DOCTORAL THESIS

MUSYC: A Model-Driven Methodology to Develop
Ubiquitous Systems

Supervisors:
Author:
José Luis Garrido Bullejos
Carlos Rodriguez Dominguez
Kawtar Benghazi Akhlaki

UNIVERSITY OF GRANADA

Department of Computer Languages and Systems

2014

Editor: Editorial de la Universidad de Granada
Autor: Carlos Rodriguez Dominguez

D.L.: GR 1948-2014

ISBN: 978-84-9083-113-7

El doctorando Carlos Rodriguez Dominguez y los directores de la
tesis José Luis Garrido Bullejos y Kawtar Benghazi Akhlaki garan-
tizamos, al firmar esta tesis doctoral, que el trabajo ha sido realizado
por el doctorando bajo la direccién de los directores de la tesis y,
hasta donde nuestro conocimiento alcanza, en la realizacién del tra-
bajo, se han respetado los derechos de otros autores a ser citados,

cuando se han utilizado sus resultados o publicaciones.

Granada, 11 de abril de 2014.

Directores de la Tesis

José Luis Garrido Bullejos Kawtar Benghazi Akhlaki

Doctorando

Carlos Rodriguez Dominguez

The PhD candidate Carlos Rodriguez Dominguez and the thesis su-
pervisors José Luis Garrido Bullejos and Kawtar Benghazi Akhlaki
guarantee, by signing this thesis, that the work has been done by
the PhD candidate under the guidance of the directors of the thesis
and, as far as our knowledge reaches, in the realization of the work,
the copyrights of the cited authors have been respected, when their

results or publications have been used.

Granada, April 11, 2014.

Thesis Supervisors

José Luis Garrido Bullejos Kawtar Benghazi Akhlaki
PhD Candidate

Carlos Rodriguez Dominguez

To my supervisors, José Luis and Kawtar. Thanks for all your sup-
port during these years, your patience and your care. To Ony, who
is the key figure of my life. To my family in general (which includes
my friends), and to my parents, brother, grand mother, uncles, aunts
and cousins in particular. To Alvaro, Manolo and Tomds, because
you have the best degree that can be obtained: you are true friends.
To the rest of the members of MYDASS research group, because you
have supported and encouraged me from the beginning. To Federico,
for his constant help, energy and teachings. To my best friends Jaby
and Gilberto (and their respective partners), for being such crucial
people in my life, and for sharing with me so many life-changing

moments. We will always be “partners in crime”.

Resumen

En 1991, Mark Weiser vision6 un estilo de vida futuro que giraria en
torno a dispositivos de computo que se integrarian de manera trans-
parente en nuestros entornos fisicos. Debido a la amplia disponibi-
lidad de dispositivos pequefios, méviles y asequibles (smartphones,
tablets, etc.) que son capaces de ayudarnos en nuestras tareas dia-
rias, la idea de Weiser, también conocida como el paradigma de la
computacion ubicua, se puede considerar hoy dia como el “siguiente

paso” en la esperada evolucion de las tecnologias actuales.

A pesar de ello, el desarrollo de un sistema ubicuo (i.e., siste-
mas software disefiados conforme al paradigma de la computacion
ubicua) es todavia un reto, y su complejidad esta parcialmente liga-
da a la gestién de los mecanismos asociados a las comunicaciones

(tecnologias de red, protocolos software, etc.).

Técnicamente, la complejidad a la hora de gestionar las comu-
nicaciones apropiadamente se ha relacionado directamente con su
naturaleza espontdnea y volatil, debido a que los usuarios de estos
sistemas estdn en continuo movimiento mientras portan sus disposi-
tivos de computo. Sin embargo, otros problemas pueden complicar

también la gestion de las comunicaciones y el desarrollo de sistemas

ubicuos.

Particularmente, no hay conceptualizaciones bien establecidas
acerca de los elementos que deberian formar parte de un sistema ubi-
cuo. Por tanto, los mecanismos (y sus propiedades) para dar soporte
a las comunicaciones en un sistema ubicuo no estdn definidos expli-

citamente.

Consecuentemente, debido a la ausencia de modelos bien es-
tablecidos, es complicado desarrollar metodolégicamente un siste-
ma ubicuo cuyo disefio capture todos los requisitos del usuario y
que pueda ser compartido (y entendido) por diferentes disefiadores
de software. Por consiguiente, diferentes disefiadores pueden idear
mecanismos de comunicacion heterogéneos que, finalmente, pueden

presentar un bajo nivel de interoperabilidad y compatibilidad.

Mas aun, las diferentes plataformas subyacentes que pueden
existir para ocuparse de la complejidad a la hora de gestionar las co-
municaciones en sistemas ubicuos (como middleware), de nuevo, no
pueden basarse en modelos bien establecidos. En consecuencia, su
uso requiere unos amplios conocimientos técnicos, y los conceptos
presentes en algunas de estas plataformas pueden no estar presentes

en otras, o pueden incluso tener una semdntica diferente.

Esta tesis propone una conceptualizacion de los sistemas ubi-

cuos, con un particular énfasis en los mecanismos que deben estar

presentes para dar soporte y gestionar las comunicaciones en estos
sistemas. La conceptualizacion estd basada en la nocién mds abs-
tracta de sistema de comunicacion, que se ha propuesto para ex-
tender y completar las teorfas de comunicacion existentes. Ambas
conceptualizaciones de un sistema de comunicacién y de un sistema

ubicuo se han formalizado a través de ontologas.

Sobre la base de las conceptualizaciones definidas y un con-
junto de reglas de transformacion, se ha propuesto una metodologia
dirigida por modelos, llamada MUSYC, para el desarrollo de sis-
temas ubicuos. MUSYC ha sido validada a través de diversos pro-
yectos de [4+D y de un middleware para sistemas ubicuos llamado
BlueRose, que, a su vez, muestra que MUSYC es también apropiado
para el desarrollo de tecnologias de soporte para facilitar la gestion

de las comunicaciones en este tipo de sistemas.

Abstract

In 1991, Mark Weiser envisioned a future lifestyle centered around
computing devices that would be seamlessly integrated into our
physical environments. Due to the wide availability and success of
small, mobile and affordable devices (smartphones, tablets, etc.)
that are able to assist us during our daily tasks, Weiser’s idea, also
known as the ubiquitous computing paradigm, can be considered
nowadays as the “next step” in the expected evolution of the current

technologies.

However, the development of a ubiquitous system (i.e., a
software system designed according to the ubiquitous computing
paradigm) is still challenging, and its complexity is partially related
to the appropriate management of the mechanisms associated with
the communications (networking technologies, software protocols,

etc.).

Technically, the complexity to appropriately manage the
communications has been directly linked to their spontaneous
and highly volatile nature, since the users of these systems are
in constant movement while they are carrying their computing

devices. Nonetheless, other different problems may also complicate

the management of the communications and the development of

ubiquitous systems.

Particularly, there are not any well-established conceptualiza-
tions of the elements that should be present in a ubiquitous sys-
tem. Therefore, the mechanisms (and their properties) supporting
the communications in a ubiquitous system are not defined explic-

itly.

In consequence, due to the absence of well established
models, it is challenging to methodologically develop a ubiquitous
system whose design captures all the users’ requirements and
that can be shared (and understood) among different software
designers. Hence, different designers may devise heterogeneous
communication mechanisms that, ultimately, may present a low

degree of interoperability and compatibility.

Moreover, the different underlying platforms that may exist to
deal with the complexity of managing the communications in ubiq-
uitous systems (like middleware), again, can not be based on well
established models. Therefore, their use requires a high technical
expertise, and the concepts present in some of these platforms may

not be present in others, or they may even have different semantics.

This thesis work proposes a conceptualization of the ubiqui-

tous systems, with a particular emphasis on the mechanisms that

should be present to support and manage the communications in
these systems. The conceptualization is based on the more abstract
notion of communication system, which has been proposed to extend
and complete the existing communication theories. Both conceptu-
alizations of a communication system and a ubiquitous system have

been formalized through ontologies.

On the basis of the defined conceptualizations and a set of
transformation rules, a model-driven methodology to develop ubig-
uitous systems, called MUSYC, has been proposed. MUSYC has
been validated through the development of several R&D projects
and a middleware for ubiquitous systems called BlueRose, which,
in turn, shows that MUSYC is also suitable to develop supporting
technologies to facilitate the management of the communications in

these systems.

Contents

List of Figures XIX
List of Tables XXV
Prologue XXVII
CHAPTER Page
1. Introduction 1
1.1. The Ubiquitous Computing Era 1
1.2. Description of the Problem and Motivation 3
1.3. Hypothesis and Objectives 5
1.4. Structure of the Thesis 6

2. Foundations for the Specification and Development of
Ubiquitous Systems 9
2.1. Distributed Systems L. 10
2.1.1. Architectures of a Distributed System 11
2.1.2. Communication Paradigms 16

2.1.3. Some Notations for Representing Dis-
tributed Systems L 23
2.1.4. Supporting Communications: Middleware . . 28
2.2. Ubiquitous Systems 36
2.2.1. Context Awareness 38

2.2.2. Communication Paradigms in Ubiquitous
Systems oL 41

2.2.3. Middleware Technologies for Ubiquitous
Systems oL 48

XIV

2.2.4. Communications in Ubiquitous Systems:

Technical Issues 51
2.3. Model-Driven Engineering (MDE) 55
2.3.1. Model-Driven Architecture (MDA) 60
23.2. A Comparison between MDE and
Code-Centric Developments 63
2.3.3. Developing Communication Mechanisms
onthebasisof MDE 68
24. Conclusions 70
. A Model for Communication Systems 73
3.1. An Introduction to the Communication Theory 74
3.2. A Model to Conceptualize a Communication System 77
3.2.1. Structural View 78
3.2.2. Behavioral View 85
3.2.3. Formal Specification as an Ontology 93
3.3. Quality Attributes of the Communication Model . . . 97
34. Conclusions 100
. A Communication Model for Ubiquitous Systems 103
4.1. Communication Functionalities of a Ubiquitous
System 104
4.2. General Communication Model for Ubiquitous Sys-
tems 107
4.2.1. Structural View 109
4.2.2. Behavioral View 131
4.2.3. Formal Specification as an Ontology 138
4.2.4. Ontological Representation of a Ubiquitous
System as a Communication System 143
4.3. Quality Attributes of the Communication Model for
Ubiquitous Systems 147
44. Conclusions 148

. MUSYC: An MDA-based Methodology to Develop
Ubiquitous Systems on the Basis of the Communications 153
5.1, Overview L 154
5.2. Stage 1: Communication Requirements Analysis . . 162

5.2.1. [Initial Analysis through Use Cases and
Choreography Models 163

5.2.2. CS-CIM Specification 166

5.3. Stage 2: Ubiquitous System Design 175
5.3.1. CS-CIM to US-PIM Transformation: Struc-
tural View 177
53.2. CS-CIM to US-PIM Transformation:
Behavioral View 186

5.4. Stage 3: Implementation of the Ubiquitous System . 193
5.4.1. Transformation from a US-PIM to a US-PSM 194

5.4.2. Code Generation from a US-PSM 196
5.5. CASE Tools Supporting MUSYC 199
5.6. Conclusions 205

6. Validation of MUSYC through the Development of a
Middleware and a Software Framework for Ubiqui-

tous Systems: BlueRose 209
6.1. Applying MUSYC to the Development of Middle-
ware Solutions for Ubiquitous Systems 210
6.1.1. Communication Requirements Analysis . . . 211
6.1.2. Ubiquitous System Requirements Analysis . 216
6.1.3. Implementation 224
6.2. BlueRose as a Software Framework for the Devel-
opment of Ubiquitous Systems 226
6.2.1. Structural Elements 227
6.2.2. Behavioral Elements 234
6.3. Quality Attributes of BlueRose 235
6.3.1. Performance Efficiency 235
6.3.2. Additional Quality Attributes 240
6.4. Practical Validation 247
6.4.1. Mobile Forensic Workspace 247

6.4.2. VIRTRA-EL: A Web Platform to Support
a Collaborative Virtual Training for Elderly

People 253

6.4.3. Domo and Kora: Management of Home Au-
tomation Environments 256

6.4.4. Sherlock: A Location Service for Both Out-
doorsand Indoors 259
6.5. Conclusions 260

7. Conclusions 263

7.1. Results and Discussion 263
7.1.1. Conceptualization 264
7.1.2. Methodology 267
7.13. Technology 269
7.2. Future Work 271
Acknowledgements 275
Publications 277
Patentso 283
Bibliography 285
Appendices 301
I. Implementation of the CI-CS ontology in OWL . . . 301
II. Quality Attributes of the CI-CS Metamodel 328
III. Implementation of the PI-US Ontology in OWL . . . 337
IV. Quality Attributes of the PI-US Metamodel 374

V. Detailed SPEM 2.0 diagram describing the develop-
ment process proposed in MUSYC 383

VI. Proposed QVT rules to transform a CS-CIM into a
US-PIM 384

VII. ATL transformation rules that can be applied to the

VIIIL
IX.

behavioral view of a CS-CIM to produce a UML se-
quence diagram 398
Specification of a CS-CIM for BlueRose middleware 420
Specification of a US-PIM for BlueRose middle-
ware, automatically obtained from the CS-CIM
through the proposed QVT transformation rules . . . 424

List of Figures

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.

2.8.

2.9.

2.10.

2.11.

2.12.
2.13.

3.1.

3.2

3.3.

A SoaML model example of a search service 14
Pull-based communication model 21
Push-based communication model 21
Anexample Petrinet 23
An example of a UML 2.x communication diagram . 25
An example of a UML 2.x activity diagram 26
An example of a BPMN choreography diagram and

asummary of itselements 27
An example of a MANET with three devices: There

1s a total connection between them since the Node B

can route the data transmissions between A and C . . 52
Relationship between MDE, MDD and other
methodologies oL 56
Graphical illustration of the MDE development
methodology L oL 58
Metamodel-based transformations in Model-Driven
Architecture MDA) 61
Scheme of the MDE process 64
Scheme of the code-centric development process . . 65

The communication model proposed by Shannon
and Weaver in the The Mathematical Theory of

Communication, 1949 [115] 75
The communication model described by Berlo in the
The Process of Communication, 1960 [11] 75

The communication model described by Barnlund
in A Transactional Model of Communication, 1970

(re-printed in 2008 [6]) 76

XIX

3.4.

3.5.

3.6.

3.7.
3.8.

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

A UML activity diagram depicting the dynamic be-

haviorofaCI-CS 79
The structural view of the CI-CS metamodel, de-
picted as a UML class diagram 81

Behavioral view of the CI-CS metamodel, depicted
as a UML class diagram. The model is inspired by
the BPMN 2.0 Choreography Metamodel Specifica-
tion[89] 88
Graphical representation of an ontology of a CI-CS . 94
The class hierarchy and properties of an ontology of
a CI-CS, as represented in Protégé 95

Simplified interaction process involved in the mes-
sage exchanging communication functionality of a
ubiquitous system L. ... 110
Assumed interaction process involved in the event
distribution communication functionality of a ubig-

uitous system Lo 112
Assumed interaction process to dynamically
discover participants in a ubiquitous system 114
A UML class diagram depicting the structural view
of the PI-US metamodel 116

An extract of the UML class diagram representing
the PI-US metamodel, with a focus on the adopted

eventmodel 124
A UML class diagram depicting the behavioral view
of the PI-US metamodel 133

A UML sequence diagram representing how soft-
ware agents interact during a communication activ-
ity, as it is assumed in the proposed PI-US metamodel 136
An ontology of the communication mechanisms
supportinga PI-US 141
The class hierarchy and properties of an ontology
of the communication mechanisms supporting a PI-
US, as represented in Protégé 142
Some screenshots of Protégé that show how a rea-
soner can automatically infer that a ubiquitous sys-
tem is a communication system 146

5.1

5.2.

5.3.
54.
5.5.

5.6.

5.7.

5.8.

5.9.
5.10.

5.11.

5.12.

5.13.

5.14.

5.15.

MDA approach to the development of ubiquitous
SYSIEMS e e e 156

A simplified description of the development process
proposed in MUSYC, depicted as an SPEM 2.0 dia-
GIaM e e e e e 158

Overall development process specified in MUSYC . . 159
First development stage specified in MUSYC 164

A sample UML use case model that could be speci-
fied during the initial analysis of a Ubiquitous Med-
ical Environment 165

A sample choreography specified during the initial
analysis of a Ubiquitous Medical Environment, de-
picted as a BPMN 2.0 Choreography diagram 167

A UML activity diagram that specifies the process
that should be followed to identify the elements
present in the structural view of a CS-CIM, as it has
been defined in MUSYC 169

A UML class diagram depicting the structural ele-
ments of the sample UME as an instance of the ele-
ments present in the structural view of the CS-CIM

metamodel L Lo 170
Second development stage specified in MUSYC . . . 177
An excerpt of the QVT rules to transform a patici-

pant of a CS-CIM into a software agent in a US-PIM 178

An excerpt of the QVT rules to include the com-
munication functionalities of a ubiquitous system to
each transformed software agent 181
An excerpt of the QVT rules to transform a message

of a CS-CIM into the corresponding elements in a
US-PIM 182

An excerpt of the result of applying the QVT trans-
formation rules to the sample CS-CIM of a UME . . 184

An example of a transformation from a BPMN
choreography diagram into a sequence diagram . . . 187

An excerpt of the QVT rules to transform a choreog-
raphy of a CS-CIM into a choreography in a US-PIM 187

5.16. An excerpt of the QVT rules to transform a chore-
ography activity of a CS-CIM into a set of choreog-
raphy activitiesina US-PIM 188

5.17. An excerpt of the QVT rules to transform a link of a
CS-CIM into choreography activities in a US-PIM . . 190

5.18. An excerpt of the result of applying the QVT trans-
formation rules to the sample CS-CIM of a UME . . 192

5.19. Third development stage specified in MUSYC 194

5.20. Some example QVT rules to transform from soft-
ware agents in a US-PIM to the corresponding ele-
ments in an unspecified target US-PSM 197

5.21. A sample UME defined using the implementation of
an Eclipse Plug-in to define and check CS-CIMs . . . 200

5.22. The result of transforming the CS-CIM of a UME
into a US-PIM using QVT rules, depicted using the
implementation of an Eclipse Plug-in to define and
check US-PIMs 202

5.23. A sample transformation from an event listener de-
fined in an undefined US-PSM to Java code, imple-

mented in MOFM2T standard notation 203
5.24. An excerpt of a sample WSDL service interface au-
tomatically derived froma US-PSM 204

6.1. A use case model representing the functionalities
that are carried out by proxies and servants in
BlueRose middleware 213

6.2. The elements in the behavioral view of a CS-CIM
supporting the design of the BlueRose middleware,
represented as a BPMN 2.0 Choreography 214

6.3. The elements in the structural view of a CS-CIM
supporting the design of the BlueRose middleware,
represented as a UML class diagram 215

6.4. Some structural elements, represented in XMI nota-
tion, of the US-PIM that results from the transfor-
mation of the BlueRose CS-CIM with the proposed
QVTrules 219

6.5.

