extremum in ν (concretely, one minimum).
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Figure 7.7: Behavior of the system when the condition Jx0ν0 < 1 holds. (A) Time series

of the variables ν and x. (B) The same time series, but represented on the x − ν plane,

illustrates the fact that ν is a slave variable of x (although some level of inner stochasticity

on ν is still present). (C) The potential function as a function of ν for different values of

x. One can appreciate the existence of only one minimum, whose location is controlled

by x. (D) Histograms of the mean firing rate of the system for different values of J .

For the cases showed in this panel, the condition Jx0ν0 < 1 is only satisfied for the

case J = 0.55 mV/Hz. For all panels, u = 0.6, τr = 1000 ms, D = 20 ms1/2, δ =

0.3 ms−1/2, νm = 5 Hz, and J = 0.55 mV/Hz unless specifically specified.

When Jx0ν0 < 1 (which occurs for J ≪ 1 or τr ≫ 1, for instance), the potential

function Φ(ν, x) has only one minimum in ν, whose location strongly depends on

x. An approximated expression for the location of this minimum as a function of x

can be obtained by expanding the hyperbolic tangent in equation (7.5) around its

argument (which is small in this limit) up to first order, yielding

νmin = ν0
1 − Jx0ν0

1 − Jxν0

, (7.22)

where νmin is the value of ν which corresponds to the minimum of the potential

function. Therefore as x varies around x0, the location of the minimum of the po-

tential νmin also varies in the same way around ν0. The predictions of this expression
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Figure 7.8: (A) Probability distribution of permanence times in the up state in the

Jx0ν0 < 1 regime, for η = 0.75 and different values of D. One can see that power law

relations P (T ) ∼ T−γ appear. (B) Dependence of γ with D for the conditions presented

in (A). The inset shows the dependence of γ with the parameter η for the case D =

200 ms1/2. We have averaged over 100 time series of 106 ms each. Other parameters are

J = 0.05 mV/Hz, τr = 1000 ms, u = 0.6, δ = 0.3 ms−1/2 and νm = 5 Hz.

agree quite well with simulations, as long as the singular value x = 1/Jν0 of the

above expression is avoided. As an example, time series of both ν and x are shown

in figure 7.7A for a given set of parameters which satisfies Jx0ν0 < 1. In this time

series, the variable ν fluctuates around the value νmin, which is fully determined by

x (that is, the variable ν becomes a slave variable of x).

Since ν behaves now as a stochastic variable which does not present a clear

bistable dynamics, the numerical computation of the distribution of the permanence

times will depend on the exact value of ν above which the system is considered to

be in the up state. As we have seen before, this threshold value takes the form ηνm

(see caption of figure 7.4), where usually η may take a value between 0.6 and 0.9.

While the results presented for Jx0ν0 > 1 (that is, the bistable regime) are quite

robust for different values of η, in the regime Jx0ν0 this parameter has indeed some

effect on P (T ), which indicates the difficulty to accurately analyze the up and down

dynamics in this case.

In figure 7.8A, one observes that the distribution P (T ) shows also a power law

behavior P (T ) ∼ T−γ for η = 0.75 and different values of D, for a set of parameter

values which satisfies Jx0ν0 < 1 (that is the monostable regime). The concrete

value of γ depends strongly on D and it has also a weaker dependence with η, as the

figure 7.8B illustrates. This type of power-law behavior appearing in the monostable

regime corresponds to the blue region in figure 7.6C, as well.
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Figure 7.9: (A) Phase plot which shows the different behaviors found in our system.

These behaviors corresponds to time series of ν for which permanence times in the up

state follow an exponential distribution (E), a power-law distribution P (T ) ∼ T−γ with

γ = 3/2 (C), or a power-law distribution with γ > 3/2 (S). In addition, a phase with a

well-defined duration of the up state is found (P). In panel (B) some of these behaviors

are depicted. From top to bottom one can see situations P, E and C. Other parameters

are J = 1.1 mV/Hz, u = 0.6, δ = 0.3 ms−1/2 and νm = 5 Hz.

It is worthy to note that actual recordings of up and down transitions does

not present a clear distinction between up and down states, and several nontriv-

ial methods are commonly employed to discriminate between both states (Seamari

et al., 2007). Therefore, the results found for the regime Jx0ν0 < 1 could indeed

reflect the behavior of actual cortical up-down transitions, showing power law de-

pendences in P (T ) with γ > 3/2 and indicating that the concrete nature of the

transitions is a synaptic-driven monostable dynamics.

Finally, one can summarize all the observed behaviors in a phase plot such as the

one presented in figure 7.9. A total of four different behaviors can be found in the

(τr, D) space. The first one concerns the dynamics of ν whose permanence times

in the up state follows an exponential distribution (labeled as “E” in the figure). If

the noise amplitude D is sufficiently high, one can increase the value of τr to reach

the regime “C”, in which the dependence P (T ) ∼ T−1.5 is obtained. By increasing

τr even more, the probability distribution P (T ) takes the form ∼ T−γ, with γ > 1.5

(regime denoted by “S”), as we have already seen in figure 7.7. Finally, we also

observe that when the depression time scale is not large enough (and D . 3 ms1/2),

a regime of quasi-periodic time series of ν is obtained, with a well-defined duration

of up states (regime denoted by “P”). It must be clarified, however, that actual

up and down cortical transitions probably present a richer repertoire of dynamical
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regimes than the one obtained with our simplified model. Therefore, the different

behaviors of cortical up-down dynamics, as well as the existence of criticality in such

dynamics, deserves further study via detailed computational explorations with more

realistic models of neural systems.

7.4 Discussion

Many biophysical processes at the subcellular, cellular and network level, can in-

fluence the complex collective dynamics that emerges in actual neural systems. An

example is the generation of spontaneous transitions between different voltage levels

in absence of external stimuli in some cortical areas, that is, the so called up and

down transitions. Their origin is still unclear, although different factors that can in-

fluence their occurrence have been recently reported. It is known, for instance, that

inhibitory GABAergic currents strongly contribute to the temporal coding and spike

timing precision of cortical networks during up states of activity (Sanchez-Vives and

McCormick, 2000; Hasenstaub et al., 2005). Several modeling studies also show the

relevance of inhibitory interneurons in the generation of many types of oscillations

in the brain (see for instance (Brunel, 2000)). However, other studies indicate that

most of the main features of up and down transitions depends strongly on synaptic

plasticity mechanisms, both of long-term and short-term ones (Kang et al., 2008;

Holcman and Tsodyks, 2006), and that the transitions appear even in the absence

of inhibition (Holcman and Tsodyks, 2006). Following these studies and with the

aim to investigate what are the minimal requirements to generate up and down

transitions, in this chapter we have not considered inhibition. The presented theory,

however, can be easily generalized to include this and other biophysical factors.

Regarding to synaptic characteristics, recent works show that synaptic fluctua-

tions could have an important role in the generation of transitions between up and

down states (Cortes et al., 2006; Parga and Abbott, 2007; Johnson et al., 2008).

The results presented in this chapter corroborates this hypothesis, and indicates

that stochasticity on the synapses may be responsible of the high variability in the

duration of the up states. On the other hand, it is known that short-term synaptic

mechanisms, such as short-term depression and facilitation, usually play a role in

the efficient processing of information. In particular, they may be relevant in many

tasks, such as in signal detection and coding (Abbott et al., 1997; Mejias and Tor-

res, 2008, 2009a) or switching between different activity patterns previously stored

(Torres et al., 2007; Mejias and Torres, 2009b). However, their role on the transi-

tions between cortical states has been pointed out only very recently (Holcman and

Tsodyks, 2006), and their possible effects on the statistics of the transitions have

been ignored. To the best of our knowledge, the present study is the first one which
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analyzes, even in a simplified manner, the strong effect of synaptic stochasticity and

dynamic synapses in the statistics of the up and down transitions. The possible role

of other short-term synaptic mechanisms, such as STF, has not been addressed yet

and constitutes a interesting issue still open.

