
Doctoral Thesis

MUSYC: A Model-Driven Methodology to Develop

Ubiquitous Systems

Author:

Carlos Rodríguez Domínguez

Supervisors:

José Luis Garrido Bullejos

Kawtar Benghazi Akhlaki

University of Granada
Department of Computer Languages and Systems

2014

Editor: Editorial de la Universidad de Granada
Autor: Carlos Rodríguez Domínguez
D.L.: GR 1948-2014
ISBN: 978-84-9083-113-7

El doctorando Carlos Rodríguez Domínguez y los directores de la

tesis José Luis Garrido Bullejos y Kawtar Benghazi Akhlaki garan-

tizamos, al firmar esta tesis doctoral, que el trabajo ha sido realizado

por el doctorando bajo la dirección de los directores de la tesis y,

hasta donde nuestro conocimiento alcanza, en la realización del tra-

bajo, se han respetado los derechos de otros autores a ser citados,

cuando se han utilizado sus resultados o publicaciones.

Granada, 11 de abril de 2014.

Directores de la Tesis

José Luis Garrido Bullejos Kawtar Benghazi Akhlaki

Doctorando

Carlos Rodríguez Domínguez

The PhD candidate Carlos Rodríguez Domínguez and the thesis su-

pervisors José Luis Garrido Bullejos and Kawtar Benghazi Akhlaki

guarantee, by signing this thesis, that the work has been done by

the PhD candidate under the guidance of the directors of the thesis

and, as far as our knowledge reaches, in the realization of the work,

the copyrights of the cited authors have been respected, when their

results or publications have been used.

Granada, April 11, 2014.

Thesis Supervisors

José Luis Garrido Bullejos Kawtar Benghazi Akhlaki

PhD Candidate

Carlos Rodríguez Domínguez

To my supervisors, José Luis and Kawtar. Thanks for all your sup-

port during these years, your patience and your care. To Ony, who

is the key figure of my life. To my family in general (which includes

my friends), and to my parents, brother, grand mother, uncles, aunts

and cousins in particular. To Álvaro, Manolo and Tomás, because

you have the best degree that can be obtained: you are true friends.

To the rest of the members of MYDASS research group, because you

have supported and encouraged me from the beginning. To Federico,

for his constant help, energy and teachings. To my best friends Jaby

and Gilberto (and their respective partners), for being such crucial

people in my life, and for sharing with me so many life-changing

moments. We will always be “partners in crime”.

Resumen

En 1991, Mark Weiser visionó un estilo de vida futuro que giraría en

torno a dispositivos de cómputo que se integrarían de manera trans-

parente en nuestros entornos físicos. Debido a la amplia disponibi-

lidad de dispositivos pequeños, móviles y asequibles (smartphones,

tablets, etc.) que son capaces de ayudarnos en nuestras tareas dia-

rias, la idea de Weiser, también conocida como el paradigma de la

computación ubicua, se puede considerar hoy día como el “siguiente

paso” en la esperada evolución de las tecnologías actuales.

A pesar de ello, el desarrollo de un sistema ubicuo (i.e., siste-

mas software diseñados conforme al paradigma de la computación

ubicua) es todavía un reto, y su complejidad está parcialmente liga-

da a la gestión de los mecanismos asociados a las comunicaciones

(tecnologías de red, protocolos software, etc.).

Técnicamente, la complejidad a la hora de gestionar las comu-

nicaciones apropiadamente se ha relacionado directamente con su

naturaleza espontánea y volátil, debido a que los usuarios de estos

sistemas están en continuo movimiento mientras portan sus disposi-

tivos de cómputo. Sin embargo, otros problemas pueden complicar

también la gestión de las comunicaciones y el desarrollo de sistemas

ubicuos.

Particularmente, no hay conceptualizaciones bien establecidas

acerca de los elementos que deberían formar parte de un sistema ubi-

cuo. Por tanto, los mecanismos (y sus propiedades) para dar soporte

a las comunicaciones en un sistema ubicuo no están definidos explí-

citamente.

Consecuentemente, debido a la ausencia de modelos bien es-

tablecidos, es complicado desarrollar metodológicamente un siste-

ma ubicuo cuyo diseño capture todos los requisitos del usuario y

que pueda ser compartido (y entendido) por diferentes diseñadores

de software. Por consiguiente, diferentes diseñadores pueden idear

mecanismos de comunicación heterogéneos que, finalmente, pueden

presentar un bajo nivel de interoperabilidad y compatibilidad.

Más aún, las diferentes plataformas subyacentes que pueden

existir para ocuparse de la complejidad a la hora de gestionar las co-

municaciones en sistemas ubicuos (como middleware), de nuevo, no

pueden basarse en modelos bien establecidos. En consecuencia, su

uso requiere unos amplios conocimientos técnicos, y los conceptos

presentes en algunas de estas plataformas pueden no estar presentes

en otras, o pueden incluso tener una semántica diferente.

Esta tesis propone una conceptualización de los sistemas ubi-

cuos, con un particular énfasis en los mecanismos que deben estar

presentes para dar soporte y gestionar las comunicaciones en estos

sistemas. La conceptualización está basada en la noción más abs-

tracta de sistema de comunicación, que se ha propuesto para ex-

tender y completar las teorías de comunicación existentes. Ambas

conceptualizaciones de un sistema de comunicación y de un sistema

ubicuo se han formalizado a través de ontologás.

Sobre la base de las conceptualizaciones definidas y un con-

junto de reglas de transformación, se ha propuesto una metodología

dirigida por modelos, llamada MUSYC, para el desarrollo de sis-

temas ubicuos. MUSYC ha sido validada a través de diversos pro-

yectos de I+D y de un middleware para sistemas ubicuos llamado

BlueRose, que, a su vez, muestra que MUSYC es también apropiado

para el desarrollo de tecnologías de soporte para facilitar la gestión

de las comunicaciones en este tipo de sistemas.

Abstract

In 1991, Mark Weiser envisioned a future lifestyle centered around

computing devices that would be seamlessly integrated into our

physical environments. Due to the wide availability and success of

small, mobile and affordable devices (smartphones, tablets, etc.)

that are able to assist us during our daily tasks, Weiser’s idea, also

known as the ubiquitous computing paradigm, can be considered

nowadays as the “next step” in the expected evolution of the current

technologies.

However, the development of a ubiquitous system (i.e., a

software system designed according to the ubiquitous computing

paradigm) is still challenging, and its complexity is partially related

to the appropriate management of the mechanisms associated with

the communications (networking technologies, software protocols,

etc.).

Technically, the complexity to appropriately manage the

communications has been directly linked to their spontaneous

and highly volatile nature, since the users of these systems are

in constant movement while they are carrying their computing

devices. Nonetheless, other different problems may also complicate

the management of the communications and the development of

ubiquitous systems.

Particularly, there are not any well-established conceptualiza-

tions of the elements that should be present in a ubiquitous sys-

tem. Therefore, the mechanisms (and their properties) supporting

the communications in a ubiquitous system are not defined explic-

itly.

In consequence, due to the absence of well established

models, it is challenging to methodologically develop a ubiquitous

system whose design captures all the users’ requirements and

that can be shared (and understood) among different software

designers. Hence, different designers may devise heterogeneous

communication mechanisms that, ultimately, may present a low

degree of interoperability and compatibility.

Moreover, the different underlying platforms that may exist to

deal with the complexity of managing the communications in ubiq-

uitous systems (like middleware), again, can not be based on well

established models. Therefore, their use requires a high technical

expertise, and the concepts present in some of these platforms may

not be present in others, or they may even have different semantics.

This thesis work proposes a conceptualization of the ubiqui-

tous systems, with a particular emphasis on the mechanisms that

should be present to support and manage the communications in

these systems. The conceptualization is based on the more abstract

notion of communication system, which has been proposed to extend

and complete the existing communication theories. Both conceptu-

alizations of a communication system and a ubiquitous system have

been formalized through ontologies.

On the basis of the defined conceptualizations and a set of

transformation rules, a model-driven methodology to develop ubiq-

uitous systems, called MUSYC, has been proposed. MUSYC has

been validated through the development of several R&D projects

and a middleware for ubiquitous systems called BlueRose, which,

in turn, shows that MUSYC is also suitable to develop supporting

technologies to facilitate the management of the communications in

these systems.

Contents

List of Figures XIX

List of Tables XXV

Prologue XXVII

CHAPTER Page

1. Introduction 1
1.1. The Ubiquitous Computing Era 1
1.2. Description of the Problem and Motivation 3
1.3. Hypothesis and Objectives 5
1.4. Structure of the Thesis 6

2. Foundations for the Specification and Development of
Ubiquitous Systems 9
2.1. Distributed Systems 10

2.1.1. Architectures of a Distributed System 11
2.1.2. Communication Paradigms 16
2.1.3. Some Notations for Representing Dis-

tributed Systems 23
2.1.4. Supporting Communications: Middleware . . 28

2.2. Ubiquitous Systems 36
2.2.1. Context Awareness 38
2.2.2. Communication Paradigms in Ubiquitous

Systems . 41
2.2.3. Middleware Technologies for Ubiquitous

Systems . 48

XIV |

2.2.4. Communications in Ubiquitous Systems:
Technical Issues 51

2.3. Model-Driven Engineering (MDE) 55
2.3.1. Model-Driven Architecture (MDA) 60
2.3.2. A Comparison between MDE and

Code-Centric Developments 63
2.3.3. Developing Communication Mechanisms

on the basis of MDE 68
2.4. Conclusions . 70

3. A Model for Communication Systems 73
3.1. An Introduction to the Communication Theory 74
3.2. A Model to Conceptualize a Communication System 77

3.2.1. Structural View 78
3.2.2. Behavioral View 85
3.2.3. Formal Specification as an Ontology 93

3.3. Quality Attributes of the Communication Model . . . 97
3.4. Conclusions . 100

4. A Communication Model for Ubiquitous Systems 103
4.1. Communication Functionalities of a Ubiquitous

System . 104
4.2. General Communication Model for Ubiquitous Sys-

tems . 107
4.2.1. Structural View 109
4.2.2. Behavioral View 131
4.2.3. Formal Specification as an Ontology 138
4.2.4. Ontological Representation of a Ubiquitous

System as a Communication System 143
4.3. Quality Attributes of the Communication Model for

Ubiquitous Systems 147
4.4. Conclusions . 148

5. MUSYC: An MDA-based Methodology to Develop
Ubiquitous Systems on the Basis of the Communications153
5.1. Overview . 154
5.2. Stage 1: Communication Requirements Analysis . . 162

5.2.1. Initial Analysis through Use Cases and
Choreography Models 163

5.2.2. CS-CIM Specification 166
5.3. Stage 2: Ubiquitous System Design 175

5.3.1. CS-CIM to US-PIM Transformation: Struc-
tural View 177

5.3.2. CS-CIM to US-PIM Transformation:
Behavioral View 186

5.4. Stage 3: Implementation of the Ubiquitous System . 193
5.4.1. Transformation from a US-PIM to a US-PSM 194
5.4.2. Code Generation from a US-PSM 196

5.5. CASE Tools Supporting MUSYC 199
5.6. Conclusions . 205

6. Validation of MUSYC through the Development of a
Middleware and a Software Framework for Ubiqui-
tous Systems: BlueRose 209
6.1. Applying MUSYC to the Development of Middle-

ware Solutions for Ubiquitous Systems 210
6.1.1. Communication Requirements Analysis . . . 211
6.1.2. Ubiquitous System Requirements Analysis . 216
6.1.3. Implementation 224

6.2. BlueRose as a Software Framework for the Devel-
opment of Ubiquitous Systems 226
6.2.1. Structural Elements 227
6.2.2. Behavioral Elements 234

6.3. Quality Attributes of BlueRose 235
6.3.1. Performance Efficiency 235
6.3.2. Additional Quality Attributes 240

6.4. Practical Validation 247
6.4.1. Mobile Forensic Workspace 247
6.4.2. VIRTRA-EL: A Web Platform to Support

a Collaborative Virtual Training for Elderly
People . 253

6.4.3. Domo and Kora: Management of Home Au-
tomation Environments 256

6.4.4. Sherlock: A Location Service for Both Out-
doors and Indoors 259

6.5. Conclusions . 260

7. Conclusions 263

7.1. Results and Discussion 263
7.1.1. Conceptualization 264
7.1.2. Methodology 267
7.1.3. Technology 269

7.2. Future Work . 271

Acknowledgements 275

Publications 277
Patents . 283

Bibliography 285

Appendices 301
I. Implementation of the CI-CS ontology in OWL . . . 301
II. Quality Attributes of the CI-CS Metamodel 328
III. Implementation of the PI-US Ontology in OWL . . . 337
IV. Quality Attributes of the PI-US Metamodel 374
V. Detailed SPEM 2.0 diagram describing the develop-

ment process proposed in MUSYC 383
VI. Proposed QVT rules to transform a CS-CIM into a

US-PIM . 384
VII. ATL transformation rules that can be applied to the

behavioral view of a CS-CIM to produce a UML se-
quence diagram . 398

VIII. Specification of a CS-CIM for BlueRose middleware 420
IX. Specification of a US-PIM for BlueRose middle-

ware, automatically obtained from the CS-CIM
through the proposed QVT transformation rules . . . 424

List of Figures

2.1. A SoaML model example of a search service 14
2.2. Pull-based communication model 21
2.3. Push-based communication model 21
2.4. An example Petri net 23
2.5. An example of a UML 2.x communication diagram . 25
2.6. An example of a UML 2.x activity diagram 26
2.7. An example of a BPMN choreography diagram and

a summary of its elements 27
2.8. An example of a MANET with three devices: There

is a total connection between them since the Node B
can route the data transmissions between A and C . . 52

2.9. Relationship between MDE, MDD and other
methodologies . 56

2.10. Graphical illustration of the MDE development
methodology . 58

2.11. Metamodel-based transformations in Model-Driven
Architecture (MDA) 61

2.12. Scheme of the MDE process 64
2.13. Scheme of the code-centric development process . . 65

3.1. The communication model proposed by Shannon
and Weaver in the The Mathematical Theory of
Communication, 1949 [115] 75

3.2. The communication model described by Berlo in the
The Process of Communication, 1960 [11] 75

3.3. The communication model described by Barnlund
in A Transactional Model of Communication, 1970
(re-printed in 2008 [6]) 76

| XIX

3.4. A UML activity diagram depicting the dynamic be-
havior of a CI-CS 79

3.5. The structural view of the CI-CS metamodel, de-
picted as a UML class diagram 81

3.6. Behavioral view of the CI-CS metamodel, depicted
as a UML class diagram. The model is inspired by
the BPMN 2.0 Choreography Metamodel Specifica-
tion [89] . 88

3.7. Graphical representation of an ontology of a CI-CS . 94
3.8. The class hierarchy and properties of an ontology of

a CI-CS, as represented in Protégé 95

4.1. Simplified interaction process involved in the mes-
sage exchanging communication functionality of a
ubiquitous system 110

4.2. Assumed interaction process involved in the event
distribution communication functionality of a ubiq-
uitous system . 112

4.3. Assumed interaction process to dynamically
discover participants in a ubiquitous system 114

4.4. A UML class diagram depicting the structural view
of the PI-US metamodel 116

4.5. An extract of the UML class diagram representing
the PI-US metamodel, with a focus on the adopted
event model . 124

4.6. A UML class diagram depicting the behavioral view
of the PI-US metamodel 133

4.7. A UML sequence diagram representing how soft-
ware agents interact during a communication activ-
ity, as it is assumed in the proposed PI-US metamodel 136

4.8. An ontology of the communication mechanisms
supporting a PI-US 141

4.9. The class hierarchy and properties of an ontology
of the communication mechanisms supporting a PI-
US, as represented in Protégé 142

4.10. Some screenshots of Protégé that show how a rea-
soner can automatically infer that a ubiquitous sys-
tem is a communication system 146

5.1. MDA approach to the development of ubiquitous
systems . 156

5.2. A simplified description of the development process
proposed in MUSYC, depicted as an SPEM 2.0 dia-
gram . 158

5.3. Overall development process specified in MUSYC . . 159
5.4. First development stage specified in MUSYC 164
5.5. A sample UML use case model that could be speci-

fied during the initial analysis of a Ubiquitous Med-
ical Environment 165

5.6. A sample choreography specified during the initial
analysis of a Ubiquitous Medical Environment, de-
picted as a BPMN 2.0 Choreography diagram 167

5.7. A UML activity diagram that specifies the process
that should be followed to identify the elements
present in the structural view of a CS-CIM, as it has
been defined in MUSYC 169

5.8. A UML class diagram depicting the structural ele-
ments of the sample UME as an instance of the ele-
ments present in the structural view of the CS-CIM
metamodel . 170

5.9. Second development stage specified in MUSYC . . . 177
5.10. An excerpt of the QVT rules to transform a patici-

pant of a CS-CIM into a software agent in a US-PIM 178
5.11. An excerpt of the QVT rules to include the com-

munication functionalities of a ubiquitous system to
each transformed software agent 181

5.12. An excerpt of the QVT rules to transform a message
of a CS-CIM into the corresponding elements in a
US-PIM . 182

5.13. An excerpt of the result of applying the QVT trans-
formation rules to the sample CS-CIM of a UME . . 184

5.14. An example of a transformation from a BPMN
choreography diagram into a sequence diagram . . . 187

5.15. An excerpt of the QVT rules to transform a choreog-
raphy of a CS-CIM into a choreography in a US-PIM 187

5.16. An excerpt of the QVT rules to transform a chore-
ography activity of a CS-CIM into a set of choreog-
raphy activities in a US-PIM 188

5.17. An excerpt of the QVT rules to transform a link of a
CS-CIM into choreography activities in a US-PIM . . 190

5.18. An excerpt of the result of applying the QVT trans-
formation rules to the sample CS-CIM of a UME . . 192

5.19. Third development stage specified in MUSYC 194

5.20. Some example QVT rules to transform from soft-
ware agents in a US-PIM to the corresponding ele-
ments in an unspecified target US-PSM 197

5.21. A sample UME defined using the implementation of
an Eclipse Plug-in to define and check CS-CIMs . . . 200

5.22. The result of transforming the CS-CIM of a UME
into a US-PIM using QVT rules, depicted using the
implementation of an Eclipse Plug-in to define and
check US-PIMs . 202

5.23. A sample transformation from an event listener de-
fined in an undefined US-PSM to Java code, imple-
mented in MOFM2T standard notation 203

5.24. An excerpt of a sample WSDL service interface au-
tomatically derived from a US-PSM 204

6.1. A use case model representing the functionalities
that are carried out by proxies and servants in
BlueRose middleware 213

6.2. The elements in the behavioral view of a CS-CIM
supporting the design of the BlueRose middleware,
represented as a BPMN 2.0 Choreography 214

6.3. The elements in the structural view of a CS-CIM
supporting the design of the BlueRose middleware,
represented as a UML class diagram 215

6.4. Some structural elements, represented in XMI nota-
tion, of the US-PIM that results from the transfor-
mation of the BlueRose CS-CIM with the proposed
QVT rules . 219

6.5. Some behavioral elements, represented in XMI no-
tation, of the US-PIM that results from the transfor-
mation of the BlueRose CS-CIM with the proposed
QVT rules . 222

6.6. An excerpt of the US-PIM in XMI standard notation
representing the different conditional events that are
delivered to activate the corresponding activities in
BlueRose . 223

6.7. The XMI result of transforming the applications and
services in the US-PIM to the corresponding ele-
ments in the US-PSM 225

6.8. New elements incorporated to the BlueRose design
and related to the message exchanging functionality,
depicted as a UML class diagram 228

6.9. Run-time operation of the proposed BRBroker, de-
picted as a UML sequence diagram 231

6.10. The semantic servant present in the BlueRose de-
sign, depicted as a UML class diagram 232

6.11. A comparison of the amount of time that is needed
by CORBA, ICE and BlueRose to complete the
same benchmark . 238

6.12. A comparison of the average throughputs (messages
per second) of CORBA, ICE and BlueRose 239

6.13. A comparison of the amount of memory that is
needed by CORBA, ICE and BlueRose to complete
the same benchmark 239

6.14. A comparison of the average CPU use of CORBA,
ICE and BlueRose to complete the same benchmark . 240

6.15. Deployment Architecture for Mobile Forensic
Workspace . 249

6.16. The Mobile Forensic Workspace in iOS devices . . . 253
6.17. Component-based architecture of VIRTRA-EL . . . 255
6.18. An iPhone application acting as a client of the Domo

service . 257
6.19. Two sample adaptations of the Kora user interface

for different users 259
6.20. Overview of the architecture of the Sherlock posi-

tioning service . 260

List of Tables

2.1. Quality properties promoted by the PubSub and the
RR paradigms . 43

2.2. Some of the most remarkable middleware technolo-
gies for ubiquitous systems 50

3.1. Concepts present in the structural view of a CI-CS . . 82
3.2. Relationships between the concepts present in the

structural view of a CI-CS 83
3.3. Definition of the concepts present in the behavioral

view of a CI-CS . 89
3.4. Description of the relationships between the con-

cepts present in the behavioral view of a CI-CS . . . 90
3.5. Quality attributes of the CI-CS metamodel 100

4.1. Description of the elements of the PI-US metamodel
that are shared between the different communication
functionalities supported by a ubiquitous system . . . 117

4.2. Description of the elements of the PI-US metamo-
del, grouped by the communication functionalities
that they support . 118

4.3. Description of the relationships between the
elements present in the structural view of the PI-US
metamodel . 119

4.4. Definition of the elements that are present in the be-
havioral view of the PI-US metamodel. Some of the
elements shared with the structural view are not de-
scribed again . 134

| XXV

4.5. Description of the relationships between the
elements of the behavioral view of the PI-US
metamodel . 135

4.6. Quality attributes of the PI-US metamodel 148

5.1. Description of the matchings between a BPMN 2.0
Choreography and the concepts in the behavioral
view of the CS-CIM metamodel 175

5.2. Description of the matchings between the gateways
of a BPMN 2.0 Choreography and the concepts of
the behavioral view of the CS-CIM metamodel . . . 176

5.3. Description of the matchings between the events of
a BPMN 2.0 Choreography and the concepts of the
behavioral view of the CS-CIM metamodel 176

Prologue

| XXVII

Chapter 1

Introduction

1.1. The Ubiquitous Computing Era

In 1991, Mark Weiser envisioned a future lifestyle centered

around small, mobile and continuously connected devices that

would be seamlessly integrated into our physical environments

[127]. This visionary computational paradigm was called Ubiq-

uitous Computing. At that time, in the 90’s, personal computers

were the predominant computing devices. Personal computers

were shared by small groups of people (family, friends, etc.) and

were rarely connected to the Internet. As time passed by, personal

computers became smaller, more affordable, easier to use and

more “connected”. By the early 00’s, nearly each person owned a

personal computer. At the same time, Internet connections were

| 1

CHAPTER 1. INTRODUCTION

popularized and many persons became accustomed to browse the

Web to retrieve and share information.

In the mid 00’s, the so called “smartphones”, that is, small,

mobile, phone-like computers with a permanent wireless Internet

connection, became more affordable and powerful, consequently,

also becoming very popular. Considering that people were famil-

iar with Internet browsing and information sharing with other peo-

ple through computers, these devices, which simplified those tasks,

were quickly integrated in a lot daily routines: working, socializing,

playing, traveling, etc. Suddenly, everyone was surrounded by all

types of computing technologies derived from smartphones (tablets,

portable consoles, etc.), at anytime and everywhere. From that mo-

ment on, personal computers started to be replaced by those new

technologies, thus beginning the so called post-PC era.

In any case, the progress has not stopped. The Moore’s law has

proven to be highly accurate [76]: hardware devices become more

powerful, cheaper and smaller at a very steady rate. Weiser’s vision,

that is, the transparent integration of highly connected, mobile and

small devices into our physical environments, which was considered

in the 90’s to be science fiction rather than actual science, nowadays

it can just be considered the “next step” in the expected evolution

of the current technologies. Pervasive Internet connections and the

integration of very advanced computing technologies into everyday

2 |

CHAPTER 1. INTRODUCTION

objects (glasses, watches, furniture, clothing, etc.) will point out the

rise of the ubiquitous computing era in the next few years.

1.2. Description of the Problem and
Motivation

As it was defined by Weiser, a ubiquitous system1 is com-

prised by a set of software and hardware entities with whom the

user transparently interacts.

At software level, those entities are either applications, di-

rectly manipulated by the user, or services, which could serve as

information providers to the applications. As a result, in ubiquitous

systems, applications and services have to continuously exchange

information in order to expose complex capabilities to the end users.

Thus, managing communications is a key aspect of the development

of any ubiquitous system.

However, the complexity of managing the communications in

these systems has been commonly associated to the constant move-

ment of the users while they are carrying the devices in which the

applications are executed, which makes the communications spon-

taneous and highly volatile. Nonetheless, other different problems

1To simplify, in this thesis, software systems designed according to the ubiq-
uitous computing paradigm are simply referred as ubiquitous systems

| 3

CHAPTER 1. INTRODUCTION

associated to the ubiquitous systems may also be related to the com-

plexity of managing the communications in these systems.

For instance, conceptually, there are not any well established

models representing the elements that should be present in a ubiqui-

tous system [32]. Therefore, the mechanisms (and their properties)

supporting the communications in a ubiquitous system are not de-

fined explicitly.

In consequence, due to the absence of well established

models, it is challenging to methodologically develop a ubiquitous

system whose design captures all the users’ requirements and

that can be shared (and understood) among different software

designers. Hence, different designers may devise heterogeneous

communication mechanisms that, ultimately, may present a low

degree of interoperability and compatibility.

Moreover, the different underlying platforms that may exist to

deal with the complexity of managing the communications in ubiq-

uitous systems, again, can not be based on well established mod-

els. Therefore, their use requires a high technical expertise, and the

concepts present in some of these platforms may not be present in

others, or they may even have different semantics.

4 |

CHAPTER 1. INTRODUCTION

1.3. Hypothesis and Objectives

In this thesis, it is considered that the correct management of

the communications in ubiquitous systems is a problem that may

not only be related to the availability and use of the appropriate

technologies at implementation level, but to the conceptualiza-

tion and methodological development of the ubiquitous systems

themselves. In consequence, the objectives of this thesis are to:

Define models for conceptualization of the communications

in general, and for the communication requirements found in

ubiquitous systems in particular.

Devise a methodology to systematically approach the

development of ubiquitous systems, with a special focus on

the communication management and using a set of proposed

transformation rules applied to the previous models.

Systematize (and automatize) some of the tasks associated to

the design and implementation of technologies to support the

interoperability between the applications and services in ubiq-

uitous systems.

Demonstrate that it is feasible to appropriately manage the

communications in a ubiquitous system using both the con-

ceptualizations and the methodological approach to the devel-

| 5

CHAPTER 1. INTRODUCTION

opment of these systems.

1.4. Structure of the Thesis

This thesis work is structured as follows.

In this chapter, the initial motivation, hypothesis and objec-

tives of this research work have been established.

In Chapter 2, some previous works are presented in order to

provide the suitable background about communication management,

ubiquitous systems and model-driven development. Their analysis

also motivates this thesis work.

Chapter 3 describes a general conceptual model for the com-

munications, without focusing on the particularities of the commu-

nications in ubiquitous systems. The general idea is to define some

aspects of the communications that are not captured by the existing

communication theories.

In Chapter 4, a communication model for ubiquitous systems

is proposed by using the conceptual foundations devised in previous

chapter.

On the basis of the conceptual models presented in Chapters 3

and 4, a methodology to develop ubiquitous systems is presented in

5.

6 |

CHAPTER 1. INTRODUCTION

In Chapter 6 it is described how the proposed methodology

can also be used to develop supporting technologies to assist during

the implementation of ubiquitous systems.

Finally, Chapter 7 presents the conclusions and results drawn

from this thesis work, and proposes some lines of future work.

| 7

CHAPTER 1. INTRODUCTION

8 |

Chapter 2

Foundations for the
Specification and Development
of Ubiquitous Systems

In this chapter, the methods, techniques and technologies that

are currently applied to the development of ubiquitous systems are

explored. Considering that this thesis work focuses on the com-

munication, the existing bibliography related to that field will be

specifically approached, even if it relates to the more general con-

cept of distributed systems. Nonetheless, several basic concepts

related to the software communication research field will be intro-

duced. Likewise, the notion of middleware will be presented as a

supporting technology related to the communications in distributed

systems and, consequently, in ubiquitous computing environments.

Moreover, the relationship between middleware, software frame-

| 9

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

works and design patterns will be explored, so as to highlight the

influence that a middleware may have during the design of a soft-

ware. In addition, some different, well-known middleware tech-

nologies specifically designed for ubiquitous systems will be briefly

described.

Furthermore, Model-Driven Engineering (MDE) is introduced

as a means to develop software on the basis of abstract models. Par-

ticularly, an standard approach to MDE known as Model-Driven Ar-

chitecture (MDA) is described. Additionally, a comparison between

MDE and code-centric development processes is provided in order

to emphasize the benefits of using MDE in software development,

but also standing out some of its negative aspects. Specifically, the

advantages of using this technique to develop communication mech-

anisms are also highlighted. Finally, it is provided a summary of

some standard notations that may help to model the communication

aspects of a system.

2.1. Distributed Systems

A distributed system is a software system consisting in a set

of different, non-collocated processes that communicate each other

by exchanging messages [64]. The theoretical research work associ-

ated with this field in very extent, and closely related to the field of

10 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

the concurrent systems. However, in this thesis work, the following

subsections provide a glimpse of the most important notions related

to the communications in distributed systems.

2.1.1. Architectures of a Distributed System

This subsection explores the main reference architectures that

are currently applied to the design of distributed systems. During

the description of these reference architectures two notions that are

widely present in the design of these systems are introduced: ser-

vices and events.

2.1.1.1. Service-Oriented Architecture (SOA)

Currently, in the field of the distributed systems, the term ser-

vice is one of the most outstanding concepts that it is possible to

encounter. A service is a mechanism to access certain functionali-

ties, whose implementation is opaque to any entity that is external

to the service itself and that can be only accessed through a pre-

defined public interface [84]. Services mainly foster reusability and

maintainability, among other quality properties.

The term WebService, which was introduced by the W3C

group [16], refers to a service that can be accessed through Internet

and whose underlying technologies are related to eXtensive Markup

| 11

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

Language (XML) [19]. That way, their public interface is defined in

WebService Description Language (WSDL) [26] and they use Sim-

ple Object Access Protocol (SOAP) to exchange information [47],

which are, in fact, technologies based on XML.

WebServices have motivated a shift from the perspective that

all the resources should be locally available in a personal computer

[128]. It is becoming increasingly common to use an Internet con-

nection to access different services providing several resources: stor-

age, applications, improved calculation capabilities, etc. This is

known as cloud computing [50].

Services can also be considered to be context-aware if they

have the capability to adapt their own operation depending on the

context that surrounds a service requester [57]. This type of ser-

vices are currently very popular, specially due to the success of

the mobile systems. As an example, iAd (http://advertising.

apple.com/) and AdMob (http://www.admob.com) services, re-

spectively provided by Apple and Google, offer commercial adver-

tisements adapted to the user location.

The Service Oriented Architecture (SOA) is a software archi-

tecture design paradigm that promotes the encapsulation of certain

application functionalities as different interoperating services. Its

reference model was defined by the OASIS committee [84]. The

12 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

same committee has established that SOA is a paradigm to arrange

functionalities (as services) that could be under the control of differ-

ent organizations or domains. In this architecture, sometimes there

will not be a one-to-one relationship between services and function-

alities. On the contrary, providing a certain functionality may in-

volve the interaction between several services. In fact, one of the

key notions in SOA is the interaction, which, within that scope, is

defined as the required activity to provide a functionality. Moreover,

in the SOA reference model [84], services are recommended to be

designed as loosely coupled entities: they should be separately im-

plemented and managed, just using a shared infrastructure to allow

their interaction. Therefore, services have a strong cohesion, since

they usually depend on other services to provide their functionali-

ties.

In relation to the design of software systems using SOA, the

Object Management Group (OMG, http://www.omg.org) com-

mittee has specified a Unified Modeling Language (UML, http:

//www.uml.org) profile and metamodel, known as SoaML [91]. As

an example, in Figure 2.1, it is shown a search service that has been

modeled using SoaML.

In that figure, it is shown how a service is modeled as a sys-

tem component called Participant, which may have several service

points (ServicePoint) and request points (RequestPoint):

| 13

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

<<ServicePoint>> search : Search SearchService

<<RequestPoint>> query : StorageService

<<RequestPoint>> filterResults : FilteringService

<<Participant>>

Figure 2.1: A SoaML model example of a search service

The Participants are components that provide or consume ser-

vices in a system.

The ServicePoints are interaction points from other services to

the modeled one.

The RequestPoints are interaction points from the modeled

service to others.

In the sample illustration, the search service is a Participant

that provides a search ServicePoint and that requires to interact with

storage and filtering services through the query and filter Request-

Points.

2.1.1.2. Event-Driven Architecture (EDA)

The Event-Driven Architecture (EDA) complements SOA

by introducing services whose interaction is based on events

[75]. Events are used to notify changes in the state of a software

entity, along with some contextual information associated to those

14 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

changes. For example, an event could notify a user connection to

a chat service. More precisely, an event is defined as a significant

change in the state of a software at a concrete spatio-temporal

location [105] [7]1.

Event-based communications usually avoid polling opera-

tions, that is, continuous requests for the same piece of information,

so as to check if it contains any changes. For instance, a service in

a social network could notify an event whenever a user publishes a

new post. That way, the other users would not have to continuously

access the service to check if some new information was published.

Avoiding polling operations is very important from the point

of view of the efficiency, since those operations consume a lot of

energy, CPU, bandwidth, etc., while the underlying hardware sup-

porting them may have a limited amount of resources (smartphones,

sensors, embedded systems, etc.). As a consequence, EDA is in-

creasingly being applied to the design of embedded systems.

In addition to generally improving efficiency, EDA incorpo-

rates some mechanisms to promote a low cohesion and a loose cou-

pling between the communicating entities in a system. Particularly,

in addition to SOA services, EDA incorporates the notion of event

1In order to improve the legibility of this research work, the term event will
also be used to refer to the message that notifies the occurrence of an event in an
entity of a software system

| 15

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

emitters and receivers:

An event emitter is an entity that notifies any changes in its

own state to the rest of entities that conform the system in

which they reside.

An event receiver will capture the notifications produced by

the emitters, process them and, accordingly, execute some ac-

tions.

Emitters and receivers promote a low cohesion and a loose

coupling since there are not any interaction points connecting them

(i.e., in SoaML, no ServicePoints or RequestPoints should connect

emitters with receivers, or viceversa).

2.1.2. Communication Paradigms

The Object Management Group (OMG) committee describes

as an appendix to SoaML [91] three communication paradigms

to exchange information between services: Request-Response,

Publish/Subscribe and Document Centric Messaging. The next

subsections will detail those communication paradigms, their main

characteristics and the scenarios in which they are mainly applied.

16 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

2.1.2.1. Request-Response (RR)

The Request-Response paradigm (RR) is the most traditional

way of communicating information in a distributed system. It

defines a simple way to exchange information through message

passing: A sender requests certain information to a receiver,

which replies with a message including the required information.

RR is widely used in distributed systems, in particular when

they are designed on the basis of SOA, since it allows to easily

interoperate with services. Also, the message passing semantics

of this paradigm have been applied as a primitive to develop

more complex communication schemes [33] (like PubSub, which

is described in next subsubsection) and to model very common

communication protocols, like HTTP.

Several variations of the RR paradigm have been proposed in

order to achieve different goals: one-way requests (the response is

only a status message), batch requests (several requests codified as

a single one in order to improve efficiency), RPC (requests codify a

remote procedure call [14] or a method invocation [66], whereas the

response is the result of its execution), etc. It is worth to mention that

the RPC is the most widely used variant of the RR paradigm. In fact,

several authors have even considered RPC as a separate communi-

cation paradigm [3] [117] [79], so as to highlight its importance.

| 17

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

Finally, at implementation level, it is very frequent to design

proxy classes or functions whose interfaces are equivalent to those

exposed by the public interface of the services. The idea is to make

it transparent to the developer whether the communications are lo-

cal (method or function calls) or not (service invocations). At high

level, the developer just interoperates with a set of objects or func-

tions through a certain interface. Internally, those calls can be trans-

lated into an invocation to a service through a set of communication

technologies and adopting the RR communication scheme.

2.1.2.2. Document-Centric Messaging (DCM)

In the Document Centric Messaging (DCM) paradigm the ba-

sic interaction units are the documents. This way, services receive

different types of documents, they process them and try, in conse-

quence, to execute an operation, which could lead to the exchange

of other documents. As specified in the SoaML standard, the DCM

paradigm can be considered as a way to distribute messages to in-

boxes placed in the services. Correspondingly, it emulates how hu-

man beings exchange mails.

The DCM paradigm avoids the need to establish a well-

defined public interface for the services, in contrast with the RR

paradigm. Services just need to incorporate a communication

protocol that allows the exchange of documents. Anyhow, the

18 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

format of the documents must be understandable by all the services

exchanging them. Thus, it is very common to structure the

documents using languages supporting schemas, like XML.

The communication model behind this paradigm can be ei-

ther synchronous or asynchronous, depending on if it is required to

immediately process and operate over a document after receiving it

(synchronous model), or if the document can be stored in a process-

ing queue and processed/operated afterwards (asynchronous).

2.1.2.3. Publish-Subscribe (PubSub)

The PubSub paradigm emulates the human procedure of sub-

scribing to a publication: from the moment a subscriber expresses its

interest in certain information, it will automatically receive a copy

of the information each time it is released [5].

The PubSub paradigm is mainly used to notify changes in the

internal state of a sender (publisher) to a set of interested receivers

(subscribers). For example, in a home automation system, if a light

is switched from off to on, then this occurrence could be notified to

end-user applications, which could update their corresponding user

interfaces. Hence, the PubSub paradigm is commonly applied when

designing systems on the basis of EDA. In fact, the basic interaction

unit in the PubSub paradigm is the event.

| 19

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

From a technological perspective, this paradigm is usually im-

plemented by designing an event broker (usually, as a service) that

stores the subscriptions and receives all the publications [68]: when

a new publication is received, the event broker distributes it among

the subscribers. Additionally, there are two main ways to design an

event broker: either with a pull-based or with a push-based com-

munication model.

In the pull-based communication model, the entities are in

charge of detecting the occurrence of new events. Therefore, in

order to receive them, the entities must periodically poll the event-

broker, which will have to store the published events while any sub-

scribers remain active. Besides, the broker will have to poll the emit-

ters in order to check if they need to publish a new event. Figure

2.2 illustrates the operation mode of the pull-based communication

model.

Likewise, Figure 2.3 illustrates the operation mode of the

push-based communication model, in which the emitters directly

transmit the new events to the event broker. Meanwhile, the

event broker is in charge of transferring the received events to the

subscribers, without requiring them to perform a previous request.

In most cases, event notifications are unpredictable and very

separated in time, which makes the push-based communication

20 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

Emitter

Emitter

Event Broker

Subscriber

Subscriber

Subscriber

Subscriber

pull()

pull()

pull()

pull()

pull()

pull()

Figure 2.2: Pull-based communication model

Emitter

Emitter

Event Broker

Subscriber

Subscriber

Subscriber

Subscriber

push()

push()

push()

push()

push()

push()

Figure 2.3: Push-based communication model

| 21

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

model more advantageous, as it generally consumes less resources

(i.e., it does not require an intermediate storage, polling operations

are avoided, bandwidth use is decreased, and so forth). However,

when the number of events to be notified is very high or they occur

at very regular intervals, then using the pull-based communication

model could have some benefits over using the push-based one,

since a single polling operation could be used to trigger several

event transfers at the same time, and the time between polling

operations could be adjusted to fit the intervals in which the events

are notified.

In spite of the benefits that the push-based communication

model may offer, it is not possible to implement it within some

technical scopes, since it is required to keep long-term connections

alive and to be able to transfer information without a previous

request from the receivers. For instance, note that current HTML

and JavaScript standards do not provide the required techniques

to implement push-based communications. Nonetheless, the new

HTML5 standard [10], to be published in the next few years by

the W3C committee, incorporates WebSockets and Server-Side

Events, which allow to develop push-based communication models.

22 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

2.1.3. Some Notations for Representing Dis-
tributed Systems

Several notations have been proposed to represent the interac-

tions between the different elements of a system. In consequence,

these notations can be used to help into designing a distributed sys-

tem. The following subsections provide a brief description of some

of the most relevant ones.

2.1.3.1. Petri Nets

A Petri net is a formal mathematical modeling language that

has been widely used to analyze, design and validate distributed sys-

tems [123]. A sample Petri net is represented in Figure 2.4.

T2

P1

P2

P3

P4

T1

Figure 2.4: An example Petri net

A petri net represents a set of places and transitions in a di-

| 23

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

rected graph. A transition represents an event and a place repre-

sents a condition that is satisfied. Places are linked to transitions by

arcs, which represent that a satisfaction of a condition produces an

event, or an event produces the satisfaction of a condition. Since

the execution of a Petri net is usually nondeterministic, if several

transitions are activated at the same time, then one of them is ran-

domly triggered. To activate a transition, an appropriate amount of

tokens must be present in the input places. A token is graphically

represented through a black point contained in some places. When a

transition is executed, it consumes tokens from the input places and

produce the same amount of tokens in the output place.

2.1.3.2. UML 2.x Communication Diagram

UML 2.x Communication Diagrams (formerly called collab-

oration diagrams in UML 1.x) are the standard OMG approach to

graphically represent the interactions between the parts of a system

in terms of a sequence of ordered messages [39]. As so, they em-

phasize the interactive relationships between the elements present in

a system. A sample UML communication diagram is depicted in

Figure 2.5.

In a communication diagram, an actor interacts with a set

of objects that, in turn, collaborate between them through a set of

exchanged messages. The sequence of messages is represented

24 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

:A :B
1. message1()

Actor

1.1. message2()

:C

1.2. message3()

:D

2. message4()

Figure 2.5: An example of a UML 2.x communication diagram

through a numbering scheme in these diagrams.

2.1.3.3. UML 2.x Activity Diagram

UML 2.x Activity Diagrams are the standard OMG approach

to graphically represent the workflow of activities that are carried out

in a system [39]. In UML 2.x, activity diagrams are based on Petri

nets [116]. Consequently, they can precisely depict the behavior of a

set of interacting processes. An example of a UML activity diagram

is depicted in Figure 2.6.

In an activity diagram, activities are conformed by a set of

actions linked through a control flow. Each activity is started by

an initial node, and ended by one or more final nodes. Actions can

be concurrently executed, and some conditions can prevent or allow

| 25

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

1 2

[yes]

[no]
3

4b4a

5

Figure 2.6: An example of a UML 2.x activity diagram

their execution.

2.1.3.4. Business Process Modeling and Notation
(BPMN)

Business Process Modeling and Notation 2.0 (BPMN 2.0) is

the OMG standard for modeling business processes using a graph-

ical notation [89]. BPMN can be used to represent the interactions

between a set of processes that collaborate to achieve certain goals.

The focus is to provide a notation that can be easily understood by

stakeholders, and that it is as much separated from software aspects

as possible. It is very similar to UML 2.x Activity Diagrams, but it

intends to provide a more understandable, informal and simple no-

26 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

tation than UML. Therefore, it can be adequate to depict a highly

abstract diagram representing the overall interactions that the differ-

ent processes that conform a distributed system may carry out.

BPMN 2.0 also includes a notation for representing chore-

ographies, that is, an ordered set of interactions between the par-

ticipants of a business process. As a consequence, it is a suitable

notation to represent the communication aspects of a system from a

highly abstract perspective. An example of a BPMN choreography

diagram is depicted in Figure 2.7.

Retailer

Provider

Try to buy
product

I want to buy

Let me see if I have enough

Provider

Retailer

Cancel
Selling

I don't have enough

See you later

Provider

Retailer

Sell Product

Here you have

Thank youenough?

yes

no

Activity

Event

Sent Message

Received
Message

Gateway

Initiator

Target

Figure 2.7: An example of a BPMN choreography diagram and a
summary of its elements

| 27

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

Previous example represents different interactions between a

retailer and a provider to buy a product. The notation includes el-

ements that are widely used in BPMN choreography diagrams: ac-

tivities, participants, messages, events and gateways. An activity is

an interaction between two participants and may have sub-activities

with different interactions between the participants. A message is

an information unit transferred between participants, and it can be

communicated in a non-specific mode (i.e., synchronous or asyn-

chronous). A gateway represents a branch or a merge between dif-

ferent activities. Finally, an event is an exceptional occurrence be-

tween two activities and/or gateways.

2.1.4. Supporting Communications: Middle-
ware

This subsection exposes some research work related to the de-

sign and management of communication schemes through middle-

ware technologies.

A middleware is defined as a software layer that is located

between the operating system and the end-user applications, hiding

the heterogeneity of different physical computer architectures, oper-

ating systems and programming languages, hence, simplifying the

process of transferring information between the different machines

that are part of a distributed system [12].

28 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

Several of the most remarkable (and traditional) middleware

technologies for distributed systems are described in the following

subsubsection. Moreover, the relationships between design patterns,

software frameworks and middleware are explored, so as to empha-

size the key role of a middleware in the design (not only the im-

plementation) of complex distributed systems. Additionally, it will

make it easier to the reader to differentiate these concepts, which are

usually mixed-up.

2.1.4.1. Traditional Middleware Technologies

Several middleware technologies have been proposed to sup-

port the development of distributed systems. The following list high-

lights the most remarkable ones and their main characteristics:

CORBA (Common Object Request Broker Architecture [87])

was specified by the OMG committee to support an object-

oriented approach to RPC. It is widely considered as the

main reference in the field of the communication middleware

technologies. There are three main categories in the CORBA

specification: (1) a language to define public interfaces for

services, which is known as Interface Description Language

(IDL); (2) a specification in IDL of the basic CORBA services

[87]; and (3) a specification of the CORBA communication

protocol, which is called General Inter-ORB Protocol (GIOP)

| 29

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

[88]. In CORBA, it is remarkable how IDL makes the

specification independent from the implementation in any

specific platform (programming language, operating system,

etc.). In fact, there are many implementations of CORBA,

like OmniORB (http://omniorb.sourceforge.net),

TAO (http://www.cs.wustl.edu/~schmidt/TAO.html)

or Mico (http://www.mico.org).

DDS (Data Distribution Service [86]) in another middleware

specified by the OMG committee. Its focus is to support the

PubSub paradigm in embedded and real-time systems. Addi-

tionally, it supports an extensive set of parameters to tune the

quality of service (QoS), like reliability, bandwidth, etc. DDS

structures the information as a set of key-value pairs associ-

ated to a topic. The entities can subscribe to a certain topic

to receive the information associated to it whenever is pub-

lished. The communication protocol is known as Real-Time

Publish Subscribe (RTPS). Like CORBA, the public interfaces

of DDS are defined through IDL, which makes them indepen-

dent from any specific platform.

ICE (Internet Communications Engine [130]) is the natural

successor to CORBA. In contrast with CORBA, ICE is both

a specification and an implementation of that specification for

multiple platforms. It was defined and implemented by several

30 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

original members of OMG committee that defined CORBA,

as a response to its slow evolution. A new protocol, called

IceP, replaces GIOP, since it was considered to be inefficient.

Most of the CORBA services have a corresponding ICE one.

The IDL has been extended in some ways and simplified in

others, removing some deprecated constructions. Addition-

ally, the specification contains a mapping between the IDL

and some of the most relevant programming languages nowa-

days: C++, Java, PHP, Python, Ruby, C#, Objective-C, and so

on.

RMI (Remote Method Invocation, http://www.

oracle.com/technetwork/java/javase/tech/

index-jsp-136424.html) is the default approach to

object-oriented RPC that is available in Java. It is simple

to use, but its capabilities are limited in comparison with

CORBA, DDS or ICE. For example, RMI can only be

(officially) used in software written in Java, thus limiting

its interoperability possibilities. To workaround that issue,

some mapping technologies have been implemented in order

to be able to transform RMI messages to other protocols.

An example of that is RMI-IIOP (http://docs.oracle.

com/javase/7/docs/technotes/guides/rmi-iiop),

which allows the interaction between RMI-based and

| 31

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

CORBA-based software systems. In spite of the functional

and technical limitations of this middleware, it is widely used

in practice, specially due to its simplicity in comparison with

CORBA, DDS or ICE and to the success of the Java platform.

SOAP (Simple Object Access Protocol [47]) is a protocol to

exchange structured information in distributed systems. It was

defined by the W3C consortium. Albeit its low efficiency, as a

consequence of the XML-based textual notation that is used to

structure the messages, SOAP is a technology of great interest,

since it works on top of standard HTTP requests. Therefore,

it allows to implement the RR paradigm in the Web. Like-

wise, the textual notation of the messages using XML allows

to represent structured documents, thus supporting the DCM

paradigm. Technically, it can be used in any platform sup-

porting XML and HTTP and is very easy to be debugged (i.e.,

the messages are formatted in XML, which makes them very

legible).

WCF (Windows Communication Foundation, http://

msdn.microsoft.com/en-US/library/dd456779.aspx)

is a set of APIs and a programming model to produce

services from classes developed by using the Mi-

crosoft .NET framework. It is the successor of DCOM

(http://www.microsoft.com/com/default.mspx) and

32 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

.NET Remoting (http://msdn.microsoft.com/en-US/

library/kwdt6w2k(v=vs.100).aspx), which were other

middleware technologies developed by Microsoft for the

Windows operating system. WCF is similar to RMI, but

has more functionalities. Moreover, the messages can be

formatted in either XML or JSON, which increases its

compatibility with other middleware technologies, the Web

and with any software platform supporting XML and HTTP.

ï£ij

Although these middleware technologies are widely used and

provide important functionalities to promote several quality proper-

ties (e.g., efficiency, scalability, compatibility, etc.), they can not ful-

fill all the specific technical requirements that the more modern sys-

tems usually require (e.g., mobility in ubiquitous systems, volatility

of the connections, etc.). In consequence, some newer technologies

have been proposed, as it will be described in Subsubsection 2.2.3 in

relation to the support of the communications in ubiquitous systems.

| 33

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

2.1.4.2. Relationships between Software Frameworks,
Patterns and Middleware2

Middleware-based technologies are mainly accepted to over-

come interoperability issues, also providing portability between dif-

ferent underlying platforms and sometimes satisfying other certain

quality properties (efficiency, scalability, security, etc.).

Software frameworks [98] are reusable abstractions of code

wrapped in a well-defined Application Programming Interface

(API). They usually turn out to be a common choice in software

engineering since they are focused on facilitating the development

of software systems and on promoting reusability. Software

frameworks comprise a set of hot and frozen spots. Hot spots

represent the abstractions that are provided in order to adapt the

functionalities of the framework to the specific requirements of a

particular system [96], while frozen spots define basic components

(and the relationships between them) that remain unchanged in

any instantiation of the framework [95]. A framework differs from

other approaches intended to support software development (e.g.,

libraries, toolkits, etc.) in that it provides “inversion of control”,

that is, the framework is responsible of executing the instantiations

of the hot spots when required.

2In this subsection, the relationship between patterns, frameworks and mid-
dleware is extracted from [110].

34 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

Patterns allow to solve several well-studied design issues

through the use of some predefined solutions that have been shared

by experienced developers and architects [40]. In fact, patterns

were originated by Christopher Alexander as an architectural

concept [1]. Design patterns were mainly popularized in the

software engineering field by the book Design Patterns: Elements

of Reusable Object-Oriented Software [41]. In that book, patterns

are classified as follows:

Creational: They simplify the process of instantiating ob-

jects.

Structural: To define ways of composing objects to enhance

the functionality and quality properties of a software.

Behavioral: To establish how to transfer information between

different objects.

As can be noticed, middleware, frameworks and patterns are

oriented towards reusing knowledge across software design and im-

plementation, so as to reduce development costs and produce op-

timal solutions to common problems. Since they share a common

focus, they are usually interrelated: Middleware is designed using

several patterns and incorporate frameworks to, respectively, facili-

tate software design and implementation. Therefore, from an archi-

| 35

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

tectural point of view, a middleware is a pattern-driven combination

of frameworks.

Finally, it is worth to be pointed out that using a middleware

should not be considered as not a technical-only task, since it in-

volves incorporating several frameworks and design patterns to a

software, which, in turn, influences both its design and implementa-

tion.

2.2. Ubiquitous Systems

A ubiquitous system is intrinsically a distributed system, since

they are formed by a set of non-collocated elements that exchange

information. Consequently, the notions presented in previous sec-

tion can also be applied to the ubiquitous systems. However, from

a technical point of view, ubiquitous systems exhibit two key differ-

ences with traditional distributed systems [82]:

They are volatile: The interoperation is spontaneous and the

associations between devices are constantly created and de-

stroyed. Moreover, communication links usually fail and the

bandwidth and latency are continuously changing.

They have a different device model: Personal computers

are replaced by sensors/actuators, mobile devices and “social”

36 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

devices (interactive walls, furniture, etc.). Consequently, re-

sources might be constrained (energy, memory, computing ca-

pabilities, etc.) in a way that requires to develop software in a

different manner than in personal computers or in traditional

distributed systems.

These characteristics make it possible to establish a relation-

ship between ubiquitous computing and other paradigms, remark-

ably to:

Mobile computing. It is focused on enabling users the possi-

bility to carry their personal computers and establish wireless

connections with other devices.

Wearable computing. It involves the miniaturization of per-

sonal computers, so that they can be incorporated into cloth-

ing, or even into the body.

Context-aware computing. It refers to the possibility of au-

tomatically adapting software operation to the user context

(location, nearby persons, available resources, etc.).

Whereas mobile and wearable computing is more related to

hardware research (i.e., to develop small electronic devices with

computing capabilities), context-aware computing is more associ-

| 37

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

ated to software research, even if some physical devices may sup-

port context detection and adaptation (e.g., sensors and actuators).

The next subsection details context-aware computing, since it is the

ubiquitous-computing-associated field that is more relevant for this

thesis work.

2.2.1. Context Awareness

In the field of the ubiquitous computing, context-aware com-

puting refers to the idea of adapting software operation to the user

context, that is, the location, nearby persons, available computing

resources and the changes to those elements along time [107].

In context-aware computing, software should be designed to

support the following functionalities [94]:

Reception of information about the context: To detect the

user context through a set of sensors and to present that infor-

mation to the user.

Contextual discovery of resources: To automatically dis-

cover relevant resources and to make use of them in an ad-

equate way.

Contextual adaptation: To automatically execute a task, or

to modify its default operation, on the basis of the detected

38 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

context and a set of predefined rules.

Augmented context: To associate digital information to the

physical context, in order to provide useful messages or re-

ports to the user.

Each of these activities involve solving very difficult chal-

lenges, like supporting interoperability and mobility, that are cur-

rently being studied by the scientific community. Furthermore, some

of these problems are also present in ubiquitous systems. Conse-

quently, ubiquitous and context-aware computing are widely con-

sidered interconnected disciplines. In fact, from a technical perspec-

tive, ubiquitous and context-aware systems need analogous com-

munication mechanisms. For that reason, the proposals presented

in this thesis can be considered to be applicable to both types of

systems. Moreover, a ubiquitous system should contain context

awareness capabilities to support a transparent adaptation to differ-

ent real environments [109], which further interconnects both re-

search fields.

2.2.1.1. The Notion of Context and its Modelling

One of the main issues that may arise when designing a

context-aware system is to correctly model the context itself. Even

if in previous subsection it is given a definition of context that is

| 39

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

widely accepted (i.e., a conjunction of the location, nearby persons,

available resources and the changes to those elements along time

[107]), it can be considered that the exact conceptualization depends

on the domain or the specific problems to be solved. For instance,

some authors mention that the context is more related to the

environment of the applications [126], whereas other authors relate

the context to the user environment [20] or to the user behavior and

feelings [30].

Due to the different conceptualizations of the context, it is

usual to model domain-specific ontologies to represent it. From a

computing perspective, an ontology is defined as a formal specifica-

tion of a conceptualization [45]. It describes the concepts associated

to a domain, their relationships, properties and constraints. OWL

language [124] is commonly used to specify ontologies. It is based

on RDF/XML [8] and its formal semantics are founded on descrip-

tive logic. OWL allows to represent semantic classes, properties,

individuals and values. Moreover, it is possible to execute deduc-

tion operations over the represented concepts by using reasoners,

like Pellet (http://clarkparsia.com/pellet/). This is of great

importance in context-aware computing, since it allows to detect the

context on the basis of some incoming information (from sensors,

applications, services, and so forth) and to adapt a system operation

on the basis of a set of logic rules.

40 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

Even if domain-specific ontologies to represent the context

are common, there have been several efforts to propose domain-

independent or generic ontologies to specify it. One prominent

example is the Standard Ontology for Ubiquitous and Pervasive

Applications (SOUPA) [25], which includes two different sets

of ontologies: SOUPA Core and SOUPA Extension. SOUPA

Core incorporates elements that are present in any ubiquitous

and/or context-aware system: Person, Politic-Action, BDI-Agent

(Beliefs, Desires and Intentions), Time, Space and Event. SOUPA

Extension includes elements to extend SOUPA and to support

very particular, but widespread, applications: Meeting, Agenda,

Document, Screenshot, Connected Region (i.e., to relate different

physical spaces) and Location.

Although it is possible to use SOUPA to represent most of the

notions of context, some particular scenarios still require specific

ontologies or, at least, to substantially extend SOUPA. One example

is COBRA-ONT [24], which has been proposed by the same authors

of SOUPA to support smart rooms.

2.2.2. Communication Paradigms in Ubiqui-
tous Systems

In ubiquitous systems, it is very common to establish com-

munication schemes based on either the PubSub or RR paradigms.

| 41

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

Each communication paradigm provides orthogonal functionalities

and promotes different quality properties, while most existing ubiq-

uitous systems actually need to fulfill a combination of the func-

tional and non-functional requirements fostered by each paradigm.

For example, in a home automation environment, it is usually re-

quired to directly interact with specific devices through well-known

interfaces or through message passing, thus being appropriate to

choose RR-based communications. On the other hand, when a de-

vice changes its state (a door is opened, for instance), the applica-

tions should be notified, so as to update their GUI. In this case, the

use of PubSub-based communications is more suitable.

Table 2.1 outlines the contribution of each communication

paradigm to the quality properties that are very often sought for

ubiquitous systems [28] [106] [3] [53]. It is important to note

that the quality properties that are mentioned in this section can

be achieved with the appropriate implementations of either RR or

PubSub mechanisms. The problem is the impact that they will have

in other requirements and the high level of complexity needed to

fulfill them. These problems will negatively affect the performance

of the systems that are built on top of them. For example, a PubSub

proxy could ensure reliable delivery, however, by using a proxy, all

the communication will need to be centralized in it. This choice

would avoid using decentralized implementations of the PubSub

42 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

paradigm and would require to apply replication techniques in order

to avoid bottlenecks. However, by using the RR paradigm, reliable

delivery requirements are directly met.

Property PubSub RR
Efficiency partial partial
Mobility Support X
Adaptability X
Reliable Delivery X
Security partial X
Timeliness X

Table 2.1: Quality properties promoted by the PubSub and the RR
paradigms

A more detailed explanation of the information included in

the previous table is described in the following subsubsections. This

analysis could motivate the proposal of model that integrates the

PubSub and the RR paradigms, which may contribute to seamlessly

take advantage of the semantics of both paradigms and the quality

properties that each of them helps to promote.

2.2.2.1. Efficiency

PubSub paradigm is, in general, more efficient for distribut-

ing the state of the entities and for delivering a message to several

receivers. To do those tasks, the RR paradigm semantics require to

periodically execute polling operations, which are usually consid-

ered very inefficient in comparison with the scheme supported by

| 43

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

the PubSub paradigm [97], since such changes infrequently occur

and a lot of resources are wasted when sending useless messages

(memory, CPU, energy, bandwidth, etc.). Moreover, in RR, to dis-

tribute information to a set of receivers, the number of messages to

be sent must be equal to the number of receivers. In PubSub, pub-

lishers always distribute one message, regardless of the number of

subscribers. Anyhow, the RR paradigm can be more convenient if

the notifications always occur at very regular intervals or if power

consumption must be periodically controlled. As a consequence,

both the PubSub and RR paradigms may help to achieve efficiency

in ubiquitous systems. The choice between the two paradigms de-

pends on the specific constraints of each system.

2.2.2.2. Mobility Support

The PubSub paradigm promotes the decoupling between pub-

lishers and subscribers. In particular, in PubSub-based communica-

tions, it is totally transparent if either a publisher or a subscriber is

present or not in a system. In RR, if a receiver is no longer avail-

able in a system, due to the coupling between senders and receivers,

the execution flow of a sender could be indefinitely blocked wait-

ing for a response that could never be received since the provider

could never be present again. Additionally, the execution flow of a

sender usually depends on the specific results that are extracted from

44 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

the responses of the receivers. Thus, in some cases, senders may

not be able to continue their execution if specific recipients are not

available. Therefore, the PubSub paradigm contributes to support

mobility in ubiquitous systems, whereas the RR paradigm offers no

mechanisms to support it [106].

2.2.2.3. Adaptability

RR-based communications require establishing well-defined

interfaces to exchange messages between senders and receivers.

However, in ubiquitous systems, the support to context-awareness

features involves to dynamically adapt the functionality provided

by services and applications to the information retrieved from the

context (that is, nearby users, their tasks, available resources, etc.)

[129]. Consequently, RR communications are not flexible enough

to promote adaptability [28]. However, in PubSub communications,

subscriptions may be dynamically established and dropped

depending on the context. Thus, the PubSub paradigm is more

suitable for building adaptable, ubiquitous systems.

2.2.2.4. Reliable Delivery

Reliable delivery means that a receiver (or a set of receivers)

has to send an acknowledgement for each received message in or-

der to confirm their reception. In RR, receiving a response to a re-

| 45

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

quest implies that the request was delivered correctly. However, in

PubSub communications, reliable delivery implies detecting from a

publisher (i.e., not only from the event broker, that is, the inter-

mediary entity between publishers and subscribers) whether a set

of subscribers have received a specific notification or not. This is

only possible by increasingly reducing the decoupling between pub-

lishers and subscribers [28]. For example, in order to provide reli-

able delivery in the PubSub paradigm, the publishers should know,

at least, the number of subscribers and an identification associated

with each subscriber. Consequently, the publishers should receive

an acknowledgement message from each subscriber. As a conse-

quence, it is not possible to assume that a notification is always re-

ceived when the decoupling between publishers and subscribers is a

strong requirement. Thus, when reliable delivery must be ensured,

RR should be used instead.

2.2.2.5. Security

Security is an important concern in ubiquitous systems.

Hence, the information to be exchanged should be encrypted

and trusting mechanisms established for senders and receivers.

Obviously, information can be encrypted in both the PubSub and

the RR paradigms. However, trusting mechanisms such as digital

signatures or certificates are easy to establish only in RR-based

46 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

communications. In the PubSub paradigm, it is difficult to detect

the source or the recipient of a notification, due to the decoupling

between publishers and subscribers. Moreover, event brokers

enable trusting mechanisms between publishers and brokers or

between brokers and subscribers, but never directly between

publishers and subscribers. Thus, a publisher is not able to detect

if the recipients of a notification can be trusted, while subscribers

are not able to detect if a notification has been sent from a trusted

source. Overcoming this weakness involves considering additional

complex trusting mechanisms that decrease efficiency [35].