6.6.

6.7.

6.8.

6.9.

6.10.

6.11.

6.12.

6.13.

6.14.
6.15.
6.16.
6.17.
6.18.
6.19.

6.20.

Some behavioral elements, represented in XMI no-
tation, of the US-PIM that results from the transfor-
mation of the BlueRose CS-CIM with the proposed
QVTrules
An excerpt of the US-PIM in XMI standard notation
representing the different conditional events that are
delivered to activate the corresponding activities in
BlueRose
The XMI result of transforming the applications and
services in the US-PIM to the corresponding ele-
mentsinthe US-PSM,
New elements incorporated to the BlueRose design
and related to the message exchanging functionality,
depicted as a UML class diagram
Run-time operation of the proposed BRBroker, de-
picted as a UML sequence diagram
The semantic servant present in the BlueRose de-
sign, depicted as a UML class diagram
A comparison of the amount of time that is needed
by CORBA, ICE and BlueRose to complete the
same benchmark 0 0.
A comparison of the average throughputs (messages
per second) of CORBA, ICE and BlueRose
A comparison of the amount of memory that is
needed by CORBA, ICE and BlueRose to complete
the same benchmark
A comparison of the average CPU use of CORBA,
ICE and BlueRose to complete the same benchmark
Deployment Architecture for Mobile Forensic
Workspace
The Mobile Forensic Workspace in i0S devices . . .
Component-based architecture of VIRTRA-EL

An iPhone application acting as a client of the Domo
SEIVICE . & v v v v e e e e e
Two sample adaptations of the Kora user interface
for differentusers
Overview of the architecture of the Sherlock posi-
tioniNg Serviceo

. 240

List of Tables

2.1. Quality properties promoted by the PubSub and the

RRparadigms 43
2.2. Some of the most remarkable middleware technolo-
gies for ubiquitous systems 50

3.1. Concepts present in the structural view of a CI-CS . . 82
3.2. Relationships between the concepts present in the

structural view of aCI-CS 83
3.3. Definition of the concepts present in the behavioral

viewofaCI-CS 89
3.4. Description of the relationships between the con-

cepts present in the behavioral view of a CI-CS . . . 90
3.5. Quality attributes of the CI-CS metamodel 100

4.1. Description of the elements of the PI-US metamodel
that are shared between the different communication
functionalities supported by a ubiquitous system . . . 117

4.2. Description of the elements of the PI-US metamo-
del, grouped by the communication functionalities
that they support 118

4.3. Description of the relationships between the
elements present in the structural view of the PI-US
metamodel Lo 119

4.4. Definition of the elements that are present in the be-
havioral view of the PI-US metamodel. Some of the
elements shared with the structural view are not de-
scribedagain Lo 134

XXV

4.5.

4.6.
5.1.

5.2.

5.3.

Description of the relationships between the
elements of the behavioral view of the PI-US

metamodel L Lo
Quality attributes of the PI-US metamodel

Description of the matchings between a BPMN 2.0
Choreography and the concepts in the behavioral

view of the CS-CIM metamodel

Description of the matchings between the gateways
of a BPMN 2.0 Choreography and the concepts of
the behavioral view of the CS-CIM metamodel

Description of the matchings between the events of
a BPMN 2.0 Choreography and the concepts of the

behavioral view of the CS-CIM metamodel

. 176

Prologue

XXVII

Chapter 1

Introduction

1.1. The Ubiquitous Computing Era

In 1991, Mark Weiser envisioned a future lifestyle centered
around small, mobile and continuously connected devices that
would be seamlessly integrated into our physical environments
[127]. This visionary computational paradigm was called Ubig-
uitous Computing. At that time, in the 90’s, personal computers
were the predominant computing devices. Personal computers
were shared by small groups of people (family, friends, etc.) and
were rarely connected to the Internet. As time passed by, personal
computers became smaller, more affordable, easier to use and
more “connected”. By the early 00’s, nearly each person owned a

personal computer. At the same time, Internet connections were

CHAPTER 1. INTRODUCTION

popularized and many persons became accustomed to browse the

Web to retrieve and share information.

In the mid 00’s, the so called “smartphones”, that is, small,
mobile, phone-like computers with a permanent wireless Internet
connection, became more affordable and powerful, consequently,
also becoming very popular. Considering that people were famil-
iar with Internet browsing and information sharing with other peo-
ple through computers, these devices, which simplified those tasks,
were quickly integrated in a lot daily routines: working, socializing,
playing, traveling, etc. Suddenly, everyone was surrounded by all
types of computing technologies derived from smartphones (tablets,
portable consoles, etc.), at anytime and everywhere. From that mo-
ment on, personal computers started to be replaced by those new

technologies, thus beginning the so called post-PC era.

In any case, the progress has not stopped. The Moore’s law has
proven to be highly accurate [76]: hardware devices become more
powerful, cheaper and smaller at a very steady rate. Weiser’s vision,
that is, the transparent integration of highly connected, mobile and
small devices into our physical environments, which was considered
in the 90’s to be science fiction rather than actual science, nowadays
it can just be considered the “next step” in the expected evolution
of the current technologies. Pervasive Internet connections and the

integration of very advanced computing technologies into everyday

CHAPTER 1. INTRODUCTION

objects (glasses, watches, furniture, clothing, etc.) will point out the

rise of the ubiquitous computing era in the next few years.

1.2. Description of the Problem and
Motivation

As it was defined by Weiser, a ubiquitous system' is com-
prised by a set of software and hardware entities with whom the

user transparently interacts.

At software level, those entities are either applications, di-
rectly manipulated by the user, or services, which could serve as
information providers to the applications. As a result, in ubiquitous
systems, applications and services have to continuously exchange
information in order to expose complex capabilities to the end users.
Thus, managing communications is a key aspect of the development

of any ubiquitous system.

However, the complexity of managing the communications in
these systems has been commonly associated to the constant move-
ment of the users while they are carrying the devices in which the
applications are executed, which makes the communications spon-

taneous and highly volatile. Nonetheless, other different problems

!To simplify, in this thesis, software systems designed according to the ubiq-
uitous computing paradigm are simply referred as ubiquitous systems

CHAPTER 1. INTRODUCTION

associated to the ubiquitous systems may also be related to the com-

plexity of managing the communications in these systems.

For instance, conceptually, there are not any well established
models representing the elements that should be present in a ubiqui-
tous system [32]. Therefore, the mechanisms (and their properties)
supporting the communications in a ubiquitous system are not de-

fined explicitly.

In consequence, due to the absence of well established
models, it is challenging to methodologically develop a ubiquitous
system whose design captures all the users’ requirements and
that can be shared (and understood) among different software
designers. Hence, different designers may devise heterogeneous
communication mechanisms that, ultimately, may present a low

degree of interoperability and compatibility.

Moreover, the different underlying platforms that may exist to
deal with the complexity of managing the communications in ubiq-
uitous systems, again, can not be based on well established mod-
els. Therefore, their use requires a high technical expertise, and the
concepts present in some of these platforms may not be present in

others, or they may even have different semantics.

CHAPTER 1. INTRODUCTION

1.3. Hypothesis and Objectives

In this thesis, it is considered that the correct management of
the communications in ubiquitous systems is a problem that may
not only be related to the availability and use of the appropriate
technologies at implementation level, but to the conceptualiza-
tion and methodological development of the ubiquitous systems

themselves. In consequence, the objectives of this thesis are to:

= Define models for conceptualization of the communications
in general, and for the communication requirements found in

ubiquitous systems in particular.

= Devise a methodology to systematically approach the
development of ubiquitous systems, with a special focus on
the communication management and using a set of proposed

transformation rules applied to the previous models.

= Systematize (and automatize) some of the tasks associated to
the design and implementation of technologies to support the
interoperability between the applications and services in ubig-

uitous systems.

= Demonstrate that it is feasible to appropriately manage the
communications in a ubiquitous system using both the con-

ceptualizations and the methodological approach to the devel-

CHAPTER 1. INTRODUCTION

opment of these systems.

1.4. Structure of the Thesis

This thesis work is structured as follows.

In this chapter, the initial motivation, hypothesis and objec-

tives of this research work have been established.

In Chapter 2, some previous works are presented in order to
provide the suitable background about communication management,
ubiquitous systems and model-driven development. Their analysis

also motivates this thesis work.

Chapter 3 describes a general conceptual model for the com-
munications, without focusing on the particularities of the commu-
nications in ubiquitous systems. The general idea is to define some
aspects of the communications that are not captured by the existing

communication theories.

In Chapter 4, a communication model for ubiquitous systems
is proposed by using the conceptual foundations devised in previous

chapter.

On the basis of the conceptual models presented in Chapters 3
and 4, a methodology to develop ubiquitous systems is presented in

5.

CHAPTER 1. INTRODUCTION

In Chapter 6 it is described how the proposed methodology
can also be used to develop supporting technologies to assist during

the implementation of ubiquitous systems.

Finally, Chapter 7 presents the conclusions and results drawn

from this thesis work, and proposes some lines of future work.

CHAPTER 1. INTRODUCTION

Chapter 2

Foundations for the
Specification and Development
of Ubiquitous Systems

In this chapter, the methods, techniques and technologies that
are currently applied to the development of ubiquitous systems are
explored. Considering that this thesis work focuses on the com-
munication, the existing bibliography related to that field will be
specifically approached, even if it relates to the more general con-
cept of distributed systems. Nonetheless, several basic concepts
related to the software communication research field will be intro-
duced. Likewise, the notion of middleware will be presented as a
supporting technology related to the communications in distributed
systems and, consequently, in ubiquitous computing environments.

Moreover, the relationship between middleware, software frame-

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

works and design patterns will be explored, so as to highlight the
influence that a middleware may have during the design of a soft-
ware. In addition, some different, well-known middleware tech-
nologies specifically designed for ubiquitous systems will be briefly

described.

Furthermore, Model-Driven Engineering (MDE) is introduced
as a means to develop software on the basis of abstract models. Par-
ticularly, an standard approach to MDE known as Model-Driven Ar-
chitecture (MDA) is described. Additionally, a comparison between
MDE and code-centric development processes is provided in order
to emphasize the benefits of using MDE in software development,
but also standing out some of its negative aspects. Specifically, the
advantages of using this technique to develop communication mech-
anisms are also highlighted. Finally, it is provided a summary of
some standard notations that may help to model the communication

aspects of a system.

2.1. Distributed Systems

A distributed system is a software system consisting in a set
of different, non-collocated processes that communicate each other
by exchanging messages [64]. The theoretical research work associ-

ated with this field in very extent, and closely related to the field of

10

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

the concurrent systems. However, in this thesis work, the following
subsections provide a glimpse of the most important notions related

to the communications in distributed systems.

2.1.1. Architectures of a Distributed System

This subsection explores the main reference architectures that
are currently applied to the design of distributed systems. During
the description of these reference architectures two notions that are
widely present in the design of these systems are introduced: ser-

vices and events.

2.1.1.1. Service-Oriented Architecture (SOA)

Currently, in the field of the distributed systems, the term ser-
vice is one of the most outstanding concepts that it is possible to
encounter. A service is a mechanism to access certain functionali-
ties, whose implementation is opaque to any entity that is external
to the service itself and that can be only accessed through a pre-
defined public interface [84]. Services mainly foster reusability and

maintainability, among other quality properties.

The term WebService, which was introduced by the W3C
group [16], refers to a service that can be accessed through Internet

and whose underlying technologies are related to eXtensive Markup

11

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

Language (XML) [19]. That way, their public interface is defined in
WebService Description Language (WSDL) [26] and they use Sim-
ple Object Access Protocol (SOAP) to exchange information [47],

which are, in fact, technologies based on XML.

WebServices have motivated a shift from the perspective that
all the resources should be locally available in a personal computer
[128]. It is becoming increasingly common to use an Internet con-
nection to access different services providing several resources: stor-
age, applications, improved calculation capabilities, etc. This is

known as cloud computing [50].

Services can also be considered to be context-aware if they
have the capability to adapt their own operation depending on the
context that surrounds a service requester [57]. This type of ser-
vices are currently very popular, specially due to the success of
the mobile systems. As an example, iAd (http://advertising.
apple.com/) and AdMob (http://www.admob.com) services, re-
spectively provided by Apple and Google, offer commercial adver-

tisements adapted to the user location.

The Service Oriented Architecture (SOA) is a software archi-
tecture design paradigm that promotes the encapsulation of certain
application functionalities as different interoperating services. Its

reference model was defined by the OASIS committee [84]. The

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

same committee has established that SOA is a paradigm to arrange
functionalities (as services) that could be under the control of differ-
ent organizations or domains. In this architecture, sometimes there
will not be a one-to-one relationship between services and function-
alities. On the contrary, providing a certain functionality may in-
volve the interaction between several services. In fact, one of the
key notions in SOA is the interaction, which, within that scope, is
defined as the required activity to provide a functionality. Moreover,
in the SOA reference model [84], services are recommended to be
designed as loosely coupled entities: they should be separately im-
plemented and managed, just using a shared infrastructure to allow
their interaction. Therefore, services have a strong cohesion, since
they usually depend on other services to provide their functionali-

ties.

In relation to the design of software systems using SOA, the
Object Management Group (OMG, http://www.omg.org) com-
mittee has specified a Unified Modeling Language (UML, http:
//www.uml . org) profile and metamodel, known as SoaML [91]. As
an example, in Figure 2.1, it is shown a search service that has been

modeled using SoaML.

In that figure, it is shown how a service is modeled as a sys-
tem component called Participant, which may have several service

points (ServicePoint) and request points (RequestPoint):

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

<<RequestPoint>> query : StorageService

<<Participant>>

<<ServicePoint>> search : Search 2] SearchService

<<RequestPoint>> filterResults : FilteringService

Figure 2.1: A SoaML model example of a search service

» The Participants are components that provide or consume ser-

vices in a system.

= The ServicePoints are interaction points from other services to

the modeled one.

» The RequestPoints are interaction points from the modeled

service to others.

In the sample illustration, the search service is a Participant
that provides a search ServicePoint and that requires to interact with
storage and filtering services through the guery and filter Request-

Points.

2.1.1.2. Event-Driven Architecture (EDA)

The Event-Driven Architecture (EDA) complements SOA
by introducing services whose interaction is based on events
[75]. Events are used to notify changes in the state of a software

entity, along with some contextual information associated to those

14

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

changes. For example, an event could notify a user connection to
a chat service. More precisely, an event is defined as a significant
change in the state of a software at a concrete spatio-temporal

location [105] [7]}.

Event-based communications usually avoid polling opera-
tions, that is, continuous requests for the same piece of information,
so as to check if it contains any changes. For instance, a service in
a social network could notify an event whenever a user publishes a
new post. That way, the other users would not have to continuously

access the service to check if some new information was published.

Avoiding polling operations is very important from the point
of view of the efficiency, since those operations consume a lot of
energy, CPU, bandwidth, etc., while the underlying hardware sup-
porting them may have a limited amount of resources (smartphones,
sensors, embedded systems, etc.). As a consequence, EDA is in-

creasingly being applied to the design of embedded systems.

In addition to generally improving efficiency, EDA incorpo-
rates some mechanisms to promote a low cohesion and a loose cou-
pling between the communicating entities in a system. Particularly,

in addition to SOA services, EDA incorporates the notion of event

'In order to improve the legibility of this research work, the term event will
also be used to refer to the message that notifies the occurrence of an event in an
entity of a software system

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

emitters and receivers:

= An event emitter is an entity that notifies any changes in its
own state to the rest of entities that conform the system in

which they reside.

= An event receiver will capture the notifications produced by
the emitters, process them and, accordingly, execute some ac-

tions.

Emitters and receivers promote a low cohesion and a loose
coupling since there are not any interaction points connecting them
(i.e., in SoaML, no ServicePoints or RequestPoints should connect

emitters with receivers, or viceversa).

2.1.2. Communication Paradigms

The Object Management Group (OMG) committee describes
as an appendix to SoaML [91] three communication paradigms
to exchange information between services: Request-Response,
Publish/Subscribe and Document Centric Messaging. The next
subsections will detail those communication paradigms, their main

characteristics and the scenarios in which they are mainly applied.

16

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

2.1.2.1. Request-Response (RR)

The Request-Response paradigm (RR) is the most traditional
way of communicating information in a distributed system. It
defines a simple way to exchange information through message
passing: A sender requests certain information to a receiver,
which replies with a message including the required information.
RR is widely used in distributed systems, in particular when
they are designed on the basis of SOA, since it allows to easily
interoperate with services. Also, the message passing semantics
of this paradigm have been applied as a primitive to develop
more complex communication schemes [33] (like PubSub, which
is described in next subsubsection) and to model very common

communication protocols, like HTTP.

Several variations of the RR paradigm have been proposed in
order to achieve different goals: one-way requests (the response is
only a status message), batch requests (several requests codified as
a single one in order to improve efficiency), RPC (requests codify a
remote procedure call [14] or a method invocation [66], whereas the
response is the result of its execution), etc. It is worth to mention that
the RPC is the most widely used variant of the RR paradigm. In fact,
several authors have even considered RPC as a separate communi-

cation paradigm [3] [117] [79], so as to highlight its importance.

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

Finally, at implementation level, it is very frequent to design
proxy classes or functions whose interfaces are equivalent to those
exposed by the public interface of the services. The idea is to make
it transparent to the developer whether the communications are lo-
cal (method or function calls) or not (service invocations). At high
level, the developer just interoperates with a set of objects or func-
tions through a certain interface. Internally, those calls can be trans-
lated into an invocation to a service through a set of communication

technologies and adopting the RR communication scheme.

