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Summary

Nondestructive evaluation is an emerging technology that enables to raise the remain-

ing life and reliability of nowadays structures, as well as to characterize advanced materials

and biomaterials in medical science. Ultrasound is currently one of the most frequently used

nondestructive inspection techniques, since it has been proven to provide effective and reli-

able results at relatively low cost for the estimation of the quality and general condition of

a material, and for the characterization of its mechanical properties. Indeed, ultrasonic non-

destructive evaluation is a well-established method to obtain physically relevant parameters

to characterize pathologies in isotropic homogeneous materials. Pathologies are here under-

stood as material’s defects or consistency change, which altered the linear and/or nonlinear

mechanical properties of materials. However, ultrasonic signals obtained from multilayered

materials (composites, tissue-engineered products, biomaterials, etc.) require special care in

signal interpretation (i.e. multiple and overlapping ultrasonic echoes) due to their structural

complexity.

For competitive pathology assessment and quality control of stratified materials, quan-

titative non-destructive evaluation techniques based on the use of theoretical models of the

ultrasonic wave propagation have been developed to extract additional information from

experimental measurements. Despite the structural complexity of those materials, rela-

tive simple models are required for efficient and real-time monitoring of their structure

health. Consequently, the complexity of the signals recorded by the transducers suggests

to directly compare the experimental measurements with the theoretical results, with the

purpose of extracting quantitative information from damage or consistency changes. A pos-

sible approach to solve this problem is provided by the model-based estimation procedure.

However, conventional model-based estimation procedure developed in the mechanical en-

gineering community are not attractive from a practical point of view (e.g. imperfections of

the acquisition system, excessive computational resources, model uncertainties, etc.). In re-

sponse to those problems, some procedures have been developed in the information technol-

ogy community to enhance both the reliability and the quantitative pathology-informational

content of ultrasonic signals obtained from conventional nondestructive evaluation systems.

Therefore, in this thesis, we intent to unify the grounds implied in both area by developing

efficient and novel methods for practical ultrasonic nondestructive evaluation applications
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on layered media, facing toward the optimization of the performance of such estimation

procedure.

In particular, we present a general framework that relies on an advanced model-based

estimation procedure to nondestructively evaluate pathologies using ultrasonics, which in-

corporates and adapts classical signal processing and modeling techniques to extract rele-

vant features from the ultrasonic signals and enhance the signal interpretation. The main

contributions of this dissertation concern the modeling approaches developed within this

procedure to cope with the wave propagation in multilayered media. We first revisit a

conventional approach known as the Transfer Matrix formalism to review the theoretical

grounding for our dissertation and obtain a formulation that offers us the possibility of ex-

tending this method to more complex problems. Alternatively, signal modeling has also

been proven to be an useful tool to characterize damaged materials under ultrasonic non-

destructive evaluation. Consequently, we introduce a novel digital signal model for ultra-

sonic nondestructive evaluation of multilayered materials. This model borrows concepts

from lattice filter theory, and bridges them to the physics involved in the wave-material in-

teractions. In addition, we demonstrate that this digital model has several advantages with

respect to purely physics-based models or classical spectral estimation approaches. Finally,

we propose an extension of these two models to deal with the classical nonlinear constitutive

behavior of such layered materials.

In a further part, the development of consistent optimization strategies and the obtain-

ing of relevant experimental observations necessary to achieve a performant model-based

estimation procedure are also contemplated. In particular, we introduce the context and

motivation of the employed materials, describing their potential and the challenge that they

offer from a structural viewpoint, and focusing on the requirement of efficient ultrasonic

nondestructive evaluation techniques to identify their damage mechanisms. In addition,

we present the specimens tested and the experimental configurations used to analyze them.

Finally, we provide the theoretical background for the inverse problem and system identifi-

cation approaches used for characterizing the pathologies of the introduced specimens.

The developed models are finally compared and validated with experimental measure-

ments obtained from multilayered media that consist of traditional materials. Once vali-

dated, those models are tested using several applications of practical interest, including:

B The detection and identification of impact and fatigue damages in carbon fiber-

reinforced polymers plates. In this case, both contact and immersion measurements

are performed.

B The monitoring of tissue-engineered materials using a embedded ultrasonic system.

This novel system is first validated on a gelation process, and then used to characterize

a fibrin-agarose based construct for artificial tissue development.

B The bone damage assessment using nonlinear acoustics. To this end, a nonlinear ul-

trasonic through-transmission finite-amplitude method was designed.



From a theoretical point of view, the proposed digital signal model opens new perspec-

tives in developing models for ultrasonic nondestructive evaluation, since it represents the

material as a digital filter with sparse coefficients by merging concepts both from the me-

chanics and the signal theory. As a consequence, this model preserves both the strengths

of purely physics-based models and (heuristic) parametric signals models. From a practical

point of view, this model demonstrates its ability to simulate multilayered materials. In ad-

dition, it can be successfully inserted in a model-based estimation procedure to monitor the

mechanical properties of relatively complex layered materials.

The presented monitoring technique achieves for the first time the reconstruction of mul-

tiple damages in carbon fiber-reinforced polymer plates from a single measurement. In con-

trast to other studies, the pathologies are not identified by considering the time-of-flight

or the broadband ultrasound attenuation, but by reconstructing the complete waveform.

Moreover, the damage multiplicity does not only appear at several locations but simulta-

neously in different forms. The other encouraging results on tissue-engineered materials or

bone suggest that this methodology previously developed for structural applications could

be further applied in the fields of biomedical engineering.





Resumen

La evaluación no destructiva es una tecnologı́a emergente que permite aumentar la longev-

idad y fiabilidad de las estructuras de hoy en dı́a, ası́ como la caracterización de materiales

avanzados y biomateriales en las ciencias médicas. Los ultrasonidos son en este momento

una de las técnicas no destructivas de inspección más frecuentemente empleadas, ya que

han demostrado que proporcionan resultados efectivos y fiables a un coste relativamente

bajo, para estimar la calidad y el estado general de un material, ası́ como para la caracter-

ización de sus propiedades mecánicas. De hecho, la evaluación no destructiva ultrasónica

es un método establecido para obtener parámetros fı́sicos relevantes de cara a caracterizar

patologı́as en medios isótropos y homogéneos. Por concepto de patologı́a entendemos la

presencia de defectos o cambios de consistencia en un material, que alteran las propiedades

mecánicas lineales y no lineales del mismo. Sin embargo, las señales ultrasónicas obtenidas

a partir de materiales estratificados (materiales compuestos, cultivos tisulares artificiales,

materiales biológicos, etc.) requieren una atención particular a la hora de interpretar las

señales (a saber múltiples ecos ultrasónicos solapados) debido a su complejidad estructural.

Para una evaluación competitiva de una patologı́a y un control de calidad de los materi-

ales estratificados, han sido desarrolladas técnicas de evaluación no destructiva ultrasónica

cuantitativa, basándose en el uso de modelos teóricos de propagación de ondas ultrasónicas

para extraer información adicional de las medidas experimentales. A pesar de la comple-

jidad estructural de dichos materiales, se requieren modelos relativamente sencillos para

una monitorización eficiente y en tiempo real de la salud estructural. Por consiguiente,

la complejidad de las señales capturadas por los sensores nos ha llevado a comparar di-

rectamente las medidas experimentales con los resultados teóricos, con el propósito de ex-

traer información cuantitativa de los defectos o de los cambios de consistencia. Un posible

planteamiento para resolver este tipo de problema nos está proporcionado por el proced-
imiento de estimación basado en modelos. Sin embargo, los procedimientos de estimación basados en
modelos convencionales desarrollados en el ámbito de la ingenierı́a mecánica pueden care-

cer de atractivo desde una perspectiva práctica (por ejemplo debido a las imperfecciones

del sistema de adquisición, el exceso de recursos computacionales, o las incertidumbres del

modelo, etc.). En respuesta a esos problemas, procedimientos alternativos han sido desar-

rollados en la comunidad de la tecnologı́a de la información para realzar tanto la fiabilidad

como el contenido cuantitativo acerca de las patologı́as de las señales ultrasónicas obtenidas

a partir de sistemas de evaluación no destructiva convencionales. Por lo tanto, en esta tesis,
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intentamos unificar los fundamentos de amabas áreas con el objeto de desarrollar métodos

innovadores y eficientes para aplicaciones prácticas de evaluación no destructiva ultrasónica

de medios estratificados, con el fin de enfrentarnos a la optimización del rendimiento de este

tipo de procedimiento de estimación.

En particular, en esta investigación presentamos un procedimiento general que se fun-

damenta en un método avanzado de estimación basado en modelos para la evaluación no-

destructiva ultrasónica de patologı́as, que incorpora y adapta técnicas clásicas de proce-

samiento y modelado de señales para extraer caracterı́sticas relevantes de las señales ul-

trasónicas y realzar la interpretación de esas señales. Las principales contribuciones de

este trabajo conciernen a los modelos desarrollados para dicho procedimiento de cara a

resolver los problemas asociados con la propagación de ondas en materiales estratificados.

En primer lugar, reconsideramos un planteamiento clásico conocido como el formalismo de

la Matriz de Transferencia con la intención de revisar los fundamentos teóricos de nuestra

investigación y obtener una formulación que nos permita extender ese método a proble-

mas más complejos. Por otra parte, se ha demostrado que el modelado de señal es una her-

ramienta útil para caracterizar materiales defectuosos bajo el concepto de evaluación no

destructiva ultrasónica. Por lo tanto, introducimos un modelado de señal digital novedoso

para la evolución no destructiva ultrasónica de materiales estratificados. Este modelo toma

prestado conceptos de la teorı́a de filtros en celosı́a y los relaciona con la fı́sica involucrada

en la interacción de las ondas con el material. Adicionalmente, demostramos que este mod-

elo digital tiene numerosas ventajas frente a modelos puramente fı́sicos o planteamientos de

estimación espectral clásicos. Finalmente, proponemos una ampliación de esos dos modelos

mencionados anteriormente, para introducir la no linealidad clásica en el comportamiento

constitutivo de esos materiales.

En la siguiente parte del trabajo, se contempla el desarrollo de estrategias de opti-

mización consistentes, ası́ como la obtención de conjuntos de observaciones experimentales

relevantes para lograr un método de estimación basado en un modelo de calidad. En par-

ticular, introducimos el contexto y la motivación de los materiales empleados, describimos

su potencial y el reto que ofrecen desde una perspectiva estructural, y destacamos los req-

uisitos de técnicas ultrasónicas eficientes para identificar los mecanismos de daño de dichos

materiales. Adicionalmente, presentamos los especı́menes testados y las configuraciones ex-

perimentales empleadas para analizarlos. Por último, proporcionamos la base teórica para

definir los planteamientos sobre el problema inverso y la identificación de sistema emplea-

dos para caracterizar patologı́as de los especı́menes.

Los métodos desarrollados han sido comparados y validados con medidas experimen-

tales obtenidas a partir de medios estratificados formados por materiales tradicionales. Una

vez validados, esos modelos han sido probados en aplicaciones de interés práctico, in-

cluyendo:



B La detección e identificación de defectos generados por impacto y fatiga cı́clica en

placas de fibra de carbono. En ese caso, hemos llevado a cabo medidas en contacto y

en inmersión.

B La monitorización de tejidos artificiales empleando un sistema ultrasónico embebido.

Ese sistema innovador se valida en primer lugar con un proceso de solidificación de un

gel y más adelante se usa para caracterizar el desarrollo de un tejido artificial basado

en un constructo de fibrina agarosa.

B La evaluación de daños en huesos mediante técnicas de ultrasonidos no lineales. Para

este fin, diseñamos un método de amplitud finita basado en la transmisión de ondas

ultrasónicas no lineales.

Desde una perspectiva teórica, el modelado de señal digital propuesto abre nuevas per-

spectivas para el desarrollo de modelos para la evaluación no destructiva ultrasónica, ya

que representa el material como un filtro digital con coeficientes sparse uniendo conceptos

de la mecánica de sólidos y de la teorı́a de la señal. Por consiguiente, ese modelo preserva las

ventajas tanto de modelos basados esencialmente en la fı́sica como de modelos paramétricos

de señales (heurı́sticos). Desde una perspectiva práctica, ese modelo demuestra su habili-

dad para simular la propagación de ondas en medios estratificados. Adicionalmente, este

modelo se puede insertar en un procedimiento de estimación basado en modelos de forma

satisfactoria para monitorizar las propiedades mecánicas de materiales estratificados partic-

ularmente complejos.

La técnica de monitorización que presentamos ha permitido lograr por primera vez la

reconstrucción de múltiples daños en placas de fibra de carbono a partir de una sola medida.

A diferencia de otros estudios, las patologı́as no se identifican considerando el tiempo de

vuelo o la atenuación ultrasónica de banda ancha, sino reconstruyendo la forma de onda

completa. Además, los múltiples daños no solo aparecen a distintas posiciones del material,

sino simultáneamente de forma distinta. Los otros resultados alentadores sobre cultivos

tisulares artificiales y hueso sugieren que esa metodologı́a previamente desarrollada para

aplicaciones estructurales pueda aplicarse más a fondo en otros ámbitos de la ingenierı́a

biomédica.





Acknowledgments

First of all, I would like to thank the two advisors responsible for the direction of my thesis,

Prof. Dr. Guillermo Rus Carlborg of the Department of Structural Mechanics and Dr. Angel
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1
Context and Motivation

Nondestructive evaluation (NDE) is an emerging technology that enables to raise the re-

maining life and reliability of nowadays structures, as well as to characterize advanced ma-

terials and biomaterials in medical science. Ultrasound is currently one of the most fre-

quently used NDE inspection techniques, since it has been proven to provide effective and

reliable results at relatively low cost for the estimation of the quality and general condition

of a material, and for the characterization of its mechanical properties. Ultrasound pulses

are noninvasive and non-ionizing mechanical waves, whose propagation is governed by

the theory of elasticity, and are therefore particularly sensitive to the mechanical properties,

which are responsible for the final integrity and quality of the inspected material.

Important research areas related to ultrasonic NDE frequently involve the study of the

wave interactions with multilayered structures. The interest of an accurate identification

of multilayered materials properties is constantly growing, since they are encountered in a

wide range of applications. In engineering applications, this concerns for instance the de-

tection of poor cohesion and adhesion in joints, the measurement of elastic properties and

thickness of layered materials, and the detection of damage in composites [1]. In material

science developments, some layered materials are the products of synthetic chemistry and

consist of a large class of compounds formed by metals, ceramics, and polymers [2]. In

biomedical research, layered tissue mimicking fluids are developed and must have prop-

erties similar to amniotic fluid and typical soft tissue [3]. Also, the complex architecture

of trabecular bone can be conveniently modeled as a simplified stratified medium of alter-

nating solid and liquid layers [4, 5]. In the semiconductor industry, a large number of ob-
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jects/components have multilayered structures, such as modern microelectronic packages,

semiconductors, and thin/thick films [6].

In ultrasound-based inspection techniques, the received ultrasonic signal responses are

evaluated to retrieve information about the inspected media. Thus, for competitive damage

assessment and quality control of stratified materials, quantitative non-destructive evalu-

ation (QNDE) techniques based on the use of theoretical models of the ultrasonic wave

propagation have been developed to extract additional information from experimental mea-

surements [7]. Despite the structural complexity of those materials (spatial heterogeneity of

the mechanical properties, multiple damage mechanisms, dispersion, etc.), relative simple

models are required for efficient and real-time monitoring of their structure health. Indeed,

the complexity of the observations suggests to directly compare the experimental measure-

ments with the theoretical results, with the purpose of extracting quantitative information

from damage or consistency changes. A possible approach to solve this problem is provided

by the model-based inverse problem (IP) framework, whose general outline was given by

Tarantola [8]. The resolution of an IP identification approach is commonly defined in terms

of the minimization of a cost functional consisting in the discrepancy between the experi-

mental observations and the numerically predicted results [9]. Generally, the model param-

eters are found such that the l2-norm of the residual (the difference between the observed

signal and the predicted one) is minimized.

Generally, two key aspects of the model-based quantitative NDE are fundamentals: (1)

An appropriate understanding and modeling of the interactions between ultrasonic waves

and multilayered media is required; and (2) the model parameters extracted from the mea-

surements should be sensitive enough to the pathologies (that is, damage or consistency

changes) that manifest in the specimen under inspection, and minimally sensitive to the

measurements noise and model uncertainties. Despite the potential strength of the model-

based IP framework for NDE of multilayered materials, parts of its structure could not be

attractive from the practical point of view: For a fast convergence of the minimization algo-

rithm, this method requires precise and reliable observations. However, due to their struc-

tural complexity, multilayered materials require special treatment in ultrasonic signal inter-

pretation. The random nature of the signal generation, the imperfections of the acquisition

system, as well as the difficulties in understanding and analyzing multiple and overlapping

ultrasonic echoes may have a drastic influence on the performance of the inversion scheme.

Additionally, an accurate characterization of pathologies usually require the determination

of several model parameters, at the cost of excessive computational resources. Thus, ad-

vanced features sensitive to the model parameters should be continuously extracted in order

to improve the (real-time) monitoring of those materials.

In response to those problems, tremendous emphasis has been directed towards identi-

fying procedures that enhance both the reliability and the quantitative informational con-

tent of signals obtained from conventional NDE systems [10]. Part of this emphasis has

focused on the adaptation of advanced signal processing concepts to NDE problems, which

4



have already been successfully applied in other scientific fields such as electrical engineer-

ing, speech recognition or geophysics. Among others, those procedures have given raise to

the development of heuristic inverse problems, based on empirical models (in contrast to

phenomenological approaches relying on underlying physical processes). The absence of a

direct link between the physical process and the empirical model allows one to investigate

the feasibility of using a wide variety of models (e.g. the modeling of ultrasonic signals us-

ing autoregressive models [11]). Thus, the ability to reconstruct the ultrasonic signals can

be evaluated in an analysis-by-synthesis scheme by estimating the model parameters of the

system to identify (which relates the input-output signals) that minimize the modeling er-

ror.Most of the heuristic techniques devoted to material characterization aim at mapping the

signal space (e.g. time-domain) into a smaller-dimensional feature space. Pattern recogni-

tion techniques can then be used for classifying or characterizing the damage by examining

this feature space. Nonetheless, this consumes a huge amount of experimental data and

requires an expensive training process. Moreover, the mapping process does usually not

provide a satisfying understanding of the relations between the extracted features and the

underlying mechanical properties that characterize the damage.

In this thesis, we intend to give solutions to those problems by developing efficient

and novel methods for practical ultrasonic NDE applications on layered media. Con-

cretely, we propose to combine the strength of both the phenomenological and empirical

approaches, by inserting signal processing and modeling strategies with physical sense into

a model-based inverse problem framework. Before proposing a concise literature review

and introducing the theoretical basis to this dissertation, the following chapter exposes the

objectives of the present thesis to provide an idea of the potential of its contributions.

In order to separate the theoretical background, contributions, methodology and the

results, the thesis is divided into five parts:

Part I already introduced the context and motivation of this thesis in the present chapter.

In Chapter 2, the objectives are carefully described in order to provide an idea of the

potential of its contributions. A concise literature review is provided in Chapter 3, whereas

Chapter 4 introduces the theoretical basis to this dissertation.

Part II describes the main contributions of this dissertation. Chapter 5 presents un-

derlying concept of the model-based estimation procedure. In Chapter 6, we expose the

theoretical development of the Transfer Matrix formalism for ultrasonic wave propagation

in multilayered structures. Then, an alternative model for multilayered materials, which

borrows concepts from lattice filter theory and bridge them with the physics involved in

the wave-material interactions is presented in Chapter 7. Finally, in Chapter 8, we propose

two models that extend the ones developed in Chapters 6 and 7, in order to cope with the
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nonlinear constitutive behavior of multilayered structures.

Part III describes the materials and methods used over the course of this thesis, and

includes among others the experimental configuration used to analyze the tested specimens

and the theoretical background for the inverse problem and system identification ap-

proaches used for characterizing the pathologies of the introduced specimens (see Chapter

9).

Part IV presents the results obtained with the proposed models, and discusses several

applications related to the identification of pathology in multilayered specimens. Five dif-

ferent applications are developed:

• Chapter 10 evaluates our novel digital signal model: First, we propose a synthetic

comparison with a standard technique, and then an experimental validation with mea-

surements obtained from multilayered specimens consisting of traditional materials.

• Chapter 11 investigates three different robust parametrization approaches for damage

detection in CFRP plates, that are a classical spectral estimation approach, an heuristic

sparse signal model and a physics-based digital signal model. In addition, we study

a model-based estimation procedure for damage identification in CFRP plates. Two

kind of damage mechanisms and different experimental approaches are investigated.

• Chapter 12 described a probabilistic inverse problem for ultrasonic monitoring of

tissue-engineered materials. First, our novel embedded ultrasonic system is validated

on a gelation process, and then applied to show its potential for monitoring a fibrin-

agarose based construct for artificial tissue development.

• Chapter 13 investigates the potential of nonlinear ultrasound for bone damage

assessment

Part V presents a discussion of the strength and limitations of the proposed contribu-

tions, and comment some aspects of the ongoing works currently under development at our

laboratory.
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2
Objectives

Anticipating and characterizing pathologies in advanced materials and bio-materials is a

challenging problem. Ultrasonic non-destructive evaluation is a well-established method

to obtain physically relevant parameters to identify alterations in isotropic homogeneous

materials. However, due to their structural complexity, layered materials require special

care in signal interpretation. Model-based inverse procedure and signal modeling strategies

are thus proposed to improve the pathology identification. On this basis, the objectives of

the present thesis are:

� To formulate a model-based estimation procedure to improve the identification of

pathologies in layered systems. A side-objective is to obtain relevant experimental

data by performing measurements using traditional and emerging ultrasonic tech-

niques.

� To develop a digital signal model for ultrasonic waves that propagates normally

through a stratified structure. A side objective is to review the formulation and im-

plementation of the conventional Transfer Matrix method for that case, to provide a

physics-based comparison.

� To extend those models for wave propagation through nonlinear layered media, by

accounting for classical nonlinear constitutive behavior.
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3
Literature review

The underlying methodology of a model-based inverse problem generally consists of

three parts: An (1) experimental setup to monitor in real-time the interactions between the

ultrasonic waves and the multilayered specimen under inspection, a (2) forward modeling

that simulates the wave-material interactions, and finally an (3) inverse problem procedure

based on optimization algorithms to reconstruct the structural variations due to pathologies

which may occur during the monitored process. Since these three parts can benefit from

advanced signal processing and modeling techniques, the emphasis throughout this review

is on ultrasonic NDE oriented signal processing theory and methods.

The literature review is organized as follows: Section 3.1 briefly describes two of the

most widely used ultrasonic testing methods, and discusses their limitations for inspecting

multilayered structures. In Section 3.2, we present an overview of ultrasonic NDE signal

processing techniques, focusing on detection enhancement problems, and defect character-

ization and classification. Section 3.3 outlines the model-based estimation framework, de-

scribing a wide range of modeling approaches for ultrasonic wave propagation in layered

media. In addition, some optimization algorithms for system identification are presented.

Finally, some fundaments of emerging nonlinear ultrasound techniques are introduced in

Section 3.4, since they may have merit for characterizing layered media. The focus all over

this review is mainly on two kinds of promising multilayered materials, those are carbon-

fiber reinforced polymers (CFRP) and biomaterials (e.g. tissue-equivalent media and bone).
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3.1 Experimental NDE

In modern ultrasonic NDE applications, a wide range of techniques has been developed

for imaging defect location and sizing, including pulse-echo, through-transmission, guided

waves, time-of-flight diffraction, scanning acoustic microscopy, laser ultrasonic imaging,

or harmonic imaging. However, a review of the extensive literature on experimental

ultrasound-based techniques is beyond the scope of this thesis. Here, we briefly comment on

two of the most conventional ultrasonic testing modes that include pulse-echo and through-

transmission techniques, and stress their pros and cons for evaluating multilayered materi-

als.

For the pulse-echo mode, one transducer acts as transmitter-receiver, and this method

thus requires that the waves travel twice through the sample thickness. When the ultra-

sonic waves encounter a damaged interface, the reflected energy in the form of pulse-echo

amplitude is distinct from that in an undamaged situation. However, for multilayered ma-

terials, this method can hardly distinguish multiple damages. When the layer thickness is

less than or comparable to the wavelength of the ultrasonic transducer, the reflected echoes

from the front and back layer interfaces can overlap. Thus, confusion can be caused in

case of either multiple defects or superimposed back-wall signals due to incompetent range

resolution [12]. The usual approach to prevent overlaps is to increase the transducer fre-

quency and/or decrease the pulse width. However, there are several situations where this

approach is not an option, because high-frequency waves suffer from high attenuation dur-

ing propagation, resulting in low penetration [13]. This method can also be combined with

two-dimensional scanning, thus obtaining three-dimensional images of the specimen. In

principle, this method should enable the determination of the depth of a defect, but due

to the limited bandwidth of the instrumentation and the very strong echo from the front

surface of the layered media, the signals reflected by intrinsic boundaries are masked by

interferences. The information about the depth of the defect can then be extracted but only

by using additional post-processing of the ultrasonic signals. As an alternative, through-

transmission methods can be considered, since they usually only require one travel through

the sample.

For the through-transmission mode, two transducers are used: The transmitter is placed

on one side of the sample, whereas the receiver is placed on the reverse side of the sample.

When the ultrasonic waves encounter defects on their path, the signal attenuates and thus

reveals their presence. Typically, the ultrasound waves only travel once through the sam-

ple thickness, hence the wave attenuation is lower for the through-transmission mode than

for the pulse-echo mode. Nonetheless, for through-transmission testing, the transducers in-

stallation (on the testing facility) undergoes several limitations. For instance, the need for

accessing to both sides of the testing sample limits the application of through-transmission

methods for on-site NDE inspections. Additionally, for local contact measurements, the

variability of the transducers alignment with respect to the expected damage location can
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alter the received signals, and thus their interpretation. On the other hand, immersion mea-

surements requires two transducers to be mounted on the tank equipped with motion con-

troller system for C-scans, but most available commercial C-scan immersion systems are

designed to handle only one transducer [14]. One further disadvantage of this method is

that it does not possess a resolution across the sample and it is impossible to determine

between which layers the defects is located. As a consequence, important defect features

can be missed or wrong located. In order to prevent those inconveniences, an alternative

low-frequency through-transmission setup has been proposed (known as sub-wavelength

technique), where a longitudinal waves are transmitted through layers, whose size is much

smaller than the wavelength of the transmitter [15].

In principle, classical time-of-flight (TOF) methods could be adapted for ultrasonic NDE

of layered media. However, for the purpose of identifying small thicknesses, the required

frequency is very high, and the cost of these methods become prohibitive. For instance, in

the case of composites, high-frequency waves begin to interact with micro-structural de-

tails (individual plies or fibers, resin-rich regions, etc.) which interfere with the damage

characterization process. It is therefore essential to employ advanced signal enhancement

techniques to extract useful diagnostic information from the measured ultrasonic NDE sig-

nals.

3.2 Overview of ultrasonic NDE oriented signal processing

Ultrasonic NDE of multilayered structures undergoes some specific problems. A first prob-

lem is the high attenuation due to scattering of ultrasonic waves and multiple reflections

inside the samples caused by the different acoustic impedances of the layers or the possi-

ble presence of defects. The scattering by microstructure components of a material causes

serious difficulties in the detection of discontinuities, as it reduces the signal-to-noise ra-

tio (SNR). A second problem is penetration through multiple interfaces with high acoustic

impedance changes. A third challenge is the axial resolution for detecting delamination and

cracks at closely spaced interfaces, whose size is small in comparison to the wavelength of

the emitted wave (sub-wavelength resolution). Indeed, when the layer thickness is less than

or comparable to the wavelength of the transmitted wave, the multiple echoes can overlap

and make the ultrasonic signal interpretation difficult. The different propagation modes,

diffraction and dispersive attenuation make the interpretation of ultrasonic signals even

more complex. In addition, ultrasonic echoes are often contaminated by noise generated

from both the imperfections of the acquisition system and the propagation path through the

inspected materials, which can hide the echoes caused by a possible defect [6]. The last com-

monly occurring problem is associated with the amount of data generated by an ultrasonic

inspection of a specimen [16]. When a scan is performed, a time-domain waveform must

be acquired at each spatial point. For even moderately sized specimens, the amount of data

acquired is large, and the complete waveform can hardly be retained and displayed for each
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measured point on the specimen. One common approach to resolve this problem is to re-

duce the waveform to a simple root mean square (rms)-value, which is generally displayed

as a gray level on a two-dimensional plot. However, one obvious drawback to this method

is the lack of detailed information about the flaw, since the location of (multiple) defects in

a stack-up of layers cannot be isolated from these data.

The need for overcoming the aforementioned problems, accurately interpreting large

volumes of inspection data, and minimizing errors due to human factors motivated the use

of signal processing and classification techniques. Typically, such a NDE system that in-

corporates signal processing and classification techniques is divided in three steps: (1) The

extraction of parameters from the ultrasonic signals, which should be sensitive enough to

defects, and minimally sensitive to the noise of the measurement system, (2) an optimal

representation of the features vector, by means of dimensionality reduction while retaining

the discriminatory information, and (3) the definition of the algorithm of classification. The

available bibliography is basically restricted to two topics, those are the enhancement of de-

tection (noise reduction and echoes enhancement), and the defect characterization for signal

classification. Since the eighties, those methods have been increasingly used to provide en-

hancement techniques for ultrasonic imaging, especially for elastography imaging (B-scans)

or conventional C-scans. However, the processing of signals directly obtained from the ul-

trasonic transducers (A-scans) has been scarcely addressed. As the focus is on 1D ultrasonic

signals, we make no attempt to review any of the 2D imaging techniques here. Concretely,

we intent to give an overview on the signal processing methods that have been applied

to ultrasonic signals, starting from relative simple time and frequency-domain approaches,

while ending up with more complex approaches including redundant and sparse signal

representations.

3.2.1 Enhancement of detection

Ultrasonic signals are often contaminated by noise and/or artifacts originated from both the

measurement system (e.g. transducers and instrumentation) and the material under inspec-

tion. Consequently, noise places a fundamental limit on the detection of small defects and

the measurement accuracy. To increase the probability of defect detection and to decrease

the probability of false alarm, a number of signal processing techniques have been applied

for noise reduction and enhancement of detected echoes.

In many applications, the noise is generally assumed to be an uncorrelated Gaussian

random variable, with zero mean and a band-limited power spectral density function [17].

In areas where the measurements are repeatable, such as ultrasonic NDE, the SNR can be

improved by signal averaging, since the specimen-dependent part of the signal remains

the same for all measurements (and thus after averaging), whereas the disturbances can be

reduced since they are randomly generated in each individual measurement.
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Nevertheless, a small random time-shift may be present due to imperfections of the mea-

surement system or unstable conditions in the propagation path, causing signal misalign-

ment in the time-domain. Under these conditions, the process of signal averaging results in

a signal shape distortion. Grennberg and Sandell [18] proposed a signal averaging method

based on the Hilbert-transform correlation to obtain a higher SNR without signal distortion.

Time delays of all the samples can also be estimated by the cross-correlation method, so that

the signals can be aligned on the time axis for better averaging. Alternatively, one can de-

sign a filter in the frequency-domain, and by focusing on a frequency-band of interest, it is

possible to suppress effects of the noise out this band over the time-domain signal.

However, for highly scattering materials, there is another type of noise called structural

or grain noise, which is produced by the microstructures/grain boundaries of the inspected

material. Each grain behaves like a scattering center, producing an echo that is isolated or

superimposed with other echoes coming from other grains which can hide the echoes pro-

duced by a possible defect. Grain noise will exhibit a small-scale correlation and can be

erroneously associated to defects. This noise is coherent with the emitted signal and can-

not be eliminated by conventional techniques such as classical filtering (e.g. time-domain

smoothing or frequency-domain filtering) or temporal averaging [19]. The major drawback

of the time-domain processing is that it provides poor measurement accuracy, particularly

when the echoes overlap. Therefore, it is often advantageous to process the signal in a

transformed domain which allows highly flexible operations. In this case, a conventional

approach for filtering out grain noise consists of observing the frequency spectrum of the

ultrasonic signal, and particularly its power density spectrum. Indeed, one can assume that

the echoes caused by the flaw differ in spectral content from those due to the background

scattering noise. An optimal approach is to use a Wiener filter, which operates on the spec-

tral differences between the two distinct signal contributions. Unfortunately, the Wiener

filter requires a prior knowledge of the power spectral densities of both the noise and flaw

echoes [20]. Autoregressive analysis has also been used as an alternative approximation to

enhance ultrasonic signals. Wang et al. [11] used second and third-order autoregressive (AR)

models to evaluate the spectral shift in grain signals by utilizing features such as resonating

frequency, maximum energy frequency or AR-coefficients. On the other hand, Izquierdo et
al. [19] presented a method that considers the time-varying spectral content of the received

echoes, based on a time-varying autoregressive model of the structural noise.

Alternatively, deconvolution techniques may be useful to separate the signature of the

material under investigation (i.e. the impulse response of the system) from the corrupted

response of the measurement system (i.e. electronic system, ultrasonic transducers, and

additive noise). The first proposals to solve the deconvolution problem in ultrasonic NDE

used classical techniques, such as the Wiener filter, spectral extrapolation, estimation of

the least squares [21], or homomorphic deconvolution by computation of the cepstrum

[22]. Nonetheless, those conventional deconvolution techniques are sensitive to the additive
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Gaussian noise and yield a minimum phase defect signature which contradicts the non-

minimum phase property of ultrasonic signals. Thus, higher-order statistics (HOS)-based

deconvolution methods have been developed to provide blind deconvolution techniques,

avoiding any prior information on the signal noise or defect [23, 24].

However, in all these techniques, the signals are analyzed either in the time-domain

or in the frequency-domain. It is noteworthy that an ultrasonic signal is usually a broad-

band pulse modulated at the center frequency of the transducer, and is therefore time and

frequency-limited. For this reason, the utilization of a time-frequency analysis, where the

signal is decomposed both in the time and frequency-domain by means of the short-time

Fourier transform (STFT), can be more appropriate. The added complexity of describing

the originally 1D time-domain signal as a 2D representation results in a redundant signal

representation, which can be advantageously used to improve the interpretation of the ex-

perimental data [25]. Time-frequency representation of ultrasonic signals is thus a useful

tool for simultaneous characterization in time and frequency, in particular for detecting and

characterizing dispersive effects and flaw echoes in high scattering materials [26].

Among the time-frequency analysis techniques, the Wigner-Ville distribution (WVD) has

been used for the characterization of materials and localization of flaws. In particular, it has

been applied to distinguish echoes from a crack from the noisy echoes generated by the

scattered ultrasonic waves through the material grains [27]. However, due to the inability of

reducing the cross-terms, useful information is always hidden, and it is therefore necessary

to preprocess the signals before applying WVD. To get around it, Wu et al. [28] recently pro-

posed an enhanced Wigner-Ville distribution (EWVD) for ultrasonic NDE of thin composite

plates, based on the chirplet decomposition and signal elimination. Hence, useless echoes

that affect the representation of flaws are conveniently eliminated from the WVD. In order to

enhance the flaw visibility, a frequency diverse statistical filtering technique known as split-

spectrum processing (SSP) was developed [29]. In this technique, the received ultrasonic

wide-band signal is divided into a set of narrow-band signals using a bank of bandpass

filters, in which nonlinear post-processing is applied to obtain a reconstructed signal less

affected by noise [30]. Recently, SSP has been proposed for its ability to resolve echoes asso-

ciated with delaminations in CFRP detected by ultrasonic methods [31, 32]. However, this

technique is sensitive to the parameters of the filter bank, such as the center frequencies and

bandwidth, and is consequently very difficult to employ in practical applications [6].

As an alternative to SSP, the Wavelet Transform (WT) has also been utilized to improve

ultrasonic flaw detection in noisy environment. In contrast to SSP, the WT uses a constant

relative bandwidth, resulting in a filter bank with a self-adjusting window structure that can

display the temporal variation of the signal’s spectral components with varying resolutions

[25]. This property of the WT is extremely useful for detecting flaw echoes embedded in

background noise, and the WT has thus widely been used for ultrasonic NDE of materials

for pulse detection and noise suppression, both in its continuous [33, 34] and discrete form

[35, 36]. Although this procedure may seem similar to thresholding the signal in the time
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or frequency-domain, WT thresholding results in minimal averaging or smoothing of the

signal in the time or frequency-domain, because each time-frequency contribution of the

original signal is considered locally in the time-frequency domain. However, the operation

can fail if the noise is correlated. Some efforts have been made to palliate this limitation of

the wavelet thresholding. One is to utilize a ’level-dependent’ soft threshold for a signal

with stationary correlated noise [37]. Another is to use overcomplete and sparse signal

representation techniques to cope with the ultrasonic flaw detection and noise suppression

problem [38].

Indeed, redundant and sparse signal representations have drawn a lot of research atten-

tion over the past decade. Ultrasonic signals acquired from a multilayered structure gen-

erally consists of a limited number of echoes, since the layered structure contains a limited

number of abrupt impedance changes. Consequently, the ultrasonic signal can be assumed

to have a sparse representation [39]. A common approach is to use a linear time-invariant

(LTI) model to describe the propagation of the ultrasonic wave inside a layered material,

assuming that the echoes of the received signal are delayed and attenuated replica of the

transmitted pulse corrupted by noise [40]. A widespread application of sparse signal repre-

sentation that offers great advantages is sparse deconvolution (SD) [41, 42], which benefits

to ultrasonic echo detection, defect sizing and noise suppression [6]. This technique is nowa-

days recognized as the state-of-the-art denoising technique.

The aforementioned techniques are usually employed as preprocessing steps (i.e. noise

suppression or echoes enhancement) for damage classification or system identification pro-

cedures. In addition, most of these studies are restricted to backscattering approaches. Gen-

erally, these techniques are based on the assumption that the ultrasonic output signal results

from the convolution of the input signal with the impulsive response (IR) of the specimen,

plus an additive noise. They are then applied in an heuristic way, without an explicit model

which bridges the extracted signal features to the mechanical and geometrical properties of

the material, and thus a precise physical interpretation remains often unavailable. Although

the sparse representation considerably improves this approach, as most of the parameters

are forced to be zero, the lack of a physical interpretation is still present, since prior knowl-

edge on the number of non-zero parameters is generally unavailable.

3.2.2 Defect characterization and signal classification

A number of signal processing methods have been proposed to classify defects detected

by ultrasonic signals, such as pattern recognition techniques. Other related proposals dealt

with the feasibility of using physical features from time and frequency representations of sig-

nals for flaw characterization, including maximum amplitude of the signal, pulse duration,

waveform kurtosis, and rise and fall times [43]. A comparison of feature-based classifiers

for ultrasonic structural health monitoring has recently been performed by Michaels et al.
[44].
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An essential element in NDE systems is the analysis of the captured signal, by means

of a robust parameter extraction, in order to obtain relevant information from the tested

specimen [45]. In some cases, the extracted signal parameters can be processed again to

reduce the dimensionality of the feature vectors, in order to achieve the pursued information

about the specimen [46, 47]. For a real-time system, the number of features used in the

classification process needs to be reduced, since the computational burden of classification

increases with those. Consequently, the fewest number of features which yield the highest

correct classification of the materials should be selected [48].

Principal component analysis (PCA) has been widely used for extracting features from

the defects in ultrasonic classification systems, since PCA gives an optimal linear transform

for reducing the dimension of a data set providing uncorrelated components. In addition,

noise may be reduced, as the data not contained in the first principal components may be

mostly due to noise. Khelil et al. [49] extracted wavelets parameters from ultrasonic signals,

and then obtained an optimized attribute vector applying PCA, which enabled them to dis-

criminate between planar and volumetric defects. In another related proposal, Ramuhalli et
al. [50] extended the PCA method to analyze 2D data for generating a reduced dimensional

feature vector for classification of B-scan images. Alternatively, the classical linear discrim-

inant analysis (LDA) has also been applied. LDA attempts to express a small amount of

dependent variables as a linear combination of other features, in order to characterize or

separate two or more classes of pathologies or defects. Signal parameters, such as wave ve-

locity, dominant frequency, and signal attenuation were estimated, and then preprocessed

by LDA obtaining a good fitting for archaeological period classification [51]. Another tradi-

tional approach is to take the wavelet transforms of the ultrasound signals, and then to use

a subset of the coefficients as features for the classifier. To determine these optimal features,

Meyer et al. [48] applied a forward sequential feature selection (FSFS) algorithm which re-

tains the lowest number of features required to obtain the highest system performance. The

single value decomposition (SVD) of the Hankel data matrix (obtained by assuming that the

discrete output data from the system can be represented by a state space model) has also

been employed to determine the position of defects in laminated materials [16].

Independent component analysis (ICA) is a relatively new method in which the goal is

to find a linear representation of non-Gaussian data so that the components are statistically

independent, or as independent as possible. Recently, ICA has been used for enhancement

of ultrasonic flaw detection and noise suppression. For instance, ICA has been used for

the diagnosis of the material consolidation status and for the determination of the thickness

material profiles in restoration of historical buildings [52]. This recent contribution suggests

that ICA may have a great potential to separate the multiple echoes in an ultrasonic signal

obtained from a multilayered structure.

Once a set of optimum features has been selected, a suitable classifier is needed to clas-

sify the waveforms. A number of supervised and unsupervised classification algorithms

such as K-means clustering algorithm, fuzzy C-means, distance-based recognition systems
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[53], threshold-based decision [27, 54], Bayes’ decision rule [48] and neural networks [55, 51]

have been proposed for classifying signals. The success of all traditional classification algo-

rithms depends heavily on the availability of an adequate and representative set of training

examples, whose acquisition is often very expensive and time consuming. However, real

defects in industry are very complicated, so that in practical ultrasonic NDE applications,

accurately classifying defects remains a big challenge for current techniques. In addition,

in those cases, the main objective is usually the minimization of type-I errors (that is, to

avoid detecting damage that does not exist), and only a few proposals look for more spe-

cific information of the material [35, 30]. Finally, except the recent works by Hägglund et al.
[56, 57] for classification of thin bonding layers within three-layered materials, proposals on

the classification of complex damage mechanisms in multilayered specimens are inexistent.

3.3 Model-based estimation

Accurate estimation of the ultrasonic echo pattern is essential in determining the propaga-

tion path properties, i.e the layered structures that compose the specimen under inspection

and the possible presence of defects (location, size, orientation, and microstructure). Many

ultrasonic testing applications are based on the estimation of the time-of-arrival (TOA),

time-of-flight (TOF), time-difference of arrival (TDOA), or the broadband ultrasonic atten-

uation (BUA) of ultrasonic echoes. However, the estimation of those characteristics under-

goes severe limitations when dealing with complex media (e.g. layered material properties,

frequency-dependent attenuation, dispersion effects, etc.). Thus, the extraction of this in-

formation requires models that explain the formation of echoes. This problem has been

addressed in a number of ways, and gave raise to the so-called model-based estimation

procedure which generally consists of two steps: (1) The formulation of a reliable model

that idealizes the measurements of the ultrasonic wave-material interactions, and whose

model parameters can be linked to the physical properties of the layers, and (2) the use of an

optimization algorithm to estimate those model parameters. The model-based estimation

procedure offers a convenient solution for (i) reconstructing unknown material properties,

(ii) monitoring (i.e identify and quantify) a medium whose properties changes over time,

(iii) restoration of the output signal in the presence of significant noise by deconvolution,

and (iv) for resolving closely-spaced overlapping echoes providing valuable applications

such as the thickness sizing of thin layers.

It is noteworthy that investigations on model-based estimation for ultrasonic NDE appli-

cations have given raise to slightly different designations and developments, in accordance

with the scientific community of which the researchers stem. In the engineering community,

wave propagation models are usually physics-based models that strongly rely on the rational

principles of continuum mechanics. The optimization is then performed using an inverse
problem procedure, and so the overall problem approach received the name of model-based
inverse problem. In contrast, in the information technology community (e.g. signal theory,

telecommunication, electrodynamics, etc.), those models are typically signal-based parametric
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models inspired by concepts from lattice filter theory or circuit models. The estimation of the
model parameters using optimization algorithms is ordinarily understood as solving a prob-

lem under a system identification approach. Both denominations will be employed over the

course of this work, depending from which perspective the research is conducted.

3.3.1 Ultrasonic wave modeling

Over the last decades, considerable attention has been given to the modeling of wave inter-

actions with multilayered materials, in a number of diverse disciplines such as geophysics,

electromagnetics, optics, and acoustics. An exhaustive review of the literature on this sub-

ject is beyond the scope of this thesis, and the reader is referred to the classic monograph

by Brekhovskikh [58] for a concise review of the mathematical framework and physical

phenomena related to this topic. Typically, the resolution of a model-based estimation pro-

cedure requires numerous evaluation of the model (i.e. the forward problem) to update

the material properties over the optimization process. This characteristics promotes the use

of efficient and low complexity models (preferably semi-analytical), and as a matter of fact

makes almost unviable numerical methods, such as finite-difference time-domain (FDTD),

finite element (FEM) and boundary elements (BEM) methods, due to their prohibitive com-

putational costs for accurate material characterization [59]. Here, for sake of simplicity, the

review is restricted to the one-dimensional modeling of ultrasonic waves that propagate

with normal incidence through layered media.

Physics-based models

A method that describes ultrasonic waves in multilayered media with an arbitrary number

of layers is desirable. Thus, modeling tools have generally been developed from matrix

formulations, which combine the principles of continuum mechanics within each layer with

the transmission conditions at the layer interfaces, resulting in a matrix description of the

system in terms of its external boundaries (incoming and outgoing wave displacements) [1].

In the latter half of last century, such matrix formulations have evolved and given raise to

numerous works, based on two quite different approaches and many variants which are in

accepted use (differing usually in their implemented form).

To solve the problem of wave propagation through planar multilayered structures, a

very systematic Transfer Matrix (TM) method (i.e. also referred to as a propagator matrix
method) has been developed and has received considerable attention for a wide range of

applications from researchers involved in NDE (e.g. acoustics, optics and geophysics). The

wave motion of a physical system is usually represented by a set of state equations describ-

ing the dynamic state of certain physical variables. In this method, the solution to these

equations is a transfer matrix which maps the field variables from one layer to the next.

The interface boundary conditions are automatically satisfied by multiplying the individ-

ual transfer matrices, and thus one just has to impose the appropriate boundary conditions

to the remaining two surfaces [60]. The earliest development of the TM method for wave

propagation in layered media was introduced by Thomson [61] , then extended by Haskell
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[62] in the early fifties, and furthered afterwards by Gilbert and Backus [63]. During the

following decades, this theoretical framework has given rise to numerous works almost en-

tirely devoted to seismological applications. First attempts oriented to applications in the

ultrasonic field arose in the late seventies [64, 65], and peaked in the early nineties, as in-

dicates the meticulous review by Lowe [1]. Among others, these developments principally

addressed the introduction of wave attenuation in the TM approach [66, 67], and its exten-

sion to anisotropic media [68, 69, 70], to cylindrically layered media [71, 72] and to multi-

layered anisotropic poro-elastic media [73]. Other related proposals adapted TM method

to periodically stratified media composed of alternating elastic solid and ideal fluid layers

[74] and to anisotropic periodically multilayered media [75]. Most of these works dedicated

much effort to predict the transmitted waveforms, but it may also be useful to predict the

transfer function of the material. This slightly different approach has lead to some alterna-

tive models for adhesively-bonded joints [76, 77] that are rather variants of the TM method

than innovative approaches.

Although the TM approach is applicable in principle, its direct implementation has been

found to suffer from numerical instabilities, particularly when considering layers of large

thickness and high-frequency ultrasound. The cause of this problem is the poor condition-

ing of the transfer matrices when performing multiplications that combine both decaying

and growing terms (i.e. small precision errors amplified by the exponential terms) [78].

Many modifications of the original transfer matrix have been proposed to palliate this pre-

cision problem. One common approach, known as the delta-operator technique, is to retain

the concept of transfer matrices but to rearrange the equations to avoid that they become

ill-conditioned [79, 67, 80, 81]. Such a technique preserves the advantage of a low complex-

ity transfer matrix system but unfortunately fails to keep the conceptual simplicity of the

Thomson-Haskell formulation. In addition, for propagation through anisotropic media, this

technique requires the computation of large-order delta matrices and the derivation of many

analytical expressions [82]. In an other related approach, Hosten [83] suggested to perform

certain numerical test to limit those large frequency-thickness product values that ultimately

cancel each other, in order to restore the stability of the system without loss of precision.

More recently, Balasubramaniam [84] proposed an approximation algorithm that numeri-

cally truncates those higher values by imposing a maximum threshold for the exponential

terms, thus limiting the error amplification and propagation. Although this approxima-

tion does not compromise the computational cost of the original TM approach, the trunca-

tion strongly depends upon the assigned threshold value, and is thus highly application-

dependent.

As an alternative to the TM approach for a computationally stable solution, the Global

Matrix (GM) method was introduced by Knopoff [85], and has been well documented

[86, 87, 88]. In this method, a large single matrix represents the whole system, and is as-

sembled by simultaneous matching of the boundary conditions at each layer interface. This

technique is robust and can be implemented easily. However, this approach involves a
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global banded matrix whose size increases with the number of layers, and thus unfortu-

nately leads to considerable amount of memory storage and computation time when the

system comprises many layers [1]. Among the recent contributions, it is worth to mention

the stiffness matrix (SM) method which presents several advantages over the conventional

TM method, and whose basis was already provided by Kausel and Roësset [89] in the early

eighties. This method operates with total stresses and displacements via the stiffness matrix

applied in a recursive algorithm, reduces the solution to a global banded linear system of

equations, and is more convenient to incorporate imperfect interfaces. This approach has

been successfully proven to resolve the numerical instability of the TM method [90, 91], and

naturally provided the framework for developing recursive asymptotic method [92, 93]. A

rigorous comparison of the numerical stability between the TM and the SM methods is given

by Balasubramaniam et al. [94]. Although the SM method has been demonstrated to be com-

putationally stable for large layer thickness, it becomes inaccurate and nearly singular when

the layer thickness reduces toward zero. As a consequence, Tan [95] recently proposed an

hybrid compliance-stiffness matrix method for stable analysis of elastic wave propagation

in multilayered anisotropic media. As the SM method, this approach is able to eliminate the

numerical instability of the TM method, and also preserves the convenience for incorporat-

ing imperfect interfaces. However, it has the advantage of remaining well-conditioned and

accurate even for zero or small thicknesses.

Communication theory inspired models

Alternatively, wave propagation phenomena in layered systems have also been studied by

considering only general principles about delay, continuity and energy conservation, and

somehow leaving behind knowledge about physics and differential equations. This ap-

proach has given raise to a generic framework, that could be applicable to such diverse wave

types as sound and water waves, light in thin films, normal incident elastic waves (both

pressure and shear types), electromagnetic waves, transmission lines, and electrical ladder

networks [96]. Within this framework, multilayered wave-interactions have been mostly

described using concepts drawn from communication theory, since the resulting transmit-

ted and reflected waves can be connected to equivalent circuit models and/or lattice filter

theory. Here, we briefly review these two families of models.

Under certain assumptions, the characterization of layered materials can be well repre-

sented by means of equivalent models based on electric circuits [97]. An equivalent circuit

may be understood as the modeling of a mechanical system based on the electric network

theory, that is a one-dimensional model that describes the analogue electrical characteristics

of an acoustic structure. The voltage and current in the equivalent system stand for stress

and velocity of the material particles, respectively. The reason circuit analog models are

good for wave propagation problems in stratified structures, is that they are exact for one-

dimensional wave propagation (and thus serve as basis for validating numerical models) re-

gardless of whether considering acoustic or electromagnetic waves, and provide a powerful
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means of computing the response of the system, such as reflection and transmission coeffi-

cients [98, 99]. For instance, transmission lines have been used to represent the propagation

of plane longitudinal waves in generally isotropic layered media [2]. In a similar proposal,

Ghorayeb et al. [100] achieved a complete simulation of a dental ultrasound-system with

its associated driver-receiver electronics, by incorporating the transducers, the focusing lens

and the different tooth layers in a model based on transmission line theory. In the same vain,

Challis et al. [101] proposed to simulate wave propagation in lossy materials with mechani-

cal properties which vary gradually in the spatial dimension, by using electric circuit trans-

mission line analogs to the viscoelastic mechanical system. Alternatively, Vogt and Ermert

et al. [102] employed a linear ultrasonic two-port network model analog to conventional

electrical networks to reconstruct layered media, which consist of discrete layers connected

in series. The multiple reflections are considered by a stepwise estimation and secession of

network elements. However, despite the conveniency of equivalent circuit models to reduce

the computational cost for numerical evaluation, this approach becomes complicated under

conditions less restrictive than those used here (e.g. attenuation, dispersion, nonlinearity)

and requires a reasonable background in electronics.