2.2.2.6. Timeliness

Real-time applications require controlling the timeliness of

delivered messages. In PubSub-based communications it is not even

possible to establish if a notification will ever be received, (see Re-

liable Delivery), thus making it impossible to delimit the time of a

notification delivery from the point of view of a publisher (i.e., event

brokers can be implemented to guarantee timeliness). Additionally,

if there is more than one subscriber, then the delivery time and or-

der will depend on the specific implementation of the event broker,

which could vary delivery times even between consecutive notifica-

tions received by the same subscribers. Hence, timeliness cannot be

enforced for publishers in PubSub-based communications [28]. In

| 47

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

this way, the RR paradigm would be required.

2.2.3. Middleware Technologies for Ubiqui-
tous Systems

Ubiquitous systems should meet some specific requirements

that traditional middleware technologies do not currently accom-

plish [69], like:

They do not support ad-hoc networks, which are of great

importance in ubiquitous systems (see Subsection 2.2.4).

The reason is that traditional middleware technologies are

intended to work in infrastructure networks (e.g., LANs,

Internet, etc.). Consequently, ad-hoc transmission interfaces

(like BlueTooth or infrared) are neither supported by

design nor supported in the existing implementation of the

middleware. An example of the last case is CORBA, which

could support any transmission interface, but the existing

implementations do not support ad-hoc interfaces.

Mobility support is not provided, or it is utterly limited.

Therefore, it is not possible to correctly deal with the dynamic

changes in the networking connectivity that ubiquitous

systems commonly suffer.

Traditional middleware technologies foster the use of a spe-

48 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

cific communication paradigm, allowing partial or none use

of others. However, a combination of paradigms is usually

required in ubiquitous systems, so as to meet the quality prop-

erties that are usually expected to be accomplished (see Sub-

section 2.2.2).

Due to the previous limitations, several authors have proposed

middleware technologies to specifically support communications in

ubiquitous systems. Some of the most remarkable ones are summa-

rized in Table 2.2, whose contents have been extracted from [48],

simplifying its structure and contents.

These middleware technologies deal with communications in

ubiquitous systems in a different manner (i.e., different communi-

cation paradigms, underlying networking technologies or protocols,

etc.), focusing on some requirements but not taking into account

others. Moreover, the employ of textual protocols, commonly based

on XML or JSON, has recently overtaken the use of middleware

technologies, since they can pose as middleware and they are eas-

ier to use and understand. However, their efficiency and scalability

(among other properties) is lower in comparison with most previ-

ously mentioned middleware technologies.

Consequently, software engineers usually have to integrate

diverse communication technologies into a shared communication

| 49

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

Name Summarized Description
PubSub and DCM Middleware

STEAM [73] PubSub-based middleware that manages groups of
nearby users and provides partial support for power
management, mobility and interoperability.

EMMA [81] Message-oriented middleware supporting one-to-
one and one-to-many communications. Messages
are full pre-formatted documents.

P2P Middleware
Expeerience [15] It supports mobile code, to discover shared re-

sources and P2P information exchanging.
Middleware based on mobile agents and components

SELMA [43] It ensures a balanced resource management be-
tween producers and consumers. It supports dy-
namic discovery and mobile agents.

Mobile-Gaia [114] PubSub-based middleware with coordination sup-
port and management of clusters of entities. It pro-
vides a WYNIWYG (What You Need Is What You
Get) platform.

Middleware based on tuple spaces
LIME [80] A LINDA-based tuple space [22][42] to share re-

sources.
MeshMdl [52] Object-oriented tuple space. It supports mobile

agents and makes use of an asynchronous commu-
nication model (Xector).

Middleware based on shared resources
XMIDDLE [72] Shared information is structured in XML. It is able

to manage network disconnections, which are usual
in ubiquitous systems.

Middleware based on virtual machines
Mate [65] It only supports TinyOS (http://www.tinyos.

net), which is an OS and an interpreter for em-
bedded systems. It provides synchronous commu-
nications and mobility support.

Table 2.2: Some of the most remarkable middleware technologies
for ubiquitous systems

50 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

component [44], so as to provide a holistic support to the different

communication requirements that are expected to be fulfilled. For

instance, DDS (Data Distribution Service) service specification

[86] is commonly used to support real-time event distribution,

and UPnP (http://www.upnp.org) or Apache River (Jini)

(http://river.apache.org) are software frameworks to support

dynamic discovery of nearby entities. This combination of different

communication technologies, usually results on the decrease of

maintainability and reusability of the resulting software solutions

[118].

2.2.4. Communications in Ubiquitous Sys-
tems: Technical Issues

There are several important technical issues that need to be

taken into account when developing a ubiquitous system, specially

when dealing with communications. For instance, traditional

networking infrastructures (LANs, Internet, etc.), which combine

routers and network nodes (i.e., personal computers and other

computing devices with networking capabilities, like smartphones,

tablets, etc.), can not correctly deal with the dynamicity and

mobility requirements of the ubiquitous systems. As an example,

in rural areas in which those networking infrastructures are not

present, the network nodes can not exchange information between

| 51

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

them, even if they are physically close to each other.

As a result, Mobile Ad-hoc NETworks (MANETs) are in-

creasingly being adopted to support information exchange in ubiq-

uitous systems. These networks do not have a static infrastructure,

but they are automatically reconfigured by themselves to self-adapt

to the available nodes at any specific moment. In order to achieve

that goal, these networks use ad-hoc connection standards, like IEEE

802.11s [21] or BlueTooth (http://www.bluetooth.com/). Cer-

tain network nodes are automatically chosen to behave as routers in

order to scatter information to other nodes. Figure 2.8 illustrates a

MANET in which all the nodes can transfer information between

them. To do so, Node B must act as a router, since the Node A is not

able to directly reach the Node C.

Node A Node B Node C

Figure 2.8: An example of a MANET with three devices: There is a
total connection between them since the Node B can route the data
transmissions between A and C

Moreover, broadcasting a message in a MANET involves us-

52 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

ing different information dissemination techniques, like:

Clustering [51] [31]. A node is in charge of propagating mes-

sages to the devices surrounding its physical location. The

selection of the propagating node is based on the use of dif-

ferent metrics, like battery life, the distances between nodes,

etc.

Simple flooding [56] [61]. Each node disseminates all the re-

ceived broadcast messages to its nearby nodes.

Probabilistic, area-based and neighbour-knowledge broad-

casts [122]. These methods are similar to simple flooding, but

each node only propagates each received broadcast message

to a subset of its nearby nodes, so as to decrease redundancy

and network traffic. The subset of nodes is dynamically

chosen whenever a node receives a broadcast message, on

the basis of different techniques (e.g., the distances between

nodes, the topology of the network, randomly, etc.).

Broadcasting is not only important to disseminate messages,

but also to dynamically discover the devices that belong to a

MANET, which can be a complex task due to the coincidence of

several MANETs in the same geographic area. To avoid this issue,

it is common to make a “virtual” association between devices and

MANETs [122].

| 53

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

Additionally, MANETs may have one or more nodes

connected to the Internet, so as to access remote services. These

MANETs are known as Internet-Based Mobile Ad-hoc Network

or, simply, as iMANETs. iMANETs allow “off-line” nodes to

access remote services through the “on-line” ones. Consequently,

iMANETs combine the dynamic infrastructure of an ad-hoc

network with the universal information access provided by Internet.

Nonetheless, certain technical issues have limited the success of

these networks. For instance, it is still necessary to figure out

suitable strategies to maintain a cache of information [67] and to

decrease the use of resources (battery, CPU, memory, etc.) of the

nodes that are connected to the Internet.

Ubiquitous systems are also challenging in terms of privacy

and security, since, in fact, most of the exchanged information is per-

sonal and confidential. For example, in MANETs, the information

could be easily captured and stored by the intermediate devices that

behave like routers. Consequently, designing ubiquitous systems in-

volves taking into account the following security aspects [69]:

Authentication. An entity (i.e., a physical device or software)

can not adopt the identity of another.

Authorization. The access to shared resources should be con-

trolled by permissions.

54 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

Non-repudiation. An entity can not reject a valid message,

and if a valid message is received, then it is not possible to

negate its reception. ï£ij

Finally, physical networks supporting communications in

ubiquitous systems usually deal with a lot of traffic and have a

limited bandwidth. Therefore, it could be important to take into

account certain quality of service (QoS) requirements at different

levels. For instance, the QoS could be adapted depending on the

user role or the functionality provided by the ubiquitous system

could be dynamically adapted to the level of QoS at a given

moment.

2.3. Model-Driven Engineering
(MDE)

Model-Driven Engineering (MDE) is a software development

approach that is focused on producing and using models to reduce

platform complexity [17]. It is also a “promising approach to ad-

dress the inability of third-generation languages to alleviate the com-

plexity of platforms and express domain concepts effectively” [111].

In general, MDE improves the development process by separating

concerns and allowing the systematic automation of production, in-

tegration and validation processes [119].

| 55

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

MDE is also considered as a superset of a development

methodology known as Model-Driven Development (MDD). This

development paradigm uses models (and their transformations) as

the main artifacts of the development process, even generating code

from them [74]. MDE, on the other hand, is not only focused on the

development tasks, but also on the complete engineering process

(evolution, reverse engineering, validation, testing, simulation,

analysis of costs, etc.) [112]. So as to clarify these commonly

mixed terms, the relationship between MDE, MDD and several

other methodologies yet to be mentioned in this section has been

illustrated in Figure 2.9.

MDE
MDD
MDA

AMDD
FOMDD

MCSD

Figure 2.9: Relationship between MDE, MDD and other method-
ologies

MDE is based on two primary mechanisms:

Abstraction: In MDE, it consists of the definition of a set of

domain models representing the specification of a software.

A domain model is a conceptual model (i.e., a conjunction

56 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

of entities and relationships between them) that encompasses

all the topics related to a specific problem [38]. Moreover, a

domain model defines the scope of the problem domain and

serves as a shared vocabulary between different stakehold-

ers [55]. Domain models are usually specified in Domain-

Specific Modeling Languages (DSMLs) [111].

Refinement or generation: It is carried out by transforming

domain models into other models, so as to obtain different

perspectives of the problem to be solved, or the solution to be

developed. The OMG defines a transformation as the process

of converting one model to another one of the same system

[85]. Transformations are specified through a set of rules ap-

plied to the domain models.

MDE methodology is depicted in Figure 2.10. Several domain

models (obtained through abstraction mechanisms) and transfor-

mation rules serve as an input to a set of refinement mechanisms,

which produce as an output other domain models that can be re-used

(with another set of rules) to produce, again, more domain models.

There are different variations of the MDE (or MDD) approach,

depending on the degree of use of the above-mentioned mecha-

nisms: some of them trend to produce many abstractions to solve

a problem, others are more focused on refinement and the rest try

| 57

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

Domain Models

Refinement
Mechanisms

Transformation
Rules

Abstraction
Mechanisms

Domain Models

Figure 2.10: Graphical illustration of the MDE development
methodology

to balance the efforts between producing abstractions and refining

them. Some of the most important variations are [111] [60]:

Model Driven Architecture (MDA) [85]. It is the OMG

standard approach to MDE. Models are divided into three

main abstraction levels: Computation Independent Model

(CIM), Platform Independent Model (PIM) and Platform

Specific Model (PSM). Each model must conform to a

metamodel, and a set of transformation rules, which are

applied to the corresponding metamodels, are intended to

automatically derive a PSM from a CIM. The main objective

of MDA is to separate a software design from the technical

details of an implementation.

58 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

Agile Model Driven Development (AMDD) [2]. Implemen-

tation efforts are guided by “good enough” agile models that

should be as simple as possible, easy to understand and suffi-

ciently accurate, consistent and detailed. The main idea is to

use models during development, but to decrease the efforts of

defining or using them as much as possible, and to keep them

simple enough for stakeholders.

Feature Oriented Model Driven Development (FOMDD)

[121]. A model is refined by composing or deriving features

from other (existing or new) models. A feature is “a distinc-

tively identifiable functional abstraction that must be imple-

mented, tested, delivered, and maintained” [59]. FOMDD

tries to improve the reusability and maintainability of a soft-

ware by mapping the representations of features across all the

phases of the software life cycle: analysis, design, implemen-

tation and testing.

Model Centric Software Development (MCSD) [125].

Models are central to all phases of the development process.

All the aspects of the software are modeled through Domain-

Specific Modeling Languages (DSMLs) to represent aspects

of interest. The models are mapped to the corresponding

elements of the implementation. Consequently, it is possible

to automatize most of the code generation, so as to produce

| 59

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

nearly-complete implementations of the components or

artifacts involved in a software development. Reverse

engineering is considered as a method to obtain models (from

existing code). Finally, due to the well-defined link between

models and implementation artifacts, model verification and

checking can be achieved through rapid-prototype generation

and run-time performance analysis.

Even if previous variations of MDE are of great significance,

this thesis work will focus on MDA. The reason is that this method-

ology tries to clearly separate abstractions from technical issues.

Thus, it can be suitable in order to deal with the communication

aspects of ubiquitous systems at design level, without taking into

account the technical issues that encompass the use of networking

technologies, protocols, middleware, etc. Moreover, it is currently

the only approach to MDD that has been defined and evaluated by

an standard’s committee (Object Management Group, OMG), thus

ensuring its quality, well-defined specification and interoperability

with other standards (like UML).

2.3.1. Model-Driven Architecture (MDA)

Model-Driven Architecture (MDA) is an Object Management

Group (OMG) standard approach for the development of software

60 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

systems through MDE [85].

In MDA, software is developed on the basis of a forward en-

gineering process, that is, by producing code from abstract models.

The general idea is to decouple software design from the technical

aspects of its implementation [85].

Reciprocally to MDE, MDA is based on two main mecha-

nisms: abstraction through modeling and refinement through trans-

formations. The MDA standard development methodology can be

represented as depicted in Figure 2.11.

CIM

PIM

CIM Metamodel

PSM Metamodel

CIM Metamodel to
PIM Metamodel

PIM Metamodel to
PSM Metamodel

Conforms to

Conforms to

Conforms to

Transforms

Transforms

PSM

PIM Metamodel

Figure 2.11: Metamodel-based transformations in Model-Driven
Architecture (MDA)

Models are categorized into three different abstraction levels:

| 61

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

Computation Independent Model (CIM). It is often referred as

a business or domain model, since it uses a vocabulary that

is familiar to the subject matter experts (SMEs). It is totally

independent of the technologies that are going to be used for

its implementation.

Platform independent Model (PIM). It focuses on the opera-

tion of the system, but abstracts out the specific technologies

to implement it.

Platform Specific Model (PSM). It combines the specifications

in the PIM with the technical details of a specific platform

(programming language, operating system, etc.).

Each model conforms to a metamodel, which represents the

elements and relationships of any of its instances. Metamodels are

also instances of meta-metamodels, which are represented in the

OMG specification of the Meta-Object Facility (MOF) [92]. MOF is

the metamodeling architecture of UML. Consequently, it is possible

to define MDA metamodels and models in UML.

In relation to the definition of model transformations, the

MDA standard uses the MOF Query/ View/ Transformation

(QVT) OMG specification [90]. However, it is also very common

to specify transformation rules through the ATLAS Transfor-

mation Language (ATL) (http://www.eclipse.org/atl),

62 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

which is supported by the Eclipse Modeling Framework (EMF,

http://www.eclipse.org/emf).

Transformations are defined on the metamodels, so as to be

able to automatize the transformation process of their respective in-

stances. For example, by establishing the transformation rules be-

tween the CIM and the PIM metamodels, it is possible to derive

a transformation between the CIM and PIM instances. One of the

main benefits of this transformation approach is the reusability of

the transformation rules, since they can be applied to any instance

of the metamodels that they relate.

2.3.2. A Comparison between MDE and Code-
Centric Developments

Many authors have extensively compare MDE and code-

centric developments. MDE is generally considered as an “slow”

development methodology for small-scale software projects, since it

requires too much time and efforts to produce models and use them

to obtain software prototypes [37]. However, MDE is commonly

said to be adequate to only deal with very complex projects, since it

produces high quality software that can be easily reused, maintained

and extended [78].

In any case, code-centric developments can be initially

| 63

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

“faster” and it is easier to produce software prototypes from the

beginning of the development process. Nonetheless, MDE should

not be considered neither “slower” nor as a development process

exclusive to large and complex projects. In MDE it is generally

simpler to produce code, validate and maintain it, independently

of the scale of the project to be developed [60]. As illustrated in

Figure 2.12, in MDE the efforts are decreased over time, whereas,

as illustrated in Figure 2.13, in code-centric developments, the

efforts are constant.

Requirements Analysis Software Product

…

Model-Driven Engineering

#include <stdio>

int main()
{
 ….
}

#include <stdio>

int main()
{
 ….
}

#include <stdio>

int main()
{
 ….
}

Figure 2.12: Scheme of the MDE process

Moreover, in MDE, the separation between designing and cod-

ing is clearer than in code-centric developments. Consequently,

64 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

Requirements Analysis Software Product

…

Code-Centric Development

#include <stdio>

int main()
{
 ….
}

#include <stdio>

int main()
{
 ….
}

#include <stdio>

int main()
{
 ….
}

Figure 2.13: Scheme of the code-centric development process

in MDE, software engineers trend to design very detailed models

that are implemented by programmers [49]. On the other hand, in

code-centric developments, all the members of a development team

should have similar skills, thus making it very difficult to set up a

large team to manage complex software projects. Additionally, in

MDE is easier to parallelize the development of different projects,

since, as a project progresses, several members of a team can start

to dedicate design efforts to other projects.

Furthermore, it has been experimentally tested that MDE is

able to reduce development costs, even by half (approximately), in

small-scale projects [60]. In fact, MDE not only decreases the de-

velopment costs of a project, but it also incrementally decreases the

| 65

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

cost of future projects, as it promotes the reusability of the produced

models. Besides, the maintenance and extension costs are also re-

duced, since it is usually easier to extend models to incorporate new

functionalities (or to modify the existing ones), rather than modify-

ing the code. To that respect, MDE is also optimum for reducing

the cost of integrating legacy models into new software designs [4].

Additionally, in MDE is possible to simulate a system (or certain

parts of it) on the basis of the models that are used to specify it [27].

Thereby, it is feasible to detect operational failures without an actual

implementation of a system, which further decreases development

costs in many cases.

In spite of the benefits that MDE offer, it also have several

drawbacks [49]:

Redundancy. In MDE is usual to provide different represen-

tation of the same artifacts, representing different perspectives

or abstraction levels of the same concepts. Therefore, redun-

dancy issues may arise, thus requiring a continuous consis-

tency checking of the produced models. Anyhow, automatized

model checking tools may overcome this problem.

Rampant round-trip problems. To keep separate models

as lowly interrelated as possible is difficult, since as systems

grow in complexity it is increasingly arduous to clearly sepa-

66 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

rate abstraction levels. The interrelationship between models

decrease their maintainability level, since a change in a model

needs to be reflected in other models. Reverse engineering

techniques may help to avoid that issue.

Moving complexity rather than reducing it. Sometimes ab-

stract models only reduce complexity at a certain develop-

ment phase (e.g., design), but increase complexity in other

phases (e.g., implementation), since some details are com-

pletely skipped. The problem is to be able to detect the degree

of abstraction that models should have during the whole de-

velopment cycle, so as to not move the whole complexity of a

project to a certain phase only.

More expertise required. Correctly defining, using

and transforming each model requires a certain set of

very particular skills, while all the models need to be

exchanged, improved and understood by all the members of a

development team.

To summarize, MDE overcomes most of the issues that code-

centric developments have. However, it is still necessary to improve

certain aspects of this development methodology by researching new

reverse engineering techniques or proposing new model checking

tools, among other things. Regardless, it is apparently certain that

| 67

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

future developments will move the complexity from the implemen-

tation to the other phases of the software engineering cycle. This

fact further motivates the research work behind this thesis, since it

reinforces the need of avoiding important tasks (like defining all the

aspects related to the communications) to be relegated to the imple-

mentation, instead of being tackled during the software design.

2.3.3. Developing Communication Mecha-
nisms on the basis of MDE

MDE has proven to be an appropriate methodology to facili-

tate the development of different aspects of the software communi-

cations: protocols, middleware, networking technologies, etc.

For example, in [71] it is presented an approach to develop

protocols for client-server architectures on the basis of MDE. The

main idea behind this work is to generate code from a set of well-

defined models that represent the main features and quality prop-

erties of a certain protocol. Moreover, a communications profile

for UML is introduced, so as to be able to more easily represent

the structural modeling and behavior of a communication protocol

through an standard graphical notation. This proposal benefits from

MDE in the sense that this methodology facilitates automatic gener-

ation of high quality implementations including very complex pro-

gramming structures that are hard to code even by skilled program-

68 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

mers.

A proposal to apply MDE to manage communications in the

Internet of Things (IoT), that is, in resource-constrained, mobile and

highly dynamic computing systems, like sensors or wearable de-

vices, is presented in [36]. This research work highlights the dif-

ficulty of producing high quality software for these types of com-

puting devices without the help of the appropriate supporting ab-

stract models. Moreover, the authors emphasize the need of apply-

ing MDE-based methodologies to the development of complex com-

munication environments, which are tough to manage from a merely

technical point of view.

MDE can also be applied to model communication schemes,

and to automatically analyze them to check their quality, as demon-

strated in [120]. For instance, in that research work, it is described

the development process of a sensor network supported by wireless

technologies. The MDE-based development involves specifying a

set of models, checking them to detect issues (i.e., sensors out of the

range of the wireless technologies, performance issues, non-satisfied

constraints, etc.) and refining them to improve the characteristics of

the resulting network. The possibility of simulating the designed

sensor networks using the produced models is also pointed out in

that research work. Actually, system simulation is one of the most

important benefits of MDE, as mentioned in previous Section.

| 69

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

In [60] it is detailed how middleware development can benefit

from MDE too. The development costs can be considerably reduced

using MDE (in that research work is mentioned that even 2.6 times),

while, at least, keeping the same quality level of developing a mid-

dleware on the basis of a code-centric development methodology.

Integrating a set of heterogeneous communication technolo-

gies is a method to provide their combined benefits in a unique arti-

fact (i.e., a software component, middleware, service, etc.). This

is an important task that needs to be performed very commonly

nowadays, as a means, for example, to maintain compatibility be-

tween newer and legacy technologies, or to fulfill an amalgam of

quality properties that are not possible to satisfy with any individual

technology. MDE can be suitable to integrate communication tech-

nologies, as described in [4], since the integration process is usually

manual, very complex and prone to errors.

To conclude, all these works stress the increasing complexity

(and cost) of managing communications, specially without the ap-

propriate methodologies or by dealing with them only from a tech-

nological perspective.

70 |

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

2.4. Conclusions

This chapter has presented a survey about the communication

of information in distributed and ubiquitous systems, and the devel-

opment of communication mechanisms on the basis of MDE.

Software communication can be very complex, since a num-

ber of technical and design decisions need to be made, while taking

into account several quality properties: scalability, efficiency, relia-

bility, interoperability, etc. Communicating information in ubiqui-

tous systems further increases complexity, since additional proper-

ties need to be fulfilled, like mobility support, transparent adaptation

or context-awareness. Software engineers trend to achieve some of

those quality goals at implementation level by adopting certain sup-

porting technologies, like middleware. Moreover, since the existing

supporting technologies tackle with some functionalities or quality

properties, but do not take into account others, they usually integrate

heterogeneous ones to fulfill the desired requirements.

MDE can be applied to approach the communication aspects

of a ubiquitous system at design time. By addressing communica-

tions at design level, it is possible to reuse knowledge across soft-

ware design and implementation, so as to reduce development costs

and produce optimal solutions to common problems. Additionally,

the combination of different communication technologies can be

| 71

CHAPTER 2. FOUNDATIONS FOR THE SPECIFICATION AND
DEVELOPMENT OF UBIQUITOUS SYSTEMS

part of the design process, instead of being relegated to the imple-

mentation, as traditionally occurred. A direct benefit of using MDE

to develop the communication aspects of a ubiquitous system is the

mitigation of the negative impact in maintainability and reusabil-

ity that results from a composition of technologies, patterns, frame-

works, etc. without a clear methodology.

Finally, it can be deduced from the information presented in

this chapter that dealing with communications directly affects the

quality properties to be pursued, the functionalities that can be pro-

vided and the final development costs of a software. Consequently,

managing communications should not be exclusively considered as

an implementation activity: New models, methods and techniques

should be proposed to incorporate such a relevant task to the whole

development process of a ubiquitous system. To this respect, in the

next chapter it is proposed a conceptual model of a communication

system. The idea is to clearly expose the most relevant concepts

(and their relationships) that are present in any communication sys-

tem, and to serve as a basis to introduce a MDA-based development

methodology for ubiquitous systems in the later chapters.

72 |

Chapter 3

A Model for Communication
Systems

This chapter presents a conceptual model for Computation-

Independent Communication Systems (CI-CS). As it will be de-

scribed along this chapter, the conceptual model, which is also pre-

sented as a metamodel, intends to tackle with some structural and

behavioral aspects of the communications that are not currently ap-

proached in the main conceptual models for communication sys-

tems: Shannon-Weaver [115], SMCR [11] and Barnlund [6] models.

In fact, the conceptual model has been devised through the analy-

sis of the expressiveness problems that are present in those current

communication models. In order to make it easier to understand the

different elements that should be encompassed in order to concep-

tualize, analyze or optimize a communication system, and to make

more explicit the relationships between those elements, separated

| 73

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

views of a communication system are offered: structural and be-

havioral view. Furthermore, an ontology has been devised to pro-

vide a formal specification of the conceptual model. To conclude, a

qualitative description of the proposal is provided.

3.1. An Introduction to the Commu-
nication Theory

Currently, three communication models can be considered to

provide appropriate and precise descriptions of the process of com-

municating information.

A technical-oriented approach to communications was firstly

presented in the Shannon-Weaver Mathematical Model of the

Communications [115], which is, by the way, the first publication

that introduced the term bit. The Shannon-Weaver model (see Fig-

ure 3.11) establishes that communications always follow the same

process: a source sends a message through a channel to a receiver.

A noise source is an external element to the communication system

that alters the transmitted messages while they are being transferred

through a channel. Therefore, the contents of the message may dif-

fer between senders and receivers.

1Note that the “channel” element is not named in the original depicting of the
model, but it is mentioned in its description

74 |

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

Information
Source Transmitter

Noise
Source

Channel

Receiver Destination
Message Signal Received

Signal
Message

Figure 3.1: The communication model proposed by Shannon and
Weaver in the The Mathematical Theory of Communication, 1949
[115]

An extension to the Shannon-Weaver model is presented in

the widely-accepted Source-Message-Channel-Receiver (SMCR)

model [11], whose description has been graphically represented in

Figure 3.2. The main contribution is that it incorporates the possibil-

ity of making the communication process iterative, since a receiver

may become a source after receiving a message, in order to provide

a feedback. Additionally, the noise source concept is removed in

order to produce a more abstract communication model.

Source Message Channel Receiver

Feedback

Encode DecodeTransfer

Figure 3.2: The communication model described by Berlo in the The
Process of Communication, 1960 [11]

Both the SMCR and the Shannon-Weaver models are oriented

towards ordered social interactions. However, Barnlund proposed

| 75

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

a transactional model in which each participant can communicate

with itself and to simultaneously be both a receiver and a sender

[6]. The model (see Figure 3.3) also reflects the possible pres-

ence of communication noise, which could lead to the need to re-

transmitting a message.

Sender/
Receiver Message Channel

Responds Transfer

Decodes
Sender/
ReceiverMessage

RespondsTransfer

DecodesFeedback Feedback

Noise

Figure 3.3: The communication model described by Barnlund in A
Transactional Model of Communication, 1970 (re-printed in 2008
[6])

These models intend to provide a highly abstract perspective

of the communications. However, they do not provide an insight of

the domain-independent elements that are present in a communica-

tion system (i.e., the elements that are present in both human and

computer-based communications), the relationships between them,

the mechanisms to support their interaction, or how to organize them

to fulfill certain requirements. For example, Barnlund’s theories

clearly specify that both the receiver and the sender need a proto-

col (a code-book) to be able to understand each other, but that term

is neither clearly conceptualized nor incorporated into the transac-

76 |

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

tional model. Also, none of the presented models take into account

the scenarios in which a message can be simultaneously transferred

through diverse channels and according to multiple protocols.

3.2. A Model to Conceptualize a
Communication System

This section presents a conceptualization of the elements

and relationships that are present in any communication system.

The idea is to extend, complete and formalize the current,

most-widespread communication models, which were presented in

previous section, so as to overcome the issues that may arise when

characterizing certain scenarios on their foundations.

The overall notion of a communication system have been de-

scribed on the basis of two views:

Structural View. The elements that are present in a commu-

nication system, and how they interact.

Behavioral View. The flow of interactions in a communica-

tion system to provide a communication-related functionality

or to fulfill a quality property.

These views share certain concepts and relationships. Hence,

their conjunction conforms a complete metamodel (or conceptual

| 77

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

model) that tackles with all the facets of a communication system

in a holistic way. Finally, the specification of a Computation-

Independent Communication System (CI-CS) has been formalized

as an ontology in order to have a basis on which it is possible to

describe the capabilities and quality properties of the conceptual

model (see next section).

3.2.1. Structural View

The structural view of a CI-CS presents the elements of a com-

munication system, and how they relate to each other.

To work out the general behavior of a participant in a CI-CS,

the process described in the current communication models has been

analyzed. The devised model is depicted in Figure 3.4 as a UML

activity diagram.

As it is illustrated in Figure 3.4, in any communication system,

the communication process is initiated when the sender decides to

deliver some information (1). After that, the information needs to

be prepared to be sent by adopting a protocol (2), the information

needs to be formatted according to the specifications of the protocol

to produce a certain message (3) and a protocol-compatible chan-

nel has to be selected to deliver the message itself (e.g., a software

protocol might not be able to tackle with all the existing physical

78 |

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

(1) Choose
Information

(5) Send
Message

(6b)
Confirm
Delivery

(2) Adopt
Protocol

(3) Format
Message

(4) Select
Channel

(6a) End
Communication

[confirm_delivery]

[unreliable_delivery]

[feedback]

[no_feedback]

Figure 3.4: A UML activity diagram depicting the dynamic behavior
of a CI-CS

channels, but only with a subset of them) (4). Later, the message is

sent to a receiver (5). If the communication does not involve a deliv-

ery acknowledgement, then the communication process ends (6a).

In other case, the message is delivered (6b) and the receiver may

provide a feedback, thus acquiring the role of a sender (1).

Consequently, all the existing communication models include

the following structural elements:

| 79

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

Sender. The party that initiates a communication.

Message. The information unit to be exchanged during a com-

munication.

Channel. The medium to transfer messages.

Receiver. The destination party of a communication.

Optionally, a noise source can also be present in order to rep-

resent the possible situation in which an external source modifies

in some ways the exchanged messages while they are transferred

through a channel.

On the basis of these notions and the analysis of the previous

behavioral model, the structural view of a CI-CS has been devised.

The view, whose model has been depicted in Figure 3.5 as a UML

class diagram, also aims to extend and refine the existing communi-

cation models, as it is described below.

In the structural view, whose elements and relationships are

defined in Tables 3.1 and 3.2, a communication system is made up

of one or more participants, channels and protocols. This way,

the notion of communication system is extended in comparison to

the previous models, in which the exchange of messages between

senders and receivers is made through only one channel and accord-

ing to a particular protocol.

80 |

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

Channel

Protocol

Communication
System

communicative_commonality

1..*

1..*

1..*

1..*

1..*

0..*

0..*

rules_the_use

connected

transports
content

medium

0..*

0..*

medium

sender
receiver

Message

0..*

0..*

exchanges

conforms_to
1..*

0..*
structurer

complier

producer

transfer_unit

0..*

PEER
PASSIVE
ACTIVE

<<enumeration>>
ParticipantRole

Role : ParticipantRole
Participant

Figure 3.5: The structural view of the CI-CS metamodel, depicted
as a UML class diagram

A participant may exchange information with others or with

itself (i.e., a communication system may be conformed by a unique

participant that self communicates). Besides, each participant may

have a different role, according to its role attribute: it can be pas-

| 81

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

Element Summarized description
Communication
System

It encompasses a collection of parties (or par-
ticipants) that exchange messages through a
set of channel, and conforming to certain pro-
tocols.

Participant A receiver and/or sender of a set messages in
a communication system. In a human conver-
sation, it can be one person. In a networking
environment, it can be a computing node.

Message The minimum information unit that is ex-
changed between participants in a communi-
cation system. The ordering and the format
of the each message in specified through the
communication protocol.

Channel The medium to transport a message between
the different participants in a communication
system.

Protocol It defines the format and ordering of the mes-
sages to be exchanged. Additionally, it defines
the rules to adequately use the communication
channel (i.e., when to use it, how to use it in an
optimum way, etc.). Moreover, a protocol can
be a composition of other simpler protocols.

Table 3.1: Concepts present in the structural view of a CI-CS

sive (it can only act as a receiver), active (it can only be a sender)

or peer (it can be both a sender and a receiver). In this way, all

possible communication scenarios, incorporating different types of

participants, can be represented. In contrast, in the existing commu-

nication models, some special communication scenarios can not be

represented.

For example, in the proposed CI-CS model, a communication

82 |

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

Relationship Summarized description
Connected The participants of a communication system

connect to each other to exchange messages.
Exchanges Each participant transfer multiple messages to

the participants to which they are connected
to.

Conforms_to A message must conform to a set of certain
protocols that are understood by the different
participants engaged in a communication.

Rules_the_use A protocol has a set of rules to adequately use
a communication channel (e.g., to use it effi-
ciently).

Transports A channel is in charge of transferring mes-
sages from the sending parties to the receiving
ones.

Table 3.2: Relationships between the concepts present in the struc-
tural view of a CI-CS

system could be composed only by passive participants (i.e., they

only act as receivers). This way, it is possible to use the model to

specify a service-oriented architecture of a software, by only focus-

ing on the representation of the services themselves, and omitting

the clients consuming them (i.e., the participants with an active role),

but not excluding any other communication elements (i.e., chan-

nels, messages and protocols). Also, other communication scenarios

could be only composed by active participants. For instance, in a

ubiquitous system it is common to incorporate participants that con-

stantly send messages to be discoverable by other parties. This way,

it is possible to represent scenarios through the proposed model in

which all the participants are expecting to be discovered and, there-

| 83

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

fore, they only send messages. Finally, most scenarios in which

participants with a peer role are involved can not be represented

by neither the SMCR nor the Shannon-Weaver models, since they

do not take into account the possibility of a participant to concur-

rently receive and send messages. However, they can be represented

through the transactional model proposed by Barnlund.

The CI-CS model assumes that the information unit is a mes-

sage, which can be transported through one or more channels. In this

manner, it is possible to represent communication systems that in-

tegrate heterogenous channels, so as to improve the interoperability

between the parties (i.e., to use specific channels for specific par-

ticipants) or to open up the possibility of concurrently exchanging

messages using different channels in order to fulfill certain quality

properties (i.e., performance, reliability, etc.).

A protocol, as defined in the proposal, establishes the rules to

use a channel (e.g., a software network protocol, a grammar in a lan-

guage, etc.). Moreover, a protocol can be the composition of other

simpler protocols, which is very common in practice. For exam-

ple, the CORBA IIOP is a protocol that combines the GIOP abstract

messages with their implementation as TCP/IP messages [87]. Fur-

thermore, the CI-CS model allows the specification of communica-

tion systems that integrate diverse protocols, which is an important

requirement in many systems to be able to achieve a certain level of

84 |

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

interoperability or quality of service (QoS) [101].

Finally, it is worth to be noted that the proposed model does

not include the notion of noise source, since it is assumed that the

possibility of incorrectly transferring a message is an intrinsic prob-

lem of any channel, and should not be part of the characterization

of a communication system (i.e., the noise source should be present

in the characterization of a channel, but not in the characterization

of the whole communication system). Thereby, CI-CS model con-

siders that each communication process is a transaction in which the

messages are either correct or need to be re-transmitted. The mech-

anisms to detect an erroneous message and to send it again should

be present in the specification of the protocol.

3.2.2. Behavioral View

The behavioral view of a communication system exposes how

its elements can be organized to provide a communication-related

functionality or to meet a quality property. The idea is to interpret a

communication system as a collection of interactions intended to

achieve certain goals.

Due to the similarities between the notions present in BPMN

2.0 (see Chapter 2, Section 2.1.3) and the ones present in the struc-

tural view of a CI-CS, this standard has been taken as an inspiration

| 85

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

to understand the notions behind the behavioral view of a commu-

nication system. Particularly, BPMN 2.0 choreographies have been

considered in this thesis work as an appropriate manner to represent

the behavioral aspects of a communication system, and the collab-

oration between its elements. Some authors have previously identi-

fied BPMN in general, and in particular BPMN choreographies as an

appropriate notation to represent communication systems [62] [18]

[46]. In contrast with UML-based notations (like communication,

sequence or activity diagrams), BPMN can be more expressive to

propose computation-independent models of a system [70].

In consequence, the behavioral view of a CI-CS, whose model

is depicted in Figure 3.6 as a UML class diagram, has been devised

on the basis of the BPMN 2.0 choreography metamodel. The con-

cepts and relationships present in the behavioral view of a CI-CS

are, respectively, described in Tables 3.32 and 3.4. The naming con-

ventions of the BPMN choreography metamodel have been kept in

order to facilitate the matching between a BPMN diagram and the

proposed behavioral view of a CI-CS (i.e., this matching between

both models will be explored in Chapter 5, Subsection 5.3.2, as a

key part of the software engineering methodology to be presented in

that chapter).

2The elements that are shared with the structural view are not described again
in Table 3.3

86 |

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

In contrast with the BPMN 2.0 metamodel, the behavioral

view focuses on the concepts that are present in a CI-CS, rather than

on the graphical notation to represent the concepts themselves in a

diagram. Thus, the behavioral view of a CI-CS does not include the

elements and relationships present in the BPMN 2.0 metamodel in

relation to graphical notations. Also, the behavioral view includes

some elements present in the structural view presented in previous

subsection. Namely, participant and message elements. It is also

important to note that the BPMN choreography metamodel includes

an element called connection, which is equivalent to the link ele-

ment in this proposal. The reason behind this name mismatch is to

avoid misconceptions of this term, since the notion of connection

is commonly used in the communication field to refer to the initial

interaction between two participants.

In the behavioral view, a communication system may contain

multiple choreographies, since it is taken into account the possibil-

ity of modeling a communication system that does not operate at all,

and also the specification of a communication system with different

choreographies.

The multiple choreographies are intended to organize the

flows of interaction between the participants of a communication

system. This way, each choreography consists of the sequence of

activities to be carried out by the participants. Particularly, in each

| 87

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

Choreography

Choreography
Activity

Sub-
Choreography

Activity

Participant Message

Link

1..*

1..*

0..*1..*

connected

exchanges
1..* senderreceiver

1..* 2..*

1..*

1..*

Gateway

Eventlinks
2

1..*

1..2

0..*

Sequential

Conditional

Default

Initial End

Inclusive

Exclusive

Parallel

Complex

Content-
Based

Flow Object

producertransfer_unit

connector

part

Event-
Based

1..*

0..*

triggers

triggerer

result

Communication
System

0..*

1..*

1..*
initiator

initiates

1 target

1..*
finalizer

finalizes

1..* objective

starts1..*
0..*

endpoint

starter

Figure 3.6: Behavioral view of the CI-CS metamodel, depicted as
a UML class diagram. The model is inspired by the BPMN 2.0
Choreography Metamodel Specification [89]

activity, one or two participants exchange several messages (i.e., an

activity is considered as a transaction in which either a participant

communicates with itself or communicates with another participant

to deliver messages). Additionally, an activity can be composed by

several sub-activities representing an atomic interaction between

two participants, involving the exchange of only one message (i.e.,

this constraint requires OCL to be represented in the UML class

diagram, but this notation has been omitted from the figure in order

88 |

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

Element Summarized description
Choreography A possible flow of interactions between the

participants in a communication system.
Choreography
Activity

An interaction activity between one or two
participants. An activity may be composed by
multiple subactivities.

Flow Object The different elements that are part of the ex-
ecution flow of a choreography, that is chore-
ography activities and events.

Link A connection between two or more flow ob-
jects. There are three types of links: sequen-
tial (it directly joins two flow objects), condi-
tional (it only joins two flow objects if a con-
dition is satisfied) and default (the flow object
that is initiated when no previous conditional
interaction were satisfied).

Event An specific type of message that represents a
significant occurrence in the communication
system at a given moment.

Gateway An event that executes one or more flow ob-
jects (i.e., it initializes a choreography ac-
tivity or makes an event to be delivered).
There are four types: exclusive (given a re-
ceived event, a flow object is chosen to be
executed), inclusive (several flow objects are
waited to be finished/delivered, then a specific
one is executed), complex (a predicate should
be satisfied before executing a flow object)
and parallel (several flow objects are concur-
rently executed). Exclusive gateways can be
event-based (i.e., any event can trigger it) or
content-based (i.e., the triggerer event needs
to contain certain information).

Table 3.3: Definition of the concepts present in the behavioral view
of a CI-CS

| 89

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

Relationship Summarized description
Links A link connects two flow objects in a choreog-

raphy.
Starts A flow object may be initiated by multiple

gateways.
Triggers An event triggers an exclusive gateway.
Initiates An initial event starts a choreography.
Finalizes One or more end events may finish a chore-

ography (i.e., the execution flow of a choreog-
raphy may have different endings, but each of
them is associated to an end event).

Table 3.4: Description of the relationships between the concepts
present in the behavioral view of a CI-CS

to simplify it).

At the end of each activity, the execution flow of the communi-

cation system continues as specified in the associated choreography.

Therefore, the execution of an activity may lead to the execution

of other activities or the occurrence of events. These elements are

named in the model as flow objects, that is, the elements that are

part of the execution flow of a choreography.

An event is a type of message that is used by participants to

notify a significant occurrence in the communication system to the

other participants. For example, it could be the notification of the

arrival of a new participant, the unavailability of an element in the

system, the initialization of a choreography (i.e., an initial event),

the finalization of its operation (i.e., an end event), etc. It is worth

90 |

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

to be mentioned that an event is both a type of message and a flow

object. Thereby, it is possible to represent scenarios in which an

activity involves the notification of an event, or the notification of

an event is just part of the execution flow of a choreography of a

communication system.

A gateway is a specialized event that is delivered to initiate a

set of interactions, that is, to modify the usual execution flow of a

choreography in different ways:

Parallel. Several interactions are concurrently initiated.

Exclusive. Given several target interactions, only one of them

is executed. It allows to represent an split in the execution

flow of a choreography. The selection of a specific interaction

is based either on the occurrence of an event (event-based)

or on the delivery of an event with certain contents (content-

based).

Complex. Similarly to an exclusive gateway, it splits the exe-

cution flow of a choreography. However, the selection of the

interaction to initiate is based on the satisfaction of a predi-

cate.

Inclusive. Several interactions are being waited to be finished,

then an interaction is initiated.

| 91

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

On the basis of all these notions, it is possible to define a link

as the relationships that are pre-established in a choreography be-

tween each two flow objects (i.e., activities or occurrence of events).

A link, in the real work, could be a pre-assigned turn to allow the

participants to communicate in a certain order. In a Petri Net, it

could be the token that allows to transition to certain places.

In the behavioral view of a CI-CS there are three types of links:

sequential, conditional and default. Sequential links directly con-

nect two flow objects. Conditional links are only followed when

a certain condition (or predicate) is satisfied. Finally, default links

are followed when any conditional link was triggered, that is, if the

predicates associated to a set of conditional links could not be satis-

fied.

In any case it is necessary to specify at least one link that re-

lates the initialization of a choreography and its finalization (i.e., the

delivery of an initial event and an end event). Conversely, it is neces-

sary to have at least two messages involved in a choreography (i.e.,

one to deliver the initial event and another for the end event).

To conclude, the behavioral view of a CI-CS is able to expose

the organizational aspects of a communication system. This is a

novelty in comparison to previous conceptualizations of the commu-

nication systems, which only tackled with their structure and basic

92 |

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

operational facets.

3.2.3. Formal Specification as an Ontology

The views of a CI-CS share certain concepts. As so, their con-

junction conforms a metamodel of a CI-CS. The metamodel of a

CI-CS, which has been semi-formally depicted using UML in pre-

vious subsections, can be formalized to demonstrate its semantic

capabilities and quality properties (see next section). To do so, an

ontology of a CI-CS has been defined.

In Computer Science, an ontology is defined as “a specifica-

tion of a conceptualization” [45]. An ontology formally describes

the topics in a domain, the relations between them and their con-

straints. Even if ontologies can be specified through different lan-

guages, Web Ontology Language (OWL) (http://www.w3.org/

standards/techs/owl) is one of the most well-known ones. OWL

is based on Description Logics (i.e., a formalism that is appropriate

to represent knowledge) and is a W3C Recommendation. Also, Pro-

tégé (http://protege.stanford.edu) is the most used editor for

ontologies, and is compatible with OWL.

Figures 3.7 and 3.8 respectively show the output that gener-

ates Protégé to graphically represent the CI-CS ontology, and its

hierarchy of classes and properties. Note that in the graphical repre-

| 93

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

sentation of the CI-CS ontology some elements have been removed

in order to avoid the figure to be overcluttered. The whole OWL

implementation is provided in Appendix I.

Figure 3.7: Graphical representation of an ontology of a CI-CS

A benefit of the ontological representation of a CI-CS is that it

can be shared and reused by different groups of people or software

tools to analyze a communication system in order to:

Check for inconsistencies in the specification of a communi-

cation system. For example, it is possible to detect the need of

94 |

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

Figure 3.8: The class hierarchy and properties of an ontology of a
CI-CS, as represented in Protégé

including certain participants to be able to carry out required

interactions, messages to carry out these interactions, proto-

cols that are able to codify those messages, channels compat-

ible with those protocols, and so forth.

Simplify a communication system by minimizing its elements

and interactions. To do so, it could be possible to establish

| 95

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

equivalencies between different members (i.e., instances, in-

dividuals) of the same class, which could lead to the simplifi-

cation of a communication system. For example, if two par-

ticipants need to interact several times during the lifespan of a

communication system, it could be considered to merge both

participants into a unique one, so as to reduce the number of

participants and interactions. This consideration could lead

to the optimization of the communication system through the

reduction of the number of messages, the complexity of the

protocols, etc.

Integrate several communication systems by including the

members of each one to be integrated (i.e., the instances or in-

dividuals associated to each class in the ontology, that is, par-

ticipants, messages, channels, protocols, etc.) into a unique

communication system. Again, as mentioned above, it is pos-

sible to check for inconsistencies and simplify the resulting,

integrated, communication system, which is usually consid-

ered as a complex task [101].

Besides, previous activities can be automatically done through

existing reasoners. A reasoner is a piece of software that “infers

logical consequences from a set of explicitly asserted facts or axioms

and typically provides automated support for reasoning tasks such

96 |

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

as classification, debugging and querying” [29]. Some of the most

well-known reasoners are FaCT++, RacerPro, Pellet, KAON2 and

Hoolet [29].

3.3. Quality Attributes of the Com-
munication Model

The international standard ISO/IEC 25010:2011 [54]

establishes a quality model for software products on the basis of

eight attributes: functional suitability, reliability, performance

efficiency, operability, security, compatibility, maintainability

and transferability.

On the basis of the standard and the research work presented

in [13], a qualitative analysis of the proposed metamodel have been

made. In particular, the proposal presented in [13] has been adapted

to the newer ISO/IEC 25010:2011, since it was published in 2010

and adopts the ISO/IEC 1926 standard as its basis, which has been

deprecated since then on behalf of the ISO/IEC 25010:2011 one.

The definitions of the quality attributes have been adapted from the

more general software product context, which is the one presented

in the standard, to the metamodeling context.

The following subset of the quality attributes presented in the

ISO/IEC 25010:2011 standard, and some of their corresponding

| 97

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

sub-characteristics, have been taken into account:

Functional suitability. The degree to which the metamodel

provides functions that meet stated and implied needs, when

the metamodel is used under specified conditions.

Reliability. The degree to which the metamodel can maintain

a specified level of performance, when used under specified

conditions.

Performance efficiency. The degree to which the metamodel

provides appropriate performance, relative to the amount of

resources used, under stated conditions.

Operability. The degree to which the metamodel can be un-

derstood, learned, used and attractive to the user, when used

under specified conditions.

Compatibility. The ability of the metamodel to exchange in-

formation with other metamodels and/or to perform their re-

quired functions while sharing the same domain.

Maintainability. The degree to which the metamodel can be

modified. Modifications may include corrections, improve-

ments or adaptation of the metamodel to changes in environ-

ment, and in requirements and functional specifications.

98 |

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

Transferability. The degree to which the metamodel can be

transferred from one environment to another.

Note that the security attribute present in the ISO/IEC

25010:2011 standard has not been taken into account, since it is not

suitable to describe the quality of a metamodel [13]. Likewise, the

quality attributes have several sub-characteristics that are compiled

in the standard, and some of them are not suitable to describe the

quality of a metamodel. For example, those related to the dynamic

behavior of a software (e.g., the time behaviour sub-characteristic

of the performance efficiency quality property) are not appropriate

since a metamodel is an static, non-executable and conceptual

model [13]. In addition, some of the sub-characteristics related

to standards compliance for certain characteristics, like reliability,

compatibility or operability, are defined in the standard for generic

software products, but they can not be matched to the context

of the metamodel description (i.e., no standards exist to asses

the compliance of certain characteristics in the definition of a

metamodel).

Table 3.5 summarizes the analyzed quality attributes and sub-

characteristics of the CI-CS metamodel. Some of the attributes and

sub-characteristics have been assessed through the ontological rep-

resentation of a CI-CS. Appendix II describes how the proposed me-

| 99

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

tamodel fulfills the multiple attributes and sub-characteristics. Also,

a definition of the sub-characteristics is provided in that appendix.

Attribute Sub-Characteristic Fulfilled

Functional suitability

Appropriateness 3

Accuracy 3

Interoperability 3

Compliance 3

Reliability - Partially
Efficiency - 3

Operability

Recognizability 3

Learnability 3

Helpfulness 3

Attractiveness Partially
Compatibility - Partially

Maintainability

Modularity 3

Reusability 3

Analyzability 3

Changeability Partially
Testability 3

Transferability
Adaptability 3

Portability Partially

Table 3.5: Quality attributes of the CI-CS metamodel

3.4. Conclusions

This chapter has presented a metamodel for Computation-

Independent Communication Systems (CI-CS). The metamodel

conceptualizes the notion of Computation-Independent Commu-

nication Systems (CI-CS) and it is specified through two different

views: structural and behavioral view.

100 |

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

The structural view captures all the structural artifacts that

are present in a communication system. To do so, the most

well-known and accepted communication theories have been

studied. Conversely, the behavioral view includes the elements

that should be present in a communication system to model its

organization. The idea is to model the behavior of a communication

system as a choreography, that is, as an ordered sequence of

interactions between the participants of the communication. Since

BPMN 2.0 includes a choreography metamodel, it has been taken

as a reference to define the elements and relationships that should

be present in the behavioral view.

The conceptualization of a CI-CS has been formalized through

an ontology. The ontology can be used to check if a model is con-

sistent with the defined conceptualization of a communication sys-

tem, that is, if a model contains all the necessary elements and re-

lationships to be considered as a communication system (i.e., if a

given model is consistent with the proposed conceptualization of

a communication system). Moreover, the ontology could allow to

optimize a communication system by establishing equivalencies be-

tween certain elements. Conversely, multiple communication sys-

tems could be integrated into a unique one in an optimum way (i.e.,

by minimizing its elements through the identification of equivalen-

cies between the elements and relationships of the several commu-

| 101

CHAPTER 3. A MODEL FOR COMMUNICATION SYSTEMS

nication systems to integrate).

On the basis of the international standard quality framework

for software systems defined in ISO/IEC 25010:2011 some quality

properties present in the proposal have been studied. The ontology

assists in that study, since it allows to assess certain features of the

metamodel.

Finally, the conceptual model described in this chapter can

be considered as a CIM metamodel for Communication Systems

(CS-CIM) that will serve as the foundation to propose an MDA-

based development methodology for ubiquitous systems in subse-

quent chapters of this thesis work. As a necessary upcoming step

to achieve that goal, the next chapter approaches the metamodel-

ing of the mechanisms supporting the communications in a ubiqui-

tous system through the specialization of the defined communication

model.

102 |

Chapter 4

A Communication Model for
Ubiquitous Systems

This chapter describes a communication model for platform-

independent ubiquitous systems (PI-US), which, in turn, serves as a

metamodel for the communication mechanisms related to these sys-

tems. The metamodel includes the elements and relationships that

are necessary to represent the specific communication mechanisms

that could be integrated in any ubiquitous system in order to sup-

port message exchanging, event distribution and dynamic discovery

functionalities through software mechanisms. Similarly to the me-

tamodel of a CI-CS, the metamodel of a PI-US is presented through

two views: structural and behavioral view.

The metamodel has also been formalized as an ontology, with

the objective of demonstrating certain of its capabilities. Moreover,

| 103

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

the relationships between a CI-CS and a PI-US have also been for-

malized. On one hand, the idea is to show that, conceptually, a ubiq-

uitous system can be considered as a communication system im-

plemented through software mechanisms, and taking into account

the specific requirements and quality properties of this kind of dis-

tributed systems. On the other hand, it is possible to demonstrate

that a forward transformation from a CI-CS to a PI-US (i.e., from

a more abstract level to a more refined one) is feasible, and some

elements in the resulting PI-US model can be traced back to the ini-

tial CI-CS. The benefits of these mappings between models will be

explored along the chapter.

Finally, the quality properties that can be attributed to the PI-

US metamodel will be analyzed and described.

4.1. Communication Functionalities
of a Ubiquitous System

As previously mentioned in Chapter 2, Section 2.2, a ubiqui-

tous system can be considered, from a technical point of view, as

a distributed system with certain specific requirements: volatility

in the communication process and constant mobility of the partici-

pants. In consequence, ubiquitous systems usually need to make use

of several mechanisms to provide, at least, the following communi-

104 |

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

cation functionalities [69]:

Message exchanging: One-to-one communications between

participants. In practice, this type of communication is com-

monly used for exchanging messages between applications

and services.

Event distribution: Participants may send events to notify

changes in their internal state to a set of other interested par-

ticipants. For example, in a sensor network, whenever a sensor

measures a significant value, then an event could be sent, so as

to execute certain actions on its reception. Event distribution

can also improve the decoupling between senders from the re-

ceivers, which contributes to reach the mobility requirements

of the ubiquitous.

Dynamic discovery of participants: Dynamic detection of

new participants, allowing to exchange messages and/or dis-

tribute events among them. Due to the mobile nature of the

participants, it is necessary to have this feature in order to

detect the available participants at a given moment, like the

reachable services around the physical user environment.

The conceptualization of a CI-CS presented in previous chap-

ter can be taken as a foundation to define a ubiquitous system as

| 105

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

a a computation-based communication system that includes the

mechanisms to support the above-mentioned functionalities.

Nonetheless, note that this definition of a ubiquitous system is

only focused on the communication mechanisms of a ubiquitous

system, due to the orientation of this thesis work. In fact, this def-

inition does not take into account other important aspects like the

presentation (i.e., user interface), the underlying information sys-

tems that may be required, etc. Those facets of a ubiquitous system

are not the focus of this work.

Finally, the above mentioned functionalities are already sup-

ported by several standards and/or well-known middleware tech-

nologies, like ICE, CORBA, DDS, WCF, etc., which were explained

in Chapter 2, Section 2.1.4.1. However, some of these proposals

focus only one functionality (like DDS or SOAP, which, respec-

tively, provide event distribution and message exchanging) and the

others provide a very detailed and technical specification of each

functionality (like CORBA, DDS or WCF), which makes it difficult

to find many equivalencies in the specification of a functionality be-

tween different standards or middleware specifications. Therefore,

it is complex to approach the integration of multiple standards and

middleware technologies into a unique ubiquitous system, due to

the different technical details that should be taken into consideration

and to the potentially unrelated notions that may be present in their

106 |

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

corresponding specifications.

In contrast, the PI-US metamodel to be introduced in the next

section intends to provide the concepts to support all the above men-

tioned functionalities, but providing a less technically oriented and

more abstract perspective than the existing proposals. The idea is

to be able to easily match between the concepts in the metamodel

and the core (and shared) concepts present in the most well-known

existing standards and middleware specifications, so as to be able to

facilitate the integration of heterogeneous communication technolo-

gies using a platform-independent model for the conceptualization

of a ubiquitous system.

4.2. General Communication Model
for Ubiquitous Systems

This section presents a conceptualization of the mechanisms

supporting the communication in a ubiquitous system. The idea is

to specialize the proposed CI-CS conceptual model presented in pre-

vious chapter to include the mechanisms to provide the communi-

cation functionalities mentioned in previous section. The special-

ization of the CI-CS metamodel seeks to support the peculiarities

of the ubiquitous systems by means of a metamodel for Platform-

Independent Ubiquitous Systems (PI-US). Similarly to the CI-CS

| 107

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

conceptual model, the metamodel of a PI-US will be described on

the basis of two views:

Structural View. The mechanisms and basic structural el-

ements that are present in any ubiquitous system, indepen-

dently of the specific computing platform, and how they inter-

act with each other.

Behavioral View. The flow of interactions between the ele-

ments presented in the structural view.

In consequence, the notions featured in these views have been

conceptualized through two models that converge into a complete

metamodel that integrates all the mechanisms related to the commu-

nications in ubiquitous systems. To conclude, the specification of

the metamodel has been formalized as an ontology in order to have

a basis on which it is possible to study the capabilities and qual-

ity properties of the metamodel (see next section), and to check the

compliance of the metamodel with the formal conceptualization of

a CI-CS. This way, it will be possible to assess that a ubiquitous

system is, in an abstract way, a communication system.

108 |

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

4.2.1. Structural View

The structural view of the PI-US metamodel includes the con-

cepts that are present in a ubiquitous system to support message

exchanging, event distribution and dynamic discovery, indepen-

dently of any specific computing platforms. The rationale to devise

the structural view, and define the concepts and relationships that

should be present in its model, is based on the study and analy-

sis of the existing communication paradigms (see Chapter 2, Sub-

section 2.1.2), some existing standards and other widely accepted

technology-oriented proposals.

For message exchanging, the RR communication

paradigm has been taken as a reference (see Chapter

2, Subsection 2.1.2.1), since it is considered the most

“generic” form of message passing [101]. Moreover, some

standards related to message exchanging have been ana-

lyzed. Particularly, Hypertext Transfer Protocol (HTTP)

(http://www.w3.org/Protocols/rfc2616/rfc2616.html),

which is the standard Internet protocol, and SOAP (http:

//www.w3.org/TR/soap/), which is the W3C’s standard approach

to RPC, have been specially considered.

Both in the RR paradigm and in these standards, message

exchanging refers to the idea that participants send messages to

| 109

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

make a request to other participants, which, in turn, reply with

a response message. Consequently, this thesis work adopt that de-

scription to refer to the process of exchanging messages in a ubiq-

uitous system. This process is depicted in Figure 4.1, so as to il-

lustrate the assumed message exchanging functional behavior in a

better way.

Request Message

Response Message

Figure 4.1: Simplified interaction process involved in the message
exchanging communication functionality of a ubiquitous system

Note that the specific operation mode of the message exchang-

ing functionality is not considered in that description. Consequently,

a response could be asynchronously delivered, there could be batch

requests, etc. This way, the description of the message exchang-

ing functionality can be applied to different types of message pass-

ing (e.g., asynchronous or synchronous message passing, RPC with

batch requests, etc.).

Event distribution has been assumed to conform to the

110 |

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

PubSub paradigm (see Chapter 2, Subsection 2.1.2.3), since

this paradigm describes a widely-accepted way of delivering

events among the participants of any communication system,

and particularly, of any ubiquitous system. Furthermore, this

paradigm promotes the decouplement between the publishers and

the subscribers, which assists in the fulfillment of mobility support

and volatibility of the communications [5]. Thus, event distribution,

as assumed to be carried out in this thesis work, should involve two

different processes: subscription and publication.

Event subscription consists of a participant in the communica-

tion informing an “intermediate entity” that it needs to receive cer-

tain sets of events, thus becoming subscribers of these events. At the

same time, other participants can publish events, which consists of

delivering them to the “intermediate entity”, which, afterwards, will

notify the published events to the appropriate subscribers. The “in-

termediate entity” is usually named as an event handler and it will

be considered to be a piece of replicated software associated with

each participant, and capable of managing subscriptions and deliv-

ering published events to other replicas of itself. The notion of event

handler is adopted from the specifications of some middleware solu-

tions, like ICE, WCF or DDS. The overall event distribution process

is depicted in Figure 4.1, so as to the illustrate the behavior of this

communication functionality.

| 111

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

Event
Handler

Event Subscription

Event Notification

Event Publication Event
Handler

Event Exchange

Figure 4.2: Assumed interaction process involved in the event dis-
tribution communication functionality of a ubiquitous system

The event handler has been considered to be replicated, since

a centralized event handler (e.g., a centralized service) limits the

mobility of the participants in the communications associated to a

ubiquitous system, while the mobility is one of the most important

requirements of this type of systems. The reason is that the par-

ticipants could only move around the physical areas in which the

centralized event handler is available, in order to be able to make

use of the event distribution functionality. For example, if a cen-

tralized event handler is implemented as a service in the “cloud”,

then the participants could only physically move around the areas in

112 |

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

which an Internet connection is available, considering that they will

need to interact with that service to distribute events. Additionally,

if a ubiquitous system with a replicated event handler is required to

have a centralized one (e.g., to improve performance, for any tech-

nical reasons, etc.), then a centralized entity (e.g., a service) that

orchestrates (i.e., coordinates and organizes) the different replicas

of the event handler should be considered to be part of the ubiqui-

tous system itself. Therefore, the assumption that a replicated event

handler is more appropriate for ubiquitous systems does not limit

the possibility of taking into consideration to manage the event dis-

tribution through a centralized manager of the replicas of an event

handler.

Some standards have been studied to understand how the pro-

cess of dynamically discovering participants in a ubiquitous sys-

tem is usually carried out. Particularly, the IETF’s Zeroconf stan-

dard (http://www.zeroconf.org) and the set of networking pro-

tocols associated to the computer industry initiative for universal

discovery of devices (i.e., a de facto standard), a.k.a. Universal

Plug and Play (UPnP, http://www.upnp.org), have been exam-

ined. Both Zeroconf and UPnP standards consider the process of

discovering a participant as a sequence of multiple notifications of

events. For instance, in both standards, the participants continu-

ously notify events about their own presence. The other participants,

| 113

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

whenever they are notified of one of these events, consider that the

delivering participants are available. If a participant does not notify

about its own presence for a certain time interval, then it is consid-

ered by the others to be unavailable. Thus, dynamic discovery is

assumed in this thesis work to be an specialization of the event dis-

tribution functionality, in conformance with the previously men-

tioned standards. The overall process to dynamically discover par-

ticipants in a ubiquitous system have been depicted in Figure 4.3.