The theoretical analysis developed in this chapter serves to highlight what are

the mechanisms responsible for the appearance of power-law dependences in P (T ).

However, this theoretical approach may (and should) be improved. For instance, an

interesting issue to address could be the theoretical study of the effects of different

model parameters. The analytical approach used here is not able, for instance, to

quantitatively obtain P (T ) for arbitrary values of τr (due to the fact that we have

assumed a slow dynamics for x(t), that is, τr ≫ 1 ms). Similar conclusions are found

for δ or u, as well. Therefore, extensions of the theoretical approach introduced in

this chapter are needed for a complete understanding of the role of all the different

parameters and time scales involved.

We have also tested our main results in different ways. For instance, the election

of a differential equation formulation or a discrete map dynamics does not disrupt

the emergence of scale-free distributions of permanence times. Different transduc-

tion functions preserve the results, as well. This issue is specially relevant because

the simple transduction function employed here implies that the probability distri-

bution of permanence times in a stable state is the same for up states and for down

states (that is, the system presents up-down symmetry). This is in contradiction

with experimental evidences (de Franciscis et al., 2009) which shows that power-law

distributions are obtained for permanence times in the up state, while permanence

times in the down state are exponentially distributed. However, this discrepancy

disappears when one considers a more realistic transduction function which gives an

asymmetric potential for the dynamics, and as a consequence the up-down symmetry

is broken. More detailed studies considering, for instance, some of the biologically

realistic aspects discussed above, should be performed to test our predictions. In

particular, a more elaborated study considering realistic neuron models (such as

Hodgkin-Huxley model (Hodgkin and Huxley, 1952b)) and stochastic STD models

(see (Abbott et al., 1997; de la Rocha and Parga, 2005), for instance) is necessary

and it is in preparation.

From a general point of view, evidences of criticality have been recently found in

an increasing number of neural systems, such as in the functional connectivity of the

living human brain (Eguiluz et al., 2005), in critical avalanches of neuronal activity

(Beggs and Plenz, 2003), or in sleep-wake transitions (Lo et al., 2004), to name a

few. According to the results presented in this chapter, transitions between up and

down cortical states could also present some relevant properties typical of systems

at criticality. Some of these properties have been already measured in experiments,
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such as a high sensitivity of the system to external stimuli (Anderson et al., 2000), or

the presence of power-law dependences in the power spectra of the neural dynamics

(Hasenstaub et al., 2005). Preliminary results (de Franciscis et al., 2009) also show

the presence of power-law distributions of the permanence times in up states in in

vivo conditions, which properly fits our predictions. Our study shows the importance

of some biophysical factors, such as the neurotransmitter recovery time and the

inherent synaptic stochasticity for the emergence of this phenomenology. Finally,

our results may proportionate a new perspective of the phenomena of up and down

transitions that could serve to conciliate the main experimental findings, and that

could help for a deep understanding of this complex dynamics of the brain activity.



Chapter 8

Conclusions

Mathematical modeling and computer simulations are proving to be two powerful

tools to analyse the behavior of neural systems. In this context, an efficient charac-

terization of synaptic properties seems to be crucial to understand many phenomena

observed in actual neural media. Long-term plastic modifications of synapses, for

instance, play a relevant role in the onset of learning and memory, and have become

an important focus of attention for researchers during the last decades (Hopfield,

1982; Hebb, 1949). On the other hand, short-term synaptic plasticity is mainly

concerned with the processing and coding/decoding of the information embedded in

spike trains (Abbott and Regehr, 2004; Zador and Dobrunz, 1997). These tasks in-

clude the access to information previously stored via long-term synaptic mechanisms,

and as a consequence short-term synaptic plasticity may have strong implications

in memory and retrieval of information as well.

In this thesis we have studied in detail the computational and functional impli-

cations of short-term plasticity, and in particular STD and STF, in the performance

of different neural systems of interest. This study has been achieved employing

numerical simulations, and also analytical treatments when possible. The use of

both theoretical and numerical methods constitute a mayor key of the thesis, as

the comparison with numerical simulations constitute a reliable method to test our

theoretical predictions. A good agreement between theory and simulations also may

provide a strong support to our conclusions and results. Moreover, the exploration

of the range of validity of some useful theoretical approaches constitute a significa-

tive goal itself. At this point, the original contributions presented in this thesis

are worthy to be mentioned, since we have analyzed a variety of systems ranging

from perceptron-like circuits to large recurrent networks, all of them in the vast

framework of time-dependent synaptic connections.

In the following, we will summarize the main results and conclusions of the

original contributions of this thesis, paying special attention in possible technological

139
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applications and to future work suggested by such results.

In chapter 4 we have presented a detailed theoretical and numerical study of

how the competition between synaptic facilitation and depression affects the neural

detection of temporal correlations between different presynaptic neurons in a back-

ground of uncorrelated noise. In particular, we have shown that the transmission

of information, codified in spike trains through the synapses, is enhanced in the

presence of STF, and the detection of firing rate changes is also improved compared

with the case of only depressing synapses. This would lead us to think that STF

has a crucial role in the processing of information in actual cortical structures.

We have also seen that it is not essential to have a strong correlation between the

different presynaptic afferents to have a good detection of signals, and our results

also fulfill for noisy signals. This is of special relevance since it is well known that the

intrinsic stochasticity of actual synapses causes fluctuations that disrupt the syn-

chrony between the afferents and produce a highly fluctuating postsynaptic response

(Dobrunz and Stevens, 1997). Our results, however, show that the performance of

the system with STF is quite robust to synaptic fluctuations.

Facilitation also determines the existence of an optimal frequency which allows

good performance for a wide range of neuron firing thresholds. In particular, these

results could be important to understand how actual neural systems – where different

types of neurons with non-identical firing thresholds are connected in a complex way

– can self-organize to efficiently detect and process relevant information (Azouz and

Gray, 2000). From a more pragmatical point of view, these findings could be used to

design artificial neural systems at the hardware level (Saighi et al., 2003; Farquhar

and Hasler, 2005). In practice, actual electronic circuits which emulate the behavior

of biological neurons do not display exactly the same characteristics (due to errors

in the resistors, for instance). For this reason, to find a frequency which optimizes

the performance of a highly heterogeneous system seems to be quite relevant in

experimental realizations of neuro-inspired electronic circuits.

In order to extend the study presented in chapter 4, in chapter 5 we have

investigated the role of dynamic synapses in the detection of weak signals by neurons

embedded in neural networks, via a stochastic resonance formalism. Our analysis

reveals a dramatic effect on the stochastic resonance properties of neurons due to

the interplay between the dynamical nature of synapses and adaptive threshold

mechanisms. Concretely, we have demonstrated that this interplay originates the

appearance of bimodal resonances, where the location of the resonances are related

with the relevant synaptic parameters. To the best of our knowledge, this is the first

time this striking phenomena has been reported to occur in biologically motivated

models of neural systems.
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Recent studies (Zalanyi et al., 2001; Yasuda et al., 2008) have also suggested a

relevant role of STD in neural stochastic resonance, but the emergence of bimodal

resonances, which is the crucial point of the study presented in chapter 5, is missed

in these works (due to the oversimplified assumptions made in neuron and synapses

dynamics). Our main findings are also supported by experimental data taken from

(Yasuda et al., 2008). Several questions should be experimentally tested, though.

An interesting prediction to test is, for instance, whether STF has the effect on the

first resonance peak predicted by our results. This gives an idea of the relevance

of residual calcium in the processing of weak signals at spontaneous activity brain

states, which are common in cortical areas. In general, the question of how these

bimodal resonances can be measured in actual cortical structures, and its effect in

the collective dynamics of large cortical neural networks, constitutes an interesting

issue that still remains open.