The lattice filter theory has been routinely used in making acoustic tube models for the

analysis and synthesis of speech, with the layer recursions being mathematically equivalent

to the Levinson lattice recursions of linear prediction. It also found application in geophysi-

cal deconvolution, inverse scattering problems for oil exploration or the probing of tissue by

ultrasound [103]. The Goupillaud specialization [104], i.e. elastic layers of equal-wave travel

time, has been often used in geophysical applications to model wave propagation in inho-

mogeneous media. Despite the long history of mathematical developments for Goupillaud-

type media, some recent proposals employed an innovative digital representation of the

wave propagation in multilayered elastic media, by considering the bonded structure as an

acoustic filter by means of the z-transform [105]. Among them, Velo et al. [106] developed

a finite trigonometric series representation for the stress in a multilayered Goupillaud-type

elastic strip, achieved by means of a z-transform method. As a result, they are able to iden-

tify optimal layered designs which provide the smallest stress amplitude. Gazonas et al.
[107] derived the resonance frequency spectrum for an m-layered Goupillaud-type elastic

medium, obtaining analytical stress solutions from a coupled first-order system of difference

equations also using z-transform methods. Their results suggest that the natural frequency

spectrum depends on the layer impedance ratios and is inversely proportional to the equal

wave travel time for each layer. Nonetheless, the Goupillaud characteristics are unrealistic

for many practical applications, since the layers of inhomogeneous materials does usually

not have equal-wave travel time.

Signal-based parametric models

Over the past two decades, signal modeling and parameter estimation for detecting and

estimating multiple interfering echoes has been a main subject of study in the field of ul-

trasonic imaging. To this end, parametric signal models have been developed, since they
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offer several advantages over heuristic approaches (see Section 3.2) directly applied over

experimental data: (1) High-resolution parameter estimates can be achieved, (2) the accu-

racy of the estimation can be evaluated, and (3) an analytical relationship between model

parameters and physical parameters of the system can be established.

A common approach to address this problem is to approximate the output signal by

a Bernoulli-Gaussian (BG) model [108, 109, 110], that is a parametric signal model, whose

model parameters can be linked to the physical properties of reflectors and frequency char-

acteristics of the propagation path, by assuming that the output signal is made of echoes that

are time-shifted, amplitude-scaled, and noise-corrupted version of the input signal. Implicit

to this method is the assumption that the desired system response is a spike train with un-

known amplitudes and locations, where the number of spikes is considered to be unknown.

In addition, there is no assumption or statistical knowledge imposed on the amplitude and

locations of the spikes. Among the first proposed approaches, Demirli et al. [111] modeled

ultrasonic backscattered echoes in terms of superimposed Gaussian echoes corrupted by

noise. In this model, each Gaussian echo is a nonlinear function of a set of parameters that

are sensitive to the echo shape, e.g. the echo bandwidth, time-of-arrival, center frequency,

amplitude, and phase. These parameters have intuitive meanings for an ideal surface reflec-

tor in a homogeneous propagation path. The TOA is related to the location of the reflector,

whereas the bandwidth factor determines the bandwidth of the echo or the time duration

of the echo in the time-domain. On the other hand, the center frequency is governed by

the transducer center frequency and the frequency characteristics of the propagation path.

Finally, the specific amplitude and phase of the echo account for the impedance, size, and

orientation of the reflector. Nonetheless, this model is not valid for any kind of signal wave-

form and one must have an accurate prior information of the input signal’s appearance

[112].

Dealing with thin layers or long input signal’s time-support implies that the output sig-

nal consists of several reverberant and overlapping echoes. Hence, a parametrization of the

layered structure instead of each echo is preferable, since the total number of parameters in

the model can be kept small and is independent of the number of observable echoes. In that

vein, Hägglund et al. [56] proposed a parametric modeling of the received ultrasound wave-

form, to be used for flaw detection in layered media. The model structure is chosen so that

all dynamics of the waveform is captured by a small number of parameters. The material is

modeled using a continuous AR-model with parameters connected to physical properties,

related to the thicknesses of the material layers and the reflection coefficients given by the

layer boundaries. The effects of dispersion and diffraction are assumed to be negligible and

the different materials are considered to be lossless. In a later work, Hägglund et al. [113]

improved their continuous AR-model with further parameters connected to physical prop-

erties, including the attenuation inside the layers. Alternatively, Hägglund et al. [114] used

a physics-based parametric layer model to analyze the multilayered material, where the pa-

rameters of the model are associated with physical properties (e.g. the reflection coefficients,
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the time-of-flight, and the attenuation) of each layer within the structure. It is noteworthy

that this model is a slight variant of those described in the physics-based models section. The

main advantage using this model is that the complexity of the model is connected to the

number of layers rather than the number of observable echoes in the received ultrasonic

waveform.

Finally, there are a number of uncertainties which cannot easily be described by a com-

plete physics-based model, including certain material properties (e.g. the attenuation and

dispersion) or subtle experimental setup characteristics (e.g. diffraction and misalignment

effects). To cope with dynamics that the physical model is unable to handle, Martinsson

et al. [115] proposed to use a combination of hard and soft modeling. As in [114], the hard
(physical) model is applied to describe the multiple reflections and overlaps related to the

specific measurement setup, while soft (empirical) models, in the form of FIR filters, are

used to capture the unknown dispersion and attenuation effects from the layers, and to deal

with unwanted diffraction and misalignment effects from the measurement setup. The main

benefit of including soft models is that a complete representation of the waveform is pos-

sible, and the residual (i.e. mismatch between the modeled and observed waveform) only

consists of measurement noise. On the other hand, the main drawback is that the number

of parameters to estimate increases and the model has a loss in simplicity, so that the esti-

mation algorithm requires higher computational resources and may suffer from numerical

instability.

3.3.2 Inverse problem and estimation of the model parameters

In NDE of materials, the idea is that the ultrasonic data are related to the material proper-

ties through a known mathematical model. Generally, the mathematical model defines the

forward problem in that it relates known material properties to the ultrasonic data. Thus,

if experimentally measured ultrasonic data are available, computing the required material

properties is just a matter of solving the inverse problem (IP), i.e. relating the known ultra-

sonic data to material properties using the inverse of the same model. However, although

the forward approach might be relatively easy, the inverse scheme is often cumbersome,

since IP’s are usually highly nonlinear and hence, analytically intractable. Furthermore,

the constraint of limited experimental data sets also increase the effort involved in the re-

construction. Consequently, numerical rather than closed-form solutions appear to be the

practical answer for solving such nonlinear IP’s. Therefore, formulating the identification IP

in an optimization form is one of the most popular approach.

The optimization has been addressed in multiple ways, and a common approach is to

formulate it as a nonlinear least-square problem. Generally, an ideal algorithm should cover

several scopes, that are to (1) end up with a reasonably good approximation (’accuracy’), (2)

achieve this with an affordable computational cost (’efficiency’), and (3) ensure the attain-

ment of a (local) optimum (’convergence’). To this end, a broad spectrum of optimization
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techniques have been developed, ranging from local to global methods. A partial classifi-

cation of them is depicted in Figure 3.1. Here, we briefly review the advantages and in-

convenients of those methods, and the reader is referred to the survey on the methods for

local unconstrained optimization provided by Dennis and Schnabel [116] for completeness.

The basic of those methods relies on the Newton’s method, which is an iterative procedure

that requires the computation of the gradient and the Hessian that arise when expressing

the nonlinear function to optimize as a Taylor series expansion up to the second-order term.

In the case that the gradient and the Hessian are not available, they can be calculated with

finite-difference (FD) approximations. However, applying the Newton’s method with an

initial guess far from the optimum can deliver a quadratic model that does not properly

represent the non-linear function or even lead to a non-positive definite Hessian matrix,

therefore invalidating the convex quadratic model. Hence, to ensure the convergence start-

ing from almost any initial guess, two families of strategies, termed globally convergent

modifications of the Newton’s method (e.g. line search and model trust region), have been

devised. In identification IP’s, the Hessian is however not easily available and its computa-

tion by FD’s is expensive. Alternatively, the secant method is a class of algorithms that use

cheaper ways of approximating the Hessian, usually by updating the approximate Hessian

in the previous estimate. The best Hessian update is provided by the positive definite secant

update or the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. Except the calculation of

the Hessian by updating, the rest of the minimization algorithm remains as in the Newton’s

method, and so the aforementioned globally convergent modifications are also applicable to

the secant method.

Local Global

Optimization algorithms
(Gauss-Newton, Quasi-Newton
Secant, Levenberg-Marquardt, BFGS)

Linear and quadratic programming

Kalman filter, projection filter

Genetic and evolutionary algorithms

Neural networks, Fuzzy inference

Random search

Simulated Annealing

Figure 3.1: A classification of optimization methods used to minimize the cost functional in an
inverse problem approach1.

Newton’s methods and the secant updates can be extended to the non-linear least square

problem, taking advantage of its special structure. In that case, the non-linear residual func-

tion is expressed in terms of the Jacobian matrix. For instance, the Gauss-Newton method

is based on approximating the Hessian by making use of the Jacobian, and is then solved by

applying the Newton’s method. This approximation increases the algorithm convergence,

but has the disadvantage that it is not necessarily globally convergent, and that it is not well

defined if the Jacobian does not have full column rank. Nonetheless, it can be shown that

in the case that the Gauss-Newton’s step is a descent direction, then the aforementioned

1Reproduced and adapted from Rus and Gallego [117].

24



globally convergent modifications can be applied, leading to the damped Gauss-Newton

and Levenberg-Marquardt methods. The former is globally convergent although it may

be very slow. In addition, this method is not well defined for non-full column rank Jaco-

bian matrices. The latter is equivalent to the Gauss-Newton method modified by the model

trust region approach, and improves the behavior of the algorithm for not full column rank

Jacobian matrices. Since optimizations algorithms such as Gauss-Newton [118], Levenberg-

Marquardt [119] or BFGS [120] are among the most popular in the literature to solve IP’s,

a brief summary of their characteristics is provided in Figure 3.2. Nonetheless, this corpus

of methods are gradient-based techniques, and consequently have a high probability of en-

trapment at a local minimum for initial guesses that are not close to the global minimum. As

an alternative, genetic algorithms (GA’s) have hold a lot of promise in dealing with complex

problems while requiring significantly few data, for searching such complex multimodal

spaces for unique global optima. GA’s are not gradient-based search techniques and no

initial guesses are required. A deeper insight on GA’s is given in Section 9.3.1.

Gauss-Newton Levenberg-Marquardt BFGS

Convergence rate vs.
probability of convergence

Particularities

High convergence rate

Good for local scope
(near the solution)

Reasonable trade-off

Good for global scope
(far from the solution)

High probability
of convergence

Does not take advantage
of the structure of
the cost functional

Figure 3.2: Characteristics summary of the optimization algorithms2.

There are relatively few works reported in the literature that deal with the estimation

of material properties through judicious use of the experimentally obtained structural re-

sponse and the response of the mathematical model of the structure. This is mainly due

to the fact that most researchers focus their effort either in the experimental fields or in

the modeling ones. For ultrasonic applications, we come across the same duality as for the

models, depending whether the reported works stem from the engineering or information

theory communities. In the engineering community, the model-based IP is usually solved for

reconstructing altered mechanical properties of materials due to damage. Generally, the op-

timization algorithms are applied in a rather straightforward way, while the focus is on the

physical interpretation of the reconstructed model parameters. In contrast, for researchers

involved in the information theory, a thorough effort is made on the model parameters es-

timation and optimization algorithms during the system identification approach, at the cost of

analyzing rather simple materials.

Model-based IP’s

Since the nineties, a number of studies have been carried out to solve the inverse problem for

thickness sizing of thin coatings and reconstructing the mechanical properties of damaged

2Reproduced and adapted from Rus and Gallego [117].
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composites. In that vein, Kinra and Zhu [15] described a technique for ultrasonic NDE of a

thin coating on a thick substrate. They developed an inverse algorithm, which utilizes the

well-known Newton-Raphson method, to reconstruct the thickness and the phase velocity

through a comparison of the theoretical and the measured transfer functions. Using this

technique both the thickness and the wave velocity of the coating could be extracted from

the same measurement without knowing either. In a similar proposal, Kinra et al. [121]

presented an inverse algorithm, which utilizes either the Newton-Raphson or the Simplex

method in conjunction with the incremental search method, to reconstruct simultaneously

the thickness and phase velocity of the individual layers comprising three-layer specimens.

The optimization was achieved by minimizing the difference between the theoretical and the

experimental results in the frequency-domain in a mean squared sense. The most important

conclusion of that preliminary work was that in addition to the magnitude spectrum, phase

spectrum must be considered in the inverse problem. In another related proposal, Kinra and

Iyer [122] used an inverse algorithm, which utilizes the well-known secant method [123]

in conjunction with the method of least squares, to deduce any one of the four acoustical

properties (thickness, wave velocity, density or attenuation) of a thin linear-viscoelastic plate

(given the remaining three) through a comparison of between the experimentally obtained

and theoretically predicted transfer function.

Alternatively, Balasubramaniam and Whitney [124] described an inverse technique for

computing the material elastic constants from data acquired using an immersion through-

transmission method for characterizing thick glass-epoxy composites. The group velocity

was experimentally measured as a function of the energy propagation angle (group angle),

from which the phase velocity was numerically computed as a function of the phase an-

gle [125]. Then, the material constants were determined from phase velocity profiles using

commercially available parameter identification software (SCIENTIST, MicroMath Scientific

Software). In a similar approach, Balasubramaniam and Rao [126] employed an inverse

technique based on genetic algorithms to reconstruct the material stiffness properties of uni-

directional fiber-reinforced composites from obliquely incident ultrasonic bulk wave data.

As a drawback, it is worth to note that most of these works propose the simultaneous

reconstruction of relatively few model parameters. In addition, some of the works dedicated

to the resolution of IP’s are purely theoretical, whereas they investigate the stability to noise

by adding different distributions and amounts of synthetic random noise to noise-free data

simulated by making use of the forward model. In light of these considerations, most of

the actual IP solutions remain somehow far from practical applications, since real defects

of multilayered media in industry are very complicated, i.e. damage may appear at several

locations and simultaneously in different forms.

System identification approach

Independently of the previous works, a number of authors started to explore the merit of

model-based system identification approaches for ultrasonic applications, by adapting clas-

sical methods originally developed for the analysis of speech or images. Investigations were
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conducted in various applications such as transducer pulse-echo wavelet estimation, sub-

sample time delay estimation, and thickness sizing of thin layers. From the information

processing viewpoint, the system identification is especially challenging when dealing with

overlapping echoes (i.e. the layer dimension is small in comparison with the wavelength of

the input signal). In such a case, the discrimination and precise localization of the echoes

is far from obvious. Another issue occurs when the noise level is high since echoes may

be partly or completely drowned in noise due to the material attenuation. As described in

Section 3.3.1, numerous authors modeled ultrasonic signals as the superposition of many

Gaussian echoes corrupted by noise. The first approaches [127, 128] tended to decompose

the observed data into their individual echoes and then to estimate the model parameters

of each individual echo separably using the Expectation Maximization (EM) algorithm or

the Space Alternating Generalized Expectation Maximization (SAGE) algorithm [129]. The

translation of the complicated superimposed echoes estimation into isolated echo estima-

tions provides computational versatility. In a similar proposal, Demirli and Saniie [111]

addressed the estimation of those model parameters using the maximum likelihood esti-

mation (MLE) principle, assuming that all of the parameters describing the shape of the

echo are unknown but deterministic. When noise is considered as white Gaussian, the MLE

problem simplifies to a least squares (LS) estimation problem. Nonetheless, the iterative LS

optimization algorithms suffer from convergence problems and exponential growth in com-

putation when the number of superimposed echoes increases. To overcome this problem,

they proposed to use the EM-based algorithm. In a companion paper, Demirli and Saniie

[130] showed that their method was able to perform deconvolution in the presence of signifi-

cant noise, and could restore closely-spaced overlapping echoes beyond the resolution of the

measuring system. Unfortunately, there is no guaranty that these iterative algorithms con-

verge to the wanted optimum [40]. Furthermore, the EM algorithm converges very slowly

[131], whereas the SAGE algorithm converges faster under certain conditions but becomes

unstable for low SNR’s [132].

Alternatively, Hägglund et al. [113] derived a MLE for estimating the parameters of the

developed continuous AR-model to identify the properties of a thin three-layered struc-

ture. The noise on both the input and output ultrasonic signals is assumed to be white and

Gaussian, implying that the MLE ends up in a Nonlinear Least Squares (NLS) problem.

In addition, to achieve a faster iteration in the optimization process, analytical expressions

for the gradient and the Hessian are derived. The iterative update of the models param-

eters to find the optimum is performed by using the Gauss-Newton linearization method.

In a related proposal, Hägglund et al. [114] improved the MLE for estimating the model

parameters by using the noise on both the input signals and the output signals to weight

the modeling error, implying that the MLE ends up in a nonlinear weighted least squares

(NWLS) problem [133]. According to Pintelon and Schoukens [134], the unknown model

parameters are estimated from discrete Fourier-transformed data. In that case, the objective

of the model parameters estimation is to find the parameters that minimize the square of the
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error, weighted by the covariance matrix. In a similar approach, Martinsson et al. [115] also

estimated the unknown model parameters from discrete Fourier transformed data using a

NWLS fit. In contrast to his colleague, he proposed to use the Levenberg-Marquardt opti-

mization method [135] to maximize the likelihood function, taking advantage of its ability

to expand the search space and handle ill-conditioned Hessians.

Among the emerging studies on sparse representation for ultrasonic signals, a common

approach is to model the sparse reflectivity sequence as a BG model and to use a maximum

a posteriori (MAP) estimation for reconstruction [110]. The latter author proposed a genetic

algorithm for optimizing that criterion, motivated by the fact that the latter is non-convex

(i.e. has more than one local minimum). Unfortunately, this leads to nonlinear and computa-

tionally expensive solutions. As a consequence, truly optimal reconstructions are unfeasible,

but many sub-optimal methods have been devised [136, 137]. A possible way for improv-

ing the optimization is to add a regularizing term to the usual squared error cost function

that will penalize non-sparse solutions [138]. In this context, Soussen et al. [42] addressed

the sparse deconvolution as an inverse problem where the detection and estimation of the

spikes are performed jointly, by explicitly taking into account that the reflectivity sequence

is sparse. This can be achieved using either l1 or l0-norm regularization [139, 140]. In both

cases, the inversion problem results in a numerical optimization problem. For the l1 case,

the optimization is continuous and can be solved by recent efficient algorithms [141]. On

the other hand, for the l0 case, the optimization problem turns into a combinatorial problem

whose goal is to find a sparse configuration with a limited number of spikes yielding the best

fit to the data. The matching pursuit (MP) algorithm has been widely used in many signal

processing areas, and offers a robust approach for solving the sparse deconvolution prob-

lem. MP is is a greedy algorithm for realizing sparse decomposition of a signal by splitting

the signal into a linear expansion of waveforms selected from an overcomplete dictionary

[142]. Due to their simple implementation and numerical efficiency, modified MP methods

have recently seen the light in the NDE community [143, 144, 145]. In that vein, Guo et al.
[39] proposed a method based on a MP algorithm to decompose an ultrasonic signal into

elements of the Gabor dictionary to suppress noise and enhance flaws by using the sparse

information to estimate the crack location and size. In an other related approach, Bossmann

et al. [40] presented two sparse deconvolution methods for nondestructive testing. The first

method is based on a (modified) MP algorithm [146], whereas the second uses the approxi-

mated Prony method (APM) [147]. Although greedy algorithms are relatively fast and have,

therefore, been used extensively in practical applications, their performance is guaranteed

only under very strict conditions. The reader is referred to the excellent review by Zhang

and Harvey [6] for a deeper insight into the optimization algorithms for performing identi-

fication of (sparse) systems.

As a drawback, it is worth to mention the algorithms described in most of these works

require an accurate initial guess for providing a precise parameter estimation. Some authors

proposed to find the initial guess on the parameters from prior knowledge on the theoretical
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values of the material, but this is often not possible in practical applications. In addition,

most of those works deal with rather simple and conventional materials, which consist of

single or few homogeneous isotropic layers in an undamaged state.

Despite of the satisfying properties of a model-based approach, several general issues

which should be taken into account are summarized as follows: (1) if the observed data are

nonlinear functions of parameters, the inverse problem (parameter estimation) is also non-

linear and does not have an explicit solution; (2) the noise embedded in the observed signals

can difficult the estimation of the true parameters value. Hence, the degradation caused by

noise needs to be eliminated or quantified as uncertainty bounds on the estimated parame-

ters; and (3) the number of model parameters may a priori not be known, and therefore the

model-order selection needs to be combined in the estimation problem [130].

This void in the mechanical characterization and interpretation of materials may be over-

come by adopting a probabilistic model-based inverse problem strategy, coupled with a

stochastic model-class selection formulation [148]. This approach allows one to obtain not

only the optimal parameters in a model class, but also the uncertainty associated with the

parameter estimates (due to measurements noise, heterogeneous material properties, ap-

proximated mathematical model, unknown number of model parameters, etc.).

3.4 Nonlinear acoustics

In linear acoustics, the presence of structural inhomogeneities lead to phase and/or am-

plitude variation of the received signal whereas its frequency remains the same than that

of the emitted signal. The majority of well-known acoustic phenomena (i.e. time-of-flight

(TOF) or broadband ultrasonic attenuation (BUA)) are associated with linear elastic mate-

rial properties, and are described by a linear stress-strain relation (Hooke’s law). In contrast,

in nonlinear acoustics, when a sinusoidal ultrasonic wave at a given frequency is transmit-

ted into a nonlinear medium, the fundamental wave distorts as it propagates, and therefore

second and higher harmonics of the fundamental frequency are generated [149]. Those well-

known acoustical manifestations of nonlinear behavior can be explained as follows: Due to

the amplitude-dependent wave propagation velocity, the compression phase of a sinusoidal

wave travels faster than the rarefaction phase, and thus the wave distorts after it has prop-

agated for some distance through a nonlinear material being transformed into a saw-tooth

wave. This steepening of the waveform in the time-domain causes an energy transfer from

the fundamental frequency to higher harmonics. As a consequence, several higher harmon-

ics can be observed as local maxima in the frequency-domain [150, 151].

Measurements of the amplitude of these harmonics thus provide a mean for extracting

the coefficient of second and higher order terms in the nonlinear stress-strain relation, and

deliver valuable information on the material degradation that uses to be far more sensitive

than the linear acoustic properties. Measuring these amplitudes is commonly referred to

as the finite-amplitude method, initially developed by Breazeale and Thompson [152]. The

nonlinear coefficients are usually determined by measuring the second-harmonic generation
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and sometimes higher harmonics for the longitudinal waves, and can be used to characterize

acoustic nonlinear properties of gases, liquids, and solids. For this technique, the through-

transmission mode in immersion is usually preferred. Instead of using two transducers, it

is opportune to replace the receiver by a needle hydrophone (with a nearly linear frequency

response), in order to conveniently measure the second and higher-harmonics. A finite-

duration burst of (nearly) pure tone - typically around 20 cycles long - is launched towards

the specimen, and the progress of some stationary peaks near the end of the tone-burst

is followed and selected to compute the Fast Fourier Transform (FFT), and thus allows to

obtain the second and higher-order harmonics amplitude.

In this dissertation, our goal is not to survey all papers published in this broad and

rapidly growing area, but only to review some experimental and theoretical results that

might be exploited in the present thesis. To this end, we provide some basis on the very

restricted topic of classical nonlinear acoustics using the finite-amplitude method. First,

we expose the underlying mechanisms of the elastic nonlinearity of materials. Then, some

works that explore to the intrinsic nonlinearity of materials (that is the determination of the

nonlinear elastic parameters) are reviewed, whereas a final subsection is devoted to studies

that investigate the nonlinearity changes due to to material degradation.

3.4.1 Elastic nonlinearity of materials

The nonlinear elastic behavior of materials is an emergent and extremely rich topic, that has

broad implications in material sciences, including rock physics and nondestructive evalu-

ation [153]. There are actually two classes of material nonlinearities, which differentiate

themselves both in intensity and origin of their nonlinear response [154]. The first class,

called atomic nonlinear elasticity (also classical or Landau nonlinearity [155]), comprises

most fluids, tissues and monocrystalline solids. In that case, the nonlinearity arises from the

lattice anharmonicity of the interatomic/molecular potential, and is relatively weak because

the intermolecular forces are extremely strong. The second class, called structural nonlin-

ear elasticity (also mesoscopic/nanoscale or hysteretic/nonclassical nonlinearity [156]), in-

volves heterogeneous and a wide range of consolidated materials (i.e. soils, cement, rocks,

fluid-filled porous materials, bone, etc.). Those materials contain soft inclusions (e.g. cracks,

pores, grain contacts, dislocations) embedded in a hard matrix (e.g. grains, crystals), produc-

ing a large nonlinear response. Manifestations of nonclassical nonlinearity include stress-

strain hysteresis and discrete memory in quasi-static experiments, and specific dependen-

cies of the harmonic amplitudes with respect to the drive amplitude, frequency-shift of the

resonance curve, frequency mixing for multiple input signals, nonlinear attenuation and

slow dynamic effects in dynamic wave experiments, which are remarkably different from

those predicted by the classical theory.

Differences between nonclassical and classical nonlinear dynamic behavior include: (1)

A downshift of the resonance frequency, proportional to the resonance amplitude in the

nonclassical case versus a quadratic amplitude dependence in the classical case, (2) nonlin-

ear attenuation versus amplitude independent attenuation, and (3) a quadratic amplitude
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dependence of the third harmonic versus cubic in the classical case [157]. Another striking

feature observed in the nonclassical nonlinear dynamic response of nonclassical materials is

slow dynamics, i.e., the slow recovery of the linear material properties (wavespeed and at-

tenuation) after a sample has been subjected to a force [158]. From the above manifestations,

one can calculate a set of fundamental nonlinear parameters of the material and attempt to

use them in order to infer the nature of the nonlinear response.

Classical acoustic nonlinearity is a direct measure of the material anharmonicity and it

delivers unique information about the nonlinear behavior of the intermolecular lattice forces

[159]. The nonlinear elastic properties of solids containing micro- and macro-defects (scaled

from dislocations to volume inclusions) or structural changes may be manifested in specific

types of acoustic nonlinearity, which can be used as a measure of the defectiveness of a ma-

terial or the integrity of a product structure. Despite those different nonlinear mechanisms, a

quantitative evaluation of elastic nonlinearity of any scale and type can be achieved by mea-

surements of the classical nonlinear coefficients or some other parameters similar to them

that are always proportional to the amplitudes of the higher harmonics generated [160].

The most frequently used experimental method for this purpose is the the finite-amplitude

method.

3.4.2 Intrinsic material nonlinearity

First applications of nonlinear ultrasound using the finite-amplitude method were devoted

to the experimental determination of the intrinsic nonlinear elastic properties of various flu-

ids [161, 162], various solids, to investigate lattice structure [163] and dislocations in crystals

[164, 165, 166], as well as various biological media at both the tissue and molecular level

[167, 168, 169]. In addition, considerable theoretical progress in understanding nonlinear

acoustic phenomena was also accomplished during that period. Indeed, the amplitude-

dependent nonlinear effects can be described by the equations of state and continuity of

the medium, resulting in nonlinear equations of motion. The nonlinear wave equation is

usually obtained by including a nonlinear version of the Hooke’s law (i.e. as a Taylor se-

ries expansion up to second or higher-order terms of the stress as function of the strain)

in the equation of motion [170]. The solution to the nonlinear equation is then recovered

by applying the perturbation theory [171]. As a result, second and higher-order harmonics

are formed at some distance from a monochromatic source propagating in a nondissipative

nonlinear medium, and their amplitude grow with the propagation distance (linearly for the

second-order harmonic, quadratically for the third-oder one, and so on). It has been demon-

strated that the nth harmonic amplitude is proportional to the normalized Bessel function,

and is known as the Fubini-Ghiron solution [161]. Also of interest is that purely longitudi-

nal waves in elastic solids and nondissipative fluids are governed by an equation of motion

of precisely the same form [172]. Nonetheless, this rather simple methodology assumes a

lossless plane-wave propagation, so that neither diffraction nor attenuation and dispersion

are taken into account for the determination of the nonlinear coefficients. In addition, most
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of the studies are restricted to the determination of the second-order harmonics only. Never-

theless, some subsequent studies considered the influence of higher-order harmonics [173],

incorporated the effects of attenuation, diffraction and dispersion [174, 175], or took into

consideration the reflection and transmission coefficients for the fluid-solid interfaces (that

is, when the measurements are performed in immersion) [176, 177].

Later, nonlinear acoustics has been used to investigate the elastic nonlinear effects in

grained materials and rocks [178, 179] concerning their prospective applications in geol-

ogy and seismology. In this context, Van den Abeele [180] presented a model that de-

scribes the interaction of frequency components in arbitrary pulsed elastic waves during

one-dimensional propagation in an infinite medium with extreme nonlinear response. This

model is based on the one-dimensional Green’s function theory in combination with a per-

turbation method, and was initially developed for a general source function by McCall [181].

The solution is implemented numerically in an iterative procedure up to fourth-order non-

linear terms and allows one to include an arbitrary attenuation function. In a companion

paper, they applied this theoretical model to laboratory data from dynamic wave experi-

ments on a cylindrical rod of Berea sandstone [182]. As a result, abnormally efficient third-

harmonic generation with respect to the existing Landau-theory and non-monotonic spec-

tral distribution of the higher harmonics were observed, suggesting the need of including

a further term into the nonlinear wave equation (i.e. because the constitutive relation not

only depends on powers of the strain but also on the second derivative of the strain). The

new phenomenological approach to describe these nonclassical phenomena is known as the

Preisach-Mayergoyz space, developed in analogy with the treatment of magnetic hystere-

sis, and the reader is referred to the pioneer work of McCall and Guyer [183] for a detailed

explanation. From then on, numerous works were dedicated to this exciting topic (see for

instance references [184, 185, 186, 187], to name a few), whose review unfortunately remains

beyond the scope of this dissertation.

Besides the various applications described above, another promising application of non-

linear acoustics is believed to be oriented to NDE purposes. An important reason for this

prospect is that increasing nonlinear properties are always closely related to the amount and

specific nature of defects in materials [188].

3.4.3 Wave-damage interactions

Most of these conventional ultrasonic NDE methods are very sensitive to gross defects, but

much less sensitive to distributed micro-cracks, diffuse damage or material degradation.

Furthermore, general degradation of strength is often found in apparently flawless materi-

als [189]. It is well known that material failure is usually preceded by some kind of nonlinear

mechanical behavior before significant plastic deformation or material damage occurs [190].

Therefore, the degree of material degradation can be evaluated by measuring the nonlinear-

ity of the ultrasonic wave that propagates through the target material. Thus, one can expect

that the magnitude of the second and higher-order harmonics will appear differently in nor-

mal and degraded material, when the same amplitude of wave and the same propagation
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distance is used. For instance, the finite-amplitude technique has been proven to be use-

ful for nondestructive detection of defects in ceramics [191], concrete structures [192, 193],

composites [149], as well as fatigue cracks in metals, such as steels, titanium, and aluminum

alloys [194, 195]. Such defects are due to internal stresses, micro-cracks, zero-volume dis-

bonds, and usually precede the main cracking mechanisms and the subsequent failure of the

material. The characteristics between such defects and common material heterogeneities (i.e.

pores, grains, etc.) is that an internal interface separates the intact material and the inclu-

sion. This contact interface can be either free (large pores, opened cracks), partially clamped

(”clapping” mechanism between the states opened/closed cracks), or ideally bonded, and

is thought to be mostly responsible for the high nonlinear behavior of degraded materials

[196]. Therefore, a considerable number of authors have been involved in laboratory ex-

periments to show that cracks and imperfect interfaces can behave in a nonlinear fashion

[197, 198], and have thus opened new opportunities to detect partially closed cracks that

may not be identified by conventional linear methods.

As a consequence, numerous theoretical studies have been dedicated to the modeling

of those contact interfaces (known as contact acoustic nonlinearity (CAN)). First propos-

als considered boundary conditions that allow an interface to be either completely open or

completely closed [199], but such a model can not provide a convincing description of the

wave damage interactions involving a partially closed interface. For ideally bonded inter-

faces, a general approach to the boundary acoustic nonlinearity was first developed by Zhou

and Shui [200], which showed that a weak nonlinear incident acoustic wave that interacts

with an interface can generate strong reflected and transmitted harmonics. The theory was

later extended to include the analysis of reflected and transmitted second-harmonics for an

anisotropic interface [201]. In an other related proposal, Pecorari [202] presented a new set of

boundary conditions to be enforced on an elastodynamic wave interacting with a nonlinear

interface, focusing on the modeling of the nonlinear interaction of a bulk plane wave with

a nominally flat interface formed by two rough surfaces in contact. The potential relevance

of his model for evaluating partially closed interfaces was examined in a subsequent paper

[203].

Despite the potential of such models for describing interfaces, the nonlinear mechan-

ical behavior of layered media has been investigated using almost only homogenization

approaches [204]. Since this approach does not directly consider the layer interfaces, it is

limited in examining the global behavior of the material, neglecting the wave interactions

that could be very important when identifying structural changes. Among the few works

that take into account the propagation through nonlinear multilayers, it is worth to mention

some proposals that investigate the possibility of modeling damaged interfaces in solids

[205], the bond quality of adhesive layers [206], or layered liquid and tissue-equivalent me-

dia [207]. To our knowledge, the only model that straightforwardly formulated the one-

dimensional nonlinear ultrasonic wave propagation through layered media is the proposal
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by Yun et al. [208], which extends3 the Transfer Matrix method described in Section 3.3.1.

In addition, proposals on signal modeling for nonlinear ultrasonic systems or IP’s dealing

with the reconstruction of nonlinear coefficients are virtually nonexistent in the literature.

3This framework will be take up again in this dissertation for two reasons: (1) The original development has
not been developed for NDE purposes, and has in the proposed form, a lack of applicability; and (2) the authors
discovered that the original development war erroneous at some point.
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4
Theoretical background

The aim of this chapter is to supply the theoretical basis on wave propagation phenomena

and signal theory, that will be extensively used over the course of this thesis. Section 4.1 ex-

poses the fundamental principles that give raise to the one-dimensional linear-elastic wave

equation, and also provides an extension to cope with constitutive nonlinearity. Section 4.2

presents a number of signal processing techniques that will be used to improve the inverse

problem strategy over the course of this dissertation.

4.1 Ultrasonic wave propagation

This section presents the basis to understand the wave propagation in solids. In first place,

we briefly go over the equations that govern the three-dimensional linear wave propagation

phenomena, to end up with the one-dimensional linear-elastic wave equation. Then, we

extend this equation to solids with nonlinear constitutive behavior and thoroughly examine

its solution.

4.1.1 Governing equations of the linear wave propagation

The formulation of the dynamic equilibrium equations is obtained by applying the linear

momentum theorem for each direction of the three-dimensional orthonormal basis [209].

This formulation is given in index notation as,

ρui,tt = σi j, j (4.1)
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where ρ denotes the density of the medium in which the waves are propagating. The compo-

nents ui and σi j, with i, j = x, y, z, are the cartesian components of the displacement vector,

and those of the stress tensor, respectively. The relations between the stress and the strain

tensor are established by the constitutive law as,

σi j = λεkkδi j + 2µεi j (4.2)

where εi j, with i, j = x, y, z, are the cartesian components of the strain tensor, and εkk =

εxx + εyy + εzz is the dilatation (change in volume per unit volume). The Kronecker symbol

δi j is defined as,

δi j =





1 for i = j

0 for i 6= j
(4.3)

where λ andµ are the Lamé constants, which describe the behavior of linear-elastic, isotropic

materials. The relations between the Lamé constants and the engineering moduli are de-

rived as,

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E
2(1 + ν)

(4.4)

where E and ν denote the Young modulus and the Poisson ratio, respectively. The kinematic

relations establish a relation between the displacement field and the strain tensor as,

εi j =
1
2
(ui, j + u j,i) (4.5)

It can be shown that substituting Equations (4.2) and (4.5) into Equation (4.1) leads to the

generalized three-dimensional linear wave equation for the displacement u(x, t). Since the

present work only deals with one-dimensional plane wave propagation in elastic media,

those equations can be reduced to the one-dimensional case, yielding a generalized one-

dimensional linear wave equation for the displacement u(x, t) as,

∂2u
∂t2 = c2

p
∂2u
∂x2

(4.6)

where cp denotes the longitudinal (P-wave) wave propagation velocity.

4.1.2 Foundations of the nonlinear wave propagation

To highlight the fundamental effects of nonlinear elastic materials, the classical approach of

the nonlinear theory of elasticity is briefly presented here (details can be found in [155]). As-

suming that the nonlinear contributions (e.g. geometric) of the wave propagation equation

are negligible compared to constitutive nonlinearity, the only equation that differs from the

linear theory is the constitutive law expressed in Equation 4.2. Thus, the one-dimensional

relation between the stress and the strain is established with the nonlinear version of the

Hooke’s law as,

σ = Eε(1 +βε+ δε2 + . . .) (4.7)
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where β and δ denote the nonlinear elastic coefficients of first- and second-order, respec-

tively. The generalized one-dimensional nonlinear wave equation for the displacement

u(x, t) can thus be written as,

∂2u
∂t2 = c2

p
∂2u
∂x2

(
1 + 2β

∂u
∂x

+ 3δ
(

∂u
∂x

)2

+ . . .

)
(4.8)

This expression means that the displacement depends on linear and nonlinear potencies of

the linear deformation ∂u
∂x . This deformation can be generated from the wave itself (wave of

finite amplitude), as well as from an extern load applied to the concern solid. Alternatively,

Equation 4.8 can be written as,

∂2u
∂t2 =

(
c2

L + c2
NL
) ∂2u

∂x2
(4.9)

where cL and cNL denote the longitudinal linear and nonlinear wave propagation velocity,

respectively. They are defined as,

cL = cp =

√
λ+ 2µ
ρ

, cNL = cp

√
2β

∂u
∂x

+ 3δ
(

∂u
∂x

)2

+ . . . (4.10)

Note that by setting β = δ = 0, we recover the linear wave equation.

Analytically calculated perturbation solutions

Let us now solve the nonlinear wave equation up to the second-order nonlinearity. Apply-

ing the perturbation method [171] enables us to write the wave displacement as,

u = u0 + u1 + u2 + . . . (4.11)

where u0 denotes the zero-order perturbation solution which corresponds to the fundamen-

tal solution of the linear wave equation. The first-and second-order perturbation solutions

are denoted by u1 and u2, respectively. For convenience of the mathematical formulation, let

us define the displacements’ first- and second-derivatives with respect to the x coordinate

as u′ = ∂u
∂x and u′′ = ∂2u

∂x2 , respectively, and the second time-derivative as ü = ∂2u
∂t2 . Since the

effect of the nonlinear terms β and δ is small, an approximate solution can be obtained by

iteration. For this purpose, let us insert Equation (4.11) into Equation (4.9),

ü0 + ü1 + ü2 + . . . = c2
p (u′′0 + u′′1 + u′′2 + . . .)

+ 2c2
pβ (u′′0 + u′′1 + u′′2 + . . .) (u′0 + u′1 + u′2 + . . .)

+ 3c2
pδ (u′′0 + u′′1 + u′′2 + . . .) (u′0 + u′1 + u′2 + . . .)2

(4.12)
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This equation delivers various sub-equations, obtained by rearranging the terms according

to the perturbation order. Hence,

Zero-order: ü0 − c2
pu′′0 = 0

First-order: ü1 − c2
pu′′1 = 2c2

pβu′′0 u′0

Second-order: ü2 − c2
pu′′2 = 2c2

pβ (u′′1 u′0 + u′′0 u′1) + 3c2
pδu′′0 (u

′
0)

2

. . .

(4.13)

Consequently, u0 is the solution to the linear wave equation, that is Equation (4.8) for β =

δ = 0, whose general solution can be stated as,

u0 =
∞
∑

n=1

(
A(n)

0 sin (n (γx−Ωt)) + B(n)
0 cos (n (γx−Ωt))

)
(n ∈ R) (4.14)

where γ = Ω/cp and Ω are the wave number and continuous-time frequency, respectively.

By considering a monochromatic wave that propagates in a semi-infinite nonlinear elastic

medium, the zero-order perturbation solution (4.14) can be simplified as,

u0 = A0 sin (γx−Ωt) (4.15)

Let then u1 be the first-order perturbation solution to Equation (4.8). Inserting the zero-order

perturbation solution (4.15) within the first-order perturbation Equation (4.13b) leads to,

u′′1 −
1
c2

p
ü1 = βγ3 A2

0 sin (2 (γx−Ωt)) (4.16)

Equation (4.16) has the form of a classical partial differential equation with an inhomoge-

neous part. It is well-known from the mathematical analysis, that when the inhomogeneous

part is linearly dependent to the general solution of the homogeneous part, the solution ap-

proach for the particular solution of u1 must be multiplied by a sufficiently large power of x
to become linearly independent. Thus, a particular solution may be obtained by the method

of variations of parameters as,

u1 = A(x) sin (2 (γx−Ωt)) + B(x) cos (2 (γx−Ωt)) (4.17)

where A(x) and B(x) represent space-dependent amplitudes of the first-order perturbation

solution. Inserting Equation (4.17) into Equation (4.16) leads to a pair of equations obtained

by matching like coefficients of the sine and cosine terms,

B′′(x) + 4γA′(x) = 0

A′′(x)− 4γB′(x) = βγ3 A2
0

(4.18)
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Let us write the space-dependent amplitudes as linear functions A(x) = A1x + A2 and

B(x) = B1x + B2, and insert them in Equation (4.18):

4γA1 = 0 ⇒ A1 = 0

−4γB1 = βγ3 A2
0 ⇒ B1 = −1

4
βγ2 A2

0

(4.19)

Therefore, the first-order perturbation solution can be stated as,

u1 = A2 sin (2 (γx−Ωt)) +
(

B2 −
1
4
βγ2 A2

0x
)

cos (2 (γx−Ωt)) (4.20)

where A2 and B2 are constants corresponding to complementary solutions of Equation

(4.13b). The constants can be determined by the boundary condition (u1(0, t) = 0) and the

Sommerfeld radiation-type condition, which requires that the solution represents a wave

propagating in the positive x-direction (no reflection may occur since the layer is considered

as semi-infinite). However, setting A2 = B2 = 0 simplifies the analysis without significantly

affecting its accuracy. Indeed, Hamilton and Blackstock [171] demonstrated that any term of

the wave displacement perturbation solution that remains independent of x may be ignored,

regardless of wether it stems from the complementary or particular solution. Hence,

u1 = −1
4
βγ2 A2

0x cos (2 (γx−Ωt)) (4.21)

As can be observed, the first-order perturbation solution is generated by the fundamental

waves, whose amplitude accumulates with the propagation distance x. In this case, the

nonlinear effect is essentially due to frequency-mixing between two spectral components,

i.e. the double-frequency component (second harmonics) is generated by a mixing of the

fundamental waves with themselves [184]. The general solution up to first-order perturba-

tion is therefore stated as,

u(x, t) = u0(x, t) + u1(x, t) = A0 sin (γx−Ωt)− 1
4
βγ2 A2

0x cos (2 (γx−Ωt))
(4.22)

and corresponds to the results obtained by Van den Abeele [180]1 and Pantea et al. [210]2. In

contrast, the first-order perturbation solution provided by Jhang and Kim [189] seems to be

erroneous3.

The second-order perturbation solution can be solved accordingly by inserting the zero

and first-order perturbation solutions (4.15)-(4.21) within the second-order perturbation

1Note that he found that the nonlinear coefficient of first-order β̂ = 8A1/(γ
2xA2

0). However, be aware that
the former makes use of a slightly different nonlinear wave equation where β̂ = 2β. It can be shown that both
solutions are equivalent.

2Note that they made use of a slightly different nonlinear wave equation (negative nonlinear term) and zero-
order solution (cosine instead of sine), which explain the slightly different result. It can be proven again that
both solutions are equivalent.

3Even if they start from the same equation than us, their resulting solution factor 1/8 instead of 1/4 is wrong.
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Equation (4.13c) as,

u′′2 −
1
c2

p
ü2 = −2β (u′′0 u′1 + u′′1 u′0)− 3δu′′0 (u

′
0)

2
(4.23)

where,
u′0 = γA0 cos (γx−Ωt)

u′′0 = −γ2 A0 sin (γx−Ωt)

u′1 = −1
4
βγ2 A2

0 cos (2 (γx−Ωt)) +
1
2
βγ3 A2

0x sin (2 (γx−Ωt))

u′′1 = βγ3 A2
0 sin (2 (γx−Ωt)) +βγ4 A2

0x cos (2 (γx−Ωt))

(4.24)

Inserting Equations (4.24) in Equation (4.23), and making use of the trigonometric identities

cos (3a) = cos (a)(cos2 (a) − 3 sin2 (a)) and sin (3a) = sin (a)(3 cos2 (a) − sin2 (a)) leads

to,

u′′2 −
1
c2

p
ü2 = −

(
1
2
β2γ5xA3

0 cos (γx−Ωt) +
3
4

(
β2 − δ

)
γ4 A3

0 sin (γx−Ωt)

+
3
2
β2γ5xA3

0 cos (3 (γx−Ωt)) +
1
4

(
5β2 − 3δ

)
γ4 A3

0 sin (3 (γx−Ωt))
)

(4.25)

Following the aforementioned method of variations of parameters, a suitable approach for the

particular solution of the second-order perturbation solution u2 may be written as,

u2 = A(x) sin (γx−Ωt) + B(x) cos (γx−Ωt)

+ C(x) sin (3 (γx−Ωt)) + D(x) cos (3 (γx−Ωt))
(4.26)

Inserting Equation (4.26) in Equation (4.25) leads to two pairs of uncoupled equations ob-

tained by matching like coefficients of the sine and cosine terms,

B′′(x) + 2γA′(x) = −1
2
β2γ5xA3

0

A′′(x)− 2γB′(x) = −3
4

(
β2 − δ

)
γ4 A3

0

D′′(x) + 6γC′(x) = −3
2
β2γ5xA3

0

C′′(x)− 6γD′(x) = −1
4

(
5β2 − 3δ

)
γ4 A3

0

(4.27)
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Let us now write the space-dependent amplitudes as quadratic functions K(x) = K1x2 +

K2x + K3, with K = {A, B, C, D}, and insert them in Equation (4.27):

2B1 + 2γ(2A1x + A2) = −1
2
β2γ5xA3

0 ⇒ A1 = −1
8
β2γ4 A3

0

2A1 − 2γB2 = −3
4

(
β2 − δ

)
γ4 A3

0 ⇒ B2 =
1
4

(
β2 − 3

2
δ

)
γ3 A3

0

2D1 + 6γ(2C1x + C2) = −3
2
β2γ5xA3

0 ⇒ C1 = −1
8
β2γ4 A3

0

2C1 − 6γD2 = −1
4
(5β2 − 3δ)γ4 A3

0 ⇒ D2 =
1
6

(
β2 − 3

4
δ

)
γ3 A3

0

(4.28)

Therefore, the second-order perturbation solution can be stated as,

u2 =

(
A3 −

1
8
β2γ4x2 A3

0

)
sin (γx−Ωt) +

(
B3 +

1
4

(
β2 − 3

2
δ

)
γ3xA3

0

)
cos (γx−Ωt)

+

(
C3 −

1
8
β2γ4x2 A3

0

)
sin (3 (γx−Ωt)) +

(
D3 +

1
6

(
β2 − 3

4
δ

)
γ3xA3

0

)
cos (3 (γx−Ωt))

(4.29)

where the constants K3 corresponding to complementary solutions can be set to zero as done

for the first-order perturbation solution (see Equations (4.20)-(4.21)). Hence,

u2 = −1
8
β2γ4x2 A3

0 (sin (γx−Ωt) + sin (3 (γx−Ωt)))

+
1
4
γ3xA3

0

((
β2 − 3

2
δ

)
cos (γx−Ωt) +

(
2
3
β2 − 1

2
δ

)
cos (3 (γx−Ωt))

) (4.30)

As can be observed, the second-order perturbation solution is composed of two parts, which

are both generated by interactions of the zero-order with the first-order perturbation solu-

tion. In this case, the nonlinear effect is essentially frequency mixing between three spectral

components: The triple-frequency component (third harmonics) is generated by a positive
mixing of the fundamental waves with the second harmonics (Ω+2Ω), while the resulting

single-frequency component (first harmonics) is generated by a negative mixing of the fun-

damental waves with the second harmonics (2Ω-Ω).

The general solution up to second-order perturbation is easily obtained by combining

Equation (4.30) with Equation (4.22) as,

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t)

= A0 sin (γx−Ωt)− 1
4
βγ2 A2

0x cos (2 (γx−Ωt))

− 1
8
β2γ4x2 A3

0 (sin (γx−Ωt) + sin (3 (γx−Ωt)))

+
1
4
β2γ3xA3

0

(
cos (γx−Ωt) +

2
3

cos (3 (γx−Ωt))
)

− 3
8
δγ3xA3

0

(
cos (γx−Ωt) +

1
3

cos (3 (γx−Ωt))
)

(4.31)
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and corresponds to the results by Melngailis et al. [163]4 and Van den Abeele [180]5. It is

noteworthy that higher-order perturbation solutions could be found accordingly. The ele-

mentary relationships for the β, δ-model up to second-order perturbation solutions can be

summarized as follows, looking at the individual spectral components and their depen-

dence on distance x, frequency Ω, and amplitude A0 of the fundamental waves [184]:

u1(x, t) ∝ β
(
Ω

cp

)2

A2
0x , u2(x, t) ∝





β2
(
Ω

cp

)4

A3
0x2 , if β2

(
Ω
cp

)
x� |δ|

δ

(
Ω

cp

)3

A3
0x , if β2

(
Ω
cp

)
x� |δ|

(4.32)

Manifestations of nonlinear constitutive behavior

Let us finally consider a simple example to highlight the well-known acoustical manifes-

tations of nonlinear constitutive behavior, i.e. the steepening of the waveform in the time-

domain and the observation of higher harmonics as local maxima in the frequency-domain.

To this end, we developed the model in Equation (4.31) up to 10 harmonics. For clarity, we

refer to the first-order (one nonlinear parameter) Taylor series expansion as theβ-model, and

to the extended second-order expansion as the β, δ model. The input is a monochromatic

continuous pressure wave at frequency F = 5 MHz and four drive displacement amplitudes

(A0, 2A0, 3A0, and 4A0, where A0 = 5 nm). The propagation distance is x = 20 cm, and

the linear wave velocity in the model is fixed to cp = 1500 m/s (attenuation is neglected).

Strain values of the wave responses can be obtained from those classical nonlinear models.

The values of the nonlinear parameters are indicated in the figures below. Figure 4.1 depicts

the linear case, where as expected the frequency of the output remains the same than that

of the input. In addition, there is no amplitude-dependent propagation, so that the ratio

between the amplitudes remains equivalent.
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Figure 4.1: Linear model (β = δ = 0).

4Note that in his proposed form, a = 2β and δ = 0.
5He found that the amplitude of the third harmonics (when neglecting δ) was A2 = β̄2 A3

0γ
4x/32 (with

β̄ = 2β).

42



Figure 4.2 shows the β-model. As can be observed, an increase of the drive amplitude leads

to increased asymmetry in the waveforms (i.e. saw-tooth form), which corresponds to a

larger distribution of energy into higher-order harmonics. The harmonic energy contained

in the spectral components tends to fall off rapidly and nearly exponentially as a function of

the frequency [184].
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Figure 4.2: Nonlinear β-model: β = 5 (δ = 0).

On the other hand, Figure 4.3 illustrates the β, δ-model with β set equal to zero and a pos-

itive δ-value. The distortion from a sinusoidal waveform increases with increasing drive

amplitude, and the spectral components are characterized by the presence of odd harmon-

ics, as predicted by Equation (4.31).
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Figure 4.3: Nonlinear β, δ-model: β = 5, δ = 20000.

Note also that the magnitude spectrum is identical for positive or negative δ-values, as

depicted in Figure 4.4 for the largest input energy 4A0. Time-domain differences could

however be observed in the phase-spectrum.

