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CONTENTS 1

Summary

This thesis opens new research lines in the field of Spatial and/or Temporal Functional

Statistics. The original motivation of the thesis was to contribute to the field of panel data

analysis adopting a functional perspective. Specifically, the primary objective of this thesis was

to derive flexible statistical models and methodologies for the analysis of correlated curve data

in space, or alternatively, for correlated surfaces in time, covering, in particular, the infinite-

dimensional multivariate framework. Summarizing, the main contributions of this thesis are

related to the following topics:

• The implementation of Spatial Autoregressive Hilbertian extrapolators by projection.

• The formulation of new classes of models in the context of spatial functional multiple

regression when response and regressors are Hilbert-valued variables, considering the case

where the regression operators are spatially heterogeneous.

• The introduction of spatial functional classification techniques based on the estimation of

spatial mixed effect models with fixed and random effect curves having a heterogeneous

behavior in space.

• The extension of the proposed weak-dependent models in the context of spatial time series

theory to the long-range dependence case in terms of Gegenbauer polynomials.

• The formulation of new RKHS based estimation methodologies for autoregressive Hilber-

tian processes.
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2 CONTENTS

• The derivation of sufficient conditions for the asymptotic normal distribution of maximum

likelihood estimators for Gaussian autoregressive Hilbertian processes.

• Finally, the consideration of the theory of multifractional pseudodifferential operators for

the representation of heterogeneous curve data behaviors in space (i.e., variable order

of differentiation in the weak and mean-square sense), solving the associated functional

least-squares estimation problem.
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CONTENTS 3

Resumen

Esta tesis desarrolla nuevas ĺıneas de investigación en el campo de la Estad́ıstica Funcional

Espacial o/y Temporal. La motivación original de la tesis es contribuir en el campo del análisis

de datos de panel adoptando una perspectiva funcional. Espećıficamente, el principal objetivo

de esta tesis fue la derivación de modelos estad́ısticos y metodoloǵıas más flexibles para el

análisis de curvas correladas en el espacio, o alternativamente, para superficies con correlación

temporal, cubriendo, en particular, el marco multivariante infinito-dimensional. Resumiendo,

las principales aportaciones de esta tesis están relacionadas con los siguientes temas:

• La implementación mediante diferentes metodoloǵıas de proyección del extrapolador espa-

cial autorregresivo Hilbertiano en modelos SARH(1).

• La formulación de nuevas clases de modelos en el contexto de la regresión múltiple funcional

espacial, cuando la respuesta y los regresores son variables Hilbert-valuadas, considerando

el caso donde los operadores de regresión son espacialmente heterogéneos.

• La introducción de nuevas técnicas de clasificación espacial funcional, basadas en la esti-

mación de modelos de efectos mixtos espaciales Hilbert-valuados, cuyas curvas de efectos

fijos y aleatorios presentan un comportamiento heterogéneo en el espacio.

• La extensión de los modelos con dependencia débil propuestos al contexto de series espa-

ciales con dependencia de largo rango, en términos de los polinomios Gegenbauer.

• La formulación de una metodoloǵıa de estimación penalizada, basada en la teoŕıa de es-

pacios del núcleo reproductor, para procesos autorregresivos Hilbertianos de orden uno.
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4 CONTENTS

• La derivación de condiciones suficientes para la normalidad asintótica de estimadores

máxima verośımiles de los operadores que definen los parámetros de la ecuación de es-

tados satisfecha por procesos autorregresivos Hilbertianos Gaussianos.

• Finalmente, la consideración de la teoŕıa de los operadores pseudodiferenciales multifra-

cionales para la representación de curvas aleatorias heterogéneas espacialmente (es decir,

con orden variable de diferenciación en sentido débil y en media cuadrática), resolviendo

el problema asociado de estimación funcional por mı́nimos cuadrados.
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Chapter 1

Introduction

The classical time series theory is applied to the statistical analysis of the evolution of a phenom-

ena over time. However, the statistical analysis of panel data requires the introduction of new

classes of models processing sample information from multiple phenomena (dependent variable)

crossed with the observation of several independent variables whose effect on the response should

be studied through different time periods incorporating temporal correlations. Dimension re-

duction techniques then appear as a fundamental topic in panel data analysis, since inference

techniques must be implemented incorporating the sample information provided by long record

of observations in time in a large dimensional multivariate framework. These techniques should

avoid the loss of information in the temporal dimension, which enriches the analysis of panel

data, and constitutes a key aspect in most of the areas of application (e.g., Econometrics), and,

in particular, in the treatment of great variety of problems such as migration flow, carbon diox-

ide emissions, energy consumption, environmental studies, shares price control of companies in

stock market, the determinant factors of international tourism (see Mah́ıa, 2000; Mayda, 2008;

Nayaran and Narayan, 2010; Schweinberger, 2012; Wang, et al., 2011, among others).

Dynamical linear modeling constitutes one of the most popular tools in the statistical analysis

of panel data analysis. Specifically, temporal correlated fixed, random and mixed effect models

have been widely applied (see, Arellano and Honoré, 2001; Aquaro and Cižek, 2014; Wu and Su,

7



8 Introduction

2010, among others). In the framework of linear dynamical fixed effect models, robust estimation,

based on the median of two consecutive pairs of correlated values, is addressed in Aquaro and

Cižek (2014) (see also Verardi and Wagner, 2010). In the mixed effect contexto, Meintanis

(2011) introduces a new method to check the normality of the error components of statistical

panel data models, based on the empirical distribution function and the empirical characteristic

function. Generalized quasi-likelihood estimation of mixed effect panel data models has been

applied in Sun and Sutradhar (2013). Arellano and BonHomme (2012) consider the method of

moments for the parametric estimation of linear panel data models with random coefficients.

Dynamical linear regression modeling also constitutes a key subject in the statistical analysis

of panel data (see, for example, Cardot and Sarda, 2011, where a functional framework is

adopted; Hu, Sun and Wei, 2003; You and Zhou, 2006; Zhao and Tong, 2011, in relation

to the classical approach for dynamical regression). A semi-parametric estimator of weighted

least-squares is introduced by You et al. (2010) for the partially linear regression models with

heteroscedastic errors. See also Galvao (2011) and Lin, Li and Sun (2014) in the fixed effect

framework, and He et al. (2008) or McKitrick, McIntyre and Herman (2010) in the multivariate

regression context.

The pioneer work by Kalbfleisch and Lawless (1985) introduces the panel data modeling

approach based on continuous Markov models. Qian and Wang (2012) proposed a new semi-

parametric estimation method to approximate the non-linear component in panel data models.

See also the papers on non-linear modeling by Chen, Gao and Li (2012); Honoré (2002); Huang,

Wang and Zhang (2006); Lee (2014); Li, Chen, and Gao (2011); Su and Lu (2013); Zhang et al.

(2011).

Interaction between individuals with a specific spatial location, or, in general, interaction

between multivariate variables measured at different locations in space can be reflected applying

classical tools for Spatial Statistics to panel data modeling. This fact allows the consideration of
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Introduction 9

a new dimension in the panel data analysis in the presence spatial correlations. Some of the works

where spatial dependence is incorporated in the statistical analysis of panel data are Burnett,

Bergstromb, and Dorfman (2013); Debarsy and Ertur (2010); Driscoll and Kraay (1998); Elhorst

(2010); Lee and Yu (2010); Yu, Jong and Lee (2012)). Non-parametric techniques are applied in

Driscoll and Kraay (1998) for the estimation of covariance matrices characterizing the presence

of spatial correlations. Lee and Yu (2010) derive the asymptotic properties of quasi-likelihood

estimators for spatial mixed effects models. In this spatial mixed-effect framework, different

inference approaches can be implemented since the maximum-likelihood based approach until

the Empirical Bayesian and purely Bayesian frameworks (see, Meintanis, 2011; Olokoyo, 2013;

Salamh, 2011; Wu et al., 2011; Wu and Li, 2014; Wu and Zhu, 2012, Ugarte et al., 2009,

among others). A spatial autoregressive framework is adopted in Badinger and Egger (2013) to

modeling spatial dynamical error components. The spatial prediction problem in the context of

spatial dynamical regression models has been addressed in the papers by Baltagi and Li (2004);

Baltagi and Pirotte (2010); Baltagi, Bresson and Pirotte (2012); Baltagi, Fingleton and Pirotte

(2014), to mention just a few.

In the context of Spatiotemporal Statistics (see Ugarte et al. (2009, 2010, 2012) in relation

to statistical inference from the spatiotemporal mixed-effect approach the analysis of disease

mapping), new results on panel data analysis incorporating the temporal and spatial dimensions

in the multivariate response and transversal random variables, as well possible temporal and

spatial correlations have been derived, for example, in the papers by Debarsy, Ertur and LeSage

(2012); Parent and LeSage (2010, 2011); Salmerón and Ruiz-Medina (2011), and the references

therein.

The aim of the present thesis is to contribute to the panel data analysis in a spatiotemporal

framework adopting a functional statistical approach in time or space. Specifically, the main

contributions of this thesis are related to the statistical analysis of spatial correlated curves, as

Tesis Doctoral Rosa M. Espejo Montes



10 Introduction

well as temporal correlated surfaces. Most of the spatial functional statistical models and tech-

niques proposed, for the analysis of curves displaying spatial interactions, are motivated by real

data problems in the area of Finances and Environment. In the context of functional dynamic

modeling the contributions of this thesis are mainly given within the Hilbertian autoregressive

time series framework where our main reference is the book by Bosq (2000). A brief sketch of

the most significant references in the development of this thesis, from the temporal and spatial

functional statistical frameworks, is now provided.

The availability of long-record of observations at numerous databases in many fields of ap-

plication, environment, economy, finance, education, climate change, road safety, sport, health,

psychology, medicine, biology, among other areas, motivates an extensive literature in the last

few decades in relation to statistical analysis of functional data. In a probabilistic context,

infinite-dimensional probability distributions are considered as suitable models to characterize

the behavior of functional observations, like curves, surfaces, etc. Several approaches to func-

tional prediction in time from the Hilbert-valued time series approach have been investigated in

the papers by Antoniadis, Paparoditis and Sapatinas (2006); Antoniadis, and Sapatinas (2003);

Mourid (2002), among others. Indeed, the framework of functional (Hilbert-valued) series has

been widely discussed (see Besse, Cardot and Stephenson, 2000; Damon and Guillas, 2002, 2005;

Hörmann and Kokoszka, 2011; Horváth, Kokoszka and Reeder, 2013), although there are still

many open research lines in this field. As commented, the texts of Bosq (2000) and Bosq and

Blanke (2007) constitutes one of the key references in the development of this thesis that have

inspired most of the models and estimation methodologies proposed. These books provide the

introduction, nonparametric estimation, and prediction based on autoregressive Hilbertian pro-

cesses. Several results describing the asymptotic behavior of the estimators derived are obtained

as well (see also Cardot et al. 2003; Damon and Guillas, 2005; Mas, 2007; Ruiz-Medina and

Salmerón, 2010; Ruiz-Medina, Salmerón and Angulo, 2007; Salmerón and Ruiz-Medina, 2009).
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On the other hand, principal component analysis and canonical correlation analysis for infinite-

dimensional random variables have been extensively applied in the context of linear models in

function spaces (see, for example, the classical text by Ramsay and Silverman, 2005).

A classical text on functional non-paranetric statistics is the book by Ferraty and Vieu

(2006), (see also the references by Ferraty, Kudraszow and Vieu, 2012; Ferraty and Vieu, 2004).

Antoniadis, Paparoditis and Sapatinas (2006) consider nonparametric estimation techniques for

functional regression. Giraitis, Kapetanios and Yates (2014) introduce a new class of nonpara-

metric autoregressive processes which decompose in a temporal series with varying coefficients

in time. Shang (2013) considers the estimation of the error component in a nonparametric func-

tional regression model with functional predictor and scalar response by a Bayesian approach

(see also, in the context nonparametric statistics, Li and Hsing, 2010; Laksaci, Rachdi and

Rahmani, 2013; Lian, 2012, among others). Aneiros-Perez, Cao and Vilar-Fernandez (2011)

consider the problem of the prediction of temporal series using nonparametric functional tech-

niques, performing an extension of the linear regression method with functional explanatory

variables. Earls and Hooker (2014) have proposed a Bayesian inference method for functional

data characterized by a Gaussian process. Angelini, De Canditiis, and Pensky (2012) analyze

the temporal correlation between Gaussian curves in a nonparametric regression framework,

using the theory of reproducing kernel Hilbert spaces generated by wavelet bases.

Spatial Functional Statistics is a relatively new branch of Statistics allowing the analysis of

spatial correlated functional observations. In particular, we will refer to the papers by Guil-

las and Lai (2010) where spatial functional regression models based on bivariate splines are

introduced, and least squares estimation is applied with/without penalty term from the approx-

imation of the surface of explanatory random variables by projection. Bayesian inference from

spatial correlated curves is implemented in Baladandayuthapani et al. (2008). Spatial correla-

tion analysis for high-dimensional data from a functional perspective is considered in Fan and

Tesis Doctoral Rosa M. Espejo Montes



12 Introduction

Zhang (2000). Cokriging techniques for spatial functional data are implemented in Nerini, Mon-

estiez and Manté (2010). Giraldo, Delicado and Mateu (2010) implement a spatial functional

predictor, based on temporal kriging techniques from projection on suitable functional bases.

In the context of nonparametric statistics, Basse, Diop and Dabo-Niag (2008) propose kernel-

based density estimators for spatial correlated functional random variables. Motivated by ocean

variable studies, Nerini and Ghattas (2010) apply functional statistical classification tools for

the analysis of spatial correlated curve data. We also mention the papers by Giraldo, Delicado,

and Mateu (2012); Romano, Giraldo and Mateu (2011), and Secchi, Vantini and Vitelli (2011)

on functional statistical classification of spatially correlated curves. Finally, we refer to the

Bayesian framework adopted in Ma et al. (2008) for spatial functional statistical classification

based on information criteria.

Spatial time series models with values in a separable Hilbert-space are introduced in Ruiz-

Medina (2011), where conditions for their stationarity and invertibility are investigated. The

non-parametric estimation of the operators defining the functional parameters of the state space

equation associated with the Spatial Autoregressive Hilbertian process of order one (SARH(1)

process) is obtained in Ruiz-Medina (2012a) by projection into the dual eigenvector systems

of such autocovariance operators. A review on the state of the art of the current literature

on Spatial Functional Statistics, as well as on the most relevant open problems that could be

addressed is reflected in Ruiz-Medina (2012b).

As commented before, the aim of the present thesis is to contribute with new results of

theoretical and computational nature to the development of new tools in the field of Spatial

Functional Statistics, as well as to solve some problems that still remain open in the field of

Temporal Functional Statistics motivated by their possible application to the field of panel

data analysis. Summarizing, in this thesis, new models and methodological approaches are

proposed for the statistical analysis of spatial and temporal correlated curves and surfaces.
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These contributions can be distributed in three parts according to the field where they are

located. Specifically, the first part of the thesis reflects the main results derived in the area of

Spatial Functional Statistics for the analysis of correlated curves in space, and in particular,

for the analysis of panel data under this perspective. The second part reflects the main results

obtained in the field of Hilbert-valued time series models. In particular, we concentrate in

the study of the class of Autoregressive Hilbertian processes of order one (ARH(1) processes).

Finally, the third part is related to the spatial functional modeling under the multifractional

pseudodifferential equation approach, providing the regularization of the associated least-squares

functional estimation problem, in terms of suitable functional bases related to the corresponding

Reproducing Kernel Hilbert Space (RKHS), whose elements display a spatial heterogenous local

regular behavior (variable order of differentiation).

Appendix A1 implements the SARH(1) extrapolator defined in Ruiz-Medina (2012a) by pro-

jection into the eigenvectors of the auto-covariance operator of SARH(1) process. The optimal

dimension reduction, in the sense of variance, obtained with the application of this projection

methodology is illustrated with a real-data example related to spatial extrapolation of ocean

surface temperature curves at different areas of the earth globe, where global warming and cli-

mate change effects must be analyzed. Alternatively, Appendix A2 provides the implementation

of SARH(1) extrapolator in terms of the discrete compactly supported wavelet transform to

weaken strong spatial correlations between curve data that hinder the SARH(1) analysis previ-

ously developed in terms of the eigenvectors of the auto-covariance operator. The application of

this transform is motivated by the high spatial concentration of weather stations in the ocean

islands, that induce strong spatial correlations in the observed ocean surface temperature curves

at such weather stations. In Appendix A3, a new class of spatially heterogeneous multiple re-

gression models for random variables with values in a separable Hilbert space is introduced. The

error term is assumed to be weak correlated in space according to SARH(1) state space equation.
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The implementation of the proposed non-parametric estimators of the regression operators and

the functional parameters defining the SARH(1) state space equation, satisfied by the functional

error term, is also derived in this appendix. The formulated model is motivated by financial

applications. Specifically, in previous empirical studies developed for the analysis of firm panel

data, it has been tested the non-stability in space of regression coefficients defining the linear

relationship between firm factors and indebtedness curves. In addition, the effect of institutional

factors and the industrial sector (both aspects usually introduced in the statistical analysis as

dummy variables), is reflected in terms of possible heterogeneities in this linear relationship, and

it had also constituted the subject of several empirical studies in the financial context. Both

aspects motivate the introduction of the new class of models formulated in Appendix A3, in

the Hilbert-valued context, to reflect possible spatial heterogeneities in the linear relationship

between the firm factors and indebtedness curves, as well as the presence of possible spatial

correlations between firm indebtedness curves within an industry sector. The spatial depen-

dence between firm indebtedness curves could also be introduced through a random functional

parameter in the model. This fact motivates the subject of Appendix A4, where a new class

of spatial functional statistical models is derived in the mixed effect framework. A new classifi-

cation methodology for spatial correlated curves is formulated, based on the introduced spatial

functional mixed effect model, leading to the detection of local spatial homogeneous patterns

in the regression operators involved in the definition of the fixed effect curves, as well as the

detection of local spatial homogeneous patterns in the mean-quadratic functional local variation

in space of random effect curves. Finally, in this part of the thesis a new model family is derived

to represent strong correlation in the space. The extension of the class of temporal autoregres-

sive Gegenbauer process to the spatial and Hilbert-valued context is performed in Appendix A5.

Their structural properties are analyzed as well.

In the context of Gaussian ARH(1) processes, a penalized functional least-squares estimation
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technique, based on the RKHS geometry, is proposed to stabilize standardized mortality ratio

(SMR) in disease mapping. The motivation of this appendix relies on the real-data problem

analyzed in relation to breast cancer mortality in Spain. Specifically, classical approaches like the

ones based on Conditional Autoregressive Models (CAR modeling) and spline-based smoothing,

in a mixed effect framework, present the problem of an hyper-smoothing of the breast cancer

mortality log-relative-risk curves at each one of the Spanish provinces analyzed (small areas

analyzed). This is the reason why in Appendix A6, a new approach is presented for stabilization

of SMR, based on the combination of ARH(1) and RKHS approaches, to interpolate local

variability in a finer scale than the integer-order scale usually considered, avoiding false negatives

in the detection of risk areas. On the other hand, the smoothing parameter in the proposed

penalized estimation methodology is fitted by cross-validation, while in previous spline-based

smoothing approaches (see, for example, Ugarte et al., 2010) this parameter is approximated as a

variance component by applying maximum likelihood (ML) estimation methodology. This is the

reason why in Appendix A7 maximum-likelihood estimation methodology for ARH(1) processes

is studied. Specifically, in Appendix A7, the results derived in Ruiz-Medina and Salmerón (2010)

for Gaussian ARH(1) processes are extended to a more general family of ARH(1) processes whose

infinite-dimensional distribution belongs to the exponential family introduced in this appendix.

Additionally, the asymptotic normal distribution of ML estimators within suchH-valued random

variable family is derived.

The thesis ends with the introduction of a new family of Hilbert-valued Gaussian models

for curves, based on the theory of multifractional pseudodifferential equations. The associated

functional least-squares estimation problem for approximation of the functional values of the

solution is ill-posed. Its regularization can not be obtained in a direct way applying classical

numerical regularization methods, since the functions in the corresponding RKHS present a

variable order of differentiation depending on space. This is the reason why a new projection
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methodology is derived in Appendix A8 for regularization of this estimation problem removing

its ill-posed nature. Such a projection methodology is based on dual Riesz bases providing a

spectral diagonalization of the operator that generates the closed bilinear form defining the inner

product in the corresponding RKHS.

Before the eight appendixes that constitute the eight papers published in relation to the

contents of this thesis, we provide a brief sketch of the objectives, methodology and main results

and conclusions derived in these appendixes, in order to facilitate their reading by summarize

of the key aspects and points addressed in theses appendices.
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Chapter 2

Introducción

La teoŕıa clásica de series temporales surge como herramienta clásica para el análisis estad́ıstico

de la evolución temporal de magnitudes relacionadas con un determinado fenómeno en el tiempo.

Sin embargo, el análisis estad́ıstico de datos de panel requiere la introducción de nuevas clases de

modelos para procesar la información de múltiples magnitudes o bien, de diferentes fenómenos

que se hayan relacionados y cuyo efecto sobre la respuesta debe ser estudiado a través de difer-

entes periodos de tiempo incorporando la correlación temporal. Las técnicas de reducción de la

dimensión juegan entonces un papel fundamental en el análisis de datos de panel donde se analiza

la evolución temporal de la variable de interés y variables independientes (cortes transversales)

en un contexto multidimensional. Estas técnicas deben evitar la pérdida de información en la

dimensión temporal, aspecto crucial que enriquece el análisis de datos de panel, constituyendo

un aspecto clave en la mayoŕıa de los ámbitos de aplicación (por ejemplo, econometŕıa), y, en

particular, en el tratamiento de una gran variedad de problemas tales como el flujo de la mi-

gración, las emisiones de dióxido de carbono, consumo de enerǵıa, estudios ambientales, control

de acciones del precio de las empresas en el mercado de valores, los factores determinantes del

turismo internacional (ver Mah́ıa, 2000; Mayda, 2008; Nayaran y Narayan, 2010; Schweinberger,

2012; Wang, et al., 2011, entre otros).

Los modelos dinámicos lineales constituyen una de las herramientas más populares en el
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análisis estad́ıstico de datos de panel. Espećıficamente, los modelos fijos de correlación temporal,

los modelos de efectos mixtos y aleatorios han sido extensamente aplicados (véase, Arellano y

Honoré, 2001; Aquaro y Cižek, 2014; Wu y Su, 2010, entre otros). En el contexto de los modelos

de efectos fijos con dinámica lineal, Aquaro y Cižek (2014) abordan la estimación robusta, basada

en la mediana, de valores correlacionados (ver también Verardi y Wagner, 2010). En el marco

de los efectos mixtos, Meintanis (2011) introduce una nueva metodoloǵıa para comprobar la

normalidad de las componentes de error de los modelos estad́ısticos de datos de panel, basándose

en la función de distribución emṕırica y la función caracteŕıstica emṕırica. La estimación de

la cuasi-verosimilitud generalizada de los modelos de efectos mixtos de datos de panel ha sido

aplicada en Sun y Sutradhar (2013). Arellano y BonHomme (2012) consideran el método de

momentos para la estimación de modelos lineales de datos de panel con coeficientes aleatorios.

Los modelos de regresión con dinámica lineal también constituyen un aspecto clave en el

análisis estad́ıstico de datos de panel (véase, por ejemplo, Cardot y Sarda, 2011, donde se

adopta un marco funcional; Hu, Sun y Wei, 2003; You y Zhou, 2006; Zhao y Tong, 2011, en

relación con el enfoque clásico para la regresión dinámica). Un estimador semi-paramétrico

de mı́nimos cuadrados ponderados es introducido por You et al. (2010) para los modelos de

regresión parcialmente lineales con errores heterocedásticos. Ver también Galvao (2011) y Lin,

Li y Sun (2014) en el marco de efectos fijos, y He et al. (2008) o McKitrick, McIntyre y Herman

(2010) en el contexto de la regresión multivariante.

El trabajo inicial de Kalbfleisch y Lawless (1985) introduce la modelización, basada en pro-

cesos markovianos, en el contexto de datos de panel. Qian y Wang (2012) proponen un nuevo

método de estimación semi-paramétrico para aproximar la componente no lineal en modelos

para datos de panel. Ver también los trabajos desarrollados sobre modelización no-lineal de

Chen, Gao y Li (2012); Honoré (2002); Huang, Wang y Zhang (2006); Lee (2014); Li, Chen, y

Gao (2011); Su y Lu (2013); Zhang et al. (2011).
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Las herramientas clásicas de la Estad́ıstica Espacial permiten incorporar una nueva dimensión

en el análisis de datos de panel teniendo en cuenta la interacción entre individuos con una

ubicación espacial espećıfica, o en general, la interacción espacial entre variables multivariantes

medidas en diferentes localizaciones. Algunos de los trabajos donde se incorpora la correlación

espacial en el análisis estad́ıstico de los datos de panel son Burnett, Bergstromb, y Dorfman

(2013); Debarsy y Ertur (2010); Driscoll y Kraay (1998); Elhorst (2010); Lee y Yu (2010); Yu,

Jong y Lee (2012)). Driscoll y Kraay (1998) aplican técnicas no paramétricas en la estimación

de las matrices de covarianza que reflejan la presencia de correlación espacial. Lee y Yu (2010)

derivan las propiedades asintóticas de estimadores cuasi-verośımiles para modelos espaciales de

efectos mixtos. En este contexto de modelos espaciales de efectos mixtos, se han adoptado

diferentes enfoques para la inferencia que cubren desde el enfoque basado en la estimación por

máxima verosimilitud hasta el enfoque desarrollado en un marco emṕırico Bayesiano y puramente

bayesiano (véase, Meintanis, 2011; Olokoyo, 2013; Salamh, 2011; Ugarte et al., 2009; Wu et al.,

2011; Wu y Li, 2014; Wu y Zhu, 2012, entre otros). Badinger y Egger (2013) consideran un marco

autorregresivo espacial para la modelización dinámica de las componentes de error. Diferentes

contribuciones en el ámbito de la predicción a partir de modelos de regresión espaciales dinámicos

se pueden encontrar en los trabajos de Baltagi y Li (2004); Baltagi y Pirotte (2010); Baltagi,

Bresson y Pirotte (2012); Baltagi, Fingleton y Pirotte (2014) por mencionar algunos de los más

representativos.

Mediante la aplicación de técnicas de la Estad́ıstica Espacio-Temporal se pueden incorporar

simultáneamente las dos dimensiones en el análisis de datos de panel, aśı como las correlaciones

en espacio y tiempo en términos de modelos más sofisticados de covarianzas espacio-temporales

(ver Ugarte et al., 2009, 2010, 2012, en relación con la inferencia estad́ıstica a partir de modelos

de efectos mixtos espacio-temporales para el análisis de mapas de mortalidad de enfermedades).

En este ámbito del análisis estad́ıstico espacio-temporal de datos de panel nos referiremos a
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los trabajos de Debarsy, Ertur y LeSage (2012); Parent y LeSage (2010, 2011); Salmerón y

Ruiz-Medina (2011), entre otros, aśı como a las referencias alĺı reflejadas.

El objetivo de esta tesis es contribuir al análisis de datos de panel en un marco espacio-

temporal adoptando un enfoque estad́ıstico funcional en el tiempo o el espacio. Espećıficamente,

las principales aportaciones de esta tesis están relacionadas con el análisis estad́ıstico de curvas

con correlación espacial, aśı como de superficies con correlación temporal. La mayoŕıa de los

modelos y técnicas estad́ısticos funcionales espaciales propuestos en esta tesis han sido motivados

por problemas con datos reales en diferentes áreas aplicadas, especialmente, en las áreas de

finanzas y de medio-ambiente. Las series temporales autorregresivas Hilbertianas constituyen

el marco por excelencia en el desarrollo de modelos funcionales dinámicos temporales en esta

tesis. En este contexto nuestra referencia fundamental es el libro de Bosq (2000). Seguidamente

nos referiremos brevemente a las referencias más destacadas que han sido consideradas en el

desarrollo de esta tesis en el referido marco de la Estad́ıstica Funcional Temporal y Espacial.

La disponibilidad un amplio registro de observaciones en numerosas bases de datos en mu-

chos campos de aplicación, tales como medio ambiente, economı́a, finanzas, educación, cambio

climático, seguridad vial, deporte, salud, psicoloǵıa, medicina, bioloǵıa, entre otras áreas, mo-

tivan una extensa literatura en las últimas décadas en relación con el análisis estad́ıstico de

datos funcionales. En un contexto probabiĺıstico, las distribuciones de probabilidad infinito-

dimensionales son consideradas como modelos adecuados para caracterizar el comportamiento

aleatorio de curvas, superficies, etc. En el contexto de series temporales Hilbert-valuadas, se

han considerado diversos enfoques funcionales predictivos según se refleja en los trabajos de An-

toniadis, Paparoditis y Sapatinas (2006); Antoniadis, y Sapatinas (2003); Mourid (2002), entre

otros. De hecho, las propiedades asintóticas de los estimadores de los operadores de covarianza y

operadores de autocorrelación derivados en este contexto, incluyendo consistencia y normalidad

asintótica, han sido ampliamente investigadas, por ejemplo, en los trabajos de Besse, Cardot
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y Stephenson (2000); Damon y Guillas (2002, 2005); Hörmann y Kokoszka (2011); Horváth,

Kokoszka y Reeder (2013), aunque todav́ıa hay muchas ĺıneas de investigación abiertas en este

campo. Como se ha comentado, los textos de Bosq (2000) y Bosq y Blanke (2007) constituyen

una de las referencias clave en el desarrollo de esta tesis que ha inspirado la mayor parte de los

modelos y las metodoloǵıas de estimación propuestas en el ámbito temporal y espacial. Estos

libros proporcionan un marco de referencia para el desarrollo de la estimación y predicción no

paramétrica en series de curvas, aśı como para la inferencia asintótica, en particular, a par-

tir de procesos autorregresivos Hilbertianos (ver, por ejemplo, Cardot et al. 2003; Damon y

Guillas, 2005; Mas, 2007; Ruiz-Medina y Salmerón, 2010; Ruiz-Medina, Salmerón y Angulo,

2007; Salmerón y Ruiz-Medina, 2009). Por otro lado, el análisis de componentes principales y el

análisis de correlación canónica para variables aleatorias infinito-dimensionales ha sido amplia-

mente aplicado en el contexto de modelos lineales en espacios de funciones (ver, por ejemplo, el

texto clásico de Ramsay y Silverman, 2005).

Un texto clásico en la estad́ıstica funcional no-paramétrica es el libro de Ferray y Vieu (2006),

(véase también las referencias de Ferraty, Kudraszow y Vieu, 2012; Ferraty y Vieu, 2004). An-

toniadis, Paparoditis y Sapatinas (2006) consideran las técnicas de estimación no paramétrica

para la regresión funcional. Giraitis, Kapetanios y Yates (2014) introducen una nueva clase de

procesos autorregresivos no paramétricos, que se descomponen en una serie temporal con coefi-

cientes variables en el tiempo. Shang (2013) considera la estimación de la componente de error

en un modelo de regresión funcional no paramétrico con predictor funcional y respuesta escalar

bajo un enfoque bayesiano (véase también, en el contexto de la estad́ıstica no paramétrica, Li y

Hsing, 2010; Laksaci, Rachdi y Rahmani, 2013; Lian, 2012, entre otros). Aneiros-Pérez, Cao y

Vilar-Fernández (2011) consideran el problema de la predicción de series temporales utilizando

las técnicas funcionales no paramétricas, realizando una extensión del método de regresión lin-

eal con variables explicativas funcionales. Earls y Hooker (2014) han propuesto un método de
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inferencia bayesiana para los datos funcionales caracterizados en el marco de procesos Gaus-

sianos. Angelini, De Canditiis y Pensky (2012) analizan la correlación temporal entre las curvas

gaussianas en el ámbito de la regresión no paramétrica, utilizando la teoŕıa de espacios del núcleo

reproductor generados a partir de bases de wavelets.

La Estad́ıstica Funcional Espacial es una rama relativamente nueva de la estad́ıstica per-

mitiendo el análisis de observaciones funcionales correlacionadas espacialmente. En particular,

se hará referencia a los trabajos de Guillas y Lai (2010), donde se introducen los modelos de

regresión funcional espacial basados en splines bivariantes, y la estimación de mı́nimos cuadra-

dos es aplicada con/sin término de penalización a partir de la aproximación de las superficies

de variables aleatorias explicativas mediante proyección. La inferencia bayesiana a partir de

curvas correlacionadas espacialmente se implementa en Baladandayuthapani et al. (2008). El

análisis de correlación espacial de los datos de alta dimensión desde una perspectiva funcional

es considerado en Fan y Zhang (2000). Las técnicas cokriging para datos funcionales espaciales

se consideran en Nerini, Monestiez y Manté (2010). Giraldo, Delicado y Mateu (2010) derivan

técnicas de predicción espacial funcional, basadas en el kriging a partir de curvas mediante

proyección en bases de funciones adecuadas. En el contexto de la estad́ıstica no paramétrica,

Basse, Diop y Dabo-Niag (2008) proponen estimadores no paramétricos tipo núcleo para vari-

ables aleatorias funcionales correlacionadas espacialmente. Motivado por los estudios de vari-

ables en el océano, Nerini y Ghattas (2010) aplican herramientas funcionales de clasificación

estad́ıstica para el análisis de curvas con correlación espacial. También mencionamos los traba-

jos de Giraldo, Delicado y Mateu (2012); Romano, Giraldo y Mateu (2011) y Secchi, Vantini y

Vitelli (2011) sobre clasificación estad́ıstica funcional de curvas correlacionadas espacialmente.

Por último, nos referimos al enfoque bayesiano adoptado en Ma et al. (2008) para la derivación

de técnicas de clasificación estad́ıstica espacial funcional basadas en criterios de información.

Los modelos de series temporales espaciales con valores en un espacio de Hilbert separable son
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introducidos en Ruiz-Medina (2011), donde se investigan las condiciones para su estacionariedad

e invertibilidad. La estimación no paramétrica de los operadores que definen los parámetros

funcionales de la ecuación de estados, que refleja la dinámica espacial de un proceso espacial

autorregresivo Hilbertiano de orden uno (proceso SARH(1)), se obtiene en Ruiz-Medina (2012a)

a partir de su proyección en los sistemas de autovectores duales de dichos operadores. Una

revisión sobre los últimos avances en el campo de la Estad́ıstica Espacial Funcional, aśı como

sobre algunos de los posibles problemas abiertos a tratar se refleja en Ruiz-Medina (2012b).

Como se ha comentado anteriormente, el objetivo de la presente tesis es contribuir con

nuevos resultados teóricos y computacionales para el desarrollo de nuevas herramientas en el

campo de la Estad́ıstica Espacial Funcional, aśı como resolver algunos problemas que aún per-

manecen abiertos en el campo de la Estad́ıstica Funcional Temporal, motivados por su posible

aplicación en el análisis de datos de panel. Resumiendo, en esta tesis, se proponen nuevos mod-

elos y metodoloǵıas para el análisis estad́ıstico de curvas y superficies correlacionadas espacial

y temporalmente. Estas contribuciones pueden ser distribuidas en tres partes según el campo

en el que están ubicadas. Más concretamente, la primera parte de la tesis recoge los principales

resultados derivados en el área de la Estad́ıstica Espacial Funcional para el análisis de curvas

correlacionas en el espacio, y en particular, para el análisis de datos de panel bajo esta per-

spectiva. La segunda parte se recoge los principales resultados obtenidos en el campo de los

modelos de series temporales Hilbert-valuadas. En particular, nos centramos en el estudio de

la clase de los procesos autorregresivos Hilbertianos de orden uno (procesos ARH(1)). Final-

mente, la tercera parte está relacionada con la modelización espacial funcional bajo el enfoque

de operadores pseudodiferenciales multifracionarios, proporcionándose una regularización del

problema de estimación funcional de mı́nimos cuadrados, en términos de bases ortogonales de

funciones adecuadas, relacionados con el espacio del núcleo reproductor (RKHS), cuyos elemen-

tos muestran un comportamiento local con heterogeneidad espacial regular (orden variable de
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diferenciación en sentido débil) .

Apéndice A1 implementa el extrapolador SARH(1) definido en Ruiz-Medina (2012a) medi-

ante proyección en los autovectores de los operadores de auto-covarianza del proceso SARH(1).

La reducción óptima de la dimensión, en el sentido del máximo nivel de varianza explicada con

el mı́nimo número de términos, se obtiene con la aplicación de esta metodoloǵıa de proyección.

Se ilustra dicha metodooǵıa de estimación espacial funcional mediante un ejemplo con datos

reales relacionados con la extrapolación espacial de las curvas de temperatura de la superficie

del océano en diferentes zonas del planeta tierra, donde los efectos del calentamiento global y

del cambio climático deben analizarse. Alternativamente, el Apéndice A2 proporciona la im-

plementación del extrapolador SARH(1) en términos de la transformada wavelet discreta con

soporte compacto para debilitar la fuerte correlación espacial entre curvas de datos que dificultan

el análisis SARH(1), desarrollado anteriormente en términos de los auto-vectores del operador

de auto-covarianza. La aplicación de esta transformación está motivada por la elevada concen-

tración espacial de las estaciones meteorológicas en las islas del océano, que inducen una fuerte

correlación espacial en las curvas de la temperatura de la superficie del océano observadas. En el

apéndice A3, se introduce una nueva clase de modelos de regresión múltiple espacialmente het-

erogéneos para variables aleatorias con valores en un espacio de Hilbert separable. Se supone que

el término de error es un proceso SARH(1). La implementación de los estimadores propuestos

para los operadores de regresión y de los parámetros funcionales que definen la ecuación espacial

de estados del proceso SARH(1), verificada por el término de error funcional, se derivan en este

apéndice. El modelo formulado está motivado por una aplicación financiera. Espećıficamente,

en estudios emṕıricos previos desarrollados para el análisis de datos de panel en finanzas, se

hab́ıa probado la no estabilidad en el espacio de los coeficientes de regresión que definen la

relación lineal entre los factores empresariales y las curvas de endeudamiento. Además, el efecto

de los factores institucionales y el sector industrial (ambos aspectos suelen ser introducidos en
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el análisis estad́ıstico como variables dummy), se refleja usualmente en términos de posibles

heterogeneidades en la realción lineal asumida entre las curvas de endeudamiento y factores em-

presariales. Este hecho ha impulsado el desarrollo de diversos estudios emṕıricos en el contexto

financiero. Ambos aspectos motivan la introducción de una nueva clase de modelos formula-

dos en el Anexo A3, en el contexto Hilbert-valuado, para reflejar las posibles heterogeneidades

espaciales en la relación lineal entre los factores empresariales y las curvas de endeudamiento,

aśı como la presencia de una posible correlación espacial entre las curvas de endeudamiento de

las empresas dentro de un sector industrial. La dependencia espacial entre las curvas de endeu-

damiento de las diferentes empresas también puede ser introducida a través de un parámetro

funcional aleatorio en el modelo. Este hecho motiva el tema del Apéndice A4, donde una nueva

clase de modelos estad́ısticos espaciales funcionales es derivada en el marco de los efectos mix-

tos. Una nueva metodoloǵıa de clasificación para las curvas con correlación espacial es formulada

entonces, basada en la introducción y estimación de modelos espaciales funcionales de efectos

mixtos, dando lugar a la detección de patrones locales espaciales homogéneos en los operadores

de regresión que se hallan invoucrados en la definición de las curvas de efectos fijos, aśı como se

obtiene la detección de patrones locales espaciales homogéneos en la variación local funcional en

media cuadrática en el espacio de las curvas de efectos aleatorios. Finalmente, en esta parte de la

tesis, se extiende la familias de modelos presentadas para curvas débilmente correlacionadas en

el el espacio al ámbito de las series espaciales que permiten representar dependencias espaciales

de largo rango. La extensión de la clase de procesos temporales autorregresivos de Gegenbauer

al contexto espacial y al contexto Hilbert-valuado se realiza en el Apéndice A5. Sus propiedades

estructurales son también analizadas.

En el contexto Gaussiano de los procesos ARH(1), se formula una técnica de estimación fun-

cional penalizada mı́nimo cuadrática, basada en la geometŕıa del espacio del núcleo reproductor,

para estabilizar la ratio de mortalidad estandarizada (SMR) en los mapas de enfermedades. La
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motivación de este apéndice surge con un problema con datos reales relacionado con el cáncer de

mama en España. Espećıficamente, los enfoques clásicos basados en los modelos condicionales

autorregresivos (modelos CAR) y en las bases de splines, dentro del marco general de los mod-

elos de efectos mixtos, presentan el problema de que producen un suavizamiento local excesivo

(también a gran escala) de las curvas de log-riesgo relativo de la mortalidad por cáncer de mama

en cada una de las provincias españolas analizadas (pequeñas áreas analizadas). Esta es la razón

por la cual, en el Apéndice A6, se presenta un nuevo enfoque para la estabilización de los SMRs,

basado en la combinación de los enfoques ARH(1) y RKHS, para interpolar la variabilidad local

que se produce en la escala más fina (microescala) que suele ser menos suave que la variación lo-

cal usualmente reflejada con la diferenciación de orden entero. Se evita aśı el problema de falsos

negativos en la detección de áreas de alto riesgo. Por otra parte, el parámetro de suavizado en la

metodoloǵıa de estimación penalizada propuesta se ajusta por validación cruzada, mientras que

en los enfoques mencionados (ver, por ejemplo, Ugarte et al., 2010) este parámetro se estima

como una componente de la varianza por el método de máxima verosimilitud (ML). Esta es

la razón por la cual en el Apéndice A7 se estudia la metodoloǵıa de estimación por máxima

verosimilitud para procesos ARH(1). Más concretamente, en el apéndice A7, los resultados

derivados en Ruiz-Medina y Salmerón (2010) para procesos ARH(1) Gaussianos son extendi-

dos a una familia más general de los procesos ARH(1), cuya distribución infinito-dimensional

pertenece a la familia exponencial introducida en este apéndice. Además, la distribución normal

asintótica de los estimadores ML dentro de esta familia aleatoria H−valuada es derivada.

La tesis finaliza con la introducción de una nueva familia de modelos Gaussianos Hilbert-

valuados para curvas, a partir de la teoŕıa de ecuaciones pseudodiferenciales multifraccionarias.

Se aborda asimismo el problema de estimación funcional mı́nimo cuadrática asociado para aprox-

imar los valores funcionales de la solución. Nótese que la regularización directa de este problema

mediante aplicación de las técnicas númericas usuales de proyección no es posible, ya que las
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funciones del RKHS asociado presentan un orden de variable de diferenciación que depende de la

localización espacial. Esta es la razón por la cual se deriva una nueva metodoloǵıa de proyección

en el Apéndice A8 para la regularización de este problema de estimación, lo que permite una in-

versión continua para el cálculo de la solución. Dicha metodoloǵıa de proyección está basada en

las bases Riesz-duales que proporcionan una diagonalización espectral del operador que genera

la forma bilineal cerrada asociada al producto escalar en la correspondiente RKHS.

Antes de los ocho anexos que constituyen los ocho art́ıculos publicados en relación con los

contenido de esta tesis, ofrecemos un breve resumen de los objetivos, la metodoloǵıa y los

principales resultados y conclusiones que se derivan de estos apéndices, con el fin de facilitar su

lectura proporcionando una visión global y concisa de los aspectos y puntos clave abordados en

su desarrollo.
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Chapter 3

Objectives

• Appendix A1. This appendix has as main objective to provide an alternative projection

methodology to the one considered in Ruiz-Medina (2012a) for implementation of the

SARH(1) extrapolator. Specifically, the spatial functional extrapolator derived in Ruiz-

Medina (2012a) for a SARH(1) process Y, satisfying the state space equation

Yi,j = R+ L1(Yi−1,j) + L2(Yi,j−1) + L3(Yi−1,j−1) + ϵi,j , (3.1)

with R, ϵ ∈ H, and ϵ being strong Hilbertian white noise, is implemented by projection into

the common biorthogonal eigenvector systems of the bounded linear operators Li ∈ L(H),

i = 1, 2, 3, acting on the separable Hilbert spaceH. These eigenvectors provide a continuous

inversion of the following equation system, satisfied by operators Li, i = 1, 2, 3,

R1,0 = L1R0,0 + L2R1,1 + L3R0,1,

R0,1 = L1R1,1 + L2R0,0 + L3R1,0,

R1,1 = L1R0,1 + L2R1,0 + L3R0,0, (3.2)

and a spectral diagonalization of equation (3.1). However, they do not provide an optimal

dimension reduction in the sense of variance. This is the reason why Appendix 1 has as

primary objective to test the eigenvector system of the auto-covariance operator of process

Y.
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• Appendix A2. The presence of strong spatial correlations hinders the SARH(1) statis-

tical analysis based on projection into the auto-covariance eigenvector system. Hence, A2

has as aim to implement SARH(1) extrapolator in terms of compactly supported wavelet

bases that weaken correlations and provide a suitable processing of border effects without

lengthening the support of the analyzed functional data.

• Appendix A3. In Ruiz-Medina (2011) the SARH(p) and MAH(q) models are introduced.

They are able to represent homogeneous spatial dynamics and dependence. However,

several nature phenomena display heterogeneity in space. This fact motivates the objective

of Appendix A3 where a new class of spatial heterogeneous functional multiple regression

models is introduced having Hilbert-valued spatially correlated error term satisfying the

SARH(1) state space equation (3.1).

• Appendix A4. Spatial dependence between curves could also be introduced through a

functional random parameter. This is the approach adopted in Appendix A4 that has

the objective to formulate a functional statistical classification methodology in the spatial

functional mixed effect framework, based on the following model:

Y(·,x) = XFE β⃗(·,x) +XRE ν⃗(·,x) + σϵ⃗(·,x), x ∈ D ⊂ Rn, (3.3)

where XFE and XRE represent the respective functional fixed and random effect design

matrices. For each spatial location x ∈ D, each component of the functional vectors

Y(·,x), β(·,x), ν⃗(·,x) and ϵ⃗(·,x) lies in the real separable Hilbert space H. In a general

setting, D could be an open bounded domain in Rn. Y(·,x), β(·,x), ν⃗(·,x) and ϵ⃗(·,x)

respectively denote the vectors of response, fixed effect, random effect and error curves

observed at spatial location x ∈ D.

• Appendix A5. In the previous appendixes weak-dependence spatial functional models

are analyzed within the time series theory. The aim of Appendix A5 is to extend this
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class of models to the strong dependence case. Specifically, autoregressive Gegenbauer

processes are introduced in the spatial domain. The case of spatial autoregressive Hilbert-

valued Gegenbauer processes is also considered. Note that this class of models can display

multiple spectral singularities.

• Appendix A6. Inference on ARH(1) processes has been developed in Bosq (2000) under a

nonparametric perspective. The objective of Appendix A6 is to provide a penalized RKHS

approach for estimation and prediction of ARH(1) processes based on the implementation

of Kalman filtering algorithm, from the moment-based empirical estimators of the auto-

covariance and cross covariance operators of an ARH(1) process, as well as from the

corresponding estimator of the autocorrelation operator, obtained in Bosq (2000).

• Appendix A7. Maximum likelihood estimation of Gaussian ARH(1) processes has been

implemented in Ruiz-Medina and Salmerón (2010) by combination of Kalman filtering

with Expectation Maximization algorithm (EM algorithm). Appendix A7 has an primary

objective to extend maximum likelihood estimation for ARH(1) processes from the Gassian

context to the Exponential Hilbert-valued family framework introduced. The asymptotic

normal distribution of the derived maximum likelihood estimator is derived as well.

• Appendix A8. A new class of Gaussian fractional generalized random fields is introduced

in terms of multifractional pseudodifferential equations in Ruiz-Medina, Anh and Angulo

(2004). The Hilbert-valued formulation of these models constitutes the aim of Appendix 8,

where the regularization of the associated least-squares estimation problem is addressed,

in terms of projection into dual Riesz bases that provide a spectral diagonalization of

the auto-covariance operator of the solution, and they generate the associated RKHS

constituted by functions with variable order of differentiation.
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Chapter 4

Methodology

• Appendix A1. The estimation methodology proposed in this appendix consists of the

following steps:

Step 1. To project equation system (3.2) into the auto-covariance eigenvector system

ϕk, k ≥ 1, satisfying

RXϕk = λk, k ≥ 1,

where RX = E[Xt ⊗Xt] = E[(Yt −R)⊗ (Yt −R)], with E[Yt] = R ∈ H, for all t ≥ 0,

and Yt being a SARH(1) process satisfying state space equation (3.1).

Step 2. Given a truncation order M, a finite-dimensional approximation of equation

system (3.2) is obtained, whose matrix solution is defined as follows: Λ̂(L1)

Λ̂(L2)

Λ̂(L3)

 =

 Λ(R̂0,0) Λ(R̂1,1) Λ(R̂0,1)

Λ(R̂1,1) Λ(R̂0,0) Λ(R̂1,0)

Λ(R̂0,1) Λ(R̂1,0) Λ(R̂0,0)

−1  Λ(R̂1,0)

Λ(R̂0,1)

Λ(R̂1,1)

 , (4.1)

where, for a Hilbert-Schmidt operator K on H, Λ(K) represents the matrix whose

entries are the coordinates of operator K with respect to the tensorial product basis

{ϕl ⊗ ϕm, l,m = 1, . . . L} ,

i.e., the matrix with entry (i, j), given by λi,j(K), for i, j = 1, . . . L. Also, Λ̂(Lk)

denotes the estimate of matrix Λ(Lk), for k = 1, 2, 3.
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Note that, the presented projection methodology is selected because it provides a sparse

finite-dimensional version of (3.2) after truncation, since Λ(R̂0,0) are diagonal matrices.

• Appendix A2. The projection methodology adopted in this appendix for implementation

of the SARH(1) extrapolator

E [Zi,j | Zk,l, k < i, or l < j, or k < i and l < j]

= L1Zi−1,j + L2Zi,j−1 + L3Zi−1,j−1

≃ L̂1Zi−1,j + L̂2Zi,j−1 + L̂3Zi−1,j−1

(4.2)

is based on the compactly supported wavelet transform, which as commented before, it

weakens correlations and provides a suitable processing of border effects. The resulting

finite dimensional approximation of the solution to the SARH(1) estimation problem in

the wavelet domain is given by ŴM
2D(L1)

ŴM
2D(L2)

ŴM
2D(L3)

 =

 WM
2D(R̂0,0) WM

2D(R̂1,1) WM
2D(R̂0,1)

WM
2D(R̂1,1) WM

2D(R̂0,0) WM
2D(R̂1,0)

WM
2D(R̂0,1) WM

2D(R̂1,0) WM
2D(R̂0,0)

−1  WM
2D(R̂1,0)

WM
2D(R̂0,1)

WM
2D(R̂1,1)


where WM

2D denotes the two-dimensional discrete interval wavelet transform at resolution

level M.

• Appendix A3. The following spatial functional multiple regression model with regression

operators depending on space and with functional response and regressors is introduced

in this appendix

Z(i, j) = L1(i, j)X1 + . . .+ Lq(i, j)Xq + ε(i, j), (4.3)
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where the error term ε(i, j) is assumed to be a SARH(1) process. The regression operators

Li, i = 1, . . . , q, are estimated from the equation system

R̂1(i, j) = L̂1(i, j)R̂11 + L̂2(i, j)R̂12 + . . .+ L̂q(i, j)R̂1q,

R̂2(i, j) = L̂1(i, j)R̂21 + L̂2(i, j)R̂22 + . . .+ L̂q(i, j)R̂2q,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R̂q(i, j) = L̂1(i, j)R̂q1 + L̂2(i, j)R̂q2 + . . .+ L̂q(i, j)R̂qq, (4.4)

for each (i, j) ∈ {1, . . . ,K} × {1, . . . , N}. The projection into a suitable orthogonal or

biorthogonal basis leads to the following finite-dimensional inversion of (A3.23):

 Φ∗
M (i, j)L1(i, j)ΦM (i, j)

. . .
Φ∗
M (i, j)Lq(i, j)ΦM (i, j)



=


C
(
R̂1,1

)
C
(
R̂1,2

)
. . . C

(
R̂1,q

)
. . . . . . . . . . . .

C
(
R̂q,1

)
C
(
R̂q,2

)
. . . C

(
R̂q,q

)

−1 

C
(
R̂1(i, j)

)
. . .

C
(
R̂q(i, j)

)
 ,

(4.5)

where, as before, for each (i, j) ∈ {1, . . . ,K}×{1, . . . , N}, C(K(i, j)) represents the coordi-

nate matrix of operatorK(i, j) with respect to the basis
{
ϕ̂
R̂0(i,j)
l ⊗ ϕ̂

R̂0(i,j)
m , l,m = 1, . . .M(i, j)

}
.

Functional parameter estimation of the corresponding Hilbert-valued residuals, after fit-

ting model (A3.21), is then achieved through the application of the SARH(1) projection

estimation methodology derived in the previous appendices.

• Appendix A4. The spatial functional classification methodology adop-

ted here is based on the spatial functional mixed effect model (3.3). Specifically, the

functional design matrices of the fixed and random effect curves are assumed to be the
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identity matrices in the respective separable Hilbert spaces. Additionally, it is assumed

that the fixed effect curves display a linear spatially heterogeneous relationship with a set

the functional regressors, represented in terms of a spatially dependent multiple regres-

sion model like the one introduced in Appendix A3. The random effect curves satisfy a

SARH(1) equation, and the Hilbert-valued error term is Hilbert-valued strong Gaussian

white noise. After application of the functional multiple regression estimation methodol-

ogy derived in Appendix A3, and the SARH(1) estimation methodology implemented in

Appendix A1-A2, the proposed spatial functional classification methodology is applied.

Specifically, fixed effect curves are classified according to the Hilbert-Schmidt distances

between their estimated vectors of regression operators. While random effect curves are

classified by computation of a wavelet approximation of the empirical SARH(1) variogram

given in terms of the estimated SARH(1) parameters. Summarizing, by the application of

the proposed functional classification methodology, local homogeneous patterns in space

are detected in the functional linear relationship of the fixed effect curves with the regres-

sors, as well as in the spatial local variation of the random effect curves.

• Appendix A5. Inspired by the work of Gray, Zhang and Woodward (1989) and Wood-

ward, Cheng and Gray (1998), the model class introduced in Appendix 5 extends to the

spatial and Hilbert-valued contexts the family of autoregressive Gegenbauer processes in

time. The methodological approach adopted extends the one presented in the cited pa-

pers for the introduction of temporal autoregressive Gegenbauer processes. Specifically,

the methodological extension presented in this appendix allows the introduction of the

following families of spatial processes:

i) Spatial Gegenbauer processes, for (t1, t2) ∈ Z2,

∇d1
u1

◦ ∇d2
u2
Xt1,t2 =

(
I − 2u1B1 +B2

1

)d1 ◦ (I − 2u2B2 +B2
2

)d2 Xt1,t2 = εt1,t2 ,(4.6)
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where Bi, for i = 1, 2, denotes the backward-shift operators for each spatial coordi-

nate, that is, B1Xt1,t2 = Xt1−1,t2 , and B2Xt1,t2 = Xt1,t2−1, and εt1,t2 is white noise.

ii) Spatial autoregressive Gegenbauer process, for (t1, t2) ∈ Z2,

ϕ(B1, B2)(I − 2u1B1 +B2
1)

d1(I − 2u2B2 +B2
2)

d2(Yt1,t2 − µ) = εt1,t2 .

where ϕ is the spatial autoregressive operator.

iii) Spatial autoregressive Gegenbauer process with multiple singularities,

ϕ(B1, B2)

k−1∏
j=1

(
I − 2B1 cos(µ

j
1) +B2

1

)dj1 k−1∏
j=1

(
I − 2B2 cos(µ

j
2) +B2

2

)dj2
Yt1,t2 = εt1,t2 .

iv) Hilbert-valued spatial autoregressive Gegenbauer process, for (i, j) ∈ Z2,

ϕ(B1, B2)(I − 2M1B1 +B2
1)

d1(I − 2M2B2 +B2
2)

d2(Yi,j −R) = ε(i, j),

where Mi, i = 1, 2, are bounded linear operators on H, and R, Yi,j , and ε(i, j) ∈ H.

• Appendix A6 Goicoa, Ugarte, Etxeberria and Militno, (2012) develop a comparative

study between CAR and P-spline modeling through a mixed-effect approach for smoothing

and stabilization of mortality risks in disease mapping. In Appendix A6, we also adopt a

mixed-effect framework in the Hilbert-valued context to stabilize standardized mortality

ratios in disease mapping. The RKHS-based penalized estimation methodology of ARH(1)

processes derived in this appendix considers the following minimization problem:

min
F (·)∈H(Z)

1

T

T∑
t=1

∥β(·) + ut(·)− F (Z1, . . . , Zt)∥2H0(Z) + γ∥ΦH1(Z) (F (Z1, . . . , Zt)) ∥2H1(Z),

(4.7)

where H(Z) denotes the RKHS generated by the kernel KZ of the auto-covariance operator

RZ
0 = E[(Zt − β)⊗ (Zt − β)] = E[(Z1 − β)⊗ (Z1 − β)], for t = 1, . . . , T, with T denoting
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the number of observed times. Here, the Hilbert-valued process u satisfies the ARH(1)

equation

ut = A (ut−1) + νt, t ∈ Z,

with νt denoting a Hilbert-valued Gaussian process in the strong sense representing the

functional innovations. The H-valued observation model is defined in a mixed effect frame-

work as follows:

Zt(i) = β(i) + ut(i) + εt(i), i = 1, . . . , l, t = 1, . . . T, (4.8)

where β, Zt, ut, εt ∈ H, for t = 1, . . . , T, H = L2(D), D ⊂ R2. The functional fixed effect

parameter βi does not depend on time, while the random effect parameter ut is an ARH(1)

process. The zero-mean H-valued Gaussian process εt satisfies

E[εt(i)εs(j)] = δ(t− s)δ(i− j), ∀i, j = 1, . . . , l, t, s ∈ R+.

The index i refers to specific spatial coordinates xi = (xi1, xi2) ∈ D associated with the i

region studied, for i = 1, . . . , l. Note that we are assuming that the support of the spatial

functions in H includes the locations xi = (xi1, xi2), i = 1, . . . , l, whose coordinates define

the centroid associated with each one of the small areas under study. In addition, the

two norms involved in equation (A6.3) are respectively given in term of the spaces H0(Z)

and H1(Z), whose direct sum defines the RKHS H(Z) = H0(Z)⊕H1(Z) of Z. It is well-

known (see, for example, Bosq, (2000)), that H(Z) can be isometrically identified with

the closed subspace H(Z) of L2
H(Ω,A, P ) generated by the zero-mean Gaussian Hilbert-

valued random variables Zt − β, t ∈ R+, and their limits in the mean-square sense, where

(Ω,A, P ) denotes, as usual, the basic probability space. Thus, H(Z) ≡ H(Z). The inner

product ⟨·, ·⟩H(Z) in H(Z) is defined from the closed bilinear form generated by operator

[RZ
0 ]

−1, the inverse of operator RZ
0 , that is,

⟨f, g⟩H(Z) = [RZ
0 ]

−1(f)(g), ∀f, g ∈ H(Z). (4.9)
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Appendix A7. In the Appendix A7, a generalization of an invariance principle for

Robbins-Monro type processes, formulated in terms of Hilbert-valued martingale differ-

ences, is applied to provide the convergence to the gaussian distribution of the maximum-

likelihood estimator of the auto-covariance operator

(Rν) = E[νt ⊗ νt], t ∈ Z,

of the innovation process ν involved in the definition of the state space equation of an

ARH(1) process, given by

Zt = Yt(·)− µ(·) = A (Zt−1) (·) + νt(·), t ∈ Z. (4.10)

Here, as before, µ, Yt, νt ∈ H, t ∈ Z, with H being a separable Hilbert space. The

innovation process ν is assumed to be a zero-mean H-valued martingale difference process.

The infinite-dimensional parameter A lying in the space of bounded linear operators on H

is the autocovariance operator. The functional parameter vector (A, Rν) ∈ L(H)×S(H),

with S(H) denoting the space of Hilbert-Schmidt operators on H. Appendix A7 provides

sufficient conditions for the asymptotic normal distribution of the maximum likelihood

estimator Θ̂ = R̂ν = 1
T

∑T
i=1 νi ⊗ νi, of Rν , i.e.,

√
T
(
Θ̂−Θ

)
−→
d
Y ∼ N (0,RTν ) , T → ∞,

where, as before, Θ = Rν , and RTν is the covariance operator of the sufficient statistics

Tν = ν ⊗ ν, for the introduced Hilbert-valued exponential family. Note that {νt ⊗ νt}t∈N

defines an S(H)-valued martingale difference sequence under the conditions assumed.

• Appendix A8.

In Ruiz-Medina and Fernandez-Pascual (2010) a Hilbert-valued context is adopted for

regularization of the least-squares linear estimation problem for the solution to a fractional
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pseudodifferential equation with H-valued Gaussian innovations. The fractal order of such

a solution defines the suitable order of the dual fractional Sobolev space involved in the

definition of the biothorgonal Riesz bases for regularization. This Appendix A8 extends

the above referred regularization methodology in terms of fractional Sobolev spaces of

variable order. The integral form of the state equation considered in our formulation of

the functional least-squares estimation problem for multifractional Gaussian random fields

is given by

Yβ(z)(z) = ASγ(·)(z) = (2π)−n

∫
Rn

ei⟨z,λ⟩pA(z,λ)Ŝγ(·)(λ)dλ, (4.11)

for all z ∈ S ⊆ Rn, where γ(·) denotes the variable order of the fractional Sobolev space

related to the RKHS of the multifractional random signal Sγ(·). The Hilbert-valued process

Yβ(·) denotes the output of a linear system given in terms of a pseudodifferential operator

of variable order A = β(z) − γ(·), with random input Sγ(·). The functional least-squares

estimator Ŷβ(·) = KXα(·)(·) of Yβ(·) is defined for K being the solution to the minimization

problem

MSE(K ′ϕ) := E(K ′ϕ) = E[Yβ(·)(ϕ)−Xα(·)(K
′ϕ)]2, (4.12)

for all ϕ ∈ Hβ(·)(Rn), where K ′ is the adjoint of the operator K. Here, the H-valued

observation process Xα(·) satisfies

Xα(·)(φ) = Sγ(·)(φ) +Nθ(·)(φ), ∀φ ∈ Hα(·)(SX )

(respectively,

Xα(·)(φ) = Yβ(·)(φ) +Nθ(·)(φ), φ ∈ Hα(·)(SX ),

in the inverse formulation). The observation noise Nθ(·) is a generalized random field

with minimum multifractional singularity order −θ(·) ∈ B∞(Rn), and −α(·) ∈ B∞(Rn)
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represents the minimum multifractional singularity order of the observation random field

X defining Xα(·) on H
α(·)(Rn), with B∞(Rn) being the space of all C∞-functions on Rn,

whose derivatives of all orders are bounded, and Hα(·)(Rn) denotes the fractional Sobolev

space of variable order α(·) on Rn. Depending on the conditions assumed on the functional

parameter space where the variable order of differentiation (in the weak-sense) α(·) lies,

different projection methodologies can be applied, respectively based on the eigenvectors

of the autocovariance operator of Xα(·), when minx∈Rn α(x) > n/2, and based on dual

Riesz bases, when the equivalence of the norm of the RKHS of Xα(·) with the fractional

Sobolev space of variable order α(·) holds. Both projection methodologies lead to a suitable

regularization or continuous inversion of the estimation problem for the computation of

the functional least-squares estimator Ŷβ(·) = KXα(·)(·) defined from (4.12).
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Chapter 5

Results

• Appendix A1. The SARH(1) extrapolator is implemented by projection into the eigen-

vector system of the empirical auto-covariance operator of the SARH(1) process. Under

suitable conditions, the empirical eigenvector system constitutes a consistent estimator

of the true auto-covariance eigenvectors, hence, this basis provides an optimal dimension

reduction in the sense of the percentage of explained variance. This projection estimation

methodology has been tested with a real-data example where spatial functional extrapo-

lation of ocean surface temperature curves is achieved. Weather stations usually present a

non-regular distribution in space. That is, they are irregularly distributed. Hence, spatial

interpolation techniques should be applied to implement SARH(1) extrapolator defined on

a spatial regular grid, or, as in our case, areal functional data are constructed by block

averaging. This fact constitutes one of the main drawback of the SARH(1) estimation

methodology implemented.

