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1. Introduction

Classification and prediction tasks are taking place constantly in our daily life. We can find
various examples in real life carried out by experts in very different fields, such as medical diagnosis,
pattern recognition, product rating... From a general point of view, the concept of classification
covers every context where a decision is made based on the available information. However, the
realization of this task can carry out many problems like slowness to finish or the context difficulty.
Thereby, the development of automatic systems makes easier the work as they enable the obtaining
of more accurate predictions. These systems are interesting because the data analysis performed by
them does not have the subjectivity attached to human beings and because the capacity of analysis
of an automatic method (volume of data) is always going to be bigger than a person capacity.

The classification problem is defined on the context of data mining (DM) categorized as a
supervised learning task [TSKO06]. By this, we mean that the set of examples we have available are
labeled with the class they belong to. From here on, we have to learn and build a model or decision
function that is able to return the class belonging to a new example based on its attribute values.
This system is known as a classifier.

When trying to solve a given stage of the classification application, experts and researchers
must know the data structure that they are processing so they can achieve the maximum accuracy
related to all the concepts included in the problem. For example, there are many work areas where
the class distribution is not balanced. Since most of the standard learning approximations consider
a balanced training group, this leads to the obtaining of a suboptimal classification model, namely,
a good cover on the examples that belong to the majority class (also known as negative class),
while the minority examples (known as positive class) are more difficult to be properly identified.
This problem is known as classification with imbalanced data [HG09, SWKO09].

We must emphasize the importance of this problem, as it is related to complications in real-world
domains. In these cases, a high cost is implied when examples of the positive class are classified
in a wrong way as the examples that belong to the positive class are the most interesting from
the learning point of view. Some of these real-world applications are medical diagnosis and fraud
detection, among others. These problems typically present a small number of examples from the
positive class as examples from this class are usually associated with exceptional or significant
cases, or because the acquisition of instances is costly.

In the area of classification in general, and in classification with imbalanced data on particular,
Computational Intelligence techniques (CI) [Kon05, Pet07] have shown to be a very robust tool
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to obtain models with a high degree of confidence. Although there is no complete agreement with
respect to a definition on CI, there is a widely accepted vision about areas included under this
paradigm, such as Artificial Neural Networks, Fuzzy Logic and Evolutionary Computation. Among
the available techniques in this field, linguistic fuzzy rule-based classification systems (FRBCS)
[INNO4] are a popular tool because of the interpretability of their models based on linguistic va-
riables, which are easier to understand to final users or experts while obtaining good results in the
area of imbalanced classification [FGdJH08, FdJH09, FAdJH10].

Returning to the specific problem of classification with imbalanced datasets, we must note
that since the initial studies it has been shown that the loss of efficiency is due to non-uniform
distribution on classes. However, recent research suggests that the problem in this scenario is the
synergy between the imbalance and some inner characteristics of data. Among these characteristics
we can find the overlapping between classes [GMS08, DT10], the presence of small-disjuncts [Wei05,
Weil0], the treatment of the borderline samples [DKS09, NSW10], the problem of noisy instances
[BF99, SKVHF14], and finally, the different distribution on partitions of training and test data,
which is known as dataset shift [Shi00, MTH10].

However, the difficulties in the obtaining of good performance models in classification problems
and DM is not only directed towards the uneven class distribution. A new concept called Big
Data has spread quickly in this framework [ADA11, Mad12]. This new scenario is defined by those
problems that cannot be addressed effectively and/or efficient through the standard computational
resources currently available. We must highlight that big data does not necessarily imply large
volumes of information, it’s just that the existing methods that are used to address the problem
are not able to provide a classification answer within our requirements.

Our interest in this memory mainly lies in the study of the problem of classification with
imbalanced datasets from the perspective of the data intrinsic characteristics that this type of
problems display. We intend to perform a detailed analysis of the existing solutions to the problem
to fully understand their behavior and discern which are more appropriate from a general point
of view. With the information provided by this study, we intend to develop new learning methods
with FRBCSs that will address the data intrinsic characteristics that degrade the performance
of classifiers with imbalanced data and hence improve the behavior of the standard methodology
defined to this area of DM. At last, our intention is to extend the study of classification with
imbalanced data to the big data field. In particular, our goal is to analyze the scalability of the
basic solutions of FRBCSs raised on, and propose new parallelization techniques to address this
problem effectively.

To perform this study, this PhD dissertation is divided into two parts. The first one is dedicated
to the statement of the problem considered and the discussion of results obtained; while the second
part corresponds to the publications associated with the study.

In Part I of this document we begin with a section dedicated to the preliminaries related to the
problem (Section 2), introducing the related information about approaches and other problems.
Next, we define the open problems in this framework (Section 3) that justify the realization of
this thesis as well as the proposed objectives (Section 4). Then, we include Section 5, discussion
of results, which provides a summary of the developed studies and the most important results
obtained for the objectives considered in this manuscript. Later, Section 6 summarizes the results
obtained herein and presents some conclusions about them to, at the end (Section 7), discuss some
aspects of future work that are open in the present memory.

Finally, to develop the objectives, Part II of the memory is constituted of five publications
distributed in three parts:
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= A Study on the Data Intrinsic Characteristics in Classification Problems with Imbalanced
Datasets and Analysis of the Behavior of the Techniques from the State-of-the-art.

= Addressing the Data Intrinsic Characteristics of Imbalanced Problems using FRBCSs and
Machine Learning Techniques.

= A study on the Scalability of FRBCSs for Imbalanced Datasets in the Big Data Scenario.

Introduccién

Las tareas de clasificacion y prediccién estdn continuamente presentes en la vida cotidiana.
Podemos encontrar diversos ejemplos en la vida real realizadas por expertos en diferentes dmbitos,
como por ejemplo en diagndstico médico, reconocimiento de patrones, calificaciéon de productos,
y un largo etcétera. Desde un punto de vista general, el concepto de clasificacién cubre cualquier
contexto en el que se toma una decisién en base a la informacion disponible. Sin embargo, la
realizacién de esta tarea puede conllevar distintos problemas como la lentitud al realizarla o la
dificultad del contexto. De este modo, el desarrollo de sistemas autématicos no sélo puede ayudar a
facilitar la labor a realizar, sino que ademas puede permitir efectuar mejor las predicciones, debido
a que el analisis de los datos carece de la subjetividad inherente a los seres humanos y porque la
capacidad de andlisis de un método automadtico siempre serd mucho mayor (el volumen de datos
con los que puede trabajar es mucho mayor) que la capacidad de una persona

El problema de clasificacién se enmarca dentro del contexto de la Mineria de Datos (MDD) en
su vertiente supervisada [TSK06]. Con ello nos referimos a que el conjunto de ejemplos de los que
disponemos para realizar el aprendizaje estan etiquetados con la clase a la que pertenecen. A partir
de este punto debemos aprender y construir un modelo o funcién de decisiéon capaz de devolver la
clase correspondiente a un nuevo ejemplo en base a los atributos que lo caracterizan. Este sistema
se denomina un clasificador.

Cuando se pretende resolver una aplicacién dada en el escenario de la clasificacion, los expertos
e investigadores deben conocer la estructura de los datos que gestionan para de esto modo alcanzar
la maxima precisién para todos los conceptos incluidos en el problema [DHSO01]. Por ejemplo, hay
muchas areas de trabajo en los que la distribucién de las clases no es equilibrada. Puesto que la
mayoria de las aproximaciones de aprendizaje estandar consideran un conjunto de entrenamiento
equilibrado (o balanceado), esto conlleva la obtencién de un modelo de clasificacién sub-6ptimo, es
decir, un modelo con una buena cobertura de los ejemplos mayoritarios (también conocida como
clase negativa), mientras que los minoritarios (conocidos como clase positiva) son mas dificiles de
discriminar. Este hecho se conoce como la clasificacién con conjuntos de datos no balanceados
[HG09, SWKO09).

Debemos enfatizar la importancia de este problema, ya que estd relacionado con problemas
en dominios del mundo real que implican un alto coste cuando los ejemplos de la clase positiva
se clasifican de manera errénea. Algunos de estos escenarios son diagnosis médica, sistemas de
deteccién de intrusiones y deteccién de fraudes, entre otros. Los ejemplos de la clase positiva suelen
ser poco numerosos en estos problems ya que suelen estar asociados con casos excepcionales o
significativos, o porque la adquisiciéon de estas instancias es costosa.

En el area de clasificacion en general, y de clasificaciéon con datos no balanceados en particular,
las técnicas de Inteligencia Computacional (IC) [Kon05, Pet07] han mostrado ser una herramienta
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muy robusta para la obtencién de modelos con un alto grado de acierto. Aunque no existe un acuerdo
total con respecto a una definicién de IC, hay una visién ampliamente aceptada sobre las areas
que se enmarcan en este paradigma, como son las Redes Neuronales Artificiales, Légica Difusa, y
Computacién Evolutiva. Entre las técnicas disponibles en este campo, los Sistemas de Clasificacién
Basados en Reglas Difusas (SCRBDs) Lingiiisticas [INN04] son una herramienta popular debido a
la interpretabilidad de sus modelos asociados basados en variables lingiiisticas, que son mas faciles
de comprender para los usuarios finales o expertos, ademéas de obtener muy buenos resultados en
el campo de accién de la clasificacién no balanceada [FGdJHO08, FAJH09, FAdJH10].

Retomando el problema especifico de la clasificaciéon con conjuntos no balanceados, debemos
destacar que desde los estudios iniciales se ha mostrado que la pérdida de rendimiento se debe
a la distribucién no uniforme de las clases. Sin embargo, recientes investigaciones sugieren que el
problema en este escenario es la sinergia entre el desbalanceo y algunas caracteristicas intrinsecas de
los datos. Entre estas caracteristicas podemos encontrar el solapamiento entre las clases [GMSO0S,
DT10], la presencia de pequenos datos disjuntos (en inglés small disjuncts) [Wei05, Weil0], el
tratamiento de los ejemplos frontera o borderline [DKS09, NSW10], el problema de las instancias
con ruido [BF99, SKVHF14], y finalmente la distinta distribucién en las particiones de datos de
entrenamiento y test, conocido como dataset shift [Shi00, MTH10].

Pero la problematica en la resolucién de los problemas de clasificacion y MDD no solo se encuadra
en el hecho de los conjuntos de datos no balanceados. Un nuevo concepto denominado Big Data se
ha extendido rdpidamente en este marco de trabajo [ADA11, Mad12]. Este nuevo escenario se define
por medio de aquellos problemas que no pueden ser abordados de manera efectiva y/o eficiente a
través de los recursos computacionales estandar de que disponemos actualmente. Debemos remarcar
que big data no implica necesariamente amplios volimenes de informacién, sino basicamente que
los métodos existentes no son capaces de proporcionar una respuesta adecuada en estas situaciones.

Nuestro interés en esta memoria reside principalmente en el estudio de los problemas de clasifi-
cacién con conjuntos de datos no balanceados bajo la perspectiva de las caracteristicas internas que
presentan este tipo de problemas. Pretendemos realizar un analisis pormenorizado de las soluciones
existentes para conocer su comportamiento y discernir cuales son las mas apropiadas desde un
punto de vista general, con el objetivo de desarrollar nuevos métodos de aprendizaje con SCBRDs
que permitan abordar las caracteristicas intrinsecas de los datos, y por tanto mejorar el compor-
tamiento de las metodologias estandar definidas para este drea de la MDD. Por ultimo, nuestra
intencién es la de extender el estudio de la clasificacion con datos no balanceados al campo de big
data. En particular, nuestro objetivo serd analizar la escalabilidad de las soluciones basicas plan-
teadas sobre SCBRDs, y proponer nuevas técnicas de paralelizacién para abordar este problema de
manera efectiva.

Para llevar a cabo este estudio, la presente memoria se divide en dos partes, la primera de ellas
dedicada al planteamiento del problema y discusién de los resultados y la segunda correspondiente
a las publicaciones asociadas al estudio.

En la Parte I de la memoria comenzamos con una secciéon dedicada al “Planteamiento del Proble-
ma” (Seccién 2), introduciendo éste con detalle y describiendo las técnicas utilizadas para resolverlo.
Asimismo, definimos los problemas abiertos en este marco de trabajo que justifican la realizacién de
esta memoria (Seccién 3) asi como los objetivos propuestos (Seccién 4). Posteriormente, incluimos
una seccién de “Discusion de Resultados”, Section 5, que proporciona una informacion resumida
de las propuestas y los resultados més interesantes obtenidos en las distintas partes en las que
se divide el estudio. La seccién de “Conclusiones” (Seccién 6) resume los resultados obtenidos en
esta memoria y presenta algunas conclusiones sobre éstos. Finalmente, se comentan en la Seccion
7 algunos aspectos sobre trabajos futuros que quedan abiertos en la presente memoria.
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Por 1ultimo, para desarrollar los objetivos planteados, la Parte II de la memoria esta constituida
por cinco publicaciones distribuidas en tres partes:

s Estudio de las Caracteristicas Intrinsecas de los Datos en Problemas de Clasificacién con
Conjuntos de Datos No Balanceados y Anélisis del Comportamiento de las Técnicas del
Estado del Arte.

= Desarrollo de Aproximaciones para Resolver las Caracteristicas Intrinsecas de los Problemas
No Balanceados mediante SCBRDs y Técnicas de Aprendizaje Automético.

» Estudio de la Escalabilidad de los SCBRDs para Conjuntos de Datos No Balanceados en un
Escenario de Big Data.

2. Preliminaries

Continuous improvements on information generation and storage have enabled in different know-
ledge and business areas, an extensive data gathering. The recognition of patterns in data, which is
common in humans, is greatly automated using Knowledge Discovery in Databases (KDD). KDD
was defined in 1996 [FPSS96] like “the nontrivial process of identifying valid, novel, potentially use-
ful and ultimately understandable patterns in data”. Currently, it enforces two main roles: it has
become fundamental in scientific research due to its analysis and knowledge discovery capabilities
from available data; and it gradually expands with success its knowledge from traditional applica-
tions like marketing or finances, to other domains like industry, energy, medicine, bioinformatics
or web analytics among others, in which the amount of information and the need to retrieve useful
knowledge with a direct benefit, are increased by almost the same amount.

KDD is composed by a set of interactive and iterative steps such as data preprocessing, a search
for interesting patterns with a concrete representation and the interpretation for these patterns (Fi-
gure 1). Although KDD is the appropriate name when it comes to this procedure, the term Data
Mining (DM) [TSKO06] is frequently utilized to refer to the complete process. This term represents
the knowledge extraction from computed data [Pyl99] being actually the main task of the whole
system. Depending on the objective, in DM it is possible to differentiate between predictive and
descriptive tasks. For the first ones, the target is finding a model which allows the prediction of
future behavior, usually by means of supervised learning. Within this group of MD tasks, classifi-
cation, regression and prediction of temporal series can be named. Regarding descriptive DM, the
process tries to build a model that describes information about the data subjacent problem emplo-
ying unsupervised learning, and includes association rules extraction, clustering and summarizing
among others tasks for DM.

An area with strong similarities with DM, is Machine Learning (ML) [Alp04]. Machine learning
is a branch of artificial intelligence that concerns design and development of algorithms that are
capable of learning behavior, patterns or concepts based in empirical data analysis, like sensor
data o databases (which is the closest case for ML). In short, it is a tool that allow us to extract
knowledge from a set of examples that represent the problem that we need to undertake.

In this memory, we will concentrate in the context of supervised learning and more specifically, in
classification. With this background, classification refers to the process -with the previous knowledge
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Figure 1: The KDD process

of certain classes or categories- where we establish a function or rule to pinpoint new predictions in
some of the existing classes (supervised learning). A classifier receives as input a set of examples,
labeled as training set, which learn the classification rule. Besides, during the validation process of
a classifier, a set of examples is used, not known during the learning process named as test set and
used to check the accuracy of the classifier. The classes are from a prediction problem, where each
class corresponds to the possible output of a function to predict from attributes that describe the
elements of a dataset.

When working with real applications of classification, we can see that they have as a common
characteristic: a very different distribution of examples inside their classes. This situation is known
as the problem of imbalanced classes [CJK04, HG09, SWK09] and is considered as one of the cha-
llenges in DM [YWO06]. Specifically, in the context of binary problems, a class is usually represented
by very few examples (known as positive class), while the other is described by many instances
(negative class). The minority class is usually the main objective from the learning point of view
and, for this reason, the cost related to a poor classification of one example of this class is greater
than on the majority class.

An additional factor that affects the development of potential programs for the induction of
knowledge is the massive generation of data in which we currently find ourselves immersed. This
scenario has occurred for three main reasons [Kral3]:

1. Hundreds of applications like mobile sensors, multi-media social services, and other devices
that are compiling information continuously.

2. The storage capacity has increased so much that data are cheaper than ever, making attractive
to the customer to buy more space than to choose what to delete.

3. Matching learning methods and recovering of information have achieved a significant impro-
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vement in the last years, allowing the acquisition of a higher level of knowledge from the
data.

Specifically, Terabytes of data are written every day resulting in a large Volume; real-time
requirements clearly imply a high Velocity, we can find a great Variety of either structured,
semi-structured or even unstructured data; and data must be cleaned prior to integration on the
system to maintain the Veracity [GGM12]. Those properties of 4V defines what is known as the
problem of Big Data [ADA11, Mad12|, having achieved the status of main theme of interest
between academic and industry areas.

In addition to the importance of scalability in construction of models, is the construction of a
symbolic structure in order to be useful, not only from a functional point of view, but also from the
perspective of interpretability, i.e:, to seek models understandable to humans. A concept related
to the interpretability of models is the CI [Kon05] (also known as Soft Computing). This concept
encompasses those models or techniques that try to seek inexact solutions to computer problems
that are too complex so we cannot obtain an exact solution in a polynomial time. Logically, given
the amount of data that we are working in DM, this idea encompasses most of the methodologies
that can be applied. Among the most extended are: evolutionary computation [Gol89], fuzzy logic
[Zad65], neural networks [Gur97], case-based reasoning [AKA91] or any hybridization on the above.

Within the context of CI, our framework for the development of the thesis is focused on the use
linguistic FRBCS [INNO4]. The main reason is due to the advantage associated with the obtaining
of easy interpretable models, based on linguistic variables, which are simpler to understand to the
final or expert user. Additionally, this type of systems have performed well when applied to the
classification with imbalanced datasets.

The following subsections detail each of these aspects that are directly related herein. In Section
2.1, we introduce in detail the problem of classification with imbalanced datasets. Later, in Section
2.2, we define the area of work concerning the concept big data. Finally, in Section 2.3, we describe
the characteristics of linguistic FRBCS.

2.1. Classification problems with imbalanced classes

Within the real problems of matching learning in general, and classification in particular, resear-
chers find that the example distribution in different classes or concepts that represent the dataset is
not uniform. This problem is observable in many examples, such as fraud detection, risks manage-
ment, texts classification, medical diagnosis, and many other domains in which this characteristic is
implicitly attached to the problem, because fortunately, there are usually very few anomalous cases
in comparison with normal cases. Another situation which can lead to the appearance of this type
of sets occurs when the data recollection process is limited (due to economical or private reasons).
It is important to note that this type of datasets with imbalanced classes differ from standard
datasets not only in the imbalance between classes, but also into the growing importance of the
minority class, traditionally identified each as positive class.

Despite showing a fairly common occurrence and a strong impact on day life applications, the
problem of imbalanced classes has not been properly solved by matching learning algorithms, since
they assume balanced class distributions or equal classification costs for all classes.

In fact, most of the learning algorithms aim to obtain a model with a high accuracy on prediction
and a good generalization ability. Nevertheless, those algorithms that perform well in the context
of standard classification not necessarily achieve the best performance for imbalanced datasets
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[FGL*10]. We note therefore that the bias on classification algorithms for examples of the majority
class [SWK09, HGO09] is the most direct consequence derived from the unequal distribution of
classes. When the search process is guided by the standard accuracy measure, it benefits the
covering of the majority of the examples. Secondly, the classification rules predicting the positive
class are often highly specialized so their coverage is very low, and therefore, they are discarded in
favor of more general rules, for example, those that predict the negative class.

In practical applications, the rate of the minority over the majority class may be drastic when
we have 1 example versus 10, 1 versus 100 or 1,000. In our work, we have the imbalance ratio or
IR [OPBMO09], defined as the fraction between the number of examples of the majority class and
the minority class, to organize the different sets of data according to the value of IR.

Unfortunately, the problem of imbalanced classes usually appears in combination with different
data intrinsic characteristics. This imposes additional constraints during the learning stage. First,
we highlight the presence of areas with a high overlapping between classes, which effect is much
more negative as when we want to discriminate the examples of the positive class [GMS08, DT10].
Additionally there may also be small groups of examples (small-disjuncts) of the minority class that
can be treated mistakenly as noise, and therefore ignored by the classifier [OPBMG'09, Weil0)].
The existence of even a few noisy examples can degrade the identification of the minority class,
because it has a lower number of examples [SKVHF14]. Finally, we should note the case of dataset
shift, based on the different distribution of data partitions between training and test [MTH10].

It appears therefore a high difficulty to achieve the final goal of developing a classifier that
reaches a high precision, on both the positive and negative classes of the problem. That is why
the area of imbalanced classification datasets has been widely studied through last years [HG09,
SWKO09]. A large number of solutions has been developed for this task, and can be categorized into
three groups:

» Sampling data: in which training instances are modified to achieve a distribution of class
classes more balanced in order to enable the classifiers to work in a similar way as the standard
classification [BPMO04].

= Algorithmic modification: this procedure is oriented towards the adaptation of learning
models, so we can tune them to the properly addressed the uneven class distribution
[LTY13, ZHC13].

= Cost-sensitive learning: such solutions incorporate approximations on the level of data, on
algorithmic level, or even on both levels together. Higher costs are considered due to bad
classification of examples of the positive class compared to the negative class and, therefore,
tries to minimize the level of associated cost to the overall problem [BP10, ZLAO03].

In addition to the previous techniques, recently, ensembles of classifiers have appeared as a
possible solution on the problem of class imbalance, awaking a great interest among researchers
[KR14, LWZ09, SKVHN10, SKWWO07, VHKN09, WY13]. The ensemble based methods are modi-
fied or adapted by combination among the ensemble learning algorithm itself and either technique
described above, to namely, either as data level or by algorithmic modifications based on cost
sensitive learning.

In the case of adding a data level approach for learning algorithm ensemble, the new hybrid
method usually preprocesses the data before the formation of each classifier. In addition, in cost
sensitive ensembles type, instead of the modifying the base classifier towards the end of accepting
costs in the learning process, what they do is guide the minimization of costs through ensemble
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learning algorithm. Thus, we avoid the modification on the based learning method, but the main
drawback, which is the definition of costs, will be present.

2.2. Data Mining and Big Data

It is very challenging to present a correct definition of the term Big Data [Kral3]. This term
was coined very recently, when data intensive companies started to face large collections of data,
at a petabyte scale. In fact, it is estimated that a 90 % of the data currently available has been
created within the last two years [WZWD14]. The sources of this huge amount of information are
very sparse: Applications tracking clicks in websites, transaction records, sensors, social networks,
scientific applications ...

Initially, we might argue that the term big data is only related with the size of the data. But the
truth is that this Volume of data is not the only property inherent to the big data realm. Besides
Volume, it is very easy to realize that large collections of data will most likely show a high degree
of variability, heterogeneous structures, and a remarkable Variety regarding the way in which
information is represented. For example, different software implementations of data management
systems will involve the use of different protocols and data schemes [SJ12]. Also, the data format
here plays a fundamental role when determining how it will be processed (as data management
systems will not deal with images in the same way as they do with, for example, text files).

Velocity is another fundamental property of the topic at hand. Nowadays, users demand for
an acceptable response time when working with data processing applications. Obviously, this factor
will be mostly affected by the computational resources available (as we cannot compare a personal
computer with a data processing center of a large company in terms of processing power).

Finally, big data applications must also maintain the Veracity of information; that is, diminish
the effect of anomalies and noise within the data.

These factors are commonly known as the four V’s of big data, and form the basis of most of the
current definitions of the term, such as Gartner’s “Big data is high volume, high velocity, and/or
high variety information assets that require new forms of processing to enable enhanced decision
making, insight discovery and process optimization”.

However, big data challenges are mainly motivated by two issues [LJ12]:

= The storage and management of large volumes of data. This problem is closely related with
traditional entity-relation database management systems. Commercial solutions often offer
good scalability, being able to manage petabytes-sized databases. However, besides their high
cost - regarding both money and computational resources - they also are very restrictive
when it comes to import data from its original representation. Open source systems, such
as MySQL, are less prone to show this problem, but they often show a much more limited
scalability.

= The exploration and analysis of the data, aiming to discover useful knowledge for future
applications [WZWD14]. Standard analytics are usually based upon entity-relation schemes,
and developed through various SQL queries. However, besides the difficulties managing and
storing data, the problem here is the lack of statistical support to go beyond mere aggregations
of data. And even if database applications would be able to provide such support, they still
could not provide it in an efficient way, considering the large amount of data that they must
manage.
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Distributed [RJBFT80] and parallel [DGST90] databases could be used to address the first
issue, enabling existing systems to deal with a high workload of analytics-related tasks. However,
they again face very serious problems when big data comes to the scene, as they require very high
hardware requirements. Also, current applications need to manage unstructured or semi-structured
data, which becomes an additional challenge for this kind of systems.

An alternative has been proposed to the traditional databases, according to these facts: A new
technology for data management, known as Not Only SQL (NoSQL) [HHLD11, CDG™08], which
basically consists on storing the information as Key-Value keys, providing horizontally distributed
scalability. It is important to remark that NoSQL databases provide with a flexible data model,
supporting different data representations; thus, big data applications are quickly adopting NoSQL
as their main option for storage.

A second point of view is focused on the programming models that are adopted to analyze the
data, most of which are commonly based on parallel computing [SAM96], such as, for example, the
Message Passing Interface (MPI) model [GLDS96]. The challenges here are to provide a proper way
to access to the data and to ease the development of specific software according to the requirements
and limitations of the common programming paradigms.

For example, standard DM algorithms require all data to be loaded in the physical memory. This
is a challenging problem in big data, because most of the times data is stored throughout different
machines/networks, and thus gathering it requires a large amount of network-based communication
and input/output operations. And even if this would be feasible, there is still the necessity of
providing an extremely large amount of physical memory to store all the data needed to run the
computing programs.

A new generation of systems has been developed in order to provide a proper way of tackling
the aforementioned issues, with MapReduce [DG08] and Hadoop [Thel2, Lam11] - its open source
implementation - as its most representative members both in industry and academia.

This new paradigm avoids the above limitations regarding the necessities of loading the data,
storing it in physical memory, or even the use of SQL. Instead, developers now can code their pro-
grams using this new model, which enables them to parallelize the applications automatically. This
is achieved by the definition of two simple functions - well-known in the functional programming
paradigm - denoted as Map and Reduce. Map can be used to group and split data, whereas Reduce
aim is to perform the necessary computations to produce the final output of the program.

Both functions work by dividing the input dataset into independent subsets, which can be
processed in parallel by Map tasks. Then, Hadoop sorts the outputs of the Map tasks and convert
them to inputs for the Reduce tasks. In more detail, it works as follows [WYLD10]:

» Key/Value pairs are the processing primitives. The Map functions are applied to every
input key/value pair, generating an arbitrary number of intermediate key/value pairs.

= These intermediate values are provided to the Reduce function, by using an iterator able to
manage very large lists of pairs (often too large to be stored in the physical memory). The
Reduce functions are then applied to all the values associated with the same intermediate
keys, generating an arbitrary number of output key/value pairs.

= As an optimizing step, MapReduce introduces the use of Combiners, which are able to work
directly with the output of the Map functions. This allows to save a huge amount of network
traffic, since it does not require the intermediate step of sorting the keys before feeding them
into the Reduce tasks.
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= The final component of MapReduce is the Partitioner, which is in charge of splitting the
intermediate keys and assigning the key/value pairs to the Reduce tasks. The default Par-
titioner computes a hash value of the key, and computes the modulus of dividing it by the
number of Reduce tasks, using it as an index to deliver approximately the same number of
keys to each task.

We must highlight that, in the four points previously arisen, the last two functions are optional
during the MapReduce process and its usage is limited to those jobs that need to be intensely
optimized. In a general case, Hadoop-based programs (Figure 2) are managed by Map function
calls, which are distributed throughout multiple machines by partitioning automatically the input
data into M slots (so they can be processed in parallel by different machines); and Reduce function
calls which are distributed by partitioning the key space into R chunks, with R specified by the
user.
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Figure 2: Complete flowchart of an operation in MapReduce

In summary, Hadoop-based systems are oriented towards the distribution of datasets in a clus-
ter (which does not necessarily has to be formed by high performance machines) to parallelize
computations in the nodes. The rationale here is that mapping functions can be defined to create
intermediate <key, value> tuples and reducing functions can be used to process the data spatially,
avoiding the rather costly alternative of gathering the data in a core machine. In this way, a repre-
sentative example could be to count the number of occurrences of every word in a large collection
of documents. Here, Hadoop will proceed to use mapping functions to broadcast every word with
the count of the times that it appear in every single document. Then, reducing functions will sums
those values along each distinct word, obtaining as a result the final count.

2.3. Classification Systems based in linguistic fuzzy rules

Fuzzy systems are one of the most important areas where the Fuzzy set theory is applied. In
the environment classification, a model structure is used in the form of FRBCSs. The FRBCSs
constitute an extension of rule-based systems, since they use type rules like IF-THEN, whose
antecedent (and in some cases consequent) are composed of fuzzy logic statements, instead of
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conditionals with a traditional format. Additionally, they have demonstrated their ability to so
solve classification problems or DM in a large number of applications [Kun00, INN04].

The most common type of FRBCSs are linguistic FRBCSs or Mandani type [Mam?74], which
they have the following format:

R; : TF X;; IS A;; AND --- AND X;, IS A;, THEN C, WITH PRy

where i = 1 to M, and being X;; to X, input variables and C}% the output class associated to
the rule, being A;; to A;, antecedent labels, and PR;; the weight of the rule [IY05] (usually the
certainty factor associated with the class).

All FRBCSs are composed of two basic components such as knowledge base (KB) and the
module with the inference system. The KB is formed by two components, a Data Base (BD) and
a Rule Base (BR):

= The DB contains the linguistic terms considered in linguistic rules and membership functions
that define semantics of fuzzy labels. Thus, each linguistic variable included in the problem
would have associated a fuzzy partition whose elements are linked with each linguistic term.
Figure 3 shows an example of a fuzzy partition with five labels.

VS S M L VL

0.5

0.0

Figure 3: Fuzzy partition example

This can be considered as an approximation to discretization for continuous domains on
where we establish a degree of membership of the items (labels), where we include an overlap
between them, and the inference engine operates pairing between patterns and rules, providing
an output according to the rule consequents with a positive match. The determination of
the fuzzy partitions is crucial in fuzzy modeling [ACWO06], and the granularity of the fuzzy
partitions plays an important role on the behavior of FRBCSs [CHV00)].

= The RB, formed by a set of linguistic rules that are directly grouped together by aggregating
them with an equal importance level. In other words, you can fire multiple rules at the same
time with the same input.

The module with the inference engine includes:

s A fuzzification interface, which has the effect of transforming crisp data in fuzzy sets.
= An inference system, which taking received data from the fuzzification interface, it uses the
information contained on the KB to do an inference using a fuzzy reasoning method (FRM).

Specifically, if we consider a new pattern on X, = (Xp1,...,X,,) and a RB formed by L
fuzzy rules, the inference engine steps for classification are as follows [CdJH99]:



2 Preliminaries 13

1. Matching Degree. It calculates the strength of activation of the IF part using for all the
rules in the RB with the X, pattern, using a conjunction operator (usually a T-norm).

ay (Xp) = Ty (Xp1)so oo iy (Xpn))s =1, Lo (L1)

2. Association degree. We calculate the association degree of the X, pattern with the M
classes according to each rule in RB. When considering rules with only a consequent
(like the ones presented in this section) this association degree only refers to consequent
class of the rule (k = Cj).

0¥ = h(pa,(Xp), RWS),  k=1,....M, j=1,...,L (1.2)

3. Degree of consistency of the classification pattern for all classes. We use an aggregation
function that combines the positive degrees of association calculated on the previous
step.

Ve=f0F j=1,...,Lybti>0), k=1,...,M. (1.3)

4. Classification. We apply a decision function F' about the consistency degree of the system
for the pattern classification in all classes. This function will determine the [ class label
corresponding to the maximum value.

F(Yi,...,Yy) =1 sothat Y;={max(Yy),k=1,...,M}. (L4)

Finally, the generic structure of a FRBCS is shown on Figure 4.

Knowledge Base: Data Base + Rule Base

Data Base Rule Base

VS S M L VL R;:IF X, is A; AND X, is B; THEN C; with RW = 0.8

R,: IF X, is A, AND X, is B, THEN C, with RW = 0.6

NAN
\/\/\/ R,: IF X,is A, AND X, is B, THEN C, with RW = 1.0
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Figure 4: FRBCS structure
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3. Justification

After the presentation of all the main concepts related to the topic, we identified some open
problems that were interesting to be further analyzed:

= In the scenario of classification with imbalanced datasets, there are some works that review
the associated issues to this problem [HG09, SWKO09]. These contributions aggregate some
of the solutions that have been given to the problem and they discuss some related aspects
like assessment metrics and the relationship between real-world problems and imbalance.
However, these texts do not perform an experimental comparison among the diverse proposals
available in the state-of-the-art. Furthermore, the different type of solutions that are given
to the problem are grouped by families which are categorized with respect to some specific
trait that differentiates them. There is not a comparison detecting the behavior of methods
belonging to different families of methods which could be helpful to select an appropriate
alternative among all the available approaches.

= Furthermore, the existing studies on classification with imbalanced datasets are mainly fo-
cused on dealing with the uneven class distribution and trying to find a balance between
generalization and proper identification of the underrepresented class. These surveys try to
explore the nature of the problem, however, they do not analyze in depth some data intrin-
sic characteristics that may have an excessive negative effect over the classification of these
datasets. Moreover, some of these characteristics have been sketchily considered without es-
tablishing a baseline to compare their impact over imbalanced datasets.

= Among the data intrinsic characteristics that degrade the performance of classifiers in the
imbalanced scenario, we can identify the presence of small disjuncts, the areas of overlapping
between the classes or the presence of borderline and/or noisy examples. Fuzzy rule-based
classification systems have demonstrated their good performance in the imbalanced scenario
[FGdJHO08, FAJHO09] providing an effective tool to achieve good classification results while
providing an interpretable model to the end user. Furthermore, FRBCSs have demonstrated
their robustness in the presence of noise [SLH10]. In this manner, it is interesting to design
a new FRBCS that is able to be adapted to different data areas to address skewed class
distributions together with some of the data intrinsic characteristics that deteriorate the
classification performance.

= Another data problem that affects the classification with imbalanced data is the dataset shift
problem. The issue of dataset shift often appears on real world data mining applications,
mostly due to sample section biases when obtaining the training data. The relationship bet-
ween the class imbalance problem and dataset shift has been hinted [MTH10], however, this
issue has been previously studied from a data level point of view and without comparing the
impact in the classification performance over some well-known machine learning methods.

= The enormous increment of data generation and storage that has taken place in the last
years has become a challenge to standard machine learning techniques. In this situation, the
knowledge extraction process is desired to be able to manage and include this new information
to the learning step in a reasonable amount of time. Unfortunately, one of the simplest the
more popular approaches to deal with this situation are based on a parallel divide-and-conquer
strategy, where the available data is distributed among several processing nodes. This way of
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working has a pernicious effect on the performance of classifiers in the imbalanced scenario as
this division promotes the small sample size problem and the generation of small disjuncts.
Furthermore, as it is a topic that has emerged in the late years, there are no works that
analyze how to tackle imbalanced big data problems.

Objectives

The aim of this thesis is to perform an in-depth study of classification with imbalanced datasets

focusing on the performance of available methods and to analyze the issues that degrade the per-
formance in this scenario, with an especial focus to the usefulness of fuzzy rule-based classification
systems to address this type of problems. This thesis is organized in several objectives which gather
the open problems that were described in the previous section and which summarize the main goal:

» To determine the behavior of the available techniques for classification with imbalanced data-

sets. Considering the numerous methods available for classification with imbalanced datasets,
we aim to perform an study that is experimentally able to determine the performance of the
different groups of families of methods that are able to deal with these datasets, namely, pre-
processing methods, cost-sensitive learning and ensemble based classifiers. In order to do so,
we include methods from different learning paradigms such as decision trees, instance-based
learning, support vector machines and fuzzy rule-based classification systems. Moreover, we
do not only want to know how these families of methods work among themselves, but also
how they behave when they are contrasted with other methods that belong to a different
family.

To perform a thorough analysis on the data intrinsic characteristics that difficult the learning
in the presence of imbalanced datasets. We want to evaluate the impact of the data intrinsic
characteristics that have been said to strongly influence the performance of classifiers when
dealing with imbalanced datasets. We think that it is interesting to bring together all the data
problems that have been brought up by other authors. Furthermore, it is also interesting to
perform an experimental analysis that compares the influence and the degradation that these
data intrinsic characteristics inflict over the classifiers and the correct identification of samples
that belong to each class.

To improve the effectiveness in the classification of imbalanced datasets considering the da-
ta intrinsic characteristics using fuzzy rule-based classification systems. Among the methods
available for classification, fuzzy rule-based classification systems have been considered effec-
tive tools for classification as they provide a good trade-off between the precision achieved
by the model and the accuracy obtained. This type of methods have demonstrated its good
performance with imbalanced datasets [FGdJH08, FAJH09] and they enable the obtaining
of new methodologies that are able to consider the data intrinsic characteristics previously
studied to improve the effectiveness in classification in this scenario. The nature of fuzzy
methods is able to improve the performance when the noise is involved. Furthermore, the
usage of a hierarchical method allows the management of different granularity levels. These
different granularity levels are able to better divide the regions with overlapping between the
classes, to better differentiate the borderline instances that belong to each class and to reduce
the number of small disjuncts that are created when the fuzzy rules are generated.
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= To examine the impact of dataset shift as a data intrinsic characteristic when imbalanced
datasets are considered. Dataset shift is another of the data intrinsic characteristics that has
an impact on the performance that classifiers may obtain when confronted with an uneven
class distribution. This dataset shift often appears on real world data mining applications,
however, it can also be introduced when a cross validation procedure is used. In this manner,
it seems sensible to study how several classifiers that come from different machine learning
approaches behave when they are applied in a situation where dataset shift is alleviated in
contrast with a situation where dataset shift is more tangible.

= To evaluate the suitability of fuzzy rule-based classification systems for imbalanced big data
problems. As real-world problems usually present a skewed class distribution, it is natural
to assume that in the big data scenario, where massive amounts of data are collected trying
to represent reality as close as possible, this distribution is also noticeable. However, there
are not works that have evaluated nor addressed imbalanced big data. Furthermore, big data
introduces a certain degree of uncertainty and ambiguity as the data collected comes from
different sources, is incomplete and sometimes it cannot be trusted. Therefore, FRBCSs seem
to provide a suitable solution to this type of problem as they are inherently able to deal with
this type of information. It is necessary to check if the current FRBCSs algorithms are able to
directly provide an answer in this situation or if it is needed to somehow modify the current
approaches and adapt them so that they can provide a suitable resolution to imbalanced big
data in a reasonable response time.

5. Discussion of results

In this section, a brief summary of the different proposals that have been included in this
dissertation are presented, describing their main contents, a brief discussion about the obtained
results and the associated journal publications.

5.1. A Study on the Data Intrinsic Characteristics in Classification Problems
with Imbalanced Datasets and Analysis of the Behavior of the Techniques
from the State-of-the-art

The problem of classification with imbalanced datasets has attracted the attention of researchers
in the last decade as it is present in many real-world applications. Numerous proposals to deal with
imbalanced datasets have been presented to help to overcome the problem and obtain a correct
identification of samples that belong to the minority class.

To gain a deep understanding about classification with imbalanced datasets and the issues that
need to be addressed to improve the performance of methods that are able to address this problem,
we need to perform an in-depth experimental study. To complete both objectives, we needed to
thoroughly revise the state-of-the-art related to classification with imbalanced data. In doing so,
we appreciated that even when numerous proposals had been given to approach the problem, they
had not been experimentally compared difficulting the selection of a solution from a practitioner
point of view.

In this manner, we decided to perform an extensive analysis of diverse solutions recommended for
skewed class distributions. We started performing a comparison between preprocessing techniques
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and cost-sensitive learning. To do so, we selected several algorithms from diverse classification
paradigms, namely, decision trees, support vector machines, fuzzy rule-based classification systems
and instance-based learning. The results were not able to find a superiority of one approach over
another even when slight differences were found for certain baseline classifiers.

As this first study was not conclusive enough, we decided to extend the previous comparison
adding some ensembles of classifiers to the survey, and we extended the number of preprocessing
approaches and cost-sensitive learning techniques considered. Furthermore, instead of comparing all
the methods alltogether, we decided to compare the diverse methodologies in families comparisons,
and only the methods that showed a better performance were selected to evaluate their performance
with respect to methods belonging to other families. In general, the proposals showed a more or less
similar behavior, where the ensembles of classifiers obtained better results when the base classifier
is a weak learner.

The study of the state-of-the-art has not only provided an insight about the approaches that
can be used to tackle the problem of imbalanced classification but also it has provided information
about what we have called the data intrinsic characteristics. The data intrinsic characteristics are
some features that can be appear in the data and that negatively affect the performance of methods
in imbalanced datasets. These characteristics can also emerge in balanced datasets, however, their
influence in the performance of classifiers in the imbalanced scenario is much more disastrous than
in the general case.

This data intrinsic characteristics include the presence of small disjuncts, the lack of density
and information in the training data, the problem of overlapping between the classes, the impact
of noisy data in imbalanced domains, the significance of the borderline instances to perform a
correct identification of samples that belong to each class and the differences between the training
and test data, also known as dataset shift. We have thoroughly discussed how they affect the
classification performance in imbalanced data and we have included some experimental results that
try to establish a baseline between the impact of each one of this data intrinsic characteristics.

The journal articles associated to this part are:

= V. Lopez, A. Fernandez, J. G. Moreno-Torres, F. Herrera, Analysis of preproces-
sing vs. cost-sensitive learning for imbalanced classification. Open problems on intrin-
sic data characteristics. Expert Systems with Applications 39:7 (2012) 6585-6608, doi:
10.1016/j.eswa.2011.12.043

= V. Lépez, A. Fernandez, S. Garcia, V. Palade, F. Herrera, An Insight into Classification with
Imbalanced Data: Empirical Results and Current Trends on Using Data Intrinsic Characte-
ristics. Information Sciences 250 (2013) 113-141, doi: 10.1016/j.ins.2013.07.007

5.2. Addressing the Data Intrinsic Characteristics of Imbalanced Problems
using FRBCSs and Machine Learning Techniques

In the previous section, we introduced the data intrinsic characteristics that have an impact
on the classification performance of the learners. This knowledge has enabled the identification
of issues that need to be addressed to improve the performance of existing classifiers. Among the
classifiers that provide a robust model in the presence of noise (one of the problems that negatively
influence the presence of the imbalance), FRBCSs provide an interpretable model while maintaining
a reasonable predictive capacity. Therefore, in Section 5.2.1 we present a proposal that describes
a FRBCS that is designed to adapt its behavior considering the data intrinsic characteristics that
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may affect the specific data case that is managed. Furthermore, some other intrinsic characteristics
may also influence the classifiers, like the dataset shift. In this manner, we present a study in
Section 5.2.2 that analyzes the performance of several approaches to machine learning over data
that is less affected by dataset shift in contrast with data which is more influenced by the dataset
shift problem.

5.2.1. A Hierarchical Genetic Fuzzy System Based On Genetic Programming for
Addressing Classification with Highly Imbalanced and Borderline Data-sets

In this work, we propose the usage of a hierarchical environment to improve the performance
of linguistic FRBCS, preserving the original descriptive power of fuzzy models and augmenting its
precision improving the performance in areas of the data that are especially difficult to properly
identify known as GP-COACH-H (Genetic Programming-based learning of COmpact and ACcurate
fuzzy rule-based classification systems for High-dimensional problems Hierarchical).

The hierarchical environment that allows the usage of different granularity levels alleviates some
of the data intrinsic characteristics that aggravate the performance of classifiers in the imbalanced
scenario. The idea is to establish two types of rules, specific rules that posses a high granularity
level, and more general rules with a low granularity level. In this manner, the number of generated
small disjuncts is reduced, and therefore, their impact is alleviated. Furthermore, it is also able to
address the overlapping between the classes, as this method increments its granularity when samples
from both classes are mixed to some extent, and thus improving the identification of minority class
instances in this situation. Moreover, this method is also able detect borderline examples, as it
modifies its granularity level to properly identify and differentiate the class frontiers.

GP-COACH-H follows a genetic programming-based algorithm for the learning of fuzzy rule
bases using a genetic cooperative-competitive learning approach that generates DNF fuzzy rules. It
is based on the GP-COACH algorithm [BRdAJH10] and follows a hierarchical fuzzy scheme similar
to HFRBCS(Chi) [FdJHO09].

This method is divided in three different steps. First, a preprocessing stage is applied using
the SMOTE algorithm [CBHKO02] to balance the class distribution. Then, a hierarchical data base
is created over the balanced dataset. The generation of the hierarchical data base is done by the
generation of triangular equally distributed membership functions that are built in two levels and
the generation of the hierarchical rule base is performed by a genetic programming procedure that
builds rules with two granularity levels that try to cover as many samples as possible while being
simple and compact. Finally, a step to refine the hierarchical knowledge base is applied. Figure 5
depicts a flowchart of the GP-COACH-H algorithm.

To demonstrate the effectiveness of the proposal we consider forty-four highly imbalanced data-
sets (datasets with an imbalance ratio higher than nine) in our experimental study and we compare
the results with the baseline algorithms, namely, the original GP-COACH algorithm over a dataset
preprocessed with SMOTE and the previous hierarchical proposal HFRBCS(Chi) that served as
inspiration for GP-COACH-H. The comparisons performed demonstrate the necessity of using the
preprocessing step for highly imbalanced datasets. Furthermore, GP-COACH-H displays a good
performance in this scenario, where the data intrinsic characteristics seem to deteriorate the classi-
fiers performance. This good behavior is supported by the corresponding non-parametric statistical
tests.

On the other hand, we have also tested the model over thirty borderline datasets which introduce
different disturbance levels that allow the study of the performance over samples that are clearly
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Figure 5: Flowchart of GP-COACH-H

more borderline than others. In this situation, the obtained results are even more definitive as
there is a huge gap between the performance of the proposal and the comparison methods. This
demonstrates that the proposal is even more effective when confronted with the data intrinsic
characteristic themselves.

5.2.2. On the Importance of the Validation Technique for Classification with Imba-
lanced Datasets: Addressing Covariate Shift when Data is Skewed

The data intrinsic characteristics discernible in the data degrade the performance of classifiers
over imbalanced datasets to a further extent than if they were applied to more or less balanced
datasets. One of this data intrinsic characteristics is what is known as the dataset shift problem.
Dataset shift is defined as the case where training and test data follow different distributions. One
of the types of dataset shift is what is called covariate shift, where the input attribute values have
different distributions between the training and test sets.

Cross-validation is a technique used for assessing how a classifier will perform when classifying
new instances of the task at hand. When a k-fold cross-validation procedure is used, the original
sample is randomly partitioned into k subsamples; one of this subsamples is used as test set and the
other k—1 subsamples will build the training set. However, when a dataset is partitioned in training
and test sets, it may induce dataset shift. The DOB-SCV algorithm [MTSH12] is a cross-validation
procedure that tries to limit the impact of partition-induced covariate shift and prior-probability
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shift.

In this work, we compare the performance of different machine learning methodologies using a
standard stratified cross-validation scheme against the cross-validation datasets obtained with the
DOB-SCV algorithm. In this manner, we compare how the algorithms behave in a more hostile
environment, that is, when more dataset shift is appreciable, and in a more favorable environment
when the dataset shift is reduced by a more sensible partitioning method. This methodology enables
us to compare the extent of the influence of the dataset shift problem over imbalanced datasets
using diverse classification paradigms.

The experimental study developed uses sixty-six imbalanced datasets that range from low im-
balanced datasets to highly imbalanced datasets. The methods compared are the C4.5 decision tree
[Qui93], the Chi et al’'s FRBCS [CYP96], the nearest neighbor classifier [CH67], the SMO support
vector machine [CV95] and the PDFC classifier [CWO03]. These algorithms have been run over the
datasets preprocessed with the SMOTE algorithm [CBHKO2] so that their results are not biased
because of the uneven class distribution.

The results obtained show that there are statistical differences between the usage of the two
selected different partitioning methods with only one single run of the partitioning scheme. This
indicates the damaging impact that the covariate shift has on imbalanced data, as these differences
are not always observed in one run when balanced datasets are compared [MTSH12].

However, these differences are more noticeable in some methods than others. For instance, the
C4.5 decision tree is the method that is more affected by the presence of dataset shift which is
closely followed by the HFRBCS(Chi) classifier. In the opposite case, we can find the SMO and
PDFC methods as the ones that are less affected by the differences in the distribution between the
training and test sets.

Furthermore, the experimental study also demonstrates that dataset shift has a damaging effect
proportional to the imbalance ratio associated to the corresponding dataset. When the performance
of the low imbalanced datasets is contrasted with the performance of the methods for the highly
imbalanced datasets, we can observe that the differences detected are greater for this second group
of data, and also, that these differences are more stable for the low imbalanced datasets. These
results corroborate the initial intuition that dataset shift had a pernicious effect over the skewed
class distributions and they encourage the usage of appropriate partitioning methods especially in
the imbalanced scenario to avoid undesirable data intrinsic characteristic problems.

The journal articles associated to this part are:

= V. Lépez, A. Ferniandez, M. J. del Jesus, F. Herrera, A Hierarchical Genetic Fuzzy
System Based On Genetic Programming for Addressing Classification with Highly Im-
balanced and Borderline Data-sets. Knowledge-Based Systems 38 (2013) 85-104, doi:
10.1016//j.knosys.2012.08.025

= V. Lépez, A. Ferndndez, F. Herrera, On the Importance of the Validation Technique for
Classification with Imbalanced Datasets: Addressing Covariate Shift when Data is Skewed.
Information Sciences 257 (2014) 1-13, doi: 10.1016/j.ins.2013.09.038
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5.3. A study on the Scalability of FRBCSs for Imbalanced Datasets in the Big
Data Scenario

One of the most highlighted trends in the recent years by the information technology industry
is what is known as big data. Learning from big data implies the treatment and analysis of datasets
with a colossal size. These data collections have some specific features that added up to the enormous
amount of information pose a challenge to the performance of standard classifier algorithms.

The data available in big data usually comes from heterogeneous sources which usually introduce
some degree of variety to data. Furthermore, this data also has a lot of volatility and variability, is
often incomplete and the veracity of the information is questionable. In this situation fuzzy rule-
based classification systems are able to provide a model that is able to manage all the uncertainty
and ambiguity that is inherent to big data while providing a good trade-off between precision and
interpretability.

However, a standard FRBCS that is not adapted to consider the uneven class distribution is
not able to provide good classification results for imbalanced datasets. Among the techniques that
are able to tackle the imbalanced problem, cost-sensitive learning seems like a sensible choice as
it incorporates the misclassification costs into the algorithm design without highly increasing the
complexity of the model.

In this work, we propose the usage of a linguistic FRBCS which we have called Chi-FRBCS-
BigDataCS. This method is based on the MapReduce framework, one of the most popular approa-
ches towards big data nowadays. The MapReduce model distributes the computation into several
independent processing units following two key operations: a Map-function and a Reduce-function.

The Chi-FRBCS-BigDataCS method is based on the original Chi et al’s algorithm [CYP96].
The original Chi et al’s algorithm is modified to include the misclassification costs of the instances
belonging to each class. In order to do so, we modify the computation of the rule weight modifying
the original penalized certainty factor so that it consider the misclassification costs.

The classification process for Chi-FRBCS-BigDataCS algorithm is divided in two different Ma-
pReduce steps: the building of the model, which describes how the KB is created; and the estimation
of the classes for a dataset, which predicts the class for the samples that belong to a big dataset.

The MapReduce procedure associated to the building of the model divides is performed in three
different steps: an initial step that computes the DB and the costs associated to each class, and
that divides the training set in parts and distributes them to each processing node; a map step
that creates a fuzzy rule for each example available in its partition following the Chi et al’s method
with the new rule weight estimation; and a reduce step that combines the fuzzy rules computed
by each map process. The reduce step just adds all the rules to a bigger rule base, however, when
equivalent or contradictory rules are encountered, only the rule with the highest rule weight is kept
in the final rule base. Figure 6 displays a flowchart describing this building phase.

When the building of the model is finished, the MapReduce method to estimate the class of the
examples belonging to a big dataset is initiated. This phase is also divided in several steps: the initial
step performs a segmentation of the input dataset into blocks and transfers them to other machines;
then, the map step estimates the class for all the examples available in its data partition using the
previously built model; finally, the last step aggregates the predictions computed previously as a
concatenation of the predictions obtained by each process. This MapReduce procedure is depicted
in Figure 7.

The experimental study developed in this work is divided in two parts: a first part that analyzes
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the performance of the serial models and a second part that evaluates the performance of the
Chi-FRBCS-BigDataCS algorithm over several imbalanced big data cases of study.

To examine the performance of the sequential versions, we select some of the big data cases of
study used in this work, and we create reduced versions selecting a percentage of the instances from
each class that are later run with the sequential versions of the Chi et al’s method (the original
one and the cost-sensitive approach). The results obtained show that the sequential versions are
only able to provide results for the smaller big data cases of study. For the larger big data cases of

study, the sequential versions are only able to provide an answer for some of the reduced versions,
up to a 25 % of the samples of each class.

The results obtained for the Chi-FRBCS-BigDataCS approach demonstrate that the MapRedu-
ce framework is able of dealing with big data for fuzzy rule-based classification systems. According
to the precision of the model (calculated with the AUC measure), the Chi-FRBCS-BigDataCS
approach obtains a worse performance than its sequential counterpart. This behavior is clearly no-
ticed when the number of mappers (divisions for parallelization) is increased as the available data
to build each rule is smaller and is more difficult to properly describe the original dataset.

When the runtime of the model is examined, a speed gain is observed for the higher values of
the number of mappers. Nevertheless, this speed gain is not lineal: the speed gain observed for the
smaller values of the number of mappers is higher than the speed gain observed for larger values
of the number of mappers. In this manner, it is necessary to further analyze an optimal value for
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the number of mappers to find a trade-off between a value small enough to preserve the predictive
capacity of the model and a large value that obtains the minimum runtimes.

The journal article associated to this part is:

= V. Lopez, S. del Rio, J. M. Benitez, F. Herrera, Cost-Sensitive Linguistic Fuzzy Rule Based
Classification Systems under the MapReduce Framework for Imbalanced Big Data. Fuzzy
Sets and Systems, doi: 10.1016/j.ss.2014.01.015, in press (2014)

6. Concluding Remarks

The main focus of this PhD dissertation has been to get an insight about classification with
imbalanced datasets and its related challenges. Our focus of interest has been the performance
of diverse proposals on the topic and the analysis of the data intrinsic characteristics which alter
the learning of imbalanced datasets. To analyze these issues we have focused on fuzzy rule-based
classification systems as learners because they are effective tools that provide a good trade-off
between the precision and interpretability of the models.

In a first step, our aim was to gain a deep understanding about classification with imbalanced
datasets and the issues that need to be addressed to improve the performance of methods that are
able to address this problem. To complete both objectives, we needed to thoroughly revise the state-
of-the-art related to classification with imbalanced data. In doing so, we appreciated that even when
numerous proposals had been given to approach the problem, they had not been experimentally
compared difficulting the selection of a solution from a practitioner point of view.

In this manner, we decided to perform an extensive analysis of diverse solutions recommended for
skewed class distributions. We started performing a comparison between preprocessing techniques
and cost-sensitive learning. To do so, we selected several algorithms from diverse classification
paradigms, namely, decision trees, support vector machines, fuzzy rule-based classification systems
and instance-based learning. The results were not able to find a superiority of one approach over
another even when slight differences were found for certain baseline classifiers.

As this first study was not conclusive enough, we decided to extend the previous comparison
adding some ensembles of classifiers to the survey, and we extended the number of preprocessing
approaches and cost-sensitive learning techniques considered. Furthermore, instead of comparing all
the methods alltogether, we decided to compare the diverse methodologies in families comparisons,
and only the methods that showed a better performance were selected to evaluate their performance
with respect to methods belonging to other families. In general, the proposals showed a more or less
similar behavior, where the ensembles of classifiers obtained better results when the base classifier
is a weak learner.

The study of the state-of-the-art has not only provided an insight about the approaches that
can be used to tackle the problem of imbalanced classification but also it has provided information
about what we have called the data intrinsic characteristics. The data intrinsic characteristics are
some features that can be appear in the data and that negatively affect the performance of methods
in imbalanced datasets. These characteristics can also emerge in balanced datasets, however, their
influence in the performance of classifiers in the imbalanced scenario is much more disastrous than
in the general case.

This data intrinsic characteristics include the presence of small disjuncts, the lack of density



24 Part 1. PhD dissertation

and information in the training data, the problem of overlapping between the classes, the impact
of noisy data in imbalanced domains, the significance of the borderline instances to perform a
correct identification of samples that belong to each class and the differences between the training
and test data, also known as dataset shift. We have thoroughly discussed how they affect the
classification performance in imbalanced data and we have included some experimental results that
try to establish a baseline between the impact of each one of this data intrinsic characteristics.

In a second step, we developed some studies that focus on the identified data intrinsic charac-
teristics to improve the performance of classifiers when there is an uneven class distribution.

In the first of this studies, a new hierarchical fuzzy rule-based classification system is proposed
to deal with imbalanced problems which we have called GP-COACH-H. This method features two
different granularities that are used to better represent each class. In this manner, low granularity
rules cover the more general concepts while high granularity rules cover the most specific concepts,
traditionally related to the minority class.

These different granularities also allow the model to confront some of the data intrinsic charac-
teristics. The number of generated small disjuncts is lower with this methodology, as it is able to
cover small data areas. Furthermore, the overlapping between the classes is better addressed, as the
method adapts its behavior in the class frontiers and therefore, it obtains a better class separation.
In addition, the borderline samples are better covered because rules with higher granularity are
used to properly identify those examples.

The second study devoted to the improvement of methods using the data intrinsic characte-
ristics analyzes the impact of dataset shift over classification with imbalanced datasets. In this
case, we observe the dataset shift, and more specifically covariate shift, that is induced by the data
partitioning scheme that is traditionally used to validate a new proposal. We compare the perfor-
mance results obtained using a standard stratified cross-validation procedure with the ones achieved
by DOB-SCV, a novel partitioning algorithm which has been proposed precisely to alleviate the
addition of covariate shift.

The experimental study associated demonstrated that the partitioning scheme has a strong
impact on the performance of classifiers as we included several approaches that represented diverse
machine learning paradigms. Furthermore, this influence varies when different learners are used.
Dataset shift has also a dissimilar behavior when different degrees of imbalance are considered:
for the low imbalanced datasets, the impact of dataset shift is more limited than in the highly
imbalanced datasets, where we also observed an elevated variability of results.

In a third step, we decided to explore how skewed class distributions are influenced by one
of the latest trends in the information technology industry: Big Data. Big data applications are
increasingly becoming the main focus of attention because of the enormous increment of data
generation and storage that has taken place in the last years. This situation becomes a challenge
when huge amounts of data are processed to extract knowledge because the data mining techniques
are not adapted to the new space and time requirements. Furthermore, big data tends to introduce
some degree of uncertainty and ambiguity because their data comes from various sources, with
different levels of validity and with incomplete information.

To deal with this type of problem, we have proposed the Chi-FRBCS-BigDataCS algorithm, a
fuzzy rule-based classification method that is able to deal with imbalanced big data. It is based on
the MapReduce framework, one of the most popular approaches nowadays to approach big data
problems. As a fuzzy rule-method, it is able to effectively address the vagueness in the data while
providing a good performance. Our proposal is based in cost-sensitive learning, which enables it to
deal with the uneven class distribution.
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The results associated to this study show that it is necessary to specifically address big data
problems, as the sequential counterparts are not able to provide results even in some reduced
versions of the cases of study considered. However, the developed model performance depends on
the number of mappers considered for the experiments. When a high number of mappers is used,
the model obtain slow runtimes, however, the performance of the classifier is also affected. If a
small number of mappers is considered, then, the classification performance is notably improved,
but it comes at the expense of a rise in the runtime spent by the model.

Conclusiones

El principal objetivo de esta Tesis Doctoral ha sido el de profundizar en la clasificacién de datos
no balanceados y los retos que representa. Nuestro interés se ha centrado en la caracterizacién del
rendimiento de diferentes propuestas acerca del tema y el analisis de las caracteristicas intrinsecas
de los datos que alteran el aprendizaje con datos no balanceados. Para analizar estas cuestiones,
nos hemos centrado en la utilizacién de sistemas de clasificacion basados en reglas difusas debi-
do a que son herramientas efectivas que proporcionan un buen equilibrio entre la precisién y la
interpetabilidad de los modelos.

En primera aproximacién, nuestro objetivo fue conseguir un conocimiento profundo de la clasifi-
cacién con datos no balanceados y los problemas que deberian resolverse para mejorar el rendimiento
de los métodos que consiguen resolver el problema. Para completar ambos objetivos, necesitdbamos
repasar por completo el estado del arte de la clasificacién con datos no balanceados. En el proceso,
pudimos apreciar que a pesar de que se habian planteado muchas soluciones para el problema, no
se habian comparado experimentalmente, lo que dificultaba la seleccién de una soluciéon desde un
punto de vista practico.

En este sentido, decidimos realizar un andlisis completo de diferentes soluciones recomendadas
para distribuciones sesgadas. Comenzamos realizando una comparacion entre técnicas de prepro-
cesamiento y aprendizaje sensible al coste. Para ello, seleccionamos varios algoritmos de diferentes
paradigmas de clasificacién, como son arboles de decisién, maquinas de soporte vectorial, sistemas
de clasificacion basados en reglas difusas asi como aprendizaje basado en instancias. Considerando
los resultados obtenidos, no era posible determinar la superioridad de un enfoque frente a otro
incluso cuando aparecieron ligeras diferencias para ciertos clasificadores bésicos.

Dado que este primer andlisis no resulté suficientemente esclarecedor, decidimos extender la
comparativa anterior afiadiendo algunos grupos de clasificadores al estudio, de forma que aumen-
tamos la cantidad de alternativas para los preprocesadores asi como las técnicas de aprendizaje
sensible al coste. Ademads, en lugar de comparar todos los métodos al mismo tiempo, decidimos
agruparlos en familias de comparacion, de forma que sélo los métodos que demostraron mejor
rendimiento se evaluaron con respecto a métodos de otras familias. En general, las propuestas mos-
traron un comportamiento similar, donde los grupos de clasificadores obtenian mejores resultados
al trabajar con clasificadores débiles.

Esta revision del estado del arte no sélo ha proporcionado una visién maéas profunda de cémo
las propuestas pueden usarse para afrontar el problema de clasificacién no balanceada sino que
también ha proporcionado informacién acerca de lo que hemos llamado caracteristicas intrinsecas
de los datos. Las caracteristicas intrinsecas de los datos son algunas caracteristicas que pueden
estar presentes en los datos y que afectan negativamente el rendimiento de los métodos en datos
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no balanceados. Estas caracteristicas pueden aparecer también en datos balanceados, sin embargo
su influencia en el rendimiento de los clasificadores en el caso no balanceado es muchisimo mas
desastroso que en el caso general.

Las caracteristicas intrinsecas de los datos incluyen la presencia de pequetios grupos disjuntos,
falta de densidad e informacién en los datos de entrenamiento, el problema del solapamiento entre
las clases, el impacto de datos ruidosos en dominios no balanceados, la importancia de las instancias
de borde para realizar una correcta identificacién de las muestras que pertenecen a cada clase, y las
diferencias entre los datos de entrenamiento y de test, también conocido como cambio en conjunto
de datos. Hemos analizado en profundidad cémo afectan el rendimiento de la clasificacién en datos
no balanceados y hemos incluido algunos resultados experimentales que intentan determinar los
fundamentos del impacto de cada una de estas caracteristicas intrinsecas.

En segunda instancia, hemos desarrollado algunos estudios que se centran en las caracteristicas
intrinsecas de los datos para mejorar el rendimiento de clasificadores cuando hay una clase con
distribucién no uniforme.

Para el primero de estos anélisis, se propone un nuevo sistema de clasificacién jerarquico basado
en reglas difusas para trabajar con problemas no balanceados, que hemos denominado GP-COACH-
H. Este método dispone de dos diferentes granularidades que se pueden usar para representar de
la manera mas fiel posible cada clase. De este modo, las reglas de baja granularidad cubren los
conceptos mas generales, mientras que las reglas de gran granularidad cubren los conceptos mas
especificos, relacionados tradicionalmente con las clases minoritarias.

Esta diferenciacion de granularidades también permite afrontar algunas de las caracteristicas
intrinsecas de los datos. El nimero de conjuntos disjuntos generados es menor con esta metodologia,
ya que es capaz de cubrir pequenas dreas de datos. Ademads, el solapamiento entre las clases se
maneja mejor, ya que el método adapta su comportamiento en las clases frontera y por lo tanto,
consigue una mejor separacién de clases. Ademds, las muestras del borde se interpretan mejor ya
que las reglas con granularidad alta se utilizan para identificar adecuadamente esos ejemplos.

El segundo estudio se ha centrado en la mejora de los métodos que utilizan las caracteristicas
intrinsecas de los datos y analiza el impacto del cambio en conjunto de datos para la clasificacion
con datos no balanceados. En este caso, observamos el cambio, y mas especificamente el sesgo de la
covarianza, que se induce mediante un esquema de particionado que tradicionalmente se ha usado
para validar una nueva propuesta. Comparamos el rendimiento asociado resultante utilizando un
procedimiento estratificado estandar de validacién cruzada con los resultados alcanzados por DOB-
SCV, un nuevo algoritmo de particionamiento que se ha propuesto precisamente para aliviar la
presencia del sesgo en la covarianza.

El estudio experimental asociado demostrd que el esquema de particionado tiene un importante
impacto en el rendimiento de los clasificadores ya que incluimos varios enfoques que representaban
diferentes paradigmas de aprendizaje automatico. Ademads, esta influencia varia cuando se utilizan
distintos esquemas de aprendizaje. El cambio en conjunto de datos también posee un comporta-
miento diferenciado cuando se consideran distintos grados de desbalanceo: para los datos con bajo
desbalanceo, el impacto del cambio es mas limitado que en los datos no balanceados, donde también
se ha podido constatar una elevada variabilidad de resultados.

Para el tercer paso, decidimos explorar cudl es la repercusion en las distribuciones de clases con
cambio en conjunto de datos de una de las iltimas tendencias de la industria de las tecnologias de la
informacién: Big data. Las aplicaciones de big data se estan convirtiendo cada vez mas en el foco de
atencién principal debido el enorme incremento en la generacién y almacenamiento de informacion
que ha tenido lugar en los tdltimos anos. Esta situacién se convierte en un reto cuando cantidades
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ingentes de datos se procesan para la extraccién de conocimiento debido a que las técnicas de
mineria de datos no estan adaptadas a los nuevos requerimientos de tiempo y espacio. Ademas, en
big data, se tiende a introducir un cierto grado de incertidumbre y ambigiiedad ya que los datos
proceden de diferentes fuentes, con ciertos niveles de validez y con informacién incompleta.

Para tratar con este tipo de problemas, hemos propuesto el algoritmo Chi-FRBCS-BigDataCS,
un método de clasificacién basado en reglas difusas que es capaz de procesar big data no balanceado.
Se basa en el entorno MapReduce, uno de los enfoques més populares de la actualidad para el
tratamiento de los problemas de big data. Como método basado en reglas difusas, es capaz de
resolver de forma efectiva la imprecision en los datos a la vez que mantiene buen rendimiento.
Nuestra propuesta estd basada en aprendizaje sensible al coste, que permite manejar las clases con
distribuciones no uniformes.

Los resultados asociados a este estudio demuestran que es necesario tratar especificamente los
problemas de big data, al igual que los correspondientes componentes secuenciales no son capaces
de proporcionar los resultados incluso en algunas versiones simplificadas de los casos de estudio
considerados. Sin embargo, el rendimiento del modelo desarrollado depende del ntimero de mapea-
dores considerados para los experimentos. Cuando se utiliza un nimero elevado de mapeadores, el
modelo produce tiempos de ejecuciéon bajos, pero el rendimiento del clasificador se ve afectado. Si
se considera un numero pequeno de mapeadores, entonces el rendimiento de la clasificacién mejora
notablemente, pero con un mayor coste en tiempo de ejecucién por parte del modelo.

7. Future Work

During the studies developed in this thesis, numerous issues have arisen as interesting paths of
research to be further explored.

Extending the modifications based on the data intrinsic characteristics to multi-class
imbalanced problems In the literature, there has been little work done in the framework of
data sets with multiple imbalanced classes. This opens a wide horizon of possibilities for solving
such problems not only with FRBCSs, if not with any type of learning paradigms.

In our case, we are mostly interested in the implementation of various proposals that can help
increase the accuracy obtained by the state-of-the-art methods. Introducing operations to deal with
the data intrinsic characteristics with problems with more than two classes can end up with models
that have better performance values. Moreover, these methods must consider the possibility of
building a model that can combine the outputs of small classifiers that are able to better identify
minority class instances with respect to larger classes.

Advanced ensembles methods for imbalanced problems In the field of imbalanced data-
sets, ensembles of classifiers which have been developed in the state-of-the-art have followed the
classical ensemble approaches (Boosting and Bagging). These approaches have been combined with
preprocessing methods achieving very good results.

However, in the literature the newest methods do not only focus on the traditional ensemble
methods but also on some advanced ensemble methods. Therefore, we considered its application
to the problem of imbalanced classes. In this manner, we have to find a way suitable for inputting
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the pre-processing methods and techniques to address the problem of imbalanced classes in each
construction method. To this end, we propose the use of ensembles such as Random Linear Oracle,
Rotation Forest or other methods based on projections, among others.