Finally, Figure 4.5 depicts the combination of first- and second-order nonlinearity (β, δ-

model), for a positive δ-value which is much larger than β2, since values for |δ| of one or

two orders of magnitude larger than β2 is typically required to visually alter the distorted

waveform [184]. As can be observed, in that case the spectral components are made of both
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Figure 4.4: Nonlinear β, δ-model: β = 0, δ = ±20000 (for 4A0).

even and odd harmonics, and for sufficient input energy, the spectrum shows a predilection

for odd harmonics (e.g. for 4A0).
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Figure 4.5: Nonlinear β, δ-model: β = 5, δ = 20000.

In addition, Figure 4.6 shows the combination of first- and second-order nonlinearity (β, δ-

model for a drive amplitude 4A0), for positive and negative δ-values which are much larger

than β2. As can be observed, the distortions of the waveforms significantly change, de-

pending upon the sign and the value of the second-order nonlinear parameter δ. As in the

previous case, and for sufficient larger values of δ, the spectrum shows a predilection for

odd harmonics (e.g. for δ2).
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Figure 4.6: Nonlinear β, δ-model: β = 5, δ1 = ±10000, δ2 = ±20000 (for 4A0).

4.2 Signal processing and feature extraction

The optimization of the inverse problem strategy proposed in this dissertation makes an ex-

tensive use of signal theory principles, including analysis and parametrization techniques.

Thus, this section describes the basis to understand those principles, with the aim of provid-

ing a suitable representation of ultrasonic signals, appropriate for pathology identification.

The signal processing techniques described here can be classified in three categories. In

first place, we describe some techniques that can be used to preprocess ultrasonic signals,

by means of noise reduction and echoes enhancement. Then, different parametrization ap-

proaches can be applied to the preprocessed signals (e.g. nonparametric and parametric

signal models), and the obtained spectral parameters are usually transformed (e.g. homo-

morphic transformations), to provide a more uncorrelated and dimensionally reduced rep-

resentation. It results from the applied analysis that an ultrasonic signal can be represented

by a feature vector containing the analysis parameters. Finally, in some cases, this feature

vector can be post-processed, by means of a further reduction of its dimensionality.

4.2.1 Preprocessing

This section describes some techniques that can be used to preprocess ultrasonic signals.

Ultrasonic signals are generally contaminated by noise originated from both the measure-

ment system and the material under inspection. First, the SNR can be improved by signal

averaging, since the specimen-dependent part of the signal remains the same for all mea-

surements (and thus after averaging), whereas the disturbances can be reduced since they

are randomly generated in each individual measurement. Figure 4.7 depicts the effect of sig-

nal averaging on two ultrasonic signals, which results from the measurement of undamaged

(high SNR) and damaged (low SNR) area of a layered material. The signals corresponding

to an undamaged and damaged area are labeled as yi,0(n) and yi,d(n) (i = 1, . . . , Nr), re-

spectively, where Nr denotes the number of measurements repetition. The resulting average
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are respectively denoted by y0(n) and yd(n). The improvement of the SNR is commonly

quantified in dB by applying the simple formula 10 log10(Nr).

0 5 10 15
−1

−0.5

0

0.5

Time, t [µs]

A
m
p
lit
u
d
e

 

 

y0,i(n)

y0(n)

0 5 10 15

−0.15

−0.1

−0.05

0

0.05

0.1

Time, t [µs]

A
m
p
lit
u
d
e

 

 

y1,i(n)

y1(n)

Figure 4.7: Process of temporal signal averaging on ultrasonic signals obtained from a layered media:
High SNR (left) versus low SNR (right).

In order to further reduce part of the noise and focus on the frequency band of interest,

the signals can be decimated at a sampling frequency F̄s = Fs/Nd, where Fs and Nd denote

the original sampling frequency and the decimation rate, respectively. Figure 4.8 depicts the

effect of decimation on the time-domain waveform y0(n) and magnitude spectrum |Y0(ω)|
of the averaged ultrasonic signal.
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Figure 4.8: Process of decimation on the time-domain waveform and magnitude spectrum of an
ultrasonic signal measured from an undamaged area.

Secondly, for very low SNR (i.e. low signal amplitude or high damage environment), the

signals generally suffer from misalignment effects with respect to the abscissa. On can easily

overcome this artifact by applying a baseline correction, that is subtracting the signal’s mean

to the signal:

ycorr(n) = y(n)− ȳ(n) = y(n)− 1
N

N−1

∑
n=0

y(n) (4.33)

Thirdly, by considering that a NDE system must be insensitive to changes in signals

amplitude or energy, ultrasonic signals can be normalized. Typically, the normalization is
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performed by making use of the root mean square (rms) of the signal, so that the signal energy

amounts to one. Alternatively, a signal can be normalized with respect to its amplitude, so

that its absolute peak value amounts to one. Those operations can be expressed as,

yener.(n) =
y(n)

yrms(n)
=

y(n)√
1
N

N−1

∑
n=0

(y(n))2

, ypeak(n) =
y(n)

max (|y(n)|) (4.34)

where N denotes the number of samples of the signal. Note that yener.(n) is less sensitive to

noise than ypeak(n), as the signal’s variability is divided by the square root of the number of

samples.

Finally, the selection of an appropriate analysis window is considered. The multipli-

cation of a signal by a window in the time-domain corresponds to a convolution in the

frequency-domain, which results in two main effects: Spectrum estimation errors (rippling)

increase, and resolution loss between neighboring frequencies (leakage). The degree of rip-
pling depends on the relative amplitude between the main lobe and the side lobes, while

the resolution is mainly influenced by the main lobe bandwidth [211]. Thus, the choice of

the applied window depends on its discriminative characteristics regarding: (1) the spectral

modulations (ripples) amplitude according to the window type, and (2) the window size,

inversely related to the ripples amplitude. There are many windows that the literature re-

ferrers to, among them the ones of Hanning, Hamming, Blackman, Bartlett, etc. [212]. The

default window is the rectangular (Dirichlet) one and is defined as,

wr(n) =





1 0 ≤ n ≤ L

0 otherwise
(4.35)

where L denotes the window length. For a given length L, this window has the narrowest

main lobe, but the highest side lobes of all commonly used windows. Consequently, other

window types were designed as a trade-off between main lobe bandwidth and side lobes

relative amplitude. Among them, raised cosine based windows have been developed. For

instance, the Hanning window is obtained as,

whan.(n) =





1
2

(
1− cos

(
2π

n
L

))
0 ≤ n ≤ L

0 otherwise
(4.36)

On the other hand, the Hamming window is defined as,

wham.(n) =





0.54− 0.46 cos
(

2π
n
L

)
0 ≤ n ≤ L

0 otherwise
(4.37)
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Alternatively, a Bartlett (triangular) window can be used,

wbar.(n) =





2n
L

0 ≤ n ≤ L/2

2
(

1− n
L

)
L/2 ≤ n ≤ L

0 otherwise

(4.38)

Finally, the Blackmann window is defined as,

wbla.(n) =





0.42− 0.5 cos
(

2π
n
L

)
+ 0.08 cos

(
4π

n
L

)
0 ≤ n ≤ L

0 otherwise
(4.39)

The bell-shaped curves of those windows are depicted in the left plot of Figure 4.9. Addition-

ally, the right plot shows the DFT of both the rectangular and Hamming windows, in order

to illustrate the aforementioned trade-off between main lobe bandwidth and side lobes rel-

ative amplitude.
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Figure 4.9: Preprocessing analysis windows.

The characteristics of those windows, such as the main lobe bandwidth, side lobe relative

amplitude and side lobes decreasing slope, are summarized in Table 4.1.

Window shape Approximate main Relative peak side Side lobes fall-off
lobe bandwidth lobe amplitude [dB] [dB/oct.]

Rectangular L/8 -13 -6
Hanning L/4 -31 -18

Hamming L/4 -41 -6
Bartlett L/4 -25 -12

Blackmann L/2 -57 -18

Table 4.1: Windows characteristics after Oppenheim and Schafer [211].

It is worth to point out that signal windowing is generally used while dealing with sig-

nals of infinite length. Hence, by increasing the window size, it is possible to avoid the
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inconveniences due to the aforementioned trade-off between resolution and precision. In

contrast, ultrasonic signals are finite by nature, i.e. they start and end up with samples

whose amplitude approximately amounts to zero. Thus, in that case, the window is fore-

most used to weight the signal samples over the time. This can be appreciated in Figure 4.10,

where a Hamming window wham.(n) has been applied over an ultrasonic signal y0(n). As

can be observed, while in the original signal (left) predominates the first wave packet (wave

front), the windowed signal (right) exhibits accentuated echoes amplitude, representative

of the successive reflections of the transmitted signal between the specimen/transducers

interface.
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Figure 4.10: Echoes enhancement of an ultrasonic signal by temporal signal windowing.

The influence of the signal windowing will be further discussed in next sections, while

dealing with other domains of signal representation.

4.2.2 Spectral estimation

The proposed feature extraction procedure relies on processing methods that are based on

two different approaches, respectively known as nonparametric techniques and parametric

signal modeling. While nonparametric techniques directly estimate the spectral features

from the signal itself, the fundamental idea of parametric signal modeling is based on the

vision of the ultrasonic signal as a discrete-time random process. Random processes can be

modeled by filtering white noise with a linear shift-invariant filter that has a rational system

function. In such a case, the ultrasonic signal is viewed as a filter output, where the spectrum

estimate is given by its frequency response. In particular, autoregressive (AR) processes are

considered. AR models have been found to provide a sufficiently accurate representation

for many types of signals in many different applications [213], where as in NDE systems,

the pursued information is hidden in a random-nature signal. If an AR model is assumed, a

linear predictive coding (LPC) spectrum estimate can be obtained.

Nonparametric techniques

When considering nonparametric techniques, the spectral analysis can be achieved by deter-

mining the magnitude spectrum of the signal, easily obtained by applying the DFT. Figure

4.11 depicts the magnitude spectrum of an ultrasonic signal, before and after applying an
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analysis window. As can be observed, applying an analysis window over the time-domain

signal has significant implications on the magnitude spectrum. On the one hand, the signal

envelope, which corresponds to the redundant character of the signal, remains almost un-

changed. On the other hand, the fine spectrum presents an accentuated peakiness due to the

enhanced echoes.

0 2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

Frequency, f [MHz]

M
ag

n
it
u
d
e
sp
ec
tr
u
m

 

 

|Y0,d(ω)|
Envelope

0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Frequency, f [MHz]

M
ag

n
it
u
d
e
sp
ec
tr
u
m

 

 

|Y0,d(ω) ∗ Wham.(ω)|
Envelope

Figure 4.11: Magnitude spectrum of an ultrasonic signal, before (left) and after (right) applying an
analysis window.

Parametric signal modeling

Let us consider an AR process, and thus the ultrasonic signal y(n) is the response of an all-

pole filtering to an excitation x(n) [214]. The transfer function H(z) of an all-pole filter is

defined as,

H(z) =
G

A(z)
(4.40)

where G denotes the filter gain, which depends upon the signal nature. On the other hand,

A(z) is a polynomial expression in z−1 of the form,

A(z) = 1 +
p

∑
k=1

akz−k (4.41)

where the ak and p denote the filter coefficients and the model-order, respectively. The dif-

ference equation corresponding to Equation (4.40) can be written as,

y(n) = Gx(n)−
p

∑
k=1

ak y(n− k) (4.42)

In addition, for a given a signal y(n), a linear prediction of that signal can be defined as,

ỹ(n) = −
p

∑
k=1

ak · y(n− k) (4.43)

50



When predicted samples are compared to the original ones, the prediction error can be com-

puted as,

e(n) = y(n)− ỹ(n) = y(n) +
p

∑
k=1

ak y(n− k) (4.44)

From where Equation (4.42) is recovered, when considering e(n) = Gx(n). The LPC co-

efficients ak can be calculated as the ones that minimizes the predictive error energy, that

is,
∂E
∂ak

.
= 0 , with E =

p

∑
n=1

(e(n))2 (4.45)

leading to the following classical linear equations system,

p

∑
k=1

ak∑
n

y(n− k)y(n− i) = ∑
n

y(n)y(n− i) (1 ≤ i ≤ p) (4.46)

This system can be solved by the autocorrelation method, where the autocorrelation function

is defined as,
R(i− k) = ∑

n
y(n− k)y(n− i) (4.47)

resulting in,
p

∑
k=1

akR(i− k) = R(i) (1 ≤ i ≤ p) (4.48)

Note that the autocorrelation matrix that multiplies the vector of coefficients ak is an Her-

mian Toeplitz matrix. This Toeplitz structure allows to solve this equations system efficiently

by applying the Levinson-Durbin recursion [213]. The corresponding LPC spectrum can be

obtained by substituting z = e jω into Equation (4.40). Hence,

H(ω) = H(z)|z=e jω =
p

∑
k=0

ake jωk (G = 1) (4.49)

Figure 4.12 depicts the LPC spectrum of an ultrasonic signal for a model-order equal to 18.
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Figure 4.12: Modeled LPC spectrum of an ultrasonic signal, before (left) and after (right) applying
an analysis window.
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As can be observed, a relatively low model-order leads to a smoothing of the magnitude

spectrum and resonance peaks estimation. Again, the application of an analysis window

enables us to preserve parts of the fine spectrum information, even at such a low model-

order. However, there are some uncertainties regarding this modeling: Determining the

order p of the LPC analysis for ultrasonics is an open issue, which does not have an intrinsic

meaning as in other applications. As a consequence, the performance of this modeling will

depend on whether or not an AR model is consistent with the way in which the data is

generated.

4.2.3 Homomorphic transformations

Systems that satisfy the generalized principle of superposition are called homomorphic since

they can be represented by algebraically linear mapping between output and input signal

spaces [215]. Among the homomorphic transformations, the cepstrum6 is a conventional

technique which consists of converting a convolution into a sum [216]. Concretely, the cep-
strum ĉ(n) of a discrete signal y(n) is defined as the IDFT of the logarithmic spectrum,

ĉ(n) = F−1 [log (Y(ω))] =
1

2π

∫ π

−π
log (Y(ω))dω (4.50)

where Y(ω) denotes the spectrum of that signal y(n). Generally, the spectrum Y(ω) is

a complex and even function obtained by applying the DFT. Thus, ĉ(n) is usually called

complex cepstrum even if it represents a real signal (given that log(Y(ω)) is also an even

function), since the term complex refers to the use of the complex logarithm, not to the signal

itself. Alternatively, a real cepstrum can be obtained by considering the magnitude spectrum

|Y(ω)|,
c(n) =

1
2π

∫ π

−π
log (|Y(ω)|)dω (4.51)

By decomposing the spectrum Y(ω) into its respective magnitude |Y(ω)| and phase ∠Y(ω),

an expression that relates the complex and real cepstra can be found as,

ĉ(n) = c(n) + j F−1[∠Y(ω)] (4.52)

As can be observed, the real cepstrum is the IDFT of the real part of Y(ω), and is thus equal to

the conjugate-symmetric part of ĉ(n), denoted by ĉ∗(n). Hence, there is a further expression

that relates both the complex and the real cepstra,

ĉ(n) + ĉ∗(n) = 2 c(n) ⇔ c(n) =
ĉ(n) + ĉ∗(n)

2
(4.53)

6The term cepstrum has been defined as an anagram of the word spectrum. Playing further on the anagram
theme, a filter that operates on a cepstrum might be called a lifter, and so the quefrency, repiod and saphe respec-
tively stand for the frequency, period, and phase in the cepstral-domain.
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In addition, in practice, the real cepstrum can be easily obtained by applying the FFT as,

c(n) = IFFT [log (|FFT(y(n))|)] (4.54)

where IFFT denotes the inverse fast Fourier transform In such a case, the real cepstrum is

usually called cepstrum FFT. The cepstrum FFT of an ultrasonic signal is depicted in Figure

4.13.
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Figure 4.13: Cesptrum FFT of an ultrasonic signal, before (left) and after (right) applying an analysis
window.

As can be observed, the low-order cepstral coefficients are nearly similar for the cases

with/without an analysis window. In contrast, there is a significant increase in amplitude

for higher-order cepstral coefficients around 25, 50, and 75 for the case where an analy-

sis window has been applied. It is noteworthy that these quefrencies corresponds to time-

equivalent sample delays between wave echoes, i.e. the time that needs the wave front to

cross two, four and six times the specimen. Thus, due to the harmonic nature of the ul-

trasonic signals, the wave echoes appear as equidistant peaks at higher quefrencies, rightly

separated by a value that corresponds to the fundamental period of the analyzed signal

echoes. Consequently, the cepstral representation enables us to decompose the spectrum in

its two main characteristics, that are the spectral envelope (i.e. lower quefrencies) and the fine

spectrum (i.e. higher quefrencies).

In an algebraic sense, the associated complex cepstrum could be obtained accordingly.

However, computing the complex cepstrum is usually cumbersome due to the unwrapping of

the digital phase [217]. Indeed, the existence of the complex cepstrum is only ensured under

the restriction that the complex logarithm could be represented by a convergent power series

of the form,

Ĉ(z) = log [Y(z)] =
∞
∑

x=−∞ĉ(n)z−n, |z| = 1 (4.55)

In such a case, log [Y(z)] must have the properties of the z-transform for a stable signal [218].
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4.2.4 Parameter conversion

By applying a cepstral analysis, a more uncorrelated and dimensionally reduced (lower com-

putational cost) signal representation can be obtained. Depending on the used spectral rep-

resentation, different types of cepstra can be obtained. The most direct way is to use the

cesptrum FFT (i.e. IFFT of the logarithmic magnitude spectrum), as described in the previ-

ous section. In the case of the LPC modeling, the cepstrum is a signal corresponding to the

logarithmic LPC spectrum,

Ĥ(ω) = log (H(z)|z=e jω) =
∞
∑

n=−∞c(n)e jωn (4.56)

Additionally, the corresponding complex cepstrum can be expressed as,

ĉ(n) = log (G)δ(n) + â(n) (4.57)

where δ(n) represents a unitary impulse, and â(n) denotes the complex cepstrum of the se-

quence ak. Alternatively, Equation (4.57) can also be calculated in a recursive way as,

ĉ(n) =





0 (n < 0)

log (G) (n = 0)

−a1 (n = 1)

−an −
n−1

∑
k=1

k
n

ĉ(k)an−k (n > 1)

(4.58)

Commonly, this formulation is known as cepstrum LPC. Its corresponding real cesptrum can

be obtained by making use of Equation (4.53) as,

c(n) =





ĉ(−n)
2

(n < 0)

log (G) (n = 0)

ĉ(n)
2

(n > 0)

(4.59)

4.2.5 Dimensionality reduction and deconvolution property

It can be useful to reduce the number of cepstral coefficients, by applying a window to rule

out lower and/or higher quefrencies. This process is called liftering and is defined as,

c̃(n) = c(n)l(n) (n = 0, . . . , N − 1) (4.60)
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The default window is the rectangular one, obtained as

lr(n) =





1 1 ≤ n ≤ L

0 otherwise
(4.61)

An analogy with the well-known filters (e.g. low-pass, high-pass and band-pass) used in the

frequency-domain can be established, and thus several littering windows can be directly

derived from the rectangular one in the cepstral-domain. Let us consider for instance a

short-pass liftering, which corresponds to a smoothing of the spectrum, preserving its spectral

envelope while removing the fine spectrum information. This lifter has been usually applied

to seismic signals or dereverberation problems, to cancel multiple equidistant echoes [219].

Figure 4.14 depicts such a lifter applied on the cepstrum FFT obtained from an ultrasonic

signal, along with the resulting smoothing of the spectrum.
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Figure 4.14: Influence of a rectangular short-pass liftering, whose longitude amounts to 20, on the
magnitude spectrum of the ultrasonic signal.

Although it has been less studied, it is interesting to point out that liftering the complex
cepstrum allows to observe the effects of removing quefrencies on the time-domain wave-

form. Figure 4.15 shows such effect for an ultrasonic signal.

On the other hand, applying windows different from the rectangular one allows to

weight the cepstral coefficients depending on their discriminative performance for pathol-

ogy detection. Tokhura [220] introduced a window formed by the inverse of the standard

deviation of the cepstral coefficients σc(n) (statistical weighting), which can be related to the

slope of the considered cepstrum,

lsw(n) =





1
σc(n)

1 ≤ n ≤ L

0 otherwise
(4.62)

Other window shapes are proposed by Junqua and Wakita [221]. Among others, a general ex-
ponential lifter can be used for cases where the cepstral distance is too sensitive to the spectral
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Figure 4.15: Influence of a rectangular short-pass liftering (L = 20) on the time-domain waveform
of an ultrasonic signal.

peaks and not sensitive enough to the spectral slope,

lgel(n) =





ns 1 ≤ n ≤ L (s ≥ 0)

0 otherwise
(4.63)

Alternatively, the bandpass liftering, based on a ”sine-on-a-pedestal-shaped-function”, has

also been used in linear predictive analysis,

lbp(n) =





1 + 10.5 sin
(πn

L

)
1 ≤ n ≤ L

0 otherwise
(4.64)

Juang et al. [222] reviewed the sources of the LPC spectrum variation for speech signals, and

pointed out the following statements, which can be extrapolated to NDE systems:

(a) The variation of the low-order cepstral coefficients is mainly due to the variation of the

recording and transmission of the speech signal, as well as to the speaker characteris-

tics, etc. Similarly, in a NDE system, the low-order cepstral coefficients can be related

to the variations of the used transducers that produce the excitation signal transmitted

through the specimen.

(b) The variation of high-order cepstral coefficients is inherent to the analysis process.

Thus, in a NDE system, the high-order cepstral coefficients appear to be related to the

material properties.

Consequently, the liftering window should reduce the undesirable variations due to coef-

ficients of lower and higher orders. Statistical weighting allows to avoid the variation-type

(a), but can strengthen the variation-type (b) in case of large window longitude. In order to
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remove both variation types, a raised sine window has been defined as,

lrs(n) =





1 +
1
2

L sin
(πn

L

)
1 ≤ n ≤ L

0 otherwise
(4.65)

A further advantage of working in the cepstral-domain is its inherent deconvolutional

capability. Indeed, by using a logarithmic domain, a response signal y(n) resulting from

the filtering h(n) of an excitation signal x(n) is equivalent to the sum of the corresponding

cepstra cx(n) and ch(n), respectively. Consequently, the cepstrum provides an efficient and

flexible analysis tool for measuring the likelihood between spectra. Typically, the wave-

forms recorded from measurements on undamaged and damaged area of a layered material

differentiate themselves mainly in the wave echoes, whereas the wave front remains almost

unchanged. Thus, the deconvolution property of the cepstrum, along with the excitation sig-

nal invariance, enables us to enhance the filter damage information when comparing the

cepstra of undamaged cy,0(n) and damaged signals cy,1(n), by ruling out the excitation in-

formation:
∆c(0,1)(n) =

(
cy,1(n)− cy,0(n)

)

= (cx,1(n) + ch,1(n))− (cx,0(n) + ch,0(n))

= (ch,1(n)− ch,0(n))

(4.66)

Let us introduce a rectangular liftering scan, with a given width and displacement, which

can be applied over the cepstrum subtraction defined in Equation (4.66). By determining the

variations within that window, it is possible to generate a graph of the cepstral difference

evolution. As a consequence, this process enables us to detect the cepstral coefficients which

contain some potential damage information, as depicted in Figure 4.16.
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Figure 4.16: Deconvolution property: (a) Cepstra of undamaged and damaged ultrasonic signals;
(b) Cepstra of undamaged and damaged filters (obtained by ruling out the excitation signal); (c)
Rectangular liftering scan (width = 10, displacement = 2) applied on the cepstral distance; and (d)
Evolution of the cepstral variation.

As can be observed, the cesptral distance (i.e. damage information) shows high values at

low-order cepstral coefficients, and at high-order cepstral coeffecients with a common repiod
that approximately amount to 25, which corresponds to the period of the wave echoes in

the time-domain.
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5
Model-based estimation procedure

The first objective of this dissertation is aimed at providing solutions to several problems

that arise in the model-based estimation procedure for ultrasonic NDE of layered materials, by

making use of digital signal processing and modeling techniques. To this end, this chapter

presents a first contribution, which can be understood as a conceptual one. Indeed, on the

light of the considerations done over the course of the literature review, we came across a

duality when looking at the proposals for identifying layered structures, depending whether

they stem from the engineering or information theory communities (see Figure 5.1). There-

fore, we intent to unify the grounds implied in both area, facing toward the optimization of

the performance of such procedure.

Physics-based
models

Inverse problem

?
Model-based

inverse problem

Signal-based
parametric models

Estimation of the
model parameters

?
System identification

approach

'

&

$

%

Engineering community Information theory

Interpret US data
obtained from
layered media

Figure 5.1: Overview of the duality involved in the model-based estimation procedure.
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Generally, two key aspects of a model-based estimation procedure are fundamentals: (1)

An appropriate understanding and modeling of the interactions between ultrasonic waves

and multilayered media is required; and (2) the model parameters extracted from the mea-

surements should be sensitive enough to the pathologies (that is, damage or consistency

changes) that manifest in the specimen under inspection, and minimally sensitive to the

measurements noise and model uncertainties. It is noteworthy that point (1) relies on the

physics involved in the problem (i.e. its resolution is proper to engineers), whereas point (2)

depends upon the signal features (i.e. their extraction is specific to researchers concerned

with signal theory).

From an engineering perspective, a conventional model-based inverse problem is tradition-

ally solved by minimizing the discrepancy between the experimental observations and the

observations predicted by a physics-based model by comparing the waveforms in the time-

domain, as depicted in Figure 5.2. Despite the potential strength of model-based inverse prob-
lem, parts of its structure could not be attractive from a practical point of view for inspecting

multilayered media: For a fast convergence of the minimization algorithm, this method re-

quires precise and reliable observations. However, due to their structural complexity, multi-

layered materials require special treatment in ultrasonic signal interpretation. The random

nature of the signal generation, the imperfections of the acquisition system, as well as the

difficulties in understanding and analyzing multiple and overlapping ultrasonic echoes may

have a drastic influence on the performance of the inversion scheme. Additionally, an ac-

curate characterization of pathologies usually require the determination of several model

parameters, at the cost of excessive computational resources.

-

- Physics-based
model

J
J
JĴ







�

n+

-

- Cost functional
minimization

6

Input

Experimental
observations

Modeled
observations

Residual

Update the model parameters

Multilayered
specimen

Figure 5.2: Traditional model-based inverse problem framework.

From a signal theory perspective, tremendous emphasis has been directed towards sys-
tem identification approaches that enhance both the reliability and the quantitative informa-

tional content of signals obtained from conventional NDE systems [10]. Part of this empha-

sis has focused on the adaptation of advanced signal processing concepts to NDE problems,

which had already been successfully applied in other scientific fields such as electrical en-

gineering, speech recognition or geophysics. Among others, those procedures have given

raise to the development of inverse problems based on signal-based parametric models (trained
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over empirical data, in contrast to phenomenological approaches relying on deterministic

physical laws1). Thus, the ability to reconstruct the ultrasonic signals can be evaluated by

estimating the model parameters of the system to identify (which relates the input-output

signals) that minimize the modeling error, as depicted in Figure 5.3.

- Parametric model -
?n --

+

6

Input
Modeled

observations
Modeling

error

Experimental
observations

Update the model parameters

Figure 5.3: System identification approach.

From Figure 5.2, one could conclude the difficulty of directly extracting pathology-

sensitive features from the ultrasonic signals captured by the transducers. In contrast, Figure

5.3 definitely lacks physical interpretation. In response to those problems, we propose an

novel evaluation method based on an analysis-by-synthesis scheme [223, 45], which can be

represented by means of the conceptual diagram depicted in Figure 5.4.
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+
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?
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(Analysis)
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Input Spectral features

Spectral
features

Modeling
error

Experimental
observations

Update the
model parameters

Figure 5.4: Analysis-by-synthesis scheme.

1From an engineering viewpoint, one usually develops models on the basis of the partial differential equa-
tions that describe the physical phenomena of interest (e.g. in our case, the wave equation), in an attempt of
reproducing the experimental observation (i.e. the wave response). Alternatively, researchers involved in signal
theory use to propose models, whose physical basis is empirical and directly inspired by the appearance of the
experimental observation (e.g. in our case, the number, delay and amplitude of echoes contained in the wave
response). In particular, the latter approach has a greater flexibility when it comes time to choose the model type
and order (e.g. the modeling of ultrasonic signals using low-order autoregressive models [11]), which enables
to adjust better the observations. However, it suffers from the absence of a direct link between the signal model
parameters and the physical properties of the process.
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As a can be observed, the model generates spectral features from the model pathology-

sensitive parameters. The analysis-by-synthesis scheme enables us to perform a consistent

optimization of the model parameters, in order to minimize the spectral distortion between

the experimental observations and the modeled ones. Optionally, one could add a weight-

ing filter that prioritize some spectral components over others. It is noteworthy that this

analysis-by-synthesis scheme shows some similarities to those used in today’s speech en-

coders. Consequently, the underlying signal processing and modeling techniques of the

analysis-by-synthesis scheme offer several advantages: (1) The noise reduction of the cap-

tured signals, (2) a robust parametrization of the signals, to extract pathology-sensitive

model parameters, (3) the definition of a distance between the observed and modeled fea-

tures with a mechanical sense, and (4) an efficient model parameters estimation to identify

the pathology.

The remaining chapters of the contributions focus on the different models developed

over the course of this dissertation, and their use in the model-based estimation procedure.

Despite the valuable efforts required for the development of consistent optimization strate-

gies and the obtaining of relevant experimental observations, those steps of the model-based

estimation procedure are moved to Part III, since they are not novel per se.
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6
Transfer Matrix formalism

In this chapter, we revisit the Transfer Matrix (TM) formalism. The aim of the reconsid-

eration of this classical method is threefold: To (1) review the theoretical grounding for

our dissertation, (2) discuss some aspects regarding its implementation, and (3) obtain a

formulation that offers us the possibility of extending the TM method to nonlinear media

in a natural way. For these purposes, we first expose the theoretical development for a

monochromatic linear-elastic wave, and then provide some answers to deal with practical

issues such as material damping or discrete-time input signals.

6.1 Theoretical basis

The problem of a normally incident plane longitudinal ultrasonic wave that propagates

through a multilayered elastic material is considered. A through-transmission configura-

tion is adopted, representative of the successive reflections that suffer the transmitted signal

between layers and specimen/transducers interfaces.

A general harmonic solution to the one-dimensional linear plane wave Equation (4.6)

can be stated in the frequency-domain as,

u(x, Ω) = u f (x, Ω) + ub(x, Ω) = Ae− j Ωc x + Be j Ωc x (6.1)

where u f (x, Ω) and ub(x, Ω) stand for the forward- and backward-propagating parts of

the linear displacement u(x, Ω), respectively. The constants A and B are the wave ampli-

tudes of the forward- and backward-propagating parts, respectively. The ratio between the
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continuous-time frequency Ω and the longitudinal wave velocity c is usually referred as the

wave number γ = Ω/c 1. The former is defined as,

c =

√
E(1− ν)

ρ(1 + ν)(1− 2ν)
(6.2)

where E, ν and ρ denote the Young modulus, the Poisson ratio and the density of the

medium in which the wave propagates, respectively.

The wave interactions within multilayered materials can be approximated by a semi-

analytical model based on the TM formalism, which is here derived according to Cretu

and Nita [224]. This formalism describes the wave propagation phenomena in finite elastic

media, and is here strictly derived for the case of successive homogeneous layers. Let us

consider sharp discontinuities between M homogeneous linear-elastic media with the same

cross-sections, as depicted in Figure 6.1.

. . . . . . . . . . . .

. . . . . . . . . . . .
-� -� -� -

- - - - -

� � � � �
u0 u1 ui uM uM+1

a1 ai aM

d0 = 0 d1 di−1 di dM−1 dM = L

1 i M

x

. . . . . .

Figure 6.1: Multilayered structure.

Hence, the general harmonic solution stated in Equation (6.1) can be particularized for

each layer i (i = 1, . . . , M) as,

ui(x, Ω) = Aie
− j Ωci

x
+ Bie

j Ωci
x (6.3)

In the case of a perfectly bounded interface, the transmission conditions imply the continu-

ity of displacement ui(x, Ω) and stress σi(x, Ω) across the interface. Making use of these

conditions at an arbitrary interface x = di (i = 1, . . . , M),

ui(di, Ω) = ui+1(di, Ω)

σi(di, Ω) = σi+1(di, Ω)
(6.4)

a hard transition from layer i to layer i + 1 can be characterized by the discontinuity matrix

Di,i+1,

U i+1(di, Ω) = Di,i+1U i(di, Ω) (i = 1, . . . , M) (6.5)

1Note that in the engineering community, the wave number is commonly denoted by k. Here, we reserve
this symbol for the representation of the discrete frequencies, as done by researchers involved in signal theory.
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where U j(x, Ω) =
[
u f

j (x, Ω) ub
j (x, Ω)

]T
and,

Di,i+1 =
1
2




1 +
Zi

Zi+1
1− Zi

Zi+1

1− Zi

Zi+1
1 +

Zi

Zi+1


 (6.6)

The discontinuity matrix depends only on the acoustic impedances Z j = ρ jc j of the two

layers being in contact (see Appendix A.1). On the other hand, considering an harmonic

wave propagating in the same homogeneous layer i from position x = di−1 to position

x = di, its transformed displacement at the respective locations can be expressed by the

propagation matrix P i(Ω),

U i(di, Ω) = P i(Ω)U i(di−1, Ω) (i = 1, . . . , M) (6.7)

with

P i(Ω) =


 e− j Ωci

ai 0

0 e j Ωci
ai


 (6.8)

where ai = di − di−1 is the thickness of layer i (see Appendix A.2). Thus, the relation be-

tween the input and output state vectors for a layer i can be expressed by U i+1(di, Ω) =

T i(Ω)U i(di−1, Ω), where a transfer matrix T i(Ω) = Di,i+1P i(Ω) for a single layer is ob-

tained by combining discontinuity and propagation matrices (i = 1, . . . , M),

T i(Ω) =
1
2




(
1 +

Zi

Zi+1

)
e− j Ωci

ai

(
1− Zi

Zi+1

)
e j Ωci

ai

(
1− Zi

Zi+1

)
e− j Ωci

ai

(
1 +

Zi

Zi+1

)
e j Ωci

ai


 (6.9)

so that the complete transfer matrix, describing the reflection and transmission processes

of a multilayered structure, is easily obtained as the product of matrices from successive

layers T (Ω) = ∏
M−1
i=0 T M−i(Ω), leading to a relation between the input and the output

state vectors as,

UM+1(L, Ω) = T (Ω)U 1(0, Ω) (6.10)

where x = 0 and x = L correspond to the boundaries of the system.

To solve the resulting system for a through-transmission configuration (the incident

wave arises from the left, travels several times through the specimen, and is detected at

the right-hand side), the boundary conditions must be specified2. First, the incident wave is

2Note that the theoretical development done so far may also be valid for other purpose involving the
echogenic principle, such as conventional ultrasonic pulse-echo techniques or back-scattering approaches.
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modeled by a forward prescribed displacement u f
0(0, Ω), whose associated boundary con-

dition involves the continuity of displacement at the left boundary x = 0,

u f
0(0, Ω) = u f

1(0, Ω) + ub
1(0, Ω) (6.11)

where u f
0(0, Ω) is the Fourier transform of the incident monochromatic wave. On the other

hand, the wave response is obtained by modeling the receiver as a semi-infinite layer, whose

boundary condition is expressed by the radiation energy condition [209] as,

ub
M+1(L, Ω) = 0 (6.12)

Inserting Equations (6.11) and (6.12) into Equation (6.10) leads to,


 u f

M+1(L, Ω)

0


 =


 T11(Ω) T12(Ω)

T21(Ω) T22(Ω)




 u f

1(0, Ω)

u f
0(0, Ω)− u f

1(0, Ω)


 (6.13)

where the Ti j(Ω) denote the elements of the transfer matrix T (Ω). The wave displacement

at the receiver position L, in terms of that at the transmitter position 0, is found by solving

the former linear equation system,

u f
M+1(L, Ω) =

det (T (Ω))

T22(Ω)− T21(Ω)
u f

0(0, Ω) = H(Ω)u f
0(0, Ω) (6.14)

where H(Ω) is a complex scalar number, which depends on the frequency of the incident

wave.

Finally, it is worth to note that Equation (6.14) is a theoretical result valid for any single

continuous-time frequency Ω and any number of layers M. In addition, the derivation of the

complete transfer matrix is straightforward and only relies on the principles of the contin-

uum mechanics. Nonetheless, in practice, the input signal is usually a bandpass ultrasonic

signal at a relatively low center frequency3 containing a wide range of frequencies around

it, and is commonly represented as a digital time-domain signal. This issue is discussed in

the Section 6.3.

6.2 TM formalism extension to absorbing layers

Typically, no substantial changes are required for the TM formalism when dealing with ab-

sorbing layers. Indeed, material damping may be introduced in a number of ways. Here, the

3That is, a frequency whose wavelength is compatible with the specimen thickness. Therefore, this config-
uration does not lead to so-called ”large-problems” [78], where transfer matrices become ill-conditioned when
implementing the TM method. This assumption is reasonable, since it matches the configuration of the sub-
wavelength technique used in the experimental section of this thesis (see Section 9.2).
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damping is defined in terms of the dynamic modulus E∗ as in [225], and can be expressed

for each layer i as,

E∗i = Ēi + jẼi = Ēi(1 + j tan (δi)) (6.15)

where Ēi, Ẽi and tan (δi) are the storage modulus, the loss modulus and the (dimensionless)

loss tangent, respectively. Thus, the complex wave velocity c∗i can be defined as,

c∗i = c̄i

√
1 + j tan (δi) (6.16)

where c̄i denote the real part of the complex wave velocity. Supposing that the loss is small,

a first-order expansion of the square root containing the loss tangent leads to,

c∗i ≈ c̄i

(
1 + j

tan (δi)

2

)
(6.17)

Thus, any trivial harmonic solution to the viscoelastic wave equation could be written as,

e
− j Ωc∗i

x
= e− j Ωc̄i

(1− j tan (δi)
2 )x

= e− j Ωc̄i
xe−

Ω tan (δi)
2c̄i

x (6.18)

As can be observed, the first exponential is complex and represents the harmonic propaga-

tion, whereas the second exponential is real and is responsible for the exponential decay of

the wave with propagation distance x, known as attenuation. For a small loss, the attenua-

tion may be defined asαi = −Ω tan (δi)/(2c̄i). Hence,

e
− j Ωc∗i

x
= e− j Ωc̄i

xeαix (6.19)

Thus, Equation (6.9) can be easily extended to the case of absorbing layers by substituting

the wave velocity ci by a complex one c∗i .

6.3 Numerical implementation of the TM formalism

Let us consider that the incident wave u0(0, nT) at the transmitter position x = 0 is repre-

sented as a discrete-time signal with N samples (n = 0, . . . , N− 1). By applying the Discrete

Fourier Transform (DFT), an approximated discrete frequency representation with compo-

nents u0(0,ωk) (k = 0, . . . , N − 1) can be obtained. The TM formalism can then be applied

to each frequency bin, in order to obtain the receiver side components uM+1(L,ωk). Finally,

by applying the inverse Discrete Fourier Transform (IDFT), the wave response uM+1(L, nT)
at the receiver position x = L is recovered. The general scheme of this numerical procedure

for M layers is depicted in Figure 6.2.

Under this approach, we are employing a discrete-time or normalized frequency ω =

Ω/Fs (ω ∈ [0, 2π ]), where Fs is the sampling frequency. The DFT frequencies ωk cover the

whole frequency range,

ωk = 2π
k
N

(k = 0, . . . , N − 1) (6.20)
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Figure 6.2: General scheme of the TM formalism numerical procedure.

According to this scheme, the transfer matrix for a single layer (see Equation (6.9)) can be

discretized as well as,

T(k)
i = T i(Ω)|Ω=ωk Fs

(6.21)

leading to the following discrete solution,

u f
M+1(L,ωk) =

det (T(k))

T(k)
22 − T(k)

21

u f
0(0,ωk) = H(ωk)u

f
0(0,ωk) (6.22)

where u f
0(0,ωk) is the kth-frequency component of the incident wave obtained by applying

the DFT, namely u f
0(0,ωk) = ∑

N−1
k=0 u0(0, nT)e− jnωk , and T(k) denotes the complete transfer

matrix corresponding to that frequency, whose elements are labeled as T(k)
i j . It is worth to

point out that each T(k)
i (i = 0, . . . , M − 1, k = 0, . . . , N − 1) is a 2 × 2 matrix of complex

numbers, allowing a numerical solution for Equation (6.22). Considering the frequency re-

sponse H(ω) of the multilayered material for a through-transmission configuration, the pro-

posed formalism implicitly provides a sampled version of it, namely H(ωk) = H(Ω)|Ω=ωk Fs

(k = 0, . . . , N − 1). Hence, this formalism does not enable to obtain an analytic representa-

tion of the complete frequency response of the material, and in practice its accuracy strongly

depends on the number of signal samples N.
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7
Signal modeling approach

In this chapter, we propose an alternative model for multilayered materials, which borrows

concepts from lattice filter theory and bridge them with the physics involved in the wave-

material interactions. In first place, the through-transmission configuration is considered as

a discrete-time linear system. Thus, the multilayered material under investigation can be

represented by a transfer function, which relates the discrete input and output signals [114].

Then, the ties between the signal model parameters and the physical properties of the layers

are carefully inspected. Finally, we show that this model can be represented as a digital

filter, and discuss strengths and limitations.

7.1 The two-port model

Multilayered wave-interactions can be described using conventional networks, which con-

sist of discrete layers connected in series [102]. Thus, each layer unit i can be modeled by the

two-port network depicted in Figure 7.1. In this figure, the frequency response Hi(ω) (ω is

the normalized frequency defined in the previous chapter) and gains {Gti , Gri , Ĝti , Ĝri} char-

acterize the intra-layer i propagation and the impedance ratios between layers i and i + 1,

respectively. It is worth to mention that the negative signs at the nodes stand for the π-phase

shifts (e jπ ) that suffer the back-propagating components at the layer discontinuities.

According to Figure 7.1, outputs Y f
i (ω) and Yb

i (ω) are obtained from inputs X f
i (ω) and

Xb
i (ω) as,

Y f
i (ω) = X f

i (ω)Hi(ω)Gti − Xb
i (ω)Ĝri

Yb
i (ω) = Xb

i (ω)Ĝti Hi(ω)− X f
i (ω)Hi(ω)Gri Hi(ω)

(7.1)

71



Hi(ω)

Hi(ω)

s c-
��
�

HHH - n -

A
AA
�
��

?n�s

6

�
��
A
AA

� c
HH

H
�
���

+

-

+-

X f
i (ω)

Yb
i (ω)

Y f
i (ω)

Xb
i (ω)

Gti
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Figure 7.1: Two-port network for a layer unit i.

Working through these analytical expressions allows us to write the system in matrix form,

with Ui(ω) =
[

X f
i (ω) Yb

i (ω)
]T

and Ui+1(ω) =
[

X f
i+1(ω) Yb

i+1(ω)
]T

,

Ui+1(ω) =




(
Gti −

Gri Ĝri

Ĝti

)
Hi(ω) − Ĝri

Ĝti

1
Hi(ω)

Gri

Ĝti

Hi(ω)
1

Ĝti

1
Hi(ω)




Ui(ω) (7.2)

where the output vector of layer i corresponds to the input vector of layer i + 1, i.e.

Ui+1(ω) =
[
Y f

i (ω) Xb
i (ω)

]T
. The two-port network of layer i may be written as Ui+1(ω) =

Ti(ω)Ui(ω), and thus the total frequency response of the material is obtained as T(ω) =

∏
M−1
i=0 TM−i(ω). Consequently, the relation between the input and output state vectors of

the complete multilayered system UM+1(ω) = T(ω)U1(ω) can be written as,


 X f

M+1(ω)

Yb
M+1(ω)


 =


 T11(ω) T12(ω)

T21(ω) T22(ω)




 X f

1 (ω)

Yb
1(ω)


 (7.3)

where the Ti j(ω) are the matrix elements of the total frequency response T(ω). The bound-

ary conditions for a through-transmission configuration (Equations (6.11)-(6.12)) can be rep-

resented as well in terms of signal theory concepts, as depicted in Figure 7.2.

ns s s

s s

- -

6

-

�

+

-

X f
0 (ω)

X f
1 (ω) Y f

M(ω)

Yb
1 (ω) Xb

M(ω)

X f
M+1(ω)

Yb
M+1(ω) = 0

Multilayered structure

Figure 7.2: Multilayered structure and boundary conditions in terms of signal modeling principles.
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From this figure, the boundary conditions are set in the two-port connections as,

X f
1 (ω) = X f

0 (ω)−Yb
1(ω)

Yb
M+1(ω) = 0

(7.4)

Inserting Equation (7.4) into Equation (7.3) allows to find the output of the system as,

X f
M+1(ω) =

det (T(ω))

T22(ω)− T21(ω)
X f

0 (ω) = H(ω)X f
0 (ω) (7.5)

It is worth to point out the similarity of this equation with Equation (6.14) and Equation

(6.22). This point will be further discussed in the next section.

7.2 Bridging the signal modeling and the physics

Let us now demonstrate that the TM formalism (see Chapter 6) may be regarded as a partic-

ular case of the innovative scheme proposed in the above section. For this purpose, the ties

between the signal model parameters (gains and frequency responses) and the mechanical

features (impedance ratios and material damping) are carefully inspected.

In the particular case of an incident wave propagating normally through an interface

separating two media, the gains {Gti , Gri , Ĝti , Ĝri} depicted in Figure 7.1 are related to the re-

flection and transmission coefficients associated to the reflected and transmitted wave parts

generated by the incident wave. For an incident wave amplitude that amounts to unity, a

simple relationship can be established between Gri and Gti [226],

Gri + Gti = 1 (7.6)

When the incident wave travels from medium i + 1 to medium i, the same relationship can

be found for Ĝri and Ĝti . It is noteworthy that Gti (resp. Ĝti ) may be greater than unity,

and that Gri (resp. Ĝri ) may be negative. Indeed, energy is not determined by the wave

amplitude alone, but depends upon the medium in which the wave propagates. The energy

conservation principle [226] yields,

〈Pin〉 = 〈Pr〉+ 〈Pt〉 (7.7)

where 〈Pin〉, 〈Pt〉 and 〈Pr〉 are the average power per unit area of the incident, transmitted

and reflected wave components, respectively. The former equation can be explicitly written

as,
1
2
ρiciω

2 =
1
2
ρiciω

2G2
ri
+

1
2
ρi+1ci+1ω

2G2
ti

(7.8)

From Equations (7.7)-(7.8), we can obtain the following relationships between gains and

acoustic impedances,

Gri =
Zi+1 − Zi

Zi + Zi+1
, Gti =

2Zi

Zi + Zi+1
(7.9)
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Similar relationships can be obtained when the incident wave arises from the opposite side,

Ĝri =
Zi − Zi+1

Zi + Zi+1
, Ĝti =

2Zi+1

Zi + Zi+1
(7.10)

By inserting Equations (7.9)-(7.10) into the equation system (7.2), the following expression

is obtained,

Ui+1(ω) =
1
2




(
1 +

Zi

Zi+1

)
Hi(ω)

(
1− Zi

Zi+1

)
1

Hi(ω)
(

1− Zi

Zi+1

)
Hi(ω)

(
1 +

Zi

Zi+1

)
1

Hi(ω)


Ui(ω) (7.11)

which shows a high similarity with Equation (6.9). Let us now assume that the intra-layer

frequency response Hi(ω) of Figure 7.1 has the form,

Hi(ω) = e− jωmi (7.12)

where mi =
Fsai
ci

, that is, the filter response Hi(ω) consists of an unitary gain and a linear

phase with a constant group delay mi. The latter corresponds to a delay equivalent to the

time needed by the wave to cross the thickness of a layer i. By sampling this frequency

response, we obtain:

Hi(ω)|ω=ωk = Hi(ωk) = e− jωk
Fsai

ci (7.13)

As can be observed, by inserting Equation (7.13) into the Equation (7.11), Equation (6.21) (i.e.

the discrete version of Equation (6.9)) is recovered. Moreover, when dealing with absorbing

layers, the definition of the frequency response Hi(ω) can be extended to,

Hi(ω) = Gαi e
− jωmi (7.14)

where Gαi denotes the attenuation associated to a layer i. By defining this attenuation as

a constant gain Gαi = eαiai , we recover a discretized version of the expression obtained in

Equation (6.19),

Hi(ωk) = eαiai e− jωk
Fsai

ci = e
− j Ωc∗i

ai |Ω=ωk Fs
(7.15)

Thus, as can be seen, the TM formalism is indeed a particular case of our proposed signal

modeling framework, which could be extended by defining the intra-layer response Hi(ω)

in other different or more complex ways.

7.3 Solving the signal modeling approach

The theoretical result presented in Equation (7.5) is unfortunately not straightforwardly im-

plementable, since the derivation of the total frequency response T(ω) = ∏
M−1
i=0 TM−i(ω)
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is, in general, cumbersome. However, in the particular case of the layer frequency response

definition made in Equation (7.14), equation system (7.2) can be rewritten as,

Ui+1(ω) =


 G(A)

i e− jωmi G(B)
i e jωmi

G(C)
i e− jωmi G(D)

i e jωmi


Ui(ω) = Ti(ω)Ui(ω) (7.16)

where the G( j)
i (with j = {A, B, C, D}) stand for the resulting gains computed from the layer

discontinuities {Gti , Gri , Ĝti , Ĝri} and the absorption ones Gαi . It can be proven that a product

of matrices with the previous form can be expressed as a sum of matrices with a similar

form (composed of gain-exponential elements). Hence, by making use of the distributive

property (see Appendix B.1), the complete matrix product T(ω) = ∏
M−1
i=0 TM−i(ω) can be

translated into a sum of matrices as,

UM+1(ω) =
M−1

∏
i=0


 G(A)

M−ie
− jωmM−i G(B)

M−ie
jωmM−i

G(C)
M−ie

− jωmM−i G(D)
M−ie

jωmM−i


U1(ω)

=
2M−1

∑
k=1


 Ḡ(A)

k e− jωm̄k Ḡ(B)
k e jωm̄k

Ḡ(C)
k e− jωm̄k Ḡ(D)

k e jωm̄k


U1(ω)

(7.17)

where the group delays m̄k are obtained as a linear combination of the group delays mM−i,

and the gains labeled with an overscore result from multiplicative combinations of the orig-

inal gains. It must be noted that subindex k does not correspond to any layer number but

to the leaves of the resulting distributive decomposition tree. Unlike the TM formalism, the

presented signal-based framework enables to compute analytically the complete frequency

response H(ω) of the material for a through-transmission configuration. Note that the latter

does not depend upon the number of signal samples N. However, this approach suffers of

a strong lake of efficiency (even worse than the TM formalism) as the complexity burden

increases exponentially along the number of layers M.

To avoid this, we take advantage of the mathematical formulation previously developed

to define a novel digital signal model for wave propagation problems. To this end, for each

layer i, we introduce a discrete-time transfer function HD
i (z) = Gαi z

−mi in the z-domain,

whose frequency response approximates that proposed in Equation (7.14),

Hi(ω) ≈ HD
i (z)|z=e jω = Gαi e

− jωmi (7.18)

where it is must be noted that the delays mi ∈ N are now integer thickness-equivalent

sample delays that approximate the delays mi =
Fsai
ci

by rounding their values or adjusting

the sampling frequency. The transfer function HD
i (z) stands for a single-coefficient finite

impulse response (FIR) filter, with a constant gain Gαi and delay mi. Substituting Equations

(7.9)-(7.10) and HD
i (z) in the layer matrix of Equation (7.2) yields a z-transformed layer
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matrix TD
i (z) which can be rewritten in terms of z-domain polynomial expressions as,

Ui+1(z) =
Gαi z

−mi

1 + Gri


 1 Gri G

−2
αi

z2mi

Gri G−2
αi

z2mi


Ui(z) = TD

i (z)Ui(z) (7.19)

It can be proven (see Appendix B.2) that the product of M-layers, TD(z) = ∏
M−1
i=0 TD

M−i(z),
has the following general form,

TD(z) =

(
M

∏
i=1

Gαi z
−mi

1 + Gri

)



PM(Gα , z)

(
M

∏
i=1

G−2
αi

z2mi

)
QM(G−1

α , z−1)

QM(Gα , z)

(
M

∏
i=1

G−2
αi

z2mi

)
PM(G−1

α , z−1)




(7.20)

where the functions PM(Gα , z) and QM(Gα , z) stand for polynomials which are built up

following a recursive scheme,

PM(Gα , z) = PM−1(Gα , z) + GrM G−2
αM

z2mM QM−1(Gα , z)

QM(Gα , z) = GrM PM−1(Gα , z) + G−2
αM

z2mM QM−1(Gα , z)
(7.21)

with P1(Gα , z) = 1 and Q1(Gα , z) = Gr1 . These polynomials incorporate all the multiple

transmissions/reflections and attenuation effects of the multilayered structure.