Event
Handler

Discovery Subscription

Availability Notification

Availability
Publication Event

Handler

Event Exchange

Figure 4.3: Assumed interaction process to dynamically discover
participants in a ubiquitous system

In the previous figure, each discovering participant subscribes

for events related to discovery, and each participant to be discov-

114 |

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

ered delivers an event notifying about its own availability. Hence,

the discovery process could involve unsubscriptions to the discovery

events, in order to stop discovering participants. Moreover, a partic-

ipant could stop publishing availability events in order to prevent to

be discovered by others (e.g., for privacy reasons, to save network-

ing resources, etc.). Thereby, the assumed discovery process also

contemplates possible privacy and performance requirements.

On the basis of the previous analysis and assumptions asso-

ciated to the different communication functionalities that should be

present in a ubiquitous system, the structural view of the PI-US me-

tamodel has been devised. It is depicted in Figure 4.4 as a UML

class diagram. A brief description of the shared elements among

the different communication functionalities is present in Table 4.1.

Likewise, in Tables 4.2 and 4.3, respectively, each of the elements

(grouped by the communication functionalities that they support)

and relationships of the structural view of the PI-US metamodel are

described.

As it is depicted in Figure 4.4, a ubiquitous system is con-

formed by a set of software agents that exchange messages using

specific networking technologies and according to a set of soft-

ware protocols.

Before describing in detail the devised metamodel, it is neces-

| 115

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

 Event Distribution

Discovery

Message
Exchanging

Networking
Technology

Software
Protocol

Event

0..*

1

0..*

Topic

id : Object
value : Object

EventNode

semantically
_associatedsemantic

container

EventHandler

EventListener

receives 0..*

0..* delivers0..*

0..*

publisher
consumer

Request

Response

handled_data

petition

reply

0..*

1..*
answers

Discoverer

Discovery
Listener

0..*

1..*
finds

seeker

callback

triggerer

Service

Predicate

constraints

0..*

1..*

check

tester

accepts
input

0..*

0..*

filterer

0..*

Software
Message

communicative
_commonality

1..*

1..*

rules_the_use
medium

transports
content

medium 1..*

1..*

conforms_to

1..*

1..*
structurer

complier

connected
requester delegate

0..*
exchanges

1..*

0..* 0..*

1..*

1..*

Ubiquitous
System

0..*

2..*

1..*

1..*

Software
Agent

1..*
requests

petitioner

offerer

0..1

0..1

1
target

subscription
0..*executes_action

Discovery

Application

Figure 4.4: A UML class diagram depicting the structural view of
the PI-US metamodel

sary to clearly explain the notion of software agent, which is present

in the structural view. In the CI-CS conceptual model presented in

previous chapter the entities that exchange messages in a commu-

nication system were referred as participants. The reason was to

stress the computing independence of that metamodel, since a par-

ticipant could refer to a software component, an electronic device, a

human being, etc. However, in the PI-US metamodel, the only en-

116 |

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

Element Summarized description
Ubiquitous
system

A computation-based communication system that
includes mechanisms to support message exchang-
ing, event distribution and dynamic discovery.

Software
agent

A participant in a ubiquitous system. Agents can
be either applications or services.

Software
message

The minimum information unit that is exchanged
between the agents of a ubiquitous system.

Networking
technology

A technique to manage a physical channel as
needed by a computing environment to exchange
messages.

Software
protocol

A software specification about how to use a net-
working technology to exchange messages.

Table 4.1: Description of the elements of the PI-US metamodel that
are shared between the different communication functionalities sup-
ported by a ubiquitous system

tities that communicate are software components that act on behalf

of a user, another software or a device, which is the definition of

software agent given by Nwana et al. in [83]. Note that in this the-

sis work, a software agent is merely considered to be an abstraction

over any type of software that communicates in a ubiquitous system

(i.e., an application or a service), not necessarily to a software with

autonomy or proactivity capabilities, as it is considered in other re-

search works. In that sense, the software agents presented herein

could be considered as basic software agents [34].

Likewise, the notions of software protocol, software message

and networking technology are conceptually similar to the notions

of protocol, message and channel present in a CI-CS, but they try to

| 117

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

Functionality Element Summarized description

Message
exchanging

Request A message to retrieve information
from certain agents.

Response The message that replies a request.

Event
Distribution

Event A notification of a change in the
state of an agent. It is composed by
event nodes and have an associated
topic. Subsection 4.2.1.1 describes
the event model in detail.

Event
Handler

A mechanism to notify events to
agents.

Event
Listener

An artifact that receives the events
notified by event handlers to do cer-
tain actions. A predicate is used to
filter the events to be received.

Dynamic
Discovery

Discoverer An event handler that delivers events
to discover agents.

Discovery
Listener

An event listener that receives events
from discoverers and notifies them
about their own availability.

Table 4.2: Description of the elements of the PI-US metamodel,
grouped by the communication functionalities that they support

stress the computational orientation of a PI-US, in contrast with the

computing independence of a CI-CS.

Software agents can represent an application or a service. An

application is considered to be an active software that is controlled

by a user to carry out certain tasks involving the interaction between

the different elements of a ubiquitous system. Services are mostly

considered to be passive (or reactive) pieces of software that wait

for an interaction from an application to do certain activities, like

118 |

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

Relationship Summarized description
Exchanges Software agents (i.e., applications and ser-

vices) transfer multiple messages between
them.

Conforms_to A message must conform to certain software
protocols to be understood by the applications
and services present in a ubiquitous system.

Rules_the_use A software protocol has a set of rules to ade-
quately use a networking technology (e.g., to
use it efficiently).

Transports A channel is in charge of transferring messages
from the sending parties to the receiving ones.

Answers A response message is the reply of a previous
request message.

Delivers Event handlers deliver events to the partici-
pants.

Receives Event listeners receive the events from the
event handlers.

Semantically
associated

An event is semantically associated to a topic.

Accepts A predicate is only satisfied by certain events.
Constraints A predicate constraints the events to be re-

ceived by an event listener.
Connected A service can delegate certain actions to other

services.
Finds The discoverer associated to an agent tries

to find discovery listeners associated to other
agents.

Table 4.3: Description of the relationships between the elements
present in the structural view of the PI-US metamodel

providing a piece of information. Services can interact with other

services in which they delegate the execution of complex activities.

For example, a meteorological service could delegate the measure-

ment of the temperature in a certain physical location to another

| 119

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

service specialized on performing that task. This way, the PI-US

metamodel supports the representation of a Service-Oriented Archi-

tecture (SOA) in which compound services (i.e., the services that

need to interact with other services to carry out their actions) offer

a common interface to multiple simple or compound services (i.e.,

a simple service is able to carry out its actions without interacting

with other services). In addition, it is possible to use the PI-US me-

tamodel to specify a client-server architecture, in which applications

are clients that consume information from the available services.

Note that, in contrast with the conceptual model presented in

previous chapter, in which a unique communication participant self-

communicating may conform a communication system, in the spec-

ification of a ubiquitous system it is assumed that at least two soft-

ware agents must be part of the communications, since the presence

of less than two software agents is not appropriate to fulfill the in-

teraction level that is expected in this type of systems.

The communication functionality that more usually supports

the interaction between software agents in a distributed system is

message exchanging, which is supported in the proposed metamo-

del through request and response messages. Thereby, applications

demand certain information through a request message, and a ser-

vice provides the requested information inside the contents of a re-

sponse message. In the same way, a compound service could send

120 |

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

a request message to other (simple or compound) services in order

to retrieve certain information (i.e., a service could delegate tasks to

other services by requesting information to them).

As previously mentioned, event distribution has been assumed

to be based on the PubSub paradigm and involves the association

of an event handler with each software agent in order to publish

events. Consequently, in the proposed metamodel, there is an op-

tional association between event handlers and software agents. The

association is optional to allow the metamodel to represent software

agents that do not distribute events in any case, without “overload-

ing” them with unnecessary communication functionalities. Thus,

the metamodel is flexible enough to represent scenarios in which

certain communication functionalities are not present in every soft-

ware agent (e.g., to improve performance in some ways, for techni-

cal reasons, etc.).

Each event handler (associated to each software agent) con-

tains a collection of event listeners. An event listener is a software

mechanism that includes a predicate that is only satisfied by cer-

tain events, as a manner to filter the events accepted by each listener

(i.e., an event ε is accepted by an event listener λ if ε satisfies the

predicate related to λ). Also, an event listener, upon the reception

of an event that satisfies its predicate, executes a certain action in a

software agent. Hence, the execution of an action is the usual con-

| 121

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

sequence of the reception of an event in which a software agent is

interested in. Therefore, event listeners can be considered to be the

elements in the proposed PI-US metamodel that represent the sub-

scriptions of each software agent, and they provide a mechanism to

bind the interest of a software agent in certain events to the execu-

tion of specific actions. The concept of event listener is also present

in some middleware technologies, like ICE, WCF and DDS.

Note that in a CI-CS the notion of predicate was not explic-

itly presented, but could be implicitly associated to conditional links

(i.e., in the behavioral view of a CI-CS, presented in Chapter 3, Sec-

tion 3.2.2, the elements that link two activities upon the satisfaction

of a condition or predicate). The reason was to keep the CI-CS con-

ceptual model as abstract as possible, without taking into account a

concept that could be more related to the actual software (or event

mathematical) representation of a condition. However, at the PI-US

abstraction level it is appropriate to take into account this notion,

since it needs to be taken into account in the design of a ubiquitous

system to adequately model constraints or filters associated events.

Events are composed by a set of event nodes, which, in turn,

are also events. Each event node has a unique identifier and a value

in order to represent the contents of an event. Events (and event

nodes) are also related to a topic, that is, the semantic of the notifi-

cation within a certain context (e.g., temperature, humidity, location,

122 |

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

etc.). An insight of the proposed event model and the mechanisms

to manage their subscription can be found in the following subsub-

sections.

Finally, in the metamodel, the dynamic discovery function-

ality is a specialization of event distribution, as it was previously

assumed when describing the rationale behind the proposal of the

PI-US metamodel. For each software agent, there is a specialization

of an event handler, known as a discoverer, that distributes events

each time a new party changes its reachability within a given envi-

ronment. Specialized listeners (discovery listeners) allow software

agents to subscribe to discovery events and to execute certain actions

whenever other software agents are discovered or become unavail-

able. Note that a discoverer can only contain discovery listeners,

and discovery listeners and discoverers can only manage discovery

events, even if those constraints are not specified in Figure 4.4 (i.e.,

in UML, those constraints should be specified through OCL, but

this notation has been omitted from the figure in order to simplify

it). To conclude, the benefit of reusing the event distribution mech-

anisms to discover software agents is that the metamodel is simpler

to understand and use, in comparison with the possibility of includ-

ing separated mechanisms to support event distribution and dynamic

discovery.

| 123

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

4.2.1.1. A Detailed Explanation of the Proposed Event
Model

In the proposed PI-US metamodel, events encapsulate infor-

mation about a change in the state of a software agent. Thus, in

this thesis work, an event is defined as a communication unit that

is composed of a set of pieces of information that are related to

some topics and can be produced by a software agent as a result

of a change in its state. The adopted event model was present in

the PI-US metamodel depicted in Figure 4.4, but an extract of that

figure is depicted in Figure 4.5 as a UML class diagram, so as to

more clearly illustrate the description of the proposed event model

to be presented herein.

Event

0..*

10..* Topic

id : Object
value : Object

EventNode

semantically
_associated

semantic container
0..*

Figure 4.5: An extract of the UML class diagram representing the
PI-US metamodel, with a focus on the adopted event model

The pieces of information that are contained into an event are

called event nodes. An event node contains an identifier (i.e., a

unique name) and an associated value. Each event may have an

unlimited number of event nodes to represent any piece of informa-

124 |

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

tion. Also, an event node is also an event. This way, hierarchical

structures (i.e., trees) can be contained in an event. For example,

an event may have a collection of nodes, each of them containing

another collection of nodes, and so on.

Each event is related with one topic, which represents its se-

mantics. A topic may be associated with a collection of other topics,

so as to represent that a topic is (semantically) the combination of

other topics. To avoid confusions, from now on, a topic with no

other topics associated will be called a simple topic, whereas a topic

with other topics associated will be referred as a compound topic.

The relationships between events and topics are similarly defined in

the specifications of the DDS middleware.

If an event has a compound topic, then its event nodes nec-

essarily will have to be related to the topics associated to the com-

pound one. Hence, it is represented that the semantics of each event

may be the result of the combination of the topics of its nodes. For

example, if a compound comfort topic contains temperature and

noise simple topics, then there may exist an event whose topic is

comfort and whose event nodes are associated to temperature and

noise topics. Conversely, the topic of an event can be inferred as

follows:

If an event is composed of one event node only, its topic will

| 125

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

be the topic of such event node.

Otherwise, if it is composed of more than one event node, its

topic will one that combines the topics of each event node.

The following subsubsection offer an insight of the subscrip-

tions mechanisms that are supported in the proposed PI-US meta-

model regarding this type of events.

4.2.1.2. Supported Event Subscription Techniques

A subscription σ to an event εi is defined as a “filter over a

portion of the event content (or the whole of it), expressed through

a set of constraints" [28]. Subscriptions are specified through event

listeners in the proposed PI-US metamodel. Event listeners support

two subscription variants that were previously mentioned in [33]:

topic-based and content-based. In this thesis work, these subscrip-

tion techniques are defined as follows:

Topic-Based. Software agents show interest in a topic and,

from that moment, they receive events that are semantically

related to that topic. For example, if a software agent sub-

scribes to a comfort topic, then it will receive events, not only

related to that topic, but also to the temperature and noise ones

(provided that comfort is a compound event linked to temper-

126 |

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

ature and noise ones). Formally, the set of events that are re-

ceived by a software agent with a topic-based subscription στ

is defined as follows:

Let subscribe be a function that filters all the events that are

received by a software agent on the basis of their associated

topic, let T be the set of all semantically formalized topics and

τ be a topic, then:

στ = subscribe(τ),τ ∈ T

Let E be the set of all possible events and let R be the product

set (or the cartesian product) E×T in which all the relations

(εi,τ) represent that an event εi is semantically related to the

topic τ , then is the binary operation “semantically related

to", which is defined as follows:

εi τ ⇐⇒ (εi,τ) ∈ R,R = E×T,εi ∈ E,τ ∈ T

Let Sστ
be the set of all the received events by a software agent

whose topic-based subscription is στ , let εi(k) be a function

that retrieves the k-th event node of the event εi, which is also

an event (see previous subsubsection), and let ni be the num-

| 127

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

ber of event nodes of εi, then:

Sστ
= {εi|εi τ}∪{εi|∀k ∈ {1, ..,ni},εi(k) τ}

Content-Based. Software agents show interest in receiving

events that are semantically associated with a topic when a

set of conditions over the event nodes are accomplished. For

example, it can be specified a subscription to the temperature

topic and receive events only when this temperature is over

45◦C. The set of events that are received by a software agent

with a content-based subscription σ(τ,Pτ) is formally defined

as follows:

Let εi(k) be the k-th event node of the event εi, let ti,k be the

primitive type of the event node εi(k), let a be a constant of

any primitive type and ta its primitive type, then † is the binary

operation “is comparable to", which is defined as:

εi(k)† a ⇐⇒ ti,k = ta

If εi(k)† a, five comparing operators can be defined:

εi(k) = a;εi(k)< a;εi(k)≤ a;εi(k)> a;εi(k)≥ a

These operators always follow a lexicographical order. For

128 |

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

example, 4 < 5, “aaa" < “aab", (4, 5, 6, 9) < (4, 6, 3, 1),

etc. Let s j be a comparing operation between any εi(k) and

a constant ai, where εi(k) † a, let τ be a topic and εi(k) τ ,

then, the predicate Pτ is defined as:

Pτ = s1∧ ..∧ sm

Let contentSubscribe be a function that filters all the events

that are received by a software agent based on a topic τ and a

set of constraints described by the predicate Pτ , then:

σ(τ,Pτ) = contentSubscribe(τ,Pτ)

Let Sσ(τ,Pτ)
be the set of all the received events by a software

agent whose content-based subscription is σ(τ,Pτ), whose con-

straints are specified by the predicate Pτ , and let vi,k be the

value associated with the event node εi(k), then:

Sσ(τ,Pτ)
= {εi : εi ∈ Sστ

,{Pτ ∧ (εi(k) = vi,k)} ` ¬ /0}

In this formula, {Pτ ∧(εi(k) = vi,k)} ` ¬ /0 means that the pred-

icate Pτ , when in conjunction with the equality εi(k) = vi,k

has to be consistent (i.e., it not contains any logical contradic-

tions). For example, if the predicate Ptemperature = {ε1(1) <

| 129

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

45} and the event ε1 is published with ε1(1) = 46, then the

subscriber will not receive the event, as {ε1(1)< 45∧ε1(1) =

46} is not a consistent set.

Note that in [33] one additional subscription technique is men-

tioned: the type-based one. In these subscriptions, each kind of

event is directly matched with a type and, therefore, software agents

can implement some static checks to ensure that they have received

the appropriate information. In the proposed PI-US metamodel type

checking subscriptions can be achieved through a topic associated to

a unique event. That way, a topic-based subscription can represent a

type-based one.

The event handler is the element in the PI-US metamodel that

stores every σ subscription, since it has a collection of associated

event listeners (i.e., each event listener models a subscription, as it

was mentioned before). Moreover, the event handler should provide

both subscribe and contentSubscribe functions in order to be able

to dynamically integrate or remove event listeners (i.e., subscrip-

tions) on demand (i.e., to allow the software agents to subscribe or

unsubscribe to events during the execution flow of a ubiquitous sys-

tem). Additionally, an event handler could also provide the function

checkSubs(εi). This function would check whether a software agent

is subscribed to the event or not, in order to decide if an event should

130 |

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

be published, which could contribute to improve the performance of

the event distribution functionality present in a ubiquitous system.

Similar mechanisms are already present in ICE and DDS middle-

ware solutions.

4.2.2. Behavioral View

The behavioral view of the PI-US metamodel includes the

concepts and relationships to support the specification of the flow

of interactions between the software agents present in a ubiquitous

system. Consequently, the foundations presented in the behavioral

view of a CI-CS (see Chapter 3, Subsection 3.2.2) have been taken

as a basis.

However, ubiquitous systems are computing systems and,

therefore, some “abstract” notions present in the behavioral view of

the CI-CS metamodel need to be adapted to the software context.

For example, the notion of link, which represents the connection

between two activities, needs to be matched to software-related

concepts.

Moreover, in a ubiquitous system, in terms of communica-

tions, the only possible activities that can be carried out by the soft-

ware agents are to exchange messages, to distribute events and to

discover other software agents. Nonetheless, event distribution and

| 131

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

message exchanging activities should take into consideration that

the software agents are constantly moving, and their availability is

not permanent. As so, software agents must discover the other avail-

able agent before carrying out these activities.

With all those considerations related to the specific proper-

ties that ubiquitous systems have, the behavioral view of the PI-US

metamodel has been defined. Figure 4.6 illustrates the behavioral

view through a UML class diagram. Additionally, Tables 4.4 and

4.5 respectively provide a brief descriptions of the elements and re-

lationships depicted in the UML class diagram.

Similarly to the behavioral view of the CI-CS metamodel, in

the behavioral view of the PI-US metamodel there are some soft-

ware agent choreographies. Each of them represents a possible

flow of interactions between the software agents present in a ubiqui-

tous system.

The choreographies are organized in communication activi-

ties, which involve an exchange of information between one or two

agents (either a self interaction or a “remote” interaction). A com-

munication activity comprises a set of elemental communication

activities between the agent/s present in the activity, and represent-

ing a unique information exchange. The idea is to represent that a

communication activity involves several transactions. Accordingly,

132 |

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

Software Agent
Choreography

Communication
Activity

Elemental
Communication

Activity

Software
Agent

Software
Message

1..*
0..*1..*

exchanges

1..* 2..*1..*

Gateway

Event

0..* 1..*

1..2

1..*

Initial End

Inclusive

Exclusive

Parallel

Complex

Content-
Based

producertransfer_unitstarter aim

Event-
Based

1..*

0..*

triggers

triggerer

result

Ubiquitous
System

1..*

2..*

1..*
initiator

initiates 1
target

1..*
finalizer

finalizes 1..*objective

Sequential

Discovery

Default

links

Event
Distribution

Activity

Message
Exchanging

Activity

Discovery
Activity

0..1

Conditional

is_subs./pub._during
11..*

Request

Responseis_made

answers

0..*

1..*
1

1..*

Predicate 1
1

Figure 4.6: A UML class diagram depicting the behavioral view of
the PI-US metamodel

these elemental activities can be a message exchanging (i.e., to send

a request message and to receive its corresponding response), an

event distribution (i.e., to publish and/or subscribe to one event) or

a dynamic discovery (i.e., to publish and/or subscribe to a discovery

event).

Even if a communication activity may involve different ele-

mental ones, in case that two agents carry out the same activity (i.e.,

an activity may involve a unique agent exchanging information with

| 133

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

Element Summarized description
Software Agent
Choreography

A flow of interactions between the set of soft-
ware agents present in a ubiquitous system.

Communication
Activity

A set of interactions between one or two soft-
ware agents. An activity may be composed by
multiple elemental activities: exchange two
messages (i.e., a request and its correspond-
ing response), distribute an event or discover
an entity (i.e., to look for the availability of a
certain software agent).

Software Mes-
sage

The minimum information unit that is ex-
changed between the agents of a ubiquitous
system. It also allows to connect two activ-
ities of a choreography (the end of one with
the start of another).

Event An specific type of message that represents a
significant occurrence in the communication
system at a given moment. An initial event
initializes the ubiquitous system and an end
event finishes its execution

Gateway An event that executes or stops one or more
communication activities.

Table 4.4: Definition of the elements that are present in the behav-
ioral view of the PI-US metamodel. Some of the elements shared
with the structural view are not described again

itself), then at least it is necessary to do an elemental dynamic dis-

covery of software agents consisting of checking the availability of

one agent towards the other, and viceversa. The reason is to be able

to represent activities that can be only carried out when two specific

agents are available in the same context simultaneously. Hence, it

is possible to specify a choreography in which the availability of

the agents is constantly changing (i.e., they are physically moving,

134 |

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

Relationship Summarized description
Links A message connects two activities in a chore-

ography of software agents.
Is_subs./pub._-
during

The subscription or publication of an event oc-
curs during an event distribution activity.

Is_made A request is made during a message exchang-
ing activity. Associated to the request, there is
a response.

Triggers An event triggers an exclusive gateway.
Initiates An initial event starts one or more choreogra-

phies in a ubiquitous system.
Finalizes One or more end events may finalize a chore-

ography (i.e., the execution flow of a ubiqui-
tous system may have different endings, but
each of them is associated to an end event).

Table 4.5: Description of the relationships between the elements of
the behavioral view of the PI-US metamodel

the networking technologies have restrictions to connect a certain

amount of agents, etc.). This aspect of the metamodel contributes

to support the volatility of the interactions and the mobility of the

agents, which are two key properties of the ubiquitous systems that

were highlighted in previous section.

Figure 4.7 depicts a UML sequence diagram that illustrates

how two software agents interact during a communication activity,

according to the previous PI-US metamodel. The functions outlined

in the UML sequence diagram represent the elemental communica-

tion activities that they carry out, involving the exchange of mes-

sages (requests, responses, events or discovery events).

| 135

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

Loop

Break [v.contains(Y)]

:Y:XDiscoverer

discover()

:X

available_agents[*]

elem_activity1()
elem_activity2()

initActivity()
...

finalActivity()
initActivity()

...
...

Figure 4.7: A UML sequence diagram representing how software
agents interact during a communication activity, as it is assumed in
the proposed PI-US metamodel

Communication activities are linked by messages. This way,

an activity is started by a message that is transferred from a software

agent that carries out the initial activity to a software agent present

in the target activity. This way, the interactions between activities

are homogeneously represented using the same concept that the in-

teractions between agents, that is, the message.

Note that in the CI-CS metamodel, a link element was part of

the behavioral view of the metamodel to represent the connection

between activities. The link element was defined to be something

external to the communication system, but linking activities between

them (i.e., a predefined turn to carry out a human conversation, the

established flow of a token in a Petri Net, etc.). However, at the

PI-US metamodel abstraction level, it is necessary to express the

136 |

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

connection between activities using software-related concepts. In

particular, messages are used to represent such connections since

the initialization of an activity should involve an interaction between

software agents and, conceptually, the message is the information

unit that is exchanged during interactions.

Similarly to the CI-CS metamodel proposed in previous chap-

ter, the initialization of a choreography is indicated by the notifi-

cation of an initial event, and its finalization by one or more end

events. An event could initiate an activity too, since an event is con-

sidered in the PI-US metamodel as an specialization of a message

(see previous subsection). In the proposed behavioral view of the

PI-US metamodel there are three types of events that are specialized

into connecting activities: sequential, conditional and default. Se-

quential events are the ones that are notified to directly relate two

activities. Conditional events are only notified when a certain pred-

icate is satisfied. Finally, default events are notified when any con-

ditional events were triggered (i.e., any predicates associated to a set

of conditional events could not be satisfied).

To conclude, a gateway is a specialized event that is delivered

to initiate multiple communication activities or to wait for the con-

clusions of several previous activities to initialize other one. This

way, it is possible to modify the usually linear execution flow of a

choreography in different ways:

| 137

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

Parallel. Several activities are concurrently initiated.

Exclusive. Given several target activities, only one of them is

executed. It allows to represent an split in the execution flow

of a choreography. The selection of a specific interaction is

based either on the ocurrente of an event (event-based) or on

the delivery of an event with certain contents (content-based).

Complex. Similarly to an exclusive gateway, it splits the exe-

cution flow of a choreography. However, the selection of the

activity to initiate is based on the satisfaction of a predicate.

Inclusive. Several activities are waited to be finished, then

another activity is initiated.

4.2.3. Formal Specification as an Ontology

The combination of the different views of a PI-US through the

shared concepts results in a conceptualization of the communication

mechanisms supporting a ubiquitous system. The conceptualization

includes all the notions that are necessary to model a PI-US, and the

relationships between those notions. The metamodel has been for-

mally defined through an ontology, since in previous subsections it

has been semi-formally depicted using UML. The formal specifica-

tion of the metamodel allows to analyze some of its capabilities and

quality properties (see next section).

138 |

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

Figure 4.8 shows the graphical representation that Protégé

generates for the PI-US ontology. Note that in the graphical

representation some elements have been removed in order to avoid

the figure to be overcluttered.

Figure 4.9 lists the hierarchy of classes and properties present

in the ontology. The whole OWL implementation is provided in

Appendix III.

Similarly to the CI-CS ontology proposed in Chapter 3, Sec-

tion 3.2.3, the ontological representation allows to share and reuse

the specification of a PI-US between different groups of people or

software tools, so as to systematically (and automatically, through

the use of reasoners) analyze different aspects of a ubiquitous sys-

tem:

Check for inconsistencies in the specification of a ubiqui-

tous system. For example, it is possible to detect the need of

including certain software agents to be able to carry out re-

quired interactions, messages to carry out these interactions,

software protocols that are able to codify those messages, net-

working technologies compatible with those protocols, and so

on.

Optimize the communications between software agents in a

ubiquitous system. To achieve that goal, it could be studied

| 139

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

the use of the different networking technologies and protocols

by the different software agents, and to associate the most ef-

ficient ones to the software agents that carry out more interac-

tions.

Integrate several ubiquitous systems by including the mem-

bers of each one to be integrated (i.e., the instances or individ-

uals associated to each class in the ontology, that is, software

agents, messages, networking technologies, software proto-

cols, etc.) into a unique ubiquitous system. The resulting

system could be optimized and checked for possible incon-

sistencies, as previously mentioned.

Finally, in the graphical representation of the ontology it is

particularly interesting to highlight how the notions related to event

distribution appear interlinked with most of the other elements. This

aspect of the ontology reflects the great influence that event distri-

bution has in the communication between the software agents of a

ubiquitous system. Several authors have previously mentioned that

influence [5][28][33], but the ontology of a PI-US makes explicit

and formally demonstrates that assessment.

140 |

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

Figure 4.8: An ontology of the communication mechanisms sup-
porting a PI-US

| 141

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

Figure 4.9: The class hierarchy and properties of an ontology of the
communication mechanisms supporting a PI-US, as represented in
Protégé

142 |

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

4.2.4. Ontological Representation of a Ubiqui-
tous System as a Communication Sys-
tem

As it can be deduced from the description presented all along

this section, there is an strong relationship between some of the no-

tions associated to the CI-CS metamodel and some of the notions as-

sociated to the PI-US one, even by taking into account their different

abstraction levels. The reason is that the proposed metamodel of a

PI-US is focused in the software mechanisms, whereas the proposed

CI-CS metamodel includes all the concepts that should be present in

any communication system. Even so, at the communication system

abstraction level, all notions are computing-independent, whereas

at the ubiquitous system abstraction level, they have to be consid-

ered as software mechanisms, but could be treated as platform-

independent.

Particularly, there are strong semantic relationships between

Participant - Software Agent, Protocol - Software Protocol, Chan-

nel - Networking Technology, Message - Software Message, Chore-

ography - Software Agent Choreography, Choreography Activity -

Communication Activity, Sub-Choreography Activity - Elemental

Communication Activity and Event (CI-CS level) - Event (PI-US

level). In fact, the elements in the PI-US metamodel can be con-

sidered as a semantic specialization of the related elements in the

| 143

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

CI-CS metamodel.

This semantic relationship between both abstraction levels has

been formalized using the ontology of a CI-CS introduced in Chap-

ter 3, Section 3.2.3. The reason is twofold: (1) to formally demon-

strate that a ubiquitous system is a communication system, and (2)

to formally demonstrate that it is possible to trace back the notions

present in a CI-CS from the notions present in a PI-US. This is of

great importance to demonstrate that it is possible to make a se-

mantically consistent transformation from a CI-CS into a PI-US,

that is, the elements in the target model keep the semantics of the

elements in the initial, more abstract, model. In addition, it demon-

strates that there is a possible reverse transformation between a PI-

US to a CI-CS (i.e., a transformation from a more specific model

to a more general or abstract one), which is relevant to propose

possible future model-based reverse engineering methodologies,

like OMG standard Architecture-Driven Modernization (ADM)

(http://adm.omg.org), to help into analyzing, validating and im-

proving existing ubiquitous systems.

Figure 4.10 illustrates the hierarchy of ontological classes that

have been proposed on the basis of the ontology of a CI-CS, and

the automatically inferred hierarchy using a reasoner. Note that

the initial hierarchy of classes specifies that the notion of ubiqui-

tous system is unrelated to the notion of communication system.

144 |

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

Also, the previously identified semantic relationships between a CI-

CS and a PI-US have been represented in the ontology of a CI-CS.

For example, a SoftwareAgent has been represented as a subclass of

a Participant, a NetworkingTechnology as a subclass of a Channel,

and so forth. Moreover, these subclasses have been constrained to be

associated to the other software-related subclasses. For instance, a

NetworkingTechnology has been declared as a subclass of a Channel

constrained to be a medium of a SoftwareProtocol. To conclude, a

ubiquitous system has been defined as a semantic class associated to

a non-empty set of networking technologies, software protocols and,

at least, two software agents, as specified in the PI-US metamodel.

On the basis of all those constraints and semantic classes

added to the CI-CS ontology, the reasoner is able to automatically

deduce that a ubiquitous system is a communication system

(i.e., the UbiquitousSystem class is a subclass of the Commu-

nicationSystem one). However, it is important to clear up that

a communication system can not be considered as a ubiquitous

system per se, but a ubiquitous system can be considered as a

software-based communication system that fulfills the specific

requirements and quality properties that were defined in previous

section.

The reason of this “mismatch” is that the CI-CS metamodel

has less constraints related to the cardinality of some elements due

| 145

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

Specified Hierarchy Inferred Hierarchy

Reasoner

Figure 4.10: Some screenshots of Protégé that show how a reasoner
can automatically infer that a ubiquitous system is a communication
system

to its more abstract level (e.g., there can be zero participants in a CI-

CS, but there must be at least two software agents in a PI-US). This

is very positive, since it allows to check for inconsistent ubiquitous

systems’ design when transforming from CI-CS (see next chapter),

that is, to check if a CI-CS can be implemented by software means

as a platform-independent ubiquitous system or not (i.e., if the de-

sign of a CI-CS should be modified to be able to implement it as a

platform-independent ubiquitous system).

146 |

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

4.3. Quality Attributes of the Com-
munication Model for Ubiquitous
Systems

As it was explained in Chapter 3, Section 3.3, an adaptation

of the international standard ISO/IEC 25010:2011 [54] to the meta-

modeling field has been considered as the framework to describe

some quality attributes of the CI-CS metamodel.

Likewise, that framework has been used to analyze the

quality attributes of the PI-US metamodel. Table 4.6 summarizes

the analyzed quality attributes and sub-characteristics of the PI-US

metamodel. Some of the attributes and sub-characteristics have

been assessed through the ontological representation of a PI-US.

Appendix IV describes how the proposed metamodel fulfills the

multiple attributes and sub-characteristics. Also, a definition of the

sub-characteristics is provided in that appendix.

Each quality attribute and sub-characteristic is defined again

(they were previously provided in Chapter 3, Section 3.3, and in

Appendix II) in order to improve the legibility and understanding of

each given qualitative description.

| 147

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

Attribute Sub-Characteristic Fulfilled

Functional suitability

Appropriateness 3

Accuracy 3

Interoperability 3

Compliance 3

Reliability - Partially
Efficiency - 3

Operability

Recognizability 3

Learnability Partially
Helpfulness 3

Attractiveness 7

Compatibility - 3

Maintainability

Modularity 3

Reusability 3

Analyzability 3

Changeability 7

Testability Partially

Transferability
Adaptability Partially
Portability Partially

Table 4.6: Quality attributes of the PI-US metamodel

4.4. Conclusions

This chapter has described a generic communication model

for Platform-Independent Ubiquitous Systems (PI-US), which has

been presented as a metamodel. This metamodel has two different

views: structural and behavioral view.

The structural view captures all the structural and basic oper-

ational software mechanisms that should be present in a ubiquitous

system to support message exchanging, event distribution and dy-

namic discovery. To devise the metamodel, some communication

148 |

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

standards and well-known middleware technologies have been ana-

lyzed.

The behavioral view includes elements to represent the or-

ganization of the communication in a ubiquitous system through a

choreography of communication activities involving previous com-

munication functionalities and software mechanisms. The behav-

ioral view of the PI-US metamodel is based on the behavioral view

of a CI-CS presented in previous chapter. Nonetheless, all the ele-

ments in the behavioral view are related to specific software mecha-

nisms, as it is necessary in order to represent a ubiquitous system.

Note that the metamodel only includes the key notions that are

shared between different communication standards and well-known

middleware specifications, which makes it possible to offer a more

abstract and less technically oriented perspective of the communica-

tion mechanisms present in the ubiquitous system. This aspect of the

metamodel also contributes to re-affirm its platform independence,

since it does not include specific elements to support any specific

platforms.

The metamodel has been represented as an ontology, which

formally conceptualizes the communication aspects of a ubiquitous

system. The ontology can be applied to automatically check through

a reasoner if a model of a ubiquitous system is able to accomplish

| 149

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

with the expected communication capabilities associated to these

systems (i.e., if a ubiquitous system design is consistent with the

proposed conceptualization of the communication mechanisms as-

sociated to a ubiquitous system). Additionally, it could be used to in-

tegrate different ubiquitous systems into a unique one, by including

all their respective structural and operational elements into a com-

mon choreography of communication activities. The consistency of

the integration could be semantically checked through a reasoner,

in order to validate that the resulting design conforms to the PI-US

metamodel proposed herein, and to minimize or optimize this inte-

gration by establishing equivalencies between the elements present

in the different ubiquitous systems to be integrated.

Furthermore, the ontology of a CI-CS has been extended by

incorporating some key notions present in the PI-US metamodel.

This semantic extension has allowed to formally demonstrate that a

ubiquitous system can be considered as a software communication

system with specific requirements and supporting concrete commu-

nication functionalities. Moreover, it has been formally demon-

strated that it is possible to trace back certain notions present in a

PI-US to the more abstract level of a CI-CS. This is of great rel-

evance for the future proposal of reverse engineering methods for

ubiquitous systems intended to help into analyzing, validating and

improving existing ubiquitous systems.

150 |

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

Similarly to the analysis of the quality properties of the CI-CS

metamodel, the ISO/IEC 25010:2011 standard has been applied to

the study of the quality of the proposed PI-US metamodel with the

assistance of its ontological representation.

Finally, as it was mentioned in Section 4.1, the metamodel

presented in this chapter is focused on the communication aspects

of these systems, due to the orientation of this thesis work. The

conceptualization of the other aspects of a ubiquitous system (user

interfaces, information systems, etc.) could contribute to a complete

formalized conception of a ubiquitous system, which could help to

tackle with the design of this type of systems in a holistic way. How-

ever, this thesis is not focused on these other facets of a ubiquitous

system.

| 151

CHAPTER 4. A COMMUNICATION MODEL FOR UBIQUITOUS
SYSTEMS

152 |

Chapter 5

MUSYC: An MDA-based
Methodology to Develop
Ubiquitous Systems on the
Basis of the Communications

With the foundation of the metamodels presented in previ-

ous chapters, an MDA-based Methodology to Develop Ubiquitous

SYstems on the Basis of the Communications (MUSYC) is pro-

posed. The objective is to approach the development of the ubiqui-

tous systems on the basis of the specification of a CI-CS, its system-

atic transformation to the design of a PI-US and, ultimately, the code

generation to support the implementation of a ubiquitous system.

The direct consequence is that the use and adoption of spe-

cific technologies is delayed until the final stages of the develop-

ment, rather than guiding the whole development process from the

| 153

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

beginning, as it commonly occurs in code-centric developments1.

Consequently, the methodology pursues a development process that

is more focused on fulfilling the needs of the user, rather than on

making an appropriate use of concrete technologies. Additionally,

MUSYC allows the specification of more perduring designs that

do not tackle with today’s technologies only, but that can also be

reused when future technologies become available.

Finally, to assist in the development of ubiquitous systems

through MUSYC, a set of CASE tools have been implemented. This

implementations also demonstrate the feasibility of automatizing

and validating the transformation from the conceptual specification

of a computation-independent communication system to program-

ming code that can be executed on top of target computing platforms

(operating systems, middleware, etc.).

5.1. Overview

Previous chapters have dealt with the conceptual modeling of

a CI-CS and a PI-US. The metamodels presented in both chapters

serve as a basis to carry out an MDA-based development of com-

munication schemes for ubiquitous systems (i.e., the structural and

operation elements, and their organization). According to the pro-

1The disadvantages of code-centric developments in comparison with model-
driven ones were explored in Chapter 2, Subsection 2.3.2

154 |

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

cess depicted in Figure 5.1, the MDA approach should be based on

the transformation between the following models:

Communication System CIM (CS-CIM). A computation in-

dependent model of the concepts and relations that conceptu-

alize a communication system, without taking into account

any technical details related to its software implementation.

The metamodel is equivalent to the conceptual model of a CI-

CS presented in Chapter 3.

Communication System for Ubiquitous Computing PIM

(US-PIM). A communication model for ubiquitous systems

that considers the software mechanisms that should be part of

the final implementation of the ubiquitous system, but it does

not take into consideration any specific target computing plat-

forms (e.g., programming languages, operating systems, mid-

dleware solutions, etc.). The PI-US metamodel was presented

in Chapter 4.

Communication System for Ubiquitous Computing PSM

(US-PSM). A communication model of a ubiquitous system

supported by specific computing platforms. At this abstrac-

tion level, it is possible to define the specific technologies that

the communications should use, and to establish how they can

be technically integrated.

| 155

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

Communication
System CIM

(CS-CIM)

Ubiquitous
System

Communication
System for Ubiquitous

Computing PIM
(US-PIM)

CS-CIM
Metamodel

US-PSM
Metamodel

CS-CIM Metamodel to
US-PIM Metamodel

US-PIM Metamodel to
US-PSM Metamodel

Conforms to

Conforms to

Conforms to

Code Generation

Transforms

Transforms

Communication
System for Ubiquitous

Computing PSM
(US-PSM)

US-PIM
Metamodel

Figure 5.1: MDA approach to the development of ubiquitous sys-
tems

As specified in the MDA standard, the models can be trans-

formed from higher to lower abstraction levels (i.e., from CIM to

PIM and from PIM to PSM) on the basis of transformation rules

applied to their underlying metamodels, like it is also illustrated

in Figure 5.1.

MUSYC systematically approaches the metamodel-based

model transformation defined in MDA through a set of proposed

transformation rules to be described in the following sections.

Furthermore, it also includes additional stages to be able to correctly

156 |

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

specify the CS-CIM, US-PIM and US-PSM models. The rationale

is that the development of a ubiquitous system does not only involve

model transformation, but to make appropriate model definitions

too (CS-CIM, US-PIM and US-PSM, that is, instances of the

corresponding metamodels) in order to fulfill the requirements that

need to be accomplished in the ubiquitous system to be developed.

Consequently, the general idea pursued by MUSYC is to allow

the design of complex ubiquitous systems without dealing since

the initial development stages with the specific technical issues

that need to be usually taken into consideration (e.g., choosing

specific programming languages, networking technologies, software

protocols, middleware solutions, etc.). From an abstract CS-CIM,

by applying a set of proposed transformation rules, it is possible to

systematically derive a US-PIM that incorporates some notions ori-

ented towards supporting the specific communication requirements

of a ubiquitous system (e.g., mobility, volatility, etc.). Finally, the

US-PIM can also be transformed into a US-PSM, which includes

specific technical details that are directly related to the implementa-

tion of the communication components that would be part of the

ubiquitous system itself (i.e., the communication components are

considered to be all the software mechanisms that are involved in

the information communication in a ubiquitous system).

| 157

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

A simplified description of the development process defined

by MUSYC is illustrated in Figure 5.2 using a Software & Systems

Process Engineering Meta-Model 2.0 (SPEM 2.0) diagram. SPEM

(http://www.omg.org/spec/SPEM/2.0/) is an standard adopted

by OMG for the definition of software development processes. The

detailed development process is depicted in Appendix V, also as an

SPEM 2.0 diagram.

<<work definion>>
Communication
Requirements
Analysis

CS-CIM
Design

System
Analyst

Software
Designer

Software
Programmer

Initial
Analysis

CIM
Specification

<<output>>

<<work definion>>
UbiSys Design

US-PIM
Design

CI2PI Model
Transformation

PI Model
Refinement

<<output>>

PIM
Specification

<<predecessor>>
<<work definion>>
Implementation of
the UbiSys

PI2PS Model
Transformation

PS Model
Refinement

Code
Generation

Product
Codification

Programming
Code of the
UbiSys

<<predecessor>>

<<responsible>>

<<responsible>>

<<responsible>>

<<performer>>

<<performer>>

<<performer>>

Figure 5.2: A simplified description of the development process pro-
posed in MUSYC, depicted as an SPEM 2.0 diagram

In order to improve the legibility of this chapter, a diagram

about the overall development process specified in MUSYC is also

depicted in Figure 5.3.

As it is depicted in those figures, MUSYC includes three main

stages:

158 |

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

Stage 1

Stage 2

ImplementationStage 3

CS-CIM to US-PIM
Transformation Rules

US-PIM to US-PSM
Transformation Rules +
Code Generation Rules

Communication
Requirements

Analysis

Ubiquitous System
Design

Figure 5.3: Overall development process specified in MUSYC

Communication Requeriments Analysis: On the basis of

the needs of the stakeholders, a system analyst makes an ini-

tial analysis of the communication requirements using the CS-

CIM metamodel, also specifying a brief use case model and a

choreography model represented through a BPMN 2.0 chore-

ography. The use case and choreography models are later used

to propose the design of a CS-CIM.

Ubiquitous System Design: In this stage, a software designer

incorporates to the design the specific communication require-

ments that should be taken into account in a ubiquitous sys-

tem. To do so, the CS-CIM is transformed into an initial US-

PIM, represented through UML class and sequence diagrams.

The transformation consists on applying a set of transforma-

tion rules to the CS-CIM and US-PIM metamodels, as it is

| 159

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

specified in MDA. The resulting US-PIM is refined to produce

a final one.

Implementation of the Ubiquitous System: A software de-

signer transforms the US-PIM into a US-PSM by adopting

several concrete computing platforms (target operating sys-

tems, programming languages, specific communication tech-

nologies, etc.), and applying a set of transformation rules to

the US-PIM metamodel. The resulting US-PSM is refined,

and a code template is generated on its basis. To conclude, the

code template is completed by a software programmer in or-

der to produce the final implementation of the communication

components of a ubiquitous system.

It is particularly important to mention that most of the devel-

opment tasks specified in the MUSYC methodology are carried out

by software analysts and designers, as it is possible to observe in

previous figure and summarized descriptions of the different devel-

opment stages. Specifically, software programmers are only present

in the development process to produce the final implementation of

the communication components for a ubiquitous system. This is

distinct from the usual way of approaching the development of a

ubiquitous system, in which their communication aspects are com-

monly considered to be technical issues that should be approached

160 |

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

during the implementation stage. Therefore, MUSYC shifts the fo-

cus of the specification of the communication components of a

ubiquitous system from the implementation to the design stages.

The main benefit is that the communication aspects of a ubiq-

uitous system can be approached during the design of a ubiqui-

tous system, taking into account the links that would probably ex-

ist between communication components and user presentation, data

model, etc. Moreover, MUSYC encourages a more close association

between the requirements of a stakeholder and the final commu-

nication functionalities to be supported in the ubiquitous system to

be developed.

The following sections provide a description of the different

stages that conform the development of the communication compo-

nents of a ubiquitous system, as specified in the MUSYC methodol-

ogy. In order to ease the understanding of the different development

stages associated to MUSYC, an example of a Ubiquitous Medical

Environment (UME) is used along the rest of this chapter.

In the UME sample example, the doctors monitor the bio-

metric signals of the patients through several everyday objects in

which multiple sensors are placed (e.g., a couch controls the pa-

tients’ weight, the cookware controls their blood pressure or sugar

level, etc.). If the level of any of the monitored biometric signals

| 161

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

may be critical for a patient (e.g., the blood pressure is too high),

then an alert is sent to the doctors. Afterwards, the doctors may re-

quest additional information to the patient in order to make a medi-

cal decision related to his/her status (e.g., to send an ambulance, go

to visit the patient, detect a false alarm, etc.). If the doctors decide

that the alert is really related to a health problem, then they can relate

a new medical record to the patient. Finally, if the doctors consider

the UME to be dangerous or unlikeable for the patient (e.g., the bio-

metric sensors do not work well, the patient is stressed by his/her

constant monitoring, etc.) they can remotely stop its execution.

5.2. Stage 1: Communication Re-
quirements Analysis

At this stage of MUSYC, a system analyst makes an initial

analysis of the communication requirements of the system to be de-

veloped, on the basis of the requirements of the stakeholders. To

do so, firstly, the analyst has to define a brief use case model and a

choreography model. The use case model will represent the main

functionalities and participants involved in the system. The chore-

ography model will define an organized set of interactions in which

those participants exchange some messages to carry out the expected

functionalities. Moreover, some additional participants can be in-

cluded in the use case and choreography models to take into account

162 |

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

external systems or hardware devices that need to be present in the

ubiquitous system to be developed (e.g., sensors, actuators, external

storage services, etc.).

On the basis of the use case, choreography models and the

CS-CIM metamodel (see Chapter 3), a CS-CIM can be specified.

The CS-CIM will be able to represent the key structural, operational

and organizational elements that should be present in the design of

a communication environment that fulfills the requirements of the

system to be developed.

Figure 5.4 depicts the overall description of the first devel-

opment stage of MUSYC. The following subsections will provide

a description of the initial analysis (i.e., the specification of the use

cases and choreography models) and the CS-CIM specification tasks

defined in MUSYC.

5.2.1. Initial Analysis through Use Cases and
Choreography Models

The initial analysis of the communication requirements of a

system involves the definition of a use case model. This model

should be able to capture the main actors to be taken into consider-

ation in a system, the interactions between them and the most gen-

eral tasks that they carry out, which can be directly traced to the re-

| 163

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

Stage 1

BPMN
Choreography

Diagram
Use Case

Model

Communication
Requirements

Analysis

CS-CIM
Specification

Figure 5.4: First development stage specified in MUSYC

quirements provided by the stakeholders. For example, to develop a

UME, it should be defined a use case model including the most gen-

eral tasks to be accomplished by doctors and patients, taking into

account the specific requirements of the ubiquitous system to be de-

veloped, like the use of sensors to monitor the biometric signals or

the need to interact with an external medical information system to

store the medical records of the patients. The sample use case model

is depicted in Figure 5.5 using UML.

In MUSYC, a choreography model represents the organiza-

tion of the interaction processes that are carried out by the different

actors during the tasks specified in the use case model. The chore-

ography model can be presented as a set of choreographies, and

164 |

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

Patient

Measure
biometric
signals

Doctor

Manage
medical
records

Take
medical
decision

Monitor
health status

<<include>>

<<include>>

Sensor

Medical
Information

System

Inform about
possible

medical issue

Add medical
record

<<include>>

Request additional
medical information

<<include>>

<<include>>
<<include>>

Figure 5.5: A sample UML use case model that could be specified
during the initial analysis of a Ubiquitous Medical Environment

depicted through BPMN 2.0 Choreography diagrams.

For example, on the basis of the use case model defined for

the UME, a choreography model for the UME example has been

defined. It has been depicted using a BPMN 2.0 Choreography dia-

gram in Figure 5.6, as it is defined in MUSYC.

To sum up, it is important to highlight the benefits of us-

| 165

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

ing both use case and choreography models, like it is promoted in

MUSYC. The use case model provides a helpful representation of

what is needed by the stakeholders. Therefore, it closely represents

the key functional requirements that the system should accomplish.

Consequently, it is a model that should always be present during

the whole development process, and constantly reviewed in order

to check that a provided system design really accomplishes with all

the stakeholders’ needs. On the other hand, the choreography model

represents the interactions that need to be carried out by the different

actors (or participants) during the tasks that were defined in the use

case model. Hence, it is an important abstraction that gives a general

and initial idea about how the requirements of the stakeholders can

be fulfilled with a concrete software design.

5.2.2. CS-CIM Specification

On the basis of the defined choreography it is possible to de-

sign a model that conforms with the CS-CIM metamodel (i.e., an in-

stance of the metamodel) and supports the functional requirements

represented in the use cases. The separated instantiation of the ele-

ments present in the structural and behavioral views of the CS-CIM

metamodel assists in that instantiation task, as it is described in the

following subsubsections.

166 |

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

Doctor

Medical System

Add Medical
Record

Medical
Record

Accept
Record

Patient

Sensor

Measure
Biometric Signals

Biometric
Information

Doctor

Patient

Request
Additional

Information

Patient
Context

Relevant
Information

X
Take action?

Doctor

Patient

Inform about the
action to do

Request
Action

Confirm
Action

No

Yes

X

Harmful
measurement?

Yes

No

Sensor

Doctor

Inform about
possible medical

issue

Possible Health
Problem Detected

Confirmation

X

is monitoring
harmful?

Yes

No

Figure 5.6: A sample choreography specified during the initial anal-
ysis of a Ubiquitous Medical Environment, depicted as a BPMN 2.0
Choreography diagram

5.2.2.1. A Method to Instantiate the Elements of the
Structural View

The structural view of the CS-CIM metamodel (see Chap-

ter 3, Section 3.2.1) assists into focusing on understanding and de-

signing the structural and basic operational elements that should be

present in the system to be developed. To instantiate the elements of

the structural view, the required structural elements need to be iden-

tified with the assistance of the use case and choreography models

as follows (and in the order that has been depicted in Figure 5.7

through a UML activity diagram):

| 167

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

Participants: The participants are equivalent to the reflected

ones in the choreography model.

Channels: At least, a common channel must be established

for the participants. If it is needed to interact with external

systems, then additional channels should be specified to allow

those interactions. If some participants can not share the same

channel, then it is necessary to define additional participants

that can make use of some of those heterogenous channels at

the same time. Those participants will be referred as mappers.

Messages: The interactions that have been specified in the

choreography model make it possible to identify the messages

to exchange between the participants of the system to be de-

veloped. If a channel, for any reason, does not allow to trans-

fer a message, then another channel needs to be established.

Protocols: For each channel, a protocol to manage it accord-

ing to the requirements of the system has to be adopted. If a

suitable protocol for a particular channel can not be designed

or adopted for any technical reasons, then it will be neces-

sary to replace the channel. Additionally, the messages to be

transferred need to be formatted according to the specifica-

tions of each adopted protocol. If a protocol does not support

the codification of a message, then another protocol needs to

168 |

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

be chosen.

Identify
Participants

Choose
Channels

Select
Messages

Adopt
Protocols

[add_mappers]

[use_other_channel]

[adopt_other_
protocol]

Figure 5.7: A UML activity diagram that specifies the process that
should be followed to identify the elements present in the structural
view of a CS-CIM, as it has been defined in MUSYC

As it is possible to observe in the previous activity diagram and

descriptions of the different identification processes, the adoption of

the appropriate structural elements of a CS-CIM involves several

iterations in order to obtain a design that can be both feasible and

accomplishes the requirements established in the initial analysis of

the system to be developed.

As an example of the result of the identification process and

the subsequent instantiation of the elements present in the structural

view of the CS-CIM metamodel, Figure 5.8 depicts a model of a

UME that conforms with the structural view of the CS-CIM meta-

model.

| 169

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

<<metaclass>>
Channel

<<metaclass>>
Protocol

<<metaclass>>
Participant

<<metaclass>>
Communication

System

communicative
_commonality

1..*

1..*

1..*

1..*

1..*

0..*

0..*

rules_the_use

connected

transports
content

medium

0..*

0..*

medium

sender
receiver

<<metaclass>>
Message

0..*

0..*

exchanges

conforms_to
1..*

0..*
structurer

complier

producer

transfer_unit

0..*

CS-CIM
Metamodel

(Structural View)

Ubiquitous Medical
Environment Model

(Structure)

Doctor Patient

Sensor
Medical

Information
System

Wide Area
Network

Personal
Area

Network

Security
Protocol

Efficient
Protocol

UME
Protocol

11

UME

1

1..* 1..*
1..*1..*

1..*
1..*1..*

1 1..*
1

1..*

1

1

1
1

1 1

Biometric
Information

Medical
Record

1..*

1..*

1

0..* 0..* 0..*

1 1

1..*

1

1

1..* 1..*

1

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

1

1..*

1

1..*

1
1

Patient
Action

0..*

1

Patient
Context

1

0..*1..* 1..*1..*

1..*

1..*

1..*

1

1

1
1

<<instanceOf>>

<<instanceOf>>

Figure 5.8: A UML class diagram depicting the structural elements
of the sample UME as an instance of the elements present in the
structural view of the CS-CIM metamodel

To devise the depicted model, the previously described iden-

tification process has been applied. Firstly, the participants have

been directly identified using the choreography model. Then, spe-

cific channels have been adopted to be able to connect the sensors

170 |

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

with the patients, the patients with the doctors and the doctors with

the external medical information system.

Since the sensors can be physically attached to the patient,

a personal area network (e.g., BlueTooth, Infrared, etc.) has been

supposed to be an appropriate communication channel, because

they should be more suitable for low-range connections (e.g., lower

power consumption, they do not need a fixed infrastructure, etc.).

However, to connect the patient with the doctor, and the doctor

with the external medical information system, it could be more

appropriate to use a wide area network, like Internet (e.g., to have

long-range connections, more bandwidth, etc.).

The messages to be transferred by the participants can be ob-

tained from the choreography model (see Figure 5.6). In this case,

four types messages have been identified: Biometric information

(measure biometric signals and inform about possible medical is-

sue activities), medical record (add medical record activity), patient

context (request additional information activity) and patient action

(inform about the action to do activity). The biometric information

messages are sent by the sensors to the patients. The patients send

these messages to the doctors in order to notify them about a possi-

ble health problem. Medical records are transferred by the doctors

to the medical information system. The patient context messages are

exchanged to inform about the circumstances in which the patients

| 171

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

are when a health issue is detected. Finally, the patient action mes-

sages contain information about the different actions that a patient

may carry out when a health problem is diagnosed by a doctor.

It is worth to be mentioned that the sample instantiation of the

CS-CIM metamodel to design a UME has been simplified. For in-

stance, in the choreography model more messages are represented,

but they all refer to confirmations or responses to the previously

mentioned messages. In consequence, they have been removed from

the devised model. In real situations they should be taken into con-

sideration to instantiate the structural view of the CS-CIM metamo-

del. Furthermore, it has been assumed that the medical information

system is able to communicate through a wide area network with the

doctors. As it was previously noted, in practice, it could be possi-

ble to establish concrete channels to communicate with any external

systems. Moreover, it is assumed that a sensor is able to commu-

nicate using both a wide area network and a personal area one. As

mentioned earlier, if this was not the case, then it should be nec-

essary to add a mapper participant, which, in the UME example, it

would be in charge of collecting the messages transferred by the sen-

sor through the personal area network and transferring them through

the wide area network.

Additionally, it needs to be highlighted that, in MUSYC, at

these initial development stages, no specific technologies or plat-

172 |

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

forms should be presented in the instantiated CS-CIM metamodel.

For example, the UME model refers to an ad-hoc network, but it

does not refer to BlueTooth, infrared, etc. The reason is to keep the

devised model as abstract as possible by avoiding computation or

platform dependent mechanisms as much as possible.

5.2.2.2. Behavioural View Model by Choreography Model
Instantiation

The behavioral view of a CS-CIM can be directly instantiated

using the choreography model, since the behavioral view shares con-

cepts with the metamodel of the choreographies in BPMN 2.0 (see

Chapter 3, Subsection 3.2.2). The direct benefit is that a BPMN 2.0

choreography can be directly used to design the behavioral view of

a CS-CIM. Moreover, it is possible to match existing BPMN chore-

ography diagrams to the concepts present in the behavioral view,

as a manner to obtain a conceptualization of an previously existing

communication system from its graphical representation as BPMN

choreographies.

However, as it was previously mentioned in Chapter 3, Sub-

section 3.2.2, the behavioral view of the CS-CIM metamodel is not

exactly as the BPMN 2.0 choreography metamodel, since some el-

ements related to the graphical notion have been removed, and the

name of some others has been changed to avoid confusions. For

| 173

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

example, the term connection in the BPMN metamodel has been re-

placed by the term link in the CS-CIM metamodel, since the notion

of connection is commonly used in the communication field to refer

to the initial interaction between two participants, whereas, in this

case, it refers to the relationship between two activities in a chore-

ography.

To carry out the direct matching between a BPMN 2.0 chore-

ography and the CS-CIM metamodel, Tables 5.1, 5.2 and 5.3 are

provided. In those tables, it is related each possible graphical ele-

ment in a BPMN 2.0 choreography with an element in the CS-CIM

metamodel.

Note that the matching of the BPMN graphical notation of an

event is simplified in previous tables. In BPMN there are multiple

types of events: errors, message arrival notifications, timeouts, etc.

Those events need to be matched to different instances of the event

metaclass, that is, to define specialized events in the CS-CIM for

each concrete event defined in the BPMN choreography. Neverthe-

less, the initial and end events can be directly matched with elements

in the metamodel, due to their significant importance when defining

any choreography (i.e., they start and finish the choreography itself).

Also, the BPMN graphical notation allows choreographies

that reference other choreographies to be represented. In this

174 |

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

BPMN Notation Behavioral View Element

Request
Additional

Information

Choreography Activity
Doctor

Participant

Message
Sequential Link

X
Yes

Conditional Link

X
Yes

Default Link

Table 5.1: Description of the matchings between a BPMN 2.0
Choreography and the concepts in the behavioral view of the CS-
CIM metamodel

case, the direct matching involves the definition of these kinds of

choreographies as a whole, that is, by including all the elements of

the choreography into the same diagram.

5.3. Stage 2: Ubiquitous System De-
sign

The second development stage that has been established in

MUSYC, which is depicted in Figure 5.9, is to propose a platform-

| 175

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

BPMN Notation Behavioral View Element

+
Parallel Gateway

Inclusive Gateway

Complex Gateway

X
Content-based Exclusive Gateway

Event-based Exclusive Gateway

Table 5.2: Description of the matchings between the gateways of a
BPMN 2.0 Choreography and the concepts of the behavioral view
of the CS-CIM metamodel

BPMN Notation Behavioral View Element

Initial Event

End Event

Event

Table 5.3: Description of the matchings between the events of a
BPMN 2.0 Choreography and the concepts of the behavioral view
of the CS-CIM metamodel

independent design of a ubiquitous system that fulfills the require-

ments that were detected and analyzed in the previous stage. To

achieve that goal in a methodological way, a transformation from

a CS-CIM into a US-PIM is proposed.

176 |

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

US-PIM
Specification

Stage 2 Ubiquitous System
Design

CS-CIM to US-PIM
Transformation Rules

Figure 5.9: Second development stage specified in MUSYC

As it will be explained in the following subsections, the trans-

formation process can be systematically done through the proposal

of a set of transformation rules applied to the corresponding meta-

models, as it is defined in the MDA standard. To improve the com-

prehension of the transformation process, the proposed rules will be

separately described in the following subsections for the structural

and behavioral views of the CS-CIM and US-PIM metamodels. The

transformation rules, which have been implemented in QVT as it is

specified in the MDA standard, are fully listed in Appendix VI.

5.3.1. CS-CIM to US-PIM Transformation:
Structural View

The systematic application of a set of QVT transformation

rules to the elements in the structural view of the CS-CIM meta-

model can assist software designers during the specification of the

structural elements of a US-PIM. The idea is to systematically ob-

| 177

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

tain a design of the structural parts of a ubiquitous system from

the specification of a CS-CIM. As it is specified in MDA, the trans-

formation rules are applied to the CS-CIM metamodel, as a way to

avoid the need of proposing ad-hoc transformation rules on a per-

model basis.

A set of transformation rules instantiate each participant rep-

resented in a CS-CIM as software agents in a US-PIM, that is, into

an application, a service or both an application and a service. An

excerpt of the QVT rules to apply this transformation between the

CS-CIM and the US-PIM metamodels is shown in Figure 5.10.

mapping Participant::toAgent() : PIM::SoftwareAgent
 when {self.type <> CIM::ParticipantRole::PEER} {

init {
if (self.type = CIM::ParticipantRole::PASSIVE) then {

result := object Service{name := self.name+'Service';};
}else {

result := object Application{name := self.name+'App';};
}endif;

}
exchanges := self.exchanges->map toSoftwareMessage()->flatten();
result->map populateSoftwareAgent(self);

}
mapping Participant::toPeerAgents() : app:PIM::Application, service:PIM::Service
 when {self.type = CIM::ParticipantRole::PEER} {

app.name := self.name+'App';
service.name := self.name+'Service';
app.exchanges := self.exchanges->map toSoftwareMessage()->flatten();
service.exchanges := self.exchanges->map toSoftwareMessage()->flatten();
app->map populateSoftwareAgent(self);
service->map populateSoftwareAgent(self);

}

Figure 5.10: An excerpt of the QVT rules to transform a paticipant
of a CS-CIM into a software agent in a US-PIM

As it is possible to observe in these rules, the selection of the

target US-PIM element/s is based on the role of the origin partici-

178 |

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

pant. If the role is passive, then the participant is transformed into

a service, since it will considered to only be in execution when an-

other element of the system requests it some information. On the

contrary, if the role is active, then the participant is transformed into

an application, and it will be meant to be in constant execution, re-

questing information to services or delivering information to other

applications or services. Finally, if the participant has a peer role,

then it will be transformed into both an application and a service,

in order to act in an active way (as an application), but to also pro-

vide information to other elements of the system in a more passive

manner (as a service).