Analyze the interaction of active learning with imbalanced datasets The performance
of a predictive model is tightly coupled with the data used during training. In active learning,
the model itself plays a hands-on role in the selection of examples for labeling from a large pool
of unlabeled examples. It is quite interesting to explore the interaction between active learning
and class imbalance, discussing active learning techniques designed specifically for dealing with
imbalanced settings, strategies that leverage active learning to overcome the deleterious effects of
class imbalance, how extreme class imbalance can prevent active learning systems from selecting
useful examples, and alternatives to active learning in these cases.

The design of voting models for ensemble learning algorithms in the context of big
data Ensemble learning is one of the most promising areas in machine learning, which is used
satisfactorily in many real-world applications. These approaches build a set of classifiers and then
classify new data by taking a vote of their predictions. Two of the most representative ensemble
learning approaches are bagging and boosting. An important issue in ensemble learning is the
technique to combining predictions (or voting scheme) of ensemble classifiers for big data, since it
may give different results depending upon different factors. The MapReduce approaches developed
in this dissertation have used just a majority voting approach in the Reduce phase to combine the
output of the classifiers built in each data partition used by each Map proccess. Therefore, we need
to develop the appropriate combination approaches for partial models extracted in a MapReduce
framework.
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ARTICLE INFO ABSTRACT

Class imbalance is among the most persistent complications which may confront the traditional super-
vised learning task in real-world applications. The problem occurs, in the binary case, when the number
of instances in one class significantly outnumbers the number of instances in the other class. This situa-
tion is a handicap when trying to identify the minority class, as the learning algorithms are not usually
adapted to such characteristics.

The approaches to deal with the problem of imbalanced datasets fall into two major categories: data
sampling and algorithmic modification. Cost-sensitive learning solutions incorporating both the data
and algorithm level approaches assume higher misclassification costs with samples in the minority class
and seek to minimize high cost errors. Nevertheless, there is not a full exhaustive comparison between
those models which can help us to determine the most appropriate one under different scenarios.

The main objective of this work is to analyze the performance of data level proposals against algorithm
level proposals focusing in cost-sensitive models and versus a hybrid procedure that combines those two
approaches. We will show, by means of a statistical comparative analysis, that we cannot highlight an
unique approach among the rest. This will lead to a discussion about the data intrinsic characteristics
of the imbalanced classification problem which will help to follow new paths that can lead to the
improvement of current models mainly focusing on class overlap and dataset shift in imbalanced

Keywords:
Classification
Imbalanced datasets
Preprocessing
Cost-sensitive learning
Class overlap

Dataset shift

classification.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

One major problem facing data mining is the class imbalance
problem (He & Garcia, 2009; Sun, Wong, & Kamel, 2009). It appears
in many applications, and is defined as the case where there exists
a significant difference between the class prior rates, that is, the
probability a particular example belongs to a particular class. The
class imbalance is dominant in a high number of real problems
including, but not limited to, telecommunications, WWW, fi-
nances, ecology, biology, medicine and so on. It must also be
stressed that the positive or minority class is usually the one that
has the highest interest from the learning point of view and it also
implies a great cost when it is not well classified (Elkan, 2001).

A wide number of approaches have been proposed to the imbal-
anced learning problem that fall largely into two major categories.
The first one is data sampling in which the training instances are
modified in such a way as to produce a balanced data distribution

* Corresponding author. Tel.: +34 958 240598; fax: +34 958 243317.
E-mail addresses: vlopez@decsai.ugr.es (V. Lopez), alberto.fernandez@ujaen.es
(A. Fernandez), jose.garcia.mt@decsai.ugr.es (J.G. Moreno-Torres), herrera@decsai.
ugr.es (F. Herrera).

0957-4174/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2011.12.043

that allow classifiers to perform in a similar manner to standard
classification (Batista, Prati, & Monard, 2004; Chawla, Bowyer, Hall,
& Kegelmeyer, 2002). The second one is through algorithmic mod-
ification to make base learning methods more attuned to class
imbalance issues (Zadrozny & Elkan, 2001). Cost-sensitive learning
solutions incorporating both the data and algorithm level ap-
proaches assume higher misclassification costs with samples in
the rare class and seek to minimize the high cost errors (Ling, Yang,
Wang, & Zhang, 2004; Zadrozny, Langford, & Abe, 2003).

Works in imbalanced classification usually focus on the devel-
opment of new algorithms along one of the categories previously
mentioned. However, there is not a study that exhaustively com-
pares solutions from one category to another making difficult the
selection of one kind of algorithm when classifying. The aim of this
paper is to develop a thorough experimental study to analyze the
possible differences between preprocessing techniques and cost-
sensitive learning for addressing classification with imbalanced
data. In addition, we also present in the comparison a hybrid pro-
cedure that combines those two approaches to check whether
there is a synergy between them.

In order to analyze the oversampling and undersampling meth-
odologies against cost-sensitive learning approaches, we will use
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the “Synthetic Minority Over-sampling Technique” (SMOTE)
(Chawla et al, 2002) and its variant with the Wilson’s Edited
Nearest Neighbor (ENN) rule (Wilson, 1972) as they have shown
to obtain a very robust behaviour among many different situations
(Batista et al., 2004; Fernandez, Garcia, del Jesus, & Herrera, 2008).
As cost-sensitive methods we study several modifications to
well-known classification methods such as C4.5 (Quinlan, 1993),
Support Vector Machines (SVMs) (Vapnik, 1998), k-Nearest
Neighbor classifier (k-NN) (Cover & Hart, 1967) or Fuzzy Hybrid
Genetics-Based Machine Learning (FH-GBML) rule generation
algorithm (Ishibuchi & Yamamoto, 2005). The combination of these
approaches is carried out through a wrapper classifier (Chawla,
Cieslak, Hall, & Joshi, 2008) that uses the aforementioned cost-
sensitive techniques with the preprocessing technique obtaining
the adequate parameters to perform altogether.

In this work, we focus on imbalanced binary classification prob-
lems, having selected a benchmark of 66 problems from KEEL
dataset repository! (Alcali-Fdez et al, 2011). We perform our
experimental study focusing on the precision of the models using
the Area Under the ROC curve (AUC) (Huang & Ling, 2005). This
study is carried out using nonparametric tests to check whether
there exist significant differences among the obtained results
(Demsar, 2006; Garcia & Herrera, 2008).

On the other hand, after comparing these techniques we also
want to find what is the source where the difficulties for imbal-
anced classification emerge. Many other studies on the behavior
of several standard classifiers in imbalance domains have shown
that significant loss of performance is mainly due to skew of class
distributions. However, several investigations also suggest that
there are other factors that contribute to such performance deg-
radation, for example, size of the dataset, class imbalance level,
small disjuncts, density, and overlap complexity (Japkowicz &
Stephen, 2002; Prati & Batista, 2004; Weiss & Provost, 2003). This
work focuses on the analysis of two of the most pressing open
problems related to data intrinsic characteristics: overlap and
dataset shift.

This paper is organized as follows: first, Section 2 presents the
problem of imbalanced datasets and the metric we have employed
in this context whereas Section 3 describes some ways to tackle
the problem: the preprocessing methods used, cost-sensitive clas-
sification and a wrapper approach to combine both. Next, Section 4
describes the algorithms we have used in this study, selected
benchmark datasets and the configuration of the methods. In Sec-
tion 5 an analysis of preprocessing techniques versus cost-sensitive
learning approaches can be found. Section 6 is devoted to discuss
the imbalanced classification problem characteristics that make
that problem difficult, analysing the open problems related to data
intrinsic characteristics, class overlap and dataset shift. The conclu-
sions of this work can be found in Section 7. Additionally, we in-
clude an appendix with the complete tables of results from the
experimental study.

2. Imbalanced datasets in classification
In this section, we first introduce the problem of imbalanced
datasets and then we present the evaluation metrics for this type

of classification problem which differ from usual measures in
classification.

2.1. The problem of imbalanced datasets

In some classification problems, the number of instances of
every class can be very different. Specifically when facing a dataset

1 http://www.keel.es/datasets.php.

with only two classes, the imbalance problem occurs when one
class is represented by a large number of examples, while the other
is represented by only a few (Chawla, Japkowicz, & Kotcz, 2004).

The problem of imbalanced datasets is extremely significant
(Yang & Wu, 2006) because it is implicit in most real world appli-
cations, such as very high resolution airborne imagery (Chen, Fang,
Huo, & Li, 2011), e-mail foldering (Bermejo, Gimez, & Puerta, 2011)
or micro seismic hazards in coal mines (Sikora, 2011), just citing
some of them. It is important to point out that the minority class
usually represents the concept of interest, for example patients
with illnesses in a medical diagnosis problem; whereas the other
class represents the counterpart of that concept (healthy patients).

Usually, standard classifier algorithms have a bias towards the
majority class, since the rules that predict the higher number of
examples are positively weighted during the learning process in fa-
vour of the accuracy metric. Consequently, the instances that be-
long to the minority class are misclassified more often than those
belonging to the majority class. Another important issue related
to this type of problem is the presence of small disjuncts in the
dataset (Weiss & Provost, 2003) and the difficulty most learning
algorithms have in detecting those regions. Furthermore, the main
handicap in imbalanced datasets is the overlapping between the
examples of the positive and the negative class (Garcia, Mollineda,
& Sanchez, 2008). These facts are depicted in Fig. 1(a) and (b)
respectively.

2.2. Evaluation in imbalanced domains

The measures of the quality of classification are built from a
confusion matrix (shown in Table 1) which records correctly and
incorrectly recognized examples for each class.

The most commonly used empirical measure, accuracy (1), does
not distinguish between the number of correct labels of different
classes, which in the framework of imbalanced problems may lead
to erroneous conclusions. For example a classifier that obtains an
accuracy of 90% in a dataset with a degree of imbalance 9:1, might
not be accurate if it does not cover correctly any minority class
instance.

Acc = & (])
TP + FN + FP + TN
Because of this, instead of using accuracy, more correct metrics are
considered. Specifically, from Table 1 it is possible to obtain four
metrics of performance that measure the classification quality for
the positive and negative classes independently:
o True positive rate TP, = ;. is the percentage of positive
cases correctly classified as belonging to the positive class.
o True negative rate TN,y = HL—NTN is the percentage of negative
cases correctly classified as belonging to the negative class.
« False positive rate FP,.. = 57y is the percentage of negative
cases misclassified as belonging to the positive class.
o False negative rate FN,,, = = is the percentage of positive

TP+FN
cases misclassified as belonging to the negative class.

One appropriate metric that could be used to measure the per-
formance of classification over imbalanced datasets is the Receiver
Operating Characteristic (ROC) curve (Bradley, 1997). In this curve,
the tradeoff between the benefits (TP,4.) and costs (FP.q.) can be
visualized, and acknowledges the fact that the capacity of any clas-
sifier cannot increase the number of true positives without also
increasing the false positives. The Area Under the ROC Curve
(AUC) (Huang & Ling, 2005) corresponds to the probability of cor-
rectly identifying which of the two stimuli is noise and which is sig-
nal plus noise. AUC provides a single-number summary for the
performance of learning algorithms.
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Fig. 1. Example of the imbalance between classes: (a) small disjuncts and (b) overlapping between classes.

Table 1
Confusion matrix for a two-class problem.

Positive prediction Negative prediction

Positive class
Negative class

True positive (TP)
False positive (FP)

False negative (FN)
True negative (TN)

The way to build the ROC space is to plot on a two-dimensional
chart the true positive rate (Y axis) against the false positive rate (X
axis) as shown in Fig. 2. The points (0,0) and (1,1) are trivial clas-
sifiers in which the output class is always predicted as negative
and positive respectively, while the point (0,1) represents perfect
classification. To compute the AUC we just need to obtain the area
under the curve as:

1+ TPyate — FPrare

AUC = 5 2)

3. Solutions to the class imbalance problem

Alarge number of approaches have been previously proposed to
deal with the class-imbalance problem. These approaches can be
categorized in two groups: the internal approaches that create
new algorithms or modify existing ones to take the class-imbal-
ance problem into consideration (Barandela, Sinchez, Garcia, &
Rangel, 2003; Ducange, Lazzerini, & Marcelloni, 2010; Wu & Chang,
2005; Xu, Chow, & Taylor, 2007) and external approaches that pre-
process the data in order to diminish the effect of their class imbal-
ance (Batista et al., 2004; Estabrooks, Jo, & Japkowicz, 2004).
Furthermore, cost-sensitive learning solutions incorporating both
the data and algorithmic level approaches assume higher mis-
classification costs with samples in the minority class and seek
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Fig. 2. Example of an ROC plot. Two classifiers are represented: the solid line is a
good performing classifier whereas the dashed line represents a random classifier.

to minimize the high cost errors (Domingos, 1999; Sun, Kamel,
Wong, & Wang, 2007; Zhou & Liu, 2006).

In this section, we first introduce the SMOTE and SMOTE + ENN
methods in Section 3.1. Then, cost-sensitive learning is described
in Section 3.2. Finally, Section 3.3 presents a framework to auto-
matically detect a threshold for preprocessing using an underlying
algorithm, in this case, a cost-sensitive approach.

3.1. Preprocessing imbalanced datasets. The SMOTE and SMOTE + ENN
algorithms

As mentioned before, applying a preprocessing step in order to
balance the class distribution is an effective solution to the imbal-
anced dataset problem (Batista et al., 2004). Specifically, in this
work we have chosen an oversampling method which is a well-
known reference in the area: the SMOTE algorithm (Chawla
et al,, 2002) and a variant called SMOTE + ENN (Batista et al.,
2004) as they have been shown to present a very robust behavior
among many different situations (Batista et al., 2004; Fernandez
et al., 2008).

In this approach, the positive class is over-sampled by taking
each minority class sample and introducing synthetic examples
along the line segments joining any/all of the k minority class
nearest neighbors. Depending upon the amount of over-sampling
required, neighbors from the k nearest neighbors are randomly
chosen. This process is illustrated in Fig. 3, where x; is the se-
lected point, x;; to x;; are some selected nearest neighbors and
r; to r4 the synthetic data points created by the randomized
interpolation.

Synthetic samples are generated in the following way: take the
difference between the feature vector (sample) under consider-
ation and its nearest neighbor. Multiply this difference by a ran-
dom number between 0 and 1, and add it to the feature vector
under consideration. This causes the selection of a random point

Xy

X,
xl, 3 i4

Fig. 3. An illustration of how to create the synthetic data points in the SMOTE
algorithm.
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along the line segment between two specific features. This
approach effectively forces the decision region of the minority class
to become more general. An example is detailed in Fig. 4.

In short, its main feature is to form new minority class exam-
ples by interpolating between several minority class examples that
lie together. Thus, the overfitting problem is avoided and causes
the decision boundaries for the minority class to spread further
into the majority class space.

Nevertheless, class clusters may be not well defined in cases
where some majority class examples invade the minority class
space. The opposite can also be true, since interpolating minority
class examples can expand the minority class clusters, introducing
artificial minority class examples too deeply into the majority class
space. Inducing a classifier in such a situation can lead to overfit-
ting. For this reason we also consider a hybrid approach in this
work, “SMOTE + ENN”, where the Wilson's ENN rule (Wilson,
1972) is used after the SMOTE application to remove from the
training set any example misclassified by its three nearest
neighbors.

3.2. Cost-sensitive learning

Cost-sensitive learning takes into account the variable cost of
a misclassification of the different classes (Domingos, 1999;
Zadrozny et al., 2003). A cost matrix codifies the penalties of
classifying examples of one class as a different one. Let C(i,j) be
the cost of predicting an instance of class i as class j; with this
notation C(+,—) is the cost of misclassifying an instance of the
positive class as if it was negative and C(—,+) is the cost of the
opposite case.

When dealing with imbalanced problems it is usually more
important to recognize the positive instances rather than the neg-
ative ones. Therefore, the cost of misclassifying a positive instance
is higher than the cost of misclassifying a negative one
(C(+,—) > (—,+)). As a classical example, the reader may refer to
a diagnosis problem in which it is often less dangerous to obtain
a false positive than a false negative.

Three main general approaches have been proposed to deal
with cost-sensitive problems:

1. Methods based on modifying the training data. The most popu-
lar technique lies in resampling the original class distribution of
the training dataset according to the cost decision matrix by
means of undersampling/oversampling, modifying decision
thresholds or assigning instance weights. These modifications
have shown to be effective and can also be applied to any cost
insensitive learning algorithm (Zadrozny et al., 2003; Zhou &
Liu, 2006).

2. Methods that change the learning process in order to build a
cost-sensitive classifier, for example, in the context of decision
tree induction, the tree-building strategies are adapted to min-
imize the misclassification costs. The cost information is used
to: (1) choose the best attribute to split the data Ling et al.
(2004) and Riddle, Segal, and Etzioni (1994); and (2) determine
whether a subtree should be pruned Bradford, Kunz, Kohavi,
Brunk, and Brodley (1998).

Consider a sample (6,4) and let (4,3) be its nearest neighbor.
(6,4) is the sample for which k-nearest neighbors

are being identified and (4,3) is one of its k-nearest neighbors.
Let: f1.1 =6 f2_1 =4, f2.1 - f1 1 = -2

f1. 2 =4 f22=23, f2.2 - f1_.2 = -1

The new samples will be generated as

(£1°,£2°) = (6,4) + rand(0-1) * (-2,-1)

rand(0-1) generates a random number between O and 1.

Fig. 4. Example of the SMOTE application.

3. Methods based on the Bayes decision theory that assign
instances to the class with minimum expected cost. For exam-
ple, a typical decision tree for a binary classification problem
assigns the class label of a leaf node depending on the majority
class of the training samples that reach the node. A cost-sensi-
tive algorithm assigns the class label to the node that minimizes
the classification cost Domingos (1999) and Zadrozny and Elkan
(2001).

Cost-sensitive learning supposes that there is a cost matrix
available for the different type of errors. However, given a dataset,
this matrix is not usually given Sun et al. (2007, 2009).

3.3. Hybridization. Automatically countering imbalance

The different solutions used to deal with the imbalanced prob-
lem have been presented in the previous subsections. So the ques-
tion now is “Can we use both techniques together and achieve
better results?”

Cost-sensitive learning algorithms associate high misclassifi-
cation costs to positive instances which bias the search towards
the positive class. If the cost associated to positive instances is
too high or if the specific cost-sensitive algorithm is easily biased
towards the positive class, we can observe that the decision region
generated by the algorithm is far away from those instances.
Therefore, we need to bias those algorithms in a way that pushes
the boundary towards the positive instances, but still classifies cor-
rectly both classes. If the positive instances are sparse, a case that is
likely to occur in imbalanced datasets, then the boundary may not
have the proper shape.

On the other hand, preprocessing methods try to balance class
distributions to let the standard classifier algorithms accomplish
similar results to their performance in a balanced data scenario.
There is a diversity of preprocessing methods with a behavior fo-
cused on generating new samples, removing some of the samples
or carrying out both operations jointly. Nevertheless, these meth-
ods can fail due to the loss of information produced when we de-
lete samples that define our decision boundaries or when we
create examples that introduce noise to the classifier.

Regarding cost-sensitive learning classifiers, a way to avoid
biasing towards positive instances without modifying the algo-
rithm itself lies in the creation of a few positive instances or the
deletion of some negative examples. This causes a more balanced
data distribution which means that the misclassification costs
associated to positive instances will also be lower thus making
the search process less biased. In addition, since we are using a
cost-sensitive classifier we do not need to apply a preprocessing
procedure to balance the distribution because cost-sensitive learn-
ers are able to learn in imbalanced conditions, therefore, the
resampling stage is quicker than using only a preprocessing ap-
proach and the whole learning process is sped up, especially when
the base classifier efficiency deeply depends on the number of
instances.

We can find some works related to this idea. For example,
Akbani, Kwek, and Japkowicz (2004) propose a solution with sup-
port vector machines where they integrate a cost-sensitive support
vector machine (Veropoulos, Campbell, & Cristianini, 1999) with
the SMOTE technique of oversampling the minority instances
(Chawla et al., 2002). With this behavior they manage to push
the boundary away from the positive instances (cost-sensitive
learning) and make the boundary better defined (because of the
denser positive instance distribution).

Due to the previous facts we aim to develop a procedure to inte-
grate the cost-sensitive learning and preprocessing approaches
into one. Chawla et al. (2008) propose a wrapper paradigm that
discovers the amount of resampling needed for a dataset based
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on optimizing evaluation functions which can include the cost
associated to the classification. This wrapper infrastructure applies
cross-validation to first discover the best amounts of undersam-
pling and oversampling, applies the preprocessing algorithms with
the amounts estimated and finally runs the algorithm used over
the preprocessed dataset.

Obviously, searching the entire space of undersampling and
SMOTE combinations can quickly become intractable, so the search
procedure must be fine-tuned. This strategy removes the “excess”
examples of the majority classes, which reduces the size of the
training dataset. This also makes learning time more manageable.
SMOTE is used to add synthetic examples of the minority classes
and increase the generalization performance of the classifier over
the minority classes. Fig. 5 shows the algorithm procedure.

The estimation is done over a training and a test set. The train-
ing data is split into five partitions for an internal five-fold cross-
validation. The wrapper applies this independent validation stage
to each fold to discover the appropriate percentages of sampling
for a given method and classifier combination. Once these percent-
ages are discovered, the classifier is re-learned on the original
training fold using the discovered percentages and tested on the
corresponding testing fold.

The undersampling estimation starts with no undersampling
for all majority classes and obtains baseline results on the training
data. Then it traverses through the search space of undersampling
percentages in decrements of Sample Decrement, in a greedy itera-
tive fashion, to increase performance over the minority classes
without sacrificing performance on the majority class.

The oversampling algorithm evaluates different amounts of
SMOTE at steps of Sample Increment (percentage of the number
of examples from the minority class that will be generated in each
step). This is a greedy search, and at each step the new perfor-
mance estimates become the new baseline. That is, the initial base-
line is the performance obtained via the Wrapper Undersample. If
SMOTE = Sample Increment improves the performance over that
baseline by some margin Increment Min, then the performance
achieved at SMOTE = Sample Increment becomes the new baseline.
The amount of SMOTE is then incremented by Sample Increment,
and another evaluation is performed to check if the performance

train ==t
\ Estimate undersampling

parameters

uses a cost-sensitive learning method

increase at new SMOTE amount is at least greater than Increment
Min. This process repeats, greedily, until no performance gains
are observed.

However, there is an important caveat to the search to avoid
being trapped in a local maximum. If the average does not improve
by Increment Min we have to verify that we have not settled on a
local maximum. In order to do so, we look ahead some more steps
at increasing amounts of SMOTE. If the look-ahead does not result
in an improvement in performance, then the amount of SMOTE is
reset to the value discovered prior to the look-ahead. This is done
to allow SMOTE to introduce additional examples with the aim of
improving performance. However, if the addition of examples does
not help, then we go back to using the lesser amount of SMOTE dis-
covered prior to the look-ahead.

We can use different measures to evaluate the performance of
the classifier to estimate the sampling parameters. Since we are
using cost-sensitive learning algorithms as base classifiers a logical
evaluation criteria is the cost itself. Cost is calculated as shown in
Eq. (3) when we assume ((+|+) = C(—|—) = 0 (as it is usual in imbal-
anced classification).

cost = FNrate - C(—|+) + FPrate - C(+|—) (3)

4. Experimental framework

In this section, we first introduce the algorithms which are in-
cluded in the study (Section 4.1). Next, we provide details of the
imbalanced problems chosen for the experimentation and the con-
figuration parameters of the methods (Sections 4.2 and 4.3). Final-
ly, we present the statistical tests applied to compare the results
obtained with the different classifiers (Section 4.4).

4.1. Algorithms selected for the study

This section presents the description of the state of the art algo-
rithms of four different classification paradigms selected for our
study. For each paradigm we outline the base classifier commonly
used in general classification problems and the cost-sensitive
learning version associated to that classifier.

-

l_ Undersample ariginal
train set

(EEE g S —_

—)I undersampling parameters I

Estimate oversampling
parameters

uses a costsensitive learning method

undersampled

/ —

A

oversampling parameters

> ' Oversample ur'ndersar’rq:»led—|

train set
A

Y
classify using oversampled
cost-sensitive  |of— after undersampling
learning dassifier frain test

Fig. 5. Illustration on the wrapper undersample SMOTE algorithm. Dashed lines means resampling actions, black boxes represent the parameters estimation and the final

result is in grey.
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4.1.1. Decision trees

Decision trees use simple knowledge representation to classify
examples into a finite number of classes. In a typical setting, the
tree nodes represent the attributes, the edges represent the possi-
ble values for a particular attribute, and the leaves are assigned
with class labels. Classifying a test sample is straightforward once
a decision tree has been constructed. An object is classified by fol-
lowing paths from the root node through the tree to a leaf, taking
the edges corresponding to the values of attributes.

(4.5 decision tree. C4.5 (Quinlan, 1993) is a decision tree gener-
ating algorithm. It induces classification rules in the form of deci-
sion trees from a set of given examples. The decision tree is
constructed top-down using the normalized information gain
(difference in entropy) that results from choosing an attribute for
splitting the data. The attribute with the highest normalized infor-
mation gain is chosen to make the decision. The C4.5 algorithm
then recurs on the smaller sublists.

Cost-sensitive C4.5 decision tree. The cost-sensitive C4.5 deci-
sion tree (C4.5CS) (Ting, 2002) is a method to induce cost-sensitive
trees that seeks to minimize the number of high cost errors and, as
a consequence of that, leads to minimization of the total misclassi-
fication costs in most cases.

The method changes the class distribution such that the tree in-
duced is in favor of the class with high weight/cost and is less likely
to commit errors with high cost. Specifically, the computation of
the split criteria for C4.5 (normalized information gain) is modified
to take into account the a priori probabilities according to the num-
ber of samples for each class.

C4.5CS modifies the weight of an instance proportional to the
cost of misclassifying the class to which the instance belonged,
leaving the sum of all training instance weights still equal to N.
Let C(j) be the cost of misclassifying a class j instance; the weight
of a class j instance can be computed as

. . N
W) = C0) 5= er, )
such that the sum of all instance weights is > ,w(j)N; = N.

The standard greedy divide-and-conquer procedure for induc-
ing minimum error trees can then be used without modification,
except that Wj(t) is used instead of Nj(t) in the computation of
the test selection criterion in the tree growing process and the er-
ror estimation in the pruning process. That Wj(t) is the result of
weighting the initial number of instances from a class with the
weight computed in Eq. (4): Wj(t) = w(j) - Ni(t) Thus, both processes
are affected due to this change.

This modification effectively converts the standard tree induc-
tion procedure that seeks to minimize the number of errors, regard-
less of cost, to a procedure that seeks to minimize the number of
errors with high weight or cost. To classify a new instance, C4.5CS pre-
dicts the class which has the maximum weight at a leaf, as in C4.5.

C4.5CS also introduces another optional modification that alters
the usual classification process after creating the decision tree. In-
stead of classifying using the minimum error criteria, it is advisable
to classify using the expected misclassification cost in the last part
of the classification procedure. The expected misclassification cost
for predicting class i with respect to the instance x is given by

ECi(x) oc y_ Wj(t(x))cost(i.) ()
j

where t(x) is the leaf of the tree that instance x falls into and Wj(t) is
the total weight of class j training instances in node t.

To classify a new instance x using a minimum error tree with
the minimum expected cost criterion, EC(x) is computed for every
class. The instance x is assigned to class i with the smallest value
for ECi(x); that is, ECi(x) < ECy(x) for all i’ # i.

4.1.2. Support vector machines

SVMs are one of the binary classifiers based on maximum mar-
gin strategy introduced by Vapnik and Lerner (1963). Originally,
SVMs were designed for linear two-class classification with mar-
gin, where margin means the minimal distance from the separat-
ing hyperplane to the closest data points. SVMs seek an optimal
separating hyperplane, where the margin is maximal. The solution
is based only on those data points at the margin. These points are
called as support vectors. The linear SVMs have been extended to
nonlinear examples when the nonlinear separated problem is
transformed into a high dimensional feature space using a set of
nonlinear basis functions. However, the SVMs are not necessary
to implement this transformation to determine the separating
hyperplane in the possibly high dimensional feature space. Instead,
a kernel representation can be used, where the solution is written
as a weighted sum of the values of a certain kernel function eval-
uated at the support vectors.

Soft margin SVM. In 1995, Cortes and Vapnik suggested a mod-
ified maximum margin idea that allows for mislabeled examples
(Cortes & Vapnik, 1995; Vapnik, 1998). If there exists no hyper-
plane that can split the “yes” and “no” examples, the Soft Margin
method will choose a hyperplane that splits the examples as
cleanly as possible, while still maximizing the distance to the near-
est cleanly split examples. The method introduces slack variables,
&, which measure the degree of misclassification of the datum x;.

Cost-sensitive SVM. The cost-sensitive SVM (SVMCS)
(Veropoulos et al., 1999) is a modification of the soft-margin
support vector machine. We need to bias SVM in a way that will
push the boundary away from the positive instances using differ-
ent error costs for the positive (C") and negative (C™) classes.
Specifically, the change implies a new optimization function

) 1 ny n n
min max §Hw||2+C* Z G+C Z fj*ZOﬂi[Yi(W'xi*b)
R

web fiy=11) =
n
—]+5i}—23i5i} (6)
i=1

The constraints on «; then become:

0<o<Ch o ify,=+1 (7)
and
O<a<C ify=-1 8)

Furthermore, & >0 only when o; = C. Therefore non-zero errors on
positive support vectors will have larger o; while non-zero errors
on negative support vectors will have smaller o;. The net effect is
that the boundary is pushed more towards the negative instances.

4.1.3. Fuzzy rule based classification system learning methods

A fuzzy rule based classification system (FRBCS) has two main
components: the inference system and the knowledge base. In a
linguistic FRBCS, the knowledge base is composed of a rule base,
constituted by a set of fuzzy rules, and the data base that stores
the membership functions of the fuzzy partitions associated to
the input variables.

In this work we use fuzzy rules of the following form for our
FRBCSs:

Rule R; : If x; is Aj and ... and x, is Aj,

9
then Class = C; with RW; ®)

where R; is the label of the jth rule, x=(x,...,x,) is an n-dimen-
sional pattern vector, A; is an antecedent fuzzy set, G is a class label,
and RW; is the rule weight (Ishibuchi & Nakashima, 2001). We use
triangular membership functions as fuzzy partitions associated to
the input variables. To compute the rule weight, many alternatives
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have been proposed, although we have considered as a good choice
the use of the heuristic method known as the Penalized Certainty
Factor (PCF) Ishibuchi and Yamamoto (2005):

2y M (Xo) = D uc, M, (Xp)
mezl Ha, (%p)

where x,, is the pth example of the training set, C; is the consequent
class of rule j and Ha, (xp) is the membership degree of the example
with the antecedents of the rule.

Fuzzy hybrid genetic based machine learning rule generation
algorithm. In order to build the rule base, we have chosen the
FH-GBML algorithm (Ishibuchi, Yamamoto, & Nakashima, 2005),
a proposal that presents a good behaviour in both standard and
imbalanced classification (Fernandez, del Jests, & Herrera, 2010;
Luengo, Fernandez, Garcia, & Herrera, 2011).

The FH-GBML method consists of a Pittsburgh approach where
each rule set is handled as an individual. It also contains a Genetic
Cooperative-Competitive Learning (GCCL) approach (an individual
represents a unique rule), which is used as a kind of heuristic muta-
tion for partially modifying each rule set. This method uses standard
fuzzy rules with rule weights (Ishibuchi & Yamamoto, 2005) where
each input variable x; is represented by a linguistic term or label. The
system defines 14 possible linguistic terms for each attribute as well
as a special “do not care” as an additional linguistic term.

In the learning process, Npop rule sets are created by randomly
selecting N,y training patterns. Then, a fuzzy rule from each of
the selected training patterns is generated by probabilistically
choosing an antecedent fuzzy set from the 14 candidates

PCF; = (10)

<Pd,,,mr care(Bk) = m> and each antecedent fuzzy set of the
=1 BJ pi

generated fuzzy rule is replaced with don’t care using a pre-speci-

fied probability Pgo not care-

Npop —1 rule sets are generated by selection, crossover and
mutation in the same manner as the Pittsburgh-style algorithm.
Next, with a pre-specified probability, a single iteration of the Ge-
netic Cooperative-Competitive-style algorithm is applied to each
of the generated rule sets.

Finally, the best rule set is added to the current population in
the newly generated (Npo, — 1) rule sets to form the next popula-
tion and, if the stopping condition is not satisfied, the genetic pro-
cess is repeated again. Classification is performed following the
fuzzy reasoning method of the winning rule.

Cost-sensitive fuzzy hybrid genetic based machine learning
rule generation algorithm. The FH-GBML-CS (Fuzzy Hybrid Genet-
ics-Based Machine Learning Cost-Sensitive) algorithm (Lépez,
Fernandez, & Herrera, 2010) is a modification of the FH-GBML
original algorithm. The main goal of FH-GBML-CS is to obtain a
FRBCS that is able to consider the different costs associated to mis-
classification of some of its samples during the building process of
the RB. To achieve that purpose an algorithmic level solution is
used, modifying the original behaviour of the FH-GBML algorithm
in some of its steps:

e Adaptation of the fitness function of the Pittsburgh approach.
Instead of using the number of correctly classified training
examples FH-GBML-CS tries to minimize the misclassification
cost: FNrgre - C(—,+) + FPrgge - C(+,—).

e Modifications in the computation of the rule weight. The PCF heu-
ristic has been adapted to cost-sensitive learning building the
Cost-Sensitive Penalized Certainty Factor (CS-PCF) which is
used in FH-GBML-CS to compute the rule weight:

2 xpec;Ma, (Xp) < Csp B 2 xpic; M, (Xp) X CSp
me:dlA, (%) xCsp 0 M, (Xp) < Csp

CS — PCF,; =

where Cs,, is the misclassification cost of an example from class p.

o Different class label choice for the rule. Instead of selecting the

class considering only the highest compatibility the class with
the highest compatibility - cost is chosen.

4.1.4. Lazy learning

Lazy learning is a set of methods in which generalization be-
yond the training data is delayed until a query is made to the sys-
tem, as opposed to in eager learning, where the system tries to
generalize the training data before receiving queries.

The main advantage gained in employing a lazy learning meth-
od is that the target function will be approximated locally, such as
in the k-NN algorithm. Because the target function is approximated
locally for each query to the system, lazy learning systems can
simultaneously solve multiple problems and deal successfully with
changes in the problem domain.

K-nearest neighbor algorithm. k-NN (Cover & Hart, 1967) finds a
group of k instances in the training set that are closest to the test pat-
tern. Given a test sample, the algorithm computes the distance (or
similarity) between the test sample and all of the training samples
to determine its k-nearest neighbors. The class of the test sample
is decided by the most abundant class within the k-nearest samples.

Cost-sensitive k-nearest neighbor algorithm. Cost-sensitive
k-NN algorithm (Hand & Vinciotti, 2003) is a cost-sensitive
learning version of k-NN based on Bayes risk theory to assign each
sample to its lowest risk class.

Let the cost of misclassifying a class i case be c;. Now, if points at x
are assigned to class 1, the loss at x is cop(0|x). Similarly, if points at x
are assigned to class 0, the loss at x is ¢;p(1]x). The minimum loss at x
is thus achieved by assigning points at x to class 1 if
cop(0]x) < c1p(1]x) and to class O otherwise. This is equivalent to
the condition

p(11x) > co/(Co+€1) (12)

Without loss of generality we will rescale the costs so that
(co +c1) =1, so that the classification rule becomes “Assign points
at x to class 1 when p(1|x) > ¢y and to class 0 otherwise”.

Nearest neighbor methods estimate the p(i|x) by the proportion
of class i points amongst the k nearest neighbors to the point x to
be classified. This requires a choice of a distance metric and a
choice of the parameter k.

To sum up, the cost-sensitive k-NN classification rule assigns a
point with measurement vector x to class 1 if k;/k > co, and other-
wise to class 0, where k; is the number of class 1 points amongst
the k design set points closest to x.

4.1.5. Summary of the different schemes selected for the experimental
study

In this work, we test several combinations of preprocessing and
cost-sensitive learning with the classification algorithms from each
paradigm described in this section. Specifically, the schemes used
can be arranged into three categories:

1. Oversampling approaches to balance the data distribution before
applying the algorithm which were described in Section 3.1.

2. Cost-sensitive learning methods which take into consideration
costs. The methods used are specific versions that come from
the original non-balanced algorithms. These algorithm versions
have been described in this section.

3. Application of the hybrid methodology that combines cost-sen-
sitive learning and preprocessing: a methodology to automati-
cally countering imbalance using cost was described in
Section 3.3. We use different combinations of algorithms to
evaluate the performance of the methodology.
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Table 2

Acronyms used to designate the different algorithm variations used in the experimental study.

Acronym Version description

None The original classifier that names the algorithm family

SMOTE The original classifier that names the algorithm family applied to a dataset preprocessed with the SMOTE algorithm

SENN The original classifier that names the algorithm family applied to a dataset preprocessed with the SMOTE + ENN algorithm

CS The cost-sensitive version of the original classifier from the corresponding algorithm family which was explained in the previous section

Wr_SMOTE Version of the Wrapper routine described in the previous section that uses as main algorithm the cost-sensitive version of the algorithm family and only
performs the oversampling step with the SMOTE algorithm

Wr_US Version of the Wrapper routine described in the previous section that uses as main algorithm the cost-sensitive version of the algorithm family, performs
the undersampling step with a random undersampling algorithm and the oversampling step with the SMOTE algorithm

Wr_SENN Version of the Wrapper routine described in the previous section that uses as main algorithm the cost-sensitive version of the algorithm family and only

performs the oversampling step with the SMOTE + ENN algorithm

For the sake of clarity, Table 2 indicates a list of acronyms used
to identify the different algorithm versions for each paradigm and a
brief description of each one of them.

4.2. Datasets and data partitions

In order to analyze the preprocessing approach against the cost-
sensitive learning strategy, we have selected 66 datasets from the
KEEL dataset repository? (Alcala-Fdez et al., 2011).

In the specialized literature, researchers usually manage all
imbalanced datasets as a whole (Barandela et al., 2003; Batista
et al., 2004; Chen, Chen, Hsu, & Zeng, 2008). In this work we sort
the different datasets according to their degree of imbalance using
the imbalance ratio (IR) (Orriols-Puig & Bernadé-Mansilla, 2009),
which is defined as the ratio of the number of instances of the
majority class and the minority class.

The datasets are summarized in Table 3, where we denote the
number of examples (#Ex.), number of attributes (#Atts.), class
name of each class (positive and negative), class distribution and
IR.

To develop the different experiments we consider a 5-folder
cross-validation model, i.e., five random partitions of data with a
20% and the combination of 4 of them (80%) as training and the
remaining one as test. For each dataset we consider the average re-
sults of the five partitions. The datasets used in this study use the
partitions provided by the repository in the imbalanced classifica-
tion dataset section.’

4.3. Parameters

The configuration parameters for the base classifiers are shown
in Table 4. The selected values are common for all the versions of
the algorithm in the same family to maintain an experimental sce-
nario on equal terms. On the other hand, the parameters for the
preprocessing methods used in this study are presented in Table 5.
Finally, Table 6 points out the parameters for the implementation
of the wrapper routine. All these values were selected according
to the recommendation of the corresponding authors of each algo-
rithm, which is the default parameters’ setting included in the
KEEL software (Alcala-Fdez et al., 2008).

The only ad-hoc parameter value is the k parameter of nearest
neighbors. We have set that value to k =3 instead of k=1 which
is the usual approach because the cost-sensitive k-NN used in this
study achieves an identical performance for 1-NN and 1-NNCS.

Furthermore, we have to identify the misclassification costs
associated to the positive and negative class for the cost-sensitive
learning versions. If we misclassify a positive sample as a negative
one the associated misclassification cost is the IR of the dataset
(C(+,—)=IR) whereas if we misclassify a negative sample as a

2 http://www.keel.es/datasets.php.
3 http://www.keel.es/imbalanced.php.

positive one the associated cost is 1 (C(—,+) = 1). The cost of classi-
fying correctly is 0 (C(+,+) = ((—,—) = 0) because guessing the cor-
rect class should not penalize the built model.

Although we acknowledge that the tuning of the parameters for
each method on each particular problem could lead to better re-
sults, we chose to maintain a baseline performance of each method
as the basis for comparison. Since the experimental study is focused
in the performance of methods from the same family, our hypoth-
esis is that methods that win on average on all problems would also
win if a better setting was used. Furthermore, in a framework where
no method is tuned, winner methods tend to correspond to the
most robust learners, which is also a desirable characteristic.

4.4. Statistical tests for performance comparison

Statistical analysis needs to be carried out in order to find sig-
nificant differences among the results obtained by the studied
methods (Garcia, Fernandez, Luengo, & Herrera, 2009). We con-
sider the use of non-parametric tests, according to the recommen-
dations made in Demsar (2006), Garcia and Herrera (2008), Garcia
et al. (2009), Garcia, Fernandez, Luengo, and Herrera (2010) where
a set of simple, safe and robust non-parametric tests for statistical
comparisons of classifiers is presented. These tests are used due to
the fact that the initial conditions that guarantee the reliability of
the parametric tests may not be satisfied, causing the statistical
analysis to lose credibility (Dem3ar, 2006).

Since the study is split in parts comparing a group of algorithms,
we use statistical tests for multiple comparisons. Specifically, we
use the Iman-Davenport test (Sheskin, 2006) to detect statistical
differences among a group of results and the Shaffer post-hoc test
(Shaffer, 1986) in order to find out which algorithms are distinctive
among an n x n comparison.

The post-hoc procedure allows us to know whether a hypothe-
sis of comparison of means could be rejected at a specified level of
significance o, which we set to 95% in our study. However, it is very
interesting to compute the p-value associated with each compari-
son, which represents the lowest level of significance of a hypoth-
esis that results in a rejection. In this manner, we can know
whether two algorithms perform significantly differently and to
what degree.

Furthermore, we consider the average ranking of the algorithms
in order to show graphically how good a method is with respect to
its partners. This ranking is obtained by assigning a position to
each algorithm depending on its performance for each dataset.
The algorithm which achieves the best accuracy in a specific
dataset will have the first ranking (value 1); then, the algorithm
with the second best accuracy is assigned rank 2, and so forth. This
task is carried out for all datasets and finally an average ranking is
computed as the mean value of all rankings.

These tests are suggested in the studies presented by Demsar
(2006), Garcia and Herrera (2008), and Garcia et al. (2009), where
their use in the field of machine learning is strongly recommended.
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Table 3
Summary of imbalanced datasets.
Datasets # Ex. # Atts Class (—,+) %Class (—; +) IR
Glass1 214 9 (build-win-non_float-proc; remainder) (35.51,64.49) 1.82
EcoliOvs1 220 7 (im; cp) (35.00,65.00) 1.86
Wisconsin 683 9 (malignant; benign) (35.00,65.00) 1.86
Pima 768 8 (tested-positive; tested-negative) (34.84,66.16) 1.90
IrisO 150 4 (Iris-Setosa; remainder) (33.33,66.67) 2.00
Glass0 214 9 (build-win-float-proc; remainder) (32.71,67.29) 2.06
Yeast1 1484 8 (nuc; remainder) (28.91,71.09) 2.46
Vehiclel 846 18 (Saab; remainder) (28.37,71.63) 2.52
Vehicle2 846 18 (Bus; remainder) (28.37,71.63) 2.52
Vehicle3 846 18 (Opel; remainder) (28.37,71.63) 2.52
Haberman 306 3 (Die; Survive) (27.42,73.58) 2.68
Glass0123vs456 214 9 (non-window glass; remainder) (23.83,76.17) 3.19
Vehicle0 846 18 (Van; remainder) (23.64,76.36) 3.23
Ecolil 336 7 (im; remainder) (22.92,77.08) 3.36
New-thyroid2 215 5 (hypo; remainder) (16.89,83.11) 4,92
New-thyroid1 215 5 (hyper; remainder) (16.28,83.72) 5.14
Ecoli2 336 7 (pp; remainder) (15.48,84.52) 5.46
Segment0 2308 19 (brickface; remainder) (14.26,85.74) 6.01
Glass6 214 9 (headlamps; remainder) (13.55,86.45) 6.38
Yeast3 1484 8 (me3; remainder) (10.98,89.02) 8.11
Ecoli3 336 7 (imU; remainder) (10.88,89.12) 8.19
Page-blocks0 5472 10 (remainder; text) (10.23,89.77) 8.77
Ecoli034vs5 200 7 (p,imL,imU; om) (10.00,90.00) 9.00
Yeast2vs4 514 8 (cyt;me2) (9.92,90.08) 9.08
Ecoli067vs35 222 7 (cp,omL, pp;imL,om) (9.91,90.09) 9.09
Ecoli0234vs5 202 7 (cp,imS,imL,imU; om) (9.90,90.10) 9.10
Glass015vs2 172 9 (build-win-non_float-proc, tableware, build-win-float-proc; ve-win-float-proc) (9.88,90.12) 9.12
Yeast0359vs78 506 8 (mit,me1, me3, erl; vac, pox) (9.88,90.12) 9.12
Yeast02579vs368 1004 8 (mit, cyt,me3, vac,erl; mel,exc, pox) (9.86,90.14) 9.14
Yeast0256vs3789 1004 8 (mit, cyt,me3, exc; mel,vac,pox, erl) (9.86,90.14) 9.14
Ecoli046vs5 203 6 (cp,imU,omL; om) (9.85,90.15) 9.15
Ecoli01vs235 244 7 (cp,im;imS,imL,om) (9.83,90.17) 9.17
Ecoli0267vs35 224 7 (cp,imS,omL, pp; imL,om) (9.82,90.18) 9.18
Glass04vs5 92 9 (build-win-float-proc,containers; tableware) (9.78,90.22) 9.22
Ecoli0346vs5 205 7 (cp,imL,imU,omL; om) (9.76,90.24) 9.25
Ecoli0347vs56 257 7 (cp,imL,imU, pp; om,omL) (9.73,90.27) 9.28
Yeast05679vs4 528 8 (me2; mit, me3,exc,vac,erl) (9.66,90.34) 9.35
Ecoli067vs5 220 6 (cp,omL, pp; om) (9.09,90.91) 10.00
VowelO 988 13 (hid; remainder) (9.01,90.99) 10.10
Glass016vs2 192 9 (ve-win-float-proc; build-win-float-proc, build-win-non_float-proc, headlamps) (8.89,91.11) 10.29
Glass2 214 9 (Ve-win-float-proc; remainder) (8.78,91.22) 10.39
Ecoli0147vs2356 336 7 (cp,im,imU, pp; imS,imL,om,omL) (8.63,91.37) 10.59
Led7digit02456789vs1 443 7 (0,2,4,5,6,7,8,9;1) (8.35,91.65) 10.97
Glass06vs5 108 9 (build-win-float-proc,headlamps; tableware) (8.33,91.67) 11.00
Ecoli01vs5 240 6 (cp,im; om) (8.33,91.67) 11.00
Glass0146vs2 205 9 (build-win-float-proc, containers, headlamps, build-win-non_float-proc; ve-win-float-proc) (8.29,91.71) 11.06
Ecoli0147vs56 332 6 (cp,im,imU, pp; om,omL) (7.53,92.47) 12.28
ClevelandOvs4 177 13 (0;4) (7.34,92.66) 12.62
Ecoli0146vs5 280 6 (cp,im,imU,omL; om) (7.14,92.86) 13.00
Ecoli4 336 7 (om; remainder) (6.74,93.26) 13.84
Yeast1vs7 459 8 (nuc;vac) (6.72,93.28) 13.87
ShuttleOvs4 1829 9 (Rad Flow; Bypass) (6.72,93.28) 13.87
Glass4 214 9 (containers; remainder) (6.07,93.93) 15.47
Page-blocks13vs2 472 10 (graphic; horiz.line,picture) (5.93,94.07) 15.85
Abalone9vs18 731 8 (18;9) (5.65,94.25) 16.68
Glass016vs5 184 9 (tableware; build-win-float-proc, build-win-non_float-proc, headlamps) (4.89,95.11) 19.44
Shuttle2vs4 129 9 (Fpv Open; Bypass) (4.65,95.35) 20.5
Yeast1458vs7 693 8 (vac; nuc,me2, me3, pox) (4.33,95.67) 22.10
Glass5 214 9 (tableware; remainder) (4.20,95.80) 22.81
Yeast2vs8 482 8 (pox;cyt) (4.15,95.85) 23.10
Yeast4 1484 8 (me2; remainder) (3.43,96.57) 28.41
Yeast1289vs7 947 8 (vac; nuc, cyt, pox, erl) (3.17,96.83) 30.56
Yeast5 1484 8 (me1; remainder) (2.96,97.04) 32.78
Ecoli0137vs26 281 7 (pp,imL; cp,im,imU,imS) (2.49,97.51) 39.15
Yeast6 1484 8 (exc; remainder) (2.49,97.51) 39.15
Abalone19 4174 8 (19; remainder) (0.77,99.23) 128.87
5. Experimental study 1. The improvement obtained by preprocessing datasets and
cost-sensitive learning over the original algorithm.
In this section, we will perform an analysis to determine the 2. The possible differences between the rebalancing tech-
performance of the different alternatives used for imbalanced niques versus cost-sensitive learning and in which
classification. Our aim is to analyze three different issues: cases.



6594 V. Lopez et al./Expert Systems with Applications 39 (2012) 6585-6608

Table 4
Parameter specification for the algorithms family employed in the experimentation.
Algorithm Parameters
family
C4.5 Pruned = true
Confidence = 0.25
Minimum number of item-sets per leaf = 2
SVM Kernel type = polynomial
C=100.0
Tolerance of termination criterion = 0.001
Degree (for kernel function) =1
Gamma (for kernel function) =0.01
coef0 (for kernel function) = 0.0
Use the shrinking heuristics = true
FH-GBML Conjunction operator = product t-norm

Rule weight = PCF (FH-GBML and FH-GBML + preprocessing)
and PCF-SC (FH-GBML-CS)

Fuzzy reasoning method = winning rule

Number of fuzzy rules =5 - d (max. 50 rules)

Number of rule sets = 200

Crossover probability = 0.9

Mutation probability = 1/d

Number of replaced rules = all rules except the best-one
(Pittsburgh-part,elitist approach)

Number of rules/5 (GCCL-part)

Total number of generations = 1.000

Do not care probability = 0.5

Probability of the application of the GCCL iteration = 0.5

k-NN k=3
Distance = Heterogeneous value difference metric (HVDM)

Table 5
Parameter specification for the preprocessing algorithms used in this study.
Preprocessing Algorithm Parameters
SMOTE kSMOTE = 5
Balancing = 1:1
distanceFunction = HVYDM
SMOTE_ENN kSMOTE = 5
KENN =3

Balancing = 1:1
distanceFunction = HVDM

Table 6

Parameter specification for the wrapper routine.
Parameter Value
Sample decrement 10%
Sample increment 100%
Increment min 5%
Look-ahead steps 2

3. Whether a hybrid methodology that combines a preprocessing
approach and a cost-sensitive learning algorithm supposes a
positive synergy and enables the achievement of more accurate
results.

The study is divided into different paradigms to check whether
the conclusions achieved for one paradigm can be extrapolated to
the others.

5.1. Study of decision trees versions: (4.5

Table 7 shows the average results in training and test together
with the corresponding standard deviation for the seven versions
of the C4.5 algorithm used in the study: the base classifier, the base
classifier used over the preprocessed datasets, the cost-sensitive

Table 7

Average table of results using the AUC measure for the C4.5 variety of algorithms.
Algorithm AUC,, AUCise
C4.5 0.8774 £ 0.0392 0.7902 £ 0.0804
C4.5 SMOTE 0.9606 +0.0142 0.8324 £ 0.0728
C4.5 SENN 0.9471 £0.0154 0.8390 + 0.0772
C4.5CS 0.9679 £0.0103 0.8294 £ 0.0758
C4.5 Wr_SMOTE 0.9679 £ 0.0103 0.8296 £ 0.0763
C4.5 Wr_US 0.9635 +£0.0139 0.8245 £ 0.0760
C4.5 Wr_SENN 0.9083 £ 0.0377 0.8145 £0.0712

C4.5 Algorithms

5.4470
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4.0606
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Fig. 6. Average rankings using the AUC measure for the C4.5 variety of algorithms.

version of the algorithm and the hybrid versions of it. We stress
in boldface the best results achieved for the prediction ability of
the different techniques. The complete table of results for all
datasets is shown in the appendix of this work.

From this table of results it can be observed that the highest
average value corresponds to preprocessing approaches closely fol-
lowed by the cost-sensitive learning approach and one version of
the wrapper routine. This suggests the goodness of the preprocess-
ing and cost-sensitive learning approaches.

In order to compare the results, a multiple comparison test is
used to find the performance relationship between the different
versions studied. The results of the statistical analysis of the C4.5
family are as follows. For the sake of a visual comparison, Fig. 6
shows the average ranking obtained through Friedman’s test
(Friedman, 1937) for these approaches. Under the AUC measure,
the Iman-Davenport test detects significant differences among
the algorithms, since the p-value returned (1.88673E—10) is lower
than our o-value (0.05). The differences found are analyzed with a
Shaffer test, shown in Table 8. In this table, a “+” symbol implies
that the algorithm in the row is statistically better than the one
in the column, whereas “—" implies the contrary; “=" means that
the two algorithms compared have no significant differences. In
brackets, the adjusted p-value associated to each comparison is
shown.

Observing the results from Tables 7 and 8, we conclude that the
standard C4.5 approach is outperformed by most of the methodol-
ogies that deal with imbalanced data. The base version is different
from every other version except the hybrid version that uses only
an oversampling step with SMOTE + ENN. Thus, we can state that
the imbalanced classification approaches (preprocessing and
cost-sensitive learning) improve the base classifier.

Comparing the results when applying preprocessing we can see
that the performance of these methods is not statistically different
for any of its versions. In addition, the performance of those
preprocessing methods is also not different to the cost-sensitive
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Table 8

Shaffer test for the C4.5 variety of algorithms using the AUC measure.
C4.5 None SMOTE SENN cs Wr_SMOTE Wr_US Wr_SENN
None x —(6.404E—6) —(4.058E-8) —(6.404E—6) —(7.904E—6) (.00341) =(.37846)
SMOTE +(6.404E—6) x =(1.0) =(1.0) =(1.0) =(1.0) +(.04903)
SENN +(4.058E-8) =(1.0) x =(1.0) =(1.0) =(.22569) +.00152)
cs +(6.404E—6) =(1.0) =(1.0) x =(1.0) =(1.0) +(.04903)
Wr_SMOTE +(7.904E—6) =(1.0) =(1.0) =(1.0) x =(1.0) +(.04903)
Wr_US +(.00341) =(1.0) =(.22569) =(1.0) =(1.0) x =(1.0)
Wr_SENN =(.37846) —(.04903) —(.00152) —(.04903) —(.04903) =(1.0) x

Table 9 SVM Algorithms

Average table of results using the AUC measure for the SVM variety of algorithms. &

54091 53054
Algorithm AUC,, AUCs¢
5
SVM 0.7563 £ 0.0198 0.7341 £0.0530 4.4167 S
SVM SMOTE 0.8806 * 0.0140 0.8514 +0.0568 Aste 41970
SVM SENN 0.8826 +0.0146 0.8517 £ 0.0557 4|
SVMCS 0.7869 + 0.0281 0.7651 £ 0.0621
SVM Wr_SMOTE 0.6981 +0.0283 0.6820 + 0.0521
SVM Wr_US 0.7077 £0.0315 0.6895 £ 0.0619 3
SVM Wr_SENN 0.7656 + 0.0303 0.7461 £ 0.0662 ey
2

learning version of C4.5. This means that in decision trees both pre- 1

processing and cost-sensitive learning are good approaches to deal

with the problem. ol

Focusing on the hybridization of cost-sensitive learning and
preprocessing by using a wrapper routine, it can be seen that there
are significant differences both between the different hybrid ver-
sions and with the other alternatives. The hybrid version that uses
only an oversampling step with SMOTE + ENN is outperformed by
all the other versions except the base version. The rest of the hy-
brid versions are not statistically different from the performance
of usual approaches for imbalanced classification. Therefore, we
cannot state that the hybridization in decision trees produces a po-
sitive synergy between the two techniques.

5.2. Study of support vector machines versions

In this part of the study, we follow the same scheme that was
previously carried out. The average results are shown in Table 9
and, as in the former case, the complete table of results can be
found in Appendix A of this work.

According to the results presented in Table 9, we may conclude
that the preprocessing approaches perform better than the remain-
ing proposals. We first check for significant differences using an
Iman-Davenport test, which obtains a p-value (5.25259E—36)
below our level of significance and near to zero. The associated sta-
tistical study is developed in Table 10, where we show the p-values
computed by a Shaffer test with which we compare every SVM ver-
sion using the AUC measure. In Fig. 7 the average ranking obtained
through Friedman’s test for these versions displayed, in which we
can observe that the best rankings correspond to preprocessing

none  SMOTE SENN CS Wr_SMOTE Wr_US Wr_SENN

Fig. 7. Average rankings using the AUC measure for the SVM variety of algorithms.

Table 11
Average table of results using the AUC measure for the FH-GBML variety of
algorithms.

Algorithm AUC, AUCs¢

FH-GBML 0.8352 +0.0226 0.7692 + 0.0756
FH-GBML SMOTE 0.9181 £0.0130 0.8364 £ 0.0733
FH-GBML SENN 0.9127 £0.0131 0.8350 £ 0.0736
FH-GBMLCS 0.9328 £ 0.0076 0.8373 £ 0.0773
FH-GBML Wr_SMOTE 0.9330 + 0.0075 0.8244 + 0.0830
FH-GBML Wr_US 0.9304 + 0.0095 0.8322 +0.0834
FH-GBML Wr_SENN 0.8866 + 0.0306 0.8168 + 0.0901

approaches whereas worst rankings coincide with the hybrid
approaches.

Table 10 shows that the original SVM is outperformed by the
two preprocessing versions whereas there are not significant dif-
ferences to the rest of versions. This means that the preprocessing
approach improves the base classifier, however, the cost-sensitive
learning proposal for SVMs is not competitive enough to be able to
state that there are statistical differences. The hybridizations also
cannot exceed the base classifier.

Comparing the results of preprocessing datasets we can see that
the performance of these methods is not statistically different for

Table 10

Shaffer test for the SVM variety of algorithms using the AUC measure.
SVM None SMOTE SENN CS Wr_SMOTE Wr_US Wr_SENN
None X —(1.364E-8) —(4.749E-7) =(1.0) =(.05819) =(.11667) =(1.0)
SMOTE +(1.364E-8) X =(1.0) +(2.409E-7) +(3.329E-17) +(4.454E-16) +(4.042E-7)
SENN +(4.749E-7) =(1.0) x +(6.167E—6) +(6.421E-15) +(7.094E—14) +(9.585E—6)
CS =(1.0) —(2.409E-7) —(6.167E-6) x +(.01792) +(.03837) =(1.0)
Wr_SMOTE =(.05819) —(3.329E-17) —(6.421E-15) —(.01792) x =(1.0) —(.01394)
Wr_US =(.11667) —(4.454E—16) —(7.094E—14) —(.03837) =(1.0) x —(.03139)
Wr_SENN =(1.0) —(4.042E-7) —(9.585E-6) =(1.0) +(.01394) +(.03139) x
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Fig. 8. Average rankings using the AUC measure for the FH-GBML variety of
algorithms.

any of its versions. Nevertheless, there are significant differences
between the preprocessing versions and the cost-sensitive learning
version for SVMs. Furthermore, the preprocessing versions outper-
form statistically any other version.

If we just look at the hybridization of cost-sensitive learning
and preprocessing by using a wrapper routine to check if the
hybridization contributes to improve the cost-sensitive learning
performance we find that there are significative differences be-
tween the different hybrid versions and between the other alterna-
tives. The hybrid version that uses only an oversampling step with
SMOTE + ENN outperforms the other hybrid versions whereas it
has no significant differences with the cost-sensitive learning ver-
sion. The rest of hybrids versions are not statistically different,
however, they are also outperformed by the cost-sensitive version.
In this paradigm, we cannot say that the hybridization produces a
positive synergy between the two techniques because some of the
hybrid versions are even outperformed by the cost-sensitive learn-
ing proposal.

5.3. Study of fuzzy rule based systems versions: FH-GBML

Table 11 shows the average results in training and test together
with the corresponding standard deviation for the seven versions
of the FH-GBML algorithm. The complete table of results for all
datasets is also shown in Appendix A of this work together with
the results of the previous experiments.

According to the average values shown in this table the best
methods in this case are the preprocessing approaches and the
cost-sensitive learning. To carry out the statistical study we first
check for significant differences among the algorithms using an
Iman-Davenport test. The p-value (8.20497E—12) is lower than
our level of confidence o =0.05 and near to zero. Thus, we can
conclude that significant differences do exist, proceeding with a
Shaffer test. The ranks of the algorithms are presented in Fig. 8,

Table 13

Average table of results using the AUC measure for the k-NN variety of algorithms.
Algorithm AUC, AUC ¢
3-NN 0.7697 £ 0.0555 0.7752 £0.0916
3-NN SMOTE 0.8880 + 0.0495 0.8212 £ 0.0836
3-NN SENN 0.8743 £ 0.0434 0.8166 £ 0.0733
3-NNCS 0.8229 £ 0.0567 0.8295 £ 0.0854
3-NN Wr_SMOTE 0.8594 +0.0253 0.8596 + 0.0626
3-NN Wr_US 0.8564 +0.0283 0.8561 £ 0.0655
3-NN Wr_SENN 0.8849 £ 0.0316 0.8509 * 0.0664

and the results of the multiple comparison test performed on all
algorithms are shown in Table 12.

At first glance we can check the tendency that we have seen in
the previous studies: the base classifier is significantly different
from other versions in the experimental study. Particularly, the
base FH-GBML classifier is outperformed by the other versions,
which means that the techniques used in imbalanced classification
are useful and achieve better results than not performing special
strategies to improve the results.

If we focus now on the performance of preprocessing methods
we can observe that the oversampling versions are not statistically
different. If we examine the preprocessing versions versus the
cost-sensitive learning proposal we can see that they also do not
differ statistically. With this information we can state that prepro-
cessing and cost-sensitive learning are a good option to deal with
the imbalanced classification problem.

Finally, we look at the hybridization versions from cost-sensi-
tive learning and preprocessing. We find that between the different
hybrid versions there are not statistical differences. If we compare
the hybrid versions against the other versions of the study we can
appreciate a difference between one of the hybrid versions and the
cost-sensitive learning algorithm. Specifically, the cost-sensitive
version surpasses the hybrid version that uses only an oversam-
pling step with SMOTE + ENN. From this study, we cannot find a
synergy in the hybridization.

5.4. Study of lazy learning versions: k-NN

Similar to the studies of other paradigms, we show in Table 13
the average results in training and test for the different versions of
the study. We also refer the reader to the appendix for the com-
plete table of results.

According to the average values shown in this table the best
methods in this case seem to be the hybridizations of the prepro-
cessing approaches with cost-sensitive learning. To carry out the
statistical study we first check for significant differences among
the algorithms using an Iman-Davenport test. The p-value
(2.71648E-22) is lower than our level of confidence o =0.05 and
near to zero. Thus, we can conclude that significant differences
do exist, proceeding with a Shaffer test. The ranks of the algorithms
are presented in Fig. 9, and the results of the multiple comparison
test performed on all algorithms are shown in Table 14.

Table 12

Shaffer test for the FH-GBML variety of algorithms using the AUC measure.
FH-GBML None SMOTE SENN CcS Wr_SMOTE Wr_US Wr_SENN
None X —(5.439E-10) —(1.078E-6) —(2.379E-7) —(4.128E-5) —(2.379E-7) —(.00676)
SMOTE +(5.439E-10) X =(.64093) =(1.0) =(.41406) =(1.0) =(1.0)
SENN +(1.078E-6) =(.64093) =(1.0) =(1.0) =(1.0) =(.60824)
cS +(2.379E-7) =(1.0) =(1.0) x =(1.0) =(1.0) +(.02511)
Wr_SMOTE +(4.128E-5) =(.41406) =(1.0) =(1.0) x =(1.0) =(1.0)
Wr_US +(2.379E-7) =(1.0) =(1.0) =(1.0) =(1.0) =(.41406)
Wr_SENN +(.00676) =(1.0) =(.60824) —(.02511) =(1. =(.41406)
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Fig. 9. Average rankings using the AUC measure for the k-NN variety of algorithms.

In this last part of experiments we confirm the tendency we
pointed out after the previous statistical procedures: the base clas-
sifier is statistically different from the other versions used in the
study. Using 3-NN the base classifier is outperformed by all the
other algorithms in the analysis. This fact proves again that the ap-
proaches used in imbalanced classification are a need to solve
these problems.

Moving to the comparison between preprocessing methods we
can see that they do not differ statistically. If we broadened the
comparison and we include the cost-sensitive learning proposal
we still can see that there are no statistical differences. With these
facts we can say that preprocessing and cost-sensitive learning are
strong alternatives to solve the imbalanced classification problem.

The hybridization of cost-sensitive learning and preprocessing
for 3-NN seems promising according to the average values. How-
ever, the Shaffer test does not indicate us the presence of statistical
differences between the different hybrid versions. When we ex-
tend the comparison to the preprocessing and cost-sensitive learn-
ing versions we can find a difference between the base classifier
combined with the SMOTE dataset and the hybrid version that uses
only an oversampling step with SMOTE + ENN. Surprisingly, the
difference in this case is in favor of the hybrid version. Due to these
facts, for 3-NN we cannot say that there is no synergy between pre-
processing and cost-sensitive learning; however, this improvement
is so small that gets outshined by its bad results in the other
paradigms.

5.5. General analysis on the suitability of preprocessing vs. cost-
sensitive learning

As summary of the experimental study, and to unify the differ-
ent conclusions extracted through the analysis of the results from
the different selected paradigms, in this subsection we discuss the
results we can discern attending to the three different issues we
wanted to deal with: the first one devoted to demonstrate the
goodness of both approaches for enhancing the performance of
standard learning algorithms on this scenario, the second one for
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contrasting the behaviour of both preprocessing and cost-sensitive
between them and the third part where a hybrid approach combin-
ing the two approaches is studied.

Before addressing the general conclusions we want to empha-
size an idea about the generalization of these experiments: we can-
not extrapolate the behaviour of a version from one paradigm to
another. This fact has been critical in the hybrids models where a
hybrid version was put at the same level of the base classifier in
a paradigm whereas the same hybrid version outperformed a pre-
processing approach in another paradigm.

Focusing now on the questions of the study, regarding the first
issue, it is straightforward that classification performance is de-
graded in an imbalance scenario having a bias towards the major-
ity class examples and that the use of the aforementioned
techniques allow us to obtain a better discrimination of the exam-
ples of both classes resulting in an overall good classification for all
concepts of the problem (positive and negative classes).

The second part of the study has reflected that the two employed
solutions are quite similar between them and it was not possible to
highlight one of them as the most adequate one for no one of the dif-
ferent type of algorithms (paradigms) selected for this study. There-
fore, the question on which approach is preferable for addressing
classification with imbalanced datasets is still unresolved.

Finally, the last approach differs from our expectations on a po-
sitive synergy. In most cases, the preliminary versions of hybridiza-
tion techniques do not show a good behaviour in contrast to
standard preprocessing and cost-sensitive learning. Nevertheless,
some work on the combination of preprocessing and cost-sensitive
learning can still be addressed with more specific methods that en-
hance the behaviour of these approaches.

6. Analyzing the limitations of both preprocessing and cost-
sensitive learning in imbalanced classification. Open problems
related to data intrinsic characteristics

According to the conclusions extracted in the previous section,
we should focus on the nature of the problem itself in order to de-
tect why both type of techniques obtain a comparable quality of
solutions and how to address the imbalance problem in a more
reasonable way. In this section we look at two data intrinsic char-
acteristics issues, class overlapping and dataset shift, and their
influence on imbalanced classification.

In Section 6.1 we will discuss some results about the influence
of the imbalance ratio over the classification process and its rela-
tionship with the class overlap regions. Then, in Section 6.2 we will
talk about the class overlapping problem and how it increases the
difficulty to solve imbalanced classification problems. Finally, Sec-
tion 6.3 will present the dataset shift problem and its relationship
to imbalanced datasets classification.

6.1. On the influence of the imbalance ratio and its relationship with
the class overlap regions

As we have stated previously, in real world machine learning
applications, it has often been reported that the class imbalance

Table 14

Shaffer test for the k-NN variety of algorithms using the AUC measure.
3-NN None SMOTE SENN CcS Wr_SMOTE Wr_US Wr_SENN
None x —(2.142E-7) —(2.260E-8) —(5.690E—-11) —(3.981E-17) —(3.679E-12) —(5.711E-14)
SMOTE +(2.142E-7) X =(1.0) =(1.0) —(.03081) =(.80278) =(.34698)
SENN +(2.260E-8) =(1.0) x =(1.0) =(.09722) =(1.0) =(.80119)
CS +(5.690E—11) =(1.0) =(1.0) X =(.94508) =(1.0) =(1.0)
Wr_SMOTE +(3.981E-17) +(.03081) =(.09722) =(.94508) =(1.0) =(1.0)
Wr_US +(3.679E-12) =(.80278) =(1.0) =(1.0) =(1.0) x =(1.0)
Wr_SENN +(5.711E-14) =(.34698) =(.80119) =(1.0) =(1.0) =(1.0) X
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hinders the performance of some standard classifiers. However, the
relationship between class imbalance and learning algorithms is
not clear yet, and a good understanding of how each one affects
the other is lacking. Japkowicz and Stephen (2002) state that
“Linearly separable domains are not sensitive to any amount of
imbalance. As a matter of fact, as the degree of concept complexity
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Fig. 13. F1 = 48.65.

increases, so does the system’s sensitivity to imbalance”. Thus, it
does not seem fair to directly correlate class imbalance to the loss
of performance of learning algorithms. Rather, it is quite possible
that beyond class imbalances yield certain conditions that hamper
classifiers induction.