• Appendix A2. The presence of strong spatial correlations in the data curve analyzed

hinders the statistical analysis performed with spatial Markovian models like the SARH(1)

model. Appendix A2 partially solves this problem by application of the compactly sup-

ported wavelet transform to the analyzed curve data removing strong correlations and
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eliminating border effects. However, we have to note that the results of Appendix A1 are

improved in the case where the weather stations display high spatial concentration like in

the area of Hawaii Ocean, but in other coastal ocean areas like the Gulf of Mexico with a

more regular and sparse distribution of weather stations (see also east and west coast of

Australia), the empirical auto-covariance eigenvector based projection methodology out-

performs the wavelet transform when lengthening of the support of the analyzed functional

data is considered.

• Appendix A3. The spatial heterogeneous functional multiple regression model with

SARH(1) error term introduced in this appendix provides a flexible framework for the

statistical analysis of weak-dependent spatial correlated curve data. In particular, the

proposed model allows a richer and more informative analysis than the classical linear

models used in the empirical studies developed from firm panel data. This fact has been

illustrated with a real-data example where a panel data constituted by SMEs Spanish

companies from different industry sectors is analyzed during a temporal period. The

suitability of the formulated model family and projection methodologies is tested by cross

validation.

• Appendix A4. The spatial functional mixed effect framework introduced in this ap-

pendix allows spatial heterogeneities in trends and mean-quadratic functional local vari-

ation. Both aspects are taken into account for detection of local homogeneous patterns

in fixed and random functional parameters after model fitting. The proposed classifica-

tion methodology allows to reduce the problem of inference on the introduced class of

spatially heterogeneous functional linear models to the spatial homogeneous case over the

clusters distinguished by both, fixed effect and random effect, classification procedures.

The interest of the proposed spatial functional classification procedure is illustrated with
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a real-data example where Spanish companies SMEs analyzed in a panel data are grouped

according to their homogeneity in the linear relationship between indebtedness curves and

firm factors within an industry sector, and according to their homogeneity in relation to

the mean-quadratic functional local variability of their indebtedness curves.

• Appendix A5. The previous model families introduced in a spatial functional framework

are weak dependent in space. However, in this appendix the spatial autoregressive Gegen-

bauer processes studied allows, in addition, to represent long-range dependence behaviors

in space, extending the classical case of an isolated spectral singularity at zero frequency.

This more flexible class, that includes as particular case weak-dependence autoregressive

behaviors in space, open a new line of investigation for the statistical analysis of strong

spatially correlated curves.

• Appendix A6. A RKHS based penalized estimation methodology is derived for ARH(1)

processes. The resulting spatial functional smoothing performed at each year analyzed on

mortality risk maps interpolates the local variation of standardized mortality ratio maps,

and the CAR or spline smoothing with a closer behavior of CAR smoothing. This approach

then has the advantage of avoiding false negatives, but the proportion of false positives is

larger than in the CAR and spline based approaches.

• Appendix A7. The asymptotic properties of maximum likelihood functional parameter

estimators of ARH(1) processes have not been derived until now, due to the lack of a

explicit finite expression for the probability density functional characterizing the infinite-

dimensional random variable. This Appendix constitutes a first attempt for the special

case of exponential family studied in a Hilbert-valued framework beyond the Hilbert-valued

Gaussian case.

• Appendix A8. Fractional pseudodifferential operators of variable order define high lo-
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cally singular filters that must be regularized in terms of suitable bases with variable order

of differentiation, in order to obtain a continuous inversion. The regularity of the exponent

function defining the variable order of differentiation also constitutes a key aspect in the

implementation of the least-squares functional estimator in this context. Both aspect have

been conjugated in this appendix for defining an almost continuous solution to the least

squares estimation problem by application of suitable numerical projection methods.
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Conclusions

• Appendix A1 and Appendix A2. Summarizing from Appendix A1 and A2, we con-

clude that the SARH(1) extrapolator is very sensitive to the bases used for projection,

as well as an additional error, due to spatial interpolation or averaging by blocks, should

be incorporated when the sample stations are irregularly distributed in space. Hence, we

have to apply some cross-validation methodologies, or to solve by some criteria the model

selection problem associated with the choice of a suitable basis for projection.

• Appendix A3. As in Appendices A1 and A2, the sensitiveness to the orthogonal basis

used for projection must be taken into account, as well as the sensitiveness to the truncation

order selected depending on the local regularity and moment conditions of the functions

conforming the basis chosen, and of the curve data analyzed. The computational cost also

depends on the basis selected regarding the quality of the approximation obtained for a

given truncation level, since heterogeneous spatial behaviors should be approximated in

terms of a common orthogonal basis to obtain a real dimension reduction of the functional

parameter estimation problem. In that sense, it should be advisable the use of uncondi-

tional bases like certain wavelet bases providing a sparse and optimal decomposition of

functions in several Hilbert spaces (e.g., fractional Besov spaces).
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• Appendix A4. The kernel-based estimation of the auto-covariance and cross-covariance

operators in terms of an unconditional basis applied here outperforms the estimation results

obtained in Appendix 3 in terms of empirical auto-covariance operator eigenvectors, and

biorthogonal bases associated with the RKHS.

• Appendix A5. Inference on this class of processes Gegenbauer constitutes a difficult task.

Several frameworks could be adopted. However, we have chosen the minimum contrast

estimation methodology since it can be formulated in the spectral domain leading to an

easy treatment of these processes in the weak-sense in terms of suitable spectral weight

functions. Thus, the contrast function and contrast process are formulated in terms of the

unbiased tapered periodogram (see Espejo et al., 2014, and the following section on actual

reaerch lines.

• Appendix A6. The penalized ARH(1) estimation approach presented can be improved by

incorporating additional functional parameters in the observation model, corresponding to

the spatial random functional effect and the spatiotemporal interaction random functional

effect.

• Appendix A7. Maximum likelihood estimation in the context of ARH(1) processes

beyond the Gaussian case should be addressed in the weak-sense in terms of suitable test

functions (or, equivalently, absolute convergent series).

• Appendix A8. Several open problems must be addressed in this framework, in particular,

in relation to the definition of variable order pure point spectra of symmetric integral

covariance operators with continuous kernel having compact support. This aspect opens a

new line of research where new Gaussian Hilbert-valued infinite-dimensional distributions

can be properly introduced in terms of infinite products of variable order one-dimensional

Gaussian measures.
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Conclusiones

• Apéndice A1 and Appendix A2.

Resumiendo el Apéndice A1 y A2, llegamos a la conclusión de que el extrapolador SARH(1)

es muy sensible a las bases utilizadas para la proyección, aśı como se tiene en la imple-

mentación un error adicional, debido a la interpolación espacial o al promedio por bloques

que se debe realizar cuando las estaciones espaciales están irregularmente distribuidas.

Por lo tanto, se deben aplicar metodoloǵıas de validación cruzada, o bien, aplicar criterios

apropiados de selección de modelos para determinar la base más adecuada, de acuerdo a

las caracteŕısticas de regularidad local y momentos, aśı como a la distribución espacial de

las curvas, o datos funcionales analizados.

• Apéndice A3.

Como en los Apéndices A1 y A2, un aspecto esencial del análisis estad́ıstico, desarrollado

en el marco de los modelos espaciales de regresión múltiple funcional introducidos, es la

influencia de la base ortogonal utilizada para la proyección, aśı como la sensibilidad al

orden de truncamiento, que dependerá, en parte, de la base seleccionada y de las carac-

teŕısticas de las curvas analizadas, aśı como del grado de correlación espacial presente. La

calidad de la aproximación o estimaciones derivadas para un nivel de truncamiento, en
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presencia de comportamientos espaciales heterogéneos, debe ser modulada de acuerdo al

coste computacional adicional que supone la consideración de sistemas de autovectores que

dependen del espacio. En ese sentido, es aconsejable el uso de bases incondicionales, tales

como ciertas bases de wavelets que proporcionan una descomposición óptima de funciones

en diversos espacios de Hilbert, con mı́nimo núnero de proyecciones asociadas (este es el

caso de bases de wavelets en determinados espacios de Besov fraccionarios).

• ApéndiceA4.

La estimación tipo núcleo de los operadores de auto-covarianza y covarianza cruzada,

en términos de bases incondicionales, efectuada en este apéndice, mejora los resultados

de estimación obtenidos en el Apéndice A3 en términos de autovectores emṕıricos del

operador de auto-covarianza, y de las bases biortogonales asociadas al espacio del núcleo

reproductor.

• Apéndice A5.

La inferencia a partir de la clase de procesos de Gegenbauer con dinámica autorregresiva

presenta una serie de dificultades, dadas las múltiples singularidades espectrales de dichos

procesos. Numerosos marcos pueden ser adoptados en el desarrollo de dicha inferencia.

En nuestro caso, hemos optado por la metodoloǵıa de estimación de mı́nimo contraste, ya

que puede ser formulada en el dominio espectral, lo que permite un fácil tratamiento de

estos procesos en el sentido débil, en términos de funciones de peso espectrales adecuadas.

Por tanto, la función de contraste y el proceso de contraste son formulados en términos

del periodograma insesgado tapered (véase Espejo et al., 2014, y la siguiente sección sobre

ĺıneas de investigación actuales.)

• Apéndice A6.

La estimación ARH(1) penalizada presentada, basada en la geometŕı a del espacio del
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núcleo reproductor, puede ser mejorada mediante la incorporación de parámetros fun-

cionales adicionales en el modelo de observación, correspondientes al efecto funcional

aleatorio espacial y al efecto funcional aleatorio de interacción espacio-temporal.

• Apéndice A7.

Un marco apropiado para el desarrollo de la estimación mediante máxima verosimilitud en

el contexto de procesos ARH(1), en el caso no Gaussiano, se obtiene cuando se considera

su formulación en sentido débil, en términos de funciones de contraste adecuadas, que

garantizan la convergencia de las series infinito-dimensionales involucradas, o bien, de las

integrales impropias que se requieren para la definición de los correspondientes funcionales

de densidad de probabilidad en espacios de distribuciones tempered.

• Apéndice A8.

Se encuentran pendientes de abordar diversos problemas abiertos en este contexto, en par-

ticular, en relación con la definición de un espectro puntual de orden variable, dependiente

del espacio, para operadores de covarianza integrales simétricos con núcleos continuos que

tienen soporte compacto y orden de reglaridad local cambiante en el espacio. Este aspecto

abre una nueva ĺınea de investigación donde las nuevas distribuciones infinito-dimensionales

Hilbert-valuadas Gaussianas asociadas pueden introducirse adecuadamente en términos de

productos infinitos de variables de Gaussianas independientes con varianzas heterogéneas

espacialmente.
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Chapter 8

Actual Research Lines

8.1 Objective

In connection with Appendix A5 was pending the estimation of parameter involved in the

spatial Gegenbauer model. In Espejo et al. (2014) the minimum contrast methodology has been

adopted for such estimation, obtaining the process and the corresponding contrast function. The

consistency and the asymptotic normality of the minimum contrast estimator designed in the

formulated model has been tested. Following, a summary of the methodology used and results

obtained are given in the next sections.

8.2 Methodology

Let K(θ0,θ) be a non-random real-valued function, usually referred as the contrast function,

given by

K(θ0,θ) :=

∫
[−π,π]2

f(λ,θ0)w(λ) log
Ψ(λ,θ0)

Ψ(λ,θ)
dλ,

and let the contrast field be

U(θ) := −
∫
[−π,π]2

f(λ,θ0)w(λ) logΨ(λ,θ) dλ,

where θ0 = (d10, d20) is the true parameter value.
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and the corresponding empirical contrast field is

Û∗
T (θ) = −

∫
[−π,π]2

I∗T (λ)w(λ) logΨ(λ,θ) dλ.

The conditions for consistency and asymptotic normality are verified by the following conditions

A1-A9 basing at work introduced by Anh, Leonenko, and Sakhno (2004), to satisfy the consis-

tency is necessary to satisfy the conditions A1-A6 and and additionally the conditions A7-A9

for the asymptotic normality.

A1. Let Yt1,t2 , t = (t1, t2) ∈ Z2, be a real-valued measurable stationary Gaussian random field

with zero mean and a spectral density f(λ,θ), where λ = (λ1, λ2) ∈ [−π, π]2, θ ∈ Θ, and

Θ is a compact set. Assume that θ0 ∈ int(Θ), where θ0 is the true value of the parameter

vector θ.

A2. If θ1 ̸= θ2 then f(λ,θ1) ̸= f(λ,θ2) for almost all λ ∈ [−π, π]2 with respect to the Lebesgue

measure.

A3. There exists a nonnegative function w(λ), λ ∈ [−π, π]2, such that

1. w(λ) is symmetric about (0, 0), i.e. w(λ) = w(−λ);

2. w(λ)f(λ,θ) ∈ L1

(
[−π, π]2

)
for all θ ∈ Θ.

A4. The derivatives ∇θΨ(λ,θ) exist and it is legitimate to differentiate under the integral sign

in equation (A9∗), i.e.

∇θ

∫
[−π,π]2

Ψ(λ,θ)w(λ) dλ =

∫
[−π,π]2

∇θΨ(λ,θ)w(λ) dλ = 0.

A5. For all θ ∈ Θ the function w(λ), λ ∈ [−π, π]2, satisfies

f(λ,θ0)w(λ) logΨ(λ,θ) ∈ L1

(
[−π, π]2

)
∩ L2

(
[−π, π]2

)
.
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A6. There exists a function υ(λ), λ ∈ [−π, π]2, such that

1. the function h(λ,θ) = υ(λ) logΨ(λ,θ) is uniformly continuous on [−π, π]2 ×Θ;

2. f(λ,θ0)w(λ)/υ(λ) ∈ L1([−π, π]2) ∩ L2([−π, π]2).

A7. The function Ψ(λ,θ) is twice differentiable on Θ and

1. f(λ,θ0)w(λ)
∂2

∂θi∂θj
logΨ(λ,θ) ∈ L1([−π, π]2)

∩
L2([−π, π]2), for all i, j, and θ ∈ Θ;

2. f(λ,θ0)w(λ)
∂
∂θi

logΨ(λ,θ) ∈ Lk([−π, π]2), for all i, θ ∈ Θ, and k ≥ 1.

A8. The matrices S(θ) = (sij(θ)) and A(θ) = (aij(θ)) with the elements defined by (A9∗) and

(A9∗) are positive definite.

A9. The spectral density f(λ,θ), the weight function w(λ), and the function ∂
∂θi

logΨ(λ,θ)

are such that for all i and θ ∈ Θ :

T

∫
[−π,π]2

(EI∗T (λ)− f(λ,θ0))w(λ)
∂

∂θi
logΨ(λ,θ) dλ −→ 0, as T −→ ∞.

8.3 Result

Through the following theorem the result of consistency is derived by the method of minimum

contrast estimation,

Theorem 1. Let Yt1,t2 , (t1, t2) ∈ Z2, be a stationary Gegenbauer random field which spectral

density satisfies equation (A9∗). If ÛT (θ) is the empirical contrast field defined by equation (A9∗),

then

• Yt1,t2 satisfies the conditions A1-A6 in the Appendix;

• the minimum contrast estimator θ̂T = (d̂1, d̂2) = argminθ∈Θ ÛT (θ) ∈ Θ is a consistent

estimator of the parameter vector θ. That is, there is a convergence in P0 probability:

θ̂T
P0−→ θ0, T −→ ∞;
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• σ̂2T
P0−→ σ2(θ0), T −→ ∞, where the variance estimator σ̂2T is given by

σ̂2T =

∫
[−π,π]2

IT (λ)w(λ) dλ.

Similarly, the asymptotic normality is derived by the following theorem

Theorem 2. If Yt1,t2 , (t1, t2) ∈ Z2, is a stationary Gegenbauer random field which spectral

density satisfies equation (A9∗) with (d1, d2) ∈ (0, 1/4)2, then

• Yt1,t2 satisfies the conditions A1-A9 in the Appendix;

• the adjusted MCE defined by (A9∗) is asymptotically normal. That is,

T (θ̂
∗
T − θ0)

D−→ N2(0,S
−1(θ0)A(θ0)S

−1(θ0)), T −→ ∞,

where the entries of the matrices S(θ) = (sij(θ)) and A(θ) = (aij(θ)) are

sij(θ) =

∫
[−π,π]2

f(λ,θ)w(λ)
∂2

∂θi∂θj
logΨ(λ,θ) dλ

= σ2(θ)

∫
[−π,π]2

w(λ)

[
∂2

∂θi∂θj
Ψ(λ,θ)− 1

Ψ(λ,θ)

∂

∂θi
Ψ(λ,θ)

∂

∂θj
Ψ(λ,θ)

]
dλ, (8.1)

aij(θ) = 8π2
∫
[−π,π]2

f2(λ,θ)w2(λ)
∂

∂θi
log (Ψ(λ,θ))

∂

∂θj
log (Ψ(λ,θ)) dλ

= 8π2σ2(θ)

∫
[−π,π]2

w2(λ)
∂

∂θi
Ψ(λ,θ)

∂

∂θj
Ψ(λ,θ) dλ. (8.2)
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Appendix A1

Spatial autoregressive functional
plug-in prediction of ocean surface
temperature

Ruiz-Medina, M. D. and Espejo, R. M. (2012).

Spatial autoregressive functional plug-in prediction of ocean surface temperature.

Stochastic Environmental Research and Risk Assessment, 26, 335–344.

DOI: 10.1007/s00477-012-0559-z.

Abstract

This paper addresses the problem of spatial functional extrapolation in the framework of spatial autoregressive

Hilbertian processes of order one (SARH(1) processes) introduced in Ruiz-Medina (2011). Moment-based es-

timators of the operators involved in the state equation of these processes are computed by projection into a

suitable orthogonal basis. Specifically, the eigenfunction basis diagonalizing the autocovariance operator is con-

sidered. An estimation algorithm is designed for the implementation of the resulting SARH(1)-plug-in projection

extrapolator from temporal curves irregularly distributed in space. Its performance is illustrated with a real-data

example, where the problem of spatial functional extrapolation of ocean surface temperature profiles is addressed.

This problem is crucial in the assessment of climate change anomalies. The data are collected from the public

oceanographic bio-optical database: The World-wide Ocean Optics Database (WOOD). Cross Validation (CV)
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procedures are applied for the evaluation of the estimation results derived.

A1.1 Introduction

There exists a large number of contributions in the current literature in relation to the statis-

tical analysis of temporal correlated functional random variables (see Bosq, 2000, 2010; Bosq

and Blanke, 2007; Ferraty and Vieu, 2006; Ramsay and Silverman, 2005; Ruiz-Medina and

Salmerón, 2010; Salmerón and Ruiz-Medina, 2009, among others). However, the field of Spatial

Functional Statistics still requires further development. We mention a few recent papers regard-

ing the statistical inference from spatial correlated functional random variables: Guillas and Lai

(2010) propose a new class of spatial functional regression models based on bivariate splines, in

terms of which the surface defining the explanatory random variables is approximated. Such

an approximation allows the construction of least squares estimators of the regression function

with or without a penalization term. In Baladandayuthapani et al. (2008), a fully Bayesian

and Markov Chain Monte Carlo based approach is derived for the analysis of the spatial cor-

relation between functional data arising from different spatial locations of biological structures

called colonic crypts (i.e., it allows the analysis of crypt signaling phenomenon). In the non-

parametric context, the statistical properties of kernel-based density estimators, formulated in

the context of spatial functional random variables, are studied in Basse, Diop and Dabo-Niang

(2008).

In a more applied framework, a new regionalization method for spatially dependent functional

data, based on local variogram models, is derived in Romano, Balzanella and Verde (2010), for

its application to environmental data. Nerini Monestiez and Manté, (2010) consider functional

statistical tools for the analysis of spatial correlated Oceanology temporal curve data (see also

Monestiez and Nerini, 2008). As spatial extrapolator, they propose a finite functional linear

combination of the observed temporal curves, weighted by bounded integral operators. This
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extrapolator is computed by minimizing the functional mean square error, which involves the

spatial interaction between temporal curves.

Under some regularity conditions of the sample curves, an ordinary infinite-dimensional

kriging system is established. In practice, numerical projection methods are applied, performing

standard co-kriging in terms of the corresponding projections into a selected basis. A similar

spatial functional extrapolation technique is considered in Giraldo, Delicado and Mateu (2010),

where the weights defining the spatial extrapolator are temporal functions, instead of integral

operators, minimizing the functional variance. Projection into a set of functional bases is also

performed for implementation of the spatial functional predictor (see also Delicado et al. 2010).

The main difference between the two last cited approaches, and the one presented here relies

on the absence of the assumption on the existence of an underlying spatial functional Marko-

vian model. Note that, in this paper, a spatial unilateral dynamics is assumed, according to

the SARH(1) state equation, since we are motivated by environmental applications involving

irregular sampling of spatial diffusion Markovian processes (see, for example, Tandeo, Ailliot,

and Autret, 2011, in relation to sea surface temperature applications).

In Ruiz-Medina (2011,2012a), the construction of SARH(1) processes from the spatial func-

tional sampling of two-parameter diffusion processes, in the class introduced by Nualart and

Sanz-Solé (1979), is illustrated, with some specific examples, including the two-parameter Ornstein-

Uhlenbeck process. Specifically, in Ruiz-Medina (2011), spatial autoregressive Hilbertian mod-

els of order p (SARH(p) models), and spatial moving average Hilbertian models of order q

(SMAH(q) models) are introduced. Their structural properties are derived. In particular,

conditions for the existence of a unique spatial stationary solution to the SARH(1) equation,

admitting a Spatial Moving Average Hilbertian representation of infinite order (SMAH(∞) rep-

resentation) are obtained. In Ruiz-Medina (2012a), the generation of SARH(1) processes from

the tensorial product of Autoregressive Hilbertian processes of order one (ARH(1) processes)
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is illustrated considering the tensorial product of functional observations of the one-parameter

Ornstein-Uhlenbeck process. In this paper, the implementation of SARH(1) extrapolator is

achieved from projection into the eigenfunction basis associated with the spectral decompo-

sition of SARH(1) parameters (see also Ruiz-Medina and Salmerón, 2010, and Salmerón and

Ruiz-Medina, 2009, in relation to the plug-in predictor for Autoregressive Hilbertian processes

of order p, ARH(p)-plug-in predictor, computed from the spectral decomposition of the au-

tocorrelation operators). A comparative study between this projection methodology and the

compactly supported wavelet transform is also developed. Summarizing, it is showed that the

compactly supported wavelet transform outperforms the projection into the eigenfunction sys-

tem of the SARH(1)parameters in presence of strong correlations, caused, for example, by high-

concentration-level of spatial stations. While the projection into the eigenfunction system of

the SARH(1) parameters leads to a regularization of the associated estimation integral equation

system, removing the ill-posed nature of this problem. Additionally, border effects are suitably

processed with the interval discrete wavelet transform, without lengthening the support of the

analyzed functional data. As we show in the real-data example analyzed in Section A1.4, the

projection methodology applied in this paper, based on the eigenfunction basis of the autocovari-

ance operator, outperforms the projection methodologies presented in Ruiz-Medina (2012a), in

relation to dimension reduction to attach a prescribed level of explaining variability, in absence

of strong correlations.

In practice, several additional problems arise in the implementation of the above-referred

SARH(1) estimation methodology from spatial functional data. This fact motivates the design

of the estimation algorithm proposed for SARH(1) extrapolation, from irregularly spaced func-

tional data, in Section A1.3.1. Note that the spatial Hilbert-valued process context chosen allows

the global prediction of curves or surfaces in space, reproducing information on local variability

features that is lost in the classical discrete approaches, based, for example, on kriging inter-
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polator or Generalized Linear Mixed Models (GLMM models). As commented, the connection

of SARH(1) process values with data resulting from the spatial functional sampling of diffusion

processes, in the class introduced in Nualart and Sanz-Solé (1979), makes SARH(1)-based ex-

trapolation specially attractive for addressing environmental applications involving this class of

spatial Markovian processes (see Ruiz-Medina, 2011, 2012a, and Tandeo, Ailliot, and Autret,

2011).

The outline of the paper is the following. Section A1.2 provides the basic definitions and pre-

vious results on SARH(1) processes. Section A1.3 describes the SARH(1) projection estimation

methodology. The estimation algorithm proposed for the implementation of SARH(1) plug-in

predictor in the case of irregularly spaced functional data is formulated in Section A1.3.1, con-

sidering the eigenfunction system of the autocovariance operator. In Section A1.4, mean annual

ocean surface daily temperature profiles, collected at irregularly spaced weather stations of the

south coast of the U.S., in the latitude-longitude interval [20, 50] × [−89,−58], are analyzed

through 12 years, corresponding to the period 1997-2008. The performance of the proposed spa-

tial functional estimation algorithm is evaluated by applying 10-fold Cross Validation (10-fold

CV) procedures. Concluding remarks on the quality of the analysis performed, its applicability,

as well as on further development needed, for improving the estimation methodology proposed,

are conducted in Section A1.5.

A1.2 Statistical modeling and preliminary results

The basic definitions and results related to SARH(1) processes are now summarized (see Ruiz-

Medina, 2011). Let H be a separable Hilbert space with the inner product ⟨·, ·⟩H and the norm

∥ · ∥H. Given a basic probability space (Ω,A, P ), denote by L2
H(Ω,A, P ) the Hilbert space of

classes of random variables with values in H and with E∥X∥2H <∞.

Definition 1. A spatial functional process YSARH = {Yij , (i, j) ∈ Z2}, with values in a separa-
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ble Hilbert space H, is said to be a unilateral SARH(1) process if it is stationary and it satisfies

the following equation

Yi,j = R+ L1(Yi−1,j) + L2(Yi,j−1) + L3(Yi−1,j−1) + ϵi,j , (A1.1)

where R ∈ H and, for k = 1, 2, 3, Lk ∈ L(H), the space of linear bounded operators. The spatial

functional innovation process also satisfies E∥ϵi,j∥2H = σ2, and E[ϵi,j ⊗ ϵi,j ] = Cϵ0,0 , that is, it

has finite functional variance, and both; its functional variance and autocovariance operator do

not depend on the spatial location (i, j), for every (i, j) ∈ Z2.

Remark 1. Note that, in the above definition, the order one of the SARH(1) process family

introduced refers to the fact that the functional value Yi,j interacts in space with the values Yi−1,j ,

Yi,j−1 and Yi−1,j−1, respectively corresponding to one spatial lag at coordinate i, j, or at both

spatial coordinates i and j. Since an unilateral dynamics is considered, only negative spatial lags

are involved in such a definition.

SMAH(∞) representation

Let us now introduce the conditions that ensure the existence and uniqueness of a spatial sta-

tionary functional solution to the SARH(1) equation, admitting a SMAH(∞) representation (see

Ruiz-Medina, 2011).

A.1 For i = 1, 2, 3, operator Li ∈ L(H) is assumed to admit a spectral decomposition in

terms of the eigenvalue sequence {λk(Li), k ∈ N}, and the biorthogonal systems of left,

{ψk, k ∈ N}, and right, {ϕk, k ∈ N}, eigenvectors satisfying

Li(ψk) = λk(Li)ψk

L∗
i (ϕk) = λk(Li)ϕk

⟨ϕk, ψl⟩H = δk,l, k, l ∈ N,
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where L∗
i denotes the adjoint of Li, and δk,l the Kronecker-delta function. Under A.1, for

i = 1, 2, 3, Li admits the following spectral-kernel-based representation

Li(g)(f) =
∑
k∈N

λk(Li)ψk(f)ϕk(g), ∀f, g ∈ H. (A1.2)

Remark 2. As commented in Ruiz-Medina (2012a), examples of operators satisfying Assump-

tion A.1 can be found in the context of non-symmetric compact operators, which often arise

in the definition of stochastic differential systems modeling the relationship between two envi-

ronmental phenomena. Hydrological processes involved in dynamic flow equations constitute an

interesting example, where aquifer transmissivity, porosity, storage coefficients, positioning of

withdrawals are estimated from related magnitudes like piezometric data.

Proposition 1. (see Ruiz-Medina, 2011) Assume that A.1 holds. For each k ∈ N, none of the

roots of Φ(z1, z2) = 0 = 1− λk(L1)z1 − λk(L2)z2 − λk(L3)z1z2 lie within the closed unit polydisc

(|z1| ≤ 1, |z2| ≤ 1) if and only if, for each k ∈ N,

(i) |λk(Li)| < 1, for i = 1, 2, 3,

(ii)
(
1 + [λk(L1)]

2 − [λk(L2)]
2 − [λk(L3)]

2
)2 − 4(λk(L1) + λk(L2)λk(L3))

2 > 0,

(iii) 1− [λk(L2)]
2 > |λk(L1) + λk(L2)λk(L3)|.

Under (i)-(iii), the solution to equation (A1.1) is stationary.

The conditions needed for the SMAH(∞) representation of process YSARH in equation (A1.1)

are established in the following result.

Proposition 2. (see Ruiz-Medina, 2011) Let YSARH be a SARH(1) process, as given in Def-

inition 1, satisfying A.1. Assume that the conditions considered in Proposition 1 hold. Then,

equation (A1.1) admits a unique stationary solution given by

Yi,j = R+
∞∑
k=0

∞∑
l=0

∞∑
r=0

(k + l + r)!

k!l!r!
Lk
1L

l
2L

r
3(ϵi−k−r,j−l−r), (A1.3)
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where Li, i = 1, 2, 3, are defined in equation (A1.1).

A1.3 SARH(1) functional prediction

This section introduces the elements involved in the computation of SARH(1)-plug-in projection

extrapolator from spatial functional data on a regular grid. The irregularly-spaced data case

will be addressed in the estimation algorithm proposed in the next section.

The spatial functional second-order structure of SARH(1) processes is defined in terms of

the following covariance operators, which collect the spatial interaction between functional data

obeying the functional state equation (A1.1): for Zi,j = Yi,j −R, (i, j) ∈ Z2,

RZi,jZi,j = R0,0 = E [Zi,j ⊗ Zi,j ]

RZi+1,jZi,j = R1,0 = E [Zi+1,j ⊗ Zi,j ]

RZi,j+1Zi,j = R0,1 = E [Zi,j+1 ⊗ Zi,j ]

RZi+1,j+1Zi,j = R1,1 = E [Zi+1,j+1 ⊗ Zi,j ] . (A1.4)

Remark 3. Note that the tensorial product ⊗ of two functions in H defines a Hilbert-Schmidt

operator on H, given by

f ⊗ g(h) = ⟨f, h∗⟩H g, f, g ∈ H, h ∈ H∗ ≡ H,

where h∗ denotes the dual element of h defined from Riesz Representation Theorem. From now

on, S will denote the space of Hilbert-Schmidt operators on H identified with the self-tensorial

product of H, i.e., S ≡ H ⊗ H. Also, as before, by L(H) we will denote the space of bounded

linear operators on H.

The following empirical covariance operators
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R̂0,0 =
1

MN

M∑
i=1

N∑
j=1

Zi,j ⊗ Zi,j

R̂1,0 =
1

(M − 1)N

M−1∑
i=1

N∑
j=1

Zi+1,j ⊗ Zi,j

R̂0,1 =
1

M(N − 1)

M∑
i=1

N−1∑
j=1

Zi,j+1 ⊗ Zi,j

R̂1,1 =
1

(M − 1)(N − 1)

M−1∑
i=1

N−1∑
j=1

Zi+1,j+1 ⊗ Zi,j , (A1.5)

provide moment-based estimators of the spatial autocovariance and cross-covariance operators

(A1.4), from the functional observations

{Zi,j = Yi,j −R, (i, j) ∈ {1, . . . ,M} × {1, . . . , N}} ,

with R and YSARH = {Yi,j , (i, j) ∈ Z2} given in equation (A1.1). From this equation, the

autocorrelation operators Li, i = 1, 2, 3, satisfy the functional linear equation system

R1,0 = L1R0,0 + L2R1,1 + L3R0,1,

R0,1 = L1R1,1 + L2R0,0 + L3R1,0

R1,1 = L1R0,1 + L2R1,0 + L3R0,0. (A1.6)

Replacing in (A1.6) the autocovariance and cross-covariance operators by their empirical versions

in (A1.5), the respective estimators L̂i, i = 1, 2, 3, of Li, i = 1, 2, 3, are obtained as the solution to

the corresponding functional linear equation system. Thus, formally, L̂i, i = 1, 2, 3, are defined

by  L̂1

L̂2

L̂3

 =

 R̂0,0 R̂1,1 R̂0,1

R̂1,1 R̂0,0 R̂1,0

R̂0,1 R̂1,0 R̂0,0

−1  R̂1,0

R̂0,1

R̂1,1

 . (A1.7)
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The SARH(1) extrapolator is then approximated in terms of the plug-in estimator:

E [Zi,j | Zk,l, k < i, or l < j, or k < i and l < j] = L1Zi−1,j + L2Zi,j−1 + L3Zi−1,j−1

≃ L̂1Zi−1,j + L̂2Zi,j−1 + L̂3Zi−1,j−1.

(A1.8)

In the computation of an explicit vector-valued functional solution to equation system (A1.7),

numerical projection methods are applied in terms of a suitable orthonormal basis of H. Specif-

ically, given an orthonormal system {ϕk, k ∈ N} of H, we obtain, by projection, the following

infinite-dimensional system, for k, l,m ∈ N,

λk,m(R̂1,0) =
∑
l≥0

λk,l(L1)λl,m(R̂0,0) + λk,l(L2)λl,m(R̂1,1) + λk,l(L3)λl,m(R̂0,1)

λk,m(R̂0,1) =
∑
l≥0

λk,l(L1)λl,m(R̂1,1) + λk,l(L2)λl,m(R̂0,0) + λk,l(L3)λl,m(R̂1,0)

λk,m(R̂1,1) =
∑
l≥0

λk,l(L1)λl,m(R̂0,1) + λk,l(L2)λl,m(R̂1,0) + λk,l(L3)λl,m(R̂0,0),

(A1.9)

where, for a Hilbert-Schmidt operator K on H,

λl,m(K) = K(ϕl)(ϕm) = ⟨K(ϕl), ϕm⟩H .

Note that, in equation (A1.9), these coordinate matrices are evaluated for K = Li, i = 1, 2, 3,

and K = R̂i,j , i, j = 0, 1.

After truncation, equation (A1.9) can be rewritten in matrix form as follows:

 Λ̂(L1)

Λ̂(L2)

Λ̂(L3)

 =

 Λ(R̂0,0) Λ(R̂1,1) Λ(R̂0,1)

Λ(R̂1,1) Λ(R̂0,0) Λ(R̂1,0)

Λ(R̂0,1) Λ(R̂1,0) Λ(R̂0,0)

−1  Λ(R̂1,0)

Λ(R̂0,1)

Λ(R̂1,1)

 , (A1.10)

where, for a Hilbert-Schmidt operator K on H, Λ(K) represents the matrix whose entries are

the coordinates of operator K with respect to the tensorial product basis

{ϕl ⊗ ϕm, l,m = 1, . . . L} ,
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i.e., the matrix with entry (i, j), given by λi,j(K), for i, j = 1, . . . L. Also, Λ̂(Lk) denotes the

estimate of matrix Λ(Lk), for k = 1, 2, 3.

Note that, in the particular case where the orthonormal system {ϕj , j ∈ N} of H coincides

with the eigenfunction basis associated with the covariance operator R0,0, the corresponding

projection of equation system (A1.6) into such a basis leads to a sparse infinite-dimensional

system. Similarly, when the empirical version {ϕ̂j , j ∈ N} of {ϕj , j ∈ N} is considered, given

by the eigenfunction system of R̂0,0, the projected equation system (A1.10) has block-matrix

diagonal constituted by diagonal matrices. That is, in equation (A1.10), matrix Λ(R̂0,0) is

diagonal with entries given by the eigenvalues λ̂j , j ≥ 1, of R̂0,0, respectively associated with

the eigenvectors ϕ̂j , j ≥ 1, that satisfy

R̂0,0ϕ̂j = λ̂jϕ̂j , j ≥ 1.

The empirical autocovariance eigenfunction system will be considered in Section A1.4, in the

implementation of the SARH(1)-plug-in extrapolator in the real-data example considered. The

main advantage of this projection methodology lies in its dimension reduction. This dimension

reduction is higher than, for example, the one achieved with the projection methodologies applied

in Ruiz-Medina (2012a), where the eigenfunction system associated with operators Lk, k =

1, 2, 3, and the compactly supported wavelet transform are respectively considered. Thus, a

lower number L of terms than in the other two referred projection methodologies (based on the

autocorrelation operator eigenfunction system and compactly supported wavelet transform) is

needed to attach a prescribed level of explained variability.

Finally, we remark the fact that the consistency of the empirical autocovariance operator,

as well as of its eigenvalues and eigenvectors will allow us the investigation of the asymptotic

properties of the derived SARH(1)-plug-in extrapolator (see, for example, Bosq, 2000; Bosq and

Blanke, 2007, and Horváth and Reeder, 2012). While, for the SARH(1) parameter eigenfunction

system, or the compactly supported wavelet transform, consistency results are not still available
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in the SARH(1) context. Thus, from a theoretical point of view, asymptotic inference can easily

be addressed by projection into the autocovariance eigenfunction system.

A1.3.1 Implementation of SARH(1)-plug-in extrapolator from irregularly
spaced functional data

In this section, an estimation algorithm is proposed for the implementation of the SARH(1)-

plug-in projection extrapolator from irregularly spaced functional data. The main steps are the

following:

Step 1 A number M ×N of nodes or areal data is fixed.

Step 2 To distribute in a suitable way the number of areal data fixed, an initial computational

grid, with a lower number of nodes than the number of areal data established in the

previous step, is considered.

Step 3 In the boxes of the computational grid where a large number of spatial stations is localized,

a subgrid is considered, for getting an homogeneous level of integration/aggregation per

block, increasing the number of rows and/or columns, until the number of nodes of the

global grid reaches the number of areal data fixed in Step 1.

Step 4 Functional data are spatially averaged over each box of the grid fitted in Step 3, and the

spatially averaged functional values are assigned to the respective nodes located at the

lower left corners of the non-empty boxes.

Step 5 Interpolation is performed over the empty nodes.

Step 6 The empirical covariance operators (A1.5) are computed from the spatial averaged func-

tional data defined in the previous steps according to the lattice configuration fitted.

Step 7 The orthogonal eigenvectors of the empirical autocovariance operator are then obtained.
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Step 8 The truncation order L is selected (e.g. by cross validation).

Step 9 The computation of the finite-dimensional equation system (A1.10) is achieved by applying

numerical inversion methods.

Step 10 The SARH(1)-plug-in extrapolator is derived from the previous step considering equation

(A1.8).

Step 11 Cross validation procedures are applied for the evaluation of the performance of the esti-

mation methodology implemented in Steps 1-10.

A1.4 Spatial functional prediction of ocean surface temperature

The ocean temperature signal provides a baseline temperature reference that can be used, for

example, to investigate urban heat island effects, and look for anomalies in the weather station

record. In particular, urban heat island effect decreases the differences between ocean and air

surface temperatures at the end of the day and during the night, reducing heat fluxes from

the ocean into the air. Hence, coastal ocean surface temperature increases. This fact can be

appreciated by comparing the slope functions (derivatives) associated with coastal and ocean

daily temperature curves (see Figure A1.3 below). In our case, the temperature profiles col-

lected at the weather stations in the south coast of the U.S. reflect an increase of coastal ocean

surface temperature, with respect to the baseline temperature reference provided by the ocean

surface temperature signal far from the coast (Hawaii ocean). This fact motivates the derivation

of suitable spatial extrapolation techniques for prediction of daily ocean surface temperature

curves. In particular, in this section, we have concentrated in the problem of spatial functional

extrapolation from the observation of temperature curves provided by irregularly spatial dis-

tributed weather station located at the south coast of the U.S, in the latitude-longitude interval

[20, 50] × [−89,−58]), available in the public oceanographic bio-optical database, The World-
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wide Ocean Optics Database (WOOD). Mean annual daily temperature profiles corresponding

to 12 years in the period 1997-2008 are computed, to construct our functional data sets in this

real-data example. The data size considered, number of observations per each average daily

temperature profile, has been 200.

In the finite-dimensional approximation of the autocorrelation operator estimators, the trun-

cation order L = 15 is fixed for all the years considered, since a stabilization of the L∞−norm

of the 10−fold CV mean absolute error curves is obtained in most of the years studied. The

consideration of a common finite dimension Hilbert space, corresponding to L = 15, allows us

to compare the effect, on the performance of the estimation methodology proposed, of the spa-

tial distribution of weather stations, as well as of the spatial averaging regions selected for the

construction of a lattice configuration.

Validation results are displayed in Table A1.1, and Figure A1.1, after applying 10-fold CV,

which leads to a suitable reduction of CV error variability. Specifically, the L∞−norms of the

10-fold CV mean absolute error curves are displayed in Table A1.1. The behavior of these

curves is represented in Figure A1.1, for certain nodes of the validation sample. Edge effects

have been removed by considering the empirical orthogonal eigenfunction bases associated with

the computation of the empirical autocovariance operator R̂0,0 from temperature profiles with

256 observations. The results displayed illustrate the fact that the aggregation and interpolation

levels associated with the 6×25 spatial grids fitted for every year, in the period 1997−2008, are

suitable for most of these years (see Figure A1.2). Additionally, since in the subtropical region

studied, the temperature profiles display slow variation through space of their global scale and

local pattern properties, the loose of information, due to the averaging of temperature profiles

in a small region, is minimum.

In the implementation of the estimation algorithm described in Section A1.3.1, the number

of areal data fixed in Step 1 has been 150, since a 6 × 25 spatial grid is fitted at every year
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studied. In most of the years, weather stations are more concentrated in latitude (x-axis of

graphs in Figure A1.2) than in longitude (y-axis of graphs in Figure A1.2). Therefore, from a

6×6 initial regular computational grid, we construct a final 6×25 spatial grid, splitting regions

with a large number of weather stations. This procedure is repeated for each year, subdividing

different boxes of the initial computational grid, according to the spatial distribution of weather

stations. The best performance corresponds to the years 1997 (65 weather stations), 1998 (73

weather stations), 2000 (65 weather stations), 2001 (93 weather stations) and 2007 (42 weather

stations), followed by the years 2002 (114 weather stations) and 2003 (101 weather stations).

The worst performance is displayed by the year 2008 (15 weather stations). The above results

illustrate the fact that the best performance of the proposed estimation algorithm is achieved

at the years where weather stations are sparsely distributed in space. The absence of high

concentration of weather stations decreases the number of temperature profiles aggregated at

each box of the final 6 × 25 computational grid, reducing variance and increasing the level of

explaining variability, i.e., the L∞-norms of the 10−fold CV mean absolute error curves decrease.

This is the case, for example, of year 2007, where the number of weather stations is not too large.

However, their sparse spatial distribution leads to a low aggregation level of temperature profiles

at each box of the final 6 × 25 spatial grid, decreasing variance of areal data, and increasing

velocity decay of empirical eigenvalues, i.e., a higher level of explained variability is reached with

L = 15. In addition, the sparse spatial distribution of weather stations in the boxes of the final

6× 25 grid fitted to this year, and the slow variation of temperature profiles through space also

contribute to the low values of the L∞−norms of the 10−fold CV mean absolute error curves at

the interpolated empty nodes. On the contrary, when the aggregation level per box increases,

due to the high concentration of weather station locations, the variance of the resulting areal

data increases, and a slower decay of the corresponding empirical eigenvalues holds. Thus, a

lower level of explained variability, with L = 15 truncation order, is reached (e.g. years 1999
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Table A1.1: L∞-norms of the 10−fold CV mean absolute error curves with L = 15
Nodes (2,2) (3,2) (2,3) (3,3) (2,4) (3,4) (2,5) (3,5)

1997 0.0183 0.0129 0.0155 0.0147 0.0146 0.0156 0.0151 0.0153
1998 0.0634 0.0458 0.0432 0.0294 0.0602 0.0670 0.0619 0.0544
1999 0.1929 0.2198 0.1662 0.2360 0.1752 0.2653 0.2346 0.2984
2000 0.0397 0.0467 0.0267 0.0300 0.0281 0.0257 0.0391 0.0316
2001 0.0082 0.0286 0.0134 0.0187 0.0389 0.0484 0.0481 0.0543
2002 0.0699 0.0642 0.1753 0.0601 0.0415 0.0624 0.0578 0.0299
2003 0.0183 0.0129 0.0155 0.0147 0.0146 0.0156 0.0151 0.0153
2004 0.0634 0.0458 0.0432 0.0294 0.0602 0.0670 0.0619 0.0544
2005 0.1929 0.2198 0.1662 0.2360 0.1752 0.2653 0.2346 0.2984
2006 0.0397 0.0467 0.0267 0.0300 0.0281 0.0257 0.0391 0.0316
2007 0.0082 0.0286 0.0134 0.0187 0.0389 0.0484 0.0481 0.0543
2008 0.0699 0.0642 0.1753 0.0601 0.0415 0.0624 0.0578 0.0299

and 2006). Finally, we point out that, in the year 2008, a small number of weather stations is

available, with a clear directional diagonal distribution, increasing the interpolation error, which

is reflected in the higher values of the L∞-norms of the 10−fold CV mean absolute error curves.

Through the 12 years studied, we finally compare the slope functions of the U.S. coastal

ocean surface temperature curves and of the Hawaii ocean temperature curves (the baseline

temperature reference), both extrapolated to a 6 × 25 computational grid from the daily tem-

perature profiles observed at weather stations of the south coast of the U.S. and of the Hawaii

island. Figure A1.3 below shows the mean, over the 6 × 25 nodes of the computational grid,

of the difference: coastal temperature slope function minus ocean temperature slope function.

It can be appreciated along the years studied a slightly increasing of coastal temperature curve

values at the end of the day, i.e., a slower decreasing of these coastal temperatures at the end

of the day, that leads to bigger mean slope function differences, through the 12 years studied,

between the U.S. south coastal and the Hawaii ocean temperature curves, specially in the last

years (see Figure A1.3).
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Figure A1.1: Years 1997-2008. Mean absolute error curves on the spatial nodes (2,3) and (3,3)
of the validation sample, after applying 10−fold CV, with L = 15
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Figure A1.2: Spatial distribution of weather stations: from year 1997 (top-left) to year 2008
(right), going from left-hand-side to right-hand-side, and from top to bottom
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Figure A1.3: Mean over the 6 × 25 nodes of the spatial computational grid considered of the
difference between slope functions associated with extrapolated coastal and ocean surface daily
temperature curves. Years 1997-2002 at the left, and 2003-2008 at the right, where notation
SMD means, Slope Mean Difference

A1.5 Evaluation of the proposed spatial functional estimation
algorithm

This paper provides a methodological approach for the implementation of SARH(1) plug-in ex-

trapolator from irregularly spaced functional data (see Section A1.3.1). The projection method-

ology applied is based on the spectral decomposition of the autocovariance operator. We now

refer to the key points that must be taken into account in the evaluation of the proposed spatial

functional estimation methodology, with reference to other related approaches.

The number of areal data fixed in Step 1 of the estimation algorithm, described in Section

A1.3.1, must allow an equilibrium between the aggregation level per block and the interpolation

level. The averaging regions selected, in the construction of a lattice configuration of areal

data, must minimize the loose of information. This selection problem is not always solvable. It

depends on the distribution of spatial stations and on the variability displayed by the functional

data analyzed at the temporal micro- and macro-scale levels. In particular, from the results
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derived in the previous section, it can be appreciated that the effect of the averaging region

is minimized by the slow variation of the local and global temporal patterns of the curve data

analyzed. This is, in general, the case of temperature profiles in tropical and subtropical regions.

When weather stations display high spatial concentration, the compactly supported wavelet

transform is more suitable than the eigenfunction system-based approach, since it weakens strong

spatial correlations (see Ruiz-Medina, 2012a, and Ruiz-Medina and Espejo, 2011). In the anal-

ysis performed in Section A1.4, border effects have been eliminated by extending the temporal

support of the functions in the space H, where the SARH(1) process takes its values. However,

the compactly supported wavelet transform eliminates border effects without lengthening this

temporal support.

In the case where the eigenvalues of R̂0,0 R̂1,1 R̂0,1

R̂1,1 R̂0,0 R̂1,0

R̂0,1 R̂1,0 R̂0,0

 ,
display a very fast decay to zero, the projection methodology, based on the infinite-dimensional

SARH(1) parameter eigenfunction system (see Ruiz-Medina, 2012a) outperforms the autoco-

variance eigenfunction-system-based projection methodology, since it provides a regularization

of the ill-posed parameter estimation problem. To reach a prescribed level of explaining variabil-

ity, in absence of high concentration of spatial stations, the autocovariance eigenfunction system

provides an optimal SARH(1)-plug-in projection extrapolator, in the sense of the dimension

reduction achieved.

Further developments are needed in the optimal design of Steps 1-5 of the proposed es-

timation algorithm in Section A1.3.1 to minimizing the effect of the averaging region, in the

construction of an areal data lattice configuration, when the functional data analyzed display

high spatial variation in their local and/or global temporal patterns through space.
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Abstract

The aim of this paper is to derive spatiotemporal extrapolation maps of ocean surface temperature to investigate

two global warming effects: On the one hand, the reduction of daily heat fluxes from the sea into the air at

the end of the day and during the night, in tropical regions. On the other hand, the strengthening of ocean

current flows, due to the increase of ocean surface minimum daily temperature differences between two connected

ocean regions. These maps are constructed from the spatial functional time series framework. Specifically, the

spatial functional extrapolation of ocean surface temperature from Hawaii ocean to the Gulf of México reflects

an increase of Hawaii ocean surface temperature in the last 15 years, caused by the reduction of daily heat fluxes
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from the sea into the air. Furthermore, for the two connected regions of Indian Ocean, and the eastern coast of

Australia, the spatial functional extrapolation results derived show more pronounced differences between ocean

surface minimum daily temperatures in the year 2003 than in the years 1995-1997. Thus, a strengthening of the

flow of the East Australian Current is appreciated.

A2.1 Introduction

It is well-known that advantages and limitations are present in the application of pure data

synthesis and model/data integration approaches. For example, pure data synthesis methods

are more sensitive (i.e. less robust) to the characteristics of measurement devices, or to blending

procedures for data sets from different sensors, etc. Model/data integration can be performed

following different approaches. In particular, physical ocean models can provide ocean surface

temperature estimates that are consistent with the dynamical and thermodynamical constrains.

However, a model error term reflecting unresolved physics is needed (also in relation to sub-

griding parameterizations). Thus, physical modeling must be combined with stochastic modeling

and statistical estimation.

In this paper, physical and stochastic modeling are integrated, and data-driven methodolo-

gies are applied to obtain a compromise between pure data synthesis and physical stochastic

model fitting. Specifically, spatial functional time series modeling (see Ruiz-Medina, 2011) is ap-

plied for stochastic spatiotemporal extrapolation of ocean surface temperature. Under suitable

conditions, this framework provides a statistical approximation of the usual physical equations

governing sea surface temperature dynamics. In particular, recent studies of mid-latitude sea

surface temperature dynamics are developed in terms of the thermal feedback between a two

level atmospheric model and a dynamically passive slab ocean (see, for example, Nilsson, 2001).

In this context, within the atmosphere coupled to a slab ocean modeling, the long-term evolution

of sea surface temperature field (driven by air-sea transfer) is governed by an advective-diffusive
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equation, which can be applied to a broad class of atmospheric models. This fact constitutes

our main motivation to consider the selected spatial functional time series framework intimately

connected with the theory of diffusion equations (see Nualart and Sanz, 1979; Leonenko and

Ruiz-Medina, 2006; Ruiz-Medina, 2011).

The main drawback of the applied framework is that functional data must be located on a

regular spatial grid. Spatial averaging over the boxes of a computational grid is then performed

to obtain a spatial lattice configuration. The grid box size is adjusted to the spatial distribution

of weather stations. Spatial Autoregressive Hilbertian (SARH) model fitting (see Ruiz-Medina,

2012a) is then performed for spatial functional extrapolation of ocean surface temperature pro-

files from the coastal weather stations to the deep ocean. The separable Hilbert-valued context

is crucial in the introduction of suitable orthogonal function bases allowing the implementation

of numerical projection methods for dimension reduction in the high-dimensional data context.

For example, in the implementation of the SARH(1) extrapolation methodology, the projection

into the autocovariance eigenfunction system is considered in Ruiz-Medina and Espejo (2012),

while the projection into the eigenfunction system of the SARH(1) parameters is applied in Ruiz-

Medina (2012a). In the mentioned approaches, in terms of projections, the operators defining

the parameters of SARH(1) state equation are estimated without assuming any parametric form

for them. In that sense, we will refer in the following to the non-parametric SARH(1) model

fitting.

A crucial problem in the SARH(1) extrapolation implementation by projection is the selec-

tion of a suitable basis. Specifically, it is well-known that the projection into the autocovariance

eigenfunction system leads to the maximum dimension reduction for a prescribed level of ex-

plaining variability, in absence of high correlated curves (see Ruiz-Medina and Espejo, 2012).

While the eigenfunction system providing the spectral decomposition of the operators defining

the infinite-dimensional parameters of the SARH(1) state equation leads to a regularization of
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the associated moment-based projected equation system, when its determinant is close to zero

(see Ruiz-Medina, 2012a). The projection methodology presented here, based on the discrete in-

terval wavelet transform, removes strong spatial correlations between ocean surface temperature

curves, due, for example, to high concentration level of weather stations. That is, in the wavelet

domain, the projected covariance operators are defined in terms of infinite-dimensional sparse

matrices. Hence, this domain allows to fit a spatial Markovian dependence to the functional

data analyzed. Note that, in the approach presented, an underlying Markovian state space

equation is assumed, where each functional value of the spatial process of interest is generated

from the negative spatial lags of order one in the vertical, horizontal or diagonal directions (see

also Remark 4 below).

The limitations of the linear modeling framework are well known, but allows, as commented

before, the representation of some features that are commonly present in the interaction be-

tween sea surface temperature anomalies and the atmosphere. In particular, in relation to our

objective of detecting anomalies in the velocity decay of the daily ocean surface temperature

curves at the end of the day and during the night, it is essential to have a spatial extrapolation

method that reflects the global interaction between different locations of the daily tempera-

ture curves. The same global prediction in space of daily temperature curves is needed in the

detection of increase daily functional trends in ocean surface temperature. This global daily

temporal information, that is needed to be spatially extrapolated, constitutes the motivation of

the presented stochastic spatial functional extrapolation methodology, based on Spatial Autore-

gressive Hilbertian models. Note that classical statistical methodologies, based, for example,

in kriging interpolator or Generalized Linear Mixed models do not provide spatial extrapola-

tion of daily temperature functional evolution, as well as information on spatial propagation of

micro-scale temporal features is lost. As commented before, in our approach, spatial Marko-

vian interaction is assumed according to the spatial unilateral dynamics displayed by Spatial
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Autoregressive Hilbertian processes of order one (SARH(1) processes), see equation (A2.1) be-

low, in contrast with the spatial functional extrapolation methodologies recently developed in

absence of an underlying state-space model (see, for example, Delicado et al., 2010; Giraldo,

Delicado and Mateu, 2010; Monestiez and Nerini, 2008; Nerini, Monestiez and Manté, 2010).

One of the main reasons for considering a state-space-based spatial functional framework is the

integration of the physical law in the stochastic modeling approach, allowing the derivation of

spatial functional extrapolators, requiring the incorporation of a spatial dynamics or association.

In our case, SARH(1) processes can be constructed from irregular spatial functional sampling

of two-parameter diffusion processes, in the class introduced by Nualart and Sanz-Solé (1979),

including the two-parameter Ornstein-Uhlenbeck process (see Ruiz-Medina, 2012a). Note that

the so-called linear Gaussian state-space model framework has been extensively studied in the

literature (see e.g. Durbin and Koopman, 2001, and references therein). For example, Ide et al.

(1997) proposed unified notations for state-space models and data assimilation in oceanography

and meteorology, which also were partially adopted by Tandeo, Ailliot, and Autret (2011).

Returning to our initial goal, global warming alters air temperature faster, decreasing the

differences between ocean and air surface temperatures. Thus, heat fluxes from the sea into the

air are reduced. In particular, coastal ocean surface temperature increases. The designed func-

tional spatial stochastic inter/extrapolation methodology is applied to the construction of mean

annual daily ocean surface temperature maps to investigate global warming effects. Specifically,

as commented, two global warming effects are investigated. First, the damping of sea-air temper-

ature differences is studied over the connected mid-latitude ocean and coastal regions of Hawaii

ocean and the Gulf of México. Additionally, an increase trend in ocean surface temperature can

be appreciated along the time, due to global warming. This effect is studied in relation to the

increase of Australian ocean surface temperatures, and the pronounced differences between the

western and eastern Australian sea temperatures, jointly with the fact that the flow of the East
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Australian Current has strengthened in the past years, altering marine biodiversity.

A2.2 Areas studied and data

The performance of the proposed spatial functional time series methodology for stochastic in-

ter/extrapolation of the mid-latitude ocean surface temperature dynamics is tested, considering

the spatiotemporal extrapolation problem associated with the construction of a daily ocean sur-

face temperature map from Hawaii ocean (latitude-longitude interval [16, 32]× [−170,−140]) to

the Gulf of México (latitude-longitude interval [16, 32] × [−100,−80]), and from Indian Ocean

(latitude-longitude interval [−34,−15] × [75.4, 99.5]) to the Pacific Ocean at the eastern coast

of Australia (latitude-longitude interval [−20,−4]× [136, 153]).

We briefly comment why we have selected these regions in our study. Extreme temperature

series of the Gulf of México reveals the presence of periodicities similar to those found in mete-

orological and solar activity phenomena (see, for example, Maravilla, Mendoza and Jáureguib,

2008, in relation to Maximum Entropy based analysis). This fact suggests that the solar activity

signals are possibly present in the minimum extreme temperature records of this Mexican region.

Since the Gulf of México constitutes the most plausible source location of the anomalous waters

observed in the Hawaii ocean surface temperature, both regions are analyzed in this paper. In

particular, the derived mean annual daily temperature maps reveal the damping through time

of sea-air temperature differences, due to global warming. Additionally, the influence of Indian

Ocean sea-surface temperature variability on winter rainfall across eastern Australia is also well-

known. Therefore, we also study these regions connected by the ocean surface temperature maps

obtained by SARH(1)-based stochastic extrapolation. In particular, we investigate the possible

increase of western and eastern ocean Australian temperature differences, due to the fact that

eastern Australian waters warming faster than Indian Ocean.
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A2.3 Computational methodology

The details on the implementation of the spatial functional time series model framework for

stochastic inter/extrapolation of temperature profiles are now provided. First, we introduce the

class of SARH(1) models fitted.

Definition 2. A spatial functional process YSARH = {Yij , (i, j) ∈ Z2}, with values in a separa-

ble Hilbert space H, is said to be a unilateral SARH(1) process if it is stationary and it satisfies

the following equation:

Yi,j = R+ L1(Yi−1,j) + L2(Yi,j−1) + L3(Yi−1,j−1) + ϵi,j , (A2.1)

where R ∈ H and, for i = 1, 2, 3, Li ∈ L(H), the space of linear bounded operators. The spatial

functional innovation process ϵ is assumed to be a spatial functional martingale difference, un-

correlated with the functional random initial conditions, Y00, Y10, Y01, and satisfying E∥ϵi,j∥2H =

E∥ϵ1,1∥2H = σ2, for all (i, j) ∈ Z2, and E[ϵi,j ⊗ ϵk,l] = E[ϵ|i−k|,|j−l| ⊗ ϵ0,0] = Cϵ|i−k|,|j−l|ϵ0,0 , for all

(i, j) and (k, l) in Z2. Here , ⊗ denotes the tensorial product of two function in H, that defines

a Hilbert-Schmidt operator on H as follows: For two functions f, g ∈ H,

f ⊗ g(h) = ⟨f, h∗⟩H g, h ∈ H∗,

where h∗ ∈ H is the dual element of h, defined from Riesz Representation theorem, and H∗

denotes the dual Hilbert space of H.

Remark 4. Note that, in the above definition, the order one of the SARH(1) process family

introduced refers to the fact that the functional value Yi,j interacts in space with the values Yi−1,j ,

Yi,j−1 and Yi−1,j−1, respectively corresponding to one negative spatial lag at coordinate i, j, or

at both spatial coordinates i and j.

The weak spatial dependence scheme displayed by the functional innovation process ϵ is

introduced in the following definition (see Ruiz-Medina, 2011).
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Definition 3. Let {Xi,j , (i, j) ∈ Z2} and {Zi,j , (i, j) ∈ Z2} be two-parameter stochastic se-

quences. Then, {Xi,j , (i, j) ∈ Z2} is a spatial or two-parameter martingale difference sequence

with respect to the sequence {Zi,j , (i, j) ∈ Z2} if the conditional expectation

E
BP(n,m) (Xn,m) = 0,

where

BP(n,m)
= σ

(
Zi,j , (i, j) ∈ P(m,n)

)
= σ (Zi,j , i < n or j < m)

denotes the σ−algebra generated by the past values of the stochastic sequence {Zi,j , (i, j) ∈ Z2}.

From Definition 2, and, in particular, from model (A2.1), the following linear equation system

is satisfied by operators Li, i = 1, 2, 3,

R1,0 = L1R0,0 + L2R1,1 + L3R0,1

R0,1 = L1R1,1 + L2R0,0 + L3R1,0

R1,1 = L1R0,1 + L2R1,0 + L3R0,0, (A2.2)

where

R0,0 = RZi,jZi,j = E [Zi,j ⊗ Zi,j ]

R1,0 = RZi+1,jZi,j = E [Zi+1,j ⊗ Zi,j ]

R0,1 = RZi,j+1Zi,j = E [Zi,j+1 ⊗ Zi,j ]

R1,1 = RZi+1,j+1Zi,j = E [Zi+1,j+1 ⊗ Zi,j ] , (A2.3)

with Zi,j = Yi,j −R, for all (i, j) ∈ Z2.