Once the boundary conditions are considered (Equation (7.4)), a discrete-time transfer

function of the multilayered structure can be written as,

X f
M+1(z) =

(
M

∏
i=1

1
1 + Gri

)



PM(Gα , z)PM(G−1
α , z−1)−QM(Gα , z)QM(G−1

α , z−1)(
M

∏
i=1

G−1
αi

zmi

)
PM(G−1

α , z−1)−
(

M

∏
i=1

Gαi z
−mi

)
QM(Gα , z)




X f
0 (z)

(7.22)

It must be considered that the polynomials PM(Gα , z) and QM(Gα , z) are not independent,

existing a surprising relationship between them (see Appendix B.3), which can be written

down as,

PM(Gα , z)PM(G−1
α , z−1)−QM(Gα , z)QM(G−1

α , z−1) =
M

∏
i=1

(1− G2
ri
) (7.23)

which leads us to an iterative approach. Inserting Equation (7.23) into Equation (7.22) en-

ables the following simplified filter,

X f
M+1(z) =

M

∏
i=1

Gti Gαi z
−mi

PM(G−1
α , z−1)−

(
M

∏
i=1

G2
αi

z−2mi

)
QM(Gα , z)

X f
0 (z) =

N(z)
D(z)

X f
0 (z) (7.24)
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This result allows any multilayered material to be modeled as a linear time-invariant (LTI)

digital filter (with rational z-transform). The filter coefficients are linked to the physical

properties of the material and are obtained from them analytically. In addition, it can be

shown that the proposed recursive framework remains valid for any arbitrary discrete-time

transfer function HD
i (z), and could thus be employed in the case of more complex layers’

mechanical behavior.

7.4 Discussion

It can be proven that the formalism which delivers the transfer function of Equation (7.20),

along with Equation (7.21), extends the recursive formalism proposed by Claerbout [96] for

Goupillaud-type structures (i.e. structures which consist of equal wave travel time layers)

which, in our proposed form, is now valid for absorbing layers of unequal wave travel time.

On the other hand, the iterative expression delivered by Equation (7.24) also extends the

energy considerations done by Claerbout [96] to absorbing non-Goupillaud-type structures.

Additionally, our approach is straightforward and computationally more efficient than the

one proposed by Treitel [226], who suggested that the effect of a multilayered material with

arbitrary time delays could be obtained from Goupillaud-type media by lumping several

successive layers together by setting the reflection coefficients to zero and the transmission

coefficients to unity, at the number of interfaces existing between the constituent iso-time-

delay layers.

A bare inspection of Equation (7.24) reveals that the lowest polynomial coefficient of

the denominator D(z) is provided by P1(G−1
α , z−1) = 1, ensuring that the filter is causal

and realizable. On the other hand, the highest coefficient is 2Λ, with Λ = ∑
M
i=1 mi, due to

the term ∏
M
i=1 z−2mi in the denominator. As can be observed, Λ corresponds to a sample

delay equivalent to the time needed by the incident wave to cross the total thickness of

the multilayered structure. In addition, the numerator ∏
M
i=1 Gti Gαi z

−mi can be replaced by

b0z−Λ, i.e. a gain corresponding to the multiplication of the transmission Gti and attenuation

coefficients Gαi across all layers plus a total thickness sample delay. Finally, Equation (7.24)

implies that most of the coefficients ak are zeros (since Λ � M). Thus, as can be observed,

Goupillaud-type structures are a particular case of our formalism, for which the gains Gαi =

1 and the unitary sample delays mi = 1 ∀i, thus leading to the trivial case Λ = M (that is,

a standard linear prediction form). Hence, the discrete-time transfer function HD(z) can be

alternatively written as a classical delayed all-pole filter with sparse coefficients,

HD(z) =
b0

1 +
2Λ

∑
k=1

akz−k

z−Λ where ||ak||0 � 2Λ
(7.25)

where the sparsity is represented as a measure of the cardinality, that would be se so-called

l0-norm. The proposed sparse digital signal model offers several advantages in compari-

son with previously used physical or signal models. First, this generic model is valid for
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an arbitrary number of absorbing layers of unequal-wave travel time, independent of the

digital input signal characteristics (e.g. its central frequency and number of samples), and

not restricted to any particular boundary conditions. In second place, the model parameters

are obtained from a rigorous analysis of the physics involved in the wave-material interac-

tions, and thus the sparsity arises naturally and does not rely on heuristic approaches, as

in [6, 40]. Thirdly, this model can be represented as a sparse digital filter, which has thus

obvious practical implications. Figure 7.3 summarizes the computational process used to

take layered material properties and convert them to a functional digital filter.

Ei , νi , ρi ,αi , ai
(i = 1, . . . , M)

-

ci =

√
Ei(1 + νi)(1− 2νi)

ρi(1− νi)

Zi = ρici

-

Gri =
Zi+1 − Zi

Zi + Zi+1

Gαi = eαi ai

mi =
Fsai

ci

-

b0 =
M

∑
i=1

Gti Gαi

Λ =
M

∑
i=1

mi

ak result from
Equations (7.21)-(7.24)

Physical properties

Acoustic properties

Model parameters Filter coefficients

Figure 7.3: Computational process to take layered material properties and convert them to
a functional digital filter.

It is worth to point out that the proposed recursive formalism to obtain HD(z) is straight-

forward and efficient, and also that the frequency response of the structure can easily be

obtained by evaluating z in the unitary circle. As a drawback, it should be mentioned that,

formally, digital filters require integer delays mi. Nevertheless, there are well-known ways

of overcoming this issue, as increasing the sampling frequency (i.e. using digital interpola-

tion), or by applying fractional delay filter formalisms [227]. Additionally, since the whole

formalism is expressed in terms of polynomials in z, one can easily obtain the difference

equation, which allows, given a discrete-time input signal x(n), to directly obtain the out-

put signal y(n) by filtering. The sparse structure of the filter, whose maximum number of

coefficients is 2Λ but most of them are zeros, is particularly suitable for this task. The latter

evidences the simplicity of this proposal, when comparing it to the numerical procedure

implied in the TM formalism described in Figure 6.2. Furthermore, in our case, the result-

ing inverse filter HD−1
(z) is a FIR filter, which is inherently stable and can be computed

straightforwardly. Thus, ultrasonic output signals obtained from specimens could easily

be whitened by inverse filtering. While the inverse filtered response from the undamaged

specimen should be similar to the original input signal applied, the opposite is expected for

damaged specimens, due to the corresponding model mismatch, resulting in an effective

damage detection procedure with a relatively low cost.
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8
Nonlinear extensions

In this chapter, we propose two models that extend the ones developed in Chapters 6 and

7, in order to cope with the nonlinear constitutive behavior of multilayered structures. In

a first approach, we take advantage of the simple matrix formulation provided by the TM

formalism to derive an extended transfer matrix that accounts for constitutive nonlinearity.

In a second proposal, we extend the two-port network used during the signal modeling

approach to include an additional frequency response for layers with nonlinear constitutive

behavior, and thus obtain zero-order and first-order contributions to a discrete-time transfer

function for nonlinear multilayered materials.

8.1 Nonlinear extension of the Transfer Matrix formalism

In this section, the TM formalism is extended to the calculation of nonlinear ultrasonic waves

up to the first-order nonlinearity (see Chapter 4). To this end, the problem of a linear longi-

tudinal ultrasonic wave that propagates through a nonlinear multilayered elastic material is

considered. Instead of directly solving the nonlinear problem, this formalism enables us to

decompose the nonlinear problem into two linear subsets which can be solved separately.

Concretely, those subsets provide both the zero-order and first-order contributions to the

nonlinear wave displacement. In addition, one can prove that the zero-order contribution

is equivalent to the solution delivered by the TM formalism (and thus that the latter is a

special case of the nonlinear problem).
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8.1.1 Theoretical development

A general harmonic solution to the one-dimensional nonlinear plane wave Equation (4.8)

up to first-order nonlinearity (δ = 0) can be stated in the frequency-domain as in [178]1,

u(x, Ω) = u(0), f (x, Ω) + u(1), f (x, Ω) + u(0),b(x, Ω) + u(1),b(x, Ω)

= Ae− j Ωc x +
1
2
β

(
Ω

c

)2

xA2e−2 j Ωc x + Be j Ωc x +
1
2
β

(
Ω

c

)2

xB2e2 j Ωc x
(8.1)

where u(h), f (x, Ω) and u(h),b(x, Ω) stand for the forward- and backward-propagating parts

of the nonlinear displacement u(x, Ω), respectively. Note that those parts now consist of

both the zero-order (Ω) and first-order (2Ω) perturbation solutions, denoted by the upper

index h ∈ {0, 1}, respectively2. Consequently, the fundamental waves (zero-order contribu-

tion to the nonlinear displacement) are now labeled with an upper index h = 0, whereas the

second harmonics (first-order contribution to the nonlinear displacement) are labeled with

an upper index h = 1.

The wave interactions within nonlinear multilayered materials can be approximated by

a semi-analytical model based on an extension of the TM formalism [208], which from now

on will be called the Nonlinear Transfer Matrix (NTM) formalism. The latter describes the

wave propagation phenomena in finite nonlinear-elastic media, and is here strictly derived

for the case of successive homogeneous layers. Note that only the nonlinear effects of second

harmonics from fundamental waves in the media are considered (and thus, higher-order

harmonics and/or the intrinsic nonlinearity of the interfaces are neglected). To this end,

let us consider sharp discontinuities between M homogeneous nonlinear-elastic media with

the same cross-sections, as depicted in Figure 8.1.

. . . . . . . . . . . .

. . . . . . . . . . . .
-� -� -� -

- - - - -

� � � � �
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0 u(0)
1 u(0)

i u(0)
M u(0)

M+1

- - - - -

� � � � �
u(1)

0 u(1)
1 u(1)

i u(1)
M u(1)

M+1

a1 ai aM

d0 = 0 d1 di−1 di dM−1 dM = L

1 i M

x

. . . . . .

Figure 8.1: Wave components in a nonlinear multilayered structure.

1In that proposed form, the solution was developed for a nonlinear semi-infinite medium. We adapt it here
to a bounded medium, in order to account for forward- and backward propagating components.

2Note that for the linear case, we disregarded the upper index (0) to lighten the notation. Now that we
consider both fundamental and second harmonics, the upper index (0) is assigned to all variables related to the
linear case.
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Hence, the general harmonic solution stated in Equation (8.1) can be particularized for

each layer i (i = 1, . . . , M) as,

ui(x, Ω) = Aie
− j Ωci

x
+

(
Āi +

1
2
βi

(
Ω

ci

)2

xA2
i

)
e−2 j Ωci

x

+ Bie
j Ωci

x
+

(
B̄i +

1
2
βi

(
Ω

ci

)2

xB2
i

)
e2 j Ωci

x

(8.2)

Note that this solution is slightly different to that defined in Equation (8.1). As can be ob-

served, the first-order perturbation solution is now formed of two parts: One, denoted by

the quadratic amplitudes of A and B, is generated by the fundamental waves, whose am-

plitude accumulates with the propagation distance x. The other, denoted by the amplitudes

Ā and B̄, keeps constant amplitude during the propagation. The latter are introduced in the

equation not to represent the intrinsic nonlinearity of the actual layer i, but instead, to be

responsible for propagating the nonlinear components from previous layers to next layers3.

In the case of a perfectly bounded interface, the transmission conditions imply the con-

tinuity of displacement u(h)(x, Ω) and stress σ (h)(x, Ω) across the interface between layers i
and i + 1, for both the zero-order and first-order contributions. Applying those conditions

at an arbitrary interface x = di (i = 1, . . . , M) leads to,

u(h)
i (di, Ω) = u(h)

i+1(di, Ω)

σ
(h)
i (di, Ω) = σ

(h)
i+1(di, Ω)

(∀h ∈ {0, 1}) (8.3)

Note that the zero-order perturbation solution was governed by the equations of the TM

formalism. Here, we focus on the first-order perturbation solution to determine the con-

tribution of the second harmonics to the nonlinear displacement. For this purpose, a hard

transition from layer i to layer i + 1 can be described by the first-order discontinuity matrix

D(1)
i,i+1(Ω),

U (1)
i+1(di, Ω) = D(1)

i,i+1(Ω)U (1)
i (di, Ω) (i = 1, . . . , M) (8.4)

where the displacement vector for nonlinear acoustic waves must now be extended to,

U (1)
j (x, Ω) =

[(
u(0), f

j (x, Ω)
)2 (

u(0),b
j (x, Ω)

)2 (
u(0), f

j (x, Ω) · u(0),b
j (x, Ω)

) (
u(1), f

j (x, Ω)
) (

u(1),b
j (x, Ω)

)]T

(8.5)

3Let us consider for instance a nonlinear multilayered media which consist of alternating linear and nonlinear
layers to underline this concept. If one would omit those parts, the nonlinear components would get stuck into
the nonlinear layers and could not be detected at the material boundaries, since they would never propagate
through the linear layers.
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and the first-order discontinuity matrix D(1)
i,i+1(Ω) can be expressed as,

D(1)
i,i+1(Ω) =




D2
i,11 D2

i,12 2Di,11Di,12 0 0

D2
i,12 D2

i,11 2Di,11Di,12 0 0

Di,11Di,12 Di,11Di,12 D2
i,11 +D2

i,12 0 0

Di,41(Ω) Di,41(Ω) −Di,43(Ω) Di,11 Di,12

−Di,41(Ω) −Di,41(Ω) Di,43(Ω) Di,12 Di,11




(8.6)

where the Di, jk and Di, jk(Ω) denote linear and nonlinear frequency-dependent elements of

the first-order discontinuity matrix D(1)
i,i+1(Ω) for a layer i, respectively. As demonstrated in

Appendix C.1, linear elements Di,11 and Di,12 correspond to,

Di,11 =
1
2

(
1 +

Zi

Zi+1

)
, Di,12 =

1
2

(
1− Zi

Zi+1

)
(8.7)

whereas nonlinear frequency-dependent elements Di,41(Ω) and Di,43(Ω) can be written

down as,

Di,41(Ω) = − j
4

(
βi

Ω

ci

Zi

Zi+1
+

1
2
βi+1

Ω

ci+1

(
1− 3

(
Zi

Zi+1

)2
))

Di,43(Ω) = − j

(
βi

Ω

ci

Zi

Zi+1
− 1

4
βi+1

Ω

ci+1

(
1 + 3

(
Zi

Zi+1

)2
)) (8.8)

As can be observed, this matrix does not only depend on the acoustic impedances Z j of the

two layers being in contact (in contrast to the linear case), but also on the continuous-time

frequency Ω and the first-order nonlinear elastic properties β j of those layers. On the other

hand, considering a harmonic wave propagating in the same nonlinear homogeneous layer

i from position x = di−1 to position x = di, its transformed displacement at the respective

locations can be expressed by the first-order propagation matrix P (1)
i (Ω),

U (1)
i (di, Ω) = P (1)

i (Ω)U (1)
i (di−1, Ω) (i = 1, . . . , M) (8.9)

with

P (1)
i (Ω) =




e−2 j Ωci
ai 0 0 0 0

0 e2 j Ωci
ai 0 0 0

0 0 1 0 0

ηi(Ω)e−2 j Ωci
ai 0 0 e−2 j Ωci

ai 0

0 ηi(Ω)e2 j Ωci
ai 0 0 e2 j Ωci

ai




(8.10)
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where ηi(Ω) = 1
2βi (Ω/ci)

2 ai (see Appendix C.2)4. Thus, the relation between the in-

put and output state vectors for a nonlinear layer i can be expressed by U (1)
i+1(di, Ω) =

T (1)
i (Ω)U (1)

i (di−1, Ω), where a first-order transfer matrix T (1)
i (Ω) = D(1)

i,i+1(Ω)P (1)
i (Ω) for

a single layer is obtained by combining first-order discontinuity and propagation matrices

(i = 1, . . . , M),

T (1)
i (Ω) =




D2
i,11e−2 j Ωci

ai D2
i,12e2 j Ωci

ai 2Di,11Di,12 0 0

D2
i,12e−2 j Ωci

ai D2
i,11e2 j Ωci

ai 2Di,11D12 0 0

Di,11Di,12e−2 j Ωci
ai Di,11Di,12e2 j Ωci

ai D2
i,11 +D2

i,12 0 0

(Di,41(Ω) + ηi(Ω)Di,11) e−2 j Ωci
ai (Di,41(Ω) + ηi(Ω)Di,12) e2 j Ωci

ai −Di,43(Ω) Di,11e−2 j Ωci
ai Di,12e2 j Ωci

ai

(−Di,41(Ω) + ηi(Ω)Di,12) e−2 j Ωci
ai (−Di,41(Ω) + ηi(Ω)Di,11) e2 j Ωci

ai Di,43(Ω) Di,12e−2 j Ωci
ai Di,11e2 j Ωci

ai




(8.11)

so that the complete first-order transfer matrix, describing the reflection and transmission

processes of a nonlinear multilayered structure, is easily obtained as the product of matrices

from successive layers T (1)(Ω) = ∏
M−1
i=0 T (1)

M−i(Ω), leading to a relation between the input

and the output state vectors as,

U (1)
M+1(L, Ω) = T (1)(Ω)U (1)

1 (0, Ω) (8.12)

where x = 0 and x = L correspond to the transmitter and receiver positions, respectively.

As in the linear case, the resulting system for a through-transmission configuration can

be solved by specifying the boundary conditions. First, the incident wave is modeled by

a purely linear forward prescribed displacement, whose associated boundary condition in-

volves the continuity of displacement at the left boundary x = 0,

u(0), f
0 (0, Ω) = u(0), f

1 (0, Ω) + u(0),b
1 (0, Ω)

0 = u(1), f
1 (0, Ω) + u(1),b

1 (0, Ω)
(8.13)

where u(0), f
0 (0, Ω) is the Fourier transform of the incident monochromatic wave. On the

other hand, the first-order contribution to the nonlinear wave response is obtained by mod-

eling the receiver as a semi-infinite layer, whose boundary condition is expressed by the

radiation energy condition [209] as,

u(0),b
M+1(L, Ω) = 0

u(1),b
M+1(L, Ω) = 0

(8.14)

4Note that the result provided by Yun et al. [208] in Equations (24)-(25) seems to be erroneous. It is indeed
intuitively obvious that the nonlinear properties βi will not explicitly appear in the lower-right terms of the
first-order propagation matrix.
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Inserting Equations (8.13) and (8.14) into Equation (8.12) leads to,




(
u(0), f

M+1(L, Ω)
)2

0

0

u(1), f
M+1(L, Ω)

0




= T (1)(Ω)




(
u(0), f

1 (0, Ω)
)2

(
u(0), f

0 (0, Ω)− u(0), f
1 (0, Ω)

)2

u(0), f
1 (0, Ω) ·

(
u(0), f

0 (0, Ω)− u(0), f
1 (0, Ω)

)

u(1), f
1 (0, Ω)

−u(1), f
1 (0, Ω)




(8.15)

with,

T (1)(Ω) =




T (1)
11 (Ω) T (1)

12 (Ω) T (1)
13 (Ω) 0 0

T (1)
21 (Ω) T (1)

22 (Ω) T (1)
23 (Ω) 0 0

T (1)
31 (Ω) T (1)

32 (Ω) T (1)
33 (Ω) 0 0

T (1)
41 (Ω) T (1)

42 (Ω) T (1)
43 (Ω) T (1)

44 (Ω) T (1)
45 (Ω)

T (1)
51 (Ω) T (1)

52 (Ω) T (1)
53 (Ω) T (1)

54 (Ω) T (1)
55 (Ω)




(8.16)

where the T (1)
i j (Ω) denote the elements of the first-order transfer matrix T (1)(Ω). A careful

inspection of this matrix enables us to relate its 19 non-zero elements to only 5 independent

elements, namely T (1)
11 (Ω), T (1)

12 (Ω), T (1)
41 (Ω), T (1)

42 (Ω), and T (1)
43 (Ω). A thorough deriva-

tion of those identities is provided in Appendix C.3. As a result, the first-order transfer

matrix T (1)(Ω) can be rewritten as,

T (1)(Ω) =




T (1)
11 (Ω) T (1)

12 (Ω) 2
√
T (1)

11 (Ω)T (1)
12 (Ω) 0 0

T (1)
12 (−Ω) T (1)

11 (−Ω) 2
√
T (1)

11 (−Ω)T (1)
12 (−Ω) 0 0

√
T (1)

11 (Ω)T (1)
12 (−Ω)

√
T (1)

11 (−Ω)T (1)
12 (Ω)

√
T (1)

11 (Ω)T (1)
11 (−Ω) +

√
T (1)

12 (Ω)T (1)
12 (−Ω) 0 0

T (1)
41 (Ω) T (1)

42 (Ω) T (1)
43 (Ω)

√
T (1)

11 (2Ω)
√
T (1)

12 (2Ω)

T (1)
42 (−Ω) T (1)

41 (−Ω) T (1)
43 (−Ω)

√
T (1)

12 (−2Ω)
√
T (1)

11 (−2Ω)




(8.17)

Hence, the first-order contribution to the nonlinear wave displacement at the receiver posi-

tion L, in terms of that at the transmitter position, is found by solving Equation (8.15) as,

u(1), f
M+1(L, Ω) =




T (1)
11 (−Ω)

(
T (1)

41 (Ω)

(√
T (1)

11 (−2Ω)−
√
T (1)

12 (−2Ω)

)
+ T (1)

42 (−Ω)

(√
T (1)

11 (2Ω)−
√
T (1)

12 (2Ω)

))

(√
T (1)

11 (−Ω)−
√
T (1)

12 (−Ω)

)2 (√
T (1)

11 (−2Ω)−
√
T (1)

12 (−2Ω)

)

+

T (1)
12 (−Ω)

(
T (1)

42 (Ω)

(√
T (1)

11 (−2Ω)−
√
T (1)

12 (−2Ω)

)
+ T (1)

41 (−Ω)

(√
T (1)

11 (2Ω)−
√
T (1)

12 (2Ω)

))

(√
T (1)

11 (−Ω)−
√
T (1)

12 (−Ω)

)2 (√
T (1)

11 (−2Ω)−
√
T (1)

12 (−2Ω)

)

−

√
T (1)

11 (−Ω)T (1)
12 (−Ω)

(
T (1)

43 (Ω)

(√
T (1)

11 (−2Ω)−
√
T (1)

12 (−2Ω)

)
+ T (1)

43 (−Ω)

(√
T (1)

11 (2Ω)−
√
T (1)

12 (2Ω)

))

(√
T (1)

11 (−Ω)−
√
T (1)

12 (−Ω)

)2 (√
T (1)

11 (−2Ω)−
√
T (1)

12 (−2Ω)

)



(

u(0), f
0 (0, Ω)

)2

= H(1)(Ω)
(

u(0), f
0 (0, Ω)

)2

(8.18)
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where, in the end, H(1)(Ω) is simply a complex scalar number, which depends both on

the frequency and twice the frequency of the incident wave. As expected, this first-order

contribution depends upon the square of the linear displacement at the transmitter posi-

tion. Finally, the nonlinear wave displacement can be obtained as the sum of the zero-order

contribution plus the first-order contribution,

u f
M+1(L, Ω) = u(0), f

M+1(L, Ω) + u(1), f
M+1(L, Ω)

= H(0)(Ω)u(0), f
0 (0, Ω) +H(1)(Ω)

(
u(0), f

0 (0, Ω)
)2 (8.19)

where H(0)(Ω) is the complex scalar number obtained in Equation (6.14) using the TM for-

malism. Although the NTM formalism relies on physical principles described by a nonlinear

partial differential equation, one of its strength is that it provides a solution by solving only

linear equations. As can observed, the nonlinear problem has been solved by calculating the

first-order contribution to the nonlinear wave displacement and adding it to the zero-order

contribution found with the TM formalism (see Equation (8.19)). In addition, it is notewor-

thy that this formalism could be extended in the same fashion to account for the contribu-

tions of third and higher-order harmonics, and/or to second-order nonlinearity (δ 6= 0).

However, in those cases, the dimension of the complete higher-order transfer matrix would

significantly increase due to the frequency-mixing effects involved in the higher-order har-

monics generation (e.g. when fundamental (Ω) and second-order harmonics (2Ω) mixed

up, they generate both fundamental (2Ω−Ω) and third-order (Ω+ 2Ω) harmonics).

As for the linear case, the NTM formalism could also be extended to account for material

attenuation. Since the mathematics involved in this task is nearly identical to that of the

linear case, we do not report it here. Again, this theoretical result is valid for any single

continuous-time frequency Ω and any number of layers M. Practical issues are discussed in

next section.

8.1.2 Numerical implementation of the NTM formalism

Equation (8.19) suggests that one has to solve both the TM and NTM formalisms to obtain

the nonlinear wave displacement. However, one could intuitively expect that the linear TM

formalism is a special case of NTM one, and that the first-order transfer matrix T (1)(Ω)

somehow encompasses the zero-order one T (0)(Ω). Indeed, by setting the nonlinear pa-

rameters to zero (βi = 0, ∀i), we can obtain a simplified version of the first-order transfer

matrix T (1)(Ω) as,

T (1)
β→0(Ω) =




T (1)
11 (Ω) T (1)

12 (Ω) 2
√
T (1)

11 (Ω)T (1)
12 (Ω)

T (1)
12 (−Ω) T (1)

11 (−Ω) 2
√
T (1)

11 (−Ω)T (1)
12 (−Ω)

√
T (1)

11 (Ω)T (1)
12 (−Ω)

√
T (1)

11 (−Ω)T (1)
12 (Ω)

√
T (1)

11 (Ω)T (1)
11 (−Ω) +

√
T (1)

12 (Ω)T (1)
12 (−Ω)




(8.20)
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Solving the two first rows of the simplified underlying system leads to,

(
u(0), f

M+1(L, Ω)
)2

=




det
(√

T (1)
2×2(Ω)

)

√
T (1)

11 (−Ω)−
√
T (1)

12 (−Ω)




2

(
u(0), f

0 (0, Ω)
)2

=
(
H(0)(Ω)

)2 (
u(0), f

0 (0, Ω)
)2

(8.21)

where T (1)
2×2(Ω) denotes the 2 × 2 sub-matrix encompassed by T (1)

β→0(Ω) or T (1)(Ω). As

can be observed, this equation delivers the square of the zero-order contribution to the non-

linear wave displacement at the receiver position L, in terms of that at the transmitter posi-

tion. In other words, this equation represents a quadratic form of the solution obtained with

the TM formalism in Equation (6.14), when considering the following identities (details can

be found in Appendix C.4):

√
T (1)

11 (Ω) = T (0)
11 (Ω) = T (0)

22 (−Ω) ,
√
T (1)

12 (Ω) = T (0)
12 (Ω) = T (0)

21 (−Ω) (8.22)

Consequently, one could obtain both the zero-order and first-order contributions to the non-

linear wave displacement from Equation (8.15). Therefore, in practice, the solution to the

NTM formalism expressed in Equation (8.19) can be solved straightforwardly without im-

plementing previously the TM formalism. In addition, the latter can be simultaneously re-

covered by setting the nonlinear parameters to zero. Despite the fact that the TM formalism

is a special case of the NTM one is somehow trivial, it is nevertheless interesting to mention

how the first-order transfer matrix encompass the zero-order one,

T (1)(Ω) =




{
T (0)(Ω)

}2
0

T (1)
NL(Ω) T (0)(2Ω)


 (8.23)

where
{
T (0)(Ω)

}2
and T (1)

NL(Ω) denote the quadratic form of the zero-order transfer

matrix T (0)(Ω) and the sub-matrix of T (1)(Ω) that explicitly contains the nonlinear terms,

respectively. Although this representation has no practical implication (since we showed

that it is not necessary to first solve the linear problem), it may have conceptual implication

at the time of understanding how transfer matrices of higher-orders will grow up. Hence,

it is to expect that a second-order transfer matrix will contain (1) a cubic form of the

zero-order transfer matrix, (2) a mixed matrix made of a quadratic form of the zero-order

transfer matrix combined with the nonlinear terms of first-order β, (3) a zero-order transfer

matrix evaluated at thrice the frequency, and finally (4) a matrix that explicitly contains

the nonlinear terms of second-order β2 (and eventually δ if one considers nonlinearity of

second-order).
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As discussed in Section 6.3, in practice, the input signal is usually a purely linear band-

pass ultrasonic signal at a relatively low center frequency containing a wide range of fre-

quencies around it, and is commonly represented as a digital time-domain signal. Thus,

the incident wave u(0)
0 (0, nT) at the transmitter position x = 0 can be represented as a

discrete-time signal with N samples (n = 0, . . . , N − 1). By applying the DFT, a discrete fre-

quency representation with components u(0)
0 (0,ωk) (k = 0, . . . , N − 1) can be obtained. The

NTM formalism can then be applied to each frequency bin, in order to obtain the zero-order

and first-order contributions for the receiver side components, denoted by u(0)
M+1(L,ωk) and

u(1)
M+1(L,ωk), respectively. Finally, by applying the IDFT to both contributions, one can re-

cover the zero-order u(0)
M+1(L, nT) and first-order contributions u(1)

M+1(L, nT) to the nonlinear

wave response uM+1(L, nT) at the receiver position x = L. The general scheme of this nu-

merical procedure for M layers is depicted in Figure 8.2.

D
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-
-

-

-

-

?

6

n -

-

-

-

NTM

NTM

NTM

NTM

-

-

-

-

-

-

u(0)
0 (0, nT)

u(0)
0 (0,ω0)

u(0)
0 (0,ω1)

u(0)
0 (0,ωk)

u(0)
0 (0,ωN−1)

u(0)
M+1(L,ω0)

u(0)
M+1(L,ω1)

u(0)
M+1(L,ωk)

u(0)
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u(0)
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uM+1(L, nT)

u(1)
M+1(L, nT)

Figure 8.2: General scheme of the NTM formalism numerical procedure.

Under this approach, some considerations must be made regarding the Shannon-

Nyquist theorem while dealing with nonlinear systems, since a sampling frequency of Fs/2

is no more valid. As can be observed in the proposed framework, second harmonics appear

at the frequency 2Ω and thus require the consideration of a sampling frequency of at least

Fs = 4Fmax (that is, the input signal must now be a band-limited signal oversampled with a

sampling rate of 2) 5.

According to this scheme, the first-order transfer matrix for a single layer (see Equation

(8.11)) can be discretized as well as,

T(1)
i (ωk) = T (1)

i (Ω)|Ω=ωk Fs
(8.24)

5In practice, the sampling frequency is usually selected as Fs � 4Fmax, so that, even in the nonlinear regime,
the proposed framework will not fail.
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leading to the following discrete solution,

u f
M+1(L,ωk) = H(0)(ωk)u

(0), f
0 (0,ωk) +H(1)(ωk)

[
u(0), f

0 (0,ωk)
]2

(8.25)

whereH(0)(ωk) andH(1)(ωk) implicitly contain the zero-order and first-order contributions

to the complete first-order transfer matrix T(1)
i (ωk) corresponding to the kth-frequency com-

ponent. It is worth to point out that each T(1)
i (ωk) (i = 0, . . . , M − 1, k = 0, . . . , N − 1) is

a 5× 5 matrix of complex numbers, allowing a numerical solution for Equation (8.25). The

computational cost of that solution is significantly higher than for the linear case, due to the

larger dimension of T(1)
i (ωk) and particularly due to the kth-frequency component depen-

dency of the first-order discontinuity matrix D(1)
i,i+1(ωk). Even though, the NTM formalism

allows to handle nonlinear problems in a relatively straightforward and efficient way, es-

pecially since only five elements (T (1)
11 (ωk), T (1)

12 (ωk), T (1)
41 (ωk), T (1)

42 (ωk), and T (1)
43 (ωk)) of

the 5× 5 complete first-order transfer matrix are really needed to be computed.

8.2 Nonlinear signal modeling approach

In this section, we propose to extend the signal modeling approach described in Chapter

7 to account for constitutive nonlinearity. To this end, the problem of a linear longitudinal

ultrasonic wave that propagates through a nonlinear multilayered elastic material is con-

sidered. Representing a nonlinear system in terms of signal modeling concepts is generally

cumbersome as most of them have been developed for linear systems. Thus, instead of di-

rectly solving the nonlinear problem, we propose to compute the first-order contribution

to the nonlinear wave displacement separately. Doing so, the through-transmission config-

uration for the isolated first-order component can be considered as well as a discrete-time

linear system. Consequently, the nonlinear multilayered material under investigation can

be represented by a pair of transfer functions, which relate the discrete input and output

signals, and account for both the zero-order and first-order contributions to the nonlinear

wave displacement. As for the NTM formalism, be aware that, under this approach, the

input signal must now be a band-limited signal up to Fs/4 instead of Fs/2 (that is, the input

signal must be oversampled with a sampling rate of 2).

8.2.1 Theoretical foundations

Let us consider the four-port network depicted in Figure 8.3. In this figure, the frequency re-

sponses H(0)
i (ω) and H(1)

i (ω) stand for the intra-layer i propagation of fundamental waves

and second harmonics, respectively6. Note thatω ∈ [0, 2π ] is the normalized frequency de-

fined in the previous section. The gains {Gti , Gri , Ĝti , Ĝri} characterize the impedance ratios

between layers i and i + 1, according to those defined for the linear case. Additionally, we

introduce a further frequency response HNL
i (ω), which characterizes the contribution of the

6As done above for the NTM formalism, the upper index (0) is now assigned to all variables related to the
linear signal model, due to the presence of both fundamental waves and second harmonics. For sake of clarity,
let us rename those frequency responses as the zero-order and first-order frequency responses.
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linear wave component to the second harmonics when accumulating over the propagation

path of a layer i. From now on, this frequency response will be called the nonlinear fre-

quency response of a layer i. The negative signs at the nodes stand for the π-phase shifts

(e jπ ) that suffer the back-propagating components at the layer discontinuities. Be aware

that the symbol ∗ denotes a convolution of time-domain signals, which is equivalent to a

spectral multiplication. Also note that X f ,0
i (ω) and Xb,0

i (ω) are always Fs/4 band-limited

signals, that is, X j,0
i (ω) = 0 for π/2 < |ω| < 3π/2, ∀ j = f , b.
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���
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�
�
A
A

X f ,0
i (ω)

X f ,1
i (ω)

Yb,0
i (ω)

Yb,1
i (ω)

Y f ,0
i (ω)

Y f ,1
i (ω)

Xb,0
i (ω)

Xb,1
i (ω)

s

s

c

c

Gti

Ĝti

Gri Ĝri

Figure 8.3: Four-port network for a nonlinear layer unit i.

According to Figure 8.3, outputs Y f ,0
i (ω), Yb,0

i (ω), Y f ,1
i (ω), and Yb,1

i (ω) are obtained

from inputs X f ,0
i (ω), Xb,0

i (ω), X f ,1
i (ω), and Xb,1

i (ω) as,

Y f ,0
i (ω) = X f ,0

i (ω)H(0)
i (ω)Gti − Xb,0

i (ω)Ĝri

Yb,0
i (ω) = Xb,0

i (ω)Ĝti H
(0)
i (ω)− X f ,0

i (ω)H(0)
i (ω)Gri H

(0)
i (ω)

Y f ,1
i (ω) =

[
X f ,1

i (ω) + HNL
i (ω)

(
X f ,0

i (ω)
)2
]

H(1)
i (ω)Gti − Xb,1

i (ω)Ĝri

Yb,1
i (ω) = Xb,1

i (ω)H(1)
i (ω)Ĝti −

[
X f ,1

i (ω) + HNL
i (ω)

(
X f ,0

i (ω)
)2
]

H(1)
i (ω)Gri H

(1)
i (ω)

−
(

Yb,0
i (ω)

)2
HNL

i (ω)

(8.26)

Working through these analytical expressions allows us to write the system in matrix

form, with U(1)
i (ω) =

[(
X f ,0

i (ω)
)2 (

Yb,0
i (ω)

)2
X f ,0

i (ω) ·Yb,0
i (ω) X f ,1

i (ω) Yb,1
i (ω)

]T

and
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U(1)
i+1(ω) =

[(
X f ,0

i+1(ω)
)2 (

Yb,0
i+1(ω)

)2
X f ,0

i+1(ω) ·Yb,0
i+1(ω) X f ,1

i+1(ω) Yb,1
i+1(ω)

]T

,

U(1)
i+1(ω) =




[(
Gti −

Gri Ĝri

Ĝti

)
H(0)

i (ω)

]2 [
− Ĝri

Ĝti

1

H(0)
i (ω)

]2

−2

(
Gti −

Gri Ĝri

Ĝti

)
Ĝri

Ĝti

0 0

[
Gri

Ĝti

H(0)
i (ω)

]2 [
1

Ĝti

1

H(0)
i (ω)

]2

2
Gri

Ĝ2
ti

0 0

(
Gti −

Gri Ĝri

Ĝti

)
Gri

Ĝti

(
H(0)

i (ω)
)2

− Ĝri

Ĝ2
ti

1
(

H(0)
i (ω)

)2
1

Ĝti

(
Gti − 2

Gri Ĝri

Ĝti

)
0 0

HNL
i (ω)

(
Gti −

Gri Ĝri

Ĝti

)
H(1)

i (ω) −HNL
i (ω)

Ĝri

Ĝti

1

H(1)
i (ω)

0

(
Gti −

Gri Ĝri

Ĝti

)
H(1)

i (ω) − Ĝri

Ĝti

1

H(1)
i (ω)

HNL
i (ω)

Gri

Ĝti

H(1)
i (ω) HNL

i (ω)
1

Ĝti

1

H(1)
i (ω)

0
Gri

Ĝti

H(1)
i (ω)

1
Ĝti

1

H(1)
i (ω)




U(1)
i (ω)

(8.27)

where the output vector of layer i corresponds to the input vector of layer i + 1, i.e.

U(1)
i+1(ω) =

[(
Y f ,0

i (ω)
)2 (

Xb,0
i (ω)

)2
Y f ,0

i (ω) · Xb,0
i (ω) Y f ,1

i (ω) Xb,1
i (ω)

]T

. The four-port

network of layer i may be written as U(1)
i+1(ω) = T(1)

i (ω)U(1)
i (ω), and thus the total fre-

quency response of the nonlinear material is obtained as T(1)(ω) = ∏
M−1
i=0 T(1)

M−i(ω). Conse-

quently, the relation between the input and output state vectors of the complete nonlinear

multilayered system U(1)
M+1(ω) = T(1)(ω)U(1)

1 (ω) can be written as,




(
X f ,0

M+1(ω)
)2

(
Yb,0

M+1(ω)
)2

X f ,0
M+1(ω) ·Yb,0

M+1(ω)

X f ,1
M+1(ω)

Yb,0
M+1(ω)




=




T(1)
11 (ω) T(1)

12 (ω) T(1)
13 (ω) 0 0

T(1)
21 (ω) T(1)

22 (ω) T(1)
23 (ω) 0 0

T(1)
31 (ω) T(1)

32 (ω) T(1)
33 (ω) 0 0

T(1)
41 (ω) T(1)

42 (ω) T(1)
43 (ω) T(1)

44 (ω) T(1)
45 (ω)

T(1)
51 (ω) T(1)

52 (ω) T(1)
53 (ω) T(1)

54 (ω) T(1)
55 (ω)







(
X f ,0

1 (ω)
)2

(
Yb,0

1 (ω)
)2

X f ,0
1 (ω) ·Yb,0

1 (ω)

X f ,1
1 (ω)

Yb,0
1 (ω)




(8.28)

where the T(1)
i j (ω) are the matrix elements of the total frequency response of first-order

T(1)(ω). The boundary conditions for that through-transmission configuration (Equations

(8.13)-(8.14)) can be represented as well in terms of signal theory concepts, as depicted in

Figure 8.4.
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Nonlinear multilayered structure

Figure 8.4: Nonlinear multilayered structure and boundary conditions in terms of signal modeling
principles.
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From this figure, the boundary conditions are set in the four-port connections as,

X f ,0
1 (ω) = X f ,0

0 (ω)−Yb,0
1 (ω)

X f ,1
1 (ω) = −Yb,1

1 (ω)

Yb,0
M+1(ω) = 0

Yb,1
M+1(ω) = 0

(8.29)

Inserting Equations (8.29) into Equation (8.28) leads to,




(
X f ,0

M+1(ω)
)2

0

0

X f ,1
M+1(ω)

0




= T(1)(ω)




(
X f ,0

1 (ω)
)2

(
X f ,0

0 (ω)− X f ,0
1 (ω)

)2

X f ,0
1 (ω) ·

(
X f ,0

0 (ω)− X f ,0
1 (ω)

)

X f ,1
1 (ω)

−X f ,1
1 (ω)




(8.30)

It is worth to point out the similarity of this equation with Equation (8.15). This point will

be further discussed in the next section.

8.2.2 Bridging the nonlinear signal modeling and the physics

In section 7.2, we already examined the ties between the signal model parameters (gains and

frequency responses) and the mechanical features (impedance ratios and material damping).

Here, we can also link the nonlinear signal model parameters (nonlinear and first-order

frequency responses) to the nonlinear mechanical features (constitutive nonlinearity of the

material). For this purpose, let us first replace the gains and zero-order frequency responses

from Equations (7.9), (7.10), and (7.14) into Equation (8.27). Hence,

T(1)
i (ω) =




D2
i,11G2

αi
e−2 jωmi D2

i,12G−2
αi

e2 jωmi 2Di,11Di,12 0 0

D2
i,12G2

αi
e−2 jωmi D2

i,11G−2
αi

e2 jωmi 2Di,11Di,12 0 0

Di,11Di,12G2
αi

e−2 jωmi Di,11Di,12G−2
αi

e2 jωmi D2
i,11 + D2

i,12 0 0

Di,11HNL
i (ω)H(1)

i (ω) Di,12HNL
i (ω)

1

H(1)
i (ω)

0 Di,11H(1)
i (ω) Di,12

1

H(1)
i (ω)

Di,12HNL
i (ω)H(1)

i (ω) Di,11HNL
i (ω)

1

H(1)
i (ω)

0 Di,12H(1)
i (ω) Di,11

1

H(1)
i (ω)




(8.31)

with

Di,11 =
1
2

(
1 +

Zi

Zi+1

)
, Di,12 =

1
2

(
1− Zi

Zi+1

)
(8.32)

Again, this matrix shows a high similarity with that of Equation (8.11). Let us now assume

that the first-order frequency response H(1)
i (ω) of Figure 8.3 has the form,

H(1)
i (ω) =

(
H(0)

i (ω)
)2

= G2
αi

e−2 jωmi = Gαi H
(0)
i (2ω) (8.33)
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From this equation, it results that the output of a signal passing through H(1)
i (ω) is equiva-

lent to that of a signal passing twice through H(0)
i (ω). In other words, the second harmon-

ics attenuate and suffer a delay that is twice that of the fundamental waves. Alternatively,

we can view H(1)
i (ω) as a spectral expansion of H(0)

i (ω) (in the same way as in a digital

sampling frequency interpolation) by a factor of 2, which once again supports the fact that

X j,0
i (ω) must be band-limited to Fs/4, ∀ j = f , b. By sampling this frequency response, we

obtain:

H(1)
i (ω) = e2αiai e−2 jω Fsai

ci = e
−2 j Ωc∗i

ai ∣∣
Ω=ωFs

(8.34)

On the other hand, let us consider that a sampled version of the nonlinear frequency re-

sponse HNL
i (ω) of Figure 8.3 may have the form,

HNL
i (ω) =

1
2
βi

(
Fsω

ci

)2

ai = ηi(Ω)
∣∣
Ω=ωFs

(8.35)

that is, the nonlinear filter response HNL
i (ω) has a quadratic response, which accounts for

the nonlinear accumulation over a distance ai corresponding to the thickness of a layer i,
and corresponds to a discrete-time version of the nonlinear term in Equation (8.10). As

expected, this response cannot be represented by means of a LTI filter. Nevertheless, one

could intent to approximate it by using such a filter for the frequency region of interest.

Inserting Equations (8.34)-(8.35) into Equation (8.31) leads to,

T(1)
i (ω) =




D2
i,11e

−2 jω Fsai
c∗i D2

i,12e
2 jω Fsai

c∗i 2Di,11Di,12 0 0

D2
i,12e

−2 jω Fsai
c∗i D2

i,11e
2 jω Fsai

c∗i 2Di,11D12 0 0

Di,11Di,12e
−2 jω Fsai

c∗i Di,11Di,12e
2 jω Fsai

c∗i D2
i,11 + D2

i,12 0 0

ηi(ωFs)Di,11e
−2 jω Fsai

c∗i ηi(ωFs)Di,12e
2 jω Fsai

c∗i 0 Di,11e
−2 jω Fsai

c∗i Di,12e
2 jω Fsai

c∗i

ηi(ωFs)Di,12e
−2 jω Fsai

c∗i ηi(ωFs)Di,11e
2 jω Fsai

c∗i 0 Di,12e
−2 jω Fsai

c∗i Di,11e
2 jω Fsai

c∗i




(8.36)

and, as can be observed, Equation (8.24) (i.e. a discrete version of Equation (8.11)) is approx-

imately recovered. However, a few elements of the discrete transfer matrix of first-order

T(1)
i (ωk) for a nonlinear layer i, namely Di,41(ωk) and Di,43(ωk), do not explicitly arise in

the nonlinear signal modeling approach. This issue, along with the solution to Equation

(8.30), are discussed in next section.

8.2.3 Discussion

Let us first explain why some elements present in the NTM formalism are difficult to in-

tegrate in the nonlinear signal model. A careful inspection of Equations (C.1)-(C.4) shows

that the nonlinear frequency-dependent elements Di,41(Ω) and Di,43(Ω) of the first-order

discontinuity matrix naturally arise from the transmission conditions at a nonlinear inter-

face, and more concretely from the formulation of the stress continuity. Indeed, the latter
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depends upon the derivative of the displacement for the first-order perturbation solution

and the square of the derivative for the zero-order solution. Both of them contribute to ele-

ments involving the square of the linear displacement, and thus toDi,41(Ω). In addition, the

square of the derivative for the zero-order solution contributes to elements involving cross-

terms, and thus to Di,43(Ω). Unfortunately, such concepts as derivatives of propagating

distance-dependent amplitudes are hardly expressible in terms of a network-like model7.

Nevertheless, we could argue that those nonlinear terms arising from the first-order dis-

continuity matrix might be negligible in comparison to the ones arising from the first-order

propagation matrix (which are both phenomenologically and from a signal perspective well-

defined), and could thus further solve the nonlinear contribution to this system. To this end,

making use of the physical interpretations done in the previous section enables us to rewrite

the total frequency response of first-order T(1)(ω) as,

T(1)(ω) =




T(1)
11 (ω) T(1)

12 (ω) 2
√

T(1)
11 (ω)T(1)

12 (ω) 0 0

T(1)
12 (−ω) T(1)

11 (−ω) 2
√

T(1)
11 (−ω)T(1)

11 (−ω) 0 0
√

T(1)
11 (ω)T(1)

12 (−ω)
√

T(1)
11 (−ω)T(1)

12 (ω)
√

T(1)
11 (ω)T(1)

11 (−ω) +
√

T(1)
12 (ω)T(1)

12 (−ω) 0 0

T(1)
41 (ω) T(1)

42 (ω) T(1)
43 (ω)

√
T(1)

11 (2ω)
√

T(1)
12 (2ω)

T(1)
42 (−ω) T(1)

41 (−ω) T(1)
43 (−ω)

√
T(1)

12 (−2ω)
√

T(1)
11 (−2ω)




(8.37)

Again, this matrix shows a high similarity with that of Equation (8.17). Details on the rela-

tions between the elements of that matrix can be found in Appendix D. Thus, the first-order

contribution to the nonlinear system can be found by solving Equation (8.30) as,

X(1), f
M+1(ω) =




T(1)
11 (−ω)

(
T(1)

41 (ω)

(√
T(1)

11 (−2ω)−
√

T(1)
12 (−2ω)

)
+ T(1)

42 (−ω)

(√
T(1)

11 (2ω)−
√

T(1)
12 (2ω)

))

(√
T(1)

11 (−ω)−
√

T(1)
12 (−ω)

)2 (√
T(1)

11 (−2ω)−
√

T(1)
12 (−2ω)

)

+

T(1)
12 (−ω)

(
T(1)

42 (ω)

(√
T(1)

11 (−2ω)−
√

T(1)
12 (−2ω)

)
+ T(1)

41 (−ω)

(√
T(1)

11 (2ω)−
√

T(1)
12 (2ω)

))

(√
T(1)

11 (−ω)−
√

T(1)
12 (−ω)

)2 (√
T(1)

11 (−2ω)−
√

T(1)
12 (−2ω)

)

−

√
T(1)

11 (−ω)T(1)
12 (−ω)

(
T(1)

43 (ω)

(√
T(1)

11 (−2ω)−
√

T(1)
12 (−2ω)

)
+ T(1)

43 (−ω)

(√
T(1)

11 (2ω)−
√

T(1)
12 (2ω)

))

(√
T(1)

11 (−ω)−
√

T(1)
12 (−ω)

)2 (√
T(1)

11 (−2ω)−
√

T(1)
12 (−2ω)

)



(

X(0), f
0 (ω)

)2

= H(1)(ω)
(

X(0), f
0 (ω)

)2

(8.38)

As for the zero-order contribution, the obtained theoretical result is unfortunately not

straightforwardly implementable, since the derivation of the total frequency response of

first-order T(1)(ω) = ∏
M−1
i=0 T(1)

M−i(ω) is cumbersome.

To get around it, we could, on the one hand, apply the formulation proposed in Equa-

tion (7.17). However, it is far from obvious that a product of matrices with the form of the

7Let us consider for instance a simple function f (x) = A(x)e− jx to highlight this fact. By deriving this
function with respect to x, on could obtain f ′(x) = − jA(x)e− jx + A′(x)e− jx = − j f (x) + A′(x)e− jx. In analogy
to our case, we see that the derivative can be expressed by means of the function itself multiplied by some
constant plus an additional term. The first term can easily be represented in a circuit model, whereas the second
one is relatively complex to predict, foremost depending on the form that takes A(x).
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frequency response of first-order T(1)
i (ω) could be expressed as a sum of matrices that re-

tains the same form, especially due to the asymmetry of the exponential elements, which

prohibits the use of the distributive property (in any case, such an approach would suffer of

a drastic lake of efficiency, worse than the NTM formalism). On the other hand, we can take

advantage of the digital signal model proposed in Section 7.3 to address the solution to the

first-order contribution. Indeed, part of the elements of the total frequency response of first-

order T(1)(ω) can be expressed in terms of the z-domain polynomial expressions PM(Gα , z)
and QM(Gα , z) obtained in Equation (7.21). Nonetheless, we encounter a further problem in

our intent to express the nonlinear frequency response HNL
i (ω) as a discrete-time transfer

function in the z-domain. Thus, we provide here a possible procedure to follow, rather than

a straightforward and rigorous solution. This solution is subjected to find a discrete-time

transfer function HNL
i (z) in the z-domain, whose frequency response approximates suffi-

ciently well that proposed in Equation (8.35) for the frequency range of interest. Indeed, a

frequency response with a quadratic response could be approximated (e.g by a Taylor series

expansion), but it is not clear how to determine the type and order of the approximation.