2.1.2.2. Document-Centric Messaging (DCM)

In the Document Centric Messaging (DCM) paradigm the ba-
sic interaction units are the documents. This way, services receive
different types of documents, they process them and try, in conse-
quence, to execute an operation, which could lead to the exchange
of other documents. As specified in the SoaML standard, the DCM
paradigm can be considered as a way to distribute messages to in-
boxes placed in the services. Correspondingly, it emulates how hu-

man beings exchange mails.

The DCM paradigm avoids the need to establish a well-
defined public interface for the services, in contrast with the RR
paradigm. Services just need to incorporate a communication

protocol that allows the exchange of documents. Anyhow, the

18

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

format of the documents must be understandable by all the services
exchanging them. Thus, it is very common to structure the

documents using languages supporting schemas, like XML.

The communication model behind this paradigm can be ei-
ther synchronous or asynchronous, depending on if it is required to
immediately process and operate over a document after receiving it
(synchronous model), or if the document can be stored in a process-

ing queue and processed/operated afterwards (asynchronous).

2.1.2.3. Publish-Subscribe (PubSub)

The PubSub paradigm emulates the human procedure of sub-
scribing to a publication: from the moment a subscriber expresses its
interest in certain information, it will automatically receive a copy

of the information each time it is released [5].

The PubSub paradigm is mainly used to notify changes in the
internal state of a sender (publisher) to a set of interested receivers
(subscribers). For example, in a home automation system, if a light
is switched from off to on, then this occurrence could be notified to
end-user applications, which could update their corresponding user
interfaces. Hence, the PubSub paradigm is commonly applied when
designing systems on the basis of EDA. In fact, the basic interaction

unit in the PubSub paradigm is the event.

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

From a technological perspective, this paradigm is usually im-
plemented by designing an event broker (usually, as a service) that
stores the subscriptions and receives all the publications [68]: when
a new publication is received, the event broker distributes it among
the subscribers. Additionally, there are two main ways to design an
event broker: either with a pull-based or with a push-based com-

munication model.

In the pull-based communication model, the entities are in
charge of detecting the occurrence of new events. Therefore, in
order to receive them, the entities must periodically poll the event-
broker, which will have to store the published events while any sub-
scribers remain active. Besides, the broker will have to poll the emit-
ters in order to check if they need to publish a new event. Figure
2.2 illustrates the operation mode of the pull-based communication

model.

Likewise, Figure 2.3 illustrates the operation mode of the
push-based communication model, in which the emitters directly
transmit the new events to the event broker. Meanwhile, the
event broker is in charge of transferring the received events to the

subscribers, without requiring them to perform a previous request.

In most cases, event notifications are unpredictable and very

separated in time, which makes the push-based communication

20

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

Event Broker

Figure 2.2: Pull-based communication model

Event Broker

push()
p
)

pust(

Figure 2.3: Push-based communication model

21

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

model more advantageous, as it generally consumes less resources
(i.e., it does not require an intermediate storage, polling operations
are avoided, bandwidth use is decreased, and so forth). However,
when the number of events to be notified is very high or they occur
at very regular intervals, then using the pull-based communication
model could have some benefits over using the push-based one,
since a single polling operation could be used to trigger several
event transfers at the same time, and the time between polling
operations could be adjusted to fit the intervals in which the events

are notified.

In spite of the benefits that the push-based communication
model may offer, it is not possible to implement it within some
technical scopes, since it is required to keep long-term connections
alive and to be able to transfer information without a previous
request from the receivers. For instance, note that current HTML
and JavaScript standards do not provide the required techniques
to implement push-based communications. Nonetheless, the new
HTMLS standard [10], to be published in the next few years by
the W3C committee, incorporates WebSockets and Server-Side

Events, which allow to develop push-based communication models.

22

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

2.1.3. Some Notations for Representing Dis-
tributed Systems

Several notations have been proposed to represent the interac-
tions between the different elements of a system. In consequence,
these notations can be used to help into designing a distributed sys-
tem. The following subsections provide a brief description of some

of the most relevant ones.

2.1.3.1. Petri Nets

A Petri net is a formal mathematical modeling language that
has been widely used to analyze, design and validate distributed sys-

tems [123]. A sample Petri net is represented in Figure 2.4.

P2

P1 P4

T1 T2

P3

Figure 2.4: An example Petri net

A petri net represents a set of places and transitions in a di-

23

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

rected graph. A transition represents an event and a place repre-
sents a condition that is satisfied. Places are linked to transitions by
arcs, which represent that a satisfaction of a condition produces an
event, or an event produces the satisfaction of a condition. Since
the execution of a Petri net is usually nondeterministic, if several
transitions are activated at the same time, then one of them is ran-
domly triggered. To activate a transition, an appropriate amount of
tokens must be present in the input places. A token is graphically
represented through a black point contained in some places. When a
transition is executed, it consumes tokens from the input places and

produce the same amount of tokens in the output place.

2.1.3.2. UML 2.x Communication Diagram

UML 2.x Communication Diagrams (formerly called collab-
oration diagrams in UML 1.x) are the standard OMG approach to
graphically represent the interactions between the parts of a system
in terms of a sequence of ordered messages [39]. As so, they em-
phasize the interactive relationships between the elements present in
a system. A sample UML communication diagram is depicted in

Figure 2.5.

In a communication diagram, an actor interacts with a set
of objects that, in turn, collaborate between them through a set of

exchanged messages. The sequence of messages is represented

24

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

1. messagei() 1.1. message2()
— > A > B
Actor
2. message4() 1.2. megsage3()
y
D :C

Figure 2.5: An example of a UML 2.x communication diagram

through a numbering scheme in these diagrams.

2.1.3.3. UML 2.x Activity Diagram

UML 2.x Activity Diagrams are the standard OMG approach
to graphically represent the workflow of activities that are carried out
in a system [39]. In UML 2.x, activity diagrams are based on Petri
nets [116]. Consequently, they can precisely depict the behavior of a
set of interacting processes. An example of a UML activity diagram

is depicted in Figure 2.6.

In an activity diagram, activities are conformed by a set of
actions linked through a control flow. Each activity is started by
an initial node, and ended by one or more final nodes. Actions can

be concurrently executed, and some conditions can prevent or allow

25

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

[] 0 [no]

[pr}
e

Figure 2.6: An example of a UML 2.x activity diagram

their execution.

2.1.3.4. Business Process Modeling and Notation
(BPMN)

Business Process Modeling and Notation 2.0 (BPMN 2.0) is
the OMG standard for modeling business processes using a graph-
ical notation [89]. BPMN can be used to represent the interactions
between a set of processes that collaborate to achieve certain goals.
The focus is to provide a notation that can be easily understood by
stakeholders, and that it is as much separated from software aspects
as possible. It is very similar to UML 2.x Activity Diagrams, but it

intends to provide a more understandable, informal and simple no-

26

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

tation than UML. Therefore, it can be adequate to depict a highly
abstract diagram representing the overall interactions that the differ-

ent processes that conform a distributed system may carry out.

BPMN 2.0 also includes a notation for representing chore-
ographies, that is, an ordered set of interactions between the par-
ticipants of a business process. As a consequence, it is a suitable
notation to represent the communication aspects of a system from a
highly abstract perspective. An example of a BPMN choreography

diagram is depicted in Figure 2.7.

E Here you have

Initiator 1

Provider

Sent Message

| want to buy v

ivi Target
ACt'V'ty\ E Retailer e— 29
—
Event

yes
Sell Product

Y

I
\ __ Retailer enough? | ~ Gateway @ Thank you
I

N\

C)_> Try to buy
product > AN
| 'th h
Provider don't have enoug
——
. ,—I—
Received Provider
Message N\
no - Cancel
Let me see if | have enough g Selling
Retailer

@ See you later

Figure 2.7: An example of a BPMN choreography diagram and a
summary of its elements

27

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

Previous example represents different interactions between a
retailer and a provider to buy a product. The notation includes el-
ements that are widely used in BPMN choreography diagrams: ac-
tivities, participants, messages, events and gateways. An activity is
an interaction between two participants and may have sub-activities
with different interactions between the participants. A message is
an information unit transferred between participants, and it can be
communicated in a non-specific mode (i.e., synchronous or asyn-
chronous). A gateway represents a branch or a merge between dif-
ferent activities. Finally, an event is an exceptional occurrence be-

tween two activities and/or gateways.

2.1.4. Supporting Communications: Middle-
ware

This subsection exposes some research work related to the de-
sign and management of communication schemes through middle-

ware technologies.

A middleware is defined as a software layer that is located
between the operating system and the end-user applications, hiding
the heterogeneity of different physical computer architectures, oper-
ating systems and programming languages, hence, simplifying the
process of transferring information between the different machines

that are part of a distributed system [12].

28

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

Several of the most remarkable (and traditional) middleware
technologies for distributed systems are described in the following
subsubsection. Moreover, the relationships between design patterns,
software frameworks and middleware are explored, so as to empha-
size the key role of a middleware in the design (not only the im-
plementation) of complex distributed systems. Additionally, it will
make it easier to the reader to differentiate these concepts, which are

usually mixed-up.

2.1.4.1. Traditional Middleware Technologies

Several middleware technologies have been proposed to sup-
port the development of distributed systems. The following list high-

lights the most remarkable ones and their main characteristics:

= CORBA (Common Object Request Broker Architecture [87])
was specified by the OMG committee to support an object-
oriented approach to RPC. It is widely considered as the
main reference in the field of the communication middleware
technologies. There are three main categories in the CORBA
specification: (1) a language to define public interfaces for
services, which is known as Interface Description Language
(IDL); (2) a specification in IDL of the basic CORBA services
[87]; and (3) a specification of the CORBA communication

protocol, which is called General Inter-ORB Protocol (GIOP)

29

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

30

[88]. In CORBA, it is remarkable how IDL makes the
specification independent from the implementation in any
specific platform (programming language, operating system,
etc.). In fact, there are many implementations of CORBA,
like OmniORB (http://omniorb.sourceforge.net),
TAO (http://www.cs.wustl.edu/ schmidt/TAQ.html)

or Mico (http://www.mico.org).

DDS (Data Distribution Service [86]) in another middleware
specified by the OMG committee. Its focus is to support the
PubSub paradigm in embedded and real-time systems. Addi-
tionally, it supports an extensive set of parameters to tune the
quality of service (QoS), like reliability, bandwidth, etc. DDS
structures the information as a set of key-value pairs associ-
ated to a fopic. The entities can subscribe to a certain topic
to receive the information associated to it whenever is pub-
lished. The communication protocol is known as Real-Time
Publish Subscribe (RTPS). Like CORBA, the public interfaces
of DDS are defined through IDL, which makes them indepen-

dent from any specific platform.

ICE (Internet Communications Engine [130]) is the natural
successor to CORBA. In contrast with CORBA, ICE is both
a specification and an implementation of that specification for

multiple platforms. It was defined and implemented by several

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

original members of OMG committee that defined CORBA,
as a response to its slow evolution. A new protocol, called
IceP, replaces GIOP, since it was considered to be inefficient.
Most of the CORBA services have a corresponding ICE one.
The IDL has been extended in some ways and simplified in
others, removing some deprecated constructions. Addition-
ally, the specification contains a mapping between the IDL
and some of the most relevant programming languages nowa-
days: C++, Java, PHP, Python, Ruby, C#, Objective-C, and so

on.

RMI (Remote Method Invocation, http://www.
oracle.com/technetwork/java/javase/tech/
index-jsp-136424.html) is the default approach to
object-oriented RPC that is available in Java. It is simple
to use, but its capabilities are limited in comparison with
CORBA, DDS or ICE. For example, RMI can only be
(officially) used in software written in Java, thus limiting
its interoperability possibilities. To workaround that issue,
some mapping technologies have been implemented in order
to be able to transform RMI messages to other protocols.
An example of that is RMI-IIOP (http://docs.oracle.
com/javase/7/docs/technotes/guides/rmi-iiop),

which allows the interaction between RMI-based and

31

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

32

CORBA-based software systems. In spite of the functional
and technical limitations of this middleware, it is widely used
in practice, specially due to its simplicity in comparison with

CORBA, DDS or ICE and to the success of the Java platform.

SOAP (Simple Object Access Protocol [47]) is a protocol to
exchange structured information in distributed systems. It was
defined by the W3C consortium. Albeit its low efficiency, as a
consequence of the XML-based textual notation that is used to
structure the messages, SOAP is a technology of great interest,
since it works on top of standard HTTP requests. Therefore,
it allows to implement the RR paradigm in the Web. Like-
wise, the textual notation of the messages using XML allows
to represent structured documents, thus supporting the DCM
paradigm. Technically, it can be used in any platform sup-
porting XML and HTTP and is very easy to be debugged (i.e.,
the messages are formatted in XML, which makes them very

legible).

WCF (Windows Communication Foundation, http://
msdn.microsoft.com/en-US/library/dd456779.aspx)
is a set of APIs and a programming model to produce
services from classes developed by using the Mi-
crosoft .NET framework. It is the successor of DCOM

(http://www.microsoft.com/com/default.mspx) and

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

NET Remoting (http://msdn.microsoft.com/en-US/
library/kwdt6w2k (v=vs.100) .aspx), which were other
middleware technologies developed by Microsoft for the
Windows operating system. WCF is similar to RMI, but
has more functionalities. Moreover, the messages can be
formatted in either XML or JSON, which increases its
compatibility with other middleware technologies, the Web
and with any software platform supporting XML and HTTP.

ifij

Although these middleware technologies are widely used and
provide important functionalities to promote several quality proper-
ties (e.g., efficiency, scalability, compatibility, etc.), they can not ful-
fill all the specific technical requirements that the more modern sys-
tems usually require (e.g., mobility in ubiquitous systems, volatility
of the connections, etc.). In consequence, some newer technologies
have been proposed, as it will be described in Subsubsection 2.2.3 in

relation to the support of the communications in ubiquitous systems.

33

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

2.1.4.2. Relationships between Software Frameworks,
Patterns and Middleware?

Middleware-based technologies are mainly accepted to over-
come interoperability issues, also providing portability between dif-
ferent underlying platforms and sometimes satisfying other certain

quality properties (efficiency, scalability, security, etc.).

Software frameworks [98] are reusable abstractions of code
wrapped in a well-defined Application Programming Interface
(API). They usually turn out to be a common choice in software
engineering since they are focused on facilitating the development
of software systems and on promoting reusability. Software
frameworks comprise a set of hot and frozen spots. Hot spots
represent the abstractions that are provided in order to adapt the
functionalities of the framework to the specific requirements of a
particular system [96], while frozen spots define basic components
(and the relationships between them) that remain unchanged in
any instantiation of the framework [95]. A framework differs from
other approaches intended to support software development (e.g.,
libraries, toolkits, etc.) in that it provides “inversion of control”,
that is, the framework is responsible of executing the instantiations

of the hot spots when required.

’In this subsection, the relationship between patterns, frameworks and mid-
dleware is extracted from [110].

34

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

Patterns allow to solve several well-studied design issues
through the use of some predefined solutions that have been shared
by experienced developers and architects [40]. In fact, patterns
were originated by Christopher Alexander as an architectural
concept [1]. Design patterns were mainly popularized in the
software engineering field by the book Design Patterns: Elements
of Reusable Object-Oriented Software [41]. In that book, patterns

are classified as follows:

= Creational: They simplify the process of instantiating ob-

jects.

= Structural: To define ways of composing objects to enhance

the functionality and quality properties of a software.

= Behavioral: To establish how to transfer information between

different objects.

As can be noticed, middleware, frameworks and patterns are
oriented towards reusing knowledge across software design and im-
plementation, so as to reduce development costs and produce op-
timal solutions to common problems. Since they share a common
focus, they are usually interrelated: Middleware is designed using
several patterns and incorporate frameworks to, respectively, facili-

tate software design and implementation. Therefore, from an archi-

35

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

tectural point of view, a middleware is a pattern-driven combination

of frameworks.

Finally, it is worth to be pointed out that using a middleware
should not be considered as not a technical-only task, since it in-
volves incorporating several frameworks and design patterns to a
software, which, in turn, influences both its design and implementa-

tion.

2.2. Ubiquitous Systems

A ubiquitous system is intrinsically a distributed system, since
they are formed by a set of non-collocated elements that exchange
information. Consequently, the notions presented in previous sec-
tion can also be applied to the ubiquitous systems. However, from
a technical point of view, ubiquitous systems exhibit two key differ-

ences with traditional distributed systems [82]:

= They are volatile: The interoperation is spontaneous and the
associations between devices are constantly created and de-
stroyed. Moreover, communication links usually fail and the

bandwidth and latency are continuously changing.

= They have a different device model: Personal computers

are replaced by sensors/actuators, mobile devices and “social”

36

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

devices (interactive walls, furniture, etc.). Consequently, re-
sources might be constrained (energy, memory, computing ca-
pabilities, etc.) in a way that requires to develop software in a
different manner than in personal computers or in traditional

distributed systems.

These characteristics make it possible to establish a relation-
ship between ubiquitous computing and other paradigms, remark-

ably to:

= Mobile computing. It is focused on enabling users the possi-
bility to carry their personal computers and establish wireless

connections with other devices.

= Wearable computing. It involves the miniaturization of per-
sonal computers, so that they can be incorporated into cloth-

ing, or even into the body.

= Context-aware computing. It refers to the possibility of au-
tomatically adapting software operation to the user context

(location, nearby persons, available resources, etc.).

Whereas mobile and wearable computing is more related to
hardware research (i.e., to develop small electronic devices with

computing capabilities), context-aware computing iS more associ-

37

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

ated to software research, even if some physical devices may sup-
port context detection and adaptation (e.g., sensors and actuators).
The next subsection details context-aware computing, since it is the
ubiquitous-computing-associated field that is more relevant for this

thesis work.

2.2.1. Context Awareness

In the field of the ubiquitous computing, context-aware com-
puting refers to the idea of adapting software operation to the user
context, that is, the location, nearby persons, available computing

resources and the changes to those elements along time [107].

In context-aware computing, software should be designed to

support the following functionalities [94]:

= Reception of information about the context: To detect the
user context through a set of sensors and to present that infor-

mation to the user.

= Contextual discovery of resources: To automatically dis-
cover relevant resources and to make use of them in an ad-

equate way.