Remark 5. Note that, under very general conditions (see, for example, Bosq, 2000; Bosq and

Blanke, 2007, and Horváth and Reeder, 2012), the convergence in probability of the empirical

auto-covariance and cross-covariance operators to the theoretical ones holds.
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The spatial dependence structure displayed by functional process Z is defined in terms of

operators in equation A2.3. Operators Li, i = 1, 2, 3, are involved in the definition of the

correlation operator of the spatial functional process Z. Therefore, we will refer to them as

autocorrelation operators (see Ruiz-Medina, 2011, on SMAH(∞) representation of SARH(1)

processes). To illustrate the spatial dependence structure displayed by process Z, in Figure A2.1,

the above introduced covariance and autocorrelation operators are showed, in the case where

Z is generated from the spatial functional sampling of the two-parameter Ornstein-Uhlenbeck

process (see Ruiz-Medina, 2012a). Specifically, in the top panels of this figure, the following

vectorized empirical covariance operators can be found, for N = M = 10 (see Ruiz-Medina,

2012a):

R̂V
0,0 =

1

N2

N∑
i=1

N∑
j=1

Vec(Zi,j)⊗Vec(Zi,j)

R̂V
1,1 =

1

(N − 1)2

N−1∑
i=1

N−1∑
j=1

Vec(Zi+1,j+1)⊗Vec(Zi,j),

(A2.4)

where, for each i, j = 1, . . . , N, and {Zi,j = Zi,j(xk, xl), k, l = 1, . . . ,M},

Vec(Zi,j) = (Zi,j(x1, x2), . . . , Zi,j(x1, xM ), Zi,j(x2, x1), . . . , Zi,j(xM , xM ))T , (A2.5)

with T being the transpose. Additionally, for i = 1, 2, 3, denote by li the spectral kernel of Li, in

the center and in the bottom of Figure A2.1, the surfaces displayed are given from interpolation

of 
li(x1, x1;x1, x1), . . . , li(x1, x1;x1, xM ), . . . , li(x1, x1;xM , xM )
li(x1, x2;x1, x1), . . . , li(x1, x2;x1, xM ), . . . , li(x1, x2;xM , xM )

. . . . . . . . . . . . . . .
li(xM , xM ;x1, x1), . . . , li(xM , xM ;x1, xM ), . . . , li(xM , xM ;xM , xM )

 ,

where the values N = 10 and M = 20 have been considered (see also Ruiz-Medina, 2012a).

Remark 6. The cyclic nature of equation (A2.2) arises from the expression of the functional

values Zi+1,j , Zi,j+1 and Zi+1,j+1 in equation (A2.3), in terms of the functional linear combi-
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Figure A2.1: Auto-covariance operators (top-left), and one-lag-diagonal covariance operators
(top-right), for N =M = 10, and operators L1 (center-left), L2 (center-right) and L3 (bottom),
from the spatial functional sampling of O-U, for M = 20.
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nation of their negative spatial lags of order one, involving operators Li, i = 1, 2, 3, according to

equation (A2.1), and from the spatial invariance of the second order moments of the functional

innovation process ϵ in Definition 2.

The coefficients of the linear equation system (A2.2) are the autocovariance, and cross covari-

ance operators introduced in equation (A2.3), i.e., this system is defined in terms of infinite-

dimensional coefficients. From now on, we will then refer to it as the functional linear equation

system satisfied by the operators Li, i = 1, 2, 3. In practice, model fitting is achieved by solving

such a functional linear equation system (A2.2), in terms of the empirical covariance operators

R̂0,0 =
1

NN

N∑
i=1

N∑
j=1

Zi,j ⊗ Zi,j

R̂1,0 =
1

(N − 1)N

N−1∑
i=1

N∑
j=1

Zi+1,j ⊗ Zi,j

R̂0,1 =
1

N(N − 1)

N∑
i=1

N−1∑
j=1

Zi,j+1 ⊗ Zi,j

R̂1,1 =
1

(N − 1)(N − 1)

N−1∑
i=1

N−1∑
j=1

Zi+1,j+1 ⊗ Zi,j , (A2.6)

where {Zi,j , i = 1, . . . , N, j = 1, . . . , N} denotes the functional sample located at the spatial

nodes of a regular grid.

The first problem we have to address, previously to our spatial functional time series model

fitting, is the construction of a functional sample on a regular spatial grid from the observed non-

equally spaced mean annual daily temperature profiles. Specifically, weather station location

concentration at deep ocean regions hinders the analysis, due to the presence of redundant

sample information, as well as border effects. The interval wavelet transform is applied to

eliminate these two effects. It is well known that this transform provides a sparse and more

efficient border representation of smooth functions (see, for example, Cohen, Daubechies and

Vial, 1994; Meyer, 1991; Chyzak et al., 2001). Thus, the main steps of the presented stochastic
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inter/extrapolation methodology are the following:

Data-driven spatial block design. Mean annual daily temperature profiles are averaged over

the spatial boxes of a computational grid to construct a functional sample on a spatial

regular grid. The spatially averaged values over each box are assigned to its lower left

corner. In the design procedure of a lattice configuration, the resolution of this grid is

not fixed, and depends on the spatial density of temperature profiles over each spatial

block, splitting boxes with a high-density level of temperature profiles (see Ruiz-Medina

and Espejo, 2012, for more details on the design of the final spatial computational grid).

Spatial functional time series model fitting. A SARH(1) model is fitted to the generated

functional sample of spatial aggregated temperature profiles on a regular grid. Specifically,

the empirical covariance operators R̂0,0, R̂1,0, R̂0,1 and R̂1,1 are computed. To obtain an

explicit solution to the functional empirical equation system constructed from (A2.2), nu-

merical projection methods, on a suitable orthonormal basis, are applied. Specifically, we

consider the discrete interval wavelet transform, based on Daubechies wavelet functions, at

a specific resolution levelM. The following projection wavelet estimates are then obtained:

 ŴM
2D(L1)

ŴM
2D(L2)

ŴM
2D(L3)

 =

 WM
2D(R̂0,0) WM

2D(R̂1,1) WM
2D(R̂0,1)

WM
2D(R̂1,1) WM

2D(R̂0,0) WM
2D(R̂1,0)

WM
2D(R̂0,1) WM

2D(R̂1,0) WM
2D(R̂0,0)

−1  WM
2D(R̂1,0)

WM
2D(R̂0,1)

WM
2D(R̂1,1)

 , (A2.7)

where WM
2D denotes the two-dimensional discrete interval wavelet transform at resolution

level M.

Stochastic inter/extrapolation. This step is performed in terms of the inverse of the two-

dimensional discrete interval wavelet transforms, ŴM
2D(Li), i = 1, 2, 3, computed in the
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previous step. Thus, the SARH(1)-based stochastic inter/extrapolator is defined as:

E [Zi,j | Zk,l, k < i, or l < j, or k < i and l < j] =

= L̂1Zi−1,j + L̂2Zi,j−1 + L̂3Zi−1,j−1 (A2.8)

where L̂i, i = 1, 2, 3, represent the respective inverses of the two-dimensional discrete

interval wavelet transforms ŴM
2D(Li), i = 1, 2, 3, at resolution level M.

It is well-known that for signals with finite support, the interval wavelet transform provides

a suitable processing of edges, avoiding border distortion. Specifically, special filters are

designed to replace the original filters at the signal borders, that is, they are adapted to

interval borders, and they do not require signal values outside the interval. The boundary

wavelets possess vanishing moments that allow to exploit the signal smoothness near the

borders. In our case, the Hilbert space H is constituted by functions defined on a finite

temporal interval. To derive the wavelet-based system (A2.7) of projected equations, the

values of the empirical covariance operators at the horizontal and vertical directions are

transformed using suitable boundary filter assignment rules to produce sharper edges with

less artifacts than the ones produced by classical wavelet transform. On the other hand,

in the computation of SARH(1)-plug-in extrapolator (A2.8), the inverse interval wavelet

transform is applied, which requires information about the position of the two-dimensional

interval boundaries. The information needed for each wavelet coefficient then consists of

its position and value, in order to derive an almost perfect reconstruction. To extract edge

information simple edge detection schemes have been applied (see, for example, Lee and

Kassim, 2007).

Remark 7. The above described stochastic spatial functional extrapolation algorithm is based on

the assumption that the process of interest YSARH satisfies the state equation (A2.1). Specifically,

in the estimation of operators Li, i = 1, 2, 3, we have applied the spatial unilateral dynamics
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reflected in (A2.1). Furthermore, in the computation of the spatial extrapolator (A2.8), we have

considered as the vector of explanatory variables the functional values of process Z = YSARH−R

at the negative spatial lags of order one involved in the recursive generation scheme (A2.1). While

in the spatial classical or functional kriging, an underlying spatial state equation is not assumed.

However, as in the classical case, we can consider this spatial functional extrapolator as a special

case of spatial functional regression estimator, obtained from the above-referred vector of spatial

functional explanatory variables. That is, in our case, for each spatial location (i, j), the spatial

functional response is given by Zi,j , and the vector of spatial functional explanatory variables

has components: Zi−1,j , Zi,j−1 and Zi−1,j−1.

A2.4 Results

The objective of this section is to investigate how global warming affects the usual influence of

ocean-air surface temperature differences in regional daily climate variability. Specifically, we

study the effect of global warming on daily heat fluxes from the sea into the air. As commented

before, Hawaii ocean and the Gulf of México will be connected through a mean annual daily ocean

surface temperature map derived by application of the proposed SARH(1)-based estimation

methodology. Additionally, mean annual daily ocean surface temperature is spatially functional

extrapolated from the Indian ocean to the Pacific ocean (eastern of Australia coast). The

suitability of the SARH(1) spatial dynamics, fitted by projection into an interval wavelet basis

of Daubechies type, is tested by applying 10-fold Cross Validation (10- fold CV) procedures. The

results are compared to those ones obtained by considering the projection into the eigenfunction

systems involved in the spectral decomposition of SARH(1) parameters, Li, i = 1, 2, 3 (see

Ruiz-Medina, 2012a).
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A2.5 Validation of the model

Ocean surface daily temperature profiles are collected over the Gulf of México, the Hawaii

ocean, Indian Ocean, and the western Australia coast, from the public oceanographic bio-optical

database, The World-wide Ocean Optics Database (WOOD). The years 2000 (in the Gulf of

México and Hawaii ocean), and 1995 (in the western of Australia coast and Indian Ocean)

have been selected for illustration purposes, to measuring the spatial stochastic extrapolation

capability of the proposed methodology, in terms of cross validation procedures, in comparison

with the projection methodology based on the eigenfunction systems of the SARH(1) parameters.

Note that, in the implementation of the proposed estimation algorithm, the truncation order M

involved in the wavelet-based finite-dimensional approximation (A2.7) of the functional equation

system (A2.2) is selected by cross validation. In all the spatial regions analyzed, Gulf of México,

Hawaii ocean, western coast of Australia, and Indian Ocean, a data size of 200 daily temperature

observations is considered, for each temperature profile. This data size substantially limits the

number of available weather stations in the WOOD database. In the tropical and subtropical

regions studied, small changes in temporal global and local patterns of ocean surface daily

temperature profiles can be appreciated between different months. Thus, in these regions, the

derived extrapolation results would not be specially affected by temporal scale changes. However,

spatial functional extrapolation results will be more sensitive to changes in time scale if spatial

block averaging precedes the temporal one, since sampled weather stations substantially change

through months, specially, as commented before, when daily temperature records of size 200 are

required.

The value M = 7 resolution levels has been established in the finite-dimensional approxima-

tion of spaceH, based on the discrete interval wavelet transform projection methodology applied.

Thus, 128× 128 = 16384 wavelet functions are involved in the finite-dimensional approximation

(A2.7) of the functional equation system (A2.2), from the tensorial product of one-dimensional
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interval wavelet functions. A 6× 25 spatial computational grid has been fitted in the four ana-

lyzed regions. For each box of the 6× 25 computational grid, the areal functional data obtained

after spatial averaging daily temperature profiles over such a box is assigned to its lower left

corner. Spatiotemporal interpolation is then performed over the empty nodes.

The 10−fold CV procedure is applied to validate the SARH(1) model fitted, as well as

the projection methodology considered in this fitting. The 10−fold CV mean absolute error

curves over the spatial nodes of the validation sample are shown in Figure A2.2, for the Gulf of

México, in Figure A2.3, for the Hawaii ocean, in Figure A2.4, for the western coast of Australia,

and in Figure A2.5, for the Indian Ocean. This kind of k-fold CV allows the reduction of

CV error variability. The validation sample is located at a 3 × 5 sub-grid, randomly selected

from the global 6× 25 computational grid, i.e., at each iteration of the 10−fold CV procedure,

this sub-grid can move its location from the left to the right, and from the top to the bottom

of such a 6 × 25 spatial grid. The learning sample then consists of the remaining 135 nodes

to fill the complementary space of the 6 × 25 spatial grid outside the sub-grid occupied by

the validation sample, at each iteration of the 10−fold CV procedure applied. Table A2.1

shows the L∞-norms of the 10−fold CV mean absolute error curves at each node of the 3 × 5

validation sample, removing the first row and column. These validation results are compared

to those ones obtained by applying projection into the empirical eigenfunction system of the

infinite-dimensional parameters Li, i = 1, 2, 3, see Table A2.2, where the truncation order T =

20 has been considered, i.e., the projection into the finite dimensional space H̃ generated by

20 eigenfunctions has been considered, which is equivalent to consider 200 eigenfunctions of

the tensorial product basis, in the finite-dimensional approximation of the estimation equation

system (A2.2). It can be appreciated that the wavelet-based projection clearly outperforms the

SARH(1) parameter eigenfunction projection, since larger dimension, due to its sparsity, than

in the eigenfunction approach can be considered in the finite-dimensional approximation of the
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Table A2.1: Two-dimensional discrete interval wavelet projection: L∞-norm of the 10−fold CV
mean absolute error curves, for M = 7 resolution levels

Gulf of México Hawaii ocean Australia Indian Ocean

(2,2) 0.0246 0.3864 0.1305 0.0487
(3,2) 0.0275 0.4315 0.1728 0.0401
(2,3) 0.0226 0.4082 0.1285 0.0456
(3,3) 0.0287 0.4475 0.1587 0.0387
(2,4) 0.0286 0.4070 0.1370 0.0367
(3,4) 0.0416 0.4429 0.1643 0.0372
(2,5) 0.0333 0.3838 0.1502 0.0574
(3,5) 0.0434 0.4185 0.1734 0.0428

space H. Note that, in the SARH(1) parameter eigenfunction projection, the consideration of

higher truncation orders do not improve the performance of the projection methodology due to

the redundancy in the information provided by the terms of the finite dimensional expansion of

the ocean surface temperature curves, in terms of the eigenfunctions of operators Li, i = 1, 2, 3.

However, since the wavelet transform provides sparse covariance matrices in the definition of

equation system (A2.7), redundancy is removed weakening strong correlations, specially in the

region of Hawaii ocean, where it can be appreciated, see Figure A2.6, a high concentration level

of weather stations. On the other hand, it can also be appreciated the improvement obtained

with the discrete interval wavelet transform in the Indian Ocean region, due to the suitable

processing of border effects.

In all the figures below the following abbreviation is considered:

MAECij denotes the 10−fold CV mean absolute error curve over the spatial node (i,j) of the

validation sample (e.g., MAEC22 means mean absolute error curve over the spatial node (2,2)

of the validation sample).

The spatial distribution of weather stations in the four regions analyzed can be found in

Figure A2.6 below.
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Figure A2.2: Gulf of México, year 2000. Mean absolute error curve (MAEC) over the spatial
nodes of the validation sample in the application of a 10-fold CV with M = 7 resolution levels

Figure A2.3: Hawaii Ocean, year 2000. Mean absolute error curve (MAEC) over the spatial
nodes of the validation sample in the application of a 10-fold CV with M = 7 resolution levels
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Figure A2.4: Western Australia, year 1995. Mean absolute error curve (MAEC) over the spatial
nodes of the validation sample in the application of a 10-fold CV with M = 7 resolution levels

Figure A2.5: Indian Ocean, year 1995. Mean absolute error curve (MAEC) over the spatial
nodes of the validation sample in the application of a 10-fold CV with M = 7 resolution levels.
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Table A2.2: SARH(1)-parameter eigenfunction projection: L∞-norm of the 10−fold CV mean
absolute error curves, for T = 20

Gulf of México Hawaii ocean Australia Indian Ocean

(2,2) 0.0769 0.5785 0.6047 0.3114
(3,2) 0.1098 0.7183 0.6495 0.2649
(2,3) 0.0920 0.6211 0.5835 0.3802
(3,3) 0.0786 0.6785 0.6975 0.2912
(2,4) 0.1059 0.6327 0.9539 0.3008
(3,4) 0.0879 0.6845 0.9624 0.2192
(2,5) 0.1270 0.6125 0.5647 0.2939
(3,5) 0.1342 0.6621 0.6426 0.2420

Figure A2.6: Spatial distribution of weather stations at the Gulf of México (top-left), Hawaii
Ocean (top-right), Western coast of Australia (bottom-left) and Indian Ocean (bottom right).
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A2.6 Temperature map

Global warming changes the air temperature more quickly, and induces a decreased temperature

differences between sea and air, which is expected to reduce the heat fluxes from the sea into

the air at night. In this section, this global warming effect is investigated, in the Hawaii ocean

and the coast of the Gulf of México, in terms of the daily evolution of ocean surface temperature

from the mid-day to the night, reflected in the spatial extrapolation temperature maps, derived

with the application of the proposed functional estimation methodology. The strengthening

of ocean current flows is also investigated through spatial ocean surface temperature maps,

reflecting minimum daily temperature differences between the Indian Ocean and the eastern

coast of Australia, in the Pacific Ocean.

First, mean annual daily temperature maps are obtained covering the spatial evolution of

ocean surface temperature from Hawaii to the Gulf of México. Specifically, the sea-surface

temperature values are extrapolated from Hawaii ocean (left-hand side of the graphs below

in Figures A2.7 and A2.8) to the coastal ocean of the Gulf of México (right-hand side of the

graphs below in Figures A2.7 and A2.8). Within the period of the last 15 years, the years 1995

(see Figure A2.7) and 2006 (see Figure A2.8) have been selected to detect a possible global

warming effect through this period, reflected, as commented before, in a reduction of the air-sea

temperature differences, and higher coastal ocean surface temperatures at night. These years

have been chosen, since they display the largest numbers of weather stations having available

high-dimensional daily temperature profiles. It can be appreciated that sea-air temperature

differences are smaller during the year 2006 (see Figure A2.8) than in the year 1995 (see Figure

A2.7), leading to a reduction of heat fluxes from the sea into the coast at night. Specifically,

regarding minimum daily temperatures, the temperature of the coastal ocean surface ranges

between 8.5C and 11C in the year 1995 (see right-hand-side of bottom-right panel of Figure

A2.7), while, during the year 2006, it ranges between 11C and 12.5C (see right-hand-side of
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bottom-right panel of A2.8). Thus, an increase of the coastal ocean surface minimum daily

temperature is experimented at the Gulf of México within this period. Note that the graphs in

Figures A2.7 and A2.8 display the ocean surface temperature from Hawaii to the Gulf of México

at the same daily time intervals from mid-day to night. In the second panel (top-right panel) of

these figures coastal ocean surface temperature begins to go down. The two central panels reflect

heat fluxes from the sea into the air, due to the difference between coastal and ocean surface

temperatures. In the last two panels, an equilibrium between these temperatures is reached.

A faster drop in coastal ocean surface temperature range can be appreciated during the year

1995 with respect to the year 2006, as it is reflected in Figures A2.7 and A2.8. Specifically,

in Figure A2.8, coastal temperature range, from midday to the afternoon, goes from [26C, 27C]

(right-hand-side of top-left panel) to the range [25.5C, 26.5C] (right-hand-side of top-right panel),

while during the year 1995 (see Figure A2.7), it goes from [25C, 27.5C] (right-hand-side of top-

left panel) to [24C, 25.5C] (right-hand-side of top-right panel). An equilibrium or homogeneity

between coastal (right-hand-side of each panel) and ocean (left-hand-side of each panel) is first

reached in the year 2006 (see bottom-left panels of Figures A2.7 and A2.8), since, as commented,

in the year 2006 a slower decay of coastal temperatures than in the year 1995 is displayed. Finally,

in the last panel (bottom-right panel) of Figures A2.7 and A2.8, it can be appreciated an increase

of the temperature range of ocean surface in the year 2006. In this year (see left-hand-side of

bottom-right panel of Figure A2.8), the ocean surface temperature range is [9.5C, 13C], while, in

the year 1995 (see left-hand-side of bottom-right panel of Figure A2.7), has been [8.5C, 11.5C].

Therefore, we can conclude that the increase of coastal ocean surface temperature reduces heat

fluxes from the ocean into the coast, and, hence, an slightly increase of ocean surface temperature

has been appreciated in the last 15 years. Note that, here, heat island effect is also present.

Since 1910-1929, ocean surface temperatures around Australia have warmed 0.7◦C. Marine

biodiversity is changing in south-east Australia in response to warming temperatures and a
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Figure A2.7: Hawaii Ocean and Gulf of México. Mean annual daily temperature map (from
midday to night), year 1995.
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Figure A2.8: Hawaii Ocean and Gulf of México. Mean annual daily temperature map (from
midday to night), year 2006.
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stronger East Australian Current. In particular, we concentrate our study in ocean surface

minimum daily temperature differences between Indian Ocean and the eastern coast of Australia,

to detect one of the main factors of strengthening the flow of the East Australian Current. Due to

the existing limitations in the availability of WOOD public oceanographic bio-optical database,

in relation to weather stations with high-dimensional temperature series in Indian Ocean and

the eastern coastal ocean of Australia, we have selected the year 1995, in the Indian Ocean, and

the year 1997, in the eastern coastal ocean of Australia, to be compared with the year 2003,

where there exists availability in both regions. Specifically, differences between the Indian Ocean

surface temperature in 1995, and eastern coastal Australia ocean surface temperatures in 1997,

are compared to those ones displayed between these two regions during the year 2003. In the

year 1995, daily ocean surface temperature from the evening to the night ranges between 9.5C

and 14C at the Indian Ocean (see top panels of Figure A2.9). While, in the eastern coast of

Australia, in the year 1997, it ranges between 20.6C and 24.8C (see bottom panels of Figure

A2.9). In the year 2003, the Indian Ocean surface temperature range from the evening to the

night was [4C, 12C] (see top panels of Figure A2.10) and, in the eastern coast of Australia, it

was [22C, 30C] (see bottom panels of Figure A2.10). Therefore, more pronounced differences

between minimum daily temperatures of the Indian Ocean, and the Eastern coast of Australia

can be appreciated in the year 2003 than in the years 1995-1997. Some strategies must then be

designed in order to get an adaptation to marine climate change, and to increase resilience of

Australian marine biodiversity.

A2.7 Discussion and conclusions

A new spatial functional stochastic extrapolation technique is proposed, based on SARH(1)

processes. This estimation technique requires to have the data over a spatial regular grid.

A lattice configuration is constructed by spatial averaging of mean annual daily temperature
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Figure A2.9: Mean annual daily temperature map, at the Indian Ocean, for evening time (top-
left) and for night time (top-right), during year 1995, and at the eastern coast of Australia, for
evening time (bottom-left) and for night time (bottom-right), during year 1997 (bottom).

Figure A2.10: Mean annual daily temperature map, at the Indian Ocean, for evening time
(top-left) and for night time (top-right), and at the eastern coast of Australia, for evening time
(bottom-left) and for night time (bottom-right), during year 2003.
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profiles over the boxes of a final spatial grid fitted, after splitting, in an initial computational

regular grid, the boxes with the largest numbers of weather stations. An equilibrium between the

aggregation level per block, and the global interpolation level must be reached. In the derivation

of the final lattice configuration, the distribution of weather stations and the variability displayed

by the functional data analyzed at the temporal micro- and macro-scale levels must be taken

into account.

Note that the spatial aggregation of martingale difference processes at each grid box is

again a spatial martingale difference process with respect to the information provided by the

aggregated functional values of the innovation process in the remaining boxes (see Definition 3).

Therefore, the SARH(1) fitting, performed to the spatially aggregated temperature profiles, has

behind the assumption of an underlying spatial martingale difference process inducing spatial

local variability at micro-scale level of daily temperature profiles. Moreover, since a functional

statistical test is not yet available to verify if the invariance of the functional second-order

moments of process ϵ, assumed in Definition 2, is a suitable assumption for the ocean surface

temperature phenomenon investigated, the empirical evidence is only considered as verification

tool. Namely, we can conclude, in terms of the 10-fold CV results obtained in Section A2.5, that

the SARH(1) fitting, under the second-order moment spatial invariance assumption in Definition

2, is suitable for the areal functional data sets constructed from the observed daily temperature

profiles in the four regions analyzed.

The implementation of the SARH(1) extrapolation in terms of the discrete interval wavelet

transform allows to overcome the difficulties arising in the projection methodologies, based on

the eigenfunction system of the autocovariance operator (see Ruiz-Medina and Espejo, 2012),

as well as of the infinite-dimensional parameters defining the SARH(1) state equation (see Ruiz-

Medina, 2012a). In particular, in the real-data example analyzed, as commented in Section

A2.5, the suitable processing of edge effects by the interval wavelet transform improves the
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results derived in the Indian Ocean with the SARH(1) parameter eigenfunction system. Ad-

ditionally, this transform also weakens spatial correlations leading to better estimation results

than the ones obtained with the SARH(1) parameter eigenfunction system, in presence of high

spatial concentration of weather stations, removing redundancy in the data. This fact can be

appreciated in the results derived in Hawaii Ocean. It is important to note, that the empirical

autocovariance function projection (see Ruiz-Medina and Espejo, 2012) leads to the maximum

dimension reduction for a given level of explained variability. The projection into the SARH(1)

parameter eigenfunction system is advisable for the case of an estimation equation system with

determinant close to zero (see Ruiz-Medina, 2012a). However, this projection methodology is not

as optimal as the autocovariance eigenfunction system in relation to dimension reduction, but,

it also presents the problem that, when the number of eigenfunctions considered for projection

increases, redundancy present in the sample projections decreases the quality of the estimations,

as it can be appreciated in the real-data example studied in Section A2.5.

Cross validation procedures are applied for studying the performance of the presented spatial

functional extrapolation algorithm. This procedures are also applied in the selection of the

truncation order. The 10-fold CV mean absolute error curves displayed in Section A2.5 then

reflect the lattice configuration error and the truncation error, additionally to the empirical error.

We have to note that, in the real-data example analyzed, the spatial averaging region error is

minimum, due to the slow variation through space of the local and global temporal patterns of the

temperature profiles in the tropical and subtropical regions analyzed. The spatial distribution

of weather stations in the Gulf of México and the Indian Ocean better fits the SARH(1) spatial

unilateral dynamics. Thus, a better integration between data and methodology is reached in

the Gulf of México and the Indian Ocean than in the Hawaii Ocean and the western coast of

Australia.

The mean annual daily ocean surface temperature maps derived by spatial functional extrap-
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olation from the deep Hawaii ocean to the Gulf of México, allows to observe the spatiotemporal

daily evolution of the heat fluxes from the sea into the air. As discussed in Section A2.6, the

constructed ocean surface temperature maps show empirical evidence of a decrease of differences

between sea and air temperatures at the end of the day through the years analyzed, leading to

a slightly increase of ocean surface temperature. Finally, we remark that, from the temperature

maps, covering the region from Indian Ocean to the eastern coast of Australia, we can conclude

that more pronounced differences between minimum daily temperatures of the Indian Ocean,

and the eastern coast of Australia can be appreciated in the year 2003 than in the years 1995-

1997, with faster warming of the east, and a strengthening of the flow of the East Australian

Current.
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Heterogeneous spatial dynamics
regression in a Hilbert-valued
context

Ruiz-Medina, M. D., Anh, V. V., Espejo, R. M. and Fŕıas, M. P. (2013).

Heterogeneous spatial dynamical regression in a Hilbert-valued context.

Stochastic Analysis and Applications, 31, 509–527.

Abstract

This paper introduces a Hilbert-valued spatially dynamic regression model. The spatially heterogeneous functional

trend is modelled by functional multiple regression, with varying regression operators. The spatial autoregressive

Hilbertian model of order one (SARH(1) model, see Ruiz-Medina, 2011) is considered to represent the spatial

correlation and dynamics displayed by the functional error term. The RKHS theory is applied in the construction

of suitable bases for projection and regularization of the associated estimation problems. The performance of the

proposed Hilbert-valued modeling and estimation methodology is illustrated with a real-data example, related to

financing decisions from firm panel data.
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A3.1 Introduction

The theory of linear models in functional spaces has been extensively developed in the last

two decades. In particular, functional linear regression models, FANOVA models, and Hilbert

space-valued time series models have been widely investigated (see, for example, Abramovich

and Angelini, 2006; Bosq, 2000; Cai and Hall, 2006; Cardot et al., 2003; Cardot, Ferraty and

Sarda, 1999, 2003; Cardot and Sarda, 2005; Crambes, Kneip and Sarda, 2009; Fan and Zhang,

2000; James, 2002; James, Wang and Zhu, 2009; Ramsay and Silverman, 2005; Ruiz-Medina

and Salmerón, 2010; Spitzner, Marron and Essick, 2003; Zoglat, 2008). Different approaches

have been presented in the functional non-parametric framework in Ferraty and Vieu (2006),

Hoover et al. (1998); Masry (2005); Rachdi and Vieu (2007); Wu, Chiang and Hoover (1998)

and the references therein. A spatial functional statistical framework is adopted in Guillas and

Lai (2010), based on bivariate splines, in terms of which the surface defining the explanatory

random variables is approximated.

The Reproducing Kernel Hilbert Space (RKHS) and Wiener chaos theories reveal as useful

tools in functional regression in a Hilbert-valued context (see, for example, Angelini, De Canditiis

and Leblanc, 2003; Bosq, 2000; Guo, 2002; Ivanov and Leonenko, 2004; Ivanov et al., 2013; Kadri

et al., 2010; Mendelson, 2002, among others). Extensions of the functional linear regression

modeling involving varying coefficients are given, for instance, in Sentürk and Müller (2010) and

Wu, Fan and Müller (2010).

In the present paper, the spatial autoregressive framework, introduced in Ruiz-Medina

(2011), is combined with a Hilbert-valued spatially heterogeneous trend, fitted by functional lin-

ear multiple regression with varying regression operators, to model spatial functional dynamic

regressions. The estimation method proposed here is based on the functional state equation

satisfied by the spatial Hilbert-valued process. This process displays a spatially heterogeneous

functional trend, given in terms of a fixed vector of functional covariables, and a spatial functional
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autoregressive dynamics, induced by the SARH(1) process which models the functional error

term. The RKHS theory is considered in the regularization of the functional estimation problem

associated with the regression and SARH(1) operators. Specifically, orthonormal bases of the

RKHS of the Hilbert-valued SARH(1) error process are considered to rectify the ill-posed na-

ture of the problem. Alternatively, dual Riesz bases diagonalizing the SARH(1) cross-covariance

operators are also investigated. A stable inversion of the functional equation systems satisfied

by the regression and SARH(1) operators is then performed. In practice, the eigenvector and

eigenvalues systems involved in the spectral decomposition of the empirical auto-covariance op-

erator of the response, in the multiple regression model, and of the auto-covariance operator

and cross-covariance operators of the SARH(1) process are used.

In an applied context, empirical research on the capital structure of companies has an empha-

sis on the examination of factors that influence the financing decisions in firms. Earlier research

established a significant connection between financing decisions and the debt level of companies

in the different theoretical and empirical studies carried out (see, for example, Bhaird and Lucey,

2010; Chittenden, Hall and Hutchinson, 1996; Degryse, De Goeij and Kappert, 2012; Heyman,

Deloof and Ooghe, 2008; Michaelas, Chittenden and Poutzioris, 1999; Sogorb-Mira, 2005; Van

der Wijst and Thurik, 1993). More recently, many works paid attention to the geographical

region and/or industry sectors as factors of influence in financing decisions. If these factors are

confirmed, the capital structure or its firm factor determinants will differ across regions and/or

sectors. These studies used panel data models mainly because information is available from many

firms for several years. A variety of approaches within the panel data methodology to examine

regional or industry effects have been developed. In some works, these factors are introduced by

dummy variables (see, for example, Booth et al., 2001; Degryse, De Goeij and Kappert, 2012;

Michaelas, Chittenden and Poutzioris, 1999; Rocca, Rocca and Cariola, 2010; Utrero-González,

2007). The dummy variable approach suggests that regional or sectoral impacts are unrelated to
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the independent factors. Some other studies apply regression with varying coefficients, and test

the stability of parameter estimates across regions or sectors (Bhaird and Lucey, 2010; Booth

et al., 2001; Degryse, De Goeij and Kappert, 2012; De Jong, Kabir and Nguyen, 2008; Psillaki

and Daskalakis, 2009).

The Hilbert-valued model proposed here is applied to the above described financial context.

Specifically, to represent the spatial heterogeneous functional linear relationship between in-

debtedness curves and company factors, continuously registered through time, a Hilbert-valued

spatially heterogeneous multiple regression model is fitted to estimate the trend. Indeed, this

heterogeneity is induced by the industry sector and the geographical region, since functional

data are grouped at the nodes of a spatial abstract regular grid, constructed from the combina-

tion of the categories displayed by these two variables (see, for example, Case, Rosen and Hines,

1993; Conley and Ligon, 2002; Hautsch and Klotz, 1999). A spatial unilateral dynamics of order

one is assumed for the functional error term, extending the classical longitudinal studies usually

developed from firm panel data, where spatial correlations are ignored. In the real-data example

analyzed, 638 Spanish companies are considered; these companies belong to 9 industry sectors

and 17 Spanish communities. A 9 × 17 spatial regular grid is then fitted. The results of the

empirical study developed show a good performance of the estimation methodology proposed,

supporting the spatial heterogeneous assumption and the SARH(1) dynamics.

The outline of the paper is the following. Section A3.2 provides some key definitions and

results related to SARH(1) modeling. In Section A3.3, different numerical projection methods

are described for implementation of the SARH(1) prediction. Section A3.4 introduces a new

class of spatial functional multiple regression models with varying regression operators, and its

moment-based projection estimation. In Section A3.5, a Spanish firm panel data set, constituted

by 638 companies from 9 industry sectors and 17 geographical regions, is analyzed during the

period 1999-2007. A cross-validation study is developed for assessing model fitting. Conclusions
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and final remarks are given in Section A3.6.

A3.2 Preliminaries

In this section, we briefly review the SARH(1) process framework, introduced in Ruiz-Medina

(2011, 2012a). The Markov property of the three points (see Nualart and Sanz, 1979) for two-

parameter processes is considered in the definition of the H-valued innovation process involved

in the construction of SARH(1) models, as given in the following definition.

Definition 4. Let X = {X(z) : z ∈ R2} be a random field defined on a probability space

(Ω,A, P ). Random field X is said to satisfy the Markov property of the three points if

P (X(z)/Gy) = P (X(z)/X(y1, z2), X(z1, y2), X(y1, y2)) , (A3.1)

for all y = (y1, y2) such that y1 ≤ z1 and y2 ≤ z2, i.e., y ≤ z, where

Gy = σ (X(x), x ≤ y) .

Note that in the above definition the following partial ordering of R2 is considered:

(y1, y2) ≤ (z1, z2) ⇔ y1 ≤ z1 and y2 ≤ z2.

For a given point z = (z1, z2) ∈ R2, the associated future and past are defined as the comple-

mentary regions Fz = {z′ ∈ R2; z ≤ z′} and Pz = {z′ ∈ R2; z′1 < z1 or z′2 < z2} respectively

associated with the point z ∈ R2.

In the Gaussian case, the Markov property in Definition 4 is equivalent to the existence of

real numbers α1, α2 and α3 such that, for all y ≤ z,

E [X(z)/Gy] = α1X(y1, z2) + α2X(z1, y2) + α3X(y1, y2). (A3.2)

The following concept of spatial or two-parameter martingale difference sequence {Xi,j , (i, j) ∈

Z2} is considered.
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Definition 5. Let {Xi,j , (i, j) ∈ Z2} and {Zi,j , (i, j) ∈ Z2} be two-parameter stochastic se-

quences. Then, {Xi,j , (i, j) ∈ Z2} is a spatial or two-parameter martingale difference sequence

with respect to the sequence {Zi,j , (i, j) ∈ Z2} if the conditional expectation

E
BP(n,m) (Xn,m) = 0,

where P(n,m) denotes the past region of point (n,m), and

BP(n,m)
= σ

(
Zi,j , (i, j) ∈ P(m,n)

)
= σ (Zi,j , i < n or j < m)

denotes the σ−algebra generated by the past values of the stochastic sequence

{Zi,j , (i, j) ∈ Z2}.

The spatial functional innovation process of SARH(1) processes (see Ruiz-Medina, 2011) is

assumed to be a two-parameter martingale difference. Specifically, the following definition pro-

vides the concept of spatial autoregressive Hilbertian processes adopted in Ruiz-Medina (2011):

Definition 6. (Ruiz-Medina (2011)) A spatial functional process

YSARH = {Yij , (i, j) ∈ Z2},

with values in a separable Hilbert space H, is said to be a unilateral SARH(1) process if it is

stationary and satisfies the following equation:

Yi,j = R+ L1(Yi−1,j) + L2(Yi,j−1) + L3(Yi−1,j−1) + ϵi,j , (A3.3)

where R ∈ H and, for i = 1, 2, 3, Li ∈ L(H), the space of linear bounded operators on H. The

spatial functional innovation process satisfies the two-parameter matingale difference property

given in Definition 5. Moreover, E∥ϵi,j∥2H = σ2, and E[ϵi,j ⊗ ϵi,j ] = Cϵ0,0 , that is, it has finite

functional variance, and it is weak-sense stationary in space.
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Let us now introduce the conditions that ensure the existence and uniqueness of a spatial sta-

tionary functional solution to the SARH(1) equation admitting a SMAH(∞) representation (see

Ruiz-Medina, 2011). Specifically, in Ruiz-Medina (2011), operators Li, i = 1, 2, 3, are assumed

to belong to the class of compact possibly non-symmetric operators, admitting the following

spectral decomposition, in terms of the eigenvalues {λk(Li), k ∈ N}, and the biorthogonal

systems of left, {ψk, k ∈ N}, and right, {ϕk, k ∈ N}, eigenvectors,

Li(ψk) = λk(Li)ψk

L∗
i (ϕk) = λk(Li)ϕk

⟨ϕk, ψl⟩H = δk,l, k, l ∈ N, (A3.4)

where L∗
i denotes the adjoint of Li, and δk,l the Kronecker-delta function. Under (A3.4), the

following spectral kernel-based representation of Li, for i = 1, 2, 3, is obtained:

Li(g)(f) =
∑
k∈N

λk(Li)ψk(f)ϕk(g), ∀f, g ∈ H. (A3.5)

The conditions needed for the SMAH(∞) representation of process YSARH in equation

(A3.3) are established in the following result.

Proposition 3. (Ruiz-Medina (2011)) Assume that (A3.4) holds. For each k ∈ N, none of the

roots of Φ(z1, z2) = 0 = 1− λk(L1)z1 − λk(L2)z2 − λk(L3)z1z2 lie within the closed unit polydisc

(|z1| ≤ 1, |z2| ≤ 1) if and only if, for each k ∈ N,

(i) |λk(Li)| < 1, for i = 1, 2, 3,

(ii)
(
1 + [λk(L1)]

2 − [λk(L2)]
2 − [λk(L3)]

2
)2 − 4(λk(L1) + λk(L2)λk(L3))

2 > 0

(iii) 1− [λk(L2)]
2 > |λk(L1) + λk(L2)λk(L3)|.

Under (i)-(iii), the solution to equation (A3.3) is stationary.
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The SMAH(∞) representation of process YSARH is now provided.

Proposition 4. (Ruiz-Medina (2011)) Let YSARH be a SARH(1) process, as given in Definition

6, with Li, i = 1, 2, 3, admitting the spectral decomposition (A3.4). Assume that the conditions

considered in Proposition 3 hold. Then, equation (A3.3 ) admits a unique stationary solution

given by

Yi,j = R+
∞∑
k=0

∞∑
l=0

∞∑
r=0

(k + l + r)!

k!l!r!
Lk
1L

l
2L

r
3(ϵi−k−r,j−l−r), (A3.6)

where Li, i = 1, 2, 3, are defined in equation (A3.3).

A3.3 SARH(1) functional prediction

The second-order spatial functional structure of Y is characterized in terms of the following

covariance operators:

R0,0 = RZi,jZi,j = E [Zi,j ⊗ Zi,j ]

R1,0 = RZi+1,jZi,j = E [Zi+1,j ⊗ Zi,j ]

R0,1 = RZi,j+1Zi,j = E [Zi,j+1 ⊗ Zi,j ]

R1,1 = RZi+1,j+1Zi,j = E [Zi+1,j+1 ⊗ Zi,j ] , (A3.7)

with Zi,j = Yi,j −R, for all (i, j) ∈ Z2.

Replacing in equation (A3.7), Zi+1,j , Zi,j+1, and Zi+1,j+1 by their expressions, according to

the functional state equation (A3.3), we obtain the following functional linear system, satisfied

by the autocorrelation operators Li, i = 1, 2, 3 :

R1,0 = L1R0,0 + L2R1,1 + L3R0,1

R0,1 = L1R1,1 + L2R0,0 + L3R1,0

R1,1 = L1R0,1 + L2R1,0 + L3R0,0. (A3.8)
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System (A3.8) can be rewritten as a kernel-based equation system, in terms of the kernels

defining the spectral decomposition of operators R0,0, R1,0, R0,1 and R1,1, from their eigenvectors

and eigenvalues. Specifically, since Ri,j , i, j ∈ {0, 1}, are Hilbert-Schmidt operators, they admit

the following series representation:

R0,0(φ)(ς) =

∞∑
k=1

λk(R0,0)[ϕ
R0,0

k (φ)ϕ
R0,0

k (ς)], φ, ς ∈ D(R0,0)

R1,0(φ)(ς) =

∞∑
k=1

λk(R1,0)[ϕ
R1,0

k (ς)ψ
R1,0

k (φ)], φ, ς ∈ D(R1,0)

R0,1(φ)(ς) =

∞∑
k=1

λk(R0,1)[ϕ
R0,1

k (ς)ψ
R0,1

k (φ)], φ, ς ∈ D(R0,1)

R1,1(φ)(ς) =
∞∑
k=1

λk(R1,1)[ϕ
R1,1

k (ς)ψ
R1,1

k (φ)], φ, ς ∈ D(R1,1), (A3.9)

where, for i, j ∈ {0, 1}, with i ̸= j, or i = j = 1, {ψRi,j

k , k ≥ 1} and {ϕRi,j

k , k ≥ 1} respectively

denote the right and left eigenvector systems of Ri,j , and, in the symmetric case, i.e., for the

case i = j = 0, {ϕR0,0

k , k ≥ 1} represents the eigenvector system of R0,0, since, in this case,

ϕk = ψk, for k ≥ 1. Also, {λk(Ri,j), k ≥ 1} denotes the eigenvalue system of operator Ri,j , for

i, j ∈ {0, 1}. Here, as usual, D(A), denotes the domain of operator A.

Now, we consider a kernel-based representation of operators Li, i = 1, 2, 3, in terms of their

projections Li(ϕ
R0,0

k )(ϕ
R0,0

l ), k, l ≥ 1, into the basis {ϕR0,0

k ⊗ϕR0,0

l , k, l ≥ 1}, where f⊗g denotes

the Hilbert-Schmidt operator defined by

f ⊗ g(φ) = f ⟨g, φ⟩H , ∀φ ∈ H, f, g ∈ H.

That is,

Li =
H

∑
k,l

Li(ϕ
R0,0

k )(ϕ
R0,0

l )[ϕ
R0,0

k ⊗ ϕ
R0,0

l ]. (A3.10)

By substituting the series representations (A3.9) and (A3.10) into the equation system (A3.8),
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we obtain, for φ ∈ D(R0,0) ∩ D(R1,0) ∩ D(R0,1) ∩ D(R1,1), the following system of equations:

f1 =

∞∑
k=1

⟨
λk(R1,0)[ψ

R1,0

k ⊗ ϕ
R1,0

k ], φ
⟩
H

=
∑
k,l,p

L1(ϕ
R0,0

k )(ϕ
R0,0

l )ϕ
R0,0

l

⟨
ϕ
R0,0

k , ϕ
R0,0
p

⟩
H
ϕ
R0,0
p (φ)λp(R0,0)

+
∑
k,l,p

L2(ϕ
R0,0

k )(ϕ
R0,0

l )ϕ
R0,0

l

⟨
ϕ
R0,0

k , ϕ
R1,1
p

⟩
H
λp(R1,1)ψ

R1,1
p (φ)

+
∑
k,l,p

L3(ϕ
R0,0

k )(ϕ
R0,0

l )ϕ
R0,0

l

⟨
ϕ
R0,0

k , ϕ
R0,1
p

⟩
H
λp(R0,1)ψ

R0,1
p (φ)

f2 =

∞∑
k=1

⟨
λk(R0,1)[ψ

R0,1

k ⊗ ϕ
R0,1

k ], φ
⟩
H

=
∑
k,l,p

L1(ϕ
R0,0

k )(ϕ
R0,0

l )ϕ
R0,0

l

⟨
ϕ
R0,0

k , ϕ
R1,1
p

⟩
H
λp(R1,1)ψ

R1,1
p (φ)

+
∑
k,l,p

L2(ϕ
R0,0

k )(ϕ
R0,0

l )ϕ
R0,0

l

⟨
ϕ
R0,0

k , ϕ
R0,0
p

⟩
H
λp(R0,0)ϕ

R0,0
p (φ)

+
∑
k,l,p

L3(ϕ
R0,0

k )(ϕ
R0,0

l )ϕ
R0,0

l

⟨
ϕ
R0,0

k , ϕ
R1,0
p

⟩
H
λp(R1,0)ψ

R1,0
p (φ)

f3 =

∞∑
k=1

⟨
λk(R1,1)[ψ

R1,1

k ⊗ ϕ
R1,1

k ], φ
⟩
H

=
∑
k,l,p

L1(ϕ
R0,0

k )(ϕ
R0,0

l )ϕ
R0,0

l

⟨
ϕ
R0,0

k , ϕ
R0,1
p

⟩
H
λp(R0,1)ψ

R0,1
p (φ)

+
∑
k,l,p

L2(ϕ
R0,0

k )(ϕ
R0,0

l )ϕ
R0,0

l

⟨
ϕ
R0,0

k , ϕ
R1,0
p

⟩
H
λp(R1,0)ψ

R1,0
p (φ)

+
∑
k,l,p

L3(ϕ
R0,0

k )(ϕ
R0,0

l )ϕ
R0,0

l

⟨
ϕ
R0,0

k , ϕ
R0,0
p

⟩
H
λp(R0,0)ϕ

R0,0
p (φ), (A3.11)

where convergence is given in the H-norm, that is, for a sequence fn ∈ H, n ≥ 1, convergence

in H-norm to f ∈ H means, as usual, that limn→∞ ∥fn − f∥H = 0. In the particular case where

ϕ
Ri,j

k = ϕk, k ≥ 1, for i, j ∈ {0, 1}, equation (A3.11) can be rewritten as
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f1 =

∞∑
k=1

λk(R1,0)ψ
R1,0

k (φ)ϕk =
∑
k,l

λk(R0,0)L1(ϕk)(ϕl)ϕk(φ)ϕl

+
∑
k,l

λk(R1,1)L2(ϕk)(ϕl)ψ
R1,1

k (φ)ϕl +
∑
k,l

λk(R0,1)L3(ϕk)(ϕl)ψ
R0,1

k (φ)ϕl

f2 =

∞∑
k=1

λk(R0,1)ψ
R0,1

k (φ)ϕk =
∑
k,l

λk(R1,1)L1(ϕk)(ϕl)ψ
R1,1

k (φ)ϕl

+
∑
k,l

λk(R0,0)L2(ϕk)(ϕl)ϕk(φ)ϕl +
∑
k,l

λk(R1,0)L3(ϕk)(ϕl)ψ
R1,0

k (φ)ϕl

f3 =
∞∑
k=1

λk(R1,1)ψ
R1,1

k (φ)ϕk =
∑
k,l

λk(R0,1)L1(ϕk)(ϕl)ψ
R0,1

k (φ)ϕl

+
∑
k,l

λk(R1,0)L2(ϕk)(ϕl)ψ
R1,0

k (φ)ϕl +
∑
k,l

λk(R0,0)L3(ϕk)(ϕl)ϕk(φ)ϕl. (A3.12)

Multiplying both sides of identity (A3.12) by ϕp, and applying the orthogonality of the eigen-

function system {ϕk, k ≥ 1}, we obtain

f1(ϕp) = λp(R1,0)ψ
R1,0
p (φ) =

∞∑
k=1

λk(R0,0)L1(ϕk)(ϕp)ϕk(φ)

+
∑
k

λk(R1,1)L2(ϕk)(ϕp)ψ
R1,1

k (φ)

+
∑
k

λk(R0,1)L3(ϕk)(ϕp)ψ
R0,1

k (φ)

f2(ϕp) = λp(R0,1)ψ
R0,1
p (φ) =

∞∑
k=1

λk(R1,1)L1(ϕk)(ϕp)ψ
R1,1

k (φ)

+
∑
k

λk(R0,0)L2(ϕk)(ϕp)ϕk(φ)

+
∑
k,l

λk(R1,0)L3(ϕk)(ϕp)ψ
R1,0

k (φ)

f3(ϕp) = λp(R1,1)ψ
R1,1
p (φ) =

∞∑
k=1

λk(R0,1)L1(ϕk)(ϕp)ψ
R0,1

k (φ)

+
∑
k

λk(R1,0)L2(ϕk)(ϕp)ψ
R1,0

k (φ)

+
∑
k

λk(R0,0)L3(ϕk)(ϕp)ϕk(φ). (A3.13)
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In particular, considering in (A3.13), φ = ϕp, and applying that the right and left eigenfunction

systems are biorthonormal, as well as the common eigenfunction system {ϕk, k ≥ 1} itself, one

can gets, for each p ≥ 1,

f1(ϕp) = λp(R1,0) = λp(R0,0)L1(ϕp)(ϕp) + λp(R1,1)L2(ϕp)(ϕp) + λp(R0,1)L3(ϕp)(ϕp)

f2(ϕp) = λp(R0,1) = λp(R1,1)L1(ϕp)(ϕp) + λp(R0,0)L2(ϕp)(ϕp) + λp(R1,0)L3(ϕp)(ϕp)

f3(ϕp) = λp(R1,1) = λp(R0,1)L1(ϕp)(ϕp) + λp(R1,0)L2(ϕp)(ϕp) + λp(R0,0)L3(ϕp)(ϕp).

(A3.14)

Thus, the diagonal elements Li(ϕp)(ϕp), p ≥ 1, of the infinite-dimensional coordinate matrix

of Li, i = 1, 2, 3, with respect to the basis {ϕk, k ≥ 1} can be computed as the solutions of the

scalar linear system (A3.14), for each p ≥ 1.

Furthermore, the truncation at term M leads to the following finite-dimensional approxima-

tion of system (A3.13):

Λ(R1,0)ψ
R1,0(φ) = L1Λ(R0,0)ϕ(φ) + L2Λ(R1,1)ψ

R1,1(φ) + L3Λ(R0,1)ψ
R0,1(φ)

Λ(R0,1)ψ
R0,1(φ) = L1Λ(R1,1)ψ

R1,1(φ) + L2Λ(R0,0)ϕ(φ) + L3Λ(R1,0)ψ
R1,0(φ)

Λ(R1,1)ψ
R1,1(φ) = L1Λ(R0,1)ψ

R0,1(φ) + L2Λ(R1,0)ψ
R1,0(φ) + L3Λ(R0,0)ϕ(φ),

(A3.15)

where, for i, j ∈ {0, 1}, Λ(Ri,j) denotes the diagonal M ×M matrix with entries the first M

eigenvalues of Ri,j , arranged in decreasing order of magnitude. Moreover, for i = 1, 2, 3, the

M ×M matrix Li contains the coordinates of operator Li with respect to the basis {ϕk, k =

1, . . . ,M}. Finally, by ϕ(φ), the M ×1 vector with entries ϕk(φ), k = 1, . . . ,M, is denoted, and,

for i, j ∈ {0, 1}, by ψRi,j (φ), theM×1 vector with entries ψ
Ri,j

k (φ), k = 1, . . . ,M, is represented.

Tesis Doctoral Rosa M. Espejo Montes



Appendix 3 121

Thus, for every φ ∈ D(R0,0) ∩ D(R1,0) ∩ D(R0,1) ∩ D(R1,1), L1

L2

L3

 =

 Λ(R0,0)ϕ(φ) Λ(R1,1)ψ
R1,1(φ) Λ(R0,1)ψ

R0,1(φ)

Λ(R1,1)ψ
R1,1(φ) Λ(R0,0)ϕ(φ) Λ(R1,0)ψ

R1,0(φ)

Λ(R0,1)ψ
R0,1(φ) Λ(R1,0)ψ

R1,0(φ) Λ(R0,0)ϕ(φ)

−1  Λ(R1,0)ψ
R1,0(φ)

Λ(R0,1)ψ
R0,1(φ)

Λ(R1,1)ψ
R1,1(φ)

 .
Additionally, system (A3.8) can be rewritten in terms of the coordinates of all the operators

involved with respect to a common orthonormal basis of H, for example, we can consider basis

{ϕR0,0

k , k ≥ 1} diagonalizing the auto-covariance operator R0,0. In this case, replacing in (A3.8),

Ri,j by Ri,j(ϕ
R0,0

k )(ϕ
R0,0

l ), for k, l ≥ 1, and i, j ∈ {0, 1}, and considering a fixed truncation level

M, we have Φ∗
ML1ΦM

Φ∗
ML2ΦM

Φ∗
ML3ΦM

 =

 Λ(R0,0) C(R1,1) C(R0,1)
C(R1,1) Λ(R0,0) C(R1,0)
C(R0,1) C(R1,0) Λ(R0,0)

−1  C(R1,0)
C(R0,1)
C(R1,1)

 , (A3.16)

where C(Ri,j) denotes the matrix of coordinates of Ri,j with respect to the truncated basis

{ϕR0,0

k , k = 1, . . .M}, that is, the matrix with entries Ri,j(ϕ
R0,0

k )(ϕ
R0,0

l ), for k, l ∈ {1, . . .M}.

Here, for i = 1, 2, 3, Φ∗
MLiΦM denotes the M ×M matrix with elements the projections of Li

with respect to the basis {ϕR0,0

k ⊗ϕ
R0,0

k , k = 1, . . . ,M}. Note that Φ∗
M represents the projection

operator into the basis {ϕR0,0

k , k = 1, . . . ,M}, and ΦM its adjoint.

In practice, model fitting is performed by solving the functional linear equation system

(A3.16) in terms of the empirical covariance operators

R̂0,0 =
1

KN

K∑
i=1

N∑
j=1

Zi,j ⊗ Zi,j

R̂1,0 =
1

(K − 1)N

K−1∑
i=1

N∑
j=1

Zi+1,j ⊗ Zi,j

R̂0,1 =
1

K(N − 1)

K∑
i=1

N−1∑
j=1

Zi,j+1 ⊗ Zi,j

R̂1,1 =
1

(K − 1)(N − 1)

K−1∑
i=1

N−1∑
j=1

Zi+1,j+1 ⊗ Zi,j , (A3.17)
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where {Zi,j , i = 1, . . . ,K, j = 1, . . . , N} denotes the detrended functional sample located

at the spatial nodes of the regular grid considered. Specifically, the empirical eigenvectors

{ϕ̂R̂0,0

k , k ≥ 1} and eigenvalues {λk(R̂0,0), k ≥ 1} of R̂0,0 are considered, providing its spectral

decomposition

R̂0,0 = [Φ̂R̂0,0 ]∗Λ(R̂0,0)Φ̂
R̂0,0 .

Hence, for a truncation level M, equation (A3.16) is approximated by Φ̂∗
M L̂1Φ̂M

Φ̂∗
M L̂2Φ̂M

Φ̂∗
M L̂3Φ̂M

 =

 Λ(R̂0,0) C(R̂1,1) C(R̂0,1)

C(R̂1,1) Λ(R̂0,0) C(R̂1,0)

C(R̂0,1) C(R̂1,0) Λ(R̂0,0)


−1  C(R̂1,0)

C(R̂0,1)

C(R̂1,1)

 , (A3.18)

where C(R̂i,j) denotes the matrix of coordinates of R̂i,j with respect to the truncated basis

{ϕR̂0,0

k , k = 1, . . .M}, that is, the matrix with entries R̂i,j(ϕ
R̂0,0

k )(ϕ
R̂0,0

l ), for k, l ∈ {1, . . .M}.

After projection, the SARH(1) plug-in predictor is then computed as

E [Zi,j | Zk,l, k < i, or l < j, or k < i and l < j] = L1Zi−1,j + L2Zi,j−1 + L3Zi−1,j−1

≃ L̂1Zi−1,j + L̂2Zi,j−1 + L̂3Zi−1,j−1,

(A3.19)

where L̂k, k = 1, 2, 3, denote the solution to equation system (A3.18).

A3.4 Functional regression with spatially varying regression op-
erators

A large number of empirical studies supported the fact that the firm capital structure is hetero-

geneous through different sectors and geographical regions. This key aspect provides the main

motivation of this section, where a spatial heterogeneous functional multiple regression model

is introduced.
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Definition 7. Let us consider Y ∈ H to be the functional response of the following multiple

regression model:

Y (s) = L(s)X+ ε(s), s ∈ S, (A3.20)

where, for every s ∈ S, Y (s), ε(s) ∈ H, and L(s) = (L1(s), . . . ,Lq(s)) is a 1×q vector of unknown

spatially dependent linear bounded operators on H. Here, X = (X1, . . . , Xq)
T ∈ Hq represents a

fixed vector of functional regressors. The spatial functional error process ε is assumed to satisfy

εs1,s2 = L1εs1−1,s2 + L2εs1,s2−1 + L3εs1−1,s2−1 + ϵ,

where Lk, k = 1, 2, 3, belong to L(H), and ϵ is Hilbertian white noise in the strong sense,

uncorrelated with the random initial values ε1,0, ε0,1 and ε0,0.

An abstract spatial regular grid will be constructed in the next section, where rows are

defined by industry sector categories and columns are given by Spanish communities. Model

(A3.20) will then be formulated as

Z(i, j) = L1(i, j)X1 + . . .+ Lq(i, j)Xq + ε(i, j), (A3.21)

for i = 1, . . . ,K, and j = 1, . . . , N. Define now, for (i, j) ∈ {1, . . . ,K} × {1, . . . , N},

R̂0(i, j) =
1

N(i, j)

N(i,j)∑
h=1

Z(i, j, h)⊗ Z(i, j, h)

R̂l(i, j) =
1

N(i, j)

N(i,j)∑
h=1

Z(i, j, h)⊗Xl,h, l = 1, . . . , q

R̂m,n =
1

N(i, j)

N(i,j)∑
h=1

Xm,h ⊗Xn,h, m, n = 1, . . . , q,

(A3.22)

the empirical covariance operators, where N(i, j) denotes the functional sample size at node

(i, j), for (i, j) ∈ {1, . . . ,K}×{1, . . . , N}. From equation (A3.21), the parameter vector L(i, j) =
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(L1(i, j), . . . ,Lq(i, j)) can be estimated by solving the following functional equation system

R̂1(i, j) = L̂1(i, j)R̂11 + L̂2(i, j)R̂12 + . . .+ L̂q(i, j)R̂1q,

R̂2(i, j) = L̂1(i, j)R̂21 + L̂2(i, j)R̂22 + . . .+ L̂q(i, j)R̂2q,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R̂q(i, j) = L̂1(i, j)R̂q1 + L̂2(i, j)R̂q2 + . . .+ L̂q(i, j)R̂qq, (A3.23)

for each (i, j) ∈ {1, . . . ,K}× {1, . . . , N}. Numerical projection methods are applied in the reso-

lution of (A3.23). Specifically, for a given truncation level M(i, j), for each (i, j) ∈ {1, . . . ,K}×

{1, . . . , N}, operators Lk(i, j), k = 1, . . . , q, R̂k(i, j), k = 1, . . . , q, R̂0(i, j), and R̂m,n, m, n =

1, . . . , q, in (A3.23) are replaced by their projections into the basis

{
ϕ̂
R̂0(i,j)
l ⊗ ϕ̂R̂0(i,j)

m , l,m = 1, . . .M(i, j)
}
,

leading to the following finite-dimensional approximation of (A3.23):

 Φ∗
M (i, j)L1(i, j)ΦM (i, j)

. . .
Φ∗
M (i, j)Lq(i, j)ΦM (i, j)

 =


C
(
R̂1,1

)
C
(
R̂1,2

)
. . . C

(
R̂1,q

)
. . . . . . . . . . . .

C
(
R̂q,1

)
C
(
R̂q,2

)
. . . C

(
R̂q,q

)

−1 

C
(
R̂1(i, j)

)
. . .

C
(
R̂q(i, j)

)
 .

where, as before, for each (i, j) ∈ {1, . . . ,K} × {1, . . . , N}, C(K(i, j)) represents the coordinate

matrix of operator K(i, j) with respect to the basis
{
ϕ̂
R̂0(i,j)
l ⊗ ϕ̂

R̂0(i,j)
m , l,m = 1, . . .M(i, j)

}
.

Remark 8. Note that the spatially dependent truncation level M(i, j) can be selected by cross-

validation at each spatial node (i, j), (i, j) ∈ {1, . . . ,K} × {1, . . . , N}, of the regular grid con-

sidered, according to the sample size at such a node. However, for simplification, an optimal

minimum homogeneous M truncation level, common to all the spatial nodes of the regular grid,

can also be fitted, as showed in the validation results derived in the next section in relation to the

real data example analyzed. Several model selection problems arise in this spatially heterogeneous

projection context, especially in relation to the choice of a suitable orthogonal or biorthogonal
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basis, as well as in relation to the functional probabilistic characteristics of the spatial sample

(see, for example, Ruiz-Medina and Espejo, 2012, 2013a).

Finally, following the methodology described in the previous section, SARH(1) model fitting

is performed from the functional errors

ε̂(i, j) = Z(i, j)− L̂1(i, j)X1 − . . .− L̂q(i, j)Xq, (i, j) ∈ {1, . . . ,K} × {1, . . . , N}.

A3.5 Real data example

In this section, financing decisions of the firms during the period 1999-2007 are analyzed in a

panel constituted by 638 Spanish companies, belonging to 9 different sectors, and located at 17

autonomous Spanish communities. This period corresponds to the economic crisis recuperation

of Spain, since its beginning during the years 1993-1994, when the highest number of unemployed

people, three and a half million, was reached in Spain. Data have been collected from the SABI

(Sistema de Análisis de Balances Ibéricos) database. This database contains financial statements

of more than a million non-financial Spanish firms.

A3.5.1 Spatial heterogeneous functional multiple regression

The firm factor determinants of leverage considered in the analysis of the financing decisions of

the 638 Spanish companies studied are: Firm size, which is measured as the log of total assets;

Asset structure, which consists of the net fixed assets divided by the total assets of the firm;

Profitability, computed as the ratio between earnings before interest, taxes amortization and

depreciation, and the total assets; Growth, for which as proxy, we consider the growth of the

assets, calculated as the annual change of the total assets of the firm; Firm risk given by the

Business risk, defined as the standard deviation of earnings before interest and taxes over book

value of total assets during the sample period; and, finally we consider the Age, measured as the

logarithm of the number of years that the firm has been operating.
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These factors are assumed to be fixed over the companies belonging to the 9 sectors, and the

17 geographical regions analyzed. Leverage is estimated as the quotient between the total debt

and the total assets.

An abstract economic 9 × 17 spatial regular grid is defined according to the 9 categories of

industry sectors and 17 categories of geographical regions distinguished in the functional data

analyzed. At each node of this spatial regular grid, the empirical covariance operators (A3.22)

are computed, and equation system (A3.23) is numerically inverted after projection. A finite-

dimensional approximation to the regression operators at such a node, and to the corresponding

plug-in estimation of the mean debt curve is then obtained.