The connected relationship between the participants, which is

defined in the structural view of the CS-CIM metamodel (see Chap-

ter 3, Section 3.2.1), is also kept in the transformation process. How-

ever, in the US-PIM metamodel, applications can not relate to each

other, since an application should not directly request information

to another application: applications should only directly request in-

formation to a service, and services should request information to

other services, as it is defined in the US-PIM metamodel. The rea-

son is two-fold: technically, applications can not provide a public

interface (i.e., at software level, to provide a public interface, it is

necessary to behave as a service); conceptually, from a functional

point of view, applications are not information providers, but infor-

| 179

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

mation consumers and presenters (i.e., they provide the information

that they retrieve to the user).

Anyhow, applications can exchange information between

them in an indirect way, that is, by distributing events. This

way, they can interoperate to achieve certain goals, like providing

collaboration tools for the users, but with a low cohesion between

them, and working around the conceptual and technical limitations

that were previously mentioned. To do so, an event handler is

associated to each transformed software agent in order to be able

to distribute events to others. Consequently, both applications and

services can distribute events. Additionally, a discoverer and a

discovery listener is also associated to each software agent, so as to

check for the availability of each other software agents. Moreover,

for each software agent, a different instance of a discovery event

is produced through the transformation rules, in order to make it

possible for each software agent to distribute its own univocally

identifiable discovery event.

The association of previous elements to each software agent

during the transformation process fulfills the communication re-

quirements of a ubiquitous system (see Chapter 4, Section 4.1),

by allowing each software to exchange messages with others (i.e.,

as it was previously explained, only if the messages are exchanged

between applications and services, or between services, not between

180 |

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

applications), to be dynamically discovered, and to distribute events

to notify changes in their status. The QVT transformation rules to

associate the corresponding communication functionalities to each

transformed software agent are presented in Figure 5.11.

mapping Participant::softwareAgentConnections() {
self.resolve(PIM::SoftwareAgent)->forEach(agent){

if (agent.oclIsTypeOf(PIM::Service)) then {
var s:PIM::Service := agent.oclAsType(PIM::Service);
self.sendsTo.resolve(PIM::SoftwareAgent)->forEach(delegate) {

if (delegate.oclIsTypeOf(PIM::Service)) then {
s.connectsTo += delegate.oclAsType(PIM::Service);

}else{
delegate.oclAsType(PIM::Application).requestsServices += s;

}endif;
}

}else {
var app:PIM::Application := agent.oclAsType(PIM::Application);
self.sendsTo.resolve(PIM::SoftwareAgent)->forEach(delegate) {

if (delegate.oclIsTypeOf(PIM::Service)) then {
app.requestsServices += delegate.oclAsType(PIM::Service);

}endif;
}

}endif;
};

}
mapping inout PIM::SoftwareAgent::populateSoftwareAgent(p:CIM::Participant){

var discoveryEvent := object Discovery{
name := self.name+'DiscoveryEvent';
medium := p.exchanges.medium.late resolve(PIM::NetworkingTechnology);
conforms := p.exchanges.conforms.late resolve(PIM::SoftwareProtocol);
topic := object Topic{name := self.name+'DiscoveryTopic';};

};
self.discoverer := object Discoverer{

name := self.name+'Discoverer';
callback := object DiscoveryListener {

name := self.name+'DiscoveryListener';
discoveredBy := discoveryEvent;
constrainedBy := object Predicate{name := self.name+'DiscoveryPredicate';};

};
listeners += callback;

};
self.eventhandler := object EventHandler {name := self.name+'EventHandler';};

self.exchanges->select(evt | evt.oclIsTypeOf(PIM::Event)).oclAsType(PIM::Event)->forEach(evt){
self.eventhandler.listeners += object EventListener{

name := self.name+evt.name+'Listener';
listens += evt;
constrainedBy := evt.acceptedBy;

};
self.eventhandler.handles += evt;

};
}

Figure 5.11: An excerpt of the QVT rules to include the commu-
nication functionalities of a ubiquitous system to each transformed
software agent

As it is specified in the QVT rules presented in Figure 5.12, the

| 181

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

messages defined in the CS-CIM are transformed into software mes-

sages, that is, requests, responses and events. For each event, there is

a topic related to it and a predicate that accepts that topic. Addition-

ally, the generated event listeners accept the generated events. The

reason to transform each single message into an event is to allow

software agents to notify events each time a request or a response is

received. In this way, software agents could monitor the behavior of

the others.

mapping Message::toSoftwareMessage() : Sequence(SoftwareMessage) {
init {

if (not self.oclIsTypeOf(CIM::Initial) and not self.oclIsTypeOf(CIM::End)) then {
 var eventTopic := object PIM::Topic{name := self.name+'Topic';};
 var event := object PIM::Event{
 name := self.name+'Event';
 topic := eventTopic;
 medium := self.medium.late resolve(PIM::NetworkingTechnology);
 conforms := self.conforms.late resolve(PIM::SoftwareProtocol);
 };

var predicate := object PIM::Predicate{
name := self.name+'Predicate';
accepts := event;

};
var request := object PIM::Request{

name := self.name+'Request';
medium := self.medium.late resolve(PIM::NetworkingTechnology);
conforms := self.conforms.late resolve(PIM::SoftwareProtocol);

};
var response := object PIM::Response{

name := self.name+'Response';
medium := self.medium.late resolve(PIM::NetworkingTechnology);
conforms := self.conforms.late resolve(PIM::SoftwareProtocol);

};
request.reply := response;
response.petition := request;

result += event;
result += request;
result += response;

}endif;
}

}

Figure 5.12: An excerpt of the QVT rules to transform a message of
a CS-CIM into the corresponding elements in a US-PIM

Finally, channels and protocols specified in the CS-CIM are

182 |

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

directly transformed into networking technologies and software

protocols, respectively. The idea is to implement these elements

through specific technologies in the PSM. Therefore, at the PIM

level, they merely play a supportive role for the rest of the elements

in the ubiquitous system.

As an example of the result of applying the transformation

rules to the structural elements of a CS-CIM, they have been applied

to the CS-CIM of a UME. Due to its size in UML graphical notation,

an excerpt of the resulting model is shown in Figure 5.13 in standard

XMI notation (i.e., an OMG standard XML-based textual notation

for UML models, http://www.omg.org/spec/XMI/).

It is possible to observe through this sample that the transfor-

mation rules produce a design that systematically takes into account

many technical details associated to the ubiquitous system to be de-

veloped. For example, the instantiation of a service for the patient

allows to manage the information about the patient itself. The ap-

plication for the patient can be used to show biometric information

to the end user, or to provide communication tools that can interop-

erate with the service instantiated for the doctor. This service could

manage any information related to the doctor, or to provide some

health-related information to the patient.

Moreover, the different requests, responses and events that

| 183

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" ...>
 <pim:UbiquitousSystem name="UME" channels="WAN PAN" protocols="UMEProtocol
SecureProtocol EfficientProtocol">
 <agents xsi:type="pim:Service" name="MedicalInformationSystemService" ...
isRequestedBy="DoctorApp" connectedBy="DoctorService"/>
 <agents xsi:type="pim:Application" name="SensorApp"
eventhandler="SensorAppEventHandler" exchanges="BiometricInformationEvent
BiometricInformationRequest BiometricInformationResponse"
discoverer="SensorAppDiscoverer" requestsServices="DoctorService PatientService"/>
 <agents xsi:type="pim:Application" name="DoctorApp" .../>
 <agents xsi:type="pim:Application" name="PatientApp" .../>
 <agents xsi:type="pim:Service" name="DoctorService" ... isRequestedBy="PatientApp
SensorApp" connectsTo="PatientService MedicalInformationSystemService"
connectedBy="PatientService"/>
 <agents xsi:type="pim:Service" name="PatientService" ... isRequestedBy="DoctorApp
SensorApp" connectsTo="DoctorService" connectedBy="DoctorService"/>
 ...
 </pim:UbiquitousSystem>
 ...
 <pim:Topic name="BiometricInformationTopic" isTopicOf="BiometricInformationEvent"/>
 <pim:Event name="BiometricInformationEvent" exchangedFrom="SensorApp DoctorApp
DoctorService PatientApp PatientService" medium=“PAN” conforms="UMEProtocol
EfficientProtocol" topic="BiometricInformationTopic" ...
acceptedBy="BiometricInformationPredicate"/>
 <pim:Predicate name="BiometricInformationPredicate"
accepts="BiometricInformationEvent" .../>
 <pim:Request name="BiometricInformationRequest" exchangedFrom="SensorApp DoctorApp
DoctorService PatientApp PatientService" ... reply="BiometricInformationResponse"
targets="PatientService"/>
 <pim:Response name="BiometricInformationResponse" exchangedFrom="SensorApp
DoctorApp DoctorService PatientApp PatientService" ...
petition="BiometricInformationRequest"/>
 <pim:Discovery name="SensorAppDiscoveryEvent" medium=“PAN” conforms="UMEProtocol
EfficientProtocol" topic="SensorAppDiscoveryTopic"
discovers="SensorAppDiscoveryListener"/>
 <pim:Topic name="SensorAppDiscoveryTopic" isTopicOf="SensorAppDiscoveryEvent"/>
 <pim:Discoverer name="SensorAppDiscoverer" listeners="SensorAppDiscoveryListener"
callback="SensorAppDiscoveryListener"/>
 <pim:DiscoveryListener name="SensorAppDiscoveryListener" ...
discoveredBy="SensorAppDiscoveryEvent"/>
 ...
 <pim:EventHandler name="SensorAppEventHandler"
handles="BiometricInformationEvent" .../>
 ...
<pim:SoftwareProtocol name="UMEProtocol" system="UME" rules=“WAN PAN”
compiles="MedicalRecordEvent MedicalRecordRequest MedicalRecordResponse
MedicalInformationSystemServiceDiscoveryEvent BiometricInformationEvent
BiometricInformationRequest BiometricInformationResponse SensorAppDiscoveryEvent
DoctorAppDiscoveryEvent DoctorServiceDiscoveryEvent PatientAppDiscoveryEvent
PatientServiceDiscoveryEvent InitialEvent EndingEvent" composedBy="SecureProtocol
EfficientProtocol"/>
 <pim:SoftwareProtocol name="SecureProtocol" system="UME" rules=“PAN WAN”
compiles="MedicalRecordEvent MedicalRecordRequest MedicalRecordResponse
MedicalInformationSystemServiceDiscoveryEvent DoctorAppDiscoveryEvent
DoctorServiceDiscoveryEvent" composes="UMEProtocol"/>
 <pim:SoftwareProtocol name="EfficientProtocol" system="UME" rules=“PAN WAN”
compiles="BiometricInformationEvent BiometricInformationRequest
BiometricInformationResponse SensorAppDiscoveryEvent DoctorAppDiscoveryEvent
DoctorServiceDiscoveryEvent PatientAppDiscoveryEvent PatientServiceDiscoveryEvent"
composes="UMEProtocol"/>
 <pim:NetworkingTechnology name="WAN" system="UME" transports="MedicalRecordEvent
MedicalRecordRequest MedicalRecordResponse
MedicalInformationSystemServiceDiscoveryEvent DoctorAppDiscoveryEvent
DoctorServiceDiscoveryEvent PatientAppDiscoveryEvent
PatientServiceDiscoveryEvent" .../>
 <pim:NetworkingTechnology name="PAN" .../>
 ...
</xmi:XMI>

Figure 5.13: An excerpt of the result of applying the QVT transfor-
mation rules to the sample CS-CIM of a UME

184 |

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

need to be exchanged between these elements are instantiated, and

they are linked to the corresponding communication protocols and

networking technologies. Furthermore, the event handlers and dis-

coverers related to each software agent are also instantiated. Their

corresponding listeners to subscribe to each possible event that could

be received in a software agent are instantiated too.

Additionally, it is interesting to highlight that the transforma-

tion rules instantiate the sensor in the CS-CIM specification as an

application in the US-PIM. The reason is that the role of the sensor,

according to the CS-CIM, is active, which is conceptually correct,

since in the UME it constantly provides information to the doctor

and the patient, even without their previous request of that informa-

tion. However, technically, there could be a bit of confusion about

the nature of a sensor, that is, if the software associated to the sensor

should be considered as a service or as an application. The transfor-

mation rules avoid this confusion, and make explicit that the sensor

can not operate as a service, since it is an autonomous, pro-active

part of the ubiquitous system (and, in practice, it could be endowed

by a certain level of “intelligence” to be able to automatically detect

a health issue on the patient). This is one example about how a cor-

rect conceptualization of a system as a CS-CIM can have direct

benefits in the software design.

| 185

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

5.3.2. CS-CIM to US-PIM Transformation:
Behavioral View

To obtain the behavioral elements from the choreography as-

sociated to the behavioral view of a CS-CIM, the transformation

rules have to produce the corresponding elemental communication

activities (message exchanging, event distribution or dynamic dis-

covery) related to each choreography activity. Also, it needs to be

taken into consideration that, as it was explained in Chapter 4, Sub-

section 4.2.2, the idea in the US-PIM is that each choreography ac-

tivity that involves two software agents (i.e., there can be activities

in which a unique software agent communicates with itself), entails

a previous discovery activity that checks for the availability of both

of the software agents (i.e., some of them may be unreachable, since

they can be moving, and their networking capabilities can change).

An example transformation is depicted in Figure 5.14, so as to

illustrate the overall rationale behind the QVT transformation rules

to be presented below. The resulting model is represented as a UML

sequence diagram in order to more precisely outline the expected

behavior of each choreography activity in a US-PIM.

Each choreography specified in the CS-CIM is transformed

into a software agent choreography in the target US-PIM, as it is

defined in the QVT rules depicted in Figure 5.15.

186 |

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

 <cim:ChoreographyActivity
 name="AddMedicalRecord"
 participants="Doctor MedicalSystem"
 messages="MedicalRecord AcceptRecord" .../>

Loop

Break [v.contains(MedicalSystemService)]

:MedicalSystem
Service

:MedicalSystem
Discoverer

discover()

:DoctorApp

available_services[*]

MedicalRecord()
AcceptRecord()

initActivity()
...

endActivity()
initActivity()

...

Doctor

Medical System

Add Medical
Record

Medical
Record

Accept
Record

CIM

PIM

CIM to PIM Transformation

BPMN Direct
Matching

Figure 5.14: An example of a transformation from a BPMN chore-
ography diagram into a sequence diagram

mapping Choreography::toSoftwareAgentChoreography() : PIM::SoftwareAgentChoreography {
name := self.name;
system := self.system.late resolveone(PIM::UbiquitousSystem);
participants := self.participants.resolve(PIM::SoftwareAgent);
messages := self.messages.resolve(Sequence(PIM::SoftwareMessage))->flatten();
activities := self.activities->map toChoreographyActivity()->flatten();
activities->forEach(act){

messages += act.messages;
};

startingEvent := self.startingEvent->map toStartingEvent(self)->asSequence()->at(1);
endingEvents := self.endingEvents->map toEndingEvents();
activities += self.links->map toActivities(result)->flatten();

}

Figure 5.15: An excerpt of the QVT rules to transform a choreogra-
phy of a CS-CIM into a choreography in a US-PIM

Since a participant can be transformed into multiple software

agents (i.e., if the participant has a peer role), then there can not

be a 1-to-1 transformation between the choreography activities in

the CS-CIM and the US-PIM. As it is possible to observe in Figure

| 187

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

5.16, the proposed QVT transformation rules may instantiate sev-

eral activities in the US-PIM from a unique activity in the CS-CIM.

Those derived activities involve the possible combinations between

the different software agents that are derived from the correspond-

ing participants in the CS-CIM. Also, for each sub-activity in the

CS-CIM it is created an elemental communication activity (i.e., a

transaction) in the US-PIM.

mapping CIM::ChoreographyActivity::toChoreographyActivity() :
Sequence(PIM::ChoreographyActivity) {

init{
var counter := 0;
var msgs := self.messages.resolve(Sequence(PIM::SoftwareMessage))->flatten();

self.sourceParticipant.resolve(PIM::SoftwareAgent)->forEach(sAgent){
self.targetParticipant.resolve(PIM::SoftwareAgent)->forEach(tAgent){

var activity := object PIM::ChoreographyActivity{
name := self.name+counter.toString();

participants += sAgent;
participants += tAgent;

counter := counter+1;
};

activity.transactions += object DiscoveryActivity{
name := sAgent.name+'2'+tAgent.name+'Discovery';
sourceParticipant := sAgent;
targetParticipant := tAgent;

};
activity.transactions += self.subactivities->map

toElementalCommunicationActivities(activity, msgs)->flatten();
activity.messages += activity.transactions->select(t|

t.oclIsTypeOf(PIM::EventDistributionActivity)).oclAsType(PIM::EventDistributionActivity).
relatedEvent;

result += activity;
};

};
}

}

Figure 5.16: An excerpt of the QVT rules to transform a choreogra-
phy activity of a CS-CIM into a set of choreography activities in a
US-PIM

The links that connect a source and a target activity in the CS-

188 |

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

CIM do not have a direct matching with any element in the US-PIM.

Consequently, they are transformed to sequential events, as it can be

observed in Figure 5.17. These events are delivered from a software

agent in the source activity, and it is marked as an starting message

in the target activity. The idea is that, a software agent delivers an

event after the completion of a choreography activity, which will

start another activity. This way, there is no coupling between activ-

ities, nor any direct association between them. The benefit is that,

in later development stages, the activities can be separately imple-

mented, without taking into account any details of the implementa-

tion of the others.

Also it is taken into account that a link in the CS-CIM refers

to the association between an activity and the delivery of an event.

In the US-PIM, this situation derives in the instantiation of a chore-

ography activity for each event to be delivered, including an event

distribution activity, as it is shown in the rules presented in Figure

5.17.

Figure 5.18 illustrates the US-PIM (in XMI standard notation)

that results from applying the described transformation rules to the

behavioral elements of a CS-CIM of a UME. As it can be observed,

each choreography activity includes the discovery of the target soft-

ware agent from the source software agent. Since the patient plays

a peer role in the CS-CIM, and it is transformed into both a service

| 189

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

mapping CIM::Link::toActivities(inout choreography:PIM::SoftwareAgentChoreography) :
Sequence(PIM::ChoreographyActivity){

init{
var src:CIM::FlowObject := self.source;
var tgt:CIM::FlowObject := self.target;

var activity1:Bag(Sequence(PIM::ChoreographyActivity));
var activity2:Bag(Sequence(PIM::ChoreographyActivity));

if (src.oclIsKindOf(CIM::Event)) then{
activity1 := src.oclAsType(CIM::Event)->map

toEventDistributionActivity();
result += activity1->flatten();

}else {
activity1 :=

src.oclAsType(CIM::ChoreographyActivity).resolve(Sequence(PIM::ChoreographyActivity))
->asBag();

}endif;

if (tgt.oclIsKindOf(CIM::Event)) then{
activity2 := tgt.oclAsType(CIM::Event)->map

toEventDistributionActivity();
result += activity2->flatten();

}else {
activity2 :=

tgt.oclAsType(CIM::ChoreographyActivity).resolve(Sequence(PIM::ChoreographyActivity))
->asBag();

}endif;

activity1->flatten()->forEach(act1){
act1.startingMessages += src.starter->map toGateway();
activity2->flatten()->forEach(act2){

var startingMessage := object PIM::Sequential{
name := act2.name+'StartingEvent';

};
act1.messages += startingMessage;
act1.transactions += object PIM::EventDistributionActivity{

name := startingMessage.name+'DistributionActivity';
relatedEvent := startingMessage;
sourceParticipant := act1.participants->at(1);

};
act2.startingMessages += tgt.starter->map toGateway();
act2.startingMessages += startingMessage;

};
};

choreography.messages += activity1->flatten().startingMessages;
choreography.messages += activity2->flatten().startingMessages;

}
}

Figure 5.17: An excerpt of the QVT rules to transform a link of a
CS-CIM into choreography activities in a US-PIM

and an application, the activities in which the corresponding soft-

ware agents are involved are split into multiple ones. Particularly,

190 |

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

in the sample figure, the MeasureBiometricSignal activity is trans-

formed into the following activities:

An activity that involves the interaction between the sensor

application and the patient application. Since applications can

only interact through events, then this activity consists of the

distribution of an event related to the notification of the bio-

metric signals measured by the sensor to the patient applica-

tion. For example, this activity may allow the sensor to notify

the patient about any changes in his/her health.

Another activity that involves the interaction between the sen-

sor application and the patient service. For instance, this ac-

tivity could enable the sensor to store/retrieve historical infor-

mation about the measured biometric signals into/from the pa-

tient service. In this case, since there is an interaction between

an application and a service, both event distribution and mes-

sage exchanging are allowed, which, for example, makes it

possible for the sensor to store biometric signals as the values

change (an event is notified) or to request historical informa-

tion about the patient (through request messages).

Additionally, the split of an activity involves that the previous

activities activate them in a non-deterministic order. In this case, in

the CS-CIM, the event that initializes the choreography is delivered

| 191

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ...>
 <pim:UbiquitousSystem name="UME" ...>
 ...
 <choreographies ... name="MainChoreography" startingEvent="InitialEvent"
endingEvents="EndingEvent">
 <activities name="MeasureBiometricSignals0"
messages="BiometricInformationEvent" participants="PatientApp SensorApp"
startingMessages="MeasureBiometricSignals0StartingEvent">
 <transactions xsi:type="pim:DiscoveryActivity"
name="PatientApp2SensorAppDiscovery" sourceParticipant="PatientApp"
targetParticipant="SensorApp"/>
 <transactions xsi:type="pim:EventDistributionActivity"
name="SensorApp2PatientAppEventDistribution" sourceParticipant="SensorApp"
targetParticipant="PatientApp" relatedEvent="BiometricInformationEvent"/>
 </activities>
 <activities name="MeasureBiometricSignals1"
messages="BiometricInformationEvent" participants="PatientService SensorApp"
startingMessages="MeasureBiometricSignals1StartingEvent">
 <transactions xsi:type="pim:DiscoveryActivity"
name="PatientService2SensorAppDiscovery" sourceParticipant="PatientService"
targetParticipant="SensorApp"/>
 <transactions xsi:type="pim:EventDistributionActivity"
name="SensorApp2PatientServiceEventDistribution" sourceParticipant="SensorApp"
targetParticipant="PatientService" relatedEvent="BiometricInformationEvent"/>
 <transactions xsi:type="pim:MessageExchangingActivity"
name="SensorApp2PatientServiceMessageExchanging" sourceParticipant="SensorApp"
targetParticipant="PatientService" request="BiometricInformationRequest"/>
 </activities>
 <activities name="InitialEventDistributionActivity"
messages="MeasureBiometricSignals0StartingEvent
MeasureBiometricSignals1StartingEvent">
 <transactions xsi:type="pim:EventDistributionActivity"
name="InitialEventDistributionTransactionActivity"
sourceParticipant="PatientApp" relatedEvent="InitialEvent"/>
 <transactions xsi:type="pim:EventDistributionActivity"
name="MeasureBiometricSignals0StartingEventDistributionActivity"
relatedEvent="MeasureBiometricSignals0StartingEvent"/>
 <transactions xsi:type="pim:EventDistributionActivity"
name="MeasureBiometricSignals1StartingEventDistributionActivity"
relatedEvent="MeasureBiometricSignals1StartingEvent"/>
 </activities>
 </choreographies>
 </pim:UbiquitousSystem>
 ...
</xmi:XMI>

Figure 5.18: An excerpt of the result of applying the QVT transfor-
mation rules to the sample CS-CIM of a UME

before the MeasureBiometricSignal activity is started. Therefore,

in the US-PIM, the distribution activity in which the initial event is

delivered also involves the activation of the two activities that re-

sult from the transformation of the MeasureBiometricSignal activity

192 |

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

from a CS-CIM to a US-PIM.

Finally, as a side note, a set of transformation rules have also

been defined to produce a UML sequence diagram from a CS-

CIM, by applying them to the metamodels of UML and a CS-

CIM. Due to their complexity in QVT, these rules have been imple-

mented in ATL, and can be consulted in Appendix VII. This addi-

tional contribution provides a manner to obtain a diagram in a stan-

dard notation that illustrates the sequence of interactions between

the different elements of the system to be designed. Moreover, the

diagram could be used to refine the US-PIM that is obtained by

applying the defined transformation rules, just in case that some as-

pects of the automatically generated design could be improved.

5.4. Stage 3: Implementation of the
Ubiquitous System

The implementation of a ubiquitous system is carried out in

MUSYC through the specification of a US-PSM, and the code gen-

eration from that model. The overall description of the third stage is

depicted in Figure 5.19.

The following subsection describes how the transformation

from a US-PIM to a US-PSM could be carried out, independently of

the target platforms. Afterwards, the succeeding subsection explains

| 193

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

US-PIM to US-PSM
Transformation Rules

ImplementationStage 3

US-PSM
Specification

Programming
Code

Code Generation Rules

Figure 5.19: Third development stage specified in MUSYC

how some model-to-text transformation rules could be applied to a

US-PSM to generate programming code.

5.4.1. Transformation from a US-PIM to a
US-PSM

To produce a more specific design of a ubiquitous system it

is possible to transform a US-PIM into a US-PSM. However, the

specification of the US-PSM depends on the particular technological

platforms to be used. Therefore, it is not possible to define a unique

US-PSM metamodel or a set of transformation rules. Nonetheless, it

is described a general way of approaching the transformation from

the US-PIM metamodel into any US-PSM metamodel.

The proposal is that the transformation rules should take into

194 |

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

account that, in the US-PSM, it could be appropriate to separate the

elements that are directly derived from the US-PIM from the imple-

mentations of those abstractions by means of specific technologies.

The rationale behind this recommended separation is to produce a

model that differentiates the elements that are part of the design of

the ubiquitous system from the elements that will be supported by

specific technologies and whose programming code will be com-

pleted during the final programming stages of MUSYC (see next

subsection).

To do so, for each element in the US-PIM metamodel, there

should be an abstract element in the US-PSM metamodel and an

implementation element that is a specialization of the abstract one.

Figure 5.20 exemplifies how to make that transformation through

QVT rules. That figure particularly depicts the transformation be-

tween a software agent in a US-PIM to the corresponding software

components in a target US-PSM.

This transformation approach contributes to improve the fol-

lowing quality properties in the ubiquitous system to be developed:

Maintainability: The implementation elements encapsule the

technical parts of the ubiquitous system. Therefore, if an error

needs to be solved or an improvement has to be made, these

elements are the only ones that need to be modified. More-

| 195

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

over, the design of the ubiquitous system is kept, since the

“abstract” elements (i.e., the elements that are directly derived

from the US-PIM) are not changed during the maintenance

processes.

Reusability: The abstract elements can be reused in differ-

ent implementations of the same ubiquitous system. Con-

versely, the implementation elements can be reused for de-

veloping other ubiquitous systems.

5.4.2. Code Generation from a US-PSM

The US-PSM allows to systematically generate code

for the specific adopted platforms (programming languages,

operating systems, middleware, etc.). To do so, the OMG’s MOF

Model to Text Transformation Language standard (MOFM2T,

http://www.omg.org/spec/MOFM2T/1.0/) can be used to

specify transformation rules from a model conforming to MOF

(or UML, since MOF is its metamodel) into a textual notation

representing a programming code. However, any specific set

of MOFM2T transformation rules can be provided in MUSYC

methodology, since they directly depend on the target platforms.

Nonetheless, this subsection provides some general approaches for

generating code.

196 |

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

mapping PIM::SoftwareAgent::toPSAgents() : Sequence(PSM::SoftwareAgent){
init{

if (self.oclIsTypeOf(PIM::Application)) then{
var abstractApp := object PSM::Application{

name:='Abstract'+self.name;
isAbstract:=true;

};
result += abstractApp;
result += object PSM::Application{

name:=self.name+'Impl';
isAbstract:=false;
extendsFrom := abstractApp;

};
}else{

var abstractServ := object PSM::Service{
name:='Abstract'+self.name;
isAbstract:=true;

};
result += abstractServ;
result += object PSM::Service{

name:=self.name+'Impl';
isAbstract:=false;
extendsFrom := abstractServ;

};
}endif;

}
}

Figure 5.20: Some example QVT rules to transform from software
agents in a US-PIM to the corresponding elements in an unspecified
target US-PSM

For example, the elements associated to the structural view of

the US-PSM can be used to produce classes and objects using the

adopted programming languages and according to the target mid-

dleware solutions. For example, if Java is the adopted programming

language, then the services could be converted into Java classes that

inherit from the classes supporting service programming according

to the adopted middleware (e.g., the ServantBase class in CORBA

specification).

| 197

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

The choreography activities could be used to produce the cod-

ification of some methods to be provided by the generated classes.

These methods will consist on carrying out the multiple elemen-

tal communication activities that conform a choreography activity,

probably using the mechanisms provided by the adopted middleware

solutions. In consequence, the elements related to the behavioral

view of a US-PIM can be analyzed to produce a part of the public

interface of each class, and a preliminar implementation of the

corresponding methods.

It is worth to be mentioned that some existing middleware

technologies already provide mechanisms to produce code from ab-

stract specifications of the distributed system (or ubiquitous system)

to be developed. For example, in CORBA, the interfaces of the mul-

tiple services to be developed are specified in an Interface Definition

Language (IDL). If it is necessary, some MOFM2T transformation

rules can be specified to transform part of the US-PSM into these

abstract specifications, and to use the mechanisms provided by the

middleware to generate the code. Consequently, it is possible to sup-

port code generation with existing mechanisms, ensuring a certain

level of interoperability and compatibility between the ubiquitous

systems to be developed using MUSYC and some existing target

platforms.

Finally, it can be remarked that, even if the definition of the

198 |

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

MOFM2T transformation rules require additional development ef-

forts, then their specification can be reused across different develop-

ment projects sharing the same target computing platforms. There-

fore, the development costs can be, ultimately, reduced.

5.5. CASE Tools Supporting MUSYC

The proposed metamodels and QVT transformation rules

have been implemented as Computer-Aided Software Engineering

(CASE) tools using the Eclipse Modeling Framework (EMF,

http://www.eclipse.org/emf), which incorporates modeling

mechanisms that facilitate model specification and code generation.

Firstly, an Eclipse Plug-in has been developed to assist soft-

ware analysts during the specification and checking of a CS-CIM.

To do so, the CS-CIM metamodel has been represented in ECORE

format and an Eclipse GenModel (http://wiki.eclipse.org/

Graphical_Modeling_Framework/Models/GMFGen) schema has

been defined. This schema allows EMF to generate a CS-CIM model

editor that produces models using the XMI standard notation. The

conformance of the CS-CIM definition with the metamodel specifi-

cation can be checked through a validation tool that is also integrated

into the editor. The sample definition of a UME through the imple-

mented Eclipse CS-CIM editor is depicted in Figure 5.21.

| 199

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

Figure 5.21: A sample UME defined using the implementation of an
Eclipse Plug-in to define and check CS-CIMs

The QVT rules to transform a CS-CIM into a US-PIM have

been defined in Eclipse, using the Eclipse QVT plug-in (http://

projects.eclipse.org/projects/modeling.mmt.qvt-oml).

This plug-in checks the validity of the transformation rules and can

automatically apply them on a CS-CIM (created with the previously

described CS-CIM editor) to produce a US-PIM.

200 |

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

A model editor for US-PIMs has also been implemented to as-

sist in the refinement of the model that is automatically transformed

from the CS-CIM. Consequently, the US-PIM metamodel has been

implemented in ECORE format and an Eclipse GenModel schema

has been defined. Similarly to the CS-CIM editor, the US-PIM one

can check for the validity of a refined model (i.e., its conformance

with the US-PIM metamodel specification). Figure 5.22 depicts the

US-PIM that results from applying the QVT rules to the CS-CIM of

a UME using the implemented Eclipse US-PIM editor.

A sample Java code generator has been implemented

to show the feasibility of building CASE tools to automatically

generate code from a US-PSM. The code generator can be easily

modified to produce code in other programming languages. The

code generation process is implemented using the Acceleo Eclipse

plug-in (http://www.eclipse.org/acceleo), which facilitates

generating textual outputs from ECORE models. However, the

transformation rules have been defined in MOFM2T standard

notation. As an example, the MOFM2T rules to produce a Java

event listener are depicted in Figure 5.23.

Also, another sample code generator produces Web Services

Description Language (WSDL), which is an standard W3C notation

to define public interfaces for web services. This generator extracts

the public interface from the choreography activities defined in the

| 201

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

Figure 5.22: The result of transforming the CS-CIM of a UME into
a US-PIM using QVT rules, depicted using the implementation of
an Eclipse Plug-in to define and check US-PIMs

US-PSM and produce the corresponding WSDL specifications. Fig-

ure 5.24 represents an excerpt of the WDSL interfaces automatically

generated for a patient service in a UME.

202 |

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

[comment encoding = UTF-8 /]
[module EventListener2Code(...)]

[template public generateEventListener(listener : EventListener)]
[file('listener/' + listener.name + '.java', false, 'UTF-8')]

package es.ugr.listener;
[for(event : Event | listener.listens)]
[if(event.isAbstract)]
import es.ugr.event.[event.name/];
[/if]
[/for]
[for(predicate : Predicate | listener.constrainedBy)]
[if(predicate.isAbstract)]
import es.ugr.predicate.[predicate.name/];
[/if]
[/for]
import java.util.List;

public[if(listener.isAbstract)] abstract[/if] class [listener.name/]
[if(not listener.isAbstract)] extends [listener.extendsFrom.name/][/if]{

[if(listener.isAbstract)]
[for(predicate : Predicate | listener.constrainedBy)]
[if(predicate.isAbstract)]
protected List<[predicate.name/]> [predicate.name.toLowerFirst()/]List = null;
[/if]
[/for]
[/if]

[for(event : Event | listener.listens)]
[if(event.isAbstract)]
[if(listener.isAbstract)]
public abstract void check([event.name/] anEvent);
public abstract void action([event.name/] anEvent);
[else]
public void check([event.name/] anEvent){

 ...
}

public void action([event.name/] anEvent){
// TODO Auto-generated method stub

}
[/if]
[/if]
[/for]

}
[/file]
[/template]

Figure 5.23: A sample transformation from an event listener defined
in an undefined US-PSM to Java code, implemented in MOFM2T
standard notation

| 203

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

<definitions name="PatientService" …>
<xsd:element="ObtainMedicine"/>
...
<wsdl:portType name="PatientServicePortType">

<wsdl:operation
name="BiometricInformationRequest">

...
</wsdl:operation>

 ...
</wsdl:portType>
<wsdl:binding name="PatientServiceBinding" ...>

<wsdl:operation
name="BiometricInformationRequest">

<soap:operation
 soapAction=".../
BiometricInformationRequest"/>

</wsdl:operation>
 ...
 <service name="PatientService">

<documentation>Documentation</documentation>
<port

name="BiometricInformationRequestPort" ...>
<soap:address

 location=".../PatientService"/>
</port>
...

</service>
...
<definitions name="PatientDiscoverer" …>

<wsdl:portType name="PatientDiscovererPortType"/>
<wsdl:binding name="PatientDiscovererBinding".../>
<service name="PatientDiscoverer">

...
</service>

...

Figure 5.24: An excerpt of a sample WSDL service interface auto-
matically derived from a US-PSM

204 |

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

5.6. Conclusions

This chapter has presented an MDA-based Methodology

to Develop Ubiquitous Systems on the Basis of the Communi-

cations (MUSYC). The conceptual models presented in previous

chapters serve as metamodels for CS-CIMs and US-PIMs, and

as a conceptual framework on which the whole methodology is

founded.

Particularly, the whole development process is based on the

design of a CS-CIM, and its systematic transformation to a US-PIM,

a US-PSM and, finally, to programming code. Therefore, MUSYC

avoids the adoption and use of specific technologies until the spec-

ification of the US-PSM. In consequence, if more advanced tech-

nologies become available during the development of a ubiquitous

system, or even later, the CS-CIM and US-PIM designs could be

completely reused.

Moreover, the technologies do not guide the whole devel-

opment process from the initial stages, as it commonly occurs in

many current developments, in special in ubiquitous systems. This

way, it is encouraged to focus most development efforts in the

specification of a design that fulfills with the user requirements,

rather than on the adoption or use of concrete technologies. In fact,

in MUSYC, there is direct match between the requirements speci-

| 205

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

fied through a use case model and BPMN choreographies, and the

CS-CIM specification.

To assist in the development of ubiquitous systems through

MUSYC, and to demonstrate the feasibility of automatizing and

validating the transformation from the specification of a CS-CIM

to executable code for specific target computing platforms (oper-

ating systems, middleware, etc.), a set of CASE tools have been

implemented. However, it is worth to be mentioned that the ontolo-

gies that were specified for a CI-CS and a PI-US can be used to

model specific CS-CIMs or US-PIMs. Also, a reasoner could help

into checking and simplifying (i.e., finding equivalencies between

different elements of the design) the specified models.

Finally, MUSYC demonstrates that it could be possible to

approach the whole development of a ubiquitous system by fo-

cusing on the design of the communications. For example, a

MUSYC-based development process produces an initial design of

the applications and services to be developed (i.e., MUSYC does

not tackle with the design of the user interface, data model, etc.),

and the interactions between them. Therefore, it is possible to estab-

lish that the communications should be considered as a central

part of any ubiquitous system development: the specification of

the mechanisms supporting them should be approached before the

implementation stage, since they are a fundamental part of the sys-

206 |

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

tem that even constrains the functionalities and quality properties

that can be provided to the end user.

| 207

CHAPTER 5. MUSYC: AN MDA-BASED METHODOLOGY TO DEVELOP
UBIQUITOUS SYSTEMS ON THE BASIS OF THE COMMUNICATIONS

208 |

Chapter 6

Validation of MUSYC through
the Development of a
Middleware and a Software
Framework for Ubiquitous
Systems: BlueRose

This chapter describes how MUSYC can be applied to the

development of middleware for ubiquitous systems. This way, it

is shown that MUSYC, in addition to assist in the development of

ubiquitous systems, can also be specifically applied to develop mid-

dleware technologies that can be reused across different develop-

ments of multiple ubiquitous systems.

Firstly, it is described the MUSYC-based development of a

middleware called BlueRose. Afterwards, a software framework

(see Chapter 2, subsubsection 2.1.4.2) comprising a set of hot and

| 209

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR
UBIQUITOUS SYSTEMS: BLUEROSE

frozen spots is identified in BlueRose, which makes explicit the dif-

ferent supporting mechanisms that it provides to assist during the

implementation stages of a ubiquitous system. Furthermore, the

quality properties of BlueRose are also analyzed, and compared

with the quality properties of CORBA and ICE, which are two of

the most well-known and used middleware technologies.

To conclude, several real projects in which BlueRose has

been used are briefly described. These projects validate both the

practical feasibility of MUSYC and its applicability to the develop-

ment of supporting technologies (like middleware) that facilitate the

implementation of ubiquitous systems.

6.1. Applying MUSYC to the Devel-
opment of Middleware Solutions
for Ubiquitous Systems

MUSYC has been applied to the development of a middleware

for ubiquitous systems called BlueRose. The following subsections

describe the CS-CIM, US-PIM and US-PSM models associated with

this middleware. The QVT rules and CASE tools proposed in previ-

ous chapter assist in the transformation between the CS-CIM and the

US-PIM. The US-PSM is obtained through the adoption of specific

target computing platforms to be used by BlueRose middleware.

210 |

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR

UBIQUITOUS SYSTEMS: BLUEROSE

6.1.1. Communication Requirements Analysis

As a first step to develop BlueRose, the more general require-

ments of a middleware have been analyzed, without taking into con-

sideration the specific requirements of a middleware for ubiquitous

systems. In consequence, it has been considered that a middleware,

at a high abstraction level, is a software whose main objective is to

support the exchange of messages between different participants in

a communication system. To understand how this support is funda-

mentally achieved, the concepts related to distributed objects [87]

have been studied, since they are present in many traditional mid-

dleware solutions, like CORBA or RMI.

Distributed objects are separated into an interface (Object

Proxies), which resides in a local machine, and an implementation

(Object Servants), which is executed in a remote machine. Thus,

at CS-CIM level, it has been devised a “conversation” between

proxies and servants, involving the exchange of multiple mes-

sages. Therefore, at CS-CIM level, the communication is based on

message passing. Conceptually, this association between message

passing and a high abstraction perspective of the software-based

communications is consistent with some previous research works,

like [33], which also points-out that, at software level, any

implementation of a communication paradigm is fundamentally

based on message passing semantics.

| 211

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR
UBIQUITOUS SYSTEMS: BLUEROSE

The study of several middleware communication protocols,

associated with the traditional middleware technologies mentioned

in Chapter 2, Section 2.1.4.1, has allowed to identify the fundamen-

tal messages to be exchanged between proxies and servants:

Information Petition: The messages that are transferred to

make a request of information.

Information Supply: The messages that are transferred to pro-

vide the requested information.

To figure out the instantiation of the elements in the behavioral

view of the CS-CIM metamodel, it has been assumed that proxies

constantly request information to servants. If a servant requires

additional information from another servant, then it makes an ad-

ditional petition. In parallel, proxies may request information

to other proxies, in order to, for example, coordinate their activi-

ties, or to obtain information that was previously retrieved from any

servants by the target proxies. The middleware execution finalizes

when there are no other requests to make.

As it is specified in MUSYC, this behavior has been depicted

through a use case model in Figure 6.1, and through a BPMN 2.0

Choreography model in Figure 6.2. As it is explained in Chapter 5,

Subsubsection 5.2.2.2, there is a direct matching between a BPMN

212 |

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR

UBIQUITOUS SYSTEMS: BLUEROSE

choreography model and the elements in the behavioral view of the

CS-CIM metamodel, which allows to directly instantiate the behav-

ioral elements of the CS-CIM on the basis of a BPMN choreography

model.

Proxy Servant

Retrieval of
Information

Information
Petition

Information
Provision

Petition of
Additional

Information

<<include>>

<<include>>

A servant
makes petitions

of additional
information to

other actors with
a servant role

A proxy retrieves
information from
other actors with

a proxy role

Figure 6.1: A use case model representing the functionalities that
are carried out by proxies and servants in BlueRose middleware

To instantiate the structural elements of the CS-CIM, it has

been taken into consideration that a middleware protocol should, at

least, support information petition and information supply messages.

Also, these messages need to be transported through a channel that

is able to connect any proxies with any servants. Since, at CS-CIM

| 213

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR
UBIQUITOUS SYSTEMS: BLUEROSE

Proxy

Servant

Information
Petition XServant

Requires
Additional

Information?

Yes

No

Petition

+

Proxy

Proxy

Retrieval of
Information X

Request More
Information?

Yes

No

Petition

X
Close

Connection?

Yes

Servant

Servant

Petition of
Additional

Information

Petition

Information

Servant

Proxy

Information
Provision

Information

No

+

Information

Figure 6.2: The elements in the behavioral view of a CS-CIM sup-
porting the design of the BlueRose middleware, represented as a
BPMN 2.0 Choreography

level it is not appropriate to adopt any specific technology, it is as-

sumed that the channel is a broker, which is an abstraction that was

adopted in the CORBA specification to refer to any channel allowing

the distribution of information through a network [87].

Finally, the proxies should play a peer role, since they request

information, but they also wait for information petitions from other

proxies. However, servants play a passive role, since they only wait

for petitions from proxies in order to initiate their activities.

214 |

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR

UBIQUITOUS SYSTEMS: BLUEROSE

The instantiation of the concepts in the structural view of the

CS-CIM metamodel is represented in Figure 6.3 as a UML class

diagram.

BRBroker:Channel

BR:Protocol

Proxy:Participant
role = PEER

BlueRose:Communication
System

Servant:Participant
role = PASSIVE

InformationPetition
:Message

Information
:Message

1

1..* 1..*

1

Figure 6.3: The elements in the structural view of a CS-CIM sup-
porting the design of the BlueRose middleware, represented as a
UML class diagram

The whole devised CS-CIM for BlueRose is provided in Ap-

pendix VIII using the XMI standard notation.

| 215

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR
UBIQUITOUS SYSTEMS: BLUEROSE

6.1.2. Ubiquitous System Requirements Anal-
ysis

From the CS-CIM, it is possible to systematically obtain a

US-PIM, after applying the QVT transformation rules that were de-

scribed in Chapter 5, Section 5.3. The whole US-PIM for BlueRose

is provided in Appendix IX, in standard XMI notation (due to its size

in graphical notation). However, a set of excerpts from the US-PIM

are described below, in order to describe some of the most com-

pelling aspects of the transformation.

As it is shown in Figure 6.4, at US-PIM level, the BRProto-

col is transformed into a corresponding software protocol, and the

BRBroker is also transformed into a networking technology. The

servants are transformed into services (at CS-CIM level, they play

a passive role), and the proxies into applications and services (at

CS-CIM level, they have a peer role). A proxy service will be con-

sidered as a software artifact that is able to provide internal infor-

mation about a proxy application. Conversely, a proxy application

will be considered to be a software artifact that requests information

to servants or delivers information to other proxies (applications or

services).

The messages for information petition and supply are trans-

formed into requests and responses. Note that this transformation

involves that a petition is transformed into a petition request and a

216 |

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR

UBIQUITOUS SYSTEMS: BLUEROSE

petition response, and, similarly, a supply into an information re-

quest and an information response. This way, for each message

there is a confirmation of its reception. Consequently, for request-

ing information and delivering a response, BlueRose exchanges four

messages:

Petition request: the request of a piece of information.

Petition response: a confirmation of the reception of the re-

quest.

Information request: the information that was requested.

Information response: the confirmation of the correct delivery

of the information that was previously requested.

This behavior is similar to the operation mode of many com-

munication protocols, since it ensures the reliability of the com-

munications. For example, in TCP/IP, each message are separately

confirmed.

Note that the naming of the different requests and responses

that are automatically produced by the QVT transformation rules

may lead to some misunderstandings of the semantics. For instance,

the supply of information is called information request, and its de-

livery confirmation is called information response. This is a good

| 217

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR
UBIQUITOUS SYSTEMS: BLUEROSE

example of a model that should be refined after been systematically

produced by the transformation rules.

The QVT transformation rules also instantiate an event for

each information petition and supply. This way, it is possible to

deliver events from proxies or servant to notify that an information

was requested or delivered, or to notify any changes in their internal

status. To be able to deliver these events, there is an event handler

related to each proxy application, proxy service or servant. Further-

more, each of these software agents are associated with a discoverer

in order to be able to dynamically discover other software agents. In

consequence, BlueRose supports the communication functionalities

that should be present in a ubiquitous system: message exchanging,

event distribution and dynamic discovery.

Figure 6.5 depicts the transactions that are involved in each ac-

tivity that is supported in BlueRose, as it is specified in the US-PIM.

For example, a petition of information from a proxy application to a

servant involves the following transactions:

A discovery of the servant, in order to ensure the availability

of the service from the proxy application.

A notification of an event from the proxy application about its

intention to request some information.

218 |

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR

UBIQUITOUS SYSTEMS: BLUEROSE

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" ...>
 <pim:UbiquitousSystem name="BlueRose" channels="BRBroker"
protocols="BRProtocol">
 <agents xsi:type="pim:Service" name="ServantService"
eventhandler="ServantServiceEventHandler" exchanges="InformationEvent
InformationRequest InformationResponse InformationPetitionEvent
InformationPetitionRequest InformationPetitionResponse"
discoverer="ServantServiceDiscoverer" isRequestedBy="ProxyApp"
connectsTo="ProxyService ServantService" connectedBy="ProxyService
ServantService"/>
 <agents xsi:type="pim:Application" name="ProxyApp"
eventhandler="ProxyAppEventHandler" exchanges="InformationEvent
InformationRequest InformationResponse InformationPetitionEvent
InformationPetitionRequest InformationPetitionResponse"
discoverer="ProxyAppDiscoverer" requestsServices="ServantService
ProxyService"/>
 <agents xsi:type="pim:Service" name="ProxyService"
eventhandler="ProxyServiceEventHandler" exchanges="InformationEvent
InformationRequest InformationResponse InformationPetitionEvent
InformationPetitionRequest InformationPetitionResponse"
discoverer="ProxyServiceDiscoverer" isRequestedBy="ProxyApp"
connectsTo="ServantService ProxyService" connectedBy="ProxyService
ServantService"/>
 ...
 </pim:UbiquitousSystem>
 ...
 <pim:Event name="InformationEvent" exchangedFrom="ServantService
ProxyApp ProxyService" .../>
 ...
 <pim:Event name="InformationPetitionEvent" .../>
 ...
 <pim:Request name="InformationPetitionRequest"
exchangedFrom="ServantService ProxyApp ProxyService" medium="BRBroker"
conforms="BRProtocol" .../>
 ...
 <pim:Response name="InformationResponse" exchangedFrom="ServantService
ProxyApp ProxyService" medium="BRBroker" conforms="BRProtocol" .../>
 <pim:SoftwareProtocol name="BRProtocol" system="BlueRose"
rules="BRBroker" .../>
 <pim:NetworkingTechnology name="BRBroker" system="BlueRose" ...
conforms="BRProtocol”/>
 ...
</xmi:XMI>

Figure 6.4: Some structural elements, represented in XMI notation,
of the US-PIM that results from the transformation of the BlueRose
CS-CIM with the proposed QVT rules

The petition of information from the proxy application to the

servant. Note that the confirmation of the petition is not de-

picted in the sample figure. The reason is that in the US-PIM

model, each request has an associated response, and its deliv-

| 219

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR
UBIQUITOUS SYSTEMS: BLUEROSE

ery is implicitly considered as part of the information transac-

tion.

A notification from the proxy application that activates the fol-

lowing activity to be carried out, as specified in the choreog-

raphy.

The reason of not providing a direct information provision to

the proxy application is that the servant may require to access other

servants to obtain the required information, as it was illustrated in

Figure 6.2. Also, a discovery of the servant is necessary, since the

proxy application may be executing in different physical environ-

ments, and it might be possible that in some of them the target ser-

vant could not be available. The multiple notifications provide infor-

mation to different software agents about the information requests

or supplies that are carried out by the other software agents. This

way, BlueRose middleware supports the monitoring of the different

activities that are executed in the ubiquitous system.

Other two closely related examples are the exchange of infor-

mation between proxy applications, and from a proxy applica-

tion to a proxy service. In the first case, to exchange information

between proxy applications, an event distribution is only considered,

since, as it was specified in Chapter 5, Section 5.3, this is the only

way of exchanging information between applications in the pro-

220 |

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR

UBIQUITOUS SYSTEMS: BLUEROSE

posed US-PIM. However, in the exchange of information between

a proxy application and a proxy service, two message exchanging

activities are considered: one for requesting the information and an-

other one to provide it. In contrast with the request from a proxy

application to a servant, the information supply can be directly car-

ried out by the target proxy service, since it is meant to contain all

the information related to its proxy application counterpart.

Finally, the different gateways are treated as events that need

to be notified under certain conditions to activate the corresponding

activities of the choreography. Figure 6.6 illustrates some of the

events supported by BlueRose, and directly related to the gateways

of the choreography depicted in Figure 6.2.

| 221

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR
UBIQUITOUS SYSTEMS: BLUEROSE

 ...
 <choreographies participants="ProxyApp ProxyService ServantService" ...
startingEvent="InitialEvent" endingEvents="EndEvent">
 <activities name="Proxy2ServantRequest0" ...
startingMessages="Proxy2ServantRequest0DefaultStartingEvent
Proxy2ServantRequest0StartingEvent">
 <transactions xsi:type="pim:DiscoveryActivity" ...
sourceParticipant="ProxyApp" targetParticipant="ServantService"/>
 <transactions xsi:type="pim:EventDistributionActivity" ...
sourceParticipant="ProxyApp" relatedEvent="InformationPetitionEvent"/>
 <transactions xsi:type="pim:MessageExchangingActivity" ...
sourceParticipant="ProxyApp" targetParticipant="ServantService"
message="InformationPetitionRequest"/>
 <transactions xsi:type="pim:EventDistributionActivity" ...
sourceParticipant="ProxyApp"
relatedEvent="ServantAdditionalRequestGatewayDistributionActivityStartingEvent"/>
 </activities>
 ...
 <activities name="Proxy2ProxyRequest0" ...
startingMessages="Proxy2ProxyRequest0DefaultStartingEvent
Proxy2ProxyRequest0StartingEvent">
 <transactions xsi:type="pim:DiscoveryActivity" ...
sourceParticipant="ProxyApp" targetParticipant="ProxyApp"/>
 <transactions xsi:type="pim:EventDistributionActivity"
sourceParticipant="ProxyApp" relatedEvent="InformationPetitionEvent"/>
 <transactions xsi:type="pim:EventDistributionActivity"
relatedEvent="InformationEvent"/>
 <transactions xsi:type="pim:EventDistributionActivity" ...
sourceParticipant="ProxyApp"
relatedEvent="EndProxyRequestsGatewayDistributionActivityStartingEvent"/>
 </activities>
 <activities name="Proxy2ProxyRequest1" ...
startingMessages="Proxy2ProxyRequest1DefaultStartingEvent
Proxy2ProxyRequest1StartingEvent">
 <transactions xsi:type="pim:DiscoveryActivity" ...
sourceParticipant="ProxyApp" targetParticipant="ProxyService"/>
 <transactions xsi:type="pim:EventDistributionActivity" ...
sourceParticipant="ProxyApp" relatedEvent="InformationPetitionEvent"/>
 <transactions xsi:type="pim:MessageExchangingActivity" ...
sourceParticipant="ProxyApp" targetParticipant="ProxyService"
message="InformationPetitionRequest"/>
 <transactions xsi:type="pim:EventDistributionActivity" ...
sourceParticipant="ProxyService" relatedEvent="InformationEvent"/>
 <transactions xsi:type="pim:MessageExchangingActivity" ...
sourceParticipant="ProxyService" targetParticipant="ProxyApp"
message="InformationResponse"/>
 <transactions xsi:type="pim:EventDistributionActivity" ...
sourceParticipant="ProxyApp"
relatedEvent="EndProxyRequestsGatewayDistributionActivityStartingEvent"/>
 </activities>
 ...

Figure 6.5: Some behavioral elements, represented in XMI notation,
of the US-PIM that results from the transformation of the BlueRose
CS-CIM with the proposed QVT rules

222 |

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR

UBIQUITOUS SYSTEMS: BLUEROSE

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" ...>
 ...
 <pim:Conditional
name="ParallelEndGatewayDistributionActivityConditionalStartingEvent" ...
/>
 <pim:Conditional
name="ParallelEndGatewayDistributionActivityConditionalStartingEvent" ...
/>
 <pim:Conditional
name="Servant2ServantRequest0ConditionalStartingEvent" .../>
 <pim:Default name="Proxy2ServantRequest1DefaultStartingEvent" .../>
 <pim:Default name="Proxy2ServantRequest0DefaultStartingEvent" .../>
 <pim:Default name="Proxy2ProxyRequest2DefaultStartingEvent" .../>
 <pim:Default name="Proxy2ProxyRequest1DefaultStartingEvent" .../>
 <pim:Default name="Proxy2ProxyRequest3DefaultStartingEvent" .../>
 <pim:Default name="Proxy2ProxyRequest0DefaultStartingEvent" .../>
 <pim:Default name="Servant2ProxyProvision0DefaultStartingEvent" .../>
 <pim:Default name="Servant2ProxyProvision1DefaultStartingEvent" .../>
 <pim:Sequential name="EndEventDistributionActivityStartingEvent"/>
 <pim:Sequential
name="ParallelStartGatewayDistributionActivityStartingEvent"/>
 <pim:Sequential name="Proxy2ProxyRequest2StartingEvent"/>
 <pim:Sequential name="Proxy2ProxyRequest1StartingEvent"/>
 <pim:Sequential name="Proxy2ProxyRequest3StartingEvent"/>
 <pim:Sequential name="Proxy2ProxyRequest0StartingEvent"/>
 <pim:Sequential name="Proxy2ServantRequest1StartingEvent"/>
 <pim:Sequential name="Proxy2ServantRequest0StartingEvent"/>
 <pim:Sequential
name="EndProxyRequestsGatewayDistributionActivityStartingEvent"/>
 <pim:Sequential
name="EndProxyRequestsGatewayDistributionActivityStartingEvent"/>
 <pim:Sequential
name="EndProxyRequestsGatewayDistributionActivityStartingEvent"/>
 <pim:Sequential
name="EndProxyRequestsGatewayDistributionActivityStartingEvent"/>
 <pim:Sequential
name="ServantAdditionalRequestGatewayDistributionActivityStartingEvent"/>
 <pim:Sequential
name="ServantAdditionalRequestGatewayDistributionActivityStartingEvent"/>
 <pim:Sequential
name="CloseConnectionGatewayDistributionActivityStartingEvent"/>
 <pim:Sequential
name="CloseConnectionGatewayDistributionActivityStartingEvent"/>
 <pim:Sequential
name="ServantAdditionalRequestGatewayDistributionActivityStartingEvent"/>
 ...
</xmi:XMI>

Figure 6.6: An excerpt of the US-PIM in XMI standard notation
representing the different conditional events that are delivered to ac-
tivate the corresponding activities in BlueRose

| 223

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR
UBIQUITOUS SYSTEMS: BLUEROSE

6.1.3. Implementation

Transformation rules can be applied again to derive

US-PSMs from the BlueRose US-PIM. Specifically, several

US-PSM for BlueRose have been proposed, in order to support

Java, C#, Python and Objective-C programming languages. For

these languages the elements in the metamodel will be, respectively,

instances of java.lang.Class, System.Type, type and Class. UML

profiles could be used to map the BlueRose US-PIM to other

platforms.

The resulting elements from the transformation to the US-

PSM are nearly equivalent to those in the US-PIM. However, for

each class in the US-PIM, there are two classes in the US-PSM.

One class is abstract and the other one represents its implementation

(Impl classes). This separation clearly differentiates the abstract ele-

ments that are directly derived from the PIM from the elements that

need to be implemented by means of specific technologies (other

middleware, communication protocols, etc.). The result of the trans-

formation from the proxy application, proxy service and servant el-

ements in the US-PIM is represented in Figure 6.7, in standard XMI

format.

The adopted target software protocol has been IceP, which is

the protocol of ICE middleware (see Chapter 2, Subsection 2.1.4.1).

224 |

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR

UBIQUITOUS SYSTEMS: BLUEROSE

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmi:version="2.0" ...>
 ...
 <agents xsi:type="pim:Application"
isAbstract="true" name="AbstractProxyApp"/>
 <agents xsi:type="pim:Application"
extendsFrom="AbstractProxyApp"
name="ProxyAppImpl"/>
 <agents xsi:type="pim:Service"
isAbstract="true"
name="AbstractServantService"/>
 <agents xsi:type="pim:Service"
extendsFrom="AbstractServantService"
name="ServantServiceImpl"/>
 ...
</xmi:XMI>

Figure 6.7: The XMI result of transforming the applications and
services in the US-PIM to the corresponding elements in the US-
PSM

The reason is due to the efficiency of the protocol and the availability

of open-source implementations for all the target programming lan-

guages [130]. For the BRBroker, a specific networking technology

supporting Wi-Fi and BlueTooth standards has been implemented.

A detailed description of this broker will be provided in the next

section. Finally, the discoverers are assumed to operate accord-

ing to the IETF’s Zeroconf standard (http://www.zeroconf.org),

whose open-source implementation is also available for the target

programming languages.

Additionally, for each programming language, a code gener-

ator has been used to produce template programming code. In con-

sequence, as a result of applying MUSYC and adopting a set of

| 225

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR
UBIQUITOUS SYSTEMS: BLUEROSE

specific target computing platforms, an operative middleware tech-

nology is obtained, implemented in specific programming languages

and with specific communication technologies that are combined in

an integrated manner.

Moreover, the BlueRose middleware can support the devel-

opment of ubiquitous systems using specific technologies. There-

fore, it serves as a complement for the final implementation stages of

MUSYC. This way, it is shown that MUSYC is flexible enough to

assist in the development of technologies that are able to help in

the engineering processes associated with the MUSYC method-

ology itself. Thus, it is possible to make proposals to feed back or

complement MUSYC, by applying MUSYC itself.

6.2. BlueRose as a Software Frame-
work for the Development of
Ubiquitous Systems

As it was mentioned in Chapter 2, Subsection 2.1.4.2, middle-

ware technologies incorporate software frameworks to facilitate im-

plementation tasks. This section makes explicit the software frame-

work that is intrinsic to BlueRose, which may assist in the integra-

tion of different communication-related technologies, and help

during the implementation of the structure and behavior of a

226 |

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR

UBIQUITOUS SYSTEMS: BLUEROSE

ubiquitous system designed through MUSYC.

The framework is described in the following subsections

through the set of frozen and hot spots (see Chapter 2, 2.1.4.2)

that have been identified in BlueRose. Moreover, the core

implementation of BlueRose, which was presented in previous

section, is enriched and completed with new elements to support the

“inversion of control”1, or to even support the integration of new

communication-related technologies to the existing middleware.

6.2.1. Structural Elements

The following subsections describe the elements of the soft-

ware framework that have been identified to support message ex-

changing, event distribution and dynamic discovery.

6.2.1.1. Message Exchanging

Integrating different protocols and technologies usually

involves higher development complexity and lower software main-

tainability and reusability. In order to overcome these drawbacks at

implementation level, new elements have been incorporated to the

initial BlueRose design. These elements are depicted in Figure 6.8

1Note that the BlueRose design has been extended using MUSYC, but a de-
scription of the whole development process is not provided, only the results at
US-PIM level

| 227

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR
UBIQUITOUS SYSTEMS: BLUEROSE

through a UML class diagram.

10..*

sends_request/
receives_response

-openConnection(userID:string, parameters:map) : void
-isConnectionOpened(userID:string):boolean
-closeConnection(userID:string):void
-closeAllConnections():void
-write(userID:string, m:Message):boolean
-read(userID:string):pair<boolean,Message>
-broadcast(m:Message):void
-isBlockantConnection():boolean
-isAvailable():boolean
-isAvailable(userID:string):boolean
-isConnectionOriented():boolean
-setAsServant(multiplexID:string):void
-waitForConnections():void

<<interface>>
CommunicationInterface

-marshall(writer:stream):void
-unmarshall(reader:stream):void

Marshallable :
SoftwareMessage

-runMethod(userID:string,
method:string,
args:array<Marshallable>) :
array<Marshallable>

Servant

BRBroker

-sendRequest(servantID:string,
method:string,
args:array<Marshallable>):integer
-receiveReply(requestID:integer):
array<Marshallable>
-receiveCallback(requestID:integer,
amc:AsyncMethodCallback):void

ProxyApplication

1..*

-sendRequest(servantID:string,
method:string,
args:array<Marshallable>):integer
-receiveReply(requestID:integer):
array<Marshallable>
-receiveCallback(requestID:integer,
amc:AsyncMethodCallback):void

ProxyService

provides_information_about

1

1

can_send

0..* 1

Figure 6.8: New elements incorporated to the BlueRose design and
related to the message exchanging functionality, depicted as a UML
class diagram

Firstly, a new kind of software message has been incorporated:

Marshallable. A marshallable message can contain any type of in-

formation, without any constraints about the semantics of its con-

tents or delivery mode. This way, BlueRose is not restrained to the

use of messages related to events, information requests or informa-

tion supplies. For example, it can be adapted to provide documents,

in order to support the DCM communication paradigm. Addi-

tionally, proxies and servants are considered as specializations of

228 |

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR

UBIQUITOUS SYSTEMS: BLUEROSE

marshallable messages. This way, it is possible to even transfer

proxies and servants across the network, in order to, for example,

implement mobility of code.