As a direct result, there is a need to check whether class imbal-
ances are truly to blame for the loss of performance of learning sys-
tems or whether the class imbalances are not a problem by
themselves. Prati and Batista (2004) develop a study where they
try to find an explanation for this performance decrease. Their
experiments suggest that the problem is not solely caused by class
imbalanced, but it is also related to the degree of data overlapping
among the classes. They propose several experiments with syn-
thetic datasets varying the IR and the overlap existing between
the two classes. From them, it is deduced that it is not the class
probabilities the main responsible for the hinder in the classifica-
tion performance, but instead the degree of overlapping between
the classes. This class overlapping may have a role even more
important to concept induction than class imbalance. Thus, dealing
with class imbalances will not always help classifiers performance
improvement.

Garcia et al. (2008) also develop a study focusing on the rela-
tionship between the IR and the overlap class regions. They studied
the performance of several algorithms in different situations of
imbalance and overlap focusing in the k-NN algorithm. For their
study, they also use a set of synthetic datasets to check the rela-
tionship of these problems in several different situations. On the
one hand, they try to find the relation when the IR in the overlap
region is similar to the overall IR whereas on the other hand, they
search for the relation when the IR in the overlap region is inverse
to the overall one (the positive class is locally denser than the neg-
ative class in the overlap region). This first situation concludes that
the increase in overlapping of a homogeneous imbalance affects
more the (overall) minority class. Furthermore, the more local
schemes tend to be better at classifying the minority class whereas
models based on a more global learning are more robust at classi-
fying the majority class. The second situation produces results
where the accuracy on positive class is improved whereas negative
class produces almost-stable accuracy curves. This example reveals
that when the overlapped data is not balanced, the IR in overlap-
ping can be more important than the overlapping size. In addition,
classifiers based on more global learning attain greater TP rates
whereas more local learning models obtain better TN rates than
the former. This complementarity between global and local classi-
fiers suggest a direction for future works on learning from imbal-
ance data which will be discussed in Section 6.2.
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Similarly, Denil and Trappenberg (2010) examine the effects of
overlap and imbalance on the complexity of the learned model and
demonstrate that overlap is a far more serious factor than imbal-
ance in this respect. They demonstrate that these two problems
acting in concert cause difficulties that are more severe than one
would expect by examining their effects in isolation. In order to
do so, they also use synthetic datasets for classifying with a SVM
where they vary the IR, the overlap between classes and the IR
and overlap jointly. Their results show that when the training set
size is small, high levels of imbalance cause a dramatic drop in
classifier performance, explained by the presence of small dis-
juncts. Overlapping classes cause a consistent drop in performance
regardless of the size of the training set. However, with overlap and
imbalance combined the classifier performance is degraded signif-
icantly beyond what the model predicts.

On the other hand, there exist recent works which have shown
empirically with real world datasets that the quality of the results
has not a clear relationship with the IR. Specifically, in Luengo et al.
(2011) the authors try to characterize this datasets using complex-
ity measures, which capture different aspects or sources of
complexity which are considered complicated to the classification
task. Specifically, they use the so called metric F1 or maximum

Fisher’s discriminant ratio (Ho & Basu, 2002) which measures the
overlap of individual feature values. This data complexity metric,
for one feature dimension, is defined as:

(Uy — .uz)z
02 + 03

f= (13)

where p4, (2, 01y 0, are the means and variances of the two classes,
respectively, in that feature dimension. We compute f for each fea-
ture and take the maximum as measure F1. For a multidimensional
problem, not all features have to contribute to class discrimination.
The problem is easy as long as there exists one discriminating fea-
ture. Therefore, we can just take the maximum f over all feature
dimensions in discussing class separability. Small values indicate
that the classes have a high overlapping degree. Figs. 10-13 show
illustrative examples of artificially generated data with two vari-
ables in the range [0.0;1.0] and two classes as example, similar to
those used in the studies from Garcia et al. (2008) or Denil and
Trappenberg (2010).

In Luengo et al. (2011) the authors depicted the performance of
the different datasets ordered according to the imbalanced ratio
and the F1 measure in order to search for some regions of
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interesting good or bad behaviour. In Fig. 14 we can observe that
the good and bad results of both learning methods with respect
to the preprocessing are not related with the IR value, nor the
improvements achieved with preprocessing steps. However, if
the datasets are ordered using the F1 measure depicted in Fig. 15
both good and bad behavior intervals can be extracted, indicated
by vertical lines. Therefore, the IR is not good enough to predict a
classifier behavior and we need to focus on other problems to
achieve better performance.

6.2. Addressing the significance of overlapping for imbalanced datasets

According to the studies previously presented, we observe the
necessity to focus our efforts on the research for solutions in the
imbalanced scenario towards the problem of overlapping between
classes, without discarding in any case the issue of data distribution.

Our aim, given the current studies on the topic, is to address the
overlapping problem integrating measures to deal with imbalance,
opening many ways for future work. Therefore, following the
approaches for imbalanced classification we can find several paths
to improve the performance.

If we look at approaches at the algorithm-level we try to find
algorithms that can show complementarity between global and lo-
cal classifiers as suggested by Garcia et al. (2008). A recently
emerging solution to class imbalance is through the use of “infor-
mation granulation”. This high level procedure takes a less literal
interpretation of data: instead of viewing a training sample as a
set of example points, this type of classification tries to first estab-
lish higher level concepts via the construction of information gran-
ules. Kaburlasos (2007) propose a method that uses Fuzzy ART
(Carpenter, Grossberg, & Rosen, 1991) to select a level of granular-
ity. Based on these results, data is represented and a traditional
learner is used. Fuzzy ART at its core is a clustering (unsupervised)
system and this approach may be viewed as an additional feature
transformation phase prior to classification. Chen et al. (2008) ap-
ply a similar framework, although k-means clustering is used to
determine information granules instead of Fuzzy Art.

Regarding FRBCSs, Fernandez, del Jesus, and Herrera (2009) pro-
posed to make use of a Hierarchical FRBCS, which consists in the
application of a thicker granularity in order to generate the initial
rule base, and to reinforce those problem subspaces that are spe-
cially difficult by means of the application of rules with a higher
granularity. Also, in Gama (2004) the author uses a framework of
decision trees which allows to, for those leaves which have difficul-
ties to discriminate between examples of different classes, to apply
a strong classifier (for example an SVM or any other technique) in

f2

L fy
~~ synthetic instance
is created for A

order to obtain a better separability in this specific area of the
problem, rather than just using a standard heuristic.

Therefore, a very positive approach at the algorithm-level could
consist in working with different granular levels, in a way that
more general submodels of knowledge could cover the largest part
of the problem space, whereas in more difficult areas, that is,
boundary zones with a high degree of overlapping, we could use
more specific discrimination functions in different paradigms of
learning algorithms.

If we now turn a look at preprocessing approaches at the data-
level we have in mind a double objective: try to find algorithms
that can balance the data distribution whereas trying to avoid
overlap as much as possible.

In oversampling techniques, and specially for the SMOTE algo-
rithm, the problem of over generalization is largely attributed to
the way in which it creates synthetic samples. Specifically, SMOTE
generates the same number of synthetic data samples for each ori-
ginal minority example and does so without consideration to
neighboring examples, which increases the occurrence of overlap-
ping between classes (Wang & Japkowicz, 2004). To this end, var-
ious adaptive sampling methods have been proposed to
overcome this limitation; some representative works include the
Borderline-SMOTE (Han, Wang, & Mao, 2005), Adaptive Synthetic
Sampling (He, Bai, Garcia, & Li, 2008) and the Safe-Level-SMOTE
(Bunkhumpornpat, Sinapiromsaran, & Lursinsap, 2009) algorithms.
In Fig. 16 we can observe the generation of new instances using an
over-sampling algorithm. It defines three kind of instances accord-
ing to its neighbors: “Safe” instances that can be used to generate
synthetic samples, “Danger” instances that can be used to generate
synthetic samples but can introduce overlap between the two clas-
ses and “Noise” instances that should not be used to generate in-
stances as they are considered wrongly labelled instances.

Also, some combination of preprocessing of instances with data
cleaning techniques could lead to diminish the overlapping that is
introduced from sampling methods. Some representative work in
this area includes the one-sided selection method Kubat and Mat-
win (1997), the condensed nearest neighbor rule and Tomek Links
integration method Batista et al. (2004), the neighborhood cleaning
rule Laurikkala (2001) based on the edited nearest neighbor (ENN)
rule which removes examples that differ from two of its three
nearest neighbors, and the integrations of SMOTE with ENN and
SMOTE with Tomek links Batista et al. (2004) (Fig. 17).

In this manner, applying new ways of informed preprocessing
techniques in order to identify and weight significant samples
and discard noisy examples in the boundary areas could be an
interesting topic for future work for both relaxing overlapping

Consider 6-nearest neighbor: m=6

For A: number of minority instance: 2 “DANGER”
number of majority instance: 4 instance
For B: number of minority instance: 5 “g 5
number of majority instance: 1 — A
' instance
For C: number of minority instance: 6 “NOISE”
number of majority instance: 0 instance

Fig. 16. Data creation based on Borderline instance.
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Fig. 17. (a) Original dataset distribution, (b) post-SMOTE dataset, (c) the identified Tomek links, and (d) the dataset after removing Tomek links.

and rebalancing the data distribution for avoiding the bias towards
the majority class examples during the learning stage.

Still in the preprocessing approach, Martin-Félez and Mollineda
(2010) propose an approach that combines preprocessing and fea-
ture selection (specifically in this order), in a way that preprocessing
deals with data distribution and small disjuncts (“IR part”) and fea-
ture selection somehow reduces the degree of overlapping (“F1
part”). In a more general way, the idea behind this approach consists
on overcoming different sources of data complexity such as class
overlap, irrelevant and redundant features, noisy samples, class
imbalance, low ratios of the sample size to dimensionality and so
on using different approaches used to solve each complexity.

Also, Villar, Fernandez, Sanchez, and Herrera (2009, 2010) use a
FRBCS that performs an a priori learning of the data base to obtain
the optimal number of variables and granularity level for the fuzzy
partitions in an imbalance scenario. The authors combine prepro-
cessing (SMOTE in this case) with the former technique with very
good results in performance (in contrast with C4.5) with a reduc-
tion of about the 65% of the variables for high imbalanced
problems.

In summary, in order to reduce the original overlapping of a
problem, we may apply a feature selection process in order to re-
move those instances which do not introduce any relevant infor-
mation but makes hard to obtain discrimination functions for a
given dataset.

6.3. Dataset shift in imbalanced classification

The problem of dataset shift (Alaiz-Rodriguez & Japkowicz, 2008;
Shimodaira, 2000; Quifionero Candela, Sugiyama, Schwaighofer, &
Lawrence, 2009) is defined as the case where training and test data
follow different distributions. This is a common problem that can

affect all kind of classification problems, and it often appears due
to sample selection bias issues. A mild degree of dataset shift is pres-
ent in most real-world problems, but general classifiers are often
capable of handling it without a severe performance loss.

However, the dataset shift issue is specially relevant when deal-
ing with imbalanced classification, because in highly imbalanced
domains, the minority class is particularly sensitive to singular
classification errors, due to the typically low number of examples
it presents (Moreno-Torres & Herrera, 2010). In the most extreme
cases, a single misclassified example of the minority class can cre-
ate a significant drop in performance.

Fig. 18 presents an example of dataset shift in imbalanced clas-
sification for clarity. Note how, in the test set, some of the minority
class examples are in an area where there was none in the training
set, creating a situation that is likely to produce low classifier
performance.

Since dataset shift is a highly relevant issue in imbalanced clas-
sification, it is easy to see why it would be an interesting perspec-
tive to focus on in future research regarding the topic.

There are two different potential approaches in the study of the
effect and solution of dataset shift in imbalanced domains. The first
one focuses on intrinsic dataset shift, that is, the data of interest in-
cludes some degree of shift that is producing a relevant drop in
performance. In this case, we need to:

e Develop techniques to discover and measure the presence of
dataset shift following the suggestions made in (Cieslak &
Chawla, 2009; Wang et al., 2003; Yang, Wu, & Zhu, 2008); but
adapting them to focus on the minority class. To do so, either
a partially labeled test set will be needed (in order to properly
identify the minority class examples in the test set), or a new
strategy will have to be developed.
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Fig. 18. Example of the impact of dataset shift in imbalanced domains.

e Design algorithms that are capable of working under dataset
shift conditions. These could be either preprocessing techniques
(Moreno-Torres, Llora, Goldberg, & Bhargava, in press) or algo-
rithms that are designed to have the capability to adapt and
deal with dataset shift without the need for a preprocessing
step (Alaiz-Rodriguez, Guerrero-Curieses, & Cid-Sueiro, 2009;
Bickel, Briickner, & Scheffer, 2009; Globerson, Teo, Smola, &
Roweis, 2009; Gretton et al., 2009; Sugiyama, Krauledat, &
Miiller, 2007). In both cases, we are not aware of any proposals
in the literature that focus on the problem of imbalanced
classification in the presence of dataset shift.

The second branch in terms of dataset shift in imbalanced clas-
sification is related to induced dataset shift. Most current state of
the art research is validated through stratified cross-validation
techniques, which are another potential source of shift in the ma-
chine learning process. A more suitable validation technique needs
to be developed in order to avoid introducing dataset shift issues
artificially.

7. Concluding remarks

In this work we have analyzed the preprocessing performance
in the framework of imbalanced datasets against other approaches
in this problem such as cost-sensitive learning. We have consid-
ered two oversampling methods: SMOTE and SMOTE + ENN, a
cost-sensitive version and a hybrid approach that tries to integrate
both approaches together.

We have observed that the approaches used to address the
imbalanced problem improve the overall performance in all the
paradigms used in the study, which was the expected behaviour.

The comparison between preprocessing techniques against
cost-sensitive learning hints that there are no differences among
the different preprocessing techniques. The statistical study carried

out let us say that both preprocessing and cost-sensitive learning
are good and equivalent approaches to address the imbalance
problem.

The preliminary versions of hybridization techniques are truly
competitive with the standard methodologies only in some cases,
which determines more work needs to be done in addressing this
approach.

Finally, we develop a discussion about how to go above pre-
processing and cost-sensitive learning limits. We try to analyze
the problem according to the results and we focus on the open
problems to improve the algorithms. Specifically, we have
emphasized that the IR is important but there are still other is-
sues like the class overlapping and dataset shift problems that
arise in some cases and can prove detrimental in terms of classi-
fication performance. Since overcoming these problems is the key
to the improvement of the algorithms’ performance, future work
should be oriented to analyze the existing overlap to create accu-
rate algorithms that can improve in imbalanced classification and
to use dataset shift repairing techniques to fill the gap between
data distributions.
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Appendix A. Detailed results for the experimental study

In this appendix we present the complete results tables for
all the algorithms used in this work. Thus, the reader can ob-
serve the full training and test results, in order to compare the
performance of each approach. In Table A.15 we show the

Table A.15

Complete table of results using the AUC measure for the C4.5 variety of algorithms.
C4.5 None SMOTE SENN (& Wr_SMOTE Wr_US Wr_SENN
Dataset Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst
Glass1 0.8561 0.7399 09234 0.7368 0.8690 0.6921 0.9069 0.7160 0.9069 0.7160 0.8831 0.6682 0.8595 0.7367
EcoliOvs1 0.9870 0.9832 09926 0.9729 0.9870 0.9832 0.9870 0.9832 0.9870 0.9832 0.9800 0.9832 0.9870 0.9832
Wisconsin 0.9840 0.9454 09826 0.9532 0.9776 09576 0.9780 0.9636 0.9780 0.9636 0.9768 0.9555 0.9755 0.9524
Pima 0.8317 0.7012 0.8179 0.7245 0.8012 0.7403 0.8571 0.7125 0.8571 0.7125 0.8621 0.7311 0.8203 0.7077
IrisO 1.0000 0.9900 1.0000 0.9900 1.0000 0.9900 1.0000 0.9900 1.0000 0.9900 1.0000 0.9900 1.0000 0.9900
GlassO 0.9306 0.8167 0.9459 0.7752 0.8897 0.7994 0.9205 0.8212 0.9205 0.8212 09100 0.8042 0.8636 0.7999
Yeast1 0.7494 0.6642 0.8085 0.7090 0.7829 0.6954 0.7855 0.6779 0.7855 0.6779 0.7806 0.6767 0.8023  0.6945
Vehiclel 0.8898 0.6717 09503 0.7301 0.8817 0.7542 0.9362 0.7013 09362 0.7013 0.9276 0.7130 0.8173 0.6719
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Table A.15 (continued)
C4.5 None SMOTE SENN CS Wr_SMOTE Wr_US Wr_SENN
Dataset Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst
Vehicle2 0.9905 0.9561 0.9905 0.9498 0.9848 0.9419 09866 0.9434 0.9866 09434 0.9850 0.9450 0.9811 0.9419
Vehicle3 0.8588 0.6637 0.9508 0.7282 0.8914 0.7409 09221 0.7283 0.9221 0.7283 0.9275 0.7010 0.8569 0.6791
Haberman 0.6204 05757 0.7124 0.6163 0.7383 0.5884 0.6380 0.5752 0.6380 0.5752 0.5879 0.5476 0.6417 0.5396
Glass0123vs456 0.9671 09155 09868 0.9232 09635 0.9240 09806 0.8777 09806 0.8777 0.9783 0.8931 0.9513 0.9108
Vehicle0O 0.9863 09296 09878 09188 09724 0.9072 09861 0.9289 0.9861 0.9289 0.9799 09373 0.9752 09178
Ecolil 09329 08586 0.9507 0.9105 0.9335 0.8926 0.9457 0.9114 0.9457 09114 09394 0.9017 0.9368 0.9065
New-thyroid2 0.9679 09373 09922 09659 09817 0.9774 0.9903 0.9802 0.9903 0.9802 0.9868 09437 0.9744 0.9063
New-thyroid1 0.9607 09143 09879 09631 09944 0.9889 09903 0.9746 0.9903 09746 0.9882 09746 0.9774 0.9405
Ecoli2 0.9297 0.8641 09738 0.8811 09716 0.8976 09594 0.8905 0.9594 0.8905 0.9515 0.8641 0.9473 0.8580
Segment0 0.9932 09826 09986 0.9927 09989 0.9916 0.9988 0.9919 0.9988 0.9919 0.9967 09894 0.9940 0.9876
Glass6 0.9347 0.8132 09872 0.8842 09851 0.9203 09865 0.8896 0.9865 0.8896 0.9878 0.8923 0.9369 0.9365
Yeast3 0.9237 0.8597 0.9607 0.8905 09617 0.9230 09784 09117 09784 09117 0.9796 09096 0.9587 0.9176
Ecoli3 0.8320 0.7280 0.9671 0.8123 0.9371 0.8705 0.9585 0.8326 0.9585 0.8326 0.9605 0.8452 09133 0.8694
Page-blocks0 0.9637 09221 09848 0.9504 09797 0.9427 09903 0.9458 0.9903 09458 0.9894 09435 09614 0.9284
Ecoli034vs5 0.9188 0.8389 0.9854 0.9000 09764 0.8806 0.9938 0.9250 0.9938 0.9250 0.9896 0.8972 0.9694 09111
Yeast2vs4 09158 0.8307 0.9814 0.8588 0.9746 0.9042 0.9797 0.8866 0.9797 0.8866 0.9768 0.8955 09323 0.8291
Ecoli067vs35 0.8789 0.8250 0.9781 0.8500 09775 0.8125 09875 0.8825 0.9875 0.8825 0.9869 0.8775 0.9201 0.8875
Ecoli0234vs5 0.9313 0.8307 09897 0.8974 09828 0.8947 09966 0.8334 09966 0.8334 0.9835 0.7946 0.9730 0.8835
Glass015vs2 0.8910 05011 09766 0.6772 09083 0.7957 09790 0.6003 0.9790 0.6003 0.9758 0.5938 0.8727 0.5508
Yeast0359vs78 0.7028 0.5868 0.9490 0.7047 09217 0.7024 09715 0.6765 09715 0.6765 0.9556 0.6721 0.8362 0.6641
Yeast02579vs368 0.8809 0.8432 09767 09143 09576 09138 09874 0.8996 0.9874 0.8996 0.9855 0.8896 0.9533 0.9102
Yeast0256vs3789 0.7563 0.6606 0.9330 0.7951 09179 0.7817 09743 0.7846 09743 0.7846 0.9435 0.7403 0.8906 0.7648
Ecoli046vs5 09368 0.8418 0.9870 0.8701 0.9836 0.8869 0.9911 0.8310 0.9911 0.8310 0.9884 0.8174 09543 0.7978
Ecoli01vs235 0.9097 0.7136 09656 0.8377 09650 0.8332 09739 0.7641 09739 0.7641 0.9727 0.7664 0.9263 0.7532
Ecoli0267vs35 0.8788 0.7752 09796 0.8155 09827 0.8179 09889 0.8527 0.9889 0.8527 0.9852 0.8653 0.9067 0.8577
Glass04vs5 0.9940 0.9941 09910 0.9816 09910 0.9754 0.9940 0.9941 0.9940 0.9941 0.9940 0.9941 0.9940 0.9941
Ecoli0346vs5 0.9118 0.8615 0.9892 0.8980 0.9885 0.8980 0.9905 0.8507 0.9905 0.8507 0.9905 0.8534 0.9579 0.7730
Ecoli0347vs56 0.8600 0.7757 09778 0.8568 09568 0.8546 0.9892 0.7586 0.9898 0.7764 0.9806 0.7985 0.9384 0.8100
Yeast05679vs4 0.8508 0.6802 09526 0.7602 09199 0.7802 0.9741 0.7243 09741 0.7243 0.9691 0.7480 0.9134 0.7804
Ecoli067vs5 0.9363 0.7675 09875 0.8475 09744 0.8450 0.9888 0.8825 0.9888 0.8825 0.9869 0.8775 0.9081 0.8600
VowelO 0.9999 09706 0.9971 0.9505 0.9943 0.9455 0.9925 0.9422 0.9925 09422 0.9928 09311 0.9928 0.9322
Glass016vs2 0.8710 0.5938 09716 0.6062 0.9375 0.6388 0.9829 0.6155 0.9829 0.6155 0.9807 0.5793 0.8529 0.5788
Glass2 09350 0.7194 0.9700 0.6390 0.9280 0.7457 0.9734 0.6416 0.9734 0.6416 09639 0.6715 0.8669 0.6501
Ecoli0147vs2356 0.8578 0.8051 09789 0.8277 09565 0.8228 09882 0.8772 09882 0.8772 0.9866 0.8788 09112 0.7673
Led7digit02456789vs1  0.9022 0.8788 0.9225 0.8908 0.9249 0.8379 0.9203 0.8436 0.9203 0.8436 0.9178 0.8387 09042 0.8616
Glass06vs5 0.9950 0.9950 0.9912 09147 09912 0.9647 09950 0.9950 0.9950 0.9950 0.9637 0.9579 0.9950 0.9950
EcoliO1vs5 09114 08159 09886 0.7977 09830 0.8250 09778 0.8182 09778 0.8182 0.9858 0.8318 0.9392 0.8136
Glass0146vs2 0.7879 0.6616 0.9676 0.7842 09042 0.7095 0.9847 0.6797 0.9847 0.6797 0.9708 0.6421 0.7930 0.6102
Ecoli0147vs56 0.8842 0.8318 09798 0.8592 0.9610 0.8424 0.9756 0.8539 0.9756 0.8539 0.9813 0.8371 0.9468 0.7774
ClevelandOvs4 0.8648 0.6878 09939 0.7908 09816 0.7605 0.9886 0.6893 0.9906 0.6823 0.9914 0.6885 0.9086 0.6795
Ecoli0146vs5 0.9178 0.7885 09870 0.8981 09851 0.8981 0.9808 0.8385 0.9808 0.8385 0.9837 0.8135 0.9572 0.8212
Ecoli4 0.9430 0.8437 09703 0.7794 09827 0.9044 09680 0.8636 0.9680 0.8636 0.9684 0.8636 0.9505 0.8386
Yeast1vs7 0.7608 0.6275 0.9351 0.7003 0.9097 0.7371 0.9741 0.6139 0.9741 0.6139 0.9671 0.6794 0.8530 0.6627
ShuttleOvs4 1.0000 0.9997 0.9999 0.9997 0.9999 0.9997 1.0000 0.9997 1.0000 0.9997 1.0000 1.0000 1.0000 1.0000
Glass4 0.9403 0.7542 09901 0.8867 09670 0.8650 09104 0.8431 09104 0.8431 0.9340 0.8298 0.8861 0.7831
Page-blocks13vs2 0.9989 09978 09975 0.9955 0.9975 0.9910 0.9989 0.9789 0.9989 0.9789 0.9977 0.9978 0.9791 0.9498
Abalone9vs18 0.6907 0.5859 09142 0.6283 09058 0.7193 09864 0.6655 0.9864 0.6655 0.9849 0.6369 0.8515 0.7150
Glass016vs5 0.9843 0.8943 09921 0.8129 09864 0.8629 09914 0.9886 0.9914 0.9886 0.9914 09886 0.9914 0.9886
Shuttle2vs4 1.0000 0.9500 0.9990 0.9917 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Yeast1458vs7 0.5000 0.5000 0.9158 0.5367 0.8770 0.5563 0.9640 0.5540 0.9640 0.5540 0.9625 0.5464 0.7788 0.4943
Glass5 0.9702 0.8976 09921 0.8805 09705 0.7756 0.9976 0.9427 0.9976 0.9427 0.9872 09854 0.8624 0.8439
Yeast2vs8 0.5563 0.5250 0.9071 0.8338 0.8960 0.8197 0.9927 0.8652 0.9927 0.8652 0.9913 0.8359 0.8541 0.7978
Yeast4 0.7482 0.6135 0.9071 0.7121 0.9007 0.7257 0.9722 0.7222 09722 0.7222 09700 0.6999 0.8872 0.7400
Yeast1289vs7 0.6290 0.6156 09465 0.6832 09414 0.6332 09752 0.6769 09752 0.6769 0.9748 0.6973 0.7073 0.6107
Yeast5 0.9453 0.8833 09777 09337 09820 0.9406 0.9929 0.9330 0.9929 0.9330 0.9928 0.9326 0.9743 0.9434
Ecoli0137vs26 0.7953 0.7481 09678 0.8136 09660 0.8136 0.9804 0.8281 0.9804 0.8281 0.9594 0.7954 0.8907 0.8445
Yeast6 0.7762 0.7115 09326 0.8294 09314 0.8270 0.9883 0.8082 0.9883 0.8082 0.9864 0.8099 0.8165 0.7311
Abalone19 0.5000 0.5000 0.8550 0.5205 0.8890 0.5166 0.9839 0.5701 0.9839 0.5701 0.9835 0.5543 0.6211 0.5231
Average 0.8774 0.7902 09606 0.8324 09471 0.8390 09679 0.8294 09679 0.8296 0.9635 0.8245 0.9083 0.8145

Table A.16

Complete table of results using the AUC measure for the SVM variety of algorithms.
SVM None SMOTE SENN CS Wr_SMOTE Wr_US Wr_SENN
Dataset Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst
Glass1 0.5155 04963 0.6613 0.6179 0.6780 0.6391 0.6624 0.6264 0.5000 0.5000 0.5097 0.5000 0.6229 0.5682
EcoliOvs1 0.9675 09671 09844 09796 09811 0.9770 09675 0.9671 0.9844 09796 0.9810 0.9731 0.9828 0.9796
Wisconsin 0.9728 09666 09770 0.9727 09794 09691 09724 0.9719 09653 09552 0.9726 09626 0.9777 0.9737
Pima 0.7334 0.7194 0.7523 0.7348 0.7520 0.7300 0.7378 0.7289 0.6985 0.6916 0.6960 0.7116 0.7452 0.7449
IrisO 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(continued on next page)
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SVM None SMOTE SENN CS Wr_SMOTE Wr_US Wr_SENN
Dataset Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst
GlassO 0.7070 0.6914 0.7716 0.7377 0.7755 0.7243 0.5215 0.5074 0.7778 0.7517 0.7778 0.7517 0.7411 0.7520
Yeast1 05771 05732 0.7108 0.7100 0.7096 0.7067 0.6675 0.6749 0.5000 0.5000 0.5012 0.5000 0.6750 0.6897
Vehiclel 0.7510 0.7202 0.8001 0.7742 0.8184 0.8055 0.7930 0.7546 0.6401 0.6180 0.6147 0.6076 0.7125 0.6882
Vehicle2 09693 09527 0.9722 0.9601 0.9711 0.9578 0.9734 0.9571 0.9223 0.9068 0.9371 0.9070 0.9023 0.8891
Vehicle3 0.7290 0.7134 0.7805 0.7613 0.8101 0.7881 0.8072 0.7904 04789 04871 0.5612 0.5753 0.6339 0.6306
Haberman 0.5223 0.5036 0.6287 0.6344 0.6621 0.6332 0.5225 0.5382 0.5000 0.5000 0.5000 0.5000 0.5217 0.4996
Glass0123vs456 09151 09043 0.9351 0.9050 0.9426 0.8987 0.8572 0.8445 0.8572 0.8445 0.8672 0.8445 09425 0.8987
Vehicle0O 09780 09490 0.9778 0.9632 0.9778 0.9611 0.9781 0.9493 0.9798 0.9620 0.9805 0.9653 0.9610 0.9470
Ecolil 0.8331 0.8192 09082 0.9062 0.9006 0.9024 0.9084 0.9062 0.6430 0.6367 0.6523 0.6535 0.8776 0.8659
New-thyroid2 0.9972 09829 0.9965 0.9917 0.9917 0.9889 0.9972 0.9829 0.9750 0.9687 0.9802 0.9603 0.9680 0.9659
New-thyroid1 09972 09829 0.9965 0.9944 0.9944 0.9861 0.9943 0.9687 0.9786 0.9516 0.9901 0.9829 09701 0.9603
Ecoli2 0.7675 0.7351 0.9073 0.9067 0.9065 0.9050 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.8916 0.8805
Segment0 0.9954 0.9927 09987 0.9955 0.9985 0.9965 0.9990 0.9965 0.9947 09932 0.9946 0.9932 09944 0.9922
Glass6 09379 09198 0.9497 0.9063 0.9554 0.9009 0.8882 0.8725 0.8882 0.8725 0.8964 0.8919 09281 0.9032
Yeast3 0.6305 0.6299 0.9056 0.8917 0.9114 0.9061 0.9057 0.8951 0.5000 0.5000 0.5000 0.5000 0.5200 0.5154
Ecoli3 0.5000 0.5000 09037 0.8984 0.8964 0.8818 0.8222 0.7925 0.5000 0.5000 0.5855 0.5614 0.7267 0.6976
Page-blocksO 0.8287 0.8218 0.9251 0.9258 0.9292 0.9273 0.9248 0.9254 0.5001 0.5004 0.4976 0.4769 05738 0.5828
Ecoli034vs5 09153 0.8611 0.9271 0.8889 0.9250 0.8861 0.8750 0.8639 0.8750 0.8639 0.8847 0.8556 0.8972 0.8889
Yeast2vs4 0.6691 0.6691 0.9090 0.8896 0.9084 0.8885 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.7408 0.7360
Ecoli067vs35 0.8999 0.8525 0.9276 0.8325 0.9239 0.8350 0.8363 0.8025 0.7807 0.7050 0.8468 0.8300 0.8733 0.8275
Ecoli0234vs5 09229 0.8667 0.9302 0.8892 0.9205 0.8892 0.8813 0.8417 0.8813 0.8417 0.8834 0.8140 09292 0.8696
Glass015vs2 0.5000 0.5000 0.5943 0.5094 0.5961 0.5191 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Yeast0359vs78 0.6067 0.6067 0.7476 0.7451 0.7522 0.7450 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.6067 0.6067
Yeast02579vs368 0.8090 0.8006 0.9137 0.9013 0.9143 0.9069 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.8890 0.8981
Yeast0256vs3789 0.5524 05486 0.8102 0.7940 0.8098 0.8018 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.8034 0.8000
Ecoli046vs5 09028 0.8696 0.9213 0.8869 0.9130 0.8869 0.8875 0.8696 0.8875 0.8696 0.8806 0.8669 0.8966 0.8642
Ecoli01vs235 0.8863 0.8359 0.9393 0.8505 0.9420 0.8550 0.8429 0.7805 0.8429 0.7805 0.8796 0.8582 0.9029 0.7959
Ecoli0267vs35 0.8899 0.8526 0.9162 0.8255 0.9156 0.8530 0.8346 0.7851 0.8346 0.7851 0.8288 0.8251 0.8717 0.8079
Glass04vs5 0.8893 0.8500 0.9638 0.9566 0.9638 0.9507 0.8893 0.9000 0.8893 0.9000 0.8983 0.9129 0.8893 0.9000
Ecoli0346vs5 09035 0.8696 0.9191 0.8926 0.9287 0.8926 0.8688 0.8946 0.8688 0.8946 0.8743 0.8973 09279 0.8088
Ecoli0347vs56 09123 0.8935 0.9219 0.9082 0.9224 0.9061 0.8550 0.8135 0.8500 0.8135 0.8545 0.8135 09191 0.8848
Yeast05679vs4 0.5000 0.5000 0.8016 0.8075 0.7977 0.7875 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.7371 0.7135
Ecoli067vs5 0.9094 0.8425 09213 0.8475 0.9238 0.8075 0.8500 0.7450 0.8500 0.7450 0.8775 0.8325 09013 0.9125
VowelO 09096 0.8950 0.9793 0.9622 0.9795 0.9622 0.8655 0.8461 0.9432 0.9244 0.9420 09172 09477 0.9489
Glass016vs2 0.5000 0.5000 0.6462 0.5336 0.6520 0.5267 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Glass2 0.5000 0.5000 0.6883 0.6155 0.6852 0.6905 0.7051 0.5953 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Ecoli0147vs2356 0.8635 0.8434 0.8973 0.8828 0.9060 0.8727 0.7801 0.7267 0.7801 0.7267 0.7882 0.7101 0.8885 0.8568
Led7digit02456789vs1  0.9051 0.8901 0.8981 0.8851 0.8850 0.8891 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.9027 0.8272
Glass06vs5 0.7071 0.6500 0.9520 0.9437 0.9520 0.9437 0.6929 0.6500 0.6929 0.6500 0.8262 0.6245 0.6929 0.6500
Ecoli01vs5 09273 0.8364 0.9648 0.8364 0.9608 0.8364 0.8813 0.7909 0.8813 0.7909 0.8864 0.7909 0.9403 0.8864
Glass0146vs2 0.5000 0.5000 0.6631 0.6121 0.6729 0.6310 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Ecoli0147vs56 09080 0.8719 09181 0.8612 0.9205 0.8546 0.8400 0.7967 0.8400 0.7967 0.8742 0.8335 0.8984 0.8519
ClevelandOvs4 0.9403 0.7483 09619 0.8785 0.9627 09149 09318 0.7483 09318 0.7483 0.9503 0.7483 0.8966 0.8014
Ecoli0146vs5 0.8798 0.8635 0.9269 0.8904 0.9404 0.8808 0.8438 0.7923 0.8438 0.7923 0.8620 0.8154 0.8865 0.8654
Ecoli4 0.5875 0.5750 0.9743 0.9200 0.9739 0.9200 0.9834 0.9529 0.5000 0.5000 0.5000 0.5000 0.6313 0.6000
Yeast1vs7 0.5000 0.5000 0.7746 0.7861 0.7664 0.7741 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
ShuttleOvs4 1.0000 1.0000 1.0000 0.9960 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9960 1.0000 1.0000
Glass4 0.6157 05592 0.9546 0.9576 0.9621 0.9101 0.9615 0.9126 0.6064 0.5617 0.5964 0.5592 0.7529 0.6733
Page-blocks13vs2 0.8896 0.8332 0.9654 0.9561 0.9654 0.9640 0.8513 0.8566 0.6777 0.7757 0.6654 0.6325 0.7104 0.6738
Abalone9vs18 0.5029 0.5000 0.8161 0.8127 0.8257 0.8128 0.8352 0.8740 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Glass016vs5 0.5839 04971 0.9536 0.9429 0.9521 0.9457 0.5554 0.5000 0.5554 0.5000 0.6346 0.5886 0.5825 0.5471
Shuttle2vs4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9990 0.9960 1.0000 1.0000
Yeast1458vs7 0.5000 0.5000 0.6926 0.6373 0.7032 0.6266 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Glass5 0.5554 0.5000 0.9518 0.9512 0.9488 0.9415 0.9713 0.9732 0.5554 0.5000 0.5554 0.5500 0.5143 0.5000
Yeast2vs8 0.7739 0.7739 0.8201 0.7663 0.8183 0.7642 0.8223 0.7664 0.5500 0.5739 0.5500 0.5739 0.7739 0.7739
Yeast4 0.5000 0.5000 0.8571 0.8241 0.8560 0.8258 0.8604 0.8155 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Yeast1289vs7 0.5000 0.5000 0.7401 0.7194 0.7455 0.7077 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Yeast5 0.5000 0.5000 09641 09653 09642 09628 0.9648 0.9656 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Ecoli0137vs26 0.8733 0.8500 0.9571 0.7990 0.9521 0.8044 0.8733 0.8500 0.8733 0.8500 0.8720 0.8481 0.8553 0.8463
Yeast6 0.5000 0.5000 0.8886 0.8730 0.8867 0.8696 0.8807 0.8758 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Abalone19 0.5000 0.5000 0.8039 0.7930 0.8150 0.7873 0.8170 0.7615 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Average 0.7563 0.7341 0.8806 0.8514 0.8826 0.8517 0.7869 0.7651 0.6981 0.6820 0.7077 0.6895 0.7656 0.7461
Table A.17
Complete table of results using the AUC measure for the FH-GBML variety of algorithms.

FH-GBML None SMOTE SENN cs Wr_SMOTE Wr_US WTr_SENN
Dataset Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst
Glass1 0.8103 0.7199 0.8194 0.7313 0.8220 0.7331 0.8270 0.7414 0.8263 0.6852 0.8278 0.6964 0.8192 0.7540
EcoliOvs1 09958 09762 0.9926 0.9627 0.9837 0.9532 0.9942 0.9765 0.9959 0.9729 0.9928 0.9550 0.9878 0.9698
isconsin 09818 09620 0.9811 0.9638 0.9785 0.9720 0.9828 0.9780 0.9841 0.9704 0.9829 0.9704 09739 0.9507
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Table A.17 (continued)
FH-GBML None SMOTE SENN CS Wr_SMOTE Wr_US Wr_SENN
Dataset Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst
Pima 0.7410 0.6980 0.7684 0.7381 0.7494 0.7061 0.7772 0.7274 0.7770 0.7235 0.7776 0.7304 0.7619 0.7321
IrisO 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9950 0.9713 0.9850 1.0000 1.0000
GlassO 0.8246 0.7524 0.8515 0.7542 0.8325 0.7901 0.8500 0.7709 0.8565 0.8036 0.8542 0.7738 0.8342 0.8043
Yeast1 0.6717 06611 0.7310 0.7004 0.7211 0.7044 0.7353 0.7016 0.7351 0.7115 0.7346 0.7234 0.7272  0.6965
Vehiclel 0.6642 06164 0.7655 0.7106 0.7469 0.7049 0.7615 0.6982 0.7655 0.7126 0.7549 0.7202 0.7284 0.6902
Vehicle2 0.8257 0.8204 0.8917 0.8718 0.8812 0.8697 0.8900 0.8732 0.8932 0.8768 0.8859 0.8704 0.8916 0.8582
Vehicle3 0.6454 06121 0.7520 0.7128 0.7501 0.7275 0.7500 0.6942 0.7485 0.6929 0.7493 0.6966 0.7339 0.6748
Haberman 0.6284 05130 0.7080 0.6136 0.6851 0.6067 0.7498 0.6061 0.7547 0.6132 0.7506 0.6141 0.6345 0.5163
Glass0123vs456 09651 0.8888 0.9722 0.9307 0.9704 0.9430 0.9796 0.9154 0.9774 0.8474 0.9803 0.9082 09617 0.8954
VehicleO 0.8618 0.8348 0.9062 0.8938 0.9007 0.8697 0.8997 0.8878 0.9194 0.9053 0.9131 0.9050 0.8988 0.8837
Ecolil 09083 0.8480 0.9276 0.8763 0.9174 0.8704 0.9346 0.8659 0.9303 0.8732 0.9297 0.8731 09198 0.8557
New-thyroid2 09893 09546 0.9986 0.9802 0.9931 0.9774 1.0000 0.9516 1.0000 0.9544 0.9979 0.9659 0.9579 0.8944
New-thyroid1 09982 09931 1.0000 0.9516 0.9944 0.9917 1.0000 0.9659 1.0000 0.9659 0.9958 0.9405 0.9608 0.9488
Ecoli2 09296 0.8550 0.9538 0.8861 0.9471 0.9369 0.9569 0.8974 0.9564 0.9044 0.9536 0.8943 0.9428 0.9343
Segment0 09724 09709 0.9837 0.9772 0.9829 0.9741 0.9891 0.9806 0.9827 0.9828 0.9855 0.9802 0.9840 0.9736
Glass6 09656 09032 0.9772 0.8827 0.9743 0.8298 0.9854 0.8384 0.9949 0.8605 0.9899 0.8771 0.9509 0.9252
Yeast3 0.8673 0.8321 09432 0.9293 0.9362 09165 0.9447 0.9076 0.9419 09212 0.9424 0.9298 0.9341 0.9089
Ecoli3 0.8240 0.7674 0.9405 0.8847 0.9443 0.8787 0.9516 0.8864 0.9554 0.8502 0.9524 0.8772 09222 0.8283
Page-blocksO 0.8170 0.8116 0.9012 0.8938 0.8939 0.8983 0.9028 0.8944 0.9003 0.9017 0.8996 0.9023 0.8927 0.8868
Ecoli034vs5 0.9743 0.8569 0.9865 0.8944 0.9865 0.8444 0.9997 0.9125 1.0000 0.8236 0.9979 0.8861 0.9597 0.8972
Yeast2vs4 0.8859 0.8328 0.9442 0.9073 0.9504 0.8972 0.9626 0.8931 0.9610 0.9056 0.9606 0.9196 0.9019 0.8809
Ecoli067vs35 09324 08575 0.9458 0.8125 0.9539 0.8750 0.9828 0.8188 0.9831 0.8075 0.9863 0.8375 0.9036 0.8350
Ecoli0234vs5 09688 0.8890 0.9856 0.8572 0.9769 0.8434 0.9993 0.8059 0.9979 0.8696 0.9903 0.8227 0.9501 0.9306
Glass015vs2 0.5886 0.4887 0.8709 0.6008 0.8576 0.7204 0.9246 0.6481 0.9267 0.6191 09141 0.7167 0.7967 0.6013
Yeast0359vs78 0.6100 0.5889 0.7995 0.7226 0.7977 0.7351 0.8204 0.7573 0.8234 0.7030 0.8262 0.6879 0.7895 0.7004
Yeast02579vs368 0.8998 0.8619 0.9248 0.9099 0.9232 0.8938 0.9330 0.9001 0.9325 0.8982 0.9311 0.9071 0.9270 0.9029
Yeast0256vs3789 0.7259 0.6911 0.8283 0.7851 0.8252 0.7942 0.8374 0.7945 0.8388 0.7818 0.8359 0.7970 0.8226 0.7778
Ecoli046vs5 09688 0.8973 0.9877 0.8326 0.9829 0.8061 0.9986 0.9669 0.9973 0.8142 0.9963 0.8669 0.9682 0.9337
Ecoli01vs235 0.9407 0.7882 0.9693 0.8075 0.9625 0.8482 0.9781 0.7955 0.9804 0.8409 0.9794 0.8320 0.9276 0.7900
Ecoli0267vs35 0.9314 0.8551 09599 0.8331 0.9479 0.7991 0.9864 0.8315 0.9842 0.8103 0.9855 0.8303 0.9326 0.8216
Glass04vs5 1.0000 0.8441 0.9868 0.9673 0.9925 0.8574 1.0000 0.9199 1.0000 09375 09895 0.7195 0.9687 0.8188
Ecoli0346vs5 09556 0.7946 0.9823 0.8331 0.9872 0.9142 0.9986 0.8919 0.9990 0.8669 0.9926 0.9061 0.9627 0.9223
Ecoli0347vs56 0.9339 0.8357 0.9663 0.8600 0.9608 0.8525 0.9855 0.8320 0.9847 0.8737 0.9844 0.8731 0.9423 0.8792
Yeast05679vs4 0.7084 0.6514 0.8559 0.8064 0.8456 0.7312 0.8690 0.7703 0.8665 0.7842 0.8693 0.7832 0.8476 0.7782
Ecoli067vs5 09375 0.8613 0.9600 0.8338 0.9656 0.8750 0.9903 0.8613 0.9897 0.8863 0.9869 0.8150 0.9050 0.9125
VowelO 0.8924 08256 0.9661 0.9561 0.9565 0.9135 0.9663 0.9394 0.9630 0.9352 0.9563 0.9352 0.9521 0.9466
Glass016vs2 05727 05233 0.8671 0.6343 0.8498 0.6895 0.9046 0.6636 0.8973 0.5976 0.8912 0.5860 0.8092 0.5400
Glass2 05659 04885 0.8603 0.6771 0.8210 0.5991 0.8972 0.7098 0.9050 0.8172 0.8957 0.5978 0.7961 0.6106
Ecoli0147vs2356 0.8934 0.7936 0.9467 0.8508 0.9489 0.8457 0.9651 0.8622 0.9624 0.8077 0.9607 0.8792 0.8995 0.8043
Led7digit02456789vs1  0.9069 0.8938 0.9235 0.8839 0.9039 0.8900 0.9440 0.8745 0.9454 0.8741 0.9459 0.8666 0.9079 0.8823
Glass06vs5 1.0000 0.8925 09859 09320 09862 0.8925 1.0000 09100 1.0000 0.8747 0.9975 0.8950 0.9756 0.9374
EcoliO1vs5 09750 0.8648 0.9892 0.8989 0.9835 0.8864 0.9994 0.8432 1.0000 0.8875 0.9966 0.8886 0.9543 0.8693
Glass0146vs2 05368 04961 0.8510 0.7064 0.8352 0.6345 0.9111 0.7618 0.8996 0.6367 0.8947 0.6756 0.8079 0.7020
Ecoli0147vs56 09296 0.8667 0.9669 0.8045 0.9648 0.8605 0.9862 0.8955 0.9888 0.8388 0.9866 0.8596 0.9561 0.8820
ClevelandOvs4 09219 06939 09431 0.7520 0.9317 0.7056 0.9832 0.6861 0.9798 0.6348 0.9829 0.7876 0.9519 0.7541
Ecoli0146vs5 09495 0.7913 0.9786 0.9202 0.9856 0.8750 0.9990 0.8529 0.9983 0.7808 0.9962 0.9000 0.9418 0.8231
Ecoli4 09563 0.8703 0.9876 0.9302 0.9858 0.9294 0.9972 0.9421 0.9968 0.8873 0.9972 0.8905 0.9484 0.8913
Yeast1vs7 0.6786 05358 0.8396 0.7191 0.8543 0.6424 0.8673 0.7389 0.8773 0.7026 0.8724 0.6655 0.8012 0.6882
ShuttleOvs4 1.0000 0.9960 1.0000 0.9980 1.0000 1.0000 1.0000 0.9920 1.0000 0.9958 1.0000 1.0000 1.0000 0.9958
Glass4 09021 06479 09775 0.8867 0.9657 0.9613 0.9969 0.8746 0.9963 0.7505 0.9957 0.8684 0.9259 0.6868
Page-blocks13vs2 09375 09272 0.9866 0.9515 0.9882 0.9459 0.9958 0.9749 0.9949 0.9787 0.9959 0.9498 0.9532 0.9142
Abalone9vs18 0.6085 05912 0.7917 0.7165 0.7979 0.7376 0.8440 0.7737 0.8308 0.7774 0.8346 0.7797 0.7972 0.7948
Glass016vs5 09107 08136 0.9752 0.8993 0.9768 0.8921 0.9993 0.8193 1.0000 0.8443 0.9975 0.8300 0.9486 0.8964
Shuttle2vs4 1.0000 0.9500 1.0000 0.9940 1.0000 0.9877 1.0000 1.0000 1.0000 0.8500 1.0000 0.9500 0.9200 0.8500
Yeast1458vs7 0.5333 04985 0.7761 0.6287 0.7620 0.6597 0.8021 0.6319 0.7925 0.6370 0.7955 0.6237 0.7385 0.5822
Glass5 0.8797 0.8201 0.9899 0.7671 0.9848 0.7970 0.9988 0.8841 0.9994 0.7427 0.9976 0.9201 0.9636 0.8165
Yeast2vs8 0.8125 0.7478 0.8723 0.7442 0.8555 0.7226 0.8877 0.7411 0.8916 0.7839 0.8892 0.8180 0.8196 0.7076
Yeast4 05659 05167 0.8806 0.8137 0.8785 0.7947 0.8945 0.8222 0.8962 0.8027 0.8898 0.8214 0.8261 0.7394
Yeast1289vs7 0.6250 0.5820 0.8096 0.7238 0.7943 0.7175 0.8425 0.6393 0.8369 0.7076 0.8457 0.6441 0.6868 0.5299
Yeast5 0.7206 0.6783 0.9735 0.9469 0.9796 0.9778 0.9885 0.9740 0.9875 0.9314 09861 0.9396 09575 0.8958
Ecoli0137vs26 0.8767 0.7472 0.9824 0.8236 0.9820 0.8208 0.9991 0.7891 0.9989 0.8363 0.9966 0.8445 0.8544 0.7982
Yeast6 0.6243 0.6270 0.9204 0.8646 0.9215 0.8591 0.9296 0.8426 0.9317 0.8713 0.9302 0.8300 0.8716 0.8302
Abalone19 0.5000 0.5000 0.8322 0.6708 0.8250 0.7297 0.8387 0.6627 0.8493 0.6816 0.8321 0.6914 0.6293 0.5726
Average 0.8352 0.7692 09181 0.8364 0.9127 0.8350 0.9328 0.8373 0.9330 0.8244 09304 0.8322 0.8866 0.8168

Table A.18

Complete table of results using the AUC measure for the k-NN variety of algorithms.
3-NN None SMOTE SENN cS Wr_SMOTE Wr_US Wr_SENN
Dataset Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst
Glass1 0.7583 0.7460 0.8273 0.7805 0.8398 0.7761 0.7583 0.7460 0.7583 0.7460 0.7567 0.7350 0.8593 0.8147
EcoliOvs1 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.9691 0.9600 0.9690 0.9766 0.9707 0.9533

(continued on next page)
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3-NN None SMOTE SENN cs Wr_SMOTE Wwr_US Wr_SENN
Dataset Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst
Wisconsin 09636 09658 0.0214 09698 0.0209 0.9729 09636 09658 0.9636 0.9658 0.9641 0.9658 09647 0.9658
Pima 0.6686 0.6703 0.7479 0.6865 0.7682 0.7099 0.6686 0.6703 0.6686 0.6703 0.6696 0.6711 0.7986 0.7297
Iris0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9988 1.0000 1.0000 1.0000
GlassO 0.8144 0.8027 08184 08185 0.8299 0.8361 0.7884 0.7771 0.7884 0.7771 0.7529 0.7670 0.8025 0.7809
Yeast1 0.6559 0.6539 0.7864 0.6772 0.7734 0.7071 0.6740 0.6858 0.6740 0.6858 0.6745 0.6841 0.7772 0.7190
Vehiclel 0.6741 06314 08454 0.6985 0.8230 0.7752 0.7665 0.7476 0.7665 0.7476 0.7664 0.7474 07781 0.7472
Vehicle2 09743 09736 09753 09692 09690 09620 09578 09541 09578 0.9541 0.8942 0.8960 09635 0.9519
Vehicle3 0.6395 0.6529 0.8539 0.7085 0.8291 0.7636 0.7365 0.7355 0.7365 0.7355 0.7367 0.7355 0.7416 0.7474
Haberman 0.5463 05310 0.6955 0.5633 0.6906 0.5767 0.6167 0.6510 0.6167 0.6510 0.6100 0.6516 0.6546 0.5729
Glass0123vs456 0.8859 0.8888 09709 09164 09620 09334 09424 09331 09424 09331 09338 09399 09407 0.9199
VehicleO 09446 09379 09548 0.9471 0.9493 09415 09473 09461 09473 09461 09371 09363 09535 0.9479
Ecolil 07693 0.7636 0.8484 0.8085 0.8345 0.8089 0.8019 0.8036 0.8789 0.8749 0.8721 0.8730 09165 0.9065
New-thyroid2 0.9508 09373 09889 09889 09875 0.9861 09831 09917 09831 0.9917 09854 09833 09688 0.9516
New-thyroid1 09401 09659 09917 009889 09889 09861 09831 0.9917 0.9831 0.9917 09818 09806 09816 0.9631
Ecoli2 0.8253 0.8302 0.8674 0.8382 0.8622 0.8276 0.8307 0.8276 09102 09154 0.9082 0.9066 0.9396 0.9294
Segment0 0.5000 05000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.9970 0.9980 0.9941 0.9937 09977 0.9962
Glass6 09147 09140 09824 09419 09770 09338 09366 0.9419 09366 0.9419 0.9305 09365 09286 0.9419
Yeast3 0.8231 0.8171 09541 0.8681 09470 0.8634 0.8827 0.8777 0.8827 0.8777 0.8859 0.8803 0.9300 0.8824
Ecoli3 0.6798 0.6598 0.8514 0.7283 0.8443 0.7772 0.7766 0.7502 0.8432 0.8209 0.8428 0.8478 0.8932 0.8863
Page-blocks0 0.9040 0.9075 09796 09326 09748 0.9316 0.9409 09370 09409 09370 09409 0.9370 0.9530 0.9193
Ecoli034vs5 0.8306 0.8222 0.8813 0.8222 0.8813 0.8222 0.8556 0.8361 09389 09333 09389 09222 09535 0.9167
Yeast2vs4 0.7485 0.7368 0.8573 0.8073 0.8554 0.8073 0.7903 0.7938 0.8680 0.8771 0.8677 0.8771 009128 0.8803
Ecoli067vs35 0.7109 0.7625 0.8531 0.8200 0.8525 0.8150 0.7724 0.8550 0.8563 0.8900 0.8623 0.8800 0.8627 0.8275
Ecoli0234vs5 0.8125 0.8500 0.8746 0.8530 0.8746 0.8530 0.8328 0.8612 0.9294 09308 009329 009280 009446 0.9336
Glass015vs2 0.5943 0.5788 0.8637 0.6750 0.8637 0.6935 0.7036 0.7097 0.7036 0.7097 0.7073 0.6685 0.7225 0.6067
Yeast0359vs78 0.6522 0.6468 0.8736 0.7247 0.8733 0.7203 0.6762 0.6923 0.6762 0.6923 0.6852 0.6979 0.8005 0.6977
Yeast02579vs368 0.8845 0.8834 09507 09024 09506 09013 0.8970 0.8988 0.8970 0.8988 0.8852 0.8922 0.9269 0.9082
Yeast0256vs3789 0.7580 0.7658 0.9066 0.7728 0.9066 0.7655 0.8096 0.7916 0.8096 0.7916 0.8087 0.7861 0.8407 0.7836
Ecoli046vs5 09111 09250 09781 09282 09754 0.9282 09328 009365 09328 09365 09172 09450 09335 0.9392
Ecoli01vs235 07733 07700 0.8705 0.7936 0.8705 0.7936 0.8099 0.7850 0.8926 0.8827 0.8973 0.8959 09181 0.8564
Ecoli0267vs35 07263 07725 0.8629 0.8401 0.8604 0.8327 0.7745 0.8026 0.8516 0.8526 0.8491 0.8677 0.8566 0.8150
Glass04vs5 0.8702 09441 09412 09632 09397 09511 09789 09941 09789 0.9941 09517 09761 09789 0.9941
Ecoli0346vs5 0.8368 0.8000 0.8791 0.8169 0.8791 0.8169 0.8434 0.8419 009282 09419 0.9096 0.9095 09329 0.9446
Ecoli0347vs56 07925 07735 0.8623 0.7920 05000 0.5000 0.8263 0.8363 09109 09119 09089 09212 09317 09227
Yeast05679vs4 0.6288 0.6257 0.8954 0.7440 0.8978 0.7682 0.7443 0.7968 0.7443 0.7968 0.7383 0.7915 0.8557 0.7825
Ecoli067vs5 0.8031 0.8225 09500 0.8375 0.9456 0.8250 0.8769 0.8675 0.8769 0.8675 0.8750 0.8825 0.8863 0.8600
Vowel0 09915 09939 09999 0.9994 09999 0.9994 0.9975 0.9994 0.9975 0.9994 0.9808 0.9800 0.9975 0.9994
Glass016vs2 05629 0.6357 0.8800 0.7169 0.8771 0.6445 0.7477 0.7893 0.7477 0.7893 0.7640 0.7864 0.7982 0.7560
Glass2 0.5474 05302 09150 0.7162 0.8984 0.7717 0.6969 0.6954 0.6969 0.6954 0.7254 0.7334 0.8470 0.6733
Ecoli0147vs2356 0.7838 0.7968 0.8605 0.7959 0.8609 0.7959 0.8160 0.8272 0.8969 0.9057 0.8907 0.9041 09262 0.9170
Led7digit02456789vs1  0.7696 0.7747 0.8618 0.8215 0.8642 0.8465 0.8261 0.8297 0.8261 0.8297 0.8311 0.8223 09018 0.8639
Glass06vs5 0.8725 09500 09786 0.9847 09786 0.9847 0.9240 1.0000 0.9240 1.0000 0.9205 0.9400 0.9383 1.0000
Ecoli01vs5 0.8932 09000 09739 09023 09733 09023 09216 09136 09216 09136 09239 09068 09312 0.9159
Glass0146vs2 05302 05727 0.8903 07019 0.8923 07018 0.6940 0.7567 0.6940 0.7567 0.7339 0.7458 0.7404  0.6447
Ecoli0147vs56 0.8793 0.8551 09666 09139 09601 09025 09221 09189 09221 09189 0.9238 09156 09340 09254
ClevelandOvs4 07726 0.7136 09320 0.8346 0.9320 0.8346 0.8487 0.8584 0.8487 0.8584 0.8448 0.8553 0.8727 0.8583
Ecoli0146vs5 0.9058 09231 09740 09019 09745 0.9000 09168 09135 09168 09135 09159 0.9250 09197 0.9192
Ecoli4 0.8238 0.7734 0.8865 0.8421 0.8846 0.8108 0.8366 0.8187 09163 09155 09217 09107 009281 0.9202
Yeast1vs7 0.6153 0.6109 0.8802 0.7390 0.8811 0.6998 0.7170 0.7453 0.7170 0.7453 0.7175 0.7406 0.8039 0.6177
ShuttleOvs4 0.9959 0.9960 1.0000 0.9960 1.0000 0.9960 0.9959 0.9960 0.9959 0.9960 0.9959 1.0000 0.9959 0.9960
Glass4 0.7628 0.8425 09689 0.8917 09627 0.9151 0.8885 0.8868 0.8885 0.8868 0.8835 0.8868 0.8912 0.8843
Page-blocks13vs2 0.9724 0.9433 09963 09978 09963 0.9989 0.9963 0.9977 0.9963 09977 009859 09888 0.9972 0.9977
Abalone9vs18 0.5987 0.6332 09099 0.7525 0.9023 07416 0.6990 0.7637 0.7998 0.7334 0.8097 0.7408 0.7117 0.6482
Glass016vs5 09121 0.8971 09686 09271 09664 09186 0.9871 0.9857 0.9871 09857 09757 009686 09850 0.9857
Shuttle2vs4 0.8750 0.9500 0.9959 1.0000 0.9959 1.0000 0.9600 0.9500 0.9600 0.9500 0.9078 0.9140 0.9600 0.9500
Yeast1458vs7 05163 05144 08852 0.6944 0.8812 0.6929 0.6249 0.6609 0.6249 0.6609 0.6228 0.6654 0.6719 0.5729
Glass5 0.8439 0.8976 09780 09378 0.9689 0.9732 09717 09329 09717 09329 09799 09256 09580 0.9280
east2vs8 07236 07239 09656 0.7208 0.9608 0.7371 0.7930 0.8012 0.7930 0.8012 0.7846 0.8012 08131 0.7631
Yeast4 0.5966 05947 09594 0.7444 09520 0.7571 0.7281 0.7489 0.7281 0.7489 0.7279 0.7489 0.8787 0.7708
Yeast1289vs7 05520 05484 09185 0.6586 09170 0.6764 0.6677 0.6462 0.6677 0.6462 0.6671 0.6629 07135 0.6154
Yeast5 0.8056 0.8128 09836 0.9503 0.9812 0.9566 09357 09424 09357 09424 09394 09389 09530 09174
Ecoli0137vs26 0.7730 0.7982 0.8680 0.7691 0.5000 0.5000 0.7607 0.7800 0.8361 0.8281 0.8293 0.8244 0.8516 0.8445
Yeast6 07570 07527 09720 0.8442 09676 0.8540 0.8145 0.8368 0.8145 0.8368 0.8198 0.8497 0.8890 0.8678
Abalone19 0.4998 0.4998 09780 05216 09737 0.5205 0.5402 0.5184 0.7576 0.5193 0.7573 05357 0.6215 05114
Average 0.7697 07752 0.8880 0.8212 0.8743 0.8166 0.8229 0.8295 0.8594 0.8596 0.8564 0.8561 0.8849 0.8509
results for the C4.5 algorithm versions. Next, the results for References
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boldface the best results achieved by a version.
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senting the class of interest is much lower than the ones of the other classes. Its presence in

many real-world applications has brought along a growth of attention from researchers.
We shortly review the many issues in machine learning and applications of this problem,

by introducing the characteristics of the imbalanced dataset scenario in classification, pre-

f(;};v:&r:;d dataset senting thg specific metrics for eyaluating pgrformance iI.l class irpbalanced lear‘ning and
Sampling enur_nteratmg the proposed solutions. .In partlcula}r, we will desc.rlbe preprocessing, cost-
Cost-sensitive learning sensitive learning and ensemble techniques, carrying out an experimental study to contrast
Small disjuncts these approaches in an intra and inter-family comparison.

Noisy data We will carry out a thorough discussion on the main issues related to using data intrinsic
Dataset shift characteristics in this classification problem. This will help to improve the current models

with respect to: the presence of small disjuncts, the lack of density in the training data, the
overlapping between classes, the identification of noisy data, the significance of the border-
line instances, and the dataset shift between the training and the test distributions. Finally,
we introduce several approaches and recommendations to address these problems in con-
junction with imbalanced data, and we will show some experimental examples on the
behavior of the learning algorithms on data with such intrinsic characteristics.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In many supervised learning applications, there is a significant difference between the prior probabilities of different clas-
ses, i.e., between the probabilities with which an example belongs to the different classes of the classification problem. This
situation is known as the class imbalance problem [29,66,118] and it is common in many real problems from telecommu-
nications, web, finance-world, ecology, biology, medicine not only, and which can be considered one of the top problems in
data mining today [143]. Furthermore, it is worth to point out that the minority class is usually the one that has the highest
interest from a learning point of view and it also implies a great cost when it is not well classified [42].

The hitch with imbalanced datasets is that standard classification learning algorithms are often biased towards the major-
ity class (known as the “negative” class) and therefore there is a higher misclassification rate for the minority class instances
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(called the “positive” examples). Therefore, throughout the last years, many solutions have been proposed to deal with this
problem, both for standard learning algorithms and for ensemble techniques [50]. They can be categorized into three major
groups:

1. Data sampling: In which the training instances are modified in such a way to produce a more or less balanced class
distribution that allow classifiers to perform in a similar manner to standard classification [9,27].

2. Algorithmic modification: This procedure is oriented towards the adaptation of base learning methods to be more
attuned to class imbalance issues [147]

3. Cost-sensitive learning: This type of solutions incorporate approaches at the data level, at the algorithmic level, or at
both levels combined, considering higher costs for the misclassification of examples of the positive class with respect
to the negative class, and therefore, trying to minimize higher cost errors [38,148].

In this paper, our first goal is to come up with a review on this type of methodologies, presenting a taxonomy for each
group, enumerating and briefly describing the main properties of the most significant approaches that have been tradition-
ally applied in this field. Furthermore, we carry out an experimental study in order to highlight the behavior of the different
paradigms that were previously presented.

Most of the studies on the behavior of several standard classifiers in imbalance domains have shown that significant loss
of performance is mainly due to the skewed class distribution, given by the imbalance ratio (IR), defined as the ratio of the
number of instances in the majority class to the number of examples in the minority class [58,98]. However, there are several
investigations which also suggest that there are other factors that contribute to such performance degradation [72]. There-
fore, as a second goal, we present a discussion about six significant problems related to data intrinsic characteristics and that
must be taken into account in order to provide better solutions for correctly identifying both classes of the problem:

The identification of areas with small disjuncts [136,137].

The lack of density and information in the training data [133].

The problem of overlapping between the classes [37,55].

The impact of noisy data in imbalanced domains [20,111].

The significance of the borderline instances to carry out a good discrimination between the positive and negative clas-
ses, and its relationship with noisy examples [39,97].

6. The possible differences in the data distribution for the training and test data, also known as the dataset shift [95,114].

Gk =

This thorough study of the problem can guide us about the source where the difficulties for imbalanced classification
emerge, focusing on the analysis of significant data intrinsic characteristics. Specifically, for each established scenario we
show an experimental example on how it affects the behavior of the learning algorithms, in order to stress its significance.

We must point out that some of these topics have recent studies associated, which are described along this paper, exam-
ining their main contributions and recommendations. However, we emphasize that they still need to be addressed in more
detail in order to have models of high quality in this classification scenario and, therefore, we have stressed them as future
trends of research for imbalanced learning. Overcoming these problems can be the key for developing new approaches that
improve the correct identification of both the minority and majority classes.

In summary, the main contributions of this new review on former works on this topic [66,118] can be highlighted with
respect to two points: (1) the extensive experimental study with a large benchmark of 66 imbalanced datasets for analyzing
the behavior of the solutions proposed to address the problem of imbalanced data; and (2) a detailed analysis and study of
the data intrinsic characteristics in this scenario and a brief description on how they affect the performance of the classifi-
cation algorithms.

With this aim in mind, this paper is organized as follows. First, Section 2 presents the problem of imbalanced datasets,
introducing its features and the metrics employed in this context. Section 3 describes the diverse preprocessing, cost-sen-
sitive learning and ensemble methodologies that have been proposed to deal with this problem. Next, we develop an exper-
imental study for contrasting the behavior of these approaches in Section 4. Section 5 is devoted to analyzing and discussing
the aforementioned problems associated with data intrinsic characteristics. Finally, Section 6 summarizes and concludes the
work.

2. Imbalanced datasets in classification

In this section, we first introduce the problem of imbalanced datasets and then we present the evaluation metrics for this
type of classification problem, which differ from usual measures in classification.

2.1. The problem of imbalanced datasets

In the classification problem field, the scenario of imbalanced datasets appears frequently. The main property of this type
of classification problem is that the examples of one class significantly outnumber the examples of the other one [66,118].



V. Lépez et al./ Information Sciences 250 (2013) 113-141 115

The minority class usually represents the most important concept to be learned, and it is difficult to identify it since it might
be associated with exceptional and significant cases [135], or because the data acquisition of these examples is costly [139].
In most cases, the imbalanced class problem is associated to binary classification, but the multi-class problem often occurs
and, since there can be several minority classes, it is more difficult to solve [48,81].

Since most of the standard learning algorithms consider a balanced training set, this may generate suboptimal classifica-
tion models, i.e. a good coverage of the majority examples, whereas the minority ones are misclassified frequently. Therefore,
those algorithms, which obtain a good behavior in the framework of standard classification, do not necessarily achieve the
best performance for imbalanced datasets [47]. There are several reasons behind this behavior:

1. The use of global performance measures for guiding the learning process, such as the standard accuracy rate, may pro-
vide an advantage to the majority class.

2. C(lassification rules that predict the positive class are often highly specialized and thus their coverage is very low,
hence they are discarded in favor of more general rules, i.e. those that predict the negative class.

3. Very small clusters of minority class examples can be identified as noise, and therefore they could be wrongly dis-
carded by the classifier. On the contrary, few real noisy examples can degrade the identification of the minority class,
since it has fewer examples to train with.

In recent years, the imbalanced learning problem has received much attention from the machine learning community.
Regarding real world domains, the importance of the imbalance learning problem is growing, since it is a recurring issue
in many applications. As some examples, we could mention very high resolution airbourne imagery [31], forecasting of
ozone levels [125], face recognition [78], and especially medical diagnosis [11,86,91,93,132]. It is important to remember
that the minority class usually represents the concept of interest and it is the most difficult to obtain from real data, for
example patients with illnesses in a medical diagnosis problem; whereas the other class represents the counterpart of that
concept (healthy patients).

2.2. Evaluation in imbalanced domains

The evaluation criteria is a key factor in assessing the classification performance and guiding the classifier modeling. In a
two-class problem, the confusion matrix (shown in Table 1) records the results of correctly and incorrectly recognized exam-
ples of each class.

Traditionally, the accuracy rate (Eq. (1)) has been the most commonly used empirical measure. However, in the frame-
work of imbalanced datasets, accuracy is no longer a proper measure, since it does not distinguish between the number
of correctly classified examples of different classes. Hence, it may lead to erroneous conclusions, i.e., a classifier achieving
an accuracy of 90% in a dataset with an IR value of 9 is not accurate if it classifies all examples as negatives.

TP + TN
ACC=r— (1)
TP + FN + FP + TN
In imbalanced domains, the evaluation of the classifiers’ performance must be carried out using specific metrics in order
to take into account the class distribution. Concretely, we can obtain four metrics from Table 1 to measure the classification

performance of both, positive and negative, classes independently:

« True positive rate: TP, = 25 is the percentage of positive instances correctly classified.

« True negative rate: TN, = 5 is the percentage of negative instances correctly classified.

« False positive rate: FP,,, = H,i—”m is the percentage of negative instances misclassified.

o False negative rate: FN,,, = n,i% is the percentage of positive instances misclassified.

Since in this classification scenario we intend to achieve good quality results for both classes, there is a necessity of com-
bining the individual measures of both the positive and negative classes, as none of these measures alone is adequate by
itself.