A 4-fold cross-validation (4-fold CV) procedure is applied by considering a validation sample

constituted by 9 companies, and a learning or training sample consisting of 27 firms randomly

selected from each node of the 9 × 17 spatial regular grid. The average of the L∞-norms

of the validation absolute error curves at such nodes of the spatial regular grid constructed

is also displayed in Table A3.1. Figure A3.1 shows the 4-fold CV results for certain nodes,

considering a homogeneous truncation order M = 4. From the cross-validation performed, we

can conclude that the truncation order M = 4 provides the threshold to obtain acceptable

projection estimation results.

To illustrate the increased accuracy when the truncation order is higher, in Table A3.2, the

truncation order M = 9 is displayed. Specifically, the mean L∞-norms of the absolute error

curves obtained after fitting the projected spatial functional regression model with this higher

truncation order are showed in this table. It can be seen that the order of magnitude of these

L∞-norms ranges between 10−14 and 10−17, except at the nodes (3, 7), (5, 7) and (5, 11), which

have been eliminated in the graphical representation at Figure A3.2, achieved in terms of the

following spatial ordering

(i, j) ≤ (k, l)

{
if i = k, then j ≤ l

otherwise i ≤ k
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Figure A3.1: After applying 4-fold CV, from top to bottom, four mean absolute error curves
(two at the left and two at the right), computed at the validation firms randomly selected from
the non-empty nodes (3, 13); (4, 7); (5, 12); (7, 11) and (8, 7), are showed
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Table A3.1: Averaged L∞-norms of the 4-fold CV mean absolute error curves for homogeneous
truncation order M = 4

Nodes (3, 4) (3, 6) (3, 7) (3, 8) (3, 11)

L∞-norm 0.1034 0.0492 0.0315 0.0572 0.0805

Nodes (3, 12) (3, 13) (3, 15) (4, 7) (4, 8)

L∞-norm 0.0290 0.0396 0.0579 0.0446 0.0242

Nodes (4, 11) (5, 7) (5, 11) (5, 12) (5, 13)

L∞-norm 0.0435 0.0654 0.0225 0.0345 0.0609

Nodes (5, 14) (5, 15) (7, 7) (7, 11) (8, 7)

L∞-norm 0.0400 0.0586 0.0657 0.0861 0.0443

Figure A3.2: Averaged L∞-norms of the functional multiple regression absolute error curves,
after eliminating (3, 7), (5, 7), (5, 11) nodes
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Note that the considered spatial functional multiple regression model fitting assumes hetero-

geneous spatial behavior between companies clustered at different spatial nodes, and homogene-
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Table A3.2: Averaged L∞-norms of the functional multiple regression absolute error curves for
homogeneous truncation order M = 9

Nodes (3, 1) (3, 2) (3, 4) (3, 6) (3, 7) (3, 8)

L∞-norm 2.82 · 10−16 1.73 · 10−16 4.08 · 10−15 2.66 · 10−16 1.3 · 10−2 4.12 · 10−16

Nodes (3, 9) (3, 11) (3, 12) (3, 13) (3, 14) (3, 15)

L∞-norm 1.84 · 10−16 3.33 · 10−14 6.39 · 10−16 4.33 · 10−14 3.13 · 10−16 5.59 · 10−16

Nodes (3, 16) (4, 1) (4, 7) (4, 8) (4, 11) (4, 13)

L∞-norm 2.51 · 10−16 1.34 · 10−16 2.60 · 10−16 3.83 · 10−16 2.88 · 10−16 3.67 · 10−16

Nodes (4, 15) (5, 1) (5, 4) (5, 6) (5, 7) (5, 8)

L∞-norm 2.34 · 10−16 1.62 · 10−16 2.02 · 10−16 2.30 · 10−16 3.14 · 10−2 1.93 · 10−16

Nodes (5, 10) (5, 11) (5, 12) (5, 13) (5, 14) (5, 15)

L∞-norm 1.86 · 10−16 1.4 · 10−2 2.16 · 10−16 8.04 · 10−15 1.69 · 10−16 2.80 · 10−15

Nodes (5, 16) (5, 17) (6, 14) (7, 7) (7,11) (8, 7)

L∞-norm 1.25 · 10−16 2.11 · 10−16 9.82 · 10−17 3.37 · 10−16 3.14 · 10−16 3.13 · 10−16

Nodes (8, 11) (9, 7) (9, 11)

L∞-norm 1.48 · 10−16 2.26 · 10−16 2.94 · 10−16

ity inside the company cluster at every node. It seems that the spatial homogeneity assumption

inside the company clusters corresponding to the nodes (3, 7), (5, 7), and (5, 11) does not hold.

Thus, a more careful financial analysis of the capital structure of the companies clustered in

sector 3 and geographical region 7, as well as in sector 5 and geographical regions 7 and 11

must be performed for assessment of the heterogeneity/homogeneity, according to the particular

characteristics of the firms grouped at such nodes. In particular, we note that regions 7 and 11

provide a 24% and 17% of the total number of companies analyzed in the sample. These areas

have the highest level of industrial development in Spain. Thus, the diversity of firms is greater

within these geographical regions. Moreover, sector 5, related to Wholesale and retail trade,

represents a 50% of the companies at the geographical region 11, and a 40% of the companies at

the geographical region 7. Sector 3 corresponds to Manufacturing, and represents a 32% of the

firms at region 7. An important number of companies are then clustered at nodes (3, 7), (5, 7)

and (5, 11), requiring to increase resolution in the analysis.
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A3.5.2 SARH(1) model fitting

This section provides the SARH(1) model fitting, following the steps described in Section A3.2.

The mean debt curves are computed at each node from the results derived in the previous

section. The empirical covariance operators (A3.17) of the estimated functional error term ε

are then obtained. The estimates of the functional parameter Li, i = 1, 2, 3, is derived from

projection into the truncated eigenvector system of the empirical autocovariance operator of ε,

considering truncation orderM = 9. After performing numerical inversion, the finite dimensional

approximation of L̂i, i = 1, 2, 3, is obtained, as well as the corresponding SARH(1) plug-in spatial

prediction (A3.19) of mean debt curves. The L∞-norms of the associated absolute error curves

are displayed in Tables A3.3 and A3.4, for all the nodes of the spatial regular grid. Figure A3.3

also shows the computed L∞-norms of the absolute error curves at every node of the spatial

regular grid.

The order of magnitude of the computed L∞-norms of the absolute error curves supports

the spatial autoregressive dynamics of order one in the propagation of the functional errors,

associated with the mean debt curve functional heterogeneous regression estimation previously

performed at each node of the economic abstract regular grid.

A3.6 Conclusion

The Hilbert-valued modeling framework adopted in this paper allows to represent heterogeneous

and Markovian behaviors in space in a functional context. Inference on two-parameter diffusion

processes, in the class introduced in Nualart and Sanz-Solé (1979), can be achieved from the

SARH(1) framework (see Ruiz-Medina, 2011, Section 3.2). The new modeling introduced al-

lows the approximation of the solution to stochastic partial differential equations with spatially

varying drift.
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Table A3.3: L∞-norms of the SARH(1) absolute error curves at the nodes of the 9× 17 regular
grid

Nodes (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7) (2, 8) (2, 9)

L∞-norm 0.0019 0.0027 0.0022 0.0024 0.0038 0.0047 0.0047 0.0060

Nodes (2, 10) (2, 11) (2, 12) (2, 13) (2, 14) (2, 15) (2, 16) (2, 17)

L∞-norm 0.0030 0.0095 0.0034 0.0036 0.0036 0.0053 0.0030 0.0036

Nodes (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) (3, 7) (3, 8) (3, 9)

L∞-norm 0.0075 0.0035 0.0088 0.0024 0.0037 0.0076 0.0020 0.0037

Nodes (3, 10) (3, 11) (3, 12) (3, 13) (3, 14) (3, 15) (3, 16) (3, 17)

L∞-norm 0.0038 0.0162 0.0062 0.0101 0.0071 0.0038 0.0054 0.0030

Nodes (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) (4, 7) (4, 8) (4, 9)

L∞-norm 0.0081 0.0038 0.0048 0.0026 0.0029 0.0061 0.0077 0.0064

Nodes (4, 10) (4, 11) (4, 12) (4, 13) (4, 14) (4, 15) (4, 16) (4, 17)

L∞-norm 0.0034 0.0102 0.0038 0.0065 0.0073 0.0081 0.0040 0.0041

Nodes (5, 2) (5, 3) (5, 4) (5, 5) (5, 6) (5, 7) (5, 8) (5, 9)

L∞-norm 0.0028 0.0020 0.0038 0.0052 0.0045 0.0104 0.0043 0.0013

Nodes (5, 10) (5, 11) (5, 12) (5, 13) (5, 14) (5, 15) (5, 16) (5, 17)

L∞-norm 0.0057 0.0103 0.0041 0.0063 0.0023 0.0079 0.0030 0.0068

Nodes (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) (6, 7) (6, 8) (6, 9)

L∞-norm 0.0029 0.0016 0.0013 0.0030 0.0038 0.0032 0.0050 0.0017

Nodes (6, 10) (6, 11) (6, 12) (6, 13) (6, 14) (6, 15) (6, 16) (6, 17)

L∞-norm 0.0029 0.0042 0.0039 0.0032 0.0031 0.0035 0.0031 0.0026
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Table A3.4: L∞-norms of the SARH(1) absolute error curves at the nodes of the 9× 17 regular
grid

Nodes (7, 2) (7, 3) (7, 4) (7, 5) (7, 6) (7, 7) (7, 8) (7, 9)

L∞-norm 0.0035 0.0019 0.0043 0.0023 0.0027 0.0025 0.0027 0.0033

Nodes (7, 10) (7, 11) (7, 12) (7, 13) (7, 14) (7, 15) (7, 16) (7, 17)

L∞-norm 0.0010 0.0058 0.0051 0.0021 0.0055 0.0034 0.0039 0.0029

Nodes (8, 2) (8, 3) (8, 4) (8, 5) (8, 6) (8, 7) (8, 8) (8, 9)

L∞-norm 0.0019 0.0034 0.0059 0.0016 0.0027 0.0054 0.0021 0.0012

Nodes (8, 10) (8, 11) (8, 12) (8, 13) (8, 14) (8, 15) (8, 16) (8, 17)

L∞-norm 0.0022 0.0032 0.0018 0.0038 0.0024 0.0023 0.0039 0.0024

Nodes (9, 2) (9, 3) (9, 4) (9, 5) (9, 6) (9, 7) (9, 8) (9, 9)

L∞-norm 0.0043 0.0029 0.0032 0.0023 0.0025 0.0036 0.0025 0.0013

Nodes (9, 10) (9, 11) (9, 12) (9, 13) (9, 14) (9, 15) (9, 16) (9, 17)

L∞-norm 0.0038 0.0050 0.0008 0.0032 0.0050 0.0014 0.0031 0.0028

Figure A3.3: L∞-norms of the SARH(1) absolute error curves
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In an applied statistical framework, the proposed estimation method opens new modeling and

estimation research lines in the spatial econometric area. Further research must be developed

in terms of the formulation of functional statistical hypothesis tests to contrast with the spatial

interaction of order one between Hilbert-valued spatial random variables. In relation to the

empirical study developed from financial panel data, the model fitting performed supports the

non-stability of regression operators through different industry sectors and geographical regions,

and the spatial interaction of order one between mean indebtedness curves.
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Spatial functional normal mixed
effect approach for curve
classification

Ruiz-Medina, M. D., Espejo, R. M. and Romano, E. (2014).

Spatial functional normal mixed effect approach for curve classification.

Advances in Data Analysis and Classification.

DOI : 10.1007/s11634-014-0174-6.

Abstract

A spatial functional formulation of the normal mixed effect model is proposed for the statistical classification

of spatially dependent Gaussian curves, in a parametric and state space model frameworks. Their fixed effect

parameters are represented in terms of a functional multiple regression model whose regression operators can

change in space. Local spatial homogeneity of these operators is measured in terms of their Hilbert-Schmidt

distances, leading to the classification of fixed effect curves in different groups. Assuming that the Gaussian

random effect curves obey a spatial autoregressive dynamics of order one (SARH(1) dynamics), a second functional

classification criterion is proposed in order to detect local spatially homogeneous patterns in the mean quadratic

functional variation of Gaussian random effect curve increments. Finally, the two criteria are combined for

detection of local spatially homogeneous patterns in the regression operators and in the functional mean quadratic
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variation, under a state space approach. For illustration purposes, a real data example in the financial context is

analyzed.

A4.1 Introduction

New criteria for classification arise in the context of Functional Statistics (see Ramsay and

Silverman, 2005; Ferraty and Vieu, 2006, among others). In particular, these criteria allow the

classification of random curves in the absence or in the presence of interactions between different

individuals, as well as between different times (see Ferraty and Vieu, 2006; Aach and Church,

2001; Hall, Poskitt and Presnell, 2001; James and Hastie, 2001; Liu and Müller, 2003; Müller

and Stadtmüller, 2005; among others).

Filtering methods are applied, for instance, in James and Hastie, (2001) who consider a

variant of linear discriminant analysis, in terms of the curve projections assuming a Gaussian

distribution with common covariance matrix for all classes. Their classification is derived from

the minimization of the distance to the group mean. The likelihood-based approach presented

in Hall, Poskitt and and Presnell, (2001) is inspired on quadratic discriminant analysis, since

although they propose a fully nonparametric density estimation, in practice, multivariate Gaus-

sian densities are considered. The model-based functional classification procedures proposed

in Leng and Müller, (2006) and Rincón and Ruiz-Medina, (2012a) are derived in a generalized

linear model framework. Specifically, Functional Principal Component Analysis (FPCA), and

local wavelet-vaguelette decomposition are respectively considered for dimension reduction. In

Biau, Bunea and Wegkamp, (2003), k-nearest neighbor method is applied to Fourier coefficients.

Wavelet bases are selected for projection in Berlinet, Biau and Rouvière, (2008), while in James

and Sugar, (2003) spline bases are used in a random effect model context, combining the best

properties of filtering and regularization methods. However, the presented method is effective

when the observations are sparse, irregularly spaced or occur at different time points for each
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subject (see also Abraham et al., 2003, where B-splines bases are previously chosen for projection

in the application of k-means-based classification procedure).

Alternatively, the context of statistical learning methods based on kernels (see, for example,

Schölkopf and Smola, 2002) has been widely used in the design of functional nonparametric

statistical classification procedures. In this framework, the unknown function is estimated, con-

sidering its optimal approximation in a functional class given by a RKHS, under some prescribed

criterion. Chaos game representation and multifractal analysis can also be considered in the clas-

sification of functional protein sequences displaying singular features (see, for example, Yang, et

al., 2009a, and Yang, Yu and Anh, 2009b).

Functional features in the data are considered in the design of the classification procedures

presented, for example, in Ferraty and Vieu (2003), where kernel estimates of the group member-

ship posterior probability are computed for the curves to be classified. Classification methodolo-

gies, based on the notion of depth for curves, are proposed in López-Pintado and Romo, (2006).

Density-function-based classification is performed in Nerini and Ghattas, (2007), from functional

regression trees (see also Báıllo and Cuevas, 2008, on functional k-nearest neighbor and Li and

Yu, 2008, on the use of F -statistics for the application of linear discriminant-based approach

to previously selected small intervals). We can also mention the papers by: Tarpey and Kinat-

eder, (2003) who provide k-means algorithm over the probability distributions; Cuesta-Albertos

and Fraiman, (2007), that combine impartial trimming with k-means; Chiou and Li, (2007),

Chiou and Li, (2008a,b) where the information through the mean and the covariance/correlation

functions is considered; Li and Chiou, (2011), where the cluster number selection problem for

functional data is addressed. In general, continuous transformations can be considered for an

efficient extraction of information, in particular, in relation to some features (see Ferraty and

Vieu, 2009; Li and Yu, 2008; López-Pintado and Romo, 2006; Ramsay and Silverman, 2005;

Rossi and Villa, 2006; Zhang and Müller, 2011; among others). Recently, the functional data
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classification problem is transformed into a classical multivariate data discrimination problem

in Alonso, Casado and Romo, (2012). Linear discriminant analysis is then applied to determine

the combination of variables and coefficients. These variables are defined as the difference be-

tween the respective distances of the derivatives of an observed curve and the sample means of

the corresponding derivatives computed from the training samples of two populations. Finally,

we refer to the methods based on componentwise classification (see, for example, Delaigle, Hall

and Bathia, 2012), functional logit regression (see Aguilera-Morillo et al., 2013; Escabias, Aguil-

era and Valderrama, 2004, 2007; among others) and functional PLS (see Aguilera et al., 2010;

Delaigle and Hall, 2012a,b; Preda and Saporta, 2005a,b).

Spatial Functional Statistics emerges as a new branch of Functional Statistics to dealing

with problems involving spatially dependent curves, or in general, functional data in space. The

field of Spatial Functional Statistics still requires further development. Actually, literature in

this framework covers, among others, statistical methodologies related to spatial functional re-

gression (see Guillas and Lai, 2010), Bayesian inference (see Baladandayuthapani, et al., 2008),

nonparametric estimation methods (see Basse, Diop and Dabo-Niang, 2008), spatial functional

prediction (see Nerini, Monestiez and Manté, 2010, Monestiez and Nerini, 2008, Giraldo, Del-

icado and Mateu, 2010; Delicado, et al., 2010), spatial functional autoregressive time series

models (see Ruiz-Medina, 2011, 2012a; Ruiz-Medina and Espejo, 2012; Ruiz-Medina, Anh, Es-

pejo and Fŕıas, 2013), outlier detection strategies (see Romano, Balzanella and Verde, 2013), non

supervised clustering methods (see Romano and Verde, 2011; Romano, Balzanella and Verde,

2010, 2013).

In particular, model-based spatial functional statistical classification still remains as an unex-

plored area in most of its statistical subfields. In this paper, the spatial functional normal mixed

effect approach is adopted for classification of spatially dependent curves. Fixed effect curves are

represented in terms of a multiple regression model, where the regression operators can change
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in space. The l2 distance between the pure point spectra of the non-parametric estimates of

these operators (see Ruiz-Medina and Espejo, 2012, for derivation of these estimators) allows to

detect spatial heterogeneities in the functional linear relationship between the fixed effect curves

and the functional regressors. Thus, two fixed-effect curves at different spatial locations are

in the same group if the Hilbert-Schmidt distance between the associated vectors of regression

operators is sufficiently small according to a prescribed partially data-driven threshold. On the

other hand, assuming that the random effect curves display a spatial autoregressive dynamics of

order one, the functional variance of their SARH(1) increments is computed for grouping curves

with the same mean quadratic spatial local functional variation properties. Note that SARH(1)

processes are introduced in Ruiz-Medina, (2011) under stationary assumption in space in order

to ensure their invertibility. Summarizing, the proposed functional classification methodology is

able to detect the local spatial homogeneity of the regression operators characterizing the fixed

effect curves, as well as of the random effect curve increments in the mean-square sense, under

a state-space approach.

The outline of the paper is as follows. Section A4.2 provides the spatial functional mixed

effect model formulation. The elements involved in the non-parametric multiple functional

regression approach adopted for classification of fixed effect curves are introduced in Section

A4.3. SARH(1) variogram is approximated in Section A4.4 in the wavelet domain in terms of

the empirical wavelet spectra of SARH(1) parameters and the observed random effect curves.

Classification of random effect curves is then performed according to the local exponents reflected

in this empirical variogram wavelet spectrum. In Section A4.5, the main steps involved in

the implementation of the proposed functional classification algorithm in the real-data example

analyzed in Section A4.6 are described. Section A4.6 provides the illustration of the classification

methodology proposed with a real-data example. Final comments and discussion are conducted

in Section A4.7.
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A4.2 The spatial functional mixed effect model

Let us consider the following spatial functional normal mixed effect model:

Y(·,x) = XFEβ(·,x) +XRE ν⃗(·,x) + σϵ⃗(·,x), x ∈ D ⊂ Rn, (A4.1)

whereXFE andXRE represent the respective functional fixed and random effect design matrices.

For each spatial location x ∈ D, each component of the functional vectors Y(·,x), β(·,x), ν⃗(·,x)

and ϵ⃗(·,x) lies in the real separable Hilbert space H. In a general setting, D could be an open

bounded domain in Rn. However, in the subsequent development, we assume that D is a finite

set of points in Z2. Also, in the following, space H is constituted by functions with support

contained in the real line, Y(·,x), β(·,x), ν⃗(·,x) and ϵ⃗(·,x) respectively denote the vectors of

response, fixed effect, random effect and error curves observed at spatial location x ∈ D.

In Section A4.6 the space H is constituted by the square integrable functions on the in-

terval [T1, T2], with [T1, T2] being the time period where the firm panel analyzed is observed.

The discrete observation of indebtedness and firm factor curves during the period 1999-2007 is

smoothed by applying temporal local polynomial kernel smoothing, based on the Epanechnikov

kernel. The firm panel is constituted by 638 Spanish companies, belonging to 4 different industry

sectors, and located at 17 autonomous Spanish communities. (Data have been collected from the

SABI, Sistema de Análisis de Balances Ibéricos, database). Since as commented in the analysis

performed we consider D to be a finite set in Z2, high-dimensional spatial interpolation (see,

for example, Stein, 2009) will be applied in Section A4.6 to obtaining the curve data samples

(indebtedness and firm factor curves) on a 4 × 6 spatial regular grid. Here, the latitude and

longitude defining the spatial location of the centroid associated with each Spanish community

will be taken into account to define the suitable spatial regular grid. Indeed, we consider β to

be modeled in terms of a multiple regression model with regression operators depending on the

spatial location, and ν⃗ is assumed to obey a spatial autoregressive equation of order one.
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In the real-data example analyzed in Section A4.6, we consider the case where XFE and

XRE in equation (A4.1) are functional identity matrices on H. This is the reason why in the

subsequent development we concentrate on this case. In the general case where XFE and

XRE are not functional identity matrices, the expressions defining the functional least-squares

estimator of Y involve the matrices XFE and XRE , since they appear in the corresponding least-

squares estimators of β⃗ and ν⃗. This functional mixed effect framework has been considered, for

example, in Spitzner, Marron and Essick, (2003) for addressing the estimation problem related

to the movement curves in human perception in Biomedical applications.

A4.3 Functional regression with spatially varying regression op-
erators

Let us consider a spatial regular rectangular grid with nodes (i,j) in Z2. Assume that the fixed

effect curve parameter vector β displays a linear functional relationship with a given H-valued

vector (X1, . . . , Xq) of random regressors, in terms of a 1× q vector of unknown spatially depen-

dent linear bounded operators on H, L⃗(i, j) = (L1(i, j), . . . ,Lq(i, j)). In practice, a functional

error term ε is included in the observation of the H-valued components of β⃗(i, j) for estimation

of (L1(i, j), . . . ,Lq(i, j)) (see Ruiz-Medina, Anh, Espejo and Fŕıas, 2013). Thus,

Y (i, j, h) = βOB(i, j, h) = L1(i, j)X1,h + . . .+ Lq(i, j)Xq,h + ε(i, j, h), (A4.2)

where Xk,h, ε(i, j, h) ∈ H are centered Gaussian H-valued random variables, for k = 1, . . . q,

and h = 1, . . . , N(i, j), with N(i, j) the number of individuals observed at location (i, j), (i, j) ∈

{1, . . . ,K}×{1, . . . , N}. Specifically, we are considering as Y (i, j, h) = βOB(i, j, h) the observed

curve at the individual h, h = 1, . . . , N(i, j), located at (i, j), (i, j) ∈ {1, . . . ,K} × {1, . . . , N}.

Hence, ε(i, j, h) = ν(i, j, h)+σϵ(i, j, h). The random regressors Xi, i = 1, . . . , q, are independent

of ε. Also, the spatial H-valued Gaussian random effect ν is assumed to be independent of the

spatial H-valued white noise ϵ, with ϵ being the error term introduced in the H−valued normal
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mixed effect model (A4.1). Note that the functional regressors X1, . . . , Xq are observable, with

Xk,h denoting the H-value at individual h, for k = 1, . . . , q, with h = 1, . . . , N(i, j) for each

node (i, j) ∈ {1, . . . ,K} × {1, . . . , N}.

Define now, for (i, j) ∈ {1, . . . ,K} × {1, . . . , N},

R̂0(i, j) =
1

N(i, j)

N(i,j)∑
h=1

(Y (i, j, h)− Y (i, j))⊗ (Y (i, j, h)− Y (i, j))

R̂l(i, j) =
1

N(i, j)

N(i,j)∑
h=1

(Y (i, j, h)− Y (i, j))⊗ (Xl,h −X
(i,j)
l ) l = 1, . . . , q

R̂m,n(i, j) =
1

N(i, j)

N(i,j)∑
h=1

(Xm,h −X
(i,j)
l )⊗ (Xn,h −X

(i,j)
n ), m, n = 1, . . . , q,

(A4.3)

the empirical covariance operators, where, as before, N(i, j) denotes the functional sample size

at node (i, j). Here,

Y (i, j) =
1

N(i, j)

N(i,j)∑
h=1

Y (i, j, h), (i, j) ∈ {1, . . . ,K} × {1, . . . , N}

X
(i,j)
l =

1

N(i, j)

N(i,j)∑
h=1

Xl,h, (i, j) ∈ {1, . . . ,K} × {1, . . . , N}, (A4.4)

for l = 1, . . . , q. From equation (A4.2), we consider the nonparametric estimator
⃗̂L(i, j) =

(L̂1(i, j), . . . , L̂q(i, j)) of L⃗(i, j) = (L1(i, j), . . . ,Lq(i, j)) as the solution to the following func-

tional equation system

R̂1(i, j) = L̂1(i, j)R̂11(i, j) + L̂2(i, j)R̂12(i, j) + . . .+ L̂q(i, j)R̂1q(i, j),

R̂2(i, j) = L̂1(i, j)R̂21(i, j) + L̂2(i, j)R̂22(i, j) + . . .+ L̂q(i, j)R̂2q(i, j),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R̂q(i, j) = L̂1(i, j)R̂q1(i, j) + L̂2(i, j)R̂q2(i, j) + . . .+ L̂q(i, j)R̂qq(i, j), (A4.5)
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for each (i, j) ∈ {1, . . . ,K} × {1, . . . , N}. Numerical projection methods are applied to solving

equation system (A4.5). Specifically, we consider an unconditional orthonormal basis of H,

{ϕ̂n, n ∈ N} (see, for example, Donoho, 1993). Note that, in practice, a finite-dimensional

approximation of (A4.5) is obtained by applying the projection operator Φ̂
∗
Mi,j

into the finite

set {ϕ̂n, n = 1, . . . ,Mij}, with Mi,j denoting the truncation order at location (i, j), (i, j) ∈

{1, . . . ,K} × {1, . . . , N}. For simplicity, let us establish a common truncation order M at all

the nodes of the spatial regular grid, i.e., M = max(i,j)∈{1,...,K}×{1,...,N}Mij . Hence, for every

(i, j) ∈ {1, . . . ,K} × {1, . . . , N}, Φ̂
∗
Mi,j

= Φ̂
∗
M , and [Φ̂M ]∗Φ̂M = I, by the orthogonality of the

unconditional basis considered, with I denoting the identity operator on H, and A∗ being the

adjoint operator of A. Projection operator [Φ̂M ]∗ is applied to the left-hand side of equation

(A4.5), and its adjoint Φ̂M to the right-hand-side of such an equation, obtaining

̂⃗
Λ
(
L⃗(i, j)

)
= Λ⃗(R̂Y X(i, j))[Λ⃗(R̂X)(i, j)]−1, (A4.6)

where

̂⃗
Λ
(
L⃗
)
=


[
Φ̂M

]∗
L1(i, j)Φ̂M

. . .[
Φ̂M

]∗
Lq(i, j)Φ̂M

 =

 Λ̂ (L1(i, j))
. . .

Λ̂ (Lq(i, j))



[Λ⃗(R̂X)(i, j)]−1 =


[
Φ̂M

]∗
R̂1,1(i, j)Φ̂M . . .

[
Φ̂M

]∗
R̂1,q(i, j)Φ̂M

. . . . . . . . .[
Φ̂M

]∗
R̂q,1(i, j)Φ̂M . . .

[
Φ̂M

]∗
R̂q,q(i, j)Φ̂M


−1

=


Λ
(
R̂1,1(i, j)

)
Λ
(
R̂1,2(i, j)

)
. . . Λ

(
R̂1,q(i, j)

)
. . . . . . . . . . . .

Λ
(
R̂q,1(i, j)

)
Λ
(
R̂q,2(i, j)

)
. . . Λ

(
R̂q,q(i, j)

)

−1

Λ⃗(R̂Y X) =


[
Φ̂M

]∗
R̂1(i, j)Φ̂M

. . .[
Φ̂M

]∗
R̂q(i, j)Φ̂M

 =


Λ
(
R̂1(i, j)

)
. . .

Λ
(
R̂q(i, j)

)
 .

(A4.7)
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The following assumption is made in relation to the homogeneity in space of the resolution

of the identity of operators {Lm(i, j), (i, j) ∈ {1, . . . ,K}× {1, . . . , N}, for m = 1, . . . , q, that is,

such operators have a common eigenvector system given by an unconditional basis of H (see,

for example, Dautray and Lions, 1985; Donoho, 1993).

Assumption A0. For every (i, j) ∈ {1, . . . ,K} × {1, . . . , N}, and m = 1, . . . , q,

Lm(i, j)ϕk = λLm
km(i, j)ϕk, k ≥ 1.

Equivalently, we are assuming that the possible spatial heterogeneity in the linear relationship

between the regressors and the fixed effect curve is induced by the spatial heterogeneity of the

point spectra of the compact and self-adjoint regression operators Lm, m = 1, . . . , q.

Remark 9. Note that, given a self-adjoint and compact operator A, any continuous function

f of such an operator f(A) has the same eigenvector system as operator A (see, for example,

Dautray and Lions, 1985). In our case, under Assumption A0, the spatial heterogeneous decay

velocity of the eigenvalues of the regression operators means that the stability of the functional

linear relationship between the fixed effect curve and the regressors depends on space.

Additionally, Assumption A0 means that we look for a solution

L̂ = (L̂1(i, j), . . . , L̂q(i, j)) to equation system (A4.5) in the subspace of [L(H)]q generated

by the basis (ϕ̂k ⊗ ϕ̂k, . . .
q
, ϕ̂k ⊗ ϕ̂k), k ≥ 1. That is, we look for a solution of the form

L̂(φ) =

(⟨ ∞∑
k=1

λ̂L1
k1 (i, j)ϕ̂k ⊗ ϕ̂k, φ

⟩
H

, . . . ,

⟨ ∞∑
k=1

λ̂
Lq

kq (i, j)ϕ̂k ⊗ ϕ̂k, φ

⟩
H

)
(A4.8)

for φ ∈ H, and for (i, j) ∈ {1, . . . ,K} × {1, . . . , N}, with L(H) denoting the space of bounded

linear operators on H. In particular, for a given truncation order M, the finite-dimensional

approximation of the solution to equation system (A4.5) is then obtained from equations (A4.6)-

(A4.7), where, in this case, Φ̂
∗
M represents the projection operator into the common eigenvector
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system {ϕ̂1, . . . , ϕ̂M} of operators L̂m(i, j), for m = 1, . . . , q, and (i, j) ∈ {1, . . . ,K}×{1, . . . , N}

(see Ruiz-Medina, Anh, Espejo and Fŕıas, 2013).

In practice, we perform the non-parametric wavelet-kernel-based estimation of R0(i, j) from

the empirical auto-covariance operator R̂0(i, j), for (i, j) ∈ {1, . . . ,K} × {1, . . . , N}. Hence, the

empirical eigenvector system {ϕ̂k, k ≥ 1} of the obtained auto-covariance operator estimate is

a compactly supported orthogonal wavelet basis (see, for example, Angelini, De Canditiis and

Leblanc, 2003), which provides an unconditional basis for spaces in the Hölder, Sobolev, Besov,

and Triebel scales (see, for example Donoho, 1993). This will be the unconditional basis of

space H selected for projection in Section A4.6, where a real-data example is considered for

illustration purposes. This is the reason why we have denoted with a hat ϕ̂ the elements of the

unconditional basis considered through this section for projection, except in Assumption A0,

since we wants to reflecting its empirical nature in practice.

A4.3.1 Fixed-effect-curve-based discrimination

In the proposed spatial functional statistical classification procedure, two fixed effect curves

located at different nodes will belong to the same group when the Hilbert-Schmidt distance

between the corresponding regression operators is close to zero. Note that, under Assumption

A0, the Hilbert-Schmidt distance can be computed as

∥L(i, j)−L(k, l)∥[S(H)]q = ∥λ⃗L(i,j) − λ⃗L(k,l)∥[l2]q

=

[
q∑

m=1

∥λ⃗Lm(i, j)− λ⃗Lm(k, l)∥2l2

]1/2

=

 q∑
m=1

∞∑
p=1

[λLm
pm (i, j)− λLm

pm (k, l)]2

1/2

, (A4.9)

where S(H) denotes the Hilbert space of Hilbert-Schmidt operators on H. Here, {λLm
km(i, j), k ≥

1}, m = 1, . . . , q, denote, as before, the pure point spectra associated with the regression oper-

ators Lm(i, j) at spatial location (i, j) ∈ {1, . . . ,K}× {1, . . . , N}, for m = 1, . . . , q, respectively.

Tesis Doctoral Rosa M. Espejo Montes



146 Appendix 4

In real-data applications, these spectra are replaced by their empirical versions given by the

spectra of the nonparametric estimates L̂m(i, j), (i, j) ∈ {1, . . . ,K} × {1, . . . , N} of the respec-

tive operators Lm(i, j), (i, j) ∈ {1, . . . ,K} × {1, . . . , N}, for m = 1, . . . , q. A fixed truncation

level M is also considered for approximation of (A4.9) in practice. This truncation level can be

chosen based on the percent of explained variance, cross-validation and/or sensitivity analysis.

Information criteria can also be applied (see, for example, Fujikoshi and Satoh, 1997). Hence,

we compute

∥̂⃗λL(i, j)− ̂⃗λL(k, l)∥[l2M ]q =

 q∑
m=1

M∑
p=1

[λ̂L̂m
pm (i, j)− λ̂L̂m

pm (k, l)]2

1/2

.

(A4.10)

Remark 10. Under Assumption A0, the spectral distance (A4.9) is equivalent to the Hilbert-

Schmidt distance between vector operators (L1(i, j), . . . ,Lq(i, j)) and (L1(k, l), . . . ,Lq(k, l)). Small

values of this distance means that the corresponding operators are close in the L2 sense. In par-

ticular, when this distance is null, the involved operators coincide. The stability of the fixed effect

curves against small perturbations of the regressors increases when the Hilbert-Schmidt norm of

the regression operators decreases.

In the case considered where eigenvectors are given by a common compactly supported or-

thogonal wavelet basis, the truncation order M is interpreted as the number of resolution levels

taken into consideration in the finite-dimensional approximation of curves from a previously

defined coarsest scale. In this setting, when the selected wavelet system is [s] + 1-regular for

s > 1/2, Theorem 5.1 in Angelini, De Canditiis and Leblanc, (2003) provides the order of mag-

nitude O
(
n

−2s
2s+1

)
, with n denoting the sample size, of the functional mean-square error (also

referred as mean integrated square error (MISE) in the cited paper) associated with the derived

wavelet-kernel-based estimators of Li(·, ·), i = 1 . . . , q.

Summarizing, the main steps involved in the fixed-effect classification procedure proposed
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are the following:

Step FE1 For (i, j) ∈ {1, . . . ,K} × {1, . . . , N}, compute the empirical auto-covariance operator

R̂0(i, j), and the cross-covariance operators R̂l(i, j), l = 1, . . . , q, R̂m,n, (i, j), m, n =

1, . . . , q.

Step FE2 For (i, j) ∈ {1, . . . ,K}×{1, . . . , N}, the nonparametric wavelet-kernel-based estimation of

the autocovariance operator R0(i, j) from the empirical auto-covariance operator R̂0(i, j)

computed in Step FE1 is achieved for a given truncation order M.

Step FE3 For (i, j) ∈ {1, . . . ,K}× {1, . . . , N}, numerical inversion of the equation system (A4.5) by

projection into the compactly supported wavelet basis considered in Step FE2 is performed,

obtaining L̂k(i, j), k = 1, . . . , q, from equations (A4.6)–(A4.8).

Step FE4 For (i, j), (k, l) ∈ {1, . . . ,K} × {1, . . . , N}, compute the distance (A4.10) in terms of the

spectra of operators L̂m(i, j), and L̂m(k, l), m = 1, . . . , q, obtained in Step FE3.

Step FE5 When ∥̂⃗λL(i, j) − ̂⃗λL(k, l)∥[l2M ]q ≃ 0, the fixed effect curves located at (i, j) and (k, l) are

classified in the same group. Otherwise, they will belong to different clusters.

Remark 11. Under the conditions in Remark 10, for (i, j) ∈ {1, . . . ,K} × {1, . . . , N}, the

functional mean-square errors of the wavelet-kernel-based estimators L̂m(i, j), m = 1, . . . , q, in

the space S(H) of Hilbert-Schmidt operators on H display a hyperbolic decay with respect to

the sample size. Hence, by Chebyshev’s inequality, when the sample size goes to infinity, the

limit superior of the corresponding sequence of wavelet-kernel-based estimators converges to the

true regression operator in probability. Thus, the almost surely convergence of these estimators

to the respective regression operators holds. Hence, in the case where (L1(i, j), . . . ,Lq(i, j)) =

(L1(k, l), . . . ,Lq(k, l)) = (A1, . . . ,Aq), for certain fixed vector operator A = (A1, . . . ,Aq), the
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following upper bound can be derived for equation (A4.10):

∥̂⃗λL(i, j)− ̂⃗λL(k, l)∥[l2M ]q =

 q∑
m=1

M∑
p=1

[λ̂L̂m
pm (i, j)− λ̂L̂m

pm (k, l)]2

1/2

=

 q∑
m=1

M∑
p=1

[λ̂L̂m
pm (i, j)− λAm

pm − (λ̂L̂m
pm (k, l)− λAm

pm )]2

1/2

≤

 q∑
m=1

M∑
p=1

[λ̂L̂m
pm (i, j)− λAm

pm ]2

1/2

+

 q∑
m=1

M∑
p=1

[λ̂L̂m
pm (k, l)− λAm

pm ]2

1/2

−→ 0, a.s,

(A4.11)

as N(i, j)∧N(k, l) → ∞. Here, as usual, a.s. means almost surely convergence, and λAm
pm denotes

the pth eigenvalue of Am, for m = 1, . . . , q.

In Step FE5, the symbol ≃ 0 means that

∥̂⃗λL(i, j)− ̂⃗λL(k, l)∥[l2M ]q ≤ O(f(N(i, j) ∧N(k, l))) a.s,

with f(x) −→ 0, as x→ ∞, a.s.

A4.4 Spatial heterogeneity of the random effect curves

Let Z be defined by the following equation

Z(i, j) = Ȳ (i, j)− (L̂1(i, j)X̄
(i,j)
1 + · · ·+ L̂q(i, j)X̄

(i,j)
q , (A4.12)

for (i, j) ∈ {1, . . . ,K}×{1, . . . , N}, where L̂k(i, j), k = 1, . . . , q, are the nonparametric estimators

derived in the previous section, and, as before

Ȳ (i, j) =
1

N(i, j)

N(i,j)∑
h=1

Y (i, j, h); X̄
(i,j)
k =

1

N(i, j)

N(i,j)∑
h=1

Xk,h,
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for k = 1, . . . , q, are the respective averaged values of the original functional data, and of the re-

gressors over the individuals located at each

(i, j) ∈ {1, . . . ,K} × {1, . . . , N}. Thus,

Z(i, j) = ν̂(i, j) + σ̂ϵ(i, j), (i, j) ∈ {1, . . . ,K} × {1, . . . , N}. (A4.13)

For implementation of the estimation procedure proposed, we apply wavelet shrinkage denoising

to Z(i, j), obtaining ν̂(i, j), for each (i, j) ∈ {1, . . . ,K} × {1, . . . , N}.

Given, as before, a K×N spatial regular grid, the following symmetric spatial autoregressive

dynamics is assumed to be satisfied by ν :

ν(i, j) = L1ν(i− 1, j) + L2ν(i, j − 1) + L3ν(i− 1, j − 1) + ξ(i, j)

= L1ν(i+ 1, j) + L2ν(i, j + 1) + L3ν(i+ 1, j + 1) + ξ(i, j), (A4.14)

where, for k = 1, 2, 3, Lk ∈ L(H), with L(H) denoting as before the space of bounded linear

operators on H. Note that operator L1 acts on the vertical direction, operator L2 acts on the

horizontal direction, and operator L3 acts on the diagonal direction. The H-valued process ξ is

white noise in the strong sense, with E∥ξ(i, j)∥2H = σ2ξ , E[ξ(i, j)⊗ ξ(k, l)] = δ(i,j)−(k,l)E[ξ(0, 0)⊗

ξ(0, 0)], with δ(i,j) denoting the Kronecker delta. In particular, ξ has finite functional variance

σ2ξ , and is weak-sense stationary in space.

The functional second-order structure of ν is defined in terms of the following covariance

operators:

R0,0 = E [ν(i, j)⊗ ν(i, j)]

R1,0 = E [ν(i+ 1, j)⊗ ν(i, j)]

R0,1 = E [ν(i, j + 1)⊗ ν(i, j)]

R1,1 = E [ν(i+ 1, j + 1)⊗ ν(i, j)] . (A4.15)
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Replacing in equation (A4.15), ν(i+1, j), ν(i, j+1), and ν(i+1, j+1) by their expressions,

according to the functional state equation (A4.14), we obtain the following equation system

defining operators Lk, k = 1, 2, 3, respectively (see Ruiz-Medina, 2012a):

R1,0 = L1R0,0 + L2R1,1 + L3R0,1

R0,1 = L1R1,1 + L2R0,0 + L3R1,0

R1,1 = L1R0,1 + L2R1,0 + L3R0,0. (A4.16)

For solving equation system (A4.16), we consider the following assumption:

Assumption A1 For a given unconditional basis {ψl, l ≥ 1} of H, for k = 1, 2, 3,

Lkψl = λl(Lk)ψl, l ≥ 1.

Under Assumption A1, we look for a vector integral operator (L1, L2, L3), solution of

equation system (A4.16), whose components are of the form

Lk(φ) =

⟨ ∞∑
l=1

λl(Lk)ψl ⊗ ψl, φ

⟩
H

, ∀φ ∈ H, k = 1, 2, 3.

In practice, we follow a similar numerical projection scheme as in the previous section.

Specifically, from the empirical covariance operator R̂0,0, we compute the wavelet-kernel-based

estimation of R0,0. The involved compactly supported orthogonal wavelet basis is such that it

provides an unconditional basis of H, and the eigenvectors of the derived wavelet-kernel-based

estimator of R0,0. Specifically, let us denote by Ψ̂
∗
M the projection operator into {ϕ̂0,k, k ∈

Γ0}∪{ψ̂l,k, k ∈ Γl, l = 0, . . . ,M}, where parameterM indicates the number of resolution levels

considered in the finite-dimensional approximation we will compute for numerical inversion of

(A4.16), and {ϕ̂0,k, k ∈ Γ0} denotes the system of scaling functions defining the space V0 where

the draft of each function is generated. Here, {ψ̂l,k, k ∈ Γl, l = 0, . . . ,M} represents the wavelet

systems generating subspaces Wj , j = 0, . . . ,M, where functional details are displayed. Keeping
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in mind that Ψ̂
∗
MΨ̂M = I, the composition with Ψ̂

∗
M at the left-hand-side of equation (A4.16),

and with Ψ̂M at the right-hand-side of such an equation leads to the following finite-dimensional

approximation L̂k of the nonparametric estimator of Lk, for k = 1, 2, 3,

 Λ̂(L1)

Λ̂(L2)

Λ̂(L3)

 =

 Λ(R̂0,0) Λ(R̂1,1) Λ(R̂0,1)

Λ(R̂1,1) Λ(R̂0,0) Λ(R̂1,0)

Λ(R̂0,1) Λ(R̂1,0) Λ(R̂0,0)


−1  Λ(R̂1,0)

Λ(R̂0,1)

Λ(R̂1,1)

 , (A4.17)

where, in this case, Λ(K) = Ψ̂
∗
MKΨ̂M for a bounded linear operator K. Hence,

L̂k = Ψ̂M Λ̂(Lk)Ψ̂
∗
M , k = 1, 2, 3. (A4.18)

In the computation of the empirical SARH(1) variogram we also consider the wavelet-kernel-

based estimation of R1,0R
∗
1,0, R0,1R

∗
0,1 and R1,1R

∗
1,1 from the respective empirical covariance

operators R̂1,0, R̂0,1, and R̂1,1, as well as from the compactly supported orthogonal wavelet basis

{ϕ̂0,k, k ∈ Γ0} ∪ {ψ̂l,k, k ∈ Γl, l = 0, . . . ,M}, previously considered for estimation of R0,0, and

Lk, k = 1, 2, 3.

Let us now consider the curve spatial increments ∆i,j = νi,j − νi−1,j − νi,j−1 + νi−1,j−1. The

following empirical version of SARH(1) variogram can be computed: For (i, j) ∈ {1, . . . ,K} ×
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{1, . . . , N},

γ̂(i, j) = ̂E∥∆i,j∥2H = E∥ν̂i,j − ν̂i−1,j − ν̂i,j−1 + ν̂i−1,j−1∥2H

= E∥[L̂1 − I]ν̂i−1,j + [L̂2 − I]ν̂i,j−1 + [L̂3 + I]ν̂i−1,j−1∥2H

= E∥[L̂1 − I]ν̂i−1,j∥2H + E
[⟨

[L̂1 − I]ν̂i−1,j , ν̂i,j−1[L̂2 − I]∗
⟩
H

]
+ E

[⟨
[L̂1 − I]ν̂i−1,j , ν̂i−1,j−1[L̂3 + I]∗

⟩
H

]
+ E

[⟨
[L̂2 − I]ν̂i,j−1, ν̂i−1,j [L̂1 − I]∗

⟩
H

]
+ E∥[L̂2 − I]ν̂i,j−1∥2H + E

[⟨
[L̂2 − I]ν̂i,j−1, ν̂i−1,j−1[L̂3 + I]∗

⟩
H

]
+ E

[⟨
[L̂3 + I]ν̂i−1,j−1, ν̂i−1,j [L̂1 − I]∗

⟩
H

]
+ E

[⟨
[L̂3 + I]ν̂i−1,j−1, ν̂i,j−1[L̂2 − I]∗

⟩
H

]
+ E∥[L̂3 + I]ν̂i−1,j−1∥2H . (A4.19)

Under A.1, considering, as before, the projections into the empirical wavelet eigenvector

basis {ϕ̂0,k, k ∈ Γ0} ∪ {ψ̂l,k, k ∈ Γl, l ∈ Z}, equation (A4.19) can be rewritten as

γ̂(i, j) =

∞∑
l=−∞

∑
k∈Γl

λ̂2l (L1 − I)Ê[ν̂
2
l,k(i− 1, j)]

+ 2

∞∑
l=−∞

∑
k∈Γl

λ̂l(L1 − I)λ̂l(L2 − I)Ê[ν̂l,k(i− 1, j)ν̂l,k(i, j − 1)]

+ 2
∞∑

l=−∞

∑
k∈Γl

λ̂l(L1 − I)λ̂l(L3 + I)Ê[ν̂l,k(i− 1, j)ν̂l,k(i− 1, j − 1)]

+

∞∑
l=−∞

∑
k∈Γl

λ̂2l (L2 − I)Ê[ν̂
2
l,k(i, j − 1)]

+ 2

∞∑
l=−∞

∑
k∈Γl

λ̂l(L2 − I)λ̂l(L3 + I)Ê[ν̂l,k(i, j − 1)ν̂l,k(i− 1, j − 1)]

+
∞∑

l=−∞

∑
k∈Γl

λ̂2l (L3 + I)Ê[ν̂
2
l,k(i− 1, j − 1)], (A4.20)

where {λ̂l(A)} denotes the empirical eigenvalue system of the estimator of operator A on H,
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and ν̂l,k(i, j) =
⟨
ν̂(i, j), ψl,k

⟩
H
, for k ∈ Γl, l ∈ Z, and (i, j) ∈ {1, . . . ,K} × {1, . . . , N}. Note

that the expectation estimates appearing at the right-hand side of the sums in equation (A4.20)

are computed in terms of the empirical wavelet covariogram of process ν̂.

Without loss of generality, we now consider for simplicity the space H = L2([0, 1]). Hence,

for a suitable compactly supported orthogonal wavelet basis providing a multiresolution analysis

of L2([0, 1]) which is ([s] + 1)-regular, we obtain, for k = 0, . . . , 2l − 1, l ≥ l0, the following

asymptotic approximations for l sufficiently large (see, for example, Proposition 2.1 in Angelini,

De Canditiis and Leblanc, 2003, for the case d = 1):

Ê[ν̂
2
l,k(i− 1, j − 1)] ≃ 2−2ls(i−1,j−1)/d

Ê[ν̂l,k(i− 1, j)ν̂l,k(i, j − 1)] ≃ 2−ls(i−1,j)/d2−ls(i,j−1)/d

Ê[ν̂l,k(i− 1, j)ν̂l,k(i− 1, j − 1)] ≃ 2−ls(i−1,j)/d2−ls(i−1,j−1)/d

Ê[ν̂
2
l,k(i− 1, j)] ≃ 2−2ls(i−1,j)/d

Ê[ν̂
2
l,k(i, j − 1)] ≃ 2−2ls(i,j−1)/d

Ê[ν̂l,k(i, j − 1)ν̂l,k(i− 1, j − 1)] ≃ 2−ls(i,j−1)/d2−ls(i−1,j−1)/d.

(A4.21)

For a given resolution level l ≥ l0, with l0 sufficiently large, from equations (A4.20) and

(A4.21), we obtain

γ̂l(i, j) ≃ 2−ls(i−1,j)
2l−1∑
k=0

λ̂2l (L1 − I) + 2−ls(i,j−1)
2l−1∑
k=0

λ̂2l (L2 − I) + 2−ls(i−1,j−1)
2l−1∑
k=0

λ̂2l (L3 + I)

+ 2−ls(i−1,j)/22−ls(i,j−1)/2
2l−1∑
k=0

2λ̂l(L1 − I)λ̂l(L2 − I)

+ 2−ls(i−1,j)/22−ls(i−1,j−1)/2
2l−1∑
k=0

2λ̂l(L1 − I)λ̂l(L3 + I)

+ 2−ls(i,j−1)/22−ls(i−1,j−1)/2
2l−1∑
k=0

2λ̂l(L2 − I)λ̂l(L3 + I), (A4.22)
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where γ̂l(i, j) represents the wavelet approximation of the local variation of the empirical SARH(1)

variogram at resolution level l. For our classification purposes, we can choose level l0 for gen-

erating the draft of the functions in H = L2([0, 1]), in terms of the translations and dilations

of the scaling function, and a number M of higher resolution levels for the construction of the

details, in terms of the corresponding wavelet functions. Specifically, we consider the projection

of the random effect curve observations ν̂ into the spaces Wl, l = l0, . . . , l0 +M, generated by

the translations and dilations of the wavelet functions at resolution levels l = l0, . . . , l0 +M.

From equation (A4.22), we then have

γ̂l0+M
l0

(i, j) =

l0+M∑
l=l0

γ̂l(i, j) ≃
6∑

n=1

An,l0,Mfn(i, j, l0,M), (A4.23)

for l0 sufficiently large. In the next section we describe a functional statistical classification

procedure of random effect curves based on function γ̂l0+M
l0

(i, j) in equation (A4.23). Note

that, given two nodes (i, j) and (k, l), in the spatial regular grid considered, the spatial homo-

geneity of SARH(1) increments located at these nodes means that functions fn(i, j, l0,M), and

fn(k, l, l0,M), n = 1, . . . , 6, in equation (A4.23) coincide. Specifically, ergodic theorems (see, for

example, Friedman, 1970) ensure the almost surely convergence of the wavelet covariogram, the

wavelet transform of the empirical covariance operator of ν̂, to the variance and covariance of

the corresponding wavelet coefficients when the sample size goes to infinity. As l → ∞, which is

equivalent to consider that the sample size goes to infinity, equation (A4.21) then provides the

almost surely order of magnitude of the sample second-order moments of wavelet coefficients of

ν̂. Thus, in the case where ν̂ displays homogeneous spatial local variation at a region containing

the nodes (i, j) and (k, l), the random variables fn(i, j, l0,M), and fn(k, l, l0,M) converge almost

surely to the same limit
∑l0+M

l=l0
γl, as M → ∞. Equivalently,
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∣∣∣γ̂l0+M
l0

(i, j)− γ̂l0+M
l0

(k, l)
∣∣∣ =

∣∣∣∣∣∣γ̂l0+M
l0

(i, j)−
l0+M∑
l=l0

γl −

γ̂l0+M
l0

(k, l)−
l0+M∑
l=l0

γl

∣∣∣∣∣∣
≤

∣∣∣∣∣∣γ̂l0+M
l0

(i, j)−
l0+M∑
l=l0

γl

∣∣∣∣∣∣+
∣∣∣∣∣∣γ̂l0+M

l0
(k, l)−

l0+M∑
l=l0

γl

∣∣∣∣∣∣ −→ 0, M → ∞, a.s.

(A4.24)

Therefore, ∣∣∣γ̂l0+M
l0

(i, j)− γ̂l0+M
l0

(k, l)
∣∣∣ ≤ O(g(M)), a.s., (A4.25)

where g(M) −→ 0, as M → ∞, a.s. Note that, given the sparsity of wavelet transform, g goes

to zero relatively fast (see Daubechies, 1992; Harten, 1993; Kumar and Mehra, 2005; among

others).

A4.4.1 Random-effect-curve-based discrimination

Summarizing, the main steps involved, in practice, in the random-effect-curve–based classifica-

tion procedure proposed are

Step RE1 Compute the observed averaged random effect curves ν̂(i, j),

(i, j) ∈ {1, . . . ,K} × {1, . . . , N}, from equations (A4.12) and (A4.13) applying wavelet

shrinkage denoising.

Step RE2 Compute the empirical covariance operators R̂0,0, R̂1,0, R̂0,1, and R̂1,1.

Step RE3 Compute the covariance operator wavelet-kernel-based estimators from R̂0,0, R̂1,0R̂
∗
1,0,

R̂0,1R̂
∗
0,1, and R̂1,1R̂

∗
1,1.

Step RE4 Compute the non-parametric wavelet-based estimators L̂k, k = 1, 2, 3, in equation (A4.18).

Step RE5 Compute the wavelet covariogram of ν̂.
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Step RE6 Compute γ̂l0+M
l0

(i, j) for (i, j) ∈ {1, . . . ,K}×{1, . . . , N} from a truncated version of equa-

tion (A4.20) as described in equation (A4.23), for a suitable l0 sufficiently large. That is,

compute, for (i, j) ∈ {1, . . . ,K} × {1, . . . , N},

γ̂l0+M
l0

(i, j) = γ̂(i, j, l0,M) =

l0+M∑
l=l0

2l−1∑
k=0

λ̂2l (L1 − I)Ê[ν̂
2
l,k(i− 1, j)]

+ 2

l0+M∑
l=l0

2l−1∑
k=0

λ̂l(L1 − I)λ̂l(L2 − I)Ê[ν̂l,k(i− 1, j)ν̂l,k(i, j − 1)]

+ 2

l0+M∑
l=l0

2l−1∑
k=0

λ̂l(L1 − I)λ̂l(L3 + I)Ê[ν̂l,k(i− 1, j)ν̂l,k(i− 1, j − 1)]

+

l0+M∑
l=l0

2l−1∑
k=0

λ̂2l (L2 − I)Ê[ν̂
2
l,k(i, j − 1)]

+ 2

l0+M∑
l=l0

2l−1∑
k=0

λ̂l(L2 − I)λ̂l(L3 + I)Ê[ν̂l,k(i, j − 1)ν̂l,k(i− 1, j − 1)]

+

l0+M∑
l=l0

2l−1∑
k=0

λ̂2l (L3 + I)Ê[ν̂
2
l,k(i− 1, j − 1)]. (A4.26)

Step RE7 Given two nodes (i, j) and (k, l), if γ̂l0+M
l0

(i, j) − γ̂l0+M
l0

(k, l) ≃ 0, in the sense of equa-

tion (A4.25), the random effect curves located at such nodes will be in the same group.

Otherwise, they will belong to different clusters.

A4.5 Functional statistical classification algorithm

Let us now summarize the main steps involved in the implementation of the functional statistical

classification methodology proposed in this paper to analyzing the firm panel data example in

the next section.

Step 1 Functional fixed effect model validation
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Step 1.1 A centroid with coordinates (x1i, x2i) is assigned to the Spanish community i, for

i = 1, . . . , C, with C denoting the number of Spanish communities analyzed in the

firm panel data.

Step 1.2 For each industry sector k, k = 1, . . . , s, and for i = 1, . . . , C, let us consider the

indebtedness curve sample of size N(i, k) at community i, where N(i, k) denotes the

number of firms located at region i within the industry sector k. For k = 1, . . . , s,

and i = 1, . . . C, compute the empirical covariance operators

R̂0(x1i, x2i, k), R̂l(x1i, x2i, k), R̂m,n(x1i, x2i, k), l,m, n = 1, . . . , q.

Step 1.3 For each industry sector, Leave-One-Out Cross-Validation (LOOCV) is applied at

each one of the Spanish communities studied. Specifically, for each industry sector k =

1, . . . , s, and within each Spanish community i, i = 1, . . . , C, the correspondingN(i, k)

iterations of the LOOCV are running, consisting of removing the firm h0 used for

validation, and implementing Steps FE1-FE3, in terms of the corresponding training

firm sample, to obtaining the estimates L̂1(i, k), . . . , L̂q(i, k). Then, β̂(x1i, x2i, h0, k) =∑q
m=1 L̂m(i, k)Xm,h0,k, and

LOOCVE(x1i, x2i, h0, k) =

∥∥∥∥∥
q∑

m=1

L̂m(i, k)Xm,h0,k − Y (x1i, x2i, h0, k)

∥∥∥∥∥
L∞

,

where Y (x1i, x2i, h0, k) denotes the observed indebtedness curve at the firm h0 in the

Spanish community i and industry sector k, for h0 = 1, . . . , N(i, k), and i = 1, . . . , C,

k = 1, . . . , s.

Step 1.4 The mean of LOOCVE(·, ·, ·, ·) error over the firms of each community within a par-

ticular industry sector is calculated for assessment of the suitability of the functional

multiple regression model to be considered in the fixed-effect classification procedure.

Step 1.5 If mean LOOCV error is small, spatial interpolation methods are applied to allocating

data on a spatial regular grid (see, for example, Stein, 1999, 2009). The nodes of the
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grid are spatially located close to the spatial coordinates of the centroid assigned to

each one of the Spanish communities analyzed. This fact is also taken into account in

the determination of the number of nodes defining the spatial regular grid selected.

Step 2 Fixed effect curve classification. Steps FE1-FE5 are implemented in terms of the spatial

interpolated indebtedness curve samples at the nodes of the spatial regular grid. The

members of each one of the clusters distinguished in Step FE5 are indebtedness curves

whose fixed effect parameters have regression operators spatially homogeneous.

Step 3 SARH(1) model validation

Step 3.1 For each industry sector, LOOCV is applied to testing suitability of SARH(1) model

for representing spatial interaction between indebtedness curves located at the nodes

of the spatial regular grid considered in Step 1.5. After removing the validation node

(i0, j0), Steps RE1-RE4 are computed from the training functional sample, consid-

ering a suitable scaling and translation of the interval [0, 1] to the temporal period,

years, analyzed. Hence, for k = 1, . . . , s,

LOOCVE(i0, j0, k) = ∥̂̂ν(i0, j0, k)− ν̂(i0, j0, k)∥L∞

= ∥L̂1ν̂(i0 − 1, j0, k) + L̂2ν̂(i0, j0 − 1, k)

+L̂3ν̂(i0 − 1, j0 − 1, k)− ν̂(i0, j0, k)∥L∞ ,

(A4.27)

for each (i0, j0) ∈ {1, . . . ,K} × {1, . . . , N}.

Step 3.2 The mean of LOOCVE(·, ·, ·) is computed over the nodes of the spatial regular grid

considered, for each industry sector.
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Step 4 Random effect curve classification. When the LOOCVE mean is small, Steps RE1-RE7

are implemented for obtaining the clustering of the indebtedness curves at the nodes of

the spatial regular grid, according to the homogeneous spatial patterns displayed by the

SARH(1) increments of the random effect parameters, in the mean quadratic sense.

Step 5 Fixed and random effect curve classification. The intersection between the clusters distin-

guished in Step 2 and in Step 4 is considered to detecting groups of indebtedness curves

with spatially homogeneous regression operators and mean-quadratic functional local vari-

ation.

A4.6 Real data example

In this section, the financing decisions of firms during the period 1999-2007 are analyzed in

a panel constituted by 638 Spanish companies, belonging to 4 different industry sectors, and

located at 17 autonomous Spanish communities. Data have been collected from the SABI

(Sistema de Análisis de Balances Ibéricos) database (see Ruiz-Medina and Espejo, 2012). The

functional classification methodologies proposed are illustrated with the analysis of this firm

panel data with the final objective of establishing:

• The groups of Spanish communities whose firms within a sector have indebtedness curves

with a spatially homogeneous firm factor relationship.

• The groups of Spanish communities whose firms have indebtedness curves with spatially

homogeneous mean-quadratic local variation.

• The groups of Spanish communities whose firms within a sector display indebtedness curves

with spatially homogeneous regression operators and mean-quadratic functional local vari-

ation.
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The firm factor determinants of leverage considered in the analysis of the financing decisions

of the 638 Spanish companies studied are: Firm size, which is measured as the log of total

assets; Asset structure, which consists of the net fixed assets divided by the total assets of the

firm; Profitability, computed as the ratio between earnings before interest, taxes amortization

and depreciation, and the total assets; Growth, for which as proxy, consider the growth of the

assets, calculated as the annual change of the total assets of the firm; Firm risk given by the

Business risk, defined as the standard deviation of earnings before interest and taxes over book

value of total assets during the sample period; and, finally we consider the Age, measured as the

logarithm of the number of years that the firm has been operating. These factors are assumed

to be fixed over the companies belonging to the 17 geographical regions analyzed, and the 4

industry sectors studied (Factories, Building, Commerce and Several). Leverage is estimated as

the quotient between the total debt and the total assets. There exist a large number of empirical

studies undertaken to demonstrate the influence of the industry sector, and of the geographical

region in the statistical analysis of firm panel data. They are usually incorporated as dummy

variables (see Booth, et al., 2001; and Degryse, De Goeij and Kappert, 2012).

The subsequent implementation has been developed with MatLab Language. Specifically,

Kernel Smoothing, Spatial Statistics and Wavelet constitute the main toolboxes used. Indebt-

edness and firm factor curves are approximated by applying temporal local polynomial kernel

smoothing, based on the Epanechnikov kernel (see, for example Rincón and Ruiz-Medina, 2012a,

Appendix A.1). Functional fixed effect model validation is first implemented. Specifically, after

computing Steps 1.1-1.4, the L∞-norms of the mean LOOCV errors at the 17 Spanish commu-

nities are displayed in Table A4.1, for each one of the four industry sectors. Note that ——

means that a region has not firms at some specific industry sector.