A deeper characterization of these bimodal resonances in more detailed neu-

ral systems could be advantageous for the design of electronic sensors which could

distinguish a weak signal at different levels of environmental noise. A prominent

example of this could be the so called electronic noses, that is, electronic devices

which are able to detect and classify odors, vapor and gases (Gardner and Bartlett,

1999). Electronic noses with the capacity to detect the weak odor of a certain sub-

stance in real conditions (in which different gases and odors usually coexist) could

play a major role in defense against chemical weapons, for instance.

After the extensive analysis of the influence of short-term plasticity in simple

neural circuits presented in chapters 4 and 5, in chapter 6 we have focused on

large recurrent networks of interconnected neurons. More precisely, we have investi-

gated here the role of the competition between several synaptic activity-dependent

mechanisms, such as STD and STF, in the capacity of attractor neural networks

to store and retrieve information codified as activity patterns. Previous studies

found that depressing synapses drastically reduce the capacity of the network to

properly retrieve patterns (Bibitchkov et al., 2002; Torres et al., 2002; Matsumoto

et al., 2007). These results highlight the role of depression on the processing of

spatio-temporal information at short time scales (which allows for the appearance

of dynamical memories), in detriment of its function in stable recall necessary for

memory-oriented tasks. We have demonstrated that the consideration of additional

potentiating mechanisms, such as synaptic facilitation, turns out to be convenient

then for memory recall in these dynamical conditions. This leads to think that

synaptic facilitation could have a crucial role in the performance of memory retrieval

tasks, while maintaining the well known nonlinear properties of dynamic synapses,

convenient for information processing and coding (Abbott and Regehr, 2004).
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The novel mean-field theory derived in chapter 6 presents some practical advan-

tages with respect to other theories which may be found in the literature (such as

(Shiino and Fukai, 1993; Tsodyks and Feigelman, 1988)). For instance, our mean-

field approach considers a certain level of heterogeneity in the firing threshold among

all the neurons in the network. In addition, it may constitute a good approximation

for high temperatures (i.e., high stochasticity in the dynamics of neurons), as pre-

liminary results show (see appendix C and (Mejias et al., 2009)). Certain features

not considered in our study, such as the effect of considering low activity patterns

or intrinsically stochastic synapse models, could constitute an interesting extension

of our work.

Several technological applications could be derived from the results reported in

this chapter. Classical Hopfield networks have been extensively employed so far

in pattern recognition and pattern classification tasks, for instance (Cortes et al.,

2005). Dynamic synapses, on the other hand, achieves a successful performance in

filtering and processing the external information embedded in spike trains, although

STD implies a substantial lost of storage capacity as we have discussed previously.

By incorporating STF into this picture, both efficient filtering of signals and retrieval

properties may be optimally incorporated in artificial neural networks. This could

constitute a huge advantage in systems which must filter and/or preprocess images

or data before storing them, such as digital cameras or other optoelectronic devices.

Finally, in chapter 7 we have analyzed the role of stochastic depressing synapses

in the generation of spontaneous transitions between different voltage levels ob-

served, in absence of external stimuli, in some cortical areas, that is, the so called up

and down transitions. The origin of such collective behavior is still unclear, although

different factors that can influence their occurrence have been recently reported.

These factors include, for instance, inhibitory GABAergic currents (Sanchez-Vives

and McCormick, 2000; Hasenstaub et al., 2005), long-term and short-term synaptic

plasticity mechanisms (Kang et al., 2008; Holcman and Tsodyks, 2006), or synaptic

fluctuations (Cortes et al., 2006; Parga and Abbott, 2007; Johnson et al., 2008). In

the study presented in chapter 7, we have demonstrated that stochastic synaptic

transmission, when considered together with STD, may be responsible of the high

variability in the duration of the up states observed experimentally in vivo (Ander-

son et al., 2000). The role of STD on up and down transitions has been pointed

out very recently (Holcman and Tsodyks, 2006), although its possible effect on the

statistics of the transitions has been completely ignored. To the best of our knowl-

edge, the present study is the first one which analyzes, even in a simplified manner,

the strong effect of synaptic stochasticity and dynamic synapses in the statistics of

the up and down transitions.



Chapter 8. Conclusions 143

The results presented in chapter 7 may proportionate a new perspective of the

phenomena of up and down transitions that could serve to conciliate the main ex-

perimental findings, and that could help for a deep understanding of this complex

dynamics of the brain activity. Concretely, our conclusions expose the importance

of some biophysical factors, such as the neurotransmitter recovery time and the

inherent synaptic stochasticity for the emergence of this phenomenology. More de-

tailed studies considering, for instance, some biologically realistic aspects (such as

the presence of inhibition, the role of STF, or more realistic models of synaptic

transmission), should be performed to test our predictions. In particular, a more

elaborated study considering realistic neural network models and stochastic STD

descriptions is necessary and it is in preparation.

From a general point of view, evidences of criticality have been recently found

in an increasing number of neural systems, such as in the functional connectivity

of the living human brain (Eguiluz et al., 2005), in critical avalanches of neuronal

activity (Beggs and Plenz, 2003), or in sleep-wake transitions (Lo et al., 2004), to

name a few. According to our results, transitions between up and down cortical

states could also present some relevant properties typical of systems at criticality.

Some of these properties have been already measured in experiments, such as a high

sensitivity of the system to external stimuli (Anderson et al., 2000), or the presence

of power-law dependences in the power spectra of the neural dynamics (Hasenstaub

et al., 2005). Preliminary results (de Franciscis et al., 2009) also show the presence of

power-law distributions of the permanence times in up states in in vivo conditions,

which properly fits our predictions. If the irregularity observed in up and down

transitions reflects indeed that the cortex is in a critical dynamical state, then the

understanding of the mechanisms responsible for such dynamics constitutes a strong

assert to the physics of complex systems.

Despite huge efforts of researchers from many different disciplines, the function-

ing and efficiency of neural systems still remains a vast mystery. The development

of detailed simulations of neural structures, as well as theoretical approaches to

gain some intuition over the most simple neural circuits, constitutes a striking chal-

lenge for physicists, and deserves further study due to its possible future impact on

Neuroscience. After all, as the biochemist and novelist Isaac Asimov stated,

The most exciting phrase to hear in Science, the one that heralds the most dis-

coveries, is not ’Eureka!’ (I found it!) but ’That’s funny’.



Appendix A

Postsynaptic current with

dynamic synapses

An excitatory postsynaptic current (EPSC) may be modulated in a nontrivial man-

ner by synapses which present activity-dependent mechanisms like STD and STF.

In particular, such modulation does not depend only on the presynaptic mean fir-

ing rate, but also on the precise inter-spike-interval distribution (ISI) (that is, the

probability distribution of the interval separating two presynaptic spikes). In this

appendix, we calculate the mean EPSC, namely I, assuming different possible statis-

tics for the presynaptic spike train. To achieve this, we consider a presynaptic pop-

ulation of N (≫ 1) neurons which transmit APs to a postsynaptic neuron, following

a perceptron structure. The synapses connecting the presynaptic neurons with the

postsynaptic one present short-term plasticity mechanisms. In particular, we use

the STD model presented in section 3.3.3 (see also (Tsodyks and Markram, 1997)

and chapters 4 and 5), which considers that the dynamical state of a synapse i is

described by

dxi(t)

dt
=

zi(t)

τrec
− u xi(t)

∑

k

δ(t − tk)

dyi(t)

dt
= −yi(t)

τin

+ u xi(t)
∑

k

δ(t − tk)

dzi(t)

dt
=

yi(t)

τin

− zi(t)

τrec

,

(A.1)

with u being constant. We also consider that the mean EPSC due to a single

presynaptic afferent is proportional to the mean fraction of active neurotransmitters,

namely y. That is, we consider the dependence I = ASEy, with ASE being a

constant. Concerning the ISI distribution of the presynaptic spike train, we review

144
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here two cases of interest: a periodic spike train and a poissonian spike train.

a. Periodic spike train

Our first step is to analyze the behavior of a single presynaptic terminal (in

the following, we will omit the subindex i). Taking the dynamics of x in (A.1)

and considering that z(t) = 1 − x(t) − y(t) ≃ 1 − x(t) (which constitutes a good

approximation for small τin since x(t) ≫ y(t) most of the time), one can obtain the

evolution of x(t) between two consecutive presynaptic spikes occurring at tn and

tn+1 respectively, leading to

xn+1 = 1 − [1 − (1 − u)xn] exp(−∆tn+1/τrec), (A.2)

where xn is the value of x(t) just before the n-th presynaptic spike, and ∆tn+1 ≡
tn+1 − tn. In steady state conditions one has xn+1 = xn ≡ x− and ∆tn = 1/ν ∀ n,

where ν is the neuron mean firing rate and x− is the value of x(t) just before a spike.