= Contextual adaptation: To automatically execute a task, or

to modify its default operation, on the basis of the detected

38

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

context and a set of predefined rules.

= Augmented context: To associate digital information to the
physical context, in order to provide useful messages or re-

ports to the user.

Each of these activities involve solving very difficult chal-
lenges, like supporting interoperability and mobility, that are cur-
rently being studied by the scientific community. Furthermore, some
of these problems are also present in ubiquitous systems. Conse-
quently, ubiquitous and context-aware computing are widely con-
sidered interconnected disciplines. In fact, from a technical perspec-
tive, ubiquitous and context-aware systems need analogous com-
munication mechanisms. For that reason, the proposals presented
in this thesis can be considered to be applicable to both types of
systems. Moreover, a ubiquitous system should contain context
awareness capabilities to support a transparent adaptation to differ-
ent real environments [109], which further interconnects both re-

search fields.

2.2.1.1. The Notion of Context and its Modelling

One of the main issues that may arise when designing a
context-aware system is to correctly model the context itself. Even

if in previous subsection it is given a definition of context that is

39

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

widely accepted (i.e., a conjunction of the location, nearby persons,
available resources and the changes to those elements along time
[107]), it can be considered that the exact conceptualization depends
on the domain or the specific problems to be solved. For instance,
some authors mention that the context is more related to the
environment of the applications [126], whereas other authors relate
the context to the user environment [20] or to the user behavior and

feelings [30].

Due to the different conceptualizations of the context, it is
usual to model domain-specific ontologies to represent it. From a
computing perspective, an ontology is defined as a formal specifica-
tion of a conceptualization [45]. It describes the concepts associated
to a domain, their relationships, properties and constraints. OWL
language [124] is commonly used to specify ontologies. It is based
on RDF/XML [8] and its formal semantics are founded on descrip-
tive logic. OWL allows to represent semantic classes, properties,
individuals and values. Moreover, it is possible to execute deduc-
tion operations over the represented concepts by using reasoners,
like Pellet (http://clarkparsia.com/pellet/). This is of great
importance in context-aware computing, since it allows to detect the
context on the basis of some incoming information (from sensors,
applications, services, and so forth) and to adapt a system operation

on the basis of a set of logic rules.

40

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

Even if domain-specific ontologies to represent the context
are common, there have been several efforts to propose domain-
independent or generic ontologies to specify it. One prominent
example is the Standard Ontology for Ubiquitous and Pervasive
Applications (SOUPA) [25], which includes two different sets
of ontologies: SOUPA Core and SOUPA Extension. SOUPA
Core incorporates elements that are present in any ubiquitous
and/or context-aware system: Person, Politic-Action, BDI-Agent
(Beliefs, Desires and Intentions), Time, Space and Event. SOUPA
Extension includes elements to extend SOUPA and to support
very particular, but widespread, applications: Meeting, Agenda,
Document, Screenshot, Connected Region (i.e., to relate different

physical spaces) and Location.

Although it is possible to use SOUPA to represent most of the
notions of context, some particular scenarios still require specific
ontologies or, at least, to substantially extend SOUPA. One example
1s COBRA-ONT [24], which has been proposed by the same authors

of SOUPA to support smart rooms.

2.2.2. Communication Paradigms in Ubiqui-
tous Systems

In ubiquitous systems, it is very common to establish com-

munication schemes based on either the PubSub or RR paradigms.

41

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

Each communication paradigm provides orthogonal functionalities
and promotes different quality properties, while most existing ubiq-
uitous systems actually need to fulfill a combination of the func-
tional and non-functional requirements fostered by each paradigm.
For example, in a home automation environment, it is usually re-
quired to directly interact with specific devices through well-known
interfaces or through message passing, thus being appropriate to
choose RR-based communications. On the other hand, when a de-
vice changes its state (a door is opened, for instance), the applica-
tions should be notified, so as to update their GUL In this case, the

use of PubSub-based communications is more suitable.

Table 2.1 outlines the contribution of each communication
paradigm to the quality properties that are very often sought for
ubiquitous systems [28] [106] [3] [53]. It is important to note
that the quality properties that are mentioned in this section can
be achieved with the appropriate implementations of either RR or
PubSub mechanisms. The problem is the impact that they will have
in other requirements and the high level of complexity needed to
fulfill them. These problems will negatively affect the performance
of the systems that are built on top of them. For example, a PubSub
proxy could ensure reliable delivery, however, by using a proxy, all
the communication will need to be centralized in it. This choice

would avoid using decentralized implementations of the PubSub

42

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

paradigm and would require to apply replication techniques in order
to avoid bottlenecks. However, by using the RR paradigm, reliable

delivery requirements are directly met.

Property PubSub | RR
Efficiency partial | partial
Mobility Support v
Adaptability v

Reliable Delivery v
Security partial v
Timeliness v

Table 2.1: Quality properties promoted by the PubSub and the RR
paradigms

A more detailed explanation of the information included in
the previous table is described in the following subsubsections. This
analysis could motivate the proposal of model that integrates the
PubSub and the RR paradigms, which may contribute to seamlessly
take advantage of the semantics of both paradigms and the quality

properties that each of them helps to promote.

2.2.2.1. Efficiency

PubSub paradigm is, in general, more efficient for distribut-
ing the state of the entities and for delivering a message to several
receivers. To do those tasks, the RR paradigm semantics require to
periodically execute polling operations, which are usually consid-

ered very inefficient in comparison with the scheme supported by

43

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

the PubSub paradigm [97], since such changes infrequently occur
and a lot of resources are wasted when sending useless messages
(memory, CPU, energy, bandwidth, etc.). Moreover, in RR, to dis-
tribute information to a set of receivers, the number of messages to
be sent must be equal to the number of receivers. In PubSub, pub-
lishers always distribute one message, regardless of the number of
subscribers. Anyhow, the RR paradigm can be more convenient if
the notifications always occur at very regular intervals or if power
consumption must be periodically controlled. As a consequence,
both the PubSub and RR paradigms may help to achieve efficiency
in ubiquitous systems. The choice between the two paradigms de-

pends on the specific constraints of each system.

2.2.2.2. Mobility Support

The PubSub paradigm promotes the decoupling between pub-
lishers and subscribers. In particular, in PubSub-based communica-
tions, it is totally transparent if either a publisher or a subscriber is
present or not in a system. In RR, if a receiver is no longer avail-
able in a system, due to the coupling between senders and receivers,
the execution flow of a sender could be indefinitely blocked wait-
ing for a response that could never be received since the provider
could never be present again. Additionally, the execution flow of a

sender usually depends on the specific results that are extracted from

44

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

the responses of the receivers. Thus, in some cases, senders may
not be able to continue their execution if specific recipients are not
available. Therefore, the PubSub paradigm contributes to support
mobility in ubiquitous systems, whereas the RR paradigm offers no

mechanisms to support it [106].

2.2.2.3. Adaptability

RR-based communications require establishing well-defined
interfaces to exchange messages between senders and receivers.
However, in ubiquitous systems, the support to context-awareness
features involves to dynamically adapt the functionality provided
by services and applications to the information retrieved from the
context (that is, nearby users, their tasks, available resources, etc.)
[129]. Consequently, RR communications are not flexible enough
to promote adaptability [28]. However, in PubSub communications,
subscriptions may be dynamically established and dropped
depending on the context. Thus, the PubSub paradigm is more

suitable for building adaptable, ubiquitous systems.

2.2.2.4. Reliable Delivery

Reliable delivery means that a receiver (or a set of receivers)
has to send an acknowledgement for each received message in or-

der to confirm their reception. In RR, receiving a response to a re-

45

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

quest implies that the request was delivered correctly. However, in
PubSub communications, reliable delivery implies detecting from a
publisher (i.e., not only from the event broker, that is, the inter-
mediary entity between publishers and subscribers) whether a set
of subscribers have received a specific notification or not. This is
only possible by increasingly reducing the decoupling between pub-
lishers and subscribers [28]. For example, in order to provide reli-
able delivery in the PubSub paradigm, the publishers should know,
at least, the number of subscribers and an identification associated
with each subscriber. Consequently, the publishers should receive
an acknowledgement message from each subscriber. As a conse-
quence, it is not possible to assume that a notification is always re-
ceived when the decoupling between publishers and subscribers is a
strong requirement. Thus, when reliable delivery must be ensured,

RR should be used instead.

2.2.2.5. Security

Security is an important concern in ubiquitous systems.
Hence, the information to be exchanged should be encrypted
and trusting mechanisms established for senders and receivers.
Obviously, information can be encrypted in both the PubSub and
the RR paradigms. However, trusting mechanisms such as digital

signatures or certificates are easy to establish only in RR-based

46

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

communications. In the PubSub paradigm, it is difficult to detect
the source or the recipient of a notification, due to the decoupling
between publishers and subscribers. Moreover, event brokers
enable trusting mechanisms between publishers and brokers or
between brokers and subscribers, but never directly between
publishers and subscribers. Thus, a publisher is not able to detect
if the recipients of a notification can be trusted, while subscribers
are not able to detect if a notification has been sent from a trusted
source. Overcoming this weakness involves considering additional

complex trusting mechanisms that decrease efficiency [35].

2.2.2.6. Timeliness

Real-time applications require controlling the timeliness of
delivered messages. In PubSub-based communications it is not even
possible to establish if a notification will ever be received, (see Re-
liable Delivery), thus making it impossible to delimit the time of a
notification delivery from the point of view of a publisher (i.e., event
brokers can be implemented to guarantee timeliness). Additionally,
if there is more than one subscriber, then the delivery time and or-
der will depend on the specific implementation of the event broker,
which could vary delivery times even between consecutive notifica-
tions received by the same subscribers. Hence, timeliness cannot be

enforced for publishers in PubSub-based communications [28]. In

47

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

this way, the RR paradigm would be required.

2.2.3. Middleware Technologies for Ubiqui-

tous Systems

Ubiquitous systems should meet some specific requirements

that traditional middleware technologies do not currently accom-

plish [69], like:

48

= They do not support ad-hoc networks, which are of great

importance in ubiquitous systems (see Subsection 2.2.4).
The reason is that traditional middleware technologies are
intended to work in infrastructure networks (e.g., LAN:sS,
Internet, etc.). Consequently, ad-hoc transmission interfaces
(like BlueTooth or infrared) are neither supported by
design nor supported in the existing implementation of the
middleware. An example of the last case is CORBA, which
could support any transmission interface, but the existing

implementations do not support ad-hoc interfaces.

Mobility support is not provided, or it is utterly limited.
Therefore, it is not possible to correctly deal with the dynamic
changes in the networking connectivity that ubiquitous

systems commonly suffer.

= Traditional middleware technologies foster the use of a spe-

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

cific communication paradigm, allowing partial or none use
of others. However, a combination of paradigms is usually
required in ubiquitous systems, so as to meet the quality prop-
erties that are usually expected to be accomplished (see Sub-

section 2.2.2).

Due to the previous limitations, several authors have proposed
middleware technologies to specifically support communications in
ubiquitous systems. Some of the most remarkable ones are summa-
rized in Table 2.2, whose contents have been extracted from [48],

simplifying its structure and contents.

These middleware technologies deal with communications in
ubiquitous systems in a different manner (i.e., different communi-
cation paradigms, underlying networking technologies or protocols,
etc.), focusing on some requirements but not taking into account
others. Moreover, the employ of textual protocols, commonly based
on XML or JSON, has recently overtaken the use of middleware
technologies, since they can pose as middleware and they are eas-
ier to use and understand. However, their efficiency and scalability
(among other properties) is lower in comparison with most previ-

ously mentioned middleware technologies.

Consequently, software engineers usually have to integrate

diverse communication technologies into a shared communication

49

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND

DEVELOPMENT OF UBI

QUITOUS SYSTEMS

Name ‘

Summarized Description

PubSub and DCM Middleware

STEAM [73] PubSub-based middleware that manages groups of
nearby users and provides partial support for power
management, mobility and interoperability.

EMMA [81] Message-oriented middleware supporting one-to-
one and one-to-many communications. Messages
are full pre-formatted documents.

P2P Middleware

Expeerience [15]

It supports mobile code, to discover shared re-
sources and P2P information exchanging.

Middleware based on mobile agents and components

SELMA [43]

It ensures a balanced resource management be-
tween producers and consumers. It supports dy-
namic discovery and mobile agents.

Mobile-Gaia [114]

PubSub-based middleware with coordination sup-
port and management of clusters of entities. It pro-
vides a WYNIWYG (What You Need Is What You
Get) platform.

Middleware based on tuple spaces

LIME [80]

A LINDA-based tuple space [22][42] to share re-
sources.

MeshMdl [52]

Object-oriented tuple space. It supports mobile
agents and makes use of an asynchronous commu-
nication model (Xector).

Middleware based on shared resources

XMIDDLE [72]

Shared information is structured in XML. It is able
to manage network disconnections, which are usual
in ubiquitous systems.

Middleware based on virtual machines

Mate [65]

It only supports TinyOS (http://www.tinyos.
net), which is an OS and an interpreter for em-
bedded systems. It provides synchronous commu-
nications and mobility support.

Table 2.2: Some of the most remarkable middleware technologies

for ubiquitous systems

50

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

component [44], so as to provide a holistic support to the different
communication requirements that are expected to be fulfilled. For
instance, DDS (Data Distribution Service) service specification
[86] is commonly used to support real-time event distribution,
and UPnP (http://www.upnp.org) or Apache River (Jini)
(http://river.apache.org) are software frameworks to support
dynamic discovery of nearby entities. This combination of different
communication technologies, usually results on the decrease of
maintainability and reusability of the resulting software solutions

[118].

2.2.4. Communications in Ubiquitous Sys-
tems: Technical Issues

There are several important technical issues that need to be
taken into account when developing a ubiquitous system, specially
when dealing with communications. For instance, traditional
networking infrastructures (LANs, Internet, etc.), which combine
routers and network nodes (i.e., personal computers and other
computing devices with networking capabilities, like smartphones,
tablets, etc.), can not correctly deal with the dynamicity and
mobility requirements of the ubiquitous systems. As an example,
in rural areas in which those networking infrastructures are not

present, the network nodes can not exchange information between

51

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

them, even if they are physically close to each other.

As a result, Mobile Ad-hoc NETworks (MANETS) are in-
creasingly being adopted to support information exchange in ubiq-
uitous systems. These networks do not have a static infrastructure,
but they are automatically reconfigured by themselves to self-adapt
to the available nodes at any specific moment. In order to achieve
that goal, these networks use ad-hoc connection standards, like IEEE
802.11s [21] or BlueTooth (http://www.bluetooth.com/). Cer-
tain network nodes are automatically chosen to behave as routers in
order to scatter information to other nodes. Figure 2.8 illustrates a
MANET in which all the nodes can transfer information between
them. To do so, Node B must act as a router, since the Node A is not

able to directly reach the Node C.

N Node A L Node B Y F Node C &

Figure 2.8: An example of a MANET with three devices: There is a
total connection between them since the Node B can route the data
transmissions between A and C

Moreover, broadcasting a message in a MANET involves us-

52

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

ing different information dissemination techniques, like:

» Clustering [51] [31]. A node is in charge of propagating mes-
sages to the devices surrounding its physical location. The
selection of the propagating node is based on the use of dif-
ferent metrics, like battery life, the distances between nodes,

etc.

» Simple flooding [56] [61]. Each node disseminates all the re-

ceived broadcast messages to its nearby nodes.

» Probabilistic, area-based and neighbour-knowledge broad-
casts [122]. These methods are similar to simple flooding, but
each node only propagates each received broadcast message
to a subset of its nearby nodes, so as to decrease redundancy
and network traffic. The subset of nodes is dynamically
chosen whenever a node receives a broadcast message, on
the basis of different techniques (e.g., the distances between

nodes, the topology of the network, randomly, etc.).

Broadcasting is not only important to disseminate messages,
but also to dynamically discover the devices that belong to a
MANET, which can be a complex task due to the coincidence of
several MANETS in the same geographic area. To avoid this issue,
it is common to make a “virtual” association between devices and

MANETs [122].

53

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

Additionally, MANETs may have one or more nodes
connected to the Internet, so as to access remote services. These
MANETSs are known as Internet-Based Mobile Ad-hoc Network
or, simply, as iMANETs. iMANETSs allow “off-line” nodes to
access remote services through the “on-line” ones. Consequently,
iMANETs combine the dynamic infrastructure of an ad-hoc
network with the universal information access provided by Internet.
Nonetheless, certain technical issues have limited the success of
these networks. For instance, it is still necessary to figure out
suitable strategies to maintain a cache of information [67] and to
decrease the use of resources (battery, CPU, memory, etc.) of the

nodes that are connected to the Internet.

Ubiquitous systems are also challenging in terms of privacy
and security, since, in fact, most of the exchanged information is per-
sonal and confidential. For example, in MANETS, the information
could be easily captured and stored by the intermediate devices that
behave like routers. Consequently, designing ubiquitous systems in-

volves taking into account the following security aspects [69]:

» Authentication. An entity (i.e., a physical device or software)

can not adopt the identity of another.

m Authorization. The access to shared resources should be con-

trolled by permissions.

54

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

= Non-repudiation. An entity can not reject a valid message,
and if a valid message is received, then it is not possible to

negate its reception. i£ij

Finally, physical networks supporting communications in
ubiquitous systems usually deal with a lot of traffic and have a
limited bandwidth. Therefore, it could be important to take into
account certain quality of service (QoS) requirements at different
levels. For instance, the QoS could be adapted depending on the
user role or the functionality provided by the ubiquitous system
could be dynamically adapted to the level of QoS at a given

moment.

2.3. Model-Driven Engineering
(MDE)

Model-Driven Engineering (MDE) is a software development
approach that is focused on producing and using models to reduce
platform complexity [17]. It is also a “promising approach to ad-
dress the inability of third-generation languages to alleviate the com-
plexity of platforms and express domain concepts effectively” [111].
In general, MDE improves the development process by separating
concerns and allowing the systematic automation of production, in-

tegration and validation processes [119].

55

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

MDE is also considered as a superset of a development
methodology known as Model-Driven Development (MDD). This
development paradigm uses models (and their transformations) as
the main artifacts of the development process, even generating code
from them [74]. MDE, on the other hand, is not only focused on the
development tasks, but also on the complete engineering process
(evolution, reverse engineering, validation, testing, simulation,
analysis of costs, etc.) [112]. So as to clarify these commonly
mixed terms, the relationship between MDE, MDD and several
other methodologies yet to be mentioned in this section has been

illustrated in Figure 2.9.