The mean LOOCV error curves at the 17 communities for each one of the four industry sectors

appear in Figure A4.6.
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Table A4.1: the L∞-norms of the mean LOOCV errors at the 17 Spanish communities

Mean LOOCV error SECTOR 1 SECTOR 2 SECTOR 3 SECTOR 4

GALICIA 0.0519 0.0284 0.0452 ——
ASTURIAS 0.0781 0.0715 0.0544 ——
CANTABRIA 0.0743 —— 0.1222 ——

PAÍS VASCO 0.1234 0.0470 0.0494 0.0821
NAVARRA 0.0432 0.0675 —— ——

ARAGÓN 0.0476 0.1371 0.0460 0.0546

CATALUÑA 0.1805 0.0705 0.4723 0.2443

CAST. LEÓN 0.1361 0.1522 0.0586 0.0685
LA RIOJA 0.0511 —— —— ——
EXTREMADURA 0.0597 —— 0.0216 ——
MADRID 0.4299 0.0897 0.4358 0.2768
CAST. MANCHA 0.0911 0.0430 0.0431 0.0320
C. VALENCIANA 0.5960 0.0809 0.1989 0.0683

ANDALUCÍA 0.1153 0.1055 0.3539 0.0379
MURCIA 0.0461 0.0511 0.0503 0.0632
BALEARES 0.0298 0.0754 0.0390 0.0688
CANARIAS 0.0534 0.0562 0.1063 0.0684

Since the above displayed validation results support the functional multiple regression model-

ing of H-valued fixed effect parameters at each community within each industry sector, Steps 1.5

and 2 are now implemented. In particular, in the implementation of Step 1.5, high-dimensional

spatial interpolation (see, for example, Stein, 2009) is applied to obtaining the curve data sam-

ples (indebtedness and firm factor curves) on a 4× 6 spatial regular grid. Here, the latitude and

longitude defining the spatial location of the centroid associated with each Spanish community

have been taken into account to define such a spatial regular grid. Specifically, Figure A4.6

shows the distribution of the 15 Spanish communities over the considered 4× 6 spatial regular

grid located at the square interval [38◦, 43◦] × [−6◦,−1◦] for covering the Iberian Peninsula.

Note that Baleares and Canarias islands have not been included since they are considered from
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Figure A4.1: Mean LOOCV error curves at the 17 communities, using the following abbrevia-
tions: R1 for Galicia, R2 for P. Asturias, R3 for Cantabria, R4 for Pais Vasco, R5 for Navarra,
R6 for La Rioja, R7 for Aragon, R8 for Cataluña, R9 for Castilla Leon, R10 for Madrid, R11
for Castilla La Mancha, R12 for C. Valenciana, R13 for Canarias, R14 for Extremadura, R15
for Andalucia, R16 for Murcia, R17 for Baleares
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A4.6.1 Fixed-effect curve classification results

According to the local variability displayed by the approximated fixed-effect curves, M = 9

resolution levels have been considered, since detail wavelet empirical coefficients are null for

higher resolution levels. For each industry sector, in the determination of the clusters from

Step F5, we evaluate equation (A4.10) for the possible pairs of communities. Two communities

located at nodes (i, j) and (k, l) of the 4 × 6 spatial regular grid considered are in the same

cluster if

(i) [λ̂L̂m
pm (i, j)− λ̂L̂m

pm (k, l)]2 = 0, for at least p ≥ 4, and for m = 1, . . . , 6,

(ii)
[∑6

m=1

∑3
p=1[λ̂

L̂m
pm (i, j)− λ̂L̂m

pm (k, l)]2
]1/2

≤ Ts, with the thresholds Ts, s = 1, 2, 3, 4,

being selected according to Remarks 10 and 11 (see equation (A4.11)), and taking into

account the empirical values of (A4.10) within the different candidate groups determined

under restriction (i).

The threshold values used for each one on the industry sectors analyzed, Ts, s = 1, 2, 3, 4,

are displayed in the following table:

THRESHOLDS
T1 T2 T3 T4

0.208 0.161 0.215 0.305

When one community located at node (k, l) does not satisfy restrictions (i)-(ii) in the evalu-

ation of (A4.10), in terms of its combination with the rest of 14 communities, it is allocated in

a separated group, i.e., it constitutes a cluster. The resulting clusters for each one of the four

industry sectors are now displayed in Figure A4.3 (see also tables below).
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Figure A4.3: Classification results after implementation of Step 2 for the 4 industry sectors.
Factories (top-left); Building (top-right); Commerce (bottom-left); Several (bottom- right)

SECTOR 1. Factories

Cluster 1 Cataluña
Cluster 2 Cantabria Pais Vasco Castilla La Mancha
Cluster 3 Madrid
Cluster 4 C. Valenciana
Cluster 5 Navarra La Rioja Aragón Castilla León Extremadura Andalućıa
Cluster 6 Galicia P. Asturias Murcia
Cluster 7 Canarias
Cluster 8 Baleares
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SECTOR 2. Building

Cluster 1 Navarra La Rioja Aragón
Cluster 2 Madrid
Cluster 3 Andalućıa
Cluster 4 Castilla La Mancha
Cluster 5 Galicia Asturias Cantabria Pais Vasco C. Valenciana Murcia
Cluster 6 Cataluña
Cluster 7 Castilla León Extremadura
Cluster 8 Canarias
Cluster 9 Baleares

SECTOR 3. Commerce

Cluster 1 Cataluña
Cluster 2 Galicia P. Asturias Cantabria Pais Vasco Navarra La Rioja

Aragón Castilla León Extremadura Castilla La Mancha Murcia
Cluster 3 Andalućıa
Cluster 4 Madrid
Cluster 5 C. Valenciana
Cluster 6 Canarias
Cluster 7 Baleares

SECTOR 4. Several

Cluster 1 Galicia P. Asturias Navarra La Rioja Aragón Castilla León
Extremadura Castilla La Mancha C. Valenciana Murcia

Cluster 2 Cantabria Pais Vasco Andalućıa
Cluster 3 Cataluña
Cluster 4 Madrid
Cluster 5 Canarias
Cluster 6 Baleares

It can be appreciated that the industry Sector 2 on building displays a higher order of

spatial heterogeneity in the functional relationship between indebtedness and firm factor curves,

followed by Sector 1 in relation to Factories. Similar spatial heterogeneous patterns are displayed

by Sectors 3 and 4 on Commerce and Several, respectively. Although a larger number of clusters
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is distinguished in Commerce, with the most significant differences between these two last sectors

localized in the Spanish communities of C. Valenciana, Páıs Vasco and Cantabria.

A4.6.2 SARH(1)-based variogram classification

After implementation of Steps 3.1 and 3.2 for each one of the four industry sectors, the following

table displays the L∞-norm of the mean, over the nodes of the 4× 6 spatial regular grid, of the

LOOCV error computed in the SARH(1) model validation.

SARH(1)
validation SECTOR 1 SECTOR 2 SECTOR 3 SECTOR 4

0.2318 0.1700 0.0916 0.8972
In the computation of Step 4, consisting of Steps RE1-RE6, we consider l0 = 5 and M = 9.

Step RE7 is then implemented in the following way: Equation (A4.24) is evaluated in the possible

pairs of communities to be constructed. Two communities, located at nodes (i, j) and (k, n),

are in the same cluster if

(i) |γ̂l(i, j)− γ̂l(k, n)| = 0, for l ≥ 4

(ii)
∣∣∣∑5+3

l=5 γ̂l(i, j)−
∑5+3

l=5 γ̂l(k, n)
∣∣∣ ≤ Ss, with the thresholds Ss, s = 1, 2, 3, 4, being estab-

lished from the empirical values of (A4.24) within a candidate group determined under

restriction (i), according to equation (A4.25).

The thresholds Ss, s = 1, 2, 3, 4, used are given in the following table:

THRESHOLDS
S1 S2 S3 S4

0.015 0.035 0.01 0.025

As commented in the previous section, communities which do not satisfy (i)-(ii) in its eval-

uation of (A4.24) with the rest of 14 communities are allocated in a separated cluster. After

implementation of (i)-(ii), Spanish communities are grouped into 12 common clusters for the

four industry sectors considered, represented with different colors in the map of Spain given in

the figure below.
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Figure A4.4: Clusters defined by evaluation of the empirical wavelet approximation (A4.24) of the
variogram differences

These clustering results are also collected in the following table:

Cluster Spanish Communities

Cluster 1 Galicia P. Asturias
Cluster 2 Cantabria Páıs Vasco
Cluster 3 Navarra La Rioja Aragón
Cluster 4 Cataluña
Cluster 5 Castilla León Extremadura
Cluster 6 Madrid
Cluster 7 Castilla La Mancha
Cluster 8 C. Valenciana
Cluster 9 Canarias
Cluster 10 Andalućıa
Cluster 11 Murcia
Cluster 12 Baleares

Since the same clusters are detected in relation to the mean-quadratic spatial local functional

variation of indebtedness curves for the four industry sectors analyzed, real differences between

industry sectors in the distribution of local spatially homogeneous patterns are only appreciated
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in the functional relationship between indebtedness curves and firm factors. On the other

hand, a higher level of spatial heterogeneity is displayed by the mean quadratic local functional

variation properties. The conclusion of the study is that regional factors affect both, the firm

structure (relationship between indebtedness curves and firm factors) and the mean quadratic

local functional variation properties of indebtedness curves. However, it seems that the industry

sector only affects the firm structure.

A4.6.3 Fixed and random effect curve classification

Groups of Spanish communities whose firms within a sector display indebtedness curves with spa-

tially homogeneous relationships with firm factors, and spatially homogeneous mean-quadratic

local functional variation are obtained as intersection of the clusters distinguished in Steps 2

and 4 of the functional classification algorithm described in Section A4.5. Specifically, the com-

mon groups distinguished by both methods are marked in different colors in the following maps

corresponding to each one of the four industry sectors. Note that the communities which are

not located at common clusters by both methods appear white on the map.
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Figure A4.5: Common clusters for Step 2 and 4 of the functional classification algorithm pro-
posed. Sector 1 (top-left), Sector 2 (top-right), Sector 3 (bottom-left) and Sector 4 (bottom-
right)

The results displayed in Figure A4.5 are also reflected in the following table.

SECTOR 1. Factories

Cluster 1 Cataluña
Cluster 2 Madrid
Cluster 3 C. Valenciana
Cluster 4 Canarias
Cluster 5 Baleares

SECTOR 2. Building

Cluster 1 Navarra La Rioja Aragón
Cluster 2 Madrid
Cluster 3 Andalućıa
Cluster 4 Castilla La Mancha
Cluster 5 Cataluña
Cluster 6 Castilla León Extremadura
Cluster 7 Canarias
Cluster 8 Baleares
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SECTOR 3. Commerce

Cluster 1 Cataluña
Cluster 2 Andalućıa
Cluster 3 Madrid
Cluster 4 C. Valenciana
Cluster 5 Canarias
Cluster 6 Baleares

SECTOR 4. Several

Cluster 1 Cataluña
Cluster 2 Madrid
Cluster 3 Canarias
Cluster 4 Baleares

Note that Canarias and Baleares have been considered since the beginning as two different

groups due to their latitude and longitude outside of the Iberian Peninsula, where the spatial

regular grid displayed in Figure A4.6 is located. We have also to note that Cataluña and

Madrid are Spanish communities conforming separated groups common to the four industry

sectors in the fixed and random effect based classification. The spatial distribution of groups

constituted by the rest of Spanish communities changes with the industry sector when the

fixed effect classification is considered, and, hence, when both spatial homogeneity criteria are

simultaneously taken into consideration.

A4.7 Final comments

Functional statistical classification of curves incorporating spatial interactions, or interaction

between individuals, constitutes an open research problem. In this paper, we present a first

approach to the Gaussian case, when a spatial autoregressive dynamics of order one is assumed.
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Specifically, the spatial functional mixed-effect approach proposed allows to detect heterogeneous

trends and non-homogeneous local variability properties in space, in the mean-quadratic sense.

Heterogeneity analysis in relation to trends is achieved in terms of the l2 distance between

the empirical spectra of the regression operators, while a functional version of the empirical

variogram is formulated, based on SARH(1) dynamics, for random effect curve classification

according to the functional temporal local variability in space displayed by such curves. The

wavelet covariogram is considered in the last case for computing mean quadratic local functional

variation exponents.

Numerical projection into the auto-covariance eigenvector system leads to an approxima-

tion of the functional variance in an optimal way. The wavelet-kernel-based estimation of the

auto-covariance operator allows us to consider orthogonal wavelet functions providing a regular

multiresolution analysis as empirical eigenvectors (see Angelini, De Canditiis and Leblanc, 2003).

The finite-dimensional nonparametric estimates of the regression operators, and of the SARH(1)

parameters are respectively computed in terms of the solution to the projected systems of equa-

tions derived from the spatial functional regression model, in the fixed-effect curve classification,

as well as from the SARH(1) state equation, in the random-effect curve classification. Note that

the presented approach for clustering spatial functional data adopts filtering methods in the im-

plementation of Steps 3-4 to defining the observed random effect curves. Hence, the problem of

selecting a suitable basis for filtering is crucial. Some recent approaches for clustering functional

data choose spline bases for projection (see, for example, James and Sugar, 2003). Alternatively,

wavelet bases can be considered for implementation of filtering methods in the classification of

functional data (see, for example, Giacofci, et al., 2013, in relation to wavelet-based classifica-

tion in the context of functional mixed-effect models). In our approach, the wavelet spectra

of the regression operators are used for fixed effect curve classification. Similarly, the wavelet

spectra of the SARH(1) parameters and covariance operators lead to the designing of a parallel
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methodology for random effect curve classification, based on the wavelet approximation of the

variogram.

The presented approach can be viewed as a functional modified version of classical Maximum

Likelihood Classifier, where instead of estimation of the trend, the regression operators are esti-

mated, and where instead of considering the estimation of the covariance matrix, the SARH(1)

variogram is approximated from the nonparametric projection estimation of SARH(1) param-

eters, as well as from the wavelet covariogram spectra of the observed random effect curves.

Summarizing, the spatial functional statistical classification methodology proposed can be ap-

plied to detect local spatial homogeneity of regression operators defining fixed effect parameters,

as well as local homogeneity patterns in the mean quadratic spatial local functional variation of

Gaussian random effect curves, under a state space approach.
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Gegenbauer random field

Espejo, R. M., Leonenko, N and Ruiz-Medina, M. D. (2014).

Gegenbauer random fields.

Random Operators and Stochastic Equations, 22, DOI: 10.1515/rose-2014-0001.

Abstract

This paper introduces spatial long-range dependence time series models, based on the considera-

tion of fractional difference operators associated with Gegenbauer polynomials. Their structural

properties are analyzed. The spatial autoregressive Gegenbauer case is also studied, including

the case of k factors with multiple singularities. An extension to the Hilbert-valued context is

finally formulated leading to the introduction of a new class of spatial functional time series

models.

A5.1 Introduction

In the last three decades, a big number of contributions have been developed in the context

of spatial time series theory (see, Andel, 1986; Boissy et al., 2005; Brockwell and Davis, 1991;

Hosking, 1981; Martin, 1979; among others). Namely, since the initial work on spatial statistical

models developed in Basu and Reinsel (1993); Bhattacharyya, Khalil and Richardson (1996);

Guyon (1995); Jain (1981); Martin (1979, 1990, 1996); and Tjostheim (1978, 1981, 1983); the

173



174 Appendix 5

spatial series modeling framework has been widely considered in several applied fields such

as geology, geophysics, biology, agriculture, spatial econometrics, image processing, etc. This

framework is useful when data are collected on a regular grid. Although irregularly spaced data

can sometimes be replaced by equally spaced data, using interpolation techniques as the ones

given, for example, in Delfiner and Delhomme (1975) and Papari and Petkov (2009).

The initial work by Martin (1979) is one of the pioneers in this field and was taken as a

reference in the majority of later articles in this research area. Doubly geometric processes

are introduced in this paper as a first attempt for modeling spatial dynamics (see also Martin,

1996). One of the most famous spatial time series models is the spatial autoregressive and

moving average (SARMA) model. For example, recently, in Bosq (2010), the tensorial product

of autoregressive Hilbertian processes is investigated, as extension to the functional context of the

doubly geometric processes introduced by Martin (1979). Also, the Hilbert-valued formulation

of the spatial unilateral dynamics displayed by the spatial autoregressive models of order one

studied in Martin, (1979) is provided in Ruiz-Medina (2011). The structural properties of

this class of spatial Hilbert-valued processes are also investigated in this paper. A functional

spatial extrapolator is obtained in Ruiz-Medina (2012a), based on the method of moments, by

projection into the biorthogonal eigenfunction system that provides the spectral decomposition

of the infinite-dimensional parameters involved in the state equation. Alternative projection

methodologies are investigated in Ruiz-Medina and Espejo (2012, 2013a), respectively based

on the autocovariance eigenfunction system and the discrete interval wavelet transform. In

the spatial time series context, weak dependence is usually assumed, but this condition is not

always satisfied. This fact constitutes the motivation of the present paper. Specifically, this

work will focus on Spatial Autoregressive and Moving Average (SARMA) models with long range

dependence (LRD). Long-range dependence time series models have been essentially investigated

in the one-dimensional case (see, for instance, Andel, 1986 or Brockwell, and Davis, 1991). In
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the paper by Brockwell and Davis (1991), among other cases studied, the processes whose

autocorrelation function asymptotically displays a power law behavior are investigated. We

also cited the papers by Hosking (1981) and Granger and Joyeux (1980), as pioneering works

regarding autoregressive and moving-average process (ARMA) with long memory. Both papers

study the case where the degree of differentiation of the time series take fractional values. This

type of fractional models are referred to as fractional autoregressive and moving average models

FARMA models. In the context of FARMA models, Gray, Zhang and Woodward (1989) applied

the generating function methodology in terms of the Gegenbauer polynomials. They refer to the

introduced class of processes as Gegenbauer autoregressive moving average models, GARMA

models. Later, Woodward, Cheng and Gray (1998) analyzed this model from a perspective

closer to the long range dependence modeling framework. There exist different generalizations

of GARMA processes discussed below. For example, Chung (1996a) introduced the so-called

FARMA models, in terms of Gegenbauer autoregressive and moving average models displaying

long memory, which, in particular, include the fractionally integrated processes.

The above referred long range dependence (LRD) models are introduced in the time domain.

Recently, Boissy et al. (2005) have studied spatial strong-dependence models. In this paper,

the structural properties of spatial Gegenbauer autoregressive processes displaying long range

dependence are investigated.

A5.2 Preliminary concepts

For the development and better understanding of this chapter we initially introduce three spatial

time series models. Specifically, the description of two-dimensional autoregressive models is

performed in this section, as starting point in our work.

Model 1: (see Boissy et. al., 2005) A process Yt1,t2 is called doubly-geometric process (Martin,

1979), if its correlation function is the product of two geometric terms, obeying the spatial
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autoregressive model:

Yt1,t2 = αYt1−1,t2 + βYt1,t2−1 − αβYt1−1,t2−1 + εt1,t2 , (t1, t2) ∈ Z2, (A5.1)

where −1 < α, β < 1, and εt1,t2 ∈ Z2, is a white noise random field with mean zero E(εt1,t2) = 0,

common variance σ2ε and E(εt1,t2 , εt′1,t′2) = σ2εδ
s′1
t1
δ
t′2
t2
. Martin (1979) pointed out the desirability

that the process displays reflection symmetric, that is, ρk,l = ρ−k,l = ρk,−l = ρ−k,−l, where ρk,l is

the autocorrelation between the lags k and l, with ρk,l = corr(Yt1,t2 , Yt1+k,t2+l). From equation

(A5.1), these requirements lead to the simple form of the correlation function ρk,l = α|k|β|l|,

(k, l) ∈ Z2, having reflection symmetric, and the resulting random field then has the second

order moments.

Model 2: (see Basu and Reinsel, 1993) Let Yt1,t2 be a simple spatial autoregressive bidimen-

sional process, expressed as follows:

Yt1,t2 = αYt1−1,t2 + βYt1,t2−1 + εt1,t2 (t1, t2) ∈ Z2, (A5.2)

which is stationary in the case |α| + |β| < 1, where εt1,t2 , (t1, t2) ∈ Z2, is again white noise

random field. In this case there is a representation in L2-sense:

Yt1,t2 =
∑

(i,j)∈Vt1,t2

(
t1 + t2 − i− j

t1 − i

)
αt1−iβt2−jεi,j =

∞∑
i=0

i∑
j=0

(
i
j

)
αiβi−jεt1−i,t2−i+j ,

where Vt1,t2 = {(i, j) ∈ Z2, i ≤ t1, j ≤ t2}.

Model 3. We consider a polynomial in a complex plain

ϕ(Z1, Z2) =
∑
k∈S

∑
l∈S

ak,lZ
k
1Z

l
2, Z1, Z2 ∈ C′,

where S is a finite set at Z2, and ak,l, (k, l) ∈ S, are real coefficients such that, for all (t1, t2) ∈ Z2,

ϕ(B1, B2)Yt1,t2 = εt1,t2 , (t1, t2) ∈ Z2, (A5.3)
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where the backward-shift operators can be defined as B1Yt1,t2 = Yt1−1,t2 , and B2Yt1,t2 = Yt1,t2−1.

It is known (Guyon, 1995; Rosenblatt, 1985) that equation (A5.3) admits a stationary solution

if and only if ϕ(eiλi , eiλ2) ̸= 0, for all λ = (λ1, λ2) ∈ [−π, π]2. In this case, the homogeneous

fields {Yt1,t2 , (t1, t2) ∈ Z2} may be written as

Yt1,t2 =
∑
k∈Z2

∑
l∈Z2

Ck,lεt1−k,t2−l, (A5.4)

where Ck,l are the coefficients involved in the Laurent expansion of ϕ−1(Z1, Z2) in the neighbor-

hood of {|Z1| = 1, |Z2| = 1}, and satisfy
∑

k

∑
l |ck,l|2 < ∞. Note that (A5.4) converges almost

surely and in L2 (the proof is similar to Brockwell and Davis, 1991, Proposition 3.1.1). The

spectral density of stationary field (A5.4) is of the form

fx(λ1, λ2) =
σ2ε

(2π)2
|ϕ(eiλ1 , eiλ2)|−2, (λ1, λ2) ∈ [−π, π]2.

Finally, in Ruiz-Medina (2011), the following spatial autoregressive Hilbertian model is in-

troduced:

Yt1,t2 = R+A(Yt1−1,t2) +B(Yt1,t2−1) + C(Yt1−1,t2−1) + εt1,t2 , (A5.5)

where R ∈ H, with H being a separable Hilbert space, A,B and C are linear bounded operators

on H, i.e., A, B, C ∈ L(H), and ε is a spatial Hilbert-valued martingale difference process.

In this chapter, similar formulations to those given in equations (A5.1)-(A5.3) and (A5.5) are

considered, in the introduction of long-range dependence spatial time series models, having

singular spectra, in terms of spatial Gegenbauer innovation processes.

A5.3 Long-range dependence

The spatial autoregressive processes {Yt1,t2} which are usually studied typically have short mem-

ory, as mentioned earlier in the Introduction. This means that the covariance function associated

with these processes satisfies that
∑+∞

k=−∞
∑+∞

l=−∞ |γk,l| < ∞. From now on, we will focus our
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study in the spatial autoregressive models (SAR), displaying long range dependence (LRD), i.e.,

in the case where the autocovariance function satisfies that:

+∞∑
k=−∞

+∞∑
l=−∞

|γk,l| = ∞.

This section discusses and provides the main structural properties of SAR processes with strong

spatial dependence.

Definition 8. Let Yt1,t2 be a spatial autoregressive model in two-dimensions. From equation

(A5.1), we can define the spatial autoregressive process as:

ϕ(B1, B2)Yt1,t2 = εt1,t2 , (t1, t2) ∈ Z2, (A5.6)

where εt1,t2 is assumed to be a white noise process, with zero-mean and common variance σ2ε ,

and ϕ(B1, B2) is the autoregressive operator, such that, ϕ(Z1, Z2) = (1 − αZ1)(1 − βZ2) =

1 − αZ1 − βZ2 + αβZ1Z2, for all Zi, with i = 1, 2, within the closed unit polydisc |Zi| ≤ 1,

i = 1, 2.

The spatial autoregressive process Yt1,t2 is said to be casual if it can be expressed as Yt1,t2 =∑∞
k=0

∑∞
l=0 ψk,lεt1−k,t2−l, or equivalently,

Yt1,t2 = (1− αB1 − βB2 − αβB1B2)
−1εt1,t2

with (1 − αB1 − βB2 − αβB1B2) ̸= 0. We introduce in the previous spatial model, equation

(A5.6), LRD in terms of the binomial difference operator ∇d, for d ∈ (−1/2, 1/2), given by

∇d = (1−B)d =

∞∑
j=0

πjB
j = 1 + dB +

d(d− 1)

2
B2 + . . . (A5.7)

with πj =
Γ(j−d)

Γ(j+1)Γ(−d) =
∏

0≤k≤j
k−1−d

k , j = 0, 1, 2, . . . , and d ∈
(
−1

2 ,
1
2

)
.

The inverse of this backward shift operator is defined as

∇−d = (1−B)−d =

∞∑
j=0

ΨjB
j ,
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with Ψj = Γ(j+d)
Γ(j+1)Γ(d) =

∏
0<k≤j

k−1+d
k , j = 0, 1, 2, . . . , and d ∈

(
−1

2 ,
1
2

)
, see Granger and

Joyeux (1980); Hosking(1981); and Brockwell and Davis (1991). Spatial long range dependence

requires the introduction of the two-dimensional operator

∇d = ∇d1 ◦ ∇d2 = (1−B1)
d1 ◦ (1−B2)

d2 ,

where now d = (d1, d2) ∈ (−1/2, 1/2)2. The backward-shift operators for each spatial coor-

dinate are given by B1Yt1,t2 = Yt1−1,t2 , and B2Yt1,t2 = Yt1,t2−1. Similarly, εt1,t2 denotes the

two-dimensional white noise process, and B1εt1,t2 = εt1−1,t2 , B2εt1,t2 = εt1,t2−1.

Consider now equation (A5.6) (see Boissy et al., 2005; Guo, Lim and Meerschaert, 2009;

Beran, Ghosh and Schell, 2009), we can introduce the two-dimensional LRD operator, for d ∈

(−1/2, 1/2)2, as

ϕ(B1, B2)∇dYt1,t2 = εt1,t2 ,

for (t1, t2) ∈ Z2, with d = (d1, d2) and the operator ∇d is defined by its corresponding series

representation in (Z1, Z2). The coefficients of (1 − Z1)
d1 ◦ (1 − Z2)

d2 are in the unit polydisc,

with {Zi ∈ Z; |Zi| < 1, i = 1, 2}, and denoting, as before, by Z the set of all integers.

Remark 12. Let Yt1,t2 be a spatial long range dependence process, with di ∈ (−1/2, 1/2), i = 1, 2,

then, there exists a unique stationary solution Yt1,t2 such that:

Yt1,t2 = ∇−dεt1,t2 .

The autocorrelation function of spatial autoregressive process Yt1,t2 is then given by (see

Brockwell and Davis, 1991, and Andel, 1986):

ρ(k, l) =
Γ(1− d1)Γ(k + d1)

Γ(d1)Γ(k + 1− d1)

Γ(1− d2)Γ(l + d2)

Γ(d2)Γ(l + 1− d2)
.

Tesis Doctoral Rosa M. Espejo Montes



180 Appendix 5

In addition, if we consider the autoregressive operator in model (A5.6), we obtain:

f(λ) = f(λ1, λ2) =
σ2ε
4π2

1

|ϕ(e−iλ1 , e−iλ2 , α, β)|2
1

|1− e−iλ1 |2d1
1

|1− e−iλ2 |2d2

=
σ2ε
4π2

1

|2sin(λ1/2)|2d1
1

|2sin(λ2/2)|2d2
1

|ϕ(cos(λ1), cos(λ2), α, β)|2
,

where λ ∈ [−π, π]2, d ∈ (−1/2, 1/2) and |α| < 1 and |β| < 1. Whereas it has been taken into

account the following relationship:

|1− e−iλ| = 2 (1− cos(λ)) = 4 (sin(λ/2))2 = 4
(
sin2(λ/2)

)
.

Remark 13. The spectral density f(λ1, λ2) has singular properties for (λ1, λ2) → (0, 0). Obvi-

ously, we have f(λ1, λ2) −→ ∞, for (λ1, λ2) −→ (0, 0), if only if, |di| < 1/2, i = 1, 2.

From the above expression of the spectral density, the autocovariance function of the spatial

autoregressive long-range dependence process is given by:

γ(k, l) =
∫ π
−π

∫ π
−π e

ikλ1eilλ2f(λ1, λ2)dλ1dλ2

= σ2
ε

4π2

∫ π
0

∫ π
−π e

i(kλ1+lλ2) 1
|1−e−iλ1 |2d1 |1−e−iλ2 |2d2

1
|ϕ(e−iλ1 ,e−iλ2 )|2 dλ1dλ2

= σ2ε
(−1)k+lΓ(1−2d1)Γ(1−2d2)

Γ(k−d1+1)Γ(1−k−d1)Γ(l−d2+1)Γ(1−l−d2)
,

or equivalently, taking into account the relationship |1 − e−iλ| = 2(1 − cosλ) = (2 sin(λ/2))2

showed above, we can re-write the autocovariance function as

γ(k, l) =
σ2ε
4π2

∫ π

0

∫ π

−π

1∣∣∣2 sin(λ1
2

)∣∣∣2d1 ∣∣∣2 sin(λ2
2

)∣∣∣2d2
1

|ϕ(cos(kλ1), cos(lλ2))|2
dλ1dλ2,

where k = 0, 1, 2, . . ., l = 0, 1, 2, . . . , and di ∈ (−1/2, 1/2), i = 1, 2.

Remark 14. We say that spatial process Yt1,t2 is a long-memory spatial autoregressive process

for di ∈ (−1/2, 1/2), i = 1, 2, if
∑∞

k=−∞
∑∞

l=−∞ |ρ(k, l)| = ∞.

Remark 15. The second-order process Yt1,t2 : t1, t2 ∈ Z} is said to be stationary when E(Yt1,t2) =

µ, for all (t1, t2) ∈ Z, and, for each (k, l) ∈ Z, Cov(Yt1,t2 , Yt1+k,t2+l) is independent of (t1, t2) ∈ Z.
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Remark 16. If di ∈ (−1/2, 1/2), i = 1, 2, then, the solution {Yt1,t2 : t1, t2 ∈ Z} is casual if and

only if ϕ(Z1, Z2) ̸= 0 for |Zi| ≤ 1, i = 1, 2.

Applying Sterling’s formula Γ(λi) =
√
2πe−λi+1(λi−1)λi− 1

2 , i = 1, 2, with λi −→ ∞ i = 1, 2,

then we can re-write Πj and Ψj as:

Πj ≃
j−d−1

Γ(−d)
, and Ψj ≃

jd−1

Γ(d)
, j → ∞,

and therefore, the autocorrelation function is defined as:

ρ(λ1, λ2) = λ2d1−1
1 λ2d2−1

2

Γ(d1 − 1)

Γ(d1)

Γ(d2 − 1)

Γ(d2)
, λi → ∞, di ̸= 0, i = 1, 2.

If we assume that sin(λ) ∼ λ with λi −→ 0 i = 1, 2, then we can write now the spectral

density as

f(λ1, λ2) ≃
σ2ε
4π2

1

λ2d11 λ2d22

, λi −→ 0, i = 1, 2, (A5.8)

which, for λi = 0, i = 1, 2, is finite if and only if d1 ≤ 0 and d2 ≤ 0.

A5.4 Gegenbauer white noise

In this section, Gegenbauer polynomials in two dimensions are considered to introduce long range

dependence in the spatial case (see, for example, Chung, 1996a; Gray, Zhang and Woodward,

1989; and Woodward, Cheng and Gray, 1998). Note that Gegenbauer polynomials constitute a

class of orthogonal polynomials, widely considered in applied mathematics, due to their proper-

ties of recursion and orthogonality.

Definition 9. Let d ̸= 0 and |Z| < 1; then, for |u| ≤ 1, we define the Gegenbauer polynomials

C
(d)
n (u) by

(
1− 2uZ + Z2

)−d
=

∞∑
n=0

C(d)
n (u)Zn, (A5.9)
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where C
(d)
n (u) can be expressed as

C(d)
n (u) =

[n/2]∑
k=0

(−1)k(d)n−k(2u)
n−2k

k!(n− 2k)!
, (A5.10)

with parameter (d)n being defined as (d)n = Γ(d+n)
Γ(d) .

Following Chung (1996a) and Gray, Zhang and Woodward (1989), to develop the Gegenbauer

model a more general fractional operator is needed. This operator is defined from equations

(A5.9) and (A5.10)). The easiest way to compute C
(d)
n (u) comes from the following recursion

formula:

C(d)
n (u) = 2u

(
d− 1

n
+ 1

)
C

(d)
n−1(u)−

(
2(d− 1)

n
+ 1

)
C

(2)
n−2(u),

where C
(d)
0 (u) = 1, C

(d)
1 (u) = 2du, C

(d)
2 (u) = 2d(d+ 1)u2. Also it is known that

C(d)
n (u) ∼

cos[(n+ d)ν − (d2π)]

Γ(d)sind(ν)

(
2

n

)1−d

,

as n −→ ∞, and ν = cos−1(u) = arcos(u). Let us consider Yt1,t2 , (t1, t2) ∈ Z2, be a process de-

fined on discrete space. Let us assume that its autocovariance function satisfies
∑+∞

k=−∞
∑+∞

l=−∞ |γk,l| =

∞. We consider the backward-shift operator defined as

∇d
u = (I − 2uB +B2)d = (1− 2 cos νB +B2)d = [(1− eiνB)(1− e−iνB)]d, (A5.11)

for u = cos ν, or ν = cos−1(u), and d ∈
(
−1

2 ,
1
2

)
. The following state equation is assumed to be

satisfied by Y, which is referred as spatial Gegenbauer white noise:

∇d1
u1

◦ ∇d2
u2
Yt1,t2 =

(
I − 2u1B1 +B2

1

)d1 ◦ (I − 2u2B2 +B2
2

)d2 Yt1,t2 = εt1,t2 , (t1, t2) ∈ Z2,

(A5.12)

where ∇di
ui
, i = 1, 2, is given in equation (A5.11), with Bi, for i = 1, 2, denoting the backward-

shift operators for each spatial coordinate, that is, B1Yt1,t2 = Yt1−1,t2 , and B2Yt1,t2 = Yt1,t2−1.

Here, εt1,t2 , (t1, t2) ∈ Z2 is assumed to be white noise process with zero-mean E[εt1,t2 ] = 0, and
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common variance E[εt1,t2 , εs1,s2 ] = σ2ε . From equation (A5.12), the spatial Gegenbauer process

can be defined in terms of the inverse of operator∇d1
u1
◦∇d2

u2
expanded in a Gegenbauer polynomial

series as follows:

Yt1,t2 = ∇−d2
u2

◦ ∇−d1
u1

εt1,t2 =
∞∑

n1=0

∞∑
n2=0

C(d1)
n1

(u1)C
(d2)
n2

(u2)B
n1
1 Bn2

2 εt1,t2

=

∞∑
n1=0

∞∑
n2=0

C(d1)
n1

(u1)C
(d2)
n2

(u2)εt1−n1,t2−n2 .

The spectral density of a Gegenbauer white noise (see Chung, 1996a, and Hsu and Tsai,

2009, for the one-parameter case) is given by

f(λ,θ) = σ2
ε

(2π)2

∣∣1− 2u1e
−iλ1 + e−2iλ1

∣∣−2d1
∣∣1− 2u2e

−iλ2 + e−2iλ2
∣∣−2d2

= σ2
ε

(2π)2
{|2 cosλ1 − 2u1|}−2d1 {|2 cosλ2 − 2u2|}−2d2 ,

where ui = cos νi, and −π ≤ λi ≤ π, i = 1, 2. From the spectral density function (A5.13), we

can compute the auto-covariance function values as follows:

γ(j1, j2) =

∫ π

−π

∫ π

−π
eij1λ1eij2λ2f(λ1, λ2)dλ1dλ2

=
σ2ε

(2
√
π)2

2∏
i=1

Γ(1− 2di)[2 sin(νi)]
1
2
−2d1

[
P

2di− 1
2

ji− 1
2

(ui) + (−1)jiP
2di− 1

2

ji− 1
2

(−ui)
]

(A5.13)

with P b
a(z) being the Legendre functions with initial values

P
2di− 1

2

− 1
2

(ui) =

(
1 + ui
1− ui

)di− 1
4 1

Γ(32 − 2di)

∞∑
n=1

Γ
(
3
2 − 2di

)
Γ
(
1
2 + n

)
Γ
(
1
2 + n

)
Γ
(
1
2

)
Γ
(
1
2

)
Γ
(
3
2 − 2di + n

)
Γ (n+ 1)

(
1− ui

2

)n

.

(A5.14)

P
2di− 1

2

− 1
2

(−ui) =
(
1 + ui
1− ui

)di− 1
4 1

Γ(32 − 2di)

∞∑
n=1

Γ
(
3
2 − 2di

)
Γ
(−1

2 + n
)
Γ
(
3
2 + n

)
Γ
(−1

2

)
Γ
(
3
2

)
Γ
(
3
2 − 2di + n

)
Γ (n+ 1)

(
1− ui

2

)n

.

(A5.15)

From Chung (1996a), Gray, Zhang and Woodward (1989) and Gradshteyn and Ryzhik (1980),

the following asymptotic approximation of the autocovariance function is obtained:

γ(j1, j2) =

2∏
i=1

21−diσ2ϵ
π

sin−2di(νi) sin(diπ)Γ(1− 2di) cos(jiνi)
Γ(ji + 2di)

Γ(ji + 1)
[1 +O(j−1

i )].
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Theorem 3. The following assertions hold:

1. A Gegenbauer white noise process is stationary

1.1 if |ui| < 1 and di < 1/2, i = 1, 2,

1.2 or if |ui| = 1, and di < 1/4, i = 1, 2.

2. A Gegenbauer white noise process is invertible

2.1 if |ui| < 1, and di > −1/2, i = 1, 2

2.2 or if |ui| = 1 and di > −1/4, i = 1, 2.

Proof

1 We started this show with stationarity of Gegenbauer process.

1.1 In this point, we consider that |ui| < 1. Then,

Cdi
ni
(ui) =

Γ(di +
1
2)Γ(2di + ni)

ni!Γ(2di)

(
1− u2i

4

) 1
4
− di

2

P
( 1
2
−di)

ni+di− 1
2

(ui), i = 1, 2,

where P β
α (u) is a Legendre given by the equation (A5.14) and (A5.15). Now, for fixed ui

and βi = 1/2 − di, and αi = ni + di − 1/2, the following asymptotic result holds, when

|ui| < 1, and i = 1, 2,

P βi
αi
(ui) =

2

π1/2
Γ(αi + βi + 1)

Γ(αi +
3
2)

cos
{
(αi +

1
2)ϕ− π

4 + βi
π
2

}
√
2 sinϕ

{
1 +O

(
1

αi

)}
,

where ϕ = cos−1(ui). Then, if we substitute αi and βi, P can be expressed as

P
( 1
2
−di)

ni+di− 1
2

(ui) = 2√
π

Γ((ni+di− 1
2
)+( 1

2
−di)+1)

Γ((ni+di− 1
2
)+ 3

2)
cos{((ni+di− 1

2
)+ 1

2)ϕ−
π
4
+( 1

2
−di)

π
2
}

√
2 sinϕ

{
1 + O

(ni+di− 1
2)

}
= 2√

π
Γ(ni+1)

Γ(ni+di+1)

cos{(ni+di)ϕ−di
π
2
}√

2 sinϕ

{
1 + O

(ni+di− 1
2)

}
, i = 1, 2.

Therefore with i = 1, 2,

C
(di)
ni (ui) = 2√

π

Γ(di+
1
2
)

Γ(ni+di+1)
Γ(2di+ni)
Γ(2di)

(
1−u2

i
4

) 1
4
− di

2 cos{(ni+di)ϕ−di
π
2
}√

2 sinϕ

{
1 + O

(ni+di− 1
2)

}
.
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Then by Sterling’s formula

C(di)
ni

(u) ≃ 2

π1/2
Γ(ni + 1)Γ(di +

1
2)

Γ(2di)

(
1− u2i

4

)1/4−di/2

cos ((ni + di)ϕ− diπ/2)n
di−1
i ,

(A5.16)

as ni −→ ∞. Now

γ(0) =

∞∑
k=0

{Cd
k(u)}2σ2ε . (A5.17)

However, from (A5.16), when |ui| < 1, i = 1, 2, the series in (A5.17) converges if di <
1
2 ,

i = 1, 2 which completes the proof for the case |ui| < 1, i = 1, 2.

1.2 The case ui = 1 was shown by Hosking (1981), and ui = −1 follows similarly with i = 1, 2.

2 Now, we prove the condition of invertibility for this type of processes.

2.1 From equation (A5.12), it can be seen that Yt1,t2 can be written in the form

Yt1,t2 = εt1,t2 −
∞∑
k=1

∞∑
l=1

C
(−di)
k,l (ui)Yt1−k,t2−l

if |ui| < 1 and di > −1
2 or if di > −1

4 when ui = ±1, and thus the result follows. �

Remark 17. A stationary Gegenbauer white noise process is long memory

• if 0 < di <
1
2 and |ui| < 1, i = 1, 2,

• or if 0 < di <
1
4 and |ui| = 1, i = 1, 2.

Theorem 4. Let Yt1,t2 be a stationary long-memory Gegenbauer process given as in equation

(A5.12), i.e.
(
I − 2u1B1 +B2

1

)d1 ◦ (I − 2u2B2 +B2
2

)d2 Yt1,t2 = εt1,t2 , (t1, t2) ∈ Z2.

• When ui = 1 and 0 < di <
1
4 , i = 1, 2, the autocorrelation function of Yt1,t2 is

ρ(k, l) =
Γ(1− 2d1)Γ(k + 2d1)

Γ(2d1)Γ(k − 2d1 + 1)

Γ(1− 2d2)Γ(l + 2d2)

Γ(2d2)Γ(l − 2d2 + 1)
,

As k → ∞ and l → ∞, then we re-write ρ(k, l) ≃ k4d1−1l4d2−1.
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• When ui = −1 and 0 < di <
1
4 , i = 1, 2, the autocorrelation function of Yt1,t2 is given by

ρ(k, l) = (−1)k+lΓ(1− 2d1)Γ(k + 2d1)

Γ(2d1)Γ(k − 2d1 + 1)

Γ(1− 2d2)Γ(l + 2d2)

Γ(2d2)Γ(l − 2d2 + 1)
,

As k → ∞ and l → ∞, then we re-write ρ(k, l) ≃ (−1)k+lk4d1−1l4d2−1.

• When |ui| < 1 and 0 < di <
1
2 , i = 1, 2, the autocorrelation function of Yt1,t2 is

ρ(k, l) ≃ k2d1−1l2d2−1 sin(πd1 − ku1) sin(πd2 − lu2),

as k → ∞, l → ∞, with u1 and u2 being the Gegenbauer spatial frequencies.

Proof

(i) Since the case ui = 1, with i = 1, 2, corresponds to the fractional process, the result has

been shown by Hosking (1981).

(ii) When ui = −1, with i = 1, 2, the Gegenbauer process becomes (1+B1)
2d1◦(1+B2)

2d2Yt1,t2 =

εt1,t2 , with (t1, t2) ∈ Z, i.e., Yt1,t2 =
(
(1 +B1)

−2d1 ◦ (1 +B2)
−2d2

)
εt1,t2 , with (t1, t2) ∈ Z.

The ψ weights in the general linear process form

Yt1,t2 =

∞∑
k=0

∞∑
l=0

ψ(k, l)εt1−k,t2−l

ψ(k, l) can be written as

ψ(k, l) = (−1)k+lΓ(k + 2d1)

k!Γ(2d1)

Γ(l + 2d2)

l!Γ(2d2)
= (−1)k+lη(k)η(l),

where η(k) and η(l) are the ψ weights found in Hosking (1981), in the case ui = 1, with

i = 1, 2, and the result follows from the proof provided in this paper about this identity.

(iii) The following lemma is needed for this proof (see Gray, Zhang and Woodward, 1989).

Lemma 1. Let R(τ) =
∫ π
0 P (ω) cos(τω)dω, with τ an integer. Let ω0 ∈ (0, π), and suppose

that P (ω) can be expressed as P (ω) = b(ω)|ω− ω0|−β, with 0 < β < 1/2. Further, suppose
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that b(ω) is nonnegative and of bounded variation in (0, ω0 − ε) ∪ (ω0 + ε, π), for ε > 0.

Suppose also that b(ω) is slowly varying at ω0. Then, when τ −→ ∞,

R(τ) ≃ τβ−1 sin

(
πβ

2
− τω0

){
b1

(
1

τ

)
+ b2

(
1

τ

)}
,

where b1(x) = b(x+ ω0) and b2(x) = b1(−x).

For the spatial Gegenbauer process with |ui| < 1, i = 1, 2, the spectrum is given by

f(λ1, λ2) = σ2ε
{
4(cos(λ1)− u1)

2
}−d1 {4(cos(λ2)− u2)

2
}−d2 .

Considering νi = cos−1(ui), i = 1, 2, we get

P (λ1, λ2) = σ2ε

{
2 sin2

(
λ1−ν1

2

)
sin2

(
λ1+ν1

2

)}−d1 {
2 sin2

(
λ2−ν2

2

)
sin2

(
λ2+ν2

2

)}−d2
.

Then, we can write P (λ1, λ2) =
∏2

i=1 |λi − νi|−2dib(λi), where, for i = 1, 2,

b(λi) = σ2ε2
−di

{
sin2

(
λi + νi

2

)}−di
([

sin((λi − νi)/2)

λi − νi

]2)−di

.

The rest of the proof follows from the fact that function b satisfies the conditions required

in Lemma 1. �

A5.5 Autoregressive Gegenbauer random fields

In the definition given in the previous section about spatial Gegenbauer processes, we now

incorporate the autoregressive part. That is, we consider the following model (see Chung,

1996a): For (t1, t2) ∈ Z2,

ϕ(B1, B2)(I − 2u1B1 +B2
1)

d1(I − 2u2B2 +B2
2)

d2(Yt1,t2 − µ) = εt1,t2 , (A5.18)

where εt1,t2 is white noise with zero-mean and variance σ2, and the operators B1 and B2 are the

spatial lag operators. As usual, the parameter µ denotes the mean of the process. As before,
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|ui| ≤ 1, |di| < 1/2, i = 1, 2. We pay special attention to the following particular cases of ϕ

polynomial:

Model 1: ϕ(B1, B2) = 1− αB1 − αB2 + αβB1B2, −1 ≤ α, β ≤ 1.

Model 2: ϕ(B1, B2) = 1− αB1 − βB2, |α|+ |β| < 1.

In the computation of the autocovariance function, we will focus on Model 2:

ϕ(B1, B2)(Yt1,t2 − µ) = εt1,t2 ,

where, as before, ϕ(B1, B2) = 1− αB1 − βB2.

We then can define our Gegenbauer autoregressive model with long memory in two-dimensions,

as the previous model (A5.18), considering the following two steps: First, the inverse of the au-

toregressive operator leads to the moving average representation of infinite order given by:

Yt1,t2 = µ+
∞∑
i=0

i∑
j=0

(
i
j

)
αiβi−jεt1−j,t2−i+j

= µ+
∑

(i,j)∈νt1,t2

(
t1 + t2 − i− j

t1 − i

)
αt1−iβt2−jεi,j , (A5.19)

where νt1,t2 = {(i, j) ∈ Z2, i ≤ t1, j ≤ t2}. After incorporation of the fractional order

operators, the inversion of the autoregressive part is first performed:

ϕ(B1, B2)∇d1
u1
∇d2

u2
(Yt1,t2 − µ) = εt1,t2

and

∇d1
u1
∇d2

u2
(Yt1,t2 − µ) = ϕ−1(B1, B2)εt1,t2

=
∑

(i,j)∈νt1,t2

(
t1 + t2 − i− j

t1 − i

)
αt1−iβt2−jεi,j . (A5.20)

The inversion of the fractional-order filter, in terms of Gegenbauer polynomials, then leads
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to the following expression:

Yt1,t2 = µ+∇−d1
u1

∇−d2
u2

∑
(i,j)∈νt1,t2

(
t1 + t2 − i− j

t1 − i

)
αt1−iβt2−jεi,j

= µ+
∑

(i,j)∈νt1,t2

(
t1 + t2 − i− j

t1 − i

)
αt1−iβt2−j∇−d1

u1
∇−d2

u2
εi,j

= µ+
∑

(i,j)∈νt1,t2

(
t1 + t2 − i− j

t1 − i

)
αt1−iβt2−j

∞∑
n1=0

∞∑
n2=0

C(d1)
n1

(u1)C
(d2)
n2

(u2)

×Bn1
1 Bn2

2 εt1,t2

= µ+
∑

(i,j)∈νt1,t2

(
t1 + t2 − i− j

t1 − i

)
αt1−iβt2−j

∞∑
n1=0

∞∑
n2=0

C(d1)
n1

(u1)C
(d2)
n2

(u2)

× εt1−n1,t2−n2 (A5.21)

If we assume µ = 0 in both models, the spectral density of the stationary solution is then

given by

f(λ1, λ2) =
σ2ε

(2π)2
1

|ϕ(eiλ1 , eiλ2)|2
fG(λ1, λ2),

where

fG(λ1, λ2) =
1

(2π)2
1

|2 cos (λ1 − u1) |2d1 |2 cos (λ2 − u2) |2d2
.

The autocovariance function is then obtained from the identity

γ(k, l) =

∫ π

−π

∫ π

−π
eikλ1eilλ2f(λ1, λ2)dλ1dλ2

= 4

∫ π

0

∫ π

0

σ2ε
4π2

cos(kλ1) cos(lλ2)

|ϕ(cos(λ1), cos(λ2))|2
1

|2 cos(λ1 − u1)|2d1 |2 cos(λ2 − u2)|2d2
dλ1dλ2.

Note that the autocovariance function can be approximated by

γ(k, l) ≃ A cos(kν1)k
2d1−1 cos(lν2)l

2d2−1,

when k → ∞ and l → ∞, with νi = cos−1(ui) ∈ [0, π], i = 1, 2, being the Gegenbauer frequency,

and A being a nonzero constant independent of k and l. In the range 0 < di < 1/2, i = 1, 2, we
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obtain the definition of a long memory process. The spectral density of the Gegenbauer process

takes its values around the Gegenbauer frequency νi, i = 1, 2,

f(λ1, λ2) ≃ |λ1 − ν1|−2d1 |λ2 − ν2|−2d2 ,

as λ1 → ∞, and λ2 → ∞. For 0 < di < 1/2, and νi = cos−1(ui) ∈ [0, π], i = 1, 2, the spectral

density is unbounded, as λ1 → ν1 and λ2 → ν2. The spectral density of the autoregressive

Gegenbauer process also admits the following expression in terms of the Gegenbauer frequency,

νi = cos−1(ui), i = 1, 2, given as above:

f(λ1, λ2) =
σ2ε

(2π)2

∣∣1− 2u1e
−iλ1 + e−2iλ1

∣∣−2d1

|ϕ(e−iλ1)|2

∣∣1− 2u2e
−iλ2 + e−2iλ2

∣∣−2d2

|ϕ(e−iλ2)|2

with 0 ≤ λ1 ≤ π and 0 ≤ λ2 ≤ π.

A5.6 Gegenbauer fields with multiple singularities

Inspired by the work of Gray, Zhang and Woodward (1989) and Woodward, Cheng and Gray

(1998), we establish the formulation of spatial Gegenbauer autoregressive models with multiple

singularities (GARMA models), in terms of k − 1 factors, as follows:

ϕ(B1, B2)

k−1∏
j=1

(
I − 2B1 cos(µ

j
1) +B2

1

)dj1 k−1∏
j=1

(
I − 2B2 cos(µ

j
2) +B2

2

)dj2
Yt1,t2 = εt1,t2 . (A5.22)

First, we consider the spatial k − 1 factor Gegenbauer process

Yt1,t2 =

k−1∏
j=1

(
I − 2B1 cos(µ

j
1) +B2

1

)−dj1
k−1∏
j=1

(
I − 2B2 cos(µ

j
2) +B2

2

)−dj2
εt1,t2

=
k−1∏
j=1

( ∞∑
i=0

C
dj1
1i (u1j)B

i
1

)( ∞∑
i=0

C
dj2
2i (u2j)B

i
2

)
εt1,t2

=

∞∑
m1=0

∞∑
m2=0

ψm1B
m1
1 ψm2B

m2
2 εt1,t2 . (A5.23)
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Model (A5.22) then has spectral density given by

fx(λ1, λ2) = σ2ε

∣∣∣ϕ(ei2πλ1 , ei2πλ2)
∣∣∣−2

∣∣∣∣∣∣
k−1∏
j=1

{1− 2uj1e
−i2πλ1 + ei4πλ1}−dj1

∣∣∣∣∣∣
2

×

∣∣∣∣∣∣
k−1∏
j=1

{1− 2uj2e
−i2πλ2 + ei4πλ2}−dj2

∣∣∣∣∣∣
2

= σ2ε

∣∣∣ϕ(ei2πλ1 , ei2πλ2)
∣∣∣−2

k−1∏
j=1

[
4{cos(2πλ1)− uj1}2

]−dj1

×
k−1∏
j=1

[
4{cos(2πλ2)− uj2}2

]−dj2 , (A5.24)

where νij =
cos−1(uij)

2π , with i = 1, 2, and j = 1, 2, . . . , k − 1.

Theorem 5. The spatial k − 1 factor Gegenbauer process is stationary if uj1 and uj2 do not

coincide, for j = 1, . . . , k − 1:

• dji <
1
2 , for |uji| ̸= 1, i = 1, 2, and j = 1, 2, . . . , k − 1.

• dji <
1
4 , for |uji| = 1, i = 1, 2, and j = 1, 2, . . . , k − 1.

Proof (see Woodward, Cheng and Gray, 1998, p. 502) In order to prove stationarity, we must

show that γ0,0 <∞, with

γ0,0 = 2σ2ε

∫ 1/2

0

∫ 1/2

0

k−1∏
j=1

[
4 {cos(2πλ1)− uj1}2

]−dj1 [
4 {cos(2πλ2)− uj2}2

]−dj2
dλ1dλ2.

(A5.25)

Note that the singularities in the integrand of equation (A5.25) occur at fji = (cos−1uji)/2π,

for j = 1, . . . , k − 1, i = 1, 2.

Case 1: k = 1. The stationary results for k = 1 are known, but we include the proof here

since the methodology of the proof can be easily generalized to the case k > 1. Define

Q(λ1, λ2) = 22{cos(2πλ1)− u1}{cos(2πλ2)− u2},
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i.e.,

P (λ1, λ2) = cQ−2d1
1 (λ1)Q

−2d2
2 (λ2) = Q−2(d1,d2)(λ1, λ2),

where c is a positive finite constant. We examine the singularity at fi = (cos−1 ui)/2π, i = 1, 2,

by examining the limit limε→0Q(f1 + ε, f2 + ε). Now,

Q(f1 + ε, f2 + ε) = 22 [cos {2π(f1 + ε)} − u1] [cos {2π(f2 + ε)} − u2]

= 22
2∏

i=1

[ui {cos(2πε)− 1} − sin(2πfi) sin(2πε)]

• For |ui| < 1, i = 1, 2, using the l’Hopital rule, it can be computed the following limit:

limε→0
Qi(fi + ε)

ε
−→ Ci, i = 1, 2,

where Ci, i = 1, 2, are finite nonzero constants. Thus, it follows that

limε→0

∣∣∣∣P (f1 + ε, f2 + ε)

ε−2d1−2d2

∣∣∣∣ −→ C,

where 0 < C <∞, i.e., |P (λ1, λ2)| ∼ |λ1 − f1|−2d1 |λ2 − f2|−2d2 , as |λi − fi| → 0, i = 1, 2.

Therefore, P (λ1, λ2) is well behaved at its singularity, i.e., as |λi − fi| → 0, i = 1, 2, it

behaves like
∏2

i=1 |λi−fi|−2di , which has a finite integral over the interval [0, 0.5]× [0, 0.5],

whenever 0 < di < 0.5, i = 1, 2.

• Considering |ui| = 1, i = 1, 2, it follows that

limε→0

∣∣∣∣P (f1 + ε, f2 + ε)

ε−4d1−4d2

∣∣∣∣ −→ K,

where 0 < K < ∞, i.e., |P (λ1, λ2)| ∼
∏2

i=1 |λi − fi|−4di , as |λi − fi| → 0, i = 1, 2. Thus,

the integral in (A5.25) is finite as long as 0 < di < 0.25.

Case 2: For k > 1, consider the singularity at fji, 1 ≤ j ≤ k−1, i = 1, 2. Define, for i = 1, 2,

and 1 ≤ j ≤ k − 1, Qi(fji) = 2{cos(2πfji)− uji}. Now limε→0Qi(fji + ε) = 2{cos(2πfji + ε)−
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uji} ̸= 0, and

limε→0

k−1∏
j=1

{
2∏

i=1

Q
−2dji
i (fji + ε)

}
<∞.

Thus, it follows that

|P (λ1, λ2)| ∼
k−1∏
j=1

2∏
i=1

|λi − fji|−2dji , or |P (λ1, λ2)| ∼
k−1∏
j=1

2∏
i=1

|λi − fji|−4dji ,

as |λi − fji| → 0, depending upon whether |uji| < 1, or |uji| = 1, for i = 1, 2, and 1 ≤ j ≤ k− 1,

respectively. The integrand in (A5.25) is then well behaved at each one of its singularities, and

the stationarity follows for Case 2, as in Case 1. �

Theorem 6. The k− 1 factor Gegenbauer process is long memory if the conditions of Theorem

5 are satisfied in terms of the ranges of dji considered, for i = 1, 2, j = 1, . . . , k − 1.

Proof The result follows directly from the definition of long memory and from the spectral

density given in the equation (A5.24). �

Similar to the case of fractional difference processes given by the Gegenbauer processes,

the k − 1 factor Gegenbauer processes in (A5.23) can also include autoregressive factors. The

following k − 1 factor Gegenbauer autoregressive process is then introduced:

ϕ(B1, B2)

k−1∏
j=1

(1− 2uj1B1 +B2
1)

dj1

k−1∏
j=1

(1− 2uj2B2 +B2
2)

dj2Yt1,t2 = εt1,t2 . (A5.26)

Theorem 7. Let {Yt1,t2} be a k−1 factor Gegenbauer autoregressive process. Then, the following

assertions hold:

• Yt1,t2 is stationary if all the roots of the equation of ϕ(z1, z2) = 0 lie outside the unit circle,

and dji and uji, j = 1, 2, . . . , k − 1, i = 1, 2, satisfy the conditions in Theorem 5.

• Yt1,t2 is stationary and long memory if all the roots of the equation ϕ(z1, z1) = 0 lie outside

the unit circle, and dji and uji, i = 1, 2, j = 1, 2, . . . , k−1, satisfy the conditions in Theorem

6.
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Proof

The proof is similar to the one for Hosking (1981) (Theorem 2). Equation (A5.22) can be

rewritten as Yt1,t2 = Ψ(B1, B2)εt1,t2 , where

Ψ(z1, z2) = ϕ−1(z1, z2)

k−1∏
j=1

(1− 2uj1z1 + z21)
−dj1

k−1∏
j=1

(1− 2uj2z2 + z22)
−dj2θ(z1, z2).

Thus, Ψ(z1, z2) is convergent for all |zi| ≤ 1, i = 1, 2, under the conditions assumed in this

theorem, since the conditions in Theorem 5 guarantee the convergence of the power expansion

of
∏k−1

j=1

∏2
i=1(1 − 2ujizi + z2i )

dji , for all |zi| ≤ 1, i = 1, 2, and ϕ−1(z1, z2) converges, for all

|zi| ≤ 1, i = 1, 2, when all the roots of equation ϕ(z1, z2) = 0 lie outside the unit circle.

The spectral density of the k − 1 factor GARMA is given by

P (λ1, λ2) = σ2ε

∣∣∣ϕ(ei2πλ1 , ei2πλ2)
∣∣∣−2

k−1∏
j=1

2∏
i=1

[4{cos(2πλi)− uji}]−2dji .

The proof of this part then follows directly from the above expression of the spectral density. �

Remark 18. Cheng, (1993) studied the k−1 factor model in which k = 3. Also, Hassler (1994)

considered the ”flexible” seasonal modelk−1∏
j=1

A
dj
j

Yt = at,

where the Aj, j = 1, 2, . . . , k − 1, are the irreducible factors of 1 − Bs, and proves stationary

results for this case. However, he does not prove these results for arbitrarily selected Gegenbauer

factors. Giraitis and Leipus, (1995) have used an approach different from ours to prove the

stationary and long-memory results in the setting considered here.

When |uji| < 1 and 0 < dji < 1/2, i = 1, 2, j = 1, 2, . . . , k − 1, then, the autocorrelation

function satisfies

ρ(k, l) ≃
k−1∏
j=1

k2dj1−1 cos(2πkuj1)

k−1∏
j=1

k2dj2−1 cos(2πluj2),
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as k → ∞ and l → ∞, where, as before, uji, i =, 1, 2, and j = 1, 2, . . . , k− 1 are the Gegenbauer

frequencies.

The autocovariance function {γk,l} of the k − 1 factor Gegenbauer process is defined as the

inverse Fourier transformation of its spectrum as usual

γ(k, l) = 2

∫ π

0

∫ π

0
f(λ1, λ2) cos(2πλ1k) cos(2πλ2l)dλ1λ2.

A5.7 Hilbert-valued spatial autoregressive Gegenbauer random
fields

This section introduces the class of Hilbert-valued autoregressive Gegenbauer random fields.

Specifically, we formulate the Hilbert-valued version of equation (A5.18). The moving average

Hilbertian representation of infinite order is also obtained under suitable conditions on the eigen-

values, that define the spectral decomposition of the infinite-dimensional parameters (operators)

involved in the autoregressive part of the formulated functional state equation, as well as on

the spectra of the operators defining the coefficients of the functional version of the fractional

operators. Let us consider H to be a separable Hilbert space, and let Yt1,t2 to be the solution

to the following functional state equation:

ϕ(B1, B2)(I − 2M1B1 +B2
1)

d1(I − 2M2B2 +B2
2)

d2(Yi,j −R) = ε(i, j), (A5.27)

where Mi, i = 1, 2, are bounded linear operators on H, R ∈ H denotes the functional mean,

and for all (i, j) ∈ Z2, Yi,j , ε(i, j) ∈ H, and B1 and B2 are the lag operators. Here, ε(i, j) is the

functional innovation process which is assumed to be strong-Hilbertian white noise, i.e.,

E[εi,j ⊗ εk,l] = δi,kδj,lRε,

with the autocovariance operator Rε ∈ S(H), the space of Hilbert-Schmidt operators on H.

Also,

ϕ(B1, B2) = 1− L1B1 − L2B2 − L3B1B2,
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where Li, i = 1, 2, 3, satisfy de conditions given in Proposition 3 of Ruiz-Medina (2011). Specif-

ically, they satisfy the following conditions:

C1. For i = 1, 2, 3, operator Li ∈ L(H) is assumed to admit a spectral decomposition in terms

of the eigenvalue sequence {λki, k ∈ N}, and the biorthonormal systems of left eigenvectors

{ψk, k ∈ N} and right eigenvectors {ϕk, k ∈ N}, defining dual Riesz bases of H and H∗,

and satisfying the following equations:

Li(ψk) = λkiψk, L∗
i (ϕk) = λkiϕk, k ∈ N, (A5.28)

where L∗
i denotes the adjoint of Li, for i = 1, 2, 3. Under (A5.28), for i = 1, 2, 3, Li admits

the following spectral representation

Li(g)(f) =
∑
k∈N

λkiψk(f)ϕk(g), ∀f, g ∈ H. (A5.29)

C2. |λki| < 1, for i = 1, 2, 3, k ∈ N.