A well-known approach to unify these measures and to produce an evaluation criteria is to use the Receiver Operating
Characteristic (ROC) graphic [19]. This graphic allows the visualization of the trade-off between the benefits (TP, ) and costs
(FPyqee), as it evidences that any classifier cannot increase the number of true positives without also increasing the false pos-
itives. The Area Under the ROC Curve (AUC) [70] corresponds to the probability of correctly identifying which one of the two

Table 1
Confusion matrix for a two-class problem.
Positive prediction Negative prediction
Positive class True Positive (TP) False Negative (FN)

Negative class False Positive (FP) True Negative (TN)
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stimuli is noise and which one is signal plus noise. The AUC provides a single measure of a classifier’s performance for eval-
uating which model is better on average. Fig. 1 shows how to build the ROC space plotting on a two-dimensional chart the
TP,qe (Y-axis) against the FP,q (X-axis). Points in (0,0) and (1, 1) are trivial classifiers where the predicted class is always the
negative and positive one, respectively. On the contrary, (0,1) point represents the perfect classifier. TheAUC measure is
computed just by obtaining the area of the graphic:
1+ TPmt28 FPrate 2)

In [103], the significance of these graphical methods for the classification predictive performance evaluation is stressed.
According to the authors, the main advantage of this type of methods resides in their ability to depict the trade-offs between
evaluation aspects in a multidimensional space rather than reducing these aspects to an arbitrarily chosen (and often biased)
single scalar measure. In particular, they present a review of several representation mechanisms emphasizing the best sce-
nario for their use; for example, in imbalanced domains, when we are interested in the positive class, it is recommended the
use of precision-recall graphs [36]. Furthermore, the expected cost or profit of each model might be analyzed using cost
curves [40], lift and ROI graphs [83].

Other metric of interest to be stressed in this area is the geometric mean of the true rates [7], which can be defined as:

P N 3
TP+FN FP+1IN 3)
This metric attempts to maximize the accuracy on each of the two classes with a good balance, being a performance met-
ric that correlates both objectives. However, due to this symmetric nature of the distribution of the geometric mean over
TPyqc (sensitivity) and the TN, (specificity), it is hard to contrast different models according to their precision on each class.
Another significant performance metric that is commonly used is the F-measure [6]:

(1+ B*)(PPV - TPyye)

AUC =

GM =

m = ﬁ;I[;PV + TPyate (4)
i

A popular choice for 8 is 1, where equal importance is assigned for both TP, and the positive predictive value (PPV). This
measure would be more sensitive to the changes in the PPV than to the changes in TP,,., which can lead to the selection of
sub-optimal models.

According to the previous comments, some authors try to propose several measures for imbalanced domains in order to
be able to obtain as much information as possible about the contribution of each class to the final performance and to take
into account the IR of the dataset as an indication of its difficulty. For example, in [10,14] the Adjusted G-mean is proposed.
This measure is designed towards obtaining the highest sensitivity (TP,y.) without decreasing too much the specificity
(TNyqee ). This fact is measured with respect to the original model, i.e. the original classifier without addressing the class imbal-
ance problem. Eq. 5 shows its definition:
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Fig. 1. Example of a ROC plot. Two classifiers’ curves are depicted: the dashed line represents a random classifier, whereas the solid line is a classifier which
is better than the random classifier.



V. Lépez et al./ Information Sciences 250 (2013) 113-141 117

_ GM+TNyate-(FP+TN)
AGM = "= IfTPge > 0

()
AGM = 0; IfTPrge = 0

Additionally, in [54] the authors presented a simple performance metric, called Dominance, which is aimed to point out
the dominance or prevalence relationship between the positive class and the negative class, in the range [-1, +1] (Eq. 6).
Furthermore, it can be used as a visual tool to analyze the behavior of a classifier on a 2-D space from the joint perspective
of global precision (Y-axis) and dominance (X-axis).

Dom = TPrare - TNrate (6)

The same authors, using the previous concept of dominance, Index of Balanced Accuracy (IBA) [56,57]. IBA weights a per-
formance measure, that aims to make it more sensitive for imbalanced domains. The weighting factor favors those results
with moderately better classification rates on the minority class. IBA is formulated as follows:

IBA,(M) = (1 + o - Dom)M (7)

where (1 + o - Dom) is the weighting factor and M represents a performance metric. The objective is to moderately favor the
classification models with higher prediction rate on the minority class (without underestimating the relevance of the major-
ity class) by means of a weighted function of any plain performance evaluation measure.

A comparison regarding these evaluation proposals for imbalanced datasets is out of the scope of this paper. For this rea-
son, we refer any interested reader to find a deep experimental study in [57,105].

3. Addressing classification with imbalanced data: preprocessing, cost-sensitive learning and ensemble techniques

A large number of approaches have been proposed to deal with the class imbalance problem. These approaches can be
categorized into two groups: the internal approaches that create new algorithms or modify existing ones to take the
class-imbalance problem into consideration [7,41,82,129,152] and external approaches that preprocess the data in order
to diminish the effect of their class imbalance [9,43]. Furthermore, cost-sensitive learning solutions incorporating both
the data (external) and algorithmic level (internal) approaches assume higher misclassification costs for samples in the
minority class and seek to minimize the high cost errors [15,38,59,117,150]. Ensemble methods [101,108] are also frequently
adapted to imbalanced domains, either by modifying the ensemble learning algorithm at the data-level approach to prepro-
cess the data before the learning stage of each classifier [17,30,112] or by embedding a cost-sensitive framework in the
ensemble learning process [44,117,122].

Regarding this, in this section we first introduce the main aspects of the preprocessing techniques. Next, we describe the
cost-sensitive learning approach. Finally, we present some relevant ensemble techniques in the framework of imbalanced
datasets.

3.1. Preprocessing imbalanced datasets: resampling techniques

In the specialized literature, we can find some papers about resampling techniques studying the effect of changing the
class distribution in order to deal with imbalanced datasets.

Those works have proved empirically that applying a preprocessing step in order to balance the class distribution is usu-
ally an useful solution [9,12,45,46]. Furthermore, the main advantage of these techniques is that they are independent of the
underlying classifier.

Resampling techniques can be categorized into three groups or families:

1. Undersampling methods, which create a subset of the original dataset by eliminating instances (usually majority class
instances).

2. Oversampling methods, which create a superset of the original dataset by replicating some instances or creating new
instances from existing ones.

3. Hybrids methods, which combine both sampling approaches from above.

Within these families of methods, the simplest preprocessing techniques are non-heuristic methods such as random
undersampling and random oversampling. In the first case, the major drawback is that it can discard potentially useful data,
that could be important for the learning process. For random oversampling, several authors agree that this method can in-
crease the likelihood of occurring overfitting, since it makes exact copies of existing instances.

In order to deal with the mentioned problems, more sophisticated methods have been proposed. Among them, the
“Synthetic Minority Oversampling TEchnique” (SMOTE) [27] has become one of the most renowned approaches in this area.
In brief, its main idea is to create new minority class examples by interpolating several minority class instances that lie to-
gether for oversampling the training set.

With this technique, the positive class is over-sampled by taking each minority class sample and introducing synthetic
examples along the line segments joining any/all of the k minority class nearest neighbors. Depending upon the amount
of over-sampling required, neighbors from the k nearest neighbors are randomly chosen. This process is illustrated in
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Fig. 2. An illustration of how to create the synthetic data points in the SMOTE algorithm.

Fig. 2, where x; is the selected point, x;; to x;4 are some selected nearest neighbors and r to r4 the synthetic data points cre-
ated by the randomized interpolation.

However, in oversampling techniques, and especially for the SMOTE algorithm, the problem of over generalization is lar-
gely attributed to the way in which synthetic samples are created. Precisely, SMOTE generates the same number of synthetic
data samples for each original minority example and does so without consideration to neighboring examples, which in-
creases the occurrence of overlapping between classes [128]. To this end, various adaptive sampling methods have been pro-
posed to overcome this limitation; some representative works include the Borderline-SMOTE [63], Adaptive Synthetic
Sampling [65], Safe-Level-SMOTE [21] and SPIDER2 [116] algorithm:s.

Regarding undersampling, most of the proposed approaches are based on data cleaning techniques. Some representative
works in this area include the Wilson’s edited nearest neighbor (ENN) [140] rule, which removes examples that differ from
two of its three nearest neighbors, the one-sided selection (OSS) [76], an integration method between the condensed nearest
neighbor rule [64] and Tomek Links [124] and the neighborhood cleaning rule [79], which is based on the ENN technique.
Additionally, the NearMiss-2 method [149] selects the majority class examples whose average distance to the three farthest
minority class examples is the smallest, and in [5] the authors proposed a method that removes the majority instances far
from the decision boundaries. Furthermore, a Support Vector Machine (SVM) [35] may be used to discard redundant or irrel-
evant majority class examples [119]. Finally, the combination of preprocessing of instances with data cleaning techniques
could lead to diminishing the overlapping that is introduced by sampling methods, i.e. the integrations of SMOTE with
ENN and SMOTE with Tomek links [9]. This behavior is also present in a wrapper technique introduced in [28] that defines
the best percentage to perform both undersampling and oversampling.

On the other hand, these techniques are not only carried out by means of a “neighborhood’, but we must also stress some
cluster-based sampling algorithms, all of which aim to organize the training data into groups with significant characteristics
and then performing both undersampling and/or oversampling. Some significant examples are the Cluster-Based Oversam-
pling (CBO) [73], Class Purity Maximization [146], Sampling-Based Clustering [145], the agglomerative Hierarchical Cluster-
ing [34] or the DBSMOTE algorithm based on DBSCAN clustering [22].

Finally, the application of genetic algorithms or particle swarm optimization for the correct identification of the most use-
ful instances has shown to achieve good results [53,142]. Also, a training set selection can be carried out in the area of imbal-
anced datasets [51,52]. These methods select the best set of examples to improve the behavior of several algorithms
considering for this purpose the classification performance using an appropriate imbalanced measure.

3.2. Cost-sensitive learning

Cost-sensitive learning takes into account the variable cost of a misclassification with respect to the different classes
[38,148]. In this case, a cost matrix codifies the penalties C(i,j) of classifying examples of one class i as a different one j,
as illustrated in Table 2.

These misclassification cost values can be given by domain experts, or can be learned via other approaches [117,118].
Specifically, when dealing with imbalanced problems, it is usually more interesting to recognize the positive instances rather
than the negative ones. Therefore, the cost when misclassifying a positive instance must be higher than the cost of misclas-
sifying a negative one, i.e. C(+,—) > C(—,+).

Given the cost matrix, an example should be classified into the class that has the lowest expected cost, which is known as
the minimum expected cost principle. The expected cost R(i|x) of classifying an instance x into class i (by a classifier) can be
expressed as:

Table 2
Example of a cost matrix for a fraud detection classification problem.
Fraudulent Legitimate
Refuse 20$ —20$

Approve —100$ 50%
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R(ilx) = P(jlx) - C(i. ) 8)
J

where P(j|x) is the probability estimation of classifying an instance into class j. That is, the classifier will classify an instance x
into positive class if and only if:

P(O|x) - C(1,0) + P(1]x) - C(1,1) < P(0}x) - C(0,0) + P(1]x) - C(0,1)
or, which is equivalent:
P(0lx) - (C(1,0) — €(0,0)) < P(1]x)(C(0,1) — C(1,1))

Therefore, any given cost-matrix can be converted to one with C(0,0) = C(1,1) = 0. Under this assumption, the classifier
will classify an instance x into positive class if and only if:

P(0lx) - €(1,0) < P(1fx) - C(0, 1)
As P(0|x) = 1 — P(1]x), we can obtain a threshold p* for the classifier to classify an instance x into positive if P(1|x) > p*,
where

(1,00  FP 9
C(1,0)—C(0,1) FP+FN ®)

Another possibility is to “rebalance” the original training examples the ratio of:
p(1)EN : p(0)FP (10)

where p(1) and p(0) are the prior probability of the positive and negative examples in the original training set.
In summary, two main general approaches have been proposed to deal with cost-sensitive problems:

1. Direct methods: The main idea of building a direct cost-sensitive learning algorithm is to directly introduce and uti-

lize misclassification costs into the learning algorithms.
For example, in the context of decision tree induction, the tree-building strategies are adapted to minimize the mis-
classification costs. The cost information is used to: (1) choose the best attribute to split the data [84,107]; and (2)
determine whether a subtree should be pruned [18]. On the other hand, other approaches based on genetic algorithms
can incorporate misclassification costs in the fitness function [126].

2. Meta-learning: This methodology implies the integration of a “preprocessing” mechanism for the training data or a
“postprocessing” of the output, in such a way that the original learning algorithm is not modified. Cost-sensitive
meta-learning can be further classified into two main categories: thresholding and sampling, which are based on
expressions (9) and (10) respectively:

o Thresholding is based on the basic decision theory that assigns instances to the class with minimum expected
cost. For example, a typical decision tree for a binary classification problem assigns the class label of a leaf node
depending on the majority class of the training samples that reach the node. A cost-sensitive algorithm assigns the
class label to the node that minimizes the classification cost [38,147].

o Sampling is based on modifying the training dataset. The most popular technique lies in resampling the original
class distribution of the training dataset according to the cost decision matrix by means of undersampling/over-
sampling [148] or assigning instance weights [123]. These modifications have shown to be effective and can also
be applied to any cost insensitive learning algorithm [150].

3.3. Ensemble methods

Ensemble-based classifiers, also known as multiple classifier systems [101], try to improve the performance of single clas-
sifiers by inducing several classifiers and combining them to obtain a new classifier that outperforms every one of them.
Hence, the basic idea is to construct several classifiers from the original data and then aggregate their predictions when un-
known instances are presented.

In recent years, ensembles of classifiers have arisen as a possible solution to the class imbalance problem
[77,85,112,117,127,131]. Ensemble-based methods are based on a combination between ensemble learning algorithms
and one of the previously discussed techniques, namely data and algorithmic approaches, or cost-sensitive learning solu-
tions. In the case of adding a data level approach to the ensemble learning algorithm, the new hybrid method usually pre-
process the data before training each classifier. On the other hand, cost-sensitive ensembles, instead of modifying the base
classifier in order to accept costs in the learning process, guide the cost minimization procedure via the ensemble learning
algorithm. In this way, the modification of the base learner is avoided, but the major drawback, which is the costs definition,
is still present.

A complete taxonomy for ensemble methods for learning with imbalanced classes can be found on a recent review [50],
which we summarize in Fig. 3. Mainly, the authors distinguish four different families among ensemble approaches for imbal-
anced learning. On the one hand, they identified cost-sensitive boosting approaches which are similar to cost-sensitive
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Fig. 3. Galar et al.’s proposed taxonomy for ensembles to address class imbalance problem. (See above-mentioned references for further information.)

methods, but where the costs minimization procedure is guided by a boosting algorithm. On the other hand, they distinguish
three more families which have a common feature: all of them consist on embedding a data preprocessing technique in an
ensemble learning algorithm. They categorized these three families depending on the ensemble learning algorithm used, i.e.
boosting, bagging and hybrid ensembles.

From the study in [50], the authors concluded that ensemble-based algorithms are worthwhile, improving the results ob-
tained by using data preprocessing techniques and training a single classifier. They also highlighted the good performance of
simple approaches such as RUSBoost [112] or UnderBagging [8], which despite of being simple approaches, achieve a higher
performance than many other more complex algorithms.

4. Analyzing the behavior of imbalanced learning methods

Several authors, and especially [9], have developed an ordering of the approaches to address learning with imbalanced
datasets regarding a classification metric such as the AUC. In this section we present a complete study on the suitability
of some recent proposals for preprocessing, cost-sensitive learning and ensemble-based methods, carrying out an intra-
family comparison for selecting the best performing approaches and then developing and inter-family analysis, with the
aim of observing whether there are differences among them.

In order to achieve well founded conclusions, we will make use of three classifiers based on different paradigms, namely
decision trees with C4.5 [104], Support Vector Machines (SVMs) [35,100], and the well-known k-Nearest Neighbor (KNN)
[92] as an Instance-Based Learning approach. The analysis will be structured in the same manner within each section: first,
the average results in training and testing, together with their standard deviations, will be shown for every classifier. Then,
the average rankings will be depicted in order to organize the algorithms according to their performance on the different
datasets. Finally, the two highest ranked approaches will be selected for the final comparison among all the techniques.

We must remark that this study tries to be carried out in a more descriptive way. For this reason, we just carry out an “ad
hoc” selection of the best approaches, even if no significant differences are found in a statistical analysis, which will be per-
formed by means of a Shaffer post hoc test [113] (n x n comparison). Therefore, the reader must acknowledge that some of
the decisions taken along this empirical analysis are carried out for the sake of simplifying our study, thus presenting an
overview on the behavior of the state of the art methods on classification with imbalanced data.

According to the previous aim, we divide this section into five parts: first, in Section 4.1 we introduce the experimental
framework, that is, the classification algorithms used, their parameters and the selected datasets for the study. Next, we de-
velop a separate study for preprocessing (Section 4.2), cost-sensitive learning (Section 4.3) and and ensembles (Section 4.4).
As explained earlier, the two best models will be selected as representative approaches and, finally, Section 4.5 presents a
global study for the different paradigms that are analyzed.
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Table 3

Summary of imbalanced datasets used.
Name #EX. #Atts. IR Name #EX. #Atts. IR
Glass1 214 9 1.82 Glass04vs5 92 9 9.22
EcoliOvs1 220 7 1.86 Ecoli0346vs5 205 7 9.25
Wisconsin 683 9 1.86 Ecoli0347vs56 257 7 9.28
Pima 768 8 1.90 Yeast05679vs4 528 8 9.35
IrisO 150 4 2.00 Ecoli067vs5 220 6 10.00
GlassO 214 9 2.06 VowelO 988 13 10.10
Yeast1 1484 8 2.46 Glass016vs2 192 9 10.29
Vehiclel 846 18 2.52 Glass2 214 9 10.39
Vehicle2 846 18 2.52 Ecoli0147vs2356 336 7 10.59
Vehicle3 846 18 2.52 Led7digit02456789vs1 443 7 10.97
Haberman 306 3 2.68 Glass06vs5 108 9 11.00
Glass0123vs456 214 9 3.19 EcoliO1vs5 240 6 11.00
Vehicle0O 846 18 3.23 Glass0146vs2 205 9 11.06
Ecolil 336 7 3.36 Ecoli0147vs56 332 6 12.28
New-thyroid2 215 5 4.92 ClevelandOvs4 177 13 12.62
New-thyroid1 215 5 5.14 Ecoli0146vs5 280 6 13.00
Ecoli2 336 7 5.46 Ecoli4 336 7 13.84
SegmentO 2308 19 6.01 Yeast1vs7 459 8 13.87
Glass6 214 9 6.38 ShuttleOvs4 1829 9 13.87
Yeast3 1484 8 8.11 Glass4 214 9 15.47
Ecoli3 336 7 8.19 Page-blocks13vs2 472 10 15.85
Page-blocks0 5472 10 8.77 Abalone9vs18 731 8 16.68
Ecoli034vs5 200 7 9.00 Glass016vs5 184 9 19.44
Yeast2vs4 514 8 9.08 Shuttle2vs4 129 9 20.50
Ecoli067vs35 222 7 9.09 Yeast1458vs7 693 8 22.10
Ecoli0234vs5 202 7 9.10 Glass5 214 9 22.81
Glass015vs2 172 9 9.12 Yeast2vs8 482 8 23.10
Yeast0359vs78 506 8 9.12 Yeast4 1484 8 28.41
Yeast02579vs368 1004 8 9.14 Yeast1289vs7 947 8 30.56
Yeast0256vs3789 1004 8 9.14 Yeast5 1484 8 32.78
Ecoli046vs5 203 6 9.15 Ecoli0137vs26 281 7 39.15
Ecoli01vs235 244 7 9.17 Yeast6 1484 8 39.15
Ecoli0267vs35 224 7 9.18 Abalone19 4174 8 128.87

4.1. Experimental framework

In the first place, we need to define a set of baseline classifiers to be used in all the experiments. Next, we enumerate these
algorithms and also their parameter values, which have been set considering the recommendation of the corresponding
authors. We must point out that these algorithms are available within the KEEL software tool [4].

1. C4.5 Decision tree [104]: For C4.5, we have set a confidence level of 0.25, the minimum number of item-sets per leaf
was set to 2 and pruning was used as well to obtain the final tree.

2. Support vector machines [35]: For the SVM, we have chosen Polykernel reference functions, with an internal param-
eter of 1.0 for the exponent of each kernel function and a penalty parameter of the error term of 1.0.

3. Instance based learning (kNN) [92]: In this case, we have selected 1 neighbor for determining the output class, using
the euclidean distance metric.

We have gathered 66 datasets, whose features are summarized in Table 3, namely the number of examples (#Ex.), num-
ber of attributes (#Atts.) and IR. Estimates of the AUC metric were obtained by means of a 5-fold cross-validation. That is, we
split the dataset into 5 folds, each one containing 20% of the patterns of the dataset. For each fold, the algorithm was trained
with the examples contained in the remaining folds and then tested with the current fold. This value is set up with the aim of
having enough positive class instances in the different folds, hence avoiding additional problems in the data distribution
[94,96], especially for highly imbalanced datasets.

We must point out that the dataset partitions employed in this paper are available for download at the KEEL dataset
repository! [3], so that any interested researcher can use the same data for comparison.

Finally, with respect to the evaluation metric, we use the Area Under the ROC Curve (AUC) [19,70] as evaluation criteria.

4.2. Study on the preprocessing methods

In this section, we analyze the behavior of the preprocessing methods on imbalanced datasets. For this purpose, we com-
pare some of the most representative techniques, previously presented in Section 3.1, developing a ranking according to the

T http://www.keel.es/datasets.php.
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Table 4

Average AUC results for the preprocessing techniques.
Preprocessing C4.5 SVM kNN

AUCyy AUCrs AUCr, AUCrs AUCyy AUCrq

None .8790 £.1226 7873 +£.1437 .7007 +.1706 .6891 +.1681 8011 +£.1339 .8028 +.1383
SMOTE 9613 +£.0504 .8288 £.1192 .8631 £.1045 8470 +.1152 9345 +.1247 .8341 £.1194
SMOTE+ENN 9482 +£.0525 8323 +.1166 .8815 £.1001 .8461 +£.1162 9284 +£.1262 .8443 +.1158
Border-SMOTE 19333 +.0595 8187 £.1272 9082 +.0941 .8397 £.1163 9144 +.0682 8177 £.1314
SL-SMOTE 9175 +£.0615 .8285 +.1112 .8365 +£.1020 .8427 +.1176 .8024 +.1331 .8029 +.1381
ADASYN 9589 +£.0469 .8225 £.1234 .8283 £.1054 .8323 £.1148 9347 +£.0500 .8355 £.1163
SPIDER2 9684 +.0378 .8018 £.1329 7252 £.1493 7371 £.1542 .8381 £.1176 .8207 +£.1338
DBSMOTE .8908 +.1006 7877 £.1441 .8612 £.0778 .7546 +.1368 .8147 £.1163 .8082 +.1293

performance obtained in each case. This representative set of methods is composed by the following techniques: SMOTE
[27], SMOTE+ENN [9], Borderline-SMOTE (Border-SMOTE) [63], Adaptive Synthetic Sampling (ADASYN) [65], Safe-Level-
SMOTE (SL-SMOTE) [21], SPIDER2 [97] and DBSMOTE [22]. In all cases we try to obtain a level of balance in the training data
near to the 50:50 distribution. Additionally, the interpolations that are computed to generate new synthetic data are made
considering the 5-nearest neighbors of minority class instances using the euclidean distance.

In Table 4 we show the average results for all preprocessing methods, also including the performance with the original
data (None). In bold, we highlight the preprocessing method that obtains the best performing average within each group. We
observe that, in all cases, the oversampling mechanisms are very good solutions for achieving a higher performance by com-
parison to using the original training data.

This behavior is contrasted in Fig. 4, where we have ordered the corresponding methods according to their AUC results in
testing for each dataset, considering the average ranking value. We must stress SMOTE+ENN and SMOTE as the top meth-
odologies, since they obtain the highest rank for the three classification algorithms used in this study. We can also observe
that both Border-SMOTE and ADASYN are quite robust on average, obtaining a fair average ranking for all datasets.

For the sake of finding out which algorithms are distinctive among an n x n comparison, we carry out a Shaffer post hoc
test [113], which is shown in Tables 5-7. In these tables, a “+” symbol implies that the algorithm in the row is statistically
better than the one in the column, whereas “—" implies the contrary; “=" means that the two algorithms compared show no
significant differences. In brackets, the adjusted p-value associated to each comparison is shown.

WC45 mSVM mkNN

None SMOTE SMOTE+ENN Border-SMOTE  SL-SMOTE ADASYN SPIDER2 DBSMOTE

Fig. 4. Average ranking of the preprocessing algorithms for classification with imbalanced datasets.

Table 5

Shaffer test for the preprocessing techniques with C4.5 using the AUC measure.
Cc4.5 None SMOTE SMOTE+ENN Border-SMOTE SL-SMOTE ADASYN SPIDER2 DBSMOTE
None X —(.000002) —(.000000) —(.001104) —(.000096) —(.000124) =(.580860) =(1.00000)
SMOTE +(.000002) X =(1.00000) =(1.00000) =(1.00000) =(1.00000) +(.013398) +(.000003)
SMOTE+ENN +(.000000) =(1.00000) X =(.769498) =(1.00000) =(1.00000) +(.002466) +(.000000)
Border-SMOTE +(.001104) =(1.00000) =(.769498) X =(1.00000) =(1.00000) =(.631767) +(.001379)
SL-SMOTE +(.000096) =(1.00000) =(1.00000) =(1.00000) X =(1.00000) =(.159840) +(.000124)
ADASYN +(.000124) =(1.00000) =(1.00000) =(1.00000) =(1.00000) X =(.174600) +(.000159)
SPIDER2 =(.580860) —(.013398) —(.002466) =(.631767) =(.159840) =(.174600) X =(.631767)
DBSMOTE =(1.00000) —(.000003) —(.000000) —(.001379) —(.000124) —(.000159) =(.631767) X
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Table 6

Shaffer test for the preprocessing techniques with SVM using the AUC measure.
SVM None SMOTE SMOTE+ENN Border-SMOTE SL-SMOTE ADASYN SPIDER2 DBSMOTE
None X —(.000000) —(.000000) —(.000000) —(.000000) —(.000000) =(.129870) =(1.00000)
SMOTE +(.000000) X =(1.00000) =(1.00000) =(1.00000) =(.179175) +(.000000) +(.000000)
SMOTE+ENN +(.000000) =(1.00000) X =(1.00000) =(1.00000) =(.199418) +(.000000) +(.000000)
Border-SMOTE +(.000000) =(1.00000) =(1.00000) X =(1.00000) =(1.00000) +(.000000) +(.000000)
SL-SMOTE +(.000000) =(1.00000) =(1.00000) =(1.00000) X =(1.00000) +(.000000) +(.000000)
ADASYN +(.000000) =(.179175) =(.199418) =(1.00000) =(1.00000) X +(.000126) +(.000001)
SPIDER2 =(.129870) —(.000000) —(.000000) —(.000000) —(.000000) —(.000126) X =(1.00000)
DBSMOTE =(1.00000) —(.000000) —(.000000) —(.000000) —(.000000) —(.000001) =(1.00000) X

Table 7

Shaffer test for the preprocessing techniques with kNN using the AUC measure.
kNN None SMOTE SMOTE+ENN Border-SMOTE SL-SMOTE ADASYN SPIDER2 DBSMOTE
None X —(.000757) —(.000000) —(.014934) =(1.00000) —(.000081) —(.004963) =(1.00000)
SMOTE +(.000757) X —(.089266) =(1.00000) +(.000701) =(1.00000) =(1.00000) +(.000006)
SMOTE+ENN +(.000000) +(.089266) X +(.007968) +(.000000) =(.360402) +(.022513) +(.000000)
Border-SMOTE +(.014934) =(1.00000) —(.007968) X +(.014027) =(1.00000) =(1.00000) +(.000253)
SL-SMOTE =(1.00000) —(.000701) —(.000000) —(.014027) X —(.000074) —(.004634) =(1.00000)
ADASYN +(.000081) =(1.00000) =(.360402) =(1.00000) +(.000074) X =(1.00000) +(.000000)
SPIDER2 +(.004963) =(1.00000) —(.022513) =(1.00000) +(.004634) =(1.00000) X +(.000062)
DBSMOTE =(1.00000) —(.000006) —(.000000) —(.000253) =(1.00000) —(.000000) —(.000062) X

In order to explain why SMOTE+ENN and SMOTE obtain the highest performance, we may emphasize two feasible rea-
sons. The first one is related to the addition of significant information within the minority class examples by including
new synthetic examples. These new examples allow the formation of larger clusters to help the classifiers to separate both
classes, and the cleaning procedure also adds benefits to the generalization ability during learning. The second reason is that
the more sophisticated the technique is, the less general it becomes for the high number of benchmark problems selected for
our study.

According to these results, we select both SMOTE+ENN and SMOTE as good behaving methodologies for our final
comparison.

4.3. Study on the cost-sensitive learning algorithms

In this section, we carry out an analysis regarding cost-sensitive classifiers. We use three different approaches, namely
“Weighted-Classifier” (CS-Weighted) [7,123], MetaCost [38], and the CostSensitive Classifier (CS-Classifier) from the Weka
environment [62]. In the first case, the base classifiers are modified usually by weighting the instances of the dataset to take
into account the a priori probabilities, according to the number of samples in each class. In the two latter cases, we use an
input cost-matrix defining C(+,—) =IR and C(—,+) = 1.

Table 8 shows the average AUC results where the best average values per algorithm group are highlighted in bold. From
this table, we may conclude, as in the previous case for preprocessing, the goodness of the use of this type of solution for
imbalanced data, as there is a significant difference with respect to the results obtained with the original data. We may also
observe the good behavior of the “CS-Weighted” in contrast with the remaining techniques, and also the good accuracy for
the MetaCost algorithm, for both C4.5 and kNN.

Fig. 5 presents the ranking for the selected methods. We can appreciate that the “CS-Weighted” approach achieves the
highest rank overall, as pointed out before. The MetaCost method obtains also a good average for C4.5 and kNN, but it is out-
performed by the CS-Classifier when SVM is used.

As in the latter case, we show a Shaffer post hoc test for detecting significant differences among the results (Tables 9-11).

Table 8
Average AUC results for the cost-sensitive learning techniques.
Cost-sensitive C4.5 SVM kNN
AUCr, AUCry AUCr, AUCry AUCr, AUCry
None .8790 +.1226 7873 +.1437 .7007 +.1706 .6891 +.1681 .8011 +.1339 .8028 +.1383
CS-Weighted 9711 +.0580 .8284 +.1263 .8751 +.1068 .8464 +.1124 .8427 +.1201 .8463 +.1177
MetaCost 9159 +.0797 .8370 +.1287 .6931 +.1715 .6802 +.1696 9849 +.0118 .8250 +.1301

CS-Classifier 8915 +.1191 .8116 +.1387 .8701 £.1053 8391 +£.1152 9993 +.0046 .8084 +.1343
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Fig. 5. Average ranking of the cost-sensitive learning algorithms for the classification with imbalanced datasets.

Table 9

Shaffer test for the cost-sensitive learning techniques with C4.5 using the AUC measure.
C4.5 None CS-Weighted MetaCost CS-Classifier
None X —(.000000) —(.000000) —(.013893)
CS-Weighted +(.000000) X =(.787406) +(.020817)
MetaCost +(.000000) =(.787406) X +(.013893)
CS-Classifier +(.013893) —(.020817) —(.013893) X

Table 10

Shaffer test for the cost-sensitive learning techniques with SVM using the AUC measure.
SVM None CS-Weighted MetaCost CS-Classifier
None X —(.000000) =(.449832) —(.000000)
CS-Weighted +(.000000) X +(.000000) =(.449832)
MetaCost =(.449832) —(.000000) X —(.000000)
CS-Classifier +(.000000) =(.449832) +(.000000) X

Table 11

Shaffer test for the cost-sensitive learning techniques with kNN using the AUC measure.
kNN None CS-Weighted MetaCost CS-Classifier
None X —(.000000) —(.000075) =(.345231)
CS-Weighted +(.000000) X +(.004828) +(.000000)
MetaCost +(.000075) —(.004828) X +(.003228)
CS-Classifier =(.345231) —(.000000) —(.003228) X

The good behavior shown by introducing weights to the training examples can be explained by its simplicity, because the
algorithm procedure is maintained and is adapted to the imbalanced situation. Therefore, it works similarly to an oversam-
pling approach but without adding new samples and complexity to the problem itself. On the other hand, the MetaCost
method follows a similar aim, therefore obtaining high quality results. Regarding these facts, we will select these two meth-
ods as the representative ones for this family.

4.4. Study on the ensemble-based techniques

The last family of approaches for dealing with imbalanced datasets that we will analyze is the one based on ensemble
techniques. In this case, we have selected five different algorithms which showed a very good behavior on the study carried
out in [50], namely AdaBoost.M1 (AdaB-M1) [110], AdaBoost with costs outside the exponent (AdaC2) [117], RUSBoost
(RUSB) [112], SMOTEBagging (SBAG) [130], and EasyEnsemble (EASY) [85]. We must point out that AdaB-M1 was not in-
cluded in the taxonomy presented in Section 3.3 since it is not strictly oriented towards imbalanced classification, but we
have decided to study it as a classical ensemble approach and because it has shown a good behavior in [50]. Regarding
the number of internal classifiers used within each approach, AdaB-M1, AdaC2 and SBAG use 40 classifiers, whereas the
remaining approaches use only 10. Additionally, EASY considers 4 bags for the learning stage.
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Table 12

Average AUC results for the ensemble methodologies.
Ensemble C4.5 SVM kNN

AUCr, AUCry AUCr: AUCrst AUCr, AUCry

None .8790 +.1226 7873 +.1437 .7007 +£.1706 6891 +.1681 8011 +.1339 .8028 +.1383
AdaB-M1 19915 +£.0468 8072 +.1334 7862 +.1659 7615 +.1630 19983 +.0101 .8090 +.1345
AdaC2 9470 +.0858 8188 +.1312 .6366 +.1497 6271 +.1479 19991 +.0062 .8080 +.1344
RUSB 9481 +£.0545 .8519+.1129 7667 +.1652 7517 +.1642 9359 +.0495 .8465+.1118
SBAG 19626 +.0455 .8545 +.1111 .8662 +.1050 .8456 +.1137 9825 +.0253 .8485 +.1164
Easy 9076 +.0626 .8399 +.1091 .8565 +.1057 .8370+.1150 .9093 +.0667 .8440 +.1095

In this case, the average AUC results for training and testing are shown in Table 12. The values highlighted in bold cor-
respond to the algorithms that obtain a better performance according to the base classifier. From this table we may conclude
the good performance of RUSB, SBAG and EASY. Among them, SBAG stands out for obtaining slightly better results. Anyway,
these three algorithms outperform the others considered in this study. The reader might have also noticed that, the great
behavior of RUSB is attained using only 10 base classifiers.

This can also be seen from Fig. 6, where we can observe that these three algorithms obtain the first rank positions in al-
most all cases. It is noticeable that RUSB decreases its results in the case of the SVM algorithm, which can be due to the re-
moval of significant samples for determining the support vectors for the margin classifier in each iteration of the learning.

Tables 13-15 present a Shaffer test, where we can observe, in a nutshell, the statistical differences among the ensemble
methodologies selected for this study.

Nevertheless, we must point out that more complex methods do not perform much better than simpler ones. Bagging
techniques are easy to develop, but also powerful when dealing with class imbalance if they are properly combined. Their

Table 13

Shaffer test for the ensemble methodologies with C4.5 using the AUC measure.
C4.5 None AdaB-M AdaC2 RUSB SBAG Easy
None X =(.214054) —(.000767) —(.000000) —(.000000) —(.000001)
AdaB-M =(.214054) X =(.137090) —(.000001) —(.000000) ~(.00339)
AdaC2 +(.000767) =(.137090) X —(.006691) —(.00115) =(.339838)
RUSB +.000000) +(.000001) +.006691) X =(.641758) =(.214054)
SBAG +(.000000) +(.000000) +(.00115) =(.641758) X +(.099451)
Easy +(.000001) +(.003390) =(.339838) =(.214054) —(.099451) X

Table 14

Shaffer test for the ensemble methodologies with SVM using the AUC measure.
SVM None AdaB-M AdaC2 RUSB SBAG Easy
None X ~(.000721) =(.208828) —(.015681) —(.000000) —(.000000)
AdaB-M +.000721) X +(.000000) =(.401501) —(.000001) —(.000343)
AdaC2 =(.208828) —(.000000) X —(.000018) —(.000000) —(.000000)
RUSB +(.015681) =(.401501) +(.000018) X —(.000000) —(.000007)
SBAG +(.000000) +(.000001) +(.000000) +(.000000) X =(.401501)
Easy +(.000000) +(.000343) +(.000000) +.000007) =(.401501) X
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Fig. 6. Average ranking of the ensemble algorithms for the classification with imbalanced datasets.
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Table 15

Shaffer test for the ensemble methodologies with kNN using the AUC measure.
kNN None AdaB-M AdaC2 RUSB SBAG Easy
None X =(1.00000) =(1.00000) —(.000000) —(.000000) —(.000118)
AdaB-M =(1.00000) X =(1.00000) —(.000017) —(.000000) —(.003106)
AdaC2 =(1.00000) =(1.00000) X —(.000006) —(.000000) —(.001517)
RUSB +(.000000) +(.000017) +(.000006) X =(.803003) =(.803003)
SBAG +(.000000) +(.000000) +(.000000) =(.803003) X +(.063015)
Easy +(.000118) +(.003106) +(.001517) =(.803003) —(.063015) X

Table 16

Average global results for C4.5 with the representative methodologies for addressing imbalanced classification.
Preprocessing C4.5 SVM kNN

AUCr, AUCry AUCr, AUCry AUCr, AUCrg

None .8790 +.1226 7873 £.1437 .7007 +.1706 .6891 +.1681 .8011 +£.1339 .8028 +.1383
SMOTE 9613 +.0504 .8288 +.1192 .8631 +.1045 .8470 £.1152 9345 +.1247 .8341+.1194
SMOTE+ENN .9482 +.0525 .8323 £.1166 .8815 +.1001 .8461 £.1162 9284 +.1262 .8443 +.1158
CS-Weighted 9711 £.0580 .8284 +.1263 .8751 £.1068 .8464 +.1124 .8427 +.1201 .8463 +.1177
MetaCost 9159 +.0797 .8370 +£.1287 6931 £.1715 .6802 +.1696 .9849 +.0118 .8250 +.1301
RUSB 9481 +.0545 .8519+.1129 7667 +.1652 7517 +.1642 .9359 +.0495 .8465+.1118
SBAG 9626 +.0455 .8545 +.1111 .8662 +.1050 .8456 +.1137 .9825 +.0253 .8485 +.1164

hybridization with data preprocessing techniques has shown competitive results and the key issue of these methods resides
in properly exploiting the diversity when each bootstrap replica is formed.

Since we have to select only two methodologies for the global analysis, we will stress SBAG as the best ranked method
and RUSB, because it presents a robust behavior on average and the second best mean performance in two of the three
algorithms.

4.5. Global analysis for the methodologies that address imbalanced classification

In this last section of the experimental analysis on the behavior of the methodologies for addressing classification with
imbalanced datasets, we will perform a cross-family comparison for the approaches previously selected as the representa-
tives for each case, namely preprocessing (SMOTE and SMOTE+ENN), cost-sensitive learning (CS-Weighted and MetaCost)
and ensemble techniques (RUSB and SBAG). The global results are shown in Table 16, whereas the new performance ranking
is shown in Fig. 7. As in the previous cases, the bold values in Table 16 correspond to the algorithms that obtain the highest
performance.

Considering these results, we must highlight the dominance of the ensemble approaches versus the remaining models for
the “weak classifiers”, i.e. C4.5 and kNN. For SVM, the best results are achieved by preprocessing and CS-weighted, showing
the significance of adjusting the objective function towards the positive instances, for biasing the separating hyperplane.
Regarding the comparison between the cost-sensitive classifiers and the oversampling methods, we observe that, on average,
SMOTE+ENN, CS-Weighted and SMOTE obtain very good results and, therefore, they have a similar ranking, followed by
the MetaCost method. We must point out that these conclusions regarding the latter techniques are in concordance with
the study done in [88].

WC45 mSVM mkNN
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None SMOTE SMOTE+ENN  CS-Weighted MetaCost RUSB SBAG

Fig. 7. Average ranking of the representative algorithms for the classification with imbalanced datasets.
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Table 17

Shaffer test for the representative methodologies with C4.5 using the AUC measure.
Cc4.5 None SMOTE SMOTE+ENN CS-Weighted MetaCost RUSB SBAG
None X —(.000292) —(.000087) —(.000203) —(.000001) —(.000000) —(.000000)
SMOTE +(.000292) X =(1.00000) =(1.00000) =(1.00000) —(.001816) —(.000648)
SMOTE+ENN +(.000087) =(1.00000) X =(1.00000) =(1.00000) —(.004560) —(.001423)
CS-Weighted +(.000203) =(1.00000) =(1.00000) X =(1.00000) —(.002500) —(.000671)
MetaCost +(.000001) =(1.00000) =(1.00000) =(1.00000) X —(.061745) —(.02942)
RUSB +(.000000) +(.001816) +(.004560) +(.002500) +(.061745) X =(1.00000)
SBAG +(.000000) +(.000648) +(.001423) +(.000671) +(.02942) =(1.00000) X

Table 18

Shaffer test for the representative methodologies with SVM using the AUC measure.
SVM None SMOTE SMOTE+ENN CS-Weighted MetaCost RUSB SBAG
None X —(.000000) —(.000000) —(.000000) =(1.00000) —(.097865) —(.000000)
SMOTE +(.000000) X =(1.00000) =(1.00000) +(.000000) +(.000000) =(1.00000)
SMOTE+ENN +(.000000) =(1.00000) X =(1.00000) +(.000000) +(.000000) =(1.00000)
CS-Weighted +(.000000) =(1.00000) =(1.00000) X +(.000000) +(.000000) =(1.00000)
MetaCost =(1.00000) —(.000000) —(.000000) —(.000000) X —(.019779) —(.000000)
RUSB +(.097865) —(.000000) —(.000000) —(.000000) +(.019779) X —(.000005)
SBAG +(.000000) =(1.00000) =(1.00000) =(1.00000) +(.000000) +(.000005) X

Table 19

Shaffer test for the representative methodologies with kNN using the AUC measure.
kNN None SMOTE SMOTE+ENN CS-Weighted MetaCost RUSB SBAG
None X —(.002684) —(.000000) —(.000000) —(.038367) —(.000000) —(.000000)
SMOTE +(.002684) X —(.058815) —(.049543) =(1.00000) =(.371813) —(.000545)
SMOTE+ENN +(.000000) +(.058815) X =(1.00000) +(.004309) =(1.00000) =(.950901)
CS-Weighted +(.000000) +(.049543) =(1.00000) X +(.002705) =(1.00000) =(.986440)
MetaCost +(.038367) =(1.00000) —(.004309) —(.002705) X —(.057811) —(.000011)
RUSB +(.000000) =(.371813) =(1.00000) =(1.00000) +(.057811) X =(.196710)
SBAG +(.000000) +(.000545) =(.950901) =(.986440) +(.000011) =(.196710)

In the same way as in the previous sections of this study, we proceed with a Shaffer test (Tables 17-19) that aims to con-
trast whether two algorithms are significantly different and how different they are.

As a final remark, we must state that all the solutions analyzed here present different particularities, which make them
more appropriate for a given application. For example, ensemble methodologies have shown to be very accurate, but their
learning time may be high and the output model can be difficult to comprehend by the final user. Cost-sensitive approaches
have also shown to be very precise, but the necessity of defining an optimal cost-matrix impose hard restrictions to their use.
Finally, the preprocessing algorithms have shown their robustness and obtained very good global results, and therefore they
can be viewed as a standard approach for imbalanced datasets.

5. Problems related to data intrinsic characteristics in imbalanced classification

As it was stated in the introduction of this work, skewed class distributions do not hinder the learning task by itself
[66,118], but usually a series of difficulties related with this problem turn up. This issue is depicted in Fig. 8, in which we
show the performance of the SBAG with the different datasets used in the previous section, ordered according to the IR,
in order to search for some regions of interesting good or bad behavior. As we can observe, there is no pattern of behavior
for any range of IR, and the results can be poor both for low and high imbalanced data.

Related to this issue, in this section we aim to make a discussion on the nature of the problem itself, emphasizing several
data intrinsic characteristics that do have a strong influence on imbalanced classification, in order to be able to address this
problem in a more feasible way.

With this objective in mind, we focus our analysis on using the C4.5 classifier, in order to develop a basic but descriptive
study by showing a series of patterns of behavior, following a kind of “educational scheme”. With respect to the previous
section, which was carried out in an empirical way, this part of the study is devoted to enumerating the scenarios that
can be found when dealing with classification with imbalanced data, emphasizing their main issues that will allow us to de-
sign a better algorithm that can be adapted to different niches of the problem.
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Fig. 8. Performance in training and testing for the C4.5 decision tree with SBAG as a function of IR.

We acknowledge that some of the data intrinsic characteristics described along this section share some features and it is
usual that, for a given dataset, several “sub-problems” can be found simultaneously. Nevertheless, we consider a simplified
view of all these scenarios to serve as a global introduction to the topic.

First, we discuss about the difficulties related to the presence of small disjuncts in the imbalanced data (Section 5.1).
Then, we present the issues about the size of the dataset and the lack of density in the training set (Section 5.2). Next,
we focus on the class overlap, showing that it is extremely significant on imbalanced domains (Section 5.3). Then, we analyze
the presence of noisy data in this type of problems and how it affects the behavior of both preprocessing techniques and
classification algorithms (Section 5.4). After that, we introduce the concept of borderline instances and its relationship with

noise examples (Section 5.5). Finally, we define the dataset shift problem in the classification with imbalanced datasets
(Section 5.6).

5.1. Small disjuncts

The presence of the imbalanced classes is closely related to the problem of small disjuncts. This situation occurs when the
concepts are represented within small clusters, which arise as a direct result of underrepresented subconcepts [99,138].
Although those small disjuncts are implicit in most of the problems, the existence of this type of areas highly increases
the complexity of the problem in the case of class imbalance, because it becomes hard to know whether these examples rep-
resent an actual subconcept or are merely attributed to noise [73]. This situation is represented in Fig. 9, where we show an
artificially generated dataset with small disjuncts for the minority class and the “Subclus” problem created in [97], where we
can find small disjuncts for both classes: the negative samples are underrepresented with respect to the positive samples in
the central region of positive rectangular areas, while the positive samples only cover a small part of the whole dataset and
are placed inside the negative class. We must point out that, in all figures of this section, positive instances are represented
with dark stars whereas negative instances are depicted with light circles.

negative * positive

(a) Artificial dataset: small disjuncts for

the minority class

(b) Subclus dataset:
both classes

Fig. 9. Example of small disjuncts on imbalanced data.

small disjuncts for
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The problem of small disjuncts becomes accentuated for those classification algorithms which are based on a divide-and-
conquer approach [135]. This methodology consists in subdividing the original problem into smaller ones, such as the pro-
cedure used in decision trees, and can lead to data fragmentation [49], that is, to obtain several partitions of data with a few
representation of instances. If the IR of the data is high, this handicap is obviously more severe.

Several studies by Weiss [136,137] analyze this factor in depth and enumerate several techniques for handling the prob-
lem of small disjuncts:

1. Obtain additional training data. The lack of data can induce the apparition of small disjuncts, especially in the
minority class, and these areas may be better covered just by employing an informed sampling scheme [71].

2. Use a more appropriate inductive bias. If we aim to be able to properly detect the areas of small disjuncts, some
sophisticated mechanisms must be employed for avoiding the preference for the large areas of the problem. For exam-
ple, [68] modified CN2 so that its maximum generality bias is used only for large disjuncts, and a maximum specificity
bias was then used for small disjuncts. However, this approach also degrades the performance of the small disjuncts,
and some authors proposed to refine the search and to use different learners for the examples that fall in the large
disjuncts and on the small disjuncts separately [24,121].

3. Using more appropriate metrics. This issue is related to the previous one in the sense that, for the data mining pro-
cess, it is recommended to use specific measures for imbalanced data, in a way that the minority classes in the small
disjuncts are positively weighted when obtaining the classification model [134]. For example, the use of precision and
recall for the minority and majority classes, respectively, can lead to generate more precise rules for the positive class
[41,74].

4. Disabling pruning. Pruning tends to eliminate most small disjuncts by a generalization of the obtained rules. There-
fore, this methodology is not recommended.

5. Employ boosting. Boosting algorithms, such as the AdaBoost algorithm, are iterative algorithms that place different
weights on the training distribution each iteration [110]. Following each iteration, boosting increases the weights
associated with the incorrectly classified examples and decreases the weights associated with the correctly classified
examples. Because instances in the small disjuncts are known to be difficult to predict, it is reasonable to believe that
boosting will improve their classification performance. Following this idea, many approaches have been developed by
modifying the standard boosting weight-update mechanism in order to improve the performance on the minority
class and the small disjuncts [30,44,61,69,74,112,117,122].

Finally, we must emphasize the use of the CBO method [73], which is a resampling strategy that is used to counteract
simultaneously the between-class imbalance and the within-class imbalance. Specifically, this approach detects the clusters
in the positive and negative classes using the k-means algorithm in a first step. In a second step, it randomly replicates the
examples for each cluster (except the largest negative cluster) in order to obtain a balanced distribution between clusters
from the same class and between classes. These clusters can be viewed as small disjuncts in the data, and therefore this pre-
processing mechanism is aimed to stress the significance of these regions.

In order to show the goodness of this approach, we depict a short analysis on the two previously presented artificial data-
sets, that is, our artificial problem and the Subclus dataset, studying the behavior of the C4.5 classifier according to both the
differences in performance between the original and the preprocessed data and the boundaries obtained in each case. We
must point out that the whole dataset is used in both cases.

Table 20 shows the results of C4.5 in each case, where we must emphasize that the application of CBO enables the correct
identification of all the examples for both classes. Regarding the visual output of the C4.5 classifier (Fig. 10), in the first case
we observe that for the original data no instances of the positive class are recognized, and that there is an overgeneralization
of the negative instances, whereas the CBO method achieves the correct identification of the four clusters in the data, by rep-
licating an average of 11.5 positive examples and 1.25 negative examples. In the Subclus problem, there is also an overgen-
eralization for the original training data, but in this case we found that the small disjuncts of the negative class surrounding
the positive instances are the ones which are misclassified now. Again, the application of the CBO approach results on a per-
fect classification for all data, having 7.8 positive instances for each “data point” and 1.12 negative ones.

5.2. Lack of density

One problem that can arise in classification is the small sample size [106]. This issue is related to the “lack of density” or
“lack of information”, where induction algorithms do not have enough data to make generalizations about the distribution of

Table 20
Performance obtained by C4.5 in datasets suffering from small disjuncts.
Dataset Original data Preprocessed data with CBO
TPrate TNrate AUC TPrate TNrate AUC
Artificial dataset .0000 1.000 .5000 1.000 1.000 1.000

Subclus dataset 1.000 9029 9514 1.000 1.000 1.000
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(a) Artificial dataset with the original data: (b) Artificial dataset with CBO: 228
20 positive and 182 negative instances positive and 228 negative instances

(c) Subclus dataset with the original data: (d) Subclus dataset with CBO: 780 positive
100 positive and 700 negative instances and 780 negative instances

Fig. 10. Boundaries obtained by C4.5 with the original and preprocessed data using CBO for addressing the problem of small disjuncts. The new instances
for (b) and (d) are just replicates of the initial examples.

i © o] R oo © e
(a) 10 % of training instances (b) 100 % of training instances

Fig. 11. Lack of density or small sample size on the yeast4 dataset.

samples, a situation that becomes more difficult in the presence of high dimensional and imbalanced data. A visual repre-
sentation of this problem is depicted in Fig. 11, where we show a scatter plot for the training data of the yeast4 problem
(attributes mcg vs. gvh) only with a 10% of the original instances (Fig. 11a) and and with all the data (Fig. 11b). We can appre-
ciate that it becomes very hard for the learning algorithm to obtain a model that is able to perform a good generalization
when there is not enough data that represents the boundaries of the problem and, what it is also most significant, when
the concentration of minority examples is so low that they can be simply treated as noise.
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The combination of imbalanced data and the small sample size problem presents a new challenge to the research com-
munity [133]. In this scenario, the minority class can be poorly represented and the knowledge model to learn this data space
becomes too specific, leading to overfitting. Furthermore, as stated in the previous section, the lack of density in the training
data may also cause the introduction of small disjuncts. Therefore, two datasets cannot be considered to present the same
complexity because they have the same IR, as it is also important how the training data represents the minority instances.

In [138], the authors have studied the effect of class distribution and training-set size on the classifier performance using
C4.5 as base learning algorithm. Their analysis consisted in varying both the available training data and the degree of imbal-
ance for several datasets and observing the differences for the AUC metric in those cases.

The first finding they extracted is somehow quite trivial, that is, the higher the number of training data, the better the
performance results are, independently of the class distribution. A second important fact that they highlighted is that the
IR that yields the best performances occasionally vary from one training-set size to another, giving the support to the notion
that there may be a “best” marginal class distribution for a learning task and suggests that a progressive sampling algorithm
may be useful in locating the class distribution that yields the best, or nearly best, classifier performance.

In order to visualize the effect of the density of examples in the learning process, in Fig. 12 we show the results in AUC for
the C4.5 classifier both for training (black line) and testing (grey line) for the vowel0 problem, varying the percentage of
training instances from 10% to the original training size. This short experiment is carried out on a 5-fold cross-validation,
where the test data is not modified, i.e. in all cases it represents a 20% of the original data; the results shown are the average
of the five partitions.

From this graph, we may distinguish a growth rate directly proportional to the number of training instances that are
being used. This behavior reflects the findings enumerated previously from [138].

5.3. Overlapping or class separability

The problem of overlapping between classes appears when a region of the data space contains a similar quantity of train-
ing data from each class. This situation leads to develop an inference with almost the same a priori probabilities in this over-
lapping area, which makes very hard or even impossible the distinction between the two classes. Indeed, any “linearly
separable” problem can be solved by any simple classifier regardless of the class distribution.

There are several works which aim to study the relationship between overlapping and class imbalance. Particularly, in
[102] one can find a study where the authors propose several experiments with synthetic datasets varying the imbalance
ratio and the overlap existing between the two classes. Their conclusions stated that the class probabilities are not the main
responsibles for the hinder in the classification performance, but instead the degree of overlapping between the classes.

To reproduce the example for this scenario, we have created an artificial dataset with 1,000 examples having an IR of 9,
i.e. 1 positive instance per 10 instances. Then, we have varied the degree of overlap for individual feature values, from no
overlap to 100% of overlap, and we have used the C4.5 classifier in order to determine the influence of overlapping with re-
spect to a fixed IR. First, Table 21 shows the results for the considered cases, where we observe that the performance is highly
degrading with the increase of the overlap. Additionally, Fig. 13 shows this issue, where we can observe that the decision tree
is not only unable to obtain a correct discrimination between both classes when they are overlapped, but also that the pre-
ferred class is the majority one, leading to low values for the AUC metric.

Additionally, in [55], a similar study with several algorithms in different situations of imbalance and overlap focusing on
the the kNN algorithm was developed. In this case, the authors proposed two different frameworks: on the one hand, they try
to find the relation when the imbalance ratio in the overlap region is similar to the overall imbalance ratio whereas, on the
other hand, they search for the relation when the imbalance ratio in the overlap region is inverse to the overall one (the po-
sitive class is locally denser than the negative class in the overlap region). They showed that when the overlapped data is not
balanced, the IR in overlapping can be more important than the overlapping size. In addition, classifiers using a more global
learning procedure attain greater TP rates whereas more local learning models obtain better TN rates than the former.
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Fig. 12. AUC performance for the C4.5 classifier with respect to the proportion of examples in the training set for the vowelO problem.
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Table 21

Performance obtained by C4.5 with different degrees of overlapping.
Overlap degree (%) TPrate TNiate AUC
0 1.000 1.000 1.000
20 .79.00 1.000 .8950
40 4900 1.000 .7450
50 4700 1.000 .7350
60 4200 1.000 .7100
80 .2100 19989 .6044
100 .0000 1.000 .5000

O
.
-
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(a) 20% overlap (b) 80% overlap

Fig. 13. Example of overlapping imbalanced datasets: boundaries detected by C4.5.

In [37], the authors examine the effects of overlap and imbalance on the complexity of the learned model and demon-
strate that overlapping is a far more serious factor than imbalance in this respect. They demonstrate that these two problems
acting in concert cause difficulties that are more severe than one would expect by examining their effects in isolation. In
order to do so, they also use synthetic datasets for classifying with a SVM, where they vary the imbalance ratio, the overlap
between classes and the imbalance ratio and overlap jointly. Their results show that, when the training set size is small, high
levels of imbalance cause a dramatic drop in classifier performance, explained by the presence of small disjuncts. Overlap-
ping classes cause a consistent drop in performance regardless of the size of the training set. However, with overlapping and
imbalance combined, the classifier performance is degraded significantly beyond what the model predicts.

In one of the latest researches on the topic [89], the authors have empirically extracted some interesting findings on real
world datasets. Specifically, the authors depicted the performance of the different datasets ordered according to different
data complexity measures (including the IR) in order to search for some regions of interesting good or bad behavior. They
could not characterize any interesting behavior related to IR, but they do for other metrics that measure the overlap between
the classes.

Finally, in [90], an approach that combines preprocessing and feature selection (strictly in this order) is proposed. This
approach works in a way where preprocessing deals with class distribution and small disjuncts and feature selection some-
how reduces the degree of overlapping. In a more general way, the idea behind this approach tries to overcome different
sources of data complexity such as the class overlap, irrelevant and redundant features, noisy samples, class imbalance,
low ratios of the sample size to dimensionality and so on, using different approaches used to solve each complexity.

5.4. Noisy data

Noisy data is known to affect the way any data mining system behaves [20,109,151]. Focusing on the scenario of imbal-
anced data, the presence of noise has a greater impact on the minority classes than on usual cases [135]; since the positive
class has fewer examples to begin with, it will take fewer “noisy” examples to impact the learned subconcept. This issue is
depicted in Fig. 14, in which we can observe the decision boundaries obtained with SMOTE+C4.5 in the Subclus problem
without noisy data (Fig. 14a) and how the frontiers between the classes are wrongly generated by introducing a 20% gaussian
noise (Fig. 14b).

According to [135], these “noise-areas” can be somehow viewed as “small disjuncts” and in order to avoid the erroneous
generation of discrimination functions for these examples, some overfitting management techniques must be employed,
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(a) Original problem and decision (b) Noisy instances and new undesirable
functions decision functions

Fig. 14. Example of the effect of noise in imbalanced datasets for SMOTE+C4.5 in the Subclus dataset.

such as pruning. However, the handicap of this methodology is that some correct minority classes will be ignored and, in this
manner, the bias of the learner should be tuned-up in order to be able to provide a good global behavior for both classes of
the problem.

For example, Batuwita and Palade developed the FSVM-CIL algorithm [13], a synergy between SVMs and fuzzy logic
aimed to reflect the within-class importance of different training examples in order to suppress the effect of outliers and
noise. The idea is to assign different fuzzy membership values to positive and negative examples and to incorporate this
information in the SVM learning algorithm, aimed to reduce the effect of outliers and noise when finding the separating
hyperplane.

In [111] we may find an empirical study on the effect of class imbalance and class noise on different classification algo-
rithms and data sampling techniques. From this study, the authors extracted three important lessons on the topic:

1. Classification algorithms are more sensitive to noise than imbalance. However, as imbalance increases in severity, it
plays a larger role in the performance of classifiers and sampling techniques.

2. Regarding the preprocessing mechanisms, simple undersampling techniques such as random undersampling and ENN
performed the best overall, at all levels of noise and imbalance. Peculiarly, as the level of imbalance is increased, ENN
proves to be more robust in the presence of noise. Additionally, OSS consistently proves itself to be relatively unaf-
fected by an increase in the noise level. Other techniques such as random oversampling, SMOTE or Borderline-SMOTE
obtain good results on average, but do not show the same behavior as undersampling.

3. Finally, the most robust classifiers tested over imbalanced and noisy data are bayesian classifiers and SVMs, perform-
ing better on average than rule induction algorithms or instance based learning. Furthermore, whereas most algo-
rithms only experience small changes in AUC when imbalance was increased, the performance of Radial Basis
Functions is significantly hindered when the imbalance ratio increases. For rule learning algorithms, the presence
of noise degrades the performance more quickly than in other algorithms.

Additionally, in [75], the authors presented a similar study on the significance of noise and imbalance data using bagging
and boosting techniques. Their results show the goodness of the bagging approach without replacement, and they recom-
mend the use of noise reduction techniques prior to the application of boosting procedures.

As a final remark, we show a brief experimental study on the effect of noise over a specific imbalanced problem such as
the Subclus dataset [97]. Table 22 includes the results for C4.5 with no preprocessing (None) and four different approaches,
namely random undersampling, SMOTE [27], SMOTE+ENN [9] and SPIDER2 [97], a method designed for addressing noise and
borderline examples, which will be detailed in the next section.

This table is divided into two parts, the leftmost columns show the results with the original data and the columns in the
right side show the results when adding a 20% of gaussian noise to the data. From this table we may conclude that in all cases
the presence of noise degrades the performance of the classifier especially on the positive instances (TPq.). Regarding the
preprocessing approaches, the best behavior is obtained by SMOTE+ENN and SPIDER2, both of which include a cleaning
mechanism to alleviate the problem of noisy data, whereas the latter also oversample the borderline minority examples.

5.5. Borderline examples
Inspired by [76], we may distinguish between safe, noisy and borderline examples. Safe examples are placed in relatively

homogeneous areas with respect to the class label. By noisy examples we understand individuals from one class occurring in
safe areas of the other class, as introduced in the previous section. Finally, Borderline examples are located in the area
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Table 22
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Performance obtained by C4.5 in the Subclus dataset with and without noisy instances.

Dataset Original data 20% of Gaussian noise

TPrate TNrate AUC TPrate TNrate AUC
None 1.000 .9029 9514 .0000 1.000 .5000
RandomUnderSampling 1.000 .7800 .8900 .9700 .7400 .8550
SMOTE 9614 9529 9571 .8914 .8800 .8857
SMOTE+ENN 9676 .9623 .9649 9625 9573 9599
SPIDER2 1.000 1.000 1.000 .9480 9033 9256

surrounding class boundaries, where the minority and majority classes overlap. Fig. 15 represents two examples given by
[97], named “Paw” and “Clover”, respectively. In the former, the minority class is decomposed into 3 elliptic subregions,
where two of them are located close to each other, and the remaining smaller sub-region is separated (upper right cluster).
The latter also represents a non-linear setting, where the minority class resembles a flower with elliptic petals, which makes
difficult to determine the boundaries examples in order to carry out a correct discrimination of the classes.

The problem of noisy data and the management of borderline examples are closely related, and most of the cleaning tech-
niques briefly introduced in Section 3.1 can be used, or are the basis for detecting and emphasizing these borderline in-
stances and, what is most important, to distinguish them from noisy instances that can degrade the overall classification.
In brief, the better the definition of the borderline areas the more precise the discrimination between the positive and neg-
ative classes will be [39].

The family of SPIDER methods were proposed in [115] to ease the problem of the improvement of sensitivity at the cost of
specificity that appears in the standard cleaning techniques. The SPIDER techniques works by combining a cleaning step of
the majority examples with a local oversampling of the borderline minority examples [97,115,116].

We may also find other related techniques such as the Borderline-SMOTE [63], which seeks to oversample the minority
class instances in the borderline areas, by defining a set of “Danger” examples, i.e. those which are most likely to be misclas-
sified since they appear in the borderline areas, from which SMOTE generates synthetic minority samples in the neighbor-
hood of the boundaries.

Other approaches such as Safe-Level-SMOTE [21] and ADASYN [65] work in a similar way. The former is based on the
premise that previous approaches, such as SMOTE and Borderline-SMOTE, may generate synthetic instances in unsuitable
locations, such as overlapping regions and noise regions; therefore, the authors compute a “safe-level” value for each posi-
tive instance before generating synthetic instances and generate them closer to the largest safe level. On the other hand, the
key idea of the ADASYN algorithm is to use a density distribution as a criterion to automatically decide the number of syn-
thetic samples that need to be generated for each minority example, by adaptively changing the weights of different minor-
ity examples to compensate the skewed distributions.

In [87], the authors use a hierarchical fuzzy rule learning approach, which defines a higher granularity for those problem
subspaces in the borderline areas. The results have shown to be very competitive for highly imbalanced datasets in which
this problem is accentuated.

Finally, in [97], the authors presented a series of experiments in which it is shown that the degradation in performance of
a classifier is strongly affected by the number of borderline examples. They showed that focused resampling mechanisms
(such as the Neighborhood Cleaning Rule [79] or SPIDER2 [97]) work well when the number of borderline examples is large
enough whereas, on the contrary case, oversampling methods allow the improvement of the precision for the minority class.
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Fig. 15. Example of data with difficult borderline examples.
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(a) Original data (b) Data preprocessed with SPIDER2

Fig. 16. Boundaries detected by C4.5 in the Paw problem (800 examples, IR 7 and disturbance ratio of 30).

(a) Original data (b) Data preprocessed with SPIDER2

Fig. 17. Boundaries detected by C4.5 in the Clover problem (800 examples, IR 7 and disturbance ratio of 30).

The behavior of the SPIDER2 approach is shown in Table 15 for both the Paw and Clover problems. There are 10 different
problems for each one of these datasets, depending on the number of examples and IR (600-5 or 800-7), and the “disturbance
ratio” [97], defined as the ratio of borderline examples from the minority class subregions (0-70%). From these results we
must stress the goodness of the SPIDER2 preprocessing step especially for those problems with a high disturbance ratio,
which are harder to solve.

Additionally, and as a visual example of the behavior of this kind of methods, we show in Figs. 16 and 17 the classification
regions detected with C4.5 for the Paw and Clover problems using the original data and applying the SPIDER2 method. From
these results we may conclude that the use of a methodology for stressing the borderline areas is very beneficial for correctly
identifying the minority class instances (see Table 23).

5.6. Dataset shift

The problem of dataset shift [2,23,114] is defined as the case where training and test data follow different distributions.
This is a common problem that can affect all kind of classification problems, and it often appears due to sample selection bias
issues. A mild degree of dataset shift is present in most real-world problems, but general classifiers are often capable of han-
dling it without a severe performance loss.

However, the dataset shift issue is specially relevant when dealing with imbalanced classification, because in highly
imbalanced domains, the minority class is particularly sensitive to singular classification errors, due to the typically low
number of examples it presents [94]. In the most extreme cases, a single misclassified example of the minority class can
create a significant drop in performance.
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Table 23
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AUC results in training and testing for the Clover and Paw problems with C4.5 (Original data and data preprocessed with SPIDER2).

Dataset Disturbance 600 examples - IR 5 800 examples — IR 7
None SPIDER2 None SPIDER2
AUCr, AUCry AUCr, AUCry AUCry AUCry AUCr, AUCry
Paw 0 9568 .9100 9418 9180 7095 .6829 9645 .9457
30 7298 .7000 9150 .8260 .6091 5671 9016 .8207
50 7252 .6790 9055 .8580 .5000 .5000 9114 .8400
60 .5640 .5410 9073 .8150 5477 .5300 .8954 7829
70 .6250 .5770 .8855 .8350 .5000 .5000 .8846 .8164
Average 7202 .6814 9110 .8504 5732 .5560 9115 8411
Clover 0 .7853 .7050 7950 7410 7607 7071 .8029 7864
30 .6153 .5430 9035 .8290 .5546 5321 .8948 7979
50 .5430 .5160 .8980 .8070 .5000 .5000 .8823 .7907
60 .5662 .5650 .8798 .8100 .5000 .5000 .8848 .8014
70 .5000 .5000 .8788 .7690 .5250 5157 .8787 7557
Average .6020 .5658 8710 7912 .5681 .5510 .8687 7864
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(a) Training data. AUC = .9043

(b) Test data. AUC = 1.000

Fig. 18. Example of good behavior (no dataset shift) in imbalanced domains: ecoli4 dataset, 5th partition.
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(a) Training data. AUC = 1.000

(b) Test data. AUC = .8750

Fig. 19. Example of bad behavior caused by dataset shift in imbalanced domains: ecoli4 dataset, 1st partition.

For clarity, Figs. 18 and 19 present two examples of the influence of the dataset shift in imbalanced classification. In the
first case (Fig. 18), it is easy to see a separation between classes in the training set that carries over perfectly to the test set.
However, in the second case (Fig. 19), it must be noted how some minority class examples in the test set are at the bottom
and rightmost areas while they are localized in other areas in the training set, leading to a gap between the training and test-
ing performance. These problems are represented in a two-dimensional space by means of a linear transformation of the in-
puts variables, following the technique given in [94].
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Since the dataset shift is a highly relevant issue in imbalanced classification, it is easy to see why it would be an inter-
esting perspective to focus on in future research regarding this topic. There are two different potential approaches in the
study of the dataset shift in imbalanced domains:

1. The first one focuses on intrinsic dataset shift, that is, the data of interest includes some degree of shift that is pro-
ducing a relevant drop in performance. In this case, we may develop techniques to discover and measure the presence
of dataset shift [32,33,144], but adapting them to focus on the minority class. Furthermore, we may design algorithms
that are capable of working under dataset shift conditions, either by means of preprocessing techniques [95] or with
ad hoc algorithms [1,16,60]. In both cases, we are not aware of any proposals in the literature that focus on the prob-
lem of imbalanced classification in the presence of dataset shift.

2. The second approach in terms of dataset shift in imbalanced classification is related to induced dataset shift. Most
current state of the art research is validated through stratified cross-validation techniques, which are another poten-
tial source of shift in the learning process. A more suitable validation technique needs to be developed in order to
avoid introducing dataset shift issues artificially.