MDE

Figure 2.9: Relationship between MDE, MDD and other method-
ologies

MDE is based on two primary mechanisms:

m Abstraction: In MDE, it consists of the definition of a set of
domain models representing the specification of a software.

A domain model is a conceptual model (i.e., a conjunction

56

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

of entities and relationships between them) that encompasses
all the topics related to a specific problem [38]. Moreover, a
domain model defines the scope of the problem domain and
serves as a shared vocabulary between different stakehold-
ers [55]. Domain models are usually specified in Domain-

Specific Modeling Languages (DSMLs) [111].

= Refinement or generation: It is carried out by transforming
domain models into other models, so as to obtain different
perspectives of the problem to be solved, or the solution to be
developed. The OMG defines a transformation as the process
of converting one model to another one of the same system
[85]. Transformations are specified through a set of rules ap-

plied to the domain models.

MDE methodology is depicted in Figure 2.10. Several domain
models (obtained through abstraction mechanisms) and transfor-
mation rules serve as an input to a set of refinement mechanisms,
which produce as an output other domain models that can be re-used

(with another set of rules) to produce, again, more domain models.

There are different variations of the MDE (or MDD) approach,
depending on the degree of use of the above-mentioned mecha-
nisms: some of them trend to produce many abstractions to solve

a problem, others are more focused on refinement and the rest try

57

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

Abstraction
Mechanisms

V

Domain Models

Refinement

Mechanisms ——>{ Domain Models

Transformation
Rules

Figure 2.10: Graphical illustration of the MDE development
methodology
to balance the efforts between producing abstractions and refining

them. Some of the most important variations are [111] [60]:

= Model Driven Architecture (MDA) [85]. It is the OMG
standard approach to MDE. Models are divided into three
main abstraction levels: Computation Independent Model
(CIM), Platform Independent Model (PIM) and Platform
Specific Model (PSM). Each model must conform to a
metamodel, and a set of transformation rules, which are
applied to the corresponding metamodels, are intended to
automatically derive a PSM from a CIM. The main objective
of MDA is to separate a software design from the technical

details of an implementation.

58

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

= Agile Model Driven Development (AMDD) [2]. Implemen-
tation efforts are guided by “good enough” agile models that
should be as simple as possible, easy to understand and suffi-
ciently accurate, consistent and detailed. The main idea is to
use models during development, but to decrease the efforts of
defining or using them as much as possible, and to keep them

simple enough for stakeholders.

= Feature Oriented Model Driven Development (FOMDD)
[121]. A model is refined by composing or deriving features
from other (existing or new) models. A feature is “a distinc-
tively identifiable functional abstraction that must be imple-
mented, tested, delivered, and maintained” [59]. FOMDD
tries to improve the reusability and maintainability of a soft-
ware by mapping the representations of features across all the
phases of the software life cycle: analysis, design, implemen-

tation and testing.

= Model Centric Software Development (MCSD) [125].
Models are central to all phases of the development process.
All the aspects of the software are modeled through Domain-
Specific Modeling Languages (DSMLs) to represent aspects
of interest. The models are mapped to the corresponding
elements of the implementation. Consequently, it is possible

to automatize most of the code generation, so as to produce

59

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

nearly-complete implementations of the components or
artifacts involved in a software development. Reverse
engineering is considered as a method to obtain models (from
existing code). Finally, due to the well-defined link between
models and implementation artifacts, model verification and
checking can be achieved through rapid-prototype generation

and run-time performance analysis.

Even if previous variations of MDE are of great significance,
this thesis work will focus on MDA. The reason is that this method-
ology tries to clearly separate abstractions from technical issues.
Thus, it can be suitable in order to deal with the communication
aspects of ubiquitous systems at design level, without taking into
account the technical issues that encompass the use of networking
technologies, protocols, middleware, etc. Moreover, it is currently
the only approach to MDD that has been defined and evaluated by
an standard’s committee (Object Management Group, OMG), thus
ensuring its quality, well-defined specification and interoperability

with other standards (like UML).

2.3.1. Model-Driven Architecture (MDA)

Model-Driven Architecture (MDA) is an Object Management

Group (OMG) standard approach for the development of software

60

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

systems through MDE [835].

In MDA, software is developed on the basis of a forward en-
gineering process, that is, by producing code from abstract models.
The general idea is to decouple software design from the technical

aspects of its implementation [85].

Reciprocally to MDE, MDA is based on two main mecha-
nisms: abstraction through modeling and refinement through trans-
formations. The MDA standard development methodology can be

represented as depicted in Figure 2.11.

Conforms to
[CIM } —————— >[CIM Metamodel]

Transforms CIM Metamodel to
PIM Metamodel

Conforms to
PM @ }-=-=-=--- > PIM Metamodel

Transforms PIM Metamodel to
PSM Metamodel

Conforms to
PSM F--=-=--- >| PSM Metamodel

Figure 2.11: Metamodel-based transformations in Model-Driven
Architecture (MDA)

3

5

Models are categorized into three different abstraction levels:

61

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

» Computation Independent Model (CIM). 1t is often referred as
a business or domain model, since it uses a vocabulary that
is familiar to the subject matter experts (SMEs). It is totally
independent of the technologies that are going to be used for

its implementation.

» Platform independent Model (PIM). It focuses on the opera-
tion of the system, but abstracts out the specific technologies

to implement it.

» Platform Specific Model (PSM). It combines the specifications
in the PIM with the technical details of a specific platform

(programming language, operating system, etc.).

Each model conforms to a metamodel, which represents the
elements and relationships of any of its instances. Metamodels are
also instances of meta-metamodels, which are represented in the
OMG specification of the Meta-Object Facility (MOF) [92]. MOF is
the metamodeling architecture of UML. Consequently, it is possible

to define MDA metamodels and models in UML.

In relation to the definition of model transformations, the
MDA standard uses the MOF Query/ View/ Transformation
(QVT) OMG specification [90]. However, it is also very common
to specify transformation rules through the ATLAS Transfor-

mation Language (ATL) (http://www.eclipse.org/atl),

62

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

which is supported by the Eclipse Modeling Framework (EMF,

http://www.eclipse.org/enmf).

Transformations are defined on the metamodels, so as to be
able to automatize the transformation process of their respective in-
stances. For example, by establishing the transformation rules be-
tween the CIM and the PIM metamodels, it is possible to derive
a transformation between the CIM and PIM instances. One of the
main benefits of this transformation approach is the reusability of
the transformation rules, since they can be applied to any instance

of the metamodels that they relate.

2.3.2. A Comparison between MDE and Code-
Centric Developments

Many authors have extensively compare MDE and code-
centric developments. MDE is generally considered as an “slow”
development methodology for small-scale software projects, since it
requires too much time and efforts to produce models and use them
to obtain software prototypes [37]. However, MDE is commonly
said to be adequate to only deal with very complex projects, since it
produces high quality software that can be easily reused, maintained

and extended [78].

In any case, code-centric developments can be initially

63

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

“faster” and it is easier to produce software prototypes from the
beginning of the development process. Nonetheless, MDE should
not be considered neither “slower” nor as a development process
exclusive to large and complex projects. In MDE it is generally
simpler to produce code, validate and maintain it, independently
of the scale of the project to be developed [60]. As illustrated in
Figure 2.12, in MDE the efforts are decreased over time, whereas,
as illustrated in Figure 2.13, in code-centric developments, the

efforts are constant.

Model-Driven Engineering

|
REEE $1F - 1

[]
' v Y

#include <stdio> #include <stdio> #include <stdio>

int main() int main() int main()

{ {
, , ,

Figure 2.12: Scheme of the MDE process

Moreover, in MDE, the separation between designing and cod-

ing is clearer than in code-centric developments. Consequently,

64

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

Code-Centric Development

Requirements Analysis

Software Product

PR ORI -1

#include <stdio>

int main()

{
,

#include <stdio>

int main()

{
)

>
A

#include <stdio>

int main()

{
,

Figure 2.13: Scheme of the code-centric development process

in MDE, software engineers trend to design very detailed models
that are implemented by programmers [49]. On the other hand, in
code-centric developments, all the members of a development team
should have similar skills, thus making it very difficult to set up a
large team to manage complex software projects. Additionally, in
MDE is easier to parallelize the development of different projects,
since, as a project progresses, several members of a team can start

to dedicate design efforts to other projects.

Furthermore, it has been experimentally tested that MDE is
able to reduce development costs, even by half (approximately), in
small-scale projects [60]. In fact, MDE not only decreases the de-

velopment costs of a project, but it also incrementally decreases the

65

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

cost of future projects, as it promotes the reusability of the produced
models. Besides, the maintenance and extension costs are also re-
duced, since it is usually easier to extend models to incorporate new
functionalities (or to modify the existing ones), rather than modify-
ing the code. To that respect, MDE is also optimum for reducing
the cost of integrating legacy models into new software designs [4].
Additionally, in MDE is possible to simulate a system (or certain
parts of it) on the basis of the models that are used to specify it [27].
Thereby, it is feasible to detect operational failures without an actual
implementation of a system, which further decreases development

costs in many cases.

In spite of the benefits that MDE offer, it also have several

drawbacks [49]:

= Redundancy. In MDE is usual to provide different represen-
tation of the same artifacts, representing different perspectives
or abstraction levels of the same concepts. Therefore, redun-
dancy issues may arise, thus requiring a continuous consis-
tency checking of the produced models. Anyhow, automatized

model checking tools may overcome this problem.

= Rampant round-trip problems. To keep separate models
as lowly interrelated as possible is difficult, since as systems

grow in complexity it is increasingly arduous to clearly sepa-

66

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

rate abstraction levels. The interrelationship between models
decrease their maintainability level, since a change in a model
needs to be reflected in other models. Reverse engineering

techniques may help to avoid that issue.

Moving complexity rather than reducing it. Sometimes ab-
stract models only reduce complexity at a certain develop-
ment phase (e.g., design), but increase complexity in other
phases (e.g., implementation), since some details are com-
pletely skipped. The problem is to be able to detect the degree
of abstraction that models should have during the whole de-
velopment cycle, so as to not move the whole complexity of a

project to a certain phase only.

More expertise required. Correctly defining, using
and transforming each model requires a certain set of
very particular skills, while all the models need to be
exchanged, improved and understood by all the members of a

development team.

To summarize, MDE overcomes most of the issues that code-

centric developments have. However, it is still necessary to improve

certain aspects of this development methodology by researching new

reverse engineering techniques or proposing new model checking

tools, among other things. Regardless, it is apparently certain that

67

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

future developments will move the complexity from the implemen-
tation to the other phases of the software engineering cycle. This
fact further motivates the research work behind this thesis, since it
reinforces the need of avoiding important tasks (like defining all the
aspects related to the communications) to be relegated to the imple-

mentation, instead of being tackled during the software design.

2.3.3. Developing Communication Mecha-
nisms on the basis of MDE

MDE has proven to be an appropriate methodology to facili-
tate the development of different aspects of the software communi-

cations: protocols, middleware, networking technologies, etc.

For example, in [71] it is presented an approach to develop
protocols for client-server architectures on the basis of MDE. The
main idea behind this work is to generate code from a set of well-
defined models that represent the main features and quality prop-
erties of a certain protocol. Moreover, a communications profile
for UML is introduced, so as to be able to more easily represent
the structural modeling and behavior of a communication protocol
through an standard graphical notation. This proposal benefits from
MDE in the sense that this methodology facilitates automatic gener-
ation of high quality implementations including very complex pro-

gramming structures that are hard to code even by skilled program-

68

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

mers.

A proposal to apply MDE to manage communications in the
Internet of Things (IoT), that is, in resource-constrained, mobile and
highly dynamic computing systems, like sensors or wearable de-
vices, is presented in [36]. This research work highlights the dif-
ficulty of producing high quality software for these types of com-
puting devices without the help of the appropriate supporting ab-
stract models. Moreover, the authors emphasize the need of apply-
ing MDE-based methodologies to the development of complex com-
munication environments, which are tough to manage from a merely

technical point of view.

MDE can also be applied to model communication schemes,
and to automatically analyze them to check their quality, as demon-
strated in [120]. For instance, in that research work, it is described
the development process of a sensor network supported by wireless
technologies. The MDE-based development involves specifying a
set of models, checking them to detect issues (i.e., sensors out of the
range of the wireless technologies, performance issues, non-satisfied
constraints, etc.) and refining them to improve the characteristics of
the resulting network. The possibility of simulating the designed
sensor networks using the produced models is also pointed out in
that research work. Actually, system simulation is one of the most

important benefits of MDE, as mentioned in previous Section.

69

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

In [60] it is detailed how middleware development can benefit
from MDE too. The development costs can be considerably reduced
using MDE (in that research work is mentioned that even 2.6 times),
while, at least, keeping the same quality level of developing a mid-

dleware on the basis of a code-centric development methodology.

Integrating a set of heterogeneous communication technolo-
gies is a method to provide their combined benefits in a unique arti-
fact (i.e., a software component, middleware, service, etc.). This
is an important task that needs to be performed very commonly
nowadays, as a means, for example, to maintain compatibility be-
tween newer and legacy technologies, or to fulfill an amalgam of
quality properties that are not possible to satisfy with any individual
technology. MDE can be suitable to integrate communication tech-
nologies, as described in [4], since the integration process is usually

manual, very complex and prone to errors.

To conclude, all these works stress the increasing complexity
(and cost) of managing communications, specially without the ap-
propriate methodologies or by dealing with them only from a tech-

nological perspective.

70

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

2.4. Conclusions

This chapter has presented a survey about the communication
of information in distributed and ubiquitous systems, and the devel-

opment of communication mechanisms on the basis of MDE.

Software communication can be very complex, since a num-
ber of technical and design decisions need to be made, while taking
into account several quality properties: scalability, efficiency, relia-
bility, interoperability, etc. Communicating information in ubiqui-
tous systems further increases complexity, since additional proper-
ties need to be fulfilled, like mobility support, transparent adaptation
or context-awareness. Software engineers trend to achieve some of
those quality goals at implementation level by adopting certain sup-
porting technologies, like middleware. Moreover, since the existing
supporting technologies tackle with some functionalities or quality
properties, but do not take into account others, they usually integrate

heterogeneous ones to fulfill the desired requirements.

MDE can be applied to approach the communication aspects
of a ubiquitous system at design time. By addressing communica-
tions at design level, it is possible to reuse knowledge across soft-
ware design and implementation, so as to reduce development costs
and produce optimal solutions to common problems. Additionally,

the combination of different communication technologies can be

71

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

part of the design process, instead of being relegated to the imple-
mentation, as traditionally occurred. A direct benefit of using MDE
to develop the communication aspects of a ubiquitous system is the
mitigation of the negative impact in maintainability and reusabil-
ity that results from a composition of technologies, patterns, frame-

works, etc. without a clear methodology.

Finally, it can be deduced from the information presented in
this chapter that dealing with communications directly affects the
quality properties to be pursued, the functionalities that can be pro-
vided and the final development costs of a software. Consequently,
managing communications should not be exclusively considered as
an implementation activity: New models, methods and techniques
should be proposed to incorporate such a relevant task to the whole
development process of a ubiquitous system. To this respect, in the
next chapter it is proposed a conceptual model of a communication
system. The idea is to clearly expose the most relevant concepts
(and their relationships) that are present in any communication sys-
tem, and to serve as a basis to introduce a MDA-based development

methodology for ubiquitous systems in the later chapters.

72

Chapter 3

A Model for Communication
Systems

This chapter presents a conceptual model for Computation-
Independent Communication Systems (CI-CS). As it will be de-
scribed along this chapter, the conceptual model, which is also pre-
sented as a metamodel, intends to tackle with some structural and
behavioral aspects of the communications that are not currently ap-
proached in the main conceptual models for communication sys-
tems: Shannon-Weaver [115], SMCR [11] and Barnlund [6] models.
In fact, the conceptual model has been devised through the analy-
sis of the expressiveness problems that are present in those current
communication models. In order to make it easier to understand the
different elements that should be encompassed in order to concep-
tualize, analyze or optimize a communication system, and to make

more explicit the relationships between those elements, separated

73

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

views of a communication system are offered: structural and be-
havioral view. Furthermore, an ontology has been devised to pro-
vide a formal specification of the conceptual model. To conclude, a

qualitative description of the proposal is provided.

3.1. An Introduction to the Commu-
nication Theory

Currently, three communication models can be considered to
provide appropriate and precise descriptions of the process of com-

municating information.

A technical-oriented approach to communications was firstly
presented in the Shannon-Weaver Mathematical Model of the
Communications [115], which is, by the way, the first publication
that introduced the term bit. The Shannon-Weaver model (see Fig-
ure 3.1') establishes that communications always follow the same
process: a source sends a message through a channel to a receiver.
A noise source is an external element to the communication system
that alters the transmitted messages while they are being transferred
through a channel. Therefore, the contents of the message may dif-

fer between senders and receivers.

'Note that the “channel” element is not named in the original depicting of the
model, but it is mentioned in its description

74

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

Channel

Infg(r)T::tleon » Transmitter ————| Receiver »| Destination
Message Signal Received Message
Signal

Noise
Source

Figure 3.1: The communication model proposed by Shannon and
Weaver in the The Mathematical Theory of Communication, 1949
[115]

An extension to the Shannon-Weaver model is presented in
the widely-accepted Source-Message-Channel-Receiver (SMCR)
model [11], whose description has been graphically represented in
Figure 3.2. The main contribution is that it incorporates the possibil-
ity of making the communication process iterative, since a receiver
may become a source after receiving a message, in order to provide
a feedback. Additionally, the noise source concept is removed in

order to produce a more abstract communication model.

Encode Transfer Decode
Source » Message »| Channel » Receiver

Feedback

Figure 3.2: The communication model described by Berlo in the The
Process of Communication, 1960 [11]

Both the SMCR and the Shannon-Weaver models are oriented

towards ordered social interactions. However, Barnlund proposed

75

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

a transactional model in which each participant can communicate
with itself and to simultaneously be both a receiver and a sender
[6]. The model (see Figure 3.3) also reflects the possible pres-
ence of communication noise, which could lead to the need to re-

transmitting a message.