C3.
(
1 + λ2k1 − λ2k2 − λ2k3

)2 − 4(λk1 + λk2λk3)
2 > 0

C4. 1− λ2k2 > |λk1 + λk2λk3|.

Similarly, we assume that operators Mi, i = 1, 2, satisfy the following equations:

Mi(χk) = ξkiχk, M∗
i (φk) = ξkiφk, k ∈ N, (A5.30)

where M∗
i denotes the adjoint of Mi, for i = 1, 2, and {ξki, k ∈ N} are the eigenvalues of Mi,

i = 1, 2. The eigenvector systems {χk, k ∈ N} and {ξki, k ∈ N} are bio-orthogonal. Under

(A5.30), for i = 1, 2, Mi then admits the corresponding spectral kernel representation

Mi(g)(f) =
∑
k∈N

ξkiχk(f)φk(g), ∀f, g ∈ H. (A5.31)

Theorem 8. Under conditions C1-C4, the following hold.
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(i) If supk |ξki| < 1, and di < 1/2, i = 1, 2, or if supk |ξki| = 1, and di < 1/4, i = 1, 2, the

Hilbert-valued process Yt1,t2 satisfying equation (A5.27) is stationary.

(ii) If supk |ξki| < 1, and di > −1/2, i = 1, 2, or if supk |ξki| = 1, and di > −1/4, i = 1, 2,

equation (A5.27) is invertible.

The proof of Theorem 8 follows from Proposition 4 of Ruiz-Medina (2011), and from Theorem

4.

Corollary 1. Under the conditions assumed in Theorem 8, and under the restrictions imposed

in this theorem to the spectra of Mi, i = 1, 2, as well as considering the ranges established in

such a theorem for di, i = 1, 2, equation (A5.27) admits a unique stationary solution given by

Yi,j −R = (I − 2M1B1 +B2
1)

−d1(I − 2M2B2 +B2
2)

−d2

×

[ ∞∑
k=0

∞∑
l=0

∞∑
r=0

(k + l + r)!

k!l!r!
Lk
1L

l
2L

r
3(εi−k−r,j−l−r)

]
.

=

∞∑
k=0

∞∑
l=0

∞∑
r=0

(k + l + r)!

k!l!r!
Lk
1L

l
2L

r
3(I − 2M1B1 +B2

1)
−d1

× (I − 2M2B2 +B2
2)

−d2(εi−k−r,j−l−r)

The proof follows straightforward from Proposition 4 of Ruiz-Medina (2011), keeping in mind

equation (A5.21), and Theorem 3.

A5.8 Discussion

Further research developments are required in relation to the parameter estimation problem, as

well as to the investigation of asymptotical properties, since these problems still remain open

in the spatial long-range dependence Gegenbauer case. In particular, the minimum contrast

estimation approach can be adopted to address the parameter estimation problem (see Anh,

Leonenko and Sakhno, 2004). In the Hilbert-valued context, the derivation of the autocorrelation
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operator, the functional spectrum, as well as the functional projection parameter estimators will

be also addressed in a subsequent paper, extending the functional estimation results obtained in

Ruiz-Medina, (2012a) for the spatial autoregressive Hilbertian case, as well as some asymptotic

results formulated in Bosq, (2000), for the temporal Hilbert-valued time series context.
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Functional time series analysis of
spatio-temporal epidemiological data

Ruiz-Medina, M. D., Espejo, R. M., Ugarte, M. D. and Militino, A.F. (2013).

Functional time series analysis of spatio-temporal epidemiological data.

Stochastic Environmental Research and Risk Assessment,

DOI: 10.1007/s00477-013-0794-y.

Abstract

Spatio-temporal statistical models have been proposed for the analysis of the temporal evolution of the geo-

graphical pattern of mortality (or incidence) risks in disease mapping. However, as far as we know, functional

approaches based on Hilbert-valued processes have not been used so far in this area. In this paper, the autoregres-

sive Hilbertian process framework is adopted to estimate the functional temporal evolution of mortality relative

risk maps. Specifically, the penalized functional estimation of log-relative risk maps is considered to smooth the

classical standardized mortality ratio (SMR). The Reproducing Kernel Hilbert Space (RKHS) norm is selected

for definition of the penalty term. This RKHS-based approach is combined with the Kalman filtering algorithm

for the spatio-temporal estimation of risk. Functional confidence intervals are also derived for detecting high risk

areas. The proposed methodology is illustrated analyzing breast cancer mortality data in the provinces of Spain

during the period 1975-2005. A simulation study is performed to compare the ARH(1) based estimation with the

199



200 Appendix 6

classical spatio-temporal Conditional Autoregressive approach.

A6.1 Introduction

Functional time series theory has become an active research area in the last two decades. A

complete treatment of the autoregressive Hilbertian process estimation, based on the method of

moments, considering projection into the eigenvector system of the autocovariance operator can

be found for example in Antoniadis, Paparoditis and Sapatinas, (2009), Bosq, (1996, 2000), Bosq

and Blanke, (2007), Damon and Guillas, (2005), and Soltani and Hashemi, (2011). Maximum-

likelihood estimation in the Gaussian context has been addressed in Salmerón and Ruiz-Medina,

(2009) and Ruiz-Medina and Salmerón, (2010). Wavelet-based projection for continuous time

prediction has been considered by Antoniadis and Sapatinas, (2003), and Laukaitis, (2007), in

the ARH(1) framework. Some contributions in the spatial functional time series context have

been recently derived in Ruiz-Medina, (2011, 2012a), and Ruiz-Medina and Espejo (2012).

Mortality (or incidence) risks are usually represented in maps summarizing the spatial or

spatio-temporal distribution of mortality patterns over a region. The statistical methodology

used in the epidemiological literature for estimating mortality risks is mainly based on extensions

of the well-known autoregressive model of Besag, York and Mollié (BYM) Besag, York and Molié,

(1991). Alternative Bayesian spatio-temporal models extending the BYM model are evaluated

by Ugarte et al. (2009b). P-spline models are also being used for smoothing risks in space-time

disease mapping (see for instance, Ugarte, Goicoa and Militino, 2010 and Ugarte et al., 2012). A

comparative study between spatial Conditional Autoregressive and P-spline modeling in disease

mapping is presented in Goicoa et al. (2012). A flexible local-EM kernel smoothing algorithm

is proposed in Nguyen, Brown and Stafford, (2012).

In a mathematical-probabilistic context, the spatio-temporal random field (S/TRF) model-

ing is proposed to integrate space and time in the construction of incidence maps (see Christakos,
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1992 and Christakos, Olea and Yu, 2007). A quantitative description of incidence variation in re-

lation to breast cancer analysis can be found in Christakos and Laf, (1997). The non-stationary

nature of incidence variation can be suitably represented by considering the S/TRF approach.

Prediction and extrapolation, or in general, estimation at any unsampled location and time can

also be performed. Another potentially interesting feature of S/TRF-ν/µ is its connection with

the theory of Stochastic Partial Differential Equations (SPDE), for modeling natural phenomena

(see Christakos and Raghu, 1996, pp. 361-362). Recently, Yu and Christakos, (2011) consid-

ers the more flexible framework of generalized spatio-temporal random fields, which avoids the

consideration of restrictive assumptions like linearity and normality. The functional approach

adopted in this paper shares the above-referred features, in particular, the connection with the

theory of SPDE (see Brown et al., 2000).

In this paper, ARH(1) processes are considered for the construction of dynamical spatial

epidemiological maps, capturing spatio-temporal interaction, and assuming a functional nature

of the log-risk magnitude in space. In this context, penalized functional estimation is achieved

following the approach given by Angelini, De Canditiis and Leblanc, (2003), based on the RKHS

norm for definition of the penalty term, and extending it to the Hilbert-valued random process

framework. The assumption that the autocorrelation operator is symmetric, and admits a spec-

tral decomposition in terms of the auto-covariance eigenvector system is considered (see Bosq,

2000). Projection is then performed into orthogonal bases of the RKHS generated by the kernel

of the auto-covariance operator of the ARH(1) process. The Kalman filtering algorithm is imple-

mented for estimation of the projected random effect involved in the definition of a solution to

the penalized functional estimation problem addressed (see Angelini, De Canditiis and Leblanc,

2003). In this implementation, moment-based estimates are considered for the autocorrelation

and Hilbert-valued innovation auto-covariance operators (see Bosq, 2000). Heterogeneous spa-

tial dependence modeling is achieved from the functional non-parametric framework adopted in
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the representation of the log-relative-risk values in space. Its performance is compared with the

classical Conditional Autoregressive (CAR) modeling.

As mentioned in Ugarte, Goicoa and Militino, (2010), the problem of detecting areas with

high risks is also crucial to discover possible inequalities in health among regions and then, to

implement appropriate health policies concerning allocation of health funds. To detect raised-

risk areas in a spatio-temporal context, functional confidence intervals are constructed from

the computation of the ARH(1) plug-in estimator and the posterior projection estimate of its

covariance operator, obtained in the Kalman filtering recursion.

The rest of this paper is organized as follows. In Section 2, the Gaussian Hilbertian approxi-

mation to our observation model is derived. Section 3 describes the estimation methodology. In

Section 4, the approach presented is illustrated using breast cancer mortality data from Spain.

In Section 5, a simulation study is conducted to compare the CAR and ARH(1) frameworks in

terms of bias and error of the relative risk estimates. Section 6 provides final comments and

some open research lines.

A6.2 The model

The following assumptions are considered (see, for example, Ugarte, Goicoa and Militino, 2009a).

The region under study is divided into l contiguous small areas, labelled by i = 1, . . . , l. Con-

ditional on the relative risk values ri,t at each area i and time t, t = 1, . . . , T , the variables

providing the observed number of cases Ci,t at such area i and time t are assumed to be inde-

pendent Poisson random variables with means µi,t = ei,tri,t. i = 1, . . . , l, and t = 1, . . . , T. Cases

represent deaths or disease incidences, and ei,t is the expected number of cases in area i at time

t. Hence,

log(µi,t) = log(ei,t) + log(ri,t), i = 1, . . . , l, t = 1, . . . , T.
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Furthermore, in the subsequent development, we assume that

log(ri,t) = β(i) + ui,t = β(i) + ut(i)

with β(·) representing a spatial functional fixed effect, and {ut(·), t ∈ Z} being a zero-mean

Gaussian ARH(1) process satisfying the state equation (A6.9) introduced in the Appendix. The

observation model considered is then derived as follows

Zi,t = log

(
Ci,t

ei,t

)
= log (Ci,t)− log(ei,t) = log(µi,t) +

Ci,t − µi,t
µi,t

− log(ei,t)

= β(i) + ut(i) +
Ci,t − µi,t

µi,t
∼ β(i) + ut(i) + εi,t, i = 1, . . . , l, t = 1, . . . T,

(A6.1)

where we have used the normal approximation to the Poisson distribution. Specifically, {εi,t, i =

1, . . . , l, t = 1, . . . , T} is a spatio-temporal Gaussian white noise, with εi,t having variance 1/µi,t,

for i = 1, . . . , l, and t = 1, . . . , T. Also, the needed conditions for interpretation of the underlying

spatio-temporal white noise {εi,t = εt(i) = ε(xi, t), xi ∈ D ⊆ R2, t ∈ Z} as a Hilbert-valued

white noise in the strong sense in time {εt(·) ∈ H, t ∈ R+} are also assumed (see, for example,

Bosq, 2000). In the subsequent development we work under the usual assumption that ut and εt

are independent, for t = 1, . . . , T. Our observation model (A6.1) can be rewritten in a Hilbert-

valued framework as

Zt(i) = β(i) + ut(i) + εt(i), i = 1, . . . , l, t = 1, . . . T, (A6.2)

where β, Zt, ut, εt ∈ H, for t = 1, . . . T, H = L2(D), D ⊂ R2. The index i refers to specific

spatial coordinates xi = (xi1, xi2) ∈ D associated with the i region studied, for i = 1, . . . , l.

Note that we are assuming that the support of the spatial functions in H includes the locations

xi = (xi1, xi2), i = 1, . . . , l, whose coordinates define the centroid associated with each one of

the small areas studied.
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Remark 19. Under the conditions assumed here for the interpretation of a spatio-temporal pro-

cess as a temporal Hilbert-valued process (see, for example, Bosq, 2000), the approach presented

in Wikle and Cressie, (1999), can be interpreted within the ARH(1) framework, considering the

special case where operator A introduced in (A6.9) (see Appendix) is an integral operator with

kernel given by the interaction function defined in Wikle and Cressie, (1999), and denoted as w.

A6.3 Penalized ARH(1)-based estimation

Let us consider the functional observation model (A6.2). Following the approach presented

in Angelini, De Canditiis and Leblanc, (2003), the penalized least-squares estimation problem

can be solved in a non-parametric mixed-effect framework, by projection into an orthonormal

eigenvector system generating the Reproducing Kernel Hilbert Space (RKHS) of the Gaussian

random effect. Thus, the norm of the RKHS of the random effect is selected for the definition

of the penalty term. In our ARH(1) context, the following extended functional formulation of

the minimization problem associated with the approach adopted in Angelini, De Canditiis and

Leblanc, (2003) is considered:

min
F (·)∈H(Z)

1

T

T∑
t=1

∥β(·) + ut(·)− F (Z1, . . . , Zt)∥2H0(Z) + γ∥ΦH1(Z) (F (Z1, . . . , Zt)) ∥2H1(Z), (A6.3)

where H(Z) denotes the RKHS generated by the kernel KZ of the auto-covariance operator

RZ
0 = E[(Zt − β) ⊗ (Zt − β)] = E[(Z1 − β) ⊗ (Z1 − β)], for t = 1, . . . , T (see Appendix). It

is well-known (see, for example, Bosq, 2000), that H(Z) can be isometrically identified with

the closed subspace H(Z) of L2
H(Ω,A, P ) generated by the zero-mean Gaussian Hilbert-valued

random variables Zt−β, t = 1, . . . , T, and their limits in the mean-square sense, where (Ω,A, P )

denotes, as usual, the basic probability space (see Appendix). Thus, H(Z) ≡ H(Z). The inner

product ⟨·, ·⟩H(Z) in H(Z) is defined from the closed bilinear form generated by operator [RZ
0 ]

−1,
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the inverse operator of RZ
0 , that is,

⟨f, g⟩H(Z) = [RZ
0 ]

−1(f)(g), ∀f, g ∈ H(Z). (A6.4)

In equation (A6.3), F is an operator from the Hilbert space [H(Z)]⊗T ≡ [H(Z)]⊗T into

H(Z), where [H]⊗T denotes the T th self-tensorial product of the Hilbert space H. In addition,

we have considered the following decomposition

KZ = K0
Z +K1

Z

generating the direct sum

H(Z) = H0(Z)⊕H1(Z),

where functions in H0(Z) are considered for the approximation of β, and the functions in H1(Z)

for the approximation of the small-scale local variation of Z, i.e., the roughness displayed by

the functional values of Z (see Angelini, De Canditiis and Leblanc, 2003). The parameter

γ is the smoothing parameter taking values in the interval [0, 1]. Note that, when γ = 0, the

solution to the minimization problem (A6.3) will approximate the functional values of β+ut, t =

1, . . . , T, minimizing bias, in terms of an element of H(Z) having a huge norm in H1(Z) (i.e., the

corresponding estimator will displays high local variability). When γ = 1, the solution to (A6.3)

will provide a coarser approximation to the functional values β + ut, t = 1, . . . , T, but ΦH1(Z)F

will have small norm in the space H1(Z) (low small-scale local variability). The solution to the

minimization problem (A6.3) is computed from projection into the auto-covariance eigenvector

system {ϕi, i ≥ 1} , under the following assumption, also considered in Bosq, (2000).

A.1 A is symmetric, thus, Ψ = Φ and A = ΦΛ(A)Φ∗, with Ru
0 = E[ut ⊗ ut] = ΦΛ(Ru

0)Φ
∗, for

every t ∈ Z (see Appendix). Here, Λ(A) and Λ(Ru
0) denote the diagonal operators respectively

containing the eigenvalues of A and Ru
0 .

Note that condition A.1 allows the computation of the solution to (A6.3) in terms of the

common eigenvector system {ϕi, i ∈ N} of A and Ru
0 (see Ruiz-Medina and Salmerón, 2010).
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Specifically, a finite-dimensional approximation to the forward Kalman filtering equations is

implemented in terms of the projection into a finite set of eigenvectors {ϕi, i = 1, . . . ,M}

as given in Ruiz-Medina and Salmerón, 2010 (see Appendix). In this finite-dimensional ap-

proximation, the M eigenvectors selected correspond to the M highest eigenvalues. Hence,

{ϕi, i = 1, . . . ,M} generate the space H1(Z), and {ϕM+1, . . . ϕM+k, . . . } generate the space

H0(Z). The non-parametric kernel-based estimation of β is then obtained from the estimation

of its coefficients with respect to {ϕM+1, . . . ϕM+L}, as given in Angelini, De Canditiis and

Leblanc, (2003), for certain L defining the coarsest level. In the real-data example analyzed in

the next section, a local polynomial kernel wavelet-based estimator K̂0
Z (for high-dimensional

data) is computed for approximation of K0
Z (see, for example Rincón and Ruiz-Medina, 2012a,

Appendix A.1).

Following the approach presented in Angelini, De Canditiis and Leblanc, (2003), γ can be

chosen such that Tγ = σ2/b, with σ2 = E∥εt∥2H and b = E∥ut∥2H , for all t ∈ Z, since ε and u are

H-valued stationary processes. In the next section, we compute γ = σ2/Tb by cross validation.

For each time t = 1, . . . , T, equation (A6.16) below (see Appendix) provides a finite-dimensional

approximation ΦMPt|tΦ
∗
M of the a-posteriori covariance operator of the computed functional

estimator, whose trace provides its a-posteriori functional variance. Indeed, for each time

t = 1, . . . , T, its diagonal elements are estimates of the variance of the predictor at each spatial

location analyzed, for such a time t. In the Gaussian case considered, from equations (A6.15) and

(A6.16) below (see Appendix), the following finite-dimensional functional confidence intervals

can then be computed for the ARH(1) process u :[
ΦM â(t|t) + Zα/2diag

(
[ΦMPt|tΦ

∗
M ]1/2

)
,ΦM â(t|t) + Z1−α/2diag

(
[ΦMPt|tΦ

∗
M ]1/2

)]
, (A6.5)

for t = 1, . . . , T, where Zα/2 and Z1−α/2 denote the corresponding percentile values of the

standard normal distribution, and diag(B1/2) denotes the diagonal matrix defined by the square

root of the entries at the diagonal of the finite-dimensional operator B.
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An approximation P̂t|t to Pt|t can be computed from the projection estimates (A6.18) given

in the Appendix. Considering the asymptotic properties of such projection estimates (A6.18)

(see, for example, Bosq, 2009), the following plug-in finite-dimensional approximation of the

functional confidence intervals for H-valued process u is computed[
ΦM â(t|t) + Zα/2diag

(
[ΦM P̂t|tΦ

∗
M ]1/2

)
,ΦM â(t|t) + Z1−α/2diag

(
[ΦM P̂t|tΦ

∗
M ]1/2

)]
, (A6.6)

for each t = 1, . . . , T. For the estimation of H-valued process Yt(·) = β(·) + ut(·), the following

intervals are then considered:[
ΦM â(t|t) + β̂ + Zα/2ŜE(ΦM , P̂t|t),ΦM â(t|t) + β̂ + Z1−α/2ŜE(ΦM , P̂t|t)

]
, (A6.7)

where ŜE(ΦM , P̂t|t) = diag
(
[ΦM P̂t|tΦ

∗
M ]1/2

)
, for t = 1, . . . , T.

Remark 20. Note that in the above-described estimation procedure, kernel K0
Z allows the refer-

ence to specific spatial locations in the estimation of the functional parameter β. Furthermore,

in the Kalman filtering recursion (see Appendix), the composition with the projection operator

ΦM by the left-hand side also allows to locate in space the functional estimation of the random

effect ut. Specifically, in the Kalman filtering recursion, the diagonal auto-covariance operator

of the Gaussian observation noise Rεt , appearing in the definition of the innovation or resid-

ual covariance operator
(
TγRεt +ΦMPt|t−1Φ

∗
M

)
, involves the reference to the mean number of

cases at each region, for every time t (year) analyzed. Namely, for every function f ∈ H, with

f(z) =
∑∞

k=1 fkϕk(z), where fk = ⟨f, ϕk⟩H , k ≥ 1, with respect to the orthogonal eigenvector

system {ϕk, k ≥ 1} (see Appendix), operator Rεt can be approximated, for a given truncation

level M, as follows

Rεt(f)(z) =

M∑
k=1

αkϕk(z), αk =

l∑
i=1

1

µi,t
fkϕk(xi), k = 1, . . . ,M,

where, as before, xi = (xi1, xi2) denotes the spatial coordinates of the centroid associated with

the i-region, for i = 1, . . . , l,, µi,t = ei,tri,t, i = 1, . . . , l, and t = 1, . . . , T .
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Figure A6.1: Averaged 5- fold CV functional standard error estimates for γ ∈ [0.3, 1), with
discretization step size 0.05.
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A6.4 Illustration

An application of the proposed penalized ARH(1)-based estimation methodology to the analysis

of breast cancer mortality data is now presented. Specifically, breast cancer mortality data are

collected from 50 Spanish provinces during the period 1975-2005. The observed relative risk over

each region is computed as the observed number of cases divided by the number of expected

cases. Expected cases are calculated standardizing by age and using Spain as the reference

population. From the 31 breast cancer mortality log-relative-risk maps observed (one per year),

the first one is considered as a realization of the functional random initial condition, and the

remaining 30 maps constitute the original functional sample. The 50 provinces are randomly

partitioned into 5 subsamples of the same size. As usual, at each iteration of the 5-fold cross

validation (5- fold CV) procedure applied, a single subsample is retained for validation, i.e., for

implementation of equations (A6.15)-(A6.17) through the 30 years analyzed. The remaining

subsamples are considered for fitting the ARH(1) model, i.e., for computing the moment-based

estimates (A6.18), from the sample constituted by the 30 maps of the training provinces. In the

validation, at each one of the five rounds of the 5- fold CV, an estimation

[
diag

(
[Φ̂M P̂1|1Φ̂

∗
M ]1/2

)
, . . . , diag

(
[Φ̂M P̂31|31Φ̂

∗
M ]1/2

)]
(A6.8)
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of the functional vector
[
diag

(
[ΦMP1|1Φ

∗
M ]1/2

)
, . . . , diag

(
[ΦMP31|31Φ

∗
M ]1/2

)]
is computed, by

applying the Kalman filtering recursion from the validation sample, considering the associated

empirical eigenvector system {ϕ̂1, . . . , ϕ̂M} with M = 29. These estimates are averaged over

the five rounds. The parameter γ selected corresponds to the value γ = 0.55, which provides

the minimum L∞ norm of the averaged 5-fold CV functional standard error vector estimate,

computed from (A6.8) at each round.

Figure A6.1 shows the exponential of the averaged components over the five rounds of (A6.8)

represented with respect to the values of γ tested, which correspond to a partition of the interval

(0, 1) with discretization step size 0.05. For γ < 0.3, numerical inversion problems appear in the

computation of the gain operators Kt, t = 1, . . . , T, when the truncation order M = 29 is

considered. This is the reason why Figure A6.1 displays the results obtained for γ ≥ 0.3.

The resulting penalized functional projection estimation of the breast cancer mortality rel-

ative risk maps is first analyzed, regarding the approximation it provides in relation to the

geographical distribution of mortality risks. For illustration purposes, Figure A6.2 only displays

the breast cancer mortality relative risk maps for the period 1996-2005. This period shows a

decreasing mortality risk trend. It can be appreciated that the functional non-parametric fit-

ting of the spatial dependence structure displayed by log-relative risks, in term of the ARH(1)

framework, is more flexible allowing a higher order of local heterogeneity in the evolution of

maps. During the last recuperation period analyzed, it seems that the penalized ARH(1) frame-

work detects high risk areas more accurately than the CAR approach (see Figures A6.2-A6.3).

Summarizing, the penalized ARH(1) framework seems to provide an interpolation between the

singular spatial local variation of the observed log-relative risks, and the spatial local smoothing

provided by the CAR model.

Confidence intervals for the relative risk values are constructed by applying the exponential

function to the lower and upper confidence bounds in (A6.7). For a maximum amplitude of
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Figure A6.2: Standardized mortality ratio maps (top figure) and functional estimated breast
cancer mortality risk maps based on the ARH(1) approach (bottom figure)

such intervals of order 0.2, the value 1 − α = 0.8696 is selected in their construction. As we

said before, the estimation of spatial function β is based on a local polynomial kernel wavelet-

based approximation of K0
Z , obtained from the wavelet transform of Epanechnikov kernel (see
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Figure A6.3: Relative risk estimates using a spatio-temporal CAR model

Appendix A.1 of Rincón and Ruiz-Medina, 2012a, for its computation, as well as Müller, 1987,

Wu and Zhang, 2006). To detect high risk areas, curves providing lower and upper confidence

bounds at each province in the period analyzed are constructed, by considering the corresponding

time-cross-sections in the sequence of lower and upper confidence bounds associated with the

functional interval sequence (A6.7). A region is classified as a raised-risk area if the lower

confidence bound of the interval is greater than 1 (see, for example, Ugarte, Goicoa and Militino,

2009a). Following this procedure, the estimated breast cancer relative risk curves, and the

corresponding confidence intervals, for 1 − α = 0.8696, are displayed in Figures A6.4, for some

Spanish provinces since 1976. It can be observed that the penalized ARH(1) estimates of relative

risk curves at each Spanish province display a higher degree of local singularity than the ones

obtained with the CAR model. Edge effects must be corrected in some provinces considering, for

example, suitable wavelet bases. Again, the penalized ARH(1) temporal smoothing interpolates

the local variability displayed by the observed relative risks and the CAR estimates.
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Figure A6.4: SMR (blue line), ARH(1) estimated risks (red line) and confidence bounds for
relative risks at some provinces in Spain over the period 1975-2005

A6.5 Simulation study

A simulation study has been conducted to compare the proposed penalized functional estimation

methodology with a spatio-temporal CAR model (see Section 2.2 in Ugarte, Goicoa and Militino,

2010) in terms of bias and error of the relative risk estimates. CAR and ARH(1) models are

considered as data scenarios in the 100 simulations performed for this comparison. CAR model

is firstly generated in terms of the neighborhood structure, expected values, and parameter

values obtained from the analysis of the Spanish breast cancer mortality data. Both models,

the CAR and the ARH(1) model, are then fitted to the generated data. The integrated nested

Laplace approximation technique was used to fit the CAR model, because it is computationally

very fast and stable (see Rue, Martino and Chopin, 2009). Secondly, data are generated under

an ARH(1) model with functional innovations displaying weak-dependence in time, and having
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spatial integral auto-covariance operator constructed from a Gamma-type kernel (see Ruiz-

Medina and Salmerón, 2010). The non-parametric estimate β̂(·) of β(·) derived in the analysis

of the Spanish breast cancer mortality data is considered in the generation of the log-relative

risk values. Risk estimates are then computed applying both, CAR and ARH(1), estimation

methodologies.

Let rjit be the jth-simulated risk of breast cancer death (j = 1, . . . , J) by small area i

(i = 1, . . . , I) in year t (t = 1, . . . , T ), and r̂ijt its corresponding estimate. We first define the

Mean Relative Bias and the Relative Root Mean Prediction Error as follows

MARBit =
1

J

J∑
j=1

(
r̂jit − rjit

rjit

)
, RRMPEit =

√√√√ 1

J

J∑
j=1

(
r̂jit − rjit

rjit

)2

.

The mean relative absolute bias and mean relative root mean prediction error by provinces

are computed averaging the previous indicators by years. Namely

MARBi =
1

T

T∑
t=1

|MARBit| , MRRMPEi =
1

T

T∑
t=1

RRMEPit.

We finally compute the Mean Relative Absolute Bias (MARB) and the Mean Relative Root

Mean Prediction Error (MRRMPE) as global measures

MARB =
1

I

I∑
i=1

MARBi, MRRMPE =
1

I

I∑
i=1

MRRMPEi.

Results obtained from the simulation study are given in Tables A6.1 and A6.3. When the

ARH(1) risk generation is considered, better results are obtained from the ARH(1)-based esti-

mation than from the CAR-based estimation in most of the provinces, in terms of both relative

bias and error. In addition, the ARH(1) approach slightly outperforms the CAR approach in

terms of the Mean Relative Root Mean Prediction Square Error when simulating from the CAR

model. Small differences in favor of the CAR model are observed when using the MARB as
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a global measure of bias. Indeed, precision, measured in terms of the Mean Relative Absolute

Bias, could be improved in the ARH(1) estimates obtained from the CAR-based simulations

by replacing the auto-covariance eigenvectors generating the space H0 by suitable wavelet bases

(see, for example, Angelini, De Canditiis and Leblanc, 2003). This improvement should be re-

flected in a better approximation of the spatial functional parameter β(·) in equation (A6.1).

However, it should be noted that the selected auto-covariance eigenvector system is optimal in

the approximation of the local variability of the process, that is, in the construction of the space

H1, whose norm is related to the inverse of the operator associated with the kernel K1
Z . This

fact allows us to control the mean-square variability of the estimator, and, in particular, the

Mean Relative Root Mean Prediction Error through the smoothing parameter γ in equation

(A6.3). Indeed, the model selection problem associated with this parameter could be solved

adopting some information criteria (see, for example, Araki et al., 2009; Kawano and Konishi,

2009; Rincón Ruiz-Medina, 2012b, among others). Alternatively, this parameter could be ap-

proximated from the estimation of the functional variance of the ARH(1) process ut, and of the

Gaussian innovation process νt involved in the ARH(1) state equation (A6.9) (see Angelini, De

Canditiis and Leblanc, 2003). These topics will be addressed in a subsequent paper.

Tesis Doctoral Rosa M. Espejo Montes



Appendix 6 215

Table A6.1: Average of the Mean Relative Absolute Bias by province (MARBi) and Mean
Relative Absolute Bias (MARB) obtained with two sets of 100 simulations from the CAR and
ARH(1) models respectively

Cod Prov CAR-based simulations ARH(1)-based simulations
CAR est ARH(1) est CAR est ARH(1) est

1 Alava 0.029 0.012 0.054 0.014
2 Albacete 0.045 0.009 0.042 0.009
3 Alicante 0.038 0.007 0.013 0.007
4 Almeŕıa 0.057 0.138 0.031 0.040

5 Ávila 0.034 0.261 0.065 0.071
6 Badajoz 0.045 0.007 0.025 0.012
7 Balears (Illes) 0.073 0.006 0.017 0.012
8 Barcelona 0.039 0.006 0.005 0.001
9 Burgos 0.032 0.024 0.035 0.042
10 Cáceres 0.056 0.009 0.031 0.011
11 Cádiz 0.050 0.009 0.019 0.004
12 Castellon 0.037 0.008 0.028 0.005
13 Ciudad Real 0.041 0.066 0.029 0.009
14 Córdoba 0.039 0.010 0.024 0.006
15 Coruña (A) 0.046 0.008 0.011 0.011
16 Cuenca 0.043 0.017 0.051 0.010
17 Girona 0.068 0.005 0.023 0.005
18 Granada 0.039 0.011 0.022 0.023
19 Guadalajara 0.026 0.030 0.081 0.007
20 Guipúzcoa 0.038 0.032 0.027 0.024
21 Huelva 0.049 0.018 0.031 0.008
22 Huesca 0.036 0.019 0.056 0.024
23 Jaén 0.044 0.007 0.025 0.005
24 León 0.032 0.012 0.027 0.008
25 Lleida 0.048 0.196 0.034 0.005
26 Rioja (La) 0.039 0.033 0.050 0.008
27 Lugo 0.046 0.675 0.029 0.006
28 Madrid 0.035 0.004 0.006 0.004
29 Málaga 0.046 0.017 0.020 0.003
30 Murcia 0.040 0.014 0.018 0.008
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Table A6.2: (continue)

Cod Prov CAR-based simulations ARH(1)-based simulations
CAR est ARH(1) est CAR est ARH(1) est

31 Navarra 0.044 0.011 0.027 0.014
32 Ourense 0.032 0.012 0.030 0.006
33 Asturias 0.046 0.004 0.012 0.006
34 Palencia 0.044 0.022 0.062 0.007
35 Palmas (Las) 0.036 0.010 0.035 0.004
36 Pontevedra 0.041 0.282 0.017 0.018
37 Salamanca 0.037 0.030 0.032 0.008
38 SC Tenerife 0.042 0.007 0.030 0.014
39 Cantabria 0.044 0.009 0.026 0.020
40 Segovia 0.034 0.034 0.068 0.007
41 Sevilla 0.041 0.004 0.017 0.011
42 Soria 0.041 0.016 0.110 0.014
43 Tarragona 0.044 0.007 0.026 0.005
44 Teruel 0.034 0.024 0.075 0.007
45 Toledo 0.039 0.019 0.029 0.008
46 Valencia 0.041 0.006 0.010 0.004
47 Valladolid 0.036 0.030 0.034 0.007
48 Vizcaya 0.030 0.009 0.016 0.004
49 Zamora 0.043 0.027 0.050 0.015
50 Zaragoza 0.040 0.021 0.023 0.008

MARB 0.042 0.045 0.033 0.012
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Table A6.3: Average of the Mean Relative Root Mean Prediction Square Error by province
(MRRMPEi) and Mean Relative Root Mean Prediction Error (MRRMPE) obtained with two
sets of 100 simulations from the CAR and ARH(1) models respectively.

Cod Prov CAR-based simulations ARH(1)-based simulations
CAR est ARH est CAR est ARH est

1 Alava 0.256 0.116 0.242 0.095
2 Albacete 0.260 0.102 0.192 0.055
3 Alicante 0.295 0.068 0.075 0.044
4 Almeŕıa 0.329 1.384 0.132 0.375

5 Ávila 0.255 0.261 0.299 0.668
6 Badajoz 0.279 0.075 0.135 0.091
7 Balears (Illes) 0.396 0.066 0.078 0.094
8 Barcelona 0.286 0.055 0.029 0.006
9 Burgos 0.231 0.257 0.184 0.388
10 Cáceres 0.317 0.101 0.146 0.081
11 Cádiz 0.282 0.091 0.097 0.025
12 Castellon 0.269 0.086 0.136 0.026
13 Ciudad Real 0.255 0.675 0.147 0.061
14 Córdoba 0.270 0.089 0.123 0.030
15 Coruña (A) 0.287 0.081 0.052 0.094
16 Cuenca 0.248 0.178 0.231 0.070
17 Girona 0.380 0.064 0.110 0.020
18 Granada 0.274 0.111 0.125 0.202
19 Guadalajara 0.230 0.324 0.311 0.039
20 Guipúzcoa 0.285 0.321 0.111 0.210
21 Huelva 0.262 0.195 0.148 0.042
22 Huesca 0.240 0.208 0.218 0.196
23 Jaén 0.265 0.078 0.123 0.031
24 León 0.238 0.126 0.138 0.043
25 Lleida 0.288 0.199 0.170 0.025
26 Rioja (La) 0.253 0.434 0.220 0.051
27 Lugo 0.274 0.676 0.153 0.035
28 Madrid 0.245 0.044 0.034 0.029
29 Málaga 0.264 0.173 0.103 0.017
30 Murcia 0.285 0.151 0.098 0.054
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Table A6.4: (continue)

Cod Prov CAR-based simulations ARH(1)-based simulations
CAR est ARH est CAR est ARH est

31 Navarra 0.270 0.126 0.141 0.097
32 Ourense 0.263 0.147 0.147 0.030
33 Asturias 0.293 0.045 0.066 0.041
34 Palencia 0.290 0.230 0.272 0.035
35 Palmas (Las) 0.255 0.104 0.199 0.019
36 Pontevedra 0.277 0.282 0.088 0.159
37 Salamanca 0.249 0.294 0.149 0.049
38 SC Tenerife 0.284 0.074 0.171 0.107
39 Cantabria 0.269 0.095 0.127 0.154
40 Segovia 0.251 0.342 0.276 0.038
41 Sevilla 0.262 0.048 0.097 0.096
42 Soria 0.256 0.235 0.517 0.094
43 Tarragona 0.274 0.084 0.138 0.027
44 Teruel 0.249 0.230 0.302 0.032
45 Toledo 0.255 0.226 0.146 0.056
46 Valencia 0.270 0.065 0.058 0.030
47 Valladolid 0.243 0.325 0.164 0.044
48 Vizcaya 0.258 0.089 0.081 0.018
49 Zamora 0.277 0.257 0.213 0.111
50 Zaragoza 0.258 0.248 0.118 0.050

MRRMPE 0.272 0.207 0.157 0.090
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A6.6 Final Comments

The penalized ARH(1) estimation approach presented in this paper allows the global estimation

of mortality risk maps in disease mapping, displaying weak-dependence in time. The results

derived here show that the temporal directional nature of breast cancer data, and the spatial

local variability of the associated mortality log-risk can be suitably fitted under the functional

statistical approach presented here. It can be appreciated that the amount of smoothing pro-

vided by the penalized ARH(1) projection estimation method interpolates the SMR variation

and the CAR smoothing. The empirical orthogonal eigenfunction bases are selected for pro-

jection. They reproduce the spatial heterogeneous local variability properties displayed by the

functions in H1(Z) (see, for example, Ruiz-Medina and Espejo, 2012). However, some edge

effects are observed in some provinces that could be removed by the selection of alternative

bases, like suitable compactly supported wavelet bases (see, for example, Ruiz-Medina and Es-

pejo, 2013a). The methodology given in this paper could be also extended to the framework

of missing data following the approach derived in Ruiz-Medina and Salmerón, (2010), based on

the combination of EM algorithm with forward and backward Kalman filtering. But, for this

extension, the moment-based parameter estimation considered here must be replaced by the

maximum likelihood approach.

The simulation study conducted in this article supports the fact that the considered func-

tional penalized ARH(1) estimation methodology permits a suitable control of the spatial local

variability of the log-risk values allowing for spatial heterogeneities. Additionally, the autoregres-

sive dynamics of order one assumed in time seems to fit the temporal evolution and correlation of

mortality risk maps accurately, as it occurs in the classical conditional autoregressive scenario.

However, we have to note that further research is needed with regard to the selection prob-

lem associated with the functional basis, the truncation order, and the smoothing parameter γ.

Regarding the truncation order, a first criterion considered here has been the percentage of ex-
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plained empirical variability computed in terms of the approximated trace of the auto-covariance

operator of the ARH(1) process. However, the truncation criterion could change depending on

the characteristics of the orthogonal basis chosen for projection (see, for example, Ruiz-Medina

and Espejo, 2012, 2013a). In relation to the smoothing parameter, although it has been selected

in the illustration by cross-validation, alternative approaches could be adopted based on estima-

tion of the functional components of variance (see, for example, Ugarte, Goicoa and Militino,

2010) or on the application of information criteria (see Araki et al., 2009; Kawano and Konishi,

2009; Rincón and Ruiz-Medina, 2012b, among others). Some improvements could be achieved

by including an additional term for penalization of the spatial random variability, allowing its

localization by provinces. All these aspects will be pursued in a subsequent paper.

Appendix. Autoregressive Hilbertian processes of order one

Let us consider H to be a separable Hilbert space. The random Hilbert-valued sequence {Yt, t ∈

Z} defined on the basic probability space (Ω,A, P ) is said to be an ARH(1) process if it satisfies

(see Bosq, 2000)

Xt = Yt − µ = A (Xt−1) + νt, t ∈ Z, (A6.9)

where µ ∈ H, and Yt, Xt, νt ∈ H. The zero-mean H-valued process ν can be a martingale

difference sequence or a Hilbertian white noise in the strong sense. The autocovariance operator

of the Hilbert-valued innovation process ν will be denoted as Rν = E[νt ⊗ νt], for t ∈ Z. Here,

⊗ represents the tensorial product f ⊗ g of two functions f and g in H, which defines a Hilbert-

Schmidt operator on this space. The autocorrelation operator A belongs to L(H), the space

of bounded linear operators on H. In the following, we will refer to the spatial case, where H

is constituted by functions having spatial support contained in a bounded set D ⊆ Rn. Note

that, in the referred spatial case, the autocorrelation operator A reflects the spatio-temporal

interaction.
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Operator A can be a non-symmetric compact operator satisfying

Aψi = λi(A)ψi, i ∈ N,

and

A∗ϕi = λi(A∗)ϕi, i ∈ N,

where λi(A∗) = λi(A), with A∗ denoting the adjoint operator of A, and {ψi, i ∈ N} and

{ϕi, i ∈ N} being the left and right eigenvector systems associated with A and A∗, respectively

(see Ruiz-Medina and Salmerón, 2010 and Salmerón and Ruiz-Medina, 2009). By projection

into the right eigenvector system, we obtain a diagonal infinite-dimensional version of the au-

toregressive equation (A6.9), given by

aj(t) = λj(A)aj(t− 1) + νj(t), j ∈ N, t ∈ Z, (A6.10)

where

aj(t) = ⟨Xt(·), ϕj(·)⟩H , j ∈ N, t ∈ Z, (A6.11)

and

νj(t) = ⟨νt(·), ϕj(·)⟩H , j ∈ N, t ∈ Z.

The second-order structure of the H-valued process {Xt = Yt(x)−µ, t ∈ Z} is characterized

in terms of the auto-covariance and cross-covariance operators

R0 = RXtXt = E [Xt ⊗Xt] , t ∈ Z, (A6.12)

R1 = RXt+1Xt = E [Xt+1 ⊗Xt] , t ∈ Z, (A6.13)

which, from the observation of the functional random variables X1, . . . , XT , can be respectively

approximated in terms of the following empirical covariance operators
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R̂0 =
1

T

T∑
t=1

Xt ⊗Xt

R̂1 =
1

T − 1

T−1∑
t=1

Xt+1 ⊗Xt. (A6.14)

As derived in Ruiz-Medina and Salmerón, (2010), from equation (A6.10), for a given trunca-

tion level M , the following finite-dimensional approximation to the Kalman filtering equations

in an ARH(1) framework is obtained by applying the projection operator Φ∗
M into the finite-

dimensional eigenvector system {ϕi, i = 1, . . . ,M}

â(t|t) = â(t|t− 1) +Kt (Zt −ΦM â(t|t− 1)) , t = 1, . . . , T, (A6.15)

where

â(t|t) = E (a(t)|Zt, . . . , Z1)

is the updated (a posteriori) projection estimate of the random coefficients a1(t), . . . , aM (t) at

time t as given in (A6.11) and

â(t|t− 1) = E (a(t)|Zt−1, . . . , Z1)

is the corresponding projection predictor (a priori) estimate, previously computed for time t.

Here, Kt is the optimal Kalman gain operator

Kt = Pt|t−1Φ
∗
M

(
TγRεt +ΦMPt|t−1Φ

∗
M

)−1
,

defined from the innovation (or residual) covariance operator
(
TγRεt +ΦMPt|t−1Φ

∗
M

)
, in terms

of the predicted (a priori) projection estimate of the covariance operator

Pt|t−1 = Cov (a(t)|Zt−1, . . . , Z1) = Λ(A)Pt−1|t−1Λ(A) +Q.
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Here, Rεt denotes the auto-covariance operator of the observation noise εt. The projected auto-

covariance operator Q of the functional innovations process ν is given by

Q = Φ∗
MRνΦM .

The updated (a posteriori) projection estimate of the covariance operator is computed as follows

Pt|t = E ((a(t)− â(t|t)) (a(t)− â(t|t))∗)

= Pt|t−1 −KtΦMPt|t−1. (A6.16)

Therefore, the one-step-ahead (a priori) projection predictor is obtained from

â(t|t− 1) = Λ(A)â(t− 1|t− 1). (A6.17)

The initial values considered are

â(0|0) = 0, P0|0 = E (a(0)a(0)∗) ,

where a(0) = Φ∗
MZ0.

In the implementation of the above Kalman filtering equations, the following moment-based

parameter estimates Q̂ and Â of operators Φ∗
MRνΦM and A, respectively, have been considered

(see Bosq, 2000)

Q̂ = Φ∗
M R̂νΦM = Φ∗

M R̂0ΦM −Φ∗
M R̂1ΦM Λ̂− Λ̂Φ∗

M R̂1ΦM + Λ̂Φ∗
M R̂0ΦM Λ̂

Â = R̂1R̂
−1
0 , Λ̂(A) = Φ∗

M ÂΦM , (A6.18)

where R̂0 and R̂1 are defined as in equation (A6.14).
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Maximum-likelihood asymptotic
inference for autoregressive
Hilbertian process

Ruiz-Medina, M. D. and Espejo, R. M. (2013b).

Maximum-Likelihood Asymptotic Inference for Autoregressive Hilbertian Processes.

Methodology and Computing Applied Probability,

DOI: 10.1007/s11009-013-9329-8.

Abstract

The autoregressive Hilbertian process framework has been introduced in Bosq (2000). This book provides the

nonparametric estimation of the autocorrelation and covariance operators of the autoregressive Hilbertian pro-

cesses. The asymptotic properties of these estimators are also provided. The maximum likelihood approach still

remains unexplored. This paper obtains the asymptotic distribution of the maximum likelihood (ML) estimators

of the auto-covariance operator of the Hilbert-valued innovation process, and of the autocorrelation operator of a

Gaussian autoregressive Hilbertian process of order one. A real data example is analyzed in the financial context

for illustration of the performance of the projection maximum likelihood estimation methodology in the context

of missing data.

225



226 Appendix 7

A7.1 Introduction

Recent contributions in the context of functional linear models are derived, for example, in

Basse, Diop and Dabo-Niang (2008); Bosq (2000); Bosq and Blanke (2007); Ferraty and Vieu

(2006); Guillas and Lai (2010); Ramsay and Silverman (2005); Ruiz-Medina (2011, 2012a),

among others.

In the functional time series framework, the papers by Ruiz-Medina and Salmerón (2010,

2011) and Salmerón and Ruiz-Medina (2009) provide the maximum likelihood estimation of

autoregressive Hilbertian processes of order one (ARH(1)processes) from incomplete functional

data, by implementation of the forward and backward Kalman filtering methodology in combina-

tion with the Expectation-Maximization (EM) algorithm in terms of projections. The numerical

projection methodology applied is based on the spectral decomposition of the autocorrelation

operator, under the assumption of its compactness, in terms of the left and right eigenvector

systems. In addition, Ruiz-Medina and Salmerón (2011) implement the SEM algorithm for the

approximation of the asymptotic variance of the computed ML projection parameter estimators,

from incomplete ARH(1) data. Note that this estimation methodology provides an extension,

allowing the incorporation of interaction between different subjects, of the classical approaches

to handling missing data in longitudinal data analysis (see, for example, Aalen and Gunnes,

2010, on reconstruction of missing longitudinal data considering the linear increment model,

and Nakai and Ke, 2011, on a review on longitudinal data analysis with missing data). Re-

cently, the spatial autoregressive Hilbertian processes of order one (SARH(1) processes) have

been introduced in Ruiz-Medina (2011). The non-parametric estimation of the operators in-

volved in the SARH(1) state equation has been derived in Ruiz-Medina (2012a). The extension

of the presented ML-based parameter estimation approach to this context will constitute the

topic of a subsequent paper.

In this paper, the asymptotic distribution of the maximum likelihood estimators of the auto-
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covariance operator of the Hilbert-valued innovation process, and of the autocorrelation operator

of a Gaussian ARH(1) process is derived, under suitable conditions. An invariance principle for

the Robbins-Monro process in a Hilbert space is applied (see Walk, 1977). Recent results on

Lp-m-approximability, derived by Hörmann and Kokoszka (2010), are also considered in the

application of this invariance principle. The illustration of the performance of the maximum

likelihood projection estimation methodology in the ARH(1) framework, from incomplete func-

tional data, is achieved in terms of a real-data example in the financial context. Specifically, the

indebtedness of 638 Spanish companies in the period 1999-2007 is estimated by combination of

the forward and backward Kalman filtering with the EM algorithm, in terms of projections.

The outline of the paper is the following. Section A7.2 provides the preliminary elements and

results used in the derivation of the Central Limit Theorem of this paper: the theory of ARH(1)

processes, the invariance principle applied, as well as some results on Lp-m-approximability by

Hörmann and Kokoszka (2010). The weak-sense formulation of the functional log-likelihood of

the Gaussian ARH(1) innovation process is established from the theory of Gaussian measures

on Hilbert spaces, as described in Section A7.6. The derivation of the asymptotic distribution

of the ML parameter estimators in the ARH(1) framework can be found in Section A7.7. The

computation algorithm for ML projection estimation from missing data, proposed in Ruiz-

Medina and Salmerón (2010), is described in Section A7.8. The performance of this algorithm

is illustrated with a real-data example, where functional estimation of indebtedness is achieved

from the analysis of a panel of 638 small Spanish companies in the period 1999-2007.

A7.2 Preliminaries

The ARH(1) process definition, and key preliminary results applied in the derivation of Theorem

10 below are now introduced.
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A7.3 The ARH(1) model

The ARH(1) processes satisfy the following functional state equation (see Bosq, 2000):

Zt = Yt(·)− µ(·) = A (Zt−1) (·) + νt(·), t ∈ Z, (A7.1)

where µ, Yt, νt ∈ H, t ∈ Z. The innovation process ν is assumed to be a zero-mean H-valued

martingale difference process, or a zero-mean strong Hilbertian white noise. Here, H is a separa-

ble Hilbert space. The auto-covariance operator of the Hilbert-valued innovation process will be

denoted as Rν = E[νt ⊗ νt], t ∈ Z. The infinite-dimensional parameter A is the autocorrelation

operator, which is assumed to belong to the space L(H) of bounded linear operators on H (see

Bosq, 2000). Since Rν belongs to the class of Hilbert-Schmidt operators on H, our functional

parameter space where the vector of unknown operators (A, Rν) lies is L(H)×S(H), with S(H)

denoting the space of Hilbert-Schmidt operators on H.

Remark 21. In Section A7.8, in the implementation of the proposed Maximum Likelihood

Estimation algorithm, initialization is achieved by considering H-valued random variables un-

correlated with the innovation process ν. Also, it is assumed that the effect of these random initial

conditions is negligible at times where observations are available.

A7.4 Invariance principle and Lp-m-approximation

The following invariance principle for the Robbins-Monro process in a Hilbert space (see Walk,

1977) is applied in the derivation of the main result in the next section.

Lemma 2. Let {Vn}n∈N be a martingale difference sequence of H-valued random variables with

E∥Vn∥2 <∞. Let further R : H −→ H be a trace operator, and let Rn be the covariance operator

of Vn given V1, . . . , Vn−1 (n ∈ N). Suppose

E

∥∥∥∥∥∥ 1n
n∑

j=1

Rj −R

∥∥∥∥∥∥ −→ 0, n −→ ∞,
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1

n

n∑
j=1

E ∥Vj∥2 −→ trace(R), n −→ ∞,

and, for any r > 0,

1

n

n∑
j=1

E
(
∥Vj∥2χ{∥Vj∥2 ≥ rj}|V1, . . . , Vj−1

)
−→
P

0, (n −→ ∞).

Then, the H-valued series Sn = 1√
n

∑n
j=1 Vj converges in distribution to a Gaussian H-valued

random variable with zero-mean and covariance operator R, as n −→ ∞.

In the verification of the conditions assumed in the above lemma on the conditional covariance

operator of the martingale difference sequence, the following definition and results on Lp-m-

approximation will be applied (see Hörmann and Kokoszka, 2010).

Definition 10. A Hilbert-valued sequence on the probability space (Ω,A, P ) is said to be Lp-m-

approximable if each element Xn of the sequence admits the following representation:

Xn = f(εn, εn−1, . . . ),

where εi are S−valued (possibly S = H) and f is a measurable function f : S∞ −→ H. Assume

also that, for each n, a copy {ε(n)i } independent of {εi} is available on the same probabilistic

space (Ω,A, P ). Then, we have

X(m)
n = f(εn, εn−1, . . . , εn−m+1, ε

(n)
n−m, ε

(n)
n−m−1, . . . )

∞∑
m=1

(
E∥Xm −X(m)

m ∥p
)1/p

<∞.

Process {X(m)
n , n ∈ Z} is stationary, and Xn =

d
X

(m)
n , which is m-dependent, i.e., for every k,

F−
k and F+

k+m are independent, with

F−
k = σ{. . . X(m)

k−2, X
(m)
k−1, X

(m)
k }, and F+

k = σ{X(m)
k , X

(m)
k+1, X

(m)
k+2 . . . }.
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Lemma 3. Let {Zn} be a zero-mean ARH(1) sequence satisfying:

(i) A ∈ L(H)

(ii) ∥A∥L(H) < 1

(iii) εn is a zero-mean L2
H innovation process

(iv) [E∥ε0∥p]1/p <∞, p ≥ 2.

Then, the sequence {Zn} is Lp-m-approximable

Lemma 4. Let {Xn} ⊂ L4
H be L4-m-approximable with auto-covariance operator C. Then,

there exists a constant UX <∞, which does not depend on N, such that

NE∥ĈN − C∥2S(H) ≤ UX ,

where, as before, S(H) is the Hilbert space of Hilbert-Schmidt operators on H. Note that if Xn

has zero mean, then, it can be considered

UX = E∥X∥4 + 4
√
2[E∥X∥4]3/4

∞∑
r=1

[E∥Xr −X(r)
r ∥4]1/4.

Here, ĈN denotes the empirical auto-covariance operator of {Xn} given by ĈN = 1
N

∑N
i=1 Zi⊗Zi,

with Zi = Xi − E[Xi], i = 1, . . . , N.

A7.5 Asymptotic normality of ML parameter estimators

This section provides the asymptotic Gaussian distribution of the maximum likelihood estimator

of the auto-covariance operator Rν of the innovation process ν, under suitable conditions. The

ML estimator of the autocorrelation operator A is then derived as a function of the ML estimator

R̂ν of Rν , and its asymptotic distribution as well.
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A7.6 Gaussian measures on Hilbert spaces

Let us first consider some fundamental definitions and elements from the theory of Gaussian mea-

sures on Hilbert spaces (see, for example, Da Prato and Zabczyk, 2002, Chapter 1). In the follow-

ing, we adopt Da Prato and Zabczyk’s (2002) notation for Gaussian measures. Specifically, for

the real-valued case, the Gaussian measure with mean a and variance zero is formally represented

as Na,0(dx) = δa(dx), with δa being the Dirac measure at a. Moreover, for the case of positive

variance λ, the corresponding gaussian measure is denoted as Na,λ(dx) =
1√
2πλ

exp
(
−(x−a)2

2λ

)
dx,

with characteristic function N̂a,λ(h) =
∫
R exp (ihx)Na,λ(dx) = exp

(
iah− 1

2λh
2
)
, for h ∈ R.

In the Hilbert-valued context, for a given non-negative symmetric operator Q on H in the

trace class, i.e., Q ∈ L+
1 (H), with H, as before, being a separable Hilbert space, and for a

function a ∈ H, we will denote as Na,Q the measure on H satisfying

N̂a,Q(h) =

∫
H
exp (ihx)Na,Q(dx) = exp

(
i ⟨a, h⟩H − 1

2
⟨Qh, h⟩H

)
, h ∈ H. (A7.2)

Let us now consider B(H) to be the σ-algebra of all Borel subsets of H, and the identification

x ∈ H −→ γ(x) = (xk) ∈ l2, where xk = ⟨x, ek⟩H , k ≥ 1, are the projections of function x ∈ H

into the eigenvectors ek, k ≥ 1, of Q, satisfying Qek = λk(Q)ek, k ≥ 1, which constitute a

complete orthonormal system in H. The cylindrical subsets of H can be defined via such an

identification as I = {x ∈ H : Pnx = (x1 . . . xn) ∈ B} , where B ∈ B(Rn), with B(Rn) being the

σ-algebra of all Borel subsets of Rn. It can be easily proved that the σ-algebra generated by all

cylindrical subsets of H coincides with B(H).

Theorem 9. Let a ∈ H, and Q ∈ L+
1 (H), then, there exists a unique probability measure µ on

(H,B(H)) such that∫
H
exp ⟨h, x⟩H µ(dx) = exp

(
i ⟨a, h⟩H − 1

2
⟨Qh, h⟩H

)
, h ∈ H.

Moreover µ is the restriction to H (identified with l2) of the product measure
∏∞

k=1 µk =
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k=1Nak,λk(Q), defined on (R∞,B(R∞)), with ak = ⟨a, ek⟩H , Qek = λk(Q)ek, for k ≥ 1. Thus,

µ = Na,Q, and for a ≡ 0, µ = NQ.

A7.7 Central limit theorem

Assume now that ν, the zero-mean Gaussian H-valued innovation process, have trace auto-

covariance operator Rν ∈ L+
1 (H), from Theorem 9, there exists a unique probability measure

NRν on (H,B(H)) such that NRν =
∏∞

k=1N0,λk(Rν), with Rνek = λk (Rν) ek, k ≥ 1. Thus,

formally, the functional log-likelihood associated with ν admits the following expression, with

respect to the Gaussian measure NRν on the Hilbert space H : For νt ∼ exp(Θ), with t ∈ Z

fixed, and with Θ = Rν ∈ S(H), denoting by ν ∈ H the values of νt,

log f(ν|Rν) = log

( ∞∏
k=1

1√
2πλk (Rν)

)
−

∞∑
k=1

ν2k
2λk (Rν)

= log

(∣∣∣∣ 1√
2π
R−1/2

ν

∣∣∣∣)− 1

2
R−1

ν (ν)(ν)

= log

(∣∣∣∣ 1√
2π
R−1/2

ν

∣∣∣∣)− 1

2
⟨ν ⊗ ν, φ(Rν)⟩S(H) , (A7.3)

where νk = ⟨ν, ϕk⟩H , k ≥ 1, and, for an operator C on H, |C| =
∏∞

k=1 λk(C). Here, as before,

λn (Rν) , n ≥ 1, denote the eigenvalues of operator Rν , and φ(Rν) = R−1
ν . From now on, we

will denote by Φ∗ the projection operator into the eigenvector system {ϕk}k≥1, i.e., Φ∗x =

γ(x) = (xk) ∈ l2. Note that in the case where R−1
ν is bounded on a dense subspace H1 of

H
∑∞

k=1
x2
k

2λk
< ∞, for all x ∈ H1. In particular, H1 can be generated from {ϕk, k ≥ 1}. In

general, equation (A7.3) must be understood in the weak-sense, i.e., in the sense of tempered

distributions, as the inverse Fourier transform of its characteristic functional (A7.2), given, in

this case, by

N̂0,Rν (h) = exp

(
−1

2
⟨Rνh, h⟩H

)
= exp

(
−1

2

∞∑
k=1

λk(Rν)h
2
k

)
<∞,
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for k ≥ 1, with hk = ⟨h, ϕk⟩H , in view of the Cauchy—Schwarz inequality, since
∑∞

k=1 λk(Rν) <

∞, by the trace property of Rν , and
∑∞

k=1 h
2
k = ∥h∥2H <∞, by Parseval identity, since h ∈ H.

Remark 22. In the case where νt, t ≥ 0, are independent, equation (A7.3) leads to the following

formal expression, understood in the weak sense:

log f(ν|ν1, . . . , νT , Rν) = T log

(∣∣∣∣ 1√
2π
R−1/2

ν

∣∣∣∣)− T

2
R−1

ν (ν)(ν)

= T log

(∣∣∣∣ 1√
2π
R−1/2

ν

∣∣∣∣)− T

2
⟨ν ⊗ ν, φ(Rν)⟩S(H) .

Theorem 10. Let Z be a zero-mean Gaussian ARH(1) process, satisfying the conditions as-

sumed in Lemma 3 with p = 4, and with {νt⊗νt}t∈N, being an S(H)-valued martingale difference

sequence. When T −→ ∞, suppose that

1

T − 1

T∑
t=2

∥∥E [diag(Φ∗(νt−1)⊗ Φ∗(νt−1))
⊗4
]∥∥

l1(N4)
−→ 0,

where f⊗4 denotes the 4th self-tensorial product of f. Furthermore, ν is assumed to admit the

following factorization: νt = g(νt−1)Xt, where Xt ∈ H are i.i.d. zero-mean H-valued Gaussian

random variables with finite functional variance E∥Xt∥2 <∞. In this factorization, Xt is inde-

pendent of νt−1, . . . , ν1, for all t > 0, and, for a certain orthonormal basis {ϕk}k∈N∗ of H, the

random operator g(νt−1)⊗ g(νt−1)⊗ g(νt−1)⊗ g(νt−1) admits the representation:

g(νt−1)⊗ g(νt−1)⊗ g(νt−1)⊗ g(νt−1)

=

∑
k,l,p,q νt−1(ϕk)νt−1(ϕl)νt−1(ϕp)νt−1(ϕq)[ϕk ⊗ ϕl ⊗ ϕp ⊗ ϕq]∑

k E[Xt(ϕk)]4[ϕk ⊗ ϕk ⊗ ϕk ⊗ ϕk]
,

in the space L1(S(H⊗H)) of absolute integrable S(H⊗H)-valued random variables with respect

to the corresponding probability measure. Here, S(H ⊗ H) denotes, as before, the space of

Hilbert-Schmidt operators on H ⊗H. Then,

√
T
(
Θ̂−Θ

)
−→
d
Y ∼ N (0,RTν ) , T → ∞,
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where, as before, Θ = Rν , Θ̂ = R̂ν = 1
T

∑T
i=1 νi ⊗ νi, and RTν is the covariance operator of the

sufficient statistics Tν = ν ⊗ ν.

Proof In the verification of the conditions assumed in Lemma 2, consider the S(H)-valued

martingale difference sequence {Vn = Tn(ν) = νn⊗νn}n∈N. The conditional covariance operator

of the sequence is computed as follows:

E[νt ⊗ νt ⊗ νt ⊗ νt|νt−1 ⊗ νt−1 . . . ν1 ⊗ ν1]

= E[g(νt−1)Xt ⊗ g(νt−1)Xt ⊗ g(νt−1)Xt ⊗ g(νt−1)Xt|νt−1 ⊗ νt−1 . . . ν1 ⊗ ν1]

=
∑

k,l,p,q,m,r,u,v

[ϕk ⊗ ϕl ⊗ ϕp ⊗ ϕq][ϕm ⊗ ϕr ⊗ ϕu ⊗ ϕv]

×E [g(νt−1)(ϕk)g(νt−1)(ϕl)g(νt−1)(ϕp)g(νt−1)(ϕq)

× Xt(ϕm)Xt(ϕr)Xt(ϕu)Xt(ϕv)|νt−1 ⊗ νt−1 . . . ν1 ⊗ ν1]

=
∑
k,l,p,q

g(νt−1)(ϕk)g(νt−1)(ϕl)g(νt−1)(ϕp)g(νt−1)(ϕq)[ϕk ⊗ ϕl ⊗ ϕp ⊗ ϕq]

×
∑

m,r,u,v

E[Xt(ϕm)Xt(ϕr)Xt(ϕu)Xt(ϕv)][ϕm ⊗ ϕr ⊗ ϕu ⊗ ϕv]

= g(νt−1)⊗ g(νt−1)⊗ g(νt−1)⊗ g(νt−1)

×
∑

m,r,u,v

[δm,rδu,v + δm,uδr,v + δm,vδr,u] [ϕm ⊗ ϕr ⊗ ϕu ⊗ ϕv]

=

∑
k,l,p,q νt−1(ϕk)νt−1(ϕl)νt−1(ϕp)νt−1(ϕq)[ϕk ⊗ ϕl ⊗ ϕp ⊗ ϕq]∑

pE[Xt(ϕp)]4[ϕp ⊗ ϕp ⊗ ϕp ⊗ ϕp]

×
∑
p

E[Xt(ϕp)]
4[ϕp ⊗ ϕp ⊗ ϕp ⊗ ϕp] = νt−1 ⊗ νt−1 ⊗ νt−1 ⊗ νt−1.