6. Concluding remarks

In this paper, we have reviewed the topic of classification with imbalanced datasets, and focused on two main issues: (1)
to present the main approaches for dealing with this problem, namely, preprocessing of instances, cost-sensitive learning
and ensemble techniques, and (2) to develop a thorough discussion on the effect of data intrinsic characteristics in learning
from imbalanced datasets.

Mainly, we have pointed out that the imbalanced ratio by itself does not have the most significant effect on the classifiers’
performance, but that there are other issues that must be taken into account. We have presented six different cases, which, in
conjunction with a skewed data distribution, impose a strong handicap for achieving a high classification performance for
both classes of the problem, i.e., the presence of small disjuncts, the lack of density or small sample size, the class overlap-
ping, the noisy data, the correct management of borderline examples, and the dataset shift.

For each one of the mentioned issues, we have described the main features that makes learning algorithms to be wrongly
biased and we have presented several solutions proposed along the years in the specialized literature. This review paper
emphasizes that there is a current need to study the aforementioned intrinsic characteristics of the data, so that future re-
search on classification with imbalanced data should focus on detecting and measuring the most significant data properties,
in order to be able to define good solutions as well as alternatives to overcome the problems.
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Lots of real world applications appear to be a matter of classification with imbalanced data-sets. This
problem arises when the number of instances from one class is quite different to the number of instances
from the other class. Traditionally, classification algorithms are unable to correctly deal with this issue as
they are biased towards the majority class. Therefore, algorithms tend to misclassify the minority class
which usually is the most interesting one for the application that is being sorted out.

Among the available learning approaches, fuzzy rule-based classification systems have obtained a good
behavior in the scenario of imbalanced data-sets. In this work, we focus on some modifications to further
improve the performance of these systems considering the usage of information granulation. Specifically,
a positive synergy between data sampling methods and algorithmic modifications is proposed, creating a
genetic programming approach that uses linguistic variables in a hierarchical way. These linguistic vari-
ables are adapted to the context of the problem with a genetic process that combines rule selection with
the adjustment of the lateral position of the labels based on the 2-tuples linguistic model.

An experimental study is carried out over highly imbalanced and borderline imbalanced data-sets
which is completed by a statistical comparative analysis. The results obtained show that the proposed
model outperforms several fuzzy rule based classification systems, including a hierarchical approach
and presents a better behavior than the C4.5 decision tree.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Learning from imbalanced data-sets is an issue that has at-
tracted a lot of attention in machine learning research [29,51]. This
problem is characterized by a class distribution where the number
of examples in one class is outnumbered by the number of exam-
ples in the other class. The presence of imbalanced data-sets is
dominant in a high number of real problems including, but not lim-
ited to, medical diagnosis, fraud detection, finances, risk manage-
ment, network intrusion and so on. Additionally, the positive or
minority class is usually the one that has the highest interest from
the learning point of view and it also implies a great cost when it is
not well classified [17,57].

A standard classifier that seeks accuracy over a full range of in-
stances is frequently not suitable to deal with imbalanced learning
tasks, since it tends to be overwhelmed by the majority class thus
misclassifying the minority examples. This situation becomes crit-
ical when the minority class is greatly outnumbered by the major-
ity class, generating an scenario of highly imbalanced data-sets

* Corresponding author. Tel.: +34 958 240598; fax: +34 958 243317.
E-mail addresses: vlopez@decsai.ugr.es (V. Lopez), alberto.fernandez@ujaen.es
(A. Fernandez), mjjesus@ujaen.es (M.]. del Jesus), herrera@decsai.ugr.es (F. Herrera).

0950-7051/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.knosys.2012.08.025

where the performance deterioration is amplified. However, some
studies have shown that imbalance for itself is not the only factor
that hinders the classification performance [37]. There are several
data intrinsic characteristics which lower the learning effective-
ness. Some of these handicaps within the data are the presence
of small disjuncts [53], the overlap between the classes [26] or
the existence of noisy [49] and borderline [44] samples. There is
no need to say that when the classification data share an skewed
data distribution together with any of the aforementioned situa-
tions, the performance degradation is intensified [19,42,53].

A large number of approaches have been proposed to deal with
the class imbalance problem. Those solutions fall largely into two
major categories. The first is data sampling in which the training
data distribution is modified to obtain a set with a balanced distri-
bution. Standard classifiers are thus helped to obtain a correct
identification of data [9,6]. The second is through algorithmic mod-
ification where the base learning methods are modified to consider
the imbalanced distribution of the data. In this manner, base learn-
ing methods change some of its internal operations accordingly
[57].

Fuzzy Rule-Based Classification Systems (FRBCSs) [34] are
useful and well-known tools in the machine learning framework.
They provide a good trade-off between the empirical precision of
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traditional engineering techniques and the interpretability
achieved through the use of linguistic labels whose semantic is
close to the natural language. Specifically, recent works have
shown that FRBCSs have a good behavior dealing with imbalanced
data-sets by means of the application of instance preprocessing
techniques [20].

The hybridization between fuzzy logic and genetic algorithms
leading to Genetic Fuzzy Systems (GFSs) [12,30] is one of the most
popular approaches used when different computational intelli-
gence techniques are combined. A GFS is basically a fuzzy system
augmented by a learning process based on evolutionary computa-
tion. Among evolutionary algorithms, Genetic Programming (GP)
[39] is a development of classical genetic algorithms that evolve
tree-shaped solutions using variable length chromosomes. GP has
been used in FRBCSs to learn fuzzy rule bases [7] profitting from
its high expressive power and flexibility.

However, the disadvantage of FRBCSs is the inflexibility of the
concept of linguistic variable because it imposes hard restrictions
on the fuzzy rule structure [5] which may suppose a loss in accu-
racy when dealing with some complex systems, such as high
dimensional problems, the presence of noise or overlapped classes.
Many different possibilities to enhance the linguistic fuzzy model-
ing have been considered in the specialized literature. All of these
approaches share the common idea of improving the way in which
the linguistic fuzzy model performs the interpolative reasoning by
inducing a better cooperation among the rules in the Knowledge
Base (KB). This rule cooperation may be induced acting on three
different model components:

e Approaches acting on the whole KB. This includes the KB deriva-
tion [43] and a hierarchical linguistic rule learning [14].

e Approaches acting on the Rule Base (RB). The most common
approach is rule selection [35] but also multiple rule conse-
quent learning [11] could be considered.

e Approaches acting on the Data Base (DB). For example a priori
granularity learning [13] or membership function tuning [1].

In this work, we present a procedure to obtain an Hierarchical
Fuzzy Rule Based Classification System (HFRBCS) to deal with
imbalanced data-sets. In order to do so, this model introduces
modifications both at the data and algorithm level. This procedure
is divided into three different steps:

1. A preprocessing technique, the Synthetic Minority Over-
sampling Technique (SMOTE) [9], is used to balance the
distribution of training examples in both classes.

2. A hierarchical knowledge base (HKB) [14] is generated, using
the GP-COACH (Genetic Programming-based learning of COm-
pact and ACcurate fuzzy rule-based classification systems for
High-dimensional problems) algorithm [7] to build the RB.
The GP-COACH algorithm has been modified to extend a classi-
cal KB into a HKB, integrating a rule expansion process to create
high granularity rules in each generation of the algorithm. The
usage of a HKB implies an adaptation of the components to
allow the interaction of the different granularities in the RB
population.

3. A post-processing step involving rule selection and the applica-
tion of the 2-tuples based genetic tuning is applied to improve
the overall performance.

The combination of these steps constitutes a convenient ap-
proach to solve the problem of classification with imbalanced
data-sets. First of all, the preprocessing technique compensates
the number of instances for each class easing the learning process
for the consequent procedures. Then, the step to learn the HKB is
used to address the imbalanced problem together with some of

the data intrinsic characteristics that difficult the learning. This
HKB process is appropriate because it increases the accuracy by
reinforcing those problem subspaces that are specially difficult in
this environment, such as borderline instances [44], small disjuncts
[37] or overlapping regions [26]. Finally, the post-processing step
refines the results achieved by the previous process. The integra-
tion of these schemes completes our proposal, which will be de-
noted as GP-COACH-H (GP-COACH Hierarchical).

We will focus on two difficult situations in the scenario of
imbalanced data, such as highly imbalanced and borderline imbal-
anced classification problems. For that, we have selected a bench-
mark of 44 and 30 problems respectively from KEEL data-set
repository' [2]. We will perform our experimental analysis focusing
on the precision of the models using the Geometric Mean of the true
rates (GM) [4]. This study will be carried out using non-parametric
tests to check whether there are significant differences among the
obtained results [25].

This work is structured in the following way. First, Section 2
presents an introduction of classification with imbalanced prob-
lems, describing its features, the SMOTE algorithm and the metrics
that are used in this framework. Next, Section 3 introduces the pro-
posed approach. Sections 4 and 5 describe the experimental frame-
work used and the analysis of results, respectively. Next, the
conclusions achieved in this work are shown in Section 6. Finally,
we include an appendix with the detailed results for the experi-
ments performed in the experimental study.

2. Imbalanced data-sets in classification

In this section we delimit the context in which this work is con-
tent, briefly introducing the problem of imbalanced classification.
Then, we will describe the preprocessing technique that we have
applied in order to deal with the imbalanced data-sets: the SMOTE
algorithm [9]. We finish this section describing the evaluation met-
rics that are used in this specific problem with respect to the most
common ones in classification.

2.1. The problem of imbalanced data-sets

In some classification problems, the number of examples that
represent the diverse classes is very different. Specifically, the
imbalance problem occurs when one class is represented only by
a few number of examples, while the others are represented by a
large number of examples [51,29]. In this paper, we focus on
two-class imbalanced data-sets, where there is a positive (minor-
ity) class, with the lowest number of instances, and a negative
(majority) class, with the highest number of instances.

This problem is prevalent in many real world applications, such
as medical diagnosis [45,48], anomaly detection [38], image analy-
sis [8] or bioinformatics [28], just referencing some of them. Fur-
thermore, it is usual that positive classes are the most interesting
from the application point of view so it is crucial to correctly iden-
tify these cases. The importance of this problem in the aforemen-
tioned uses has increased the attention towards it, which has
been considered one of the 10 challenging problems in data mining
[56].

Although these issues occur frequently in data, many data min-
ing methods do not naturally perform well under these circum-
stances. In fact, many only work optimally when the classes in
data are relatively balanced. Furthermore, the performance of algo-
rithms is usually more degraded when the imbalance increases
because positive examples are more easily forgotten. That situation
is critical in highly imbalanced data-sets because the number of

1 http://www.keel.es/datasets.php.
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positive instances in the data-set is negligible and that situation
increases the difficulty that most learning algorithms have in
detecting positive regions. Figs. 1 and 2 depict two data-sets with
low imbalance and high imbalance respectively.

However, the imbalanced data-set is also affected by some cir-
cumstances that make the learning more difficult. For example,
metrics that have been used traditionally seem inappropriate in
this scenario when they ascribe a high performance to a trivial
classifier that predicts all samples as negative. This behavior is
wrapped up in the inner way of building an accurate model, prefer-
ring general rules with good coverage for the negative class and
disregarding more specific rules which are the ones associated to
the positive class.

An important issue that appear in imbalanced data-sets is the
presence of borderline examples. Inspired by Kubat and Matwin
[40] we may distinguish between safe, noisy and borderline exam-
ples. Safe examples are placed in relatively homogeneous areas
with respect to the class label. By noisy examples we understand
individuals from one class occurring in safe areas of the other class.
Finally, borderline examples are located in the area surrounding
class boundaries, where the positive and negative classes overlap.
These borderline examples make difficult to determine a correct
discrimination of the classes. For instance, Napierala et al. [44]
present in a series of experiments in which it is shown that the
degradation in performance of a classifier in an imbalanced sce-
nario is strongly affected by the number of borderline examples.

2.2. Addressing imbalanced data-sets: use of preprocessing and SMOTE
algorithm

A large number of approaches have been proposed to deal with
the class-imbalance problem [51,41,42]. These approaches can be
categorized in two groups: the internal approaches that create
new algorithms or modify existing ones to take the class-
imbalance problem into consideration [4] and external approaches
that preprocess the data in order to diminish the effect of their

"
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Fig. 1. Data-set with low imbalance (IR = 2.23).

*

Fig. 2. Data-set with high imbalance (IR = 9.15).

class imbalance [6,23,27]. Furthermore, cost-sensitive learning
solutions incorporating both approaches assume higher misclassi-
fication costs with samples in the positive class and seek to mini-
mize the high cost errors [17,57]. The great advantage of the
external approaches is that they are more versatile, since their
use is independent of the classifier selected. Furthermore, we
may preprocess all data-sets before-hand in order to use them to
train different classifiers. In this manner, the computation time
needed to prepare the data is only required once. According to this,
in this work we have chosen an oversampling method which is a
reference in this area: the SMOTE algorithm [9] and a variant called
SMOTE + ENN [6].

In this approach, the positive class is over-sampled by taking
each positive class sample and introducing synthetic examples
along the line segments joining any/all of the k positive class near-
est neighbors. Depending upon the amount of over-sampling re-
quired, neighbors from the k nearest neighbors are randomly
chosen. This process is illustrated in Fig. 3, where ¥; is the selected
point, x;; to x;4 are some selected nearest neighbors and r; to r4 the
synthetic data points created by the randomized interpolation.

Synthetic samples are generated in the following way: take the
difference between the feature vector (sample) under consider-
ation and its nearest neighbor. Multiply this difference by a ran-
dom number between 0 and 1, and add it to the feature vector
under consideration. This causes the selection of a random point
along the line segment between two specific features. This ap-
proach effectively forces the decision region of the positive class
to become more general. An example is detailed in Fig. 4.

In short, its main feature is to form new positive class examples
by interpolating between several positive class examples that lie
together. Thus, the overfitting problem is avoided and causes the
decision boundaries for the positive class to spread further into
the negative class space.

Nevertheless, class clusters may be not well defined in cases
where some negative class examples might be invading the posi-
tive class space. The opposite can also be true, since interpolating
positive class examples can expand the positive class clusters,
introducing artificial positive class examples too deeply into the
negative class space. Inducing a classifier in such a situation can
lead to over-fitting. For this reason we will also consider in this
work a hybrid approach, “SMOTE+ENN", where the Wilson’s Edited
Nearest Neighbor Rule [54] is used after the SMOTE application to
remove any example from the training set misclassified by its three
nearest neighbors.

2.3. Evaluation in imbalanced domains
The measures of the quality of classification are built from a

confusion matrix (shown in Table 1) which records correctly and
incorrectly recognized examples for each class.

Xiz

Fig. 3. An illustration of how to create the synthetic data points in the SMOTE
algorithm.
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Consider a sample (6,4) and let (4,3) be its nearest neighbor.
(6,4) is the sample for which k-nearest neighbors

are being identified and (4,3) is one of its k-nearest neighbors.
Let: f1_1 =6 f2_1 =4, f2.1 - f1_1 = -2

f1.2 =4 f2.2 =3, f2.2 - f1.2 = -1

The new samples will be generated as

(f1°,£2°) = (6,4) + rand(0-1) * (-2,-1)

rand(0-1) generates a random number between O and 1.

Fig. 4. Example of the SMOTE application.

The most used empirical measure, accuracy (Eq. (1)), does not
distinguish between the number of correct labels of different clas-
ses, which in the ambit of imbalanced problems may lead to erro-
neous conclusions. For example a classifier that obtains an
accuracy of 90% in a data-set with a 90% of negative instances,
might not be accurate if it does not cover correctly any positive
class instance.

Acc = ﬂ (])
TP+ FN + FP +TN

Because of this, instead of using accuracy, more appropriate
metrics in this situation are considered. Two common measures,
sensitivity and specificity (Egs. (2) and (3)), approximate the prob-
ability of the positive (negative) label being true. In other words,
they assess the effectiveness of the algorithm on a single class.

sensitivity = TPZ% (2)
specificity = FPZ% (3)

The metric used in this work is the geometric mean of the true
rates [4,40], which can be defined as

P N @)
TP +FN FP+TN
This metric attempts to maximize the accuracy of each one of

the two classes with a good balance. It is a performance metric that
links both objectives.

GM =

3. The hierarchical genetic programming fuzzy rule based
classification system with rule selection and tuning (GP-COACH-
H)

In this section, we will describe our proposal to obtain a hierar-
chical FRBCS through the usage of GP and applying rule selection
together with 2-tuples lateral tuning, denoted as GP-COACH-H.
This proposal is defined through its components in the following
way: Section 3.1 presents a brief introduction of FRBCSs in order
to contextualize the algorithm; next, Section 3.2 describes the
GP-COACH algorithm [7] which is the linguistic rule generation
method based on GP that we have used as base for our proposal
of a hierarchical rule base generation method; later, in Section 3.3,
the building of the hierarchical fuzzy rule based classification is de-
tailed, mentioning the modifications the hierarchical procedure
introduces in the knowledge base generation and in the basic
running of the GP-COACH algorithm; subsequently, Section 3.4

Table 1
Confusion matrix for a two-class problem.

Positive prediction Negative prediction

Positive class
Negative class

True Positive (TP)
False Positive (FP)

False Negative (FN)
True Negative (TN)

shows the selection of the best cooperative rules and the tuning
of the databases in a genetic process where both objectives collab-
orate; and finally, Section 3.5 summarizes the description of the
proposal.

3.1. Fuzzy rule based classification systems

FRBCSs are useful and well-known tools in the machine learning
framework since they can provide an interpretable model for the
end user. A FRBCS has two main components: the Inference System
and the KB. In a linguistic FRBCS, the KB is composed of a RB, con-
stituted by a set of fuzzy rules, and the DB that stores the member-
ship functions of the fuzzy partitions associated to the input
variables. If expert knowledge of the problem is not available, it
is necessary to use some Machine Learning process to obtain the
KB from examples.

Any classification problem consists of N training patterns X, =
(Xp1, ... Xpn), p=1,2,...,m from M classes where x,; is the ith
attribute value (i=1,2,...,n) of the pth training pattern.

In this work, we use fuzzy rules of the following form to build
our classifier:

Rule R; : If x; is Aﬁ and ... and x, is 7\{[ then Class

where R; is the label of the jth rule, x=(xy,...,%,) is an n-
dimensional pattern vector, ;\{f is a set of linguistic labels
{L! or ... or L*} joined by a disjunctive operator, C; is a class label,
and RW; is the rule weight [33]. We use triangular membership
functions as linguistic labels whose combination will form an ante-
cedent fuzzy set. This kind of rule is called a DNF fuzzy rule.

To compute the rule weight, many heuristics have been pro-
posed [36]. In our proposal, we compute the rule weight as the fuz-
zy confidence or Certainty Factor (CF) [15], showed in Eq. (6):

pr ClassC; :u;J (Xp)

ZL ,u;j (%p)

where i~ (x,) is the matching degree of the pattern x, with the
antecederit part of the fuzzy rule R;.

GP-COACH-H uses the normalized sum fuzzy reasoning method
[15] for classifying new patterns by the RB, a general reasoning
model for combining information provided by different rules,
where each rule promotes the classification with its consequent
class according to the matching degree of the pattern with the
antecedent part of the fuzzy rule together with its weight. The total
sum for each class is computed as follows:

ZRjeRB,CJ:hﬂ; (%p) - CF;
: (7)

CE}_ﬁf(MZRJeRB,Cj:cﬂ;j (Xp) - CF;

Class(x,) = arg max(SuMciss h(Xp)) (8)

RW; = CF; = (6)

SumClass h(xp) =

3.2. The GP-COACH algorithm

The GP-COACH algorithm [7] is a genetic programming-based
algorithm for the learning of fuzzy rule bases. We will use this
method as a base for our hierarchical model modifying its behavior
to include the different granularity levels into its inner way of
running.

This algorithm is a genetic cooperative-competitive learning ap-
proach where the whole population represents the RB obtained.
Each individual in the population codifies a rule. These rules are
DNF fuzzy rules (Eq. (5)) which allow the absence of some input
features and are generated according to the production rules of a
context-free grammar. As DB we are using linguistic partitions
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with the same number of linguistic terms for all input variables,
composed of symmetrical triangular-shaped and uniformly distrib-
uted membership functions.

There are two evaluation functions in the GP-COACH algorithm:
a local fitness function, known as raw_fitness, to evaluate the per-
formance of each rule and a global fitness function, known as
global_fitness, to evaluate the behavior of the whole rule popula-
tion. The raw_fitness is computed according to Confidence (shown
in Eq. (6)) and Support, which measure the accuracy of the rule
and the extent of knowledge of the rule respectively:

2 M, (Xp)

Support(R,—) _ xp €ClassC; FPA; \ P (9)
Ny

where N is the number of examples that belong to the same class

that the one determined in the consequent of the rule. Therefore,

the raw_fitness is computed in the following way:

raw_fitness(R;) = o - Confidence(R;) + (1 — &) - Support(R;) (10)

Finally, it is important to point out that each time that an individual
is evaluated it is also necessary to modify its certainty degree. On
the other hand, the global_fitness score measure is defined as
follows:

global fitness = wy - accuracy +w, - (1.0 — Vary) +ws - (1.0
— Condy) +ws - (1.0 — Ruly) (11)

where Vary and Condy are the normalized values of the average
number of variables and conditions in the rules, and Ruly is the nor-
malized number of rules in the population respectively.

The GP-COACH algorithm also includes a mechanism for main-
taining the diversity in the population: the token competition pro-
cedure [55], inspired by the following natural behavior: when an
individual finds a good place to live, it will maintain its position
there preventing the others to share its position unless they are
stronger. Each example in the training set is called a token and
the rules in the population compete to acquire as many tokens as
possible. When a rule matches an example, it tries to seize the to-
ken, however, this token will be assigned to the stronger rule that
matches the example. Stronger individuals exploit their dominant
position by seizing as many tokens as they can. The other ones
entering the same position will have their strength decreased be-
cause they cannot compete with the stronger ones, by the addition
of a penalization in the fitness score of the individual. Therefore, to
model this behavior, a penalized_function is defined:

count(R;)

" Teal[R,) if ideal(R;) > 0,

0, otherwise

raw_fitness(R;)

penalized fitness(R;) = {

(12)

where raw_fitness(R;) is the fitness score obtained from the evalua-
tion function (Eq. (10)), count(R;) is the number of tokens that the
individual actually seized and ideal(R;) is the total number of tokens
that it can seize, which is equal to the number of examples that the
individual matches.

As a result of the token competition, there can be individuals
that cannot grab any token. These individuals are considered as
irrelevant, and they are eliminated from the population because
all of their examples are covered by other stronger individuals.

Once the token competition mechanism has been applied, it is
possible that some of the examples in the training set are not cov-
ered by any of the rules in the population. The generation of new
specific rules covering these examples improves the diversity in
the population, and helps the evolutionary process to easily find
stronger and more general rules covering these examples. There-
fore, GP-COACH learns rule sets having two different types of fuzzy
rules: a core of strong and general rules (primary rules) that cover

most of the examples, and a small set of weaker and more specific
rules (secondary rules) that are only used if there are not any pri-
mary rule matching the example. These secondary rules are gener-
ated by the Chi et al. algorithm [10] over the set of training
examples that are left uncovered by the primary rules. This scaly
scheme is used in rule based algorithms to cover in a better way
the data space [52]. GP-COACH uses four different genetic opera-
tors to generate new individuals during the evolutionary process:

1. Crossover: A part in the first parent is randomly selected and
exchanged by another part, randomly selected, in the second
one.

2. Mutation: It is applied to a variable in the rule randomly chosen.
The mutation can add a new label to the label set associated to
the variable, remove a label from the label set associated to the
variable or exchange one label in the label set associated to the
variable with another one not included.

3. Insertion: It adds a new variable to the parent rule with at least
one linguistic label.

4. Dropping condition: It selects one variable and removes its con-
ditions from the rule.

These operations only generate one offspring each time they are
applied.

Fig. 5 shows the pseudocode associated to the GP-COACH algo-
rithm. This method begins creating a random initial population
according to the rules in the context-free grammar. Each individual
in this population is then evaluated. After that, the initial popula-
tion is kept as the best evolved population and its global fitness
score is computed. Then, the initial population is copied to the cur-
rent population and the evolutionary process begins:

1. An offspring population, with the same size than the current
one, is created. Parents are selected by using the tournament
selection mechanism and children are created by using one of
the four genetic operators. The genetic operator selection is
done in a probabilistic way according to a given probability.

2. Once the offspring population is created, it is joined to the cur-
rent population, creating a new population whose size is double
the current population size. Individuals in this new population
are sorted according to their fitness and the token competition
mechanism is applied. Secondary rules are created if some
examples remain uncovered.

1 CurrentPop = InitPopulation();

2 EvaluatePopRules (CurrentPop);

3 CurrentFitness = EvaluatePopulation (CurrentPop);

4 BestPop = CurrentPop;

5 BestFitness = CurrentFitness;

6 N =0;

7 while N < N, do

8 OffspringsPop = 0;

9 while OffspringsPop.size() # CurrentPop.size() do

10 ParentRule = tournamentSelection (CurrentPop);

11 GeneratedRule = geneticOperator (ParentRule, CurrentPop);
12 OffspringsPop.add(GeneratedRule);

13 end

14 EvaluatePopRules (OffspringsPop);

15 JointPop = CurrentPop U OffspringsPop;

16 JointPop = tokenCompetition (JointPop);

17 CurrentPop = JointPop U generateSecondaryRules (JointPop);
18 CurrentFitness = EvaluatePopulation (CurrentPop);

19 if CurrentFitness > BestFitness then

20 BestPop = CurrentPop;

21 BestFitness = CurrentFitness;
22 end

23 N++;

24 end

Output: BestPop

Fig. 5. The GP-COACH algorithm.
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3. The global fitness score measure is then calculated for this new
population. We check whether this new fitness is better than
the one stored for the best population, updating the best popu-
lation and fitness if necessary. In any case, the new population
is copied as the current population in order to be able to apply
the evolutionary process again.

The evolutionary process ends when the stop condition is veri-
fied, that is when a number of evaluations is reached. Then, the
population kept as the best one is returned as the solution to the
problem and GP-COACH finishes.

3.3. Hierarchical fuzzy rule based classification system construction

HFRBCs try to improve the performance of fuzzy rule based sys-
tems in data subspaces that are particularly difficult. In order to do
so, instead of the classical definition of the KB, we use an extension
known as HKB [14], which is composed of a set of layers. We will
divide this subsection in two parts: the first part is devoted to the
presentation of the HKB, its components and some general guide-
lines about how to build it; the second part is devoted to the inte-
gration of the HKB into the inner way of running of the GP-COACH
algorithm which we have used as base for our proposal.

3.3.1. Hierarchical knowledge base

In order to overcome the inflexibility of the concept of linguistic
variable which degrades the performance of algorithms in complex
search spaces, we extend the definition of the standard KB into an
hierarchical one that preserves the original model descriptive
power and increases its accuracy. This HKB is composed of a set
of layers. We define a layer by its components in the following
way:

layer(t,n(t)) = DB(t,n(t)) + RB(t,n(t)) (13)

with n(t) being the number of linguistic terms that compose the
partitions of layer, DB(t,n(t)) (t-linguistic partitions) being the DB
which contains the linguistic partitions with granularity level n(t)
of layer, and RB(t,n(t)) (t-linguistic rules) being the RB formed by
those linguistic rules whose linguistic variables take values in the
former partitions. The number of linguistic terms in the t-linguistic
partitions is defined in the following way:

nt)=mn(1)-1)-2"+1 (14)

with n(1) being the granularity of the initial fuzzy partitions.

This set of layers is organized as a hierarchy, where the order is
given by the granularity level of the linguistic partition defined in
each layer. That is, given two successive layers t and t + 1 then the
granularity level of the linguistic partitions of layer t + 1 is greater
than the ones of layer t. This causes a refinement of the previous
layer linguistic partitions. As a consequence of the previous defini-
tions, we can now define the HKB as the union of every layer t

HKB = | Jlayer(t, n(t)) (15)

Our proposal considers a two-layer HKB, i.e. starting with an initial
layer t, we produce layer t + 1 in order to extract the final system of
linguistic rules. This fact allows the approach to build a significantly
more accurate modeling of the problem space.

First of all, we need to build the two-layer HDB. The first level
layer is built by the usage of linguistic partitions with the same
number of linguistic terms for all input variables, composed of
symmetrical triangular-shaped and uniformly distributed mem-
bership functions. The second layer, is built preserving all the
membership function modal points, corresponding to each linguis-
tic term, through the higher layers of the hierarchy and adding a
new linguistic term between each two consecutive terms of the

t-linguistic partition reducing the support of these linguistic terms
in order to keep place for the new one, which is located in the mid-
dle of them. Fig. 6 shows the linguistic partitions from one level to
another, with n(1) =3 and n(2) = 5.

The second step affects the generation of the HRB which is com-
posed by the RB of layer t and a RB of layer t + 1. Two measures of
error are usually used to build a RB of layer t + 1 from a layer RB of
layer t: a global measure, which is used to evaluate the complete
RB, and a local measure, used to determine the goodness of the
rules. We calculate these measures similarly to other HFRBCS
methodologies focused on classification problems [21]. The global
measure used is the accuracy per class, computed as:

_|xp € Xi/FRM(x,, RB) = Class(x,)|

Acci(X;,RB) = X (16)
1

where || is the number of patterns, X; is the set of examples of the
training set that belong to the ith class, FRM(x,, RB) is the class pre-
diction of the pattern using the rules in the RB with the FRM used by
the GP-COACH algorithm, and Class(x,) is the class label for example
Xp. The local measure utilized is the accuracy for a rule, computed
over the whole training set as

_X'(Ry)]

AR = xiwy)

(17)

It is important to remind that since we are using the normalized
sum approach as FRM, X*(R;) and X(R)) are defined as

e X(R;) is the set of examples that have a matching degree with
the rule higher than 0 where this compatibility has contributed
to classify the sample as the class label of the rule.

e X'(R;) is the set of examples that have a matching degree with
the rule higher than 0 where this compatibility has contributed
to classify the sample as the class label of the rule and where
the predicted class corresponds with the class label of the
example.

DB(1,3)
s} S; N
v v v v v
DB(2,5)
5 S; 5 Sj 5
S; S; S;

Fig. 6. Transition from a partition in DB(1,3) to another one in DB(2,5).
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For each example in the training set, we obtain a set of rules
that have contributed to the classification when we compute the
global measure. Therefore, when we try to compute X'(R;) and
X(R;) we have for each rule the set of examples where the current
rule has contributed to its classification.

Once we have computed the global measure and the local mea-
sure, we characterize the rules as good or bad according to the fol-
lowing calculation:

If (Acc(X,R;) < (1 — o) - Acci(X;,RB)) Then
R; = goodrule

Else
R;=badrule

Good rules are kept in the rule population while bad rules are de-
leted from the current population. Then, new high granularity rules
are created using as linguistic rule generator with the DB associ-
ated to layer t + 1 and adopting as training set for this task a subset
of the original training set including examples that meets some
specified conditions. If after the generation of these rules we find
repeated rules we only keep one copy of them, or if we find contra-
dictory rules (rules with the same antecedent but with different
consequents) we maintain the rule with a higher rule weight in
the RB while the others are removed.

3.3.2. Integration of a HKB in the GP-COACH algorithm

The usage of a HKB in the inner way of running of the GP-
COACH algorithm induces some changes in its structure. For exam-
ple, the existence of the HRB which is composed by the RB of layer t
and a RB of layer t + 1 forces the GP-COACH algorithm to provide a
mechanism to maintain these two RB levels. In our case, these RBs
are merged and are evolved together in the different generations
computed in the GP-COACH algorithm.

The rule population used in the algorithm is now a mixed pop-
ulation that combines primary rules and secondary rules where the
secondary rules present different granularities. In this kind of pop-
ulation, genetic operators obtain rules according to the type of par-
ent rule: primary rules obtain primary rules while secondary rules
obtain secondary rules maintaining the granularity of the original
rule. The only restriction in the application of the genetic opera-
tions appears in the usage of the crossover operation where the
rules selected for the generation of a new rule must have the same
granularity.

The global fitness score is modified to consider the different
granularities of the rules in the population. The new global fitness
function is:

global fitness = wy - accuracy +w, - (1.0 — Vary) + ws
. (1 0 (Cond_Lowy - R Low + Cond High,, - RHigh)>

R
+wy - (1.0 — Ruly)
(18)

where Vary is the normalized average number of variables,
Cond_Lowy is the normalized average number of conditions in low
granularity rules, Cond_Highy is the normalized average number
of conditions in high granularity rules, Ruly is the normalized num-
ber of rules and R_Low,R_High,R are the number of low granularity
rules, high granularity rules and total number of rules respectively.

To generate the high granularity rules some additional steps are
performed just after the final step of a GP-COACH generation
which is the construction of secondary rules for examples that
have not been covered with the current rule base. This process is
done performing the following operations:

1. The rules that compose the rule set are classified as good rules or
bad rules as explained in the previous subsection.

2. Good rules are kept in the rule population and bad rules are
directly deleted.

3. New high granularity rules are created using as linguistic rule
generator the Chi et al. algorithm [10] with the DB associated
to layer t + 1 and adopting as training set for this task the exam-
ples that were classified by the rules that were considered bad
rules.

4. Repeated and contradictory rules are searched for and only one
copy of the best performing is kept.

Usually, when creating a hierarchical rule base, another step is
added to improve the performance of the final model: a hierarchi-
cal rule selection step. In our case, since the hierarchical expansion
of rules is embedded into each generation of the GP-COACH algo-
rithm, adding a genetic selection process would increase consider-
ably the run time of the approach. Therefore, this rule selection
step is appended after the GP-COACH generations end combined
with a tuning step to take advantage of the synergy between these
refinements of the KB. Furthermore, GP-COACH tries to obtain a
compact rule population with the token competition procedure
making thus this delay of the rule selection step possible.

3.4. Hierarchical rule base selection and lateral tuning

In this last step, we analyze the use of genetic algorithms to se-
lect and tune a compact and cooperative set of fuzzy rules that
obtain a high performance starting from the hierarchical rules gen-
erated in the previous step. In order to do so, we consider the ap-
proach used by Alcala et al. [1] that uses the linguistic 2-tuples
representation [32]. This representation allows the lateral dis-
placement of the labels considering only one parameter (symbolic
translation parameter), which involves a simplification of the tun-
ing search space that aids the obtaining of optimal models. Partic-
ularly this happens when it is combined with a rule selection
within the same process enabling it to take advantage of the posi-
tive synergy that both techniques present. In this way, this process
for contextualizing the membership functions permits them to
achieve a better covering degree while maintaining the original
shapes, which results in accuracy improvements without a signif-
icant loss in the interpretability of the fuzzy labels. The symbolic
translation parameter of a linguistic term is a number within the
interval [ —0.5,0.5) that expresses the domain of a label when it
is moving between its two lateral labels. Let us consider a set of la-
bels S representing a fuzzy partition. Formally, we have the pair,
(si,;),S; € S, € [-0.5,0.5). An example is illustrated in Fig. 7
where we show the symbolic translation of a label represented
by the pair (S,, —0.3).

Fig. 7. Lateral displacement of a MF.
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Fig. 8. Flowchart of GP-COACH-H.

Alcala et al. [1] proposed two different rule representation
approaches, a global approach and a local approach. In our algo-
rithm, the tuning is applied to the level of linguistic partitions (glo-
bal approach). In this way, the pair (X;,label) takes the same tuning
value in all the rules where it is considered. For example, X;-
is(High,0.3) will present the same value for those rules in which
the pair “X; is High” was initially considered. This proposal de-
creases the tuning problem complexity, greatly easing the deriva-
tion of optimal models.

To accomplish this rule selection and lateral tuning process, we
consider the use of a specific genetic algorithm, the CHC evolution-
ary algorithm [18] with the same scheme described in our previous
works [21,22]. In the remainder of this section, we describe the
specific features of our new tuning approach, which involves the
codification of the solutions and initial gene pool, chromosome
evaluation, crossover operator and restarting approach.

1. Codification and Initial Gene Pool: To combine the rule selection
with the global lateral tuning, a double coding scheme for both
rule selection (Cs) and lateral tuning (Cr) is used:

e For the Cs part, each chromosome is a binary vector that
determines when a rule is selected or not (alleles ‘1’ and
‘0’ respectively). Considering the M rules contained in the
candidate rule set (rules from the two hierarchical levels
considered), the corresponding part Cs={cy, ..., C\} repre-
sents a subset of rules composing the final rule base, so that,
Ifc;=1then(R; € RB)else(R; ¢ RB), with R; being the corre-
sponding jth rule in the candidate rule set and RB being
the final RB.

e For the Cr part, a real coding is considered. This part is the
joint of the o parameters of each fuzzy partition. Let us con-
sider the following number of labels per variable: (ml*, mi?,
..., ml") for low granularity rules and (mh', mh?, ..., mh")
for high granularity rules, with n being the number of sys-

tem variables. Then, this part has the following form (where
each gene is associated to the tuning value of the corre-
sponding label): Cr = (ch1,...,clj,p,chb1,...,clyp, ... Cln,
...,Clnmln,Chn,...,Ch1mh1,Chz],...,Chzmhz,...,Chm,...,Chnmhn).

Finally, a chromosome C is coded in the following way: C= CsCr.

To make use of the available information, all the candidate rules

are included in the population as an initial solution. To do this,

the initial pool is obtained with the first individual having all
genes with value ‘1’ in the Cs part and all genes with value

‘0.0’ in the Cr part. The remaining individuals are generated at

random.

2. Chromosome Evaluation: To evaluate a determined chromosome
we compute its accuracy over the training set. If two individuals
obtain the same value, then the individual with the lower num-
ber of selected rules is preferred.

3. Crossover Operator: The crossover operator will depend on the
chromosome part where it is applied:

e In the Cs part, the half uniform crossover scheme (HUX) is
employed.

e For the Gy part, we consider the Parent Centric BLX (PCBLX)
operator [31], which is based on BLX-a.

4. Restarting Approach: To get away from local optima, this algo-
rithm uses a restart approach that is performed to improve
the diversity of the population that may be reduced by the
strong elitist pressure of the replacement scheme.

For details about the remainder features of the optimization pro-
cess, please refer to Ferndndez et al. [21] and Fernandez et al. [22].

3.5. Summary of the GP-COACH-H algorithm
Once every step of the algorithm has been explained we briefly

sum up how the GP-COACH-H algorithm works. Fig. 8 depicts a
flowchart of the GP-COACH-H algorithm.
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Table 2
Parameter specification for the algorithms tested in the experimentation.
Algorithm Parameters
FRBCS parameters
GP-COACH and GP- Minimum t-norm, Maximum t-conorm, Rule Weight = Certainty Factor, Fuzzy Reasoning Method = Normalized Sum, Number of Fuzzy
COACH-H Labels (for basic GP-COACH) = 5 or 9, Number of Fuzzy Labels (for GP-COACH-H) = 5 for Low Granularity Rules and 9 for High Granularity

Rules
HFRBCS(Chi)
Granularity Rules and 5 for High Granularity Rules

Product t-norm, Rule Weight = Penalized Certainty Factor, Fuzzy Reasoning Method = Winning Rule, Number of Fuzzy Labels = 3 for Low

GP-COACH parameters
GP-COACH and GP-
COACH-H

Evaluations = 20000, Initial Population Size = 200, « (raw fitness) = 0.7, Crossover Probability = 0.5, Mutation Probability = 0.2, Dropping
Condition Probability = 0.15, Insertion Probability = 0.15, Tournament size = 2, w; = 0.8, w, = w3 = 0.05, w, = 0.1

Hierarchical procedure parameters
GP-COACH-H and
HFRBCS(Chi)

o (rule expansion) = 0.2, CHC Evaluations = 10,000, CHC Population Size = 61, CHC bits per gene (for GP-COACH-H) = 30

(4.5 parameters

Cc4.5 Pruned=true, Confidence = 0.25 and Minimum number of item-sets per leaf = 2

There are three different steps in the building of the model:

1. Preprocessing stage: In this first step, GP-COACH-H preprocesses
the original data-set to balance the class distribution. In order
to do so, the SMOTE algorithm is used, as described in
subSection 2.2.

2. Generation of the HKB: This stage is devoted to the generation of
a two-layer HKB from the balanced data-set. This HKB is
composed by two different DBs (each one with a different gran-
ularity level) and one RB that contains rules from the two
hierarchies:

(a) HDB Generation: The first layer DB is created with the same
number of linguistic terms for all input variables, composed
of symmetrical triangular-shaped and uniformly distributed
membership functions. The second layer, is built preserving
all the membership function modal points, corresponding to
each linguistic term.

(b) HRB Generation: In order to generate the HRB we use as a
base the GP-COACH algorithm, which has been modified
to incorporate in its internal way of running the creation
of hierarchical rules. The adjustments reinforce the connec-
tion between the GP-COACH algorithm and the hierarchical
methodology because they have been designed to get the
greatest possible performance. Specifically, these modifica-
tions include:

e Astep to identify good and bad rules, where bad rules are
deleted and the examples covered by them are used to
create new high granularity rules.

e Changes in the global fitness function considering the
different granularities in the rule population.

e A variation on the conditions of the application of the
crossover operator where only rules with the same gran-
ularity level are allowed to produce an offspring.

This HRB generation procedure uses the preprocessed data-set
from the previous step and the membership functions defined
by the HDB.

3. Refinement of the HKB: After the building of an initial HKB in
the previous phase, another genetic procedure is applied to
improve the final performance of this solution. In this step,
rules that cooperate properly in the population are selected
and the HDB is tuned with the 2-tuples linguistic representa-
tion. These optimizations are done in a single step to take
advantage of the synergy that both techniques can achieve.
The set of selected rules define the final HRB given as solu-
tion and the tuning parameters obtained modify the original
HDB to create the final HDB which is the output of the
algorithm.

4. Experimental framework

In this section, we present the set up of the experimental frame-
work used to develop the analysis of our proposal. First we intro-
duce the algorithms selected for the comparison with the
proposed approach and their configuration parameters (subSec-
tion 4.1). Next, we provide details of the problems chosen for the
experimentation (subSection 4.2). Finally, we present the statisti-
cal tests applied to compare the results obtained with the different
classifiers (subSection 4.3).

4.1. Algorithms selected for the study and parameters

In order to test the performance of our approach, GP-COACH-H,
several classification methods have been selected to perform the
experimental study. These methods are:

e GP-COACH [7]: The original FRBCS that was used as base for our
approach, a GP-based algorithm for the learning of compact and
interpretable fuzzy rule bases that obtains good accuracy in
high dimensional classification problems.

e HFRBCS(Chi) [21]: This approach obtains a Hierarchical Fuzzy
Rule Base Classification System (HFRBCS) using the Chi et al.
algorithm [10] as the linguistic rule generation method and
has reported good results in imbalanced data-sets.

e (4.5 [47]: A well-known decision tree which has shown a good
behavior in the framework of imbalanced data-sets [6].

The configuration parameters used for these algorithms are
shown in Table 2. All the methods were run using KEEL software?
[3], following the default parameter values given in the KEEL plat-
form to configure the methods, which were selected according to
the recommendation of the corresponding authors of each algo-
rithm, assuming that the choice of the values of the parameters
was optimal.

Regarding the use of the SMOTE [9] and SMOTE+ENN [6] pre-
processing methods, we consider only the 1-nearest neighbor
(using the euclidean distance) to generate the synthetic samples,
and we balance the training data to the 50% distribution. We only
use SMOTE + ENN for C4.5 because it shows a positive synergy
when pruning the tree [16].

4.2. Data-sets and data partitions

In order to analyze the quality of our approach GP-COACH-H
against the algorithms introduced in the previous section, we have

2 http://www.keel.es/.
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Table 3
Summary of imbalanced data-sets.

Data-sets #EX. #Atts. Class (—;+) %Class (—;+) IR
ecoli034vs5 200 7 (p,imL,imU; om) (10.00,90.00) 9.00
yeast2vs4 514 8 (cyt; me2) (9.92,90.08) 9.08
ecoli067vs35 222 7 (cp,omL, pp;imL,om) (9.91,90.09) 9.09
ecoli0234vs5 202 7 (cp,imS,imL,imU; om) (9.90,90.10) 9.10
glass015vs2 172 9 (build-win-non_float-proc, tableware, build-win-float-proc; ve-win-float-proc) (9.88,90.12) 9.12
yeast0359vs78 506 8 (mit, me1,me3,erl; vac, pox) (9.88,90.12) 9.12
yeast02579vs368 1004 8 (mit, cyt,me3, vac,erl; mel,exc, pox) (9.86,90.14) 9.14
yeast0256vs3789 1004 8 (mit, cyt,me3, exc; mel,vac, pox,erl) (9.86,90.14) 9.14
ecoli046vs5 203 6 (cp,imU,omL; om) (9.85,90.15) 9.15
ecoli01vs235 244 7 (cp,im;imS,imL,om) (9.83,90.17) 9.17
ecoli0267vs35 224 7 (cp,imS,omL, pp; imL,om) (9.82,90.18) 9.18
glass04vs5 92 9 (build-win-float-proc, containers; tableware) (9.78,90.22) 9.22
ecoli0346vs5 205 7 (cp,imL,imU,omL; om) (9.76,90.24) 9.25
ecoli0347vs56 257 7 (cp,imL,imU, pp; om,omL) (9.73,90.27) 9.28
yeast05679vs4 528 8 (me2; mit,me3,exc,vac,erl) (9.66,90.34) 9.35
ecoli067vs5 220 6 (cp,omL,pp; om) (9.09,90.91) 10.00
vowelO 988 13 (hid; remainder) (9.01,90.99) 10.10
glass016vs2 192 9 (ve-win-float-proc; build-win-float-proc, build-win-non_float-proc,headlamps) (8.89,91.11) 10.29
glass2 214 9 (Ve-win-float-proc; remainder) (8.78,91.22) 10.39
ecoli0147vs2356 336 7 (cp,im,imU, pp; imS,imL,om,omL) (8.63,91.37) 10.59
led7digit02456789vs1 443 7 (0,2,4,5,6,7,8,9;1) (8.35,91.65) 10.97
glass06vs5 108 9 (build-win-float-proc, headlamps; tableware) (8.33,91.67) 11.00
ecoli01vs5 240 6 (cp,im;om) (8.33,91.67) 11.00
glass0146vs2 205 9 (build-win-float-proc, containers, headlamps, build-win-non_float-proc;ve-win-float-proc) (8.29,91.71) 11.06
ecoli0147vs56 332 6 (cp,im,imU, pp; om,omL) (7.53,92.47) 12.28
clevelandOvs4 177 13 (0;4) (7.34,92.66) 12.62
ecoli0146vs5 280 6 (cp,im,imU,omL; om) (7.14,92.86) 13.00
ecoli4 336 7 (om; remainder) (6.74,93.26) 13.84
yeast1vs7 459 8 (nuc; vac) (6.72,93.28) 13.87
shuttleOvs4 1829 9 (Rad Flow; Bypass) (6.72,93.28) 13.87
glass4 214 9 (containers; remainder) (6.07,93.93) 15.47
page-blocks13vs2 472 10 (graphic; horiz.line, picture) (5.93,94.07) 15.85
abalone9vs18 731 8 (18;9) (5.65,94.25) 16.68
glass016vs5 184 9 (tableware; build-win-float-proc, build-win-non_float-proc,headlamps) (4.89,95.11) 19.44
shuttle2vs4 129 9 (Fpv Open; Bypass) (4.65,95.35) 20.5
yeast1458vs7 693 8 (vac; nuc,me2, me3, pox) (4.33,95.67) 22.10
glass5 214 9 (tableware; remainder) (4.20,95.80) 22.81
yeast2vs8 482 8 (pox; cyt) (4.15,95.85) 23.10
yeast4 1484 8 (me2; remainder) (3.43,96.57) 28.41
yeast1289vs7 947 8 (vac; nuc, cyt, pox, erl) (3.17,96.83) 30.56
yeast5 1484 8 (me1;remainder) (2.96,97.04) 32.78
ecoli0137vs26 281 7 (pp,imL; cp,im,imU,imS) (2.49,97.51) 39.15
yeast6 1484 8 (exc; remainder) (2.49,97.51) 39.15
abalone19 4174 8 (19; remainder) (0.77,99.23) 128.87

selected several highly imbalanced and borderline imbalanced
data-sets.

Specifically, as highly imbalanced data-sets, we have selected
44 data-sets from KEEL data-set repository> [2] with an imbalance
ratio (IR) [46] greater than 9. The data are summarized in Table 3,
where we denote the number of examples (#Ex.), number of attri-
butes (#Atts.), class name of each class (positive and negative), class
attribute distribution and IR. This table is in ascending order accord-
ing to the IR.

Inspired by Kubat and Matwin [40], Napierala et al. [44] created
several artificial data-sets that contain borderline examples in an
imbalanced scenario to address the correct identification of those
examples. These data-sets have three different shapes of the posi-
tive class: subclus (Fig. 9), clover (Fig. 10) and paw (Fig. 11), all sur-
rounded uniformly by the negative class. For each shape, we have
data-sets from two different sizes and IR: data-sets with 600 exam-
ples with an IR of 5 and data-sets with 800 examples with an IR of
7. Each one of these data-sets is affected by different disturbance
ratio levels (0%, 30%, 50%, 60% and 70%). The disturbance ratio is
simulated increasing the ratio of borderline examples from the po-
sitive class subregions.

3 http://www.keel.es/datasets.php.

To develop the different experiments we consider a 5-fold cross-
validation model, i.e., five random partitions of data with a 20% and
the combination of 4 of them (80%) as training and the remaining
ones as test. For each data-set we consider the average results of
the five partitions. The data-sets used in this study use the parti-
tions provided by the KEEL data-set repository in the imbalanced
classification data-set section.*

4.3. Statistical tests for performance comparison

Statistical analysis needs to be carried out in order to find sig-
nificant differences among the results obtained by the studied
methods [24]. We consider the use of non-parametric tests, accord-
ing to the recommendations made in [25,24] where a set of simple,
safe and robust non-parametric tests for statistical comparisons of
classifiers is presented. These tests are used due to the fact that the
initial conditions that guarantee the reliability of the parametric
tests may not be satisfied, causing the statistical analysis to lose
credibility [50].

The Wilcoxon test [50] will be used as a non-parametric statistical
procedure in order to conduct pairwise comparisons between two
algorithms. For multiple comparisons we use the Iman-Davenport

4 http://www.keel.es/imbalanced.php.
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Fig. 11. Paw.

test to detect statistical differences among a group of results, and the
Holm post-hoc test in order to find which algorithms are distinctive
among a 1 x n comparison.

The post-hoc procedure allows us to know whether a hypothesis
of comparison of means could be rejected at a specified level of sig-
nificance «. However, it is very interesting to compute the p-value
associated with each comparison, which represents the lowest level
of significance of a hypothesis that results in a rejection. It is the
adjusted p-value. In this manner, we can know whether two
algorithms are significantly different and how different they are.

Furthermore, we consider the average ranking of the algo-
rithms, in order to show how good a method is with respect to
its partners. This ranking is obtained by assigning a position to
each algorithm depending on its performance for each data-set.
The algorithm which achieves the best accuracy in a specific
data-set will have the first ranking (value 1); then, the algorithm
with the second best accuracy is assigned rank 2, and so forth. This
task is carried out for all data-sets and finally an average ranking is
computed as the mean value of all rankings.

These tests are suggested in the studies presented in [25,24],
where their use in the field of machine learning is highly recom-
mended. For a wider description of the use of these tests, please re-
fer to the website on Statistical Inference in Computational
Intelligence and Data Mining.®

5. Experimental study

In this section, we present a set of experiments to illustrate and
demonstrate the behavior of GP-COACH-H. These experiments are
designed towards two objectives: to exemplify how the GP-
COACH-H algorithm works, and to determine its robustness for
highly and borderline imbalanced data-sets.

We organize those experiments in the following way. First, Sec-
tion 5.1 presents a case of study over one one of the highly imbal-
anced data-sets presented in the previous section. Next, Section 5.2
contains an analysis of the impact of the hierarchical step in the
algorithm. Section 5.3 studies the the importance of the usage of
a preprocessing step when dealing with highly imbalanced data-
sets. Later, Section 5.4 performs a global comparison among the
fuzzy classification methods and C4.5 over the highly imbalanced
data-sets. Finally, in Section 5.5, this global comparison is also car-
ried out over the borderline imbalanced data-sets.

5.1. Sample procedure of the GP-COACH-H algorithm: a case of study

In order to illustrate how GP-COACH-H works we have selected
the glass0146vs2 data-set. We will follow the algorithm operations
and the results it provides. The glass0146vs2 data-set is a highly
imbalanced data-set from the KEEL data-set repository,® with 9 in-
put attributes, 205 instances and an IR equal to 11.06. We have se-
lected this data-set as one with a small size whose results can be
easily interpreted.

For this specific run, we have chosen the 3rd partition from the
5-fcv used in all the experiments. This partition uses 164 instances
for training (14 positive and 150 negative) and 41 for test (3 posi-
tive and 38 negative), using the 9 input attributes of the whole
data-set. The first step of the GP-COACH-H algorithm (see Fig. 8)
uses the SMOTE algorithm to balance the class distribution. There-
fore, we apply the SMOTE algorithm and we obtain a new training
set that contains 300 instances, 150 instances for each class.

The second step starts using the preprocessed data-set to gener-
ate the HKB. In order to generate the HKB, we first generate the
HDB from the available data. The HDB is generated (as was ex-
plained in the previous sections) with the same number of linguis-
tic terms for all input variables, composed of symmetrical
triangular-shaped and uniformly distributed membership func-
tions. The second layer, is built preserving all the membership
function modal points, corresponding to each linguistic term.
Figs. 12 and 13 show the linguistic variables generated for the
Mg attribute, according to the given instructions.

Once we have generated the HDB, we start the GP procedure to
generate the HRB. This procedure evolves a rule population
through several generations, including the usage of genetic opera-
tors to generate new individuals, the token competition procedure
to delete irrelevant rules and the hierarchical creation of new rules
in each step. At the end of the iterations, a rule base with different
granularity rules is obtained. In Fig. 14, the rules generated using
the generated HDB and the preprocessed training set are shown.

At this point, we start the last step of the algorithm which is the
genetic rule selection and lateral tuning of the variables. To obtain
the final solution, we use the preprocessed set from the first step
and the HKB generated previously. The genetic search looks for a

5 http://sci2s.ugr.es/sicidm/.
5 http://www.keel.es/imbalanced.php.
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Fig. 13. Database Layer 2 with 9 labels, M, attribute.

@Number of rules: 13

1{1}:
2{1}:
3{1}:
4{1}:
5{1}:
6{1}:
7{1}:

8{1}:
9{2}:

10{2}:
11{2}:
12{2}:

13{2}:

IF Mg IS (L{1}_1 OR L{1}_2 OR L{1}_3) THEN negative with RW: .9969

IF Ca IS (L{1}_1 OR L{1}_4 OR L{1}_5) THEN negative with RW: .9999

IF RI IS (L{1}_4 OR L{1}_5) THEN negative with RW: 1.0

IF A1 IS (L{1}_3 OR L{1}_4 OR L{1}_5) AND Fe IS (L{1}_3 OR L{1}_5) THEN negative with RW: 1.0

IF Al IS L{1}_3 AND Si IS (L{1}_1 OR L{1}_2) AND Fe IS (L{1}_2 OR L{1}_5) THEN negative with RW: 1.0

IF Na IS (L{1}_1 OR L{1}_2 OR L{1}_5) AND Si IS (L{1}_1 OR L{1}_2 OR L{1}_5) THEN negative with RW: .9969
IF RI IS (L{1}_3 OR L{1}_4 OR L{1}_5) AND Al IS L{1}_3 AND Fe IS (L{1}_2 OR L{1}_5) THEN negative with RW:

IF RI IS (L{1}_3 OR L{1}_4 OR L{1}_5) AND Na IS (L{1}_1 OR L{1}_2 OR L{1}_5) AND Fe IS (L{1}_2 OR L{1}_5)
THEN negative with RW: .9590
IF RI IS L{1}_3 AND Na IS L{1}_4 AND Mg IS L{1}_4 AND Al IS L{1}_2 AND Si IS L{1}_3 AND K IS L{1}_1 AND
Ca IS L{1}_2 AND Ba IS L{1}_1 AND Fe IS L{1}_2 THEN positive with RW: .8156
IF RI IS L{1}_2 AND Na IS L{1}_3 AND Mg IS L{1}_4 AND Al IS L{1}_2 AND Si IS L{1}_3 AND K IS L{1}_1 AND
Ca IS L{1}_2 AND Ba IS L{1}_1 AND Fe IS L{1}_1 THEN positive with RW: .6675
IF RI IS L{2}_3 AND Na IS L{2}_5 AND Mg IS L{2}_7 AND Al IS L{2}_2 AND Si IS L{2}_6 AND K IS L{2}_1 AND
Ca IS L{2}_3 AND Ba IS L{2}_1 AND Fe IS L{2}_1 THEN positive with RW: .9654
IF RI IS L{2}_4 AND Na IS L{2}_5 AND Mg IS L{2}_7 AND Al IS L{2}_2 AND Si IS L{2}_5 AND K IS L{2}_1 AND
Ca IS L{2}_4 AND Ba IS L{2}_1 AND Fe IS L{2}_2 THEN positive with RW: .7443
IF RI IS L{2}_5 AND Na IS L{2}_7 AND Mg IS L{2}_1 AND Al IS L{2}_3 AND Si IS L{2}_5 AND K IS L{2}_1 AND
Ca IS L{2}_6 AND Ba IS L{2}_1 AND Fe IS L{2}_2 THEN negative with RW: 1.0

Fig. 14. Rules generated after the Fuzzy HRB Generation.

new HKB that better represents the data. Figs. 15-17 show the new GP procedure to the results of the basic GP-COACH algorithm with
HDB and HRB obtained, which are the final output of the GP- 5 and 9 labels, using SMOTE as preprocessing algorithm in both

COACH-H algorithm. cases. The performance measures used are sensitivity and specific-

ity to observe the impact for each class. Table 4 shows the average
5.2. Analysis of the impact of the hierarchical levels over the results for each algorithm over the highly imbalanced data-sets.
imbalanced data-sets The complete table of results for all data-sets can be found in the

appendix of this work.

This subsection is devoted to the impact of the usage of the HKB Considering the sensitivity measure the best performing aver-
in the GP-COACH-H algorithm in relation to not using a HKB and age algorithm is the basic GP-COACH with 5 labels, however, if
use a traditional KB instead. In this manner, we will detect the we look at the specificity measure then the best performing algo-
influence of this component of the GP-COACH-H algorithm thus rithm is the basic GP-COACH with 9 labels. Therefore, we need to

justifying its use.

consider the effectiveness for each class separately.

We will compare the results of the GP-COACH-H algorithm Contemplating the positive class, we can observe that the best
according to the fuzzy HKB generated after the application of the performance in training is higher for the hierarchical version, being
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Fig. 16. Final database Layer 2 with 9 labels, M, attribute.

Table 4

Average results for GP-COACH-5, GP-COACH-9 and GP-COACH-H for the highly imbalanced data-sets.

Data-set Sensitivity,, Sensitivity,s Specificity,, Specificity,s
GP-COACH-5 19097 +.0307 .7809 +.1212 .8643 +.0307 .8531+.1212
GP-COACH-9 .8983 +.0267 .7319+£.1334 9231 +.0267 9055 +.1334
GP-COACH-H 9398 +.0204 7797 £.1233 .9025 +.0204 .8855+.1233
Table 5
Average results for GP-COACH versions with and without SMOTE preprocessing for the highly imbalanced data-sets.
Data-set No preprocessing SMOTE preprocessing
GM; GMse GM¢ GMse
GP-COACH-5 4789 +.1017 3677 £.1922 .8763 +.0307 .7897 +.1212
GP-COACH-9 .5074 +.0871 .3929 +.1996 .9056 +.0267 .7845 +.1334
GP-COACH-H 4536 +.1216 3439 +.1697 9576 +.0121 8175 £.1193

able to describe the training set more accurately than in the pres-
ence of low granularity rules only. Therefore, our initial intuition
where the HKB was able to better describe difficult data spaces is
confirmed. Comparing the training results in relation to the test
results we notice a drop in performance for all the algorithms
where GP-COACH-5 gets the best results, GP-COACH-H obtains
similar results to GP-COACH-5 and GP-COACH-9 accomplishes
lower results than the other two.

Analyzing the results associated to the negative class, we see an
almost opposite situation. For training results the GP-COACH-9
algorithm is the algorithm that best describes the data, a situation
where GP-COACH-H is supposed to be found. Nevertheless, GP-
COACH-H is designed to specifically deal with imbalanced data-
sets concentrating on the positive class so is logical that it does
not characterize the negative class as well as the previous case.

Confronting the training results with the test results we find a drop
in the performance on equal levels for each approaches. Therefore,
GP-COACH-9 is the best performing algorithm for the negative
class, closely followed by GP-COACH-H where GP-COACH-5 perfor-
mance falls behind those two approaches.

After checking the performance in each class, we discover that
the basic GP-COACH is a powerful tool to describe one of our clas-
ses depending on the number of labels used. Nevertheless, if we
choose a specific number of labels to focus on one class the final
performance is degraded in the other one. Consequently, the GP-
COACH-H approach that combines low granularity and high gran-
ularity rules is able to address the description of both classes
accordingly. Its performance does not exceed the results of the ba-
sic algorithm, however, it goes closely after them in each class. Fur-
thermore, there is not a high decrease in performance for the class
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@Number of rules: 10

1{1}: IF Mg IS (L{1}_1 OR L{1}_2 OR L{1}_3) THEN negative with RW: 1.0
2{1}: IF Ca IS (L{1}_1 OR L{1}_4 OR L{1}_5) THEN negative with RW: .9871

3{1}: IF RI IS (L{1}_4 OR L{1}_5) THEN negative with RW:

.9981

4{1}: IF Al IS (L{1}_3 OR L{1}_4 OR L{1}_5) AND Fe IS (L{1}_3 OR L{1}_5) THEN negative with RW: .9892

5{1}: IF Al IS L{1}_3 AND Si IS (L{1}_1 OR L{1}_2) AND Fe IS (L{1}_2 OR L{1}_5) THEN negative with RW: .9902
6{1}: IF Na IS (L{1}_1 OR L{1}_2 OR L{1}_5) AND Si IS (L{1}_1 OR L{1}_2 OR L{1}_5) THEN negative with RW: 1.0
7{1}: IF RI IS (L{1}_3 OR L{1}_4 OR L{1}_5) AND Na IS (L{1}_1 OR L{1}_2 OR L{1}_5) AND Fe IS (L{1}_2 OR L{1}_5)

THEN negative with RW: .9461

8{2}: IF RI IS L{1}_3 AND Na IS L{1}_4 AND Mg IS L{1}_4 AND Al IS L{1}_2 AND Si IS L{1}_3 AND K IS L{1}_1 AND Ca
IS L{1}_2 AND Ba IS L{1}_1 AND Fe IS L{1}_2 THEN positive with RW: .6544

9{2}: IF RI IS L{1}_2 AND Na IS L{1}_3 AND Mg IS L{1}_4 AND Al IS L{1}_2 AND Si IS L{1}_3 AND K IS L{1}_1 AND Ca
IS L{1}_2 AND Ba IS L{1}_1 AND Fe IS L{1}_1 THEN positive with RW: .6719

10{2}: IF RI IS L{2}_3 AND Na IS L{2}_5 AND Mg IS L{2}_7 AND Al IS L{2}_2 AND Si IS L{2}_6 AND K IS L{2}_1 AND Ca
IS L{2}_3 AND Ba IS L{2}_1 AND Fe IS L{2}_1 THEN positive with RW: .9561

Fig. 17. Final rules generated with the GP-COACH-H algorithm.

Table 6
Average results for FRBCS methods and C4.5 for the highly imbalanced data-sets.
SMOTE preprocessing for FRBCS methods, SMOTE+ENN for C4.5.

Data-set GMg GMs¢

GP-COACH-5 .8763 +.0307 7897 +.1212

GP-COACH-9 .9056 +.0267 7845 +.1334

HFRBCS(Chi) .9331+.0117 7901 +.1325

GP-COACH-H 9576 +.0121 .8175 +.1193

C4.5 .9549 +.0180 .7848 +.1452
Table 7

Average rankings and adjusted p-values using Holm’s post-hoc procedure for FRBCS
methods and C4.5 adopting the GM measure for the highly imbalanced data-sets.

Algorithm Average ranking Adjusted p-value (Holm's test)
GP-COACH-H 2.4091

GP-COACH-9 3.0227 0.0862

GP-COACH-5 3.0909 0.0862

C4.5 3.2045 0.0549

HFRBCS(Chi) 3.2727 0.0416

Table 8
Average results for FRBCS methods and C4.5 for the borderline imbalanced data-sets.
SMOTE preprocessing for FRBCS methods, SMOTE+ENN for C4.5.

Data-set GM,, GMgse

GP-COACH-5 7899 +.0218 .7630 +.0578

GP-COACH-9 .8103 +.0330 .7628 +£.0705

HFRBCS(Chi) .8316 +.0195 7992 +.0461

GP-COACH-H .8674 +.0157 .8234 +.0428

Cc4.5 .8881 +.0244 .8208 +.0462
Table 9

Average rankings and adjusted p-values using Holm’s post-hoc procedure for FRBCS
methods and C4.5 adopting the GM measure for the borderline imbalanced data-sets.

Algorithm Average ranking Adjusted p-value (Holm's test)
GP-COACH-H 1.7333
Cc4.5 1.9000 0.6831
HFRBCS(Chi) 3.0667 0.0022
GP-COACH-9 3.8667 0.0000
GP-COACH-5 4.4333 0.0000
Table 10

Wilcoxon test to compare GP-COACH-H against C4.5 in borderline imbalanced data-
sets. R* corresponds to the sum of the ranks for GP-COACH-H and R~ to C4.5.

Comparison R R p-Value

GP-COACH-H vs C4.5 261.0 204.0 0.551

as in the basic algorithm. In this manner, GP-COACH-H is able to
profit from the descriptive power of each granularity level obtain-
ing a good balance between the performance of both classes.

5.3. Analysis of the suitability of the preprocessing step for imbalanced
problems

In this part of the study, our aim is to show the suitability of the
preprocessing step included in GP-COACH-H as the first step of the
algorithm. We also check the performance of applying this prepro-
cessing step to the basic GP-COACH algorithm in order to show the
necessity of this procedure when dealing with imbalanced data-
sets, thus justifying the inclusion of this step in our proposal.

According to this objective, we show the average GM results in
training and test in Table 5, together with the corresponding stan-
dard deviation, for the basic GP-COACH algorithm and for the hier-
archical GP-COACH-H with and without SMOTE preprocessing over
the highly imbalanced data-sets presented in Section 4.2. The com-
plete table of results for all data-sets is shown in the appendix of
this work. We observe that the best result in test (which is stressed
in boldface) always corresponds to the one obtained when the
SMOTE preprocessing is applied. Furthermore, there is an enor-
mous difference between the usage or not usage of preprocessing.
Therefore, we conclude that the usage of SMOTE as preprocessing
clearly outperforms the usage of the original data-sets making
the use of this methodology a necessity in the framework of imbal-
anced data-sets.

5.4. Analysis of GP-COACH-H on highly imbalanced data-sets

The following part of the study will consider the performance of
the GP-COACH-H algorithm in contrast with other FRBCS learning
proposals and with the C4.5 algorithm. Table 6 shows the average
GM results in training and test together with the corresponding
standard deviation for the highly imbalanced data-sets considered.
By rows, we can observe the results for the basic GP-COACH meth-
od with 5 and 9 labels (GP-COACH-5 and GP-COACH-9), the
HFRBCS(Chi), the proposed GP-COACH-H and the C4.5 decision
tree. The best average case in test is highlighted in bold. The com-
plete table of results for all data-sets is also shown in the appendix
of this work together with the results of the previous experiments.
We remind that SMOTE is used for the FRBCS whereas SMOTE+ENN
is applied in conjunction with C4.5 along all the experiments.

According to the average values shown in this table the best
method in highly imbalanced data-sets is the GP-COACH-H. To car-
ry out the statistical study we first check for significant differences
among the algorithms using an Iman-Davenport test. The p-value
(0.0779) is low enough to reject the null equality hypothesis with
a high confidence level. Thus, we can conclude that significant dif-
ferences do exist, proceeding by showing in Table 7 the average
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ranks of the algorithms and the adjusted p-values computed by the
Holm test. Looking at this table we can notice that GP-COACH-H
obtains the lower ranking which makes it the control method used
for the post-hoc computation. As all the adjusted p-values are suf-
ficiently low to reject the null-hypothesis in all cases, the assump-
tion where GP-COACH-H is the best performing method considered
for highly imbalanced data-sets is reinforced.

5.5. Analysis of GP-COACH-H on borderline imbalanced data-sets

In the last part of our study, we want to analyze the behavior of
the GP-COACH-H proposal in the scenario of imbalance borderline
data-sets. We will take into account the same algorithms consid-
ered in the analysis for highly imbalanced data-sets, namely, the
basic GP-COACH method with 5 and 9 labels (GP-COACH-5 and
GP-COACH-9), HFRBCS(Chi), GP-COACH-H and the C4.5 decision
tree. Table 8 shows the average results in training and test together
with the corresponding standard deviation for the algorithms used
in the study over the borderline imbalanced data-sets. As in previ-
ous tables, the best average case in test is highlighted in bold and
the complete table of results for the borderline imbalanced data-
sets is also shown in the appendix of this work.

Observing the average results table we detect GP-COACH-H as
the method with the best average results. Similarly to the proce-
dure used in the highly imbalanced data-sets comparison we start
the statistical study for borderline imbalanced data-sets comput-
ing the Iman-Davenport test to discern if there are significant dif-
ferences among the algorithms. The p-value computed is zero,
implying that there are differences between the algorithms. There-
fore, we perform the Holm test as post-hoc procedure. Table 9 con-
tains the ranks of the algorithms and the adjusted p-values
computed using the Holm test.