Noise

L1
AN A iy
NN $%ﬁﬁ

Sender/ Responds Transfer Transfer Responds | gender/
» A Channel > >

Receiver | pgcodes Feedback Feedback Decodes | Receiver

@
v

Figure 3.3: The communication model described by Barnlund in A
Transactional Model of Communication, 1970 (re-printed in 2008

[6])

These models intend to provide a highly abstract perspective
of the communications. However, they do not provide an insight of
the domain-independent elements that are present in a communica-
tion system (i.e., the elements that are present in both human and
computer-based communications), the relationships between them,
the mechanisms to support their interaction, or how to organize them
to fulfill certain requirements. For example, Barnlund’s theories
clearly specify that both the receiver and the sender need a proto-
col (a code-book) to be able to understand each other, but that term

is neither clearly conceptualized nor incorporated into the transac-

76

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

tional model. Also, none of the presented models take into account
the scenarios in which a message can be simultaneously transferred

through diverse channels and according to multiple protocols.

3.2. A Model to Conceptualize a
Communication System

This section presents a conceptualization of the elements
and relationships that are present in any communication system.
The idea is to extend, complete and formalize the current,
most-widespread communication models, which were presented in
previous section, so as to overcome the issues that may arise when

characterizing certain scenarios on their foundations.

The overall notion of a communication system have been de-

scribed on the basis of two views:

= Structural View. The elements that are present in a commu-

nication system, and how they interact.

= Behavioral View. The flow of interactions in a communica-
tion system to provide a communication-related functionality

or to fulfill a quality property.

These views share certain concepts and relationships. Hence,

their conjunction conforms a complete metamodel (or conceptual

77

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

model) that tackles with all the facets of a communication system
in a holistic way. Finally, the specification of a Computation-
Independent Communication System (CI-CS) has been formalized
as an ontology in order to have a basis on which it is possible to
describe the capabilities and quality properties of the conceptual

model (see next section).

3.2.1. Structural View

The structural view of a CI-CS presents the elements of a com-

munication system, and how they relate to each other.

To work out the general behavior of a participant in a CI-CS,
the process described in the current communication models has been
analyzed. The devised model is depicted in Figure 3.4 as a UML

activity diagram.

As itis illustrated in Figure 3.4, in any communication system,
the communication process is initiated when the sender decides to
deliver some information (1). After that, the information needs to
be prepared to be sent by adopting a protocol (2), the information
needs to be formatted according to the specifications of the protocol
to produce a certain message (3) and a protocol-compatible chan-
nel has to be selected to deliver the message itself (e.g., a software

protocol might not be able to tackle with all the existing physical

78

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

(2) Adopt 1) Choo_se
Protocol Information

!

(3) Format (4) Select
Message Channel

(5) Send

Message

[confirm_delivery] [feedback]

(6b)
Confirm >
Delivery

[ng_feedback]

(6a) End
[unreliable_delivery] | Communication ‘@

Figure 3.4: A UML activity diagram depicting the dynamic behavior
of a CI-CS

channels, but only with a subset of them) (4). Later, the message is
sent to a receiver (5). If the communication does not involve a deliv-
ery acknowledgement, then the communication process ends (6a).
In other case, the message is delivered (6b) and the receiver may

provide a feedback, thus acquiring the role of a sender (1).

Consequently, all the existing communication models include

the following structural elements:

79

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

Sender. The party that initiates a communication.

Message. The information unit to be exchanged during a com-

munication.

Channel. The medium to transfer messages.

Receiver. The destination party of a communication.

Optionally, a noise source can also be present in order to rep-
resent the possible situation in which an external source modifies
in some ways the exchanged messages while they are transferred

through a channel.

On the basis of these notions and the analysis of the previous
behavioral model, the structural view of a CI-CS has been devised.
The view, whose model has been depicted in Figure 3.5 as a UML
class diagram, also aims to extend and refine the existing communi-

cation models, as it is described below.

In the structural view, whose elements and relationships are
defined in Tables 3.1 and 3.2, a communication system is made up
of one or more participants, channels and protocols. This way,
the notion of communication system is extended in comparison to
the previous models, in which the exchange of messages between
senders and receivers is made through only one channel and accord-

ing to a particular protocol.

80

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

4| Communication

¢ System
connected »
rece/veroll* 1.*
sender Participant

0.." [Role : ParticipantRole

transfer_unit| 0..*

exchanges |V

producer| 0..*

structurer

Message

<<enumeration>>
ParticipantRole

PEER
PASSIVE
ACTIVE

medium | 0..*
A | transports

content | 0..*

Channel

communicative_commonality [1..

A | rules_the_use

medium |1..*

conforms_to »

Protocol

complier , I 0.*

>—

1.*

Figure 3.5: The structural view of the CI-CS metamodel, depicted

as a UML class diagram

A participant may exchange information with others or with

itself (i.e., a communication system may be conformed by a unique

participant that self communicates). Besides, each participant may

have a different role, according to its role attribute: it can be pas-

81

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

Element

Summarized description

Communication
System

It encompasses a collection of parties (or par-
ticipants) that exchange messages through a
set of channel, and conforming to certain pro-
tocols.

Participant

A receiver and/or sender of a set messages in
a communication system. In a human conver-
sation, it can be one person. In a networking
environment, it can be a computing node.

Message

The minimum information unit that is ex-
changed between participants in a communi-
cation system. The ordering and the format
of the each message in specified through the
communication protocol.

Channel

The medium to transport a message between
the different participants in a communication
system.

Protocol

It defines the format and ordering of the mes-
sages to be exchanged. Additionally, it defines
the rules to adequately use the communication
channel (i.e., when to use it, how to use it in an
optimum way, etc.). Moreover, a protocol can
be a composition of other simpler protocols.

Table 3.1: Concepts present in the structural view of a CI-CS

sive (it can only act as a receiver), active (it can only be a sender)

or peer (it can be both a sender and a receiver). In this way, all

possible communication scenarios, incorporating different types of

participants, can be represented. In contrast, in the existing commu-

nication models, some special communication scenarios can not be

represented.

For example, in the proposed CI-CS model, a communication

82

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

Relationship Summarized description

Connected The participants of a communication system
connect to each other to exchange messages.

Exchanges Each participant transfer multiple messages to
the participants to which they are connected
to.

Conforms_to A message must conform to a set of certain

protocols that are understood by the different
participants engaged in a communication.

Rules_the_use A protocol has a set of rules to adequately use
a communication channel (e.g., to use it effi-
ciently).

Transports A channel is in charge of transferring mes-
sages from the sending parties to the receiving
ones.

Table 3.2: Relationships between the concepts present in the struc-
tural view of a CI-CS

system could be composed only by passive participants (i.e., they
only act as receivers). This way, it is possible to use the model to
specify a service-oriented architecture of a software, by only focus-
ing on the representation of the services themselves, and omitting
the clients consuming them (i.e., the participants with an active role),
but not excluding any other communication elements (i.e., chan-
nels, messages and protocols). Also, other communication scenarios
could be only composed by active participants. For instance, in a
ubiquitous system it is common to incorporate participants that con-
stantly send messages to be discoverable by other parties. This way,
it is possible to represent scenarios through the proposed model in

which all the participants are expecting to be discovered and, there-

83

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

fore, they only send messages. Finally, most scenarios in which
participants with a peer role are involved can not be represented
by neither the SMCR nor the Shannon-Weaver models, since they
do not take into account the possibility of a participant to concur-
rently receive and send messages. However, they can be represented

through the transactional model proposed by Barnlund.

The CI-CS model assumes that the information unit is a mes-
sage, which can be transported through one or more channels. In this
manner, it is possible to represent communication systems that in-
tegrate heterogenous channels, so as to improve the interoperability
between the parties (i.e., to use specific channels for specific par-
ticipants) or to open up the possibility of concurrently exchanging
messages using different channels in order to fulfill certain quality

properties (i.e., performance, reliability, etc.).

A protocol, as defined in the proposal, establishes the rules to
use a channel (e.g., a software network protocol, a grammar in a lan-
guage, etc.). Moreover, a protocol can be the composition of other
simpler protocols, which is very common in practice. For exam-
ple, the CORBA IIOP is a protocol that combines the GIOP abstract
messages with their implementation as TCP/IP messages [87]. Fur-
thermore, the CI-CS model allows the specification of communica-
tion systems that integrate diverse protocols, which is an important

requirement in many systems to be able to achieve a certain level of

84

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

interoperability or quality of service (QoS) [101].

Finally, it is worth to be noted that the proposed model does
not include the notion of noise source, since it is assumed that the
possibility of incorrectly transferring a message is an intrinsic prob-
lem of any channel, and should not be part of the characterization
of a communication system (i.e., the noise source should be present
in the characterization of a channel, but not in the characterization
of the whole communication system). Thereby, CI-CS model con-
siders that each communication process is a transaction in which the
messages are either correct or need to be re-transmitted. The mech-
anisms to detect an erroneous message and to send it again should

be present in the specification of the protocol.

3.2.2. Behavioral View

The behavioral view of a communication system exposes how
its elements can be organized to provide a communication-related
functionality or to meet a quality property. The idea is to interpret a
communication system as a collection of interactions intended to

achieve certain goals.

Due to the similarities between the notions present in BPMN
2.0 (see Chapter 2, Section 2.1.3) and the ones present in the struc-

tural view of a CI-CS, this standard has been taken as an inspiration

85

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

to understand the notions behind the behavioral view of a commu-
nication system. Particularly, BPMN 2.0 choreographies have been
considered in this thesis work as an appropriate manner to represent
the behavioral aspects of a communication system, and the collab-
oration between its elements. Some authors have previously identi-
fied BPMN in general, and in particular BPMN choreographies as an
appropriate notation to represent communication systems [62] [18]
[46]. In contrast with UML-based notations (like communication,
sequence or activity diagrams), BPMN can be more expressive to

propose computation-independent models of a system [70].

In consequence, the behavioral view of a CI-CS, whose model
is depicted in Figure 3.6 as a UML class diagram, has been devised
on the basis of the BPMN 2.0 choreography metamodel. The con-
cepts and relationships present in the behavioral view of a CI-CS
are, respectively, described in Tables 3.3% and 3.4. The naming con-
ventions of the BPMN choreography metamodel have been kept in
order to facilitate the matching between a BPMN diagram and the
proposed behavioral view of a CI-CS (i.e., this matching between
both models will be explored in Chapter 5, Subsection 5.3.2, as a
key part of the software engineering methodology to be presented in

that chapter).

The elements that are shared with the structural view are not described again
in Table 3.3

86

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

In contrast with the BPMN 2.0 metamodel, the behavioral
view focuses on the concepts that are present in a CI-CS, rather than
on the graphical notation to represent the concepts themselves in a
diagram. Thus, the behavioral view of a CI-CS does not include the
elements and relationships present in the BPMN 2.0 metamodel in
relation to graphical notations. Also, the behavioral view includes
some elements present in the structural view presented in previous
subsection. Namely, participant and message elements. It is also
important to note that the BPMN choreography metamodel includes
an element called connection, which is equivalent to the /ink ele-
ment in this proposal. The reason behind this name mismatch is to
avoid misconceptions of this term, since the notion of connection
is commonly used in the communication field to refer to the initial

interaction between two participants.

In the behavioral view, a communication system may contain
multiple choreographies, since it is taken into account the possibil-
ity of modeling a communication system that does not operate at all,
and also the specification of a communication system with different

choreographies.

The multiple choreographies are intended to organize the
flows of interaction between the participants of a communication
system. This way, each choreography consists of the sequence of

activities to be carried out by the participants. Particularly, in each

87

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

Communication Content- Event-
System Based Based

Inalizer
1_,:1 0.." §|2

: g—1——* & i
initigtor @y Choreography o E Exclusive Onggerer
Parallel
1.* sfer_unit producer _1..*| 2..*
Choreography [0.7 M ”
Activit |exchanges! b Complex
| sender
i ecever 1]
N <q connected endpoint
0. N Gateway Inclusive
Sub-
Choreography ‘7
ACtIVIty connector N
links |A Event result _ triggers -
part|1..* A
L. Link
Sequential l——
Conditional Initial End
1 |target 1..*| objective
Default
< initiates
<« finalizes

Figure 3.6: Behavioral view of the CI-CS metamodel, depicted as
a UML class diagram. The model is inspired by the BPMN 2.0
Choreography Metamodel Specification [89]

activity, one or two participants exchange several messages (i.e., an
activity is considered as a transaction in which either a participant
communicates with itself or communicates with another participant
to deliver messages). Additionally, an activity can be composed by
several sub-activities representing an atomic interaction between
two participants, involving the exchange of only one message (i.e.,
this constraint requires OCL to be represented in the UML class

diagram, but this notation has been omitted from the figure in order

88

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

Element

Summarized description

Choreography

A possible flow of interactions between the
participants in a communication system.

Choreography
Activity

An interaction activity between one or two
participants. An activity may be composed by
multiple subactivities.

Flow Object

The different elements that are part of the ex-
ecution flow of a choreography, that is chore-
ography activities and events.

Link

A connection between two or more flow ob-
jects. There are three types of links: sequen-
tial (it directly joins two flow objects), condi-
tional (it only joins two flow objects if a con-
dition is satisfied) and default (the flow object
that is initiated when no previous conditional
interaction were satisfied).

Event

An specific type of message that represents a
significant occurrence in the communication
system at a given moment.

Gateway

An event that executes one or more flow ob-
jects (i.e., it initializes a choreography ac-
tivity or makes an event to be delivered).
There are four types: exclusive (given a re-
ceived event, a flow object is chosen to be
executed), inclusive (several flow objects are
waited to be finished/delivered, then a specific
one is executed), complex (a predicate should
be satisfied before executing a flow object)
and parallel (several flow objects are concur-
rently executed). Exclusive gateways can be
event-based (i.e., any event can trigger it) or
content-based (i.e., the triggerer event needs
to contain certain information).

Table 3.3: Definition of the concepts present in the behavioral view

of a CI-CS

89

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

Relationship Summarized description

Links A link connects two flow objects in a choreog-
raphy.

Starts A flow object may be initiated by multiple
gateways.

Triggers An event triggers an exclusive gateway.

Initiates An initial event starts a choreography.

Finalizes One or more end events may finish a chore-
ography (i.e., the execution flow of a choreog-
raphy may have different endings, but each of
them is associated to an end event).

Table 3.4: Description of the relationships between the concepts
present in the behavioral view of a CI-CS

to simplify it).

At the end of each activity, the execution flow of the communi-
cation system continues as specified in the associated choreography.
Therefore, the execution of an activity may lead to the execution
of other activities or the occurrence of events. These elements are
named in the model as flow objects, that is, the elements that are

part of the execution flow of a choreography.

An event is a type of message that is used by participants to
notify a significant occurrence in the communication system to the
other participants. For example, it could be the notification of the
arrival of a new participant, the unavailability of an element in the
system, the initialization of a choreography (i.e., an initial event),

the finalization of its operation (i.e., an end event), etc. It is worth

90

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

to be mentioned that an event is both a type of message and a flow
object. Thereby, it is possible to represent scenarios in which an
activity involves the notification of an event, or the notification of
an event is just part of the execution flow of a choreography of a

communication system.

A gateway is a specialized event that is delivered to initiate a
set of interactions, that is, to modify the usual execution flow of a

choreography in different ways:

= Parallel. Several interactions are concurrently initiated.

= Exclusive. Given several target interactions, only one of them
is executed. It allows to represent an split in the execution
flow of a choreography. The selection of a specific interaction
is based either on the occurrence of an event (event-based)
or on the delivery of an event with certain contents (content-

based).

= Complex. Similarly to an exclusive gateway, it splits the exe-
cution flow of a choreography. However, the selection of the
interaction to initiate is based on the satisfaction of a predi-

cate.

= Inclusive. Several interactions are being waited to be finished,

then an interaction is initiated.

91

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

On the basis of all these notions, it is possible to define a link
as the relationships that are pre-established in a choreography be-
tween each two flow objects (i.e., activities or occurrence of events).
A link, in the real work, could be a pre-assigned turn to allow the
participants to communicate in a certain order. In a Petri Net, it

could be the foken that allows to transition to certain places.

In the behavioral view of a CI-CS there are three types of links:
sequential, conditional and default. Sequential links directly con-
nect two flow objects. Conditional links are only followed when
a certain condition (or predicate) is satisfied. Finally, default links
are followed when any conditional link was triggered, that is, if the
predicates associated to a set of conditional links could not be satis-

fied.

In any case it is necessary to specify at least one link that re-
lates the initialization of a choreography and its finalization (i.e., the
delivery of an initial event and an end event). Conversely, it is neces-
sary to have at least two messages involved in a choreography (i.e.,

one to deliver the initial event and another for the end event).

To conclude, the behavioral view of a CI-CS is able to expose
the organizational aspects of a communication system. This is a
novelty in comparison to previous conceptualizations of the commu-

nication systems, which only tackled with their structure and basic

92

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

operational facets.

3.2.3. Formal Specification as an Ontology

The views of a CI-CS share certain concepts. As so, their con-
junction conforms a metamodel of a CI-CS. The metamodel of a
CI-CS, which has been semi-formally depicted using UML in pre-
vious subsections, can be formalized to demonstrate its semantic
capabilities and quality properties (see next section). To do so, an

ontology of a CI-CS has been defined.

In Computer Science, an ontology is defined as “a specifica-
tion of a conceptualization” [45]. An ontology formally describes
the topics in a domain, the relations between them and their con-
straints. Even if ontologies can be specified through different lan-
guages, Web Ontology Language (OWL) (http://www.w3.org/
standards/techs/owl) is one of the most well-known ones. OWL
is based on Description Logics (i.e., a formalism that is appropriate
to represent knowledge) and is a W3C Recommendation. Also, Pro-
tégé (http://protege.stanford.edu) is the most used editor for

ontologies, and is compatible with OWL.

Figures 3.7 and 3.8 respectively show the output that gener-
ates Protégé to graphically represent the CI-CS ontology, and its

hierarchy of classes and properties. Note that in the graphical repre-

93

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

sentation of the CI-CS ontology some elements have been removed
in order to avoid the figure to be overcluttered. The whole OWL

implementation is provided in Appendix 1.