Furthermore, from the above equation,

1

T

T+1∑
t=2

E[νt ⊗ νt ⊗ νt ⊗ νt|νt−1 ⊗ νt−1 . . . ν1 ⊗ ν1] =
1

T

T+1∑
t=2

νt−1 ⊗ νt−1 ⊗ νt−1 ⊗ νt−1 =
1

T

T∑
t=1

Rt.

Considering Lemma 2.1 of Hörmann and Kokoszka (2010), νt = Zt − AZt−1 is Lp-m-

approximable. Furthermore, Zt ⊗ Zt is an ARS(H)(1) process (see Bosq, 2000), then, from

Lemma 3, is Lp-m-approximable, in particular, with p = 4. Therefore, applying again Lemma 2.1
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of Hörmann and Kokoszka (2010), νt⊗νt = Zt⊗Zt−AZt−1⊗AZt−1 is also L
p-m-approximable,

and for p = 4, we obtain from Lemma 4, the convergence to zero, as T → ∞, of

E

∥∥∥∥∥ 1T
T∑
t=1

Rt −RTν

∥∥∥∥∥
S(H⊗H)

= E

∥∥∥∥∥ 1T
T∑
t=1

νt ⊗ νt ⊗ νt ⊗ νt − E[νt ⊗ νt ⊗ νt ⊗ νt]

∥∥∥∥∥
S(H⊗H)

.

Hence, 1
T

∑T
t=1E ∥νt ⊗ νt∥2 −→ trace(E[νt ⊗ νt ⊗ νt ⊗ νt]), when T −→ ∞.

Finally, the convergence to zero, as T −→ ∞, of

1

T − 1

T∑
t=2

∥∥E [diag(Φ∗(νt−1)⊗ Φ∗(νt−1))
⊗4
]∥∥

l1(N4)

implies the convergence to zero in probability of

1

T

T∑
t=1

E
(
∥νt ⊗ νt∥2χ{∥νt ⊗ νt∥2 ≥ rt}|ν1 ⊗ ν1, . . . , νt−1 ⊗ νt−1

)
.

Thus, all the conditions formulated in Lemma 2 are satisfied, and hence, the S(H)-valued

series ST = 1√
T

∑T
t=1 νt⊗νt converges in distribution to a Gaussian S(H)-valued random variable

with zero-mean and covariance operator RTν , as T −→ ∞.

Corollary 2. Assume that A is a symmetric positive compact operator with ∥A∥L(H) < 1,

where ∥ · ∥L(H) denotes the norm in the space of linear bounded operators. Assume also that the

eigenvectors of A coincide with the eigenvectors of Rν and RZ , which are also positive symmetric

operators. Then, the maximum likelihood estimator of the autocorrelation operator A is given

by:

ÂT =

[
I − 1

T

T∑
t=1

⟨
νt ⊗ νt, R

−1
Z

⟩
S(H)

]1/2
=

I −⟨ 1

T

T∑
t=1

νt ⊗ νt, R
−1
Z

⟩
S(H)

1/2

=

[
I −

⟨
R̂T

ν , R
−1
Z

⟩
S(H)

]1/2
, (A7.4)

where I denotes the identity operator on H, R̂T
ν is the ML of Rν , and RZ = E[Zt⊗Zt], for every

t ≥ 0, with Zt = Yt − µ, and Yt being an ARH(1) process satisfying equation (A7.1).
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Remark 23. Under the conditions of Theorem 10, replacing RZ by the empirical auto-covariance

operator R̂T
Z = 1

T

∑T
t=1 Zt⊗Zt, the maximum likelihood estimator of the auto-covariance operator

RZ of the zero-mean Gaussian process Z. The asymptotic distribution of

Ã =

I −⟨ 1

T

T∑
t=1

νt ⊗ νt, [R̂
T
Z ]

−1

⟩
S(H)

1/2

can be obtained from the asymptotic distribution of R̂T
Z (see Bosq, 2000, Theorem 4.9, p. 119),

and the derived Gaussian distribution of the ML estimator R̂T
ν = 1

T

∑T
t=1 νt ⊗ νt of Rν obtained

in Theorem 10.

Proof Note that {ϕk, k ≥ 1} constitutes the common orthonormal system of eigenvectors of

A, RZ and Rν , that is, Aϕk = λk(A)ϕk, RZϕk = λk(RZ)ϕk and Rνϕk = λk(Rν)ϕk, for k ≥ 1.

Furthermore, from equation (A7.1), Rν = E[ν0 ⊗ ν0] = E[νt ⊗ νt] = RZ −ARZA. Applying the

Spectral Theorem on Spectral Calculus (see, for example, Dautray and Lions, 1985, pp. 119

and 126), we then obtain, for k ≥ 1, λk(Rν) = λk(RZ) − λ2k(A)λk(RZ) = λk(RZ)(1 − λ2k(A)).

Therefore, λ̂k(A) =

√
1−

̂λk(Rν)
λk(RZ) , k ≥ 1. Again, from spectral representation theorem, the

maximum likelihood estimator ÂT of A is given by

ÂT =

∞∑
k=1

λ̂kT (A)[ϕk ⊗ ϕk] =

[
I −

⟨
R̂T

ν , R
−1
Z

⟩
S(H)

]1/2
,

where R̂T
ν = 1

T

∑T
t=1 νt ⊗ νt is the ML estimator of Rν .

A7.8 Computation algorithm

In several applied fields, functional estimation must usually be addressed with missing infor-

mation. The estimation algorithm described in this section provides an approximation to the

ML estimator of ARH(1) process Z from incomplete data. The main iterated steps executed

comprise the following algorithms: Forward and backward Kalman filtering, and EM algorithm
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(see Ruiz-Medina and Salmerón, 2010). We now proceed to provide some details on the im-

plementation of these algorithms from projection into suitable biorthogonal bases of the space

H.

Operator A is assumed to be a compact operator, possibly non-symmetric, admitting the

following spectral decomposition: Aψi = λi(A)ψi, A∗ϕi = λi(A)ϕi, i ≥ 1, where A∗ denotes

the adjoint operator of A, {ψi, i ≥ 1} and {ϕi, i ≥ 1} are the left and right eigenvector systems

associated with A and A∗, respectively, and with the point spectrum {λi(A), i ≥ 1} . They are

biorthogonal, that is, ΦΨ∗ = I, with I representing, as before, the identity operator on H. Here,

Φ and Ψ are the respective projection operators into {ϕi : i ≥ 1} and {ψi : i ≥ 1} . Indeed, ap-

plying operator Φ∗ to both left-hand-sides of equation (A7.1), we obtain the infinite-dimensional

equation system: aj(t) = λj(A)aj(t− 1) + νj(t), j ≥ 1, in terms of aj(t) = ⟨Zt(·), ϕj(·)⟩H , and

νj(t) = ⟨νt(·), ϕj(·)⟩H , for t ≥ 0, and j ≥ 1. Truncation at term M leads to the following

finite-dimensional approximation (see Ruiz-Medina and Salmerón, 2010):

a(t) = Λa(t− 1) + ν(t), (A7.5)

where, for each time t ∈ Z, a(t − k)M×1 = Φ∗
MZt−k = (a1(t− k), . . . , aM (t− k))∗ , k = 0, 1,

and ν(t)M×1 = Φ∗
Mνt = (ν1(t), . . . , νM (t))∗ . Here, Λ denotes the diagonal M ×M matrix with

entries the eigenvalues λj(A), j = 1, . . . ,M.

The implementation of forward and backward Kalman filtering algorithm is now briefly

described, considering equation (A7.5), and the functional observation model:

Ot = Zt + εt, t = 1, . . . , T, (A7.6)

where ε represents zero-mean strong H−white noise, that is, εt, t ≥ 0, are independent and

identically distributed H-valued random variables, and E(∥εt∥2H) = σ2ε < ∞, for all t ≥ 0.

Process ε is also assumed to be uncorrelated with Z. Forward and backward Kalman filtering

Tesis Doctoral Rosa M. Espejo Montes



238 Appendix 7

are combined with EM algorithm as described below, considering the initial parameter values:

Q̂ = Φ∗R̂ZZΦ−Φ∗R̂Z0Z1ΦΛ−ΛΦ∗R̂Z1Z0Φ+ΛΦ∗R̂ZZΦΛ

≃ Φ̂
∗
R̂ZZΦ̂− Φ̂

∗
R̂Z0Z1Φ̂Λ̂− Λ̂Φ̂

∗
R̂Z1Z0Φ̂+ Λ̂Φ̂

∗
R̂ZZΦ̂Λ̂

Â = R̂Z0Z1R̂
−1
ZZ , ΦAΨ∗ = Λ, Φ̂ÂΨ̂∗ = Λ̂, (A7.7)

where, as before, R̂ZZ = 1
T

∑T
t=1 Zt ⊗ Zt and R̂Z0Z1 = 1

T−1

∑T−1
t=1 Zt ⊗ Zt+1.

Given the observations of process O up to time t, the implementation of forward Kalman

filtering is achieved by considering â(t|t) = â(t|t − 1) + Kt (Ot −Ψâ(t|t− 1)) , where â(t|t) =

E (a(t)|Ot, . . . , O1) and â(t|t− 1) = E (a(t)|Ot−1, . . . , O1) . Here,

Kt = Pt|t−1Φ
∗ (Rε +ΨPt|t−1Ψ

∗)−1
,

in terms of

Pt|t−1 = var (a(t)|Ot−1, . . . , O1) = ΛPt−1|t−1Λ+ Q̂,

with Pt|t = E ((a(t)− â(t|t)) (a(t)− â(t|t))∗) . The functional mean-square error is approxi-

mated from Pt|t = Pt|t−1 − KtΨPt|t−1, and the one-step-ahead predictor is computed as

â(t|t−1) = Λâ(t−1|t−1). The initial values considered are â(0|0) = 0, andP0|0 = E (a(0)a(0)∗) ,

with a(0) = (a1(0), . . . , aM (0))∗ being the vector of projections of the random initial condition

Z0(·) ≃
M∑
i=1

ai(0)ψi(·). Here, Rε is the auto-covariance operator of the observation noise ε.

The previous projection estimates obtained from the implementation of the forward Kalman

filtering are considered in the initialization of the backward Kalman smoothing, in terms of the

following recursion:

E (a(t− 1)|O1, . . . , OT ) = ât−1|t−1 +
(
Pt−1|t−1Λ̂

∗(Pt|t−1)
−1
)

×
(
E (a(t)|O1, . . . , OT )− Λ̂ât−1|t−1

)
Var (a(t− 1)|O1, . . . , OT ) = Pt−1|t−1 +

(
Pt−1|t−1Λ̂

∗(Pt|t−1)
−1
)

×
(
Var (a(t)|O1, . . . , OT )−Pt|t−1

) (
Pt−1|t−1Λ̂

∗(Pt|t−1)
−1
)∗
,

Tesis Doctoral Rosa M. Espejo Montes



Appendix 7 239

for t = T, . . . , 1, where, as before, ∗ stands for transposition or the adjoint.

Finally, the Expectation and Maximization steps of the EM algorithm are derived as follows:

Firstly, E-step is computed considering now as observations times, t1, . . . , tT , such that the

effect of the random initial condition is negligible. From standard results on quadratic forms,

the conditional expectation of the ’projected complete data’ given the ’projected incomplete

data’ is then obtained as (see Ruiz-Medina and Salmerón, 2010)

C − T

2
log |Φ∗

MRνΦM | − T

2
log |Φ∗

MRεΦM |

−1

2
tr
{
(Φ∗

MRνΦM )−1 (CZ −ΛB∗
Z −BZΛ+ΛAZΛ)

}
,

−1

2
tr
{
(Φ∗

MRεΦM )−1Cε

}
, (A7.8)

where tr denotes the trace, and

CZ =
T∑
i=1

E (a(ti)a(ti)
∗|Ot1 , . . . , OtT ) ,

BZ =

T∑
i=1

E (a(ti)a(ti − 1)∗|Ot1 , . . . , OtT ) ,

AZ =

T∑
i=1

E (a(ti − 1)a(ti − 1)∗|Ot1 , . . . , OtT ) ,

Cε =
T∑
i=1

E (Φ∗
Mεti(Φ

∗
Mεti)

∗|Ot1 , . . . , OtT ) .

Furthermore, the M-step is computed by differentiating (A7.8) with respect to Λ, Φ∗
MRνΦM ,

and Φ∗
MRεΦM , and applying basic differentiation properties of the trace, we obtain

Λ̂ = diag[BZ ](diag[AZ ])
−1,

̂Φ∗
M×MRεΦM×M = Cε/T,

̂Φ∗
M×MRνΦM×M =

1

T

[
CZ −BZΛ̂− Λ̂B∗

Z + Λ̂AZΛ̂
]
,

where diag[A] denotes the diagonal of matrix A. Summarizing, the proposed estimation algo-

rithm is implemented in terms of the following steps:
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Step 1 Projection into the right eigenvector system of A.

Step 2 Computation of the initial parameter values from the moment-based projection estimates

(A7.7).

Step 3 Forward Kalman filtering.

Step 4 Backward Kalman smoothing.

Step 5 Expectation step of EM algorithm.

Step 6 Maximization step of EM algorithm.

Note that Steps 3-6 are iterated, since the output parameter estimates from the EM algorithm are

considered for implementation of the forward Kalman filtering recursion to improving estimations

of the ARH(1) process Z. Backward Kalman smoothing is then computed from the conditional

moments obtained in the last iteration of forward Kalman filtering. Finally, parameter estimates

defined from the maximization step are calculated in terms of the outputs provided by the

T iterations of Backward Kalman smoothing. Step 1-2 are needed for initialization of the

computational algorithm described in this section.

A7.9 Real data example

In this section, the financing decisions of firms during the period 1999-2007 are analyzed in a

panel constituted by 638 small Spanish companies, belonging to 9 different industry sectors, and

located at 17 autonomous Spanish communities. Data have been collected from the SABI (Sis-

tema de Análisis de Balances Ibéricos) database. The autoregressive dynamics of order one in

time is assumed for the evolution of indebtedness of the 638 Spanish companies studied through

the period 1999-2007. Thus, our functional data sequence is constituted by indebtedness sur-

faces constructed from the 638 observed values at each year of the period analyzed. The forward
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and backward Kalman filtering, and EM algorithms for functional estimation of indebtedness

surfaces at each year are implemented as described in the previous section. Note that, in this

real-data application, the initial value considered for the diagonal autocovariance operator of

the observation noise ε is given by R̂0
ε =

[
tr(R̂T

OO)− tr(R̂T
Z̃Z̃

)
]
I, where I denotes the identity

operator, Z̃ stands for the denoising and detrended functional data, O for the detrended and

noisy functional data, tr for the trace, and R̂T
OO = 1

T

∑T
i=1Oi ⊗Oi and R̂

T
Z̃Z̃

= 1
T

∑T
i=1 Z̃i ⊗ Z̃i

are the corresponding empirical autocovariance operators.

Stopping of the projection estimation algorithm is achieved after considering a number of

iterations large enough to obtain a stabilization of the sequence of estimates. In the example

analyzed, after 30 iterations of the forward and backward Kalman filtering in combination

with the EM algorithm, the order of magnitude of the L∞-norms of the realizations of the

corresponding projection absolute error curves, for a truncation level M = 512, decreases slowly

in comparison with the increasing of the number of iterations considered, as it can be appreciated

in Figures A7.1 - A7.4. Thus, we can conclude that a stabilization is appreciated since 30

iterations of Steps 3-6 of the projection estimation algorithm. Indeed, in Figures A7.1-A7.3,

a slow decreasing (less than 0.1 from the top to the bottom) of the order of magnitude of

the L∞-norms of the realizations of the projection absolute error curves can be appreciated,

when the number of iterations is increased from 30 to 404 iterations, at each one of the years

analyzed. The same fact can be appreciated in Figure A7.4, which displays the realizations of

the projection absolute error curves through the years 2000, 2002, 2004, 2005, 2006, and 2007,

after 2000 iterations of the forward and backward Kalman filtering in combination with the EM

algorithm. We obtain a decreasing of the order of magnitude of the projection absolute error

L∞-norms less than 0.2, while the number of iterations is increased from 404 (see bottom of

Figures A7.1-A7.3) to 2000 (see Figure A7.4).
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Figure A7.1: Realizations of the projection absolute error curves |Φ∗
M (Zt − Ẑt)| = (|a1(t) −

â1(t)|, . . . , |aM (t) − âM (t)|), for M = 512 (horizontal axis, M = 1, . . . , 512). Years t = 1999
(left), t = 2000 (center), t = 2001 (right) are displayed, for 30 iterations of Steps 3-6 at the top,
and for 404 iterations at the bottom.
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Figure A7.2: Realizations of the projection absolute error curves |Φ∗
M (Zt − Ẑt)| = (|a1(t) −

â1(t)|, . . . , |aM (t) − âM (t)|), for M = 512 (horizontal axis, M = 1, . . . , 512). Years t = 2002
(left), t = 2003 (center), t = 2004 (right) are displayed, for 30 iterations of Steps 3-6 at the top,
and for 404 iterations at the bottom.
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Figure A7.3: Realizations of the projection absolute error curves |Φ∗
M (Zt − Ẑt)| = (|a1(t) −

â1(t)|, . . . , |aM (t) − âM (t)|), for M = 512 (horizontal axis, M = 1, . . . , 512). Years t = 2005
(left), t = 2006 (center), t = 2007 (right) are displayed, for 30 iterations of Steps 3-6 at the top,
and for 404 iterations at the bottom.
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Figure A7.4: Realizations of the projection absolute error curves |Φ∗
M (Zt − Ẑt)| = (|a1(t) −

â1(t)|, . . . , |aM (t) − âM (t)|), for M = 512 (horizontal axis, M = 1, . . . , 512). Years t =
2000, 2002, 2004, 2005, 2006, 2007 are displayed from the top-left to the bottom-right, for 2000
iterations of Steps 3-6.
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Appendix A8

Least-squares estimation of
multifractional random fields in a
Hilbert-valued context

Ruiz-Medina, M. D., Anh, V. V., Espejo, R. M., Angulo, J. M. and Fŕıas, M. P. (2013)

Least-squares estimation of multifractional random fields in a Hilbert-valued context.

Journal of Optimization. Theory and Applications, DOI: 10.1007/s10957-013-0423-4.

Abstract

This paper derives conditions under which a stable solution to the least-squares estimation

problem for multifractional random fields can be obtained. The observation model is defined in

terms of a multifractional pseudodifferential equation. The weak and strong-sense formulations

of this problem are studied through the spectral theory of pseudodifferential operators of variable

order and their inverses. The theory of Reproducing Kernel Hilbert Spaces is applied. Numerical

projection methods are also proposed based on this theory. A simulation study is developed to

illustrate the estimation results derived.

This paper derives conditions under which a stable solution to the least-squares linear es-

timation problem for multifractional random fields can be obtained. The observation model is

defined in terms of a multifractional pseudodifferential equation. The weak-sense and strong-
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sense formulations of this problem are studied through the theory of fractional Sobolev spaces

of variable order, and the spectral theory of multifractional pseudodifferential operators and

their parametrix. The theory of Reproducing Kernel Hilbert Spaces is also applied to define a

stable solution to the direct and inverse estimation problems. Numerical projection methods are

proposed based on the construction of orthogonal bases of these spaces. Indeed, projection into

such bases leads to a regularization, removing the ill-posed nature of the estimation problem. A

simulation study is developed to illustrate the estimation results derived. Some open research

lines in relation to the extension of the derived results to the multifractal process context are

also discussed.

Data in many fields of applications display scaling, as in the case, for example, of the sample

paths of fractional Brownian motion Mandelbrot and Van Ness (1968), or even multiscaling,

for instance, of the type of multifractional Brownian motion (see Benassi, Jaffard, and Roux

(1997); Ayache, and Lévy-Véhel (2000)). A way to characterize the multiscaling/multifractal

behaviour of a random process or field is via the non-trivial singularity spectrum of its sample

paths Jaffard (1999). A different, smoother, source of heterogeneity can be introduced through

the theory of pseudodifferential operators of variable order, defining multifractional second-

order random fields as given in Ruiz-Medina, Anh and Angulo (2004), extending multifractional

Brownian motion (see also Anh and Leonenko, 2001; Kelbert, Leonenko, and Ruiz-Medina,

2005 and Leonenko, Ruiz-Medina and Taqqu, 2011 and the references therein, for the case of

fractional-order pseudodifferential equations, including the spatiotemporal case).

The theory of random field estimation has been extensively developed in the last three

decades (see, for example, Anh, Leonenko, Sakhno, 2004; Anh, Leonenko, Sakhno, 2007; Chris-

takos, 2000; Ivanov, 1997; Leonenko, 1999; Ruiz-Medina, Angulo and Anh, 2003; Fernández-

Pascual, Ruiz-Medina and Angulo, 2006). Recently, Functional Statistics is playing a crucial

role in the framework of inference for stochastic processes and fields (see, for example, Bosq,
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2000; Bosq and Blanke, 2007, Ruiz-Medina, 2011, 2012a; Ruiz-Medina and Espejo, 2012, 2013a;

Ruiz-Medina and Salmerón, 2010). We adopt here this framework in the derivation of our

main estimation results. In particular, we consider functional random variables with values in

a fractional Sobolev space of variable order.

The theory of least-squares estimation of multifractional random fields in a general setting,

extending the multifractional Brownian random field case, still remains an open problem, due

to the difficulties arising from the heterogeneous local behavior of these random fields, reflected

by the variable order characterizing the multifractional Sobolev space, which includes or can

be isomorphically identified with the corresponding Reproducing Kernel Hilbert Space (RKHS).

The results derived in this paper constitute an extension to the multifractional random field

context of the results obtained in Ramm (2005).

Here, we consider the problem of minimizing the mean-square error in the estimation of the

values of an output random field from the observation of a multifractional input random field,

both being related by a multifractional pseudodifferential equation. Observations are assumed

to be affected by additive noise with RKHS isomorphic to a fractional Sobolev space of variable

order. The estimation problem admits a stable solution under some regularity assumptions on

the multifractional bilinear form defining the inner product of the RKHS of the observation

random field. These assumptions are satisfied when the norm of the covariance operator of

the additive multifractional observation noise is dominated by the norm of the RKHS of the

multifractional input random field, and the linear filter relating the input and output random

fields admits a parametrix. Indeed, regularization of the problem is achieved when suitable

multifractional Sobolev norms are considered in the application of the numerical projection

methods proposed (see Ruiz-Medina and Fernández-Pascual, 2010). Reciprocally, similar results

can also be formulated in the case of inverse estimation of a multifractional input random field

from the observation of an output random field, both related by a pseudodifferential equation.
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The outline of the paper is as follows. Section A8.1 provides the ordinary formulation of

the direct and inverse variable order least-squares linear estimation problems. The estimation

system equation and the observation model in the multifractional generalized context are given

in Section A8.2. A unique stable solution to the variable order least squares estimation prob-

lems is formulated under the regularity conditions assumed on the RKHS norms involved. In

Section A8.3, the results derived are applied to the class of multifractional random fields with

covariance operator defined by a continuous function of a self-adjoint and elliptic multifractional

pseudo-differential operator. In Section A8.4, numerical projection methods respectively based

on covariance eigenfunction system, and on dual Riesz bases, both diagonalizing the covariance

structure, are applied in the finite-dimensional approximation of the least-squares linear direct

and inverse estimation problems. For illustration purposes, a simulation study is developed in

Section A8.6. Finally, conclusions are given in Section A8.7.

A8.1 Random Field Formulation

Let
{
Yβ(·)(z) : z ∈ S ⊆ Rn

}
be a zero-mean second-order random field on the probability space

(Ω,A, P ), with RKHS included in or equal to a fractional Sobolev space Hβ(·)(S) of variable

order β(·), with Hβ(·)(S) being constituted, as usual, by the weak-sense restrictions to set S of

the functions in Hβ(·)(Rn) (see Kikuchi and Negoro, 1995, and Leopold, 1989, 1991, 1999, for its

proper definition). Assume that Yβ(·) defines the output of a linear system given in terms of a

pseudodifferential operator of variable order A, with random input Sγ(·) being a multifractional

zero-mean second-order random field, that is,

Yβ(z)(z) := ASγ(·)(z) = (2π)−n

∫
Rn

ei⟨z,λ⟩pA(z,λ)Ŝγ(·)(λ)dλ, (A8.1)

for all z ∈ S ⊆ Rn, where γ(·) denotes the variable order of the fractional Sobolev space related

to the RKHS of the multifractional random signal Sγ(·). Here, the integral is understood in the
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mean-square sense, and pA ∈ B∞ (Rn
z × Rn

λ) denotes the symbol of pseudodifferential operator

A, satisfying that, for any multi-indices α and β, there exists a positive constant Cα,β such that

|Dα
ξD

β
xp(x, ξ)| ≤ Cα,β⟨ξ⟩σ(x)−ρ|α|+δ|β|, (A8.2)

where Dα
ξ and Dβ

x respectively denote the derivatives with respect to ξ and x, and ⟨ξ⟩ = (1 +

|ξ|2)1/2. That is, pA belongs to Sσ
ρ,δ, with 0 ≤ δ < ρ ≤ 1, and σ being a real-valued function in

B∞(Rn). Here, B∞(Rn
z ×Rλ) denotes the space of all C

∞-functions on Rn
z ×Rλ (respectively on

Rn), whose derivatives of all orders are bounded (see Kikuchi and Negoro, 1995 and Leopold,

1989, 1991, 1999).

We address the problem of deriving the best functional linear estimator

Ŷβ(·) = KXα(·)(·) of Yβ(·) in the closed subspace of L2(Ω,A, P ) generated by the random variables

Xα(·)(x) := Sγ(·)(x) +Nθ(·)(x), x ∈ SX ⊆ S ⊆ Rn,

where Nθ(·) is multifractional additive noise, with RKHS included in or equal to a fractional

Sobolev space of variable order θ(·), mutually uncorrelated with Sγ(·), and SX denotes the

observation domain. For simplicity, here, we consider that the supports of Sγ(·) and Yβ(z)

coincide. The space L2(Ω,A, P ) is the Hilbert space of zero-mean second-order random variables

with inner product

⟨X ,Y⟩L2(Ω,A,P ) := E[XY],

and the induced norm

∥X∥2L2(Ω,A,P ) := E[X ]2.

The set SX can be bounded or unbounded, with C∞- or fractal boundary.

In the Gaussian case, the best functional linear estimator Ŷβ(·)(·) = KXα(·)(·) of Yβ(·) in the

closed subspace of L2(Ω,A, P ) generated by

Xα(·)(x), x ∈ SX ⊆ S ⊆ Rn,
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coincides with

Ỹβ(·)(·) = E
[
Yβ(·)(·)|Xα(·)(x), x ∈ SX

]
.

Under the condition α = infx∈SX α(x) > n/2 (see embedding theorems between Besov spaces

of variable order, for example, in Leopold, 1999), the auto-covariance operator

RXα(·) := E
[
Xα(·) ⊗Xα(·)

]
of Xα(·) admits an integral representation in the strong sense (pointwise). Here, for a Hilbert

space H, f ⊗ g ∈ H ⊗H, for f, g ∈ H, defines a Hilbert-Schmidt operator on H, with

[f ⊗ g](v) = f ⟨g, v⟩H , ∀v ∈ H.

Thus, we can introduce the covariance kernel

BXα(·)(x,y) = E[Xα(·)(x)Xα(·)(y)],

for x,y ∈ SX , as well as the cross-covariance function

BXα(·)Yβ(·)(x, z) = E[Xα(·)(x)Yβ(·)(z)], for x ∈ SX and z ∈ S, which are assumed to be known,

or approximated from the spectral decomposition of the empirical auto-covariance and cross-

covariance operators defined a follows:

R̂Xα(·) :=
1

N

N∑
i=1

X i
α(·) ⊗X i

α(·), R̂Xα(·)Yβ(·) :=
1

N

N∑
i=1

Xα(·) ⊗ Yβ(·), (A8.3)

for N independent detrended realizations X i
α(·) of Xα(·) over set SX , respectively for Yβ(·) over

S.

From the Orthogonal Projection Theorem, for each z ∈ S, the least-squares linear estimate

KXα(·)(z) of Yβ(·)(z) based on the information provided by Xα(·) in (A8.1) is defined as

Ŷβ(z)(z) = KXα(·)(z) := (2π)−n
∫
Rn

ei⟨z,ξ⟩pK(z, ξ)X̂α(·)(ξ)dξ, (A8.4)
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with pK being the symbol of the pseudodifferential operator K, satisfying, for each z ∈ S,

E
[(
Yβ(·)(z)−KXα(·)(z)

)
Xα(·)(x)

]
= 0

⇐⇒ BYβ(·)Xα(·)(z,x) = KBXα(·)(z,x)

= (2π)−n
∫
Rn

ei⟨z−x,ξ⟩pK(z− x, ξ)fXα(·)(ξ)dξ, ∀x ∈ SX .

Here, Xα(·) is assumed to admit the integral variable order representation

Xα(·)(z) = (2π)−n
∫
Rn

ei⟨z,ξ⟩gXα(·)(z, ξ)ε̂(ξ)dξ,

in terms of the symbol gXα(·) factorizing the symbol fRXα(·)
= gXα(·)gXα(·) associated with the

autocovariance operator RXα(·) of Xα(·), where ε̂(ξ)dξ defines a complex white noise random

measure satisfying

E[ε̂(ξ)] = 0, E[ε̂(ξ)ε̂(ω)] = σ2δ(ξ − ω),

with δ denoting the Dirac delta distribution. For simplicity, we take σ2 = 1. In particular,

E|ε̂(ξ)dξ|2 = σ2dξ.

We now consider the case where our interest lies in the computation of the best functional

linear predictor of Sγ(·), in the closed subspace of L2(Ω,A, P ) generated by the random variables

Xα(·)(x) = Yβ(·)(x) +Nθ(·)(x), x ∈ SX ⊆ S.

Again, the Orthogonal Projection Theorem leads to the system of estimation equations given

for each z ∈ S, by

E
[(
Sγ(·)(z)−KXα(·)(z)

)
Xα(·)(x)

]
= 0

⇐⇒ BSγ(·)Xα(·)(z,x) = KBXα(·)(z,x)

= (2π)−n
∫
Rn

ei⟨z−x,ξ⟩pK(z− x, ξ)fXα(·)(ξ)dξ, ∀x ∈ SX .
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As before, pK denotes the symbol defining the pseudodifferential operator K, which, in this case,

provides the least-squares functional linear estimator of Sγ(·) as follows:

Ŝγ(z)(z) = KXα(·)(z) := (2π)−n
∫
Rn

ei⟨z,ξ⟩pK(z, ξ)X̂α(·)(ξ)dξ. (A8.5)

In the above direct and inverse functional linear estimation problems, the pseudodifferential

operator of variable order K is not usually continuous or bounded with respect to the L2(SX )-

topology. Therefore, suitable fractional Sobolev spaces of variable order are considered, whose

norms allow the definition of a stable (continuous) solution.

A8.2 Formulation in a Hilbert-Valued Context

In the following, we identify the random fields involved in the functional linear estimation

problems with Hilbert-valued random variables, i.e., functional random variables having values

in a suitable separable Hilbert space H. Indeed, in each case, H will coincide with the fractional

Sobolev space of variable order, isomorphically identified with the RKHS of the random field

considered. In the Gaussian case, the modulus of continuity of the trajectories of random

fields Yβ(·), Xα(·), Sγ(·), and Nθ(·) is given in terms of the variable local Hölder exponent of

the functions in their RKHSs (see, for example, Adler 1981). Assume that for each ω ∈ Ω,

Yβ(·)(ω, ·) ∈ Hβ(·)(S), Xα(·)(ω, ·) ∈ Hα(·)(SX ), Sγ(·)(ω, ·) ∈ Hγ(·)(S), and Nθ(·)(ω, ·) ∈ Hθ(·)(SX )

(see Bosq, 2000, Chapter 1).

From now on, we then consider the infinite-dimensional formulation of the two functional lin-

ear estimation problems, in terms of the projection of the functional random variables Yβ(·), Xα(·),

Sγ(·) and Nθ(·) into suitable bases of the spaces Hβ(·)(S), Hα(·)(SX ), H
γ(·)(S), and Hθ(·)(SX ).

That is, we consider the generalized random fields involved{
Yβ(·)(ϕ), ϕ ∈ Hβ(·)(S)

}
,
{
Xα(·)(φ), φ ∈ Hα(·)(SX )

}
,{

Sγ(·)(ψ), ψ ∈ Hγ(·)(S)
}
,
{
Nθ(·)(χ), χ ∈ Hθ(·)(SX )

}
,
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respectively generated by the infinite-dimensional random variables

{
Yβ(·)(ϕk) =

⟨
Yβ(·), ϕk

⟩
Hβ(·)(S)

, k ∈ N
}
,
{
Xα(·)(φk) =

⟨
Xα(·), φk

⟩
Hα(·)(SX )

, k ∈ N
}

and

{
Sγ(·)(ψk) =

⟨
Sγ(·), ψk

⟩
Hγ(·)(S)

, k ∈ N
}
,
{
Nθ(·)(χk) =

⟨
Nθ(·), χk

⟩
Hθ(·)(SX )

, k ∈ N
}
,

for suitable orthonormal bases {ϕk, k ∈ N}, {φk, k ∈ N}, {ψk, k ∈ N}, and {χk, k ∈ N}.

In the subsequent development, we establish the weak-sense formulation of the best functional

linear predictor of Yβ(·) given Xα(·) = Sγ(·) +Nθ(·) over set SX , as well as of Sγ(·) given Xα(·) =

Yβ(·)+Nθ(·) over set SX . The main result of this section, Theorem 11, provides the solution with

minimum multifractional singularity order to the above estimation problems.

For simplicity, let us consider the case S = Rn. (The case where S ̸= Rn can be similarly

treated by considering functions of H∞ having support with suitable geometrical characteristics,

withH∞ denoting the intersection of all fractional Sobolev spaces of variable order). Let S and Y

be defined as in (A8.1). Assume that S and Y have respective multifractional singularity orders

−γ(·), −β(·) ∈ B∞(Rn). The following weak-sense formulation of (A8.1) is then considered:

Yβ(·)(ϕ) = Sγ(·)(A
′ϕ), ∀ϕ ∈ Hβ(·)(Rn),

where A′ represents the adjoint operator of A, defined from Hβ(·)(Rn) into Hγ(·)(Rn). We con-

sider the problem of computing the least-squares linear estimator of Yβ(·) (respectively of Sγ(·),

in the inverse formulation) from the information provided by the multifractional generalized

version of (A8.1) given by

Xα(·)(φ) = Sγ(·)(φ) +Nθ(·)(φ), ∀φ ∈ Hα(·)(SX )

(respectively,

Xα(·)(φ) = Yβ(·)(φ) +Nθ(·)(φ), φ ∈ Hα(·)(SX ),
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in the inverse formulation). Here, the observation noise Nθ(·) is a generalized random field with

minimum multifractional singularity order −θ(·) ∈ B∞(Rn), and

−α(·) ∈ B∞(Rn) represents the minimum multifractional singularity order of the observation

random field X defining Xα(·) on H
α(·)(Rn).

We assume that the covariance function BXα(·) of Xα(·) and the cross-covariance function

BXα(·)Yβ(·) between Xα(·) and Yβ(·) (respectively, the cross-covariance function BXα(·)Sγ(·) between

Xα(·) and Sγ(·), in the inverse formulation) are known, or approximated from the spectral decom-

position of the empirical covariance operators in (A8.3), by projection into the corresponding

empirical eigenfunction bases. The least-squares linear estimator

Ŷβ(·)(ϕ) := Xα(·)(K
′ϕ), ∀ϕ ∈ Hβ(·)(Rn), (A8.6)

of Yβ(·) (respectively,

Ŝγ(·)(ϕ) := Xα(·)(K
′ϕ), ∀ϕ ∈ Hγ(·)(Rn)

of Sγ(·)) is then obtained by minimizing the mean-square error

MSE(K′ϕ) := E(K′ϕ) = E[Yβ(·)(ϕ)−Xα(·)(K
′ϕ)]2, (A8.7)

for all ϕ ∈ Hβ(·)(Rn), where K′ : Hβ(·)(Rn) → Hα(·)(Rn) is the adjoint of the operator K

defined by (A8.4) (respectively defined by (A8.5), for the inverse estimation problem). Hence, a

continuous definition of operator K providing the solution to the least-squares linear estimation

problem can be found in the space Hβ(·)(Rn)⊗Hα(·)(Rn) (respectively in the space Hγ(·)(Rn)⊗

Hα(·)(Rn), in the inverse formulation). If A is a pseudodifferential operator, then, for all x ∈ Rn,

β(x) ≥ γ(x), and if A is the parametrix of a pseudodifferental operator, then γ(x) ≥ β(x), for

every point x ∈ Rn. Note that this order is well-defined, since the variable orders β and γ are

real-valued functions with multidimensional support (see Kikuchi and Negoro, 1995; Leopold,

1989, 1991).
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The covariance functions BXα(·) of Xα(·) and BSγ(·) of Sγ(·), and the cross-covariance functions

BXα(·)Yβ(·) between Xα(·) and Yβ(·), and BXα(·)Sγ(·) between Xα(·) and Sγ(·), are respectively given

by the following expressions:

BXα(·)(φ,ψ) =
⟨
[RXα(·)(φ)]

∗, ψ
⟩
Hα(·)(Rn)

, ∀φ,ψ ∈ Hα(·)(Rn),

BSγ(·)(φ,ψ) =
⟨
[RSγ(·)(φ)]

∗, ψ
⟩
Hγ(·)(Rn)

, ∀φ,ψ ∈ Hγ(·)(Rn),

BXα(·)Yβ(·)(φ, ϕ) = E[Xα(·)(φ)Sγ(·)(A
′ϕ)] = BXα(·)Sγ(·)(φ,A

′ϕ)

=
⟨
[R′

Xα(·)Sγ(·)
(φ)]∗,A′ϕ

⟩
Hγ(·)(Rn)

=
⟨
φ, [RXα(·)Sγ(·)(A

′ϕ)]∗
⟩
Hα(·)(Rn)

,

∀φ ∈ Hα(·)(Rn), ϕ ∈ Hβ(·)(Rn),

BXα(·)Sγ(·)(φ, ϕ) = E[Xα(·)(φ)Sγ(·)(ϕ)] = BXα(·)Sγ(·)(φ, ϕ)

=
⟨
[R′

Xα(·)Sγ(·)
(φ)]∗, ϕ

⟩
Hγ(·)(Rn)

=
⟨
φ, [RXα(·)Sγ(·)(ϕ)]

∗
⟩
Hα(·)(Rn)

,

∀φ ∈ Hα(·)(Rn), ∀ϕ ∈ Hγ(·)(Rn),

where RXα(·) : Hα(·)(Rn) −→ H−α(·)(Rn), RSγ(·) : Hγ(·)(Rn) −→ H−γ(·)(Rn), and RXα(·)Sγ(·) :

Hγ(·)(Rn) −→ H−α(·)(Rn) denote the covariance operators associated, respectively, with the

generalized covariance functions BXα(·), BSγ(·) and BXα(·)Sγ(·) .

The mean-square error associated with K′, for each ϕ ∈ Hβ(·)(Rn), is computed from (A8.7),
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being given by

E(K′ϕ) = E[Yβ(·)(ϕ)−Xα(·)(K
′ϕ)]2 = BXα(·)(K

′ϕ,K′ϕ)

+ BSγ(·)(A
′ϕ,A′ϕ)− 2BXα(·)Sγ(·)(K

′ϕ,A′ϕ)

=
⟨
[RXα(·)(K

′ϕ)]∗,K′ϕ
⟩
Hα(·)(Rn)

+
⟨
[RSγ(·)(A

′ϕ)]∗,A′ϕ
⟩
Hγ(·)(Rn)

− 2
⟨
K′ϕ, [RXα(·)Sγ(·)A

′ϕ]∗
⟩
Hα(·)(Rn)

(respectively

E(K′ϕ) = E[Sγ(·)(ϕ)−Xα(·)(K
′ϕ)]2 = BXα(·)(K

′ϕ,K′ϕ)

+ BSγ(·)(ϕ, ϕ)− 2BXα(·)Sγ(·)(K
′ϕ, ϕ)

=
⟨
[RXα(·)(K

′ϕ)]∗,K′ϕ
⟩
Hα(·)(Rn)

+
⟨
[RSγ(·)(ϕ)]

∗, (ϕ)
⟩
Hγ(·)(Rn)

− 2
⟨
K′ϕ, [RXα(·)Sγ(·)(ϕ)]

∗
⟩
Hα(·)(Rn)

,

in the inverse formulation).

In the direct formulation, from the Orthogonal Projection Theorem, K′ minimizing the MSE

must satisfy, for ϕ ∈ Hβ(·)(Rn),

E
[(
Yβ(·)(ϕ)−Xα(·)(K

′ϕ)
)
Xα(·)(φ)

]
= 0, ∀φ ∈ Hα(·)(SX ).

Then,

RXα(·)Sγ(·)

(
A′ϕ

)
(φ) = RXα(·)(K

′ϕ)(φ), ∀φ ∈ Hα(·)(SX ).

That is,

RXα(·)Sγ(·)

(
A′ϕ

)
=

Hα(·)(SX )
RXα(·)(K

′ϕ),

(A8.8)

for each ϕ ∈ Hβ(·)(Rn). Assuming that condition (A8.8) holds, the partial Fréchet derivative

∂E(K′ϕ+ ξL)/∂ξ, with ξ being a small real number and L a linear operator from Hβ(·)(Rn) into
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Hα(·)(Rn), is equal to zero for ξ = 0. That is,

E((K′ + ξL)(ϕ)) = BXα(·)(K
′ϕ,K′ϕ) + 2ξBXα(·)(Lϕ,K

′ϕ)

+ ξ2BXα(·)(Lϕ,Lϕ)

+ BSγ(·)(A
′ϕ,A′ϕ)− 2BXα(·)Sγ(·)(K

′ϕ,A′ϕ)

− 2ξBXα(·)Sγ(·)(Lϕ,A
′ϕ).

Then,

∂ε(K′ + ξL)

∂ξ
(ϕ) = 2

⟨
[RXα(·)(K

′ϕ)]∗,Lϕ
⟩
Hα(·)(Rn)

− 2
⟨
Lϕ, [RXα(·)Sγ(·)(A

′ϕ)]∗
⟩
Hα(·)(Rn)

+ 2ξ
⟨
[RXα(·)(Lϕ)]

∗,Lϕ
⟩
Hα(·)(Rn)

, ∀ϕ ∈ Hβ(·)(Rn),

(A8.9)

and (A8.9) is null for ξ = 0. The least-squares error is then given by

LSE(K′ϕ) =
⟨
[RSγ(·)(A

′ϕ)]∗,A′ϕ
⟩
Hγ(·)(Rn)

−
⟨
[RXα(·)(K

′ϕ)]∗,K′ϕ
⟩
Hα(·)(Rn)

.

Since the dual RKHS of Xα(·) coincides, as a set of functions, with Hα(·)(Rn), with the multifrac-

tional geometry generated by its covariance function, we haveBXα(·)(K
′ϕ,K′ϕ) = ∥K′ϕ)∥2H(X̃α(·))

<

∞, for all ϕ ∈ Hβ(·)(Rn).

From the Orthogonal Projection Theorem, a similar expression can be computed for the least-

squares error in the definition of the optimal K in the inverse formulation. In the subsequent

development we consider, for simplicity, the direct formulation. Similar assertions hold for the

inverse formulation by considering the corresponding equations previously obtained.

The following result shows that under the existence of the pseudodual of variable order

X̃α(·) of Xα(·), with X̃α(·) being defined on H̄−α(·)(SX ) = [Hα(·)(SX )]
∗, (A8.8) admits a unique
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continuous solution in the RKHS of X̃α(·), which solves the estimation problem, and at least it

can be defined, in the weak-sense, in terms of suitable test functions, hence, by projection into

suitable orthonormal bases. Here, H̄−α(·)(SX ) denotes the space of tempered distributions of

H−α(·)(Rn) with compact support contained in SX , and [H]∗ represents the dual Hilbert space

of H.

Theorem 11. Let Xα(·) be the generalized random field given in terms of X with generalized

covariance function BXα(·)(·, ·), and assume the existence of the pseudodual X̃α(·)of Xα(·). Then,

the direct estimation problem admits a unique stable solution belonging to the dual RKHS of

Xα(·) defined by

K′ϕ :=
H−α(·)(Rn)

RX̃α(·)
RXα(·)Sγ(·)(A

′ϕ), ∀ϕ ∈ Hβ(·)(Rn), (A8.10)

where RX̃α(·)
: H−α(·)(Rn) −→ Hα(·)(Rn) is the covariance operator of X̃α(·), and RXα(·)Sγ(·) :

Hγ(·)(Rn) → H−α(·)(Rn) is the covariance operator associated with the cross-covariance function

BXα(·)Sγ(·) between Xα(·) and Sγ(·). Moreover,

Kφ =
Hβ(·)(Rn)

ARSγ(·)Xα(·)RX̃α(·)
(φ), ∀φ ∈ Hα(·)(Rn),

which provides a weak-sense multifractional solution to the corresponding ordinary estimation

problem.

Proof Under the existence of X̃α(·) : H̄
−α(·)(SX ) −→ L2(Ω,A, P ) bounded or continuous,

E
[
X̃α(·)(ϕ

∗)Xα(·)(ψ)
]
= (I + R)(ψ)(ϕ), ϕ, ψ ∈ Hα(·)(SX ), (A8.11)

where R denotes the parametrix of operator TXα(·) satisfying (see, for example, Vakhania,

Tarieladze and Chebonyan, 1987)

RXα(·) = TXα(·)T
∗
Xα(·)

, (A8.12)
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and I denotes the identity operator. Therefore, the RKHSH(Xα(·)) of Xα(·) can be isomorphically

identified with the space Hα(·)(SX ), since, for f, g ∈ H(Xα(·)), its inner product, given by

⟨f, g⟩H(Xα(·))
=
⟨
T−1
Xα(·)

(f),T−1
Xα(·)

(g)
⟩
L2(SX )

,

defines a norm which is equivalent to the one generated by the inner product in the space

Hα(·)(SX ).

Thus, the covariance operator RXα(·) admits a continuous inverse

R−1
Xα(·)

: Hα(·)(SX ) −→ H̄−α(·)(SX ).

The assertion of this result then follows from the definition of Ŷβ(·) in (A8.6), and from (A8.10)

obtained from (A8.8), since R−1
Xα(·)

≃ RX̃α(·)
(see Kikuchi and Negoro, 1995; Leopold, 1989, 1991).

�

The following result provides a sufficient condition that ensures the existence of the pseudo-

dual random field X̃α(·) of the observation random field Xα(·).

Theorem 12. Let Sγ(·) be the generalized input random multifractional signal. Assume that

Xα(·) has minimum functional singularity order α(·) which coincides with the duality order of

Sγ(·). Then, in the case where the covariance operator RNθ(·) of Nθ(·) satisfies

∥RNθ(·)∥ < ∥RS̃γ(·)
∥−1,

the dual X̃α(·) of Xα(·) exists. Furthermore, the following inequality holds:

∥RX̃α(·)
∥ ≤

[
∥RS̃γ(·)

∥−1 − ∥RNθ(·)∥
]−1

.

The proof of this result follows directly from the perturbation theory for bounded linear

operators in Banach and, in particular, Hilbert spaces (see Kato, 1995).

Remark 24. Similar results hold for the best functional linear predictor of Sγ(·) in the closed sub-

space of L2(Ω,A, P ) generated by Xα(·)(z) = Yβ(·)(z) + Nθ(·)(z),
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z ∈ SX , since under the existence of the continuous pseudodual

X̃α(·) : H̄−α(·)(SX ) −→ L2(Ω,A, P ), the best functional linear estimator Ŝγ(·) admits a con-

tinuous definition with respect to the norms in the spaces Hα(·)(SX ), H̄
−α(·)(SX ), and H

γ(·)(S)

involved in its formulation in a generalized random field framework.

In particular, the following reformulation of Theorem 12 can be considered when the obser-

vation model is given by

Xα(·) = Yβ(·) +Nθ(·).

Theorem 13. Let Yβ(·) be the generalized output random field. Assume that Xα(·) has minimum

functional singularity order α(·), which coincides with the duality order of Yβ(·). Then, in the

case where the covariance operator RNθ(·) of Nθ(·) satisfies

∥RNθ(·)∥ < ∥RỸβ(·)
∥−1,

the dual X̃α(·) of Xα(·) exists. Furthermore, the following inequality holds:

∥RX̃α(·)
∥ ≤

[
∥RỸβ(·)

∥−1 − ∥RNθ(·)∥
]−1

.

Remark 25. Theorems 12 and 13 admit similar formulation under the existence of the pseu-

dodual of the generalized observation noise Nθ(·).

A8.3 Heterogeneous Rational Covariance Spectra

In the previous section, the duality order α(·) of the observation random field Xα(·) provides the

functional order of the multifractional Sobolev spaces where its covariance operator admits a

continuous inverse. Hence, this order establishes the Hilbert space norm that must be considered

to compute K, or its adjoint K′, in a stable way. The spectral formulation of the conditions

established before for a continuous inversion of the estimation problem will be derived through

this section.
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From now on, we will denote

α = inf
x∈SX

{α(x)}, α = sup
x∈SX

{α(x)}.

Proposition 5. Assume that the conditions of Theorem 11 hold. Then, the following norms

are equivalent: For φ ∈ Hα(·)(SX ),

∥φ∥pRX̃α(·)
≃ ∥φ∥⟨ξ⟩α(·) ≃ ∥φ∥Hα(·)(SX ) ≃ ∥φ∥H(Xα(·)),

where ∥φ∥Hα(·)(SX ) denotes the norm of φ in the fractional Sobolev space of variable order α(·)

(see Kikuchi and Negoro, 1995; Leopold, 1989, 1991, for its proper definition), and

∥φ∥pRX̃α(·)
=

∫
SX

[∫
Rn

ei⟨z,ξ⟩pRX̃α(·)
(z, ξ)φ̂(ξ)dξ

]
φ(z)dz

∥φ∥⟨ξ⟩α(·) =

∫
SX

[∫
Rn

ei⟨z,ξ⟩(1 + |ξ|2)α(z)φ̂(ξ)dξ
]
φ(z)dz

∥φ∥H(Xα(·)) = RX̃α(·)
(φ)(φ).

Proof From Theorem 11, RXα(·) is elliptic. Furthermore, RXα(·) is a self-adjoint pseudodif-

ferential operator on L2(SX ) with symbol pRXα(·)
∈ S−α

ρ,δ (respectively, pRX̃α(·)
∈ Sα

ρ,δ). Thus,

RXα(·) belongs to the space S−α
ρ,δ (see Kikuchi and Negoro, 1995; Leopold, 1989, 1991). From the

general theory of elliptic pseudodifferential operators of variable order (see Kikuchi and Negoro,

1995; Leopold, 1989, 1991), the following inequalities then hold: There exist positive constants

C1 ≤ C2 such that

C1

∫
SX

[∫
Rn

ei⟨z,ξ⟩(1 + |ξ|2)α(z)φ̂(ξ)dξ
]
φ(z)dz

≤
∫
SX

[∫
Rn

ei⟨z,ξ⟩pRX̃α(·)
(z, ξ)φ̂(ξ)dξ

]
φ(z)dz

= RX̃α(·)
(φ)(φ) = ∥φ∥2H(Xα(·))

≤ C2

∫
SX

[∫
Rn

ei⟨z,ξ⟩(1 + |ξ|2)α(z)φ̂(ξ)dξ
]
φ(z)dz, ∀φ ∈ Hα(·)(SX ).
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Hence, the result follows. �

Corollary 3. Under the conditions assumed in Proposition 5, the following assertions hold:

(i) ϕ ∈ H̄−α(·)(SX ) iff
⟨
RXα(·)ϕ, ϕ

⟩
L2(SX )

<∞, that is, iff φ ∈ H(X̃α(·)).

(ii) φ ∈ Hα(·)(SX ) iff
⟨
RX̃α(·)

φ,φ
⟩
L2(SX )

<∞, that is, iff φ ∈ H(Xα(·)).

(iii) For each real-valued function β(·) in B∞(Rn), the space of all C∞-functions on Rn whose

derivatives of all orders are bounded, let Fβ(·) be the set of real-valued, positive and con-

tinuous functions Fβ(·) satisfying

C ≤ Fβ(·)(λ)(1 + |λ|2)β(·)/2 ≤ C ′, C, C ′ > 0,

and Rβ(·), β(·) ∈ B∞(Rn), be the class of covariance operators Rβ(·) such that

Rβ(·) = Fβ(·)(Lα(·)), for some Fβ(·) ∈ Fβ(·),

where Lα(·) is a self-adjoint elliptic pseudodifferential operator of variable order α(·) on

L2(SX ). Then, the estimation problem can be solved in a stable way, as given in Theorem

11, for the class of Gaussian observation random fields with covariance operator Rβ(·) ∈

Rβ(·).

Proof

Assertions (i) and (ii) follow directly from Proposition 5. In relation to (iii), since Lα(·) is a

self-adjoint elliptic pseudodifferential operator of variable order α(·) on L2(SX ), from condition

(3), any Rβ(·) ∈ Rβ(·) is a self-adjoint elliptic pseudodifferential operator belonging to the space

S−βα
ρ,δ (see Kikuchi and Negoro, 1995; Leopold, 1989, 1991, in relation to the main results for

continuous elliptic pseudodifferential operators). The rest of the proof follows from Theorem 11

and Proposition 5. �
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A8.4 The Infinite-Dimensional Formulation

In this section, orthogonal bases of the RKHS H(Xα(·)) are considered, allowing the spectral

diagonalization of the covariance operator RXα(·) . Specifically, the representation based on the

covariance operator eigenvector system is provided. Furthermore, L2(SX ) dual Riesz bases are

constructed for a biorthogonal expansion.

A8.4.1 Eigenfunction-Based Orthogonal Projection

Let us consider the case where α > n/2. Under this condition, our observation random field

Xα(·) is continuous in the mean-square sense (see, for example, Triebel 1978, for embeddings

between Besov spaces). In the Gaussian case, we also have continuity in the sample-path sense.

Furthermore, the covariance operator RXα(·) belongs to the trace class, i.e.,

∞∑
k=1

λk(RXα(·)) <∞,

where λk(RXα(·)), k ≥ 1, are the eigenvalues of RXα(·) on L
2(SX ), i.e.,

λkϕk(z) = RXα(·)(ϕk), k ≥ 1.

Theorem 14. The observation random field Xα(·) admits the following orthogonal expansion:

Xα(·)(φ) =
m.s.

∑
k∈N

√
λkXα(·)(ϕk)ϕk(φ), φ ∈ L2(SX ),

where {ϕk}k∈N and {λk}k∈N, respectively, denote the systems of eigenfunctions and eigenvalues

associated with the covariance operator RXα(·) of Xα(·) on L
2(SX ).

Under the condition α > n/2,

Xα(·)(z) =
∑
k∈N

√
λkXα(·)(ϕk)ϕk(z), z ∈ SX .
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Proof The proof follows directly from the spectral decomposition of a self-adjoint and compact

operator, i.e., from the following series representation of RXα(·) as a compact operator on L2(SX )

(see, for example, Dunford and Schwartz, 1963):

RXα(·)(φ)(ψ) =
∞∑
k=1

λkϕk(φ)ϕk(ψ), ∀φ,ψ ∈ L2(SX ). (A8.13)

Furthermore, under the condition α > n/2, the convergence of series (A8.13) holds pointwise

using the embedding of fractional Sobolev spaces into Hölder spaces (see Triebel, 1978), that is,

RXα(·)(φ)(z) =
∞∑
k=1

λkϕk(φ)ϕk(z), φ ∈ L2(SX ), ∀z ∈ SX .

In particular, RXα(·) admits an integral representation in terms of the kernel

CXα(·)(x,y) =
∞∑
k=1

λkϕk(x)ϕk(y), z,y ∈ SX ,

where convergence holds pointwise. That is,

RXα(·)(φ)(z) =

∫
SX

[ ∞∑
k=1

λkϕk(z)ϕk(y)

]
φ(y)dy, ∀z ∈ SX , ∀φ ∈ L2(SX ). �

A8.4.2 Biorthogonal Expansion in terms of Dual Riesz Bases

This section provides an alternative framework for the biorthogonal expansion of a multifrac-

tional random field in terms of uncorrelated (independent, in the Gaussian case) coefficients.

Specifically, as it was proved in Proposition 5, the RKHS norm of the random field Xα(·) is

equivalent to the norm of the fractional Sobolev space of variable order Hα(·)(SX ). Thus, the

two spaces contain the same set of convergent sequences. However, under the existence of the

pseudodual X̃α(·), the concept of orthogonality in the RKHS can then be more easily defined

than in the space Hα(·)(SX ), in terms of the autocovariance operator of X̃α(·). That is, for

φ,ψ ∈ H(Xα(·)),

φ ⊥ ψ ⇔ RX̃α(·)
(φ)(ψ) = 0.

Tesis Doctoral Rosa M. Espejo Montes



Appendix 8 265

Moreover, orthogonality in H(Xα(·)) is equivalent to the orthogonality in the closed subspace of

L2(Ω,A, P ) generated by the zero-mean second-order random variables

{Xα(·)(φ), φ ∈ [Hα(·)(SX )]
∗ ≡ H̄−α(·)(SX )}.

In the following, we will denote asH(Xα(·)) this closed subspace of L2(Ω,A, P ). Consequently, we

are interested in the construction of an orthonormal basis of

H(Xα(·)), leading to an orthogonal expansion of random field Xα(·), in terms of uncorrelated

random coefficients.

We now go back to the Hilbert-valued random variable context. That is, we consider Xα(·)

being defined as an Hα(·)(SX )−valued random variable. Then, we can define the orthogonal (in

the space H(Xα(·))) random sequence

{Xα(·)(γ
k), k ≥ 1},

constructed by the projection of the values of Xα(·) into the orthonormal system{
γk = T−1

Xα(·)
(ϕk), k ≥ 1,

}
of H(X̃α(·)), the RKHS of the H̄−α(·)(SX )−valued random variable X̃α(·), generated by its auto-

covariance operator

RX̃α(·)
= E[X̃α(·) ⊗ X̃α(·)],

with TXα(·) given in (A8.12). Note that

E
[
Xα(·)(γ

k)Xα(·)(γ
l)
]

=
⟨
Xα(·)(γ

k),Xα(·)(γ
l)
⟩
H(Xα(·))

= RXα(·)(γ
k)(γl) = RXα(·)R

−1
Xα(·)

(ϕk)(ϕl) = δk,l,

(A8.14)

for an orthonormal basis {ϕk, k ≥ 1} of L2(SX ), in view of (A8.12), and considering R = I in

(A8.11), with I denoting, as before, the identity operator. Hence, we obtain the following result.
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Proposition 6. Assume that (A8.11) is satisfied with R = I. Then, Xα(·) admits the following

orthogonal expansion:

Xα(·)(φ) =
∞∑
k=1

Xα(·)(γ
k)γk(φ), ∀φ ∈ L2(SX ), (A8.15)

where convergence holds in L2(Ω,A, P ), and

γk = T−1
Xα(·)

(ϕk), k ≥ 1,

γk = TXα(·)(ϕk), k ≥ 1, (A8.16)

for an orthonormal basis {ϕk, k ≥ 1} of L2(SX ).

In the case where α > n/2, equality (A8.15) holds pointwise, i.e,

Xα(·)(z) =

∞∑
k=1

Xα(·)(γ
k)γk(z), ∀z ∈ SX . (A8.17)

Proof From (A8.14), the random Fourier coefficients appearing in expansions (A8.15) and

(A8.17) are uncorrelated.

The proof is then obtained from the following identities: For a fixed M, from (A8.12), in
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view of (A8.16),

E

[
Xα(·)(φ)−

M∑
k=1

Xα(·)(γ
k)γk(φ)

]2
= E

[
Xα(·)(φ)

]2
+

M∑
k=1

M∑
p=1

E
[
Xα(·)(γ

k)Xα(·)(γ
p)
]
γk(φ)γp(φ)

− 2

M∑
k=1

E
[
Xα(·)(φ)Xα(·)(γ

k)
]
γk(φ)

= RXα(·)(φ)(φ) +

M∑
k=1

γ2k(φ)

− 2
M∑
k=1

RXα(·)(γ
k)(φ)γk(φ)

=
∞∑
k=1

γ2k(φ) +
M∑
k=1

γ2k(φ)− 2
M∑
k=1

γ2k(φ)

=

∞∑
k=1

γ2k(φ)−
M∑
k=1

γ2k(φ),

which converges to zero when M −→ ∞. �

Corollary 4. Assume that the conditions of Proposition 6 are satisfied. Let Ŷβ(·) be the best

linear estimator of Ŷβ(·) = KXα(·) of Yβ(·) given

Xα(·) = Sγ(·) +Nθ(·).

Then, Ŷβ(·) admits the following weak-sense transformed orthogonal expansion: For all φ ∈

L2(SX ),

Ŷβ(·)(φ) =
∞∑
k=1

Xα(·)(γ
k)K(γk)(φ)

=
∞∑
k=1

Xα(·)(γ
k)

∫
SX

[∫
Rn

ei⟨z,ξ⟩pK(z, ξ)γ̂k(ξ)dξ

]
φ(z)dz,
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and, if α > n/2, for all z ∈ S,

Ŷβ(·)(z) =
∞∑
k=1

Xα(·)(γ
k)K(γk)(z)

=

∞∑
k=1

Xα(·)(γ
k)

∫
Rn

ei⟨z,ξ⟩pK(z, ξ)γ̂k(ξ)dξ.

Remark 26. Similar assertions hold for the best functional linear estimator of Sγ(·) given the

functional sample information Xα(·) = Yβ(·) +Nθ(·).

The proof follows directly from Proposition 6 after applying the Orthogonal Projection The-

orem to compute K.

A8.5 Examples

In this section, we formulate several examples of system equations involving pseudodifferential

operators of variable order.

Example 8.1

We first consider the following integral equation, which generalizes the one defined by Bessel

potential (I−∆)−β, β > 0, of fixed order β (see, for example, Anh, Angulo and Ruiz-Medina,

1999 and Anh and Leonenko, 2001):

Yβ(·) = (I−∆)−ν(·)/2Sγ(·), β, ν ∈ B∞(Rn),

where the identity is understood in the mean-square sense. Note that, as usual, (−∆) represents

the negative Laplacian operator, I denotes the identity operator, and

Sγ(·)(z) = L(−∆)−γ(·)/2ε(z), z ∈ S ⊆ Rn, γ > n/2, γ ≤ n, γ ∈ B∞(Rn).
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Thus, β(·) = ν(·) + γ(·), since L is assumed to be an integral operator with homogeneous

continuous kernel L, slowly varying at infinity, and with Fourier transform displaying the same

behavior at zero frequency. Here, ε denotes white noise.