Substituting Equations (7.9)-(7.10), H(0),D
i (z), H(1),D

i (z) and HNL
i (z) in the first-order layer

matrix of Equation (8.27) yields a z-transformed layer matrix of first-order T(1)
i (z) which can

be rewritten in terms of z-domain polynomial expressions as,

T(1)
i (z) =

(
Gαi z

−mi

1 + Gri

)2




1 G2
ri

G−4
αi

z4mi 2Gri G
−2
αi

z2mi 0 0

G2
ri

G−4
αi

z4mi 2Gri G
−2
αi

z2mi 0 0

Gri Gri G
−4
αi

z4mi
(

1 + G2
ri

)
G−2
αi

z2mi 0 0

(1 + Gri) HNL
i (z) Gri (1 + Gri) HNL

i (z)G−4
αi

z4mi 0 1 + Gri Gri (1 + Gri) G−4
αi

z4mi

Gri (1 + Gri) HNL
i (z) (1 + Gri) HNL

i (z)G−4
αi

z4mi 0 Gri (1 + Gri) (1 + Gri) G−4
αi

z4mi




(8.39)

It can be proven that the product of M-layers, T(1)(z) = ∏
M−1
i=0 T(1)

M−i(z), has the following

general form,

T(1)(z) =

(
M

∏
i=1

Gαi z
−mi

1 + Gri

)2




P2
M(Gα , z)

(
M

∏
i=1

G−4
αi

z4mi

)
Q2

M(G−1
α , z−1) 2

(
M

∏
i=1

G−2
αi

z2mi

)
PM(Gα , z)QM(G−1

α , z−1) 0 0

Q2
M(Gα , z)

(
M

∏
i=1

G−4
αi

z4mi

)
P2

M(G−1
α , z−1) 2

(
M

∏
i=1

G−2
αi

z2mi

)
PM(G−1

α , z−1)QM(Gα , z) 0 0

PM(Gα , z)QM(Gα , z)

(
M

∏
i=1

G−4
αi

z4mi

)
PM(G−1

α , z−1)QM(G−1
α , z−1)

(
M

∏
i=1

G−2
αi

z2mi

)(
PM(Gα , z)PM(G−1

α , z−1) + QM(Gα , z)QM(G−1
α , z−1)

)
0 0

RM(Gα , z)

(
M

∏
i=1

G−4
αi

z4mi

)
SM(G−1

α , z−1) 2

(
M

∏
i=1

G−2
αi

z2mi

)
VM(Gα , z)

(
M

∏
i=1

(1 + Gri)

)
PM(G2

α , z2)

(
M

∏
i=1

(1 + Gri)G
−4
αi

z4mi

)
QM(G−2

α , z−2)

SM(Gα , z)

(
M

∏
i=1

G−4
αi

z4mi

)
RM(G−1

α , z−1) 2

(
M

∏
i=1

G−2
αi

z2mi

)
VM(G−1

α , z−1)

(
M

∏
i=1

(1 + Gri)

)
QM(G2

α , z2)

(
M

∏
i=1

(1 + Gri)G
−4
αi

z4mi

)
PM(G−2

α , z−2)




(8.40)
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where the functions RM(Gα , z), SM(Gα , z) and VM(Gα , z) stand for polynomials which are

built up following a recursive scheme,

RM(Gα , z) = (1 + GrM)HNL
M (z)

(
P2

M−1(Gα , z) + GrM G−4
αM

z4mM Q2
M−1(Gα , z)

)

+ (1 + GrM)
(

RM−1(Gα , z) + GrM G−4
αM

z4mM SM−1(Gα , z)
)

SM(Gα , z) = (1 + GrM)HNL
M (z)

(
GrM P2

M−1(Gα , z) + G−4
αM

z4mM Q2
M−1(Gα , z)

)

+ (1 + GrM)
(
GrM RM−1(Gα , z) + G−4

αM
z4mM SM−1(Gα , z)

)

VM(Gα , z) = 2(1 + GrM)HNL
M (z)

(
G2
αM

z−2mM PM−1(Gα , z)QM−1(G−1
α , z−1)

+ GrM G−2
αM

z2mM PM−1(G−1
α , z−1)QM−1(Gα , z)

)

(8.41)

with R1(Gα , z) = (1 + Gr1)HNL
1 (z), S1(Gα , z) = Gr1(1 + Gr1)HNL

1 (z) and V1(Gα , z) = 0.

Note that these polynomials incorporate all the nonlinear effects of the multilayered struc-

ture. Once the boundary conditions are considered (Equation (8.29)), the first-order contri-

bution to the nonlinear displacement leads to,

X f ,(1)
M+1(z) =

1
D(1)(z)

(
M

∏
i=1

G2
αi

z−2mi

1 + Gri

)(((
M

∏
i=1

G−4
αi

z4mi

)
PM(G−2

α , z−2)−QM(G2
α , z2)

)

·
(

RM(Gα , z)P2
M(G−1

α , z−1) + SM(G−1
α , z−1)Q2

M(Gα , z)− 2VM(Gα , z)PM(Gα , z)QM(G−1
α , z−1)

)

+

(
PM(G2

α , z2)−
(

M

∏
i=1

G−4
αi

z4mi

)
QM(G−2

α , z−2)

)

·
(

SM(Gα , z)P2
M(G−1

α , z−1) + RM(G−1
α , z−1)Q2

M(Gα , z)− 2VM(G−1
α , z−1)PM(Gα , z)QM(G−1

α , z−1)
)) (

X f ,(0)
0 (z)

)2

(8.42)

where the denominator of first-order D(1)(z) can be written as,

D(1)(z) =

(
PM(G−1

α , z−1)−
(

M

∏
i=1

G2
αi

z−2mi

)
QM(Gα , z)

)2(
PM(G−2

α , z−2)−
(

M

∏
i=1

G2
αi

z−2mi

)
QM(G2

α , z2)

)

(8.43)

Note that the form that takes Equation (8.42) complicates drastically a possible simplifica-

tion. Nonetheless, the underlying structure of the polynomial expressions suggests that the

discrete-time transfer function of first-order H(1)(z) could be alternatively written as,

H(1)(z) =

M

∏
i=1

Gti H
NL
i (z)G2

αi
z−2mi∆M(Gα , z)

(
PM(G−1

α , z−1)−
(

M

∏
i=1

G2
αi

z−2mi

)
QM(Gα , z)

)2(
PM(G−2

α , z−2)−
(

M

∏
i=1

G2
αi

z−2mi

)
QM(G2

α , z2)

)

(8.44)

where ∆M(Gα , z) is a polynomial which accounts for the complex interactions between

PM(Gα , z), QM(Gα , z), RM(Gα , z), SM(Gα , z), and VM(Gα , z). In that case, H(1)(z) seems to

be a delayed pole-zero filter with sparse coefficients. As intuitively expected, the numerator

now consists of a delay and attenuation that are twice that of the linear case, and the first-

order denominator incorporates a quadratic form of the zero-order one. Finally, it is worth

to point out that the nonlinear terms (HNL
i (z) and ∆M(Gα , z)) only arise in the numerator.
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If one could compute such a filter, the nonlinear wave displacement could be written as the

sum of the zero-order and first-order contributions,

X f ,(1)
M+1(z) = H(0)(z)X f ,(0)

0 (z) + H(1)(z)
(

X f ,(0)
0 (z)

)2
(8.45)

In addition, such a filter would preserve all the advantages of the zero-order one discussed

in Section 7.4. As for the NTM formalism, be aware that the zero-order contribution H(0)(z)
could be directly obtained by solving the two first rows of the underlying system to Equa-

tion (8.40), without solving previously the linear digital signal model described in Equation

(7.25).

Although the nonlinear signal model, in its proposed form, lacks of practical applica-

bility, future research in that vein should be conducted, especially on the feasibility of ex-

pressing the nonlinear frequency response as a discrete-time transfer function, along with

the possibility of representing some missing physical components into the network dia-

gram. Finding a discrete-time transfer function HNL(z) that approximates the nonlinear

frequency response HNL(ω) for the frequency range of interest in a suitable way is particu-

larly challenging, since the resulting filter of first-order H(1)(z) might have a huge number

of coefficients.
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9
Materials and methods

This chapter describes the materials and methods used over the course of this work. In

Section 9.1, we introduce the context and motivation of the employed materials, describing

their potential and the challenge that they offer from a structural viewpoint, and focusing

on the requirement of efficient ultrasonic NDE techniques to identify their damage mecha-

nisms. Section 9.2 presents the specimens tested and the experimental configuration used

to analyze them. Finally, Section 9.3 provides the theoretical background for the inverse

problem and system identification approaches used for characterizing the pathologies of

the introduced specimens.

9.1 Context and motivation

The aim of this section is twofold: First, we describe the potential of the chosen multilay-
ered1 materials, focusing on the challenge that they offer from both a structural and socio-

economical point of view. Secondly, we emphasize the structural complexity of those ma-

terials, and thus the need of reliable ultrasonic NDE techniques to (i) characterize their me-

chanical properties, and (ii) monitor their structural health for damage assessment or quality

control purposes.

9.1.1 Carbon fiber-reinforced polymers

Fiber-reinforced polymers (FRP), such as carbon and and glass fiber-reinforced polymers

(CFRP and GFRP) and the promising self-reinforced polymers (e.g. isotactic polypropylene),

1Note that the chosen materials are not necessarily layered by nature. Under layered materials, we under-
stand that the presence of the material in the experimental environment (e.g. water, embedded system) will
produce bounded interfaces, so that the overall system could be considered as layered.
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are high performance and competitive advanced materials with a growing applicability due

to their extreme strength-to-weight and rigidity-to-weight efficiency ratios. Continued im-

provements in the development of cost-effective manufacturing methods and development

of low-cost fibers and resin materials have increased the use of composites for aerospace

and automotive products. More recently, those materials originally developed for aeronau-

tical purposes, have presented themselves as a feasible alternative to design civil engineer

structures (e.g. buildings and bridges) [228, 229, 230], for which lightweight, high strength,

and construction time exigences are converted into critical design aspects (see Figure 9.1).

Nonetheless, the ever expanding structural applications of composites expose them to var-

ious environmental and loading conditions, causing higher probability of induced (micro-)

damage in the material. Depending upon the material and laminate stacking sequence, the

induced damage generally consists of a complex and interacting global ensemble of discrete

damage modes, which may finally lead to failure [231].

Figure 9.1: Example of a novel infrastructural application involving an all-composite bridge made of
carbon and glass fiber-reinforced polymers.2

Hence, despite their outstanding characteristics, the application of FRP has been limited

by the problem of damage tolerance [232]. Indeed, one of the major drawbacks associated

with composite materials is their vulnerability to impact damage (e.g. hail, bird strike, tool

drop, or runway stones during taxiing), which usually occurs in the phase of manufacturing,

service or maintenance. Composite laminates do not allow significant energy dissipation by

plastic deformation, and this leads to weaker through-the-thickness than in-plane mechani-

cal properties for the structure [233]. As a consequence, during an impact the fibers absorb

part of the energy and distribute some of the load through the laminate thickness, leading to

a quite complex three-dimensional damage pattern consisting of delamination, sub-surface

matrix cracking, fiber-matrix debonding and fiber fracture [234]. During the structure’s life

cycle, the occurrence of two kinds of impact loading has to be regarded: Low and high-

velocity impacts. The latter are easy to detect, since high-speed impactors interact with the

material for a short time period, and thus lead to evident external and visible damage. In

2Courtesy from colleagues of the Nondestructive Evaluation Laboratory, which were awarded with the Sil-
ver Medal at the 1st Structural Engineering Design International Contest for their all-composite bridge proposal
(2008).
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contrast, the former can cause significant internal degradation that remains invisible from

the front surface, with inner damage spreading over a wider area than that starting from the

contact point of the impactor. Generally3, three phases of impact damages can be roughly

identified: Initially, matrix cracks are generated by shear or tensile stresses mainly in the

intermediate or back-wall layers. Then, delaminations grow from the crack tips between

layers of different orientation (the higher the orientation mismatch, the larger the delamina-

tions). They typically appear in regular patterns producing altogether a three-dimensional

spiral staircase. Finally, as the impact energy is further increased, fiber breakage appear

initially on the surface of the sample and may propagate into intermediate layers, leading

in some cases to total perforation of the laminate [235] (see Figure 9.2). All these complex

failure mechanisms can in turn induce severe degradation to the residual macro-scale me-

chanical properties of the material, while remaining invisible from the surface [236].

Figure 9.2: Impact damage mechanisms (identified in micrographs4).

Due to their excellent properties for light-weight structures, FRP’s are employed in many

types of industry (e.g. aircraft, wind turbine, rotor-machinery, automobile) which, however,

implies cyclic loading in operation. Cyclic mechanical loading usually induces many ma-

trix cracks, fibre-matrix debonding, delamination, and fibre fracture, accompanied by stiff-

ness degradation of the composite before ultimate failure [238]. Investigations on CFRP

under fatigue loads have shown an occurrence of several consecutive damage mechanisms,

and strong correlations have been found between stiffness reduction and development of

defects, thus allowing grouping of different damage mechanisms into three characteristic

phases during fatigue life. Under dynamic tension, phase I is characterized by the ap-

pearance of matrix cracks and fibre-matrix interfacial cracking forms parallel to the fibre

orientation mainly in the off-axis layers which encounter the highest stress non-parallel to

the reinforcement direction. These intralaminar cracks through the whole thickness of the

3That is, for cross-ply and quasi-isotropic laminates, since this family of stacking sequence is the most used
in the industry (the damage propagation pattern could be slightly different for angle-ply and asymmetric lami-
nates.)

4Reproduced from Mitrevski et al. [237].
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layers reduce the stiffness of the affected plies. After saturation of these transverse cracks,

phase II is marked by the formation of longitudinal cracks in the vicinity of the areas where

transverse cracks predominate. As a consequence, delimitation formation can be observed

at the intersections of transverse and longitudinal cracks. Phase III initiates the final dam-

age mode, longitudinal splitting, where entire parts of the 0◦-plies are detached from the

remaining laminate due to longitudinal cracks and delamination growth. In addition, both

transverse and longitudinal cracks lead to fibre fracture due to stress concentrations at the

crack tips or induced shear stress due to kinking at crack bridging zones, leading to a steep

decline in stiffness until final failure [239, 240]. Compressive fatigue loading involves a

slightly different damage formation (e.g. initial stiffness loss is smaller) which cannot be

classified in these three phases. Due to the combination of damage mechanisms induced

by tension and compression, reversed loads result in faster material degradation and earlier

ultimate failure at comparable stresses [241].

Alternatively, industrial concern has tended to focus on the problem of fatigue after im-
pact damage (also known as post-impact fatigue damage), which has led to the develop-

ment of the ’no-growth’ concept [242]. As a consequence, the fatigue behavior of compos-

ites after impact damage has been investigated extensively. However, the effect of damage

growth mechanisms on post-impact fatigue response is not fully understood and an effec-

tive damage-tolerance methodology of post-impact composites has not been established yet

[243]. Experimental investigations have given raise to the following observations: Impact

damage leads to shorter life, especially in the compressive loading regime where buckling in

the vicinity of delaminations occurs [244]. Under compressive fatigue loading, impact dam-

age leads to growth of the delaminations opposite to the impact site in loading direction

and transverse to it as well as to buckling of strips around the damage zone [245]. Larger

accumulated damage in the impact zone leads to a stronger decrease of lifetime and rapid

delamination growth is usually an indication of imminent failure [246]. Many damage and

life prediction models based on the observation of crack densities and stiffness degradation

have been developed. However, industrial applications usually preclude simple (destruc-

tive) determination of these parameters in operation. Therefore, early and proactive detec-

tion of the embedded damages are important from both the mechanical performance and

the safety perspectives. Thus, to guarantee a reliable level of performance, NDE techniques

have been developed to measure the material stiffness properties and discriminate between

the different failure mechanisms.

Over the past decades, several inspection techniques for monitoring mechanically in-

duced damage in composites have been proposed, such as cracks counting, structural

health monitoring (SHM) via embedded piezo-actuators, acoustic emission (AE), liquid pen-

etrants, X-ray radiography, thermography, and fiber-optic and fiber Bragg gratings (FBG’s).

Nonetheless, most of these techniques undergo several restrictions. The application of crack

counting is limited to transparent and unpainted materials [247]. SHM uses variations in
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electric sensitivity, and thus requires conductive materials [239]. On the other hand, AE in-

volves the detection of energy released by the material under stress during cracking events.

This method is very efficient for monitoring structures under in-service conditions, but does

not provide a precise identification of the size, shape and location of flaws, especially in

anisotropic materials such as composites. In addition, environmental noise can easily mask

the measurements [248]. Liquid penetrants are used to infiltrate flaws and damaged com-

ponents, but can usually only resolve damage connected to the surface. Alternatively, X-ray

radiography can be adopted for the through-thickness detection of defects. However, the

resulting image is usually difficult to interpret, particularly in the presence of numerous su-

perimposed damage planes that hinder the locating of different delaminated and cracked

layers. Thermographic inspection is based on the analysis of thermal patterns induced ei-

ther by heating the specimen or by applying a mechanical oscillatory load. This technique is

sensitive to delaminations, but is not able to provide information on the through-thickness

location of the flaw [235].

Ultrasound is currently one of the most frequently used and accepted NDE techniques

that are proven to provide effective and reliable results at relatively low cost [14]. The usu-

ally adopted normal incidence technique [249, 250] is most sensitive to flaws that lie parallel

to the surface (delaminations). In contrast, matrix cracks, lying perpendicularly to the sur-

face, and fiber fracture paths are difficult to detect because they do not offer a wide enough

reflecting surface. By orienting the transducer at an angle to the tested surface, in order to ac-

quire the energy backscattered from damage, transverse cracks running parallel to the fiber

direction can be detected [251, 252]. Thus, for a complete non-destructive evaluation of the

induced damage, more that one measurement technique is usually required. As a drawback,

it is worth to mention that standard ultrasound techniques usually imply the use of an im-

mersion bath and often double-sided access which hampers in-situ applications. However,

recent improvements could tend to overcome this limitation. For instance, Chen et al. [245]

proposed an emerging ultrasonic imaging technology based on acoustography, which re-

sulted in a new measurement system that could be used for in-situ imaging of impact dam-

age in composite specimens during long-term fatigue tests. In another related proposal,

Matikas [149] proposed the use of advanced nondestructive evaluation techniques such as

ultrasonic microscopy (i.e the propagation of surface acoustic waves (SAW)) and nonlinear

acoustics to characterize the damage and monitor in real-time aging structural components

used in aerospace applications. More recently, Rheinfurth et al. [239] experimentally ex-

plored the applicability of air-coupled Lamb waves to monitoring mechanically induced

fatigue damage in composites. This non-contact technique enabled them to perform mea-

surements without unclamping of the specimens out of the servo-hydraulic testing machine

used for cyclic loading. These encouraging results motivated us to further explore classi-

cal and emerging ultrasound laboratory techniques to monitor the mechanical properties of

damaged composites, in order to enhance our understanding of this complex material and

to think up possible improvements for in-service conditions assessment.
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9.1.2 Tissue-equivalent materials

Tissue engineering is a continuously growing field that aims at developing biological substi-

tutes that restore, maintain, or improve tissue function [253]. Tissue engineering is therefore

of crucial importance to study aspects of cell physiology and pathology, and is also geared

toward the realization of implantable tissues. The majority of tissue-engineered materials

are grown by culturing cells from a patient or donor, then seeding them onto an appropriate

scaffold, and finally stimulating them to form specific tissues that mimic the complex 3D

structures and biological functions of natural tissues [254]. This approach has successfully

been applied to deliver tissue-engineered materials for treating cartilage, skin, cornea, and

bone defects. Currently, most of the research focuses almost exclusively on the biological

aspects of tissue culture at the detriment of manufacturing and product realization issues.

Thus, there is still a lack of commercial and clinical viability for many tissue-engineered

materials, mainly due to poor process control and monitoring in tissue production [255].
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Figure 9.3: Overview of the ties between engineering and biology at the time of studying tissue
culture.

Typically, the process of tissue engineering involves several stages including cell culture,

scaffold production, bioreactor system, and final product preservation, whereas the main

monitoring requirement is to assess the culture’s progress during production, and to relate

it to such factors as cells number and structure. Current available analysis methods for

evaluating tissue formation are histology and direct mechanical measurements. Although

these methods provide valuable information for cell phenotype and proliferation, as well

as mechanical characterization such as compressive moduli of scaffolds, they are not suit-

able for continuous monitoring of the sample in vivo as they destroy cells and scaffolds (i.e.

extracellular matrix). In addition, these methods require large sample numbers for statisti-

cal analysis, since the different samples are prepared and measured at varying times, and

the tissue growth usually undergoes high deviation between specimens [256]. Thus, tis-

sue engineers need a real-time system that could non-invasively monitor tissue growth and

consequent scaffold degradation in the same specimen over time. Nevertheless, only a few

attempts to develop such methods have been reported.
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Among the process monitoring techniques that have been applied to move tissue engi-

neering forward, it is worth to mention well-established nonlinear optical techniques, such

as the multi-photon excitation microscopy or second harmonic imaging. The former ones

have been used for noninvasive in vivo characterization and imaging of sub-cellular prop-

erties [257, 258]. However, the potential of these techniques greatly depends on practical

factors, such as the engineering of high-quality probes (in terms of reproducibility) and

strategies to incorporate the monitoring tools in the cell-culture environment. Alternatively,

other imaging methods, such as magnetic resonance imaging and computed tomography,

provide scaffold structural information, but are limited to deliver only morphological infor-

mation, and the imaging reconstruction procedures are quite extensive [259].

In tissue engineering, biodegradable polymer scaffolds are used to deliver cells and re-

generate tissue as well as provide temporary mechanical support. In principle, the degra-

dation rate of the scaffold should match the rate of tissue formation, hence the degrada-

tion behavior of a scaffold has a critical impact on the long-term performance of a tissue-

engineered construct in vivo. Among them, hydrogels (e.g. agarose, fibrin, collagen) have

been extensively used as scaffold materials because of their viscoelastic characteristics, bio-

compatibility, the simplicity of their fabrication and their high water content, providing a

highly hydrated environment to the embedded cells, which is permeable for oxygen, nutri-

ents and cellular wastes [260, 261]. However, a major limitation of hydrogel-based scaffolds

is that their mechanical properties are usually significantly weaker than those of natural

tissues [262].

A novel spherical indentation method for characterizing the viscoelastic properties of

hydrogel-based constructs under cell culture conditions has been proposed [263]. A sensi-

tive long working distance microscope was used for measuring the time-dependent defor-

mation of thin circular hydrogel membranes under a constant load. Then, the elastic mod-

ulus as a function of time could be determined by making use of a theory of viscoelasticity

for large deformation. It is noteworthy that this kind of measurements can be performed

for specimens that are fully immersed in solution and at elevated temperatures with no risk

of damaging the instrumentation. However, the method is only applicable to relatively thin

and large membranes and has to evoke specially designed sample holders to minimize any

clamping stress applied on the hydrogel membranes. Hence, Yang et al. [264] developed an

alternative indentation system, ideally sample holder-free, combined with a high-resolution

imaging technique (optical coherence tomography) for in situ characterization of thick spec-

imens in a nondestructive fashion and under sterile conditions.

Alternatively, ultrasound may have potential to provide real-time assessment of the

macroscopic construct properties, since the intrinsic ultrasonic properties are directly related

to the structure and composition of the tissue under investigation. The use of ultrasound for

monitoring properties of tissue-engineered products has received only little attention until

recently. Among this few works, Hattori et al. [265] developed a new evaluation system for

articular cartilage, which revealed that ultrasound analysis is able to quantitatively evaluate
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cartilage degeneration and cartilage repair. In a similar work, their ultrasonic evaluation

system was capable of judging the success or failure of cartilage regeneration procedures,

and therefore suggested that ultrasound is a valuable tool for diagnosis of cartilage regener-

ation [266]. In another related work, Rice et al. [267] performed high-frequency ultrasound

measurements in pulse-echo mode to determine the propagation and backscatter properties

of cartilage specimens. Then, they compare the ultrasonic properties (velocity and attenu-

ation) obtained at different time steps during the process evolution with mechanical tests

and biochemical properties of the matrix. More recently, Kreitz et al. [268] demonstrated the

potential of ultrasound for quantitative in vitro evaluation of tissue development in fibrin-

based tissue-engineered structures. These encouraging results motivated us to further de-

velop ultrasound-based system under culturing environment to monitor the alteration of the

mechanical properties of the constructs over time, in order to enhance our understanding of

the bioprocess of tissue-engineered products.

9.1.3 Bone damage assessment

Osteoporosis has been recognized as a silent epidemic in our aging Western societies, which

affects approximately 40% of women and 20% of men over the age of 50 years. In addition,

the aging of the population in most countries will increase the overall burden of osteoporosis

tremendously. By 2050, the worldwide incidence of hip fracture is projected to increase by

240% in women and 310% in men, and the related costs in Europe are expected to increase

to e76.7 billion based on the foreseen changes in the demography5. However, osteoporosis

still focuses less public attention compared to other diseases that are less frequent, and thus

urgent scientific developments in early diagnostics are of paramount importance to manage

this future health challenge successfully.

The consequences of osteoporosis on life quality and on the health care expenses are

certainly not negligible. This skeletal disease results from a period of asymptotic bone loss

and hence reduced bone strength (see Figure 9.4), whose subsequent degradation leads to

a severe increase in fracture risk. Therefore, understanding the underlying determinants

for bone strength and developing technologies for optimal prediction of fracture risk is of

the utmost importance. Nowadays, the standard approach for the diagnosis of osteoporosis

and fracture risk prediction is to use ionizing dual X-ray absorptiometry (DXA) in order to

assess bone mineral density (BMD). Growing evidence indicates (1) that low BMD, however,

is not the sole factor accounting for the fracture risk [269], and (2) that BMD alone cannot

explain therapeutic benefits of anti-resorptive agents in treating osteoporosis [270]. Indeed,

BMD explains about 70-75% of the variability in strength, while the remaining variability

could be due to cumulative and synergistic effects of other factors such as bone microstruc-

ture, architecture, measurement artefacts and the state of remodeling. Although osteoporo-

sis results from a complex incompletely understood set of physiological and biochemical

processes, the clinical manifestation (fracture or deformation) is purely mechanical [271].

5National Osteoporosis Foundation, http://www.iofbonehealth.org.
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This has triggered studies for alternative diagnostic modalities showing capacity to reach

a complete quantitative assessment of bone quality beyond BMD. The term ’bone quality’

summarizes the aspects of bone that contribute to fracture risk but are not encompassed by

BMD measurements. It comprises a number of variables such as bone microstructure, bone

matrix constituents (organic and mineral phases), tissue material properties or prevalence

of micro-cracks [272].

Figure 9.4: Photomicrographs of trabecular bone obtained from a normal (left) and osteoporotic sub-
ject (right). The loss of bone mass in the osteoporotic bone is apparent with associated changes in
trabecular architecture.6

Among others, quantitative ultrasound (QUS) techniques have been developed in the

past two decades to overcome limitations of DXA. The significant growth of the QUS re-

search field has been based on the affordability of this non-ionizing technology and the

potential of ultrasound waves to probe bone quality features. In addition, QUS offers other

advantages in comparison with DXA: (1) it requires an equipment that is more portable and

less expensive, and (2) its non-ionizing nature makes it attractive for studies on children

or people who have concerns with small radiation doses [274]. Most of the QUS methods

described in the literature for bone damage assessment are based on broadband ultrasound

attenuation (BUA), speed of sound and broadband ultrasound backscattering. These acous-

tic properties are used in the assessment of bone density and other properties such as bone

stiffness and strength. Hence, the mechanical nature of QUS enables to detect not only bone

density but also bone elasticity and bone morphology, and thus provides an indication of

not only the quantity of bone, but also the quality of bone. However, these techniques are

almost insensitive to progressive induced damage.

Several studies have evidenced the significant consequences of micro-damage on bone

mechanical properties [275, 276], suggesting the importance of micro-damage assessment.

It is hypothesized that micro-damage in bone is induced by daily cyclic loading, which can

lead to an imbalance in the bone remodeling process, and thus to an accumulation of micro-

cracks. Whether the increase in crack density is a cause or a consequence of the decrease in

the bone toughness properties with age is still not resolved. Some recent experimental ob-

servations tangentially suggest that nonlinear and/or hysteretic mechanical properties may

be a key signature to quantify bone changes and could unveil deeper dimensions of its micro

6Reproduced from Borah et al. [273].
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and macrostructure. Those observations have given raise to a number of studies directed to-

wards the relationship between cracks density and level of nonlinearity. Nonlinear acoustic

methods developed for nondestructive testing of traditional materials have been proven to

have potential in detection of micro-cracks [277], and have been conveniently adapted to

bone damage assessment purposes. Among the first works undertaken on bone nonlinear-

ity, Hoff et al. [278] aimed at diagnosing osteoporosis using nonlinear acoustics to detect

microscopic cracks in human bone. To this end, they constructed a system to measure sec-

ond harmonic generation in human heel bone. Nonetheless, this study has not yet been able

to verify a difference between normal and osteoporotic bone. After those initial measure-

ments oriented at indicating a correlation between bone mass density and second harmonic

generation, Engan et al. [279] proposed improved experiments with volunteers covering a

range of T-score values obtained by DXA. However, this study neither provided results that

could discriminate osteoporotic from healthy bone.

Alternatively, the nonlinear resonant ultrasound spectroscopy (NRUS) technique has

been conveniently applied to assess damage in cortical bone [280, 281]. Their results demon-

strated that nonlinear ultrasound could be used to assess progressively induced damage.

This technique has recently been optimized by developing an accurate data processing pro-

tocol used to overcome the effects of environmental condition changes that take place during

an experiment, and that may mask the intrinsic nonlinearity [282]. In another related work,

Renaud et al. [283] proposed a method to measure acoustic nonlinearity in trabecular bone

using the time-of-flight modulation (TOFM) method. Ultrasonic short bursts times-of-flight

(TOF) are modulated as a result of nonlinear interactions with a low-frequency wave in the

medium. The TOF variations are directly related to elastic modulus variations, and enable

them to derive both the classical and hysteretic nonlinear parameters from these measure-

ments. In the same vein, Moreschi et al. [284] developed a dynamic acousto-elastic technique

(DAET) based on two acoustic waves coupling to measure viscoelastic and dissipative non-

linearities in trabecular bone, with the aim of validating the technique sensitivity to monitor

micro- damage in human calcaneus. In another related study, the feasibility of assessing

bone status by measuring the nonlinear parameter B/A in bovine trabecular bone has been

evaluated by using a finite-amplitude through-transmission method [285]. Recently, the

concept of probing nonlinear elasticity at an interface prosthesis/bone has been proposed

as a promising method to monitor the osseointegration/sealing of a prosthesis. To this pur-

pose, Rivière et al. [286] compared two approaches named the scaling subtraction method

and the cross-correlation method, and showed that a nonlinear parameter derived from the

cross-correlation method can be as sensitive as a clinical device based on linear elasticity

measurement. Later, Rivière et al. [287] applied the time reversed elastic nonlinearity diag-

nostic to two mock models, and the obtained results suggested that nonlinear elasticity can

provide new information regarding the interface, complementary to the linear wave velocity

and attenuation.
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These encouraging results motivated us to make further use of nonlinear ultrasound

techniques, in particular the finite-amplitude through-transmission method, since it may

have the potential of being transferred to in vivo measurements, in contrast to the other

techniques (e.g. NRUS) which are restricted to in vitro applications in their actual forms.

9.2 Experimental work description

This section exposes several aspects of the experimental work carried out over the course

of this dissertation, focusing on the samples preparation description and the experimental

configuration used to evaluate those samples. The proposed methodology is organized in

four parts: Firstly, Section 9.2.1 describes a conventional through-transmission technique

for measuring the properties of traditional materials with known acoustic properties. This

experiment serves us as a calibration for our system and provides us fundamental experi-

mental data for validating our models. Secondly, Section 9.2.2 presents some conventional

through-transmission measurement techniques applied for damage assessment in carbon

fiber-reinforced polymers. Both the impact and post-impact fatigue damage mechanisms

are investigated. In Section 9.2.3, we then introduce a novel embedded system for ultrasonic

monitoring of tissue-engineered products. This system is calibrated on a tissue-equivalent

material, and then applied for monitoring the generation of an artificial tissue culture. In

Section 9.2.4, we finally investigate the feasibility of measuring the acoustic nonlinearity of

cortical bone using a finite-amplitude through-transmission method, based on the second

harmonic generation technique.

9.2.1 System calibration

In this section, we analyze several traditional materials (i.e. metals and plastics) with the aim

of evaluating the performance of the theoretical models described in Part II. The materials

were chosen so that they cover a relatively wide range of mechanical (e.g. wave velocity,

density, etc.) and geometrical (e.g. thickness) properties. The properties reported in the

literature for those materials are summarized in Table 9.1.

Material Wave velocity Density Attenuation Thickness

cp [m/s] ρ [kg/m3] α [Np/m] a [mm]

Aluminium [6320-6420]7,8 27007 3 @ 5 MHz / 20 @ 10 MHz9 3.79 / 9.90

Brass [4369-4700]7,10 [8480-8600]7,10 - 2.90

PMMA [2673-2750]11 [1180-1200]11 [50-72] @ [4-7] MHz11 2.61 / 9.98

Table 9.1: Mechanical and geometrical properties of traditional materials.

7http://www.ondacorp.com/images/Solids.pdf
8http://www.olympus-ims.com/en/ndt-tutorials/thickness-gage/appendices-velocities/
9http://www.astm.org/BOOKSTORE/DS68/pg41.pdf

10http://www.ndtsystems.com/Reference/Velocity_Table/velocity_table.html
11Reported by Carlson et al. [288]. The attenuation has a nearly linear behavior for the given frequency range.

109

http://www.ondacorp.com/images/Solids.pdf
http://www.olympus-ims.com/en/ndt-tutorials/thickness-gage/appendices-velocities/
http://www.astm.org/BOOKSTORE/DS68/pg41.pdf
http://www.ndtsystems.com/Reference/Velocity_Table/velocity_table.html


For this experiment, we assemble the aforementioned single layers together to obtain

a set of multilayered materials (ranging from 2 to 4 layers). This operation has been care-

fully carried out in immersion with degassed water as coupling medium to avoid voids or

bubbles getting stuck between the layers. To evaluate the reproducibility of the experiment,

each layered configuration has also been tested in its reverse side (assuming that we are

working in the linear regime), and the layered specimens were completely dismounted and

assembled again between each experiment. The resulting combinations are summarized in

Table 9.2. Note that the one-layer specimens consisting of the same material involved layers

of different thicknesses, which are denoted with increasing indexes from the thinest to the

largest layer12.

Type of multilayer Specimen Materials

Single layer

S1,1 Aluminiuma

S1,2 Aluminiumb

S1,3 Brass

S1,4 PMMAa

S1,5 PMMAb

Two layers

S2,1 Aluminiumb - PMMAa

S2,2 PMMAa - Aluminiumb

S2,3 Aluminiumb - PMMAb

S2,4 PMMAb - Aluminiumb

Three layers
S3,1 PMMAa - Aluminiumb - PMMAb

S3,2 PMMAb - Aluminiumb - PMMAa

Four layers

S4,1 Aluminiuma - PMMAa - Aluminiumb - PMMAb

S4,2 PMMAb - Aluminiumb - PMMAa - Aluminiuma

S4,3 Brass - PMMAa - Aluminiumb - PMMAb

S4,4 PMMAb - Aluminiumb - PMMAa - Brass

Table 9.2: Overview of the obtained one-layer and multilayered specimens.

In this first experiment, the specimens were excited by a low-frequency ultrasonic sine-

burst at two different frequencies (5.5 and 6 MHz), consisting of one cycle of 8 Vpp ampli-

tude. This excitation signal was generated by an arbitrary wave generator (Agilent 33220).

The water path between the unfocused transducers was fixed to 124 mm, that is a large

enough distance so that the echoes from the transducers-material interactions does not inter-

fer with echoes from the layers of the material. The specimens were approximately located

in the middle of the distance between the transducers, and scanned over a two-dimensional

plane parallel to the transducer areas (C-scan mode). The scan was carried out in an im-

mersion tank with degassed water at room temperature equipped with three-dimensional

12Those layers were not necessarily cut off from the same sample, and thus may have slightly different me-
chanical properties.
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motion controllers. The response signals were registered during 20 µs. The response signals

were sampled with a high resolution A/D converter after 40 dB pre-amplification stage, ap-

plying a sampling frequency of Fs = 100 MHz, providing N = 2000 samples, which were

uniformly quantized with 12 bits. Figure 9.5 depicts the experimental setup used to register

the ultrasonic signals.
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Figure 9.5: Experimental configuration for the system calibration (immersion measurements).

The measurement procedure was repeated for each frequency over an area of 2× 2 mm2

with a step of 1 mm close to the center of the specimens, providing 2 × 9 measurements

for each specimen. Each of these measurements corresponds to the resulting average of 500

captures of the signal, providing an effective reduction of noise for the detected response

signal, increasing the signal-to-noise ratio around 27 dB. Only compressional waves were

generated by the transducers and no mode conversion waves were measured in the present

case, although the methodology could be extended to other measurements configuration13.

Figure 9.6 illustrates the experimental configuration for a layered specimen.

Figure 9.6: Experimental configuration for measuring a layered specimen.

13Be aware that this will be the case for all the considered experiments.
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9.2.2 Linear ultrasonic through-transmission measurements

In this section, several CFRP plates with distinct structural complexity and exposed to dif-

ferent damaging mechanisms have been evaluated. To obtain the ultrasonic measurements,

linear normal incidence techniques were adopted, either in contact or in immersion. To this

end, a through-transmission sub-wavelength technique has been proposed, where longitu-

dinal waves are transmitted through layers, whose size is much smaller than the wavelength

of the transmitter.

Impact damage assessment

Typically, the properties of laminates are provided by the manufacturer. In our case, several

mechanical and geometrical properties of the analyzed specimen (labeled as specimen (A))

were unknown after manufacture, and were therefore characterized at our laboratory. The

fiber properties can be extracted by burning off the resin of a specimen’s sample in an oven

at 500◦C during approximately sixteen hours. In first place, we introduced images of the

burned samples in an AutoCAD software to count the number of layers of each sample,

to measure the thickness of each layer by digital media, and to determine the orientation

of the fibers with respect to the longitudinal axis of the specimen. Secondly, we weighted

the fibers of each layer, and this enabled us to calculate their density and elastic constants.

Finally, the elastic constants of the polymer matrix can be deduced from those of the fibers by

making use of well-known mixing rules. From those measurements, it results that Specimen

(A) is a symmetric CFRP plate consisting of five layers, whose mechanical and geometrical

properties are summarized in Table 9.3.

Specimen Layer Y. Modulus P. Ratio Density Attenuation Thickness

(n◦) E [GPa] ν [−] ρ [kg/m3] α · 106 [m−1] a [mm]

(A)

I, V 12.0427 0.2937 1874.7 2.3059 0.255

I I, IV 8.9068 0.3148 1456.4 2.3059 0.185

I I I 7.0132 0.3308 1140.1 2.3059 0.770

Table 9.3: Mechanical and geometrical properties of the layers I −V that compose the multilayered
specimen (A).

Damages were generated by applying several free-fall impact energies (0.388, 0.674,

1.313, 2.280, and 5.385 Joules), varying the mass and height of each impactor to obtain five

relevant damage locations (labeled from 0 to 5, where 0 indicates no-damage). The impact

damage generation procedure is depicted in Figure 9.7.

In this first experiment, the specimens were excited by a low-frequency ultrasonic sine-

burst at a central frequency of 5 MHz, consisting of one cycle of 0.2 µs and 5 Vpp amplitude.

This excitation signal was generated by an arbitrary wave generator (Agilent 33220). The re-

sponse signals were registered during 10 µs, that is, up to the time for which there were no

more reflections from the specimen/transducers interfaces. The response signals were sam-

pled with a high resolution A/D converter after 40 dB pre-amplification stage, applying a
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Figure 9.7: Impact damage generation procedure: (1) CFRP plates; (2) drop weight tower; and (3)
impacted area of the specimen.

sampling frequency of Fs = 200 MHz, providing N = 2000 samples, which were uniformly

quantized with 12 bits.

Initially, the response signal was measured at the undamaged location for calibration.

Then, the measurement procedure was repeated ten times on each location, to generate a

relevant data set that account for the uncertainties due to the variability of the transducers

alignment with respect to the impact location. Each of these measurements corresponds

to the resulting average of 300 captures of the signal, providing an effective reduction of

noise for the detected response signal, increasing the signal-to-noise ratio around 25 dB.

Due to the high impedance of the interface air/solid, the transducers were adhered to the

specimen with a coupling gel, to favor the transmission of the ultrasonic waves. Figure 9.8

depicts the experimental setup used to register the ultrasonic signals. Figure 9.8 depicts the

experimental setup used to register the ultrasonic signals.
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Figure 9.8: Experimental configuration of the excitation-propagation-measurement system (contact
measurements).

’Fatigue after impact damage’ assessment

In this case, the properties of laminates were completely provided by the manufacturer.

The specimen (labeled as specimen (B)) was manufactured from a Cycom 977-2-35-12k HTS

prepreg with a stacking sequence which corresponds to a [0/90]4s lay-up14. During lay-

14Courtesy from the Institute of Polymers and Composites, TU Hamburg-Harburg, Germany
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up, the laminates were compacted every four layers in the stacking sequence by applying

vacuum for 15 minutes. Curing was realized in an autoclave at 177◦C for three hours with

a pressure of 7 bar. From the manufactured plates, the specimen (B) with the dimensions

250× 35× 2 mm3 was machined. The mechanical and geometrical properties are given in

Table 9.4.

Layer Y. Modulus P. Ratio Density Attenuation Thickness
E [GPa] ν [−] ρ [kg/m3] α · 106 [m−1] a [mm]

0◦ − orientation 11.1616 0.3007 1589.5 1.7673 0.1215
90◦ − orientation 11.1616 0.3007 1589.5 1.7673 0.1215

Table 9.4: Mechanical and geometrical properties of the layers that compose the multilayered speci-
men (B).

In first place, impact damage was introduced with a drop weight tower. A photo sensor

activating a clamp ensured anti-rebound after the first impact, and the contact force was

measured with a strain gauge full bridge included in the semi-spherical striker. The im-

pact damaged specimen was subjected with 3.8 Joule impact energy. Then, fatigue testing

was conducted with a servo-hydraulic Instron/Schenk 100 kN fatigue testing machine with

hydraulic clamps at a stress ratio of R = −1. The clamping pressure was set according

to loading forces. The fatigue damage was generated by applying fatigue load in tension-

compression (up to 100000 cycles). The specimens and the fatigue after impact damage gener-

ation procedure are depicted in Figure 9.9.

Figure 9.9: ’Fatigue after impact damage’ generation procedue: (1) CFRP plates with marked im-
pacted area; and (2) CFRP plate mounted on the servo-hydraulic fatigue testing machine.

In this second experiment, the specimen was excited by a low-frequency ultrasonic sine-

burst at a central frequency of 5 MHz, consisting of one cycle of 0.2 µs and 5 Vpp amplitude.

This excitation signal was generated by an arbitrary wave generator (Agilent 33220). The

specimen was located at the focal distance (d f = 30 mm) of the focused transducers, and

scanned over a two-dimensional plane parallel to the transducer areas (C-scan mode) in an

immersion tank with degassed water at room temperature equipped with three-dimensional

motion controllers. The response signals were registered during 10 µs, that is, up to the
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time for which there were no more reflections from the specimen/transducers interfaces.

The response signals were sampled with a high resolution A/D converter after 40 dB pre-

amplification stage, applying a sampling frequency of Fs = 200 MHz, providing N = 2000

samples, which were uniformly quantized with 12 bits.

Initially, the response signal was measured at an undamaged location (far from the im-

pacted area) for calibration. Then, the measurement procedure was repeated over an area

of 40× 20 mm2 with a step of 1 mm around the impacted area, providing a data set of 860

measurements (plus one taken in water only after removing the specimen). Each of these

measurements corresponds to the resulting average of 500 captures of the signal, providing

an effective reduction of noise for the detected response signal, increasing the signal-to-noise

ratio around 27 dB. Figure 9.10 depicts the experimental setup used to register the ultrasonic

signals.
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Figure 9.10: Experimental configuration of the excitation-propagation-measurement system (immer-
sion measurements).

9.2.3 Embedded systems for ultrasonic monitoring of biomaterials

In this section, an ultrasound-monitoring Petri dish has been designed to monitor in real-

time the evolution of relevant mechanical properties during engineered tissue formation

processes. This system has several advantages: (i) the entire sample holding equipment

can be autoclaved and measurements can be taken under sterile conditions; and (ii) the sys-

tem is capable of working under cell culture conditions (37◦C, 5% CO2) and testing of the

tissue-engineered material can be done while submerged in culture media. It is noteworthy

that these environmental properties are of extreme importance when measuring mechani-

cal properties of tissue culture, since changes in environment can significantly affect those

properties [289].

The Petri dish with a specifically designed high-frequency ultrasonic transmitter and re-

ceiver in angle position was manufactured for real-time measurement of mechanical prop-

erties of thin layers of tissue culture, whose thickness is of the order of 100 µm. The bottom

part of the Petri dish that holds the tissue culture is circular and made of a biocompatible
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material, in order to mimic a conventional culture flask. A thin cover is carefully deposed

above the tissue culture to ensure that the thickness of the tissue layer remains constant at

the measurement location. In addition, this cover is made of a material with a much higher

impedance than that of the tissue layer to provide a high reflection coefficient (i.e. a nearly

perfect reflector). This cover is narrow enough (few millimeters) to guarantee that it won’t

hamper the culture medium (e.g. nutrients) to reach the tissue layer. The monitored Petri

dish is connected to the electronic setup detailed in Figure 9.11.
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Figure 9.11: Schematic experimental and electronic setup for the ultrasonic embedded system.

The transmitting and receiving transducers are designed to be in angle position (45◦) in

order to avoid reverberation echoes inside the petri dish plate parts. The transmitted signal

is generated as a one-cycle burst composed by a 20 MHz sine of amplitude that amounts

to 5 Vpp with a repetition rate of 1000 pulses/second, using an arbitrary wave generator

(Agilent 33220). The recorded signals are digitized with a high resolution A/D converter

after 40 dB preamplification, during a period of 5 µs and a sampling rate of 400 MHz. Each

measurement corresponds to the average of 300 captures of the signal, providing an effec-

tive reduction of noise according to the signal-to-noise ratio (25 dB). Only compressional

waves are generated by the transducers and no mode conversion waves are measured in

the present case, although the methodology could be extended to shear or other waves.

The recorded signals are mainly composed of three different waveforms (simplified paths

of Figure 9.11), namely (1) the wave front that propagates only through the Petri dish layer

(labeled as u1), (2) a wave that crosses both the Petri dish layer and the specimen (labeled

as u2), and (3) a wave echo produced by the former wave after crossing twice the specimen

(labeled as u3).

Any new diagnostic technique for monitoring tissue culture needs an evaluation stage in

terms of its potential, limitations and sensitivity prior to employ it for biological process. In

this context, tissue-equivalent materials play an important role in evaluating novel diagnos-

tic methods for monitoring tissue-engineered products [290]. In our case, a tissue-equivalent

phantom is important for quality control of the developed ultrasound diagnostic system. In

addition, synthetic materials used in tissue-equivalent phantoms must be manufactured in

a controlled way to be acoustically equivalent to human tissues [291]. One of the most used
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materials, due to its manageability and capacity to mimic speed of sound in soft tissue, is

a mixture based on a polysaccharide gel (agar), distilled water, glycerol and graphite. The

glycerol concentration determines the speed of sound in the medium, whereas the graphite

concentration determines the attenuation [292].

In first place, the sensitivity and reproducibility of the system has been verified by mon-

itoring a gelation process. The materials and the concentration for the gel culture (labeled

as specimen (C)) were chosen according to Ortega et al. [292]: 92.5% of water, 5% of glycerol

and 2.5% of agar. In order to obtain an homogeneous solution, water has been first heated

and then the remaining components have been added. The final mixture was carefully de-

posed on the dish, resulting in a gel layer of about 300 µm thickness, and a diameter of 2 cm.

The gelation process has been monitored during half an hour at 5 s intervals, resulting in a

database of 350 measurements. At the initial time of the process, the wave velocity in the

gel layer is unknown. Nonetheless, it is well-known that its value amounts approximately

to 1500 [m/s], and thus the resulting wavelength (75 µm) is compatible with the gel layer

thickness. The material properties of the Petri dish material (PMMA, polymetylmetacrilate)

and the gel culture are summarized in Table 9.5.

Material Modulus Poisson Density Velocity
[GPa] ν ρ [kg/m3] cp [m/s]

PMMA E = 2.96 0.43 1180 2672
Gel (initial) unknown 0.5 1000 unknown

Table 9.5: Mechanical and geometrical properties of the layers that compose the multilayered embed-
ded specimen (C).

In second place, this diagnostic technique has been applied for monitoring the genera-

tion of artificial human oral mucosa15. The isolation and culture of human gingival fibrob-

lasts has been achieved according to Ximenes Oliveira [293]: First, oral mucosa samples

were obtained from patients submitted to different procedures of minor oral surgery. Sec-

ondly, the samples were washed with phosphate buffered saline (PBS) to eliminate adhered

materials. Thirdly, an enzymatic method was carried out to digest the extracellular matrix

of the oral mucosa chorion and to separate the stromal fibroblasts, by using the type I col-

lagenase sterile solution of Clostridum hystoliticum at 2% in Dulbecco’s modified Eagle’s

medium (DMEM), during 10-12 hours at 37◦C. To obtain primary cell cultures, the enzy-

matic solution with stromal cells was then centrifuged at 1000 rpm, during 10 minutes, and

the achieved cell pellet was cultured in culture flasks of 25 cm2 surface area, using DMEM

as culture medium, complemented with 10% fetal bovine serum (FBS) and 1% antibiotic.

Finally, the cells were incubated at 37◦C with 5% carbon dioxide, and the culture medium

was changed every three days. On the other hand, a fibrin-agarose stromal substitute has

been elaborated: First, the fibrin was obtained from frozen plasma of human blood donors.

15Courtesy from the Tissular Engineering Group, Department of Histology, University of Granada
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To produce a fibrin-agarose gel, 15.2 ml of human plasma were then added to 150000 cul-

tured fibroblasts resuspended in 1.5 ml of DMEM with 10% FBS. To prevent degradation of

the scaffold by fibrinolysis, the mixture was supplemented with 300 µl of tranexamic acid.

Finally, 2ml of 1% CaCl2 were added to the solution to precipitate fibrin polymerization.

At the same time, type VII agarose was melted and solved in PBS, and added to the fibrin

mixture at a final concentration of 2%.

In this experiment, the cells-seeded construct (labeled as specimen (D)) was carefully

deposed on the dish, resulting in a tissue layer of about 100 µm thickness, and a diameter of

1 cm. Before the construct starts hardening, the cover was meticulously deposed above it,

then the culture media was added, and the embedded system was finally placed in chamber

under cell culture conditions (37◦C, 5% CO2). The biological process has been monitored

during seven days at 2 min intervals, resulting in a database of 5016 measurements. As for

the gel, the wave velocity in the tissue layer is unknown at the initial time of the process. Fig-

ure 9.12 provides an overview of the embedded ultrasonic system and samples preparation.

Figure 9.12: Embedded ultrasonic system: (1) Elaboration of the fibrin-agarose stromal substitute;
(2) monitoring Petri dish with ultrasonic transducers in angle position; and (3) tissue culture sub-
merged in culture media under physiological conditions.

9.2.4 Nonlinear ultrasonic measurements

In vivo bone strength assessment has long been focused on trabecular bone, considered to

be more rapidly lost than cortical bone. This approach has neglected the role of decay of

cortical bone in pathogenesis of bone fragility. Indeed, in the femoral neck, the cortical

shell contributes to 40-90% of the bending rigidity, and cortical porosity is a crucial factor

for determining bone fragility [294, 295]. As a consequence, the relative contributions of

cortical versus trabecular bone to bone strength have been revisited recently [296], and the

results suggest that fracture risk assessment should include accurate evaluation of cortical

bone.

In this study, we present a through-transmission finite-amplitude nonlinear ultrasound

technique to quantify the inherent nonlinearity of bone, which may have the potential of

being transferred to in vivo measurements. A cortical bone sample has been taken from a

bovine diaphysis (femur)16. A transverse cross-section, 4 mm in thickness, has been cut

in a plane perpendicular to the long bone axis using a diamond saw. The fresh section

was fixed on a sample holder, shock frozen in liquid nitrogen, and then prepared to obtain

16Courtesy from the Laboratoire d’Imagerie Paramétrique, UMPC-CNRS, Paris.
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parallel, flat and smooth bone surfaces using an ultra milling machine. After soft tissue

removal, the specimen was kept frozen at -20◦C as a method of storage, allowing repeatable

use of the sample (i.e it was demonstrated that freezing and storage do not significantly alter

the elastic properties of cadaver bone specimens). A side-objective of this experiment is to

evaluate the relation between an increase of nonlinearity and an increase of (micro-) cracks.

To this end, damage has been induced to the specimen by applying the percussive drilling

technique [297], which consists in generating periodic impact forces to enhance dynamic

crack creation and propagation in the material (see Figure 9.13).

Figure 9.13: Cross-section of the cortical bone sample (4 millimeters thick, out of plane of the figure):
Areas 1 and 2 indicate damage zone induced by traditional drilling (with drill diameters of 2 and 4
millimeters, respectively), whereas areas 3 and 4 indicate damage zone induced by percussive drilling
(with a drill diameter of 6 millimeters).