Consequently, the integration of multiple protocols involves

the specification of different implementations of the messages

described in previous section (information petition request,

information petition response, information request and information

response), plus the specification of the codification format to

marshal the different proxies and servants. Therefore, in BlueRose,

the messages can be considered as a hot spot, since they need

to be specialized by the developer according to the technical

specifications of the adopted protocols.

Moreover, the treatment of the messages as hot spots increases

the flexibility of the software framework attached to BlueRose, since

it enables the incorporation of different communication protocols

into the same software solution, while promoting a lower cohesion

between the use of specific protocols and the specific implementa-

tions of the proxies and servants.

The BRBroker can be considered as a frozen spot, since it

provides an unalterable part of the software framework that supports

the exchange of messages through heterogeneous networking tech-

nologies. Therefore, it is a key element to allow both the integration

| 229

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR
UBIQUITOUS SYSTEMS: BLUEROSE

and homogeneous management of different networking technolo-

gies.

However, a new element, which behaves as a hot spot, has

been associated with the BRBroker: Communication interfaces.

These interfaces represent the different networking technologies that

can be supported by the broker, and can be dynamically added to it

as needed by the developer. Therefore, it is possible to integrate

new networking technologies to the current BlueRose base imple-

mentation. In consequence, the general behavior of the BRBroker

is depicted in Figure 6.9 as a UML sequence diagram, and can be

summarized as follows:

1. The BRBroker receives a message from a source software

agent (for instance, an application).

2. The attributes associated with the message (operation mode,

number of recipients and type of message) are analyzed by

the broker.

3. The broker makes use of a specific implementation of a com-

munication interface that is appropriate to deliver the message

(e.g., the interface that might be optimized for that type of

message).

4. The implementation of the communication interface sends it

230 |

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR

UBIQUITOUS SYSTEMS: BLUEROSE

to the corresponding receiver/s.

Sender BRBroker a:Communication
InterfaceImpl

b:Communication
InterfaceImpl

Receiver

send(m:message, attr:attributes)

extract_attrs(attr:attributes)

ALT

[a_is_an_appropriate_interface]

[attributes empty]

[else]

destroy(m:message)
e:error

deliver_to_b(m:message)

deliver_to_a(m:message)

send(m:message)

send(m:message)

Figure 6.9: Run-time operation of the proposed BRBroker, depicted
as a UML sequence diagram

Additionally, the BRBroker can be considered to provide a

point of “inversion of control” to the software to be developed using

BlueRose, since it is in charge of appropriately using the implemen-

tations of the communication interfaces provided by the develop-

ers. The inversion of control is, by the way, a key functionality that

should be provided by any software framework (see Chapter 2, Sub-

section 2.1.4.2).

Finally, both the proxies and servants can be considered as

hot spots, since they are a basis that needs to be specialized and

implemented according to the specific requirements of any software

that is developed using BlueRose.

| 231

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR
UBIQUITOUS SYSTEMS: BLUEROSE

6.2.1.2. Event Distribution

In the proposal of the US-PIM metamodel it is specified that

each event has associated semantics in the form of instances of top-

ics. Therefore, the topic element is a hot spot that can be adapted to

the requirements of the ubiquitous system to be implemented.

However, in order to retrieve information about the topics, and

their associations to the different events that might be distributed

across the network, a semantic servant has been added to the initial

design of BlueRose. This servant is represented in Figure 6.10 as

a UML class diagram. As it is possible to observe in that figure,

the servant has a public interface that allows to retrieve information

about the hierarchy of the topics and their semantic properties (their

constraints, relations to other topics, etc.). In consequence, it is a

frozen spot, since it has a fixed behavior that is not meant to be

modified by developers.

Servant

+hierarchy(topic:Topic) : tree<Topic>
+properties(topic:Topic) : array<EventNode>
+getAllTopics() : array<Topic>

SemanticServant

Figure 6.10: The semantic servant present in the BlueRose design,
depicted as a UML class diagram

Events are also hot spots, since there can be specialized im-

232 |

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR

UBIQUITOUS SYSTEMS: BLUEROSE

plementations to deal with the notification of any important occur-

rences related to the execution of the ubiquitous system to be devel-

oped. Nonetheless, the event handler is a frozen spot that manages

the delivery of each event and the subscriptions of the proxies or

servants to the notification of certain events.

As it has been mentioned before in Chapter 4, Section 4.2, the

subscriptions are modeled in the US-PIM through event listeners.

Thus, the different event listeners are hot spots whose implementa-

tions can be specialized to carry out any specific actions whenever

a specific event is received. Similarly, the predicates related to each

event listener are considered hot spots that represent any conditions

associated with each event listener, so as to filter the events to be

received by that event listener.

In consequence, the event handler provides “inversion of con-

trol” in relation to the event listeners and predicates, since it is in

charge of executing the appropriate event listeners whenever their

associated predicate is satisfied.

6.2.1.3. Dynamic Discovery

In ubiquitous systems, how software agents are discovered de-

pends specifically on the underlying technology (i.e., if it supports

broadcasts and/or if it provides a method for discovering nearby

| 233

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR
UBIQUITOUS SYSTEMS: BLUEROSE

software agents, like BlueTooth or Wi-Fi). Therefore, the discov-

erers are considered as hot spots in the software framework. More-

over, the discovery listeners need to be specialized to carry out the

actions that are meant to implement in each concrete ubiquitous sys-

tem to be developed. Hence, they are also hot spots.

6.2.2. Behavioral Elements

The software agent choreography of BlueRose is a frozen

spot, since it consists on the execution of the different activities that

were described in previous section. Nonetheless, the communica-

tion activities associated with the choreography can be specialized

to carry out the different tasks related to the different specializations

of the proxies and servants that may exist in the ubiquitous system

to be developed. Anyhow, the elemental communication activities

are meant to be fixed (they always behave as it was described in the

previous section) and, consequently, they are frozen spots.

The choreography also provides “inversion of control” in rela-

tion to the activities to be executed in a ubiquitous system. Thereby,

the software framework defines through the choreography a system-

atic way of executing the different activities that are associated with

the ubiquitous system to be developed.

Finally, the gateways are hot spots, since they are meant to

234 |

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR

UBIQUITOUS SYSTEMS: BLUEROSE

be specialized to activate the different communication activities that

are implemented by the developer.

6.3. Quality Attributes of BlueRose

The quality attributes of BlueRose have been identified in

the following subsections using the international quality standard

ISO/IEC 25010:2011 [54]2.

In the first subsection, the performance efficiency of BlueRose

is measured through quantitative metrics, and by comparing the

results with some well-known middleware solutions. In the last sub-

section, the level of accomplishment of some of other quality at-

tributes is described through qualitative observations, since there are

no conventions to measure the degree of fulfillment of those quality

attributes [23].

6.3.1. Performance Efficiency

The performance efficiency is the degree to which BlueRose

provides appropriate performance, relative to the amount of

resources used, under stated conditions. It can be quantitatively

measured using benchmarks, in order to obtain information

2The definitions of the different quality attributes to be mentioned are directly
extracted from the ISO/IEC 25010:2011 standard [54]

| 235

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR
UBIQUITOUS SYSTEMS: BLUEROSE

about the time behavior and resource utilization of the software.

However, benchmarks do not offer absolute measurements, instead,

their results need to be compared against the results obtained

from applying the same benchmarks to other similar software.

In this case, BlueRose has been compared against ICE and

CORBA, since they are well-known middleware technologies that

are comparable to BlueRose in terms of provided functionalities.

The benchmark consists of creating N object proxies and de-

stroying them, in order to test the amount of memory that is used

by those proxies. After the destruction, one object proxy is created,

and N messages containing two numbers are sent to a service. The

service returns the sum of both number to the proxy. Afterwards, N

messages are again sent to the same service, this time including an

string that contains “hello world ñññáéíóù!!!”. The idea is to test

the amount of time that is needed to send 2N messages, in order

to obtain the average throughput (messages per second) of each

middleware. Moreover, the content of the messages is intended to

test the average CPU use that is needed to code and decode num-

bers and complex strings (including non-ASCII symbols), which are

very commonly used types of data. Finally the N value has been var-

ied from 1.000 to 100.000, so as to study how the different metrics

change when the N is gradually increased.

The benchmark has a similar implementation in all the studied

236 |

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR

UBIQUITOUS SYSTEMS: BLUEROSE

middleware solutions, and no optimizations have been applied to any

of them. The benchmark has been executed, in all the cases, 10 times

and in a machine with the following characteristics: Ubuntu 13.10,

Intel Core i5 1.8GHZ (dual core) CPU, 8GB RAM and a Solid-State

Disk (SSD). Also, the last versions of each middleware (as of March,

2014) have been used, all of them implemented in C++3, and com-

piled using the same compiler flags for code optimization. Addition-

ally, the tests have been made using the loopback communication in-

terface (the communication interface that directly references to the

local machine), in order to avoid any mis-measurements related to

the status of a networking interface at a specific moment.

The results are presented in Figures 6.11, 6.12, 6.13 and 6.14.

As it is possible to observe in those charts, BlueRose has a bigger

throughput than ICE and CORBA, thus using less time to send the

same amount of messages. However, ICE uses less memory than

BlueRose, whose memory footprint is similar to CORBA. In the

server side, again, ICE uses less memory, since it requires 432KB to

execute the service, whereas BlueRose and CORBA require, respec-

tively, 484KB and 552KB. Finally, BlueRose requires much more

CPU than CORBA and ICE, which involves that, probably, the cur-

rent implementation of the codification and decodification of mes-

sages should be optimized in future versions.

3CORBA is an specification, but the OmniORB C++ implementation of that
specification has been used for the benchmark

| 237

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR
UBIQUITOUS SYSTEMS: BLUEROSE

To conclude, BlueRose is comparable in terms of per-

formance efficiency to CORBA and ICE, being better in some

aspects (throughput) and worse in others (memory and CPU

use). This way, it is possible to assess that MUSYC is able to

produce middleware solutions that are, at least, similar in terms of

efficiency to other middleware solutions. However, the main benefit

of using MUSYC is that the obtained middleware has a direct

match with several abstract models whose design can be easily

extended in order to accommodate future required functionalities or

communication-related technologies.

Ti
m

e
(m

s)

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

22.000

24.000

26.000

Input Number
1.000 2.000 5.000 10.000 20.000 50.000 100.000

BlueRose OmniORB 4.1.7 ICE 3.5.1

M
em

or
y

(M
B)

0
3
6
9

12
15
18
21
24
27
30
33
36
39
42
45
48

Input Number
1.000 2.000 5.000 10.000 20.000 50.000 100.000

BlueRose OmniORB 4.1.7 ICE 3.5.1

Av
er

ag
e

CP
U

Us
e

0% 12% 24% 36% 48% 60%

18%

10%

60%

BlueRose OmniORB 4.1.7 ICE 3.5.1

Av
er

ag
e

Th
ro

ug
hp

ut
 (M

es
sa

ge
s

pe
r S

ec
on

d)

0,00 1.000,00 2.000,00 3.000,00 4.000,00 5.000,00 6.000,00 7.000,00

3.943,906

6.029,389

6.483,643

BlueRose OmniORB 4.1.7 ICE 3.5.1Figure 6.11: A comparison of the amount of time that is needed by
CORBA, ICE and BlueRose to complete the same benchmark

238 |

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR

UBIQUITOUS SYSTEMS: BLUEROSE

Ti
m

e
(m

s)

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

22.000

24.000

26.000

Input Number
1.000 2.000 5.000 10.000 20.000 50.000 100.000

BlueRose OmniORB 4.1.7 ICE 3.5.1

M
em

or
y

(M
B)

0
3
6
9

12
15
18
21
24
27
30
33
36
39
42
45
48

Input Number
1.000 2.000 5.000 10.000 20.000 50.000 100.000

BlueRose OmniORB 4.1.7 ICE 3.5.1

Av
er

ag
e

CP
U

Us
e

0% 12% 24% 36% 48% 60%

18%

10%

60%

BlueRose OmniORB 4.1.7 ICE 3.5.1

Av
er

ag
e

Th
ro

ug
hp

ut
 (M

es
sa

ge
s

pe
r S

ec
on

d)

0,00 3.250,00 6.500,00 9.750,00 13.000,00

7.887,813

12.058,778

12.967,285

BlueRose OmniORB 4.1.7 ICE 3.5.1

Figure 6.12: A comparison of the average throughputs (messages
per second) of CORBA, ICE and BlueRose

Ti
m

e
(m

s)

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

22.000

24.000

26.000

Input Number
1.000 2.000 5.000 10.000 20.000 50.000 100.000

BlueRose OmniORB 4.1.7 ICE 3.5.1

M
em

or
y

(M
B)

0
3
6
9

12
15
18
21
24
27
30
33
36
39
42
45
48

Input Number
1.000 2.000 5.000 10.000 20.000 50.000 100.000

BlueRose OmniORB 4.1.7 ICE 3.5.1

Av
er

ag
e

CP
U

Us
e

0% 12% 24% 36% 48% 60%

18%

10%

60%

BlueRose OmniORB 4.1.7 ICE 3.5.1

Av
er

ag
e

Th
ro

ug
hp

ut
 (M

es
sa

ge
s

pe
r S

ec
on

d)

0,00 1.000,00 2.000,00 3.000,00 4.000,00 5.000,00 6.000,00 7.000,00

3.943,906

6.029,389

6.483,643

BlueRose OmniORB 4.1.7 ICE 3.5.1 Figure 6.13: A comparison of the amount of memory that is needed
by CORBA, ICE and BlueRose to complete the same benchmark

| 239

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR
UBIQUITOUS SYSTEMS: BLUEROSE

Ti
m

e
(m

s)

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

22.000

24.000

26.000

Input Number
1.000 2.000 5.000 10.000 20.000 50.000 100.000

BlueRose OmniORB 4.1.7 ICE 3.5.1

M
em

or
y

(M
B)

0
3
6
9

12
15
18
21
24
27
30
33
36
39
42
45
48

Input Number
1.000 2.000 5.000 10.000 20.000 50.000 100.000

BlueRose OmniORB 4.1.7 ICE 3.5.1

Av
er

ag
e

CP
U

Us
e

0% 12% 24% 36% 48% 60%

18%

10%

60%

BlueRose OmniORB 4.1.7 ICE 3.5.1

Av
er

ag
e

Th
ro

ug
hp

ut
 (M

es
sa

ge
s

pe
r S

ec
on

d)

0,00 1.000,00 2.000,00 3.000,00 4.000,00 5.000,00 6.000,00 7.000,00

3.943,906

6.029,389

6.483,643

BlueRose OmniORB 4.1.7 ICE 3.5.1

Figure 6.14: A comparison of the average CPU use of CORBA, ICE
and BlueRose to complete the same benchmark

6.3.2. Additional Quality Attributes

6.3.2.1. Functional Suitability

The functional suitability is the degree to which BlueRose pro-

vides functions that meet stated and implied needs when the soft-

ware is used under specified conditions. In relation to that, BlueRose

is able to provide the communication functionalities of a ubiqui-

tous system (message exchanging, event distribution and dynamic

discovery) at implementation level. It also includes mechanisms to

implement communication-related activities (i.e., the set of commu-

nication activities related to the choreography). Therefore, it is able

240 |

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR

UBIQUITOUS SYSTEMS: BLUEROSE

to support both the specification of the structure and behavior of

a ubiquitous system, which are, ultimately, the objectives that are

needed to be accomplished by the developer of a ubiquitous system.

Moreover, the functional suitability of BlueRose is compara-

ble to other existing, well-known and established middleware so-

lutions, like CORBA or ICE, since it provides similar mechanisms

to support the communication functionalities that are provided by

those middleware solutions.

6.3.2.2. Reliability

The reliability is the degree to which BlueRose can maintain

a specified level of performance when used under specified condi-

tions. The accomplishment of this quality attribute is directly related

to the availability, fault tolerance and recoverability of BlueRose.

The availability is the degree to which BlueRose is operational and

available when required for use. The fault tolerance is the degree

to which BlueRose can maintain a specified level of performance

in cases of software faults or of infringement of its specified inter-

face. Finally, the recoverability is the degree to which BlueRose can

re-establish a specified level of performance and recover the data

directly affected in the case of a failure.

The availability has been taken into consideration even during

| 241

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR
UBIQUITOUS SYSTEMS: BLUEROSE

the definition of the US-PIM metamodel, since its design pursues the

inclusion of distributed elements that are replicated in each applica-

tion or service to be instantiated. The main benefit of this design

choice is that the applications and services supported by BlueRose

are not avoided to carry out their tasks in certain scenarios with low

or null long-range connectivity possibilities (e.g., no internet con-

nection), which could avoid them to connect to any centralized ele-

ment. Consequently, the availability of the applications and services

developed using BlueRose is increased.

An example of those facts is the event handler, which has been

defined as a software component that should be replicated in each

software agent, instead of being a centralized service, as it is pre-

sented in many middleware solutions, like CORBA (the Event Ser-

vice) or ICE (the ICE Storm service).

The fault tolerance and recoverability attributes highly depend

on the specific implementation of the software supporting the net-

working technologies and protocols provided by BlueRose. Hence,

BlueRose can be considered fault tolerant or recoverable only if the

implementations of the networking technologies and software pro-

tocols have those attributes. In consequence, BlueRose can only be

considered as reliable under those technical conditions. Nonethe-

less, the current implementation of BlueRose includes mechanisms

to support fault tolerance and recoverability at networking technol-

242 |

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR

UBIQUITOUS SYSTEMS: BLUEROSE

ogy and protocol levels. Thereby, that implementation can be effec-

tively considered as reliable.

6.3.2.3. Operability

The operability is the degree to which BlueRose can be un-

derstood, learned, used and attractive to the user, when used under

specified conditions. In this case, the design of BlueRose includes

several notions, like proxy and servant, that can be found in other

middleware solutions, which contributes to its easier comprehension

by experts in the middleware field.

Moreover, the BlueRose design is based on the CS-CIM and

US-PIM metamodels that were explained in previous chapters. This

way, the elements in BlueRose can be easily traced back to some

more abstract notions that are present in those metamodels. In con-

sequence, it is easier to understand why each element is present in

BlueRose and what are the objectives of each of them.

Finally, BlueRose contributes to an homogeneous use of

heterogenous communication-related technologies, which should

be helpful in practice to make an appropriate use of them without

tackling with their technical particularities.

| 243

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR
UBIQUITOUS SYSTEMS: BLUEROSE

6.3.2.4. Security

The security is the protection of system items from accidental

or malicious access, use, modification, destruction, or disclosure. It

is closely related to the confidentiality, integrity, non-repudiation,

accountability (The degree to which the actions of a software agent

can be traced uniquely to it) and authenticity.

The security is related to the design and specific implementa-

tion of all the elements of the middleware. Therefore, in this case,

it is not possible to make any assessments about BlueRose in terms

of security, since both secure or insecure protocols and networking

technologies could be integrated into it. However, in the current im-

plementation, there is an optional implementation of the BRBroker

that encrypts all the messages before sending them according to the

different protocols and networking technologies, and checks their

authenticity and integrity after receiving them. In consequence, a

certain level of security is achieved.

6.3.2.5. Compatibility

The compatibility is the ability of two or more software com-

ponents to exchange information and/or to perform their required

functions while sharing the same hardware or software environment.

BlueRose is able to integrate several implementations of pro-

244 |

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR

UBIQUITOUS SYSTEMS: BLUEROSE

tocols and networking technologies in order to ensure that the differ-

ent applications and services can exchange information. Moreover,

BlueRose can co-exist and interoperate with other middleware solu-

tions if their associated protocols and networking technologies are

integrated into it. In consequence, BlueRose could achieve a good

level of compatibility if these technical conditions are satisfied.

6.3.2.6. Maintainability

The maintainability is the degree to which BlueRose can be

modified. Modifications may include corrections, improvements or

adaptation of the software to changes in environment, and in require-

ments and functional specifications.

The design of BlueRose can be modified or extended by re-

applying MUSYC, and modifying the CS-CIM, US-PIM and US-

PSM as needed. Moreover, the implementation of BlueRose in-

cludes mechanisms to integrate new technologies, that could be in-

tended to support new functionalities, include corrections or im-

prove the behavior of the middleware. Thereby, BlueRose can be

considered as mantainable.

| 245

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR
UBIQUITOUS SYSTEMS: BLUEROSE

6.3.2.7. Transferability

The transferability is the degree to which BlueRose can

be transferred from one environment to another. This property

is achieved in BlueRose through the fulfillment of the following

sub-characteristics:

Portability: The ease with which a system or component can

be transferred from one hardware or software environment

to another. In BlueRose the portability has been achieved by

implementing the middleware using several programming

languages, and testing the compatibility of the different codes

in multiple operating systems (Windows, MacOSX, Ubuntu

Linux, iOS and Android). Moreover, some of the target

programming languages include portability mechanisms (i.e.,

Java, Python and C#), like virtual machines or interpreters,

which reinforces the portability of the middleware itself.

Adaptability: The degree to which BlueRose can be adapted

to different specified environments without applying actions

or means other than those provided for this purpose for the

software considered. It is fulfilled by supporting the integra-

tion of new implementations of the protocols and networking

technologies, which contributes to the use of the middleware

in the needed computing environments.

246 |

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR

UBIQUITOUS SYSTEMS: BLUEROSE

Installability: The degree to which BlueRose can be suc-

cessfully installed and uninstalled in a specified environment.

This quality attribute has been fulfilled by providing compila-

tion, installation (and uninstallation) tools for each program-

ming language and target operating systems. Particularly, in

Python, the standard installation mechanisms that this lan-

guage provides have been used.

6.4. Practical Validation

BlueRose has been used to develop multiple real R&D

projects, which shows that this middleware, and its associated

software framework, can be effectively used in real implementa-

tions of ubiquitous systems. The following subsections provide

a summarized description of those projects, which also serve to

validate MUSYC in practice.

6.4.1. Mobile Forensic Workspace [100]

6.4.1.1. Overview of the Workspace

Governments and specific police forces (like Interpol) apply

official protocols of action intended to support victim identification

in different scenarios: natural disasters, accidents, terrorist attacks,

| 247

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR
UBIQUITOUS SYSTEMS: BLUEROSE

murders, etc. These protocols try to deal with how victim data is

collected and how professionals (e.g., members of police forces and

forensic experts) have to cooperate. Currently, governments and po-

lice forces do not use supporting technologies for both in-situ data

collection and cooperation, since it was necessary to fulfill several

requirements that were not technologically addressed:

Data collection. Since there are several official protocols in-

tended to support victim identification, it was not possible to

specify a uniform data model for collecting and sharing infor-

mation. Thus, software solutions had to be “customized” for

each specific protocol and scenario.

Data sharing. In order to share information in a group or even

between different groups (e.g. police and forensic experts),

software applications made use of common network infras-

tructures, like Internet, which may not be available in some

scenarios (e.g., maritime accidents, natural disasters, rural en-

vironments, etc.).

The Mobile Forensic Workspace (MFW) is a ubiquitous col-

laborative system based on mobile technologies. The aim is to

assist forensic experts in collecting in-situ data about victims, while

overcoming previous issues. In the workspace it is required to ex-

248 |

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR

UBIQUITOUS SYSTEMS: BLUEROSE

Replicated ServerServer

INTERNET

Data Integration ServerREMOTE LOCATION

FORENSIC WORKSPACE: CRIME SCENE, DISASTER SCENARIO, ETC.

MANET

Figure 6.15: Deployment Architecture for Mobile Forensic
Workspace

change information with nearby applications, devices, etc. so as to

support data sharing between nearby forensic experts.

MFW makes use of the system architecture that is shown in

Figure 6.15. It is important to remark that this architecture has been

devised in such a way that none of its elements is totally required,

except for the devices to execute the application by final users. This

way, professionals, will not be limited, in any case, by the availabil-

ity of a specific underlying communication technology.

In this architecture, devices can exchange information, for in-

stance, by making use of BlueTooth technology. This way, a net-

work infrastructure is not necessary. These devices exchange infor-

mation with two servers that could ideally be available in location

| 249

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR
UBIQUITOUS SYSTEMS: BLUEROSE

(as the only basic desirable infrastructure provided by the official in-

stitutions that are acting in the disaster, accident, crime, etc.). These

servers will always store the last available data (victim information,

multimedia, etc.) collected with the mobile devices used by the

forensic experts. The two servers are advised to ensure that, in case

of a critical failing happens in the main server, the replicated server

will be available instead (without losing any data). The mobile de-

vices would mainly exchange information with servers by making

use of Wi-Fi since it is a quicker than BlueTooth. However, if Wi-Fi

is not available, devices will make use of BlueTooth.

Whenever Internet is available, servers will communicate the

information that they store to a remote data integration server, which

will depend on the specific official institution that makes use of the

MFW. Additionally, if required, in-situ servers may communicate

their information to more than one remote server (e.g., more than

one official institution, replicated servers, etc.).

6.4.1.2. Collaboration Capabilities of MFW

MFW supports several functionalities related to communica-

tion and collaboration between experts in a specific forensic scenario

(crime scenes, natural disasters, multiple-victim accidents, and so

on):

250 |

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR

UBIQUITOUS SYSTEMS: BLUEROSE

Informal communication. It will be supported by mecha-

nisms to carry out voice-calls and messaging between forensic

experts.

Document authoring. Collected information about victims

is associated with an author and a time stamp. Documents

(texts, images, videos, etc.) and their authoring information

are available for every expert in a specific forensic scenario.

Concurrent document modification. Forensic experts are

allowed to modify the same document at the same time and to

observe other’ changes in real-time.

Automatically synchronized changes. Each change to a doc-

ument is automatically (and transparently) synchronized be-

tween forensic experts, even if they lose their connection and

they re-connect after a while.

Security and privacy of shared information. Some rules are

established for specifying access control, how and which data

is exchanged, etc.

These functionalities should not rely on specific communica-

tion technologies or mechanisms, since the MFW aims to be adapt-

able to the requirements of any official authority, and to be ubiqui-

tously available in any physical scenario (e.g., in locations without

| 251

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR
UBIQUITOUS SYSTEMS: BLUEROSE

a connectivity or any kind of networking infrastructure).

In consequence, BlueRose has been adopted as the supporting

technology to implement those functionalities, which involve mes-

sage exchanging, event distribution and dynamic discovery, as it is

expected in ubiquitous systems. BlueRose also allows to easily in-

tegrate networking technologies and communication protocols, as

needed by each specific official authority (i.e., each authority may

use different protocols and allow or disallow the use of specific net-

working technologies for security reasons).

6.4.1.3. Implementation of MFW

The MFW has been developed for iOS devices (iPhone, iPad

and iPod Touch). Several screenshots of the resulting mobile appli-

cation are shown in Figure 6.16. In that figure, several functionali-

ties of the MFW that have been technically supported by BlueRose

are depicted: (A) shared information about a victim; (B) authoring

information about a data entry; (C) a shared whiteboard for drawing

an outline of a body description (tattoos, body marks, etc.) over sev-

eral body pictures (front, back, top, both sides, hands, etc.); and (D)

a text and voice chat.

252 |

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR

UBIQUITOUS SYSTEMS: BLUEROSE

A B

C D
Figure 6.16: The Mobile Forensic Workspace in iOS devices

6.4.2. VIRTRA-EL: A Web Platform to Sup-
port a Collaborative Virtual Training for
Elderly People [102]

6.4.2.1. Overview of the Requirements

VIRTRA-EL is a web platform to support a collaborative vir-

tual training for elderly people. It mainly consists of a set of exer-

cises intended to improve the cognitive skills of the users, under the

supervision of psychologists. Additionally, this platform supports:

Remote cognitive training and evaluation of elderly people.

User profiles to configure the difficulty level of the exercises,

| 253

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR
UBIQUITOUS SYSTEMS: BLUEROSE

and to facilitate their adaptation to the specific culture, inter-

ests and needs of the end users.

Ubiquitous monitoring of how the users realize the different

exercises.

Collaborative exercises intended to promote the socialization

and communication between the users.

Communication tools to support the inter-personal relation-

ships between the users and the psychologists, and to obtain

feedback about the platform.

Statistical tools to track and compare the progress of the users

(difficulty levels, cognitive aspects, the amount of time that is

spended in each exercise, etc.).

Virtual and augmented reality exercises.

Fulfillment of, at least, the following quality properties: secu-

rity, scalability, portability, usability and extensibility.

To meet the previous requirements, a component-based archi-

tecture has been devised. It is depicted in Figure 6.17. The focus of

the next subsection is to explain the collaboration component, which

is the one that has been implemented using BlueRose.

254 |

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR

UBIQUITOUS SYSTEMS: BLUEROSE

<<application>>
VIRTRA-EL

Psychologist

User Exercise UI

Widgets
colaborativos

<<UI>>
Exercise Widgets

Authentication

Admin

Evaluation Planning

Exercise

Widgets
colaborativosExercise Types

Exercise Manager

Provider

Persistent
Storage

Collaboration

Monitoring

Profile

Figure 6.17: Component-based architecture of VIRTRA-EL

6.4.2.2. The Collaboration Component of VIRTRA-EL

The collaboration component of VIRTRA-EL allows the real-

ization of collaborative exercises, and has been implemented using

BlueRose. This component is in charge of synchronizing the state

of multiple instances of the same graphical widget in the same ex-

ercise, but in different computers. The widgets are the graphical

elements that are presented to the user whenever they carry out an

exercise. This way, multiple users will be able to make use of the

same widgets at the same time, observing in real-time how the other

| 255

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR
UBIQUITOUS SYSTEMS: BLUEROSE

users interact with those widgets.

The collaborative component is only used in selected exercises

that have been designed to be completed through the collaboration

of multiple users. In VIRTRA-EL, the users can collaborate in the

following ways:

Concurrently, to complete different tasks of the same exercise.

Through a turn-based scheme.

Some users interact with the exercise (using any of the pre-

vious collaboration ways), while others observe their inter-

actions and communicate with the first group in real-time to

assist them in the completion of the exercise.

Psychologists and users can communicate through chats to ex-

change any ideas, or to provide and request help about an ex-

ercise.

6.4.3. Domo and Kora: Management of Home
Automation Environments [99]

Domo is a service for managing sensors and actuators in a

ubiquitous home automation environment, independently of the un-

derlying standard (X.10, LonWorks, etc.). Kora is its companion

256 |

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR

UBIQUITOUS SYSTEMS: BLUEROSE

mobile application, which interacts with Domo to allow the user

management of home automation environments.

In Figure 6.18 it is depicted a scheme of Kora, which is a mo-

bile application for Android operating systems, interacting (through

BlueRose) with the Domo service in order to manage a set of home

automation devices.

Underlying
Communication

Technology

Kora

Domo Library

Domo Service

Figure 6.18: An iPhone application acting as a client of the Domo
service

Note that Domo and Kora were developed with a primitive

version of BlueRose, whose main limitation was that it only sup-

ported event distribution, thus making it not possible to establish

synchronous and direct connections between the application and the

service. The feedback that was received during the implementa-

tion of this software enriched the design of the US-PIM and, conse-

| 257

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR
UBIQUITOUS SYSTEMS: BLUEROSE

quently, BlueRose.

Since message exchanging was not supported, the Domo ser-

vice is not an instantiation of the servant hot spot of the identified

software framework associated to BlueRose. In this case, it is an

application that acts as both a publisher and a subscriber to a set of

events.

Each event was published whenever a home automation de-

vice changed its internal state. For example, if a light bulb was

switched on, then the service published an event indicating the new

state of that light bulb. Since Kora was designed to be subscribed to

these events, several instantiations of this mobile application may be

concurrently executing in multiple devices. Each instance of Kora

receives the corresponding state changes, independently of whether

these changes result from the interaction between the user and an-

other instantiation of Kora, or from the physical interaction between

the user and the home automation device. Consequently, Kora pro-

vides a graphical interface to show the environment state in real-

time.

Finally, Kora makes use of an adaptable user interface that was

specially designed for people with special needs, and with different

profiles. Figure 6.19 illustrates two sample adaptations of its user

interface.

258 |

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR

UBIQUITOUS SYSTEMS: BLUEROSE

Figure 6.19: Two sample adaptations of the Kora user interface for
different users

6.4.4. Sherlock: A Location Service for Both
Outdoors and Indoors [104]

Sherlock is a location service that was developed using

BlueRose. It was designed to be incorporated into ubiquitous

systems to allow both outdoors and indoors positioning.

Sherlock supports the integration of several technologies like

GPS, for outdoor positioning, and Wi-Fi or ZigBee, for indoors po-

sitioning. It also allows several methods for calculating the position

of a user. For example, if Wi-Fi is used, then a triangulation algo-

rithm is applied.

In Figure 6.20 it is shown the general architecture of the ser-

| 259

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR
UBIQUITOUS SYSTEMS: BLUEROSE

vice. As it is depicted in that figure, BlueRose is used to support the

exchange of location information between Sherlock and any client

applications. In that sense, a client application was also developed

with the technical support of BlueRose. The application was devel-

oped in Java for mobile phones using Android operating system.

Sherlock Positioning Service

Sherlock Client Sherlock Server

Client Comm. Server Comm.

Sensor Manager BlueRose Localizer Mgr. Fingerprint
Mgr.

Wi-
Fi

Zig
Bee GPS dist.

Euclidea KNN Prox. SQL

Figure 6.20: Overview of the architecture of the Sherlock position-
ing service

6.5. Conclusions

In this chapter, it is described the MUSYC-based development

of a middleware for ubiquitous systems, called BlueRose. The de-

velopment of this middleware shows that it is possible to develop

reusable supporting technologies using MUSYC that may help

during the implementation stages of different ubiquitous sys-

tems.

260 |

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR

UBIQUITOUS SYSTEMS: BLUEROSE

BlueRose has been designed to be easily extended with new

communication-related technologies, also integrating them in an

homogeneous manner. The elements comprising the design of the

middleware have been identified as frozen or hot spots, or as mech-

anisms of “inversion of control”, so as to make explicit the software

framework that is related to BlueRose. This way, the aim has been

to show in practice that the design of the middleware, using the pro-

posed CS-CIM and US-PIM metamodels as a foundation, is flexible

and complete enough to guide a part of the implementation process

that is expected to be carried out during the final implementation

stage established in MUSYC itself. Besides, BlueRose can be con-

sidered as a flexible and adaptable middleware that could be used as

a reusable target platform during the specification of the US-PSM of

a ubiquitous system to be developed using MUSYC.

Additionally, the different quality properties of BlueRose

have been analyzed and contrasted with those present in CORBA

and ICE, which are two well-known and used middleware technolo-

gies. Particularly, in terms of performance efficiency, a benchmark

has provided metrics that enable a quantitative comparison between

the implementations of BlueRose, CORBA and ICE. The result is

that BlueRose is comparable in terms of efficiency to those other

middleware technologies.

Therefore, the model-driven engineering methodology en-

| 261

CHAPTER 6. VALIDATION OF MUSYC THROUGH THE DEVELOPMENT
OF A MIDDLEWARE AND A SOFTWARE FRAMEWORK FOR
UBIQUITOUS SYSTEMS: BLUEROSE

couraged by MUSYC does not necessarily have to affect the per-

formance of the resulting software, even if part of the imple-

mentation of that software is automatically done through code

generators. Moreover, in contrast with a code-centric development,

the specification of CS-CIMs, US-PIMs and US-PSMs facilitates

future modifications to the core design of the ubiquitous systems to

be developed through MUSYC, makes it easier to understand all the

devised elements in the design and to integrate existing and future

technologies in a more systematic manner.

Finally, it is worth to be noted that BlueRose has been used

during the development of several R&D projects: A mobile foren-

sic workspace (MFW), a Web platform to support a collaborative

virtual training in elderly people (VIRTRA-EL), a service and a

companion application to manage home automation environments

(Domo and Kora), and a location service for both indoors and out-

doors (Sherlock). In this way, MUSYC has been validated in prac-

tice, both to develop ubiquitous systems and supporting technolo-

gies (like middleware) to facilitate their implementation.

262 |

Chapter 7

Conclusions

This chapter presents the conclusions drawn from the thesis

work described herein. The different results are presented and dis-

cussed, and some lines of future work are proposed.

7.1. Results and Discussion

The idea of this thesis work has been to show that it is possible

to manage the communications in ubiquitous systems through the

specification of highly abstract models (CS-CIM and US-PIM), and

their systematic transformation into more concrete models targeting

specific computing platforms (US-PSM).

As a result, it is possible to state that the management of the

communications is not a technical-only problem, but an issue that is

| 263

CHAPTER 7. CONCLUSIONS

directly related to the whole analysis and design of the ubiquitous

system to be developed and the functionalities to be provided, as it

was hypothesized in the introduction of this thesis work.

In the following subsections the conceptual, methodological

and technical results of this thesis work are discussed.

7.1.1. Conceptualization

This thesis work has introduced two conceptual models

to expose the notions (and relationships between them) that are

present in any communication system, and more particularly,

in any ubiquitous system. Hence, the models conceptualize

Computations-Independent Communication Systems (CI-CS)

and Platform-Independent Ubiquitous Systems (PI-US).

The structural view of the CI-CS metamodel captures all the

structural elements that are present in a communication system, ex-

tending and completing the most well-known and accepted commu-

nication theories. The behavioral view includes the organizational

elements that should be present in a communication system. The or-

ganization of a communication system has been devised as a “chore-

ography”, that is, as an ordered sequence of interactions between the

participants of the communication. The BPMN 2.0 choreography

metamodel has been taken as a reference to figure out the elements

264 |

CHAPTER 7. CONCLUSIONS

and relationships that should be present in the behavioral view.

Similarly, the structural view of the PI-US metamodel captures

all the structural and basic operational software artifacts that should

be present in a ubiquitous system to support message exchanging,

event distribution and dynamic discovery. To devise the metamo-

del, some standard protocols, networking technologies, communica-

tion paradigms and well-known middleware technologies have been

analyzed.

The behavioral view of this metamodel includes elements to

represent the organization of the communication in a ubiquitous sys-

tem a set of organized communication activities involving transac-

tional exchanges of messages, events and discoveries. The behav-

ioral view of the PI-US metamodel is based on the behavioral view

of the CI-CS metamodel. Nonetheless, it takes into account the soft-

ware focus at this abstraction level, which involves relating all the

elements present in the view to software artifacts.

Both the CI-CS and PI-US conceptualizations have been se-

mantically formalized through ontologies. This way, it is possible

to check if a designed CI-CS or PI-US is well-formed, that is, if a

model contains all the necessary concepts and relationships to be

considered, respectively, in a communication system or a ubiquitous

system (i.e., if a given model is consistent with the proposed con-

| 265

CHAPTER 7. CONCLUSIONS

ceptualizations).

Furthermore, the ontology of a CI-CS has been extended by

incorporating some key notions present in the PI-US metamodel.

This semantic extension has allowed to formally define a ubiqui-

tous system as a software communication system with specific

requirements and supporting concrete communication function-

alities.

On the basis of the international quality standard for software

systems defined in ISO/IEC 25010:2011, a qualitative description

of the proposed metamodels has been provided. The ontologies as-

sist in the quality analysis, since they allow to assess some of the

qualitative features of the metamodels.

Finally, it is important to highlight that the PI-US conceptual-

ization provides a system view of the ubiquitous systems, but it does

not offer an internal view of the different applications and services

that could encompass these systems. Therefore, the conceptualiza-

tion of the other aspects of a ubiquitous system (user interfaces, data

models, etc.) could contribute to a more complete formalized con-

ception of a ubiquitous system, which could help to tackle with the

design of this type of systems in a holistic way (e.g., taking into ac-

count the communication and presentational aspects, the data mod-

els, and the relationships between them).

266 |

CHAPTER 7. CONCLUSIONS

7.1.2. Methodology

The conceptual models have been respectively re-interpreted

as the metamodels of a Computation-Independent Model of a

Communication System (CS-CIM) and a Platform-Independent

Model of a Ubiquitous System (US-PIM), in order to be used in

an MDA-based methodology to develop Ubiquitous SYstems on

the basis of the Communications (MUSYC). Therefore, the CI-

CS and PI-US conceptual models have been used as a conceptual

framework on which the whole MUSYC methodology is founded.

The methodology proposes the specification of a brief use case

model and a BPMN 2.0 Choreography model. On their basis, a CS-

CIM is specified. Then, the specification of the CS-CIM can be sys-

tematically transformed into the specification of a US-PIM through

a set of proposed QVT rules. Afterwards, a set of target platforms

(programming languages, middleware, operating systems, etc.) have

to be adopted in order to specify a US-PSM. Finally, the US-PSM

can be converted into code using code generators implemented on

the basis of the MOFM2T standard.

The whole development process encouraged by MUSYC

avoids the adoption and use of specific technologies until the

specification of the US-PSM. In consequence, if more advanced

technologies become available during the development of a

| 267

CHAPTER 7. CONCLUSIONS

ubiquitous system, or even later, the CS-CIM and US-PIM designs

could be completely reused.

Moreover, the technologies do not guide the whole

development process from the initial stages, as it commonly

occurs in many current developments. This way, the focus is on the

specification of a design that fulfills with the user requirements,

rather than on the adoption or use of concrete technologies. In

fact, MUSYC proposes a direct match between the requirements

specified through a use case model and BPMN choreographies, and

the CS-CIM specification.

To assist in the development of ubiquitous systems through

MUSYC, and to show the feasibility of automatizing and vali-

dating the transformation from the specification of a CS-CIM to

executable code for specific target computing platforms (operating

systems, middleware, etc.), a set of CASE tools have been imple-

mented.

Finally, MUSYC shows that it could be possible to approach

the whole development of a ubiquitous system by focusing on

the design of the communications. For example, a MUSYC-based

development produces an initial design of the applications and ser-

vices to be developed (i.e., MUSYC does not tackle with the design

of the user interface, data model, etc.), and the interactions between

268 |

CHAPTER 7. CONCLUSIONS

them. Therefore, it is possible to establish that the communications

should be considered as a central part of any ubiquitous system

development: the specification of the mechanisms supporting the

communications should not be approached during the implementa-

tion stage, since they are a fundamental part of the system that even

constrains the functionalities and quality properties that can be pro-

vided to the end user.

7.1.3. Technology

BlueRose is a middleware that has been developed using

MUSYC. This middleware validates that MUSYC, in addition

to facilitate the development of ubiquitous systems, enables the

development of reusable supporting technologies that may help

during their implementation.

BlueRose has been designed to be easily extended with new

communication-related technologies, also integrating them in an

homogeneous manner. This way, it is shown that the design of the

middleware, using the proposed CS-CIM and US-PIM metamodels

as a foundation, is flexible and complete enough to guide a part of

the implementation process that is expected to be carried out during

the final implementation stage established in MUSYC itself. Be-

sides, BlueRose can be considered as a highly generic middleware

| 269

CHAPTER 7. CONCLUSIONS

that could be used as a target platform during the specification of the

US-PSM of a ubiquitous system to be developed applying MUSYC.

The elements comprising the design of the middleware have

been identified as frozen or hot spots, or as mechanisms of “inver-

sion of control”, so as to expose a software framework associated

to the middleware itself. This way, it is specified how the mid-

dleware can be used during the development of a ubiquitous system

and the elements that can be adapted to the fulfillment of specific

functional or non-functional requirements.

In addition, BlueRose has been compared against CORBA and

ICE in terms of performance efficiency, since they well-known and

established middleware solutions. The result is that BlueRose has

a similar performance, even if part of its implementation has been

automatically generated from a US-PSM. Additionally, a qualitative

description of BlueRose has been provided, in order to make explicit

its different characteristics.

Therefore, the model-driven engineering methodology en-

couraged by MUSYC does not necessarily have to affect the per-

formance of the resulting software, even if part of the implemen-

tation of that software is automatically done through code gen-

erators. Moreover, in contrast with a code-centric development, the

specification of CS-CIMs, US-PIMs and US-PSMs facilitates future

270 |

CHAPTER 7. CONCLUSIONS

modifications to the core design of the ubiquitous systems to be de-

veloped through MUSYC, which makes it easier to understand all

the devised elements in the design and to integrate existing and fu-

ture technologies in a more systematic manner.

Finally, some R&D projects in which BlueRose has been ap-

plied serve to validate the proposal in practice: the mobile forensic

workspace (MFW), a Web platform to support a collaborative virtual

training in elderly people (VIRTRA-EL), a service and a companion

application to manage home automation environments (Domo and

Kora), and a location service for both indoors and outdoors (Sher-

lock). Furthermore, the development of these projects make it pos-

sible to assess the practical feasibility of MUSYC, both to develop

ubiquitous systems and supporting technologies (like middleware)

to facilitate their implementation.

7.2. Future Work

Several lines of future work are currently being explored.

The metamodels and the ontologies could allow the analysis

of ubiquitous systems [9], which would be helpful to check their

behavior before finalizing their development. Moreover, simulation

tasks could be included into MUSYC. Additionally, the ontologies

could be used to model, check for the consistency and simplify spe-

| 271

CHAPTER 7. CONCLUSIONS

cific CS-CIMs or US-PIMs.

Also, the metamodels could be extended to include Quality

of Service (QoS) attributes, so as to design ubiquitous systems in

which a certain networking performance has to be assessed (e.g.,

real-time communications, critical systems, etc.). This extension

could help into assessing the dependability (i.e., according to

ISO/IEC 25010:2011, the reliability, fault tolerance, recoverability,

integrity, security, maintainability, durability and maintenance

support) of the ubiquitous systems that are developed using

MUSYC.

Moreover, a quality framework could be devised to measure

the quality of the specified CS-CIMs, US-PIMs and US-PSMs dur-

ing a MUSYC-based development. That quality framework could

be based on some of the research works mentioned in [77], which

presents a survey about the some of the existing approaches to ana-

lyze the quality of a model.

Finally, the re-design and integration of existing ubiquitous

systems is a challenge that can be addressed through model to me-

tamodel transformations [58]. To overcome that issue in a system-

atic manner, a reverse engineering methodology addressing the re-

verse transformation from a US-PSM to a CS-CIM could be devised.

The ontological representations of both a CI-CS and a PI-US may

272 |

CHAPTER 7. CONCLUSIONS

serve to formally trace back certain notions present in a PI-US to

the more abstract level of a CI-CS. Therefore, these representations

could help into analyzing the design of existing ubiquitous systems

in order to devise these future reverse engineering methodologies.

| 273

CHAPTER 7. CONCLUSIONS

274 |

Acknowledgements

This thesis work is funded by the Innovation Office from the
Andalusian Government through the project P10-TIC-6600.

Also, during the elaboration of this work, all the authors have
participated in the following projects:

TIN2012-38600. Spanish Ministry of Economy and Com-
petitiveness with European Regional Development Funds
(FEDER).

TIN2008-05995/TSI. Spanish Ministry of Education and Sci-
ence.

20F2/36. CEI-BioTIC (University of Granada).

SIMFO. Telvent Interactiva S.A and the University of
Granada.

“Desarrollo de Software para la Estimulación Cognitiva”.
University of Granada and the Andalusian Government.

“Entorno software para el desarrollo y la evaluación de habil-
idades comunicativas y de competencias de trabajo en grupo
mediante debate virtual”. University of Granada.

“Extensión de la Plataforma de Debate Virtual para Dar So-
porte al Análisis y Mejora de la Usabilidad y Evaluación del
Alumnado”. University of Granada.

“Plataforma de soporte a la coordinación y mejora de comu-
nicación docente para la mejora de la calidad en la Educación
Superior”. University of Granada.

| 275

CHAPTER 7. CONCLUSIONS

276 |

Publications

1. M. V. Hurtado, M. L. Rodríguez, M. Noguera, K. Benghazi,
C. Rodríguez Domínguez. An innovation perspective for the
creation of teaching/learning environments based on group-
ware applications. Proceedings of the V International Confer-
ence on Multimedia and ICT in Education (M-ICTE). Edited
by Formatex, ISBN (Vol. II): 978-84-692-1790-0, pp. 694-
698. 2009.

2. Á. Fernández, C. Rodríguez Domínguez, M. J. Rodríguez.
Diseño de una plataforma móvil de apoyo al aprendizaje co-
operativo en educación especial. Actas del X Congreso Inter-
nacional de Interacción Persona-Ordenador. ISBN: 13:978-
84-692-5005-1. 2009.

3. A. B. Pelegrina, C. Rodríguez Domínguez, J. L. Garrido, M.
L. Rodríguez, M. Bermúdez. Un Marco de Trabajo de So-
porte a la Integración de Aplicaciones Groupware. X Con-
greso Internacional de Interacción Persona-Ordenador. ISBN:
13:978-84-692-5005-1. 3rd best paper prize. 2009.

4. K. Benghazi, M. L. Rodríguez, M. Noguera, J. L. Garrido,
C. Rodríguez Domínguez. Diseño de aplicaciones groupware
adaptables para fomentar el aprendizaje colaborativo en el
EEES. ISBN: 978-84-692-7263-3. Jornadas Andaluzas de
Innovación Docente Universitaria. 2009.

5. C. Rodríguez Domínguez, A. B. Pelegrina, J. L. Garrido, M.
L. Rodríguez, M. Bermúdez. Diseño e Implementación de
Software Distribuido de Soporte a la Integración e Interop-
eratividad de Aplicaciones Groupware. Revista Avances en

| 277

CHAPTER 7. CONCLUSIONS

Sistemas e Informática Vol. 7, No. 1. ISSN 1657-7663. 2010.
Indexed in DBLP, DOAJ, Dialnet, Periódica and PASCAL.
2010

6. C. Rodríguez Domínguez, K. Benghazi, M. Noguera, J. L.
Garrido. Redefinable Events for Dynamic Reconfiguration of
Communications in Ubiquitous Computing. 1st International
Workshop on Data Dissemination for Large scale Complex
Critical Infrastructures (DD4LCCI). ACM Press, ISBN: 978-
1-60558-917-6, pp. 17-22. 2010. Indexed in ACM Digital
Library. Quality publisher.

7. A. Belén Pelegrina, C. Rodríguez Domínguez, J. L. Garrido,
M. L. Rodríguez, M. Bermúdez. Integrating Groupware Ap-
plications into Shared Workspaces. Proceedings of the 4th
International Conference on Research Challenges in Informa-
tion Science (RCIS). Niza, Francia. ISBN 978-1-4244-4840-
1, DOI 10.1109/RCIS.2010.5507305, pp. 557-568. 2010.
Indexed in ISI PROCEEDINGS, DBLP, SCOPUS. Qual-
ity publisher. COmputer Research and Education index
(CORE), category B.

8. K. Benghazi, M. Noguera, C. Rodríguez Domínguez, Ana
Belén Pelegrina, J. L. Garrido. Real-Time Web Services
Orchestration and Choreography. 6th International Workshop
on Enterprise and Organizational Modeling and Simulation
(EOMAS 2010). ISBN: 978-1-4503-0463-4, pp. 142-153.
2010. Celebrated with the International Conference On
Advanced Information Systems Engineering (CAISE
2010), indexed in COmputer Research and Education
index (CORE), category A. Published by ACM Digital
Library (Quality publisher).

9. C. Rodríguez Domínguez, Á. Fernández, J. Alcalá-Correa, M.
J. Rodríguez-Fórtiz, J. L. Garrido. Una Propuesta de Diseño
para la Integración e Interoperabilidad de Aplicaciones para
Personas con Necesidades Especiales. XI Congreso Inter-
nacional de Interacción Persona-Ordenador. ISBN: 978-84-
92812-52-3, pp. 401-410. 2010.

278 |

CHAPTER 7. CONCLUSIONS

10. S. M. Gómez, M. L. Rodríguez, K. Benghazi, C. Rodríguez
Domínguez. Un Diseño Basado en Componentes para el De-
sarrollo de Aplicaciones Web Adaptativas y Colaborativas.
XI Congreso Internacional de Interacción Persona-Ordenador.
ISBN: 978-84-92812-52-3, pp. 435-444. 2010.

11. J. Alcalá-Correa, M. J. Rodríguez-Fórtiz, C. Rodríguez
Domínguez. Control del entorno para la diversidad funcional:
Kora. VI Congreso Nacional de Tecnología Educativa y
Atención a la Diversidad. ISBN: 978-84-693-1781-5, pp.
1-8. 2010.

12. C. Rodríguez Domínguez, K. Benghazi, M. Noguera, M.
Bermúdez-Edo, J. L. Garrido. Dynamic Ontology-Based
Redefinition of Events Intended to Support the Communi-
cation of Complex Information in Ubiquitous Computing.
Journal of Network Protocols and Algorithms, Special Issue
on Data Dissemination for Large Scale Complex Critical
Infrastructures 2 (2). Macrothink Institute, ISSN 1943-3581.
2010. Indexed in Index Copernicus, ProQuest, EBSCO,
Ulrichsweb.com, Directory of Open Access Journals
(DOAJ), Open J-Gate, Gale, Socolar, io-port Database,
NewJour - Electronic Journals and Newsletters, Public
Knowledge Project metadata harvester, Ovid LinkSolver,
Genamics JournalSeek, PublicationsList.org.

13. M. V. Hurtado, R. Ramos, K. Benghazi, M. Noguera, C. Ro-
dríguez Domínguez. Groupbate: Soporte al Debate Virtual
en Entornos de Aprendizaje Colaborativo. Avances en In-
geniería del Software Aplicada al E-Learning. Universidad
Complutense de Madrid, ISBN: 978-84-693-9422-9, pp. 177-
192. 2011.

14. C. Rodríguez Domínguez, K. Benghazi, M. Noguera, M. J.
Rodríguez-Fórtiz, T. Ruiz-López. Framework de Soporte al
Desarrollo Integrado de Sistemas Ubicuos. XIX Jornadas de
Concurrencia y Sistemas Distribuidos (JCSD 2011). ISBN:
978-84-96737-99-0. 2011.

15. T. Ruiz López, J. L. Garrido, C. Rodríguez Domínguez, M.
Noguera. Sherlock: A Hybrid, Adaptive Positioning Service

| 279

CHAPTER 7. CONCLUSIONS

based on Standard Technologies. Evaluating AAL Systems
through Competitive Benchmarking. 2011.

16. K. Benghazi, M. V. Hurtado, Miguel J. Hornos, M. L. Ro-
dríguez, C. Rodríguez Domínguez, Ana B. Pelegrina, M. J.
Rodríguez-Fórtiz. Enabling correct design and formal analy-
sis of Ambient Assisted Living systems. Journal of Systems
and Software. Elsevier. ISSN: 0164-1212. 2011. Journal Ci-
tation Reports (JCR) (last published) 1.135, 5-year impact
factor: 1.322. Indexed in CORE.

17. M. V. Hurtado, R. Ramos, E. Trigueros, K. Benghazi, M.
Noguera, C. Rodríguez Domínguez. Entorno de Interacción
Colaborativa mediante Debate Virtual. IEEE-RITA, Revista
Iberoamericana de Tecnologías del Aprendizaje, ISSN: 1932-
8540, IEEE Education Society, Spain. 2011. Indexed in
DBLP and Ulrichsweb.com. Quality publisher.

18. C. Rodríguez Domínguez, K. Benghazi, M. Noguera, J. L.
Garrido, M. L. Rodríguez, T. Ruiz López. Seamless Integra-
tion of Communication Paradigms for Ubiquitous Systems.
Proceedings of Ubiquitous Computing and Ambient Intelli-
gence (UCAmI ’11). 2011.

19. R. Duque, M. L. Rodríguez, M. V. Hurtado, C. Bravo, C. Ro-
dríguez Domínguez. Integration of collaboration and interac-
tion analysis mechanisms in a concern-based architecture for
groupware systems. Journal of Science of Computer Program-
ming, Special Issue: Solution-Oriented Architectures, 77 (1).
ISSN: 0167-6423. Elsevier Editorial. 2012. Journal Citation
Reports (JCR) 0.568, 5-year impact factor: 0.982.

20. C. Rodríguez Domínguez, T. Ruiz López, K. Benghazi, J.
L. Garrido. Designing a Middleware-Based Framework to
Support Multiparadigm Communications in Ubiquitous Sys-
tems. 3rd International Symposium on Ambient Intelligence
(ISAMI ’12). 2012.

21. T. Ruiz López, C. Rodríguez Domínguez, M. Noguera, M.
J. Rodríguez-Fórtiz. A Model-Driven Approach to Require-

280 |

CHAPTER 7. CONCLUSIONS

ments Engineering in Ubiquitous Systems. 3rd International
Symposium on Ambient Intelligence (ISAMI ’12). 2012.

22. C. Rodríguez Domínguez, T. Ruiz López, K. Benghazi, J. L.
Garrido. A Communication Model to Integrate the Request-
Response and the Publish-Subscribe Paradigms in Ubiquitous
Systems. Journal of Sensors, Special Issue on Select papers
from UCAmI 2011. 2012. Journal Citation Reports (JCR)
1.953, 5-year impact factor: 2.395.

23. E. Villanueva, C. Rodríguez Domínguez, K. Benghazi, J. L.
Garrido, A. Valenzuela. Applying Information Technology to
Forensic Sciences. Springer, International Journal of Legal
Medicine 126 (1) (Supplement), pp. S2. 2012. Journal Cita-
tion Reports (JCR) 2.686.

24. T. Ruiz López, C. Rodríguez Domínguez, M. J. Rodríguez,
J. L. Garrido. Mecanismos de Adaptación basados en
Propiedades de Calidad: Un Caso de Estudio de un Servicio
de Localización. XIII Congreso Internacional de Interacción
Persona Ordenador. 2012.

25. C. Rodríguez Domínguez, A. Caracuel, S. Santiago, M. J. Ro-
dríguez, M. V. Hurtado. Plataforma Virtual de apoyo al En-
vejecimiento Activo. XIII Congreso Internacional de Interac-
ción Persona Ordenador. 2012.

26. C. Rodríguez Domínguez, K. Benghazi, J. L. Garrido, A.
Valenzuela Garach. A Platform Supporting the Development
of Applications in Ubiquitous Systems: The Collaborative
Application Example of Mobile Forensics. XIII Congreso
Internacional de Interacción Persona Ordenador. 2012.

27. T. Ruiz López, C. Rodríguez Domínguez, M. Noguera, J. L.
Garrido. Towards a Reusable Design of a Positioning System
for AAL Environments. Evaluating AAL Systems Through
Competitive Benchmarking. Communications in Computer
and Information Science 309, pp. 65-79. 2012.

28. M. A. Burgos, I. Garrido, Juan Martos, C. Rodríguez
Domínguez, T. Ruiz López, M. Cabrera, M. L. Rodríguez,

| 281

CHAPTER 7. CONCLUSIONS

Á. Fernández, M. J. Rodríguez. Aplicación SÍGUEME.
Estimulación para autismo de bajo nivel de funcionamiento.
Toma de contacto para evaluar la captación de atención. VII
Congreso Nacional de Tecnología Educativa y Atención a la
Diversidad. 2013.

29. T. Ruiz López, C. Rodríguez Domínguez, M. Noguera, M.
J. Rodríguez, K. Benghazi, J. L. Garrido. Applying Model-
Driven Engineering to a method for systematic treatment of
NFRs in AmI systems. IOS Press, Journal of Ambient Intel-
ligence and Smart Environments 5 (3), pp. 287-310. 2013.
Journal Citation Reports (JCR) 1.298.

30. C. Rodríguez Domínguez, T. Ruiz López, K. Benghazi, M.
Noguera, J. L. Garrido. A Model-Driven Approach for the De-
velopment of Middleware Technologies for Ubiquitous Sys-
tems. 9th International Conference on Intelligent Environ-
ments (IE ’13). 2013.

31. M. Cinque, D. Cotroneo, C. Rodríguez Domínguez, J. L. Gar-
rido. Automatic Collection of Failure Data from the iOS Plat-
form. Proc. of 2013 IEEE/IFIP 43rd International Conference
on Dependable Systems and Networks Workshops (DSN-W).
Workshop on Reliability and Security Data Analysis (RSDA
2013). ISBN: 978-1-4799-0181-4. IEEE Computer Society
Press. 2013.

32. C. Rodríguez Domínguez, K. Benghazi, J. L. Garrido,
A. Valenzuela. Designing a Communication Platform for
Ubiquitous Systems: The Case Study of a Mobile Forensic
Workspace. New Trends in Interaction, Virtual Reality and
Modeling, pp. 97-111. ISBN 978-1-4471-5444-0. Springer,
Human-Computer Interaction Series. 2013.

33. M. Vélez, Á. Burgos, I. Garrido, C. Rodríguez Domínguez,
T. Ruiz López. Aplicación para el Desarrollo de Habilidades
Perceptivo-Cognitivas y Conductuales en Niños y Niñas con
Trastorno del Espectro Autista. VI Congreso de la de la
Federación de Asociaciones de Neuropsicología Españolas
(FANPSE). 2013.

282 |

CHAPTER 7. CONCLUSIONS

34. G. Guerrero-Contreras, J. L. Garrido, C. Rodríguez
Domínguez, M. Noguera, K. Benghazi. Designing a Service
Platform for Sharing Internet Resources in MANETs.
ESOCC Workshops, pp. 331-345. 2013.

35. T. Ruiz-López, C. Rodríguez Domínguez, M. Noguera, M. J.
Rodríguez, J. L. Garrido. Towards a Component-based De-
sign of Adaptive, Context-sensitive Services for Ubiquitous
Systems. Intelligent Environments (Workshops), pp. 57-68.
2013.

36. T. Ruiz López, C. Rodríguez Domínguez, M. J. Rodrǵuez,
S. F. Ochoa, J. L. Garrido. Context-aware Self-Adaptations:
From Requirements Specification to Code Generation. Jour-
nal of Sensors, Special Issue on Select papers from UCAmI
and IWAAL 2013. 2014. Journal Citation Reports (JCR)
1.953, 5-year impact factor: 2.395.

37. C. Rodríguez Domínguez, T. Ruiz López, K. Benghazi, J. L.
Garrido. An MDA-based approach for the integration of co-
munication technologies in ubiquitous systems. IOS Press,
Journal of Ambient Intelligence and Smart Environments, the-
matic issue titled “Challenges of Engineering Intelligent Envi-
ronments” (selected, under review). 2014. Journal Citation
Reports (JCR) 1.298.

38. C. Rodríguez Domínguez, T. Ruiz López, J. L. Garrido, M.
Noguera, K. Benghazi. A Model-Driven Approach to Service
Composition on the basis of the Specification of BPMN
Choreographies. International Journal of Computer Systems,
Science and Engineering (selected, under review). 2014.
Journal Citation Reports (JCR) 0.08.

Patents
Método y Sistema de Coordinación de Sistemas Software

Basado en Arquitecturas Multiparadigma (Method and Coordi-
nation System for Software Systems based on Multiparadigm

| 283

CHAPTER 7. CONCLUSIONS

Architectures). Main inventor: C. Rodríguez Domínguez. Patent
owner: University of Granada.

284 |

Bibliography

[1] ALEXANDER, C., ISHIKAWA, S., SILVERSTEIN, M., JA-
COBSON, M., FIKSDAHL-KING, I., AND ANGEL, S. A Pat-
tern Language: Towns, Buildings, Construction. Oxford Uni-
versity Press, 1977.

[2] AMBLER, S. W. The Object Primer: Agile Model-Driven
Development with UML 2.0. Cambridge University Press,
2004.