According to Table 9 the lowest ranking corresponds to GP-
COACH-H turning it into the control method used in the Holm test
as the best performing method for borderline data-sets. In this
case, the adjusted p-values associated to the basic GP-COACH (with
5 and 9 labels) and to HFRBCS(Chi) are low enough to reject the
null-hypothesis with a high confidence level. This means, that
our proposal GP-COACH-H is the best performing FRBCS in border-
line imbalanced data-sets. In the remaining case (C4.5), we per-
form a Wilcoxon test (Table 10) in order to check if we find
differences between both algorithms.

In this case, the p-value computed does not reject the null
hypothesis. Nevertheless, GP-COACH-H achieves a higher sum of
ranks, which means that GP-COACH-H has obtained a greater per-
formance in a superior number of data-sets than C4.5, turning GP-
COACH-H into a competitive method. Furthermore, the average
performance of GP-COACH-H is better than the performance of
C4.5 and the standard deviation is lower which causes GP-
COACH-H to be a more robust method in each occasion.

To sum up, our experimental study has shown that GP-COACH-
H is an algorithm that presents a good behavior in the framework
of imbalanced data-sets, specifically, when dealing with high
imbalanced data and borderline imbalanced data. The design of
GP-COACH-H integrates different strategies to deal with the prob-
lem that help to overcome the difficulties when they appear. Spe-
cifically, the preprocessing step is used to counter the imbalance
problem, the hierarchical procedure is added to the FRBCS used
as base to obtain a better representation of the data-set in difficult
areas such as small disjuncts or borderline samples and the rule
selection combined with tuning refines the results obtained
improving the overall results. These schemes combined together
deal with the mentioned problems in conjunction generating good
results.

6. Concluding remarks

In this paper we have presented a FRBCS with different granu-
lation levels that integrates rule selection and the 2-tuples tuning
approach to improve the performance in imbalanced data-sets. The
proposal integrates data sampling together with algorithm modifi-
cations to the basic approach and adapts its behavior to the differ-
ent granulation levels considered, adding a post-processing step
that helps the hierarchical fuzzy rule base classification system
to have a better adaptation to the context of each problem and
therefore to enhance its global behavior.

The proposed hierarchical fuzzy rule based classification was
compared to the GP-COACH algorithm, HFRBCS algorithm and the
C4.5 decision tree in order to demonstrate its good performance.
The experimental study justifies the combination of SMOTE with
the algorithmic modifications such as the usage of a hierarchical
knowledge base in order to increase the performance in the imbal-
anced data-set scenario. Moreover, the results obtained when we
deal with this scenario evidence the interest of this proposal. Specif-
ically, this proposal outperforms the other approaches in the frame-
work of highly imbalanced data-sets, which usually is an scenario
where most algorithms have lots of difficulties to perform properly.

For borderline imbalanced data-sets our approach shows a bet-
ter behavior than other FRBCSs used in the experimental studio
and maintains a competitive performance when it is compared
with C4.5. These results have been contrasted by several non-
parametric statistical procedures that reinforce the extracted
conclusions.

As future work, we consider several lines of work centered on
the features of GP-COACH-H that can still be enhanced to obtain
a better performance. One possibility includes the modification of
the genetic operations to achieve a multi-objective procedure that
enables a trade-off between interpretability and accuracy. More-
over, we want to study in depth the data intrinsic characteristics
that hinder the performance in imbalanced data-sets and incorpo-
rate this knowledge into the model with a specialized strategy for
each case. Another possibility focus on the balance level of the pre-
processing step. If an equal balance is not needed and can be
substituted by a lower number of instances then the run time of
the algorithm will decrease.
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Appendix A. Detailed results for the experimental study

In this appendix we present the complete results tables for all
the algorithms used in this work. Thus, the reader can observe
the full training and test results, with their associated standard
deviation, in order to compare the performance of each approach.
In Table 11 we show the detailed results for the GP-COACH-5, GP-
COACH-9 and GP-COACH-H versions with SMOTE preprocessing
for the GP procedure using the specificity and sensitivity measures.
Next, in Table 12 we show the results for the basic GP-COACH
method and the hierarchical GP-COACH-H with and without
SMOTE preprocessing. Later, the results for each FRBCS method
with SMOTE preprocessing and C4.5 with SMOTE+ENN preprocess-
ing over the highly imbalanced data-sets are shown in Table 13. Fi-
nally, Table 14 presents the results for the same algorithms as
Table 13 over the borderline data-sets considered.



Table 11
Complete table of results for GP-COACH-5, GP-COACH-9 and GP-COACH-H after the GP procedure using the specificity and sensitivity measures.
Data-set GP-COACH-5 GP-COACH-9 GP-COACH-H
Sensitivity,, Sensitivity,s Specificity,, Specificity,;,  Sensitivity,, Sensitivity . Specificity,,  Specificity,;  Sensitivity,, Sensitivity s, Specificity,, Specificity s,

ecoli034vs5 9750+.0165 .8500+.1282 .9764+.0165 .9722+.1282 .9875+.0158 .9000 £.0709 .9653 £.0158 .9556+.0709 .9375+.0567 .8500%.0759 .9806 +.0567 .9667 +.0759
yeast2vs4 9316+.0092 .8818+.0412 .9196+.0092 .9179+.0412 .9265+.0044 .8818+.0381 .9319+.0044 .9288 +.0381 9365 +.0166 .8636 +.0471 9352 +.0166 .9308 +.0471
ecoli067vs35 9654 +.0193 .8400+.2093 .9200+.0193 .8650+.2093 .9438 +.0210 .8400+.2265 .9412+.0210 .9250+.2265 .9660+.0292 .8400+.2248 .9463 +.0292 .9200 +.2248
ecoli0234vs5 9625 +.0095 .7500+.1552 .9794 +.0095 .9338+.1552 .9625+.0409 .8000+.1648 .9670+.0409 .9174+.1648 .9875+.0111 .8500+£.1239 .9822 +.0111 9392 +£.1239
glass015vs2 7429 £ .1337 4833 +.2183 .4774+.1337 .4968 +.2183 .8077+.0511 .1833+.3032 .8581+.0511 .7677+.3032 .8978+.0440 .6000+.0739 .7742+.0440 .7677 £.0739
yeast0359vs78 7650 +.0840 .6400+.1244 .5273+.0840 .5312+.1244 .3700+.0258 .3600 +.0833 .8499 +.0258 .8418+.0833 .8450+.0199 .7000+.0820 .8164+.0199 .8026 +.0820
yeast02579vs368 .8763+.0093 .8700+.0376 .9577 +£.0093 .9514+.0376 .8864+.0109 .8900+.0395 .9279+.0109 .9204+.0395 .8788+.0093 .8600+.0488 .9577+.0093 .9547 +.0488
yeast0256vs3789 7096 £.0136  .6858 £.0676  .9251 +.0136 .9271+.0676 .7322+.0149 .7063 £.0563 .9022 +.0149 .8994+.0563 .7247 +.0154 .7063 +.0598 .9191+.0154 .9182 +.0598
ecoli046vs5 .9750+.0168 .9000+.1248 .9740+.0168 .9509+.1248 .9875+.0174 .8500+.2166 .9836+.0174 .9566+.2166 1.0000+.0073 .8500+.2117 .9727+.0073 .9401+.2117
ecoli01vs235 9689 +.0151 .8600 +.1131 9125+.0151 .8955+.1131 .9689+.0152 .9100+.0670 .9398 +.0152 .9227+.0670 .9479+.0184 .7700+.1915 .9443+.0184 .9364+.1915
ecoli0267vs35 9216 £.0211 .8000 +.1311 9209 £.0211 .9156 £.1311 9778 £.0334 .8000+.1125 .9220+.0334 .8916%.1125 .9444+.0260 .8000+.0928 .9073 £.0260 .8709 +.0928
glass04vs5 1.0000 £.0208 .9000+.1277 .9338 £.0208 .9287 +.1277 1.0000 £.0247 1.0000 £.0134 .9426 £.0247 .9279+.0134 1.0000+.0365 .8000+.4020 .9190+.0365 .8412 +.4020
ecoli0346vs5 1.0000 +£.0028 .8000+.1132 .9919+.0028 .9784+.1132 .9875+.0159 .8500%.0632 .9811+.0159 .9459+.0632 1.0000+.0107 .8500+.0608 .9770+.0107 .9622 +.0608
ecoli0347vs56 .9700+.0104 .8000+.1039 .9461+.0104 .9224+.1039 .9700+.0166 .8000 +.1459 .9590+.0166 .9397+.1459 .9800+.0069 .8400+.0923 .9483 +.0069 .9309 +.0923
yeast05679vs4 7843 £.0198 .7836+.0759 .8569 +.0198 .8490+.0759 .7990+.0158 .7636+.0858 .8753+.0158 .8616+.0858 .8184+.0117 .7255+.0653 .8496+.0117 .8449 +.0653
ecoli067vs5 1.0000 +.0144 .8000+.1277 9113 +.0144 .8850+.1277 .9625+.0162 .8500+.0884 .9488+.0162 .9400+.0884 .9625+.0153 .8500+.0513 .9463 +.0153 .9350%.0513
vowelO 9861 +.0116 .9667 £.0154 .9527 +.0116 .9532+.0154 .9778 £.0075 .9444 +.0093 .9510+.0075 .9365+.0093 .9611+.0160 .9333+.0232 .9630+.0160 .9588 +.0232
glass016vs2 9560 £.0558 .5500+.1228 .6443 £.0558 .5886+.1228 .8231+.0355 .3000+.2385 .8257+.0355 .7886+.2385 .9714%.0171 .5833+.1741 7286 +.0171 .7086 £.1741
glass2 9264 £.0256  .7667 +.0841 .5330+£.0256 .5074 £.0841 7626 £.0615 .3500+.3725 .8514+.0615 .8027+.3725 .9407 +£.0533 .4667 £.1544  .8225+.0533 .7505*.1544
ecoli0147vs2356 9228 +.0241 7200 £.1060  .9267 £.0241 .8990+.1060 .8808 +.0521 .7133+.1467 .9218+.0521 .9056+.1467 .9221+.0232 .8333+.0477 .9120+.0232 .9154+.0477
led7digit02456789vs1 .8582+.0246 .8607 £.0829  .9421+.0246 .9483 +.0829 .8582+.0274 .8321+.0708 .9434+.0274 .9507£.0708 .8648 +.0216 .8607 +.0851 9403 £.0216  .9458 +.0851
glass06vs5 1.0000 £.0073 1.0000+.0113  .9798 £.0073 .9900+.0113 1.0000 £.0069 .9000 £.1332 .9849 £.0069 .9300+.1332 1.0000+.0141 1.0000+.0215 .9722+.0141 9595 £.0215
ecoli01vs5 1.0000 +.0137  .8000+.1248 .9636+.0137 .9682 +.1248 1.0000 +.0075 .9000 +.0908 .9784+.0075 .9409+.0908 1.0000+.0043 .8500+.0868 .9784+.0043 .9545+.0868
glass0146vs2 9253 +.0483 .7833+.0450 .6208 £.0483 .5909 +.0450 .8978£.0665 .5167 £.3191 .8085+.0665 .8027 +.3191 8956 £.0273  .5833+.0748 .7486+.0273 .7343 +£.0748
ecoli0147vs56 9700 £.0222 .8000+.0385 .9455+.0222 .8987+.0385 .9900+.0154 .8000+.0661 .9577 £.0154 .9282 +.0661 .9800+.0198 .8400+.0898 .9381+.0198 .9118 £.0898
clevelandOvs4 9800+.0194 .5667+.1710 .9687+.0194 .9697 +.1710 9418 £.0266 .6333+.2114 .9781+.0266 .9634+.2114 .9600+.0378 .8000+.1632 .9439+.0378 .9146 +.1632
ecoli0146vs5 1.0000 +.0171 .8500+.1133 9577+.0171 .9385+.1133 .9875+.0168 .8500+.1158 .9750+.0168 .9423 +.1158 1.0000 +.0111 .8500+.1162 9712 +.0111 9462 +.1162
ecoli4 9750 £.0151 9000 +.0717 .9755+.0151 .9811+.0717 .9625 +.0201 .8500 £.0806 .9723 £.0201 .9588+.0806 .9750+.0143 .9000+.0724 .9723+.0143 .9684 +.0724
yeastlvs7 .9333+£.0568 .8333+.0539 .5640+.0568 .5644 +.0539 .8667 £.0832  .4667 £.1465 .8736+.0832 .8483+.1465 .9000+.0314 .6667 +.0899 .7506+.0314 .6945 +.0899
shuttleOvs4 1.0000 +.0000 1.0000 +.0020 1.0000 +.0000 .9982 +.0020 1.0000 +.0003 .9920+.0103 .9990+.0003 .9988+.0103 .9980+.0023 .9917 +.0094 1.0000 +.0023 1.0000 *.0094
glass4 1.0000 £.0168 .7333+.4090 .9615+.0168 .9200+.4090 .9800+.0212 .8333+.1306 .9739+.0212 .9500+.1306 1.0000+.0187 .6667 +.3937 .9478+.0187 .9200 +.3937
page-blocks13vs4 9273 £.0477 9000 +£.0679 .9189+.0477 .9144+.0679 .9391+.0703 .8400+.1574 .9262+.0703 .9233+.1574 .9735+.0116 .7933+.1273 .9825+.0116 .9752+.1273
abalone9-18 7439+ .0355 .7306+.0996 .6589+.0355 .6705%.0996 .8275+.0149 .5889+.1103 .7885+.0149 .7851+.1103 .8446+.0191 .7778+.0917 .8004 +.0191 .7823 +.0917
glass016vs5 1.0000 £.0106 1.0000 +.0422 .9643 £.0106 .9314 +.0422 1.0000 £.0058 .9000 +.1312 .9643 £.0058 .9314+.1312 1.0000+.0108 .8000%.1672 .9557+.0108 .9429 +.1672
shuttle2vs4 1.0000 £.0496 1.0000 +.0667 .9310+.0496 .9190+.0667 1.0000 +.0046 1.0000+.0090 .9959 +.0046 .9920+.0090 1.0000+.0046 1.0000+.0000 .9939+.0046 1.0000 +.0000
yeast1458vs7 .6917£.1104 .4333+.2086 .6012+.1104 .5829+.2086 .7750+.0498 .4000+.1118 .7492+.0498 .7451+.1118 .8583+.0314 .5000%.1284 .6923+.0314 .6756+.1284
glass5 9714+.0317 .6000+.5297 .9720+.0317 .9561+.5297 .9714+.0340 .6000 +.4085 .9854 +.0340 .9805+.4085 1.0000+.0368 .8000 +.4225 9183 +.0368 .9122+.4225
yeast2vs8 .5750+£.0319 .5500+.1487 .9919+.0319 .9957 +.1487 .6500 +.0211 .6000 £.1606 .9973 £.0211 .9978£.1606 .9625+.0175 .5500%.1322 .9259+.0175 .9111+.1322
yeast4 .8434+£.0095 .7236+.0527 .8789+.0095 .8772+.0527 .7988+.0140 .6873 £.0469 .8939+.0140 .8905+.0469 .9216+.0137 .8018+.0438 .8238+.0137 .8248 +.0438
yeast1289vs7 7583 +£.1556  .5333+.1253  .6065+.1556 .6122+.1253 .7917 £.0672 .4667 +£.1633 .8277 +.0672 .8079+.1633 .9000 +.0495 .7000 +.0902 .7132+.0495 .6925+.0902
yeast5 9208 £.0262 .8611+.0478 .9493 +.0262 .9479+.0478 .9324+.0289 .8833+.0434 .9642 +.0289 .9667 £.0434 .9487 +.0131 9083 +£.0477 .9488 +.0131 9479 +.0477
ecoli0137vs26 8867 £.0418 .7000+.4202 .9516+.0418 .9490+.4202 .8533+.0354 .7000 +.4200 .9562 +.0354 .9562 +.4200 1.0000+.0106 .8000 *.4201 9362 +.0106 .9015 +.4201
yeast6 8786 £.0128 .8571+.0907 .9208 +£.0128 .9248 +.0907 .8571+.0187 .8000+.1348 .9367 £.0187 .9399+.1348 .8857+.0130 .8286+.0988 .9294+.0130 .9310+.0988
abalone19 .8508 +.0131 6952 +.0824 .6165+.0131 .6200+.0824 .9298+.0196 .4714+.0569 .7402+.0196 .7359+.0569 .8588 +.0165 .4667 £.1476 .7233+.0165 .7216+.1476
Mean 9097 £.0307 .7809 +.1212 .8643 +£.0307 .8531+.1212 .8983 £.0267 .7319+.1334 .9231+.0267 .9055+.1334 .9398+.0204 .7797+.1233 .9025+.0204 .8855%.1233
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Table 12
Complete table of results for GP-COACH versions with and without SMOTE preprocessing.

Data-set No preprocessing SMOTE preprocessing
GP-COACH-5 GP-COACH-9 GP-COACH-H GP-COACH-5 GP-COACH-9 GP-COACH-H
GM;r GMse GM;r GMs¢ GM;r GMs¢ GM;r GMse GM;r GMse GM;r GMs¢

ecoli034vs5 8348 +.0623 7293 +.1508 .8436+.0337 .7854+.1903  .5871%.5366 .5412+.4967 .9755%.0165 .9018+.1282 .9761+.0158 .9250+.0709  .9833+.0276  .8660 *.1252
yeast2vs4 .8111+.0405 .7934+.1018 .5085+.4646 4557 +.4232  .8855+.0243 .7817+.0850 .9252+.0092 .8987 +.0412 .9283+.0044 .9036 +.0381 9647 +.0095  .9304 +.0288
ecoli067vs35 .7120+.1319 5262 +.3357 .8724+.0453 .6667 +.3799  .9087 +.0578 .6631 +.3861 9421 +.0193 .8185+.2093 .9420+.0210 .8509+.2265 .9707+.0140  .7286 +.4095
ecoli0234vs5 7559 +.2269 .6610+.3759 .8802+.0194 .7854+.1903  .2500+.4330 .1973 + .4411 9707 £.0095 .8286+.1552 .9638+.0409 .8472+.1648  .9966 +.0024  .8473 +.1526
glass015vs2 .0000 +.0000 .0000 +.0000 .0000+.0000 .0000+.0000  .0000+.0000 .0000+.0000 .5017+.1337 .3732+.2183 .8301+.0511 .2115%.3032  .9503+.0127  .6301 £.0922
yeast0359vs78 .3816+.0722 .2151+.2033 4467 +.0198 .4595 +.0941 .5025+.0540 .4136+.0989  .5764+.0840 .5111+.1244 .4804+.0258 4467 +.0833  .8919+.0188 .7189+.1013
yeast02579vs368 4423 +.2722 4263 +.3592 .2948+.0425 .2621+.1685  .9015+.0256 .8413 +.0321 9160 +.0093 .9087 +.0376 .9068 +.0109 .9044 +.0395  .9298+.0080  .9107 +.0303
yeast0256vs3789 .3581+.0988 .1078+.1513 .3997 +.1358 .2928 +.2341 7495 +.0269 .6353+.1073  .8101+.0136 .7954+.0676 .8127+.0149 .7955+.0563  .8348+.0146  .7982+.0673
ecoli046vs5 .8263+.0684 .6878+.1833 .8725+.0144 .6514+.3834  .9551+.0180 .8105+.2129 .9744+.0168 .9171+.1248 .9855+.0174 .8793+.2166 .9952+.0039  .8677 +.2102
ecoli01vs235 7225+.1149 5614 +.3222 .7925+.1083 5727 +.3727 4644 +.2395 .2426+.3508 .9398+.0151 .8682+.1131 .9540+.0152 .9138+.0670 .9845+.0143  .8471+.0944
ecoli0267vs35 .8223+.0748 .5828+.3713 .8973+.0300 .8518+.1458  .7825+.3031 .6055+.3454  .9201+.0211 .8407+.1311 .9494+.0334 .8365+.1125 .9707+.0163  .9028 +.0739
glass04vs5 3917 + 4067 .1414+.3162 .7777+.1085 .6243+.3713  .0000+.0000 .0000+.0000  .9662 +.0208 .9064 +.1277 9706 +.0247 .9632+.0134  .9909 +.0125  .9429 +.0419
ecoli0346vs5 .8211+.0317 .7560+.1884 .8353+.0390 .8005+.0897  .3742+.5123 .3732+.5132 .9959+.0028 .8772+.1132 .9842+.0159 .8934+.0632 .9993+.0015  .8847 +.0690
ecoli0347vs56 4067 +.1337 1779+ .2436 .6756+.0664 .6729+.1658  .5673+.1876 .2654+.3956 .9576+.0104 .8525+.1039 .9644+.0166 .8571+.1459  .9881+.0036  .8767 +.0977
yeast05679vs4 .5301+.1708 4502 +.2955 .0000+.0000 .0000+.0000 .7518+.1110 .5433+.1763  .8194+.0198 .8136+.0759 .8360+.0158 .8080+.0858  .8961+.0280  .6988 +.0530
ecoli067vs5 7960 +.0691 .5861+.3606 .9076+.0156 .7474+.1815 .9218+.0186 .7505+.1554 .9545+.0144 .8356+.1277 .9554+.0162 .8923+.0884  .9849 +.0041 .8671 +.0629
vowel0 7763 +£.0717 7098 +.0795 .8520+.0443 .8207+.0619  .8046+.1343 .7599+.1505 .9691+.0116 .9598+.0154 .9642+.0075 .9400+.0093  .9947 +.0057  .9465 +.0622
glass016vs2 .0555+.1240 .0000 +.0000 .0555+.1240 .0000+.0000  .0000 +.0000 .0000+.0000 .7820+.0558 .5419+.1228 .8120+.0355 .4211+.2385 .9415+.0218  .6467 +.2206
glass2 .0000 +.0000 .0000 +.0000 .0000+.0000 .0000+.0000 .0535+.1195 .0000+.0000 .7019+.0256 .6223+.0841 .7981+.0615 .3949+.3725  .9663+.0188  .5886 +.1299
ecoli0147vs2356 5083 +£.1123 3942 +.2360 .4271+.0894 .0816+.1826  .5234+.0427 .3036+.3019  .9247 +.0241 .7976+.1060 .8994+.0521 .7972+.1467 .9594+.0153  .8263 +.0687
led7digit02456789vs1 .8988 £.0194 9013 £.0830 .9081+.0156 .8958+.0864  .5328+.4872 .5099 +.4682  .8981+.0246 .9011+.0829 .8986+.0274 .8874+.0708 .9142+.0158  .9000 +.0809
glass06vs5 7986 +.0637 .7548 +.1379 5142 +.3470 .1949+ .4359  .1512+.3381 .1414+.3162 .9898+.0073 .9949+.0113 .9924+.0069 .9060+.1332  .9975+.0035 .9120+.1263
ecoli01vs5 7401 +£.0531 .6549+.1580 .7686+.1074 .4130+.3987 .9673+.0323 .8196+.1238 .9816+.0137 .8739+.1248 .9891+.0075 .9190+.0908  .9977 +.0031 .8946 +.0823
glass0146vs2 .0000 +.0000 .0000 +.0000 .0000 +.0000 .0000+.0000  .0000+.0000 .0000+.0000  .7552+.0483 .6651+.0450 .8501+.0665 .5675%.3191 .9313+.0074  .7300 +.0534
ecoli0147vs56 3948 +.1736  .1789+.2449 5243 +.1376 .2444 + .3541 7058 +.2287 3563 +.3715  .9574+.0222 .8472+.0385 .9735+.0154 .8577 +.0661 9852 +.0045  .8372 +.0595
clevelandOvs4 .8312+.0470 .5287 +.3100 .8656 +.0464 .3969 +.5436  .5326+.3671 .2784+.3812  .9740+.0194 .7232+.1710 .9595+.0266 .7578+.2114 .9719+.0322  .8646 +.1627
ecoli0146vs5 .6469 +.0906 4560 +.4213 .8714+.0461 .6805+.2062 .9284+.0280 .7762+.2119 .9785+.0171 .8832+.1133 .9811+.0168 .8862+.1158  .9952+.0038  .9194 +.0597
ecoli4 .6336+.1716 .5146+.3263 .6761+.3818 .4696+.3039  .0000+.0000 .0000+.0000 .9751+.0151 .9373+.0717 .9673+.0201 .9008 +£.0806  .9936+.0043  .9357 +.0702
yeast1lvs7 .0986 +.1382 .0000 +.0000 .2234+.2285 .0000+.0000 .1632+.1706 .0000+.0000 .7229+.0568 .6802+.0539 .8676+.0832 .6093 +.1465 .8988 +.0301 .6900 +.0646
shuttleOvs4 .8361+.0143 .8300+.0595 .9877+.0101 .9744+.0387 1.0000+.0000 .9960+.0090 1.0000+.0000 .9991+.0020 .9995+.0003 .9954+.0103 1.0000+.0000 1.0000 +.0000
glass4 4689+.1175 .1155+.2582 .7019+.0955 4737 +.4550  .2963+.1948 .0000+.0000 .9804+.0168 .7231+.4090 .9766+.0212 .8811+.1306 .9906 +.0077  .7303 +.4132
page-blocks13vs4 7063 +.0430 .6917 +.1876 .7397 +.0877 .6815+.2216 .7321+.1134 .6016+.1727  .9205+.0477 .9035+.0679 .9316+.0703 .8706+.1574  .9994 +.0008  .9482 +.0502
abalone9-18 3172+.0875 2357 +.2205 .3648+.2181 .2412+.2282  .4393+.1049 .2565+.2510 .6884+.0355 .6922+.0996 .8070+.0149 .6699+.1103  .8595+.0265 .7500 *.0599
glass016vs5 4309 +.4010 .1414+.3162 .7755+.0843 4828 +.4567  .0000+.0000 .0000+.0000 .9819+.0106 .9644+.0422 .9820+.0058 .9090+.1312  .9921+.0078  .8550+.1596
shuttle2vs4 .6367 £.2363 .6000+.5477 .2159+.3028 .2000+*.4472  .8257+.1510 .8000*.4472  .9639+.0496 .9568+.0667 .9979+.0046 .9960+.0090 1.0000+.0000 .9918 +.0183
yeast1458vs7 .0000 +.0000 .0000 +.0000 .0000+.0000 .0000+.0000  .0000+.0000 .0000+.0000 .5775+.1104 .3546+.2086 .7566+.0498 .5353+.1118  .8952+.0261 .6304 +.1095
glass5 2926 +.4010 .2000 +.4472 .7766 +.0977 .5372 +.5051 .0000 +£.0000 .0000+.0000  .9711+.0317 .5801+.5297 .9780+.0340 .6758+.4085  .9957 +£.0027  .7877 +.4404
yeast2vs8 7401 £.0348 7283 +£.1497 .7401+.0348 .7283+.1497 .7410+.0351 .7283+.1497 .7544+.0319 .7274+.1487 .8049+.0211 .7601+.1606  .9937+.0047  .7381+.1765
yeast4 .0000 +.0000 .0000 +.0000 .0000+.0000 .0000+.0000 .0853+.1236 .0000+.0000  .8602+.0095 .7923+.0527 .8443+.0140 .7807+.0469  .9001+.0156  .8175+.0391
yeast1289vs7 .0000 +.0000 .0000 +.0000 .0000 +.0000 .0000+.0000  .0000+.0000 .0000+.0000  .6325+.1556 .5262+.1253 .7996+.0672 .5860+.1633  .8843+.0292  .6939 £.1205
yeast5 .0000 +.0000 .0000 +.0000 .0000+.0000 .0000+.0000  .0333+.0745 .0000+.0000  .9344+.0262 .9020+.0478 .9477 +.0289 .9229+.0434  .9724+.0066  .9428 +.0526
ecoli0137vs26 6472 +.0986 .1414+.3162 .3344+.1877 .1414+.3162  .8430+.0583 .1401+.3133 9167 +.0418 .7215+.4202 .9021+.0354 .7203 +.4200 .9843+.0107 .7067 *.4136
yeast6 .0000 +.0000 .0000 +.0000 .0000 +.0000 .0000+.0000  .0000+.0000 .0000+.0000 .8994+.0128 .8856+.0907 .8960+.0187 .8574+.1348 .9319+.0155 .8170+.0977
abalone19 .0000 +.0000 .0000 +.0000 .0000 +.0000 .0000+.0000  .0000+.0000 .0000+.0000 .7196+.0131 .6425+.0824 .8290+.0196 .5828+.0569  .8558+.0193  .5532+£.1487

Mean 4789+.1017 .3677+.1922 .5074+.0871 .3929+.1996  .4536+.1216 .3439+.1697 .8763 +.0307 .7897+.1212 .9056+.0267 .7845+.1334  .9576+.0121 8175 +.1193
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Table 13
Complete table of results for FRBCS methods and C4.5 in highly imbalanced data-sets. SMOTE preprocessing for FRBCS methods, SMOTE + ENN for C4.5.
Data-set GP-COACH-5 GP-COACH-9 HFRBCS(Chi) GP-COACH-H 4.5
GM, GMse GM, GMse GM, GMs¢ GM,r GMs GM, GMse

ecoli034vs5 .9755 +.0165 9018 £.1282 9761 +£.0158 .9250 +.0709 .9930 +.0050 .8421 +.1471 .9833 +.0276 .8660 +.1252 9762 +.0149 .8761 +.0492
yeast2vs4 .9252 +.0092 .8987 +£.0412 .9283 +.0044 .9036 +.0381 9527 +.0105 .8932 +£.0418 9647 +.0095 .9304 +.0288 .9745 +.0066 .9029 +.0406
ecoli067vs35 9421 +.0193 .8185 +.2093 .9420 +.0210 .8509 +.2265 .9574 +.0163 .8267 £.1415 .9707 +.0140 .7286 +.4095 9771 +£.0204 7206 +.4072
ecoli0234vs5 .9707 +.0095 .8286 +.1552 .9638 +.0409 .8472 +£.1648 9910 +.0031 .8425 +.1504 .9966 +.0024 .8473 +.1526 .9827 +.0074 .8861 +.1245
glass015vs2 .5017 +.1337 3732 +.2183 .8301 +.0511 2115 +.3032 .6967 +.0269 .5590 +.0851 .9503 +.0127 .6301 +.0922 9066 +.0263 .7788 +.2089
yeast0359vs78 .5764 +.0840 5111 +£.1244 4804 +.0258 4467 +.0833 .8401 +.0040 7330 £.0403 .8919+£.0188 7189 +.1013 9213 £.0214 .6894 +.0888
yeast02579vs368 .9160 +.0093 .9087 £.0376 .9068 +.0109 .9044 +.0395 .9063 +.0103 .8946 +.0355 .9298 +.0080 .9107 +.0303 .9572 +.0206 9125 +.0336
yeast0256vs3789 .8101 +.0136 7954 +.0676 .8127 +.0149 .7955 +.0563 .8106 +.0165 7927 +.0674 .8348 £.0146 7982 +.0673 9173 +.0180 7707 +.0366
ecoli046vs5 9744 +.0168 9171 £.1248 .9855 +.0174 .8793 +£.2166 .9925 +.0029 .8800 +.1156 19952 +.0039 .8677 +.2102 .9834 +.0079 .8776 +.1148
ecoli01vs235 .9398 +.0151 .8682 +.1131 .9540 +.0152 9138 £.0670 .9844 +.0132 .8709 £.1076 9845 +.0143 .8471 +.0944 .9649 +.0302 .8277 £.1191
ecoli0267vs35 .9201 +.0211 .8407 £.1311 .9494 +.0334 .8365 £.1125 .9609 +.0140 .8247 +.1089 .9707 +.0163 9028 +.0739 .9825 +.0058 .8061 +.1065
glass04vs5 .9662 +.0208 9064 +.1277 9706 +.0247 9632 +£.0134 9457 +.0185 7092 +.3976 .9909 +.0125 .9429 +.0419 .9909 +.0063 .9748 +.0269
ecoli0346vs5 .9959 +.0028 8772 £.1132 .9842 +.0159 .8934 +.0632 .9918 +.0057 8729 £.1175 9993 £.0015 .8847 +.0690 .9884 +.0046 .8946 +.0793
ecoli0347vs56 9576 +.0104 .8525 +.1039 .9644 +.0166 .8571 +.1459 .9682 +.0099 .9007 +.0962 .9881 +.0036 .8767 +£.0977 .9566 +.0176 .8413 £.1377
yeast05679vs4 .8194+.0198 .8136 +.0759 .8360 +.0158 .8080 +.0858 9290 +.0103 7318 +.0747 .8961 +.0280 .6988 +.0530 9197 +.0128 7678 +.1029
ecoli067vs5 .9545 +.0144 .8356 +.1277 .9554 +.0162 .8923 +.0884 9531 +.0211 .8559 +.0542 .9849 +.0041 .8671 +.0629 .9740 +.0103 .8376 £.1167
vowel0 9691 +.0116 9598 +.0154 .9642 +.0075 .9400 +.0093 .9999 +.0003 .9882 +£.0162 .9947 +.0057 .9465 +.0622 .9943 +.0047 .9417 +.0815
glass016vs2 .7820 +.0558 5419 £.1228 .8120 +.0355 4211 £.2385 .8726 +.0230 .5837 £.2004 9415 £.0218 .6467 +.2206 .9365 +.0323 .6063 +.1173
glass2 7019 +.0256 .6223 +.0841 7981 +.0615 3949 +.3725 .8299 +.0174 .5484 +.2057 9663 +.0188 .5886 +.1299 9261 +.0342 7377 £.1633
ecoli0147vs2356 .9247 +.0241 7976 +.1060 .8994 +.0521 7972 £.1467 .9517 £.0109 .8477 +.0655 9594 +.0153 .8263 +.0687 .9563 +.0318 .8119 +.0459
led7digit02456789vs1 .8981 +.0246 9011 £.0829 .8986 +.0274 .8874 +£.0708 9380 +.0212 .8276 £.0778 9142 +.0158 .9000 +.0809 9217 £.0192 .8370 £.0475
glass06vs5 .9898 +.0073 9949 +.0113 .9924 +.0069 9060 +.1332 .9744 + 0046 .8907 £.1178 9975 +.0035 9120 +.1263 9911 +£.0035 .9628 +.0556
ecoli01vs5 9816 +.0137 .8739+£.1248 .9891 +.0075 .9190 +.0908 .9932 +.0043 .8689 +.1166 9977 £.0031 .8946 +.0823 .9828 +.0068 .8081 £.1213
glass0146vs2 .7552 +.0483 6651 +.0450 .8501 +.0665 5675 +.3191 .7005 +.0077 5117 £.1026 9313 £.0074 .7300 +.0534 .9010 +.0596 .6157 +.3465
ecoli0147vs56 9574 +.0222 .8472 +.0385 9735 +.0154 .8577 +£.0661 .9790 +.0059 .8886 +.0918 .9852 +.0045 .8372 +£.0595 9608 +.0173 .8250 +.1380
clevelandOvs4 .9740 +.0194 7232 £.1710 .9595 +.0266 7578 £.2114 .9992 +.0018 3961 +.3827 9719 £.0322 .8646 +.1627 9819 +.0187 7307 £.1517
ecoli0146vs5 .9785 +.0171 .8832£.1133 9811 +£.0168 .8862 £.1158 .9913 +.0047 .8674 +.1069 9952 +.0038 .9194 +.0597 .9850 +.0061 .8880 +.1148
ecoli4 9751 +.0151 9373 £.0717 9673 +£.0201 .9008 +.0806 .9869 +.0141 .9302 +£.0817 .9936 +.0043 .9357 +.0702 .9826 +.0170 .8947 +.1202
yeast1vs7 7229 +.0568 .6802 +.0539 .8676 +.0832 .6093 +.1465 9163 +.0225 7074 +.1240 .8988 +.0301 .6900 +.0646 9093 +.0332 7222 +.0532
shuttleOvs4 1.0000 +.0000 .9991 +.0020 .9995 +.0003 9954 +.0103 1.0000 +.0000 9912 £.0115 1.0000 +.0000 1.0000 +.0000 .9999 +.0002 .9997 +.0007
glass4 .9804 +.0168 .7231 £.4090 9766 +.0212 .8811 +£.1306 9981 +.0017 .7039 £ .4049 .9906 +.0077 7303 +.4132 .9665 +.0149 .7639 +.4279
page-blocks13vs4 .9205 +.0477 19035 +.0679 9316 +.0703 8706 +.1574 .9989 +.0012 .9864 +.0065 19994 +.0008 .9482 +.0502 9975 +.0018 9909 +.0065
abalone9-18 .6884 +.0355 6922 +.0996 .8070 +.0149 6699 +.1103 .8396 +.0303 6756 +.1401 .8595 +.0265 .7500 +.0599 .9273 +.0074 .6884 +.1181
glass016vs5 .9819 +.0106 9644 +.0422 .9820 +.0058 .9090 +.1312 .9971 +.0030 7796 + .4361 9921 +£.0078 .8550 +.1596 .9863 +.0047 7738 +.4328
shuttle2vs4 .9639 +.0496 9568 +.0667 9979 +.0046 .9960 +.0090 .9990 +.0023 9749 +.0271 1.0000 +.0000 9918 +.0183 1.0000 +.0000 1.0000 +.0000
yeast1458vs7 5775 +.1104 .3546 +.2086 7566 +.0498 5353 £.1118 9037 £.0133 .6249 +.0626 .8952 +.0261 .6304 +.1095 .8717 +.0492 3345 +.3342
glass5 9711 +£.0317 .5801 +.5297 .9780 +.0340 6758 +.4085 .9764 +.0221 .6873 +.3956 9957 +.0027 7877 + .4404 .9698 +.0296 .5851 +.5343
yeast2vs8 7544 + 0319 7274 + 1487 .8049 +.0211 .7601 +.1606 .8334+.0164 7247 £ .1510 9937 £.0047 7381 £.1765 .8923 +.0447 .8033 £.1167
yeast4 .8602 +.0095 7923 £.0527 .8443 +.0140 .7807 +.0469 19001 +.0194 .8264 +.0229 9001 +.0156 .8175 +.0391 .8984 +.0123 .6897 +.0769
yeast1289vs7 .6325 +.1556 5262 +.1253 7996 +.0672 .5860 +.1633 .8699 +.0224 6937 +.0437 .8843 £.0292 .6939 +.1205 .9408 +.0259 5522 +.1662
yeast5 .9344 +.0262 .9020 +.0478 9477 +.0289 9229 +.0434 .9782 +.0033 .9420 +.0259 9724 +.0066 .9428 +.0526 .9819 +.0077 .9390 +.0474
ecoli0137vs26 9167 +.0418 7215 + 4202 19021 +.0354 .7203 +.4200 .9867 +.0079 7148 + 4180 9843 +£.0107 7067 + 4136 9650 +.0320 7062 +.4093
yeast6 .8994 +.0128 .8856 +.0907 .8960 +.0187 .8574 +.1348 9341 +£.0177 .8492 +.1288 9319 £.0155 .8170 +.0977 .9301 +.0157 .8029 +.1541
abalone19 7196 +.0131 .6425 +.0824 .8290 +.0196 .5828 +.0569 .8343 +.0280 7019 +.0856 .8558 £.0193 .5532 +.1487 .8838 +.0300 1550 +.2125
Mean .8763 +.0307 7897 £.1212 .9056 +.0267 7845 +.1334 9331 +.0117 7901 +£.1325 9576 +.0121 .8175 +.1193 .9549 +.0180 7848 +.1452
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Table 14
Complete table of results for FRBCS methods and C4.5 in borderline imbalanced data-sets. SMOTE preprocessing for FRBCS methods, SMOTE+ENN for C4.5.

Data-set GP-COACH-5 GP-COACH-9 HFRBCS(Chi) GP-COACH-H C4.5
GMN‘ GM[St GMtr GM[St GMrr GM[S[ GMtr GM[S[ GMN‘ GM[S[

paw02a-600-5-70-BI 7969 +.0223 .7892 +.0297 7898 +.0311 7178 +.0867 .8730+.0129 .8460 +.0395 .8824 +.0068 .8523 +.0342 .8879+.0176 .8310+.0292
paw02a-600-5-60-BI .7849 +.0185 .7603 +.0698 7364 +.1198 .6329 +.1650 .8485 +.0311 .8157 +.0309 .8753 +.0046 .8501 +.0235 .8755 +.0287 .8094 +.0279
paw02a-600-5-50-BI .8188 £.0129 .7869 +.0676 .8541+.0123 8117 +£.0348 .8595 +.0307 .8226 +.0514 .9002 +.0067 .8402 +.0227 .8936 +.0213 .8301 £.0468
paw02a-600-5-30-BI 8418 +.0121 .8193 +.0639 .8567 +.0209 .8281 +.0695 .8749 +.0185 .8573 +.0352 9036 +.0143 .8605 +.0660 .8990 +.0328 .8604 +.0542
paw02a-600-5-0-BI .8427 +.0313 .8489 +.0311 9130 +.0299 .8765 +.0836 9339 +.0076 9142 +.0179 .9596 +.0055 9367 +.0124 9512 +.0389 9473 +.0259
04clover5z-600-5-70-BI 7706 £.0217 7457 +.1094 7832 +.0233 7094 +.0921 7790 +£.0371 7427 +.0816 .8250 +.0126 7795 +.0574 .8665+.0173 7557 +.0468
04clover5z-600-5-60-BI 7789 +.0209 .7464 +.0290 7243 +.0473 .6445 +.0800 7713 +£.0242 7725 £.0514 .8405 +.0146 .7986 +.0328 .8895 +.0151 7990 +.0757
04clover5z-600-5-50-BI 7658 +.0362 .7434 + .0872 .7804 +.0385 7496 +.1121 7925 +.0390 7582 +.0536 .8537 +.0280 .8080 +.0530 8771 +.0286 .8063 +.0575
04clover5z-600-5-30-BI 7839 +.0294 .7683 +.0638 .8029 +.0699 7453 +.0767 .8087 +.0332 .8097 +.0474 8737 +.0182 .8093 +.0688 .8957 +.0175 .8291 +.0337
04clover5z-600-5-0-BI .7842 +.0151 .7663 +.0536 .8389 +.0146 7705 +.0179 .8104 +.0288 .8008 +.0309 .8900 +.0363 .8519+.0517 9269 +.0333 .8652 +.0271
03subcl5-600-5-70-BI .6807 +.0416 .6319 +.0582 7940 +.0278 7478 +.0572 7947 +.0138 7278 +.0277 .8528 +.0098 .8006 +.0419 .8381 +.0367 7617 +.0406
03subcl5-600-5-60-BI 7471 +.0251 .6898 +.0903 .8047 +.0196 7789 +.0483 .8083 +.0182 7498 +.0719 .8067 +.0434 7379 +.0545 .8322 +.0348 7641 +.0732
03subcl5-600-5-50-BI .7688 +.0094 7320 +.0902 .7920+.0172 .7500 +.0869 .8020 +.0227 7465 +.0537 .8269 +.0257 .7563 +.0600 .8332+.0109 7753 +.0895
03subcl5-600-5-30-BI .8022 +.0333 .7860 *.0504 .8183 +£.0137 .8020 +.0930 .8148 +.0276 7713 £.0552 .8474 +.0169 .8307 £.0379 .8615 +.0208 .8140 +.0552
03subcl5-600-5-0-BI .8795+.0173 .8685 +.0470 .8952 +.0145 .8965 +.0183 .8985 +.0048 .8765 +.0329 .9364 +.0015 9179 +.0132 9336 +.0265 .8969 +.0368
paw02a-800-7-70-BI 7947 +.0138 7733 +£.0423 7872 +.0391 6775 +.1242 .8601 +.0118 .8197 £.0415 .8741 +.0104 8421 +.0274 .8923 +.0147 .8001 £.0486
paw02a-800-7-60-BI .8028 +£.0132 7410 +.0558 .8089 +.0167 7235 +.0549 .8514 +.0070 8113 £.0439 .8706 +.0105 .8253 +£.0523 .8817 +.0188 .8043 +.0352
paw02a-800-7-50-BI .8211 +.0026 7736 +.0546 8317 +£.0152 .7905 +.0352 .8719 +.0074 .8373 +.0416 .8863 +.0081 .8164 +.0704 9072 +.0238 .8448 +.0447
paw02a-800-7-30-BI .8391+.0135 .8170 +.0565 .8445 +.0423 7998 +.0312 .8894 +.0059 8672 +.0145 .9030 +.0077 .8299 +.0398 9135 +.0282 .8449 +.0455
paw02a-800-7-0-BI .8493 +.0472 .8300 +.0418 9197 +.0506 9100 +.0433 .9288 +.0068 .9307 £.0192 .9576 +.0092 9351 +£.0245 9532 +.0318 9371 +£.0334
04clover5z-800-7-70-BI .7708 £.0199 7351 £.0673 7839 +.0335 .7100 +.1069 7898 +.0143 7237 +.1008 .8182 +.0161 7857 +.0643 8723 +.0429 7525 +.0956
04clover5z-800-7-60-BI 7722 +.0159 7796 +.0340 .7108 +.0542 .6688 +.0708 7799 +.0194 7842 +.0591 .8256 +.0073 7707 +.0461 .8889 +.0276 7704 +.0396
04clover5z-800-7-50-BI 7860 +.0215 7436 +.0766 7744 +.0198 7544 +.1039 7928 +.0290 7543 +.0608 .8390+.0138 7897 +.0645 .8946 +.0099 .8261 +.0701
04clover5z-800-7-30-BI 7879 +.0219 .7488 +.0362 .8162 +.0221 .7545 = .0775 8075 +.0324 7750 +.0583 .8513 £.0171 7805 +.0541 .8930+.0215 .8256 +.0360
04clover5z-800-7-0-BI 7962 +.0210 7578 +.0503 .8249 +.0347 .7694 +.0373 .8091 +.0283 7693 +.0608 .8958 +.0213 .8541 +.0578 9412 +.0370 .8730+.0413
03subcl5-800-7-70-BI .6662 +.0352 .6456 +.0446 7107 £.1049 .6454 +.1444 7784 +.0059 7552 +.0490 .8186 +.0330 .7868 +.0250 .8255+.0211 7735 +.0376
03subcl5-800-7-60-BI 7250 +.0225 .6991 £.0392 7962 +.0137 7696 +.0284 .7896 +.0195 7331 £.0436 .8102 +.0325 7729 +.0347 .8374 +.0244 7513 £.0357
03subcl5-800-7-50-BI 7584 +.0152 7261 +.0908 .8021 +.0058 7516 +.0509 7927 +.0158 7239 +.0340 .8204 +.0200 7436 +.0310 .8396 +.0089 7507 +.0438
03subcl5-800-7-30-BI 7993 +.0219 7689 +.0630 .8133 +.0269 .7901 +.0594 .8327 +£.0228 7955 +.0439 .8552 +.0081 .8297 +.0390 .8812+.0155 7941 +.0220
03subcl5-800-7-0-BI .8814 +.0223 .8663 +.0396 .8998 +.0099 9061 +.0238 9036 +.0081 .8851 +.0321 9217 +.0126 9081 +.0224 .9588 +.0249 9292 +.0370
Mean 7899 +.0218 7630 +.0578 .8103 +£.0330 7628 +.0705 .8316+.0195 7992 +.0461 .8674 +.0157 .8234 +.0428 .8881 +.0244 .8208 +.0462
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In the field of Data Mining, the estimation of the quality of the learned models is a key step
in order to select the most appropriate tool for the problem to be solved. Traditionally, a k-
fold validation technique has been carried out so that there is a certain degree of indepen-
dency among the results for the different partitions. In this way, the highest average per-
formance will be obtained by the most robust approach. However, applying a “random”
division of the instances over the folds may result in a problem known as dataset shift,
which consists in having a different data distribution between the training and test folds.

In classification with imbalanced datasets, in which the number of instances of one class
is much lower than the other class, this problem is more severe. The misclassification of
minority class instances due to an incorrect learning of the real boundaries caused by a
not well fitted data distribution, truly affects the measures of performance in this scenario.
Regarding this fact, we propose the use of a specific validation technique for the partition-
ing of the data, known as “Distribution optimally balanced stratified cross-validation” to
avoid this harmful situation in the presence of imbalance. This methodology makes the
decision of placing close-by samples on different folds, so that each partition will end up
with enough representatives of every region.

We have selected a wide number of imbalanced datasets from KEEL dataset repository
for our study, using several learning techniques from different paradigms, thus making
the conclusions extracted to be independent of the underlying classifier. The analysis of
the results has been carried out by means of the proper statistical study, which shows
the goodness of this approach for dealing with imbalanced data.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Standard learning algorithms are designed under the premise of a balanced class distribution. When dealing with skewed
class distributions, the classification problem becomes more difficult, specifically for correctly identifying the minority con-
cepts within the data [11]. This issue is known as the class imbalance problem [21,38], in which there is an under-repre-
sented class (positive) and a majority class (negative). This problem is present in many real-world classification tasks and
has been considered as a challenge within the Data Mining community [48].
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In order to validate the performance of a classifier, both in standard and imbalanced classification, stratified cross-vali-
dation (SCV) is the most commonly employed method in the literature. It places an equal number of samples of each class
on each partition to maintain class distributions similar in all partitions [9]. However, when this process is carried out in a
random way, it may introduce a different data distribution between the training and test partitions, thus leading to inaccu-
rate conclusions when learning a model from the training data. This issue is known as dataset shift [8], or more specifically
covariate shift [30].

In the presence of imbalance, this problem is even more critic according to the metrics of performance applied in this
scenario. Since misclassifications for the positive class instances severely hinder the average precision, we must try to avoid
those errors in test which are due to a “random clustering” of the classes, i.e. generating outliers.

A more suitable validation technique needs to be employed in order to avoid introducing dataset shift issues artificially. In
this paper, we suggest the use of a novel methodology called “Distribution optimally balanced SCV” (DOB-SCV) [31] when
dealing with imbalanced datasets. This method attempts to minimize covariate shift by keeping data distribution as similar
as possible between training and test folds by maximizing diversity on each fold and trying to keep all folds as resembling as
possible to each other. The mechanism of this approach consists in selecting the k closest neighbours for a given instance and
place them in different folds (with k being the number of total partitions), so that the data distribution between the training
and test partitions remains as close as possible.

We must point out that neither SCV nor DOB-SCV can undoubtedly estimate the true classification error of a given model.
In particular, there are several factors which may affect the output for unseen samples, and make some problems more dif-
ficult than others. Among others, we may stress uneven class distribution (as studied in this paper), the dimensionality of the
problem and its relationship with the overlapping between the classes, and the presence of noise and/or outliers. However,
we suggest that, by making the training and test partitions more similar between them, the use of DOB-SCV can guarantee a
better average validation of the results. As pointed out previously, in this way we may avoid those classification errors which
are due to dataset shift, especially those regarded to the minority class instances.

In order to evaluate the goodness and validity of the use of this new partitioning mechanism for imbalanced datasets, we
develop a thorough empirical study by setting up an experimental framework which includes a set of sixty-six real-world
problems from the KEEL dataset repository [3,4] (http://www.keel.es/dataset.php). We measure the performance of the clas-
sifiers based on its Area Under the Curve (AUC) metric [23] as suggested in imbalanced domains. Additionally, we study the
significance of the results by the proper statistical tests as suggested in the literature [17,20]. Finally, we check the robust-
ness of the DOB-SCV strategy using several well-known classifiers from different Machine Learning paradigms: decision
trees [34], fuzzy rule based classification systems (FRBCS) [24], instance-based learning [1], and Support Vector Machines
(SVMs) [12,15].

This study provides three significant contributions to the research community on classification with imbalanced data,
namely:

1. We establish the motivation for the use of a new validation technique for avoiding dataset shift, which highly affects the
performance in this scenario.

2. The goodness of this novel methodology is confirmed by means of a thorough experimental analysis. In this study, several
algorithms from different paradigms were selected, showing better average performance estimates when using DOB-
SCV.

3. Finally, we have concluded that the optimistic/pessimistic estimation of the performance also depends on the problem to
be classified. In this way, the intrinsic data characteristics may have some degree of influence on the final results obtained
by the classifier.

In order to carry out the study, this manuscript is organized as follows. First, Section 2 introduces the problem of imbal-
anced data. Next, Section 3 contains the main concepts that are developed in this work, i.e. the basis on validation techniques
and the problem of covariate/dataset shift. Then, the experimental framework is presented in Section 4, whereas all the anal-
ysis of the results is shown along Section 5. Finally, Section 6 summarises and concludes the work.

2. Imbalanced datasets in classification

In this section, we will first introduce the problem of imbalanced datasets, describing its features and why is so difficult to
learn in this classification scenario. Then, we will present how to address this problem, enumerating diverse approaches that
can be applied to ease the discrimination of the minority (positive) and majority (negative) classes. Finally, we will discuss
how to evaluate the performance of the results in this situation.

2.1. The problem of imbalanced datasets

The main property of this type of classification problem (in a binary context) is that the examples of one class outnumber
the examples of the other one [11,38]. The minority classes are usually the most important concepts to be learnt, since they
might be associated with exceptional and significant cases [42] or because the data acquisition of these examples is costly
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[44]. Since most of the standard learning algorithms consider a balanced training set, this situation may cause the obtention
of suboptimal classification models, i.e. a good coverage of the majority examples whereas the minority ones are misclassi-
fied more frequently [21,38].

Traditionally, the Imbalance Ratio (IR), i.e. the ratio between the majority and minority class examples [32], is the main
hint to identify a set of problems which need to be addressed in a special way. Additionally, other data intrinsic character-
istics that are related to this concept may include the overlapping between classes [26], lack of representative data [41],
small disjuncts [33,43], dataset shift [29] and other issues which have interdependent effects with data distribution
(imbalance).

The hitch here is that most learning algorithms aim to obtain a model with a high prediction accuracy and a good
generalization capability. However, this inductive bias towards such a model poses a serious challenge to the classification
of imbalanced data [38]. First, if the search process is guided by the standard accuracy rate, it benefits the covering of the
majority examples; second, classification rules that predict the positive class are often highly specialized and thus their
coverage is very low, hence they are discarded in favour of more general rules, i.e. those that predict the negative class.
Furthermore, it is not easy to distinguish between noisy examples and positive class examples and they can be completely
ignored by the classifier.

2.2. Addressing the imbalanced problem: preprocessing and cost-sensitive learning

A large number of approaches have been proposed to deal with the class imbalance problem [28], which can be catego-
rized in three groups:

1. Data level solutions: the objective consists in rebalancing the class distribution by sampling the data space to diminish
the effect caused by class imbalance, acting as an external approach [6,10,39].

2. Algorithmic level solutions: these solutions try to adapt several classification algorithms to reinforce the learning towards
the positive class. Therefore, they can be defined as internal approaches that create new algorithms or modify existing
ones to take the class imbalance problem into consideration [5,49].

3. Cost-sensitive solutions: this type of solutions incorporate approaches at the data level, at the algorithmic level, or at both
levels jointly, considering higher costs for the misclassification of examples of the positive class with respect to the neg-
ative class, and therefore, trying to minimize higher cost errors [18,40,50].

The advantage of the data level solutions is that they are more versatile, since their use is independent of the classifier
selected. Furthermore, we may preprocess all datasets before-hand in order to use them to train different classifiers. In this
manner, we only need to prepare the data once. Furthermore, previous analysis on preprocessing methods with several clas-
sifiers have shown the goodness of the oversampling techniques [6].

The simplest approach, random oversampling, makes exact copies of existing instances, and therefore several authors
agree that this method can increase the likelihood of occurring overfitting [6]. According to the previous fact, more sophis-
ticated methods have been proposed based on the generation of synthetic samples. Among them, the “Synthetic Minority
Over-sampling TEchnique” (SMOTE) [10] algorithm, whose main idea is to form new positive class examples by interpolating
between several positive class examples that lie together, has become one of the most significant approaches in this area.

The positive class is over-sampled by taking each minority class sample and introducing synthetic examples along the
line segments joining any/all of the k minority class nearest neighbours. Depending upon the amount of over-sampling re-
quired, neighbours from the k nearest neighbours are randomly chosen. This process is illustrated in Fig. 1, where x; is the
selected point, x;; to x;4 are some selected nearest neighbours and ry to r4 the synthetic data points created by the random-
ised interpolation.

Synthetic samples are generated in the following way: take the difference between the feature vector (sample) under con-
sideration and its nearest neighbour. Multiply this difference by a random number between 0 and 1, and add it to the feature
vector under consideration. This causes the selection of a random point along the line segment between two specific fea-
tures. This approach effectively forces the decision region of the positive class to become more general.

Xy

Xz

Fig. 1. An illustration of how to create the synthetic data points in the SMOTE algorithm.
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Table 1
Confusion matrix for a two-class problem.
Positive prediction Negative prediction
Positive class True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)

2.3. Evaluation in imbalanced domains

The evaluation criteria is a key factor in both assessing the classification performance and guiding the classifier modelling.
In a two-class problem, the confusion matrix (shown in Table 1) records the results of correctly and incorrectly recognized
examples of each class.

Traditionally, accuracy rate (Eq. (1)) has been the most commonly used empirical measure. However, in the framework of
imbalanced datasets, accuracy is no longer a proper measure, since it does not distinguish between the number of correctly
classified examples of different classes. Hence, it may lead to erroneous conclusions, i.e., a classifier achieving an accuracy of
90% in a dataset with an IR value of 9, is not accurate if it classifies all examples as negatives.

_ TP+IN a
" TP+FN+FP+1TN )

In imbalanced domains, the evaluation of the classifiers’ performance must be carried out using specific metrics to take into
account the class distribution. Specifically, a well-known approach to produce an evaluation criteria in an imbalanced sce-
nario is to use the Receiver Operating Characteristic (ROC) graphic [7]. This graphic allows to visualize the trade-off between
the benefits (TP,q.) and costs (FP.qe), thus it evidences that any classifier cannot increase the number of true positives with-
out also increasing the false positives. The Area Under the ROC Curve (AUC) [22] corresponds to the probability of correctly
identifying which one of the two stimuli is noise and which one is signal plus noise. AUC provides a single measure of a clas-
sifier’s performance for evaluating which model is better on average. Fig. 2 shows how to build the ROC space plotting on a
two-dimensional chart the TP,q. (Y-axis) against the FP,,. (X-axis). Points in (0,0) and (1,1) are trivial classifiers where the
predicted class is always the negative and positive respectively. On the contrary, (0, 1) point represents the perfect classifi-
cation. The AUC measure is computed just by obtaining the area of the graphic:

Acc

AUC = 1 + TPratze - FPrate (2)

3. Classifier evaluation techniques and the issue of dataset shift

As stated in the introduction of this work, the estimation of the performance of a classifier, via partitioning in training and
test folds, is a necessary procedure in order to validate the results for a given experiment. However, the way this task is
developed has a direct influence in the analysis of the obtained models. Specifically, the issue of dataset shift can occur when
the distribution of the samples in training and test is quite different between them, leading to “overfitting”.
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Fig. 2. Example of an ROC plot. Two classifiers’ curves are depicted: the dashed line represents a random classifier, whereas the solid line is a classifier
which is better than the random classifier.
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In this section, we describe dataset shift in order to understand the nature of the problem we are dealing with. Next, we
recall the standard and well-known SCV technique, and we identify its handicap for classification with imbalanced data. Fi-
nally, we present a recent methodology to alleviate this situation by a better organization of the instances among the dif-
ferent folds.

3.1. Dataset shift

The problem of dataset shift [2,8,36] is defined as the case where training and test data follow different distributions. This
is a common problem that can affect all kind of classification problems, and it often appears due to sample selection bias
issues. A mild degree of dataset shift is present in most real-world problems, but general classifiers are often capable of han-
dling it without a severe performance loss.

There are three potential types of dataset shift:

1. Prior Probability Shift: It happens when the class distribution is different between the training and test sets [37]. In the
most extreme example, the training set would not have a single example of a class, leading to a degenerate classifier.
The problems caused by this kind of shift have already been studied, and they are commonly prevented by applying a
SCV scheme [46].

2. Covariate Shift: In this case, it is the input attribute values that have different distributions between the training and test
sets [36]. We focus on the impact of this type of shift for classification problems with imbalanced data.

3. Concept Shift: We refer to this problem when the relationship between the input and class variables changes [2,47], which
presents the hardest challenge among the different types of dataset shift. In the specialized literature it is usually referred
to as “Concept Drift” [27,45].

The dataset shift issue is specially relevant when dealing with imbalanced classification, because in highly imbalanced
domains, the positive class is particularly sensitive to singular classification errors, due to the typically low number of exam-
ples it presents [29]. In the most extreme cases, a single misclassified example of the positive class can create a significant
drop in performance.

For clarity, Figs. 3 and 4 present two examples of the influence of dataset shift in imbalanced classification. In the first
case (Fig. 3), it is easy to see a separation between classes in the training set that carries over perfectly to the test set. How-
ever, in the second case (Fig. 4) it must be noted how some positive class examples in test are at the bottom and rightmost
areas where there were not represented in the training set, leading to a gap between the training and test performance.
These problems are represented in a two-dimensional space by means of a linear transformation of the inputs variables fol-
lowing the technique given by [29].

3.2. Cross-validation for classifier evaluation: distribution optimally balanced SCV

Cross-validation is a technique used for assessing how a classifier will perform when classifying new instances of the task
at hand. One iteration of cross-validation involves partitioning a sample of data into two complementary subsets: training
the classifier on one subset (called the training set) and testing its performance on the other subset (test set).

In k-fold cross-validation, the original sample is randomly partitioned into k subsamples. Of the k subsamples, a single
subsample is retained as the validation data for testing the classifier, and the remaining k — 1 subsamples are used as train-
ing data. The cross-validation process is then repeated k times, with each of the k subsamples used exactly once as the test
data. The k results from the folds are then averaged to produce a single performance estimation.

The way the subsamples are assigned to each fold determines the impact of the final performance estimation in the val-
idation stage. The most straightforward procedure is known as SCV, which works as follows: it counts how many samples of
each class are there in the dataset, and distributes them evenly on the folds, so that each fold contains the same number of
examples of each class. This avoids prior probability shift, because with an equal distribution class-wise on each fold, train-
ing and test set will have the same class distribution. However, this method does not take into account the covariates of the
samples, so it can potentially generate covariate shift.

According to this fact, we consider a more sophisticated technique, known as DOB-SCV [31], which adds an extra consid-
eration to the partitioning strategy as an attempt to alleviate the problem of covariate shift on top of preventing prior
probability shift. The idea is that by assigning close-by examples to different folds, each fold will end up with enough rep-
resentatives of every region, thus avoiding covariate shift.

This method is based on the Distribution-balanced SCV [52] and its pseudo-code is depicted in Algorithm 1. It picks a ran-
dom unassigned example, and then finds its k — 1 nearest unassigned neighbours of the same class. Once it has found them,
it assigns each of those examples to a different fold. The process is repeated until there are no more examples of that class
(when it gets to the last fold, it cycles and continues with the first one again). The whole process is repeated for each class.
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(a) Training data. AUC = .9043

(b) Test data. AUC = 1.000

Fig. 3. Example of good behaviour (no dataset shift) in imbalanced domains: ecoli4 dataset, 5th partition.

(b) Test data. AUC = .8750

(a) Training data. AUC = 1.000

Fig. 4. Example of bad behaviour caused by dataset shift in imbalanced domains: ecoli4 dataset, 1st partition.

Algorithm 1. DOB-SCV partitioning method

for each class ¢;e Cdo
while count (¢;) > 0 do
eo— randomly select an example of class ¢; from D
e;— ith closest example to eg of class ¢j from D (i=1,...,k—1)
FiHF,-Ue,-(i=O.“.,kf 1)
D%D\ei(i=0,...,k7 ])
end while
end for

4. Experimental framework

In this section we first provide details of the real-world binary-class imbalanced problems chosen for the experiments
(Section 4.1). Then, we will describe the learning algorithms selected for this study and their configuration parameters (Sec-
tion 4.2). Finally, we present the statistical tests applied to compare the results obtained with the different classifiers
(Section 4.3).

4.1. Benchmark data
There is no consensus in the research community on what threshold must be set up for a given dataset to suffer from the

imbalance problem. In this paper, we consider a dataset to be imbalanced when the positive class has a distribution of exam-
ples below 40% of the number of instances that belong to the majority class, that is, if the ratio between the examples of the
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Table 2
Summary of imbalanced datasets used.

Name #EX. #Atts. IR Name #EX. #Atts. IR

Glass1 214 9 1.82 Glass04vs5 92 9 9.22
EcoliOvs1 220 7 1.86 Ecoli0346vs5 205 7 9.25
Wisconsin 683 9 1.86 Ecoli0347vs56 257 7 9.28
Pima 768 8 1.90 Yeast05679vs4 528 8 9.35
IrisO 150 4 2.00 Ecoli067vs5 220 6 10.00
GlassO 214 9 2.06 VowelO 988 13 10.10
Yeast1 1484 8 2.46 Glass016vs2 192 9 10.29
Vehiclel 846 18 2.52 Glass2 214 9 10.39
Vehicle2 846 18 2.52 Ecoli0147vs2356 336 7 10.59
Vehicle3 846 18 2.52 Led7digit02456789vs1 443 7 10.97
Haberman 306 3 2.68 Glass06vs5 108 9 11.00
Glass0123vs456 214 9 3.19 EcoliO1vs5 240 6 11.00
Vehicle0O 846 18 3.23 Glass0146vs2 205 9 11.06
Ecolil 336 7 3.36 Ecoli0147vs56 332 6 12.28
New-thyroid2 215 5 4.92 ClevelandOvs4 177 13 12.62
New-thyroid1 215 5 5.14 Ecoli0146vs5 280 6 13.00
Ecoli2 336 7 5.46 Ecoli4 336 7 13.84
SegmentO 2308 19 6.01 Yeast1vs7 459 8 13.87
Glass6 214 9 6.38 ShuttleOvs4 1829 9 13.87
Yeast3 1484 8 8.11 Glass4 214 9 15.47
Ecoli3 336 7 8.19 Page-blocks13vs2 472 10 15.85
Page-blocks0 5472 10 8.77 Abalone9vs18 731 8 16.68
Ecoli034vs5 200 7 9.00 Glass016vs5 184 9 19.44
Yeast2vs4 514 8 9.08 Shuttle2vs4 129 9 20.50
Ecoli067vs35 222 7 9.09 Yeast1458vs7 693 8 22.10
Ecoli0234vs5 202 7 9.10 Glass5 214 9 22.81
Glass015vs2 172 9 9.12 Yeast2vs8 482 8 23.10
Yeast0359vs78 506 8 9.12 Yeast4 1484 8 28.41
Yeast02579vs368 1004 8 9.14 Yeast1289vs7 947 8 30.56
Yeast0256vs3789 1004 8 9.14 Yeast5 1484 8 32.78
Ecoli046vs5 203 6 9.15 Ecoli0137vs26 281 7 39.15
Ecoli01vs235 244 7 9.17 Yeast6 1484 8 39.15
Ecoli0267vs35 224 7 9.18 Abalone19 4174 8 128.87

majority and minority class is higher than 1.5. The data used in the study are summarized in Table 2, where we denote the
number of examples (#Ex.), number of attributes (#Atts.) and IR. This table is in ascending order according to the IR.

As pointed out along this paper, the estimates of the AUC measure are obtained by means of a standard SCV and the DOB-
SCV. The number of folds selected in both cases is 5. This value is set up with the aim of having enough positive class in-
stances in the different folds, hence avoiding additional problems in the data distribution, especially for highly imbalanced
datasets. Furthermore, we must point out that the original dataset partitions with 5-fold-cross-validation employed in this
paper are available for download at the KEEL dataset repository [3] so that any interested researcher can use the same data
for comparison.

4.2. Algorithms and parameters

In order to check the robustness of the DOB-SCV strategy, we have make use of several well-known classifiers from dif-
ferent Machine Learning paradigms: the C4.5 Decision Tree [34], the Chi et al. algorithm [13] as FRBCS [24], the well known
k-NN algorithm [16] as instance-based learning method [1], and SVMs with both the Support Vector Machines with SMO
optimization [15] and the Positive Definite Fuzzy Classifier (PDFC) [12]. Specifically, we have selected the following ap-
proaches as they are considered to be baseline algorithms in the field of Data Mining and they cover the widest used par-
adigms in classification. In this way, we can study the validity of our proposal within different types of classifiers, thus
being able to generalize our extracted conclusions.

Next, we detail the parameter values for the different learning algorithms selected in this study, which have been set con-
sidering the recommendation of the corresponding authors:

1. C4.5
For C4.5 we have set a confidence level of 0.25, the minimum number of item-sets per leaf was set to 2 and the application
of pruning was used to obtain the final tree.

2. Chi et al.
We will apply a configuration consisting in product T-norm as conjunction operator, together with the Penalized Cer-
tainty Factor approach [25] for the rule weight, and winning rule as Fuzzy Reasoning Method [ 14]. Furthermore, we have
selected the use of 5 labels per variable.
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3. k-NN
In this case we have selected 1 neighbour for determining the output class, applying the euclidean distance metric.

4. SMO
The SMO algorithm was run using polynomial reference functions, with a value of 1 in the exponent of each kernel func-
tion and a penalty parameter of the error term of 1.0.

5. PDFC
The FRBCS part of this method applies a product T-norm as the fuzzy conjunction operator, addition for fuzzy rule aggre-
gation, and centre of area defuzzification. For the SVM part we have chosen Gaussian functions for the kernels, with an
internal parameter of 0.25 and the weight of the classification error set to 100.0.

Regarding the SMOTE preprocessing technique, we will consider the 5-nearest neighbours of the positive class to generate
the synthetic samples, and balancing both classes to the 50% distribution.
We must also point out that all these algorithms are available within the KEEL software tool [4].

4.3. Statistical tests for performance comparison

The goodness of a given approach cannot be only measured in terms of the improvement for the mean performance. Sig-
nificant differences must be found among the different algorithms for concluding the superior behaviour of the one that
achieves the highest average result.

For this reason, in this paper we use the hypothesis testing techniques to provide statistical support for the analysis of the
results [19,35]. Specifically, we will use non-parametric tests, due to the fact that the initial conditions that guarantee the
reliability of the parametric tests may not be satisfied, causing the statistical analysis to lose credibility with these type
of tests [17].

We apply the Wilcoxon signed-rank test [35] as a non-parametric statistical procedure for performing pairwise compar-
isons between two algorithms, as the analogous of the paired t-test. This procedure computes the differences between the
performance scores of the two classifiers on i™ out of Ny datasets. The differences are ranked according to their absolute
values, from smallest to largest, and average ranks are assigned in case of ties. We call R* the sum of ranks for the datasets
on which the second algorithm outperformed the first, and R~ the sum of ranks for the opposite. Let T be the smallest of the
sums, T=min(R",R™). If T is less than or equal to the value of the distribution of Wilcoxon for Ny degrees of freedom
(Table B.12 in [51]), the null hypothesis of equality of means is rejected.