To evaluate the sensitivity of the proposed methodology, the experiments have also been

conducted on traditional and other advanced materials. The presence of non-linear distor-

tions from the electronic equipment represents the major practical difficulty of this technique

when analyzing the response signals, since it may mask the intrinsic nonlinear response of

the material under investigation. Hence, the experiment has been first carried out on water

and serves us as a calibration of the instrumentation, now that several references in the liter-

ature provide tabulated values for the nonlinear parameter of first-order for water. Secondly,

a PMMA beam, with dimensions 130× 30× 20 mm3, with increasing drilled hole density

along its length (see Figure 9.14) has been analyzed, providingan efficient way to evaluate

the relation between increasing drilled hole density and increasing nonlinearity. The holes

were generated at high drill feed rate, with the aim of generating hairline cracks around the

perimeter of the drilled holes [298, 299]. Finally, the CFRP plate described in Section 9.2.2

has been evaluated, and provides us a mean for validation of the proposed methodology,

by contrasting the results with those obtained with other NDE techniques (e.g. micrographs

and X-ray imaging).

In this experiment, the specimens were excited by 25 low-frequency ultrasonic sine-

bursts at a central frequency of fc = 667 kHz at five different energies corresponding to

2( j−1) · 200 mV, with j = 1, . . . , 5. In order to obtain the attenuation of the second harmon-

ics, the specimens were excited as well at twice the central frequency (that is, 50 sine-bursts
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Figure 9.14: Side and top views of the PMMA beam with increasing drilled hole density along its
length (with a drill diameter of 1 millimeter).

at 1.33 MHz). Those excitation signals were generated by an arbitrary wave generator (Ag-

ilent 33220), using a focused transducer. The specimens were located at the focal distance

(d f = 30 mm), and scanned over a two-dimensional plane parallel to the transducer ar-

eas in an immersion tank with degassed water at room temperature equipped with three-

dimensional motion controllers. The response signals were registered during 15 µs at two

different time intervals using a needle hydrophone with a linear response up to 20 MHz.

The first interval is chosen to capture the time of arrival (TOA) of the waves, whereas the

second one windows a stationary 10-cycle burst response (respectively 20 cycles at twice

the central frequency). The response signals were sampled with a high resolution A/D con-

verter after 40 dB pre-amplification stage, applying a sampling frequency of Fs = 133 MHz,

providing N = 2000 samples on each time interval, which were uniformly quantized with

12 bits. Each of the measurements corresponds to the resulting average of 500 captures of

the signal, providing an effective reduction of noise for the detected response signal, increas-

ing the signal-to-noise ratio around 27 dB. Figure 9.15 depicts the experimental setup used

to record the ultrasonic signals.

9.3 Inverse problem and system identification

An inverse problem (IP) can be defined in opposition to the forward problem (FP). A FP con-

sists of finding the response of a system given a known model. In contrast, an IP consists of

retrieving unknown information of the model given the response of a system. Recently,

some authors have applied IP’s to identify damages or characterize material properties,

defining a corpus of knowledge for reconstructing an unknown part of a system model.

The theoretical background on the inverse problem (IP) theory described here is provided

by Tarantola et al. [8].

The model-based IP grounds today’s most powerful reconstruction method for finding

an optimal solution. It generally consists of four steps:
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Figure 9.15: Experimental configuration of the nonlinear excitation-propagation-measurement sys-
tem.

• Obtaining a set of experimental measurements given a specific experimental design,

which interrogates the system by propagating some physical magnitude that interacts

with the unknown part of the system and manifests on an accessible part of it.

• Solving computationally a mathematical model that is generated by assuming some

physical assumptions. The unknown part of the model to be reconstructed depend

on some defined parameters. This model simulates the measurements given a set of

parameter values.

• Defining a Cost Function (CF) by means of some metrics. The CF represents the dis-

crepancy between experimental and simulated measurements.

• Finding the values of the parameters that minimize the CF.

9.3.1 Deterministic approach

The fundamental idea of the IP consists of the use of an iterative strategy based on the min-

imization of the discrepancy between the experimental and numerically predicted response

signals, denoted by y and y(θ) respectively, whereθ denotes a finite set of parameters used

to describe the damage state of the system. The discrepancy is represented by a residual

feature vector r(θ) defined as,

r(θ) = y− y(θ) (9.1)

Since two vectors cannot be compared directly, a scalar number called cost functional

f (θ) is derived from them. Typically, the IP approach consists of three steps, that are the

parametrization (how to choose the parameters θ), the cost functional definition (how to

define f (θ)), and the optimization (how to choose the algorithm to minimize f (θ)).
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Parametrization

The issue of the parametrization is cumbersome when dealing with a large set of model

parametersθ, describing the properties of the material for the present problem. Thus, many

IP’s are ill-posed: Solutions may not exist, they could be unstable and non-converging, or

there may exist multiple solutions. From the conceptual point of view, parametrization can

be understood as a powerful regularization tool for IP’s, since it provides prior information

in the form of hypothesis on the possible form of the sought solutions. Therefore, the choice

of parameters has crucial implications in the convergence, the sensitivity and uniqueness of

the results.

Cost functional

There are many ways to design a cost functional. The necessary conditions are (a) that a

full coincidence of prediction and measurement (zero discrepancy) should coincide with

the absolute minimum of the cost functional, and (b) that of uniqueness of this minimum.

This quadratic or least squares type definition is meaningful in a probabilistic sense, as well

as in an algebraic sense, as a measure of a distance between bad and good results. The cost

functional f (θ) is chosen after a residual vector r(θ) as,

f (θ) =
1
2

N

∑
n=1

r(n,θ)2 (9.2)

in the case of a L2-norm definition, or as,

f (θ) =
N

∑
n=1
|r(n,θ)| (9.3)

in the case of a L1-norm definition, being less sensitive to outliers. In contrast to gradient-

based algorithms, for which the cost functional is defined as f (θ), the latter is usually de-

fined in an alternative way as f L(θ) when the minimization is carried out by global search

algorithms,

f L(θ) = log ( f (θ) +ε) (9.4)

where ε is a small non-dimensional value (here adopted as ε = 10−16) that ensures the

existence of f L(θ) when f (θ) tends to zero, and speeds up the convergence of the selected

optimization algorithm [300, 301].

Optimization

According to Lee and Wooh [302], the model parametersθ that characterize the damage are

found by a search algorithm that minimizes the cost functional by means of a least-square

estimation of the residual energy,

θ̂ = arg min
θ

f L(θ) (9.5)
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The cost functional minimization can be performed by two alternative families of methods.

The former consists of conventional gradient-based methods, such as the Gauss-Newton

algorithms, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, or simulated anneal-

ing, just to name some of the most popular ones. The other family involves random search

algorithms, for instance genetic algorithms (GA) [303] or particle sworm algorithms. In

this study, BFGS algorithm is used as a local search algorithm based on Hessian update

[120], and assisted by finite differentiation and line search, for calibrating the model at the

initial time of the monitoring process. GA are then applied to minimize Equation (9.5),

motivated by the fact that the cost functional f L(θ) is non-convex, implying that the cost

functional may have more than one local minimum. This algorithm performs a stochastic

search through the space of possible solutions and yields a higher probability of finding

the global optimum compared to standard iterative gradient-based optimization algorithms

[304]. As a further drawback, it is noteworthy that the convergence of gradient-based algo-

rithms strongly relies on the initial guess that needs to be provided. A deeper insight on GA

is provided in next section.

Genetic algorithms

The GA is an heuristic optimization technique based on the rules of natural selection and

genetics, which simulates the mechanism of survival competitions. First, a population of in-

dividuals (called chromosomes) is randomly generated. The population comprises a group

of chromosomes that represent possible solutions θi (i = 1, . . . , Np) in a (multidimensional)

problem domain. Each solution θi is evaluated by computing its cost functional f L(θi), for

which one forward problem is solved independently. A new (child) population is formed

by stochastically modifying the survivors, applying genetic operators such as tournament,

crossover, and mutation to inject genetic diversity in the population (i.e to ensure that the

solution does not fall in local minima). Then, the child chromosomes with higher fitness

replace some of their parent chromosomes. The process runs until a stopping criterion (for

instance a number of generations Ng) is reached. The choice of Ng , as well as the prob-

abilities of the genetic operators, are set so, that the convergence to a global optimum is

guaranteed, while establishing a trade-off between the system identification error and the

computational cost. The termination criterion can of course be modified, for instance by

creating some convergence criterion and then ending the iterations when this criterion is

met. In this work, we simply applied the algorithm to a group of representative signals and

examined the evolution of the currently best solution for these. After a certain number of it-

erations, we could no longer see any further improvement of the solutions and Ng was fixed

to this number when applying the algorithm to the remaining signals [110]. The flowchart

of the system identification approach by applying genetic algorithms is depicted in Figure

9.16.
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Figure 9.16: Flowchart of the system identification approach by applying genetic algorithms. User-
dependent variables: Np: Number of individuals in population; Ng: Number of generations; Ps:
Fraction of surviving individuals; Pt: Probability of tournament; Pc: Probability of crossover; Pm:
Probability of mutation; and Sm: Scale of mutation.

9.3.2 Probabilistic inverse problem

Reconstructing the values of the model parameters (moduli, attenuation parameters, etc.)

has a limited meaning if one considers the existence of intrinsic noise in the measurements,

heterogeneity of properties within the specimen, and even the fact that the model used to

idealize its behavior is just an approximation of reality. To provide a suitable answer, prob-

abilistic instead of deterministic values should be provided, which carry information about

the degree of uncertainty and the nature of their scattering. This can be solved by treat-

ing the input and known data as uncertain and therefore probabilistic, and consequently

obtaining the solution model in terms of a set of probability density functions (PDF) over

each model parameter as a combination of the degree of certainty of them provided by the

measurements on one hand, and the model on the other hand.

Following the probabilistic formulation of the model reconstruction inverse problem es-

tablished by Tarantola et al. [8], the solution is not a single-valued set of model parameters

M. On the contrary, the solution is provided by PDF p(M) of the values of the model pa-

rametersMwithin the manifold M of possible values. The probability density p is assigned

the meaning of plausibility of the model valuesM to be true. The theory of evidential prob-

ability concerns the impact of evidence on physical probability. It is motivated by two basic

ideas [305]: Probability assessments should be based upon relative frequencies, to the extent

that we know them, and the assignment of probability to specific individual events should
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be determined by everything that is known about that individual. In particular, the prob-

ability of a hypothesis H is given the sense of degree of support (or plausibility or belief)

of H given empirical evidence. Here, this formulation is generalized to the case where sev-

eral model classes C are candidates to idealize the real input-output system. Including this

variable into the inverse problem formulation will allow to derive the model-class selection

formulation as a particular case of inverse problem.

Since an absolute probability cannot be computed, statistical inference theory is used

to incorporate to the prior information about the measured observations O, the model pa-

rametersM and the model class C, the information of idealized relationship between them

O = O(M) computed by a model pertaining to a model class C. The former are defined

by the probability densities to prior data, labeled as p0(O), p0(M) and p0(C) respectively,

whereas the additional information provided by the model class C about the relationship

between observations and model is given by the PDF pm(O,M|C). The posterior probabil-

ity p(O,M, C) of the hypothetical modelM is obtained jointly with the observationsO and

class C as,

p(O,M, C) = k1
p0(O,M, C)pm(O,M, C)

µ(O,M, C) (9.6)

whereµ(O,M, C) is the noninformative density function and k1 is a normalization constant.

Some assumptions will be made at this point:

1. Assuming that O, M and C are independent a priori allows to split the joint

prior information p0(O,M, C) = p0(O)p0(M)p0(C) and the uniform distribution

µ(O,M, C) = µ(O)µ(M)µ(C).
2. The probabilistic model can be represented by a computation of O depending onM,

which yields pm(O,M, C) = pm(O|M, C)pm(M, C)pm(C).
3. The model is not assumed to provide conditional information between model and

class, i.e. pm(M, C) = µ(M) and pm(C) = µ(C) are noninformative. This simplifies

the expression to,

p(O,M, C) = k1
p0(O)p0(M)p0(C)pm(O|M, C)

µ(O) (9.7)

The posterior probability of the modelM is then obtained from the joint probability

p(O,M, C) by extracting the marginal probability p(M)
∣∣
C=Ci

for all possible observa-

tions O ∈ O ⇒ p0(C = Ci) = 1, given that the model class Ci ∈ C is assumed to be

true,

p(M)
∣∣
C=Ci

=
∫

C=Ci

∫

O
p(O,M, C)dOdC = k2

∫

O

p0(O)p0(M)pm(O|M, C)
µ(O) dO

(9.8)

where k2 is a normalization constant that replaces the dropped distributions.

4. We assume to have no prior information about the model p0(M), which is therefore

represented by the noninformative distribution p0(M) = µ(M), which can in turn be
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dropped in the case that Jeffreys parameters [306] are adopted,

p(M)
∣∣
C=Ci

= k3

∫

O
p0(O)pm(O|M, C)dO (9.9)

where k3 is a normalization constant that replaces the dropped uniform distributions,

and is needed for p(M)
∣∣
C=Ci

to fulfill the theorem of total probability, that is:

∫

M
p(M)

∣∣
C=Ci

dM = 1 (9.10)

5. The observations are assumed to follow a Gaussian distribution O ∼
N (E[Oexp], Cexp) whose mean is that of the experimental observations Oexp,

and whose covariance matrix Cexp stands for the measurement noise.

6. The observations are assumed to be a Gaussian process O ∼ N (O(M), Cnum) cen-

tered at the numerically computed ones E[Onum] = O(M) with covariance matrix

Cnum.

The probabilistic observations O are in our case a vector of functions of time O = oi(t)
at every measuring time t ∈ [0, T] and repetition i ∈ [1...Ni], and the assumptions made

above are valid for every instant t and sensor i. Considering that the compound probability

of the information from all sensors and time instants is the product of that of each one

individually, and that this product is equivalent to a summation within the exponentiation

(since an integration along the continuous time can be seen as a summation over every

infinitesimal dt), the Gaussian distribution allows an explicit expression of the probability

densities,

J(M) =
1
2

Ni

∑
i, j=1

∫ t=T

t=0

(
oi(t,M)− oexp

i (t)
) (

cexp
i j + cnum

i j

)−1 (
o j(t,M)− oexp

j (t)
)

dt

(9.11)

where the term J(M) corresponds to a misfit function between model and observations,

p(M)
∣∣
C=Ci

= k4e−J(M) (9.12)

where the constant k4 is derived from the theorem of total probability applied over all pos-

sible models M, which is integrated by Quasi Montecarlo using a Sobol sequence with 218

points. The best-fitting model is found by minimizing J(M) instead of maximizing p(M)

since,
M̂ = argmax

M

{
p(M)

∣∣
C=Ci

= k4e−J(M)
}

= argmin
M

{J(M)} (9.13)

The probabilistic nature of the reconstruction is partly motivated by the fact that the model

itself may not necessarily reproduce the experimental setup, but is just an approximation.

If several models are candidates based on different hypothesis about the system, the for-

mer probabilistic formulation of the inverse problem will be shown to be able to provide

information to rank them. The bottom idea is the following: if the model-class (based on
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the candidate hypothesis) is considered as an uncertain discrete variable, its probability can

eventually be extracted as a marginal probability from Equation (9.7). The probability of

each model-class will therefore have the sense of degree of certainty of being true in the

sense that the probabilistic conjunction of certainty provided by the experimental measure-

ments and model are coherent.

Let model class C ∈ C denotes an idealized mathematical model hypothesized to simu-

late the experimental system, whereas modelM denotes the set of model parameters that

the model-class depends on. Different model classes can be formulated and hypothesized to

idealize the experimental system, and each of them can be used to solve the probabilistic in-

verse problem, yielding different values of model parameters. To select among the infinitely

many possible model classes that can be defined, a probabilistic criteria can be defined based

on their compatibility between prior information about observations O, model parameters

M and model class C, and probabilistic model information [148].

The goal is to find the probability p(C), understood as a measure of plausibility of a

model class C [307]. It can be derived as the marginal probability of the posterior probability

p(O,M, C) defined in Equation (9.7),

p(C) =
∫

O

∫

M
p(O,M, C)dMdO = k1 p0(C)

∫

O

∫

M

p0(O)p0(M)pm(O|M, C)
µ(O) dMdO

(9.14)

Once p(C) is computed for every class, its value allows to rank the models according to how

compatible they are with the observations. This also allows us to find a correct trade-off

between model simplicity (i.e. low number of model parameters) and fitting to observations

(i.e. reasonably low system identification error).

In the case that the model parameters m are Jeffrey’s constants, they can be replaced by

unitary logarithmic parameters m,

mm = m0
mem ln (m1

m/m0
m) (9.15)

which maps the dimensional parameters mm from the preferential range mm ∈ [m0
m, m1

m] to a

non-dimensional Jeffrey’s parameter range m ∈ [0, 1]. This furthermore stabilizes the search

algorithms and, in this case, the noninformative distribution µ(M) can just be replaced by

a constant.
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10
Evaluation of the digital signal model

In this chapter, we evaluate the performance of the digital signal model for describing mul-

tilayered specimens. In Section 10.1, we propose a synthetic comparison between the TM

formalism and our novel model. Section 10.2 presents an experimental validation where the

signals predicted by our model are contrasted against signals obtained experimentally.

10.1 Synthetic comparison between the TM formalism and the digital signal
model

In this section, a numerical study is carried out to compare our novel digital signal model

with the TM formalism. For the sake of verisimilitude, the numerical characteristics (e.g.

material, frequency, etc.) of that experiment are chosen according to the experimental frame-

work described in Section 9.2.2. That is, we model ultrasonic signals that mimic the measure-

ments used to characterize a CFRP composite plate obtained using a through-transmission

configuration with a low-frequency ultrasonic signal containing a wide range of frequen-

cies. Considering the transmitter as a damped mechanical system with a single degree-of-

freedom, the Fourier transform of the input signal X(F), with F = Ω/2π , is often assumed

to be Gaussian [308] with the center frequency Fc of the transducer as mean and half band-

width B as standard deviation. Hence,

X(F) =
1√
2πB

e
−
(F− Fc)2

2B2 (10.1)
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where the frequencies F, Fc and B are expressed in Hertz. The characteristics of the trans-

mitted wave are set to Fc = 5 MHz and B = 2.5 MHz, respectively. A high resolution is

chosen for signal sampling with a frequency Fs = 200 MHz, while a signal period of 10 µs

is considered in order to ensure the capture of several wave echoes, providing N = 2000

samples. The resulting discrete-time input signal x(n) and its magnitude spectrum |X(ω)|
are shown in Figure 10.7.
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Figure 10.1: Discrete-time input signal x(n) (left) and its magnitude spectrum |X(ω)| (right). Note
that the abscissas have been scaled with sampling frequency Fs = 200 MHz.

The specimen considered is a layered CFRP symmetric plate which consists of five lay-

ers. Since a major damage mode in composites is delamination, an interface layer of much

smaller thickness than both plies and wavelength of the central frequency is assumed be-

tween every two consecutive layers in the material. Thus, the resulting multilayered spec-

imen consists of M = 9 layers, whose mechanical and geometrical properties are summa-

rized in Table 10.1. These properties are chosen according to the experimental values pro-

vided in Table 9.3.

Layer Young Modulus Poisson Ratio Density Attenuation Thickness
(n◦) E [GPa] ν [−] ρ [kg/m3] α · 106 [m−1] a [mm]
I, V 12.0427 0.2937 1874.7 2.3059 0.255

I I, IV 8.9068 0.3148 1456.4 2.3059 0.185
I I I 7.0132 0.3308 1140.1 2.3059 0.770
I 5.1321 0.3500 1002.0 2.3059 0.010

Table 10.1: Mechanical and geometrical properties of the layers I −V and interfaces I that compose
the multilayered specimen used for the experimental comparison.

From these properties, a discrete-time transfer function HD(z) can be obtained through

Equation (7.25). Figure 10.2 depicts the numerator N(z) and denominator D(z) coefficients

of this function for the considered specimen. As can be observed, and in accordance with the

discussion in Section 7.4, the numerator consists of a single coefficient b0 = 0.86 at a sample-

equivalent delay equal to the total thickness of the plate Λ = 114, while the denominator is

mostly composed of zeros (as predicted from Equations (7.24)-(7.25)).

132



0 50 100 150 200
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Coefficient number, bk

G
ai
n

(0.86,114)

 

 

N (z)

0 50 100 150 200
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Coefficient number, ak

G
ai
n

 

 

D(z)

Figure 10.2: Representation of the numerator N(z) (left) and denominator D(z) (right) coef-
ficients from the discrete-time transfer function HD(z) for an undamaged specimen.

Similarly, a transfer function can also be obtained for a damaged specimen. We briefly re-

call that, in CFRP plates, three phases of impact damages can be roughly identified, namely

(1) matrix cracks in intermediate or back-wall layers, (2) delaminations between layers of

different orientation, and (3) fiber breakage [235]. To illustrate the influence of impact dam-

ages on the filter coefficients, we impose matrix cracks (stiffness reduction of 5 %) to the

back-wall layer (V) and a delamination between layers IV and V, modeled as a stiffness

reduction (75 %) of the interface layer I in-between.

Figure 10.3 shows the transfer function coefficients for this synthetically damaged spec-

imen. The shift (Λ = 115) and gain loss of the coefficient b0 = 0.64 indicate a wave velocity

and amplitude reductions, which are strongly correlated with a stiffness reduction and at-

tenuation increase of the material, respectively. Furthermore, the damage tends to affect

almost all the denominator coefficients ak in amplitude, whereas additional coefficients ap-

pear at new positions (due to the symmetry break of the plate structure), thus reducing the

sparsity ||ak||0. Unfortunately, a deeper physical interpretation from the ak-domain is not

easily assessable.
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Figure 10.3: Representation of the numerator N(z) (left) and denominator D(z) (right) co-
efficients from the discrete-time transfer function HD(z) for a synthetically damaged speci-
men.
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As commented in Section 7.4, the digital signal model enables to obtain the output sig-

nal y(n) directly by filtering. Thus, Figure 10.4 compares the discrete time-domain signals

obtained with the digital signal model (labeled as yDSM(n)) and the TM formalism (labeled

as yTM(n)). The undamaged case is represented in the left figure (a), whereas the damaged

one is depicted in the right figure (b). Note that the digital signal model provides results

nearly identical to those obtained with the TM formalism, but in a simpler way.
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Figure 10.4: (a) Time-domain signals yDSM(n) and yTM(n) obtained for the undamaged
specimen through the digital signal model and the TM formalism, respectively. (b) Similar
comparison for the damaged specimen.

Since a bare visual inspection of the time-domain signals does not enable us to detect

discrepancies between both formalisms, a further comparison is performed in the frequency-

domain. The spectrum of the output signal provided by the digital signal model can easily

be obtained by evaluating z in the unitary circle, namely Y(ω) = H(ω)X(ω) with H(ω) =

HD(z)|z=e jω . In contrast, the spectrum of the output signal obtained with the TM formalism

is directly derived from Equation (6.22) in a sampled form Y(ωk). The magnitude and phase

spectra for the undamaged specimen are depicted in Figure 10.5, while Figure 10.6 shows

them for the synthetically damaged specimen.

Those figures show that the TM formalism and the digital signal model provide again

nearly identical results. However, the latter has the advantage that the computation of

the frequency response is analytical and independent of the number of samples. Finally,

the scarce discrepancies between both formalisms can be explained as follows: Actually,

both methods deliver approximations of the underlying ideal spectrum of the output signal

Yideal(ω). On the one hand, the sampled spectrum obtained with the TM formalism differs

from the ideal one due to the inherent resolution loss of the DFT. The latter effect may be

reduced by increasing the number of samples of the input signal (by zero-padding), at the

cost of a higher computational resources (increased number of P(k)- and T(k)-matrices). On

the other hand, the frequency response obtained with the digital signal model deviates also
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Figure 10.5: Analytical magnitude (|Y(ω)|) and phase (∠Y(ω)) spectra obtained with the
proposed digital signal model (continuous line) for the undamaged specimen, together with
the sampled versions obtained with the TM formalism (discrete crosses).
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Figure 10.6: Analytical magnitude (|Y(ω)|) and phase (∠Y(ω)) spectra obtained with the
proposed digital signal model (continuous line) for the synthetically damaged specimen,
together with the sampled versions obtained with the TM formalism (discrete crosses).

from the ideal one since the delays mi are restricted to integer values. As mentioned in Sec-

tion 7.4, increasing the sampling frequency or applying a fractional filter formalism helps

to mitigate this problem. This also increases the computational cost but to a lesser extend

than zero-padding in the TM formalism (only the input signals are longer, but the number

of non-zero coefficients ak remains constant).

10.2 Experimental validation

In the previous chapter, we already showed that the TM formalism and the digital modeling

of the specimen were nearly equivalent. The present chapter aims at demonstrating the

capability of the digital modeling of the specimen to predict the measurements obtained

from several multilayered specimens (see Section 9.2.1). To evaluate the performance of that

model, we propose to follow the next steps: Firstly, we need to determine the density of

the single layers by measuring their volume and weight. The second tackled problem is
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the calibration of the model with the signals experimentally obtained from the single layers.

Then, the density and the values delivered by the calibration are used as input in the model

to simulate the propagation through layered specimens. The key concept is to examine if

the model can visually reproduce complex situations where numerous echoes overlap. A

further criterium is to observe if the residuals contain components other than measurement

noise [309]. Finally, some aspects related to the coefficients of the obtained digital filters are

discussed.

The calibration is achieved by the matching procedure described in Section 9.3.1, in

which two model parameters (the wave velocity and the attenuation coefficient) are ad-

justed with GA’s to find the optimal model parameters characterizing the single layers. In

this case, the minimization is a carried out in the time-domain. Basically, from the mechan-

ical and geometrical properties, a discrete-time transfer function HD(z) can be obtained

through Equation (7.25) for each single layer. Consequently, given a discrete-time input sig-

nal x(n), the digital modeling of the specimen enables us to obtain the output signal ỹ(n)
directly by filtering. Then, the latter is compared to the corresponding output signal y(n)
obtained experimentally. It is worth to mention that the input signal used here is not the syn-

thetic one described in Figure 10.7, but an advanced version of the output signal measured

in water (by removing the sample) depicted in Figure 9.3. Indeed, such a strategy allows us

to take into account the transducers effect within the wave propagation simulation.
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Figure 10.7: Discrete-time input signal x(n) (left) and its magnitude spectrum |X(ω)| (right) used
as excitation for the synthetic layered specimens (Fc = 5.5 MHz). Note that the abscissas have been
scaled with sampling frequency Fs = 100 MHz.

Such calibration step has been applied to each measurement area and each frequency,

and thus enables us to obtain statistically relevant range values for the mechanical prop-

erties of those single layers. The mean and standard deviation derived from those values,

along with the density values, are summarized in Table 10.2. As can be observed, these val-

ues are in good agreement with those reported in Table 9.1. The values for specimens S1,2,

S1,3 and S1,5 are particularly close to those tabulated in the literature, whereas the values
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for specimens S1,1 and S1,4 slightly differ from them. Nonetheless, one could have antici-

pated such discrepancy, since the density values for those specimens already indicated some

divergence with respect to the expected values1.

Specimen Material
Density

Wave velocity Attenuation

ρ [kg/m3]
cp [m/s] α [Np/m]

5.5 [MHz] 6 [MHz] 5.5 [MHz] 6 [MHz]

S1,1 Aluminiuma 2876 6198± 8 6200± 9 49.0± 1.7 49.7± 1.4

S1,2 Aluminiumb 2663 6382± 14 6377± 13 24.6± 0.2 24.3± 1.0

S1,3 Brass 8626 4207± 12 4206± 14 23.0± 2.0 23.2± 2.0

S1,4 PMMAa 1168 2613± 3 2614± 2 105.8± 7.2 98.1± 5.0

S1,5 PMMAb 1195 2681± 4 2682± 2 69.4± 1.2 71.7± 1.1

Table 10.2: Mechanical properties of the traditional materials obtained from the calibration proce-
dure.

Figure 10.8 depicts the resulting matching (for the optimal model parameters) between

a measurement yS1, j(n) and the numerically predicted model ỹS1, j(n) for the single layers,

∀ j = 1, . . . , 4. As can be seen, fairly good matching is obtained.

The residuals eS1, j(n) are plotted in Figure 10.9 to highlight which parts of the wave re-

sponses the model could not reproduce. As can be observed, there are two main sources

of modeling error. The first one is common to all materials and is highly correlated to the

signal echoes. This approximation error approximately amounts to 10% of the signal’s ampli-

tude, and can thus be considered as acceptable. It arises foremost from two factors: (1) the

modeled signal can diverge from the experimental one since the delays mi are restricted to

integer values, and (2) the layers are idealized as homogeneous material (however, micro-

heterogeneities might be present in the material, which are not contemplated in the model).

The second error is common to all metals and can be considered as a phenomenological er-

ror. Indeed, some echoes with nearly constant amplitude (noticeable in the upper left plot

of Figure 10.8) are definitely not present in the model. Those echoes are hypothesized to

be transversal waves (S-waves) originated by longitudinal waves (P-waves) due to some

superficial or contact effects (e.g. mode conversion due to a nonplanar water-specimen in-

terface). It is therefore not surprising that the model does not reproduce them, since it has

been developed to cope only with longitudinal waves. In any case, this phenomenological
error has an even lower amplitude than the approximation one.

From the properties obtained in Table 10.2, a discrete-time transfer function HD(z) can

directly be obtained for each multilayered configuration enumerated in Table 9.2. The result-

ing matching between a measurement yS2, j(n) and the numerically predicted model ỹS2, j(n)

1Consequently, those results suggest that specimen S1,1 probably is an alloy made of aluminum and some
other metal. In the same vein, specimen S1,4 might be a plastic material with nearly similar properties to PMMA
(e.g. PEEK, etc.). Those differences are definitely not surprising, since the samples were obtained from residual
laboratory materials, and in no case they discredit the results.

137



8 10 12 14 16 18
−5000

0

5000

Arbitrary time, t [µs]

A
m
p
lit
u
d
e
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ỹS1,3
(n)

yS1,3(n)

8 10 12 14 16 18
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

4

Arbitrary time, t [µs]

A
m
p
lit
u
d
e
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Figure 10.8: Comparison between experimental measurements and signals predicted by the digital
signal model for the single layers S1, j, ∀i = 1, . . . , 4.

for the bi-layered specimens, ∀ j = 1, . . . , 4, is depicted in Figure 10.10. Note that the right

plots represent the same specimens as in the left plots, but measured in their reverse side.

Again, fairly good matching is obtained between the experimental and modeled signals. In

addition, left and right plots are nearly similar and further support both the reproducibil-

ity of the experiment and the capability of the model to predict the measurements. The

slight discrepancy in amplitude can be explained as follows: The layered specimens were

disassembled and mounted again between each specific measurement, and this task possi-

bly leads to slight changes in the contact pressure between the single layers, which in turn

leads to a small alteration of the wave front amplitude. Finally, it is noteworthy that the

transversal waves were almost completely filtered out by the plastic layer.
Figure 10.11 depicts the resulting matching between a measurement yS3, j(n) and the nu-

merically predicted model ỹS3, j(n) for the three-layered specimens, ∀ j = 1, . . . , 2. The ob-

tained matching between the experimental and modeled signals is reasonably good again.

As for the bi-layered case, the right plot is again nearly identical to the left one, except for the

slight amplitude difference. In such a configuration, the transversal waves are now totally

absorbed by both plastic layers.
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Figure 10.9: Error between experimental measurements and signals predicted by the digital signal
model for the single layers S1, j, ∀i = 1, . . . , 4.

Finally, the resulting matching between a measurement yS4, j(n) and the numerically pre-

dicted model ỹS4, j(n) for the four-layered specimens, ∀ j = 1, . . . , 4, is depicted in Figure

10.12. In this case, the obtained matching between the experimental and modeled signals

is remarkable, especially because in this situation, numerous and overlapped echoes are

observable. This configuration definitely supports the potential of our model to face up

complex wave responses originated from multilayered specimens.

A further inspection of the modeling error shows that the residuals eS4, j(n) ( j = 1, 4)

now only contain few components other than measurement noise, i.e. the phenomenological
error has entirely disappeared and the approximation error has a more random distribution.

One can thus conclude that this model can satisfactorily be used to describe multilayers.

Finally, the numerator N(z) and denominator D(z) coefficients of the discrete-time

transfer function for the specimen S4,4 is shown in Figure 10.14. As expected, the numerator

consists of a single coefficient b0 = 0.0291 at a sample-equivalent delay equal to the total

thickness of the plate Λ = 1315, and the denominator is mostly composed of zeros (only 32

non-zero coefficients from 2631).

Although a rigorous physical interpretation from the ak-domain is not easily assessable,

it is noteworthy that the number of non-zero coefficients ak is not directly related to the

number of observable echoes in the wave response. Consequently, this model based on the

physical properties of the layers seems to be more coherent than the proposals based on
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Figure 10.10: Comparison between experimental measurements and signals predicted by the digital
signal model for the bi-layered specimens S2, j, ∀i = 1, . . . , 4.
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Figure 10.11: Comparison between experimental measurements and signals predicted by the digital
signal model for the three-layered specimens S3, j, ∀i = 1, . . . , 2.

Bernoulli-Gaussian models, which assume that the output signal is made of superimposed

Gaussian echoes that are time-shifted, amplitude-scaled, and noise-corrupted version of the

input signal [111, 130]. In addition, those coefficients appear to follow a kind of repeti-

tive pattern, since the coefficients distribution from coefficient a1227 is sign-changed and

amplitude-reduced version of that starting at a1.
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Figure 10.12: Comparison between experimental measurements and signals predicted by the digital
signal model for the four-layered specimens S4, j, ∀i = 1, . . . , 4.
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Figure 10.13: Error between experimental measurements and signals predicted by the digital signal
model for the four-layered specimens S4, j, ∀i = 1, . . . , 4.

10.3 Discussion

Be aware the the TM formalism could also be applicable in principle, but its direct imple-

mentation has been found to suffer from numerical instabilities, particularly when consider-

ing layers of large thickness and high-frequency ultrasound (i.e. the large frequency-thickness
products that arise in this formalism are usually referred to as the large ”fd-problem” [78]).

Indeed, the layered configurations presented here deal with relatively large layers, whereas

the used frequencies are also relatively large (that is, the wave lengths corresponding to

those frequencies are particularly small compared to the size of the layers). To evaluate the
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Figure 10.14: Representation of the numerator N(z) (left) and denominator D(z) (right) coefficients
from the discrete-time transfer function HD(z) for a four-layered specimen.

applicability of the TM formalism in this case, let us consider the specimens S1,1 and S4,3,

in order to cover a broad range of specimen’s thicknesses. Figure 10.15 depicts the output

signals ŷS1,1(n) and ŷS4,3(n) predicted by the TM formalism for a single layer and a four-

layered specimen. As can be observed, both cases suffer from numerical instabilities, even

when considering a single layer that is relatively thin. These anomalies are due to the poor

conditioning of the transfer matrices when performing multiplications that combine both

decaying and growing terms. In the first case (left plot), we represent the waveform ob-

tained while considering only the stable frequencies (approximately up to 15 MHz). As can

be seen, the resulting signal covers a coherent amplitude range, but the waveform is com-

pletely altered. In the second case (right plot), we represent again the waveform obtained

while considering only the stable frequencies (approximately up to 10 MHz). In such a case,

the signal is a sine-wave at a low-frequency, but with a huge amplitude.

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

4

Arbitrary time, t [µs]

A
m
p
lit
u
d
e
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Figure 10.15: Examples of numerical instabilities that may arise in the TM formalism in the case of
large ”fd-problems”.

As commented in Section 3.3.1, many modifications of the original TM approach and

other slightly alternative methods have been proposed to palliate this precision problem.

However, none of them is really efficient when dealing with complex problems (i.e. some
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suffer from high computational resources, whereas others are limited to multilayered ma-

terials that consist of a reduced number of layers). To conclude, Table 10.3 summarizes the

strengths and limitations of the digital signal model with respect to the original TM ap-

proach.

Models Digital signal model TM approach

Strengths

◦ Very-low complexity ◦ Low complexity

◦ Valid for any number of layers ◦ Valid for any number of layers

◦ Valid for absorbing layers ◦ Valid for absorbing layers

◦ Valid for layers of unequal ◦ Valid for layers of unequal

wave-travel time wave-travel time

◦ Suitable for large ”fd-problems”

◦ Enables to compute the underlying

sparse transfer function

Limitations

◦ Limited to integer delays ◦ Depends on the input

signal’s appearance

◦ Depends on the number of

samples of the input signal

Unstable for large ”fd-problems”

Table 10.3: Strengths and limitations of the novel digital signal model.
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11
Robust parametrization for damage detection in

CFRP plates

In this chapter, we propose three different signal modeling approaches for parametrizing

ultrasonic signals and evaluate their discriminative capability for damage identification in

CFRP plates.

11.1 Classical spectral estimation methods

In this section, some enhancements on the interpretation are done by adapting classical

parametrization techniques to extract relevant features from the ultrasonic signals. Thus,

a cepstral-based feature extractor is firstly designed and optimized by using a classification

system based on cepstral distances. Then, this feature extractor is applied in an analysis-by-

synthesis scheme which, by using a numerical model of the specimen, infers the values of

the damage parameters.

11.1.1 Ultrasonic NDE framework

Signal acquisition and preprocessing

The specimen used here is that described in Section 9.2.2. After acquisition, the captured

signals are preprocessed in order to provide a suitable representation of the ultrasonic signal.

In a first step, the signals have been decimated at a sample frequency fs of 20 MHz, in order

to reduce part of the noise and focus on the frequency band of interest. Then, the signals

have been multiplied by a Hamming window. In our case the window is foremost used to

weight the signal samples over the time.
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Damage detection and assessment

To design a signal processing system that provides a robust parametrization of the signals

with a high discriminative capability between the different damage levels, a classification

system based on cepstral distances has been developed. For an optimal use of the available

data set, the training/test is performed using the leaving-one-out technique. Therefore, 39

signals are used to train a reference cepstral vector corresponding to a certain damage level,

while the remaining signal is used for the test. Rotating the measurements enables us to train

the system always with 39 signals, while testing it with 6× 40 = 240 signals. The efficiency

of the system is evaluated by defining a weighted error factor. Let the results of the test be a

confusion table R(i, j), with i = 1, ..., 6, where R(i, j) represents the measurements number

at damage level i that have been classified as a damage level j. The weighted error factor is

then defined as,

werr [%] = 100×
∑

6
i=1 ∑

6
j=1 R(i, j) · |i− j|

3

240
(11.1)

On the other hand, the goal of the NDE is to finally provide consistent damage information

that characterize the specimen health state. To this end, the inverse problem strategy de-

scribed in Section 9.3 is applied to find the values of the damage parameters (p) that best

fit the experimental measurements. For this experiment, the model used to idealize the ex-

perimental system describing the ultrasonic waves propagation in multilayered composites

consists of the TM approach. The damage parameters identification is performed according

to Fahim et al. [310], assuming that the damage in each layer, respectively in each interface, is

strongly correlated with a reduction of the Young modulus. GA are applied as optimization

algorithms.

11.1.2 Cepstral-based feature extractor design and optimization

Signal windowing

First, the selection of a suitable analysis window is considered. In this case, a classical Ham-

ming window has been applied to the ultrasonic signals. As illustrated in figure 11.1, while

in the original signal (left) predominates the first peak (wave front), the windowed signal

(right) exhibits accentuated echoes amplitude, representative of the successive reflections of

the transmitted pulse between the interface specimen/transducers.

Windowed signals are then transformed to the cepstral-domain. This experiment focuses

on the real cepstrum c(n), which is defined by means of the following expression:

log |H(ω)| =
∞
∑

n=−∞ c(n) · e jωn (11.2)

where H(ω) is the spectrum estimate. Preliminary experiments showed that the complex
cepstrum do not provide any improvement, while its computation is cumbersome due to the

unwrapping of the digital phase. Consequently, only the real cepstrum will be considered.
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Figure 11.1: Use of a temporal window to show off the echoes of the ultrasonic signal.

In order to evaluate the effect of the analysis window and the damage discriminative

capability, the following classification results have been compared: The signals obtained

in the time-domain using an Euclidean distance (SIGNAL) with the ones obtained by the

real cepstrum (CR) with an Euclidean (cepstral) distance using several lengths for the analysis

window. Table 11.1 shows that the use of the Hamming windows improves the classification

in comparison with the rectangular one, except for a window that amounts to 100 samples.

It can be observed that the echoes are as important as the wave front for discriminating be-

tween the different damage level. Therefore, the echoes may be enhanced with a Hamming

window, whose optimal longitude amounts to a range of 150− 300 samples.

R-300 H-300 H-200 H-150 H-100
SIGNAL 32.50 26.25 26.11 26.94 30.55

CR 12.08 10.41 9.72 8.88 16.25

Table 11.1: Weighted error obtained for several analysis windows.

Spectrum smoothing

It is common to restrict the Euclidean distance to L cepstral coefficients. This process is

called liftering and not only allows to reduce the number of cepstral components in computa-

tions but also corresponds to a smoothing of the spectrum, preserving its spectral envelope

while removing the fine spectrum information. Applying windows different from the rect-

angular one also allows to weight the cepstralcoefficients depending on their discriminative

performance. Among them, we demonstrated that a raised-sine window can be successfully

applied for damage classification using ultrasonic signals [311].

Alternatively we can also smooth the spectrum through signal modeling, based on the

vision of the ultrasonic signal as a filter output, where the spectrum estimate is given by its

frequency response. In particular, autoregressive (AR) processes are considered. All-pole

filters have been found to provide a sufficiently accurate representation for many types of

signals in many different applications [213], where as in NDE systems, the pursued informa-

tion is hidden in a complex signal. If an all-pole model is assumed, an LPC (linear predictive

147



coding) spectrum estimate can be obtained. The expected effect of using a signal modeling

that follows an all-pole representation is that the cepstral distance will be less sensitive to

spurious variations of the spectrum. However, there are some uncertainties regarding this

modeling: Determining the order p of the LPC analysis for ultrasonics is an open issue,

which do not have an intrinsic meaning as in other applications. The goodness of this mod-

eling will depend on whether or not an AR-modeling is consistent with the way in which

the data is generated.

In this work, we have evaluated the effects of smoothing over the discriminative capa-

bility of the cepstrum. Both approaches, AR modeling and liftering have been jointly tested.

In order to do this, an experiment has been developed, which consists of obtaining the

weighted classification error for different LPC orders and liftering window lengths. This

experiment will allow us to design an optimal LPC modeling and liftering of the ultrasonic

signals. The corresponding (bidimensional) results are shown in figure 11.2.

Figure 11.2: Weighted error with respect to different prediction orders and liftering window lengths.

The obtained results show a clear minimum for a raised-sine liftering window, whose

length amounts to 28− 29 cepstral coefficients. Moreover, this minimum appears to be inde-

pendent of the selected prediction orders, as long as it is high enough (p > 20). Therefore,

the damage parameters reconstruction will be performed with a raised-sine liftering window

of 28 samples and a prediction order of 28. It is worth to note that this number coincides

with the echo time (in number of samples). This suggests that the cepstrum is, in some way,

able to test the symmetry in the specimen (undamaged composite is symmetric). When the

specimen is damaged, symmetry is usually broken, and a liftering window of echo length

applied over the cepstrum is able to measure it.

11.1.3 Feature extractor validation

This section aims to validate the proposed methodology. The identification of the damage

distribution is assessed by considering the following assumptions:

• The damage parameters evolution is monotonically dependent on the damage level.
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• Damage, such as delamination, concentrates mostly in the last interfaces, and propa-

gates then internally and nearly symmetrically.

Therefore, the configuration pattern for the damage parameters is restricted to 3 parame-

ters: (p1) denotes the Young modulus of the extremity layers, (p2) the Young modulus of

the extremity interface, and (p3) the Young modulus of the middle interface, respectively.

Each parameter is defined in a dimensionless and logarithmic scale, with respect to the un-

damaged state.

The robustness of the analysis-by-synthesis scheme is illustrated in figure 11.3, and com-

pares the results obtained by performing the optimization directly on the time-domain sig-

nals with the ones obtained when the aforementioned cepstral parametrization is applied.

The damage correlation parameters are plotted against the impact energy values. Each

box has lines at the median value (red), at the lower and upper quartile values (blue), and

whiskers at the minimum and maximum values (black). Outliers are represented by a red

cross. In these plots a consistent decrease on the elastic modulus is expected as the damage

energy increases.
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Figure 11.3: Representation of the damage parameters evolution for simulations performed in the
time-domain (first row), and cepstral-domain (second row).

It results that the optimization performed in the cepstral-domain leads to a more consis-

tent damage evolution than the one delivered by the time-domain solution. The reduced set

of cepstral features improves the statistical distribution of the damage parameters: (1) The

variability of the damage parameters at each damage level is drastically reduced. (2) The
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median values of the damage parameters consistently decrease while increasing the damage

level. A careful interpretation allows to observe that delamination (p2) occur at early stage

of the impact energy and increase with the damage level, while delamination (p3) occur at

some later stage of the impact energy, validating the aforementioned hypothesis.

11.1.4 Conclusions

This study shows the capability of the real LPC cepstrum to discriminate the damage level of

a CFRP plate subjected to different impact energies. The discriminative performance of the

proposed parametrization has been evaluated by a system based on cepstral distances that

recognized the concrete damage level corresponding to a given test signal, leading to the

following conclusions: (1) It has been demonstrated that it is necessary to include the wave

echoes to perform the analysis. Consequently, they may be enhanced using a suitable anal-

ysis window. (2) The cepstrum is an appropriated domain to perform a feature extraction.

This study has presented a cepstral coefficients selection based on the use of a simple lifter-
ing window with the appropriate size. Ongoing works may include the study of advanced

extraction/selection techniques such as discriminative transformations of the feature space

(LDA or PCA).

Finally, the cepstral parametrization has been inserted in a analysis-by-synthesis scheme,

and allowed us to reconstruct consistently the damage parameters corresponding to differ-

ent impact energies.

11.2 Heuristic sparse signal model

Signal processing has been proven to be an useful tool to characterize damaged materials

under ultrasonic nondestructive evaluation. In this work, we hypothesize that the transfer

function of multilayered materials for a through-transmission configuration can be repre-

sented as a classical all-pole model with sparse coefficients. To test this hypothesis, we pro-

pose an analysis-by-synthesis scheme which, by assuming an underlying sparse digital sig-

nal model of the specimen, infers the order and extent of the model parameters correspond-

ing to a certain impact damage level. Then, we exploit the sparse structure of the obtained

digital filter for practical NDE applications, with emphasis on impact damage identification

of carbon-fiber rein- forced polymer plates.

This study presents a digital signal model H(z) to characterize the specimen being tested.

An important point of this proposal is to provide a model with a small number of parame-

ters, since low complexity models are desirable for fast, practical and accurate NDE systems.

To this end, we assume that the model parameters have a particular sparse distribution,

which may be inherently related to the material’s mechanical and geometrical properties,

and thus to its health state. This hypothesis is based on the conclusions from our previous

work [10], where we introduced two different digital signal models based on a simplified

physical analysis of the ultra- sonic wave propagation inside a CFRP plate. Results showed

that cepstra extracted from these models, in which coefficients were distributed at several
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lags, were more discriminative than other spectral estimation methods. In the present work,

we propose an analysis- by-synthesis scheme, which compares the predicted signals with

the ones obtained from laboratory experiments conducted on a CFRP plate [11]. In such

a way, by means of a minimization procedure, we obtain the optimal order and extent of

the model parameters, and thus show that a sparse signal model may be an useful tool to

model wave propagation phenomena in multilayered materials. To our knowledge, our

study draws for the first time a parallel between sparse signal modeling and its applications

to ultrasonic NDE signal processing.

11.2.1 Material and methods

The proposed methodology consists of three elements: The (1) signal acquisition of the ul-

trasonic signals obtained from the wave interactions with a CFRP plate (i.e. the specimen

tested is the CFRP symmetric plate described in Section 9.2.2), a (2) sparse signal model

that idealizes the ultrasound-composite interactions, and is solved by the Prony’s method,

and an (3) analysis-by-synthesis scheme, which is used to predict the optimal coefficient

positions corresponding to a certain damage level.

Sparse signal model

In this work, we propose a digital signal model for wave propagation in multilayered ma-

terials. A through-transmission configuration is adopted, representative of the successive

reflections that suffer the transmitted signal between layers and specimen/transducers in-

terfaces. In first place, the through-transmission configuration is considered as a discrete-

time linear system. Thus, the material under investigation can be represented by a transfer

function, which relates the discrete excitation and response signals [114]. Our proposal ex-

tends the intuitive physics-based all-pole signal model proposed by Fuentes et al. [312],

solely inspired by concepts drawn from signal theory. In [312], the authors presented a

simplified analysis of the complex wave propagation pattern within the plate, and showed

that the model of the damaged specimen could be improved by including a fixed virtual

interface which introduces a middle-term and long-term predictor, along with the typical

short term predictor, in the transfer function. This model can effectively account for the

multiple transmissions/reflections due to the multilayered structure and the damage. This

sparse-like distribution of the model coefficients is exploited in our proposal.

However, it must be considered that the structural complexity of the material suggests

that flaws may occur at different locations, and that a single virtual interface cannot account

for all possible failure mechanisms. Moreover, a fixed interface does not respond to the

phenomena associated with crack propagation due to increasing damage energies. Thus, it

is reasonable to assume that a multilayered material can be modeled with a sparse trans-

fer function, whose prediction coefficients behave dynamically, depending upon its damage

state. We thus assume that the discrete-time transfer function H(z), which represents a mul-

tilayered composite material in a through-transmission configuration, can be represented by
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a delayed classical all-pole filter with sparse coefficients,

H(z) =
bz−M

1 +
p

∑
k=1

akz−k (11.3)

where most of the coefficients ak are zeros. The polynomial order p of the denominator is

2M, where M corresponds to a sample delay equivalent to the time needed by the incident

wave to cross the total thickness of the multilayered structure [312]. As experimentally

observed, the numerator consists of a gain b plus a total thickness-equivalent sample delay

M.

Analysis-by-synthesis scheme

The final goal of NDE systems is to provide consistent damage information that charac-

terizes the specimen health state. Our proposal suggests that the underlying mechanical

properties of the specimen are inherently associated to the sparse prediction coefficients

ak of the denominator in Equation (11.3). Thus, one may assume that damage will affect

those coefficients both in amplitudes and positions. Provided the coefficient position vec-

tor k, Prony’s method allows us to obtain the optimal amplitudes for a filter with a given

input/output signals. Unfortunately, there is no method that provides both optimal posi-

tions and amplitudes. Thus, we apply an analysis-by-synthesis scheme to find the values

of the coefficient position vector k that best fit the experimental response signals y(C)(n), as

depicted in Figure 11.4.

Given the transfer function H(C)(z) corresponding to a certain damage class C ∈ [0− 5],

the excitation signal x(n) applied to the specimen can be filtered, resulting in an approx-

imation y(C)H (n) of the experimental response signal y(C)(n) measured from the specimen,

and corresponding to the same damage class C. Generally, the model coefficients are found

such that the 2-norm of the residual r(n) (the difference between the observed signal and

the predicted one) is minimized. In this case, since H(C)(z) is an all-pole filter with sparse

coefficients, we can reasonably assume that the optimal predictor is not the one that only

minimizes the 2-norm but the one that also leaves the fewest non-zero prediction coeffi-

cients, i.e. the sparsest one. Sparsity is often measured as the cardinality, that is the so-called

0-norm [313, 314]. Thus, the specimen can be analyzed by defining a modeling error (or en-

ergy) in terms of the mean squared error between the actual response signal y(C)(n) and the

modeled response y(C)H (n), plus a sparsity term that accounts for the number of non-zeros

coefficients in the transfer function,

f (C) = ||r(C)||22 +ϕ||a(C)||0 (11.4)

where ϕ is an empirical regularization term, defined so that the modeling error due to the

sparsity term corresponds to a certain amount of the least squared error. It is noteworthy

that setting ϕ = 0 leads to a standard linear prediction form. To account for all the Nr
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measurement repetitions within a damage class C, a slightly different cost functional g(C) is

introduced as,

g(C) =
1

Nr

Nr

∑
i=1

f (C)i (11.5)

Then, the parameters k that characterize the coefficient positions are found by a search al-

gorithm that minimizes the cost functional g(C),

k̂ = arg min
k

g(C) (11.6)

Binary genetic algorithms are applied to minimize Equation (11.6), and provide the analysis-

by-synthesis optimal solution.

arg min
k

g(C)

H(C)(z)
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Figure 11.4: Analysis-by-synthesis scheme for a damage class C.