[3] BAKRE, A., AND BADRINATH, B. Reworking the rpc
paradigm for mobile clients. Mobile Networks and Applica-
tions: Special issue on mobile computing and system services
1, 4 (December 1996), 371–385.

[4] BALASUBRAMANIAN, K., SCHMIDT, D. C., MOLNÁR, Z.,
AND LÉDECZI, Á. System integration using model-driven
engineering. Designing Software-Intensive Systems: Methods
and Principles (2008).

[5] BALDONI, R., COTENTI, M., AND VIRGILLITO, A. The
evolution of publish/subscribe communication paradigm. In
Future directions in distributed computing, vol. 2584 of Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg,
2003, pp. 137–141.

[6] BARNLUND, D. C. Communication Theory (2nd edition).
Transaction Publishers, 2008, ch. A Transactional Model of
Communication.

[7] BATES, P. C. Debugging heterogeneous distributed systems
using event-based models of behavior. ACM Trans. Comput.
Syst. 13, 1 (1995), 1–31.

| 285

BIBLIOGRAPHY

[8] BECKETT, D., AND MCBRIDE, B. RDF/XML Syntax Spec-
ification (Revised), W3C recommendation. Tech. rep., W3C,
2004.

[9] BENJAMIN, P., PATKI, M., AND MAYER, R. Using ontolo-
gies for simulation modeling. In Proceedings of the Winter
Simulation Conference (WSC) (Dec 2006), pp. 1151–1159.

[10] BERJON, R., FAULKNER, S., LEITHEAD, T., NAVARA,
E. D., O’CONNOR, E., PFEIFFER, S., AND HICKSON, I.
Html5: A vocabulary and associated apis for html and xhtml.
Candidate Recommendation 6, W3C, August, 2013.

[11] BERLO, D. K. The process of communication. Ed. Holt,
Rinehart and Winston, 1960.

[12] BERNSTEIN, P. A. Middleware: a model for distributed sys-
tem services. Communications of the ACM 39, 2 (February
1996), 86–98.

[13] BERTOA, M. F., AND VALLECILLO, A. Quality attributes
for software metamodels. In Proceedings of the 13th TOOLS
Workshop on Quantitative Approaches in Object-Oriented
Software Engineering (QAOOSE 2010) (Málaga, Spain, July
2010).

[14] BIRRELL, A., AND NELSON, B. Implementing remote pro-
cedure calls. Transactions on Computer Systems (TOCS) 2, 1
(1984).

[15] BISIGNANO, M., CALVAGNA, A., MODICA, G. D., AND

TOMARCHIO, A. Expeerience: A jxta middleware for mo-
bile ad hoc networks. Proceedings of the third international
conference on P2P computing (2003).

[16] BOOTH, D., HASS, H., MCCABE, F., NEWCOMER, E.,
CHAMPION, M., FERRIS, C., AND ORCHARD, D. Web ser-
vices architecture. W3C Working Group Note 11 (Nov 2004),
1–98.

286 |

BIBLIOGRAPHY

[17] BORDIN, M., TSIODRAS, T., AND PERROTIN, M. Ex-
perience in the integration of heterogeneous models in the
model-driven engineering of high-integrity systems. In Reli-
able Software Technologies (Ada-Europe), vol. 5026 of Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg,
2008, pp. 171–184.

[18] BRAGHETTO, K. R., FERREIRA, J. E., AND VINCENT, J.-
M. Rt-mac-2011-03: From business process model and no-
tation to stochastic automata network. Tech. rep., University
Of São Paulo, Institute Of Mathematics and Statistics, Depar-
tament of Computer Science, March 2011.

[19] BRAY, T., PAOLI, J., SPERBERG-MCQUEEN, C. M.,
MALER, E., AND YERGAU, F. Extensible markup language
(xml) 1.0. W3C Recommendation (2006).

[20] BROWN, P. J. The Stick-e Document: a framework for cre-
ating context-aware applications. In Proceedings of the Elec-
tronic Publishing ’96 (1996), pp. 259–272.

[21] CAMP, J., AND KNIGHTLY, E. The IEEE 802.11s Extended
Service Set Mesh Networking Standard. IEEE Communica-
tions Magazine 46, 8 (2008), 120–126.

[22] CARRIERO, N., AND GELERNTER, D. Linda in context.
Communications of the ACM 32, 4 (1989), 444–458.

[23] CECHICH, A., AND PIATTINI, M. On the measurement of
cots functional suitability. In COTS-Based Software Systems,
vol. 2959 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2004, pp. 31–40.

[24] CHEN, H., FININ, T., AND JOSHI, A. An ontology for
context-aware pervasive computing environments. Knowl-
edge Engineering Review 18, 3 (2004), 197–207.

[25] CHEN, H., PERICH, F., FININ, T., AND JOSHI, A. SOUPA:
Standard Ontology for Ubiquitous and Pervasive Applica-
tions. In Int. Conf. on Mobile and Ubiquitous Systems: Net-
working and Services (MobiQuitous’04) (2004).

| 287

BIBLIOGRAPHY

[26] CHINNICI, R., MOREAU, J. J., RYMAN, A., AND WEER-
AWARANA, S. Web services description language (wsdl) ver-
sion 2.0 part 1: Core language. W3C Recommendation 26
(June 2007), 1–103.

[27] COMBEMALE, B., CRÉGUT, X., GIACOMETTI, J.-P.,
MICHEL, P., AND PANTEL, M. Introducing simulation and
model animation in the mde topcased toolkit. In Proceed-
ings of the 4th European Congress on Embedded Real Time
Software (ERTS 2008) (2008).

[28] CORSARO, A., QUERZONI, L., SCIPIONI, S., TUCCI, S.,
AND VIRGILLITO, A. Quality of Service in Publish/Sub-
scribe Middleware. Global Data Management 8 (July 2006).

[29] DENTLER, K., CORNET, R., TEN TEIJE, A., AND

DE KEIZER, N. Comparison of reasoners for large ontolo-
gies in the owl 2 el profile. Journal of Semantic Web 2, 2
(April 2011), 71–87.

[30] DEY, A. K. Context-aware computing: The cyberdesk
project. In Proceedings of the AAAI 1998 Spring Symposium
on Intelligent Environments (1998), pp. 51–54.

[31] DIMOKAS, N., KATSAROS, D., AND MANOLOPOULOS, Y.
Node clustering in wireless sensor networks by considering
structural characteristics of the network graph. In Proceed-
ings of the International Conference on Information Technol-
ogy (2007), pp. 122–127.

[32] DUPUY-CHESSA, S. Quality in ubiquitous information sys-
tem design. In Proceedings of the 3rd Int. Conf. on Research
Challenge in Information Science (RCIS) (2009).

[33] EUGSTER, P. T., FELBER, P. A., GUERRAOUI, R., AND

KERMARREC, A.-M. The many faces of publish/subscribe.
ACM Comput. Surv. 35, 2 (2003), 114–131.

[34] FARHOODI, F., AND GRAHAM, I. A practical approach to
designing and building intelligent software agents. In Pro-
ceedings of the 1st International Conference and Exhibition

288 |

BIBLIOGRAPHY

of The Practical Application of Intelligent Agents and Multi-
Agent Technology (PAAM ’96) (April 1996), pp. 181–204.

[35] FIEGE, L., ZEIDLER, A., BUCHMANN, A., KEHR, R. K.,
AND MUHL, G. Security aspects in publish/subscribe sys-
tems. In Proc. of the 3rd International Workshop on Dis-
tributed Event-based Systems (DEBS’04) (Edinburgh, Scot-
land, UK, May 2004).

[36] FLEUREY, F., MORIN, B., SOLBERG, A., AND BARAIS, O.
Mde to manage communications with and between resource-
constrained systems. In Model Driven Engineering Lan-
guages and Systems, vol. 6981 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2011, pp. 349–363.

[37] FORWARD, A., AND LETHBRIDGE, T. C. Problems and op-
portunities for model-centric versus code-centric software de-
velopment: A survey of software professionals. In Proceed-
ings of the 2008 International Workshop on Models in Soft-
ware Engineering (2008), ACM, pp. 27–32.

[38] FOWLER, M. Patterns of Enterprise Application Architec-
ture. Addison Wesley, 2002.

[39] FOWLER, M. UML distilled: a brief guide to the standard
object modeling language (3 ed.). Addison Wesley, 2004.

[40] FREEMAN, E., ROBSON, E., BATES, B., AND SIERRA,
K. Head First Design Patterns. O’Reilly Media, November
2004.

[41] GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES,
J. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[42] GELERNTER, D., AND CARRIERO, N. Coordination lan-
guages and their significance. Communications of the ACM
35, 2 (1992), 97–107.

[43] GÖRGEN, D., FREY, H., LEHNERT, J. K., AND STURM, P.
Selma: A middleware platform for self-organizing distributed

| 289

BIBLIOGRAPHY

applications in mobile multihop ad-hoc networks. Western
Simulation Multiconference (2003).

[44] GRACE, P., BLAIR, G. S., AND SAMUEL, S. A reflective
framework for discovery and interaction in heterogeneous
mobile environments. ACM SIGMOBILE Mobile Computing
and Communications Review 9, 1 (January 2005), 2–14.

[45] GRUBER, T. R. A translation approach to portable ontology
specifications. Knowledge Acquisition 5, 2 (1993), 199–220.

[46] GÜDEMANN, M., POIZAT, P., SALAÜN, G., AND DUMONT,
A. Verchor: A framework for verifying choreographies. In
Fundamental Approaches to Software Engineering, vol. 7793
of Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, 2013, pp. 226–230.

[47] GUDGIN, M., HADLEY, M., MENDELSOHN, N., MOREAU,
J. J., NIELSEN, H. F., KARMARKAR, A., AND LAFON, Y.
Soap version 1.2 part 1: Messaging framework (second edi-
tion). W3C Recommendation 27 (2007).

[48] HADIM, S., AL-JAROODI, J., AND MOHAMED, N. Trends
in middleware for mobile ad hoc networks. Journal of Com-
munications 1, 4 (2006), 11–21.

[49] HAILPERN, B., AND TARR, P. Model-driven development:
The good, the bad, and the ugly. IBM Systems Journal 45, 3
(2006), 451–461.

[50] HAYES, B. Cloud computing. Communications of the ACM
51, 7 (July 2008).

[51] HE, Y., LIU, H., AND ZHU, F. Improved schemes
for node clustering in decentralized peer-to-peer networks.
In Proceedings of the 3rd International IEEE Conference
on Signal-Image Technologies and Internet-Based System
(2007), pp. 461–467.

[52] HERRMANN, K., MÜHL, G., AND JAEGER, A. Meshmdl
event spaces - a coordination middleware for self-organizing

290 |

BIBLIOGRAPHY

applications in ad hoc networks. Pervasive and Mobile Com-
puting 3, 4 (2007), 467–487.

[53] HERVÁS, R., BRAVO, J., AND FONTECHA, J. Awareness
marks: Adaptive services through user interactions with aug-
mented objects. Personal and Ubiquitous Computing, Special
Issue on Ubiquitous Computing and Ambient Intelligence 5
(2011), 409–418.

[54] INTERNATIONAL STANDARDS ORGANIZATION (ISO).
Iso/iec 25010:2011 - systems and software engineering –
systems and software quality requirements and evaluation
(square) – system and software quality models. ISO/IEC
Standard (2011).

[55] JACOBSON, I., BOOCH, G., AND RUMBAUGH, J. The Uni-
fied Software Development Process. Addison Wesley, 1999.

[56] JETCHEVA, J., HU, Y., MALTZ, D., AND JOHNSON,
D. A simple protocol for multicast and broadcast in
mobile ad hoc networks. Tech. rep., IETF MANET
Working Group: Internet Draft. Available online at:
http://www.monarch.cs.rice.edu/internet-drafts/
draft-ietf-manet-simple-mbcast-01.txt, 2007.

[57] JONES, K. Building a context-aware service architecture. De-
veloper works, IBM Corporation, December 2008.

[58] KAINZ, G., BUCKL, C., AND KNOLL, A. Automated
model-to-metamodel transformations based on the concepts
of deep instantiation. In Model Driven Engineering Lan-
guages and Systems, vol. 6981 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2011, pp. 17–31.

[59] KANG, K., KIM, S., LEE, J., KIM, K., KIM, G., AND SHIN,
E. Form: A feature- oriented reuse method with domain-
specific reference architectures. Annals of Software Engineer-
ing 5, 1 (1998), 143–168.

[60] KAPTEIJNS, T., JANSEN, S., BRINKKEMPER, S., HOUËT,
H., AND BARENDSE, R. A comparative case study of model

| 291

BIBLIOGRAPHY

driven development vs traditional development: The tortoise
or the hare. In 4th European Workshop: From code centric to
model centric software engineering: Practices, Implications
and ROI (2009), pp. 22–33.

[61] KARTHIKEYAN, N., PALANISAMY, V., AND DU-
RAISWAMY, K. Performance comparison of broadcasting
methods in mobile ad hoc network. International Journal
of Future Generation Communication and Networking 2, 2
(June 2009), 47–58.

[62] KOEHLER, J. The role of bpmn in a modeling methodology
for dynamic process solutions. In Business Process Model-
ing Notation, vol. 67 of Business Process Modeling Notation.
Springer Berlin Heidelberg, 2010, pp. 46–62.

[63] KÖLLING, M., AND ROSENBERG, J. Blue - a language for
teaching object-oriented programming. SIGCSE Bulletin 28,
1 (March 1996), 190–194.

[64] LAMPORT, L. Time, clocks and the ordering of events in a
distributed system. Communications of the ACM 21, 7 (July
1978), 558–568.

[65] LEVIS, P., AND CULLER, D. Mate: A tiny virtual machine
for sensor networks. Proceedings of the international confer-
ence on architectural support of programming languages and
operative systems (October 2002).

[66] LEVY, H., AND TEMPERO, E. Modules, objects and dis-
tributed programming: Issues in RPC and remote object in-
vocation. Software Practice and Experience 21, 1 (January
1991), 77–90.

[67] LIM, S., LEE, W.-C., CAO, G., AND DAS, C. R. Per-
formance comparison of cache invalidation strategies for
internet-based mobile ad hoc networks. In 2004 IEEE Inter-
national Conference on Mobile Ad-hoc and Sensor Systems
(2004), pp. 104–113.

292 |

BIBLIOGRAPHY

[68] LIU, N., LIU, M., ZHU, J., AND GONG, H. A community-
based event delivery protocol in publish/subscribe systems
for delay tolerant sensor networks. Journal of Sensors 9, 10
(September 2009), 7580–7594.

[69] MAIA, M., ROCHA, L., AND ANDRADE, R. Requirements
and challenges for building service-oriented pervasive mid-
dleware. Procs. of the 2009 intl. conf. on pervasive services
(2009).

[70] MARTIN, A., AND LOOS, P. Software support for the com-
putation independent modelling in the mda context. In Pro-
ceedings of the 1st international workshop on business sup-
port for MDA (2008).

[71] MARTINEZ, J., MERINO, P., AND SALMERON, A. Apply-
ing mde methodologies to design communication protocols
for distributed systems. In Complex, Intelligent and Software
Intensive Systems, 2007. CISIS 2007. First International Con-
ference on (2007), pp. 185–190.

[72] MASCOLO, C., CAPRA, L., ZACHARIADIS, S., AND EM-
MERICH, W. Xmiddle: A data-sharing middleware for mo-
bile computing. Wireless Personal Computing 21, 1 (2002),
77–103.

[73] MEIER, R., AND CAHILL, V. Steam: Event-based middle-
ware for wireless ad-hoc networks. Proceedings of the 22nd
International Conference on Distributed Computing Systems
Workshops (2002), 639–644.

[74] MELLOR, S. J., CLARK, A. N., AND FUTAGAMI, T. Guest
editor’s introduction: Model-driven development. IEEE Soft-
ware 20, 5 (2003), 14–18.

[75] MICHELSON, B. M. Event-driven architecture overview. Pa-
tricia Seybold Group (January 2006).

[76] MILLER, F. P., VANDOME, A. F., AND MCBREWSTER,
J. Moore’s law: History of computing hardware, Integrated
circuit, Accelerating change, Amdahl’s law, Metcalfe’s law,

| 293

BIBLIOGRAPHY

Mark Kryder, Jakob Nielsen (usability consultant), Wirth’s
law. Alpha Press, 2009.

[77] MOHAGHEGHI, P., AND DEHLEN, V. Developing a quality
framework for model-driven engineering. In Models in Soft-
ware Engineering, vol. 5002 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2008, pp. 275–286.

[78] MOHAGHEGHI, P., GILANI, W., STEFANESCU, A., FER-
NANDEZ, M., NORDMOEN, B., AND FRITZSCHE, M.
Where does model-driven engineering help? experiences
from three industrial cases. Software & Systems Modeling
12, 3 (2013), 619–639.

[79] MULLER, G., MARLET, R., VOLANSCHI, E., CONSEL,
C., PU, C., AND GOEL, A. Fast, optimized sun rpc us-
ing automatic program specialization. In Proceedings of the
18th IEEE International Conference on Distributed Comput-
ing Systems (ICDCS’98) (May 1998), IEEE Computer Soci-
ety Press, pp. 240–249.

[80] MURPHY, A., PICCO, G., AND ROMAN, G. C. Lime: A
coordination model and middleware supporting mobility of
hosts and agents. Transactions on Software Engineering and
Methodology (TOSEM) 15, 3 (Jul 2006).

[81] MUSOLESI, M., MASCOLO, C., AND HAILES, S. Emma:
Epidemic messaging middleware for ad-hoc networks. Per-
sonal and Ubiquitous Computing 10, 1 (2005), 28–36.

[82] NAHRSTEDT, K. Distributed systems: Mobile and ubiquitous
computing, lecture 25. Tech. rep., University of Illinois, 2009.

[83] NWANA, H. S. Software agents: An overview. Knowledge
Engineering Review 11, 3 (1996), 205–244.

[84] OASIS SOA-RM TECHNICAL COMMITTEE. Service ori-
ented architecture reference model (SOA-RM). Tech. rep.,
OASIS, 2006.

294 |

BIBLIOGRAPHY

[85] OBJECT MANAGEMENT GROUP (OMG). Model driven ar-
chitecture. OMG Specification, http: // www. omg. org/
mda (2003).

[86] OBJECT MANAGEMENT GROUP (OMG). Data Distribution
Service for Real-time Systems Version 1.2. OMG Specifica-
tion (January 2007), 1–260.

[87] OBJECT MANAGEMENT GROUP (OMG). Common object
request broker architecture (corba) specification version 3.1.
part 1: Corba interfaces. OMG Specification (2008), 1–540.

[88] OBJECT MANAGEMENT GROUP (OMG). Common object
request broker architecture (corba) specification version 3.1.
part 2: Corba interoperability. OMG Specification (January
2008), 1–260.

[89] OBJECT MANAGEMENT GROUP (OMG). Business process
model and notation 2.0. OMG Specification, http: // www.
omg. org/ spec/ BPMN/ 2. 0/ (January 2011), 1–538.

[90] OBJECT MANAGEMENT GROUP (OMG). Meta object facil-
ity 2.0 query/view/transformation (qvt). OMG Specification,
http: // www. omg. org/ spec/ QVT (2011).

[91] OBJECT MANAGEMENT GROUP (OMG). Service oriented
architecture modeling language (soaml) version 1.0.1. OMG
Adopted Specification (May 2012), 1–132.

[92] OBJECT MANAGEMENT GROUP (OMG). Meta object fa-
cility (mof) core 2.4.1. OMG Specification, http: // www.
omg. org/ spec/ MOF (June 2013).

[93] PAIGE, R. F., OSTROFF, J. S., AND BROOKE, P. J. Prin-
ciples for modeling language design. Journal of Information
and Software Technology 42, 10 (July 2000), 665–675.

[94] PASCOE, J. The stick-e note architecture: Extending the in-
terface beyond the user. Proceedings of the international con-
ference on intelligent user interfaces (1997), 261–264.

| 295

BIBLIOGRAPHY

[95] PREE, W. Meta patterns - a means for capturing the essentials
of reusable object-oriented design. Proc. of the 8th European
Conf. on Object-Oriented Programming (1994), 150–162.

[96] PREE, W. Hot-spot-driven framework development. Build-
ing Application Frameworks: Object-Oriented Foundations
(2000).

[97] RAMASUBRAMANIAN, V., PETERSON, R., AND SIRER,
E. G. Corona: A high performance publish-subscribe system
for the world wide web. In Proceedings of the 3rd Symposium
on Networked Systems Design and Implementation (San Jose,
California, USA, May 2007), pp. 15–28.

[98] RIEHLE, D. Framework Design. Swiss Federal Institute of
Technology, 2000.

[99] RODRÍGUEZ-DOMÍNGUEZ, C., A., F., ALCALÁ-CORREA,
J., RODRÍGUEZ-FÓRTIZ, M., AND GARRIDO, J. A de-
sign proposal to support the integration and interoperability
of applications for people with special needs (originally avail-
able in spanish). In Proceedings of the 11th International
Conference on Human-Computer Interaction (2011), ACM,
pp. 401–410.

[100] RODRÍGUEZ-DOMÍNGUEZ, C., BENGHAZI, K., GARRIDO,
J. L., AND VALENZUELA, A. A platform supporting the
development of applications in ubiquitous systems: the col-
laborative application example of mobile forensics. In Pro-
ceedings of the 13th International Conference on Human-
Computer Interaction (2012), ACM, pp. 41:1–41:7.

[101] RODRÍGUEZ-DOMÍNGUEZ, C., BENGHAZI, K., NOGUERA,
M., GARRIDO, J. L., RODRÍGUEZ, M. L., AND RUIZ-
LÓPEZ, T. A communication model to integrate the request-
response and the publish-subscribe paradigms in ubiquitous
systems. Journal of Sensors 12, 6 (2012), 7648–7668.

[102] RODRÍGUEZ-DOMÍNGUEZ, C., CARACUEL, A.,
SANTIAGO-RAMAJO, S., RODRÍGUEZ-FÓRTIZ, M. J.,
HURTADO, M. V., AND FERNÁNDEZ-LÓPEZ, Á.

296 |

BIBLIOGRAPHY

Plataforma virtual de apoyo al envejecimiento activo.
In Proceedings of the 13th International Conference on
Human-Computer Interaction (2012), ACM, pp. 151–158.

[103] ROSS, A. M., RHODES, D. H., AND HASTINGS, D. E.
Defining changeability: Reconciling flexibility, adaptability,
scalability, modifiability, and robustness for maintaining sys-
tem lifecycle value. Journal of Systems Engineering 11, 3
(August 2008), 246–262.

[104] RUIZ-LÓPEZ, T., GARRIDO, J. L., RODRÍGUEZ-
DOMÍNGUEZ, C., AND NOGUERA, M. Sherlock: A
hybrid and adaptive positioning system based on stan-
dard technologies. In Evaluating AAL Systems through
Competitive Benchmarking (2011).

[105] RUMBAUGH, J., JACOBSON, I., AND BOOCH, G. Unified
Modeling Language Reference Manual, The (2nd Edition).
Pearson Higher Education, 2004.

[106] SAIF, U., AND GREAVES, D. Communication primitives for
ubiquitous systems or rpc considered harmful. In Proceedings
of the 21st International Conference on Distributed Comput-
ing Systems Workshops (2001), pp. 240–245.

[107] SCHILIT, B., ADAMS, N., AND WANT, R. Context-aware
computing applications. Proc. of Workshop on Mobile Com-
puting Systems and Applications (1994), 85–90.

[108] SCHILLING, M. A. Towards a general modular systems
theory and its application to inter-firm product modularity.
Academy of Management Review 25 (September 1999), 312–
334.

[109] SCHMIDT, A. Ubiquitous Computing - Computing in Con-
text. PhD thesis, Computing Department, Lancaster Univer-
sity, UK, November 2002.

[110] SCHMIDT, D., AND BUSCHMANN, F. Patterns, frameworks,
and middleware: their synergistic relationships. In Proceed-
ings of the 25th International Conference on Software Engi-
neering (2003), pp. 694–704.

| 297

BIBLIOGRAPHY

[111] SCHMIDT, D. C. Guest editor’s introduction: Model-driven
engineering. IEEE Computer Magazine 39, 2 (2006), 25–31.

[112] SELIC, B. From model-driven development to model-driven
engineering. In Proceedings of the 19th Euromicro Confer-
ence on Real-Time Systems (ECRTS) (2007), p. 3.

[113] SELTVEIT, A. Complexity Reduction in Information Systems
Modelling. PhD thesis, University of Trondheim, Norway,
1994.

[114] SHANKAR, C., AL-MUHTADI, J., CAMPBELL, R., AND

MICKUNAS, M. D. Mobile gaia: A middleware for ad hoc
pervasive computing. IEEE Consumer Communications and
Networking Conference (CCNC 2005) (January 2005).

[115] SHANNON, C. E., AND WEAVER, W. The Mathematical
Theory of Communication. University of Illinois Press, 1949.

[116] STÖRRLE, H., AND HAUSMANN, J. H. Towards a formal
semantics of uml 2.0 activities. In German Software Engi-
neering Conference (2005), pp. 117–128.

[117] TANENBAUM, A., AND VAN RENESSE, R. A critique of
the remote procedure call paradigm. In Proceedings of the
EUTECO 88 Conference (April 1988), R. Speth, Ed., Elsevier
Science Publishers B. V., pp. 775–783.

[118] TAPIA, D. I., ALONSO, R. S., DE LA PRIETA, F., ZATO,
C., RODRÍGUEZ, S., CORCHADO, E., BAJO, J., AND COR-
CHADO, J. M. SYLPH: An ambient intelligence based plat-
form for integrating heterogeneous wireless sensor networks.
IEEE International Conference on Fuzzy Systems (2010).

[119] TERRIER, F., AND GÉRARD, S. Mde benefits for distributed,
real time and embedded systems. IFIP International Federa-
tion for Information Processing, From Model-Driven Design
to Resource Management for Distributed Embedded Systems
225 (2006), 15–24.

298 |

BIBLIOGRAPHY

[120] TOUIL, A., VAREILLE, J., LHERMINIER, F., AND LE PARC,
P. Modeling and analysing ubiquitous systems using mde ap-
proach. Proceedings of the 4th International Conference on
Mobile Ubiquitous Computing, Systems, Services and Tech-
nologies (UBICOMM) (2010), 1–6.

[121] TRUJILLO, S., BATORY, D., AND DIAZ, O. Feature ori-
ented model driven development: A case study for portlets.
In 29th International Conference on Software Engineering
(ICSE) (2007), pp. 44–53.

[122] TSENG, Y. C., NI, S. Y., CHEN, Y. S., AND SHEU, J. P.
The Broadcast Storm Problem in a Mobile Ad Hoc Network.
Wireless Networks 8 (March 2002), 153–167.

[123] VAN DER AALST, W., AND STAHL, C. Modeling Business
Processes: A Petri Net-Oriented Approach. MIT Press, 2011.

[124] W3C. OWL 2 web ontology language, W3C recommenda-
tion. Tech. rep., W3C OWL Working Group, 2009.

[125] WADDINGTON, D. G., AND LARDIERI, P. Model cen-
tric software development. IEEE Computer Magazine 39, 2
(February 2006).

[126] WARD, A., JONES, A., AND HOPPER, A. A new location
technique for the active office. IEEE Personal Communica-
tions 4, 5 (1997), 42–47.

[127] WEISER, M. The computer for the 21st century. Scientific
American 265, 3 (September 1991), 94–104.

[128] WEISS, A. Computing in the clouds. netWorker 11, 4 (De-
cember 2007).

[129] YOSHITAKA, S., TAKADA, K., ANISETTI, M., BELLANDI,
V., CERAVOLO, P., DAMIANI, E., AND TSURUTA, S. To-
ward sensor-based context aware systems. Journal of Sensors
12 (2012), 632–649.

[130] ZEROC INC. Distributed programming with ICE. Avail-
able online at: http://doc.zeroc.com/display/Ice/Ice+Manual
(2013).

| 299

BIBLIOGRAPHY

300 |

Appendices

I. Implementation of the CI-CS ontol-
ogy in OWL

<?xml version="1.0"?>

<!DOCTYPE Ontology [
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY xml "http://www.w3.org/XML/1998/namespace" >
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#"

>
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax

-ns#" >
]>

<Ontology xmlns="http://www.w3.org/2002/07/owl#"
xml:base="http://www.semanticweb.org/

carlosrodriguezdominguez/ontologies/2014/1/
communication_system"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-

ns#"
xmlns:xml="http://www.w3.org/XML/1998/namespace"

| 301

APPENDICES

ontologyIRI="http://www.semanticweb.org/
carlosrodriguezdominguez/ontologies/2014/1/
communication_system">

<Prefix name="" IRI="http://www.w3.org/2002/07/owl#"
/>

<Prefix name="owl" IRI="http://www.w3.org/2002/07/owl
#"/>

<Prefix name="rdf" IRI="http://www.w3.org/1999/02/22-
rdf-syntax-ns#"/>

<Prefix name="xsd" IRI="http://www.w3.org/2001/
XMLSchema#"/>

<Prefix name="rdfs" IRI="http://www.w3.org/2000/01/
rdf-schema#"/>

<Annotation>
<AnnotationProperty abbreviatedIRI="rdfs:comment"

/>
<Literal datatypeIRI="&xsd;string">An ontology to

represent Computation Independent
Communication Systems.</Literal>

</Annotation>
<Annotation>

<AnnotationProperty abbreviatedIRI="owl:
versionInfo"/>

<Literal datatypeIRI="&xsd;string">1.0</Literal>
</Annotation>
<Declaration>

<Class IRI="#Active"/>
</Declaration>
<Declaration>

<Class IRI="#Channel"/>
</Declaration>
<Declaration>

<Class IRI="#Choreography"/>
</Declaration>
<Declaration>

<Class IRI="#ChoreographyActivity"/>
</Declaration>
<Declaration>

<Class IRI="#CommunicationSystem"/>
</Declaration>
<Declaration>

302 |

APPENDICES

<Class IRI="#Complex"/>
</Declaration>
<Declaration>

<Class IRI="#Conditional"/>
</Declaration>
<Declaration>

<Class IRI="#Content-Based"/>
</Declaration>
<Declaration>

<Class IRI="#Default"/>
</Declaration>
<Declaration>

<Class IRI="#EndEvent"/>
</Declaration>
<Declaration>

<Class IRI="#Event"/>
</Declaration>
<Declaration>

<Class IRI="#Event-Based"/>
</Declaration>
<Declaration>

<Class IRI="#Exclusive"/>
</Declaration>
<Declaration>

<Class IRI="#FlowObject"/>
</Declaration>
<Declaration>

<Class IRI="#Gateway"/>
</Declaration>
<Declaration>

<Class IRI="#Inclusive"/>
</Declaration>
<Declaration>

<Class IRI="#InitialEvent"/>
</Declaration>
<Declaration>

<Class IRI="#Link"/>
</Declaration>
<Declaration>

<Class IRI="#Message"/>
</Declaration>

| 303

APPENDICES

<Declaration>
<Class IRI="#Parallel"/>

</Declaration>
<Declaration>

<Class IRI="#Participant"/>
</Declaration>
<Declaration>

<Class IRI="#ParticipantRole"/>
</Declaration>
<Declaration>

<Class IRI="#Passive"/>
</Declaration>
<Declaration>

<Class IRI="#Peer"/>
</Declaration>
<Declaration>

<Class IRI="#Protocol"/>
</Declaration>
<Declaration>

<Class IRI="#Sequential"/>
</Declaration>
<Declaration>

<Class IRI="#SubChoreographyActivity"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#hasActivityParticipants"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#hasChannels"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#hasChoreographyMessages"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#hasChoreographyParticipants"
/>

</Declaration>
<Declaration>

<ObjectProperty IRI="#hasLink"/>
</Declaration>
<Declaration>

304 |

APPENDICES

<ObjectProperty IRI="#hasLinks"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#hasParticipants"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#hasProtocols"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#hasRole"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#hasSubactivities"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isActivityParticipant"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isChannelOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isChoreographyMessageOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isChoreographyOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isChoreographyParticipant"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isCommunicativeCommonalityOf
"/>

</Declaration>
<Declaration>

<ObjectProperty IRI="#isComplierWith"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isComposedBy"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isConnectedTo"/>

| 305

APPENDICES

</Declaration>
<Declaration>

<ObjectProperty IRI="#isConnectorOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isFinalizedBy"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isFinalizerOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isInitializedBy"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isInitializerOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isLinkOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isMediumOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isParticipantOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isProtocolOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isRoleOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isStarterOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isStructurerOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isSubactivityOf"/>
</Declaration>
<Declaration>

306 |

APPENDICES

<ObjectProperty IRI="#isTransferUnitOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isTransportedBy"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isTransporterOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isTriggeredBy"/>
</Declaration>
<EquivalentClasses>

<Class IRI="#ParticipantRole"/>
<ObjectUnionOf>

<Class IRI="#Active"/>
<Class IRI="#Passive"/>
<Class IRI="#Peer"/>

</ObjectUnionOf>
</EquivalentClasses>
<SubClassOf>

<Class IRI="#Active"/>
<Class IRI="#ParticipantRole"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#Channel"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isChannelOf"/>
<Class IRI="#CommunicationSystem"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#Channel"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isMediumOf"/>
<Class IRI="#Protocol"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#Channel"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isTransporterOf"/>

| 307

APPENDICES

<Class IRI="#Message"/>
</ObjectSomeValuesFrom>

</SubClassOf>
<SubClassOf>

<Class IRI="#Choreography"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#
hasChoreographyParticipants"/>

<Class IRI="#Participant"/>
</ObjectSomeValuesFrom>

</SubClassOf>
<SubClassOf>

<Class IRI="#Choreography"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#hasLinks"/>
<Class IRI="#Link"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#Choreography"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isFinalizedBy"/>
<Class IRI="#EndEvent"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#Choreography"/>
<ObjectMinCardinality cardinality="2">

<ObjectProperty IRI="#hasChoreographyMessages"
/>

<Class IRI="#Message"/>
</ObjectMinCardinality>

</SubClassOf>
<SubClassOf>

<Class IRI="#Choreography"/>
<ObjectExactCardinality cardinality="1">

<ObjectProperty IRI="#isInitializedBy"/>
<Class IRI="#InitialEvent"/>

</ObjectExactCardinality>
</SubClassOf>
<SubClassOf>

308 |

APPENDICES

<Class IRI="#ChoreographyActivity"/>
<Class IRI="#FlowObject"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#ChoreographyActivity"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#hasActivityParticipants"
/>

<Class IRI="#Participant"/>
</ObjectSomeValuesFrom>

</SubClassOf>
<SubClassOf>

<Class IRI="#ChoreographyActivity"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#hasChoreographyMessages"
/>

<Class IRI="#Message"/>
</ObjectSomeValuesFrom>

</SubClassOf>
<SubClassOf>

<Class IRI="#CommunicationSystem"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#hasChannels"/>
<Class IRI="#Channel"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#CommunicationSystem"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#hasParticipants"/>
<Class IRI="#Participant"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#CommunicationSystem"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#hasProtocols"/>
<Class IRI="#Protocol"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

| 309

APPENDICES

<Class IRI="#Complex"/>
<Class IRI="#Gateway"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#Conditional"/>
<Class IRI="#Link"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#Content-Based"/>
<Class IRI="#Exclusive"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#Default"/>
<Class IRI="#Link"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#EndEvent"/>
<Class IRI="#Event"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#EndEvent"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isFinalizerOf"/>
<Class IRI="#Choreography"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#Event"/>
<Class IRI="#FlowObject"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#Event"/>
<Class IRI="#Message"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#Event-Based"/>
<Class IRI="#Exclusive"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#Exclusive"/>
<Class IRI="#Gateway"/>

310 |

APPENDICES

</SubClassOf>
<SubClassOf>

<Class IRI="#Exclusive"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isTriggeredBy"/>
<Class IRI="#Event"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#FlowObject"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#hasLink"/>
<Class IRI="#Link"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#Gateway"/>
<Class IRI="#Event"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#Gateway"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isStarterOf"/>
<Class IRI="#FlowObject"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#Inclusive"/>
<Class IRI="#Gateway"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#InitialEvent"/>
<Class IRI="#Event"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#InitialEvent"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isInitializerOf"/>
<Class IRI="#Choreography"/>

</ObjectSomeValuesFrom>
</SubClassOf>

| 311

APPENDICES

<SubClassOf>
<Class IRI="#Link"/>
<ObjectMinCardinality cardinality="1">

<ObjectProperty IRI="#isLinkOf"/>
<Class IRI="#Choreography"/>

</ObjectMinCardinality>
</SubClassOf>
<SubClassOf>

<Class IRI="#Link"/>
<ObjectExactCardinality cardinality="2">

<ObjectProperty IRI="#isConnectorOf"/>
<Class IRI="#FlowObject"/>

</ObjectExactCardinality>
</SubClassOf>
<SubClassOf>

<Class IRI="#Message"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isComplierWith"/>
<Class IRI="#Protocol"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#Message"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isTransferUnitOf"/>
<Class IRI="#Participant"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#Parallel"/>
<Class IRI="#Gateway"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#Participant"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isActivityParticipant"/>
<Class IRI="#ChoreographyActivity"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#Participant"/>

312 |

APPENDICES

<ObjectSomeValuesFrom>
<ObjectProperty IRI="#isConnectedTo"/>
<Class IRI="#Participant"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#Participant"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isParticipantOf"/>
<Class IRI="#CommunicationSystem"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#Participant"/>
<ObjectExactCardinality cardinality="1">

<ObjectProperty IRI="#hasRole"/>
<Class IRI="#ParticipantRole"/>

</ObjectExactCardinality>
</SubClassOf>
<SubClassOf>

<Class IRI="#Passive"/>
<Class IRI="#ParticipantRole"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#Peer"/>
<Class IRI="#ParticipantRole"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#Protocol"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#
isCommunicativeCommonalityOf"/>

<Class IRI="#Channel"/>
</ObjectSomeValuesFrom>

</SubClassOf>
<SubClassOf>

<Class IRI="#Protocol"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isProtocolOf"/>
<Class IRI="#CommunicationSystem"/>

</ObjectSomeValuesFrom>

| 313

APPENDICES

</SubClassOf>
<SubClassOf>

<Class IRI="#Sequential"/>
<Class IRI="#Link"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#SubChoreographyActivity"/>
<Class IRI="#ChoreographyActivity"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#SubChoreographyActivity"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isSubactivityOf"/>
<Class IRI="#ChoreographyActivity"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<DisjointClasses>

<Class IRI="#Channel"/>
<Class IRI="#Choreography"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Channel"/>
<Class IRI="#CommunicationSystem"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Channel"/>
<Class IRI="#FlowObject"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Channel"/>
<Class IRI="#Link"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Channel"/>
<Class IRI="#Message"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Channel"/>
<Class IRI="#Participant"/>

</DisjointClasses>
<DisjointClasses>

314 |

APPENDICES

<Class IRI="#Channel"/>
<Class IRI="#ParticipantRole"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Channel"/>
<Class IRI="#Protocol"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Choreography"/>
<Class IRI="#CommunicationSystem"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Choreography"/>
<Class IRI="#Link"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Choreography"/>
<Class IRI="#Message"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Choreography"/>
<Class IRI="#Participant"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Choreography"/>
<Class IRI="#ParticipantRole"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Choreography"/>
<Class IRI="#Protocol"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#ChoreographyActivity"/>
<Class IRI="#Event"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#CommunicationSystem"/>
<Class IRI="#FlowObject"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#CommunicationSystem"/>

| 315

APPENDICES

<Class IRI="#Link"/>
</DisjointClasses>
<DisjointClasses>

<Class IRI="#CommunicationSystem"/>
<Class IRI="#Message"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#CommunicationSystem"/>
<Class IRI="#Participant"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#CommunicationSystem"/>
<Class IRI="#ParticipantRole"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#CommunicationSystem"/>
<Class IRI="#Protocol"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Complex"/>
<Class IRI="#Exclusive"/>
<Class IRI="#Inclusive"/>
<Class IRI="#Parallel"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Conditional"/>
<Class IRI="#Default"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Conditional"/>
<Class IRI="#Sequential"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Content-Based"/>
<Class IRI="#Event-Based"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Default"/>
<Class IRI="#Sequential"/>

</DisjointClasses>
<DisjointClasses>

316 |

APPENDICES

<Class IRI="#EndEvent"/>
<Class IRI="#Gateway"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#EndEvent"/>
<Class IRI="#InitialEvent"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#FlowObject"/>
<Class IRI="#Participant"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#FlowObject"/>
<Class IRI="#ParticipantRole"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#FlowObject"/>
<Class IRI="#Protocol"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Gateway"/>
<Class IRI="#InitialEvent"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Link"/>
<Class IRI="#Participant"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Link"/>
<Class IRI="#ParticipantRole"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Link"/>
<Class IRI="#Protocol"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Message"/>
<Class IRI="#Participant"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Message"/>

| 317

APPENDICES

<Class IRI="#ParticipantRole"/>
</DisjointClasses>
<DisjointClasses>

<Class IRI="#Message"/>
<Class IRI="#Protocol"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Participant"/>
<Class IRI="#ParticipantRole"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Participant"/>
<Class IRI="#Protocol"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#ParticipantRole"/>
<Class IRI="#Protocol"/>

</DisjointClasses>
<InverseObjectProperties>

<ObjectProperty IRI="#hasActivityParticipants"/>
<ObjectProperty IRI="#isActivityParticipant"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#hasChannels"/>
<ObjectProperty IRI="#isChannelOf"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#isChoreographyMessageOf"/>
<ObjectProperty IRI="#hasChoreographyMessages"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#hasChoreographyParticipants"
/>

<ObjectProperty IRI="#isChoreographyParticipant"/>
</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#isConnectorOf"/>
<ObjectProperty IRI="#hasLink"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#isLinkOf"/>

318 |

APPENDICES

<ObjectProperty IRI="#hasLinks"/>
</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#hasParticipants"/>
<ObjectProperty IRI="#isParticipantOf"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#isProtocolOf"/>
<ObjectProperty IRI="#hasProtocols"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#hasRole"/>
<ObjectProperty IRI="#isRoleOf"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#isSubactivityOf"/>
<ObjectProperty IRI="#hasSubactivities"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#isCommunicativeCommonalityOf
"/>

<ObjectProperty IRI="#isMediumOf"/>
</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#isComplierWith"/>
<ObjectProperty IRI="#isStructurerOf"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#isFinalizerOf"/>
<ObjectProperty IRI="#isFinalizedBy"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#isInitializedBy"/>
<ObjectProperty IRI="#isInitializerOf"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#isTransporterOf"/>
<ObjectProperty IRI="#isTransportedBy"/>

</InverseObjectProperties>
<FunctionalObjectProperty>

<ObjectProperty IRI="#hasRole"/>

| 319

APPENDICES

</FunctionalObjectProperty>
<FunctionalObjectProperty>

<ObjectProperty IRI="#isInitializedBy"/>
</FunctionalObjectProperty>
<FunctionalObjectProperty>

<ObjectProperty IRI="#isTriggeredBy"/>
</FunctionalObjectProperty>
<InverseFunctionalObjectProperty>

<ObjectProperty IRI="#isRoleOf"/>
</InverseFunctionalObjectProperty>
<SymmetricObjectProperty>

<ObjectProperty IRI="#isConnectedTo"/>
</SymmetricObjectProperty>
<TransitiveObjectProperty>

<ObjectProperty IRI="#isComposedBy"/>
</TransitiveObjectProperty>
<TransitiveObjectProperty>

<ObjectProperty IRI="#isConnectedTo"/>
</TransitiveObjectProperty>
<ObjectPropertyDomain>

<ObjectProperty IRI="#hasActivityParticipants"/>
<Class IRI="#ChoreographyActivity"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#hasChannels"/>
<Class IRI="#CommunicationSystem"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#hasChoreographyMessages"/>
<Class IRI="#Choreography"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#hasChoreographyParticipants"
/>

<Class IRI="#Choreography"/>
</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#hasLink"/>
<Class IRI="#FlowObject"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

320 |

APPENDICES

<ObjectProperty IRI="#hasLinks"/>
<Class IRI="#Choreography"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#hasParticipants"/>
<Class IRI="#CommunicationSystem"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#hasProtocols"/>
<Class IRI="#CommunicationSystem"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#hasRole"/>
<Class IRI="#Participant"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#hasSubactivities"/>
<Class IRI="#ChoreographyActivity"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isActivityParticipant"/>
<Class IRI="#Participant"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isChannelOf"/>
<Class IRI="#Channel"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isChoreographyMessageOf"/>
<Class IRI="#Message"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isChoreographyOf"/>
<Class IRI="#Choreography"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isChoreographyParticipant"/>
<Class IRI="#Participant"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

| 321

APPENDICES

<ObjectProperty IRI="#isCommunicativeCommonalityOf
"/>

<Class IRI="#Protocol"/>
</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isComplierWith"/>
<Class IRI="#Message"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isComposedBy"/>
<Class IRI="#Protocol"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isConnectedTo"/>
<Class IRI="#Participant"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isConnectorOf"/>
<Class IRI="#Link"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isFinalizedBy"/>
<Class IRI="#Choreography"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isFinalizerOf"/>
<Class IRI="#EndEvent"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isInitializedBy"/>
<Class IRI="#Choreography"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isInitializerOf"/>
<Class IRI="#InitialEvent"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isLinkOf"/>
<Class IRI="#Link"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

322 |

APPENDICES

<ObjectProperty IRI="#isMediumOf"/>
<Class IRI="#Channel"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isParticipantOf"/>
<Class IRI="#Participant"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isProtocolOf"/>
<Class IRI="#Protocol"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isRoleOf"/>
<Class IRI="#ParticipantRole"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isStarterOf"/>
<Class IRI="#Gateway"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isStructurerOf"/>
<Class IRI="#Protocol"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isSubactivityOf"/>
<Class IRI="#SubChoreographyActivity"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isTransferUnitOf"/>
<Class IRI="#Message"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isTransportedBy"/>
<Class IRI="#Message"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isTransporterOf"/>
<Class IRI="#Channel"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isTriggeredBy"/>

| 323

APPENDICES

<Class IRI="#Exclusive"/>
</ObjectPropertyDomain>
<ObjectPropertyRange>

<ObjectProperty IRI="#hasActivityParticipants"/>
<Class IRI="#Participant"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#hasChannels"/>
<Class IRI="#Channel"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#hasChoreographyMessages"/>
<Class IRI="#Message"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#hasChoreographyParticipants"
/>

<Class IRI="#Participant"/>
</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#hasLink"/>
<Class IRI="#Link"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#hasLinks"/>
<Class IRI="#Link"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#hasParticipants"/>
<Class IRI="#Participant"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#hasProtocols"/>
<Class IRI="#Protocol"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#hasRole"/>
<Class IRI="#ParticipantRole"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#hasSubactivities"/>

324 |

APPENDICES

<Class IRI="#SubChoreographyActivity"/>
</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isActivityParticipant"/>
<Class IRI="#ChoreographyActivity"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isChannelOf"/>
<Class IRI="#CommunicationSystem"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isChoreographyMessageOf"/>
<Class IRI="#Choreography"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isChoreographyOf"/>
<Class IRI="#CommunicationSystem"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isChoreographyParticipant"/>
<Class IRI="#Choreography"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isCommunicativeCommonalityOf
"/>

<Class IRI="#Channel"/>
</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isComplierWith"/>
<Class IRI="#Protocol"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isComposedBy"/>
<Class IRI="#Protocol"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isConnectedTo"/>
<Class IRI="#Participant"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isConnectorOf"/>

| 325

APPENDICES

<Class IRI="#FlowObject"/>
</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isFinalizedBy"/>
<Class IRI="#EndEvent"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isFinalizerOf"/>
<Class IRI="#Choreography"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isInitializedBy"/>
<Class IRI="#InitialEvent"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isInitializerOf"/>
<Class IRI="#Choreography"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isLinkOf"/>
<Class IRI="#Choreography"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isMediumOf"/>
<Class IRI="#Protocol"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isParticipantOf"/>
<Class IRI="#CommunicationSystem"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isProtocolOf"/>
<Class IRI="#CommunicationSystem"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isRoleOf"/>
<Class IRI="#Participant"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isStarterOf"/>
<Class IRI="#FlowObject"/>

326 |

APPENDICES

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isStructurerOf"/>
<Class IRI="#Message"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isSubactivityOf"/>
<Class IRI="#ChoreographyActivity"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isTransferUnitOf"/>
<Class IRI="#Participant"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isTransportedBy"/>
<Class IRI="#Channel"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isTransporterOf"/>
<Class IRI="#Message"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isTriggeredBy"/>
<Class IRI="#Event"/>

</ObjectPropertyRange>
</Ontology>

<!-- Generated by the OWL API (version 3.4.2) http://
owlapi.sourceforge.net -->

| 327

APPENDICES

II. Quality Attributes of the CI-CS
Metamodel

II.1 Functional Suitability

The CI-CS metamodel is able to represent different communication
scenarios with multiple specific requirements, as has been described
along Section 3.2. For instance, it is possible to describe communi-
cation systems composed only by passive participants, only by ac-
tive participants or by peers.

Moreover, the metamodel can capture the requirements that a com-
munication system with a certain structure should satisfy. For ex-
ample, given the set of participants, messages, channels and proto-
cols (i.e., the concepts present in the structural view), it is possible
to identify the needed interactions between those elements (i.e., the
concepts present in the behavioral view), and to explicitly define a
choreography to organize them.

Conversely, given an organization of a communication system, it
is possible to obtain the structural elements that are required to be
present in the communication system itself. As an example, if a
choreography specifies that two participants interact, then both par-
ticipants should, at least, share a channel and use some common
protocol.

Finally, the functional suitability of a metamodel can be also de-
fined on the basis of a set of sub-characteristics described in the
ISO/IEC 25010:2011 standard. The following subsections explain
how the metamodel is able to address the analysis of those sub-
characteristics. The resulting conclusion is that the functional suit-
ability of the metamodel can be considered to be high. Nonetheless,
note that the standard defines a security sub-characteristic, which
has not been taken into account, since it is not suitable to describe
the quality of a metamodel [13].

328 |

APPENDICES

II.1.1. Functional Appropriateness

The functional appropriateness is the degree to which the metamodel
provides an appropriate set of functions for specified tasks and user
objectives. It can be studied by analyzing multiple aspects, also
defined in the ISO/IEC 25010:2011 standard.

For example, the metamodel is relevant, that is, it only contains the
concepts and relationships that are necessary for a particular trans-
formation (i.e., from a very general communication system to a con-
crete ubiquitous system). The transformation of the CI-CS into more
concrete models is explored in Chapter 5, which contributes to the
clarification of this assessment. Also, the metamodel specification
takes into account that all the concepts and relationships must be
part of any communication system. Therefore, there should be not
a communication system without some of the concepts present in
the metamodel. Consequently, the metamodel is also concise, in the
sense that it is not unnecessarily extensive and it just contains the
needed concepts and relationships.

Finally, the metamodel is cohesive, since it is only focused on one
topic, that is, in the description of a communication system, and
confined, since it only contains concepts at one abstraction level.

II.1.2. Accuracy

The accuracy is the degree to which the metamodel provides the
right or specified results with the needed degree of precision. One
related aspect is the validity, that is, the metamodel contains in-
formation that has been contrasted against a reliable source of in-
formation. In this case, the metamodel has been devised from the
most well-known and accepted communication models (i.e., SMCR,
Shannon-Weaver, Barnlund and the BPMN 2.0 choreography meta-
model). Finally, another notion related to the accuracy is the pre-
cision, which is directly accomplished if the metamodel is relevant
[13], as it was described in previous subsubsection.

| 329

APPENDICES

II.1.3. Interoperability

The interoperability is the degree to which the metamodel can be
cooperatively operable with one or more other metamodels. Since
the CI-CS metamodel has been formally specified as an ontology, it
can interoperate with other ontologies specifying other metamodels
in order to complete its information in some aspects, to include new
notions related to other domains, etc.

II.1.4. Compliance

The functional suitability compliance is the degree to which the me-
tamodel adheres to standards, conventions or regulations in laws and
similar prescriptions relating to functional suitability. Consequently,
since the metamodel is valid, as specified in Subsubsection II.1.2,
then it adheres to certain well-established conventions. Addition-
ally, as the metamodel has been formally described as an ontology,
then it adheres to an standard way of formally specifying knowledge.

II.2 Reliability

The reliability is the degree to which the metamodel can maintain
a specified level of performance when used under specified condi-
tions. In other words, the reliability of the metamodel refers to the
degree of expressiveness that can be assessed, even if a fault in the
metamodel specification is detected. Therefore, the proposed meta-
model can be considered partially reliable in the sense that, even if a
fault in the metamodel specification is detected, a minimum degree
of expressiveness can be assessed, since the metamodel includes the
concepts and relationships that are present in the most widely ac-
cepted communication theories. This way, the reliability of the me-
tamodel is linked to its functional suitability compliance (Subsub-
section II.1.4) and accuracy (Subsubsection II.1.2).

330 |

APPENDICES

II.3 Performance Efficiency

The performance efficiency of the metamodel is related to the
amount of classes and relationships that it uses. As previously stated
in subsubsection II.1.1, the metamodel is intended to be simple
enough to represent any communication system and to just include
the needed elements to do so. In this way, it is possible to relate
its conciseness to its efficiency. Moreover, using the metamodel
to produce models can be considered as an efficient task, since the
produced models should only have the strictly needed elements to
represent a concrete communication system.

II.4 Operability

The operability of the metamodel is closely related to its simplicity
and conciseness. In that sense, it is possible to attribute the meta-
model with a recognizable minimum operability level. Anyhow, the
operability is a completely subjective attribute that is also associated
to many different characteristics, as will be explored in the following
subsubsections.

II.4.1. Appropriateness Recognizability

The appropriateness recognizability refers to the degree to which
the metamodel enables users to recognize whether it is appropriate
for their needs or not. To this respect, the metamodel is clearly fo-
cused on describing communication systems as a whole and in a
computation-independent manner (i.e., without including any tech-
nical artifacts). Thereby, it should be recognizable by the users as
appropriate if they need to describe one of these systems. Addition-
ally, the specification of the metamodel as an ontology should help
to clear up the focus of the metamodel and serves, at least, to check
if a description of a system is compliant with the proposed concep-
tualization of a communication system.

| 331

APPENDICES

II.4.2. Learnability

The learnability is the capability of the metamodel to enable the user
to learn its application (use, meaning, representation). This attribute
is considered to be linked to the presence of clean concepts, that is,
concepts that directly reflect the theoretical model behind the meta-
model and not related to any technical or secondary issues [63]. This
way, the metamodel can be considered to be learnable by any per-
son that is familiar with the communication theory, since it explicitly
reflects the notions present in those theories without any additional
artifacts.

II.4.3. Helpfulness

The helpfulness of the metamodel is referred to the degree to which
it provides help when users need assistance. The CI-CS metamodel
may help into analyzing, designing or validating a communication
system. Consequently, it may considered to be helpful for those
tasks.

II.4.4. Attractiveness

The attractiveness is the capability of the metamodel to be attractive
to the user. Even if this is a completely subjective attribute that is
more related to the attraction of the user of the metamodel to the
field of the communications, it can also be related to its learnability.
Consequently, since the metamodel has that attribute, it could be
determined that it exhibits a certain level of attractiveness.

II.5 Compatibility

The ontological representation of the metamodel allows to ensure
a certain level of compatibility with other ontological representa-
tions. However, certain equivalency rules should be established to
ensure that there is a logical match between the concepts present
in the CI-CS metamodel and other metamodels. That way, it is not

332 |

APPENDICES

possible to assess any level of compatibility between the proposal
and other proposals, due to the wide range of different concepts
and relationships that could be present in other proposals related
to the communication field. Anyhow, it should be able to co-exist
with other independent metamodels in a common environment shar-
ing common concepts. Moreover, its specificity is very low (i.e.,
it is computation-independent), which contributes to assess a cer-
tain level of replaceability, that is, to be used in place of another
specified metamodel for the same purpose in the same environment.
Since both characteristics are associated with the compatibility in
the ISO/IEC 25010:2011 standard, then, at least, a minimum level
of compatibility can be attributed to the metamodel.

II.6 Maintainability
The maintainability of the metamodel can be analyzed through the
conjunction of the characteristics described in the following subsub-
sections, which intend to explain how the metamodel can be modi-
fied or analyzed. The resulting conclusion is that the metamodel can
be considered to be highly maintainable.

It is worth to be mentioned that during the analysis of the main-
tainability it is necessary to treat the metamodel as a white box. In
contrast, the analysis of the transferability characteristic, which will
be explored in Subsection II.7, requires to treat it as a whole or as a
black box [13].

II.6.1. Modularity

The modularity is “a continuum describing the degree to which a
systems components may be separated and recombined” [108]. To
this respect, the metamodel have been split into two different views,
that is, the structural and the behavioral ones. The concepts associ-
ated with one view can be used “as is”, without taking into account
the concepts present in the other view. Therefore, the metamodel can
be divided into two completely different metamodels to tackle with
the different aspects of a communication system in a separated way.

| 333

APPENDICES

In fact, the structural view could be used to represent the structure
of a communication system, whereas the behavioral view, which, in
turn, is based on the BPMN 2.0 choreography metamodel, could be
used to model a choreography or a certain organization of a commu-
nication system. In consequence, the metamodel can be considered
to be at a good modularity level.

II.6.2. Reusability

The reusability is the degree to which the metamodel can be used
in more than one software system, or in building other metamodels.
The level of reusability of the CI-CS metamodel can be considered
to be high, since it is computation-independent (i.e., it can be used
in multiple software systems and, even, to model human-based com-
munications) and it conceptualizes a very general notion (i.e., the
notion of a communication system) that is used as a part of many
different types of systems. Moreover, it can be used as a basis to
build more complex metamodels, as the metamodel of a ubiquitous
system, which, in particular, is explored in Chapter 4.

II.6.3. Analyzability

The analyzability is the capability of the metamodel to be diagnosed
for deficiencies or causes of failures, or for the parts to be modified
to be identified. In this case, the metamodel has been divided into
two different views, namely, the structural and the behavioral ones,
which could contribute to more easily analyze its multiple concepts
under different perspectives.

II.6.4. Changeability

The changeability is the capability of the metamodel to enable a
specified modification to be implemented. In this case, the change-
ability level of the CI-CS metamodel is low, since a change in one
concept or relationship will probably require a change in many
other concepts and relationships, due to the cohesiveness that all

334 |

APPENDICES

the notions related to a communication system have. Nonetheless,
the modularity can be considered a characteristic that contributes to
the changeability [103]. Therefore, at least, a minimum degree of
changeability has been achieved in the proposal.

II.6.5. Testability

The testability is the capability of the metamodel to enable a mod-
ified (meta)model to be validated. Since it has been formally de-
fined as an ontology, it is possible to check for inconsistencies in the
models derived from the metamodel. Furthermore, the testability
is also associated with the documentability [13], which is the de-
gree to which the metamodel is documented or self-explanatory. In
this case, most of the notions specified in the metamodel are well-
known concepts. Anyway, all the concepts and relationships present
in the metamodel (and the ideas behind their proposal) have been
described in Section 3.2. Thereby, the metamodel can be considered
to be testable.

II.7 Transferability
The degree of transferability of the metamodel can be analyzed
through the study of the characteristics described in the following
subsubsections, which are intended to describe how the metamodel
can the adapted or transferred between environments as a whole
(i.e., as a black box). As will be detailed, the transferability of
the metamodel can only be considered to be average, since the
portability degree of the proposal can not be completely assessed.

II.7.1. Adaptability

The adaptability is the capability of the metamodel to be adapted for
different specified environments without applying actions or means
other than those provided for this purpose for the software consid-
ered. The adaptability is a conjunction of the flexibility, scalability
and reducibility of a metamodel [13]:

| 335

APPENDICES

Flexibility: As specified in Section 3.2, the proposal is
flexible enough to be considered computation-independent
and to be able to represent the communication scenarios
analyzed in the existing communication theories, plus some
additional, very special ones (i.e., only passive or active
participants, peer-to-peer environments, scenarios with only
one participant in order to model self-communications, etc.).

Scalability: The scalability of a metamodel refers to the pos-
sibility of using it to model both large and small systems [93].
In this case, the CI-CS metamodel is able to conceptualize
communication systems with a minimum complexity (i.e.,
one participant communicating with itself) and very complex
ones, involving multiple sets of interactions organized in
very complex manners (i..e, with different gateways, several
events, etc.).

Reducibility: The reducibility is characterized by the amount
of concepts that are present only to support the modeling of
complex systems [113]. It refers to the possibility of removing
certain concepts in the metamodel to only tackle with simpler
systems. In this case, the CI-CS metamodel contains some
concepts that are oriented towards supporting complex sys-
tems, namely, events, gateway and sub-activities. That way,
the metamodel can be considered to be reducible.

As a consequence of the analysis of previous characteristics, the CI-
CS metamodel can be considered to be adaptable.

II.7.2. Portability

The portability is the ease with which the metamodel can be trans-
ferred from one environment to another. Also, a metamodel is con-
sidered to be portable if it is adaptable and replaceable [13]. The
adaptability level of the metamodel has been described to be good
in previous subsubsection, while its replaceability was discussed to
be minimal in subsection II.5. Therefore, the metamodel exhibits a
minimum level of portability.