Inserting this into equation (A.2) gives

x− =
1 − exp(−1/ντrec)

1 − (1 − u) exp(−1/ντrec)
. (A.3)

Similarly, by solving the differential equation of y(t) in (A.1) between two consecu-

tive spikes occurring at tn+1 and tn yields

yn+1 = (yn + uxn) exp(−∆tn+1/τin), (A.4)

with yn being the value of y(t) just before the n-th spike. Considering steady state

conditions again, one easily arrives at

y− =
ux− exp(−1/ντin)

1 − exp(−1/ντin)
, (A.5)

where y− is the value of y(t) just before a spike in steady state conditions. Finally,

we can compute the peak value of y(t), namely y+, in steady state conditions, using

that y+ = y− + ux− (see equation A.1), which leads to

y+ =
ux−

1 − exp(−1/ντin)
. (A.6)

To obtain the mean value of y(t) at steady state, one also needs to compute the

integral of y(t) between two consecutive spikes. In this interval, one can impose

that the first spike arrives at t = 0 and write y(t) = y+ exp(−t/τin) for t > 0. This

gives
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y =
1

T

∫ T

0

y(t)dt =
1

T

∫ T

0

y+ exp(−t/τin)dt =

τinνu
1 − exp(−1/ντrec)

1 − (1 − u) exp(−1/ντrec)
,

(A.7)

with T ≡ 1/ν being the mean interspike interval. Finally, the mean EPSC is given

by I ≡ NASEy, and in particular

I = NASEτinνu
1 − exp(−1/ντrec)

1 − (1 − u) exp(−1/ντrec)
, (A.8)

which is the expression for the mean EPSC that was employed in section 4.3.1.

b. Poissonian spike train

To obtain the mean EPSC for a poissonian presynaptic spike train one may use

the general recurrent dynamics (A.2) for x(t) as well. In this case, there is not a

single peak value of x(t) in the steady state, and therefore the strategy employed

above is not valid here. Instead of this, one can average equation (A.2) over the

corresponding ISI distribution, namely P (t), obtaining

〈xn+1〉 = 1 − [〈exp(−∆tn+1/τrec)〉 − (1 − u) 〈xn exp(−∆tn+1/τrec)〉], (A.9)

where the brackets indicate averaging over P (t) (see also (Romani et al., 2006)).

Since xn is independent of ∆tn+1 one may compute

〈exp(−∆tn+1/τrec)〉 =

∫ ∞

0

exp(−t/τrec)P (t)dt = P̃ (1/τrec)

〈xn exp(−∆tn+1/τrec)〉 = 〈xn〉 〈exp(−∆tn+1/τrec)〉 = 〈xn〉 P̃ (1/τrec),

(A.10)

where P̃ (·) is the Laplace transform of P (·). Considering steady state conditions in

equation (A.9), that is, 〈xn+1〉 = 〈xn〉 ≡ 〈x−〉, one easily obtains

〈
x−〉 =

1 − P̃ (1/τrec)

1 − (1 − u)P̃ (1/τrec)
. (A.11)

where 〈x−〉 is the mean value of x(t) just before a spike. For the case of a presynaptic

poissonian spike train, one has P̃ (1/τrec) = τrecν/(1 + τrecν) (Romani et al., 2006),

which leads to

〈
x−〉 =

1

1 + uτrecν
. (A.12)
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Following a similar reasoning for the dynamics of y(t), one arrives at

〈
y−〉 =

u 〈x〉 P̃ (1/τin)

1 − P̃ (1/τin)
, (A.13)

with 〈y−〉 being the mean value of y(t) just before a spike. The peak value of

y(t) (that is, its mean value just after a spike) may be computed if one employs

〈y+〉 = 〈y−〉 + u 〈x−〉, obtaining

〈
y+
〉

=
u(1 + τinν)

1 + uτrecν
. (A.14)

Finally, employing the same procedure as before (that is, evaluating the integral ex-

pression to obtain y), the expression of the mean EPSC for a presynaptic poissonian

spike train is achieved, that is,

I = NASEτinνu
1 + τinν

1 + uτrecν
[1 − exp(−1/ντin)]. (A.15)

Although the results presented in chapter 4 show that the differences between using

expressions (A.8) and (A.15) are minimal when one analyzes the particular system

studied there, the concrete presynaptic ISI distribution could be relevant in certain

situations not considered in our study, such as for synapses with large values of τin

(i.e., NMDA synapses). This and other situations are currently under further study.



Appendix B

Mean firing rate of the IF neuron

model

The integrate-and-fire (IF) model constitutes one of the simplest mathematical de-

scriptions of neural activity used in the literature. This simplicity allows to derive

some analytical results which may help to understand its basic characteristics and

functioning. In chapters 4 and 5 of this thesis, we have employed some of this an-

alytical results to describe the behavior of several neural systems of relevance. To

complete the theoretical description of these systems, in this appendix we derive the

mean firing rate of the IF neuron model for a gaussian noisy input (see also (Tuck-

well, 1989; Brunel, 2000; Brunel and Hansel, 2006)). After that, we will consider

some limits of interest, such as the low and high mean input current approaches,

and their effects in the mean firing rate of the neuron.

We consider a standard IF neuron model (see section 3.2.4 for details), whose

dynamics is given by

τm
dV (t)

dt
= −V (t) + RI(t), (B.1)

where the variable V (t) is the membrane potential, τm is the membrane time con-

stant, R is the input resistance and I(t) is the input current. For simplicity, we have

considered that the input to the neuron can be written as RI(t) = µ +
√

τmσξ(t),

where ξ(t) is a gaussian white noise of mean zero and variance one, and µ and σ

correspond to the mean and fluctuating part of the input current, respectively. In

addition, we consider a threshold membrane Vth, a reset potential Vr, and an abso-

lute refractory period τref . In the following we omit the temporal dependences in

V (t).

Equation (B.1) is a Langevin-type description, which only contains linear terms

in V , and therefore it may be easily transformed into a Fokker-Planck equation

(FPE) following a straightforward procedure (van Kampen, 1990). One obtains
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τm
∂P (V, t)

∂t
=

σ2

2

∂2P (V, t)

∂V 2
+

∂

∂V
[(V − µ)P (V, t)], (B.2)

where P (V, t) is the probability of having a value V for the membrane potential at

time t. This equation can be rewritten as the continuity equation

∂P (V, t)

∂t
= −∂S(V, t)

∂V
, (B.3)

where S(V, t) is the probability current through V at time t. According to equations

(B.2-B.3), S(V, t) is given by

S(V, t) = − σ2

2τm

∂P (V, t)

∂V
− V − µ

τm
P (V, t). (B.4)

In order to solve equation (B.2), one has to specify the boundary conditions at

−∞, Vr and Vth. The probability current through Vth yields the instantaneous

firing rate at time t, that is, ν(t) = S(Vth, t) (Brunel, 2000). To obtain a finite value

of ν(t), one also needs to impose the absorbing boundary condition P (Vth, t) = 0

for all t (since V cannot be greater than Vth). Inserting the latter condition in (B.4)

gives

∂P (V, t)

∂V

∣∣∣∣
V =Vth

= −2τmν(t)

σ2
(B.5)

Similarly, P (V, t) must be continuous at Vr, and one has to consider the additional

probability current injected in Vr due to neurons that just finished their absolute

refractory period. This can be expressed as S(V +
r , t)−S(V −

r , t) = ν(t− τref ), which

leads to

∂P (V, t)