/.-” CommunicationSy
- slam
z'/ /"s-r"—---
i e S
-:.,___H_l' e b
H '.f/ I -
- - — — A
I'J ParticipaniFiale] ! \2& A /
Pratocal | / ’ g I 'y
: / } /
\ ! \/ s 7 I
: N F A 1/ v L7
| ChoreographyAct | y \ s / A ,A/
ity ! ~ e
[S "-"“'-'VT !
._.,.r_,‘;s Q\ ~J — 7

N \a. I ,;“ \m_ |
SubCharaagr i Link
[| 7 A/ T Sy
P /T ™
S N BN
[InitialEvant “ FlowObject | [Saquantial |

Paralial [
Conmplax -
=
- o

| Inclusive J | Exclusive |

| Garnam-aa.ga.;ﬁ.] I Ewmaagad l

Figure 3.7: Graphical representation of an ontology of a CI-CS

A benefit of the ontological representation of a CI-CS is that it
can be shared and reused by different groups of people or software

tools to analyze a communication system in order to:

= Check for inconsistencies in the specification of a communi-

cation system. For example, it is possible to detect the need of

94

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

v
v Message
4 Event
v Link
Conditional
Default
Sequential
Channel
Choreography
CommunicationSystem
v FlowObject
v ChoreographyActivity
SubChoreographyActivity
v Event
v Gateway
Complex
v Exclusive
Content-Based
Event-Based
Inclusive
Parallel
EndEvent
InitialEvent
Participant
v ParticipantRole
Active
Passive
Peer
Protocol

¥ mtopObjectProperty

-hasAn:ﬂvIEParticipants

m hasChoreographyMessages
m hasChoreographyParticipants
m hasLink

m hasLinks

m hasParticipants

m hasProtocols

® hasRole

= hasSubactivities

m isActivityParticipant
misChannelOf
misChoreographyMessageOf
m isChoreographyOf

m isChoreographyParticipant
m isCommunicativeCommonality Of
m isComplierWith
misComposedBy
mjsConnectedTo

m isConnectorOf
misFinalizedBy

m isFinalizerOf
misInitializedBy

m isInitializerOf

misLinkOf

m isMediumOf

m isParticipantOf

® isProtocolOf

m isRoleOf

misStarterOf

m isStructurerOf

m isSubactivityOf

m isTransferUnitOf
misTransportedBy

m isTransporterOf

m isTriggeredBy

Figure 3.8: The class hierarchy and properties of an ontology of a

CI-CS, as represented in Protégé

including certain participants to be able to carry out required

interactions, messages to carry out these interactions, proto-

cols that are able to codify those messages, channels compat-

ible with those protocols, and so forth.

= Simplify a communication system by minimizing its elements

and interactions. To do so, it could be possible to establish

95

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

equivalencies between different members (i.e., instances, in-
dividuals) of the same class, which could lead to the simplifi-
cation of a communication system. For example, if two par-
ticipants need to interact several times during the lifespan of a
communication system, it could be considered to merge both
participants into a unique one, so as to reduce the number of
participants and interactions. This consideration could lead
to the optimization of the communication system through the
reduction of the number of messages, the complexity of the

protocols, etc.

= Integrate several communication systems by including the
members of each one to be integrated (i.e., the instances or in-
dividuals associated to each class in the ontology, that is, par-
ticipants, messages, channels, protocols, etc.) into a unique
communication system. Again, as mentioned above, it is pos-
sible to check for inconsistencies and simplify the resulting,
integrated, communication system, which is usually consid-

ered as a complex task [101].

Besides, previous activities can be automatically done through
existing reasoners. A reasoner is a piece of software that “infers
logical consequences from a set of explicitly asserted facts or axioms

and typically provides automated support for reasoning tasks such

96

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

as classification, debugging and querying” [29]. Some of the most
well-known reasoners are FaCT++, RacerPro, Pellet, KAON2 and

Hoolet [29].

3.3. Quality Attributes of the Com-
munication Model

The international standard ISO/IEC 25010:2011 [54]
establishes a quality model for software products on the basis of
eight attributes: functional suitability, reliability, performance
efficiency, operability, security, compatibility, maintainability

and transferability.

On the basis of the standard and the research work presented
in [13], a qualitative analysis of the proposed metamodel have been
made. In particular, the proposal presented in [13] has been adapted
to the newer ISO/IEC 25010:2011, since it was published in 2010
and adopts the ISO/IEC 1926 standard as its basis, which has been
deprecated since then on behalf of the ISO/IEC 25010:2011 one.
The definitions of the quality attributes have been adapted from the
more general software product context, which is the one presented

in the standard, to the metamodeling context.

The following subset of the quality attributes presented in the

ISO/IEC 25010:2011 standard, and some of their corresponding

97

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

sub-characteristics, have been taken into account:

98

Functional suitability. The degree to which the metamodel
provides functions that meet stated and implied needs, when

the metamodel is used under specified conditions.

Reliability. The degree to which the metamodel can maintain
a specified level of performance, when used under specified

conditions.

Performance efficiency. The degree to which the metamodel
provides appropriate performance, relative to the amount of

resources used, under stated conditions.

Operability. The degree to which the metamodel can be un-
derstood, learned, used and attractive to the user, when used

under specified conditions.

Compatibility. The ability of the metamodel to exchange in-
formation with other metamodels and/or to perform their re-

quired functions while sharing the same domain.

Maintainability. The degree to which the metamodel can be
modified. Modifications may include corrections, improve-
ments or adaptation of the metamodel to changes in environ-

ment, and in requirements and functional specifications.

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

» Transferability. The degree to which the metamodel can be

transferred from one environment to another.

Note that the security attribute present in the ISO/IEC
25010:2011 standard has not been taken into account, since it is not
suitable to describe the quality of a metamodel [13]. Likewise, the
quality attributes have several sub-characteristics that are compiled
in the standard, and some of them are not suitable to describe the
quality of a metamodel. For example, those related to the dynamic
behavior of a software (e.g., the time behaviour sub-characteristic
of the performance efficiency quality property) are not appropriate
since a metamodel is an static, non-executable and conceptual
model [13]. In addition, some of the sub-characteristics related
to standards compliance for certain characteristics, like reliability,
compatibility or operability, are defined in the standard for generic
software products, but they can not be matched to the context
of the metamodel description (i.e., no standards exist to asses
the compliance of certain characteristics in the definition of a

metamodel).

Table 3.5 summarizes the analyzed quality attributes and sub-
characteristics of the CI-CS metamodel. Some of the attributes and
sub-characteristics have been assessed through the ontological rep-

resentation of a CI-CS. Appendix II describes how the proposed me-

99

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

tamodel fulfills the multiple attributes and sub-characteristics. Also,

a definition of the sub-characteristics is provided in that appendix.

Attribute Sub-Characteristic | Fulfilled
Appropriateness v
Functional suitability Accuracy 4
Interoperability v
Compliance v
Reliability - Partially
Efficiency - v
Recognizability v
o Learnability v
Operability Helpfulness v
Attractiveness Partially
Compatibility - Partially
Modularity v
Reusability v
Maintainability Analyzability v
Changeability Partially
Testability v
. Adaptabilit v
Transferability Portgbility : Partially

Table 3.5: Quality attributes of the CI-CS metamodel

3.4. Conclusions

This chapter has presented a metamodel for Computation-
Independent Communication Systems (CI-CS). The metamodel
conceptualizes the notion of Computation-Independent Commu-
nication Systems (CI-CS) and it is specified through two different

views: structural and behavioral view.

100

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

The structural view captures all the structural artifacts that
are present in a communication system. To do so, the most
well-known and accepted communication theories have been
studied. Conversely, the behavioral view includes the elements
that should be present in a communication system to model its
organization. The idea is to model the behavior of a communication
system as a choreography, that is, as an ordered sequence of
interactions between the participants of the communication. Since
BPMN 2.0 includes a choreography metamodel, it has been taken
as a reference to define the elements and relationships that should

be present in the behavioral view.

The conceptualization of a CI-CS has been formalized through
an ontology. The ontology can be used to check if a model is con-
sistent with the defined conceptualization of a communication sys-
tem, that is, if a model contains all the necessary elements and re-
lationships to be considered as a communication system (i.e., if a
given model is consistent with the proposed conceptualization of
a communication system). Moreover, the ontology could allow to
optimize a communication system by establishing equivalencies be-
tween certain elements. Conversely, multiple communication sys-
tems could be integrated into a unique one in an optimum way (i.e.,
by minimizing its elements through the identification of equivalen-

cies between the elements and relationships of the several commu-

101

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

nication systems to integrate).

On the basis of the international standard quality framework
for software systems defined in ISO/IEC 25010:2011 some quality
properties present in the proposal have been studied. The ontology
assists in that study, since it allows to assess certain features of the

metamodel.

Finally, the conceptual model described in this chapter can
be considered as a CIM metamodel for Communication Systems
(CS-CIM) that will serve as the foundation to propose an MDA-
based development methodology for ubiquitous systems in subse-
quent chapters of this thesis work. As a necessary upcoming step
to achieve that goal, the next chapter approaches the metamodel-
ing of the mechanisms supporting the communications in a ubiqui-
tous system through the specialization of the defined communication

model.

102

Chapter 4

A Communication Model for
Ubiquitous Systems

This chapter describes a communication model for platform-
independent ubiquitous systems (PI-US), which, in turn, serves as a
metamodel for the communication mechanisms related to these sys-
tems. The metamodel includes the elements and relationships that
are necessary to represent the specific communication mechanisms
that could be integrated in any ubiquitous system in order to sup-
port message exchanging, event distribution and dynamic discovery
functionalities through software mechanisms. Similarly to the me-
tamodel of a CI-CS, the metamodel of a PI-US is presented through

two views: structural and behavioral view.

The metamodel has also been formalized as an ontology, with

the objective of demonstrating certain of its capabilities. Moreover,

103

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

the relationships between a CI-CS and a PI-US have also been for-
malized. On one hand, the idea is to show that, conceptually, a ubig-
uitous system can be considered as a communication system im-
plemented through software mechanisms, and taking into account
the specific requirements and quality properties of this kind of dis-
tributed systems. On the other hand, it is possible to demonstrate
that a forward transformation from a CI-CS to a PI-US (i.e., from
a more abstract level to a more refined one) is feasible, and some
elements in the resulting PI-US model can be traced back to the ini-
tial CI-CS. The benefits of these mappings between models will be

explored along the chapter.

Finally, the quality properties that can be attributed to the PI-

US metamodel will be analyzed and described.

4.1. Communication Functionalities
of a Ubiquitous System

As previously mentioned in Chapter 2, Section 2.2, a ubiqui-
tous system can be considered, from a technical point of view, as
a distributed system with certain specific requirements: volatility
in the communication process and constant mobility of the partici-
pants. In consequence, ubiquitous systems usually need to make use

of several mechanisms to provide, at least, the following communi-

104

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

cation functionalities [69]:

= Message exchanging: One-to-one communications between
participants. In practice, this type of communication is com-
monly used for exchanging messages between applications

and services.

= Event distribution: Participants may send events to notify
changes in their internal state to a set of other interested par-
ticipants. For example, in a sensor network, whenever a sensor
measures a significant value, then an event could be sent, so as
to execute certain actions on its reception. Event distribution
can also improve the decoupling between senders from the re-
ceivers, which contributes to reach the mobility requirements

of the ubiquitous.

= Dynamic discovery of participants: Dynamic detection of
new participants, allowing to exchange messages and/or dis-
tribute events among them. Due to the mobile nature of the
participants, it is necessary to have this feature in order to
detect the available participants at a given moment, like the

reachable services around the physical user environment.

The conceptualization of a CI-CS presented in previous chap-

ter can be taken as a foundation to define a ubiquitous system as

105

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

a a computation-based communication system that includes the

mechanisms to support the above-mentioned functionalities.

Nonetheless, note that this definition of a ubiquitous system is
only focused on the communication mechanisms of a ubiquitous
system, due to the orientation of this thesis work. In fact, this def-
inition does not take into account other important aspects like the
presentation (i.e., user interface), the underlying information sys-
tems that may be required, etc. Those facets of a ubiquitous system

are not the focus of this work.

Finally, the above mentioned functionalities are already sup-
ported by several standards and/or well-known middleware tech-
nologies, like ICE, CORBA, DDS, WCEF, etc., which were explained
in Chapter 2, Section 2.1.4.1. However, some of these proposals
focus only one functionality (like DDS or SOAP, which, respec-
tively, provide event distribution and message exchanging) and the
others provide a very detailed and technical specification of each
functionality (like CORBA, DDS or WCF), which makes it difficult
to find many equivalencies in the specification of a functionality be-
tween different standards or middleware specifications. Therefore,
it is complex to approach the integration of multiple standards and
middleware technologies into a unique ubiquitous system, due to
the different technical details that should be taken into consideration

and to the potentially unrelated notions that may be present in their

106

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

corresponding specifications.

In contrast, the PI-US metamodel to be introduced in the next
section intends to provide the concepts to support all the above men-
tioned functionalities, but providing a less technically oriented and
more abstract perspective than the existing proposals. The idea is
to be able to easily match between the concepts in the metamodel
and the core (and shared) concepts present in the most well-known
existing standards and middleware specifications, so as to be able to
facilitate the integration of heterogeneous communication technolo-
gies using a platform-independent model for the conceptualization

of a ubiquitous system.

4.2. General Communication Model
for Ubiquitous Systems

This section presents a conceptualization of the mechanisms
supporting the communication in a ubiquitous system. The idea is
to specialize the proposed CI-CS conceptual model presented in pre-
vious chapter to include the mechanisms to provide the communi-
cation functionalities mentioned in previous section. The special-
ization of the CI-CS metamodel seeks to support the peculiarities
of the ubiquitous systems by means of a metamodel for Platform-

Independent Ubiquitous Systems (PI-US). Similarly to the CI-CS

107

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

conceptual model, the metamodel of a PI-US will be described on

the basis of two views:

= Structural View. The mechanisms and basic structural el-
ements that are present in any ubiquitous system, indepen-
dently of the specific computing platform, and how they inter-

act with each other.

= Behavioral View. The flow of interactions between the ele-

ments presented in the structural view.

In consequence, the notions featured in these views have been
conceptualized through two models that converge into a complete
metamodel that integrates all the mechanisms related to the commu-
nications in ubiquitous systems. To conclude, the specification of
the metamodel has been formalized as an ontology in order to have
a basis on which it is possible to study the capabilities and qual-
ity properties of the metamodel (see next section), and to check the
compliance of the metamodel with the formal conceptualization of
a CI-CS. This way, it will be possible to assess that a ubiquitous

system is, in an abstract way, a communication system.

108

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

4.2.1. Structural View

The structural view of the PI-US metamodel includes the con-
cepts that are present in a ubiquitous system to support message
exchanging, event distribution and dynamic discovery, indepen-
dently of any specific computing platforms. The rationale to devise
the structural view, and define the concepts and relationships that
should be present in its model, is based on the study and analy-
sis of the existing communication paradigms (see Chapter 2, Sub-
section 2.1.2), some existing standards and other widely accepted

technology-oriented proposals.

For message exchanging, the RR communication
paradigm has been taken as a reference (see Chapter
2, Subsection 2.1.2.1), since it is considered the most
“generic” form of message passing [101]. Moreover, some
standards related to message exchanging have been ana-
lyzed. Particularly, Hypertext Transfer Protocol (HTTP)
(http://www.w3.org/Protocols/rfc2616/rfc2616.html),
which is the standard Internet protocol, and SOAP (http:
//www.w3.org/TR/soap/), which is the W3C’s standard approach

to RPC, have been specially considered.

Both in the RR paradigm and in these standards, message

exchanging refers to the idea that participants send messages to

109

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

make a request to other participants, which, in turn, reply with
a response message. Consequently, this thesis work adopt that de-
scription to refer to the process of exchanging messages in a ubiq-
uitous system. This process is depicted in Figure 4.1, so as to il-
lustrate the assumed message exchanging functional behavior in a

better way.

Request Message

- -

~-_ -

Response Message

Figure 4.1: Simplified interaction process involved in the message
exchanging communication functionality of a ubiquitous system

Note that the specific operation mode of the message exchang-
ing functionality is not considered in that description. Consequently,
a response could be asynchronously delivered, there could be batch
requests, etc. This way, the description of the message exchang-
ing functionality can be applied to different types of message pass-
ing (e.g., asynchronous or synchronous message passing, RPC with

batch requests, etc.).

Event distribution has been assumed to conform to the

110

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

PubSub paradigm (see Chapter 2, Subsection 2.1.2.3), since
this paradigm describes a widely-accepted way of delivering
events among the participants of any communication system,
and particularly, of any ubiquitous system. Furthermore, this
paradigm promotes the decouplement between the publishers and
the subscribers, which assists in the fulfillment of mobility support
and volatibility of the communications [5]. Thus, event distribution,
as assumed to be carried out in this thesis work, should involve two

different processes: subscription and publication.

Event subscription consists of a participant in the communica-
tion informing an “intermediate entity” that it needs to receive cer-
tain sets of events, thus becoming subscribers of these events. At the
same time, other participants can publish events, which consists of
delivering them to the “intermediate entity”, which, afterwards, will
notify the published events to the appropriate subscribers. The “in-
termediate entity” is usually named as an event handler and it will
be considered to be a piece of replicated software associated with
each participant, and capable of managing subscriptions and deliv-
ering published events to other replicas of itself. The notion of event
handler is adopted from the specifications of some middleware solu-
tions, like ICE, WCF or DDS. The overall event distribution process
is depicted in Figure 4.1, so as to the illustrate the behavior of this

communication functionality.

111

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

Event Subscription

——_———

N
Event
Handler
~. P
Event Notification A
]
i Event Exchange
v
Event Publication Event
—————————— >
Handler

Figure 4.2: Assumed interaction process involved in the event dis-
tribution communication functionality of a ubiquitous system

The event handler has been considered to be replicated, since
a centralized event handler (e.g., a centralized service) limits the
mobility of the participants in the communications associated to a
ubiquitous system, while the mobility is one of the most important
requirements of this type of systems. The reason is that the par-
ticipants could only move around the physical areas in which the
centralized event handler is available, in order to be able to make
use of the event distribution functionality. For example, if a cen-
tralized event handler is implemented as a service in the “cloud”,

then the participants could only physically move around the areas in

112

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

which an Internet connection is available, considering that they will
need to interact with that service to distribute events. Additionally,
if a ubiquitous system with a replicated event handler is required to
have a centralized one (e.g., to improve performance, for any tech-
nical reasons, etc.), then a centralized entity (e.g., a service) that
orchestrates (i.e., coordinates and organizes) the different replicas
of the event handler should be considered to be part of the ubiqui-
tous system itself. Therefore, the assumption that a replicated event
handler is more appropriate for ubiquitous systems does not limit
the possibility of taking into consideration to manage the event dis-
tribution through a centralized manager of the replicas of an event

handler.