336 |

APPENDICES

III. Implementation of the PI-US On-
tology in OWL

<?xml version="1.0"?>

<!DOCTYPE Ontology [
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY xml "http://www.w3.org/XML/1998/namespace" >
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#"

>
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax

-ns#" >
]>

<Ontology xmlns="http://www.w3.org/2002/07/owl#"
xml:base="http://www.semanticweb.org/

carlosrodriguezdominguez/ontologies/2014/1/
ubiquitous_system"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-

ns#"
xmlns:xml="http://www.w3.org/XML/1998/namespace"
ontologyIRI="http://www.semanticweb.org/

carlosrodriguezdominguez/ontologies/2014/1/
ubiquitous_system">

<Prefix name="" IRI="http://www.w3.org/2002/07/owl#"
/>

<Prefix name="owl" IRI="http://www.w3.org/2002/07/owl
#"/>

<Prefix name="rdf" IRI="http://www.w3.org/1999/02/22-
rdf-syntax-ns#"/>

<Prefix name="xsd" IRI="http://www.w3.org/2001/
XMLSchema#"/>

<Prefix name="rdfs" IRI="http://www.w3.org/2000/01/
rdf-schema#"/>

<Annotation>

| 337

APPENDICES

<AnnotationProperty abbreviatedIRI="rdfs:comment"
/>

<Literal datatypeIRI="&xsd;string">An ontology to
represent Platform-Independent Ubiquitous
Systems.</Literal>

</Annotation>
<Annotation>

<AnnotationProperty abbreviatedIRI="owl:
versionInfo"/>

<Literal datatypeIRI="&xsd;string">1.0</Literal>
</Annotation>
<Declaration>

<Class IRI="#Application"/>
</Declaration>
<Declaration>

<Class IRI="#Choreography"/>
</Declaration>
<Declaration>

<Class IRI="#CommunicationActivity"/>
</Declaration>
<Declaration>

<Class IRI="#Complex"/>
</Declaration>
<Declaration>

<Class IRI="#Conditional"/>
</Declaration>
<Declaration>

<Class IRI="#Content-Based"/>
</Declaration>
<Declaration>

<Class IRI="#Default"/>
</Declaration>
<Declaration>

<Class IRI="#Discovery"/>
</Declaration>
<Declaration>

<Class IRI="#DiscoveryActivity"/>
</Declaration>
<Declaration>

<Class IRI="#DiscoveryHandler"/>
</Declaration>

338 |

APPENDICES

<Declaration>
<Class IRI="#DiscoveryListener"/>

</Declaration>
<Declaration>

<Class IRI="#ElementalCommunicationActivity"/>
</Declaration>
<Declaration>

<Class IRI="#EndEvent"/>
</Declaration>
<Declaration>

<Class IRI="#Event"/>
</Declaration>
<Declaration>

<Class IRI="#Event-Based"/>
</Declaration>
<Declaration>

<Class IRI="#EventDistributionActivity"/>
</Declaration>
<Declaration>

<Class IRI="#EventHandler"/>
</Declaration>
<Declaration>

<Class IRI="#EventListener"/>
</Declaration>
<Declaration>

<Class IRI="#EventNode"/>
</Declaration>
<Declaration>

<Class IRI="#Exclusive"/>
</Declaration>
<Declaration>

<Class IRI="#Gateway"/>
</Declaration>
<Declaration>

<Class IRI="#Inclusive"/>
</Declaration>
<Declaration>

<Class IRI="#InitialEvent"/>
</Declaration>
<Declaration>

<Class IRI="#MessageExchangingActivity"/>

| 339

APPENDICES

</Declaration>
<Declaration>

<Class IRI="#NetworkingTechnology"/>
</Declaration>
<Declaration>

<Class IRI="#Parallel"/>
</Declaration>
<Declaration>

<Class IRI="#Predicate"/>
</Declaration>
<Declaration>

<Class IRI="#RequestMessage"/>
</Declaration>
<Declaration>

<Class IRI="#ResponseMessage"/>
</Declaration>
<Declaration>

<Class IRI="#Sequential"/>
</Declaration>
<Declaration>

<Class IRI="#Service"/>
</Declaration>
<Declaration>

<Class IRI="#SoftwareAgent"/>
</Declaration>
<Declaration>

<Class IRI="#SoftwareMessage"/>
</Declaration>
<Declaration>

<Class IRI="#SoftwareProtocol"/>
</Declaration>
<Declaration>

<Class IRI="#Topic"/>
</Declaration>
<Declaration>

<Class IRI="#UbiquitousSystem"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#hasActivityParticipants"/>
</Declaration>
<Declaration>

340 |

APPENDICES

<ObjectProperty IRI="#hasChoreography"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#hasChoreographyMessages"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#hasChoreographyParticipants"
/>

</Declaration>
<Declaration>

<ObjectProperty IRI="#hasCommunicationActivity"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#hasConditionalPredicate"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#hasElementalActivities"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#hasEventHandler"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#hasEventListener"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#hasParticipants"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#hasPredicate"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#hasProtocols"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#
hasPublicationOrSubscriptionOf"/>

</Declaration>
<Declaration>

<ObjectProperty IRI="#hasTechnologies"/>
</Declaration>
<Declaration>

| 341

APPENDICES

<ObjectProperty IRI="#hasUnsatisfiedPredicate"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isActivityParticipant"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isChoreographyMessageOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isChoreographyOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isChoreographyParticipant"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isCommunicationActivityOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isCommunicativeCommonalityOf
"/>

</Declaration>
<Declaration>

<ObjectProperty IRI="#isComplierWith"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isComposedBy"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isConnectedTo"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isDiscoveredBy"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isDiscovererOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isElementalActivityOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isEventHandlerOf"/>

342 |

APPENDICES

</Declaration>
<Declaration>

<ObjectProperty IRI="#isEventListenerOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isEventNodeOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isExchangedDuring"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isExchangerOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isFiltererOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isFinalizedBy"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isFinalizerOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isInitializedBy"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isInitializerOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isLinkOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isListenedBy"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isListenerOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isMediumOf"/>
</Declaration>
<Declaration>

| 343

APPENDICES

<ObjectProperty IRI="#isNotifiedBy"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isParticipantOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isPredicateOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isProtocolOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isPublishedSubscribedDuring"
/>

</Declaration>
<Declaration>

<ObjectProperty IRI="#isRequestedBy"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isRequesterOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isRequesterOfResponse"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isResponseOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isSemanticallyRelatedTo"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isSemanticsOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isStarterOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isStructurerOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isSubtopicOf"/>

344 |

APPENDICES

</Declaration>
<Declaration>

<ObjectProperty IRI="#isTechnologyOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isTransferUnitOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isTransportedBy"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isTransporterOf"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="#isTriggeredBy"/>
</Declaration>
<SubClassOf>

<Class IRI="#Application"/>
<Class IRI="#SoftwareAgent"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#Application"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isRequesterOf"/>
<Class IRI="#Service"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#Choreography"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#hasChoreographyMessages"
/>

<Class IRI="#SoftwareMessage"/>
</ObjectSomeValuesFrom>

</SubClassOf>
<SubClassOf>

<Class IRI="#Choreography"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#
hasChoreographyParticipants"/>

<Class IRI="#SoftwareAgent"/>

| 345

APPENDICES

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#Choreography"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#hasCommunicationActivity
"/>

<Class IRI="#CommunicationActivity"/>
</ObjectSomeValuesFrom>

</SubClassOf>
<SubClassOf>

<Class IRI="#Choreography"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isChoreographyOf"/>
<Class IRI="#UbiquitousSystem"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#Choreography"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isFinalizedBy"/>
<Class IRI="#EndEvent"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#Choreography"/>
<ObjectExactCardinality cardinality="1">

<ObjectProperty IRI="#isInitializedBy"/>
<Class IRI="#InitialEvent"/>

</ObjectExactCardinality>
</SubClassOf>
<SubClassOf>

<Class IRI="#CommunicationActivity"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#hasActivityParticipants"
/>

<Class IRI="#SoftwareAgent"/>
</ObjectSomeValuesFrom>

</SubClassOf>
<SubClassOf>

<Class IRI="#CommunicationActivity"/>

346 |

APPENDICES

<ObjectSomeValuesFrom>
<ObjectProperty IRI="#hasChoreographyMessages"

/>
<Class IRI="#SoftwareMessage"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#CommunicationActivity"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#hasElementalActivities"
/>

<Class IRI="#ElementalCommunicationActivity"/>
</ObjectSomeValuesFrom>

</SubClassOf>
<SubClassOf>

<Class IRI="#CommunicationActivity"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#
isCommunicationActivityOf"/>

<Class IRI="#Choreography"/>
</ObjectSomeValuesFrom>

</SubClassOf>
<SubClassOf>

<Class IRI="#Complex"/>
<Class IRI="#Gateway"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#Conditional"/>
<Class IRI="#Event"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#Conditional"/>
<ObjectExactCardinality cardinality="1">

<ObjectProperty IRI="#hasConditionalPredicate"
/>

<Class IRI="#Predicate"/>
</ObjectExactCardinality>

</SubClassOf>
<SubClassOf>

<Class IRI="#Content-Based"/>
<Class IRI="#Exclusive"/>

| 347

APPENDICES

</SubClassOf>
<SubClassOf>

<Class IRI="#Default"/>
<Class IRI="#Event"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#Default"/>
<ObjectExactCardinality cardinality="1">

<ObjectProperty IRI="#hasUnsatisfiedPredicate"
/>

<Class IRI="#Predicate"/>
</ObjectExactCardinality>

</SubClassOf>
<SubClassOf>

<Class IRI="#Discovery"/>
<Class IRI="#Event"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#Discovery"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isNotifiedBy"/>
<Class IRI="#DiscoveryHandler"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#DiscoveryActivity"/>
<Class IRI="#EventDistributionActivity"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#DiscoveryActivity"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#
hasPublicationOrSubscriptionOf"/>

<Class IRI="#Discovery"/>
</ObjectSomeValuesFrom>

</SubClassOf>
<SubClassOf>

<Class IRI="#DiscoveryHandler"/>
<Class IRI="#EventHandler"/>

</SubClassOf>
<SubClassOf>

348 |

APPENDICES

<Class IRI="#DiscoveryHandler"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isDiscovererOf"/>
<Class IRI="#DiscoveryListener"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#DiscoveryListener"/>
<Class IRI="#EventListener"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#DiscoveryListener"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isListenerOf"/>
<Class IRI="#Discovery"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#ElementalCommunicationActivity"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isElementalActivityOf"/>
<Class IRI="#CommunicationActivity"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#EndEvent"/>
<Class IRI="#Event"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#EndEvent"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isFinalizerOf"/>
<Class IRI="#Choreography"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#Event"/>
<Class IRI="#SoftwareMessage"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#Event"/>

| 349

APPENDICES

<ObjectSomeValuesFrom>
<ObjectProperty IRI="#isNotifiedBy"/>
<Class IRI="#EventHandler"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#Event"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isSemanticallyRelatedTo"
/>

<Class IRI="#Topic"/>
</ObjectSomeValuesFrom>

</SubClassOf>
<SubClassOf>

<Class IRI="#Event-Based"/>
<Class IRI="#Exclusive"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#EventDistributionActivity"/>
<Class IRI="#ElementalCommunicationActivity"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#EventDistributionActivity"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#
hasPublicationOrSubscriptionOf"/>

<Class IRI="#Event"/>
</ObjectSomeValuesFrom>

</SubClassOf>
<SubClassOf>

<Class IRI="#EventHandler"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isEventHandlerOf"/>
<Class IRI="#SoftwareAgent"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#EventListener"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#hasPredicate"/>
<Class IRI="#Predicate"/>

350 |

APPENDICES

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#EventListener"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isListenerOf"/>
<Class IRI="#Event"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#EventNode"/>
<Class IRI="#Event"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#EventNode"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isEventNodeOf"/>
<Class IRI="#Event"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#Exclusive"/>
<Class IRI="#Gateway"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#Exclusive"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isTriggeredBy"/>
<Class IRI="#Event"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#Gateway"/>
<Class IRI="#Event"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#Inclusive"/>
<Class IRI="#Gateway"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#InitialEvent"/>

| 351

APPENDICES

<Class IRI="#Event"/>
</SubClassOf>
<SubClassOf>

<Class IRI="#InitialEvent"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isInitializerOf"/>
<Class IRI="#Choreography"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#MessageExchangingActivity"/>
<Class IRI="#ElementalCommunicationActivity"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#MessageExchangingActivity"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isExchangerOf"/>
<Class IRI="#RequestMessage"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#NetworkingTechnology"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isMediumOf"/>
<Class IRI="#SoftwareProtocol"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#NetworkingTechnology"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isTechnologyOf"/>
<Class IRI="#UbiquitousSystem"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#NetworkingTechnology"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isTransporterOf"/>
<Class IRI="#SoftwareMessage"/>

</ObjectSomeValuesFrom>
</SubClassOf>

352 |

APPENDICES

<SubClassOf>
<Class IRI="#Parallel"/>
<Class IRI="#Gateway"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#Predicate"/>
<ObjectUnionOf>

<ObjectSomeValuesFrom>
<ObjectProperty IRI="#isFiltererOf"/>
<Class IRI="#Event"/>

</ObjectSomeValuesFrom>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isPredicateOf"/>
<Class IRI="#EventListener"/>

</ObjectSomeValuesFrom>
</ObjectUnionOf>

</SubClassOf>
<SubClassOf>

<Class IRI="#RequestMessage"/>
<Class IRI="#SoftwareMessage"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#RequestMessage"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isExchangedDuring"/>
<Class IRI="#MessageExchangingActivity"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#RequestMessage"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isRequesterOfResponse"/>
<Class IRI="#ResponseMessage"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#ResponseMessage"/>
<Class IRI="#SoftwareMessage"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#ResponseMessage"/>

| 353

APPENDICES

<ObjectMinCardinality cardinality="1">
<ObjectProperty IRI="#isResponseOf"/>
<Class IRI="#RequestMessage"/>

</ObjectMinCardinality>
</SubClassOf>
<SubClassOf>

<Class IRI="#Sequential"/>
<Class IRI="#Event"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#Service"/>
<Class IRI="#SoftwareAgent"/>

</SubClassOf>
<SubClassOf>

<Class IRI="#Service"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isRequestedBy"/>
<Class IRI="#Application"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#SoftwareAgent"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isActivityParticipant"/>
<Class IRI="#CommunicationActivity"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#SoftwareAgent"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isParticipantOf"/>
<Class IRI="#UbiquitousSystem"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#SoftwareMessage"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isComplierWith"/>
<Class IRI="#SoftwareProtocol"/>

</ObjectSomeValuesFrom>
</SubClassOf>

354 |

APPENDICES

<SubClassOf>
<Class IRI="#SoftwareMessage"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isTransferUnitOf"/>
<Class IRI="#SoftwareAgent"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#SoftwareProtocol"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#
isCommunicativeCommonalityOf"/>

<Class IRI="#NetworkingTechnology"/>
</ObjectSomeValuesFrom>

</SubClassOf>
<SubClassOf>

<Class IRI="#SoftwareProtocol"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isProtocolOf"/>
<Class IRI="#UbiquitousSystem"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#Topic"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#isSemanticsOf"/>
<Class IRI="#Event"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#UbiquitousSystem"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#hasChoreography"/>
<Class IRI="#Choreography"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#UbiquitousSystem"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#hasProtocols"/>
<Class IRI="#SoftwareProtocol"/>

| 355

APPENDICES

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#UbiquitousSystem"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#hasTechnologies"/>
<Class IRI="#NetworkingTechnology"/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI="#UbiquitousSystem"/>
<ObjectMinCardinality cardinality="2">

<ObjectProperty IRI="#hasParticipants"/>
<Class IRI="#SoftwareAgent"/>

</ObjectMinCardinality>
</SubClassOf>
<DisjointClasses>

<Class IRI="#Application"/>
<Class IRI="#Service"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Choreography"/>
<Class IRI="#CommunicationActivity"/>
<Class IRI="#ElementalCommunicationActivity"/>
<Class IRI="#EventHandler"/>
<Class IRI="#EventListener"/>
<Class IRI="#NetworkingTechnology"/>
<Class IRI="#Predicate"/>
<Class IRI="#SoftwareAgent"/>
<Class IRI="#SoftwareMessage"/>
<Class IRI="#SoftwareProtocol"/>
<Class IRI="#Topic"/>
<Class IRI="#UbiquitousSystem"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Complex"/>
<Class IRI="#Exclusive"/>
<Class IRI="#Inclusive"/>
<Class IRI="#Parallel"/>

</DisjointClasses>
<DisjointClasses>

356 |

APPENDICES

<Class IRI="#Conditional"/>
<Class IRI="#Default"/>
<Class IRI="#Discovery"/>
<Class IRI="#EndEvent"/>
<Class IRI="#EventNode"/>
<Class IRI="#Gateway"/>
<Class IRI="#InitialEvent"/>
<Class IRI="#Sequential"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Content-Based"/>
<Class IRI="#Event-Based"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#Event"/>
<Class IRI="#RequestMessage"/>
<Class IRI="#ResponseMessage"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="#EventDistributionActivity"/>
<Class IRI="#MessageExchangingActivity"/>

</DisjointClasses>
<InverseObjectProperties>

<ObjectProperty IRI="#hasActivityParticipants"/>
<ObjectProperty IRI="#isActivityParticipant"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#hasChoreography"/>
<ObjectProperty IRI="#isChoreographyOf"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#isChoreographyMessageOf"/>
<ObjectProperty IRI="#hasChoreographyMessages"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#hasChoreographyParticipants"
/>

<ObjectProperty IRI="#isChoreographyParticipant"/>
</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#isCommunicationActivityOf"/>

| 357

APPENDICES

<ObjectProperty IRI="#hasCommunicationActivity"/>
</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#hasElementalActivities"/>
<ObjectProperty IRI="#isElementalActivityOf"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#isEventHandlerOf"/>
<ObjectProperty IRI="#hasEventHandler"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#hasEventListener"/>
<ObjectProperty IRI="#isEventListenerOf"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#isParticipantOf"/>
<ObjectProperty IRI="#hasParticipants"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#hasPredicate"/>
<ObjectProperty IRI="#isPredicateOf"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#isProtocolOf"/>
<ObjectProperty IRI="#hasProtocols"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#isPublishedSubscribedDuring"
/>

<ObjectProperty IRI="#
hasPublicationOrSubscriptionOf"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#hasTechnologies"/>
<ObjectProperty IRI="#isTechnologyOf"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#isMediumOf"/>
<ObjectProperty IRI="#isCommunicativeCommonalityOf

"/>
</InverseObjectProperties>

358 |

APPENDICES

<InverseObjectProperties>
<ObjectProperty IRI="#isComplierWith"/>
<ObjectProperty IRI="#isStructurerOf"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#isDiscoveredBy"/>
<ObjectProperty IRI="#isDiscovererOf"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#isExchangedDuring"/>
<ObjectProperty IRI="#isExchangerOf"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#isFinalizedBy"/>
<ObjectProperty IRI="#isFinalizerOf"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#isInitializedBy"/>
<ObjectProperty IRI="#isInitializerOf"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#isListenedBy"/>
<ObjectProperty IRI="#isListenerOf"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#isRequestedBy"/>
<ObjectProperty IRI="#isRequesterOf"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#isRequesterOfResponse"/>
<ObjectProperty IRI="#isResponseOf"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#isSemanticallyRelatedTo"/>
<ObjectProperty IRI="#isSemanticsOf"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#isTransportedBy"/>
<ObjectProperty IRI="#isTransporterOf"/>

</InverseObjectProperties>
<FunctionalObjectProperty>

| 359

APPENDICES

<ObjectProperty IRI="#isInitializedBy"/>
</FunctionalObjectProperty>
<FunctionalObjectProperty>

<ObjectProperty IRI="#isTriggeredBy"/>
</FunctionalObjectProperty>
<SymmetricObjectProperty>

<ObjectProperty IRI="#hasChoreography"/>
</SymmetricObjectProperty>
<SymmetricObjectProperty>

<ObjectProperty IRI="#hasCommunicationActivity"/>
</SymmetricObjectProperty>
<SymmetricObjectProperty>

<ObjectProperty IRI="#hasEventHandler"/>
</SymmetricObjectProperty>
<SymmetricObjectProperty>

<ObjectProperty IRI="#hasEventListener"/>
</SymmetricObjectProperty>
<SymmetricObjectProperty>

<ObjectProperty IRI="#
hasPublicationOrSubscriptionOf"/>

</SymmetricObjectProperty>
<SymmetricObjectProperty>

<ObjectProperty IRI="#isConnectedTo"/>
</SymmetricObjectProperty>
<SymmetricObjectProperty>

<ObjectProperty IRI="#isDiscoveredBy"/>
</SymmetricObjectProperty>
<SymmetricObjectProperty>

<ObjectProperty IRI="#isEventHandlerOf"/>
</SymmetricObjectProperty>
<SymmetricObjectProperty>

<ObjectProperty IRI="#isEventListenerOf"/>
</SymmetricObjectProperty>
<SymmetricObjectProperty>

<ObjectProperty IRI="#isListenedBy"/>
</SymmetricObjectProperty>
<SymmetricObjectProperty>

<ObjectProperty IRI="#isListenerOf"/>
</SymmetricObjectProperty>
<SymmetricObjectProperty>

<ObjectProperty IRI="#isPredicateOf"/>

360 |

APPENDICES

</SymmetricObjectProperty>
<SymmetricObjectProperty>

<ObjectProperty IRI="#isPublishedSubscribedDuring"
/>

</SymmetricObjectProperty>
<SymmetricObjectProperty>

<ObjectProperty IRI="#isRequestedBy"/>
</SymmetricObjectProperty>
<SymmetricObjectProperty>

<ObjectProperty IRI="#isRequesterOf"/>
</SymmetricObjectProperty>
<AsymmetricObjectProperty>

<ObjectProperty IRI="#isSubtopicOf"/>
</AsymmetricObjectProperty>
<TransitiveObjectProperty>

<ObjectProperty IRI="#isComposedBy"/>
</TransitiveObjectProperty>
<TransitiveObjectProperty>

<ObjectProperty IRI="#isConnectedTo"/>
</TransitiveObjectProperty>
<ObjectPropertyDomain>

<ObjectProperty IRI="#hasActivityParticipants"/>
<Class IRI="#CommunicationActivity"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#hasChoreography"/>
<Class IRI="#UbiquitousSystem"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#hasChoreographyMessages"/>
<Class IRI="#Choreography"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#hasChoreographyParticipants"
/>

<Class IRI="#Choreography"/>
</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#hasCommunicationActivity"/>
<Class IRI="#Choreography"/>

</ObjectPropertyDomain>

| 361

APPENDICES

<ObjectPropertyDomain>
<ObjectProperty IRI="#hasConditionalPredicate"/>
<Class IRI="#Conditional"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#hasElementalActivities"/>
<Class IRI="#CommunicationActivity"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#hasEventHandler"/>
<Class IRI="#SoftwareAgent"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#hasEventListener"/>
<Class IRI="#EventHandler"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#hasParticipants"/>
<Class IRI="#UbiquitousSystem"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#hasPredicate"/>
<Class IRI="#EventListener"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#hasProtocols"/>
<Class IRI="#UbiquitousSystem"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#
hasPublicationOrSubscriptionOf"/>

<Class IRI="#EventDistributionActivity"/>
</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#hasTechnologies"/>
<Class IRI="#UbiquitousSystem"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#hasUnsatisfiedPredicate"/>
<Class IRI="#Default"/>

</ObjectPropertyDomain>

362 |

APPENDICES

<ObjectPropertyDomain>
<ObjectProperty IRI="#isActivityParticipant"/>
<Class IRI="#SoftwareAgent"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isChoreographyMessageOf"/>
<Class IRI="#SoftwareMessage"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isChoreographyOf"/>
<Class IRI="#Choreography"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isChoreographyParticipant"/>
<Class IRI="#SoftwareAgent"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isCommunicationActivityOf"/>
<Class IRI="#CommunicationActivity"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isCommunicativeCommonalityOf
"/>

<Class IRI="#SoftwareProtocol"/>
</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isComplierWith"/>
<Class IRI="#SoftwareMessage"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isComposedBy"/>
<Class IRI="#SoftwareProtocol"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isConnectedTo"/>
<Class IRI="#Service"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isDiscoveredBy"/>
<Class IRI="#DiscoveryListener"/>

</ObjectPropertyDomain>

| 363

APPENDICES

<ObjectPropertyDomain>
<ObjectProperty IRI="#isDiscovererOf"/>
<Class IRI="#DiscoveryHandler"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isElementalActivityOf"/>
<Class IRI="#ElementalCommunicationActivity"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isEventHandlerOf"/>
<Class IRI="#EventHandler"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isEventListenerOf"/>
<Class IRI="#EventListener"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isEventNodeOf"/>
<Class IRI="#EventNode"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isExchangedDuring"/>
<Class IRI="#MessageExchangingActivity"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isExchangerOf"/>
<Class IRI="#RequestMessage"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isFiltererOf"/>
<Class IRI="#Predicate"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isFinalizedBy"/>
<Class IRI="#Choreography"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isFinalizerOf"/>
<Class IRI="#EndEvent"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

364 |

APPENDICES

<ObjectProperty IRI="#isInitializedBy"/>
<Class IRI="#Choreography"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isInitializerOf"/>
<Class IRI="#InitialEvent"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isLinkOf"/>
<Class IRI="#SoftwareMessage"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isListenedBy"/>
<Class IRI="#Event"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isListenerOf"/>
<Class IRI="#EventListener"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isMediumOf"/>
<Class IRI="#NetworkingTechnology"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isNotifiedBy"/>
<Class IRI="#EventHandler"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isParticipantOf"/>
<Class IRI="#SoftwareAgent"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isPredicateOf"/>
<Class IRI="#Predicate"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isProtocolOf"/>
<Class IRI="#SoftwareProtocol"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

| 365

APPENDICES

<ObjectProperty IRI="#isPublishedSubscribedDuring"
/>

<Class IRI="#Event"/>
</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isRequestedBy"/>
<Class IRI="#Service"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isRequesterOf"/>
<Class IRI="#Application"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isRequesterOfResponse"/>
<Class IRI="#RequestMessage"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isResponseOf"/>
<Class IRI="#ResponseMessage"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isSemanticallyRelatedTo"/>
<Class IRI="#Event"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isSemanticsOf"/>
<Class IRI="#Topic"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isStarterOf"/>
<Class IRI="#Gateway"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isStructurerOf"/>
<Class IRI="#SoftwareProtocol"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isSubtopicOf"/>
<Class IRI="#Topic"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

366 |

APPENDICES

<ObjectProperty IRI="#isTechnologyOf"/>
<Class IRI="#NetworkingTechnology"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isTransferUnitOf"/>
<Class IRI="#SoftwareMessage"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isTransportedBy"/>
<Class IRI="#SoftwareMessage"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isTransporterOf"/>
<Class IRI="#NetworkingTechnology"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#isTriggeredBy"/>
<Class IRI="#Exclusive"/>

</ObjectPropertyDomain>
<ObjectPropertyRange>

<ObjectProperty IRI="#hasActivityParticipants"/>
<Class IRI="#SoftwareAgent"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#hasChoreography"/>
<Class IRI="#Choreography"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#hasChoreographyMessages"/>
<Class IRI="#SoftwareMessage"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#hasChoreographyParticipants"
/>

<Class IRI="#SoftwareAgent"/>
</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#hasCommunicationActivity"/>
<Class IRI="#CommunicationActivity"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

| 367

APPENDICES

<ObjectProperty IRI="#hasConditionalPredicate"/>
<Class IRI="#Predicate"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#hasElementalActivities"/>
<Class IRI="#ElementalCommunicationActivity"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#hasEventHandler"/>
<Class IRI="#EventHandler"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#hasEventListener"/>
<Class IRI="#EventListener"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#hasParticipants"/>
<Class IRI="#SoftwareAgent"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#hasPredicate"/>
<Class IRI="#Predicate"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#hasProtocols"/>
<Class IRI="#SoftwareProtocol"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#
hasPublicationOrSubscriptionOf"/>

<Class IRI="#Event"/>
</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#hasTechnologies"/>
<Class IRI="#NetworkingTechnology"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#hasUnsatisfiedPredicate"/>
<Class IRI="#Predicate"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

368 |

APPENDICES

<ObjectProperty IRI="#isActivityParticipant"/>
<Class IRI="#CommunicationActivity"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isChoreographyMessageOf"/>
<Class IRI="#Choreography"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isChoreographyOf"/>
<Class IRI="#UbiquitousSystem"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isChoreographyParticipant"/>
<Class IRI="#Choreography"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isCommunicationActivityOf"/>
<Class IRI="#Choreography"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isCommunicativeCommonalityOf
"/>

<Class IRI="#NetworkingTechnology"/>
</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isComplierWith"/>
<Class IRI="#SoftwareProtocol"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isComposedBy"/>
<Class IRI="#SoftwareProtocol"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isConnectedTo"/>
<Class IRI="#Service"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isDiscoveredBy"/>
<Class IRI="#DiscoveryHandler"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

| 369

APPENDICES

<ObjectProperty IRI="#isDiscovererOf"/>
<Class IRI="#DiscoveryListener"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isElementalActivityOf"/>
<Class IRI="#CommunicationActivity"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isEventHandlerOf"/>
<Class IRI="#SoftwareAgent"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isEventListenerOf"/>
<Class IRI="#EventHandler"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isEventNodeOf"/>
<Class IRI="#Event"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isExchangedDuring"/>
<Class IRI="#RequestMessage"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isExchangerOf"/>
<Class IRI="#MessageExchangingActivity"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isFiltererOf"/>
<Class IRI="#Event"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isFinalizedBy"/>
<Class IRI="#EndEvent"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isFinalizerOf"/>
<Class IRI="#Choreography"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isInitializedBy"/>

370 |

APPENDICES

<Class IRI="#InitialEvent"/>
</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isInitializerOf"/>
<Class IRI="#Choreography"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isLinkOf"/>
<Class IRI="#CommunicationActivity"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isListenedBy"/>
<Class IRI="#EventListener"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isListenerOf"/>
<Class IRI="#Event"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isMediumOf"/>
<Class IRI="#SoftwareProtocol"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isNotifiedBy"/>
<Class IRI="#Event"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isParticipantOf"/>
<Class IRI="#UbiquitousSystem"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isPredicateOf"/>
<Class IRI="#EventListener"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isProtocolOf"/>
<Class IRI="#UbiquitousSystem"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isPublishedSubscribedDuring"
/>

| 371

APPENDICES

<Class IRI="#EventDistributionActivity"/>
</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isRequestedBy"/>
<Class IRI="#Application"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isRequesterOf"/>
<Class IRI="#Service"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isRequesterOfResponse"/>
<Class IRI="#ResponseMessage"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isResponseOf"/>
<Class IRI="#RequestMessage"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isSemanticallyRelatedTo"/>
<Class IRI="#Topic"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isSemanticsOf"/>
<Class IRI="#Event"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isStarterOf"/>
<Class IRI="#CommunicationActivity"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isStructurerOf"/>
<Class IRI="#SoftwareMessage"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isSubtopicOf"/>
<Class IRI="#Topic"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isTechnologyOf"/>
<Class IRI="#UbiquitousSystem"/>

372 |

APPENDICES

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isTransferUnitOf"/>
<Class IRI="#SoftwareAgent"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isTransportedBy"/>
<Class IRI="#NetworkingTechnology"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isTransporterOf"/>
<Class IRI="#SoftwareMessage"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#isTriggeredBy"/>
<Class IRI="#Event"/>

</ObjectPropertyRange>
</Ontology>

<!-- Generated by the OWL API (version 3.4.2) http://
owlapi.sourceforge.net -->

| 373

APPENDICES

IV. Quality Attributes of the PI-US
Metamodel

IV.1 Functional Suitability

The functional suitability is the degree to which the metamodel pro-
vides functions that meet stated and implied needs when the meta-
model is used under specified conditions.

To this respect, the proposed PI-US metamodel is able to represent
ubiquitous systems in which multiple applications and services in-
teract to achieve certain goals. The metamodel takes into account the
need of integrating multiple paradigms and technologies to fulfill the
expected properties of a ubiquitous system, which were described in
Section 4.1. For example, the behavioral view has been devised to
consider the mobility of the software agents and the volatility of the
communications between them.

Additionally, the metamodel has artifacts to support the specification
of the three communication functionalities that should be present in
any ubiquitous system: message exchanging, event distribution and
dynamic discovery.

In that sense, the metamodel can also be considered to have func-
tional appropriateness, that is, it provides an appropriate set of
functions for specified tasks and user objectives (i.e., to support
communications in ubiquitous systems). It can also be considered to
be concise, since it just contains the needed concepts and relation-
ships to represent the communication mechanisms of a ubiquitous
system, which have been identified by studying previous research
works and some communication standards and well-known middle-
ware. Moreover, the metamodel is cohesive (i.e., it is only focused
on one topic, that is, in the description of the structure, behavior
and organization of the communication mechanisms in a ubiquitous
system) and confined (i.e., it only contains concepts at one abstrac-
tion level). Also, it can be considered to be relevant, that is, it only
contains the concepts and relationships that are necessary for a par-
ticular transformation (i.e., from a platform-independent ubiquitous

374 |

APPENDICES

system to a platform-specific one). This aspect of the metamodel is
explored in Chapter 5.

Furthermore, the ontological representation of the metamodel allows
to formally and automatically (through a reasoner) check that all the
requirements of a ubiquitous system are fulfilled, given the set of
concepts in the structural view and an specification of a choreogra-
phy through the concepts in the behavioral view.

Finally, the functional suitability of a metamodel can be also defined
on the basis of a set of sub-characteristics described in the ISO/IEC
25010:2011 standard. The following subsections explain how the
PI-US metamodel is able to accomplish those sub-characteristics.
The resulting conclusion is that the functional suitability of the me-
tamodel can be considered to be high. As in the analysis of the
quality properties of the CI-CS metamodel (see Chapter 3, Section
3.3), the security sub-characteristic has not been taken into account,
since it is not suitable to describe the quality of a metamodel [13].

IV.1.1. Accuracy

The accuracy is the degree to which the metamodel provides the
right or specified results with the needed degree of precision. One
related aspect is the validity, that is, the metamodel contains infor-
mation that has been contrasted against a reliable source of informa-
tion. Consequently, the PI-US metamodel can be considered to be
valid since it is based on some standards and well-known middle-
ware. Finally, the previous subsubsection described the metamodel
as relevant, which is directly related to the degree of precision of
the metamodel. The precision is another attribute that contributes to
the accuracy of the metamodel.

IV.1.2. Interoperability

The interoperability is the degree to which the metamodel can be
cooperatively operable with one or more other metamodels. Since
the PI-US metamodel is formally specified through an ontology, it

| 375

APPENDICES

can interoperate with other ontologies specifying other metamodels
in order to complete its information in some aspects, to include new
notions related to other domains, etc. Moreover, the PI-US meta-
model can interoperate with the CI-CS metamodel, as it is shown in
Chapter 4, Section 4.2.4.

IV.1.3. Compliance

The functional suitability compliance is the degree to which the me-
tamodel adheres to standards, conventions or regulations in laws and
similar prescriptions relating to functional suitability. As it was pre-
viously mentioned, the PI-US metamodel is based on some commu-
nication standards and well-known middleware solutions. Addition-
ally, it includes several notions (like event handler) that can also be
found in other specifications related to the communications in ubiq-
uitous systems. Hence, the metamodel can be considered to have a
good degree of compliance.

IV.2 Reliability

The reliability is the degree to which the metamodel can maintain
a specified level of performance when used under specified condi-
tions. In other words, the reliability of the metamodel refers to the
degree of expressiveness that can be assessed, even when a fault in
the metamodel specification is detected. Additionally, the reliability
is connected to the functional suitability compliance and the accu-
racy. In this case, as described in IV.1 and IV.1.1, the reliability
can be considered acceptable, since the PI-US metamodel includes
concepts and relationships that are widely present in well-known
standards and middleware solutions. Hence, even if a failure is de-
tected in the metamodel specification, it includes concepts that are
known to be correct (request and response messages, event, event
handler, event listener, software protocol, networking technology,
application, service, choreography, predicate, topic, discoverer and
discovery listener), which ensures a certain level of expressiveness
to represent the platform-independent communication mechanisms

376 |

APPENDICES

of a ubiquitous system.

IV.3 Performance Efficiency

The performance efficiency is the degree to which the metamodel
provides appropriate performance, relative to the amount of
resources used, under stated conditions. It is related to the amount
of classes and relationships that it uses. Therefore, it is related to
the conciseness of the metamodel (see subsection IV.1), which has
been described to be good, since the metamodel just contains the
needed concepts and relationships to represent the communication
mechanisms of a ubiquitous system. Moreover, using the metamo-
del to produce models can be considered as an efficient task, since
the produced models should only have the strictly needed concepts
to represent the software mechanisms that should be present in a
ubiquitous system to support communications.

IV.4 Operability

The operability is the degree to which the metamodel can be un-
derstood, learned, used and attractive to the user, when used under
specified conditions. Taking into account that the operability is a
very subjective property, related to the expertise or the attraction of
the user of the metamodel to the field of the ubiquitous systems, it
is considered to be related to its simplicity and conciseness [13]. In
that sense, due to the previous analysis provided in subsection IV.1,
the PI-US metamodel can be considered to have, at least, a mini-
mum operability level. Additionally, the operability is also related
to many different characteristics, as will be explored in the following
subsubsections.

IV.4.1. Appropriateness Recognizability

The appropriateness recognizability refers to the degree to which
the metamodel enables users to recognize whether it is appropriate

| 377

APPENDICES

for their needs or not. The PI-US is only focused on representing the
platform-independent software artifacts that are necessary to support
the communication mechanisms that should be present in a ubiqui-
tous system. Hence, the users of the metamodel should be able to
easily recognize if it is appropriate for their needs or not. In any case,
the metamodel has been formalized as an ontology, which may help
users to clear up its focus, or, at least, to detect if a representation of
a system conforms to the proposed conceptualization or not.

IV.4.2. Learnability

The learnability is the capability of the metamodel to enable the user
to learn its application (use, meaning, representation). In this case,
the learnability of the metamodel directly depends on the previous
knowledge that the user may have about the field of the communi-
cations in a ubiquitous system, due to the needed expertise about
communication standards, middleware solutions and some technical
details. Thereby, the learnability of the PI-US metamodel can not be
considered to be high.

IV.4.3. Helpfulness

The helpfulness of the metamodel is referred to the degree to which
it provides help when users need assistance. The PI-US metamodel
may help into analyzing, designing or validating the communication
mechanisms that should be present in a ubiquitous system. Conse-
quently, it may be considered to be helpful for these tasks.

IV.4.4. Attractiveness

The attractiveness is the capability of the metamodel to be attractive
to the user. Even if this is a completely subjective attribute that is
more related to the attraction of the user of the metamodel to the
field of the ubiquitous systems, it can also be related to its learnabil-
ity. Thus, since the metamodel can not be considered to be highly
learnable, it can not be determined to have attractiveness.

378 |

APPENDICES

IV.5 Compatibility

The compatibility is the ability of the metamodel to exchange in-
formation with other metamodels and/or to perform their required
functions while sharing the same domain. Since the metamodel
shares certain notions and relationships with several communica-
tion standards and middleware specifications, it should be able to
interact with their corresponding metamodels. Moreover, the PI-US
has been formally demonstrated to have certain relationships to a
CI-CS. Therefore, both metamodels can interact. Consequently, the
compatibility of the PI-US can be considered to be high.

IV.6 Maintainability

The maintainability is the degree to which the metamodel can be
modified. Modifications may include corrections, improvements or
adaptation of the metamodel to changes in environment, and in re-
quirements and functional specifications.

The maintainability level of the metamodel is analyzed on the basis
of the characteristics described in the following subsubsections. The
resulting conclusion is that the metamodel can be considered to be
maintainable. Anyhow, during the analysis of the maintainability it
is necessary to treat the metamodel as a white box. In contrast, the
analysis of the transferability characteristic, which will be explored
in Subsection IV.7, requires to treat it as a whole or as a black box
[13].

IV.6.1. Modularity

The modularity is “a continuum describing the degree to which a
systems components may be separated and recombined” [108]. The
metamodel is presented through two different views (structural and
behavioral one), which contributes to have a clear focus on the con-
cepts and relationships to represent the different aspects associated
to the communication mechanisms present in a ubiquitous system.
Both views are complementary, but independent. Therefore, each

| 379

APPENDICES

view can be separately used to represent different aspects of the
communications in a ubiquitous system, or combined into the whole
PI-US metamodel to tackle with the representation of all the differ-
ent facets of the communications in a ubiquitous system. Further-
more, since the metamodel includes concepts to support different
communication functionalities (message exchanging, event distribu-
tion and dynamic discovery), these concepts could be separated from
the others, in order to focus on the representation of the software-
related concepts related to a unique communication functionality.
Consequently, the metamodel can be considered to have a high mod-
ularity level.

IV.6.2. Reusability

The reusability is the degree to which the metamodel can be used
in more than one software system, or in building other metamod-
els. Since the metamodel is platform-independent, it can be highly
reused to model the communication mechanisms associated to a
ubiquitous system. Moreover, it tackles with many notions that are
commonly present in any ubiquitous system, due to the dynamic,
mobile and highly structural nature of these systems. Finally, the
PI-US metamodel can be used in conjunction with other metamod-
els related to the ubiquitous computing field to design ubiquitous
systems in a holistic way, taking into account their presentational
aspects, data models, etc.

IV.6.3. Analyzability

The analyzability is the capability of the metamodel to be diagnosed
for deficiencies or causes of failures, or for the parts to be modified
to be identified. In this case, the metamodel has been divided into
two different views, namely, the structural and the behavioral ones,
and the concepts supporting different communication functionalities
have been clearly identified. Both aspects of the metamodel could
contribute to more easily analyze its concepts under different per-
spectives and to modify them if necessary, which also contributes to

380 |

APPENDICES

the changeability of the metamodel. The changeability is the ca-
pability of the metamodel to enable a specified modification to be
implemented, and it is a characteristic that is close related to the
degree of maintainability provided by the metamodel.

IV.6.4. Testability

The testability is the capability of the metamodel to enable a mod-
ified (meta)model to be validated. The formal specification of the
metamodel as an ontology makes it possible to check for incon-
sistencies in the models derived from the metamodel, which con-
tributes to the testability of the metamodel. The testability is also
associated with the documentability [13], which is the degree to
which the metamodel is documented or self-explanatory. In this
case, all the concepts and relationships present in the metamodel
(and the ideas behind their proposal) have been described in Chap-
ter 4, Section 4.2. However, the concepts could not be considered
to be self-explanatory, since they require an explicit definition to
be understood by non-experts in the field of the communications in
ubiquitous systems. Consequently, the level of testability of the me-
tamodel is good, but can not be considered to be high.

IV.7 Transferability

The transferability is the degree to which the metamodel can be
transferred from one environment to another. The degree of trans-
ferability of the metamodel has been analyzed through the study of
the characteristics described in the following subsubsections, which
intend to describe how the metamodel can the adapted or transferred
between environments as a whole (i.e., as a black box). As will be
detailed, the transferability of the metamodel can only be consid-
ered to be average, since the adaptability and portability degree of
the proposal can not be completely assessed.

| 381

APPENDICES

IV.7.1. Adaptability

The adaptability is the capability of the metamodel to be adapted for
different specified environments without applying actions or means
other than those provided for this purpose for the software consid-
ered. The adaptability is a conjunction of the flexibility, scalability
and reducibility of a metamodel [13]:

Flexibility: The PI-US metamodel is flexible enough to be
considered platform-independent and to be able to represent
some existing standards and well-known middleware specifi-
cations, as it was described in Section 4.2.

Scalability: The scalability of a metamodel refers to the
possibility that it models both large and small systems
[93]. In this case, the PI-US metamodel is able to represent
minimal communication mechanisms for small ubiquitous
systems (e.g., two software agents communicating through
only one communication functionality) and very complex
ones, involving multiple communication functionalities,
networking technologies and other software artifacts, with a
complex organization of communication activities carried out
by several software agents.

Reducibility: The reducibility is characterized by the amount
of concepts that are present only to support the modeling of
complex systems [113]. It refers to the possibility of removing
certain concepts in the metamodel to only tackle with simpler
systems. In this case, the PI-US metamodel merely consists
of the minimum software artifacts to support the representa-
tion of communication mechanisms for ubiquitous systems.
Hence, the metamodel can not be considered to be reducible.

As a consequence of the analysis of previous characteristics, the PI-
US metamodel can only be considered to have an intermediate de-
gree of adaptability (i.e., it is flexible and scalable, but it can not be
reduced).

382 |

APPENDICES

IV.7.2. Portability

The portability is the ease with which the metamodel can be trans-
ferred from one environment to another. A metamodel is also con-
sidered to be portable if it is adaptable and replaceable [13]. The
adaptability has been described as average in previous subsubsec-
tion. The replaceability of the metamodel is the capability to be
used in place of another specified metamodel for the same purpose
in the same environment, and it is highly related with its compatibil-
ity [13]. Since the compatibility of the metamodel has been consid-
ered to be high (see Subsection IV.5), then it can be deduced that its
replaceability should also be high. However, since the adaptability
is intermediate, then the portability of the metamodel can only be
considered to be intermediate too.

V. Detailed SPEM 2.0 diagram de-
scribing the development process
proposed in MUSYC

<<work definion>>
Communication
Requirements
Analysis

CS-CIM
Design

System
Analyst

<<workdefinition>>
Understand
Stakeholder
Needs

<<predecessor>>

Software
Designer

Software
Programmer

Initial
Analysis

CIM
Specification CS-CIM

Metamodel

BPMN 2.0
Choreography<<output>>

<<input>>
<<output>>

<<input>>

<<work definion>>
UbiSys Design

US-PIM
Design

CI2PI Model
Transformation

PI Model
Refinement

Initial UML
Class
Diagram
Initial UML
Sequence
Diagram

<<output>>

<<input>>

<<output>>

<<input>>

<<output>>

PIM
Specification

Refined UML
Sequence
Diagram

Refined
UML
Class
Diagram

<<output>> <<output>>

<<input>>

<<input>>

<<predecessor>>

<<work definion>>
Implementation of the
UbiSys

Template
Code

PI2PS Model
Transformation

PS Model
Refinement

Platform-
Specific
Transformation
Rules

Initial US-PSM
Design

<<input>>

<<input>>

<<output>>

Code
Generation

US-PSM
Design

<<output>>

<<input>>

Product
Codification

Programming Code of
the UbiSys

<<input>>

<<predecessor>>

<<output>>

Brief Use
Case Model<<output>>

<<responsible>>

<<responsible>>

<<responsible>>

<<performer>>

<<performer>>

<<performer>>

| 383

APPENDICES

VI. Proposed QVT rules to transform
a CS-CIM into a US-PIM

modeltype CIM uses "http://www.ugr.es/~carlosrodriguez/
CIM" where{self.objectsOfType(Participant)>size() >=
2 and self.objectsOfType(Choreography)>size() >= 1};

modeltype PIM uses "http://www.ugr.es/~carlosrodriguez/
PIM";

transformation CIM2PIM(in source:CIM, out target:PIM);

main() {
source.rootObjects()[CommunicationSystem]>map

toUbiquitousSystem();
}

mapping CommunicationSystem::toUbiquitousSystem() : PIM::
UbiquitousSystem {
name := self.name;
agents := self.parties>map toAgent();
var r := self.parties>map toPeerAgents();
agents += r.app;
agents += r.service;

protocols := self.protocols>map toSoftwareProtocol();
channels := self.channels>map toNetworkingTechnology

();
choreographies := self.choreographies>map

toSoftwareAgentChoreography();

self.parties>map softwareAgentConnections();
}

mapping Participant::softwareAgentConnections() {
self.resolve(PIM::SoftwareAgent)>forEach(agent){

if (agent.oclIsTypeOf(PIM::Service)) then {
var s:PIM::Service := agent.oclAsType(PIM::

Service);
self.sendsTo.resolve(PIM::SoftwareAgent)>

forEach(delegate) {

384 |

APPENDICES

if (delegate.oclIsTypeOf(PIM::Service))
then {
s.connectsTo += delegate.oclAsType(PIM

::Service);
}else{

delegate.oclAsType(PIM::Application).
requestsServices += s;

}endif;
}

}else {
var app:PIM::Application := agent.oclAsType(

PIM::Application);
self.sendsTo.resolve(PIM::SoftwareAgent)>

forEach(delegate) {
if (delegate.oclIsTypeOf(PIM::Service))

then {
app.requestsServices += delegate.

oclAsType(PIM::Service);
}else{
}endif;

}
}endif;

};
}

mapping Channel::toNetworkingTechnology() : PIM::
NetworkingTechnology {
name := self.name;

}

mapping Protocol::toSoftwareProtocol() : PIM::
SoftwareProtocol {
name := self.name;
composedBy := self.composedBy>map toSoftwareProtocol

();
rules := self.rules.late resolve(PIM::

NetworkingTechnology);
}

mapping Participant::toAgent() : PIM::SoftwareAgent when
{self.type <> CIM::ParticipantRole::PEER} {

| 385

APPENDICES

init {
if (self.type = CIM::ParticipantRole::PASSIVE)

then {
result := object Service{

name := self.name+’Service’;
};

}else {
result := object Application{

name := self.name+’App’;
};

}endif;
}

exchanges := self.exchanges>map toSoftwareMessage()>
flatten();

result>map populateSoftwareAgent(self);
}

mapping Participant::toPeerAgents() : app:PIM::
Application, service:PIM::Service when {self.type =
CIM::ParticipantRole::PEER} {
app.name := self.name+’App’;
service.name := self.name+’Service’;

app.exchanges := self.exchanges>map toSoftwareMessage
()>flatten();

service.exchanges := self.exchanges>map
toSoftwareMessage()>flatten();

app>map populateSoftwareAgent(self);
service>map populateSoftwareAgent(self);

}

mapping Message::toSoftwareMessage() : Sequence(
SoftwareMessage) {
init {

if (not self.oclIsTypeOf(CIM::Initial) and not
self.oclIsTypeOf(CIM::End)) then {
var eventTopic := object PIM::Topic{

name := self.name+’Topic’;

386 |

APPENDICES

};
var event := object PIM::Event{

name := self.name+’Event’;
topic := eventTopic;
medium := self.medium.late resolve(PIM::

NetworkingTechnology);
conforms := self.conforms.late resolve(PIM

::SoftwareProtocol);
};
var predicate := object PIM::Predicate{

name := self.name+’Predicate’;
accepts := event;

};
var request := object PIM::Request{

name := self.name+’Request’;
medium := self.medium.late resolve(PIM::

NetworkingTechnology);
conforms := self.conforms.late resolve(PIM

::SoftwareProtocol);
};
var response := object PIM::Response{

name := self.name+’Response’;
medium := self.medium.late resolve(PIM::

NetworkingTechnology);
conforms := self.conforms.late resolve(PIM

::SoftwareProtocol);
};

request.reply := response;
response.petition := request;

result += event;
result += request;
result += response;

}endif;
}

}

mapping inout PIM::SoftwareAgent::populateSoftwareAgent(p
:CIM::Participant){
var discoveryEvent := object Discovery{

| 387

APPENDICES

name := self.name+’DiscoveryEvent’;
medium := p.exchanges.medium.late resolve(PIM::

NetworkingTechnology);
conforms := p.exchanges.conforms.late resolve(PIM

::SoftwareProtocol);
topic := object Topic{

name := self.name+’DiscoveryTopic’;
};

};

self.discoverer := object Discoverer{
name := self.name+’Discoverer’;
callback := object DiscoveryListener {

name := self.name+’DiscoveryListener’;
discoveredBy := discoveryEvent;
constrainedBy := object Predicate{

name := self.name+’DiscoveryPredicate’;
};

};
listeners += callback;

};
self.eventhandler := object EventHandler {

name := self.name+’EventHandler’;
};

self.exchanges>select(evt | evt.oclIsTypeOf(PIM::
Event)).oclAsType(PIM::Event)>forEach(evt){
self.eventhandler.listeners += object

EventListener{
name := self.name+evt.name+’Listener’;
listens += evt;
constrainedBy := evt.acceptedBy;

};
self.eventhandler.handles += evt;

};
}

mapping Choreography::toSoftwareAgentChoreography() : PIM
::SoftwareAgentChoreography {
name := self.name;

388 |

APPENDICES

system := self.system.late resolveone(PIM::
UbiquitousSystem);

participants := self.participants.resolve(PIM::
SoftwareAgent);

messages := self.messages.resolve(Sequence(PIM::
SoftwareMessage))>flatten();

activities := self.activities>map
toChoreographyActivity()>flatten();

activities>forEach(act){
messages += act.messages;

};

startingEvent := self.startingEvent>map
toStartingEvent(self)>asSequence()>at(1);

endingEvents := self.endingEvents>map toEndingEvents
();

activities += self.links>map toActivities(result)>
flatten();

}

mapping CIM::Initial::toStartingEvent(choreography:CIM::
Choreography) : PIM::Initial{
init{

result := object PIM::Initial{
name := choreography.startingEvent.name;
initiatedChoreographies := choreography.late

resolve(PIM::SoftwareAgentChoreography);
topic := object PIM::Topic{

name := choreography.startingEvent.name+’
Topic’;

};
conforms := choreography.startingEvent.

conforms.late resolve(PIM::SoftwareProtocol
);

};
}

}

mapping CIM::End::toEndingEvents() : PIM::End{
name := self.name;

| 389

APPENDICES

topic := object Topic{
name := self.name+’Topic’;

};
endedChoreographies := self.endedChoreographies.late

resolve(PIM::SoftwareAgentChoreography);
conforms := self.conforms.late resolve(PIM::

SoftwareProtocol);
}

mapping CIM::ChoreographyActivity::toChoreographyActivity
() : Sequence(PIM::ChoreographyActivity) {
init{

var counter := 0;
var msgs := self.messages.resolve(Sequence(PIM::

SoftwareMessage))>flatten();

self.sourceParticipant.resolve(PIM::SoftwareAgent)
>forEach(sAgent){
self.targetParticipant.resolve(PIM::

SoftwareAgent)>forEach(tAgent){
var activity := object PIM::

ChoreographyActivity{
name := self.name+counter.toString();

participants += sAgent;
participants += tAgent;

counter := counter+1;
};

activity.transactions += object
DiscoveryActivity{
name := sAgent.name+’2’+tAgent.name+’

Discovery’;
sourceParticipant := sAgent;
targetParticipant := tAgent;

};
activity.transactions += self.

subactivities>map
toElementalCommunicationActivities(
activity, msgs)>flatten();

390 |

APPENDICES

activity.messages += activity.transactions
>select(t|t.oclIsTypeOf(PIM::
EventDistributionActivity)).oclAsType(
PIM::EventDistributionActivity).
relatedEvent;

result += activity;
};

};
}

}

mapping populateTransactions(src:PIM::SoftwareAgent, tgt:
PIM::SoftwareAgent, sMessages:Sequence(PIM::
SoftwareMessage)) : Sequence(PIM::
ElementalCommunicationActivity) {
init{

sMessages>forEach(m){
if (m.oclIsTypeOf(PIM::Event)) then {

result += object PIM::
EventDistributionActivity{
name := src.name+’2’+tgt.name+’

EventDistribution’;
relatedEvent := m.oclAsType(PIM::Event)

;
sourceParticipant := src;

};
}else{

if (m.oclIsTypeOf(PIM::Request)) then {
var req := m.oclAsType(PIM::Request);
switch{

case (src.oclIsTypeOf(PIM::
Application) and tgt.oclIsTypeOf
(PIM::Service)){
result += object PIM::

MessageExchangingActivity{
name := src.name+’2’+tgt.

name+’
RequestMessageExchanging’
;

message := req;

| 391

APPENDICES

req.targets += tgt;
sourceParticipant := src;
targetParticipant := tgt;

};
}
case (src.oclIsTypeOf(PIM::Service)

and tgt.oclIsTypeOf(PIM::
Service)){
result += object PIM::

MessageExchangingActivity{
name := src.name+’2’+tgt.

name+’
RequestMessageExchanging’
;

message := req;
req.targets += tgt;
sourceParticipant := src;
targetParticipant := tgt;

};
}

};
}
else{

var resp := m.oclAsType(PIM::Response);
switch{

case (src.oclIsTypeOf(PIM::Service)
and tgt.oclIsTypeOf(PIM::

Application)){
result += object PIM::

MessageExchangingActivity{
name := src.name+’2’+tgt.

name+’
ResponseMessageExchanging
’;

message := resp;
resp.exchangedFrom += tgt;
sourceParticipant := src;
targetParticipant := tgt;

};
}

392 |

APPENDICES

case (src.oclIsTypeOf(PIM::Service)
and tgt.oclIsTypeOf(PIM::

Service)){
result += object PIM::

MessageExchangingActivity{
name := src.name+’2’+tgt.

name+’
ResponseMessageExchanging
’;

message := resp;
resp.exchangedFrom += tgt;
sourceParticipant := src;
targetParticipant := tgt;

};
}

};
}endif;

}endif;
};

}
}

mapping CIM::SubChoreographyActivity::
toElementalCommunicationActivities(inout activity:PIM
::ChoreographyActivity, msgs:Sequence(PIM::
SoftwareMessage)) : Sequence(PIM::
ElementalCommunicationActivity) {
init{

var a1 := activity.participants>at(1);
var a2 := activity.participants>at(2);

var sMessages := self.sourceParticipantMessage.
resolve(Sequence(PIM::SoftwareMessage))>
flatten();

result += map populateTransactions(a1, a2,
sMessages);

sMessages := self.targetParticipantMessage.resolve
(Sequence(PIM::SoftwareMessage))>flatten();

result += map populateTransactions(a2, a1,
sMessages);

| 393

APPENDICES

}
}

mapping CIM::Link::toActivities(inout choreography:PIM::
SoftwareAgentChoreography) : Sequence(PIM::
ChoreographyActivity){
init{

var src:CIM::FlowObject := self.source;
var tgt:CIM::FlowObject := self.target;

var activity1:Bag(Sequence(PIM::
ChoreographyActivity));

var activity2:Bag(Sequence(PIM::
ChoreographyActivity));

if (src.oclIsKindOf(CIM::Event)) then{
activity1 := src.oclAsType(CIM::Event)>map

toEventDistributionActivity();
result += activity1>flatten();

}else {
activity1 := src.oclAsType(CIM::

ChoreographyActivity).resolve(Sequence(PIM
::ChoreographyActivity))>asBag();

}endif;

if (tgt.oclIsKindOf(CIM::Event)) then{
activity2 := tgt.oclAsType(CIM::Event)>map

toEventDistributionActivity();
result += activity2>flatten();

}else {
activity2 := tgt.oclAsType(CIM::

ChoreographyActivity).resolve(Sequence(PIM
::ChoreographyActivity))>asBag();

}endif;

activity1>flatten()>forEach(act1){
src.starter>map toGateway();
activity2>flatten()>forEach(act2){

var startingMessage : PIM::Event;
switch{

394 |

APPENDICES

case (self.oclIsTypeOf(CIM::Conditional
)){
startingMessage := object PIM::

Conditional{
name := act2.name+’

ConditionalStartingEvent’;
predicate := object PIM::

Predicate{
name := act2.name+’

ConditionalStartingEventPredicate
’;

};
};

}
case (self.oclIsTypeOf(CIM::Default)){

startingMessage := object PIM::
Default{
name := act2.name+’

DefaultStartingEvent’;
nonSatisfiedPredicate := object

PIM::Predicate{
name := act2.name+’

DefaultStartingEventPredicate
’;

};
};

}
else{

startingMessage := object PIM::
Sequential{
name := act2.name+’StartingEvent

’;
};

}
};

act1.messages += startingMessage;
act1.transactions += object PIM::

EventDistributionActivity{
name := startingMessage.name+’

DistributionActivity’;

| 395

APPENDICES

relatedEvent := startingMessage;
sourceParticipant := act1.participants>

at(1);
};
tgt.starter>map toGateway();
act2.startingMessages += startingMessage;

};
};

choreography.messages += activity1>flatten().
startingMessages;

choreography.messages += activity2>flatten().
startingMessages;

}
}

mapping CIM::Event::toEventDistributionActivity() :
Sequence(PIM::ChoreographyActivity){
init{

result += object PIM::ChoreographyActivity{
name := self.name+’DistributionActivity’;

}
}

result>at(1).transactions += object PIM::
EventDistributionActivity{
name := self.name+’DistributionTransactionActivity

’;
sourceParticipant := self.exchangedFrom.resolve(

PIM::SoftwareAgent)>at(1);
relatedEvent := self.oclAsType(CIM::Event).resolve

(PIM::Event)>at(1);
};

}

mapping CIM::Gateway::toGateway() : PIM::Gateway{
init{

switch{
case (self.oclIsTypeOf(CIM::Complex)){

result := object PIM::Complex{
name := self.name;

396 |

APPENDICES

};
}
case (self.oclIsTypeOf(CIM::Parallel)){

result := object PIM::Parallel{
name := self.name;

};
}
case (self.oclIsTypeOf(CIM::DataBased)){

result := object PIM::DataBased{
name := self.name;
condition := object PIM::Predicate{

name := self.name+’Predicate’;
};

};
}
case (self.oclIsTypeOf(CIM::EventBased)){

result := object PIM::EventBased{
name := self.name;
triggeringEvent := self.oclAsType(CIM::

EventBased).triggeringEvent.late
resolveone(PIM::Event);

};
}
case (self.oclIsTypeOf(CIM::Inclusive)){

result := object PIM::Inclusive{
name := self.name;

};
}
case (self.oclIsTypeOf(CIM::Chaining)){

result := object PIM::Chaining{
name := self.name;
src := self.oclAsType(CIM::Chaining).

source.late resolveone(PIM::Gateway
);

tgt := self.oclAsType(CIM::Chaining).
target.late resolveone(PIM::Gateway
);

};
}

};
}

| 397

APPENDICES

}

VII. ATL transformation rules that
can be applied to the behavioral
view of a CS-CIM to produce a
UML sequence diagram

module CIM2SequenceDiagram;

@path CIM=/MUSYC_QVT/metamodels/CIM.ecore
@path UML=/MUSYC_QVT/metamodels/UML.ecore

create OUT: UML from IN: CIM;

helper def: getInteractionOperator(g : CIM!Gateway) : UML
!InteractionOperatorKind=
if(g>oclIsTypeOf(CIM!Parallel)) then

#par
else

if(g>oclIsTypeOf(CIM!Exclusive)) then
#opt

else
if(g>oclIsTypeOf(CIM!Chaining)) then

#seq
else

if(g>oclIsTypeOf(CIM!Inclusive)) then
#alt

else
if(g>oclIsTypeOf(CIM!EventBased)) then

#seq
else

#seq
endif

endif
endif

endif
endif;

398 |

APPENDICES

rule InitialEvent2TriggerChoreography{
from

event : CIM!Initial(event.isSourceOf.target>
oclIsKindOf(CIM!ChoreographyActivity))

using{
connection : CIM!Link = event.isSourceOf;
activity : CIM!ChoreographyActivity = connection.

target>first();
}
to

combinedFragment : UML!CombinedFragment(
name < ’InitEvent’,
interactionOperator < #seq,
operand < OrderedSet{oper1}

),
===================================
oper1 : UML!ExecutionOccurrenceSpecification(

name < ’InitChoreographyExecution’,
execution < oper1execution

),
oper1execution : UML!ActionExecutionSpecification(

name < ’InitChoreographyExecutionSpecification
’,

start < oper1executionStart,
finish < oper1executionEnd

),
===================================
oper1executionStart : UML!OccurrenceSpecification(

name < ’
InitChoreographyExecutionSpecificationStart
’,

event < oper1executionStartEvent
),
oper1executionEnd : UML!OccurrenceSpecification(

name < ’
InitChoreographyExecutionSpecificationEnd’,

event < oper1executionEndEvent
),
===================================
oper1executionStartEvent : UML!SendOperationEvent(

| 399

APPENDICES

name < ’
InitChoreographyExecutionSpecificationStartEvent
’,

operation < oper1executionEventOperation
),
oper1executionEndEvent : UML!ReceiveOperationEvent

(
name < ’

InitChoreographyExecutionSpecificationEndEvent
’,

operation < oper1executionEventOperation
),
===================================
oper1executionEventOperation : UML!Operation(

name < ’initActivity’,
class < oper1executionEventOperationClass

),
oper1executionEventOperationClass : UML!Class(

name < activity.participants>first().name + ’
Service’

)

}

rule InitialEvent2TriggerGateway{
from

event : CIM!Initial(event.isSourceOf.target>
oclIsKindOf(CIM!Gateway))

using{
connection : CIM!Link = event.isSourceOf;
gateway : CIM!Gateway = connection.target>first();

}
to

combinedFragment : UML!CombinedFragment(
name < ’InitEvent’,
interactionOperator < #seq,
operand < OrderedSet{thisModule>resolveTemp(

gateway, ’combinedFragment’)}
)

}

400 |

APPENDICES

rule ChoreographyActivity2CombinedFragment{
from

activity : CIM!ChoreographyActivity
using{

participants : Sequence(CIM!Participant) =
activity.participants;

messages : Sequence(CIM!Message) = activity.
messages;

}
to

combinedFragment : UML!CombinedFragment(
name < activity.name + ’Loop’,
interactionOperator < #loop,
operand < OrderedSet{oper1, oper2}