This statistical test allows us to know whether a hypothesis of comparison of means could be rejected at a specified level
of significance o.. It is also very interesting to compute the p-value associated to each comparison, which represents the low-
est level of significance of a hypothesis that results in a rejection. In this manner, we can know whether two algorithms are
significantly different and how different they are.

Non-parametrical tests are suggested in the studies presented in [17,19,20], where its use in the field of machine learning
is highly recommended. Any interested reader can find additional information on the Website http://sci2s.ugr.es/sicidm/.

5. Experimental study

This section is devoted to identify the possible differences regarding the estimation of the performance with the standard
SCV and the suggested DOB-SCV for imbalanced datasets.

Table 3 shows the average results for the five algorithms selected for our study, namely C4.5, FRBCS (Chi et al.), 1-NN,
SMO and PDFC, grouped with respect to the IR. We must recall that, in order to address imbalance, these results are com-
puted using SMOTE as preprocessing technique.

For each classification method, three values are given: first the average AUC performance together with its standard var-
iation obtained in the test partitions for the SCV technique, then the average performance for DOB-SCV, and finally the rel-
ative difference between both values, i.e. 252t sAar. | this manner, if the value is positive it means that the estimation of
the performance for DOB-SCV is more optimistic than SCV; if the value is negative it refers to the contrary case; and the

Table 3

Average test results with AUC metric and percentage differences for the SCV and DOB-SCV techniques.
Algorithm IR<9 IR>9 All

scv DOB-SCV % Diff. scv DOB-SCV % Diff. scv DOB-SCV % Diff.

Cc4.5 .8597 +.0357 .8698 +.0393 1.28 .8133 +.0844 .8309 +.0751 2.83 .8288 +.0681 .8439 +.0632 2.32
Chi .8151 +£.0352 .8187 +£.0380 0.51 7698 +.1041 7781 £.0909 1.24 7849 +.0811 7916 +.0733 1.00
k-NN .8478 +.0342 .8616 +.0340 1.96 .8272 +.0937 .8395 +.0855 1.74 .8341 +£.0739 .8468 +.0683 1.81
SMO .8573 £.0317 .8644 +.0253 0.96 .8425 +.0695 .8427 +.0606 0.23 .8474 +.0569 .8500 +.0488 0.47

PDFC .8877 +.0293 .8901 +.0263 0.34 .8608 +.0819 .8672 +.0708 0.86 .8698 +.0644 .8749 +.0560 0.69
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Table 4

Detailed test results with AUC metric and percentage differences for the SCV and DOB-SCV techniques. Values

are grouped by classification algorithm.

Dataset IR C4.5 Chi k-NN SMO PDFC

NaY DOB-SCV %Diff.  SCV DOB-SCV % Diff. ~ SCV DOB-SCV  %Diff.  SCV DOB-SCV % Diff. SCV DOB-SCV % Diff.
Glass1 182 7577+.0379 .7416+.0413 -2.12 6788 £.0663 16567 £.0670 —-326 7738 +.0561 .8000+.0454 338 .5692 £ .0676 6091 £.0133 7.01 7072 £.0259 .7303 £.0215 3.26
Ecoliovs1 186 9761+.0190 .9806+.0178 0.46 19570 +.0498 19516 +.0320 057 9626 +.0302 9704+.0129 080 9796 +.0219 9808 +.0175 0.12 19831 £.0167 19841 £.0156 0.10
Wisconsin 186 9545+.0199 .9585%.0116 0.42 5734 +.0215 .5699 +.0284 -062  9624+.0177 9655+.0118 033 9706 £.0103 9728 +.0061 0.23 19568 +.0051 9566 +.0146  —0.01
Pima 190 7145:.0388  .7451+.0366 4.27 6714 £.0251 7010 +.0545 441 6808 £.0505 6940+.0432  1.93 7412 £.0397 7424 £.0240 0.16 .7508 £.0351 .7482£.0515  —035
IrisO 2.00  9900+.0224  .9900 +.0224 0.00  1.0000+.0000  1.0000 .0000 0.00  1,0000+.0000  1.0000+.0000 0.00  1,0000+.0000  1.0000+.0000 0-00  1.0000+.0000  1.0000 *.0000 0.00
Glass0 2.06  7856+.0234  .7709 +.1189 -1.87 16826 +.0223 6865 +.0333 0.56 8595 +.0598 8171+.0768 —4.93 7117 £.0298 7183 £.0123 093 7576 +.0821 7722 £ .0650 1.92
Yeast1 246 7113£.0295 .7117£.0424 0.05 6994 £.0142 6974 £.0374 -028  6533+.0318 6596 £.0121  0.97 7038 +.0273 7146 £.0372 154 7152 £.0347 7176 £.0179 034
Vehiclel 252 7468+.0125  .7222+.0451 -330  6348+.0185 16858 +.0324 8.04  6323+.0204 6862+.0395 8.52 7470 £.0254 7588 £.0245 1.59 8732£.0193 .8598+.0180  —1.53
Vehicle2 252 9476+.0160 9547 +.0174 0.76 8735+.0312 .8648 +.0166 -1.00 9539 +.0202 9299+.0149 —2.52 19287 +.0103 19247 +.0202 -042 9811 £.0074 9806 +.0097  —0.06
Vehicle3 252 7015+.0281  .7290 £.0460 3.92 7212 £.0123 6946 £ .0225 -3.69  6835+.0235 6562 £.0642 —3.99 .7282 £.0376 7376 £.0370 1.30 .8401 £.0152 .8329+.0237 085
Haberman 268  6309+.0407  .6521+.0227 337 6185+.0266  .6123 +.0935 -099  5394+.0525  .6096 +.0869 13.01 6161+£.0612  .6199+.0460 0.61 6120£.0587  .6256 +.0588 223
Glass0123vs456 319 8832:.0605 9256 +.0363 4.80 .8640 +.0140 .8662 t.0655 025 9224+.0154 9395+.0393 1.85 .8819+.0714 9173+.0331 4.02 19292 +.0512 19374 +.0386 0.88
Vehicle0 323 9143+.0237  .9465 £.0073 352 .8495 +.0160 .8697 +.0209 238 9106+.0191 9301 +.0245 214 9562 +.0159 9587 +.0128 0.26 .9764 +.0095 .9813 +.0065 050
Ecolil 336 9162+.0485  .8661+.0358 547 8791 £.0487 .8793 £.0190 0.02 8298 +.0783 8934+.0285 766 8933 +.0452 8931 +.0133-0.03 8967 +.0546 .8854+.0153 —126
New-thyroid2 492 9631+.0456  .9833£.0181 2.10 19659 +.0612 .9746 £ .0275 090 9774+.0279 19690 +.0325 —0.85 9774 £ .0296 9944 +.0076 1.75 19917 £.0076 9917 £.0124 0.00
New-thyroid1 514 9802+.0371  .9690 +.0473 -113 19548 +.0859 .9603 +.0664 058 9774 +.0279 9806 +.0124 032 .9861 £.0170 9889 +.0152 028 .9944 +.0076 9917+.0124 —028
Ecoli2 546 8921+.0715  .8834+.0500 -0.97 19170 £.0490 .9061 +.0400 -1.19 9343 +.0505 9272 £.0414 —0.77 .9085 +.0469 19046 +.0427-0.43 19381 £.0419 9311+£.0405 —075
Segment0 6.01  9927+.0060 .9912 +.0076 -0.15 19590 £.0121 19649 + .0066 0.61 9949 +.0066 9934 +.0038 —0.15 19917 £.0090 9917 +.0054 0.00 19960 +.0033 19990 +.0017 0.30
Glass6 638 8450+.0750  .8896 +.0839 5.28 7969 +.0679 .8396 +.0834 5.36 8686 +.0867 9365+.0664 782 9057 +.0552 9365+.0719 340 8938 £.0813 9176 +.0714 2.66
Yeast3 811  8869+.0344  .9086 £.0363 245 .8942 +.0337 .8881 +.0281 -068 8607 +.0134 8693 £.0297 1.00 9040 +.0128 .9003 £.0314-0.41 19224 +.0213 .9301 +.0246 0.83
Ecoli3 819 7755:.0787  .8677 £.1067 11.90 8665 +.0801 .8681 +.0423 0.19 7777 +.0482 8139+.0469 4.65 .8874 .0418 8758 +.0678—1.31 8798+.0554  .8797+.0462 001
Page-blocks0 877  94841.0153  .9472+.0140 -0.12 8744 +.0185 .8752.0189 0.09 8953 +.0155 9135+.0147 2.03 .8729£.0215 8774+.0169 0.52 19335 £.0101 9300+.0122 —037
Ecoli034vs5 9.00  8583+.0806 .8694+.1118 129 8194+.1343  .8222+.1055 034 8472 +.1361 8639+.1323 197  8944+.1037  .9000+.0669 062  8833+.1139  .8889+.1080 0.63
Yeast2vs4 9.08  8620+.0589  .8716+.0358 11 .8607 +.0492 8727 .0282 139 8807 +.0655 .8905+.0504 1.1 .8863 £.0287 8963 +.0244 1.13 9154 £ .0608 19201 +.0344 0.51
Ecoli067vs35 9.09  8125+.2097  .8225+.0945 123 7925+.1660  .7850 +.1084 -095  86251+.1495 8675+.1037 0.58 8550 £.1509 .8500 +.0824-0.58 8650 +.1687 .8800 +.0873 1.73
Ecoli0234vs5 910  8974+.1051  .8528+.0871 —4.97 8114 £.1577 8725 £.1043 753 8530+.1261 .8808 £.1102 326 .8946 £.1109 9029 £.0972 0.92 19056 £.1135 .8862+.0964 —2.15
Glass015vs2 912 7444+.1152  .6411+.0694 —13.87 .5583 +.0848 5126 £.1752 -8.18  6573+.1287 6290+.1018 —429 5344 +.0400 5737+.0968 734 8043 +.1182 7793+.1021  —3.11
Yeast0359vs78 912 7222+.0537  .7022 +.0874 =277 .7040 £ .0631 .7063 £.0527 032 7543+.0384  .7188+.0856 —4.72 7428 £.0415 7495 +.0635 0.90 7170 %.0377 7028 +.0786  —1.99
Yeast02579vs368 914 9171+.0164 .9044 £.0325 -139 .8871 +.0380 .8813 +.0421 —-065 9044 £.0282 .8927 £.0493 —1.28 .9035 +.0366 .9027 +.0336-0.09 .9021 +.0319 9037 +.0395 0.19
Yeast0256vs3789 914  7543+.0242  .7771+.0585 3.02 7798 £ .0763 .7837 £.0233 049 7807 +.0556 8068 £.0475 333 .7940 £.0510 8095 +.0376 1.96 8189 £.0528 8142+.0274 —058
Ecoli046vs5 915 8729+.0993  .8342+.1094 —444  8394+.1434  .8533£.1645 165 8642 +.1427 8918+.1073 3.20  8979+.1086 8978 +.1092-0.01 .8507 +.0926 .9086 +.1061 6.81
Ecoli01vs235 917 8041+.1660  .8377 £.1359 4.18 .7441 + 0805 .8209 +.0691 132 8286+.1507 .8850+.1069 6.80 8577 +.0923 8764 +.0838 2.17 .8868 +.1512 9214 £.0720 3.90
Ecoli0267vs35 918 7704+.1082  .8606 +.0869 171 7753 £.0752 7881 £.1398 1.65 8976 +.0985 8928 +.0918 —0.53 .8731+.0776 8730 £.0840-0.01 8426 £.1085 .8804 +.0533 449
Glass04vs5 922 9816+.0168  .9706 +.0294 112 7210£.1989 7224 +.1422 020 9691 +.0383 19206 +.1156 —5.01 19629 +.0408 9581 £.0155-0.50 9636+.0254 9706 +.0416 0.72
Ecoli0346vs5 925  8703+.0517  .8784+.1196 0.93 8568 +.0986 8176 +.1156 -4.57  8838+.0986 8561+.0933 —3.13 .8953 +.0587 8953 +.0589 0.00 9169 £.0707 9115+.0627  —0.59
Ecoli0347vs56 928  8368+.1514  .8992 £.0443 745 .8196 +.1107 8306 +.1124 134 88341+.1215 8764 +.0930 —0.79 9191 +.0888 .8905 +.0813-3-11 .9055 +.0838 .9185 +.0809 1.44
Yeast05679vs4 935  7682+.1009  .7954 +.0827 3.55 7989 £ .0625 .8011 £.0481 028 7753 £.0599 .8003 £.0597 323 .7885 +.0849 .8005+.0182 151 .7900 £ .0930 .8014 £ .0392 145
Ecoli067vs5 100 8250+.0862  .8875+.0690 7.58 8275 +.0958 7875 +.0631 —483  8675t.0577 .8800+.0677 144 8675 +.0855 8450 +.0841 259 .8700 £.0473 .8650+.1088  —0.57
Vowel0 110 9433:.0483  .9750+.0155 3.36 9789 +.0183 .9933 +.0015 1.47 10000 £ .0000 9989 £.0015 —0.11 9566 +.0117 9599 £.0092 035 .9989 +.0015 .9994 +.0012 0.06
Glass016vs2 129 6367+.1255 .6752+.1478 6.06 .6002 +.0841 5140+.1171  —1436  6814+.1793 6976 +.1674  2.38 .5379£.1120 5819+.0771 8.19 7605 +.1208 7769 £.1316 2.16
Glass2 139 5424+.1401 7498 +.1155 38.25 .5206+.1120  .6241 +.0982 1989 6447 +.0987 7331+.1316 13.72 .5985 £.1570 5989 +.0841 0.07 7688+.1486  .7789 +.1081 131
Ecoli0147vs2356 159 8461:.0453  .8426 +.0669 -041 .7894 +.0606 .8043 +.0728 1.89 8507 £.0309 8857 £.1008 411 .8844 £ .0767 8862 £.0461 020 19025 +.0542 .8823+.0158 —2.23
Led7digit02456789vs1  1.97  8832+.0962  .8207 +.0995 -7.08 .8302 £.0749 .7983 £.0810 -3.84  8108+.0333 8652+.0432 670 8875+ .0531 8248 +.0549—7.07 8852 £.0923 8611+.0954 —2.73
Glass06vs5 11.00  9147+.1186  .9600 +.0285 4.95 .7500 £ .2215 .7850 £.1876 467 .9400+.1207 9200 +.1242 —2.13 19439 +.0344 9492 +.0260 0.56 9745 +.0358 9597+.0133  —1.51
Ecoli01vs5 11.00  8227+.1074 .8523:.0114 3.59 8386 +.1447 8500 £.1445 136 8545+.1525 .8909+.0973 426 8932+.0756 8977 +.0663 0.51 8795 +.1018 9114 £ .0660 3.62
Glass0146vs2 1106 7564+.1089  .7361+.1509 -2.68 .5146 +.1054 5527 +.1197 739 6453 +.0884 7445 £.1301 1537 6157 +.0732 6185 £.0496 045 .8029 +.1359 .7838£.0650  —2.38
Ecoli0147vs56 1228 8641+.0565 .8474+.0425 -1.93 8441+.1129 8458 +.0535 0.19 8756 +.0622 .8740+.0717 —0.19 .9093 £.0353 8928 +.0760—1.82 .8907 £.0755 9124 +.0831 2.44

(continued on next page)
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Table 5
Wilcoxon’s tests to compare the results with the DOB-SCV versus the standard SCV. R* corresponds to the sum of the ranks for the DOB-SCV partitioning
approach and and R~ to the original SCV partitioning.

Comparison R R p-value
C4.5[DOB-SCV] vs C4.5[SCV] 1391 754 0.0371
Chi[DOB-SCV] vs Chi[SCV] 1411 734 0.0267
k-NN[DOB-SCV] vs k-NN[SCV] 1536 609 0.0024
SMO[DOB-SCV] vs SMO[SCV] 1395 816 0.0639
PDFC[DOB-SCV] vs PDFC[SCV] 1366 845 0.0955

higher the obtained number, the most significant the selection of the validation approach is. Additionally, we show the de-
tailed test results for all datasets in Table 4.

From these tables of results we may observe that for all five algorithms, the DOB-SCV validation technique achieves a
higher estimation of the performance for most datasets, therefore being more robust for analyzing the quality of the models
learned in imbalanced data.

Furthermore, we must point out that the degree of imbalance of the dataset has a direct impact on the diverse results over
the different folds in the obtained results, i.e. the higher the IR is, the greater the differences between the standard SCV and
the DOB-SCV are. In addition to the former, the standard deviation computation supports this perception: these values for
both partitioning techniques are similar when the degree of imbalance is low; however, when the IR is higher we may ob-
serve that the standard deviation is much higher in contrast with low imbalanced datasets. Additionally, DOB-SCV has lower
standard deviation values than SCV, therefore sustaining the reduction of the gap between training and test partitions.

This issue may arise due to the fact that, the lower the number of positive instances we have in a dataset with respect to
the negative ones, the more significant is to maintain the data distribution to avoid the differences in performance between
training and test.

The characteristics of specific datasets do not pose a source of knowledge when trying to observe if there is a group of
them where DOB-SCV performs better than SCV. In general, DOB-SCV obtains a better performance for most of the algo-
rithms for each dataset, however, only few of the datasets considered are able to provide a clear trend for all the algorithms:
the cases where DOB-SCV obtains a better estimation than SCV (for instance, Abalone19 or Glass2) are more numerous than
the contrary case (Ecoli2 or Yeast2vs8) and the improvement is much greater than the loss.

When trying to find a group of data with the highest differences between DOB-SCV and SCV, it is not possible to do so
without also considering the algorithm underneath. For instance, if we try to observe where the greatest improvements or
losses are obtained for each algorithm, we realize that the datasets obtained for one algorithm are completely different from
the datasets obtained for the rest.

In order to give statistical support to the findings previously extracted, we will carry out a Wilcoxon test to compare both
validation techniques with the five classification algorithms. This analysis is shown in Table 5 where the algorithms are com-
pared by rows.

The conclusions from this test are clear, from which significant differences are found between DOB-SCV and SCV in all
cases with a low p-value. Furthermore, the higher sums of the ranks for DOB-SCV tell us about the goodness of this approach.

To summarize, we must stress that DOB-SCV is a suitable methodology for contrasting the performance of the classifi-
cation algorithms in imbalanced data. When the distribution of the classes is skewed, using standard estimation models
may lead to misleading conclusions on the quality of the prediction. The proposed use of this model addresses the handicap
of losing the generalization ability because of the way data is distributed among the different folds.

6. Concluding remarks

In this work we have proposed the use of a novel partition-based methodology, named as DOB-SCV, which aims at
obtaining a better estimation of a classifier’s performance by carrying out an heterogeneous organization of the instances
of the classes among the different folds.

We have identified this validation technique as a very suitable procedure in the framework of imbalanced datasets. It is
straightforward to realize that, in the case that one of the classes of the problem contains a fewer number of examples, and
regarding to the evaluation metrics used in this scenario, introducing covariate shift between training and test will unequiv-
ocally lead to high differences in performance in the learning and validation stages.

The stable performance estimation of DOB-SCV has been contrasted versus the classical k-fold SCV, detecting significant
differences between both techniques for several classifiers often used in imbalanced tasks such as C4.5, FRBCSs, k-NN and
SVMs. We must highlight that avoiding different data distribution inside each fold will allow researchers on imbalanced data
to concentrate their efforts on designing new learning models based only on the skewed data, rather than seeking for com-
plex solutions when trying to overcome the gaps between training and test results. Nevertheless, neither SCV nor DOB-SCV
can unequivocally guarantee to obtain the best estimate of the true error for a given problem. This can only be achieved by
having infinite data or, at least, that the input data covers the whole problem space, which is not usually the case.
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Abstract

Classification with big data has become one of the latest trends when talking about learning from the available information.
The data growth in the last years has rocketed the interest in effectively acquiring knowledge to analyze and predict trends. The
variety and veracity that are related to big data introduce a degree of uncertainty that has to be handled in addition to the vol-
ume and velocity requirements. This data usually also presents what is known as the problem of classification with imbalanced
datasets, a class distribution where the most important concepts to be learned are presented by a negligible number of examples in
relation to the number of examples from the other classes. In order to adequately deal with imbalanced big data we propose the
Chi-FRBCS-BigDataCS algorithm, a fuzzy rule based classification system that is able to deal with the uncertainly that is intro-
duced in large volumes of data without disregarding the learning in the underrepresented class. The method uses the MapReduce
framework to distribute the computational operations of the fuzzy model while it includes cost-sensitive learning techniques in its
design to address the imbalance that is present in the data. The good performance of this approach is supported by the experimental
analysis that is carried out over twenty-four imbalanced big data cases of study. The results obtained show that the proposal is able
to handle these problems obtaining competitive results both in the classification performance of the model and the time needed for
the computation.
© 2014 Elsevier B.V. All rights reserved.

Keywords: Fuzzy rule based classification systems; Big data; MapReduce; Hadoop; Imbalanced datasets; Cost-sensitive learning

1. Introduction

The development and maturity of the information technologies has enabled an exponential growth on the data
that is produced, processed, stored, shared, analyzed and visualized. According to IBM [1], in 2012, every day 1.5
quintillion bytes of data are created, which means that the 90% of the data created in the world has been produced
in the last two years. Big data [2] encompass a collection of datasets whose size and complexity challenges the
standard database management systems and defies the application of knowledge extraction techniques. This data
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comes from a wide range of sources such as sensors, digital pictures and videos, purchase transactions, social media
posts, everywhere [3].

This generation and collection of large datasets has further encouraged the analysis and knowledge extraction
process with the belief that with more data available, the information that could be derived from it will be more
precise. However, the standard algorithms that are used in data mining are not usually able to deal with these huge
datasets [4]. In this manner, classification algorithms must be redesigned and adapted considering the solutions that
are being used in big data so that they are able to be used under these premises maintaining its predictive capacity.

One of the complications that make difficult the extraction of useful information from datasets is the problem of
classification with imbalanced data [5,6]. This problem occurs when the number of instances of one class (positive
or minority class) is substantially smaller than the number of instances that belong to the other classes (negative or
majority classes). The importance of this problem resides on its prevalence in numerous real-world applications such
as telecommunications, finances, medical diagnosis and so on. In this situation, the interest of the learning is focused
towards the minority class as it is the class that needs to be correctly identified in these problems [7]. Big data is also
affected by this uneven class distribution.

Standard classification algorithms do not usually work appropriately when dealing with imbalanced datasets. The
usage of global performance measures for the construction of the model and the search for the maximum general-
ization capacity induce in algorithms a mechanism that tends to neglect the rules associated with instances of the
minority class.

Fuzzy Rule Based Classification Systems (FRBCSs) [8] are effective and accepted tools for pattern recognition
and classification. They are able to obtain a good precision while supplying an interpretable model for the end user
through the usage of linguistic labels. Furthermore, the FRBCSs can manage uncertainty, ambiguity or vagueness
in a very effective way. This trait is especially interesting when dealing with big data, as uncertainty is inherent to
this situation. However, when dealing with big data, the information at disposal usually contains a high number of
instances and/or features. In this scenario the inductive learning capacity of FRBCSs is affected by the exponential
growth of the search space. This growth complicates the learning process and it can lead to scalability problems or
complexity problems generating a rule set that is not interpretable [9].

To overcome this situation there have been several approaches that aim to build parallel fuzzy systems [10]. These
approaches can distribute the creation of the rule base [11] or the post-processing of the built model, using a par-
allelization to perform a rule selection [12] or a lateral tuning of the fuzzy labels [13]. Moreover, a fuzzy learning
model can be completely redesigned to obtain a parallel approach that decreases the computation time needed [14].
However, these models aim to reduce the wait for a final classification without damaging the performance and are not
designed to handle huge volumes of data. In this manner, it is necessary to redesign the FRBCSs accordingly to be
able to provide an accurate classification in a small lapse of time from big data.

Numerous solutions have been proposed to deal with imbalanced datasets [7,15]. These solutions are typically
organized in two groups: data-level solutions [16,17], which modify the original training set to obtain a more or
less balanced class distribution that can be used with any classifier, and algorithm-level solutions, which alter the
operations of an algorithm so that the minority class instances have more relevance and are correctly classified. Cost-
sensitive solutions [ 18,19] integrate both approaches as they are focused in reducing the misclassification costs, higher
for the instances of the minority class.

The approaches used to tackle big data usually involve some kind of parallelization to efficiently process and
analyze all the available data. One of the most popular frameworks for big data, MapReduce [20], organizes the
processing in two key operations: a map process that is responsible for dividing the original dataset and processing
each chunk of information, and a reduce process that collects the results provided in the previous step and combines
those results accordingly including new treatment if necessary. This approach that divides the original dataset in parts
can have a strong pernicious effect when dealing with imbalanced datasets as the data intrinsic characteristics impact
is amplified. Specifically, the small sample size [21] is induced when the original dataset is shared out and the dataset
shift problem [22] may also be encouraged in the process. The addition of these problems reinforce the necessity of
properly dealing with imbalanced datasets, not only for the original imbalance that is present in the data but also for
the occasioned problems that arise when the partitions are created.

In this paper, we present a FRBCS that is capable of classifying imbalanced big data which has been denoted as
Chi-FRBCS-BigDataCS. The method is based on the Chi et al.’s approach [23], a classical FRBCS learning method,
which has been modified to deal with imbalanced datasets and big data at the same time. The usage of a FRBCS
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enables the treatment of the uncertainty that is inherent to real-world problems and especially, in big data problems,
as the variety and veracity of the collected information pose a serious source of uncertainty and vagueness in the data.
Fuzzy rules have demonstrated to adequately manage the uncertainty in a reasonable manner and therefore, FRBCSs
seem to be a sensible choice to overcome this situation. Furthermore, FRBCSs [24,25], and specifically the Chi et
al.’s method [26,27], have also been successfully applied to imbalanced domains where they do not only combat the
problem of an uneven class distribution but they also face up to the challenge of the uncertainty in the class frontiers
which comes up because of the borderline samples [28], the noise in the data [29] and the small disjuncts [30] among
others.

Furthermore, using the Chi et al.’s method helps the classification in big data as it is a model that shows some
characteristics that make it especially suitable to build a parallel approach instead of using a more state-of-the-art
FRBCS method. The Chi et al.’s method is a simple approach that does not have complex operations and strong
interactions between parts of the algorithm. This behavior allows a division of the processing operations without
deeply degrading the performance of the algorithm. Moreover, all the rules generated by the Chi et al.’s method
have the same structure: rules with as many antecedents as attributes in the dataset that only use one fuzzy label.
Maintaining a common structure for the rules enormously benefits the combination and aggregation of rules that were
created in different parallel operations and it greatly reduces the processing time. Other state-of-the-art methods may
create more accurate rule bases, however, the associated rules do not have a common design and then, grouping them
together substantially complicates the learning.

To deal with imbalanced big data, the proposed Chi-FRBCS-BigDataCS algorithm modifies the basic FRBCS
approach combining two approaches:

e To deal with big data, the FRBCS method has been adapted following the MapReduce principles that direct a
distribution of the work on several processing units.

e To address the imbalance that is present in the data, some modifications induced by cost-sensitive learning have
been applied to the model. The use of a cost-sensitive approach is appropriate in this case as it does not introduce
intensive computation operations and not adding thus extra runtime to the final model. For this, we propose a
new rule weight computation, the Penalized Cost-Sensitive Certainty Factor (PCF-CS), an approach based on the
original Penalized Certainty Factor that takes into consideration the misclassification costs.

In order to assess the performance of the suggested approach, we have used twenty-four imbalanced big data cases
of study that provide information about how the proposal works, its strengths and its limitations. The experimental
study is organized to analyze the performance related to two types of measures: an evaluation on the classification
performance, which is measured by a well-known metric in imbalanced classification, the Area Under the ROC Curve
[31], and an examination on the runtime of the approaches tested.

This paper is arranged as follows. In Section 2 some background information about classification with big data and
imbalanced datasets is given. Next, Section 3 introduces some basic concepts about FRBCSs, describes the Chi et al.’s
algorithm, and presents a scalability study to show the unfeasibility of this algorithm for big data. Section 4 shows how
the basic Chi et al.’s algorithm is modified to address imbalanced datasets including the information about the new rule
weight computation, and replays the scalability study to demonstrate that big data needs to be specifically addressed.
Then, Section 5 characterizes the Chi-FRBCS-BigDataCS approach to deal with big data. Section 6 indicates the
configuration of the experimental study, the results obtained and a discussion about them. Finally, the conclusions
achieved in this work are shown in Section 7.

2. Classification with big data and imbalanced datasets

In this section we present some background information about the specific related data problems that we are trying
to clarify. In Section 2.1 we provide information about big data, its characteristics and some solutions that have been
proposed to overcome this challenge. Then, in Section 2.2, an overview about classification with imbalanced datasets
is supplied featuring a description of its traits, given solutions, which are the main threats to properly solve this
problem and how the performance of algorithms is measured in this scenario.
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Fig. 1. The 4Vs of big data.

2.1. The difficulties of classification with big data

With the development of information technologies, organizations have had to face new challenges to analyze vast
amounts of information. For this reason, the concept of “Big Data” is formulated, which is applied to all the informa-
tion that cannot be processed or analyzed using traditional techniques or tools [32]. According to the definition given
by the Gartner analyst Doug Laney in a 2001 MetaGroup research publication [33], we may describe big data as a
3Vs model (Volume, Velocity and Variety) [34,35]:

e Volume: It refers to the huge amount of data that needs to be processed, stored and analyzed.

e Velocity: It is an indication of how quickly the data needs to be analyzed so that it can provide an informed
response.

e Variety: It is related to the different types of structured and unstructured data that organizations can accumulate
such as tabular data (databases), hierarchical data, documents and e-mail, among others.

More recently, an additional V has been proposed by some organizations to describe the big data model [1] (Fig. 1):
Veracity, which is an indication of data integrity and the trust on this information to make decisions. In this work
we focus on effectively addressing the volume challenge, while trying to achieve reasonable results concerning the
velocity model and also attempting to manage the uncertainty introduced by the variety and veracity.

These data volumes that we call big data are coming from different sources. For example, Facebook hosts approx-
imately 10 billion photos, taking up one Petabyte of storage. The New York Stock Exchange generates about one
Terabyte of new trade data per day, or the Internet Archive stores around 2 Petabytes of data, and is growing at a rate
of 20 Terabytes per month [32].

Among the proposed solutions to the problem, one of the most popular approaches was proposed by Dean and
Ghemawat, who worked at Google. They presented a parallel programming model, MapReduce, which is a frame-
work for processing large volumes of data over a cluster of machines [20,36,37]. Generally, a MapReduce program
contains two main phases: a map-function and a reduce-function. In the first phase, the input data is processed by the
map-function, generating some intermediate results as the input of the reduce function in the second phase, which
process the generated intermediate results to produce a final output.

Specifically, the MapReduce model is based on basic data structure which is the key-value pair, and all data pro-
cessed in MapReduce is used in those key-value pair terms. In this manner, the map and reduce functions work as
follows:

e Map-function: the master node performs a segmentation of the input dataset into independent blocks and dis-
tributes them to the worker nodes. Next, the worker node processes the smaller problem, and passes the answer
back to its master node. In terms of key-value pairs, the map-function receives a key-value pair as input and emits
a set of intermediate key-value pairs as output. Before the execution of a reduce function, the MapReduce library
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Fig. 2. The MapReduce programming model.

groups all intermediate values associated with the same intermediate key and transforms them to speed up the
computation in the reduce function.

e Reduce-function: the master node collects the answers to all the sub-problems and combines them in some way to
form the final output. Considering the key-value pairs, the reduce-function accepts the intermediate key provided
by the MapReduce library and generates as final results the corresponding pair of key and value.

Fig. 2 depicts a typical MapReduce program with its map step and its reduce step. The terms k and v refer to the
key and value pair respectively; k” and v’ to the intermediate model and v” to the output generated.

Apache Hadoop is the most popular implementation of the MapReduce programming model [32,38]. It is an open-
source framework written in Java that supports the processing of large datasets in a distributed computing environment.
Hadoop has a distributed file system, HDFS, that facilitates rapid data transfer rates among nodes and allows the sys-
tem to continue operating uninterrupted in case of a node failure. The Apache Mahout project [39] is one of the most
relevant tools that integrate machine learning algorithms in a Hadoop system.

However, following a MapReduce design is not always the best solution when dealing with big data [40]. Specifi-
cally, iterative algorithms are not able to obtain a good performance as they need to launch a MapReduce job for each
iteration notably increasing the computation time due to the overhead. Therefore, there are some other open-source
projects that are emerging to address big data as alternatives to MapReduce and Hadoop:

e Spark [41]: It is a cluster computing system that was developed in the UC Berkeley AMPLab and it is used to
run large-scale applications such as spam filtering and traffic prediction. Spark provides primitives for in-memory
cluster computing and APIs in Scala, Java and Python.

e Apache Drill [42]: It is a framework that supports data-intensive distributed applications for interactive analysis
of large-scale datasets. Drill is a version of Google’s Dremel system, which is a scalable, interactive ad-hoc query
system for analysis of read-only nested data. Furthermore, its goal is to be able to scale to 10,000 servers or more
and to be able to process Petabytes of data and trillions of records in seconds.

Some other incipient software projects are Twister [43], Ricardo [44], D3.js [45], HCatalog [46], Storm [47] or
Impala [48], among others.

2.2. Classtfication with imbalanced datasets

Real-world classification problems typically present a class distribution where one or more classes have an insignif-
icant number of examples in contrast with the number of examples from the other classes. This circumstance is known
as the problem of classification with imbalanced datasets [5,6] and has been recognized as a challenge from the data
mining community [49]. The main concern in this problem resides in the importance of the correct identification of
the minority classes as they are the major focus of interest and their incorrect identification may entail high costs [18].
Imbalanced classification problems are found in diverse domains such as software defect prediction [50,51], finances
[52], bioinformatics [53—-55] and medical applications [56,57], just to mention some of them.
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Table 1
Confusion matrix for a two-class problem.
Positive prediction Negative prediction
Positive class True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)

Standard classification algorithms are usually unable to correctly deal with imbalanced datasets because they are
built under the premise of obtaining the maximum generalization ability. In this manner, these algorithms try to obtain
general rules that cover as many examples as possible, benefiting the majority class, while more specific rules that
cover the minority class are discarded because of its small presence in the whole dataset. In this way, the minority
class examples are treated like noise and therefore, these samples are finally neglected in the classification.

The imbalance ratio (IR) [58], which is the ratio of the number of instances in the majority class to the number
of examples in the minority class IR = %’ is usually a clue to determine how difficult an imbalanced
problem is. However, classification with imbalanced datasets is not only complicated by the dissimilar class distri-
bution but also by some data intrinsic characteristics that interact with this issue aggravating the problem to a major
extent than those difficulties in isolation [7]. Some of these data intrinsic characteristics include the presence of small
disjuncts in the data [30], the small sample size for imbalanced classes [21], the overlapping between the classes [59],
the presence of noisy [60] and borderline [61] examples and the dataset shift [22], which unites all the differences in
the data distribution for the training and testing sets.

Big data techniques usually work in a parallel way dividing the original training set in subsets and distributing them
along the processing units. This way of working is especially pernicious if the big data available is also imbalanced
as it induces some of the aforementioned data problems: the small sample size problem and the dataset shift problem.
In the first case, it is needed to establish a processing scheme that does not dramatically decrease the size of the new
processed subsets. In the second case, a new subdivision of the dataset must be carefully done so that the subsets
that are created for the training in each processing unit are as close as possible to the original training set. In this
manner, we should avoid the prior probability shift [62], not changing the class distribution in the subsets, as well as
the covariate shift [63], not changing the input attribute values distribution when the data portions are created.

Various approaches have been proposed to deal with imbalanced datasets [5—7,15]. These approaches are usu-
ally organized in two groups: data-level approaches and algorithm-level approaches. The data-level approaches [16,
17] modify the original training set to obtain a more or less balanced distribution that is properly addressed by
standard classification algorithms. This balancing process can be done adding examples to the minority class extend-
ing the dataset (over-sampling) or deleting examples from the majority class reducing the dataset (under-sampling).
Algorithm-level approaches [25,64] adapt classification algorithms to guide the learning process towards the minority
class. This adaptation can modify the inner way of working of an algorithm in favor of the minority class or it can
even evidence the creation of new algorithms with this goal.

Additionally, cost-sensitive learning solutions include strategies at the data-level and the algorithm-level by consid-
ering variable misclassification costs for each class [19,65]. When dealing with imbalanced datasets it is more relevant
to correctly classify minority instances than majority ones, and therefore, the cost associated to the misclassification of
a minority instance should be higher than the cost associated to the contrary case: Cost(min, maj) > Cost(maj, min). In
this manner, cost-sensitive learning is either used as a direct approach that modifies how the algorithm works or is used
as a meta-learning technique that modifies how the input or output information is processed [65,66]. Finally, another
family of algorithms that has demonstrated a good behavior for imbalanced datasets is the ensembles of classifiers
[67].

Selecting an appropriate performance measure is a vital decision when dealing with imbalanced datasets, not only
to guide the construction of the model, but also to evaluate its achievement in comparison with other algorithms. The
most used performance measure in classification, the overall classification accuracy, is not recommended when there
is an uneven class distribution as it is biased towards the majority class: a classifier over a dataset with an IR of 9
that obtains a 90% of accuracy may not be a proper classifier as it may classify all the instances as belonging to the
majority class, completely neglecting the minority class which is our interest in the problem.

In the imbalanced scenario, the evaluation of the classifiers performance should be computed considering specific
metrics that observe the current class distribution. The confusion matrix (Table 1), which reports the results of correctly
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or incorrectly classifying the examples of each class, leads to the obtaining of four metrics that describe both classes
independently:

True positive rate 7P, = TJ_% is the percentage of positive instances correctly classified.

e True negative rate TN, = F;L—NTN is the percentage of negative instances correctly classified.
o False positive rate FP, ;. = Fpi—PTN is the percentage of negative instances misclassified.
o False negative rate FN, ;. = TPi—NﬂV is the percentage of positive instances misclassified.

However, these measures are not satisfactory by themselves as we are seeking a good classification accuracy in
both classes, and therefore, an approach to combine these measures is needed.

A graphical method that could be used to measure the performance of classification with imbalanced datasets is
the Receiver Operating Characteristic (ROC) curve [68]. The ROC curve depicts the variation of the TP,,, against
the FP,4, taking into account different decision threshold values. The Area Under the ROC Curve (AUC) metric [31]
is able to provide a numerical performance measure that can be used to analyze the behavior of different learning
algorithms. The AUC measure is computed obtaining the area of the ROC graphic. Specifically, we approximate this
area following the next formula:

1 + TPmte - FPrate

AUC = > (1)

3. Classification with fuzzy rule based classification systems: The Chi et al.’s algorithm and the scalability
problem

This section purpose is to provide the information needed to explain the necessity of modifying traditional methods
when building FRBCSs in imbalanced big data. As a basis for the approach, we will recall some elementary definitions
about FRBCSs in Section 3.1. Then, we will present the FRBCS that has been used to construct our approach, the
Chi et al.’s algorithm in Section 3.2. Finally, we will show a scalability study in Section 3.3 that demonstrates the
requirement of effectively addressing big data.

3.1. Fuzzy rule based classification systems

Among the diverse techniques that are used to deal with classification problems in data mining, FRBCSs are widely
used because they produce an interpretable model with a reasonable prediction rate.

A FRBCS is formed of two main components: the knowledge base (KB) and the inference system. In a linguistic
FRBCS, the KB is built from the rule base (RB) and the data base (DB). The RB contains all the rules that compose
the model and the DB encodes the membership functions associated to the fuzzy data partitions that are related to
the input attribute values. The inference system directs the way in which new examples are classified considering the
information stored in the KB. The most advantageous situation arises when expert information is available, however,
this is very unusual and automatic learning methods to build the KB are needed.

Let m be the number of training patterns X, = (xp1, ..., Xp,) from C classes that form a classification problem,
being x; is the ith attribute value (i =1, 2, ..., n) of the p-th training pattern.

In this work, we use fuzzy rules of the following form to build our classifier:

Rule R; : If xy is A} and ... and x, is A7 then Class = C; with RW; 2)

where R; is the label of the jth rule, x = (x1, ..., x,) is an n-dimensional pattern vector, AS. is an antecedent fuzzy
set, C; is a class label, and RW ; is the rule weight [69]. We use triangular membership functions as linguistic labels.

Numerous heuristics have been proposed to compute the rule weight [69]. A good choice for the computation of
the rule weight is the Penalized Certainty Factor (PCF) [70], showed in Eq. (3):

ZXI’ECMSSCJ Ha; ()Cp) B préclasscj HA; (xp)
> i Ha; (xp)
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where p4;(x)p) is the matching degree of the pattern x;, with the antecedent part of the fuzzy rule Rj. We use the
fuzzy reasoning method (FRM) of the wining rule [71], a classical approach, for the classification of new patterns

by the RB. When a new pattern X, = (xp1, ..., Xp,) needs to be classified, the winner rule R, is decided as the rule
verifying:
pw (xp) - RWy =max{p;(x,)-RW;; j=1...L} 4)

The pattern x,, is classified as class C,, which is the class indicated in the consequent of the winner rule R,,. In the
case where several rules obtain the same maximum value in Eq. (4) for the example x,, but with different classes on
the consequent, the classification of the pattern x, is rejected and therefore, no class is assigned to it. Similarly, if the
example x,, does not match any rule in the RB, the classification is also rejected and no class is given to the example.

3.2. The Chi et al’s algorithm for classification

As a base for our FRBCS for imbalanced big data, we have used a simple learning procedure to generate the
KB. Specifically, we have considered the method described in [23], that we have called the Chi et al.’s rule genera-
tion method or Chi-FRBCS, which is an extension for classification problems of the well-known Wang and Mendel
algorithm [72].

To build the KB, this FRBCS method tries to find the relationship between the variables of the problem and
constitute an association between the domain of features and the domain of classes following the next steps:

1. Establishment of the linguistic partitions: Using the range of values for each attribute A;, the linguistic fuzzy par-
titions that form the DB are computed with the same number of linguistic terms for all input variables, composed
of symmetrical triangular-shaped and uniformly distributed membership functions.

2. Generation of a fuzzy rule for each example X, = (Xp1, ..., Xpu, Cp): From each example present in the training
set, a new fuzzy rule is created following the subsequent steps:

(a) To compute the matching degree u(x,) of the example with the different linguistic fuzzy labels for each
attribute using a conjunction operator (represented with a T-norm operator).

(b) To assign the example x, to the different linguistic fuzzy labels that obtain the largest membership degree.

(c) To generate a rule for the example x,. This rule will have as antecedent the linguistic fuzzy labels computed
in the previous step and as consequent the class associated to the example C),.

(d) To compute the rule weight.

This procedure can generate several rules with the same antecedent. If the consequent of those rules belongs to the
same class then, the replicated rules are deleted. However, if the consequent of those rules belongs to different classes
then, only the rule with the highest weight is maintained in the RB.

3.3. Testing the scalability of the Chi-FRBCS algorithm

At this point, we want to test how the Chi-FRBCS algorithm is able to deal with huge amounts of data running
a scalability test over the KDD Cup 1999 dataset from the UCI dataset repository [73]. The KDD Cup 1999 dataset
features multiple classes while in our imbalanced scenario we are interested in problems with two classes. To test
the Chi-FRBCS algorithm we have created several two-class big data cases of study derived from the KDD Cup
1999 dataset: specifically, the generated versions of the dataset use the normal and DOS connections as majority
classes and the rest of attacks have been considered as minority classes. From these two-class datasets, we have
created several imbalanced big data cases of study derived from it that differ in their size. From all the KDD Cup
1999 combinations we have selected three imbalanced big data cases of study that will be compared selecting only a
percentage of samples from the original set maintaining the a priori probability between the classes. The percentage
of the instances considered are the 10%, 25%, 40%, 50%, 60% and 75% and the experiments were run following a
5-fold stratified cross validation partitioning scheme. Further information about how the two-class sets are built can
be found in Section 6.1.

Table 2 shows the information about the cases of study considered together with the average results in training and
test for them. This table is divided by columns in four parts: the first three columns correspond to, for each case of
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Table 2
Average results for the Chi-FRBCS algorithm for the imbalanced big data cases of study using the AUC measure, number of rules and time elapsed.
Datasets #Atts. #EX. #Class(maj; min) Chi-FRBCS

AUC,, AUCyg; numRules Runtime (s) Runtime (hh:mm:ss.SSS)
kddcup_10_normal_versus_R2L 41 97390 (97278; 112) 0.5000 0.5000 131.6 1578.991 00:26:18.991
kddcup_25_normal_versus_R2L 41 243476 (243 195; 281) 0.5036 0.5000 178.4 10327.567 02:52:07.567
kddcup_40_normal_versus_R2L 41 389562 (389112; 450) 0.5047 0.5000 200.2 28329.681 07:52:09.681
kddcup_50_normal_versus_R2L 41 486953 (486 390; 563) 0.5062 0.5044 213.4 40170.131 11:09:30.131
kddcup_60_normal_versus_R2L 41 584343 (583 668; 675) 0.5046 0.5007 226.4 57060.828 15:51:00.828
kddcup_75_normal_versus_R2L 41 730429 (729 585; 844) 0.5067 0.5047 240.0 85336.009 23:42:16.009
kddcup_full_normal_versus_R2L 41 973907 (972781; 1126) 0.5083 0.5030 219.2 174285.276 48:24:45.276
kddcup_10_DOS_versus_R2L 41 388449 (388337; 112) 1.0000 0.9897 70.0 25498.727 07:04:58.727
kddcup_25_DOS_versus_R2L 41 971123 (970 842; 281) 0.9697 0.9645 79.0 141280.704 39:14:40.704
kddcup_40_DOS_versus_R2L 41 1553798 (1553 348; 450) ND ND ND ND ND
kddcup_50_DOS_versus_R2L 41 1942248 (1941 685; 563) ND ND ND ND ND
kddcup_60_DOS_versus_R2L 41 2330697 (2330022; 675) ND ND ND ND ND
kddcup_75_DOS_versus_R2L 41 2913371 (2912527, 844) ND ND ND ND ND
kddcup_full_DOS_versus_R2L 41 3884496 (3883 370; 1126) ND ND ND ND ND
kddcup_10_DOS_versus_normal 41 485615 (388337, 97278) 0.9973 0.9972 162.2 32892.936 09:08:12.936
kddcup_25_DOS_versus_normal 41 1214037 (970 842; 243 195) 0.9973 0.9973 218.8 267496.363 74:18:16.363
kddcup_40_DOS_versus_normal 41 1942460 (1553348;389112) ND ND ND ND ND
kddcup_50_DOS_versus_normal 41 2428075 (1941 685; 486 390) ND ND ND ND ND
kddcup_60_DOS_versus_normal 41 2913690 (2330022; 583 668) ND ND ND ND ND
kddcup_75_DOS_versus_normal 41 3642112 (2912 527; 729 585) ND ND ND ND ND
kddcup_full_DOS_versus_normal 41 4856151 (3883370, 972781) ND ND ND ND ND
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study, the number of attributes (#Atts.), number of examples (#Ex.) and number of instances for each class (minority
and majority). The fourth column is devoted to the results of the Chi-FRBCS algorithm. The results for that algorithm
are organized in the following way: the first two columns correspond to the AUC average results in training and test,
the third column shows the average number of rules created by the FRBCS and the fourth and fifth columns present
the average response times in seconds and in the hh:mm:ss.SSS format. Please note, that the hh:mm:ss.SSS format
stands for the hours, minutes, seconds and milliseconds spent in the computation. For each dataset we consider the
average results of the partitions.

Analyzing the results we can observe the ND (Not Determinable) symbol, which indicates that the algorithm was
not able to complete the experiment. The implementation tested has not been especially prepared for huge datasets
and the appearance of the ND symbol means that the current algorithm cannot be scaled for big data, as it is not able
to deal with datasets this size.

For example, for the dataset kddcup_normal_versus_R2L, the smallest one considered in this test, we can see that
the algorithm was able to provide results for all the versions of the problem. The results in training and test do not
provide huge differences between the different reduced versions while we are able to observe an increment in the
number of rules and in the processing time as more data is available.

For the larger datasets, kddcup_DOS_versus_R2L and kddcup_DOS_versus_normal, we can observe that the re-
duced versions of the datasets which were not able to finish have considerably increased from the previous case as
their size is more than four times the size of the kddcup_normal_versus_R2L dataset. Specifically, the Chi-FRBCS
algorithm was not able to complete the experiment starting from the 40% reduced version of the kddcup_DOS_ver-
sus_R2L and the kddcup_DOS_versus_normal cases of study, and for the 25% versions, the elapsed time is huge in
relation with the elapsed time for the 10% versions.

Furthermore, we could be tempted to address big data just reducing the size of the original training set so that the
current model is able to provide a result; moreover, when the results obtained by the 10% reduced version provide a
reasonable performance. However, the reduction in the dataset is not only performed in the training set but also in the
test set which alters the conclusions we can extract. In [74], we can observe a set of experiments that are related to
the training of a FRBCS with different versions of the same dataset reducing its size. Their findings showed that the
performance in test (which was maintained) was truly affected by the usage of different training sets.

In this manner, we can conclude that the basic Chi-FRBCS is not an appropriate approach to address imbalanced
big data and it is necessary to specifically address those problems to provide a FRBCS that is able to provide proper
classification results in a sensible time.

4. The Chi et al.’s algorithm for classification with imbalanced datasets and the scalability problem

In this section we provide some knowledge about how the basic Chi-FRBCS model can be modified to be able
to address imbalanced problems. First, in Section 4.1, we will present a proposal to improve the classification in
this arduous scenario presenting an approach that uses a new rule weight computation based on the PCF. Then, in
Section 4.2, we perform again a scalability study to show that the modifications introduced are adequate to deal with
imbalanced data but they are not enough to effectively address imbalanced big data.

4.1. The Chi et al’s algorithm for classification with imbalanced datasets: using the penalized cost-sensitive
certainty factor

As stated in the previous section, we have selected as basis for our FRBCS for imbalanced big data the Chi-FRBCS
method [23]. This procedure creates a KB that is able to perform reasonably well in a more or less balanced situation;
however, the Chi-FRBCS does not perform properly when classifying imbalanced datasets [26]. To accurately deal
with imbalanced datasets we need to modify the previous proposal using cost-sensitive learning so that it consid-
ers during the building of the model the different misclassification costs associated to the various examples. In this
manner, the learning will be biased to better identify the instances of the minority class. This proposal will be called
Chi-FRBCS-CS.

Chi-FRBCS-CS follows the same set of steps as Chi-FRBCS changing how the rule weights are computed. Specifi-
cally, using the PCF heuristic, we have included the misclassification costs in the rule weight developing the Penalized
Cost-Sensitive Certainty Factor (PCF-CS). In this way, the PCF-CS is computed as:
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Zx,,eClasst HA; (xp) ’ CS(C.D) - prgéClastj HA; ()Cp) ' CS(CP)
> i a;(xp) - Cs(Cp)

where Cs(C)) is the misclassification cost associated to class C, the class of the example x,,.

The misclassification costs associated to any class should be given by the experts if knowledgeable information
about the problem is available. Unfortunately, this situation is very rare and therefore, we need to establish a procedure
to estimate these costs. In our approach we have selected the costs in the following way: Cs(min, maj) = IR and
Cs(maj, min) = 1. As requested in imbalanced datasets, the misclassification cost for the minority class is much
higher than the misclassification cost associated to the majority class. Additionally, as the cost is dependent on the
proportion between the majority and minority instances, this estimation is valid for datasets that range from a low
imbalance level to extremely imbalanced datasets.

RW; = PCF-CS; =

®)

4.2. Testing the scalability of the Chi-FRBCS-CS algorithm

At this point, we want to reproduce the scalability test performed for the Chi-FRBCS-CS algorithm in order to
test how the proposal works in imbalanced big data problems considering their size. In this manner, we use the same
cases of study as in Section 3.3, the two-class variants of the KDD Cup 1999 dataset that were sampled at the 10%,
25%, 40%, 50%, 60% and 75% of its size. Table 3 shows the average results in training and test for the three selected
imbalanced datasets for the Chi-FRBCS and Chi-FRBCS-CS algorithms. We include both algorithms to check the
differences in behavior between them.

When comparing both approaches we can see that there are not many differences between both Chi-FRBCS ver-
sions and that the conclusions extracted for Chi-FRBCS can also be applied to Chi-FRBCS-CS. Specifically, we can
recognize the presence of the ND symbol also for the Chi-FRBCS-CS algorithm and that it appears for the same cases
of study where Chi-FRBCS has it. For instance, the kddcup_normal_versus_R2L dataset is processed in all cases
while the larger datasets, kddcup_DOS_versus_R2L and kddcup_DOS_versus_normal, are only able to produce re-
sults when the smallest versions of the datasets are considered. In this manner, it can be inferred that the new approach
for imbalanced datasets does not improve its behavior with respect to the dataset size.

When considering the AUC results in training and test, it can be detected a much better performance for the
Chi-FRBCS-CS algorithm. This better results can be examined in the kddcup_normal_versus_R2L dataset where
the AUC values experiment a greater improvement, going from a situation where the minority class is not properly
identified to a situation where this minority instances are generally considered. This behavior can be seen in the
different cases of study considered and does not depend on the data size. In the case of the kddcup_DOS_versus_R2L
and kddcup_DOS_versus_normal datasets, the improvement is not as noticeable, however, the tendency to slightly
improve the results is clear.

Viewing the number of rules generated by both approaches, the Chi-FRBCS-CS is the one that creates a model
with the lesser number of rules. Regarding the time elapsed to complete the experiments, we can see that there is not
a clear tendency between the two Chi-FRBCS versions. Even when they are able to provide results in the same cases,
the time needed to finish the computation does not always benefit one algorithm over the other, which means that the
calculation of the PCF-CS does not clearly increase the computation time needed while benefiting the classification
performance.

Finally, we can conclude that the Chi-FRBCS-CS method is a step forward to deal with imbalanced datasets
however, it is necessary to specifically address big data using techniques that have been designed to manage huge
datasets, as standard learning algorithms have not been adapted to learn in this arduous situation.

5. The Chi-FRBCS algorithm for imbalanced big data: A MapReduce design

In this section, we will describe our proposal of a FRBCS for imbalanced big data, denoted as Chi-FRBCS-
BigDataCS. This proposal is introduced in the following way: Section 5.1 presents a general overview of how the
Chi-FRBCS algorithm is adapted for big data. Next, in Section 5.2, the building of the model is detailed. Later, Sec-
tion 5.3 describes how the instances of a big dataset are classified considering the learned model. Finally, Section 5.4
presents a case of study over one of the imbalanced big data problems considered.
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Table 3
Average results for the sequential Chi-FRBCS and Chi-FRBCS-CS versions for the imbalanced big data cases of study using the AUC measure, number of rules and time elapsed.
Datasets #Atts. #EX. #Class(maj; min) Chi-FRBCS Chi-FRBCS-CS

AUC;, AUCg; numRules Runtime Runtime AUC; AUCg; numRules Runtime Runtime

(s) (hh:mm:ss.SSS) (s) (hh:mm:ss.SSS)

kddcup_10_normal_versus_R2L 41 97390 (97278;112) 0.5000 0.5000 131.6 1578.991  00:26:18.991 0.9729 0.9499 119.0 1599.831 00:26:39.831
kddcup_25_normal_versus_R2L. 41 243476 (243 195; 281) 0.5036 0.5000 178.4 10327.567 02:52:07.567 0.9629 0.9563 160.4 8426.257  02:20:26.257
kddcup_40_normal_versus_R2L 41 389562 (389 112;450) 0.5047 0.5000 200.2 28329.681 07:52:09.681 0.9637 0.9587 180.4 21274452 05:54:34.452
kddcup_50_normal_versus_R2L. 41 486953 (486390; 563) 0.5062 0.5044 2134 40170.131 11:09:30.131 0.9649 0.9625 195.0 40877.748 11:21:17.748
kddcup_60_normal_versus_R2L 41 584343 (583 668; 675) 0.5046 0.5007 226.4 57060.828 15:51:00.828 0.9634 0.9597 205.6 58008.036 16:06:48.036
kddcup_75_normal_versus_R2L. 41 730429 (729585, 844) 0.5067 0.5047 240.0 85336.009 23:42:16.009 0.9657 0.9638 218.8 84191.977 23:23:11.977
kddcup_full_normal_versus_R2L 41 973907 (972781, 1126) 0.5083 0.5030 219.2 174 285.276 48:24:45.276 0.9653 0.9620 199.4 176795.885 49:06:35.885
kddcup_10_DOS_versus_R2L 41 388449 (388337;112) 1.0000 0.9897 70.0 25498.727 07:04:58.727 0.9999 0.9897 64.6 25448.700 07:04:08.700
kddcup_25_DOS_versus_R2L 41 971123 (970842; 281) 0.9697 0.9645 79.0 141280.704 39:14:40.704 0.9981 0.9928 73.8 136 368.526 37:52:48.526
kddcup_40_DOS_versus_R2L 41 1553798 (1553348;450) ND ND ND ND ND ND ND ND ND ND
kddcup_50_DOS_versus_R2L 41 1942248 (1941685;563) ND ND ND ND ND ND ND ND ND ND
kddcup_60_DOS_versus_R2L 41 2330697 (2330022; 675) ND ND ND ND ND ND ND ND ND ND
kddcup_75_DOS_versus_R2L 41 2913371 (2912527, 844) ND ND ND ND ND ND ND ND ND ND
kddcup_full_DOS_versus_R2L 41 3884496 (3883370;1126) ND ND ND ND ND ND ND ND ND ND
kddcup_10_DOS_versus_normal 41 485615 (388337;97278)  0.9973 0.9972 162.2 32892.936 09:08:12.936 0.9975 0.9974 160.8 33670.214 09:21:10.214
kddcup_25_DOS_versus_normal 41 1214037 (970842;243195) 0.9973 0.9973 218.8 267 496.363 74:18:16.363 0.9979 0.9978 216.6 273740.590 76:02:20.590
kddcup_40_DOS_versus_normal 41 1942460 (1553348;389112) ND ND ND ND ND ND ND ND ND ND
kddcup_50_DOS_versus_normal 41 2428075 (1941685;486390) ND ND ND ND ND ND ND ND ND ND
kddcup_60_DOS_versus_normal 41 2913690 (2330022;583668) ND ND ND ND ND ND ND ND ND ND
kddcup_75_DOS_versus_normal 41 3642112 (2912527;729585) ND ND ND ND ND ND ND ND ND ND
kddcup_full_DOS_versus_normal 41 4856151 (3883370;972781) ND ND ND ND ND ND ND ND ND ND
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5.1. General overview of the Chi-FRBCS algorithm for big data

The Chi-FRBCS-BigDataCS algorithm is an approach that can be used to classify imbalanced big data. It is a
MapReduce design where each map process is responsible for building a RB using only the data included in its
portion and where the reduce process is responsible for collecting and combining the RB generated by each mapper
to form the final RB.

We will divide the description of the proposal in two parts: the first part is devoted to the description of the creation
of the model, shown in Section 5.2, and the second part is dedicated to the explanation on how new instances are
classified using the previous learned model, in Section 5.3. Both parts follow the MapReduce structure distributing all
the computations needed along several processing units that manage different chunks of information, aggregating the
results obtained in an appropriate manner.

In this description, we do not make a distinction between the steps that need to be followed to create a “normal”
model that is able to process big data based on the Chi-FRBCS algorithm, Chi-FRBCS-BigData, and the steps needed
to transform this model into our proposal, Chi-FRBCS-BigDataCS, based on the Chi-FRBCS-CS model. The differ-
ences in the computation of both models are related to the computation of the rule weight, as stated in Section 4.1,
sharing most of the algorithm structure. In this manner, the transition to a big data model follows similar steps and
only the variances associated to the cost-sensitive model will be stated when applicable.

The model presented is a FRBCS built on MapReduce using cost-sensitive learning for the following reasons:

e A FRBCS is able to deal with the uncertainty and imprecise information that emanates from big data, as those
huge information sources become available from diverse sources that include a high variety while trying to cope
with the veracity and trust on the data.

e The MapReduce framework is one of the most currently known alternatives to handle big data and has demon-
strated that is capable to perform reasonably well in data mining problems producing even libraries like Mahout
that include machine learning and data mining algorithms.

e In cost-sensitive learning, the addition of costs into the algorithm way of working does not heavily increase the
time complexity while properly managing the imbalanced problem.

Finally, we have preferred the use of cost-sensitive learning instead of data preprocessing techniques to avoid an
extra step in the building of the model following a MapReduce design. Over-sampling techniques would increase
the size of the data to process, therefore increasing the computational needs, while under-sampling may disregard
potentially useful examples which could be underestimated because of the subdivision induced by the MapReduce
structure.

5.2. Building the knowledge base for the Chi-FRBCS-BigDataCS using a MapReduce design

In this section, we will describe how the KB is built from the original training set provided following a MapReduce
procedure. This process is illustrated in Fig. 3 and consists of the following steps:

e [nitial: In the CS version, the first step needs to estimate the costs for each class giving the minority class a
greater cost than the majority class. This cost is estimated in the same way as described in Section 4.1, giving
a misclassification cost of 1 for instances belonging to the majority class and a misclassification cost of /R for
instances of the minority class.
Next, in both versions of the algorithm, the domain of variation of each feature in the dataset is determined. Then,
the different fuzzy membership labels that compose the DB are computed using these domains according to the
number of labels considered.
Finally, in order to comply with Hadoop way of working, the algorithm performs a segmentation of the training
dataset into independent HDFS blocks. These blocks are then automatically replicated and transferred between
the different cluster nodes thanks to the Hadoop environment that implements the MapReduce structure.

e Map: In this step each map task builds a RB with the data blocks of its data portion and generates a file containing
the RB (called RB;, see Fig. 3). More specifically, for each instance belonging to the mapper, a fuzzy rule is
created in a similar way as described in Section 3.2: we first search for the linguistic fuzzy labels that match
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Fig. 3. A flowchart of how the building of the KB is organized in Chi-FRBCS-BigDataCS.

the attribute values of the current example, we select the among the matching fuzzy labels the ones that obtain
the largest matching degree for each attribute, we build the rule using as antecedent the fuzzy labels previously
selected and as consequent the class associated to the example and finally we compute the rule weight.

Please note that for computing the rule weight we use the PCF or PCF-CS for the Chi-FRBCS-BigData or Chi-
FRBCS-BigDataCS methods, and that the set of examples used for the rule weight is the set of examples that
belong to the current map process. In this manner, rules with the same antecedents and consequent can be gener-
ated by different mappers but they can have different rule weight values. Moreover, when a new rule is created in
a mapper we check, as in the original Chi-FRBCS algorithm, if there is a rule with the same antecedents already
in the mapper RB. In that case, if the consequent of the rule is also the same as the rule in the mapper RB, this
rule is discarded while if the consequent of the new rule is different from the consequent of the previously created
rule, then only the rule with the maximum weight is preserved.

In this manner, the Map step applies the original Chi-FRBCS classifier or the Chi-FRBCS-CS approach described
in Section 4.1 to the data available in the data partition.

e Reduce: In this next step, the reduce process combines the RBs generated by each mapper (RB;) to form the

final RB (called RBp, see Fig. 3). Specifically, the final RB is built from the RBs built from each mapper
RB1,RB>,...,RB, in a similar way as in the creation of new rules in each mapper (Fig. 3): we browse the
rules that belong to the RB generated by each mapper, RB;; if there is a rule in the final RB, RBg, with the same
antecedent as the rule we are trying to add we only maintain in the final RB, RBg, the rule with the highest rule
weight. In this case it is not necessary to check if the consequent is the same or not as we are maintaining the most
powerful rules. Equivalent rules (rules with the same antecedent and consequent) can present different weights as
they are computed in different mappers over different training sets.
Please note that it is not needed to recompute the rules weights as we are selecting the most confident rules
provided by each mapper. An alternative that would involve a new weight computation would have been the case
where equivalent rules are combined to produce a new rule, for instance, computing an average weight between
them. However, the direct selection of rules was preferred because of its simplicity which enables to speed up the
algorithm in its reduce step.

e Final: In this last step, the RB that is generated in the reduce process (RBg) and the DB that was calculated in the
initial phase conform the KB that is provided as the output of the computation process. This output will be the
entry data for the mechanism that classifies new examples.

Algorithms 1 and 2 show the pseudo-code of the Map function of the MapReduce job for the creation of the model
phase. Algorithm 1 is devoted to obtaining all instances in a mapper’s partition and the Hadoop framework calls it for
each <key/value> pair in this partition. When the previous process is finished, Algorithm 2 is called for each mapper
to build a RB with the data blocks of its data portion. Furthermore, Algorithm 3 gives the pseudo-code of the Reduce
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function and is called when all mappers have finished, to combine the RBs generated by each mapper to form the final
RB.

Algorithm 1 Map phase for the Chi-FRBCS-BigDataCS algorithm for the building of the model phase MAP(key,
value):
Input: <key,value> pair, where key is the offset in bytes and value is the content of an instance.
Output: <key’,value’ > pair, where key’ is any Long value and value’ contains a RB.
1: instance <— INSTANCE_REPRESENTATION (value) {instances will contain all instances in this mapper’s split}
2: instances < instances.add(instance)

Algorithm 2 Map phase for the Chi-FRBCS-BigDataCS algorithm for the building of the model phase CLEANUP():
1: fuzzy_ChiBuilder.build(instances, posClass, posclassCost, negClassCost)
2: ruleBase < fuzzy_ChiBuilder.getRuleBase()
3: EMIT (key, ruleBase)

Algorithm 3 Reduce phase for the Chi-FRBCS-BigDataCS algorithm REDUCE(key, values):

Input: <key,values> pair, where key is any Long value and values are the RBs generated by each mapper.
Output: <key’,value’ > pair, where key’ is a null value and value’ is the final RB.

1: while values.hasNext() do

2: ruleBase <— values.getValue()

3: for i =0 to ruleBase.size() — 1 do

4. if finalRuleBase.size() == 0 then

5: finalRuleBase < finalRuleBase.add(ruleBase.get(i));

6: else

7 if \finalRuleBase.duplicated(ruleBase.get(i)) then

8: finalRuleBase < finalRuleBase.add(ruleBase.get(i));

9: else
10: if The consequent of those rules belongs to different classes then
11: rule < finalRuleBase.getRuleWithHighestRuleWeight(ruleBase.get(i))
12: finalRuleBase < finalRuleBase.add(rule);
13: end if
14: end if
15: end if
16: end for

17: end while
18: EMIT (null, finalRuleBase)

5.3. Classification of new patterns

In this section, we will describe how new instances belonging to a dataset are classified considering the KB built
previously. When the MapReduce process devoted to the building of the KB has finished, a new MapReduce process
is initiated to estimate the class associated to a dataset. Specifically, this phase is also based on a MapReduce design
where each map process is responsible for estimating the class for the examples included in its data segment using the
final KB previously generated. The process follows the next steps:

e [nitial: In the same way as in the first step of the building of the model, this step performs a segmentation of
the input dataset into independent HDFS blocks; replicates and transfers them to other machines to be finally
processed independently by each map task at the same time. This step is automatically performed by the Hadoop
system, the MapReduce implementation we are using.

e Map: In this next step, each map task estimates the class for the examples included in the data block available
for the mapper using the FRM of the winner rule. In particular, for each example, we compute for all the rules
in the RB the product of the rule weight with the compatibility degree between the linguistic fuzzy labels that
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compose the antecedent of the rule and the example attribute values. The rule that obtains the highest value in this
computation determines the new class for the example which is the class consequent of that rule.

e Final: In this last step, the predictions generated by each mapper are aggregated to conform the final predictions
file. This step is just a concatenation of the results provided by each mapper without any extra computation.

It is important to note that the classification routine does not include a reduce step as it does not need to perform
any kind of calculation to combine the results obtained by each mapper. Algorithm 4 gives the pseudo-code of the
Map function of the MapReduce job for the classification phase. In this algorithm, Line (2) estimates the class for an
instance and Line (5) saves the previously generated predictions.

Algorithm 4 Map phase for the Chi-FRBCS-BigDataCS algorithm for classifying phase MAP(key, value):

Input: <key,value> pair, where key is the offset in bytes and value is the content of an instance.

Output: <key’,value’ > pair, where key’ indicates the class of an instance and value’ contains its prediction.
. instance < INSTANCE_REPRESENTATION (value)

. prediction <— CLASSIFY (finalRuleBase, instance)

. lkey < lkey.set(instance.getClass())

. Ivalue < Ivalue.set(prediction)

: EMIT (lkey, lvalue)

[ O R

5.4. Sample procedure of the Chi-FRBCS-BigDataCS algorithm for Imbalanced Big Data: A Case of Study

In order to illustrate how the Chi-FRBCS-BigDataCS algorithm works we have selected an imbalanced big data
problem, the kddcup_full_DOS_versus_UZ2R dataset, to describe how the proposal behaves over it. This dataset is an
imbalanced big data example with 41 input attributes and 3 883 422 instances. For this specific run, we have chosen
the Sth partition of the 5-fcv used in the experimental study developed in this paper. This partition uses 3 105 769
instances for training (38 from the minority class, 3 105 731 from the majority class) and 777 653 for test (10 from the
minority class, 777 643 from the majority class). We use 8 mappers in the Hadoop environment. Further information
about this dataset is available in Section 6.1.