∂V

∣∣∣∣
V =V +

r

− ∂P (V, t)

∂V

∣∣∣∣
V =V −

r

= −2τmν(t − τref)

σ2
. (B.6)

On the other hand, the natural boundary condition at V → −∞ is that P (V, t)

should tend sufficiently quickly to zero in order to be integrable

lim
V →−∞

P (V, t) = 0, lim
V →−∞

V P (V, t) = 0. (B.7)

Finally, the normalization condition for the probability P (V, t) can be written as

pr(t) +

∫ Vth

−∞
P (V, t) dV = 1,

pr(t) =

∫ t

t−τref

ν(z)dz,

(B.8)

with pr(t) being the probability of the neuron being refractory at time t.
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We are interested here in the steady state properties of the neuron, that is,

ν(t) ≡ ν, P (V, t) ≡ P (V ), S(V, t) ≡ S(V ) and pr(t) ≡ pr. In order to compute the

steady state probability distribution P (V ), we can set ∂P (V,t)
∂t

= 0 in equation (B.2)

and obtain the following ordinary differential equation for P (V )

σ2

2
P ′′(V ) + (V − µ)P ′(V ) + P (V ) = 0, (B.9)

where we have used the notation dP (V )
dV

≡ P ′(V ). The solutions of this equation

which satisfy the boundary conditions (B.5-B.7) correspond to

P (V ) =
2τmν

σ
exp

(
−(V − µ)2

σ2

) ∫ Vth−µ

σ

V −µ
σ

Θ(z − Vr) exp
(
z2
)
dz, (B.10)

where Θ(z) is the Heaviside step function, that is, Θ(z > 0) = 1 and Θ(z <

0) = 0. One can also easily obtain, from equation (B.8), the value pr = ντref for

the probability of the neuron being refractory at any time t. Finally, considering

the normalization condition (B.8) on equation (B.10) one obtains a self-consistent

condition that yields the mean firing rate of the IF neuron with a gaussian noisy

input,

ν =

[
τref + τm

∫ yth

yr

f(z)dz

]−1

, (B.11)

with f(z) =
√

π[1 + erf(z)] exp (z2), and the integration limits given by yth ≡ Vth−µ
σ

and yr ≡ Vr−µ
σ

.

For certain conditions, one may apply some approximations to equation (B.11) to

obtain simplified expressions of ν. For instance, high firing rates are associated with

high values of the mean input current µ. If one considers µ ≫ Vth, the integration

limits tend to large negative values (yth,r → −∞). Taking into account that f(z) →
−1/z for large z, one can easily obtain from equation (B.11) the expression

ν ≃
[
τref + τm log

(
Vr − µ

Vth − µ

)]−1

, (B.12)

whose predictions are in good agreement with those of equation (B.11) when the

firing rate is high enough (which occurs for µ ≫ Vth, as stated above).

Similarly, one can obtain a simplified expression for situations in which the firing

rate takes relatively low values. This occurs for Vth − µ ≫ σ, when the mean

current is not able to produce strong depolarizations by itself and the spikes are

induced by the input fluctuations. In this case, the integral will be dominated by

the upper integration limit, which satisfies yth ≫ 1. One can then approximate

f(z) ≃ 2
√

π exp (z2) (since erf(z) ≃ 2 for large z), and compute the integral
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∫ yth

yr

2
√

π exp
(
z2
)
dz ≃ πerfi(yth). (B.13)

with erfi(z) being the imaginary error function, namely erfi(z) ≡ −i erf(iz). Finally,

considering the asymptotic expansion of erfi(z) up to first order one finally gets

ν ≃ yth

τm

√
π

exp
(
−y2

th

)
, (B.14)

which constitutes a good approximation for low firing rates. Since typical sponta-

neous activity in the cortex lies on low rates (of around ∼ 5 Hz, for instance), this

simplified expression is useful to obtain analytical estimates of neuron firing rates

in the cortex. One should be careful about its range of validity, though.



Appendix C

Stochastic ANN with dynamic

synapses

In chapter 6, we have studied the effect of dynamic synapses in some relevant prop-

erties of attractor neural networks (ANN) at zero temperature limit (T = 0), such

as the maximum storage capacity of the network or the size of the basins of attrac-

tion of the stored patterns. In particular, we discussed in section 6.3.1 the range

of validity of our theoretical calculations, and we demonstrated that the mean-field

approach presented there could be applied to situations with low (but greater than

zero) temperature, as long as the system reaches a steady state (for instance, a recall,

non-recall, or spin-glass state). In this appendix, we employ the mean-field theory

developed in chapter 6 to present some theoretical results, together with numerical

simulations, for ANN with dynamic synapses and T > 0.

Attending to the results previously obtained in section 6.3.1, the mean-field

equations that describe the steady states of ANN with dynamic synapses at low

temperature are

m =

〈〈
tanh


β̂


m + z

√

αr + α

(
1 + γγ′ − γ′

γ′

)2




〉〉

(C.1)

q =

〈〈
tanh2


β̂


m + z

√

αr + α

(
1 + γγ′ − γ′

γ′

)2




〉〉

(C.2)

r =
q

(
1 − β̂(1 − q)

)2 . (C.3)

This set of equations may be simplified for certain situations of interest. In particu-

lar, if one considers a finite number of stored patterns P (and therefore α = P
N

→ 0

in the thermodynamic limit, that is, for N → ∞), the mean-field equations are

decoupled, and equation (C.1) becomes
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Figure C.1: Left: steady state of the overlap function m of an ANN, with dynamic

synapses and one stored pattern (α = 0), as a function of T . For the case of static

synapses, the critical temperature is about Tc ≃ 1, as one could expect. The inclusion

of STD (STF) leads to obtaining lower (higher) values of Tc. Simulations of an ANN

of N = 1500 neurons (points) support our mean-field predictions (lines). Right: critical

temperature Tc as a function of τfac, for different values of τrec. In both panels, USE = 0.5.

m = tanh(β̂m), (C.4)

with β̂ = γ′

1+γγ′
β, β = 1/T , γ ≡ USEτrec and γ′ ≡ 1+τfac

1+USEτfac
. A relevant issue to

consider here is the possible influence of dynamic synapses on the critical temperature

Tc for which the system passes from a recall phase to a non-recall phase. In this

case, since equations of the type of (C.4) are widely known in the literature (Amit,

1989; Peretto, 1992), the corresponding critical temperature takes the well known

value of β̂c = 1. This gives the following dependence for the critical temperature,

Tc =
γ′

1 + γγ′ . (C.5)

This dependence of Tc with the synaptic parameters is only valid for situations in

which the system has reached a steady state, as was mentioned above. In addition

to this mean-field prediction, the critical temperature Tc may be evaluated from a

numerical point of view by looking the value of T for which the steady state of the

overlap decays to zero (Amit, 1989; Peretto, 1992). This is depicted in left panel of

figure C.1, which shows the influence of the synaptic time constants τrec and τfac

on the value of Tc. For the case of static synapses (τrec = τfac = 0), the critical

temperature takes the usual value Tc = 1. When STD is present (τrec > 0), one

observes that lower values of Tc are obtained (around TC ≃ 0.5 in the figure). Such

result indicates that ANNs with depressing synapses require a low level of intrinsic
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Figure C.2: Critical line (T, α) separating the recall phase (memory phase) and the

spin-glass phase for an ANN with dynamic synapses. One can observe that the inclusion

of STF extends the area of the recall phase, and decreases the area of the spin-glass phase.

The figure also shows that increasing τfac yields larger values of Tc and αc, as we have

already discussed in this appendix and in chapter 6. Numerical simulations (points) of an

ANN of N = 1500 neurons support our mean-field predictions (lines). Other parameters

are τrec = 2 and USE = 0.2.

stochasticity to perform adequately. On the other hand, the inclusion of STF leads

to larger values of Tc, indicating that an optimal performance in retrieval tasks may

be achieved by ANN with facilitating synapses even in the presence of high levels

of intrinsic noise. This is also shown in right panel of figure C.1, where one can see

that Tc is a monotonically increasing function of τfac, for different values of the STD

time scale.