11.2.2 Experimental results

Analysis-by-synthesis solutions

This section presents the results obtained from the analysis-by-synthesis stage for the opti-

mal position k of the prediction coefficient vector a corresponding to each damage class C. In

order to reduce part of the noise and focus on the frequency band of interest, the experimen-

tal response signals y(n) have been previously decimated to Fs = 25 MHz (250 samples). For

the specimen tested, the resulting thickness equivalent sample delay is M = 14. The sim-

ulations have been performed for a wide range of regularization terms ϕ ∈ [3− 8] · 10−5.

Table 11.2 summarizes the optimal results.

Damage level ak-coefficient positions NZ
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Damage 0 15
Damage 1 15
Damage 2 14
Damage 3 13
Damage 4 14
Damage 5 19

Table 11.2: Analysis-by-synthesis optimal solution for the positions of the non-zero coef-
ficients ak (indicated by grey cells), along with the number of non-zero (NZ) coefficients
(ϕ = 6e− 5).
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As can be observed, the coefficient position vector k changes slightly from one damage

level to the next one. Some coefficients vanish and/or appear at new positions, due to the

symmetry break of the plate structure. It is worth to point out that diagonal patterns which

appear along increasing damage levels (e.g. from positions 13 to 18 and from 16 to 21) may

be related to wave velocity reductions, i.e. to stiffness reduction of the specimen layers.

Unfortunately, a direct physical interpretation from the ak-domain is not easily assessable.

Damage recognition experiment

To evaluate the discriminative capability of the proposed model, a set of experiments have

been carried out. For this task, a damage recognition system based on cepstral distances

is developed. As in [311, 312], each experiment has been previously preprocessed with a

Hamming window of 250 samples in the time-domain. The tested techniques employ the

real cepstrum c(n), which is defined as,

log |H(ω)| =
∞
∑

n=−∞ c(n)e jωn (11.7)

where H(ω) is the spectrum estimate obtained from the signal model. Precisely, the way the

spectrum is estimated characterizes each applied technique. Thus, the approach called Real
cepstrum consists of using the periodogram obtained directly from the windowed signal, and

corresponds to our baseline (i.e. non-parametric technique). The technique labeled as LPC
cepstrum is based on the use of a standard all-pole model with order p = 28, as described in

our previous works [311, 312]. Finally, the method named Dynamic cesptrum is based on the

sparse signal model described by Equation (11.3), and whose coefficient positions k were

determined according to the optimal results depicted in Table 11.2.

For an optimal use of the available data set, the training/test is performed using the

leaving-one-out technique. Therefore, 9 signals are used to train a reference cepstral vector

corresponding to a certain damage level, while the remaining signal is used for test. Rotating

the measurements enables us to train the system always with 9 signals, while testing is

performed over 6× 10 = 60 signals. The performance of the system is measured through

a weighted error factor. Let the results of the test be a confusion table R(i, j), with i, j =

1, . . . , 6, where R(i, j) represents the number of measurements at damage level i that have

been classified as a damage level j. The weighted error factor is then defined as,

werr[%] = 100×
∑

6
i=1 ∑

6
j=1 R(i, j) · |i− j|

3

60
(11.8)

Thus, when the erroneously recognized class corresponds to a damage close to that of the

correct class, the error has less influence on the error rate. Table 11.4 shows the results

obtained for the different cepstrum-based techniques, along with our proposal. As can be

observed, minimal weighted and absolute errors (1.67 % and 3 %, respectively) are obtained

with the dynamic approach. It is also worth to note that a sparse modeling, with a lower
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number of parameters, has a better discriminative capability than classical spectrum estima-

tion approaches.

Cepstrum-based Number of werr err
techniques non-zero ak [%] [%]

Real cepstrum − 8.33 23.33
LPC cepstrum 28 2.00 6.67

Dynamic cepstrum 13− 19 1.67 3

Table 11.3: Classification errors for different cepstrum-based techniques.

11.2.3 Conclusions

This study shows the capability of a sparse signal modeling to discriminate the damage

level of a CFRP plate subjected to different impact energies. First, an analysis-by-synthesis

scheme has been proposed, to infer the order and extent of the model parameters cor-

responding to a certain impact damage level. Then, the performance of the proposed

parametrization has been evaluated by a system based on cepstral distances that recognizes

the specific damage level corresponding to a given test signal, leading to the following con-

clusions: (1) It has been demonstrated that modeling the complex wave propagation pattern

using a sparse transfer function provides better results than other classical spectrum estima-

tion techniques. (2) It has been shown that the prediction coefficients behave dynamically,

depending upon the damage state of the material. Ongoing works may include a further

study of the relation between the sparse prediction coefficients and the underlying material

mechanical properties, in order to provide a consistent quantification of the damage param-

eters.

11.3 Physics-based sparse signal model

To evaluate the capability of the proposed model for damage discrimination, a set of ex-

periments have been carried out. In the first experiment, a damage detection framework

exploiting the convenient filter form provided by the digital signal model is proposed. In

the second experiment, a damage identification system based on cepstral distances with an

underlying model as in [312] is developed.

11.3.1 Damage detection evaluation

The nature of the proposed digital model, namely its all-pole structure, allows a simple and

efficient use for industrial NDE applications. Ultrasonic response signals obtained from

specimens can be whitened by inverse filtering, where the filter is computed from the ma-

terial’s properties provided by the manufacturer. While the inverse filtered response from

the undamaged specimen is expected to be similar to the original excitation signal applied,

the opposite is awaited for damaged specimens, due to the corresponding model mismatch,

resulting in an effective damage detection procedure with a relatively low cost.
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In this section, we evaluate this approach on the CFRP plate described in Section 9.2.2.

Given the transfer function HD(z), which represents the undamaged multilayered compos-

ite material in a through-transmission configuration, the experimental response signal y(n)
can be whitened by inverse filtering, resulting in an approximation x̃(n) of the original ex-

citation signal x(n) applied to the specimen. In general, it is not guaranteed that an inverse

filter HD−1
(z) fulfill stability conditions. In our case, HD(z) is an all-pole filter, and thus

the resulting inverse one is a finite impulse response (FIR) filter, which is inherently stable

and can be computed straightforwardly. The specimen can then be classified by defining a

modeling error in terms of the squared error between the actual excitation signal x(n) and

the inverse filter response x̃(n),

εw =
N−1

∑
n=0

ew(n)2 =
N−1

∑
n=0

(x̃(n)− x(n))2 (11.9)

where ew(n) denotes the whitening error. Figure 11.5 shows a diagram of the proposed

scheme. It is expected that the experimental response signal obtained from an undamaged

specimen y0(n) is well-approximated by the model, so it should be well-whitened, resulting

in a low modeling error value εw. In contrast, the experimental response signal obtained

from a damaged location yi(n) ∈ {y1(n), . . . , y5(n)} is expected not to be well-whitened,

leading to larger modeling error values.

?

Model parameters

HD−1
(z) ����s c-

6

- - +
-

+

y(n)x(n) ew(n)x̃(n)

Specimen

Figure 11.5: Diagram of the inverse filtering scheme proposed to compute the whitening
error.

Nevertheless, the former damage detection framework still exhibits several drawbacks.

First, the response signal energy decreases significantly as the impact energy increases.

Thus, the modeling error εw alone is not as discriminative as initially expected. We get

through this difficulty by introducing a relative modeling error Er = εw/εnw, where εnw

denotes the original response signal energy (non-whitened), that is εnw = ∑
N−1
n=0 y(n)2. Sec-

ondly, the damage information is mostly concentrated in the wave echoes (which represent

successive wave transitions across the specimen) [311, 312], whereas the wave front remains

almost unsensitive to damage. To account for this fact, temporal windowing w(n) can be

applied to the signals being compared, or more easily over the whitening error ew(n).
To evaluate the aforementioned damage detection framework, a model fitness measure

is introduced as ρ = 1/Er. Figure 11.6 shows the ρ-values obtained for the experimental

data set, using five different temporal windows. The length of these windows was cho-

sen so that the analysis focuses on the signal echoes. For this purpose, several rectangular
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and Hamming windows were selected. The first window is a rectangular one of full signal

length (RECT(0)), whereas the other applied rectangular windows (RECT(i)) depend on the

specimen thickness Λ expressed in number of samples. To focus on the later echoes, 2Λ

samples are successively removed from the analysis, that is, RECT(1) considers all the signal

samples except the ones corresponding to the wave front, RECT(2) all the signal samples ex-

cept the ones corresponding to the wave front and the first echo (a wave that crossed thrice

the specimen), and so on. The last applied window is a Hamming window of signal length,

used to enhance the echoes as in our previous studies [311, 312]. As can be observed, mod-

erate and severe damage levels (2− 5) are correctly discriminated by the proposed measure

independently of the window used. The influence of the temporal windowing can be ap-

preciated better for no and mild damage levels (0 and 1), which are, as expected, the most

difficult cases to discriminate. By considering the complete signal (RECT(0)), it is difficult to

establish a clear threshold to discriminate between these levels. In contrast, removing the

wave front (RECT(1)) or enhancing the echoes (HAMM) by windowing provides significant

improvements. Shifting the rectangular window on the later echoes (RECT(2)) improves

further the discrimination. Indeed, the proposed analysis provides the best results for this

window, and a fitness threshold around 1.05 (see Figure 11.6), leading to 10% of type I er-

rors and 0% of type II errors. Removing further echoes (RECT(3)) makes the results worse.

This could be explained because only a few samples, which suffer from severe quantization

effects, are considered.
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Figure 11.6: Damage detection results obtained for several windows length and type.
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As can be seen, this experimental case study illustrates the potential of the proposed

formalism, which achieves a very low complexity method for binary classification between

damaged and undamaged specimens, using a sparse physics-based transfer function, ana-

lytically derived from the mechanical and geometrical properties of the material.

11.3.2 Damage identification evaluation

In this section, the proposed model is evaluated as underlying model in a damage recogni-

tion system based on cepstral distances [311, 312]. First, signals are preprocessed in order to

reduce part of the noise and focus on the frequency band of interest. Thus, the sampling fre-

quency is reduced to Fs = 25 MHz (N = 250 samples) by decimation and rectangular (R) or

Hamming (H) windowing is applied over the resulting signals (the rectangular window cor-

responds to the best obtained window in the previous experiment). Damage classification

is performed from Euclidean distances in the real cepstral-domain, where the real cepstrum

c(n) is defined as,

log |H(ω)| =
∞
∑

n=−∞ c(n)e jωn (11.10)

where H(ω) is an estimate of the spectrum of the specimen under investigation. Non-

parametric and parametric methods can be used in order to estimate this spectrum. In this

work, the periodogram directly obtained from the windowed signal is employed as non-

parametric technique, serving us as baseline (FFT technique). Parametric methods make

use of an underlying model HD(z), whose parameters or coefficients must be estimated

from the input/output signals. As a first parametric technique, we consider a short-term

linear prediction model (LPC) consisting of a standard all-pole filter with order p = 14 (LPC
tecnhique). This order p, and so the number of parameters, is chosen to correspond to the

thickness-equivalent sample delay of the plate Λ = 14.

In our previous work [312], we presented a simplified analysis of the complex wave

propagation pattern within the plate, and showed that this model could be improved for a

damaged specimen by including a few coefficients which extends the specimen’s transfer

function with a middle and long-term predictors. This can alternatively be interpreted as

a longer all-pole model with a sparse-like coefficient distribution. Thus, a second model is

defined as an all-pole model of order p = 28, that is, twice the specimen’s thickness ex-

pressed in samples, where the coefficients from positions 15 to 27 are forced to be zeros

(Simplified model 1). The rest of coefficients (original LPC and 28th ones) are obtained from

the input/output signals by means of the Prony’s method [214]. Additionally, we can define

a third extended model, which also includes a middle-term coefficient placed at position 25

(Simplified model 2). The goal of this middle-term coefficient is to account for the damage

by placing a fixed virtual interface in the plate [312]. However, it must be considered that

the structural complexity of the material suggests that flaws may occur at different loca-

tions, and that a single virtual interface cannot account for all possible failure mechanisms.

Therefore, in practice, the position of this interface must be determined empirically.
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Instead of using a model based on a simplified analysis of the material, we can apply

our proposed digital signal model to analytically derive the position and extent of the co-

efficients from the properties of the CFRP plate. The delays mi of these sparse coefficients

are fixed according to the positions obtained from the model for an undamaged specimen,

assuming that damage affects mostly the gains of the sparse prediction coefficients ak pro-

vided by the transfer function. The latter assumption implies that the changes caused in

the signals due to damage should be absorbed by the gains at the fixed positions. Finally,

a full LPC model with order p = 28 (maximum delay obtained in any previous model) is

proposed for a fair comparison (Full LPC).

For an optimal use of the available data set, training/test is performed using the leaving-
one-out technique. Therefore, 9 signals are used to train a reference cepstral vector corre-

sponding to a certain damage level, while the remaining signal is used for the test. The

accuracy of the system is evaluated by defining a weighted error factor [311, 312]. The test

provides a confusion table R(i, j) (i, j = 1, . . . , 6), where R(i, j) represents the number of

measurements at damage level i that have been classified as a damage level j. A weighted

error rate is then defined as,

werr[%] = 100×
∑

6
i=1 ∑

6
j=1 R(i, j) · |i− j|

3

60
(11.11)

Thus, when the erroneously recognized class corresponds to a damage close to that of the

correct class, the error has less influence on the error rate. To evaluate the capability of

the proposed classification system, cepstra are extracted from the aforementioned models.

Table 11.4 shows the results obtained for these different cepstrum-based techniques, namely

FFT, LPC, Simplified model 1 (SM 1), Simplified model 2 (SM 2), Digital signal model (DSM), and

Full LPC, and summarizes the position of the prediction coefficients corresponding to these

models.

Cepstrum-based ak-coefficient positions NZ (N = 250)
techniques 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 w(n) werr [%]

FFT - R 7.33
H 8.33

LPC 14 R 9.33
H 9.33

SM 1 15 R 8.00
H 3.00

SM 2 16 R 7.67
H 2.67

DSM 15 R 6.67
H 1.67

Full LPC 28 R 6.67
H 2.00

Table 11.4: Classification errors for different cepstrum-based techniques, along with the or-
der and extend of the non-zero coefficients ak (indicated by grey cells).

First, these results confirm that the modeling order p is tightly linked to twice the

thickness-equivalent sample delay of the plate. Indeed, all the cesptra extracted from all-
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pole models with p = 28 reduce drastically the weighted error compared to classical spec-

trum estimation methods (LPC and FFT). Adding a single middle and long-term predic-

tion coefficients to a standard all-pole model (Simplified models) enables us to obtain cepstra

that improve significantly the damage discrimination capability compared to the short-term

LPC cepstrum. It is noteworthy that modeling the multilayered specimen with a short-

term LPC model is equivalent to consider our material as a Goupillaud-type structure with

Λ = M = 14. As can be observed, a sparse signal modeling whose coefficient positions

are analytically obtained from the material’s properties provides even better discrimina-

tion than those simplified sparse-like models. Even more remarkable is the fact that this

sparse model with a reduced number of parameters yields better results than a LPC-model

with the same modeling order (Full LPC). Concretely, minimal weighted error (1.67 %) is

obtained with the digital signal modeling approach for signals that have been previously

preprocessed with a Hamming window. As can be observed, rectangular windowing fol-

lows the same tendency albeit provides worse results, i.e. the resulting weighted errors are

typically around 2− 4 times higher than the ones obtained with Hamming windowing (ex-

cept for the FFT and LPC cepstra). Indeed, in contrast to the previous experiment where

signals were only processed in the time-domain, the current evaluation involves spectrum

estimates, where the rectangular windowing is usually avoided due to its poor performance.

11.3.3 Conclusions

This work shows the capability of a digital signal modeling approach which incorporates

underlying mechanical concepts to identify damage in composite materials, particularly in

a CFRP plate subjected to different impact energies. A set of experimental case studies

has been proposed to evaluate the potential of the developed digital signal model in some

practical NDE applications. In a first experiment, a damage detection evaluation has been

carried out, showing that the digital filter represents an extremely fast and promising tool to

discriminate damaged from undamaged specimens by inverse filtering. Indeed, this inverse

filter is a sparse FIR filter, whose coefficients were directly obtained from the material’s

properties, without requiring any experimental calibration. In a second experiment, the

discriminative performance of the proposed model has been evaluated by a system based

on cepstral distances that recognizes the specific damage level corresponding to a given test

signal. The damage levels have been identified with an accuracy of 98.37 % with a model

that consists of 15 parameters, that is, half the amount of a full LPC model. It has been

demonstrated that a sparse signal modeling with a reduced number of coefficients provides

better results than other common spectrum estimation techniques. In contrast to standard

or empirical models, the coefficients position and extent of our model are inherently linked

to the material’s properties (i.e. twice the thickness of the plate, stiffness, etc.), and thus to

its health state.

Inverse filtering experiments for real-time monitoring of CFRP plates damaged by im-

pact and fatigue with ultrasonic C-scan methods are currently under development at our
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laboratory. Ongoing work includes further use of sparse signal models for ultrasonic NDE

of materials, and particularly the use of a dynamic model with variable coefficients position

and gain to improve the performance of damage recognition systems.
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12
Probabilistic inverse problem for ultrasonic

monitoring of tissue-engineered materials

The understanding of internal processes that affect the changes of consistency of soft tis-

sue is a challenging problem. An ultrasound-monitoring Petri dish has been de- signed

to monitor the evolution of relevant mechanical parameters during engineered tissue for-

mation processes in real time. A better understanding of the measured ultrasonic signals

required the use of numerical models of the ultrasound-tissue interactions. The extraction

of relevant data and its evolution with sufficient sensitivity and accuracy is addressed by ap-

plying well-known signal processing techniques to both the experimental and numerically

predicted measurements. In addition, a stochastic model-class selection formulation is used

to rank which of the proposed interaction models are more plausible. The sensitivity of the

system is first verified by monitoring a gelation process, as described in Section 12.1. Then,

in Section 12.2, we expose the possibility of extending such a methodology for monitoring a

fibrin-agarose based construct for artificial tissue development.

12.1 Monitoring of a gelation process

The proposed methodology combines four elements. (1) The signal acquisition of the ul-

trasonic signals obtained from the waves interaction with a sample of tissue, a (2) set of

alternative attenuation models that simulate the ultrasound-tissue interaction, which is nu-

merically solved by the transfer matrix formalism, a (3) stochastic model-class selection for-

mulation used to rank which of the models parametrization are more plausible, and a (4)
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NDE oriented signal processing framework that extract relevant features from both the ex-

perimental and numerically predicted signals. The latter is used to reconstruct the evolution

of the relevant mechanical parameters during the culture reaction time.

The experimental system is idealized by a mathematical model of the propagation and

interaction of the transmitted ultrasonic waves with all the parts of the system until they

are received by the sensor. Several models are tested to idealize the removal of energy

by dissipation or radiation. Three alternative damping models are used: (i) viscous, (ii)

hysteretic, and (iii) proportional to integer time derivatives of the particle movement, based

on their fractional time derivatives. The damping is defined in terms of the wave modulus

M, which is modified from the undamped one M0 to generate a dispersive one, which is

a frequency-dependent complex modulus M∗(ω), where ω is the angular frequency if the

modulus dispersion is represented by its frequency domain. The viscous model is defined

in terms of the frequency-dependent loss factor η, obtained as the ratio between loss and

storage moduli [315]. In this context, a specific view of hysteretic damping is taken, where it

is expressed as a frequency-independent damping [225]. The last model, based on fractional

time derivatives, leads to a damping function that may be expressed as a power law, and

thus improves curve-fitting properties for relaxation [315, 225]. These models are selected

according to their performance demonstrated in a previous study [316]. On one hand, the

viscoelastic η and hysteretic ζ models are defined according to Maia et al. [317],

M∗(ω) = M0 (1− iωη) (12.1)

and

M∗(ω) = M0 (1− iζ) (12.2)

where η and ζ are the viscoelastic and hysteretic damping coefficients of tissue, respectively.

On the other hand, the fractional time derivative damping is defined as,

M∗(ω) = M0 1 + b(iω)β

1 + a(iω)α
(12.3)

The three models are summarized hereafter, highlighting the combination of the consid-

ered parameters,

Table 12.1: Combination of models.

Tag Size Parameters

1 4 Ktissue ζ zampl ztime

2 4 Ktissue η zampl ztime

3 6 Ktissue a b α = β zampl ztime

where Ktissue denotes the Bulk modulus of tissue. The fractional derivative constants are de-

fined as a, b, andα = β. Two additional parameters zampl and ztime are introduced to control
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the correction of the amplitude and the time-shift of the input signal in the culture, which

corrects effects of temperature and other phenomena on the sensors, that affect attenuation

and delay on the path from the electronics to the arrival of the signal at the culture specimen.

The input signal s0(t) correction is defined by,

s∗(t) = zampls0(t + ztime) (12.4)

The factor zampl corrects variations of the amplitude and phase of the excitation over the

reaction process time, that may suffer the influence of several simultaneous factors including

the temperature. Nonetheless, we assume that these factors can be summarized as a whole

by introducing a phenomenological factor, labeled as ztime.

The mathematical model is approximated by a semi-analytical model of the wave inter-

actions within multilayered materials based on the transfer matrix formalism (TMF) [224],

describing the ultrasonic waves interactions between the Petri dish and the culture.

12.1.1 Measurements

The recorded signals by the ultrasound-monitored Petri dish every 250 seconds are shown

in Figure 12.1, without and with specimen, respectively. No clear evolution is detectable by

bare visual inspection of the signals. The recorded signals are mainly composed of three

different waveforms (simplified paths of Fig. 1), namely (1) the wave front that propagates

only through the PMMA layer (labeled as u1), (2) a wave that crosses both the PMMA layer

and the specimen (labeled as u2), and (3) a wave echo produced by the former wave after

crossing twice the specimen (labeled as u3).

It is noteworthy that when the specimen is on place, the majority of the excitation signal

(registered without specimen for calibration) is transmitted instead of reflected. Since the

wavelength in gel is compatible with the layer thickness, the individual echoes generated by

the multiple reflections inside the gel layer can be analyzed separately by signal processing.

12.1.2 Signal simulation

The transfer matrix formalism is used to generate sample signals, after calibrating the es-

timated parameters using the inverse problem, for the first signal (initial evolution time).

Time-domain signals and magnitude spectra are shown in Figures 12.2-12.5 for the viscous

model (case 2) at the initial time of the reaction process, respectively. In the lower figures,

an analysis window (Hamming) has been applied to the signals, and classical and weighted

residue definitions are considered, denoted as r0 and r3, respectively.

A significative ability to simulate the system can be observed visually. The influence of

the signal windowing yields the following observations for the magnitude spectrum (Fig.

12.4-12.5): The envelope, that corresponds to the redundant character of the signal, remains

almost unchanged. In contrast, the fine spectrum presents accentuated peakiness due to the

enhanced echoes of the time-domain signals. In the time-domain, the classical residue r0 is

strongly correlated with the signals themselves (Fig. 12.2), highlighting higher amplitude

165



where the signals energy is higher. However, the weighted residue r3 allows to remove some

variability due to the measurements uncertainties (Fig. 12.3). Additionally, it enhances the

signal parts containing information of the reaction process (here mainly the wave front),

while allowing to remove the parts which are invariant to the process evolution (scattering

parts). In the frequency-domain, the weighted residue allows to remove the frequency range

being unsensitive to the reaction process, or being erroneous due to measurements noise.

Thus, the resulting magnitude spectra of Fig. 12.5 show enhanced process information at

certain frequencies, in contrast to the magnitude spectrum of Fig. 12.4.

12.1.3 Posterior probability of the model

The probability density function is computed for the viscous attenuation model, and some

relevant samples issued from the results obtained in the previous section are shown in Fig-

ures 12.6-12.9. Since the PDF is a multidimensional function, without loss of generality, only

a slice along two parameters is represented, namely the Bulk modulus of the tissue and the

viscous damping coefficient.

The inspection of these plots reveals several local minima, valleys in the probability den-

sity function and variations of several orders of magnitude from good to bad model param-

eters. This implies a bad conditioning of the reconstruction inverse problem and justifies

the use of advanced search algorithms such as genetic algorithms. Nonetheless, the use of

a weighted residue definition enhance the slope of these local minima, and thus speed up

the convergence of the search algorithm. It is noteworthy that the other attenuation mod-

els present similar trends. Additionally, some irrelevant samples issued from the cepstral

analysis are illustrated in Figures 12.10-12.11.

The inspection of the plots obtained from the cepstral analysis reveals many local min-

ima that approximately have the same values, leading to an ill-conditioned solution space.

12.1.4 Model class plausibility

The posterior probability p(C) of every proposed model class C ∈ C is computed by Quasi

Montecarlo integration using 218 Sobol sampling points. Additionally, the estimation of

Occam’s factor, as well as the certainty metricσ are summarized in Tables 12.2-12.4 for time-

domain signals, magnitude spectra and real cepstra, respectively.

The most plausible model class is shown to be 2, involving Ktissue, viscoelastic damp-

ing, and temperature and amplitude corrections. It is closely followed by class 1 (hysteretic

damping), whereas class 3 does not provide results for all proposed signal processing tech-

niques. The magnitude spectrum computed with weighted residue definitions r1 and r3

show significantly higher posterior probability p(C) than the other domains of representa-

tion. The real cepstrum provides bad results as well for the posterior probability, which is

consistent with the observations in the previous section. This evidence further supports the

validity of the probabilistic formulation. Hence, the obtained equiprobable values demon-

strate its insensitiveness with respect to the selected model classes.
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Table 12.2: Plausibility of model classes. Time-domain.

Windowing Residue Model class 1 2 3

w0

r0

p(C) [%] 31.55 32.39 36.06

Occam [−log10] 2.24 4.10 1.90

Certainty [log10] 0.11 0.75 0.37

r1

p(C) [%] 33.33 33.33 33.33

Occam [−log10] 8.11 7.93 11.93

Certainty [log10] 1.69 1.66 1.97

r3

p(C) [%] 15.53 63.10 21.37

Occam [−log10] 7.34 9.95 14.78

Certainty [log10] 2.23 2.74 2.97

w1

r0

p(C) [%] 32.45 32.99 34.57

Occam [−log10] 7.14 6.50 7.44

Certainty [log10] 1.40 1.16 1.02

r1

p(C) [%] 33.33 33.33 33.33

Occam [−log10] 7.93 7.90 13.08

Certainty [log10] 1.83 1.95 ∞
r3

p(C) [%] 34.81 31.57 33.62

Occam [−log10] 4.25 6.17 8.72

Certainty [log10] 1.39 1.79 1.45

The posterior probability p(R) of every consistent residue definitionR ∈ R is computed

according to the posterior probability p(C). Tables 12.5-12.6 summarized the obtained val-

ues together with the Occam’s factor estimation and certainty metric, for the hysteretic and

viscous damping, respectively.

The most plausible residue definition appears to be r1, which involves the inclusion of

some prior information on the variance of the measurements over the temporal evolution of

the reaction process, when the inverse problem is achieved in the frequency-domain. This

ranking remains consistent independently of the model class. Signal windowing has a feeble

influence on the results improvement.

12.1.5 Monitoring of evolution

The evolution of the relevant reconstructed mechanical parameters during the reaction pro-

cess is shown in Figures 12.12-12.13 for the most relevant model class and residue defini-

tions, respectively. The value of the reconstructed Bulk modulus at the beginning of the

process approximately amounts to 2.385 [GPa]. Under the hypothesis that the gel layer is

already in the gelation zone [318] at the initial process time (for such a thin specimen, the gel

starts to gelify almost instantaneously), we suppose that the loss and storage moduli at the
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Table 12.3: Plausibility of model classes. Magnitude spectrum.

Windowing Residue Model class 1 2 3

w0

r0

p(C) [%] 29.79 29.39 40.82

Occam [−log10] 0.09 -0.42 -5.17

Certainty [log10] 0.40 0.38 0.71

r1

p(C) [%] 49.94 50.06 -

Occam [−log10] 7.71 8.82 -

Certainty [log10] 1.52 1.63 -

r3

p(C) [%] 0.02 56.47 43.51

Occam [−log10] 4.84 5.88 22.37

Certainty [log10] 1.93 1.89 4.10

w1

r0

p(C) [%] 26.90 26.11 46.99

Occam [−log10] 2.47 1.82 -8.55

Certainty [log10] 0.08 0.08 -1.57

r1

p(C) [%] 49.98 50.02 -

Occam [−log10] 8.68 7.81 -

Certainty [log10] 1.80 1.49 -

r3

p(C) [%] 31.98 44.95 23.07

Occam [−log10] 5.11 4.77 16.15

Certainty [log10] 1.61 1.54 2.85

initial and end process times approximate the ones proposed by Wang et al. [318], namely

G′′0 = 1200 [Pa], G′0 = 80 [Pa] and G′′end = 1800 [Pa], G′end = 140 [Pa], respectively. By

making use of the following formula [225],

cp =

√
(K + 4

3 G)

ρ
(12.5)

the wave velocity is found to be 1544 [m/s] at the initial time of the process. The latter is

close to the value depicted by other authors for similar materials, among them Norisuye et
al. [319]. Additionally, the last author suggests that the wave velocity suffers a reduction of

around 3 % over the reaction process. Thus, thus Bulk modulus at the end of the process is

found to be 2.272 [GPa] (diminution of 5 %), and is in agreement with the value obtained

with the proposed formalism.

Some parameter evolutions reconstructed using residues and models with low plausi-

bility (not shown in this paper for space constraints) show larger scattering and instabilities,

consistently with the results in the two previous subsections. Those observations further

supports the validity of the formulation and conclusions.
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Table 12.4: Plausibility of model classes. Real cepstrum.

Windowing Residue Model class 1 2 3

w0

r0

p(C) [%] 33.33 33.33 33.34

Occam [−log10] 1.99 2.91 2.67

Certainty [log10] 0.53 0.45 0.08

r1

p(C) [%] 33.33 33.33 33.34

Occam [−log10] 8.23 8.51 10.95

Certainty [log10] 2.38 2.42 1.94

r3

p(C) [%] 33.33 33.33 33.34

Occam [−log10] 0.21 2.21 3.28

Certainty [log10] 0.12 0.31 0.32

Table 12.5: Plausibility of residue definitions. Time-domain.

Model Window Residue r0 r1 r2 r3

1

w0
p(R) [%] 22.27 26.57 0 0

Occam 2.24 8.11 -22.96 -7.34

Certainty 0.11 1.68 -6.30 -2.23

w1
p(R) [%] 24.56 26.57 0 0

Occam 7.14 7.93 -19.54 -4.25

Certainty 1.40 1.83 -5.40 -1.39

2

w0
p(R) [%] 22.64 26.31 0 0

Occam 4.10 7.93 -23.77 -9.95

Certainty 0.74 1.66 -6.25 -2.74

w1
p(C) [%] 24.72 26.31 0 0

Occam 6.50 7.90 -20.30 -6.17

Certainty 1.16 1.95 -5.38 -1.79

12.1.6 Conclusions

A numerical method to determine the elastic and dynamic energy dissipation properties

during a gelation process has been developed by combining the solution of a probabilistic in-

verse problem with signal processing techniques, applying genetic algorithms to minimize

a cost functional, and using a semi-analytical model of the interaction between ultrasonic

waves and tissue.

The proposed model-class and residue selection and their subjacent class plausibility

have enabled to rank both the models and the suitable residue definitions according to their

compatibility with the observations. The resulting trade-off between model simplicity and

fitting to observations have demonstrated that the viscous damping models, combined with
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Table 12.6: Plausibility of residue definitions. Magnitude spectrum.

Model Window Residue r0 r1 r2 r3

1

w0
p(R) [%] 5.87 38.87 0 0

Occam 0.09 7.71 -14.49 -4.84

Certainty -0.40 1.52 -3.98 -1.93

w1
p(R) [%] 15.64 39.61 0 0

Occam 2.47 8.68 -11.81 -5.11

Certainty 0.08 1.80 -3.40 -1.61

2

w0
p(R) [%] 5.82 39.12 0 0

Occam -0.42 8.82 -14.87 -5.88

Certainty -0.38 1.63 -4.00 -1.89

w1
p(C) [%] 15.25 39.81 0 0

Occam 1.82 7.81 -12.02 -4.77

Certainty 0.08 1.49 -3.35 -1.55

some prior information on the measurements variance over the reaction process evolution,

are feasible to characterize the complex evolution of the process.

The reconstructed model parameters highlight the following statements. For the vis-

coelastic models, the Bulk modulus consistently decreases while increasing the damping

coefficient. Therefore, both parameters may be associated to the same phenomena, but a

careful interpretation has not been carried out at that time. The evolution of the model pa-

rameters has a stronger slope during the first 200-300 seconds of the reaction process, and

remain almost constant afterwards. This trend validates the observations done in situ where

the gelation occurred during the first 3− 5 minutes. Consequently, the proposed methodol-

ogy demonstrates capability to discriminate the process during its early solidification phase.

For a better understanding of the ultrasonic tissue monitoring, in vitro studies on real tissue

combined with histological studies may be conducted.

12.2 Monitoring of a fibrin-agarose based construct for artificial tissue
development
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Figure 12.1: Signals sample: sequence of signals without specimen (above); signal with
specimen registered every 250 seconds (below).
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Figure 12.2: Example of fitting of experimental and simulated observations. Viscous model.
Time-domain. Residue r0.
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Figure 12.3: Example of fitting of experimental and simulated observations. Viscous model.
Time-domain. Residue r3.
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Figure 12.4: Example of fitting of experimental and simulated observations. Viscous model.
Magnitude-spectrum. Residue r0.
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Figure 12.5: Example of fitting of experimental and simulated observations. Viscous model.
Magnitude-spectrum. Residue r3.
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Real cepstrum. Residue r0.
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Figure 12.12: Evolution of model parameters during reaction. Viscoelastic model. Time-
domain. Classical residue. Without signal windowing.
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13
A nonlinear through-transmission

finite-amplitude method for bone damage
assessment

This chapter aims at measuring the effective material nonlinearity β using a finite-

amplitude through-transmission nonlinear method, also called harmonic generation tech-

nique. Since a major practical difficulty of the second harmonic generation technique relies

on the existence of nonlinear distortions from the electronic devices, a semi-analytical ap-

proach is proposed to extract the intrinsic material nonlinearity, by separating the nonlinear

contributions from the immersion medium, the transducers and the electronics. Laboratory

experiments were conducted on a bovine cortical bone sample, and on other materials with

increasing structural complexity for validation. The correlations between cracks density

and the ultrasonic properties (velocity, attenuation and nonlinearity) are investigated, and

the results are contrasted against other available NDE techniques.

13.1 Postprocessing method

The measurements procedure consists of four steps. Initially, the response signal was mea-

sured in water at two different positions corresponding to locations ahead of and at the

back of the specimen (steps 1© and 2©). Then, the response signals were measured with the

specimen in situ along the scanning area at both frequencies (steps 3© and 4©).
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Figure 13.1: Semi-analytical approach used to extract the linear and nonlinear material’s
properties from the measurements.

In order to reconstruct the linear and nonlinear material’s properties of the specimen

under inspection, a semi-analytical approach is proposed by considering the following as-

sumptions: (i) the attenuation in the water layers is negligible, (ii) the thickness a3 of water

layer 2 is small, and thus the nonlinearity can be assumed not to accumulate over this dis-

tance (i.e. β(3)
w ≈ 0) [285], (iii) only second harmonics are considered, and thus frequency-

mixing effects due to higher-order harmonics are negligible, and (iv) the density of the speci-

men is assumed to be constant. The measurements procedure along with the semi-analytical

approach are summarized in Figure 13.1.

The wave velocity cs of the specimen can be calculated by cross-correlating the win-

dowed waveforms in water and in the specimen at a distance L from the transducer, char-

acterized by the amplitudes A(1)
ω (L) and A(3)

ω (L). The attenuation coefficients (expressed

in [dB/cm/MHz]) of the specimen at the central frequenciesω and 2ω can be obtained by

comparing the measurements in water ahead of the specimen with the ones in the specimen
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as,

α1 = 20

log

(
A(1)
ω (d1)TswTws

A(3)
ω (L)

)

a2 fc
, α2 = 20

log

(
B(1)

2ω(d1)TswTws

B(3)
2ω(L)

)

2a2 fc

(13.1)

where Tws and Tsw denote the transmission coefficients from water to specimen, and speci-

men to water, respectively. The second harmonics amplitude can be written down as,

A(3)
2ω(L) =

(
A(2)

2ω(d2) + Ā(2)
2ω(d2)

)
Tsw

=
(

A(2)
2ω(d1)e−α2a2 + Ā(2)

2ω(d2)
)

Tsw

=
(

A(1)
2ω(d1)e−α2a2 Tws + Ā(2)

2ω(d2)
)

Tsw

(13.2)

By applying Equation (4.21), the intrinsic nonlinear parameter βs of the specimen can be

obtained as,

βs =
4c2

s Ā(2)
2ω(d2)

ω2a2

(
A(2)
ω (d2)

)2 =
4c2

s

(
A(3)

2ω(L)Tsw − A(1)
2ω(d1)e−α2a2 TwsT2

sw

)

ω2a2

(
A(3)
ω (L)

)2 (13.3)

It is noteworthy that, in the proposed form, this solution accounts for both the specimen

attenuation and the impedance losses due to the immersion medium. Alternatively, the

effective nonlinear parameter βobs is also computed, which is directly extracted from the

observed fundamental and second harmonics.

βobs =
4c2

obs A(3)
2ω(L)

ω2L
(

A(3)
ω (L)

)2 (13.4)

where cobs is the effective wave velocity obtained by applying classical mixing rules,

cobs =
dw + ds

dw

cw
+

ds

cs

(13.5)

where di and ci, with i = w, s denote the thickness and wave velocity of the immersion

medium and specimen, respectively.

13.2 Validation

The semi-analytical approach together with the experimental methodology defined above

are applied to a set of specimens composed of increasingly complex materials in order to

validate the method.

Figure 13.2 shows the time-domain signals and magnitude spectra of the ultrasonic sig-

nals measured with and without the PMMA sample in the acoustic path by using the finite-

amplitude through-transmission method. The time-domain signals distortions are shown
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to increase along the acoustic path in the direction of increasing damage level. A direct in-

terpretation of the nonlinearity variation is not feasible in the frequency-domain, since the

second harmonic peaks measured with the specimen in-place are affected by the nonlin-

ear contribution of water. Nonetheless, the second harmonic peak values measured on the

damaged area appear to be higher than the ones measured on the undamaged area.
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Figure 13.2: Time-domain signals and magnitude spectra of the ultrasonic signals measured
with and without the PMMA sample in the acoustic path.

The wave velocity, attenuation, effective nonlinearity, and PMMA nonlinearity maps ob-

tained for the scanned areas are depicted in Figure 13.3. The wave velocity cp is observed

to decrease as the holes density increases. However, the latter acoustic property only pro-

vides a kind of global information about areas of higher/lower density, nonetheless without

achieving an accurate localization and quantification of the holes themselves. In contrast,

the attenuation coefficient α and effective nonlinear parameter βobs provide more fine in-

formation about the damage type and location. It is worth to point out that the intrinsic

nonlinear parameter β of the material enhance the previous observations.
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Figure 13.3: Results obtained for the PMMA beam: Wave velocity cp, attenuation coefficient
α, effective nonlinear parameter βobs, and nonlinear parameter β.
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Figure 13.4 shows the linear and nonlinear material properties as a function of the drilled

holes density. The squares represent the experimental measurements averaged each 7.5

millimeters (whose values correspond to the mean values of the map columns of Figure

13.3), whereas the solid line represents the linear regression fit to the measurements. The

wave velocity and attenuation coefficient show high r-values (−0.94 and 0.92, respectively)

with the drilled hole density. A slightly higher correlation is obtained between the drilled

hole density and the nonlinear parameter β (r = 0.95).
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Figure 13.4: Linear and nonlinear material properties as a function of the drilled holes den-
sity.

The Pearson’s correlation coefficients r obtained between the drilled hole density and

the ultrasonic properties (cp,α, and β) for the PMMA sample are summarized in Table 13.1,

along with correlations between pairs of the ultrasonic properties (p < 10−8 for all).

Parameter Density cp α β

Density 1 -0.94 0.92 0.95
cp 1 0.91 -0.98
α 1 0.91
β 1

Table 13.1: Pearson’s correlation r between drill density and ultrasonic properties.

Alternatively, Table 13.2 shows the univariate and the multivariate regression models

that predict the hole density from the ultrasonic properties.

Dependent variable Independent variable R2

Drill density cp 0.88
α 0.85
β 0.91

cp,α 0.90
cp,β 0.91
α,β 0.92

cp,α,β 0.93

Table 13.2: Univariate and multivariate regression models that predict the drill density from
the ultrasonic properties.
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The best univariate predictor of the hole density is proved to beβ, which provides an ad-

justed squared correlation coefficient R2 = 0.91. The multivariate regressions substantially

increase R2 over the univariate regression, when including cp and/orα within the models.
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Figure 13.5: Results obtained for the CFRP plate: Wave velocity cp, attenuation coefficients
α1 and α2, effective nonlinear parameter βobs, and nonlinear parameter β, along with the
micro-crack densityφ.

These results strengthen the previous observations, namely that the nonlinear parameter

β may have potential, along with the linear ultrasonic properties cp and α to characterize

damaged materials.

Figure 13.5 depicts the wave velocity, attenuation coefficients, effective nonlinearity, and

CFRP nonlinearity maps obtained for the scanned areas. As expected, the wave velocity

cp is found to decrease around the impacted zone. As observed in the case of the PMMA,

the attenuation coefficientsα1 andα2, and the effective nonlinear parameter βobs enables us

to obtain further information about the damage type (matrix cracking, delaminations, etc.)

and projected location. Again, the intrinsic nonlinear parameter of the material provides
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enhanced information, in the sense that it could be complemented with that of the linear

properties.

The micro-crack density φ is calculated from the equation provided by Rus et al. [320],

and contrasted against experimental values obtained from an X-ray image. On the one hand,

three damage areas (A1, A2, and A3) were selected from the X-ray image and the number

of (micro-)cracks were counted over those areas to determine the density. On the other

hand, the φ-values obtained numerically were averaged over the corresponding areas, as

depicted in Figure 13.6. The micro-cracks densities obtained experimentally for the three

areas are [φ1,φ2,φ3]exp = [0.85, 0.95, 0.78]%, and are of the same order of magnitude as

those obtained numerically ([φ1,φ2,φ3]num = [0.78, 0.99, 0.42]%).
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Figure 13.6: Experimentally obtained and numerically predicted micro-cracks densities.

13.3 Bone damage assessment

The time-domain signals and magnitude spectra of the ultrasonic signals measured with

and without the bone sample in the acoustic path by using the finite-amplitude through-

transmission method are depicted in Figure 13.7. As observed for other materials, the time-

domain signal nonlinear distortions increase with the specimen in the acoustic path (and

more when a damaged area is scanned). Again, the second harmonic peak values measured

on the damaged area are consistently observed to be significantly higher than the ones mea-

sured on the undamaged area.

Figure 13.8 depicts the wave velocity, attenuation coefficients, effective nonlinearity, and

bone nonlinearity maps obtained for the scanned areas. The wave velocity cp remains signif-

icantly constant (the variations are mainly due to the intrinsic inhomogeneous bone proper-

ties). As observed in the aforementioned cases, the attenuation coefficients α1 and α2, and

the effective nonlinear parameter βobs allows to obtain further information about the bone

structure (such as apposition lines, which appear concentrically) and damages. The intrinsic

nonlinear parameter of the material consistently provides enhanced structural information.
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Figure 13.7: Time-domain signals and magnitude spectra of the ultrasonic signals measured
with and without the PMMA sample in the acoustic path.

Table 13.3 summarizes the obtained results, providing a range of values for the undam-

aged and damaged specimens. The interval values indicate the changes from undamaged

to damage state, whereas interval values between squared brackets indicate the variations

within the sample (for the case of bone sample only, since its structure cannot be considered

homogeneous).

Material Wave velocity Attenuation Nonlinearity
cp [m/s] α [dB/cm/MHz] β [−]

Water 1500 0.002 4.6
PMMA 2740-2480 0.8-12 10-1000
CFRP 3500-2000 2-70 390-1600

Cortical bone [3300-4000] [5-8] [100-300]

Table 13.3: Mechanical properties of the considered materials.

Those results can also be compared to literature values when available. The β values

for water and PMMA are in reasonable agreement with measurements previously obtained

by other authors, where they usually amount to around βwater ∈ [3 − 6] [321, 283, 210]

and βpmma ∈ [9 − 15] [322, 283], respectively. The β values for the CFRP plate is hardly

comparable, since it may strongly depend upon the manufacture process, on the properties

of each component, and on the laminate stacking sequence. The linear properties of the

cortical bone sample are in good agreement with that provided by Laugier and Haı̈at [323].

To our knowledge, the intrinsicβ value for the cortical bone sample has never been reported

before. The microstructure of cortical bone is considerably different as that of trabecular

bone, but it is reasonable to expect that the nonlinearity of dense trabecular bone could be

of the same order of magnitude than that of cortical bone, as a first approximation. Indeed,

the β values for the cortical bone sample fall within the range of those reported by some

authors for dense trabecular bone samples [283, 285].
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Figure 13.8: Results obtained for the bone sample: Wave velocity cp, attenuation coefficients
α1 and α2, effective nonlinear parameter βobs, and nonlinear parameter β, along with the
micro-crack densityφ.

13.4 Conclusions

The present study investigates the feasibility of the nonlinear finite-ampli-tude through-

transmission method for cortical bone damage assessment in vitro. A semi-analytical model

has been proposed to extract the nonlinear parameter of first-order β from the measure-

ments. In addition, to understand the relationship between nonlinearity and fracture risk, a

homogenization formulation including the clapping contact mechanism has been developed

in Part I to hypothesize a relationship with the density of microcracks. This parameter has

been successfully related to damage, and appears consistent with other nondestructive dam-

age assessment techniques. The results are validated on materials with increasing structural

complexity. This work suggests that β may have potential, along with the linear ultrasonic

properties cp andα, for bone damage assessment and fracture risk prediction.
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14
Conclusions and future works

This chapter presents the most relevant conclusions of the obtained results, along with a

discussion regarding the exposed contributions. In addition, some future works currently

under development at our laboratory are commented.

Ultrasonic wave modeling

In this thesis, we presented a signal modeling framework for wave propagation in multilay-

ered materials, which is based on concepts drawn from lattice filter theory. The underlying

methodology is based on a physical analysis of the ultrasound-material interactions, and

provides a further understanding of the relationship between the material properties and

the model parameters. First, an analogy between the signal modeling approach and the

Transfer Matrix formalism has been established, highlighting the strength and limitations of

both methods. Then, a theoretical formalism has been proposed, which efficiently extends

the classical recursive framework for Goupillaud-type media to any multilayered structures.

The resulting formalism has demonstrated that a through-transmission setup for ultrasonic

wave propagation in multilayered structures can be modeled as a classical all-pole filter

with sparse coefficients. Ongoing theoretical work includes further exploitation of concepts

drawn from signal theory to study the wave propagation phenomena within multilayered

structure under conditions less restrictive than those used here, such as oblique incidence of

the emitted wave or other layer properties as frequency-dependent attenuation.

In addition, both the digital signal model and the TM formalism were extended to ac-

count for nonlinear constitutive behavior. Concretely, the NTM formalism was successfully

developed and demonstrated its potential for ultrasonic wave propagation in multilayered
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structures. In contrast, the nonlinear digital signal model, in its proposed form lacks of

practical applicability. future research in that vein should be conducted, especially on the

feasibility of ex- pressing the nonlinear frequency response as a discrete-time transfer func-

tion, along with the possibility of representing some missing physical components into the

network diagram. Finding a discrete-time transfer function that approximates the nonlin-

ear frequency response for the frequency range of interest in a suitable way is particularly

challenging, since the resulting filter of first-order might have a huge number of coefficients.

Signal processing and feature extraction

This work shows the capability of a digital signal modeling approach which incorporates

underlying mechanical concepts to identify damage in composite materials, particularly in

a CFRP plate subjected to different impact energies. A set of experimental case studies

has been proposed to evaluate the potential of the developed digital signal model in some

practical NDE applications. In a first experiment, a damage detection evaluation has been

carried out, showing that the digital filter represents an extremely fast and promising tool to

discriminate damaged from undamaged specimens by inverse filtering. Indeed, this inverse

filter is a sparse FIR filter, whose coefficients were directly obtained from the material?s

properties, without requiring any experimental calibration. In a second experiment, the

discrimnative performance of the proposed model has been evaluated by a system based

on cepstral distances that recognizes the specific damage level corresponding to a given test

signal. The damage levels have been identified with an accuracy of 98.37 % with a model

that consists of 15 parameters, that is, half the amount of a full LPC model. It has been

demonstrated that a sparse signal modeling with a reduced number of coefficients provides

better results than other common spectrum estimation techniques. In contrast to standard

or empirical models, the coefficients position and extent of our model are inherently linked

to the material?s properties (i.e. twice the thickness of the plate, stiffness, etc.), and thus to

its health state.

Inverse filtering experiments for real-time monitoring of CFRP plates damaged by im-

pact and fatigue with ultrasonic C-scan methods are currently under development at our

laboratory. Ongoing work includes further use of sparse signal models for ultrasonic NDE

of materials, and particularly the use of a dynamic model with variable coefficients position

and gain to improve the performance of damage recognition systems.

Model-based estimation procedure

The presented monitoring technique achieves for the first time the reconstruction of multi-

ple damages in CFRP plates from a single measurement. The methodology is physics-based

through a computational models of ultrasound-pathology interactions. In contrast to other

studies, the damage is not identified by considering the time-of-flight or the broadband ul-

trasound attenuation, but by reconstructing the complete waveform. Moreover, the damage

multiplicity does not only appear at several locations (layers) but simultaneously in different
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forms (layer degradation and interlaminar debonding). For a better understanding of the

damage mechanisms, further investigations may be conducted by validating our proposal

with other NDE techniques, such as X-ray.

A numerical method to determine the elastic and dynamic energy dissipation proper-

ties during tissue-engineered processes has been developed by combining the solution of

a probabilistic inverse problem with signal processing techniques, applying genetic algo-

rithms to minimize a cost function, and using a semi-analytical model of the interaction

between ultrasonic waves and tissue. The proposed model-class and residue selection and

their underlying class plausibility have enabled ranking of both the models and the suit-

able residue definitions according to their compatibility with the observations. The result-

ing trade-off between model simplicity and fitting to observations has demonstrated that

the viscous damping models, combined with some prior information on the measurements

variance over the reaction process evolution, are feasible to characterize the complex evo-

lution of the process. For a better understanding of ultrasonic tissue monitoring, further in
vitro studies on real tissue combined with histological studies may be conducted.

Nonlinear ultrasound

The finite-amplitude through-transmission method is a relatively straight-forward tech-

nique to measure the second harmonic peak, and thus obtain nonlinear parameters of a

material. The low complexity of the experimental installation could make of this method a

low-cost and valuable technology for in-vivo diagnostic applications. Nonetheless, a prac-

tical extraction of the second harmonic requires efforts in minimizing the nonlinear distor-

tions from electronic devices and in optimizing the reproducibility of the experiment. In-

deed, several factors such as the size of the gap between the specimen and the hydrophone

or the geometrical dispersion of the transducers (inherently related to the focal distance)

may have a drastic influence on the measured β, and should be analyzed carefully. The

proposed semi-analytical model offers an efficient way to extract the intrinsic nonlinear pa-

rameters from the observed signals. However, a sensitivity study should be performed to

assess the influence of independent variables such as specimen density and thickness, on

its performance. Moreover, this simple model should be improved to take into account

higher-order nonlinearities or even nonclassical behavior such as hysteresis. Although the

understanding of the influence of odd harmonics is beyond the scope of the present study,

it is noteworthy that an increase of the third harmonics (and probably higher-order ones) at

high energy levels could be detectable.