Some standards have been studied to understand how the pro-
cess of dynamically discovering participants in a ubiquitous sys-
tem is usually carried out. Particularly, the IETF’s Zeroconf stan-
dard (http://www.zeroconf .org) and the set of networking pro-
tocols associated to the computer industry initiative for universal
discovery of devices (i.e., a de facto standard), a.k.a. Universal
Plug and Play (UPnP, http://www.upnp.org), have been exam-
ined. Both Zeroconf and UPnP standards consider the process of
discovering a participant as a sequence of multiple notifications of
events. For instance, in both standards, the participants continu-

ously notify events about their own presence. The other participants,

113

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

whenever they are notified of one of these events, consider that the
delivering participants are available. If a participant does not notify
about its own presence for a certain time interval, then it is consid-
ered by the others to be unavailable. Thus, dynamic discovery is
assumed in this thesis work to be an specialization of the event dis-
tribution functionality, in conformance with the previously men-
tioned standards. The overall process to dynamically discover par-

ticipants in a ubiquitous system have been depicted in Figure 4.3.

Discovery Subscription

——_———

» -~ - =~ ~ \&
Event
Handler
A\ e

Availability Notification

Event Exchange

Availability
Publication
__________ > Event
Handler

Figure 4.3: Assumed interaction process to dynamically discover
participants in a ubiquitous system

<--->

In the previous figure, each discovering participant subscribes

for events related to discovery, and each participant to be discov-

114

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

ered delivers an event notifying about its own availability. Hence,
the discovery process could involve unsubscriptions to the discovery
events, in order to stop discovering participants. Moreover, a partic-
ipant could stop publishing availability events in order to prevent to
be discovered by others (e.g., for privacy reasons, to save network-
ing resources, etc.). Thereby, the assumed discovery process also

contemplates possible privacy and performance requirements.

On the basis of the previous analysis and assumptions asso-
ciated to the different communication functionalities that should be
present in a ubiquitous system, the structural view of the PI-US me-
tamodel has been devised. It is depicted in Figure 4.4 as a UML
class diagram. A brief description of the shared elements among
the different communication functionalities is present in Table 4.1.
Likewise, in Tables 4.2 and 4.3, respectively, each of the elements
(grouped by the communication functionalities that they support)
and relationships of the structural view of the PI-US metamodel are

described.

As it is depicted in Figure 4.4, a ubiquitous system is con-
formed by a set of software agents that exchange messages using
specific networking technologies and according to a set of soft-

ware protocols.

Before describing in detail the devised metamodel, it is neces-

115

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS

SYSTEMS
-_—— -
0.1, Discovery
Ubiquitous connected) l Discoverer
System requester|0..* 0..*

L] -
Message

Exchangin

Request

reply
answers
petition

1.

L

0..

Response

id : Object
value : Object

Service

egate lcallback 1.*

petitioner|1..*

offerer

A|requests

findsy
seeker |0..*

i

l Discovery
Listener

Application

D G
Event Distribution

EventHandler l%’ifed—da’a

1.*
structurer

0..*|consumer,, .

Event 0.*

,O..* l:]—/\—

EventListener

< dglivers

publisher n!
semantically

transports

-
0..” |filterer v
accepts|

0..*

semantic <assoriated

A

input

container|1

Pred

icate Topic

confoms_to
A\

communicative
_commonality
rules_the_use

tester u

constraints p-

complier
1.*

— Discovery

<>—|

Figure 4.4: A UML class diagram depicting the structural view of
the PI-US metamodel

sary to clearly explain the notion of software agent, which is present
in the structural view. In the CI-CS conceptual model presented in
previous chapter the entities that exchange messages in a commu-
nication system were referred as participants. The reason was to
stress the computing independence of that metamodel, since a par-
ticipant could refer to a software component, an electronic device, a

human being, etc. However, in the PI-US metamodel, the only en-

116

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS

SYSTEMS
Element Summarized description
Ubiquitous | A computation-based communication system that
system includes mechanisms to support message exchang-
ing, event distribution and dynamic discovery.
Software A participant in a ubiquitous system. Agents can
agent be either applications or services.
Software The minimum information unit that is exchanged
message between the agents of a ubiquitous system.
Networking | A technique to manage a physical channel as
technology | needed by a computing environment to exchange
messages.
Software A software specification about how to use a net-
protocol working technology to exchange messages.

Table 4.1: Description of the elements of the PI-US metamodel that
are shared between the different communication functionalities sup-
ported by a ubiquitous system

tities that communicate are software components that act on behalf
of a user, another software or a device, which is the definition of
software agent given by Nwana et al. in [83]. Note that in this the-
sis work, a software agent is merely considered to be an abstraction
over any type of software that communicates in a ubiquitous system
(i.e., an application or a service), not necessarily to a software with
autonomy or proactivity capabilities, as it is considered in other re-
search works. In that sense, the software agents presented herein

could be considered as basic software agents [34].

Likewise, the notions of software protocol, software message
and networking technology are conceptually similar to the notions

of protocol, message and channel present in a CI-CS, but they try to

117

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

Functionality | Element | Summarized description
M Request A message to retrieve information
essage)
i from certain agents.
exchanging -
Response | The message that replies a request.
Event A notification of a change in the
state of an agent. It is composed by
event nodes and have an associated
topic. Subsection 4.2.1.1 describes
Event the event model in detail.
Distribution "Event A mechanism to notify events to
Handler agents.
Event An artifact that receives the events
Listener | notified by event handlers to do cer-
tain actions. A predicate is used to
filter the events to be received.
Discoverer| An event handler that delivers events
Dynamic to discover agents.
Discovery Discovery | An event listener that receives events
Listener from discoverers and notifies them
about their own availability.

Table 4.2: Description of the elements of the PI-US metamodel,
grouped by the communication functionalities that they support

stress the computational orientation of a PI-US, in contrast with the

computing independence of a CI-CS.

Software agents can represent an application or a service. An
application is considered to be an active software that is controlled
by a user to carry out certain tasks involving the interaction between
the different elements of a ubiquitous system. Services are mostly
considered to be passive (or reactive) pieces of software that wait

for an interaction from an application to do certain activities, like

118

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS

SYSTEMS

Relationship | Summarized description
Exchanges Software agents (i.e., applications and ser-
vices) transfer multiple messages between

them.

Conforms_to A message must conform to certain software
protocols to be understood by the applications
and services present in a ubiquitous system.
Rules_the_use | A software protocol has a set of rules to ade-
quately use a networking technology (e.g., to

use it efficiently).

Transports A channel is in charge of transferring messages
from the sending parties to the receiving ones.

Answers A response message is the reply of a previous
request message.

Delivers Event handlers deliver events to the partici-
pants.

Receives Event listeners receive the events from the

event handlers.
Semantically An event is semantically associated to a topic.
associated

Accepts A predicate is only satisfied by certain events.

Constraints A predicate constraints the events to be re-
ceived by an event listener.

Connected A service can delegate certain actions to other
services.

Finds The discoverer associated to an agent tries
to find discovery listeners associated to other
agents.

Table 4.3: Description of the relationships between the elements
present in the structural view of the PI-US metamodel

providing a piece of information. Services can interact with other
services in which they delegate the execution of complex activities.
For example, a meteorological service could delegate the measure-

ment of the temperature in a certain physical location to another

119

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

service specialized on performing that task. This way, the PI-US
metamodel supports the representation of a Service-Oriented Archi-
tecture (SOA) in which compound services (i.e., the services that
need to interact with other services to carry out their actions) offer
a common interface to multiple simple or compound services (i.e.,
a simple service is able to carry out its actions without interacting
with other services). In addition, it is possible to use the PI-US me-
tamodel to specify a client-server architecture, in which applications

are clients that consume information from the available services.

Note that, in contrast with the conceptual model presented in
previous chapter, in which a unique communication participant self-
communicating may conform a communication system, in the spec-
ification of a ubiquitous system it is assumed that at least two soft-
ware agents must be part of the communications, since the presence
of less than two software agents is not appropriate to fulfill the in-

teraction level that is expected in this type of systems.

The communication functionality that more usually supports
the interaction between software agents in a distributed system is
message exchanging, which is supported in the proposed metamo-
del through request and response messages. Thereby, applications
demand certain information through a request message, and a ser-
vice provides the requested information inside the contents of a re-

sponse message. In the same way, a compound service could send

120

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

a request message to other (simple or compound) services in order
to retrieve certain information (i.e., a service could delegate tasks to

other services by requesting information to them).

As previously mentioned, event distribution has been assumed
to be based on the PubSub paradigm and involves the association
of an event handler with each software agent in order to publish
events. Consequently, in the proposed metamodel, there is an op-
tional association between event handlers and software agents. The
association is optional to allow the metamodel to represent software
agents that do not distribute events in any case, without “overload-
ing” them with unnecessary communication functionalities. Thus,
the metamodel is flexible enough to represent scenarios in which
certain communication functionalities are not present in every soft-
ware agent (e.g., to improve performance in some ways, for techni-

cal reasons, etc.).

Each event handler (associated to each software agent) con-
tains a collection of event listeners. An event listener is a software
mechanism that includes a predicate that is only satisfied by cer-
tain events, as a manner to filter the events accepted by each listener
(i.e., an event € is accepted by an event listener A if € satisfies the
predicate related to A). Also, an event listener, upon the reception
of an event that satisfies its predicate, executes a certain action in a

software agent. Hence, the execution of an action is the usual con-

121

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

sequence of the reception of an event in which a software agent is
interested in. Therefore, event listeners can be considered to be the
elements in the proposed PI-US metamodel that represent the sub-
scriptions of each software agent, and they provide a mechanism to
bind the interest of a software agent in certain events to the execu-
tion of specific actions. The concept of event listener is also present

in some middleware technologies, like ICE, WCF and DDS.

Note that in a CI-CS the notion of predicate was not explic-
itly presented, but could be implicitly associated to conditional links
(i.e., in the behavioral view of a CI-CS, presented in Chapter 3, Sec-
tion 3.2.2, the elements that link two activities upon the satisfaction
of a condition or predicate). The reason was to keep the CI-CS con-
ceptual model as abstract as possible, without taking into account a
concept that could be more related to the actual software (or event
mathematical) representation of a condition. However, at the PI-US
abstraction level it is appropriate to take into account this notion,
since it needs to be taken into account in the design of a ubiquitous

system to adequately model constraints or filters associated events.

Events are composed by a set of event nodes, which, in turn,
are also events. Each event node has a unique identifier and a value
in order to represent the contents of an event. Events (and event
nodes) are also related to a topic, that is, the semantic of the notifi-

cation within a certain context (e.g., temperature, humidity, location,

122

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

etc.). An insight of the proposed event model and the mechanisms
to manage their subscription can be found in the following subsub-

sections.

Finally, in the metamodel, the dynamic discovery function-
ality is a specialization of event distribution, as it was previously
assumed when describing the rationale behind the proposal of the
PI-US metamodel. For each software agent, there is a specialization
of an event handler, known as a discoverer, that distributes events
each time a new party changes its reachability within a given envi-
ronment. Specialized listeners (discovery listeners) allow software
agents to subscribe to discovery events and to execute certain actions
whenever other software agents are discovered or become unavail-
able. Note that a discoverer can only contain discovery listeners,
and discovery listeners and discoverers can only manage discovery
events, even if those constraints are not specified in Figure 4.4 (i.e.,
in UML, those constraints should be specified through OCL, but
this notation has been omitted from the figure in order to simplify
it). To conclude, the benefit of reusing the event distribution mech-
anisms to discover software agents is that the metamodel is simpler
to understand and use, in comparison with the possibility of includ-
ing separated mechanisms to support event distribution and dynamic

discovery.

123

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

4.2.1.1. A Detailed Explanation of the Proposed Event
Model

In the proposed PI-US metamodel, events encapsulate infor-
mation about a change in the state of a software agent. Thus, in
this thesis work, an event is defined as a communication unit that
is composed of a set of pieces of information that are related to
some topics and can be produced by a software agent as a result
of a change in its state. The adopted event model was present in
the PI-US metamodel depicted in Figure 4.4, but an extract of that
figure is depicted in Figure 4.5 as a UML class diagram, so as to
more clearly illustrate the description of the proposed event model

to be presented herein.

semantically p.
0..* _associated 1
semantic container

L) —

EventNode
id : Object
value : Object

Event Topic

Figure 4.5: An extract of the UML class diagram representing the
PI-US metamodel, with a focus on the adopted event model

The pieces of information that are contained into an event are
called event nodes. An event node contains an identifier (i.e., a
unique name) and an associated value. Each event may have an

unlimited number of event nodes to represent any piece of informa-

124

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

tion. Also, an event node is also an event. This way, hierarchical
structures (i.e., trees) can be contained in an event. For example,
an event may have a collection of nodes, each of them containing

another collection of nodes, and so on.

Each event is related with one topic, which represents its se-
mantics. A topic may be associated with a collection of other topics,
so as to represent that a topic is (semantically) the combination of
other topics. To avoid confusions, from now on, a topic with no
other topics associated will be called a simple topic, whereas a topic
with other topics associated will be referred as a compound topic.
The relationships between events and topics are similarly defined in

the specifications of the DDS middleware.

If an event has a compound topic, then its event nodes nec-
essarily will have to be related to the topics associated to the com-
pound one. Hence, it is represented that the semantics of each event
may be the result of the combination of the topics of its nodes. For
example, if a compound comfort topic contains temperature and
noise simple topics, then there may exist an event whose topic is
comfort and whose event nodes are associated to temperature and
noise topics. Conversely, the topic of an event can be inferred as

follows:

= [f an event is composed of one event node only, its topic will

125

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

be the topic of such event node.

= Otherwise, if it is composed of more than one event node, its

topic will one that combines the topics of each event node.

The following subsubsection offer an insight of the subscrip-
tions mechanisms that are supported in the proposed PI-US meta-

model regarding this type of events.

4.2.1.2. Supported Event Subscription Techniques

A subscription o to an event & is defined as a “filter over a
portion of the event content (or the whole of it), expressed through
a set of constraints" [28]. Subscriptions are specified through event
listeners in the proposed PI-US metamodel. Event listeners support
two subscription variants that were previously mentioned in [33]:
topic-based and content-based. In this thesis work, these subscrip-

tion techniques are defined as follows:

» Topic-Based. Software agents show interest in a topic and,
from that moment, they receive events that are semantically
related to that topic. For example, if a software agent sub-
scribes to a comfort topic, then it will receive events, not only
related to that topic, but also to the temperature and noise ones

(provided that comfort is a compound event linked to temper-

126

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

ature and noise ones). Formally, the set of events that are re-
ceived by a software agent with a topic-based subscription o

is defined as follows:

Let subscribe be a function that filters all the events that are
received by a software agent on the basis of their associated
topic, let T be the set of all semantically formalized topics and

T be a topic, then:

or = subscribe(t),t €T

Let E be the set of all possible events and let R be the product
set (or the cartesian product) E x T in which all the relations
(&, 7) represent that an event &; is semantically related to the
topic 7, then ~~ is the binary operation “semantically related

to", which is defined as follows:

g ~T < (6,T)ERR=EXT,§cE,T€T

Let S, be the set of all the received events by a software agent
whose topic-based subscription is o7, let € (k) be a function
that retrieves the k-th event node of the event &;, which is also

an event (see previous subsubsection), and let n; be the num-

127

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

ber of event nodes of &;, then:

So, = {&il&i ~ 1} U{&|Vk € {1,..,ni}, &(k) ~ T}

= Content-Based. Software agents show interest in receiving
events that are semantically associated with a topic when a
set of conditions over the event nodes are accomplished. For
example, it can be specified a subscription to the temperature
topic and receive events only when this temperature is over
45°C. The set of events that are received by a software agent
with a content-based subscription O(; p,) 1s formally defined

as follows:

Let €;(k) be the k-th event node of the event &, let #;; be the
primitive type of the event node €;(k), let a be a constant of
any primitive type and 7, its primitive type, then f is the binary

operation “is comparable to", which is defined as:

gilk)ta <= tix=1,

If &;(k) T a, five comparing operators can be defined:

Sl'(k) = a;e,-(k) < a;e,-(k) < a;&‘l’(k) > a;8i(k) >a

These operators always follow a lexicographical order. For

128

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

example, 4 < 5, “aaa" < “aab", 4, 5,6, 9) <4, 6, 3, 1),
etc. Let s; be a comparing operation between any €;(k) and
a constant a;, where g;(k) T a, let T be a topic and &;(k) ~~ T,

then, the predicate P; is defined as:

Let contentSubscribe be a function that filters all the events
that are received by a software agent based on a topic 7 and a

set of constraints described by the predicate Pz, then:
O(¢p,) = contentSubscribe(T, Pr)

Let SG(T Pe) be the set of all the received events by a software
agent whose content-based subscription is 0(; p,), Whose con-
straints are specified by the predicate Pr, and let v;; be the

value associated with the event node ¢&;(k), then:

S6(cpy = {& * & € Sor, {Pr A (€i(k) = vip)} - —0}

In this formula, {P; A (&(k) = v;)} - —0 means that the pred-
icate P;, when in conjunction with the equality & (k) = v;
has to be consistent (i.e., it not contains any logical contradic-

tions). For example, if the predicate Piemperarure = {€1(1) <

129

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

45} and the event € is published with & (1) = 46, then the
subscriber will not receive the event, as {€(1) <45A ¢ (1) =

46} is not a consistent set.

Note that in [33] one additional subscription technique is men-
tioned: the type-based one. In these subscriptions, each kind of
event is directly matched with a type and, therefore, software agents
can implement some static checks to ensure that they have received
the appropriate information. In the proposed PI-US metamodel type
checking subscriptions can be achieved through a topic associated to
a unique event. That way, a topic-based subscription can represent a

type-based one.

The event handler is the element in the PI-US metamodel that