First, a MapReduce process is initiated in the building of the KB of the Chi-FRBCS-BigDataCS algorithm. The
process follows the next steps:

e [nitial: The first step is to estimate the costs for each class according to the procedure described in Section 4.1:
the misclassification cost for instances in the majority class is 1 and the misclassification cost for examples that
are associated to the minority class is the IR, that is, 81 729.76. The range of the different features of the dataset
and the DB are also computed in this stage. Then, a segmentation of the training dataset into independent HDFS
blocks is automatically performed; these blocks are replicated and transferred to other machines in the cluster and
are processed by the map tasks in parallel. Each of these data blocks contains approximately 4.75 minority class
samples and 388 216.38 majority class samples. Table 4 shows the actual number of instances from both classes
available for each map task. This table shows that the distribution of samples is not completely stratified, as it is
performed automatically by the Hadoop environment which does not consider the classes distribution.

e Map: Next, each map task builds a RB with the data available in its partition and generates a file containing the
RB.

e Reduce: Later, the final RB is built from the RBs provided by each mapper, selecting from rules that share the
same antecedent the rules with the greatest weight. In this manner, the reduce phase is able to decrement the
number of final rules and easing the complexity of the model. Table 5 shows the number of rules by map task
created in our case of study and the number of final rules. We have created 8 RBs, the number of map process
that was made available in the Hadoop environment. We can observe that the number of rules has dramatically
decreased from the 446 rules that were created by all the mappers to the 70 rules that finally compose the rule
base.

e Final: Finally, the RB generated in the previous step and the DB calculated in the initial phase form the final KB
that is provided as the output of the computation process.
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Table 4
Number of instances available for each map task for the Chi-FRBCS-BigDataCS version
with 8 mappers.

kddcup_full_DOS_versus_U2R

Mapper ID Total instances Minority class instances Majority class instances

1 388226 7 388219
2 388223 5 388218
3 388220 2 388218
4 388201 4 388197
5 388233 6 388227
6 388220 4 388216
7 388222 5 388217
8 388224 5 388219
Table 5

Number of rules generated by map task and number of final rules for
the Chi-FRBCS-BigDataCS version with 8 mappers.

kddcup_full_DOS_versus_U2R
NumRules by mapper Final numRules

RB size: 60 RBp, size: 70
RB; size: 60
RBj size: 55
RBy size: 52
RBj5 size: 49
RBg size: 60
RB7 size: 52
RBg size: 58

Once we have finished the MapReduce process devoted to the building of the model, we generate a new MapReduce
process to estimate the class for the examples of the training and test dataset:

e [nitial: At the beginning, in the same way as in the building of the model, the algorithm performs a segmentation
of the input dataset into independent HDFS blocks; replicates and transfers them to other machines to be finally
processed independently by each map task concurrently.

e Map: Next, each map task estimates the classes of a subset of the dataset for every instance stored in it considering
the final KB built previously, using the winning rule as FRM.

e Final: Finally, an aggregation of the predictions generated by each mapper compose the final predictions file.

6. Experimental study

In this section we show the experimental study carried out on the behavior of Chi-FRBCS-BigDataCS for imbal-
anced big data. First, in Section 6.1 we provide details of the classification problems chosen for the experimentation.
Some of them have been used in previous sections for specific cases of study. Then, Section 6.2 introduces the algo-
rithms selected for the comparison with the proposed approach and their configuration parameters. This section also
details the infrastructure on which the experiments have been executed. Finally, Section 6.3 provides the performance
results for the approaches using the AUC measure and shows the time elapsed for the datasets considered in the study.

6.1. Datasets used in the study

In order to analyze the quality of our approach, Chi-FRBCS-BigDataCS, we have run our experiments around
three datasets from the UCI dataset repository [73]: the KDD Cup 1999 dataset, the Record Linkage Comparison
Patterns (RLCP) dataset and the Poker Hand dataset. The KDD Cup 1999 dataset was used in the Third International
Knowledge Discovery and Data Mining Tools Competition. It is a problem that represents a network intrusion detector,
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and it aims to differentiate between good normal connections and bad connections that represent the different types
of attacks. On the other hand, the underlying records in the Record Linkage Comparison Patterns Dataset stem from
the epidemiological cancer registry of the German state of North Rhine-Westphalia. The Poker Hand dataset purpose
is to predict poker hands.

Since the KDD Cup 1999 dataset and the Poker Hand dataset contain multiple classes, we have created several
big data cases of study derived from them. More specifically, for the KDD Cup 1999 dataset we have generated new
versions of the KDD Cup data using the normal and DOS connections as majority classes and the rest of attacks have
been considered as minority classes. For the Poker Hand dataset we have obtained new versions using the 0 and 1
classes (“Nothing in hand” and “One pair” respectively) as majority classes and the rest of classes as minority classes.
Moreover, we have also generated smaller versions of the original dataset selecting the 10% of the instances. For these
reduced versions we have excluded the cases of study that contain less than 200 samples in their full versions, to make
sure that in each mapper there is at least one sample of each class to learn the model.

Table 6 summarizes the data employed in this study and shows, for each dataset, the number of examples (#Ex.),
number of attributes (#Atts.), class name of each class (minority and majority), number of instances for each class,
class attribute distribution and IR.

In order to develop our study we use a 5-fold stratified cross validation partitioning scheme, that is, five random
partitions of data with a 20% of the samples where the combination of 4 of them (80%) is considered as training set
and the remaining one is treated as test set. For each dataset we consider the average results of the five partitions.

6.2. Algorithms and parameter settings

To verify the performance of the proposed model, we compare the results obtained by Chi-FRBCS-BigDataCS
with the basic versions of the algorithm that solve the big data and imbalanced problems separately. Specifically, the
algorithms considered in the study have been:

e Chi-FRBCS [23]: The classical fuzzy rule based classifier which was described in Section 3.2.

e Chi-FRBCS-CS: This is the proposed Chi-FRBCS version that introduces cost-sensitive learning modifying
some of the Chi-FRBCS operations. This algorithm has been described in Section 4.1.

e Chi-FRBCS-BigData: This is the basic Chi-FRBCS version adapted to deal with big data. It is an algorithm
that follows a MapReduce design which has been implemented under the Hadoop framework and is described in
Section 5.

e Chi-FRBCS-BigDataCS: This is our final proposal, the modified version of the Chi-FRBCS-CS that has been
prepared to take on imbalanced big data using a MapReduce scheme which has been implemented using Hadoop
combined with cost-sensitive learning. This algorithm has also been described in Section 5.

The experiments associated to the sequential versions of the Chi-FRBCS algorithm have been run using the KEEL
Software Tool [75,76].

Considering the parameters used in the experimentation, these algorithms use three fuzzy labels for each attribute,
the product T-norm as conjunction operator in order to compute the matching degree of the antecedent of the rule with
the example, PCF or PCF-CS (depending on the use of a CS version) to compute the rule weight and the FRM of the
winning rule. Finally, only the approaches adapted for big data use a parameter related to the MapReduce procedure,
which is the number of subsets of the original data that are created and provided for the map tasks. We have selected
two different set of values for this parameter, as it has a direct impact on the AUC performance obtained and the
runtime spent by the algorithms. Specifically, for the experiments on the reduced versions (10%) of the cases of study
we have used 2, 4, 6, 8 and 16 mappers to have a better insight in the comparison with the sequential versions. For
the full versions of the cases of study, we use 8, 16, 32 and 64 mappers to better address the big data cases under
consideration. In this manner, the number of RBs created in the intermediate step of the algorithm depends on the
number of map tasks.

With respect to the infrastructure used to perform the experiments, for the MapReduce designs, we have used the
Atlas research group’s cluster with 12 nodes, connected with a 1 Gb/s ethernet. Each node is composed by two Intel
E5-2620 microprocessors (at 2 GHz, 15MB cache) and 64GB of main memory running under Linux CentOS 6.3.
Furthermore, the cluster works with Hadoop 2.0.0 (Cloudera CDH4.3.0), where one node is configured as namenode

Please cite this article in press as: V. Lopez et al., Cost-sensitive linguistic fuzzy rule based classification systems under the MapReduce
framework for imbalanced big data, Fuzzy Sets and Systems (2014), http://dx.doi.org/10.1016/j.fss.2014.01.015




FSS:6482

V. Lopez et al. / Fuzzy Sets and Systems eee (eeee) eoe—esee 19
Table 6
Summary of imbalanced datasets.
Datasets #EX. #Atts. Class (maj; min) #Class(maj; min) 9%Class(maj; min) IR
kddcup_10_DOS_versus_normal 485615 41 (DOS; normal) (388337, 97278) (79.968; 20.032) 3.99
kddcup_10_DOS_versus_PRB 392447 41 (DOS; PRB) (388337, 4110) (98.953; 1.047) 94.49
kddcup_10_DOS_versus_R2L 388449 41 (DOS; R2L) (388337, 112) (99.971; 0.029) 3467.29
kddcup_10_normal_versus_PRB 101388 41 (normal; PRB) (97278; 4110) (95.946; 4.054) 23.67
kddcup_10_normal_versus_R2L 97390 41 (normal; R2L) (97278; 112) (99.885; 0.115) 868.55
poker_10_0_vs_2 56252 10 0;2) (51370, 4882) (91.321; 8.679) 10.52
poker_10_0_vs_3 53533 10 0; 3) (51370; 2163) (95.96; 4.04) 23.75
poker_10_0_vs_4 51767 10 0;4) (513705 397) (99.233; 0.767) 129.40
poker_10_0_vs_5 51575 10 0;5) (513705 205) (99.603; 0.397) 250.59
poker_10_0_vs_6 51516 10 (0; 6) (51370; 146) (99.717; 0.283) 351.85
poker_10_0_vs_7 51393 10 ©;7) (513705 23) (99.955; 0.045) 2233.48
poker_10_1_vs_2 48191 10 1;2) (43 309; 4882) (89.869; 10.131) 8.87
poker_10_1_vs_3 45472 10 (1;3) (43309; 2163) (95.243; 4.757) 20.02
poker_10_1_vs_4 43706 10 1;4) (43309; 397) (99.092; 0.908) 109.09
poker_10_1_vs_5 43514 10 (1;5) (43 309; 205) (99.529; 0.471) 211.26
poker_10_1_vs_6 43455 10 (1; 6) (43 309; 146) (99.664; 0.336) 296.64
poker_10_1_vs_7 43332 10 ;7 (43309; 23) (99.947; 0.053) 1883.00
RLCP_10 574913 2 (FALSE; TRUE) (572 820; 2093) (99.636; 0.364) 273.68
kddcup_DOS_versus_normal 4856151 41 (DOS; normal) (3883370;972781) (79.968; 20.032) 3.99
kddcup_DOS_versus_PRB 3924472 41 (DOS; PRB) (3883370;41102) (98.953; 1.047) 94.48
kddcup_DOS_versus_R2L 3884496 41 (DOS; R2L) (3883370; 1126) (99.971; 0.029) 3448.82
kddcup_DOS_versus_U2R 3883422 41 (DOS; U2R) (3883370; 52) (99.999; 0.001) 74680.19
kddcup_normal_versus_PRB 1013883 41 (normal; PRB) (972781; 41 102) (95.946; 4.054) 23.67
kddcup_normal_versus_R2L 973907 41 (normal; R2L) (972781, 1126) (99.884; 0.116) 863.93
kddcup_normal_versus_U2R 972833 41 (normal; U2R) (972781, 52) (99.995; 0.005) 18707.33
poker_0_vs_2 562530 10 0;2) (513702; 48 828) (91.32; 8.68) 10.52
poker_0_vs_3 535336 10 0; 3) (513702; 21 634) (95.959; 4.041) 23.75
poker_0_vs_4 517680 10 0;4) (513702; 3978) (99.232; 0.768) 129.14
poker_0_vs_5 515752 10 0;5) (513702; 2050) (99.603; 0.397) 250.59
poker_0_vs_6 515162 10 (0; 6) (513702; 1460) (99.717; 0.283) 351.85
poker_0_vs_7 513938 10 ©;7) (513702; 236) (99.954; 0.046) 2176.70
poker_0_vs_8 513719 10 0; 8) (513702; 17) (99.997; 0.003) 30217.76
poker_0_vs_9 513710 10 0;9) (513702; 8) (99.998; 0.002) 64212.75
poker_1_vs_2 481925 10 (1;2) (433097, 48 828) (89.868; 10.132) 8.87
poker_1_vs_3 454731 10 (1;3) (433097, 21 634) (95.242; 4.758) 20.02
poker_1_vs_4 437075 10 (1;4) (433097, 3978) (99.09; 0.91) 108.87
poker_1_vs_5 435147 10 (1;5) (433097, 2050) (99.529; 0.471) 211.27
poker_1_vs_6 434557 10 (1; 6) (433097, 1460) (99.664; 0.336) 296.64
poker_1_vs_7 433333 10 ;7 (433097, 236) (99.946; 0.054) 1835.16
poker_1_vs_8 433114 10 (1; 8) (433097; 17) (99.996; 0.004) 25476.29
poker_1_vs_9 433105 10 (1,9 (433097, 8) (99.998; 0.002) 54137.13
RLCP 5749132 2 (FALSE; TRUE) (5728201, 20931) (99.636; 0.364) 273.67

and jobtracker, and the rest are datanodes and task-trackers. For the sequential experiments we have used a cluster
with Intel Core 17 930 microprocessors (at 2.8 GHz, 15MB cache) and 24GB of main memory connected with a 1 Gb/s
ethernet. We acknowledge that the runtime comparisons between the sequential versions and the MapReduce designs
are not performed in identical machines, however, the time advantage is obtained for the sequential versions which
are, even in this case, notably slower than the Hadoop implementations.

6.3. Analysis of the Chi-FRBCS-BigDataCS behavior

In this part of the study, we want to analyze the behavior of the Chi-FRBCS-BigDataCS proposal in the scenario of
imbalanced big data in contrast with the other learning proposals. This section is divided into two parts: the first part
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(Section 6.3.1) is devoted to the presentation of the precision of our approach in terms of classification performance
using the AUC measure; the second part (Section 6.3.2) is devoted to the analysis on the runtime of the model.

6.3.1. Analysis on the precision of the model

In this section, we present a set of experiments to illustrate and demonstrate the behavior of Chi-FRBCS-
BigDataCS. These experiments are organized in two phases: the first one compares the behavior of the different
alternatives using the cases of study that contain the 10% of the instances of the original datasets while the second
one compares the behavior of the approaches over the full datasets considered in the study. The experiments where
organized in this way to be able to contrast the results of the big data versions in relation with the serial versions of the
algorithm for the smaller datasets. Additionally, this organization also permits to check how the results change when
instead of using a reduced version of the dataset the whole dataset is utilized.

In Tables 7 and 8 we present the average results in training and test for the reduced versions (10%) of the imbalanced
big data cases of study for the Chi-FRBCS and Chi-FRBCS-CS versions respectively. These tables are divided by
columns in two parts: the first part corresponds to the results of the sequential variant while the second part is related
to the big data variants of the Chi-FRBCS and Chi-FRBCS-CS algorithms respectively. Furthermore, the results for
the big data alternatives are divided by columns in five parts, which correspond to the number of mappers used: 2, 4,
6, 8 and 16 mappers for each case.

Looking at the results we can observe that the performance obtained, both in training and test, is higher in most
of the cases of study for the Chi-FRBCS-CS alternatives, the sequential approach and the big data adaptation for any
number of mappers configuration. This situation demonstrates the positive influence of the usage of cost-sensitive
learning when dealing with imbalanced data as the classifier is able to provide appropriate solutions in an arduous
environment. Additionally, we can observe that the model does not present a strong overfitting on the training set in
relation with the test set, as we cannot find huge differences between the results provided for both sets. For instance,
for the kddcup_10_normal_versus_PRB dataset using the Chi-FRBCS-BigDataCS with 8 mappers, an AUC of 0.9728
in training is obtained which is closely followed by an AUC in test of 0.9723. There are even cases where the test set
obtains a better performance than the training set such as kddcup_10_normal_versus_R2L for Chi-FRBCS-BigDataCS
using 8 mappers with an AUC in training of 0.8747 and an AUC in test of 0.8784. This situation is caused by the
usage of the PCF or PCF-CS to compute the rule weight as these measures try to make rules as general as possible
considering the current dataset.

Next, we compare the results considering the cases of study derived from all original training sets in relation
with the number of mappers considered. For the KDD Cup 1999 cases of study we find that the behavior of the
Chi-FRBCS and Chi-FRBCS-CS approaches is not steady in relation to the number of mappers considered in the
experiments. For instance, for the Chi-FRBCS sequential version, the test results achieved are worse than the results
for the Chi-FRBCS-BigData approach. In this case, increasing the number of mappers may also increase the AUC
metric, however, when the number of mappers is too high this performance is decreased. The Chi-FRBCS-CS se-
quential variant, is able to provide better test results than the Chi-FRBCS-BigDataCS proposal. However, there is
not a clear optimal configuration for the number of mappers used, as the results are not stable when increasing that
number of mappers. Furthermore, the worse results are obtained for the highest number of mappers considered in the
experiment. In contrast, the training results provide more sensible results, decreasing the performance in a reasonable
manner when the number of mappers is enlarged.

In the case of the Poker Hand cases of study we first discover that the results obtained for this set of data are
a bit poor, as the AUC measure is usually ranging from 0.5 to 0.6. Similarly to the KDD Cup 1999 dataset, the
Chi-FRBCS approaches are presenting erratic results where the sequential version provides worse AUC values than
the Chi-FRBCS-BigData alternative, which is also improving when larger values for the number of mappers are used.
In the case of the Chi-FRBCS-CS variants, the performance obtained is clearly related both in training and test with
the number of mappers considered: the best performance is achieved by the sequential Chi-FRBCS-CS algorithm
while the performance drops when bigger number of mappers are used.

The RLCP dataset is not able to properly identify instances from both classes in the Chi-FRBCS approaches,
as the results obtained for all the variants and the number of mappers considered is 0.5. When the Chi-FRBCS-CS
alternatives are tested, the RLCP provides reasonable AUC results with almost no variance when the sequential version
is contrasted with smaller values for the number of mappers. Larger values for the number of mappers need to be
compared to find a slight drop in accuracy.
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Table 7

Average results for the Chi-FRBCS versions for the imbalanced big data cases of study using the AUC measure.

Datasets Chi-FRBCS Chi-FRBCS-BigData
2 mappers 4 mappers 6 mappers 8 mappers 16 mappers

AUCy, AUCyg¢ AUCy, AUCyg¢ AUCy, AUCyg¢ AUCy, AUCyg¢ AUCy, AUCygs AUCy, AUCyg¢
kddcup_10_DOS_versus_normal 0.9973 0.9972 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993 0.9992 0.9993
kddcup_10_DOS_versus_PRB 0.8440 0.8430 0.9055 0.9055 0.9052 0.9059 09112 0.9116 0.9029 0.9009 0.9088 0.9105
kddcup_10_DOS_versus_R2L 1.0000 0.9897 0.9951 0.9954 0.9988 0.9954 0.9987 1.0000 0.9988 1.0000 0.9013 0.8651
kddcup_10_normal_versus_PRB 0.8608 0.8589 0.9364 0.9376 0.9286 0.9284 0.9304 0.9311 0.9337 0.9332 0.9376 0.9381
kddcup_10_normal_versus_R2L 0.5000 0.5000 0.5000 0.5000 0.5120 0.5032 0.5560 0.5234 0.5419 0.5359 0.5195 0.5111
Average (kddcup) 0.8404 0.8377 0.8673 0.8676 0.8688 0.8664 0.8791 0.8731 0.8753 0.8739 0.8533 0.8448
poker_10_0_vs_2 0.5753 0.5052 0.5917 0.5108 0.6143 0.5146 0.6343 0.5182 0.6493 0.5195 0.6791 0.5244
poker_10_0_vs_3 0.5955 0.5082 0.6204 0.5180 0.6443 0.5222 0.6600 0.5291 0.6725 0.5310 0.7018 0.5381
poker_10_0_vs_4 0.5114 0.4956 0.5185 0.4999 0.5336 0.4998 0.5575 0.4998 0.5704 0.4997 0.6112 0.5020
poker_10_0_vs_5 0.7662 0.7039 0.8053 0.7857 0.8110 0.7992 0.8138 0.8002 0.8143 0.8002 0.8258 0.8001
poker_10_0_vs_6 0.5928 0.4963 0.6128 0.4999 0.6321 0.5044 0.6454 0.5044 0.6659 0.5044 0.6972 0.5043
poker_10_0_vs_7 0.5748 0.4960 0.5902 0.5000 0.5891 0.5000 0.6044 0.5000 0.6044 0.5000 0.6595 0.5000
poker_10_1_vs_2 0.5558 0.4933 0.5749 0.5045 0.6027 0.5066 0.6183 0.5086 0.6330 0.5087 0.6667 0.5111
poker_10_1_vs_3 0.5503 0.4924 0.5756 0.5028 0.5991 0.5048 0.6134 0.5047 0.6288 0.5065 0.6502 0.5082
poker_10_1_vs_4 0.5022 0.4901 0.5205 0.4999 0.5398 0.4997 0.5419 0.4996 0.5550 0.4994 0.5862 0.4990
poker_10_1_vs_5 0.7040 0.6222 0.7171 0.6816 0.7331 0.7049 0.7365 0.6977 0.7332 0.7047 0.7434 0.7045
poker_10_1_vs_6 0.5545 0.4891 0.5750 0.4999 0.5986 0.4997 0.6037 0.4997 0.6107 0.4997 0.6388 0.4994
poker_10_1_vs_7 0.5831 0.4891 0.5831 0.5000 0.5792 0.5000 0.5992 0.5000 0.5750 0.5000 0.5950 0.5000
Average (poker) 0.5888 0.5235 0.6071 0.5419 0.6231 0.5463 0.6357 0.5468 0.6427 0.5478 0.6712 0.5493
RLCP_10 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Total average 0.6538 0.6095 0.6734 0.6300 0.6845 0.6327 0.6958 0.6349 0.6994 0.6357 0.7123 0.6286
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Table 8

Average results for the Chi-FRBCS cost-sensitive versions for the imbalanced big data cases of study using the AUC measure.

Datasets Chi-FRBCS-CS Chi-FRBCS-BigDataCS
2 mappers 4 mappers 6 mappers 8 mappers 16 mappers

AUC;, AUCtg; AUC;y AUCyg¢ AUC;, AUCg; AUCy, AUCtg; AUC, AUCg¢ AUC;, AUCg;
kddcup_10_DOS_versus_normal 0.9975 0.9974 0.9994 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9994 0.9993
kddcup_10_DOS_versus_PRB 0.9849 0.9831 0.9588 0.9578 0.9588 0.9575 0.9584 0.9573 0.9582 0.9569 0.9571 0.9569
kddcup_10_DOS_versus_R2L 0.9999 0.9897 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9524 0.9318
kddcup_10_normal_versus_PRB 0.9707 0.9697 0.9733 0.9730 0.9728 0.9729 0.9733 0.9729 0.9728 0.9723 0.9687 0.9688
kddcup_10_normal_versus_R2L 0.9729 0.9499 0.9638 0.9161 0.9640 0.9216 0.8983 0.8909 0.8747 0.8784 0.7443 0.7428
Average (kddcup) 0.9852 0.9780 0.9790 0.9693 0.9790 0.9703 0.9659 0.9641 0.9610 0.9614 0.9244 0.9199
poker_10_0_vs_2 0.9075 0.5905 0.8847 0.5911 0.8476 0.5737 0.8315 0.5689 0.8164 0.5623 0.7865 0.5500
poker_10_0_vs_3 0.9536 0.6173 0.9119 0.6213 0.8652 0.5960 0.8358 0.5824 0.8148 0.5727 0.7845 0.5587
poker_10_0_vs_4 0.9899 0.5787 0.9523 0.5633 0.8504 0.5324 0.7800 0.5287 0.7642 0.5185 0.7224 0.5190
poker_10_0_vs_5 0.9921 0.8756 0.9793 0.8706 0.9238 0.8399 0.8685 0.8120 0.8554 0.8097 0.8311 0.7997
poker_10_0_vs_6 0.9977 0.5082 0.9309 0.5148 0.8344 0.5116 0.8165 0.5117 0.8128 0.5115 0.7955 0.5115
poker_10_0_vs_7 0.9990 0.4947 0.8666 0.4999 0.8506 0.4999 0.8245 0.4999 0.8084 0.4999 0.7936 0.5000
poker_10_1_vs_2 0.8818 0.5306 0.8580 0.5481 0.8198 0.5380 0.8016 0.5394 0.7848 0.5313 0.7563 0.5261
poker_10_1_vs_3 0.9338 0.5368 0.8874 0.5423 0.8206 0.5337 0.7885 0.5279 0.7664 0.5203 0.7218 0.5104
poker_10_1_vs_4 0.9800 0.5359 0.9135 0.5402 0.7787 0.5193 0.7219 0.5086 0.6848 0.5101 0.6459 0.5073
poker_10_1_vs_5 0.9918 0.8782 0.9649 0.8250 0.9101 0.7881 0.8394 0.7369 0.8144 0.7299 0.7608 0.7105
poker_10_1_vs_6 0.9939 0.4923 0.8518 0.4974 0.7488 0.4986 0.6951 0.4989 0.6940 0.4989 0.6819 0.4991
poker_10_1_vs_7 0.9981 0.4868 0.8867 0.4996 0.7085 0.4999 0.6880 0.4999 0.6111 0.4999 0.6111 0.4999
Average (poker) 0.9683 0.5938 0.9073 0.5928 0.8299 0.5776 0.7909 0.5679 0.7690 0.5638 0.7410 0.5577
RLCP_10 0.9135 0.9135 0.9135 0.9135 0.9135 0.9135 0.9135 0.9135 0.9110 0.9104 0.9070 0.9069
Total average 0.9699 0.7183 0.9276 0.7152 0.8759 0.7053 0.8463 0.6972 0.8302 0.6935 0.8011 0.6777
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In all these cases of study we can say that there is not a strong degradation in the performance when using the
MapReduce versions. Specifically, the Chi-FRBCS-BigDataCS is more affected by the increasing number of mappers
than Chi-FRBCS-BigData, however, this behavior is expected because increasing the number of portions induces the
dataset shift problem and the small sample size, situations that have a pernicious effect when dealing with imbalanced
datasets. To test the influence of the small sample size problem when different number of mappers are considered, we
show in Table 9 the diverse number of minority and majority class instances by mapper for the Chi-FRBCS-BigData
versions. Please note that the number of instances per mapper for Chi-FRBCS-BigData and Chi-FRBCS-BigDataCS
is the same, because the initial stage in both algorithms is identical: the framework automatically divides the data in
different information portions that are then copied and distributed to all the mapper processes considered.

As it is expected, the number of instances per mapper from each class is drastically reduced when higher values
for the number of mappers are obtained. This decrement on the available number of instances is observed in both
classes, however, it has a greater impact on the minority class. The minimum average number of samples per mapper
in the most adverse situation for the majority class is 2164.75 for all the reduced versions considered, which is
a reasonable number of samples to learn the associated fuzzy rules. However, when the number of minority class
samples is observed for the maximum number of mappers considered, we find several cases of study that do not have
at least 7 minority class samples per mapper. In these cases we encounter the small sample size problem which is
responsible for the poor results achieved. The small sample size problem also influences the increasing drop in the
performance of the algorithms when larger values for the number of mappers are utilized. For instance, the cases of
study with the lesser number of minority class instances, like poker_10_0_vs_7 and poker_10_1_vs_7, obtain very
poor results being unable to properly identify instances from both classes. In the kddcup_10_normal_versus_R2L case
of study we can also observe the dramatical drop in the performance, going from an AUC value of 0.9693 when 2
mappers are used to 0.7428 for 16 mappers, as we range from 45.60 minority class instances by mapper to 5.70.

Table 10 shows the average results in training and test for the full imbalanced big data cases of study. This table
is divided by columns in two parts: the first column is related to the Chi-FRBCS-BigData algorithm while the second
column is related with the cost-sensitive alternative, the Chi-FRBCS-BigDataCS algorithm. As in the preceding case,
these algorithms organize their results by columns in four parts according to the number of mappers: 8, 16, 32 and 64
respectively. Please note that the sequential versions were not included in this table since these approaches were not
able to complete an experiment with data this size as it was shown in the scalability studies (Sections 3.3 and 4.2).

On the first hand, we can observe a similar behavior between the reduced datasets in relation with the full datasets.
Specifically, Chi-FRBCS-BigDataCS is able to provide a much better performance than Chi-FRBCS-BigData for all
the diverse number of mappers tested. The differences between the training and test results are observed only for the
Poker Hand cases of study which means that overfitting appears when the size of the training set is smaller.

On the other hand, the results related to the number of mappers used also resemble the results obtained for the
sequential versions. For instance, when examining the number of mappers used for the big data developments, we can
see that as the number of mappers increases and therefore the data available for each mapper is reduced, our proposal
Chi-FRBCS-BigDataCS maintains a slight decrease in performance whereas the Chi-FRBCS-BigData alternative is
not able to show a clear tendency.

When we take a closer look grouping together the cases of study that are derived from the same datasets we can ob-
serve that the general conclusions extracted can also be applied to these groups. Specifically, the KDD Cup 1999 cases
of study follow this different behavior for Chi-FRBCS-BigData and Chi-FRBCS-BigDataCS. Chi-FRBCS-BigData
does not show a clear trend for diverse values of the number of mappers, while the Chi-FRBCS-BigDataCS method
decrements its performance when larger number of mappers are utilized.

The Poker Hand cases of study also closely follow this disposition, not having a shift according to the number of
mappers for the Chi-FRBCS-BigData method but degrading the performance of the Chi-FRBCS-BigDataCS method
for high values of the number of mappers considered. In addition, we also observe that the values obtained for the
AUC measure are still poor for these cases of study, however, they are better than the results obtained for the reduced
10% cases of study previously analyzed.

The RLCP dataset shows a similar behavior to the one previously analyzed. The Chi-FRBCS-BigData approach
does not show a correct classification of the samples considered as it obtains an AUC value of 0.5. For the Chi-FRBCS-
BigDataCS, the results achieved, while being better, do not vary much with respect to the number of mappers. For the
smaller values of the number of mappers the AUC results are the same, while they are slightly diminished when larger
values are considered.

Please cite this article in press as: V. Lopez et al., Cost-sensitive linguistic fuzzy rule based classification systems under the MapReduce
framework for imbalanced big data, Fuzzy Sets and Systems (2014), http://dx.doi.org/10.1016/j.fss.2014.01.015
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Table 9

Average number of minority and majority class instances by mapper for the Chi-FRBCS-BigData and Chi-FRBCS-BigDataCS versions.

Datasets Chi-FRBCS-BigData and Chi-FRBCS-BigDataCS
2 mappers 4 mappers 6 mappers 8 mappers 16 mappers
#min class #maj class #min class #maj class #min class #maj class #min class #maj class #min class #maj class

kddcup_10_DOS_versus_normal 39014.40 155231.60 19507.20 77615.80 13004.80 51743.87 9753.60 38807.90 4876.80 19403.95
kddcup_10_DOS_versus_PRB 1612.00 155366.80 806.00 77683.40 537.33 51788.93 403.00 38841.70 201.50 19420.85
kddcup_10_DOS_versus_R2L 40.80 155338.80 20.40 77669.40 13.60 51779.60 10.20 38834.70 5.10 19417.35
kddcup_10_normal_versus_PRB 1639.20 38916.00 819.60 19458.00 546.40 12972.00 409.80 9729.00 204.90 4864.50
kddcup_10_normal_versus_R2L 45.60 38910.40 22.80 19455.20 15.20 12970.13 11.40 9727.60 5.70 4863.80
poker_10_0_vs_2 1952.00 20548.80 976.00 10274.40 650.67 6849.60 488.00 5137.20 244.00 2568.60
poker_10_0_vs_3 906.40 20506.80 453.20 10253.40 302.13 6835.60 226.60 5126.70 113.30 2563.35
poker_10_0_vs_4 162.00 20544.80 81.00 10272.40 54.00 6848.26 40.50 5136.20 20.25 2568.10
poker_10_0_vs_5 88.00 20542.00 44.00 10271.00 29.33 6847.33 22.00 5135.50 11.00 2567.75
poker_10_0_vs_6 52.40 20554.00 26.20 10277.00 17.46 6851.33 13.10 5138.50 6.55 2569.25
poker_10_0_vs_7 6.80 20550.40 3.40 10275.20 2.26 6850.13 1.70 5137.60 0.85 2568.80
poker_10_1_vs_2 1927.60 17348.80 963.80 8674.40 642.53 5782.93 481.90 4337.20 240.95 2168.60
poker_10_1 vs 3 856.80 17332.00 428.40 8666.00 285.60 5777.33 214.20 4333.00 107.10 2166.50
poker_10_1_vs_4 156.00 17326.40 78.00 8663.20 52.00 5775.46 39.00 4331.60 19.50 2165.80
poker_10_1_vs_5 87.60 17318.00 43.80 8659.00 29.20 5772.66 21.90 4329.50 10.95 2164.75
poker_10_1_vs_6 56.80 17325.20 28.40 8662.60 18.93 5775.06 14.20 4331.30 7.10 2165.65
poker_10_1_vs_7 8.80 17324.00 4.40 8662.00 2.93 5774.66 2.20 4331.00 1.10 2165.50
RLCP_10 827.60 229137.60 413.80 114568.80 275.87 76379.20 206.90 57284.40 103.45 28642.20
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Table 10

Average results for the big data Chi-FRBCS versions for the full imbalanced big data cases of study using the AUC measure.

Datasets Chi-FRBCS-BigData Chi-FRBCS-BigDataCS

8 mappers 16 mappers 32 mappers 64 mappers 8 mappers 16 mappers 32 mappers 64 mappers

AUC;, AUCyy AUC, AUCy AUCy AUCyy AUC, AUCy AUC,, AUChy AUC, AUCyy AUC, AUC; AUCy,  AUCy
kddcup_DOS_versus_normal  0.9992  0.9992  0.9992 0.9992 0.9993 0.9993 0.9992 0.9992 0.9993 0.9993 0.9993 0.9993 09993 0.9993 0.9993 0.9993
kddcup_DOS_versus_PRB 0.8639 0.8636 0.8636 0.8633 0.8639 0.8639 0.8634 0.8633 0.9558 0.9557 0.9556 0.9556 0.9553 0.9553 0.9546 0.9545
kddcup_DOS_versus_R2L 09941 09913 09881 0.9886 09779 09769 0.9942 0.9918  0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
kddcup_DOS_versus_U2R 0.8544 0.8464 0.8544 0.8464 0.8544 0.8464 0.8544 0.8464 0.9387 0.9366 0.8960 0.8880 0.8960 0.8880  0.8960 0.8880
kddcup_normal_versus_PRB  0.8936 0.8932  0.8701 0.8693 0.8784 0.8788  0.8693 0.8690 0.9681 0.9681 0.9670 0.9671 0.9683 0.9679  0.9663 0.9659
kddcup_normal_versus_R2L  0.5086 0.5050  0.5089 0.5055 0.5197 0.5178 0.5246 0.5223 0.9626 0.9616 0.9460 0.9446 09101 09119 0.8298 0.8229
kddcup_normal_versus_U2R  0.5397 0.5000 0.5454 0.5000 0.5454 0.5000 0.5454 0.5000 0.5518 0.5000 0.5575 0.5000 0.5575 0.5000 0.5575 0.5000
Average (kddcup) 0.8076  0.7998  0.8042 0.7960  0.8056 0.7976  0.8072 0.7989  0.9109 0.9030 0.9030 0.8935 0.8981 0.8889  0.8862 0.8758
poker_0_vs_2 0.5240 0.5146 0.5310 0.5188 0.5400 0.5237 0.5480 0.5271 0.7371 0.6689 0.7048 0.6420 0.6597 0.6054 0.6126 0.5700
poker_0_vs_3 0.5338 0.5189  0.5477 05271 0.5626 0.5367 0.5751 0.5432 0.7950 0.7132  0.7422 0.6686 0.6744 0.6163  0.6250 0.5769
poker_0_vs_4 0.5005 0.5000 0.5012 0.5000 0.5065 0.5005 0.5140 0.5009 0.8262 0.6755 0.6752 0.5961 0.5884 0.5345 0.5526 0.5132
poker_0_vs_5 0.7341 0.7298  0.7483 0.7479  0.7488 0.7486  0.7489 0.7486  0.9686 0.9588 0.8977 0.8859  0.7707 0.7673  0.7490 0.7485
poker_0_vs_6 0.5445 0.5194 0.5553 0.5218 0.5645 0.5264 0.5719 0.5280 0.6559 0.5611 0.6131 0.5410 0.5969 0.5371 0.5943 0.5355
poker_0_vs_7 0.5935 0.5115  0.6220 05139  0.6562 0.5228  0.6704 0.5299  0.6935 0.5294 0.6776 0.5318 0.6825 0.5318 0.6825 0.5318
poker_0_vs_8 0.5000 0.5000 0.6262 0.5000 0.7422 0.5000 0.8333 0.6750 0.8396 0.7750 0.8396 0.7750 0.8396 0.7750 0.8396 0.7750
poker_0_vs_9 0.7500  0.5000 0.7708 0.5000 0.7708 0.5000 0.7708 0.5000 0.7708 0.5000 0.7708 0.5000 0.7708 0.5000 0.7708 0.5000
poker_1_vs_2 0.5032 0.5004 0.5071 0.5015 05125 0.5027 0.5185 0.5045 0.6681 0.5761 0.6354 0.5589 0.5942 0.5363 0.5575 0.5208
poker_1_vs_3 0.5021 0.5002 0.5056 0.5010 0.5114 0.5032 0.5180 0.5054 0.7004 0.6088 0.6383 0.5649 0.5760 0.5326 0.5393 0.5139
poker_1_vs_4 0.5010 0.5000 0.5016 0.5000 0.5035 0.5000 0.5057 0.4999 0.7511 0.6191 0.6054 0.5593 0.5283 0.5062 0.5154 0.5005
poker_1_vs_5 0.7483 0.7481 0.7484 0.7483 0.7486 0.7483  0.7498 0.7490 09745 0.9617 09017 0.8911 0.7814 0.7769  0.7488 0.7486
poker_1_vs_6 0.5047 0.5000 0.5146 0.5010 0.5244 0.5023 0.5313 0.5034 0.5826 0.5163 0.5457 0.5053 0.5387 0.5043  0.5388 0.5044
poker_1_vs_7 0.5077 0.5016  0.5089 0.5000 0.5180 0.5000 0.5278 0.5000 0.5517 0.5000 0.5492 0.5000 0.5457 0.5000 0.5438 0.5000
poker_1_vs_8 0.5125 0.5000 0.6583 0.5000 0.7140 0.5000 0.7693 0.5000 0.7745 0.5000 0.7745 0.5000 0.7745 0.5000 0.7745 0.5000
poker_1_vs_9 0.8383  0.6000 0.8383 0.6000 0.8383 0.6000 0.8383 0.6000 0.8383 0.6000 0.8383 0.6000 0.8383 0.6000 0.8383 0.6000
Average (poker) 0.5811 0.5403 0.6053 0.5426  0.6226 0.5447 0.6369 0.5572  0.7580 0.6415 0.7131 0.6137 0.6725 0.5827 0.6552 0.5712
RLCP 0.5000 0.5000  0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 09134 0.9134 09134 09134 09134 09134 0.9093 0.9092
Total average 0.6438 0.6143  0.6590 0.6147 0.6709 0.6166 0.6809 0.6253 0.8091 0.7291 0.7768 0.7078  0.7483 0.6858  0.7331 0.6741
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The general tendency that incurs in a drop in the performance for good performing algorithms appears usually when
a more parallel solution is compared with a less parallel solution or sequential solution, as only partial information is
available for the computation in contrast with larger portions of information that can even cover the whole information
available. However, this undesirable effect is not only related to the less quantity of data available but also to the
induction of the small sample size problem that further hinders the classification performance in imbalanced situations,
which is noticeable in Chi-FRBCS-BigDataCS. To measure the effect of this problem, we present in Table 11 the
number of minority and majority class instances by mapper for the Chi-FRBCS-BigData versions. We would like to
remind the reader that the number of instances per mapper for Chi-FRBCS-BigData and Chi-FRBCS-BigDataCS is
the same, because the initial stage in both algorithms is identical.

This table displays the enormous reduction in the number of samples from each class when larger values for the
number of mappers are utilized. In this case, as in the reduced versions, the decrement of the available samples from
each class is noticeable, but the influence of the minority class is greater than the influence of the majority class. For
the full datasets, in the most difficult scenario, the average number of majority class instances per mapper is 5413.60,
which is clearly a fair amount of instances to build a model. However, when we turn to the minority class instances,
in the worst case scenario we can find several cases of study that are not even able to provide 1 minority class per
mapper, which are usually cases that are not able to properly identify both classes in the test set. Furthermore, when
we look at not so dramatic cases of study, we can also find problems with 15 to 20 minority class samples. In these
cases, even when there are more instances, the quantity of them is risible with respect to the number of majority
class samples, which means that these cases also suffer from the small sample size problem. Furthermore, the small
sample size problem aggravates the decrement in the performance for the larger values of the number of mappers. For
instance, the kddcup_normal_versus_R2L dataset shows an AUC metric of 0.9616 when 8 mappers are used, while
this value lowers to 0.8229 when the number of mappers is set to 64.

We acknowledge that this decrement in precision is inevitable when a division of the input data is needed to speed
up the classification process; however, these results show that it is of the utmost importance to select an appropriate
threshold to perform the data division for the processing, especially in the presence of imbalanced datasets. When a
good threshold is established, the downfall in precision is admissible but when that threshold does not fit the problem
considered, we can see a lethal reduction in the performance invalidating all the learning process followed due to the
small sample size problem.

6.3.2. Analysis on the runtime of the model

Tables 12 and 13 show the time elapsed in seconds and in the hh:mm:ss.SSS format (hours, minutes, seconds,
milliseconds) for the reduced versions (10%) of the imbalanced big data cases of study for the Chi-FRBCS and
the Chi-FRBCS-BigData alternatives, and for the Chi-FRBCS-CS and Chi-FRBCS-BigDataCS methods respectively.
These tables are divided by columns in two parts: the first part corresponds to the results of the sequential variant
while the second part is related to the big data variants of the Chi-FRBCS and Chi-FRBCS-CS algorithms respectively.
Moreover, the results for the big data versions are divided by columns in five parts which correspond to the number of
mappers used: 2, 4, 6, 8 and 16 mappers for each case.

Looking at these tables we can see that, in general, the runtimes obtained by the Chi-FRBCS approaches are
slightly lower than the ones obtained by the Chi-FRBCS-CS methods. This behavior is expected as the Chi-FRBCS-CS
methods need to perform additional operations with respect to Chi-FRBCS as they include the misclassification costs
in their inner way of running. Moreover, the results obtained show that the sequential versions are notably slower than
the big data alternatives, even when they are compared with the performance of the big data versions on 2 mappers,
as the speed gain is not linearly related to the number of mappers considered. Furthermore, this trend can also be seen
among the different number of mappers considered, as the decrement in the running time is reduced meaningfully
when the number of mappers is increased. This reduction in the processing time is again not lineal, as this decrement
in time is more tangible at the beginning with a lower number of mappers than with a larger number of mappers.

When analyzing the behavior of the groups of cases of study derived from the original datasets we can find different
groups of behavior for the cases under consideration. A first group corresponds to the bigger cases of study, the ones
derived from the KDD Cup 1999 dataset and the RLCP dataset. In this case, we can see that the general trend perfectly
applies to this data: the sequential versions provide runtimes that greatly exceed the results obtained by the MapReduce
designs. Furthermore, the usage of higher number of mappers is able to improve the execution times, however, that

Please cite this article in press as: V. Lopez et al., Cost-sensitive linguistic fuzzy rule based classification systems under the MapReduce
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Table 11

Average number of minority and majority class instances by mapper for the Chi-FRBCS-BigData and Chi-FRBCS-BigDataCS versions.

Datasets Chi-FRBCS-BigData and Chi-FRBCS-BigDataCS
8 mappers 16 mappers 32 mappers 64 mappers
#min class #maj class #min class #maj class #min class #maj class #min class #maj class

kddcup_DOS_versus_normal 97254.60 388360.50 48627.30 194 180.25 24313.65 97090.13 12156.83 48545.06
kddcup_DOS_versus_PRB 4120.40 388326.80 2060.20 194163.40 1030.10 97081.70 515.05 48540.85
kddcup_DOS_versus_R2L 112.20 388337.40 56.10 194 168.70 28.05 97084.35 14.03 48542.18
kddcup_DOS_versus_U2R 4.80 388337.40 2.40 194 168.70 1.20 97084.35 0.60 48542.18
kddcup_normal_versus_PRB 4076.20 97312.10 2038.10 48656.05 1019.05 24328.03 509.53 12164.02
kddcup_normal_versus_R2L 117.20 97273.50 58.60 48636.75 29.30 24318.38 14.65 12159.19
kddcup_normal_versus_U2R 4.10 97279.20 2.05 48639.60 1.03 24319.80 0.51 12159.90
poker_0_vs_2 4933.30 51319.70 2466.65 25659.85 1233.32 12829.93 616.66 6414.96
poker_0_vs_3 2151.60 51382.00 1075.80 25691.00 537.90 12845.50 268.95 6422.75
poker_0_vs_4 398.30 51369.70 199.15 25684.85 99.57 12842.43 49.79 6421.21
poker_0_vs_5 210.40 51364.80 105.20 25682.40 52.60 12841.20 26.30 6420.60
poker_0_vs_6 152.00 51364.20 76.00 25682.10 38.00 12841.05 19.00 6420.52
poker_0_vs_7 22.60 51371.20 11.30 25685.60 5.65 12842.80 2.83 6421.40
poker_0_vs_8 1.90 51370.00 0.95 25685.00 0.48 12842.50 0.24 6421.25
poker_0_vs_9 0.80 51370.20 0.40 25685.10 0.20 12842.55 0.10 6421.27
poker_1_vs_2 4863.20 43329.30 2431.60 21664.65 1215.80 10832.32 607.90 5416.16
poker_1_vs_3 2162.80 43310.30 1081.40 21655.15 540.70 10827.57 270.35 5413.79
poker_1_vs_4 394.10 43313.40 197.05 21656.70 98.52 10828.35 49.26 5414.17
poker_1_vs_5 197.90 43316.80 98.95 21658.40 49.47 10829.20 24.74 5414.60
poker_1_vs_6 142.40 43313.30 71.20 21656.65 35.60 10828.32 17.80 5414.16
poker_1_vs_7 24.50 43308.80 12.25 21654.40 6.12 10827.20 3.06 5413.60
poker_1_vs_8 2.00 43309.40 1.00 21654.70 0.50 10827.35 0.25 5413.67
poker_1_vs_9 1.20 43309.30 0.60 21654.65 0.30 10827.32 0.15 5413.66
RLCP 2097.60 572815.60 1048.80 286407.80 524.40 143203.90 262.20 71601.95
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Table 12
Runtime elapsed in seconds and in the hh:mm:ss.SSS format for the Chi-FRBCS versions.
Datasets Chi-FRBCS Chi-FRBCS-BigData
2 mappers 4 mappers 6 mappers 8 mappers 16 mappers

seconds  hh:mm:ss.SSS seconds ~ hh:mm:ss.SSS seconds hh:mm:ss.SSS seconds hh:mm:ss.SSS seconds hh:mm:ss.SSS seconds hh:mm:ss.SSS
kddcup_10_DOS_versus_normal 33670.214 9:21:10.214  14472.846 4:01:12.846  4140.643 1:09:00.643  1778.238 0:29:38.238  1052.501 0:17:32.501  373.428 0:06:13.428
kddcup_10_DOS_versus_PRB  22510.587 6:15:10.587 9205.046 2:33:25.046  2547.166 0:42:27.166  1165.548 0:19:25.548 704.896 0:11:44.896  249.251 0:04:09.251
kddcup_10_DOS_versus_R2L  25448.700 7:04:08.700 9234.977 2:33:54.977  2492.280 0:41:32.280  1197.892 0:19:57.892 707.083 0:11:47.083  228.386 0:03:48.386
kddcup_10_normal_versus_PRB  1756.513 0:29:16.513 1068.581 0:17:48.581 234.787 0:03:54.787 136.951 0:02:16.951 99.986 0:01:39.986  67.127 0:01:07.127
kddcup_10_normal_versus_R2L  1599.831 0:26:39.831 875.615 0:14:35.615 215.648 0:03:35.648 128.611 0:02:08.611 94.273 0:01:34.273  62.629 0:01:02.629
Average (kddcup) 16997.169 4:43:17.169 6971.413 1:56:11.413  1926.105 0:32:06.105 881.448 0:14:41.448 531.748 0:08:51.748  196.164 0:03:16.164
poker_10_0_vs_2 1022.735 0:17:02.735 586.696 0:09:46.696 563.302 0:09:23.302 519.465 0:08:39.465 562.220 0:09:22.220  624.649 0:10:24.649
poker_10_0_vs_3 832.182 0:13:52.182 575.673 0:09:35.673 515.892 0:08:35.892 543.217 0:09:03.217 539.140 0:08:59.140  579.760 0:09:39.760
poker_10_0_vs_4 798.369 0:13:18.369 605.735 0:10:05.735 504.460 0:08:24.460 552.799 0:09:12.799 610.555 0:10:10.555  567.566 0:09:27.566
poker_10_0_vs_5 1209.566 0:20:09.566 596.255 0:09:56.255 522.352 0:08:42.352 512.363 0:08:32.363 507.853 0:08:27.853  504.863 0:08:24.863
poker_10_0_vs_6 1051.263 0:17:31.263 682.470 0:11:22.470 614.844 0:10:14.844 536.008 0:08:56.008 581.397 0:09:41.397  459.080 0:07:39.080
poker_10_0_vs_7 963.291 0:16:03.291 520.087 0:08:40.087 460.601 0:07:40.601 481.295 0:08:01.295 479.882 0:07:59.882  473.661 0:07:53.661
poker_10_1_vs_2 796.636 0:13:16.636 439.989 0:07:19.989 390.712 0:06:30.712 398.359 0:06:38.359 406.932 0:06:46.932  399.267 0:06:39.267
poker_10_1_vs_3 734.307 0:12:14.307 410.816 0:06:50.816 383.222 0:06:23.222 416.784 0:06:56.784 409.623 0:06:49.623  424.023 0:07:04.023
poker_10_1_vs_4 645.596 0:10:45.596 442.978 0:07:22.978 421.791 0:07:01.791 411.050 0:06:51.050 401.203 0:06:41.203  377.247 0:06:17.247
poker_10_1_vs_5 547.979 0:09:07.979 395.322 0:06:35.322 366.879 0:06:06.879 358.951 0:05:58.951 377911 0:06:17.911  379.750 0:06:19.750
poker_10_1_vs_6 697.428 0:11:37.428 393.996 0:06:33.996 366.409 0:06:06.409 370.342 0:06:10.342 366.044 0:06:06.044  360.484 0:06:00.484
poker_10_1_vs_7 690.171 0:11:30.171 381.735 0:06:21.735 363.016 0:06:03.016 353.859 0:05:53.859 347.198 0:05:47.198  353.263 0:05:53.263
Average (poker) 832.460 0:13:52.460 502.646 0:08:22.646 456.123 0:07:36.123 454.541 0:07:34.541 465.830 0:07:45.830  458.634 0:07:38.634
RLCP_10 8683.187 2:24:43.187 4420.900 1:13:40.900  1174.823 0:19:34.823 562.273 0:09:22.273 369.080 0:06:09.080  179.112 0:02:59.112
Total average 5758.809 1:35:58.809 2517.207 0:41:57.207 904.379 0:15:04.379 579.111 0:09:39.111 478.765 0:07:58.765  370.197 0:06:10.197
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Table 13

Runtime elapsed in seconds and in the hh:mm:ss.SSS format for the Chi-FRBCS cost-sensitive versions.

Datasets Chi-FRBCS-CS Chi-FRBCS-BigDataCS
2 mappers 4 mappers 6 mappers 8 mappers 16 mappers
seconds  hh:mm:ss.SSS seconds  hh:mm:ss.SSS seconds hh:mm:ss.SSS seconds hh:mm:ss.SSS seconds hh:mm:ss.SSS seconds hh:mm:ss.SSS

kddcup_10_DOS_versus_normal 32892.936 9:08:12.936  15414.766 4:16:54.766  4162.916 1:09:22.916  1843.283 0:30:43.283  1076.427 0:17:56.427  415.060 0:06:55.060
kddcup_10_DOS_versus_PRB  29981.173 8:19:41.173 9798.818 2:43:18.818  2585.928 0:43:05.928  1188.691 0:19:48.691 758.516 0:12:38.516  250.027 0:04:10.027
kddcup_10_DOS_versus_R2L.  25498.727 7:04:58.727 9649.161 2:40:49.161  2543.190 0:42:23.190  1206.790 0:20:06.790 673.231 0:11:13.231  266.537 0:04:26.537
kddcup_10_normal_versus_PRB  1730.916 0:28:50.916 1066.950 0:17:46.950 236.391 0:03:56.391 139.344 0:02:19.344 101.652 0:01:41.652  68.790 0:01:08.790
kddcup_10_normal_versus_R2L  1578.991 0:26:18.991 1072.229 0:17:52.229 212.853 0:03:32.853 134.370 0:02:14.370 94.847 0:01:34.847 65.116 0:01:05.116
Average (kddcup) 18336.549 5:05:36.549 7400.385 2:03:20.385  1948.256 0:32:28.256 902.496 0:15:02.496 540.934 0:09:00.934  213.106 0:03:33.106
poker_10_0_vs_2 1804.004 0:30:04.004 777.028 0:12:57.028 552.463 0:09:12.463 557.443 0:09:17.443 579.395 0:09:39.395  572.595 0:09:32.595
poker_10_0_vs_3 1315.612 0:21:55.612 641.281 0:10:41.281 609.231 0:10:09.231 516.789 0:08:36.789 507.824 0:08:27.824  558.286 0:09:18.286
poker_10_0_vs_4 1630.399 0:27:10.399 764.142 0:12:44.142 607.250 0:10:07.250 582.549 0:09:42.549 581.717 0:09:41.717  572.004 0:09:32.004
poker_10_0_vs_5 1234.801 0:20:34.801 636.422 0:10:36.422 568.459 0:09:28.459 551.079 0:09:11.079 546.558 0:09:06.558  534.967 0:08:54.967
poker_10_0_vs_6 1456.625 0:24:16.625 828.762 0:13:48.762 652.770 0:10:52.770 659.502 0:10:59.502 620.019 0:10:20.019  470.053 0:07:50.053
poker_10_0_vs_7 1778.488 0:29:38.488 638.797 0:10:38.797 510.469 0:08:30.469 479.955 0:07:59.955 489.636 0:08:09.636  485.763 0:08:05.763
poker_10_1_vs_2 1137.676 0:18:57.676 496.250 0:08:16.250 425.849 0:07:05.849 396.363 0:06:36.363 396.681 0:06:36.681  397.112 0:06:37.112
poker_10_1_vs_3 1116.075 0:18:36.075 464.625 0:07:44.625 371.895 0:06:11.895 350.017 0:05:50.017 349.021 0:05:49.021 443.020 0:07:23.020
poker_10_1_vs_4 1220.649 0:20:20.649 498.319 0:08:18.319 403.404 0:06:43.404 385.980 0:06:25.980 398.769 0:06:38.769  368.581 0:06:08.581
poker_10_1_vs_5 1318.547 0:21:58.547 446.729 0:07:26.729 367.710 0:06:07.710 367.759 0:06:07.759 369.085 0:06:09.085  380.618 0:06:20.618
poker_10_1_vs_6 1453.041 0:24:13.041 478.021 0:07:58.021 394.152 0:06:34.152 377.446 0:06:17.446 351.418 0:05:51.418 362.195 0:06:02.195
poker_10_1_vs_7 1124.129 0:18:44.129 499.303 0:08:19.303 385.227 0:06:25.227 373.933 0:06:13.933 367.799 0:06:07.799  362.491 0:06:02.491
Average (poker) 1382.504 0:23:02.504 597.473 0:09:57.473 487.407 0:08:07.407 466.568 0:07:46.568 463.160 0:07:43.160  458.974 0:07:38.974
RLCP_10 8159.285 2:15:59.285 4165.285 1:09:25.285  1154.706 0:19:14.706 505.405 0:08:25.405 295.675 0:04:55.675  188.454 0:03:08.454
Total average 6468.449 1:47:48.449 2685.383 0:44:45.383 930.270 0:15:30.270 589.817 0:09:49.817 475.459 0:07:55.459  375.648 0:06:15.648
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Fig. 4. Execution times for the kddcup_full_DOS_versus_U2R dataset.

advance is better observed when the number of mappers is smaller than in the larger cases, that is, when the data
available per mapper is considerable.

The second group is related to the Poker Hand cases of study, where the processing time gain is not as clear as in
the previous cases. Without a doubt, we can state there are huge differences between the sequential versions and the
Hadoop implementations. When the big data versions are compared, the runtime improvement can only be detected
for the smaller values of the number of mappers. The Chi-FRBCS-BigData and Chi-FRBCS-BigDataCS algorithms
seem to no further improve their behavior starting from 16 mappers.

Table 14 shows the average runtime spent in seconds and in the hh:mm:ss.SSS format for the full cases of study
by the Chi-FRBCS-BigData and Chi-FRBCS-BigDataCS algorithms. This table is organized in two big parts: the first
part is related to the results obtained by the Chi-FRBCS-BigData algorithm while the second part is related to the
Chi-FRBCS-BigDataCS method. Similarly to the preceding tables, these algorithms present their information in four
columns related to the number of mappers considered: 8, 16, 32 and 64 respectively. The sequential versions are not
included in this table as they are not able to provide a result, as it was shown in the scalability studies (Sections 3.3
and 4.2).

In this table, we can observe that the Chi-FRBCS-BigData approach shows a trend that slightly benefits its runtime,
however, it does not always surpass the runtime achieved by the Chi-FRBCS-BigDataCS algorithm for any number
of mappers. These results can be understood in the following manner: the Chi-FRBCS-BigData approach is a less
complex approach than the Chi-FRBCS-BigDataCS method and therefore, the second algorithm is bound to spend
more processing time due to its additional operations. The usage of cost-sensitive learning is thus a good alternative
as this time addition is insignificant compared to the performance improvement gained in imbalanced datasets. In
Fig. 4, we can see the difference between the performance of the big data alternatives for the kddcup_full_DOS_ver-
sus_U2R dataset, where the Chi-FRBCS-BigDataCS version consumes a bit more of time. However, the Chi-FRBCS-
BigDataCS tends to produce a lesser number of rules (scalability studies in Sections 3.3 and 4.2), and therefore the
search for identical rules may also be less computationally demanding.

In general, when larger values for the number of mappers are used, better runtime results are obtained for both the
Chi-FRBCS-BigData and the Chi-FRBCS-BigDataCS algorithms. However, the improvement in the processing times
is not linearly related to the number of mappers, as smaller number of mappers show a greater performance gain than
larger values of mappers.

If we analyze the behavior of the groups of cases of study derived from the original datasets we can also observe
the same groups of behavior as in the reduced cases of study previously considered. Again, a first group corresponds
to the bigger cases of study, the ones derived from the KDD Cup 1999 dataset and the RLCP dataset. This group
displays the general trend extracted from all the data: the usage of higher number of mappers can get faster execution
times, however, the runtime improvement is better appreciated with a reduced number of mappers instead of with
larger values, that means, when the data available per mapper is abundant. Fig. 4 also presents the trend in the usage
of different mappers.

The second group is related to the Poker Hand cases of study, where it is not possible to discern an improvement in
the processing times. For the smaller values of the number of mappers, the results obtained show equivalent results,

Please cite this article in press as: V. Lopez et al., Cost-sensitive linguistic fuzzy rule based classification systems under the MapReduce
framework for imbalanced big data, Fuzzy Sets and Systems (2014), http://dx.doi.org/10.1016/j.fss.2014.01.015
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Table 14

Runtime elapsed in seconds and in the hh:mm:ss.SSS format for the big data Chi-FRBCS versions.

Datasets Chi-FRBCS-BigData Chi-FRBCS-BigDataCS
8 mappers 16 mappers 32 mappers 64 mappers 8 mappers 16 mappers 32 mappers 64 mappers
seconds hh:mm:ss.SSS  seconds hh:mm:ss.SSS  seconds hh:mm:ss.SSS  seconds hh:mm:ss.SSS  seconds hh:mm:ss.SSS  seconds hh:mm:ss.SSS  seconds hh:mm:ss.SSS  seconds hh:mm:ss.SSS

kddcup_DOS_versus_normal 95135.040 26:25:35.040 26422.546 7:20:22.546 9678.697 2:41:18.697 4060.908 1:07:40.908  96833.551 26:53:53.551 25824.469 7:10:24.469 7692.155 2:08:12.155 3407.801 0:56:47.801
kddcup_DOS_versus_PRB ~ 62034.217 17:13:54.217 17206.961 4:46:46.961 5336.043 1:28:56.043 5310.406 1:28:30.406  64827.368 18:00:27.368 18003.649 5:00:03.649 6094.751 1:41:34.751 5134.697 1:25:34.697
kddcup_DOS_versus_R2L ~ 60908.738 16:55:08.738 15615.652 4:20:15.652 6315.864 1:45:15.864 1789.012 0:29:49.012  62059.365 17:14:19.365 16897.451 4:41:37.451 6122.615 1:42:02.615 2047.410 0:34:07.410
kddcup_DOS_versus_U2R ~ 60942.589 16:55:42.589 15114.415 4:11:54.415 4288.956 1:11:28.956 1266.369 0:21:06.369  63665.339 17:41:05.339 15870.638 4:24:30.638 4302.037 1:11:42.037 1281.801 0:21:21.801
kddcup_normal_versus_PRB ~ 6059.310 1:40:59.310 1765.673 0:29:25.673 548.857 0:09:08.857 262.545 0:04:22.545 6155.110 1:42:35.110 1523.940 0:25:23.940 753.089 0:12:33.089 301.214 0:05:01.214
kddcup_normal_versus_R2L ~ 4362.339 1:12:42.339 1807.435 0:30:07.435 451.027 0:07:31.027 279.080 0:04:39.080 4502.856 1:15:02.856 1274.320 0:21:14.320 503.814 0:08:23.814 329.662 0:05:29.662
kddcup_normal_versus_U2R ~ 4279.778 1:11:19.778 1899.410 0:31:39.410 597.729 0:09:57.729 350.514 0:05:50.514 5064.459 1:24:24.459 1290.801 0:21:30.801 730.109 0:12:10.109 327.904 0:05:27.904
Average (kddcup) 41960.287 11:39:20.287 11404.584 3:10:04.584 3888.167 1:04:48.167 1902.691 0:31:42.691  43301.150 12:01:41.150 11526.467 3:12:06.467 3742.653 1:02:22.653 1832.927 0:30:32.927
poker_0_vs_2 12320901 3:25:20.901  12325.506 3:25:25.506  12839.608 3:33:59.608  13612.564 3:46:52.564  12506.996 3:28:26.996  12083.205 3:21:23.205 12851.936 3:34:11.936  13292.345 3:41:32.345
poker_0_vs_3 11401.855 3:10:01.855  11659.858 3:14:19.858  12448.827 3:27:28.827  13212.002 3:40:12.002  11484.098 3:11:24.098  11393.884 3:09:53.884 12059.245 3:20:59.245  12349.548 3:25:49.548
poker_0_vs_4 11093.366 3:04:53.366  11244.520 3:07:24.520  12155.162 3:22:35.162  12350.617 3:25:50.617  11161.645 3:06:01.645  11380.513 3:09:40.513  12096.645 12087.170 3:21:27.170
poker_0_vs_5 10947.363 3:02:27.363  10870.675 3:01:10.675  11926.168 3:18:46.168  12341.788 3:25:41.788  11370.870 3:09:30.870  10810.724 11944.131 12262.003 3:24:22.003
poker_0_vs_6 10977.253 3:02:57.253  11041.819 3:04:01.819  11674.877 3:14:34.877  12194.412 3:23:14.412 11344606 3:09:04.606  11260.872 3: 11915.543 3 11807.885 3:16:47.885
poker_0_vs_7 10971.631 3:02:51.631  11158.933 3:05:58.933  11778.574 3:16:18.574  12228.561 3:23:48.561  11851.595 3:17:31.595  11624.443 3: 11963.442 3 11887.682 3:18:07.682
poker_0_vs_8 11040.804 3:04:00.804  11088.482 3:04:48.482  11615.557 3:13:35.557  12280.418 3:24:40.418  11790.836 3:16:30.836  11227.721 11679.059 3:14:39.059  11809.133 3:16:49.133
poker_0_vs_9 11059.629 3:04:19.629  11130.037 3:05:30.037  12039.400 3:20:39.400  11956.152 3:19:16.152  11386.511 3:09:46.511  11681.637 3:14:41.637  11977.673 3:19:37.673  12152.204 3:22:32.204
poker_1_vs_2 10502.985 2:55:02.985  10592.520 2:56:32.520  10823.188 3:00:23.188  11550.568 3:12:30.568  10256.908 2:50:56.908 10395.012 2:53:15.012  10769.729 2:59:29.729  11198.647 3:06:38.647
poker_1_vs_3 9734.080 2:42:14.080  10232.695 2:50:32.695  10770.971 2:59:30.971  10643.134 2:57:23.134 9661.590 2:41:01.590 9769.442 2:42:49.442  10434.828 2:53:54.828  10584.726 2:56:24.726
poker_1_vs_4 9362.164 2:36:02.164 9599.178 2:39:59.178 9981.443 2:46:21.443  10553.633 2:55:53.633 9443.253 2:37:23.253 9752.424 2:42:32.424 9765.667 2:42:45.667 9806.559 2:43:26.559
poker_1_vs_5 9298.083 2:34:58.083 9637.974 2:40:37.974  10428.014 2:53:48.014  10399.248 2:53:19.248 9412.589 2:36:52.589 9506.839 2:38:26.839 9942.829 2:45:42.829  10262.902 2:51:02.902
poker_I1_vs_6 9009.779 2:30:09.779 9591.369 2:39:51.369  10112.862 2:48:32.862  10407.752 2:53:27.752 9739.623 2:42:19.623 9854.607 2:44:14.607 9963.349 2:46:03.349  10095.291 2:48:15.291
poker_1_vs_7 9285.360 2:34:45.360 9250.462 2:34:10.462 9962.175 2:46:02.175  10333.898 2:52:13.898 9580.927 2:39:40.927 9670.806 2:41:10.806  10300.841 2:51:40.841  10276.786 2:51:16.786
poker_1_vs_8 9545.055 2:39:05.055 9380.564 2:36:20.564 9872.084 2:44:32.084  10226.082 2:50:26.082 9830.342 2:43:50.342 9422.569 2:37:02.569 9912.194 2:45:12.194  10300.646 2:51:40.646
poker_1_vs_9 9179.436 2:32:59.436 9438.347 2:37:18.347 9893.532 2:44:53.532  10335.326 2:52:15.326 9776.855 2:42:56.855 9844.250 2:44:04.250  10195.108 2:49:55.108  10476.054 2:54:36.054
Average (poker) 10358.109 2:52:38.109  10515.184 2:55:15.184  11145.153 3:05:45.153  11539.135 3:12:19.135  10662.453 2:57:42.453  10604.934 2:56:44.934  11110.764 3:05:10.764  11290.599 3:08:10.599
RLCP 26551.162 7:22:31.162 7089.999 1:58:09.999 1922.670 0:32:02.670 606.831 0:10:06.831  27547.418 7:39:07.418 7270.635 2:01:10.635 1830.273 0:30:30.273 721.305 0:12:01.305
Final average 20250.122 5:37:30.122  10631.876 2:57:11.876 8644.262 2:24:04.262 8272.992 2:17:52.992  20885.613 5:48:05.613  10734.785 2:58:54.785 8575.044 2:22:55.044 8091.724 2:14:51.724
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however, when larger values of mappers are considered, the runtime does not improve and it can even become worse.
This situation arises due to the smaller size of the Poker Hand cases of study.

Finally, it is necessary to recall that even when a larger number of mappers tend to provide better response times it
may not be wise to try to expand that number as much as possible. As we observed in Section 6.3.1, a large number
of mappers may cause a dramatically drop in the performance, an unwanted case when trying to extract information
from data. Therefore, it is needed to analyze the case under consideration to select an appropriate number of mappers
for the experiment. This number of mappers needs to provide a reasonable number of samples for each class to avoid
the small sample size problem and also enough data so that the experiments obtain lesser response times.

To sum up, our experimental study shows that cost-sensitive learning allows us to obtain better classification results
for the Chi-FRBCS algorithm. We have also observed that, in the big data versions, increasing the number of mappers
decreases the accuracy of the model, not only because the full information is not available but also because of the
induction of data intrinsic problems that difficult the classification with imbalanced datasets, such as the small sample
size problem. Finally, big data versions allow us to deal with huge amounts of data and obtain better response times
which are generally significantly decremented when the number of mappers of the original dataset is increased.

7. Concluding remarks

In this paper, we have introduced a linguistic cost-sensitive fuzzy rule-based classification method for imbalanced
big data called Chi-FRBCS-BigDataCS. Our aim was to obtain a model that is able to handle imbalanced big data
obtaining a good precision without incrementing the processing times. To do so, we use one of the most popular
approaches nowadays to deal with big data: the MapReduce framework, distributing the algorithm computing along
different processing units using the map and reduce operations that have been adapted to the calculations of the fuzzy
rule based classification system. We have also used cost-sensitive learning operations which have also modified the
algorithm to consider the misclassification costs, proposing a new approach, PCF-CS, to compute the rule weight that
consider these costs in its operations.

The experiments conducted in this work demonstrate that the MapReduce framework is able of dealing with big
data for fuzzy rule based classification systems. The use of a simple but effective fuzzy rule based classification system
such as the Chi et al.’s method as base of the approach has enabled the development of a proposal that can profit from
this simplicity to create an efficient approach. The proposal, Chi-FRBCS-BigDataCS, can obtain classification results
when its sequential counterpart was not able to provide results. Furthermore, the runtime needed by the proposal is
admissible according to the results presented. The inclusion of cost-sensitive learning in its way of working, using the
new rule weight procedure PCF-CS, has demonstrated to be a powerful collaborator when dealing with imbalanced
datasets providing effective classification results without largely increasing the processing times.

The performance of our model, Chi-FRBCS-BigDataCS, has been tested in an experimental study including
twenty-four imbalanced big data cases of study. These results corroborate the goodness of the integration of the
approaches that are used to solve the imbalanced problem and big data separately, namely the usage of the MapRe-
duce framework and cost-sensitive learning. Furthermore, the synergy between both strategies alleviates some data
intrinsic problems, like the small sample size problem, that are induced because of the way the learning is done.
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