A detailed theoretical description of the phase diagram of the system may be

achieved as well for α > 0. In order to accomplish this, equations (C.1-C.3) have

to be numerically solved (by employing, for instance, a minimization numerical

algorithm) to find the steady state values of the variables m, q and r. Typically,

situations in which mµ ∼ O(1) for a given pattern µ (that is, the pattern µ has

a macroscopic overlap), mν ∼ O(1/
√

N) for ν 6= µ and q ∼ 1 corresponds to the

recall phase. On the other hand, situations in which several of the patterns have a

macroscopic overlap and q < 1 corresponds to the spin-glass phase. In figure C.2

the phase diagram (T, α) for different values of the synaptic parameters is depicted.
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For clarity purposes, we have focused only in the critical line separating the recall

phase and the spin-glass phase. As one can see, STD and STF time constants have

a highly notorious effect on the critical lines of the phase diagram. In particular, the

conclusions we obtained previously in this appendix and in chapter 6 are confirmed

by this diagram. One can observe, for instance, that the critical temperature for

α → 0 increases with τfac, as we recently stated. In addition, the increment in the

maximum storage capacity αc for T → 0 with τfac, which was one of the results

presented in chapter 6, is also confirmed in the phase diagram, by means of both

the mean-field approach and numerical simulations. A more exhaustive analysis of

the properties of ANNs with dynamic synapses in general conditions, considering

also the non-recall phase which has been, for simplicity, omitted in the diagram

presented above, is in preparation (Mejias et al., 2009).



Appendix D

Resumen en español

El sistema nervioso es considerado, en la actualidad, como el dispositivo de proce-

samiento de información más avanzado que se conoce. Incluso los sistemas nerviosos

de pequeños invertebrados parecen sobrepasar cómodamente las capacidades de los

dispositivos tecnológicos más avanzados, en lo que a asimilación y codificación de

información se refiere. Gracias al sistema nervioso, los organismos vivos superi-

ores son capaces de analizar los est́ımulos procedentes del entorno y responder en

consecuencia, incrementando aśı sus probabilidades de éxito en muchas actividades

vitales, como por ejemplo la obtención de alimentos, la reproducción, o escapar de

la amenaza de depredadores. A medida que los seres vivos han evolucionado hacia

formas más complejas, sus sistemas nerviosos se han vuelto también más sofisti-

cados y han adquirido estructuras altamente jerarquizadas, tanto anatómica como

fisiológicamente. La aparición y desarrollo del cerebro, como estructura central del

sistema nervioso, ha supuesto un gran avance en las habilidades de los organismos

superiores para resolver problemas de alto nivel, e incluso ha conllevado una gran

capacidad de aprendizaje en el caso de los mamı́feros. El caso particular de la es-

pecie humana es quizás el más claro ejemplo de las implicaciones que puede tener

tal estructura de procesamiento de información: el lenguaje e interacciones sociales

de alto nivel, el pensamiento racional, la Ciencia, la Poeśıa o la Música son solo

algunos de los ejemplos que vienen a la mente.

Algunas de las caracteŕısticas de los sistemas nerviosos resultan altamente ven-

tajosas para el procesamiento de información, y han atráıdo la atención de muchos

investigadores, procedentes de distintas áreas de trabajo, durante el siglo pasado.

Por ejemplo, los primeros intentos de reproducir dichas caracteŕısticas en dispositivos

artificiales supuso un gran avance en campos de conocimiento emergentes, como la

inteligencia artificial o las ciencias de la computación. Se han desarrollado, en este

contexto, un gran número de estrategias computacionales y algoritmos altamente

eficientes que conciernen, por ejemplo, a la categorización de imágenes, problemas

156
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de optimización en ciencia e ingenieŕıa, o el diseño de nuevas interfaces hombre-

máquina (Cabestany et al., 2009). A pesar de estos avances, nuestro conocimiento

acerca de las estrategias que constituyen la clave de la eficiencia de los sistemas

neuronales es aún muy primitivo.

En las últimas décadas, sin embargo, se ha realizado un notable esfuerzo para

desentrañar las estrategias computacionales que emplea el sistema nervioso. La

disciplina cient́ıfica que emerge de este esfuerzo, conocida como Neurociencia Com-

putacional, plantea el estudio de los sistemas neuronales desde un punto de vista

funcional, para aśı identificar algunas de estas estrategias computacionales básicas.

Para alcanzar este objetivo, dicha disciplina se basa en el estudio de modelos matemáticos

de neuronas, sinapsis y otras estructuras, y de los datos experimentales utilizados

para desarrollar tales modelos. En la mayoŕıa de los casos, los estudios experimen-

tales no son suficientes para esclarecer cómo se procesa la información en los sistemas

neuronales bajo estudio, dado que dichos sistemas sólo son parcialmente observables

con las técnicas experimentales disponibles en la actualidad. Por otra parte, una

porción significativa de la fenomenoloǵıa observada en el cerebro (y asociada a cier-

tas funciones cerebrales) podŕıa deberse al efecto colectivo de muchos elementos

(entorno a ∼ 1010, si consideramos a las neuronas como dichos elementos). Tal

situación no podŕıa controlarse experimentalmente, y requeriŕıa de otras formas de

abordar el problema. Asimismo, los modelos matemáticos de sistemas neuronales

pueden proporcionar al experimentador nuevos enfoques e hipótesis susceptibles de

corroboración experimental.

Debido a esta interacción entre experimentos y modelos matemáticos, la Neu-

rociencia Computacional es un campo altamente interdisciplinar, en el que investi-

gadores de ámbitos teóricos y experimentales han contribuido al creciente desarrollo

que el campo ha experimentado en los últimos años. Esta metodoloǵıa se refleja,

por ejemplo, en el modelo matemático de neurona presentado por Hodgkin y Huxley

en 1952, desarrollado para describir de una forma cuantitativa las propiedades de la

membrana celular medidas en experimentos de electrofisioloǵıa en el axon gigante

del calamar (Hodgkin and Huxley, 1952b). Este modelo es una de las descripciones

matemáticas más útiles y representativas en Neurociencia, y constituyó un avance

muy significativo en dicho campo. En las últimas décadas, de hecho, se han constru-

ido una gran variedad de modelos neuronales para mejorar, extender o simplificar

este modelo paradigmático de neurona (véase, como ejemplo, (Izhikevich, 2004)).

El desarrollo de los modelos de redes neuronales atractoras constitute otro ejem-

plo relevante, desde un punto de vista más teórico, del reciente avance de la Neu-

rociencia Computacional. Dado que muchos sistemas neuronales están constituidos

por un ingente número de elementos – las neuronas –, en ocasiones resulta de utilidad

adoptar técnicas de Mecánica Estad́ıstica para alcanzar una descripción satisfactoria
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del sistema a estudiar. T́ıpicamente, la Mecánica Estad́ıstica estudia sistemas for-

mados por una gran cantidad de elementos microscópicos que interactúan de acuerdo

con leyes estocásticas (como gases, sólidos magnéticos, enjambres, vidrios de esṕın,

o veh́ıculos en modelos de tráfico, por ejemplo). Esta disciplina se vale de las leyes

que rigen los elementos microscópicos del sistema para describir el comportamiento

colectivo emergente del mismo a través de ciertas magnitudes macroscópicas (Marro

and Dickman, 1999; Cortes, 2005). Bajo ciertas condiciones, los sistemas neuronales

pueden ser descritos en este marco teórico. Un ejemplo notable de esto lo constituyen

los modelos de redes atractoras, que asumiendo una dinámica relativamente sencilla

para las neuronas, estudian la aparición de comportamientos colectivos (como la

denominada memoria asociativa) que emergen de la interacción entre las neuronas.