),
===================================
oper1 : UML!ExecutionOccurrenceSpecification(

name < activity.name + ’DiscoverExecution’,
execution < oper1execution

),
oper1execution : UML!ActionExecutionSpecification(

name < activity.name + ’
DiscoverExecutionSpecification’,

start < oper1executionStart,
finish < oper1executionEnd

),
===================================
oper1executionStart : UML!OccurrenceSpecification(

name < activity.name + ’
DiscoverExecutionSpecificationStart’,

event < oper1executionStartEvent
),
oper1executionEnd : UML!OccurrenceSpecification(

name < activity.name + ’
DiscoverExecutionSpecificationEnd’,

event < oper1executionEndEvent
),
===================================
oper1executionStartEvent : UML!SendOperationEvent(

name < activity.name + ’
DiscoverExecutionSpecificationStartEvent’,

| 401

APPENDICES

operation < oper1executionEventOperation
),
oper1executionEndEvent : UML!ReceiveOperationEvent

(
name < activity.name + ’

DiscoverExecutionSpecificationEndEvent’,
operation < oper1executionEventOperation

),
===================================
oper1executionEventOperation : UML!Operation(

name < ’v = discover()’,
class < oper1executionEventOperationClass,
datatype < returnDatatype

),
oper1executionEventOperationClass : UML!Class(

name < participants>first().name + ’Discoverer
’

),
returnDatatype : UML!DataType(

name < ’Vector<Service>’
),
===================================

oper2 : UML!CombinedFragment(
name < activity.name + ’Break’,
interactionOperator < #break,
operand < OrderedSet{guardOper, oper3, oper4,

oper5}
),
guardOper : UML!InteractionOperand(

name < activity.name + ’GuardBreak’,
guard < guard

),
guard : UML!InteractionConstraint(

specification < valueSpec
),
valueSpec : UML!OpaqueExpression(

body < ’[v.contains(’ + participants>last().
name + ’Service)]’

),
===================================

402 |

APPENDICES

oper3 : UML!ExecutionOccurrenceSpecification(
name < messages>first().name + ’Request’,
execution < oper3execution

),
oper3execution : UML!ActionExecutionSpecification(

name < messages>first().name + ’
RequestExecutionSpecification’,

start < oper3executionStart,
finish < oper3executionEnd

),
===================================
oper3executionStart : UML!OccurrenceSpecification(

name < messages>first().name + ’
RequestExecutionSpecificationStart’,

event < oper3executionStartEvent
),
oper3executionEnd : UML!OccurrenceSpecification(

name < messages>first().name + ’
RequestExecutionSpecificationEnd’,

event < oper3executionEndEvent
),
===================================
oper3executionStartEvent : UML!SendOperationEvent(

name < messages>first().name + ’
RequestExecutionSpecificationStartEvent’,

operation < oper3executionEventOperation
),
oper3executionEndEvent : UML!ReceiveOperationEvent

(
name < messages>first().name + ’

RequestExecutionSpecificationEndEvent’,
operation < oper3executionEventOperation

),
===================================
oper3executionEventOperation : UML!Operation(

name < messages>first().name,
class < oper3executionEventOperationClass

),
oper3executionEventOperationClass : UML!Class(

name < participants>last().name + ’Service’
),

| 403

APPENDICES

===================================
oper4 : UML!ExecutionOccurrenceSpecification(

name < messages>first().name + ’Reply’,
execution < oper4execution

),
oper4execution : UML!ActionExecutionSpecification(

name < messages>first().name + ’
ReplyExecutionSpecification’,

start < oper4executionStart,
finish < oper4executionEnd

),
===================================
oper4executionStart : UML!OccurrenceSpecification(

name < messages>first().name + ’
ReplyExecutionSpecificationStart’,

event < oper4executionStartEvent
),
oper4executionEnd : UML!OccurrenceSpecification(

name < messages>first().name + ’
ReplyExecutionSpecificationEnd’,

event < oper4executionEndEvent
),
===================================
oper4executionStartEvent : UML!SendOperationEvent(

name < messages>first().name + ’
ReplyExecutionSpecificationStartEvent’,

operation < oper4executionEventOperation
),
oper4executionEndEvent : UML!ReceiveOperationEvent

(
name < messages>first().name + ’

ReplyExecutionSpecificationEndEvent’,
operation < oper4executionEventOperation

),
===================================
oper4executionEventOperation : UML!Operation(

name < messages>last().name,
class < oper4executionEventOperationClass

),
oper4executionEventOperationClass : UML!Class(

404 |

APPENDICES

name < participants>first().name + ’Service’
),

===================================
oper5 : UML!ExecutionOccurrenceSpecification(

name < ’InitiateActivity’,
execution < oper5execution

),
oper5execution : UML!ActionExecutionSpecification(

name < ’InitiateActivityExecutionSpecification
’,

start < oper5executionStart,
finish < oper5executionEnd

),
===================================
oper5executionStart : UML!OccurrenceSpecification(

name < ’
InitiateActivityExecutionSpecificationStart
’,

event < oper5executionStartEvent
),
oper5executionEnd : UML!OccurrenceSpecification(

name < ’
InitiateActivityExecutionSpecificationEnd’,

event < oper5executionEndEvent
),
===================================
oper5executionStartEvent : UML!SendOperationEvent(

name < ’
InitiateActivityExecutionSpecificationStartEvent
’,

operation < oper5executionEventOperation
),
oper5executionEndEvent : UML!ReceiveOperationEvent

(
name < ’

InitiateActivityExecutionSpecificationEndEvent
’,

operation < oper5executionEventOperation
),
===================================

| 405

APPENDICES

oper5executionEventOperation : UML!Operation(
name < ’initActivity’,
class < oper5executionEventOperationClass

),
oper5executionEventOperationClass : UML!Class(

name < participants>last().name + ’Service’
),

operationMessage1 : UML!Operation(
name < messages>first().name

),
operationMessage2 : UML!Operation(

name < messages>last().name
)

do{
thisModule>resolveTemp(participants>first(), ’

service’).ownedOperation < Sequence{thisModule
>resolveTemp(participants>first(), ’service’).
ownedOperation, operationMessage2}>flatten()>
asSet();

thisModule>resolveTemp(participants>last(), ’
service’).ownedOperation < Sequence{thisModule
>resolveTemp(participants>last(), ’service’).
ownedOperation, operationMessage1}>flatten()>
asSet();

}
}

rule Participant2ServiceLifeline{
from

participant : CIM!Participant
to

service : UML!Service(
name < participant.name + ’Service’,
lifeline < serviceLifeline,
ownedOperation < Sequence{initOperation,

endOperation}
),
serviceLifeline : UML!Lifeline(

name < ’:’ + participant.name + ’Service’
),

406 |

APPENDICES

discoverer : UML!Service(
name < participant.name + ’Discoverer’,
lifeline < discovererLifeline,
ownedOperation < Sequence{discoverOperation}

),
discovererLifeline : UML!Lifeline(

name < ’:’ + participant.name + ’Discoverer’
),
initOperation : UML!Operation(

name < ’initActivity’
),
endOperation : UML!Operation(

name < ’endActivity’
),
discoverOperation : UML!Operation(

name < ’discover’,
datatype < returnDatatype

),
returnDatatype : UML!DataType(

name < ’Vector<Service>’
)

}

rule ParticipantIntermediate2CombinedFragment{
from

participant : CIM!Participant,
event : CIM!Intermediate

to
===================================
oper : UML!ExecutionOccurrenceSpecification(

name < ’IntermediateEventExecution’,
execution < oper1execution

),
oper1execution : UML!ActionExecutionSpecification(

name < ’
IntermediateEventExecutionSpecification’,

start < oper1executionStart,
finish < oper1executionEnd

),
===================================
oper1executionStart : UML!OccurrenceSpecification(

| 407

APPENDICES

name < ’
IntermediateEventExecutionSpecificationStart
’,

event < oper1executionStartEvent
),
oper1executionEnd : UML!OccurrenceSpecification(

name < ’
IntermediateEventExecutionSpecificationEnd’
,

event < oper1executionEndEvent
),
===================================
oper1executionStartEvent : UML!SendOperationEvent(

name < ’
IntermediateEventExecutionSpecificationStartEvent
’,

operation < oper1executionEventOperation
),
oper1executionEndEvent : UML!ReceiveOperationEvent

(
name < ’

IntermediateEventExecutionSpecificationEndEvent
’,

operation < oper1executionEventOperation
),
===================================
oper1executionEventOperation : UML!Operation(

name < ’on’ + event.name + ’Received’,
class < oper1executionEventOperationClass

),
oper1executionEventOperationClass : UML!Class(

name < participant.name + ’Service’
)

do{
thisModule>resolveTemp(participant, ’service’).

ownedOperation < Sequence{thisModule>
resolveTemp(participant, ’service’).
ownedOperation, oper1executionEventOperation}>
flatten()>asSet();

}
}

408 |

APPENDICES

rule InitiatorMessage2Message{
from

srcMessage : CIM!Message(srcMessage.initiator =
true)

to
tgtMessage : UML!Message(

name < srcMessage.name,
messageKind < #complete,
messageSort < #synchCall

)
}

rule NonInitiatorMessage2Message{
from

srcMessage : CIM!Message(srcMessage.initiator =
false)

to
tgtMessage : UML!Message(

name < srcMessage.name,
messageKind < #complete,
messageSort < #reply

)
}

rule DefinedConnection2GeneralOrdering{
from

connection : CIM!Link(not connection.source>
oclIsUndefined() and not connection.target>
first().oclIsUndefined())

using{
source : CIM!FlowObject = connection.source;
target : CIM!FlowObject = connection.target>first

();
}
to

ordering : UML!GeneralOrdering(
before < occurrenceSpecSource,
after < occurrenceSpecTarget

),

| 409

APPENDICES

occurrenceSpecSource : UML!OccurrenceSpecification
(
name < source.name

),
occurrenceSpecTarget : UML!OccurrenceSpecification

(
name < target.name

)
}

rule IntermediateEvent2CombinedFragment{
from

event : CIM!Intermediate
using{

participants : Sequence(CIM!Participant) = CIM!
Participant>allInstances()>asSet()>asSequence
();

}
to

combinedFragment : UML!CombinedFragment(
name < event.name + ’IntermediateEvent’,
interactionOperator < #seq,
operand < participants>collect(p | thisModule.

IntermediateEventParticipant2Execution(p,
event))

)
}

lazy rule IntermediateEventParticipant2Execution{
from

participant : CIM!Participant,
event : CIM!Intermediate

to
===================================
oper : UML!ExecutionOccurrenceSpecification(

name < event.name + ’Request’,
execution < operexecution

),
operexecution : UML!ActionExecutionSpecification(

name < event.name + ’
RequestExecutionSpecification’,

410 |

APPENDICES

start < operexecutionStart,
finish < operexecutionEnd

),
===================================
operexecutionStart : UML!OccurrenceSpecification(

name < event.name + ’
RequestExecutionSpecificationStart’,

event < operexecutionStartEvent
),
operexecutionEnd : UML!OccurrenceSpecification(

name < event.name + ’
RequestExecutionSpecificationEnd’,

event < operexecutionEndEvent
),
===================================
operexecutionStartEvent : UML!SendOperationEvent(

name < event.name + ’
RequestExecutionSpecificationStartEvent’,

operation < operexecutionEventOperation
),
operexecutionEndEvent : UML!ReceiveOperationEvent(

name < event.name + ’
RequestExecutionSpecificationEndEvent’,

operation < operexecutionEventOperation
),
===================================
operexecutionEventOperation : UML!Operation(

name < ’on’ + event.name + ’Received’,
class < operexecutionEventOperationClass

),
operexecutionEventOperationClass : UML!Class(

name < participant.name + ’Service’
)

}

rule EndEvent2TriggerChoreography{
from

event : CIM!End
using{

connection : CIM!Link = event.isTargetOf>first();

| 411

APPENDICES

activity : CIM!ChoreographyActivity = connection.
source;

}
to

combinedFragment : UML!CombinedFragment(
name < ’EndEvent’,
interactionOperator < #seq,
operand < OrderedSet{oper1}

),
===================================
oper1 : UML!ExecutionOccurrenceSpecification(

name < ’EndChoreographyExecution’,
execution < oper1execution

),
oper1execution : UML!ActionExecutionSpecification(

name < ’EndChoreographyExecutionSpecification’
,

start < oper1executionStart,
finish < oper1executionEnd

),
===================================
oper1executionStart : UML!OccurrenceSpecification(

name < ’
EndChoreographyExecutionSpecificationStart’
,

event < oper1executionStartEvent
),
oper1executionEnd : UML!OccurrenceSpecification(

name < ’
EndChoreographyExecutionSpecificationEnd’,

event < oper1executionEndEvent
),
===================================
oper1executionStartEvent : UML!SendOperationEvent(

name < ’
EndChoreographyExecutionSpecificationStartEvent
’,

operation < oper1executionEventOperation
),
oper1executionEndEvent : UML!ReceiveOperationEvent

(

412 |

APPENDICES

name < ’
EndChoreographyExecutionSpecificationEndEvent
’,

operation < oper1executionEventOperation
),
===================================
oper1executionEventOperation : UML!Operation(

name < ’endActivity’,
class < oper1executionEventOperationClass

),
oper1executionEventOperationClass : UML!Class(

name < activity.participants>last().name + ’
Service’

)
}

rule Gateway2ChoreographyCombinedFragment{
from

gateway : CIM!Gateway(gateway.isSourceOf.target>
first()>oclIsTypeOf(CIM!ChoreographyActivity)
and gateway.isTargetOf>size() = 1)

using{
connection : CIM!Link = gateway.isSourceOf;
flow : Sequence(CIM!FlowObject) = connection.

target;
}
to

combinedFragment : UML!CombinedFragment(
name < gateway.name,
interactionOperator < thisModule.

getInteractionOperator(gateway),
operand < OrderedSet{seq1, seq2}

),
===================================
seq1 : UML!CombinedFragment(

name < ’Seq1’,
interactionOperator < #seq,
operand < Sequence{oper1, thisModule>

resolveTemp(flow>first(), ’combinedFragment
’)}

),

| 413

APPENDICES

seq2 : UML!CombinedFragment(
name < ’Seq2’,
interactionOperator < #seq,
operand < Sequence{oper2, thisModule>

resolveTemp(flow>last(), ’combinedFragment’
)}

),
===================================
oper1 : UML!ExecutionOccurrenceSpecification(

name < ’InitChoreographyExecutionSeq1’,
execution < oper1execution

),
oper1execution : UML!ActionExecutionSpecification(

name < ’
InitChoreographyExecutionSpecificationSeq1’
,

start < oper1executionStart,
finish < oper1executionEnd

),
===================================
oper1executionStart : UML!OccurrenceSpecification(

name < ’
InitChoreographyExecutionSpecificationStartSeq1
’,

event < oper1executionStartEvent
),
oper1executionEnd : UML!OccurrenceSpecification(

name < ’
InitChoreographyExecutionSpecificationEndSeq1
’,

event < oper1executionEndEvent
),
===================================
oper1executionStartEvent : UML!SendOperationEvent(

name < ’
InitChoreographyExecutionSpecificationStartEventSeq1
’,

operation < oper1executionEventOperation
),
oper1executionEndEvent : UML!ReceiveOperationEvent

(

414 |

APPENDICES

name < ’
InitChoreographyExecutionSpecificationEndEventSeq1
’,

operation < oper1executionEventOperation
),
===================================
oper1executionEventOperation : UML!Operation(

name < ’initActivity’,
class < oper1executionEventOperationClass

),
oper1executionEventOperationClass : UML!Class(

name < flow>first().participants>first().name
+ ’Service’

),

===================================
oper2 : UML!ExecutionOccurrenceSpecification(

name < ’InitChoreographyExecutionSeq2’,
execution < oper2execution

),
oper2execution : UML!ActionExecutionSpecification(

name < ’
InitChoreographyExecutionSpecificationSeq2’
,

start < oper2executionStart,
finish < oper2executionEnd

),
===================================
oper2executionStart : UML!OccurrenceSpecification(

name < ’
InitChoreographyExecutionSpecificationStartSeq2
’,

event < oper2executionStartEvent
),
oper2executionEnd : UML!OccurrenceSpecification(

name < ’
InitChoreographyExecutionSpecificationEndSeq2
’,

event < oper1executionEndEvent
),

| 415

APPENDICES

===================================
oper2executionStartEvent : UML!SendOperationEvent(

name < ’
InitChoreographyExecutionSpecificationStartEventSeq2
’,

operation < oper2executionEventOperation
),
oper2executionEndEvent : UML!ReceiveOperationEvent

(
name < ’

InitChoreographyExecutionSpecificationEndEventSeq2
’,

operation < oper2executionEventOperation
),
===================================
oper2executionEventOperation : UML!Operation(

name < ’initActivity’,
class < oper2executionEventOperationClass

),
oper2executionEventOperationClass : UML!Class(

name < flow>last().participants>first().name +
’Service’

)
}

rule Gateway2CombinedFragment{
from

gateway : CIM!Gateway(not gateway.isSourceOf.
target>first()>oclIsTypeOf(CIM!
ChoreographyActivity)
and gateway.isTargetOf>size() = 1)

using{
connection : CIM!Link = gateway.isSourceOf;
flow : Sequence(CIM!FlowObject) = connection.

target;
}
to

combinedFragment : UML!CombinedFragment(
name < gateway.name,
interactionOperator < thisModule.

getInteractionOperator(gateway),

416 |

APPENDICES

operand < OrderedSet{seq1, seq2}
),
===================================
seq1 : UML!CombinedFragment(

name < ’Seq1’,
interactionOperator < #seq,
operand < Sequence{thisModule>resolveTemp(flow

>first(), ’combinedFragment’)}
),
seq2 : UML!CombinedFragment(

name < ’Seq2’,
interactionOperator < #seq,
operand < Sequence{thisModule>resolveTemp(flow

>last(), ’combinedFragment’)}
)

}

rule MergeGateway2ChoreographyCombinedFragment{
from

gateway : CIM!Gateway(gateway.isSourceOf.target>
first()>oclIsTypeOf(CIM!ChoreographyActivity)
and gateway.isTargetOf>size() > 1)

using{
connection : CIM!Link = gateway.isSourceOf;
flow : Sequence(CIM!FlowObject) = connection.

target;
}
to

combinedFragment : UML!CombinedFragment(
name < gateway.name,
interactionOperator < thisModule.

getInteractionOperator(gateway),
operand < OrderedSet{seq1}

),
===================================
seq1 : UML!CombinedFragment(

name < ’SeqMerge’,
interactionOperator < #seq,
operand < Sequence{oper1, thisModule>

resolveTemp(flow>first(), ’combinedFragment
’)}

| 417

APPENDICES

),
===================================
oper1 : UML!ExecutionOccurrenceSpecification(

name < ’InitChoreographyExecutionSeqMerge’,
execution < oper1execution

),
oper1execution : UML!ActionExecutionSpecification(

name < ’
InitChoreographyExecutionSpecificationSeqMerge
’,

start < oper1executionStart,
finish < oper1executionEnd

),
===================================
oper1executionStart : UML!OccurrenceSpecification(

name < ’
InitChoreographyExecutionSpecificationStartSeqMerge
’,

event < oper1executionStartEvent
),
oper1executionEnd : UML!OccurrenceSpecification(

name < ’
InitChoreographyExecutionSpecificationEndSeqMerge
’,

event < oper1executionEndEvent
),
===================================
oper1executionStartEvent : UML!SendOperationEvent(

name < ’
InitChoreographyExecutionSpecificationStartEventSeqMerge
’,

operation < oper1executionEventOperation
),
oper1executionEndEvent : UML!ReceiveOperationEvent

(
name < ’

InitChoreographyExecutionSpecificationEndEventSeqMerge
’,

operation < oper1executionEventOperation
),
===================================

418 |

APPENDICES

oper1executionEventOperation : UML!Operation(
name < ’initActivity’,
class < oper1executionEventOperationClass

),
oper1executionEventOperationClass : UML!Class(

name < flow>first().participants>first().name
+ ’Service’

)
}

rule MergeGateway2CombinedFragment{
from

gateway : CIM!Gateway(not gateway.isSourceOf.
target>first()>oclIsTypeOf(CIM!
ChoreographyActivity)
and gateway.isTargetOf>size() > 1)

using{
connection : CIM!Link = gateway.isSourceOf;
flow : Sequence(CIM!FlowObject) = connection.

target;
}
to

combinedFragment : UML!CombinedFragment(
name < gateway.name,
interactionOperator < thisModule.

getInteractionOperator(gateway),
operand < OrderedSet{seq1}

),
===================================
seq1 : UML!CombinedFragment(

name < ’SeqMerge’,
interactionOperator < #seq,
operand < Sequence{thisModule>resolveTemp(flow

>first(), ’combinedFragment’)}
)

}

| 419

APPENDICES

VIII. Specification of a CS-CIM for
BlueRose middleware

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/

XMI" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:cim="http://www.ugr.es/~
carlosrodriguez/CIM" xsi:schemaLocation="http://www.
ugr.es/~carlosrodriguez/CIM ../metamodels/CIM.ecore">

<cim:CommunicationSystem name="BlueRose">
<parties name="Proxy" type="PEER" sendsTo="Servant

Proxy" receivesFrom="Servant Proxy" exchanges="
Information InformationPetition"/>

<parties name="Servant" type="PASSIVE" sendsTo="Proxy
Servant" receivesFrom="Proxy Servant" exchanges="

Information InformationPetition"/>
<channels name="BRBroker" transports="Information

InformationPetition" conforms="BRProtocol"/>
<protocols name="BRProtocol" rules="BRBroker"

compiles="Information InformationPetition"/>
<choreographies participants="Proxy Servant" messages

="Information InformationPetition" links="
CloseConnectionGateway2EndParallelGateway
EndProxyRequestsGateway2ParallelEndGateway
ServantAdditionalRequestGateway2ServantServantRequest
CloseConnectionGateway2ProxyServantRequest

EndProxyRequestsGateway2ProxyProxyRequest
ServantAdditionalRequestGateway2ServantProxyProvision
EndParallelGateway2EndEvent Init2ParallelGateway

Parallel2ProxyProxyRequest
Parallel2ProxyServantRequest
ProxyProxyRequest2EndProxyRequestsGateway
ProxyServantRequest2ServantAdditionalRequestGateway
ServantProxyProvision2CloseConnectionGateway

ServantServantRequest2ServantAdditionalRequestGateway
" name="MainChoreography" startingEvent="
InitialEvent" endingEvents="EndEvent">

<activities isSourceOf="
ProxyServantRequest2ServantAdditionalRequestGateway
" isTargetOf="Parallel2ProxyServantRequest

420 |

APPENDICES

CloseConnectionGateway2ProxyServantRequest" name
="Proxy2ServantRequest" subactivities="
ProxyServantRequest" messages="
InformationPetition" sourceParticipant="Proxy"
targetParticipant="Servant"/>

<activities isSourceOf="
ServantServantRequest2ServantAdditionalRequestGateway
" isTargetOf="
ServantAdditionalRequestGateway2ServantServantRequest
" name="Servant2ServantRequest" subactivities="
ServantServantRequest" messages="Information
InformationPetition" sourceParticipant="Servant"
targetParticipant="Servant"/>

<activities isSourceOf="
ProxyProxyRequest2EndProxyRequestsGateway"
isTargetOf="Parallel2ProxyProxyRequest
EndProxyRequestsGateway2ProxyProxyRequest" name=
"Proxy2ProxyRequest" subactivities="
ProxyProxyRequest" messages="Information
InformationPetition" sourceParticipant="Proxy"
targetParticipant="Proxy"/>

<activities isSourceOf="
ServantProxyProvision2CloseConnectionGateway"
isTargetOf="
ServantAdditionalRequestGateway2ServantProxyProvision
" name="Servant2ProxyProvision" subactivities="
ServantProxyRequest" messages="Information"
sourceParticipant="Servant" targetParticipant="
Proxy"/>

</choreographies>
<messages name="InformationPetition" exchangedFrom="

Proxy Servant" medium="BRBroker" conforms="
BRProtocol"/>

<messages name="Information" exchangedFrom="Proxy
Servant" medium="BRBroker" conforms="BRProtocol"/>

</cim:CommunicationSystem>
<cim:Parallel isSourceOf="Parallel2ProxyServantRequest

Parallel2ProxyProxyRequest" isTargetOf="
Init2ParallelGateway" name="ParallelStartGateway"/>

<cim:Parallel isSourceOf="EndParallelGateway2EndEvent"
isTargetOf="

| 421

APPENDICES

EndProxyRequestsGateway2ParallelEndGateway
CloseConnectionGateway2EndParallelGateway" name="
ParallelEndGateway"/>

<cim:DataBased isSourceOf="
ServantAdditionalRequestGateway2ServantServantRequest

ServantAdditionalRequestGateway2ServantProxyProvision
" isTargetOf="
ProxyServantRequest2ServantAdditionalRequestGateway
ServantServantRequest2ServantAdditionalRequestGateway
" name="ServantAdditionalRequestGateway"/>

<cim:DataBased isSourceOf="
CloseConnectionGateway2EndParallelGateway
CloseConnectionGateway2ProxyServantRequest"
isTargetOf="
ServantProxyProvision2CloseConnectionGateway" name="
CloseConnectionGateway"/>

<cim:DataBased isSourceOf="
EndProxyRequestsGateway2ParallelEndGateway
EndProxyRequestsGateway2ProxyProxyRequest"
isTargetOf="
ProxyProxyRequest2EndProxyRequestsGateway" name="
EndProxyRequestsGateway"/>

<cim:Sequential name="Init2ParallelGateway" source="
InitialEvent" target="ParallelStartGateway"
choreography="MainChoreography"/>

<cim:Sequential name="Parallel2ProxyServantRequest"
source="ParallelStartGateway" target="
Proxy2ServantRequest" choreography="MainChoreography
"/>

<cim:Sequential name="Parallel2ProxyProxyRequest"
source="ParallelStartGateway" target="
Proxy2ProxyRequest" choreography="MainChoreography"
/>

<cim:Sequential name="
ProxyProxyRequest2EndProxyRequestsGateway" source="
Proxy2ProxyRequest" target="EndProxyRequestsGateway"
choreography="MainChoreography"/>

<cim:Sequential name="
ProxyServantRequest2ServantAdditionalRequestGateway"
source="Proxy2ServantRequest" target="

422 |

APPENDICES

ServantAdditionalRequestGateway" choreography="
MainChoreography"/>

<cim:Conditional name="
ServantAdditionalRequestGateway2ServantServantRequest
" source="ServantAdditionalRequestGateway" target="
Servant2ServantRequest" choreography="
MainChoreography"/>

<cim:Conditional name="
EndProxyRequestsGateway2ParallelEndGateway" source="
EndProxyRequestsGateway" target="ParallelEndGateway"
choreography="MainChoreography"/>

<cim:Default name="
ServantAdditionalRequestGateway2ServantProxyProvision
" source="ServantAdditionalRequestGateway" target="
Servant2ProxyProvision" choreography="
MainChoreography"/>

<cim:Default name="
EndProxyRequestsGateway2ProxyProxyRequest" source="
EndProxyRequestsGateway" target="Proxy2ProxyRequest"
choreography="MainChoreography"/>

<cim:Sequential name="
ServantServantRequest2ServantAdditionalRequestGateway
" source="Servant2ServantRequest" target="
ServantAdditionalRequestGateway" choreography="
MainChoreography"/>

<cim:Sequential name="
ServantProxyProvision2CloseConnectionGateway" source
="Servant2ProxyProvision" target="
CloseConnectionGateway" choreography="
MainChoreography"/>

<cim:Conditional name="
CloseConnectionGateway2EndParallelGateway" source="
CloseConnectionGateway" target="ParallelEndGateway"
choreography="MainChoreography"/>

<cim:Default name="
CloseConnectionGateway2ProxyServantRequest" source="
CloseConnectionGateway" target="Proxy2ServantRequest
" choreography="MainChoreography"/>

<cim:Sequential name="EndParallelGateway2EndEvent"
source="ParallelEndGateway" target="EndEvent"
choreography="MainChoreography"/>

| 423

APPENDICES

<cim:Initial isSourceOf="Init2ParallelGateway" name="
InitialEvent" initiatedChoreographies="
MainChoreography"/>

<cim:End isTargetOf="EndParallelGateway2EndEvent" name=
"EndEvent" endedChoreographies="MainChoreography"/>

<cim:SubChoreographyActivity name="ProxyServantRequest"
messages="InformationPetition" sourceParticipant="

Proxy" targetParticipant="Servant"
sourceParticipantMessage="InformationPetition"
activity="Proxy2ServantRequest"/>

<cim:SubChoreographyActivity name="ProxyProxyRequest"
messages="Information InformationPetition"
sourceParticipant="Proxy" targetParticipant="Proxy"
sourceParticipantMessage="InformationPetition"
targetParticipantMessage="Information" activity="
Proxy2ProxyRequest"/>

<cim:SubChoreographyActivity name="ServantProxyRequest"
messages="Information" sourceParticipant="Servant"

targetParticipant="Proxy" sourceParticipantMessage="
Information" activity="Servant2ProxyProvision"/>

<cim:SubChoreographyActivity name="
ServantServantRequest" messages="Information
InformationPetition" sourceParticipant="Servant"
targetParticipant="Servant" sourceParticipantMessage
="InformationPetition" targetParticipantMessage="
Information" activity="Servant2ServantRequest"/>

</xmi:XMI>

IX. Specification of a US-PIM for
BlueRose middleware, automati-
cally obtained from the CS-CIM
through the proposed QVT trans-
formation rules

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/

XMI" xmlns:xsi="http://www.w3.org/2001/XMLSchema-inst

424 |

APPENDICES

ance" xmlns:pim="http://www.ugr.es/~carlosrodriguez/P
IM" xsi:schemaLocation="http://www.ugr.es/~carlosrodr
iguez/PIM ../metamodels/PIM.ecore">

<pim:UbiquitousSystem name="BlueRose" channels="BRBroke
r" protocols="BRProtocol">

<agents xsi:type="pim:Service" name="ServantService"
eventhandler="ServantServiceEventHandler" exchange
s="InformationEvent InformationRequest Information
Response InformationPetitionEvent InformationPetit
ionRequest InformationPetitionResponse" discovere
r="ServantServiceDiscoverer" isRequestedBy="ProxyA
pp" connectsTo="ProxyService ServantService" conne
ctedBy="ProxyService ServantService"/>

<agents xsi:type="pim:Application" name="ProxyApp" ev
enthandler="ProxyAppEventHandler" exchanges="Infor
mationEvent InformationRequest InformationResponse
InformationPetitionEvent InformationPetitionReque

st InformationPetitionResponse" discoverer="ProxyA
ppDiscoverer" requestsServices="ServantService Pro
xyService"/>

<agents xsi:type="pim:Service" name="ProxyService" ev
enthandler="ProxyServiceEventHandler" exchanges="I
nformationEvent InformationRequest InformationResp
onse InformationPetitionEvent InformationPetitionR
equest InformationPetitionResponse" discoverer="Pr
oxyServiceDiscoverer" isRequestedBy="ProxyApp" con
nectsTo="ServantService ProxyService" connectedBy=
"ProxyService ServantService"/>

<choreographies participants="ProxyApp ProxyService S
ervantService" messages="InformationEvent Informat
ionRequest InformationResponse InformationPetition
Event InformationPetitionRequest InformationPetiti
onResponse ParallelEndGatewayDistributionActivityC
onditionalStartingEvent ParallelEndGatewayDistribu
tionActivityConditionalStartingEvent Servant2Serva
ntRequest0ConditionalStartingEvent Proxy2ServantRe
quest0DefaultStartingEvent Proxy2ServantRequest1De
faultStartingEvent Proxy2ProxyRequest2DefaultStart
ingEvent Proxy2ProxyRequest0DefaultStartingEvent P
roxy2ProxyRequest3DefaultStartingEvent Proxy2Proxy
Request1DefaultStartingEvent Servant2ProxyProvisio

| 425

APPENDICES

n1DefaultStartingEvent Servant2ProxyProvision0Defa
ultStartingEvent EndEventDistributionActivityStart
ingEvent ParallelStartGatewayDistributionActivityS
tartingEvent Proxy2ProxyRequest0StartingEvent Prox
y2ProxyRequest3StartingEvent Proxy2ProxyRequest1St
artingEvent Proxy2ProxyRequest2StartingEvent Prox
y2ServantRequest1StartingEvent Proxy2ServantReques
t0StartingEvent EndProxyRequestsGatewayDistributio
nActivityStartingEvent EndProxyRequestsGatewayDist
ributionActivityStartingEvent EndProxyRequestsGate
wayDistributionActivityStartingEvent EndProxyReque
stsGatewayDistributionActivityStartingEvent Servan
tAdditionalRequestGatewayDistributionActivityStart
ingEvent ServantAdditionalRequestGatewayDistributi
onActivityStartingEvent CloseConnectionGatewayDist
ributionActivityStartingEvent CloseConnectionGatew
ayDistributionActivityStartingEvent ServantAdditio
nalRequestGatewayDistributionActivityStartingEvent
" name="MainChoreography" startingEvent="InitialEv
ent" endingEvents="EndEvent">

<activities name="Proxy2ServantRequest0" messages="
InformationPetitionEvent ServantAdditionalReques
tGatewayDistributionActivityStartingEvent" parti
cipants="ProxyApp ServantService" startingMessag
es="Proxy2ServantRequest0DefaultStartingEvent Pr
oxy2ServantRequest0StartingEvent">

<transactions xsi:type="pim:DiscoveryActivity" nam
e="ProxyApp2ServantServiceDiscovery" sourcePar
ticipant="ProxyApp" targetParticipant="Servant
Service"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="ProxyApp2ServantServiceEventDistrib
ution" sourceParticipant="ProxyApp" relatedEve
nt="InformationPetitionEvent"/>

<transactions xsi:type="pim:MessageExchangingActiv
ity" name="ProxyApp2ServantServiceRequestMessa
geExchanging" sourceParticipant="ProxyApp" tar
getParticipant="ServantService" message="Infor
mationPetitionRequest"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="ServantAdditionalRequestGatewayDist

426 |

APPENDICES

ributionActivityStartingEventDistributionActiv
ity" sourceParticipant="ProxyApp" relatedEven
t="ServantAdditionalRequestGatewayDistribution
ActivityStartingEvent"/>

</activities>
<activities name="Proxy2ServantRequest1" messages="

InformationPetitionEvent ServantAdditionalReques
tGatewayDistributionActivityStartingEvent" parti
cipants="ProxyService ServantService" startingMe
ssages="Proxy2ServantRequest1DefaultStartingEven
t Proxy2ServantRequest1StartingEvent">

<transactions xsi:type="pim:DiscoveryActivity" nam
e="ProxyService2ServantServiceDiscovery" sourc
eParticipant="ProxyService" targetParticipant=
"ServantService"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="ProxyService2ServantServiceEventDis
tribution" sourceParticipant="ProxyService" re
latedEvent="InformationPetitionEvent"/>

<transactions xsi:type="pim:MessageExchangingActiv
ity" name="ProxyService2ServantServiceRequestM
essageExchanging" sourceParticipant="ProxyServ
ice" targetParticipant="ServantService" messag
e="InformationPetitionRequest"/>

<transactions xsi:type="pim:MessageExchangingActiv
ity" name="ProxyService2ServantServiceResponse
MessageExchanging" sourceParticipant="ProxySer
vice" targetParticipant="ServantService" messa
ge="InformationPetitionResponse"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="ServantAdditionalRequestGatewayDist
ributionActivityStartingEventDistributionActiv
ity" sourceParticipant="ProxyService" relatedE
vent="ServantAdditionalRequestGatewayDistribut
ionActivityStartingEvent"/>

</activities>
<activities name="Servant2ServantRequest0" message

s="InformationPetitionEvent InformationEvent Ser
vantAdditionalRequestGatewayDistributionActivity
StartingEvent" participants="ServantService" sta
rtingMessages="Servant2ServantRequest0Conditiona

| 427

APPENDICES

lStartingEvent">
<transactions xsi:type="pim:DiscoveryActivity" nam

e="ServantService2ServantServiceDiscovery" sou
rceParticipant="ServantService" targetParticip
ant="ServantService"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" sourceParticipant="ServantService" relate
dEvent="InformationPetitionEvent"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" relatedEvent="InformationEvent"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="ServantAdditionalRequestGatewayDist
ributionActivityStartingEventDistributionActiv
ity" sourceParticipant="ServantService" relate
dEvent="ServantAdditionalRequestGatewayDistrib
utionActivityStartingEvent"/>

</activities>
<activities name="Proxy2ProxyRequest0" messages="In

formationPetitionEvent InformationEvent EndProxy
RequestsGatewayDistributionActivityStartingEvent
" participants="ProxyApp" startingMessages="Prox
y2ProxyRequest0DefaultStartingEvent Proxy2ProxyR
equest0StartingEvent">

<transactions xsi:type="pim:DiscoveryActivity" nam
e="ProxyApp2ProxyAppDiscovery" sourceParticipa
nt="ProxyApp" targetParticipant="ProxyApp"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" sourceParticipant="ProxyApp" relatedEven
t="InformationPetitionEvent"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" relatedEvent="InformationEvent"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="EndProxyRequestsGatewayDistribution
ActivityStartingEventDistributionActivity" sou
rceParticipant="ProxyApp" relatedEvent="EndPro
xyRequestsGatewayDistributionActivityStartingE
vent"/>

</activities>
<activities name="Proxy2ProxyRequest1" messages="In

formationPetitionEvent InformationEvent EndProxy
RequestsGatewayDistributionActivityStartingEvent

428 |

APPENDICES

" participants="ProxyApp ProxyService" startingM
essages="Proxy2ProxyRequest1DefaultStartingEvent
Proxy2ProxyRequest1StartingEvent">

<transactions xsi:type="pim:DiscoveryActivity" nam
e="ProxyApp2ProxyServiceDiscovery" sourceParti
cipant="ProxyApp" targetParticipant="ProxyServ
ice"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="ProxyApp2ProxyServiceEventDistribut
ion" sourceParticipant="ProxyApp" relatedEven
t="InformationPetitionEvent"/>

<transactions xsi:type="pim:MessageExchangingActiv
ity" name="ProxyApp2ProxyServiceRequestMessage
Exchanging" sourceParticipant="ProxyApp" targe
tParticipant="ProxyService" message="Informati
onPetitionRequest"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="ProxyService2ProxyAppEventDistribut
ion" sourceParticipant="ProxyService" relatedE
vent="InformationEvent"/>

<transactions xsi:type="pim:MessageExchangingActiv
ity" name="ProxyService2ProxyAppResponseMessag
eExchanging" sourceParticipant="ProxyService"
targetParticipant="ProxyApp" message="Informat
ionResponse"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="EndProxyRequestsGatewayDistribution
ActivityStartingEventDistributionActivity" sou
rceParticipant="ProxyApp" relatedEvent="EndPro
xyRequestsGatewayDistributionActivityStartingE
vent"/>

</activities>
<activities name="Proxy2ProxyRequest2" messages="In

formationPetitionEvent InformationEvent EndProxy
RequestsGatewayDistributionActivityStartingEvent
" participants="ProxyService ProxyApp" startingM
essages="Proxy2ProxyRequest2DefaultStartingEvent
Proxy2ProxyRequest2StartingEvent">

<transactions xsi:type="pim:DiscoveryActivity" nam
e="ProxyService2ProxyAppDiscovery" sourceParti
cipant="ProxyService" targetParticipant="Proxy

| 429

APPENDICES

App"/>
<transactions xsi:type="pim:EventDistributionActiv

ity" name="ProxyService2ProxyAppEventDistribut
ion" sourceParticipant="ProxyService" relatedE
vent="InformationPetitionEvent"/>

<transactions xsi:type="pim:MessageExchangingActiv
ity" name="ProxyService2ProxyAppResponseMessag
eExchanging" sourceParticipant="ProxyService"
targetParticipant="ProxyApp" message="Informat
ionPetitionResponse"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="ProxyApp2ProxyServiceEventDistribut
ion" sourceParticipant="ProxyApp" relatedEven
t="InformationEvent"/>

<transactions xsi:type="pim:MessageExchangingActiv
ity" name="ProxyApp2ProxyServiceRequestMessage
Exchanging" sourceParticipant="ProxyApp" targe
tParticipant="ProxyService" message="Informati
onRequest"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="EndProxyRequestsGatewayDistribution
ActivityStartingEventDistributionActivity" sou
rceParticipant="ProxyService" relatedEvent="En
dProxyRequestsGatewayDistributionActivityStart
ingEvent"/>

</activities>
<activities name="Proxy2ProxyRequest3" messages="In

formationPetitionEvent InformationEvent EndProxy
RequestsGatewayDistributionActivityStartingEvent
" participants="ProxyService" startingMessages="
Proxy2ProxyRequest3DefaultStartingEvent Proxy2Pr
oxyRequest3StartingEvent">

<transactions xsi:type="pim:DiscoveryActivity" nam
e="ProxyService2ProxyServiceDiscovery" sourceP
articipant="ProxyService" targetParticipant="P
roxyService"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" sourceParticipant="ProxyService" relatedE
vent="InformationPetitionEvent"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" relatedEvent="InformationEvent"/>

430 |

APPENDICES

<transactions xsi:type="pim:EventDistributionActiv
ity" name="EndProxyRequestsGatewayDistribution
ActivityStartingEventDistributionActivity" sou
rceParticipant="ProxyService" relatedEvent="En
dProxyRequestsGatewayDistributionActivityStart
ingEvent"/>

</activities>
<activities name="Servant2ProxyProvision0" message

s="InformationEvent CloseConnectionGatewayDistri
butionActivityStartingEvent" participants="Serva
ntService ProxyApp" startingMessages="Servant2Pr
oxyProvision0DefaultStartingEvent">

<transactions xsi:type="pim:DiscoveryActivity" nam
e="ServantService2ProxyAppDiscovery" sourcePar
ticipant="ServantService" targetParticipant="P
roxyApp"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="ServantService2ProxyAppEventDistrib
ution" sourceParticipant="ServantService" rela
tedEvent="InformationEvent"/>

<transactions xsi:type="pim:MessageExchangingActiv
ity" name="ServantService2ProxyAppResponseMess
ageExchanging" sourceParticipant="ServantServi
ce" targetParticipant="ProxyApp" message="Info
rmationResponse"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="CloseConnectionGatewayDistributionA
ctivityStartingEventDistributionActivity" sour
ceParticipant="ServantService" relatedEvent="C
loseConnectionGatewayDistributionActivityStart
ingEvent"/>

</activities>
<activities name="Servant2ProxyProvision1" message

s="InformationEvent CloseConnectionGatewayDistri
butionActivityStartingEvent" participants="Serva
ntService ProxyService" startingMessages="Servan
t2ProxyProvision1DefaultStartingEvent">

<transactions xsi:type="pim:DiscoveryActivity" nam
e="ServantService2ProxyServiceDiscovery" sourc
eParticipant="ServantService" targetParticipan
t="ProxyService"/>

| 431

APPENDICES

<transactions xsi:type="pim:EventDistributionActiv
ity" name="ServantService2ProxyServiceEventDis
tribution" sourceParticipant="ServantService"
relatedEvent="InformationEvent"/>

<transactions xsi:type="pim:MessageExchangingActiv
ity" name="ServantService2ProxyServiceRequestM
essageExchanging" sourceParticipant="ServantSe
rvice" targetParticipant="ProxyService" messag
e="InformationRequest"/>

<transactions xsi:type="pim:MessageExchangingActiv
ity" name="ServantService2ProxyServiceResponse
MessageExchanging" sourceParticipant="ServantS
ervice" targetParticipant="ProxyService" messa
ge="InformationResponse"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="CloseConnectionGatewayDistributionA
ctivityStartingEventDistributionActivity" sour
ceParticipant="ServantService" relatedEvent="C
loseConnectionGatewayDistributionActivityStart
ingEvent"/>

</activities>
<activities name="CloseConnectionGatewayDistributio

nActivity" messages="ParallelEndGatewayDistribut
ionActivityConditionalStartingEvent Proxy2Servan
tRequest1DefaultStartingEvent Proxy2ServantReque
st0DefaultStartingEvent" startingMessages="Close
ConnectionGatewayDistributionActivityStartingEve
nt CloseConnectionGatewayDistributionActivitySta
rtingEvent">

<transactions xsi:type="pim:EventDistributionActiv
ity" name="CloseConnectionGatewayDistributionT
ransactionActivity"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="ParallelEndGatewayDistributionActiv
ityConditionalStartingEventDistributionActivit
y" relatedEvent="ParallelEndGatewayDistributio
nActivityConditionalStartingEvent"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="Proxy2ServantRequest1DefaultStartin
gEventDistributionActivity" relatedEvent="Prox
y2ServantRequest1DefaultStartingEvent"/>

432 |

APPENDICES

<transactions xsi:type="pim:EventDistributionActiv
ity" name="Proxy2ServantRequest0DefaultStartin
gEventDistributionActivity" relatedEvent="Prox
y2ServantRequest0DefaultStartingEvent"/>

</activities>
<activities name="ParallelEndGatewayDistributionAct

ivity" messages="EndEventDistributionActivitySta
rtingEvent" startingMessages="ParallelEndGateway
DistributionActivityConditionalStartingEvent Par
allelEndGatewayDistributionActivityConditionalSt
artingEvent">

<transactions xsi:type="pim:EventDistributionActiv
ity" name="ParallelEndGatewayDistributionTrans
actionActivity"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="EndEventDistributionActivityStartin
gEventDistributionActivity" relatedEvent="EndE
ventDistributionActivityStartingEvent"/>

</activities>
<activities name="EndProxyRequestsGatewayDistributi

onActivity" messages="ParallelEndGatewayDistribu
tionActivityConditionalStartingEvent Proxy2Proxy
Request2DefaultStartingEvent Proxy2ProxyRequest1
DefaultStartingEvent Proxy2ProxyRequest3DefaultS
tartingEvent Proxy2ProxyRequest0DefaultStartingE
vent" startingMessages="EndProxyRequestsGatewayD
istributionActivityStartingEvent EndProxyRequest
sGatewayDistributionActivityStartingEvent EndPro
xyRequestsGatewayDistributionActivityStartingEve
nt EndProxyRequestsGatewayDistributionActivitySt
artingEvent">

<transactions xsi:type="pim:EventDistributionActiv
ity" name="EndProxyRequestsGatewayDistribution
TransactionActivity"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="ParallelEndGatewayDistributionActiv
ityConditionalStartingEventDistributionActivit
y" relatedEvent="ParallelEndGatewayDistributio
nActivityConditionalStartingEvent"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="Proxy2ProxyRequest2DefaultStartingE

| 433

APPENDICES

ventDistributionActivity" relatedEvent="Proxy2
ProxyRequest2DefaultStartingEvent"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="Proxy2ProxyRequest1DefaultStartingE
ventDistributionActivity" relatedEvent="Proxy2
ProxyRequest1DefaultStartingEvent"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="Proxy2ProxyRequest3DefaultStartingE
ventDistributionActivity" relatedEvent="Proxy2
ProxyRequest3DefaultStartingEvent"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="Proxy2ProxyRequest0DefaultStartingE
ventDistributionActivity" relatedEvent="Proxy2
ProxyRequest0DefaultStartingEvent"/>

</activities>
<activities name="ServantAdditionalRequestGatewayDi

stributionActivity" messages="Servant2ServantReq
uest0ConditionalStartingEvent Servant2ProxyProvi
sion0DefaultStartingEvent Servant2ProxyProvisio
n1DefaultStartingEvent" startingMessages="Servan
tAdditionalRequestGatewayDistributionActivitySta
rtingEvent ServantAdditionalRequestGatewayDistri
butionActivityStartingEvent ServantAdditionalReq
uestGatewayDistributionActivityStartingEvent">

<transactions xsi:type="pim:EventDistributionActiv
ity" name="ServantAdditionalRequestGatewayDist
ributionTransactionActivity"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="Servant2ServantRequest0ConditionalS
tartingEventDistributionActivity" relatedEven
t="Servant2ServantRequest0ConditionalStartingE
vent"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="Servant2ProxyProvision0DefaultStart
ingEventDistributionActivity" relatedEvent="Se
rvant2ProxyProvision0DefaultStartingEvent"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="Servant2ProxyProvision1DefaultStart
ingEventDistributionActivity" relatedEvent="Se
rvant2ProxyProvision1DefaultStartingEvent"/>

</activities>

434 |

APPENDICES

<activities name="EndEventDistributionActivity" sta
rtingMessages="EndEventDistributionActivityStart
ingEvent">

<transactions xsi:type="pim:EventDistributionActiv
ity" name="EndEventDistributionTransactionActi
vity" relatedEvent="EndEvent"/>

</activities>
<activities name="InitialEventDistributionActivity"

messages="ParallelStartGatewayDistributionActiv
ityStartingEvent">

<transactions xsi:type="pim:EventDistributionActiv
ity" name="InitialEventDistributionTransaction
Activity" relatedEvent="InitialEvent"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="ParallelStartGatewayDistributionAct
ivityStartingEventDistributionActivity" relate
dEvent="ParallelStartGatewayDistributionActivi
tyStartingEvent"/>

</activities>
<activities name="ParallelStartGatewayDistributionA

ctivity" messages="Proxy2ProxyRequest2StartingEv
ent Proxy2ProxyRequest1StartingEvent Proxy2Proxy
Request3StartingEvent Proxy2ProxyRequest0Startin
gEvent Proxy2ServantRequest1StartingEvent Proxy2
ServantRequest0StartingEvent" startingMessages="
ParallelStartGatewayDistributionActivityStarting
Event">

<transactions xsi:type="pim:EventDistributionActiv
ity" name="ParallelStartGatewayDistributionTra
nsactionActivity"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="Proxy2ProxyRequest2StartingEventDis
tributionActivity" relatedEvent="Proxy2ProxyRe
quest2StartingEvent"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="Proxy2ProxyRequest1StartingEventDis
tributionActivity" relatedEvent="Proxy2ProxyRe
quest1StartingEvent"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="Proxy2ProxyRequest3StartingEventDis
tributionActivity" relatedEvent="Proxy2ProxyRe

| 435

APPENDICES

quest3StartingEvent"/>
<transactions xsi:type="pim:EventDistributionActiv

ity" name="Proxy2ProxyRequest0StartingEventDis
tributionActivity" relatedEvent="Proxy2ProxyRe
quest0StartingEvent"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="Proxy2ServantRequest1StartingEventD
istributionActivity" relatedEvent="Proxy2Serva
ntRequest1StartingEvent"/>

<transactions xsi:type="pim:EventDistributionActiv
ity" name="Proxy2ServantRequest0StartingEventD
istributionActivity" relatedEvent="Proxy2Serva
ntRequest0StartingEvent"/>

</activities>
</choreographies>

</pim:UbiquitousSystem>
<pim:Topic name="InformationTopic" isTopicOf="Informati

onEvent"/>
<pim:Event name="InformationEvent" exchangedFrom="Serva

ntService ProxyApp ProxyService" medium="BRBroker" c
onforms="BRProtocol" topic="InformationTopic" handle
dBy="ServantServiceEventHandler ProxyAppEventHandler
ProxyServiceEventHandler" listenedBy="ServantServic

eInformationEventListener ProxyAppInformationEventLi
stener ProxyServiceInformationEventListener" accepte
dBy="InformationPredicate"/>

<pim:Predicate name="InformationPredicate" accepts="Inf
ormationEvent" constraints="ServantServiceInformatio
nEventListener ProxyAppInformationEventListener Prox
yServiceInformationEventListener"/>

<pim:Request name="InformationRequest" exchangedFrom="S
ervantService ProxyApp ProxyService" medium="BRBroke
r" conforms="BRProtocol" reply="InformationResponse"
targets="ProxyService"/>

<pim:Response name="InformationResponse" exchangedFrom=
"ServantService ProxyApp ProxyService" medium="BRBro
ker" conforms="BRProtocol" petition="InformationRequ
est"/>

<pim:Topic name="InformationPetitionTopic" isTopicOf="I
nformationPetitionEvent"/>

436 |

APPENDICES

<pim:Event name="InformationPetitionEvent" exchangedFro
m="ServantService ProxyApp ProxyService" medium="BRB
roker" conforms="BRProtocol" topic="InformationPetit
ionTopic" handledBy="ServantServiceEventHandler Prox
yAppEventHandler ProxyServiceEventHandler" listenedB
y="ServantServiceInformationPetitionEventListener Pr
oxyAppInformationPetitionEventListener ProxyServiceI
nformationPetitionEventListener" acceptedBy="Informa
tionPetitionPredicate"/>

<pim:Predicate name="InformationPetitionPredicate" acce
pts="InformationPetitionEvent" constraints="ServantS
erviceInformationPetitionEventListener ProxyAppInfor
mationPetitionEventListener ProxyServiceInformationP
etitionEventListener"/>

<pim:Request name="InformationPetitionRequest" exchange
dFrom="ServantService ProxyApp ProxyService" medium=
"BRBroker" conforms="BRProtocol" reply="InformationP
etitionResponse" targets="ServantService ProxyServic
e"/>

<pim:Response name="InformationPetitionResponse" exchan
gedFrom="ServantService ProxyApp ProxyService" mediu
m="BRBroker" conforms="BRProtocol" petition="Informa
tionPetitionRequest"/>

<pim:Discovery name="ServantServiceDiscoveryEvent" medi
um="BRBroker" conforms="BRProtocol" topic="ServantSe
rviceDiscoveryTopic" discovers="ServantServiceDiscov
eryListener"/>

<pim:Topic name="ServantServiceDiscoveryTopic" isTopicO
f="ServantServiceDiscoveryEvent"/>

<pim:Discoverer name="ServantServiceDiscoverer" listene
rs="ServantServiceDiscoveryListener" callback="Serva
ntServiceDiscoveryListener"/>

<pim:DiscoveryListener name="ServantServiceDiscoveryLis
tener" constrainedBy="ServantServiceDiscoveryPredica
te" seeker="ServantServiceDiscoverer" discoveredBy="
ServantServiceDiscoveryEvent"/>

<pim:Predicate name="ServantServiceDiscoveryPredicate"
constraints="ServantServiceDiscoveryListener"/>

<pim:EventHandler name="ServantServiceEventHandler" han
dles="InformationEvent InformationPetitionEvent" lis
teners="ServantServiceInformationEventListener Serva

| 437

APPENDICES

ntServiceInformationPetitionEventListener"/>
<pim:EventListener name="ServantServiceInformationEvent

Listener" listens="InformationEvent" constrainedBy="
InformationPredicate"/>

<pim:EventListener name="ServantServiceInformationPetit
ionEventListener" listens="InformationPetitionEvent"
constrainedBy="InformationPetitionPredicate"/>

<pim:Discovery name="ProxyAppDiscoveryEvent" medium="BR
Broker" conforms="BRProtocol" topic="ProxyAppDiscove
ryTopic" discovers="ProxyAppDiscoveryListener"/>

<pim:Topic name="ProxyAppDiscoveryTopic" isTopicOf="Pro
xyAppDiscoveryEvent"/>

<pim:Discoverer name="ProxyAppDiscoverer" listeners="Pr
oxyAppDiscoveryListener" callback="ProxyAppDiscovery
Listener"/>

<pim:DiscoveryListener name="ProxyAppDiscoveryListener"
constrainedBy="ProxyAppDiscoveryPredicate" seeker="

ProxyAppDiscoverer" discoveredBy="ProxyAppDiscoveryE
vent"/>

<pim:Predicate name="ProxyAppDiscoveryPredicate" constr
aints="ProxyAppDiscoveryListener"/>

<pim:EventHandler name="ProxyAppEventHandler" handles="
InformationEvent InformationPetitionEvent" listener
s="ProxyAppInformationEventListener ProxyAppInformat
ionPetitionEventListener"/>

<pim:EventListener name="ProxyAppInformationEventListen
er" listens="InformationEvent" constrainedBy="Inform
ationPredicate"/>

<pim:EventListener name="ProxyAppInformationPetitionEve
ntListener" listens="InformationPetitionEvent" const
rainedBy="InformationPetitionPredicate"/>

<pim:Discovery name="ProxyServiceDiscoveryEvent" mediu
m="BRBroker" conforms="BRProtocol" topic="ProxyServi
ceDiscoveryTopic" discovers="ProxyServiceDiscoveryLi
stener"/>

<pim:Topic name="ProxyServiceDiscoveryTopic" isTopicOf=
"ProxyServiceDiscoveryEvent"/>

<pim:Discoverer name="ProxyServiceDiscoverer" listener
s="ProxyServiceDiscoveryListener" callback="ProxySer
viceDiscoveryListener"/>

438 |

APPENDICES

<pim:DiscoveryListener name="ProxyServiceDiscoveryListe
ner" constrainedBy="ProxyServiceDiscoveryPredicate"
seeker="ProxyServiceDiscoverer" discoveredBy="ProxyS
erviceDiscoveryEvent"/>

<pim:Predicate name="ProxyServiceDiscoveryPredicate" co
nstraints="ProxyServiceDiscoveryListener"/>

<pim:EventHandler name="ProxyServiceEventHandler" handl
es="InformationEvent InformationPetitionEvent" liste
ners="ProxyServiceInformationEventListener ProxyServ
iceInformationPetitionEventListener"/>

<pim:EventListener name="ProxyServiceInformationEventLi
stener" listens="InformationEvent" constrainedBy="In
formationPredicate"/>

<pim:EventListener name="ProxyServiceInformationPetitio
nEventListener" listens="InformationPetitionEvent" c
onstrainedBy="InformationPetitionPredicate"/>

<pim:SoftwareProtocol name="BRProtocol" system="BlueRos
e" rules="BRBroker" compiles="InformationEvent Infor
mationRequest InformationResponse InformationPetitio
nEvent InformationPetitionRequest InformationPetitio
nResponse ServantServiceDiscoveryEvent ProxyAppDisco
veryEvent ProxyServiceDiscoveryEvent"/>

<pim:NetworkingTechnology name="BRBroker" system="BlueR
ose" transports="InformationEvent InformationRequest
InformationResponse InformationPetitionEvent Inform

ationPetitionRequest InformationPetitionResponse Ser
vantServiceDiscoveryEvent ProxyAppDiscoveryEvent Pro
xyServiceDiscoveryEvent" conforms="BRProtocol"/>

<pim:Initial name="InitialEvent" topic="InitialEventTop
ic" initiatedChoreographies="MainChoreography"/>

<pim:Topic name="InitialEventTopic" isTopicOf="InitialE
vent"/>

<pim:End name="EndEvent" topic="EndEventTopic" endedCho
reographies="MainChoreography"/>

<pim:Topic name="EndEventTopic" isTopicOf="EndEvent"/>
<pim:Conditional name="ParallelEndGatewayDistributionAc

tivityConditionalStartingEvent" predicate="ParallelE
ndGatewayDistributionActivityConditionalStartingEven
tPredicate"/>

<pim:Predicate name="ParallelEndGatewayDistributionActi
vityConditionalStartingEventPredicate"/>

| 439

APPENDICES

<pim:Conditional name="ParallelEndGatewayDistributionAc
tivityConditionalStartingEvent" predicate="ParallelE
ndGatewayDistributionActivityConditionalStartingEven
tPredicate"/>

<pim:Predicate name="ParallelEndGatewayDistributionActi
vityConditionalStartingEventPredicate"/>

<pim:Conditional name="Servant2ServantRequest0Condition
alStartingEvent" predicate="Servant2ServantRequest0C
onditionalStartingEventPredicate"/>

<pim:Predicate name="Servant2ServantRequest0Conditional
StartingEventPredicate"/>

<pim:Default name="Proxy2ServantRequest1DefaultStarting
Event" nonSatisfiedPredicate="Proxy2ServantRequest1D
efaultStartingEventPredicate"/>

<pim:Predicate name="Proxy2ServantRequest1DefaultStarti
ngEventPredicate"/>

<pim:Default name="Proxy2ServantRequest0DefaultStarting
Event" nonSatisfiedPredicate="Proxy2ServantRequest0D
efaultStartingEventPredicate"/>

<pim:Predicate name="Proxy2ServantRequest0DefaultStarti
ngEventPredicate"/>

<pim:Default name="Proxy2ProxyRequest2DefaultStartingEv
ent" nonSatisfiedPredicate="Proxy2ProxyRequest2Defau
ltStartingEventPredicate"/>

<pim:Predicate name="Proxy2ProxyRequest2DefaultStarting
EventPredicate"/>

<pim:Default name="Proxy2ProxyRequest1DefaultStartingEv
ent" nonSatisfiedPredicate="Proxy2ProxyRequest1Defau
ltStartingEventPredicate"/>

<pim:Predicate name="Proxy2ProxyRequest1DefaultStarting
EventPredicate"/>

<pim:Default name="Proxy2ProxyRequest3DefaultStartingEv
ent" nonSatisfiedPredicate="Proxy2ProxyRequest3Defau
ltStartingEventPredicate"/>

<pim:Predicate name="Proxy2ProxyRequest3DefaultStarting
EventPredicate"/>

<pim:Default name="Proxy2ProxyRequest0DefaultStartingEv
ent" nonSatisfiedPredicate="Proxy2ProxyRequest0Defau
ltStartingEventPredicate"/>

<pim:Predicate name="Proxy2ProxyRequest0DefaultStarting
EventPredicate"/>

440 |

APPENDICES

<pim:Default name="Servant2ProxyProvision0DefaultStarti
ngEvent" nonSatisfiedPredicate="Servant2ProxyProvisi
on0DefaultStartingEventPredicate"/>

<pim:Predicate name="Servant2ProxyProvision0DefaultStar
tingEventPredicate"/>

<pim:Default name="Servant2ProxyProvision1DefaultStarti
ngEvent" nonSatisfiedPredicate="Servant2ProxyProvisi
on1DefaultStartingEventPredicate"/>

<pim:Predicate name="Servant2ProxyProvision1DefaultStar
tingEventPredicate"/>

<pim:Sequential name="EndEventDistributionActivityStart
ingEvent"/>

<pim:Sequential name="ParallelStartGatewayDistributionA
ctivityStartingEvent"/>

<pim:Sequential name="Proxy2ProxyRequest2StartingEvent"
/>

<pim:Sequential name="Proxy2ProxyRequest1StartingEvent"
/>

<pim:Sequential name="Proxy2ProxyRequest3StartingEvent"
/>

<pim:Sequential name="Proxy2ProxyRequest0StartingEvent"
/>

<pim:Sequential name="Proxy2ServantRequest1StartingEven
t"/>

<pim:Sequential name="Proxy2ServantRequest0StartingEven
t"/>

<pim:Sequential name="EndProxyRequestsGatewayDistributi
onActivityStartingEvent"/>

<pim:Sequential name="EndProxyRequestsGatewayDistributi
onActivityStartingEvent"/>

<pim:Sequential name="EndProxyRequestsGatewayDistributi
onActivityStartingEvent"/>

<pim:Sequential name="EndProxyRequestsGatewayDistributi
onActivityStartingEvent"/>

<pim:Sequential name="ServantAdditionalRequestGatewayDi
stributionActivityStartingEvent"/>

<pim:Sequential name="ServantAdditionalRequestGatewayDi
stributionActivityStartingEvent"/>

<pim:Sequential name="CloseConnectionGatewayDistributio
nActivityStartingEvent"/>

| 441

APPENDICES

<pim:Sequential name="CloseConnectionGatewayDistributio
nActivityStartingEvent"/>

<pim:Sequential name="ServantAdditionalRequestGatewayDi
stributionActivityStartingEvent"/>

</xmi:XMI>

442 |