Equivalently,

Yβ(z)(z) =

∫
Rn

ei⟨z,ξ⟩(1 + |ξ|2)−ν(z)/2Ŝγ(·)(ξ)dξ

=

∫
Rn

ei⟨z,ξ⟩(1 + |ξ|2)−ν(z)/2 L̂(1/|ξ|)
|ξ|γ(z)

ε̂(ξ)dξ,

where ε̂ represents a complex white noise measure in the spectral domain.

Example 8.2

Let us now consider the following extension of the Riesz-Bessel equation (see Anh, Angulo and

Ruiz-Medina, 1999 and Anh and Leonenko, 2001)

Yβ(·)(z) = (I−∆)−ν(z)/2(−∆)−ρ(z)/2Sγ(·)(z), β, ρ ∈ B∞(Rn),

where

Sγ(z)(z) =

∫
Rn

ei⟨z,ξ⟩
ε̂(ξ)

1 + |ξ|γ(z)
dξ, γ > n/2, γ ∈ B∞(Rn).

That is,

Yβ(z)(z) =

∫
Rn

ei⟨z,ξ⟩(1 + |ξ|2)−ν(z)/2|ξ|−ρ(z) ε̂(ξ)

1 + |ξ|γ(z)
dξ.

Example 8.3

This example introduces a class of random fields with variable order fractional rational spectra,

extending the the family of homogeneous random fields with rational covariance spectrum (see

Ramm, 2005). Indeed, this family constitutes a particular case of the one considered in Corollary

3(iii). Specifically, for Lα(·) being a self-adjoint elliptic pseudodifferential operator of variable

order α(·) on L2(SX ), we consider the following special class of functions:

Fβ(·)(λ, z) =
P(λ, z)

Q(λ, z)
,
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with P(λ, z) and Q(λ, z) being positive elliptic polynomials of respective variable orders p(·)

and q(·) satisfying

0 < c1 ≤ P(λ, z)(1 + |λ|2)−p(z)/2 ≤ c2,

0 < c3 ≤ Q(λ, z)(1 + |λ|2)−q(z)/2 ≤ c4, (A8.18)

for some positive constants c1, c2, c3 and c4. That is, β(·) = q(·) − p(·), and

α(·), p(·), q(·) ∈ B∞(Rn). In particular, (A8.18) is satisfied if P and Q are positive continuous

polynomials of respective orders p(·) and q(·), with P(λ, z) = P(|λ|, z) and Q(λ, z) = Q(|λ|, z).

For example, we can consider

P(z,λ) = a0 +
n∑

k=1

ak|λ|k + (c+ |λ|)p(z)/2, ak > 0, k ≥ 0, c > 0,

Q(z,λ) = b0 +
l∑

k=1

bk(1 + |λ|2)k/2 + (d+ |λ|2)q(z)/2, bk > 0, k ≥ 0, d > 0,

for z ∈ Rn, taking n and l such that minz∈Rn p(z) > n, and

minz∈Rn q(z) > l, and p(z) ≤ q(z), z ∈ Rn.

Alternatively, we can also introduce examples of the referred class of fractional random

fields with rational covariance spectra of variable order, in terms of the following identities in

the mean-square sense:

Yβ(z)(z) =

∫
Rn

ei⟨z,ξ⟩
P
(
(1 + |ξ|2)ν(z)

)
Q
(
(1 + |ξ|2)ϱ(z)

) ε̂(ξ)

(1 + |ξ|α1(z))α2(z)
dξ,

where β, ν, ϱ, α1, α2 ∈ B∞(Rn), P and Q are positive elliptic polynomials of order p and q, respec-

tively, with q(z) ≥ p(z), for all z ∈ Rn. Moreover, it is assumed that

ν(z) ≤ ϱ(z), for all z ∈ Rn, and α1(·) and α2(·) are such that α1 = infz α1(z) > n/2, and

α2 = infz α2(z) > n/2.
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A8.6 Simulation Study

To illustrate the performance of the projection estimation methodology proposed, let us know

consider some particular examples of the families of multifractional random field models intro-

duced before. First, we summarize the main steps of the estimation algorithm implemented in

these examples.

Step 1. The functional values of the signal Sγ(·) and the observation noise Nθ(·), are

interpolated from their discrete generations over a 10×10 regular spatial grid covering the

region SX . We consider the Gaussian case.

Step 2. The kernel of the pseudodifferential operator of variable order A defining the

equation system is evaluated on the region S × SX = [0, 15]4.

Step 3. The random output Yβ(·) is then computed from the product of the symbols pA

and pSγ(·) defining the pseudodifferential operator A, and the operator involved in the

generation of Sγ(·), respectively.

Step 4. The empirical autocovariance operator of the functional observations and the

cross-covariance operator between the random output and the functional observations are

then calculated from (A8.3), based on a random functional sample of size 100.

Step 5. The empirical eigenfunction system associated with the autocovariance operator

computed in the previous step is then considered for projection. Truncation at term M is

chosen by cross-validation.

Step 6. The linear filter defining K, computed in terms of the empirical autocovariance op-

erator and the cross-covariance operator, is projected into the finite-dimensional empirical

eigenfunction basis.
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Figure A8.1: Example 8.1 Functional γ(·) exponent (top-left), the corresponding signal Sγ(·)
(top-center) and one functional observation Xα(·) = Sγ(·) +Nθ(·) (top-right). Output functional
value, Yβ(·) (bottom-left), the corresponding functional estimation (bottom-center), and empir-
ical functional mean quadratic errors based on 100 simulations (bottom-right)
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Step 7. Numerical methods are applied for inversion of the empirical finite-dimensional

estimation equation system.

Step 8. The inverse eigenfunction transform provides the approximation of K in the space

domain.

Step 9. A new random functional sample is generated of size 100 for evaluating the linear

mean-square predictor of the output, as well as the associated functional empirical mean

quadratic errors.

A8.6.1 Numerical Examples

The following functional forms of the involved multifractional parameters are respectively con-

sidered in Examples 8.1-8.3. Specifically, for (x, y) ∈ [0, 15]× [0, 15], in Example 8.1, we establish
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γ(x, y) = 1 + C1(cos((C2π)/(1 + ∥(x, y)∥2)))2, C1 = C2 = 1,

ν(x, y) = D1 + exp (−∥(x, y)∥/D2) , D1 = 1, D2 = 1/10

θ(x, y) = K/(1 + ∥(x, y)∥2), K = 1.

In Example 8.2, the multifractional exponents involved are given by the following functional

forms: For (x, y) ∈ [0, 15]× [0, 15],

γ(x, y) = C1 + (cos(π/(1 + ∥(x, y)∥2))/C2)
2, C1 = 1, C2 = 10

ρ(x, y) = B1 + ∥(x, y)∥−2.4, B1 = 1

ν(x, y) = D1 + exp
(
−∥(x, y)∥1/2/D2

)
, D1 = 1, D2 = 1/10

θ(x, y) = (cos(Kπ/(1 + ∥(x, y)∥2)))2, K = 1.

Finally, in Example 8.3, we consider

B1 = C1 = C2 = E1 = 1, B2 = D2 = 1/10, K = 1, α2 ≡ 1 + ϵ, ϵ > 0,

and for (x, y) ∈ [0, 15]× [0, 15],

γ(x, y) = C1 + exp
(
−(C2/(1 + ∥(x, y)∥2)

)
ν(x, y) = D1 + exp

(
−∥(x, y)∥1/2/D2

)
ρ(x, y) = B1 + exp (−∥(x, y)∥/B2)

ϱ(x, y) = cos(π/4∥(x, y)∥)

α1(x, y) = E1 + cos(π + (π/2)∥(x, y)∥θ/2)

θ(x, y) = (sin(C2π/(1 + ∥(x, y)∥2)))2.

The functional exponent γ of the random signal Sγ(·) is displayed, for the three examples

studied, in the top-left plots of Figures A8.1, A8.2 and A8.3. The sample functional values
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Figure A8.2: Example 8.2 Functional γ(·) exponent (top-left), the corresponding signal Sγ(·)
(top-center) and one functional observation Xα(·) = Sγ(·) +Nθ(·) (top-right). Output functional
value, Yβ(·) (bottom-left), the corresponding functional estimation (bottom-center), and empir-
ical functional mean quadratic errors based on 100 simulations (bottom-right)
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of the signal Sγ(·) and of the functional observation Xα(·) are respectively displayed next to it.

Additionally, a sample functional value of the output, its best linear functional mean-square

estimate and the corresponding functional empirical mean-square errors (FEMSEs) are given

in the bottom row of Figures A8.1-A8.3. Finally, the L∞ norms of the FEMSEs computed for

such examples are given after these figures. Note that the highest truncation level has been

considered in Example 8.2, with M = 150 eigenfunctions in the finite-dimensional approxima-

tion, since a higher degree of local singularity is introduced by the system operator A, due to

the functional form of its parameter ρ, and by the multifractional noise Nθ(·), in terms of its

non-linear hyperbolic (cosine-type) parameter θ(·). As it can be seen in Figures A8.2, the spa-

tial structure of the random output Yβ(·) is completely different from the signal, whose spatial

patterns are, at the same time, completely distorted by the multifractional noise. Hence, a

higher truncation level is required for the estimation of Yβ(·) from the observation of Xα. In

addition, the functional estimates of Yβ(·) are very sensitive to the self-reference problem, i.e., to
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Figure A8.3: Example 8.3 Functional γ(·) exponent (top-left), the corresponding signal Sγ(·)
(top-center) and one functional observation Xα(·) = Sγ(·) +Nθ(·) (top-right). Output functional
value, Yβ(·) (bottom-left), the corresponding functional estimation (bottom-center), and empir-
ical functional mean quadratic errors based on 100 simulations (bottom-right)
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the presence of common functional data in the two samples randomly selected for the estimation

of the functional parameter K and of the functional values of Yβ(·), and for the computation of

the functional empirical mean-square errors. Note that the two functional samples of size 100

are randomly selected from a general population constituted by 150 realizations of the random

signal, observation noise, and output. Finally, for Examples 8.1 and 8.3, the same truncation

level M = 100 is considered in the finite-dimensional approximation of the associated estima-

tion problems. Slightly better performance is can be appreciated in Example 8.3, due to the

higher level of self-reference in the randomly selected functional samples for the parameter and

output values estimation. The smoother form of γ(·) in Example 8.3 also leads to a lower local

heterogeneity level in the realizations, obtaining a more accurate estimation.

L∞-norm of FEMSEs

Example 8.1 0.9597
Example 8.2 0.1421
Example 8.3 0.7566
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A8.7 Conclusions

In this paper, the problem of least squares estimation of an input random field from the observa-

tion of an output random field, and reciprocally, the estimation of an output random field from

the observation of an input random field, when observations are affected by additive noise, is ad-

dressed in a multifractional random field framework. Regularization of this problem is achieved

under the assumption of the existence of a pseudodual. Numerical projection methods into or-

thogonal and biorthogonal bases are considered for the suitable finite-dimensional approximation

of both least-squares direct and inverse estimators of the random signal of interest.

The results derived allow one to define a stable solution to the least-squares multifractional

estimation problem considered. However, the multifractal case still remains as an open prob-

lem. In the recent literature, different approaches have been adopted for the construction of

multifractal processes and fields (see, for example, the proposal given in Anh, Leonenko and

Shieh, 2008). An alternative way of introducing multifractal random field models can be found

as an extension of the framework considered in this paper. Specifically, the regularity conditions

assumed on the exponent function, defining the fractional-order of differentiation in the weak-

sense, in multifractional Sobolev spaces can be relaxed by introducing it as the limit of regular

functions in a suitable topology. This more flexible framework allows the characterization of

limit spaces having functions with non-trivial singularity spectra.
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[149] Horváth, L. and Reeder, R. (2012). Detecting changes in functional linear models. Journal

of Multivariate Analysis, 111, 310-–334.

[150] Hosking, J. R. M. (1981). Fractional differencing. Biometrika, 68, 165–176.

[151] Hsu, N. J. and Tsai, H. (2009). Semiparametric estimation for seasonal long-memory time

series using generalized exponential models. Journal of Statistical Planning and Inference,

139, 1992–2009.

[152] Hu, X. J., Sun, J. and Wei, L. J. (2003). Regression parameter estimation from panel

counts. Journal of Statistics, 30, 25—43.

[153] Huang, C. Y., Wang, M. C. and Zhang, Y. (2006) Analysing panel count data with infor-

mative observation times. Biometrika, 93, (4): 763-–775.

[154] Ide, K., Courtier, P., Ghil, M. and Lorenc, A. C. (1997). Unified notation for data assim-

ilation: Operational, sequential and variational. Practice, 75, 181–189.

[155] Ivanov, A. V. (1997). Asymptotic Theory of Nonlinear Regression. Kluwer Academic Pub-

lishers, Dordrecht.

[156] Ivanov, A. V. and Leonenko, N. N. (2004). Asymptotic theory for non-linear regression

with long-range dependence. Mathematical Methods of Statistics, 13, 153–178.

[157] Ivanov, A. V., Leonenko, N. N., Ruiz-Medina, M. D. and Savich, I. N. (2013). Limit theo-

rems for weighted non-linear transformations of Gaussian stationary processes with singular

spectra. Annals of Probability, 4, (2): 1088–1114.

Tesis Doctoral Rosa M. Espejo Montes



BIBLIOGRAPHY 301

[158] Jaffard, S. (1999). The multifractal nature of Lévy processes. Probability Theory and Re-
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133.

[208] Michaelas, N., Chittenden, F. and Poutzioris, P. (1999). Financial policy and capital struc-

ture choice in U.K. SMEs: empirical evidence from company panel data. Small Business

Economics, 12, 113–130.

[209] Monestiez, P. and Nerini, D. (2008). A cokriging method for spatial functional data with

applications in oceanology. Functional and Operational Statistics. Contributions to Statistics,

Chapter 36, 237–242.

[210] Mourid, T. (2002). Estimation and prediction of functional autoregressive processes. Statis-

tics, 36, (2): 125-–138.

[211] Müller, H. (1987). Weighted local regression and kernel methods for nonparametric curve

fitting. Journal of the American Statistical Association, 82, (397): 231–238.

[212] Müller, H. G. and Stadtmüller, U. (2005). Generalized functional linear models. Annals of

Statistics, 33, 774–805.

Tesis Doctoral Rosa M. Espejo Montes



BIBLIOGRAPHY 307

[213] Nakai, M. and Ke, W. (2011). Review of methods for handling missing data in longitudinal

data analysis. International Journal of Mathematical Analysis, 5, 1–13.

[214] Nayaran, P. K. and Narayan, S. (2010). Carbon dioxide emissions and economic growth:

Panel data evidence from developing countries. Energy Policy, 38, 661—666.
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Espejo, R. M., Leonenko, N, Olenko, A. and Ruiz-Medina, M. D. (2014).

On a class of minimum contrast estimators for Gegenbauer random fields. TEST, (Submitted).

Abstract

The article introduces spatial long-range dependent models based on the fractional difference op-

erators associated with the Gegenbauer polynomials. The results on consistency and asymptotic

normality of a class of minimum contrast estimators of long-memory parameters of the models

are obtained. A methodology to verify assumptions for consistency and asymptotic normality

of minimum contrast estimators is developed. Numerical results are presented to confirm the

theoretical findings.
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A9∗.1 Introduction

Among the extensive literature on long-range dependence, relatively few publications are devoted

to cyclical long-memory processes or long-range dependent random fields. However, models with

singularities at non-zero frequencies are of great importance in applications. For example, many

time series show cyclical/seasonal evolutions. Singularities at non-zero frequencies produces

peaks in the spectral density whose locations define periods of the cycles. A survey of some

recent asymptotic results for cyclical long-range dependent random processes and fields can be

found in Ivanov et al. (2013) and Olenko (2013).

In image analysis popular isotropic spatial processes with singularities of the spectral den-

sity at non-zero frequencies are wave, J-Bessel, and Gegenbauer models. Espejo, Leonenko,

and Ruiz-Medina (2014) investigated probabilistic properties of spatial Gegenbauer models. A

realization of the Gegenbauer random field on 100× 100 grid is shown in Figure A9∗.1.

t1

t 2

−4

−2

0

2

4

Figure A9∗.1: Simulated realization of the Gegenbauer random field.
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This article studies minimum contrast estimators (MCEs) of parameters of the Gegenbauer

random fields. The MCE methodology has been widely applied in different statistical frameworks

(see, for example, Anh, Leonenko, and Sakhno, 2004, 2007; WeiLin, WeiGuo, and XiLi, 2012).

One of the first works which used a MCE methodology for the parameter estimation of spectral

densities of stationary processes was the paper by Taniguchi (1987). Guyon (1995) introduced

a class of MCEs for random fields. Anh, Leonenko, and Sakhno (2004) derived consistency and

asymptotic normality of a class of MCEs for stationary processes within the class of fractional

Riesz-Bessel motion (see Anh, Angulo, and Ruiz-Medina, 1999). Results based on the second

and third-order cumulant spectra were given by Anh, Leonenko, and Sakhno (2007). They also

provided asymptotic properties of second and third-order sample spectral functionals. These

properties are of independent interest, since they can be applied to study the limiting properties

of nonparametric estimators of processes with short or long-range dependence. WeiLin, WeiGuo,

and XiLi (2012) applied the minimum contrast parameter estimation to approximate the drift

parameter of the Ornstein-Uhlenbeck process, when the corresponding stochastic differential

equation is driven by the fractional Brownian motion with a specific Hurst index.

A burgeoning literature on spatio-temporal estimation has emerged in recent decades (see

Beran, Ghosh, and Schell 2009; Chan and Tsai 2012; Giraitis, Hidalgo, and Robinson, 2001;

Guo, Lim, and Meerschaert 2009; Li and Mcleod, 1986; Reisen, Rodrigues, and Palma, 2006,

among others). One of the most popular estimation tools applied was the maximum likelihood

estimation method (MLE). Reisen, Rodrigues, and Palma (2006) addressed the problem of pa-

rameter estimation of fractionally integrated processes with seasonal components. In order to

estimate the fractional parameters, they propose several log-periodogram regression estimators

with different bandwidths selected around and/or between the seasonal frequencies. The same

methodology was used by Li and McLeod (1986) for fractionally differenced autoregressive-

moving average processes in the stationary time series context. Several contributions have also

Tesis Doctoral Rosa M. Espejo Montes



322 Papers submitted

been made for MLE of long memory spatial processes (see, for example, Anh and Lunney, 1995).

For two-dimensional spatial data the paper by Basu and Reinsel (1993) introduced a spatial

unilateral first-order autoregressive moving average (ARMA) model. To implement MLE they

provided a proper treatment to border cell values with a substantial effect in estimation of pa-

rameters. Beran, Ghosh and Schell (2009) addressed the problem of the least-squares estimation

of autoregressive fractionally integrated moving-average (FARIMA) processes with long-memory.

Cohen and Francos (2002) investigated asymptotic properties of least-squares estimators in re-

gression models for two-dimensional random fields. Maximization of the Whittle likelihood has

been also considered in the recent literature on the MCE (see for example, Chan and Tsai, 2012,

Boissy et al., 2005, Leonenko and Sakhno 2006). Leonenko and Sakhno (2006) gave a continuous

version of the Whittle contrast functional supplied with a specific weight function for the esti-

mation of continuous-parameter stochastic processes, deriving the consistency and asymptotic

normality of such estimators. Guo, Lim, and Meerschaert (2009) demonstrated that the Whittle

maximum likelihood estimator is consistent and asymptotically normal for stationary seasonal

autoregressive fractionally integrated moving-average (SARFIMA) processes.

Parameter estimation of stationary Gegenbauer random processes was considered by numer-

ous authors, see, for example, Gray, Zhang andWoodward, (1989); Chung (1996a,b); Woodward,

Cheng, and Gray (1998); Collet and Fadili (2006); McElroy and Holan (2012). Gray, Zhang

and Woodward (1989) used the generating function of the Gegenbauer polynomials to develop

long memory Gegenbauer autoregressive moving-average (GARMA) models that generalize the

FARIMA process. GARMA models were estimated by applying the MLE methodology. Chung

(1996a) also applied this methodology with slight modifications based on the conditional sum

of squares method. Chung (1996b) extended these results to the two-parameter context within

the GARMA process class. Woodward, Cheng and Gray (1998) introduced a k-factor extension

of the GARMA model that allowed to associate the long-memory behavior with each one of the
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k Gegenbauer frequencies involved.

In this article we restrict our consideration to the estimation of long memory parameters.

It is motivated in part by cyclic processes, for which pole locations are known. Also in some

applications the spectral density singularity location can be estimated in advance. Various

methods, including semiparametric, wavelet, and pseudo-maximum likelihood techniques, of the

estimation of the spectral density singularity location were discussed by, for example, Arteche

and Robinson (2000), Giraitis, Hidalgo, and Robinson (2001), and Ferrara and Guegan (2001).

This paper introduces and studies the MCE of parameters of spatial Gegenbauer processes.

Specifically, analogous of continuous-space results by Anh, Leonenko, and Sakhno (2004) are

formulated for random fields defined on integer grids. The consistency and asymptotic normal-

ity of the MCE are obtained using a spatial discrete version of the Ibragimov contrast function.

The article develops a methodology to practically verify general theoretical assumptions for con-

sistency and asymptotic normality of MCEs for specific models. The results provide a rigorous

platform to conduct model selection and statistical inference.

The outline of the article is the following. In section A9∗.2, we start by introducing the

main notations of the paper. Some fundamental definitions and the main results of this article,

Theorem 15 and 16, are given in A9∗.3. Section A9∗.4 consists of the proofs of the main results.

Section A9∗.5 presents simulation studies which support the theoretical findings. The Appendix

provides auxiliary materials that specify for our case the conditions that ensure the consistency

and asymptotic normality of the MCE based on the Ibragimov contrast function formulated in

Anh, Leonenko, and Sakhno (2004).

In what follows we use the symbol C to denote constants which are not important for our

discussion. Moreover, the same symbol C may be used for different constants appearing in the

same proof.

All calculations in the article were performed using the software R version 3.0.2 and Maple
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16, Maplesoft.

A9∗.2 Gegenbauer random fields

This section introduces some of the main definitions of the Gegenbauer random fields given

in Espejo, Leonenko, and Ruiz-Medina, (2014) (see also, Chung, 1996a,b; Gray, Zhang, and

Woodward, 1989; and Woodward, Cheng, and Gray, 1998, for the temporal case).

Let Yt1,t2 , (t1, t2) ∈ Z2, be a random field defined on the grid lattice Z2. Consider the

fractional difference operator ∇d
u defined by

∇d
u = (I − 2uB +B2)d = (1− 2 cos νB +B2)d = [(1− eiνB)(1− e−iνB)]d, (A9∗)

where B is the backward-shift operator, u = cos ν, i.e. ν = arccos(u), |u| ≤ 1, and d ∈
(
−1

2 ,
1
2

)
.

Assume that Y satisfies the following state equation

∇d1
u1
◦∇d2

u2
Yt1,t2 =

(
I − 2u1B1 +B2

1

)d1 ◦(I − 2u2B2 +B2
2

)d2 Yt1,t2 = εt1,t2 , (t1, t2) ∈ Z2, (A9∗)

where ∇di
ui
, i = 1, 2, is given by equation (A9∗), with Bi, i = 1, 2, denoting the backward-

shift operator for each spatial coordinate, i.e. B1Yt1,t2 = Yt1−1,t2 , and B2Yt1,t2 = Yt1,t2−1. Here,

εt1,t2 , (t1, t2) ∈ Z2, is a zero-mean white noise field with the common variance E[ε2t1,t2 ] = σ2ε . The

random field Y is called a spatial Gegenbauer white noise in Espejo, Leonenko, and Ruiz-Medina,

(2014).

By equation (A9∗) the Gegenbauer random field Y can be defined in terms of the inverse of

the operator ∇d1
u1

◦ ∇d2
u2

expanded in a Gegenbauer polynomial series as follows

Yt1,t2 = ∇−d2
u2

◦ ∇−d1
u1

εt1,t2 =

∞∑
n1=0

∞∑
n2=0

C(d1)
n1

(u1)C
(d2)
n2

(u2)B
n1
1 Bn2

2 εt1,t2

=

∞∑
n1=0

∞∑
n2=0

C(d1)
n1

(u1)C
(d2)
n2

(u2)εt1−n1,t2−n2 , (A9∗)
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where di ̸= 0, i = 1, 2, and C
(d)
n (u) is the Gegenbauer polynomial given by

C(d)
n (u) =

[n/2]∑
k=0

(−1)k
(2u)n−2kΓ(d− k + n)

k!(n− 2k)!Γ(d)
.

The Gegenbauer random field has the following property, see Espejo, Leonenko, and Ruiz-

Medina, (2014).

Proposition 7. If 0 < di <
1
2 and |ui| < 1, i = 1, 2, then Y is a stationary invertible long range

dependent random field.

The spectral density of a stationary Gegenbauer random field is given by Chung, (1996a,b),

and Hsu and Tsai, (2009), for the one-parameter case, and Espejo, Leonenko, and Ruiz-Medina,

(2014), for the two-parameter case:

f(λ,θ) =
σ2ε

(2π)2

∣∣∣1− 2u1e
−iλ1 + e−2iλ1

∣∣∣−2d1
∣∣∣1− 2u2e

−iλ2 + e−2iλ2

∣∣∣−2d2

=
σ2ε

(2π)2
{|2 cosλ1 − 2u1|}−2d1 {|2 cosλ2 − 2u2|}−2d2 , (A9∗)

where θ = (u,d) = (u1, u2, d1, d2) ∈ Θ = (−1, 1)2 × (0, 1/2)2, ui = cos νi, and −π ≤ λi ≤ π,

i = 1, 2. Using the spectral density function (A9∗), one can compute the auto-covariance function

of Y as follows:

γ(j1, j2,θ) =
σ2ε
4π

2∏
i=1

Γ(1− 2di)[2 sin(νi)]
1
2
−2d1

[
P

2di− 1
2

ji− 1
2

(ui) + (−1)jiP
2di− 1

2

ji− 1
2

(−ui)
]
,

where P b
a(z) is the associated Legendre function of the first kind, consult §8 in Abramowitz and

Stegun, 1972.

From Chung (1996a,b), Gray, Zhang, and Woodward (1989) and Gradshteyn and Ryzhik

(1980), the following asymptotic approximation of the autocovariance function can be obtained

γ(j1, j2,θ) =

2∏
i=1

21−diσ2ϵ
π

sin−2di(νi) sin(diπ)Γ(1− 2di) cos(jiνi)
Γ(ji + 2di)

Γ(ji + 1)
[1 +O(j−1

i )].
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The random field Y is long range dependent as its auto-covariance function satisfies the

condition
∑

(j1,j2)∈Z2 |γ(j1, j2,θ)| = +∞.

Figure A9∗.2 gives an example of the spectral density and the auto-covariance function of

the Gegenbauer random field for the values of the parameters u1 = 0.4, u2 = 0.3, d1 = 0.2, and

d2 = 0.3.
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Figure A9∗.2: Spectral density and auto-covariance function for u1 = 0.4, u2 = 0.3, d1 = 0.2,
and d2 = 0.3

A9∗.3 Asymptotic properties of MCEs

Suppose that the conditions imposed in Proposition 7 to ensure stationarity, invertibility and

long-range dependence hold. Assume the value of the parameter u = (u1, u2) is known a priori

or was estimated based on previous runs of the application. Then θ = (θ1, θ2) = (d1, d2) ∈

Θ = (0, 1/2)2 is the vector of parameters to estimate of the Gegenbauer random field defined by

equation (A9∗) (see also equation (A9∗) for the corresponding spectral density).

Let Yt1,t2 , t1, t2 = 0, ..., T, be a part of a realization of the Gegenbauer random field.
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Let w(λ), λ ∈ [−π, π]2, be a nonnegative function. Suppose the condition A3 in the Ap-

pendix holds. We define

σ2(θ) =

∫
[−π,π]2

f(λ,θ)w(λ) dλ (A9∗)

and consider the factorization

f(λ,θ) = σ2(θ)Ψ(λ,θ). (A9∗)

For all θ ∈ Θ the function Ψ(λ,θ) has the following property∫
[−π,π]2

Ψ(λ,θ)w(λ) dλ = 1. (A9∗)

Let K(θ0,θ) be a non-random real-valued function, usually referred as the contrast function,

given by

K(θ0,θ) :=

∫
[−π,π]2

f(λ,θ0)w(λ) log
Ψ(λ,θ0)

Ψ(λ,θ)
dλ,

and let the contrast field be

U(θ) := −
∫
[−π,π]2

f(λ,θ0)w(λ) logΨ(λ,θ) dλ,

where θ0 = (d10, d20) is the true parameter value. In what follows, P0 denotes the probability

distribution with the density function f(λ,θ0).

The empirical version ÛT (θ), T ∈ Z, θ ∈ Θ, is defined by

ÛT (θ) := −
∫
[−π,π]2

IT (λ)w(λ) logΨ(λ,θ) dλ, (A9∗)

where IT (λ) is the periodogram of the observations Yt1,t2 , t1, t2 = 0, ..., T, of the Gegenbauer

random field, that is,

IT (λ) :=
1

(2πT )2

∣∣∣∣∣
T∑

t1=0

T∑
t2=0

e−i(t1λ1+t2λ2)Yt1,t2

∣∣∣∣∣
2

.

The MCE is defined by the empirical contrast field ÛT (θ) and the contrast function K(θ0,θ)

being K(θ0,θ) ≥ 0, and having a unique minimum at θ = θ0.
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In particular, we choose

w(λ) = |λ21 − ν21 |a1 |λ22 − ν22 |a2w0(λ), λ = (λ1, λ2) ∈ [−π, π]2, (A9∗)

where ai > 1, i = 1, 2, w0(λ) is a non-negative function, which is not identically equal to zero

and bounded on [−π, π]2. The developed methodology is readily adjustable to other classes of

weight functions.

Theorems 15 and 16 give consistency and asymptotic normality results for the MCE.

Theorem 15. Let Yt1,t2 , (t1, t2) ∈ Z2, be a stationary Gegenbauer random field which spectral

density satisfies equation (A9∗). If ÛT (θ) is the empirical contrast field defined by equation (A9∗),

then

• Yt1,t2 satisfies the conditions A1-A6 in the Appendix;

• the minimum contrast estimator θ̂T = (d̂1, d̂2) = argminθ∈Θ ÛT (θ) ∈ Θ is a consistent

estimator of the parameter vector θ. That is, there is a convergence in P0 probability:

θ̂T
P0−→ θ0, T −→ ∞;

• σ̂2T
P0−→ σ2(θ0), T −→ ∞, where the variance estimator σ̂2T is given by

σ̂2T =

∫
[−π,π]2

IT (λ)w(λ) dλ.

To formulate Theorem 16 we introduce the following notations. The unbiased estimator of

the correlation function γ(t1, t2,θ), t = (t1, t2) ∈ Z2, of the Gegenbauer random field Yt1,t2 is

γ̂T (t) =
1

(T − |t1|)(T − |t2|)

T−|t1|∑
k=0

T−|t2|∑
l=0

Yk,lY|t1|+k,|t2|+l.

Note, that all indices of the random field in the sum above are within the set {(t1, t2) : t1, t2 =

0, ..., T}, where the observations are available.

Tesis Doctoral Rosa M. Espejo Montes



Papers submitted 329

The unbiased periodogram is given by

I∗T (λ1, λ2) =
1

(2π)2

T−1∑
t1=1−T

T−1∑
t2=1−T

e−i(λ1t1+λ2t2)γ̂T (t),

and the corresponding empirical contrast field is

Û∗
T (θ) = −

∫
[−π,π]2

I∗T (λ)w(λ) logΨ(λ,θ) dλ.

We also define σ̂2∗T =
∫
[−π,π]2 I

∗
T (λ)w(λ) dλ and the associated adjusted MCE

θ̂
∗
T = (d̂∗1, d̂

∗
2) = argmin

θ∈Θ
Û∗
T (θ). (A9∗)

Theorem 16. If Yt1,t2 , (t1, t2) ∈ Z2, is a stationary Gegenbauer random field which spectral

density satisfies equation (A9∗) with (d1, d2) ∈ (0, 1/4)2, then

• Yt1,t2 satisfies the conditions A1-A9 in the Appendix;

• the adjusted MCE defined by (A9∗) is asymptotically normal. That is,

T (θ̂
∗
T − θ0)

D−→ N2(0,S
−1(θ0)A(θ0)S

−1(θ0)), T −→ ∞,

where the entries of the matrices S(θ) = (sij(θ)) and A(θ) = (aij(θ)) are

sij(θ) =

∫
[−π,π]2

f(λ,θ)w(λ)
∂2

∂θi∂θj
logΨ(λ,θ) dλ

= σ2(θ)

∫
[−π,π]2

w(λ)

[
∂2

∂θi∂θj
Ψ(λ,θ)− 1

Ψ(λ,θ)

∂

∂θi
Ψ(λ,θ)

∂

∂θj
Ψ(λ,θ)

]
dλ,(A9∗)

aij(θ) = 8π2
∫
[−π,π]2

f2(λ,θ)w2(λ)
∂

∂θi
log (Ψ(λ,θ))

∂

∂θj
log (Ψ(λ,θ)) dλ

= 8π2σ2(θ)

∫
[−π,π]2

w2(λ)
∂

∂θi
Ψ(λ,θ)

∂

∂θj
Ψ(λ,θ) dλ. (A9∗)

To avoid the edge effect Anh, Leonenko, and Sakhno (2004) employed the modified peri-

odogram approach suggested by Guyon (1982). We use their assumptions in Theorem 16. Note
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that some authors pointed few problems in using I∗T , see Vidal-Sanz (2009), Yao and Brockwell

(2006), and references therein. Various other modifications, for example, typed variograms,

smoothed variograms, kernel estimators, to reduce the edge effect have been proposed. It would

be interesting to prove analogous of the results by Anh, Leonenko, and Sakhno (2004) and The-

orem 16 for these modifications too. However, it is beyond the scope of this paper. Moreover, it

remains as an open problem whether the edge-effect modification is essential for the asymptotic

normality or not, see Yao and Brockwell (2006).

A9∗.4 Proofs

To prove the theorems we will use the following results.

Lemma 5. [Dorogovtsev (1989)] Let (X,F , µ) be a measurable space, A ∈ F , and Θ ⊂ R be an

open set. Suppose the function F : X ×Θ → R satisfies the following conditions:

1. For all θ ∈ Θ : F (·, θ) ∈ L1(A);

2. For almost all x ∈ A the derivative ∂F (x,·)
∂θ exists for all θ ∈ Θ;

3. There is an integrable function g : X → R such that
∣∣∣∂F (x,θ)

∂θ

∣∣∣ ≤ g(x) for almost all x ∈ A.

Then there exists

∂

∂θ

∫
A
F (x, θ)dµ(x) =

∫
A

∂F (x, θ)

∂θ
dµ(x).

Lemma 6. The function σ2(θ) is bounded and separated from zero on Θ. Moreover, its first

and second order derivatives are bounded on Θ and can be computed by

∂

∂θi
σ2(θ) =

∫
[−π,π]2

w(λ)
∂

∂θi
f(λ,θ) dλ = −2

∫
[−π,π]2

log |2 cosλi − 2ui| w(λ)f(λ,θ) dλ, (A9∗)

∂2

∂θj∂θi
σ2(θ) =

∫
[−π,π]2

w(λ)
∂2

∂θj∂θi
f(λ,θ) dλ

= 4

∫
[−π,π]2

log |2 cosλi − 2ui| log |2 cosλj − 2uj | w(λ)f(λ,θ) dλ, (A9∗)
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where i, j = 1, 2.

Proof By the choice of the weight function we obtain

sup
[−π,π]2×Θ

f(λ,θ)w(λ) < +∞ (A9∗)

and

sup
θ∈Θ

σ2(θ) =

∫
[−π,π]2

f(λ,θ)w(λ)dλ ≤ 4π2 sup
[−π,π]2×Θ

f(λ,θ)w(λ) < +∞.

Hence, σ2(θ) is bounded.

Note, that sup[−π,π]2×Θ {|2 cosλ1 − 2u1|}2d1 {|2 cosλ2 − 2u2|}2d2 < +∞. Also, by the choice

of the weight function, there exists δ > 0 and a set A0 ⊂ [−π, π]2 of non-zero Lebesgue measure,

i.e. λ(A0) > 0, such that w(λ) > δ for all λ ∈ A0. Therefore,

inf
θ∈Θ

σ2(θ) =

∫
[−π,π]2

f(λ,θ)w(λ)dλ ≥ δ λ(A0)

sup[−π,π]2×Θ {|2 cosλ1 − 2u1|}2d1 {|2 cosλ2 − 2u2|}2d2
> 0,

which means that σ2(θ) is separated from zero on Θ.

Now, to study ∂
∂θi
σ2(θ) we compute ∂

∂θi
f(λ,θ), i = 1, 2 :

∂

∂θi
f(λ,θ) =

σ2ε
(2π)2

{|2 cosλj − 2uj |}−2dj ∂

∂di
{|2 cosλi − 2ui|}−2di

= log (2 cosλi − 2ui)
−2 σ2ε

(2π)2
[2(cosλi − ui)]

−2di [2(cosλj − uj)]
−2dj

= −2 log |2 cosλi − 2ui| f(λ,θ). (A9∗)

Using (A9∗) and (A9∗) we conclude that

sup
[−π,π]2×Θ

∣∣∣∣w(λ) ∂∂θi f(λ,θ)
∣∣∣∣ < +∞. (A9∗)

Thus, by (A9∗) and Lemma 5 there exists

∂

∂θi
σ2(θ) =

∫
[−π,π]2

w(λ)
∂

∂θi
f(λ,θ) dλ
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and

sup
Θ

∣∣∣∣ ∂∂θiσ2(θ)
∣∣∣∣ ≤ 4π2 sup

[−π,π]2×Θ

∣∣∣∣w(λ) ∂∂θi f(λ,θ)
∣∣∣∣ < +∞.

It is not difficult to find ∂2

∂θi∂θj
f(λ,θ). By (A9∗) the second derivatives of f are given by

∂2

∂θ2i
f(λ,θ) = −2 log (2 cosλi − 2ui)

∂

∂θi
f(λ,θ) = 4 log |2 cosλi − 2ui|2 f(λ,θ), (A9∗)

∂2

∂θj∂θi
f(λ,θ) = 4 log |2 cosλi − 2ui| · log |2 cosλj − 2uj | f(λ,θ), i, j = 1, 2, i ̸= j. (A9∗)

It follows from (A9∗), (A9∗), and (A9∗) that

sup
[−π,π]2×Θ

∣∣∣∣w(λ) ∂2

∂θj∂θi
f(λ,θ)

∣∣∣∣ < +∞, i, j = 1, 2. (A9∗)

Finally, by (A9∗) and Lemma 5 there exists

∂2

∂θj∂θi
σ2(θ) =

∫
[−π,π]2

w(λ)
∂2

∂θj∂θi
f(λ,θ) dλ

and

sup
Θ

∣∣∣∣ ∂2

∂θj∂θi
σ2(θ)

∣∣∣∣ ≤ 4π2 sup
[−π,π]2×Θ

∣∣∣∣w(λ) ∂2

∂θj∂θi
f(λ,θ)

∣∣∣∣ < +∞. (A9∗)

�

Proof of Theorem 15. We will prove that the conditions A1-A6 in the Appendix are satisfied.

Therefore, we will be able to apply Theorem ?? by Anh, Leonenko and Sakhno (2004) and

obtain the statement of Theorem 15.

The condition A1 holds, since θ0 belongs to the parameter space Θ =
(
0, 12
)2

which is an

interior of the compact set
[
0, 12
]2
.

It follows from representation (A9∗) of the spectral density that f(λ,θ1) ̸= f(λ,θ2), for

θ1 ̸= θ2. Thus, the condition A2 is satisfied.

The class of non-negative weight functions w(λ) defined by (A9∗) consists of symmetric

functions. Note that

| cos(λi)− cos(νi)| = 2

∣∣∣∣sin(λi + νi
2

)
sin

(
λi − νi

2

)∣∣∣∣ ∼ C |λ2i − ν2i |,

Tesis Doctoral Rosa M. Espejo Montes



Papers submitted 333

when λi → ±νi. Thus, by (A9∗) and representation (A9∗) of the spectral density we get

w(λ)f(λ,θ) ∈ L1([−π, π]2) for all θ.

To verify A4, that is, to prove

∇θ

∫
[−π,π]2

Ψ(λ,θ)w(λ) dλ =

∫
[−π,π]2

∇θΨ(λ,θ)w(λ) dλ = 0,

we find

w(λ)
∂

∂θi
Ψ(λ,θ) =

w(λ)

σ2(θ)

[
∂

∂θi
f(λ,θ)

]
− w(λ)

σ4(θ)

[
∂

∂θi
σ2(θ)

]
f(λ,θ) =: S1(λ,θ)− S2(λ,θ)

(A9∗)

and apply Lemma 1.

By (A9∗) and the choice of the weight function we obtain

sup
[−π,π]2×Θ

∣∣ log |2 cosλi − 2ui|
∣∣ f(λ,θ)w(λ) < +∞. (A9∗)

Therefore, by equation (A9∗) and Lemma 6:

|S1(λ,θ)| ≤
C

σ2(θ)
≤ C

minΘ σ2(θ)
∈ L1([−π, π]2). (A9∗)

Now, it follows from (A9∗), (A9∗) and Lemma 6 that we can estimate S2(λ,θ) as

|S2(λ,θ)| =

∣∣∣∣∣∣w(λ)
[

∂
∂θi
σ2(θ)

]
f(λ,θ)

σ4(θ)

∣∣∣∣∣∣ ≤ C
w(λ)f(λ,θ)

minΘ σ4(θ)
≤ C. (A9∗)

Finally, A4 follows from (A9∗), (A9∗), and Lemma 5 with g(x) = C.

Note that L1([−π, π]2) ∩ L2([−π, π]2) = L2([−π, π]2). To verify the condition A5 for the

weight function w(·) we have to show that f(λ,θ0)w(λ) logΨ(λ,θ) ∈ L2([−π, π]2), for all θ ∈ Θ.

By (A9∗) and (A9∗) the product f(λ,θ0)w(λ) logΨ(λ,θ) is bounded for all λ except {λ : λi =

±νi, i = 1, 2}. Let d̃i = max(di, di0). Then, for λi → ±νi, i = 1, 2 :

[f(λ,θ0)w(λ) logΨ(λ,θ)]2 ≤ C

2∏
i=1

|λi ± νi|2ai−4d̃i log |λi ± νi| ∈ L1([−π, π]2).
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Therefore, combining the above results we conclude that A5 holds.

To verify the condition A6 we use the following function v(λ) = |λ21 − ν21 |β|λ22 − ν22 |β,

β ∈ (0, 1/2). Note, that

|λ21 − ν21 |β|λ22 − ν22 |β log f(λ,θ) ∼ C|λ21 − ν21 |β|λ22 − ν22 |β
(
d1 log |λ21 − ν21 |+ d2 log |λ21 − ν21 |

)
→ 0,

when λi → ±νi. Thus, by the choice of v(·) and properties of σ(θ) the function

h(λ,θ) = v(λ) logΨ(λ,θ) = |λ21 − ν21 |β|λ22 − ν22 |β (log f(λ,θ)− 2 log σ(θ))

is uniformly continuous on [−π, π]2 ×Θ.

Also, it holds ∣∣∣∣f(λ,θ0)w(λ)v(λ)

∣∣∣∣ ≤ Cv−1(λ) ∈ L2([−π, π]2).

Since the conditions A1-A6 are satisfied Theorem ?? follows from Theorem ?? in Anh,

Leonenko, and Sakhno (2004). �

Proof of Theorem 16 to prove the asymptotic normality of the MCE in Theorem 16 we will

show that the conditions A7-A9 of the Appendix hold.

We begin by proving the condition A7. First, to verify the twice differentiability of the

function Ψ(λ,θ) on Θ we formally compute the second-order derivatives of Ψ :

∂2

∂θj∂θi
Ψ(λ,θ) =

∂

∂θj


[

∂
∂θi
f(λ,θ)

]
σ2(θ)−

[
∂
∂θi
σ2(θ)

]
f(λ,θ)

σ4(θ)


=

1

σ4(θ)

{[
∂2

∂θj∂θi
f(λ,θ)

]
σ2(θ) +

[
∂

∂θj
σ2(θ)

] [
∂

∂θ i
f(λ,θ)

]}
− 1

σ4(θ)

{[
∂2

∂θj∂θi
σ2(θ)

]
f(λ,θ)−

[
∂

∂θi
σ2(θ)

] [
∂

∂θj
f(λ,θ)

]}
− 1

σ8(θ)

{
∂

∂θj
σ4(θ)

([
∂

∂θi
f(λ,θ)

]
σ2(θ)−

[
∂

∂θi
σ2(θ)

]
f(λ,θ)

)}
.(A9∗)

Note that in Lemma 6 we proved that the derivatives ∂
∂θi
σ2(θ), ∂2

∂θj∂θi
σ2(θ), ∂

∂θi
f(λ,θ), and

∂2

∂θi∂θj
f(λ,θ) exist. Hence, by the above computations and Lemma 6 the function Ψ is twice

differentiable on Θ.
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In addition, by estimates (A9∗), (A9∗), (A9∗), Lemma 6, and representation (A9∗) the

product w(λ)f(λ,θ0)
∂2

∂θi∂θj
logΨ(λ,θ) is bounded on [−π, π]2 ×Θ. Hence,

w(λ)f(λ,θ0)
∂2

∂θi∂θj
logΨ(λ,θ) ∈ L1([−π, π]2) ∩ L2([−π, π]2), i, j = 1, 2, θ ∈ Θ.

To prove part 2 of the condition A7, we first note that by (A9∗) and (A9∗):

∂

∂θi
logΨ(λ,θ) =

∂

∂θi
log(f(λ,θ))− ∂

∂θi
log(σ2(θ)) = −2 log |2 cosλi − 2ui| −

∂
∂θi
σ2(θ)

σ4(θ)
.

By Lemma 6 the second term is bounded. Hence, it follows from (A9∗) and (A9∗) that the

product w(λ)f(λ,θ0)
∂
∂θi

logΨ(λ,θ) is bounded on [−π, π]2 ×Θ, that implies

w(λ)f(λ,θ0)
∂

∂θi
logΨ(λ,θ) ∈ Lk([−π, π]2), k ≥ 1, i = 1, 2, θ ∈ Θ.

To verify the condition A8 we first check the positive definiteness of the matrices S(θ) and

A(θ).

The entries of S(θ) can be rewritten as

si,j(θ) =

∫
[−π,π]2

f(λ,θ)w(λ)
∂2

∂θi∂θj
logΨ(λ,θ)dλ = σ2(θ)

∫
[−π,π]2

Ψw(λ,θ)
∂2

∂θi∂θj
logΨw(λ,θ)dλ,

where Ψw(λ,θ) = f(λ,θ)w(λ)/σ2(θ).

By (A9∗), (A9∗), and Lemma 6 the function Ψw(λ,θ) is integrable, i.e. there is a constant C

such that Ψw(λ,θ)/C is a density. Hence, S(θ) = Cσ2(θ)I(θ), where I is the Fisher information

matrix of the random vector X̃ with the density Ψ̃w(λ,θ) = Ψw(λ,θ)/
∫
[−π,π]2 Ψw(λ,θ)dλ.

Therefore, S(θ) is non-negative definite. Note, that I(θ) = −
(
E
(
Q̃iQ̃j

))
i,j=1,2

, where Q̃i =

∂
∂θi

Ψ̃w(X̃,θ). The random variables Q̃1 and Q̃2 are not a.s. linearly related which implies

positive definiteness of S(θ) .

The entries of A(θ) can be rewritten as

ai,j(θ) = 8π2σ2(θ)

∫
[−π,π]2

w2(λ)
∂

∂θi
Ψ(λ,θ)

∂

∂θj
Ψ(λ,θ) dλ = Cσ2(θ)E (QiQj) ,
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where Qi =
∂
∂θi

Ψ(X,θ) and the random vector X has the density w2(λ)/
∫
[−π,π]2 w

2(λ) dλ.

As (E (QiQj))i,j=1,2 is a non-negative definite matrix, A(θ) is non-negative definite too.

Moreover, it is positive definite, because the random variables Q1 and Q2 are not a.s. linearly

related.

Now we compute elements of the matrix S(θ). By (A9∗)

si,j(θ) = σ2(θ)

∫
[−π,π]2

w(λ)

[
∂2

∂θi∂θj
Ψ(λ,θ)− 1

Ψ(λ,θ)

∂

∂θi
Ψ(λ,θ)

∂

∂θj
Ψ(λ,θ)

]
dλ

= σ2(θ)

∫
[−π,π]2

w(λ) ∂
∂θj


[

∂
∂θi
f(λ,θ)

]
σ2(θ)−

[
∂
∂θi
σ2(θ)

]
f(λ,θ)

σ4(θ)


− w(λ)

f(λ,θ)σ6(θ)

([
∂

∂θi
f(λ,θ)

]
σ2(θ)−

[
∂

∂θi
σ2(θ)

]
f(λ,θ)

)
×
([

∂

∂θj
f(λ,θ)

]
σ2(θ)−

[
∂

∂θj
σ2(θ)

]
f(λ,θ)

))
dλ

=

∫
[−π,π]2

(
w(λ)

σ2(θ)

([
∂2

∂θj∂θi
f(λ,θ)

]
σ2(θ) +

[
∂

∂θj
σ2(θ)

] [
∂

∂θ i
f(λ,θ)

])
− w(λ)

σ2(θ)

([
∂2

∂θj∂θi
σ2(θ)

]
f(λ,θ)−

[
∂

∂θi
σ2(θ)

] [
∂

∂θj
f(λ,θ)

])
−2

w(λ)

σ6(θ)

(
∂

∂θj
σ2(θ)

([
∂

∂θi
f(λ,θ)

]
σ2(θ)−

[
∂

∂θi
σ2(θ)

]
f(λ,θ)

))
− w(λ)

σ4(θ)f(λ,θ)

([
∂

∂θi
f(λ,θ)

]
σ2(θ)−

[
∂

∂θi
σ2(θ)

]
f(λ,θ)

)
×
([

∂

∂θj
f(λ,θ)

]
σ2(θ)−

[
∂

∂θj
σ2(θ)

]
f(λ,θ)

)
dλ.

By (A9∗), (A9∗), (A9∗), and (A9∗) we obtain

si,j(θ) = 3

∫
[−π,π]2

w(λ)

σ2(θ)

[
∂

∂θj
σ2(θ)

] [
∂

∂θ i
f(λ,θ)

]
dλ−

∫
[−π,π]2

w(λ)

f(λ,θ)

[
∂

∂θi
f(λ,θ)

] [
∂

∂θj
f(λ,θ)

]
dλ

=
3

σ2(θ)

[
∂

∂θj
σ2(θ)

] [
∂

∂θi
σ2(θ)

]
−4

∫
[−π,π]2

log |2 cosλi − 2ui| log |2 cosλj − 2uj | w(λ)f(λ,θ)dλ.
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By (A9∗) the elements of the matrix A(θ) are

ai,j(θ) = 8π2σ2(θ)

∫
[−π,π]2

w2(λ)
∂

∂θi
Ψ(λ,θ)

∂

∂θj
Ψ(λ,θ) dλ

=
8π2

σ2(θ)

∫
[−π,π]2

w2(λ)

([
∂

∂θi
f(λ,θ)

]
σ2(θ)−

[
∂

∂θi
σ2(θ)

]
f(λ,θ)

)
×
([

∂

∂θj
f(λ,θ)

]
σ2(θ)−

[
∂

∂θj
σ2(θ)

]
f(λ,θ)

)
dλ.

Hence, by (A9∗) we get

ai,j(θ) = S1 − S2(i, j)− S2(j, i) + S3,

where

S1 = 32π2σ2(θ)

∫
[−π,π]2

log |2 cosλi − 2ui| log |2 cosλj − 2uj | w2(λ)f2(λ,θ)dλ,

S2(i, j) = 16π2σ2(θ)

[
∂

∂θj
σ2(θ)

] ∫
[−π,π]2

log |2 cosλi − 2ui| w2(λ)f2(λ,θ)dλ,

S3 =
8π2

σ2(θ)

[
∂

∂θj
σ2(θ)

] [
∂

∂θj
σ2(θ)

] ∫
[−π,π]2

w2(λ)f2(λ,θ)dλ.

The proof of the condition A9 is based on the approach in Bentkus (1972). Notice, that

by (A9∗) there exists a factorization w(λ) = w1(λ) · w2(λ) of w(λ) such that both f̃(λ,θ0) =

f(λ,θ0)w1(λ) and w2(λ) are bounded functions of λ. Let us denote w̃2(λ,θ) = w2(λ)
∂
∂θi

logΨ(λ,θ).

Then,

T

∫
[−π,π]2

(EI∗T (λ)−f(λ,θ0))w(λ)
∂

∂θi
logΨ(λ,θ) dλ = T

∫
[−π,π]2

(EI∗T (λ)w1(λ)−f̃(λ,θ0))w̃2(λ,θ) dλ

= T

∫
[−π,π]2

(EI∗T (λ)w1(λ)− EĨ∗T (λ))w̃2(λ,θ) dλ+ T

∫
[−π,π]2

(EĨ∗T (λ)− f̃(λ,θ0))w̃2(λ,θ) dλ,

(A9∗)

where Ĩ∗T (λ) denotes the unbiased periodogram of the Gegenbauer random field with the spectral

density f̃(λ,θ0).

Due to the boundness of f̃(λ,θ0), analogously to Guyon (1982) and Bentkus (1972), the

second term in (A9∗) vanishes when T → ∞. Therefore, to prove the condition A9, it is enough

to show that the first term in (A9∗) vanishes too.
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Let γ̃(t,θ0) denote the auto-covariance function of the Gegenbauer random field with the

spectral density f̃(λ,θ0). By multidimensional Parseval’s theorem, see Brychkov et al. (1992),

we get∫
[−π,π]2

(EI∗T (λ)w1(λ)−EĨ∗T (λ))w̃2(λ,θ) dλ =
1

(2π)2

∫
[−π,π]2

(
w1(λ)

T−1∑
t1=1−T

T−1∑
t2=1−T

e−i(λ1t1+λ2t2)γ(t,θ0)

−
T−1∑

t1=1−T

T−1∑
t2=1−T

e−i(λ1t1+λ2t2)γ̃(t,θ0)
)
w̃2(λ,θ) dλ =

1

(2π)2

∫
[−π,π]2

(
w1(λ)

∑
(t1,t2)∈Z2

e−i(λ1t1+λ2t2)γ(t,θ0)×

I[1−T,T−1]2(t1, t2)−
∑

(t1,t2)∈Z2

e−i(λ1t1+λ2t2)γ̃(t,θ0)I[1−T,T−1]2(t1, t2)
)
w̃2(λ,θ) dλ =

∫
[−π,π]2

(
w1(λ)

∫
[−π,π]2

f(x,θ0)ΦT−1(λ− x) dx−
∫
[−π,π]2

f̃(x,θ0)ΦT−1(λ− x) dx
)
w̃2(λ,θ) dλ∫

[−π,π]2

(∫
[−π,π]2

f(x+ λ,θ0)ΦT−1(x)(w1(λ)− w1(λ+ x)) dx
)
w̃2(λ,θ) dλ, (A9∗)

where ΦT−1(·) is the Fejér kernel.

Let f(λ,θ0) ∈ L2([−π, π]2), i.e. (d1, d2) ∈ (0, 1/4)2. Then, repeating the proof of part 1)

of Theorem 2.2 in Bentkus (1972) for the two-dimensional case with p = 2 we obtain that the

integral in (A9∗) is bounded by CεT /T, where εT → 0 when T → ∞. It implies that first term

in (A9∗) vanishes and completes the proof of the condition A9. �

A9∗.5 Simulation studies

In this section we presented some numerical results to confirm the theoretical findings.

Figure A9∗.3 demonstrates a series of box plots to characterize the sample distribution of

MCEs of the parameters di, i = 1, 2, as a function of T. To compute it Monte Carlo simulations

of the Gegenbauer field with 100 replications for each T = 10, 20, 30, 40, 50 were performed. For

the parameters u1 = 0.4, u2 = 0.3, d1 = 0.2, and d2 = 0.3 realizations of Yt1,t2 were simulated

using the truncated sum
∑40

n1=0

∑40
n2=0 in (A9∗). For example, a realization of the Gegenbauer

random field on a 100 × 100 grid is shown in Figure A9∗.1. We set the parameter values of
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the weight function in (A9∗) to a1 = a2 = 2 and w0(λ) ≡ 1. The periodogram IT (λ) was

computed and the minimizing argument θ̂T of the functional ÛT (θ) was found numerically for

each simulation. Figure A9∗.3 demonstrates that the sample distribution of θ̂T converges to

θ0 as T increases. The plot of the sample probabilities P0(|θ̂T − θ0| < ε) in Figure A9∗.4 also

confirms convergence in probability of θ̂T to θ0.

For each generated realization we also computed the value of σ̂2T using IT (λ). Analogously

to Figure A9∗.3 and A9∗.4, plots in Figure A9∗.5 and A9∗.6 support convergence in probability

of σ̂2T to σ2(θ0) when T increases.

To verify the result of Theorem 16 we used sample values θ̂
∗
50 which minimized the functional

Û∗
T (θ) for each simulation. To avoid possible negative values the modified periodogram I∗T (λ) was

truncated at zero by the R program. Bearing in mind the edge effect and modified periodogram’s

correction, Figure A9∗.9 demonstrates that the results are close to the expected ones even for

the relatively small T = 50. The normal Q-Q plot of each component of θ̂
∗
50 in Figure A9∗.9

matches with the theoretical normal distribution. To test the bivariate normality hypothesis

about θ̂
∗
50 we used the Shapiro-Wilk, energy, and kurtosis tests of multivariate normality from

the R packages mvnormtest, energy, and ICS. In all the tests, p-values (0.9491, 0.4605, and

0.5314) confirmed that θ̂
∗
T asymptotically follows a bivariate normal distribution. Simulations

for other values of the parameters were run, with similar results.

Hence, we conclude that the MCEs are consistent estimators and the distributions of θ̂
∗
T

converge to the bivariate normal law. Note, that the simulation studies confirm the convergence

not only for (d1, d2) ∈ (0, 1/4)2, but for all possible values of (d1, d2) in (0, 1/2)2.

A9∗.6 Directions for future research

The estimation methodology based on the unbiased periodogram was introduced in Guyon

(1982, 1995), see also Heyde and Gay (1993). Recently, the paper by Robinson and Sanz (2006)
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Figure A9∗.3: Boxplots of sampled values of θ̂T .
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Figure A9∗.4: Sample probabilities P0(|θ̂T − θ0| < ε).
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Figure A9∗.5: Boxplots of sampled values of σ̂2T .
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Figure A9∗.6: Sample probabilities P0(|σ̂2T − σ2(θ0)| < ε).
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Figure A9∗.7: Boxplots of sampled values of θ̂
∗
50.
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Figure A9∗.8: Normal Q-Q plots for each component of θ̂
∗
50.

Figure A9∗.9: Sample distributions of adjusted MCEs.
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provided a detailed discussion on the topic, see also the references therein. It studied mainly the

difficulties arising in the application of this methodology in high dimensions. In particular, there

were investigated problems arising in relation to non-uniformly increasing domain asymptotics

associated with different expansion rates of the studied domain in each spatial direction. In

this paper, we considered the case d = 2 and restricted out attention to the case of uniformly

increasing domain asymptotics. The case of non-uniformly increasing domain asymptotics is left

for future investigations.

An extended version of the derived results can be obtained for more general formulations of

the unbiased periodogram. In particular, different growing rates can be allowed for each spatial

dimension in the definition of the sampling area. For example, one can consider the following

generalized version of the two-dimensional unbiased periodogram (see, for example, Robinson

and Sanz, 2006)

Ig(λ1, λ2) =
1

(2π)2

g1(T )−1∑
t1=1−g1(T )

g2(T )−1∑
t2=1−g2(T )

e−i(λ1t1+λ2t2)γ̂T (t),

where the functions gi(T ), i = 1, 2, satisfy some suitable conditions (for example, gi(T ) → ∞,

T → ∞, and gi(T ) ≤ CT, C < 1, for i = 1, 2, and sufficiently large T ).

It would be interesting to extend the methodology by Bentkus (1972) to prove the condition

A9 for all (d1, d2) in (0, 1/2)2.

Note that our simulation results show that the proposed minimum contrast estimation

methodology works in the case of uniformly increasing domain asymptotics.

Appendix

The conditions for consistency and asymptotic normality of the MCE for parameters of station-

ary fractional Riesz-Bessel type random fields given in Anh, Leonenko, and Sakhno (2004) are

specified below for random fields on Z2.
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A1. Let Yt1,t2 , t = (t1, t2) ∈ Z2, be a real-valued measurable stationary Gaussian random field

with zero mean and a spectral density f(λ,θ), where λ = (λ1, λ2) ∈ [−π, π]2, θ ∈ Θ, and

Θ is a compact set. Assume that θ0 ∈ int(Θ), where θ0 is the true value of the parameter

vector θ.

A2. If θ1 ̸= θ2 then f(λ,θ1) ̸= f(λ,θ2) for almost all λ ∈ [−π, π]2 with respect to the Lebesgue

measure.

A3. There exists a nonnegative function w(λ), λ ∈ [−π, π]2, such that

1. w(λ) is symmetric about (0, 0), i.e. w(λ) = w(−λ);

2. w(λ)f(λ,θ) ∈ L1

(
[−π, π]2

)
for all θ ∈ Θ.

A4. The derivatives ∇θΨ(λ,θ) exist and it is legitimate to differentiate under the integral sign

in equation (A9∗), i.e.

∇θ

∫
[−π,π]2

Ψ(λ,θ)w(λ) dλ =

∫
[−π,π]2

∇θΨ(λ,θ)w(λ) dλ = 0.

A5. For all θ ∈ Θ the function w(λ), λ ∈ [−π, π]2, satisfies

f(λ,θ0)w(λ) logΨ(λ,θ) ∈ L1

(
[−π, π]2

)
∩ L2

(
[−π, π]2

)
.

A6. There exists a function υ(λ), λ ∈ [−π, π]2, such that

1. the function h(λ,θ) = υ(λ) logΨ(λ,θ) is uniformly continuous on [−π, π]2 ×Θ;

2. f(λ,θ0)w(λ)/υ(λ) ∈ L1([−π, π]2) ∩ L2([−π, π]2).

A7. The function Ψ(λ,θ) is twice differentiable on Θ and

1. f(λ,θ0)w(λ)
∂2

∂θi∂θj
logΨ(λ,θ) ∈ L1([−π, π]2)

∩
L2([−π, π]2), for all i, j, and θ ∈ Θ;

2. f(λ,θ0)w(λ)
∂
∂θi

logΨ(λ,θ) ∈ Lk([−π, π]2), for all i, θ ∈ Θ, and k ≥ 1.

Tesis Doctoral Rosa M. Espejo Montes



348 Papers submitted

A8. The matrices S(θ) = (sij(θ)) and A(θ) = (aij(θ)) with the elements defined by (A9∗) and

(A9∗) are positive definite.

A9. The spectral density f(λ,θ), the weight function w(λ), and the function ∂
∂θi

logΨ(λ,θ)

are such that for all i and θ ∈ Θ :

T

∫
[−π,π]2

(EI∗T (λ)− f(λ,θ0))w(λ)
∂

∂θi
logΨ(λ,θ) dλ −→ 0, as T −→ ∞.
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