En este contexto, se considera que las neuronas son las unidades fundamentales

de procesamiento de información, mientras que las sinápsis actúan meramente como

conexiones a través de las cuales se comunican las neuronas. Este marco conceptual,

sin embargo, parece ser excesivamente simplista a la luz de recientes estudios que in-

dican que las sinapsis participan activamente en el procesamiento de información en

el cerebro. En los últimos años, por ejemplo, se ha descubierto que la intensidad con

la que las sinapsis transmiten la información entre neuronas puede variar en escalas

de tiempo pequeñas, dependiendo de la actividad presináptica (Abbott et al., 1997;

Tsodyks and Markram, 1997; Abbott and Regehr, 2004). Tales hallazgos indican

que las sinapsis tienen, junto a las neuronas, un papel activo en la codificación y

procesamiento de información.

La posibilidad de que ocurran modificaciones sinápticas en escalas de tiempo

pequeñas en función de la actividad presináptica se conoce como plasticidad sináptica

de corto alcance (Zucker and Regehr, 2002; Hempel et al., 2000), y las sinapsis que

presentan dicho comportamiento se denominan sinapsis dinámicas. De acuerdo con

los procesos biof́ısicos subyacentes, suelen distinguirse dos mecanismos principales

responsables de la plasticidad sináptica de corto alcance: la depresión de corto

alcance (STD, por sus siglas en inglés) y la facilitación de corto alcance (STF, por

sus siglas en inglés). El primero de estos mecanismos es responsable de reducir la

intensidad de la respuesta postsináptica bajo una estimulación continuada, mientras

que el segundo mecanismo induce un incremento de la respuesta postsináptica bajo

el mismo tipo de est́ımulo.

Las implicaciones funcionales y computacionales de STD y STF no han sido

comprendidas en profundidad aún, aunque se sabe que estos mecanismos podŕıan

jugar un papel importante en procesos de transmisión y codificación de la infor-

mación. Estudios recientes muestran, por ejemplo, que la presencia de STD tiene

una enorme influencia en la dinámica de ciertos sistemas neuronales, y que está

implicada en el control de ganancia en las sinapsis (Abbott et al., 1997), en el man-
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tenimiento de estados de alta actividad en el cortex (Romani et al., 2006), en el

almacenamiento de información en redes neuronales atractoras (Bibitchkov et al.,

2002; Torres et al., 2002), en la detección de señales coincidentes (Pantic et al.,

2003), o en la aparición de “saltos” entre differentes patrones de actividad en redes

de neuronas recurrentes (Pantic et al., 2002; Cortes et al., 2006), que podŕıa estar

relacionado con las transiciones espontáneas entre distintos niveles de actividad cor-

tical (Holcman and Tsodyks, 2006). La mayoŕıa de estos estudios, sin embargo, no

consideran el posible efecto de STF, que está presente también en muchas de las es-

tructuras neuronales analizadas en estos trabajos. Esta consideración reviste un gran

interés, puesto que STD y STF producen, a priori, efectos opuestos en la respuesta

postsináptica, por lo que ignorar los efectos de STF puede alejar las predicciones de

los modelos del comportamiento real de dichos sistemas. Además, considerar estos

dos mecanismos simultáneamente en los modelos matemáticos puede revelar nuevos

tipos de comportamiento emergente debidos a la interacción entre STD y STF. De

hecho, esta interacción podŕıa explicar ciertos comportamientos, observados en sis-

temas neuronales reales, que distan de ser entendidos en su totalidad. Algunos de

estos comportamientos son la detección de señales débiles en entornos de activi-

dad neuronal altamente ruidosa (Abbott et al., 1997), la habilidad de los circuitos

neuronales para almacenar información mientras procesa la información de manera

eficiente (Pantic et al., 2003), o el alto nivel de irregularidad observado incluso en

dinámicas neuronales altamente sincronizadas, como por ejemplo la heterogeneidad

de la duración de los denominados estados up de actividad cortical (Anderson et al.,

2000). A pesar de su posible implicación en todos estos fenómenos, el estudio de la

interacción entre STD y STF no se ha llevado a cabo aún de manera rigurosa.

En este contexto, el principal objetivo de esta tesis es investigar el

papel e implicaciones de la interacción entre los mecanismos de depresión

y facilitación de corto alcance en las propiedades computacionales de

sistemas neuronales de interés.

Objetivos principales de la tesis

El trabajo presentado en esta tesis persigue, como ya hemos dicho, esclarecer

los efectos de la plasticidad sináptica en ciertos sistemas neuronales. En la mayoŕıa

de los casos, los análisis se han llevado a cabo a través de simulaciones numéricas

y tratamientos teóricos de diversos modelos matemáticos que, por otra parte, com-

prenden diferentes niveles de detalle en la descripción de las estructuras estudiadas.

Concretamente, los principales objetivos de esta tesis han sido:

• Alcanzar un conocimiento más detallado de la influencia de ciertos mecanis-

mos biof́ısicos sinápticos (como STD y STF) en la capacidad que tienen los
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sistemas neuronales t́ıpicos para detectar y procesar la información relevante

en entornos de actividad ruidosa. Tal objetivo reviste un gran interés puesto

que, aunque se conoce el efecto de la plasticidad sináptica de corto alcance en

situaciones experimentales controladas, sus efectos en condiciones más realistas

distan de ser comprendidas. Asimismo, se sabe que la plasticidad sináptica se

halla presente en un gran número de áreas cerebrales, en las que las neuronas

operan en un entorno altamente estocástico. Por tanto, sin una caracteri-

zación detallada de los efectos de STD y STF, las predicciones e hipótesis que

los modelos matemáticos aportaran al conocimiento del funcionamiento del

cerebro podŕıan ser eqúıvocas.

• Investigar el efecto de una posible competición e interacción entre STD y

STF (y otros mecanismos de adaptación que puedan presentarse en las es-

tructuras neuronales estudiadas) en el comportamiento emergente de sistemas

neuronales. Dicho estudio constituye una parte esencial en la caracterización

de los efectos de STD y STF en condiciones realistas, y puede resultar de

utilidad para identificar nuevos comportamientos que emerjan de dicha com-

petición entre mecanismos.

• Caracterizar el papel de los mecanismos sinápticos de corto alcance en algunos

de los comportamientos colectivos que se dan en el cerebro, como por ejemplo

las dinámicas que dan lugar a la memoria asociativa o las transiciones entre

estados up-down (que implican una alta sincronización entre neuronas). En

particular, un estudio del efecto de la plasticidad de corto alcance en estos dos

ejemplos mencionados puede arrojar luz sobre aspectos de estos fenómenos

que aún están por explicar.

Estructura de la tesis

El estudio presentado en esta tesis está estructurado como sigue: el caṕıtulo 2

constituye una introducción general básica sobre la bioloǵıa de los sistemas neu-

ronales. Una vez que dicha introducción ha sido expuesta, el caṕıtulo 3 introduce al

lector en el marco de los modelos matemáticos en Neurociencia, con especial énfasis

en los modelos de plasticidad sináptica de corto alcance. En los siguientes caṕıtulos

se presentan los resultados originales de esta tesis. Más concretamente, en el caṕıtulo

4 se estudia el papel de STD y STF en la detección de señales coincidentes en un

entorno de actividad ruidosa. Este análisis se extiende en el caṕıtulo 5, donde se

investiga el efecto de la interacción entre STD, STF, y otros mecanismos home-

ostáticos, en la detección de señales débiles por parte de una neurona. El caṕıtulo

6 expone las implicaciones de considerar plasticidad de corto alcance en las sinapsis
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de redes recurrentes de neuronas que presentan propiedades de memoria asociativa.

En el caṕıtulo 7 se estudia la dinámica compleja de la actividad de una población

de neuronas, resaltando el papel de la plasticidad de corto alcance. Finalmente, en

el caṕıtulo 8 se exponen las principales conclusiones de esta tesis, destacando las

futuras ĺıneas de investigación que nuestro estudio ha motivado.

Esta tesis está estructurada de manera que se parte de estructuras neuronales

simples (por ejemplo, de sistemas de tipo perceptrón en los caṕıtulos 4 y 5) y se

avanza hasta modelos de poblaciones neuronales grandes (caṕıtulos 6 y 7). Igual-

mente, desde el punto de vista de la complejidad de los modelos empleados, la

tesis se estructura de mayor a menor complejidad: los caṕıtulos 4 y 5, por ejemplo,

presentan modelos realistas (aunque aún muy simplificados) de neuronas y sinap-

sis. En el caṕıtulo 6 se emplean modelos binarios de neuronas para describir la

dinámica de redes de neuronas, y finalmente en el caṕıtulo 7 se trabaja con un

modelo que describe directamente la actividad de una población de neuronas, sin

detallar las dinámicas de neuronas individuales. Por lo tanto, desde un punto de

vista metodológico, cuanto más complejo es el sistema neuronal bajo estudio, más

simple es el modelo matemático empleado para su análisis.

A continuación exponemos más detalladamente cada caṕıtulo, incluyendo aque-

llos que constituyen las aportaciones originales de esta tesis (es decir, los caṕıtulos

del 4 al 7):

En el caṕıtulo 2 presentamos una breve revisión sobre la anatomı́a y fisioloǵıa

del sistema nervioso. Dicha revisión incluye los aspectos de bioloǵıa empleados en los

siguientes caṕıtulos, y proporciona algunas descripciones y referencias importantes

al lector. El caṕıtulo comienza con una breve exposición de las distintas partes

del sistema nervioso central humano, con especial énfasis en el cortex. Después,

se describen las caracteŕısticas básicas de neuronas y sinapsis, y se detallan los

mecanismos biof́ısicos responsables de la plasticidad de corto alcance.

En el caṕıtulo 3 se revisan algunos de los modelos matemáticos más relevantes

en Neurociencia, para complementar la introducción biológica del caṕıtulo 2. Se de-

scriben brevemente algunos modelos neuronales de interés, comenzando por los más

detallados (como el modelo de conductancias de Hodgkin y Huxley) y terminando

con los más simples (como los modelos binarios de neurona). Tras esta exposición, se

detallan algunos modelos de transmisión sináptica, incluyendo algunos comúnmente

empleados para describir la plasticidad de corto alcance. Finalmente, se esbozan

algunas estrategias usadas para modelar redes de neuronas.

Tras exponer las bases biológicas y metodológicas de nuestro estudio, comen-

zamos el análisis de los efectos de STD y STF en sistemas neuronales muy simples.

En particular, en el caṕıtulo 4 se estudia la detección de señales correlacionadas



Appendix D. Resumen en español 162

en circuitos neuronales simples, en presencia de plasticidad de corto alcance y en un

entorno de actividad ruidosa. Más concretamente, empleando un modelo realista de

STD y STF, se estudian las condiciones en las que una neurona postsináptica detecta

de forma eficiente los potenciales de acción (AP) coincidentes en el tiempo proce-

dentes de N neuronas presinápticas que disparan a cierta frecuencia. Un tratamiento

anaĺıtico y numérico de este sistema muestra que: i) STF mejora la detección de

señales correlacionadas procedentes de un subconjunto de neuronas presinápticas

excitadoras, y ii) la presencia de STF conlleva una mejora en la detección de cam-

bios en la frecuencia de disparo de las neuronas presinápticas. Se observa también

que STF induce la aparición de una frecuencia presináptica óptima que permite una

detección eficiente para un amplio (y máximo) rango de valores de los umbrales de

disparo neuronales. Esta frecuencia óptima puede ajustarse mediante el valor de los

parámetros del modelo de STF. Finalmente, se muestra la robustez de los resultados

frente a señales ruidosas y estocasticidad en los modelos de transmisión sináptica.

En el caṕıtulo 5 se extiende el estudio comenzado en el caṕıtulo 4 mediante el

análisis de la detección de señales débiles, por parte de modelos neuronales de tipo

integración-y-disparo (IF), en presencia de plasticidad sináptica de corto alcance y

un entorno de actividad ruidosa. Empleando tanto técnicas de campo medio como

simulaciones numéricas,observamos la existencia de dos niveles de ruido que op-

timizan la transmisión de la señal (en esta tesis, nos referimos a dicho fenómeno

con el nombre de resonancia bimodal). Este hallazgo contrasta fuertemente con

la fenomenoloǵıa conocida como resonancia estocástica, que es capaz de predecir

sólo un nivel de ruido que optimiza la transmisión de señales débiles. El análisis

muestra que la interacción entre ciertos mecanismos de adaptación neuronal y la

plasticidad sináptica de corto alcance es responsable de la aparición de dicho com-

portamiento. Nuestros resultados son confirmados mediante el empleo de un modelo

más realista de neurona (el modelo de FitzHugh-Nagumo), que presenta mecanismos

intŕınsecos de adaptación neuronal, aśı como mediante el uso de señales y modelos de

sinápsis más realistas. Por último, se muestran datos experimentales de resonancia

estocástica en reflejos táctiles en humanos que corroboran nuestros resultados.

El siguiente paso extiende el estudio a modelos de grandes poblaciones de neu-

ronas. Concretamente, en el caṕıtulo 6 estudiamos, anaĺıticamente y mediante el

empleo de simulaciones Monte Carlo, la influencia de la competición entre STD y

STF en las capacidades de almacenamiento de información en redes de neuronas

atractoras. Al contrario de lo que ocurre con sinapsis depresoras, con las que la ca-

pacidad de almacenamiento de patrones “estáticos” de actividad se ve drásticamente

reducida, STF mejora dicha capacidad de almacenamiento en diferentes condiciones.

En particular, encontramos valores óptimos de los parámetros del modelo para los

que la capacidad de almacenamiento de patrones es máxima y comparable a la
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obtenida con sinapsis estáticas (es decir, en ausencia de plasticidad de corto al-

cance). Concluimos pues que un cierto balance entre los niveles de depresión y

facilitación resultan convenientes para un óptimo almacenamiento de información,

manteniendo asimismo las caracteŕısticas no-lineales de las sinapsis dinámicas que

son altamente convenientes para el procesamiento de información.

Tras el análisis de la capacidad de almacenamiento de información en redes neu-

ronales con sinapsis dinámicas (lo cual puede verse como un estudio de propiedades

de estado estacionario), nos centramos en el efecto de STD en la dinámica de la

actividad de poblaciones de neuronas. En particular, en el caṕıtulo 7 abordamos

el estudio de la dinámica de transiciones de voltaje entre estados up-down obser-

vadas en regiones corticales del cerebro, y que constituye un ejemplo de dinámica

compleja en sistemas neuronales. Estudiamos esta fenomenoloǵıa a través de un

modelo estocástico biestable simple (concretamente, un modelo de rate), en el que

la corriente sináptica viene modulada por procesos de plasticidad de corto alcance

(en particular, STD) que introducen fluctuaciones y correlaciones temporales en el

sistema. Un exhaustivo análisis del modelo, mediante aproximaciones teóricas y

simulaciones numéricas, muestra la aparición de transiciones entre estados up-down

dirigidas por las fluctuaciones sinápticas, con una distribución de tiempos de perma-

nencia en el estado up que sigue una ley de potencias. Estos resultados concuerdan

con observaciones experimentales recientes que indican la aparición de criticalidad

en la dinámica de transiciones entre diferentes estados de actividad neuronal.

Finalmente, en el caṕıtulo 8 se presentan las principales conclusiones de esta

tesis, con énfasis en el papel de la interacción entre STD y STF en las propiedades

computacionales de sistemas neuronales modelados bajo diferentes niveles de aprox-

imación. Las posibles implicaciones de esta interacción en diferentes fenómenos y

comportamientos observados en el cerebro, aśı como las futuras ĺıneas de investi-

gación que esta tesis propone, son concretadas de igual forma.
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