Despite those restrictions, it has been demonstrated that (i) the nonlinear parameters

increase in a logarithmic way with respect to increasing damage, (ii) the effective nonlinear

parameter provides information nearly similar to that offered by the attenuation coefficient,

and is thus totally ineffective from a practical point of view, and that (iii) in contrast to

the previous effective property, the nonlinear parameter extracted from the semi-analytical

delivers valuable and complementary information to the linear mechanical properties. This
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last property could turn nonlinear ultrasonics a feasible and sensitive diagnostic fracture

risk assessment tool.
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15
Conclusiones y trabajos futuros

Este capı́tulo presenta las conclusiones más relevantes acerca de los resultados obtenidos

junto con la discusión sobre las contribuciones expuestas. Asimismo se comentarán algunos

trabajos que actualmente están en desarrollo en nuestro laboratorio.

Modelos de propagación de la onda ultrasónica

En esta tesis, presentamos un procedimiento de modelado de la señal para la propagación

de ondas en materiales estratificados basado en conceptos inspirados por la teorı́a de filtros

en celosı́a. La metodologı́a subyacente se basa en un análisis fı́sico de las interacciones de

las señales ultrasónicas con el material, y proporciona una mejor comprensión de las rela-

ciones entre las propiedades del material y los parámetros del modelo. En primer lugar, se

ha establecido una analogı́a entre el planteamiento del modelado de señal y el formalismo

de la Matriz de Transferencia, señalando las ventajas y las limitaciones de ambos métodos.

En segundo lugar, se ha propuesto un formalismo teórico, el cual amplı́a de forma eficiente

el planteamiento clásico recursivo para los materiales del tipo Goupillaud para cualquier

estructura estratificada. El formalismo resultante ha demostrado que un dispositivo de

transmisión para la propagación de ondas ultrasónicas en materiales estratificados puede

ser modelado como un filtro todo-polo clásico con coeficientes sparse. Los trabajos teóricos

futuros incluirán una exploración más avanzada de los conceptos inspirados desde la teorı́a

de la señal para el estudio del fenómeno de la propagación de ondas en estructuras estrat-

ificadas bajo condiciones menos restrictivas que las que han sido usadas en el caso que se

presenta, como por ejemplo incidencias oblicuas de la onda emitida u otras propiedades de

las capas como una atenuación dependiente de la frecuencia.
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Por otra parte, tanto el modelado de señal digital como el formalismo TM han sido am-

pliados para tener en cuenta el comportamiento constitutivo no lineal. Concretamente, el

formalismo NTM ha proporcionado resultados satisfactorios. En cambio, el modelado digi-

tal de señal no lineal, en la forma propuesta carece de aplicabilidad práctica. Las próximas

investigaciones que deberán realizarse en ese sentido consideran la factibilidad de expresar

la respuesta en frecuencia no lineal como una función de transferencia en tiempo discreto,

junto con la posibilidad de representar algunas componentes fı́sicas ausentes en el diagrama

de cuate puertos. Serı́a además un desafı́o encontrar una función de transferencia en tiempo

discreto con una forma adecuada que aproxime la respuesta en frecuencia no lineal para el

rango de frecuencia de interés, ya que el filtro de primer orden resultante puede tener un

enorme número de coeficientes.

Procesado de señal y extracción de caracterı́sticas

Este trabajo muestra la capacidad de un planteamiento de modelado digital de señal que

incorpora conceptos subyacentes de mecánica para identificar el daño en materiales com-

puestos, particularmente en una placa de fibra de carbono sometida a diferentes energı́as

de impactos. Hemos estudiado un conjunto de casos experimentales para evaluar el poten-

cial del modelado digital de señal desarrollado en algunas aplicaciones de evaluación no

destructiva ultrasónica. En un primer experimento, se ha llevado a cabo una evaluación

de detección de daños, que nos muestra que el filtro digital representa una herramienta

extremamente rápida y prometedora para discriminar los especı́menes dañados de los no

dañados por el uso de un filtro inverso. En efecto, este filtro inverso es un filtro sparse FIR,

cuyos coeficientes han sido obtenidos directamente de las propiedades del material sin que

haya sido necesario realizar ningún tipo de calibración experimental. En el segundo experi-

mento, la capacidad para discriminar daños del modelo propuesto ha sido evaluada por un

sistema basado en distancias cepstrales que reconoce el nivel especı́fico de daño correspon-

diente a una señal de test dada. El nivel de daño ha sido identificado con una precisión

de 98.37% con un modelo que consiste en 15 parámetros, lo que significa la mitad de la

cantidad de un modelo LPC completo. Se ha demostrado que un modelo de señal sparse,

con un reducido número de coeficientes, proporciona mejores resultados que otras técnicas

de estimación de espectros comunes. En contraste con los modelos empı́ricos o estándar,

las posiciones y las extensiones de los coeficientes de nuestro modelo están inherentemente

vinculadas con las propiedades del material (por ejemplo el doble del grosor de la placa, la

rigidez, etc.), y por tanto a su estado de salud.

Los experimentos con filtros inversos para monitorizar en tiempo real placas de fibra

de carbón dañadas por impacto y fatiga con métodos de ultrasonidos C-scan están siendo

desarrollados en nuestro laboratorio. Los trabajos en curso tienen previsto un uso más am-

plio del modelo de señal sparse para la evaluación no destructiva ultrasónica de materiales,

y particularmente el uso de un modelo dinámico con coeficientes de posición variable para

tratar de mejorar los sistemas de reconocimiento de daños.
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Procedimiento de estimación basado en modelos

La técnica de monitorización presentada permite lograr por primera vez la reconstrucción de

múltiples daños en placas de fibra de carbono a partir de una sola medida. Esta metodologı́a

está basada en la fı́sica a través de un modelo computacional de las interacciones de los

ultrasonidos con la patologı́a. A diferencia de otros estudios, las patologı́as no se identifican

considerando el tiempo de vuelo o la atenuación ultrasónica de banda ancha, sino que se

identifican reconstruyendo la forma de onda completa. Además, los múltiples daños no

solo aparecen en posiciones distintas del material (capas), sino más bien simultáneamente

de forma distinta (degradación de las capas o despegamiento interlaminar). Para una mejor

comprensión de los mecanismos de daño, las futuras investigaciones deberán orientarse

hacia la validación de nuestra propuesta con otras técnicas no destructivas, como los rayos

X.

Se ha desarrollado un modelo numérico para determinar la elasticidad y las propiedades

dinámicas de disipación de la energı́a durante los procesos evolutivos de cultivos tisulares,

combinando la solución de un problema inverso probabilı́stico con las técnicas de procesado

de señal, aplicando algoritmos genéticos para minimizar la función de coste, y usando un

modelo semi-analı́tico de interacción de las ondas ultrasónicas con el tejido. La selección

de modelo y de residuo propuesta y la plausibilidad de clase subyacente nos ha permi-

tido clasificar las definiciones de modelos y de residuos respecto a su compatibilidad con

las observaciones. En consecuencia, el compromiso entre la simplicidad del modelo y su

adaptación a las observaciones ha demostrado que el modelo de atenuación viscosa, combi-

nado con alguna información a priori sobre la varianza de las medidas a lo largo del proceso

de evolución, son factibles para caracterizar la compleja evolución del proceso. Para una

mejor comprensión de la monitorización ultrasónica del tejido deberán realizarse otros es-

tudios in vitro en tiempo real.

Ultrasonidos no lineales

El método de amplitud finita en transmisión es una técnica relativamente directa para medir

el pico del segundo armónico, y ası́ obtener los parámetros no lineales del material. La baja

complejidad del montaje experimental hace de ese método un candidato óptimo para el de-

sarrollo de una tecnologı́a de bajo coste eficaz para aplicaciones de diagnostico in vivo. No

obstante, a nivel practico, una extracción del segundo armónico requiere un particular es-

fuerzo a la hora de minimizar las distorsiones no lineales del dispositivo electrónico y de

optimizar la reproducibilidad del experimento. De hecho, ciertos factores como el tamaño

del hueco entre el espécimen y el hidrófono o la dispersión geométrica de los transductores

(intrı́nsecamente relacionadas con la distancia focal) pueden tener una influencia drástica

sobre el parámetro no lineal medido, y por tanto tienen que ser analizados detenidamente.

El modelo semi-analı́tico propuesto ofrece una vı́a eficiente para extraer los parámetros no

lineales intrı́nsecos de las señales observadas. Por tanto, deberá realizarse un estudio de

sensibilidad para averiguar la influencia de variables independientes como la densidad
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o el espesor del espécimen sobre el comportamiento del modelo. Además, este modelo

básico deberı́a ser ampliado para tener en cuenta no linealidades de orden superior o com-

portamiento no clásico (histeresis). Aunque la comprensión de la influencia de armónicos

impares no esta contemplado en este estudio, cabe destacar que un incremento del tercer

armónico (y probablemente de los de orden superior) a niveles de energı́a elevados pueda

ser perceptible.

A pesar de esas restricciones, hemos demostrado que (i) los parámetros no lineales cre-

cen con un comportamiento logarı́tmico conforme crece el daño; (ii) el parámetro no lineal

efectivo proporciona información aproximadamente similar a la proporcionada por el coe-

ficiente de atenuación, y por tanto es inútil considerarlo en la práctica; y (iii) al contrario de

la propiedad efectiva mencionada anteriormente, el parámetro no lineal extraı́do mediante

el modelo semi-analı́tico nos proporciona una información valiosa y complementaria a las

propiedades mecánicas lineales. Esa última propiedad nos sugiere que los ultrasonidos no

lineales puedan ser una herramienta de diagnostico viable y sensible para evaluar el riesgo

de fractura.
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A
Derivation of the TM method

This appendix presents a step-by-step derivation of the TM method, by providing the

reader the complete equations for establishing the discontinuity and propagation matrices.

A.1 Discontinuity matrix

The continuity of displacement and stress across an arbitrary interface x = di (i = 1, . . . , M)

is carefully analyzed. The first condition of Equation (6.4) leads to,

u f
i (di, Ω) + ub

i (di, Ω) = u f
i+1(di, Ω) + ub

i+1(di, Ω) (A.1)

whereas the second condition can be written down as,

Ei

[
∂u f

i (x, Ω)

∂x
+

∂ub
i (x, Ω)

∂x

]∣∣∣∣
x=di

= Ei+1

[
∂u f

i+1(x, Ω)

∂x
+

∂ub
i+1(x, Ω)

∂x

]∣∣∣∣
x=di

(A.2)

yielding,

− jEi
Ω

ci

[
u f

i (di, Ω)− ub
i (di, Ω)

]
= − jEi+1

Ω

ci+1

[
u f

i+1(di, Ω)− ub
i+1(di, Ω)

]
(A.3)

By multiplying Equation (A.3) by the factor
jci+1

ΩEi+1
and adding it to Equation (A.1), an ex-

pression for the forward-propagating part of the wave displacement in layer i+ 1 as function
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of the forward- and backward-propagating parts of the wave displacement in layer i can be

obtained as,

u f
i+1(di, Ω) =

1
2

(
1 +

Zi

Zi+1

)
u f

i (di, Ω) +
1
2

(
1− Zi

Zi+1

)
ub

i (di, Ω) (A.4)

where Z j = ρ jc j = E j/c j denotes the acoustic impedance of a layer j. An expression for the

backward-propagating part of the wave displacement in layer i+ 1 can be found accordingly

as,

ub
i+1(di, Ω) =

1
2

(
1− Zi

Zi+1

)
u f

i (di, Ω) +
1
2

(
1 +

Zi

Zi+1

)
ub

i (di, Ω) (A.5)

From Equations (A.4)-(A.5), one can easily recover the discontinuity matrix presented in

Equation (6.6).

A.2 Propagation matrix

The derivation of the propagation matrix is trivial. In linear acoustics, it is well-known

that the forward- and backward propagating parts do not interact with each others. Thus,

considering an harmonic wave propagating in the same homogeneous layer i from position

x = di−1 to position x = di, its transformed displacement at the respective locations can be

expressed as, 
 Aie

− j Ωci
di

Bie
j Ωci

di


 =


 pi 0

0 p−1
i




 Aie

− j Ωci
di−1

Bie
j Ωci

di−1


 (A.6)

where pi = e− j Ωci
(di−di−1). By inserting the layer’s thickness ai = di − di−1, one directly

retrieves the propagation matrix presented in Equation (6.8).
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B
Outline of the signal modeling approach

This appendix describes in details the demonstrations necessary for establishing the signal

modeling approach, and the subsequent digital signal model.

B.1 Distributive property

Equation (7.17) can be proven by deduction. Let us show that Equation (7.17) is correct for

M = 2, and can thus be extrapolated to an arbitrary number of layers M.

M−1

∏
i=0


 G(A)

M−ie
− jωmM−i G(B)

M−ie
jωmM−i

G(C)
M−ie

− jωmM−i G(D)
M−ie

jωmM−i


 =


 G(A)

2 e− jωm2 G(B)
2 e jωm2

G(C)
2 e− jωm2 G(D)

2 e jωm2


 ·


 G(A)

1 e− jωm1 G(B)
1 e jωm1

G(C)
1 e− jωm1 G(D)

1 e jωm1


 =


 G(A)

2 G(A)
1 e− jω(m1+m2) + G(B)

2 G(C)
1 e− jω(m1−m2) G(A)

2 G(B)
1 e jω(m1−m2) + G(B)

2 G(D)
1 e jω(m1+m2)

G(C)
2 G(A)

1 e− jω(m1+m2) + G(D)
2 G(C)

1 e− jω(m1−m2) G(C)
2 G(B)

1 e jω(m1−m2) + G(D)
2 G(D)

1 e jω(m1+m2)


 =


 G(A)

2 G(A)
1 e− jω(m1+m2) G(B)

2 G(D)
1 e jω(m1+m2)

G(C)
2 G(A)

1 e− jω(m1+m2) G(D)
2 G(D)

1 e jω(m1+m2)


+


 G(B)

2 G(C)
1 e− jω(m1−m2) G(A)

2 G(B)
1 e jω(m1−m2)

G(D)
2 G(C)

1 e− jω(m1−m2) G(C)
2 G(B)

1 e jω(m1−m2)


 =


 Ḡ(A)

1 e− jωm̄1 Ḡ(B)
1 e jωm̄1

Ḡ(C)
1 e− jωm̄1 Ḡ(D)

1 e jωm̄1


+


 Ḡ(A)

2 e− jωm̄2 Ḡ(B)
2 e jωm̄2

Ḡ(C)
2 e− jωm̄2 Ḡ(D)

2 e jωm̄2


 =

2M−1

∑
k=1


 Ḡ(A)

k e− jωm̄k Ḡ(B)
k e jωm̄k

Ḡ(C)
k e− jωm̄k Ḡ(D)

k e jωm̄k




(B.1)

where the group delays m̄k, with k ∈ {1, 2}, are obtained as a linear combination of the

group delays mM−i, namely m̄1 = m1 + m2 and m̄2 = m1 −m2. On the other hand, the gains

labeled with an overscore result from multiplicative combinations of the original gains,
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namely:

Ḡ(A)
1 = G(A)

2 G(A)
1 , Ḡ(B)

1 = G(B)
2 G(D)

1 , Ḡ(C)
1 = G(C)

2 G(A)
1 , Ḡ(D)

1 = G(D)
2 G(D)

1

Ḡ(A)
2 = G(B)

2 G(C)
1 , Ḡ(B)

2 = G(A)
2 G(B)

1 , Ḡ(C)
2 = G(D)

2 G(C)
1 , Ḡ(D)

2 = G(C)
2 G(B)

1

(B.2)

B.2 General form

Equation (7.20) can be proven by induction. Thus, assuming that Equation (7.20) is correct

for (M − 1) layers (the hypothesis is correct and trivial for M = 1), by multiplying it by

another transfer matrix for a layer M, the obtained product may retain the same form with

(M− 1) increased to M. Hence,

UM+1(z) =
GαM z−mM

(1 + GrM)


 1 GrM G−2

αM
z2mM

GrM G−2
αM

z2mM



(

M−1

∏
i=1

Gαi z
−mi

(1 + Gri)

)



PM−1(Gα , z)

(
M−1

∏
i=1

G−2
αi

z2mi

)
QM−1(G−1

α , z−1)

QM−1(Gα , z)

(
M−1

∏
i=1

G−2
αi

z2mi

)
PM−1(G−1

α , z−1)




U1(z)

=

(
M

∏
i=1

Gαi z
−mi

(1 + Gri)

)



PM−1(Gα , z) + GrM G−2
αM

z2mM QM−1(Gα , z)

(
M

∏
i=1

G−2
αi

z2mi

)(
GrM PM−1(G−1

α , z−1) + G2
αM

z−2mM QM−1(G−1
α , z−1)

)

GrM PM−1(Gα , z) + G−2
αM

z2mM QM−1(Gα , z)

(
M

∏
i=1

G−2
αi

z2mi

)(
PM−1(G−1

α , z−1) + GrM G2
αM

z−2mM QM−1(G−1
α , z−1)

)




U1(z)

=

(
M

∏
i=1

Gαi z
−mi

(1 + Gri)

)



PM(Gα , z)

(
M

∏
i=1

G−2
αi

z2mi

)
QM(G−1

α , z−1)

QM(Gα , z)

(
M

∏
i=1

G−2
αi

z2mi

)
PM(G−1

α , z−1)




U1(z)

(B.3)

where it can be seen that the scaling factor is of the same form with (M− 1) changed to M.

B.3 Iterative application

The relationship of Equation (7.23) can be obtained by making use of the recursive scheme

described by the polynomial expressions of Equation (7.21),

PM(Gα , z)PM(G−1
α , z−1)−QM(Gα , z)QM(G−1

α , z−1)

=
(

PM−1(Gα , z)PM−1(G−1
α , z−1)−QM−1(Gα , z)QM−1(G−1

α , z−1)
)
(1− G2

rM
)

= . . .

=
(

P1(Gα , z)P1(G−1
α , z−1)−Q1(Gα , z)Q1(G−1

α , z−1)
)
(1− G2

rM
) . . . (1− G2

r2
)

(B.4)

Given the initial conditions of the recursion P1(Gα , z) = P1(G−1
α , z−1) = 1 and Q1(Gα , z) =

Q1(G−1
α , z−1) = Gr1 yields an iterative application,

PM(Gα , z)PM(G−1
α , z−1)−QM(Gα , z)QM(G−1

α , z−1) =
M

∏
i=1

(1− G2
ri
) (B.5)

which, in analogy to the energy conservation principle, says that for each frequencyω, the

energy flowing through the ith layer equals the energy flowing through the i + 1th layer.
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C
Derivation of the NTM method

This appendix presents a step-by-step derivation of the NTM formalism. First, the obtain-

ing of the elements of the first-order discontinuity and propagation matrices is described

(see Equations (8.6) and (8.10)). In a second part, the identities used in Equation (8.17) are

proven.

C.1 First-order discontinuity matrix

The continuity of displacement u(1)(di, Ω) and stressσ (1)(di, Ω) across an arbitrary interface

x = di (i = 1, . . . , M) for the first-order perturbation solution is carefully analyzed. For

sake of notation simplicity, the argument (di, Ω) is omitted along the derivation. The first

condition, u(1)
i = u(1)

i+1 leads to,

u(1), f
i + u(1),b

i = u(1), f
i+1 + u(1),b

i+1 (C.1)

whereas the second condition, σ (1)
i = σ

(1)
i+1, which can also be written down as,

Ei


∂u(1)

i
∂x

+βi

(
∂u(0)

i
∂x

)2


∣∣∣∣∣

x=di

= Ei+1


∂u(1)

i+1

∂x
+βi+1

(
∂u(0)

i+1

∂x

)2

∣∣∣∣∣

x=di

(C.2)

205



yields,

−2 j
Ω

ci
Ei

(
u(1), f

i − u(1),b
i

)
− 1

2
βi

(
Ω

ci

)2

Ei

([
u(0), f

i

]2
+
[
u(0),b

i

]2
− 4u(0), f

i u(0),b
i

)
=

−2 j
Ω

ci+1
Ei+1

(
u(1), f

i+1 − u(1),b
i+1

)
− 1

2
βi+1

(
Ω

ci+1

)2

Ei+1

([
u(0), f

i+1

]2
+
[
u(0),b

i+1

]2
− 4u(0), f

i+1 u(0),b
i+1

)

(C.3)

By combining Equation (C.1) with Equation (C.3), an expression for the forward-

propagating part of the first-order wave displacement in layer i + 1 as function of the

forward- and backward-propagating parts of the first-order wave displacement in layer i
can be found as,

u(1), f
i+1 =

1
2

(
1 +

Zi

Zi+1

)
u(1), f

i +
1
2

(
1− Zi

Zi+1

)
u(1),b

i

− j
4
βi

Ω

ci

Zi

Zi+1

([
u(0), f

i

]2
+
[
u(0),b

i

]2
− 4u(0), f

i u(0),b
i

)

+
j
4
βi+1

Ω

ci+1

([
u(0), f

i+1

]2
+
[
u(0),b

i+1

]2
− 4u(0), f

i+1 u(0),b
i+1

)
(C.4)

Nonetheless, the last term of Equation (C.4) still depends on properties of layer i + 1. A way

to get around it is the use of the linear relations provided by the continuity of displacement

and stress for the zero-order solution (see Equations (A.4)-(A.5)). Hence, an expression for

the square of the forward-propagating part of the zero-order wave displacement in layer

i + 1 can be found as,

[
u(0), f

i+1

]2
=

(
1
2

(
1 +

Zi

Zi+1

))2

︸ ︷︷ ︸
D2

i,11

[
u(0), f

i

]2
+

(
1
2

(
1− Zi

Zi+1

))2

︸ ︷︷ ︸
D2

i,12

[
u(0),b

i

]2

+
1
2

(
1−

(
Zi

Zi+1

)2
)

︸ ︷︷ ︸
2Di,11Di,12

u(0), f
i u(0),b

i

(C.5)

An expression for the square of the backward-propagating part of the zero-order wave dis-

placement in layer i + 1 can be found accordingly as,

[
u(0),b

i+1

]2
=

(
1
2

(
1− Zi

Zi+1

))2

︸ ︷︷ ︸
D2

i,12

[
u(0), f

i

]2
+

(
1
2

(
1 +

Zi

Zi+1

))2

︸ ︷︷ ︸
D2

i,11

[
u(0),b

i

]2

+
1
2

(
1−

(
Zi

Zi+1

)2
)

︸ ︷︷ ︸
2Di,11Di,12

u(0), f
i u(0),b

i

(C.6)
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Following the same scheme enables us to find out an expression for the mixed-propagating

part of the zero-order wave displacement in layer i + 1 as,

u(0), f
i+1 u(0),b

i+1 =
1
4

(
1−

(
Zi

Zi+1

)2
)

︸ ︷︷ ︸
Di,11Di,12

([
u(0), f

i

]2
+
[
u(0),b

i

]2
)
+

1
2

(
1 +

(
Zi

Zi+1

)2
)

︸ ︷︷ ︸
D2

i,11+D2
i,12

u(0), f
i u(0),b

i

(C.7)

Hence, by inserting Equation (C.5)-(C.7) into Equation (C.4), an expression for the forward-

propagating part of the first-order wave displacement in layer i + 1 can be found as,

u(1), f
i+1 =

1
2

(
1 +

Zi

Zi+1

)

︸ ︷︷ ︸
Di,11

u(1), f
i +

1
2

(
1− Zi

Zi+1

)

︸ ︷︷ ︸
Di,12

u(1),b
i

− j
4

(
βi

Ω

ci

Zi

Zi+1
+

1
2
βi+1

Ω

ci+1

(
1− 3

(
Zi

Zi+1

)2
))

︸ ︷︷ ︸
−Di,41(Ω)

([
u(0), f

i

]2
+
[
u(0),b

i

]2
)

+ j

(
βi

Ω

ci

Zi

Zi+1
− 1

4
βi+1

Ω

ci+1

(
1 + 3

(
Zi

Zi+1

)2
))

︸ ︷︷ ︸
Di,43(Ω)

u(0), f
i u(0),b

i

(C.8)

An expression for the backward-propagating part of the first-order wave displacement in

layer i + 1 can be found accordingly as,

u(1),b
i+1 =

1
2

(
1− Zi

Zi+1

)

︸ ︷︷ ︸
Di,12

u(1), f
i +

1
2

(
1 +

Zi

Zi+1

)

︸ ︷︷ ︸
Di,11

u(1),b
i

+
j
4

(
βi

Ω

ci

Zi

Zi+1
+

1
2
βi+1

Ω

ci+1

(
1− 3

(
Zi

Zi+1

)2
))

︸ ︷︷ ︸
−Di,41(Ω)

([
u(0), f

i

]2
+
[
u(0),b

i

]2
)

− j

(
βi

Ω

ci

Zi

Zi+1
− 1

4
βi+1

Ω

ci+1

(
1 + 3

(
Zi

Zi+1

)2
))

︸ ︷︷ ︸
Di,43(Ω)

u(0), f
i u(0),b

i

(C.9)

From those expressions, on can easily retrieve the first-order discontinuity matrix of Equa-

tion (8.6), and the linear and nonlinear frequency-dependent elements detailed in Equations

(8.7)-(8.8).

C.2 First-order propagation matrix

The derivation of the first-order propagation matrix is not as trivial as for the linear case.

Indeed, in nonlinear acoustics, the nonlinear terms (e.g. second harmonics) are generated

by frequency-mixing of the fundamental waves, and forward- and backward propagating
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parts also can interact with each others. Thus, considering an harmonic wave propagating

in the same nonlinear homogeneous layer i from position x = di−1 to position x = di, its

transformed displacement at the respective locations can be expressed as,




(
Aie
− j Ωci

di
)2

(
Bie

j Ωci
di
)2

AiBi
(

Āi +
1
2
βi

(
Ω

ci

)2

di A2
i

)
e−2 j Ωci

di

(
B̄i +

1
2
βi

(
Ω

ci

)2

diB2
i

)
e2 j Ωci

di




=




pi 0 0 0 0

0 p−1
i 0 0 0

0 0 1 0 0

ηi(Ω)pi 0 0 pi 0

0 ηi(Ω)p−1
i 0 0 p−1

i







(
Aie
− j Ωci

di−1
)2

(
Bie

j Ωci
di−1
)2

AiBi
(

Āi +
1
2
βi

(
Ω

ci

)2

di−1 A2
i

)
e−2 j Ωci

di−1

(
B̄i +

1
2
βi

(
Ω

ci

)2

di−1B2
i

)
e2 j Ωci

di−1




(C.10)

where pi = e−2 j Ωci
(di−di−1) and ηi(Ω) = 1

2βi

(
Ω
ci

)2
(di − di−1). By inserting the layer’s thick-

ness ai = di− di−1, one can recover the first-order propagation matrix presented in Equation

(8.10). It can be shown that the first-order propagation matrix provided by Yun et al. [208],

i.e.:

PYun
i (2Ω) =




pi 0 0 0 0

0 p−1
i 0 0 0

0 0 1 0 0

pi 0 0 ηi(Ω)pi 0

0 p−1
i 0 0 ηi(Ω)p−1

i




, (C.11)

cannot deliver the correct relations between the wave displacements at locations di and di−1.
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C.3 First-order transfer matrix

The identities used in Equation (8.17) can be proven by induction. Thus, assuming that

Equation (8.17) is correct for (M − 1) nonlinear layers, by multiplying it by another first-

order transfer matrix for a layer M, the obtained product may retain the same form with

(M − 1) increased to M. As can be observed in Equation (8.11), this hypothesis is correct

and trivial for M = 1.

T (1)(Ω) = T (1)
M (Ω)T (1)

M−1(Ω) =




D2
M,11e−2 j Ω

cM
aM D2

M,12e2 j Ω
cM

aM 2DM,11DM,12 0 0

D2
M,12e−2 j Ω

cM
aM D2

M,11e2 j Ω
cM

aM 2DM,11DM,12 0 0

DM,11DM,12e−2 j Ω
cM

aM DM,11DM,12e2 j Ω
cM

aM D2
M,11 +D2

M,12 0 0

(DM,41(Ω) + ηM(Ω)DM,11) e−2 j Ω
cM

aM (DM,41(Ω) + ηM(Ω)DM,12) e2 j Ω
cM

aM −DM,43(Ω) DM,11e−2 j Ω
cM

aM DM,12e2 j Ω
cM

aM

(−DM,41(Ω) + ηM(Ω)DM,12) e−2 j Ω
cM

aM (−DM,41(Ω) + ηM(Ω)DM,11) e2 j Ω
cM

aM DM,43(Ω) DM,12e−2 j Ω
cM

aM DM,11e2 j Ω
cM

aM




·




T (1)
M−1,11(Ω) T (1)

M−1,12(Ω) 2
√
T (1)

M−1,11(Ω)T (1)
M−1,12(Ω) 0 0

T (1)
M−1,12(−Ω) T (1)

M−1,11(−Ω) 2
√
T (1)

M−1,11(−Ω)T (1)
M−1,12(−Ω) 0 0

√
T (1)

M−1,11(Ω)T (1)
M−1,12(−Ω)

√
T (1)

M,11(−Ω)T (1)
M−1,12(Ω)

√
T (1)

M−1,11(Ω)T (1)
M−1,11(−Ω) +

√
T (1)

M−1,12(Ω)T (1)
M−1,12(−Ω) 0 0

T (1)
M−1,41(Ω) T (1)

M−1,42(Ω) T (1)
M−1,43(Ω)

√
T (1)

M−1,11(2Ω)
√
T (1)

M−1,12(2Ω)

T (1)
M−1,42(−Ω) T (1)

M−1,41(−Ω) T (1)
M−1,43(−Ω)

√
T (1)

M−1,12(−2Ω)
√
T (1)

M−1,11(−2Ω)




=




T (1)
11 (Ω) T (1)

12 (Ω) 2
√
T (1)

11 (Ω)T (1)
12 (Ω) 0 0

T (1)
12 (−Ω) T (1)

11 (−Ω) 2
√
T (1)

11 (−Ω)T (1)
12 (−Ω) 0 0

√
T (1)

11 (Ω)T (1)
12 (−Ω)

√
T (1)

M,11(−Ω)T (1)
12 (Ω)

√
T (1)

11 (Ω)T (1)
11 (−Ω) +

√
T (1)

12 (Ω)T (1)
12 (−Ω) 0 0

T (1)
41 (Ω) T (1)

42 (Ω) T (1)
43 (Ω)

√
T (1)

11 (2Ω)
√
T (1)

12 (2Ω)

T (1)
42 (−Ω) T (1)

41 (−Ω) T (1)
43 (−Ω)

√
T (1)

12 (−2Ω)
√
T (1)

11 (−2Ω)




(C.12)

We will show hereafter that the 19 non-zero elements of the matrix described in Equation

(8.16) can be related to the 5 independent elements that arise in the resulting matrix of Equa-

tion (C.12). The elements of the first row of that matrix can be written down as,

T (1)
11 (Ω) = D2

M,11e−2 j Ω
cM

aMT (1)
M−1,11(Ω) +D2

M,12e2 j Ω
cM

aMT (1)
M−1,12(−Ω)

+ 2DM,11DM,12

√
T (1)

M−1,11(Ω)T (1)
M−1,12(−Ω)

=

(
DM,11e− j Ω

cM
aM

√
T (1)

M−1,11(Ω) +DM,12e j Ω
cM

aM

√
T (1)

M−1,12(−Ω)

)2

,

(C.13)

T (1)
12 (Ω) = D2

M,11e−2 j Ω
cM

aMT (1)
M−1,12(Ω) +D2

M,12e2 j Ω
cM

aMT (1)
M−1,11(−Ω)

+ 2DM,11DM,12

√
T (1)

M−1,11(−Ω)T (1)
M−1,12(Ω)

=

(
DM,11e− j Ω

cM
aM

√
T (1)

M−1,12(Ω) +DM,12e j Ω
cM

aM

√
T (1)

M−1,11(−Ω)

)2

,

(C.14)
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and

T (1)
13 (Ω) = 2D2

M,11e−2 j Ω
cM

a(M)
√
T (1)

M−1,11(Ω)T (1)
M−1,12(Ω)

+ 2D2
M,12e2 j Ω

cM
a(M)

√
T (1)

M−1,11(−Ω)T (1)
M−1,12(−Ω)

+ 2DM,11DM,12

(√
T (1)

M−1,11(Ω)T (1)
M−1,11(−Ω) +

√
T (1)

M−1,12(Ω)T (1)
M−1,12(−Ω)

)

= 2
(
DM,11e− j Ω

cM
aM

√
T (1)

M−1,11(Ω) +DM,12e j Ω
cM

aM

√
T (1)

M−1,12(−Ω)

)

·
(
DM,11e− j Ω

cM
aM

√
T (1)

M−1,12(Ω) +DM,12e j Ω
cM

aM

√
T (1)

M−1,11(−Ω)

)

= 2
√
T (1)

11 (Ω)T (1)
12 (Ω).

(C.15)

As can be observed, the T (1)
13 (Ω)-element of the first-order transfer matrix can be expressed

by means of the elements T (1)
11 (Ω) and T (1)

12 (Ω). Following this reasoning for the second

and third rows enables us to find other elements of that matrix, which also dependent upon

those two elements. Hence,

T (1)
21 (Ω) = D2

M,12e−2 j Ω
cM

aMT (1)
M−1,11(Ω) +D2

M,11e2 j Ω
cM

aMT (1)
M−1,12(−Ω)

+ 2DM,11DM,12

√
T (1)

M−1,11(Ω)T (1)
M−1,12(−Ω)

=

(
DM,12e− j Ω

cM
aM

√
T (1)

M−1,11(Ω) +DM,11e j Ω
cM

aM

√
T (1)

M−1,12(−Ω)

)2

= T (1)
12 (−Ω),

(C.16)

T (1)
22 (Ω) = D2

M,12e−2 j Ω
cM

aMT (1)
M−1,12(Ω) +D2

M,11e2 j Ω
cM

aMT (1)
M−1,11(−Ω)

+ 2DM,11DM,12

√
T (1)

M−1,11(−Ω)T (1)
M−1,12(Ω)

=

(
DM,12e− j Ω

cM
aM

√
T (1)

M−1,12(Ω) +DM,11e j Ω
cM

aM

√
T (1)

M−1,11(−Ω)

)2

= T (1)
11 (−Ω),

(C.17)
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T (1)
23 (Ω) = 2D2

M,12e−2 j Ω
cM

a(M)
√
T (1)

M−1,11(Ω)T (1)
M−1,12(Ω)

+ 2D2
M,11e2 j Ω

cM
a(M)

√
T (1)

M−1,11(−Ω)T (1)
M−1,12(−Ω)

+ 2DM,11DM,12

(√
T (1)

M−1,11(Ω)T (1)
M−1,11(−Ω) +

√
T (1)

M−1,12(Ω)T (1)
M−1,12(−Ω)

)

= 2
(
DM,12e− j Ω

cM
aM

√
T (1)

M−1,11(Ω) +DM,11e j Ω
cM

aM

√
T (1)

M−1,12(−Ω)

)

·
(
DM,12e− j Ω

cM
aM

√
T (1)

M−1,12(Ω) +DM,11e j Ω
cM

aM

√
T (1)

M−1,11(−Ω)

)

= 2
√
T (1)

11 (−Ω)T (1)
12 (−Ω),

(C.18)

T (1)
31 (Ω) = DM,11DM,12e−2 j Ω

cM
aMT (1)

M−1,11(Ω) +DM,11DM,12e2 j Ω
cM

aMT (1)
M−1,12(−Ω)

+
(
D2

M,11 +D2
M,12

)√
T (1)

M−1,11(Ω)T (1)
M−1,12(−Ω)

=

(
DM,11e− j Ω

cM
aM

√
T (1)

M−1,11(Ω) +DM,12e j Ω
cM

aM

√
T (1)

M−1,12(−Ω)

)

·
(
DM,12e− j Ω

cM
aM

√
T (1)

M−1,11(Ω) +DM,11e j Ω
cM

aM

√
T (1)

M−1,12(−Ω)

)

=

√
T (1)

11 (Ω)T (1)
12 (−Ω),

(C.19)

T (1)
32 (Ω) = DM,11DM,12e−2 j Ω

cM
aMT (1)

M−1,12(Ω) +DM,11DM,12e2 j Ω
cM

aMT (1)
M−1,11(−Ω)

+
(
D2

M,11 +D2
M,12

)√
T (1)

M−1,11(−Ω)T (1)
M−1,12(Ω)

=

(
DM,12e− j Ω

cM
aM

√
T (1)

M−1,12(Ω) +DM,11e j Ω
cM

aM

√
T (1)

M−1,11(−Ω)

)

·
(
DM,11e− j Ω

cM
aM

√
T (1)

M−1,12(Ω) +DM,12e j Ω
cM

aM

√
T (1)

M−1,11(−Ω)

)

=

√
T (1)

11 (−Ω)T (1)
12 (Ω),

(C.20)
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and

T (1)
33 (Ω) = 2DM,11DM,12e−2 j Ω

cM
aM

√
T (1)

M−1,11(Ω)T (1)
M−1,12(Ω)

+ 2DM,11DM,12e2 j Ω
cM

aM

√
T (1)

M−1,11(−Ω)T (1)
M−1,12(−Ω)

+
(
D2

M,11 +D2
M,12

)(√
T (1)

M−1,11(Ω)T (1)
M−1,11(−Ω) +

√
T (1)

M−1,12(Ω)T (1)
M−1,12(−Ω)

)

=

(
DM,11e− j Ω

cM
aM

√
T (1)

M−1,11(Ω) +DM,12e j Ω
cM

aM

√
T (1)

M−1,12(−Ω)

)

·
(
DM,12e− j Ω

cM
aM

√
T (1)

M−1,12(Ω) +DM,11e j Ω
cM

aM

√
T (1)

M−1,11(−Ω)

)

+

(
DM,11e− j Ω

cM
aM

√
T (1)

M−1,12(Ω) +DM,12e j Ω
cM

aM

√
T (1)

M−1,11(−Ω)

)

·
(
DM,12e− j Ω

cM
aM

√
T (1)

M−1,11(Ω) +DM,11e j Ω
cM

aM

√
T (1)

M−1,12(−Ω)

)

=
√
T (1)

11 (Ω)T (1)
11 (−Ω) +

√
T (1)

12 (Ω)T (1)
12 (−Ω).

(C.21)

This reasoning can be further applied to the lower-right elements of the fourth and fifth

rows, leading to:

T (1)
44 (Ω) = DM,11e−2 j Ω

cM
aM

√
T (1)

M−1,11(2Ω) +DM,12e2 j Ω
cM

aM

√
T (1)

M−1,12(−2Ω)

=

√
T (1)

11 (2Ω),
(C.22)

T (1)
45 (Ω) = DM,11e−2 j Ω

cM
aM

√
T (1)

M−1,12(2Ω) +DM,12e2 j Ω
cM

aM

√
T (1)

M−1,11(−2Ω)

=

√
T (1)

12 (2Ω),
(C.23)

T (1)
54 (Ω) = DM,12e−2 j Ω

cM
aM

√
T (1)

M−1,11(2Ω) +DM,11e2 j Ω
cM

aM

√
T (1)

M−1,12(−2Ω)

=

√
T (1)

12 (−2Ω),
(C.24)

and

T (1)
55 (Ω) = DM,12e−2 j Ω

cM
aM

√
T (1)

M−1,12(2Ω) +DM,11e2 j Ω
cM

aM

√
T (1)

M−1,11(−2Ω)

=

√
T (1)

11 (−2Ω),
(C.25)

Finally, the remaining six elements of the fourth and fifth rows which explicitly contain the

nonlinear terms can obviously not be directly related to those two elements, and they thus

keep their original denomination. Nevertheless, some relations can be established between
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them. To this end, let us consider the three first elements of the fourth row. Hence,

T (1)
41 (Ω) = (DM,41(Ω) + ηM(Ω)DM,11) e−2 j Ω

cM
aMT (1)

M−1,11(Ω)

+ (DM,41(Ω) + ηM(Ω)DM,12) e2 j Ω
cM

aMT (1)
M−1,12(−Ω)

+ DM,11e−2 j Ω
cM

aMT (1)
M−1,41(Ω) +DM,12e2 j Ω

cM
aMT (1)

M−1,42(−Ω)

− DM,43(Ω)
√
T (1)

M−1,11(Ω)T (1)
M−1,12(−Ω),

(C.26)

T (1)
42 (Ω) = (DM,41(Ω) + ηM(Ω)DM,11) e−2 j Ω

cM
aMT (1)

M−1,12(Ω)

+ (DM,41(Ω) + ηM(Ω)DM,12) e2 j Ω
cM

aMT (1)
M−1,11(−Ω)

+ DM,11e−2 j Ω
cM

aMT (1)
M−1,42(Ω) +DM,12e2 j Ω

cM
aMT (1)

M−1,41(−Ω)

− DM,43(Ω)
√
T (1)

M−1,11(−Ω)T (1)
M−1,12(Ω),

(C.27)

and

T (1)
43 (Ω) = 2 (DM,41(Ω) + ηM(Ω)DM,11) e−2 j Ω

cM
aM

√
T (1)

M−1,11(Ω)T (1)
M−1,12(Ω)

+ 2 (DM,41(Ω) + ηM(Ω)DM,12) e2 j Ω
cM

aM

√
T (1)

M−1,11(−Ω)T (1)
M−1,12(−Ω)

+ DM,11e−2 j Ω
cM

aMT (1)
M−1,43(Ω) +DM,12e2 j Ω

cM
aMT (1)

M−1,43(−Ω)

− DM,43(Ω)

(√
T (1)

M−1,11(Ω)T (1)
M−1,11(−Ω) +

√
T (1)

M−1,12(Ω)T (1)
M−1,12(−Ω)

)
.

(C.28)

By making use of the identities −Di,41(Ω) = Di,41(−Ω), −Di,43(Ω) = Di,43(−Ω), and

ηi(Ω) = ηi(−Ω), ∀i, the three first elements of the fifth row can be written down as follows,

T (1)
51 (Ω) = (−DM,41(Ω) + ηM(Ω)DM,12) e−2 j Ω

cM
aMT (1)

M−1,11(Ω)

+ (−DM,41(Ω) + ηM(Ω)DM,11) e2 j Ω
cM

aMT (1)
M−1,12(−Ω)

+ DM,12e−2 j Ω
cM

aMT (1)
M−1,41(Ω) +DM,11e2 j Ω

cM
aMT (1)

M−1,42(−Ω)

+ DM,43(Ω)
√
T (1)

M−1,11(Ω)T (1)
M−1,12(−Ω)

= T (1)
42 (−Ω),

(C.29)

T (1)
52 (Ω) = (−DM,41(Ω) + ηM(Ω)DM,12) e−2 j Ω

cM
aMT (1)

M−1,12(Ω)

+ (−DM,41(Ω) + ηM(Ω)DM,11) e2 j Ω
cM

aMT (1)
M−1,11(−Ω)

+ DM,12e−2 j Ω
cM

aMT (1)
M−1,42(Ω) +DM,11e2 j Ω

cM
aMT (1)

M−1,41(−Ω)

+ DM,43(Ω)
√
T (1)

M−1,11(−Ω)T (1)
M−1,12(Ω)

= T (1)
41 (−Ω),

(C.30)
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and

T (1)
53 (Ω) = 2 (−DM,41(Ω) + ηM(Ω)DM,12) e−2 j Ω

cM
aM

√
T (1)

M−1,11(Ω)T (1)
M−1,12(Ω)

+ 2 (−DM,41(Ω) + ηM(Ω)DM,11) e2 j Ω
cM

aM

√
T (1)

M−1,11(−Ω)T (1)
M−1,12(−Ω)

+ DM,12e−2 j Ω
cM

aMT (1)
M−1,43(Ω) +DM,11e2 j Ω

cM
aMT (1)

M−1,43(−Ω)

+ DM,43(Ω)

(√
T (1)

M−1,11(Ω)T (1)
M−1,11(−Ω) +

√
T (1)

M−1,12(Ω)T (1)
M−1,12(−Ω)

)
.

= T (1)
43 (−Ω).

(C.31)

From those expressions, we recover all the identities used in Equation (8.17), and show that

the 19 non-zero elements of the first-order transfer matrix T (1)(Ω) can be expressed using

only five elements, namely T (1)
11 (Ω), T (1)

12 (Ω), T (1)
41 (Ω), T (1)

42 (Ω), and T (1)
43 (Ω).

C.4 Relation between the zero and first-order transfer matrices

Let us here show that the system that span the upper left 3 × 3 sub-matrix of T (1)(Ω) in

Equation (8.17) corresponds to a quadratic form of the linear transfer matrix. To this end,

let us first assume that the linear transfer matrix is correct for (M− 1) layers, and thus by

multiplying it by another transfer matrix for a layer M, the obtained product may retain the

same form with (M− 1) increased to M. Then, we will compare the obtained elements to

those derived in Appendix C.3.

T (0)(Ω) = T (0)
M (Ω)T (0)

M−1(Ω) =


 DM,11e− j Ωci

ai DM,12e j Ωci
ai

DM,12e− j Ωci
ai DM,11e j Ωci

ai


 ·


 T (0)

M−1,11(Ω) T (0)
M−1,12(Ω)

T (0)
M−1,12(−Ω) T (0)

M−1,11(−Ω)




=


 T (0)

11 (Ω) T (0)
12 (Ω)

T (0)
12 (−Ω) T (0)

11 (−Ω)




(C.32)

The resulting elements can be written down as,

T (0)
11 (Ω) = DM,11e− j Ω

cM
aMT (0)

M−1,11(Ω) +DM,12e j Ω
cM

aMT (0)
M−1,12(−Ω)

= DM,11e− j Ω
cM

aM

√
T (1)

M−1,11(Ω) +DM,12e j Ω
cM

aM

√
T (1)

M−1,12(−Ω)

=
√
T (1)

11 (Ω),

(C.33)

T (0)
12 (Ω) = DM,11e− j Ω

cM
aMT (0)

M−1,12(Ω) +DM,12e j Ω
cM

aMT (0)
M−1,11(−Ω)

= DM,11e− j Ω
cM

aM

√
T (1)

M−1,12(Ω) +DM,12e j Ω
cM

aM

√
T (1)

M−1,11(−Ω)

=
√
T (1)

12 (Ω),

(C.34)
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T (0)
21 (Ω) = DM,12e− j Ω

cM
aMT (0)

M−1,11(Ω) +DM,11e j Ω
cM

aMT (0)
M−1,12(−Ω)

= DM,12e− j Ω
cM

aM

√
T (1)

M−1,11(Ω) +DM,11e j Ω
cM

aM

√
T (1)

M−1,12(−Ω)

= T (0)
12 (−Ω)

=
√
T (1)

12 (−Ω),

(C.35)

and

T (0)
22 (Ω) = DM,12e− j Ω

cM
aMT (0)

M−1,12(Ω) +DM,11e j Ω
cM

aMT (0)
M−1,11(−Ω)

= DM,12e− j Ω
cM

aM

√
T (1)

M−1,12(Ω) +DM,11e j Ω
cM

aM

√
T (1)

M−1,11(−Ω)

= T (0)
11 (−Ω)

=
√
T (1)

11 (−Ω).

(C.36)

As can be observed, comparing these elements to those derived in Equations (D.2)-(D.6)

enable us to show that Equation (8.21) is a quadratic form of the expression delivered by

Equation (6.14).
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D
Outline of the nonlinear signal modeling

The identities used in Equation (8.37) can be proven by induction. Thus, assuming that

Equation (8.37) is correct for (M− 1) layers, by multiplying it by another frequency response

of first-order for a layer M, the obtained product may retain the same form with (M − 1)

increased to M. As can be observed in Equation (8.31), this hypothesis is correct and trivial

for M = 1 since HNL
i (ω) = HNL

i (−ω).

T(1)(ω) = T(1)
M (ω)T(1)

M−1(ω) =




D2
M,11e−2 jωmM D2

M,12e2 jωmM 2DM,11DM,12 0 0

D2
M,12e−2 jωmM D2

M,11e2 jωmM 2DM,11DM,12 0 0

DM,11DM,12e−2 jωmM DM,11DM,12e2 jωmM D2
M,11 + D2

M,12 0 0

DM,11HNL
M (ω)e−2 jωmM DM,12HNL

M (ω)e2 jωmM 0 DM,11e−2 jωmM DM,12e2 jωmM

DM,12HNL
M (ω)e−2 jωmM DM,11HNL

M (ω)e2 jωmM 0 DM,12e−2 jωmM DM,11e2 jωmM




·




T(1)
M−1,11(ω) T(1)

M−1,12(ω) 2
√

T(1)
M−1,11(ω)T(1)

M−1,12(ω) 0 0

T(1)
M−1,12(−ω) T(1)

M−1,11(−ω) 2
√

T(1)
M−1,11(−ω)T(1)

M−1,12(−ω) 0 0
√

T(1)
M−1,11(ω)T(1)

M−1,12(−ω)
√

T(1)
M,11(−ω)T(1)

M−1,12(ω)
√

T(1)
M−1,11(ω)T(1)

M−1,11(−ω) +
√

T(1)
M−1,12(ω)T(1)

M−1,12(−ω) 0 0

T(1)
M−1,41(ω) T(1)

M−1,42(ω) T(1)
M−1,43(ω)

√
T(1)

M−1,11(2ω)
√

T(1)
M−1,12(2ω)

T(1)
M−1,42(−ω) T(1)

M−1,41(−ω) T(1)
M−1,43(−ω)

√
T(1)

M−1,12(−2ω)
√

T(1)
M−1,11(−2ω)




=




T(1)
11 (ω) T(1)

12 (ω) 2
√

T(1)
11 (ω)T(1)

12 (ω) 0 0

T(1)
12 (−ω) T(1)

11 (−ω) 2
√

T(1)
11 (−ω)T(1)

12 (−ω) 0 0
√

T(1)
11 (ω)T(1)

12 (−ω)
√

T(1)
M,11(−ω)T(1)

12 (ω)
√

T(1)
11 (ω)T(1)

11 (−ω) +
√

T(1)
12 (ω)T(1)

12 (−ω) 0 0

T(1)
41 (ω) T(1)

42 (ω) T(1)
43 (ω)

√
T(1)

11 (2ω)
√

T(1)
12 (2ω)

T(1)
42 (−ω) T(1)

41 (−ω) T(1)
43 (−ω)

√
T(1)

12 (−2ω)
√

T(1)
11 (−2ω)




(D.1)

We will show hereafter that the 19 non-zero elements of the matrix described in Equation

(8.28) can be related to the 5 independent elements that arise in the resulting matrix of Equa-

217



tion (D.1). The elements of the first row of that matrix can be written down as,

T(1)
11 (ω) = D2

M,11e−2 jωmM T(1)
M−1,11(ω) + D2

M,12e2 jωmM T(1)
M−1,12(−ω)

+ 2DM,11DM,12

√
T(1)

M−1,11(ω)T(1)
M−1,12(−ω)

=

(
DM,11e− jωmM

√
T(1)

M−1,11(ω) + DM,12e jωmM

√
T(1)

M−1,12(−ω)

)2

,

(D.2)

T(1)
12 (ω) = D2

M,11e−2 jωmM T(1)
M−1,12(ω) + D2

M,12e2 jωmM T(1)
M−1,11(−ω)

+ 2DM,11DM,12

√
T(1)

M−1,11(−ω)T(1)
M−1,12(ω)

=

(
DM,11e− jωmM

√
T(1)

M−1,12(ω) + DM,12e jωmM

√
T(1)

M−1,11(−ω)

)2

,

(D.3)

and

T(1)
13 (ω) = 2D2

M,11e−2 jωmM

√
T(1)

M−1,11(ω)T(1)
M−1,12(ω)

+ 2D2
M,12e2 jωmM

√
T(1)

M−1,11(−ω)T(1)
M−1,12(−ω)

+ 2DM,11DM,12

(√
T(1)

M−1,11(ω)T(1)
M−1,11(−ω) +

√
T(1)

M−1,12(ω)T(1)
M−1,12(−ω)

)

= 2
(

DM,11e− jωmM

√
T(1)

M−1,11(ω) + DM,12e jωmM

√
T(1)

M−1,12(−ω)

)

·
(

DM,11e− jωmM

√
T(1)

M−1,12(ω) + DM,12e jωmM

√
T(1)

M−1,11(−ω)

)

= 2
√

T(1)
11 (ω)T(1)

12 (ω).
(D.4)

As can be observed, the T(1)
13 (ω)-element of the frequency response of first-order can be ex-

pressed by means of the elements T(1)
11 (ω) and T(1)

12 (ω). Following this reasoning for the

second and third rows enables us to find other elements of that matrix, which also depen-

dent upon those two elements. Hence,

T(1)
21 (ω) = D2

M,12e−2 jωmM T(1)
M−1,11(ω) + D2

M,11e2 jωmM T(1)
M−1,12(−ω)

+ 2DM,11DM,12

√
T(1)

M−1,11(ω)T(1)
M−1,12(−ω)

=

(
DM,12e− jωmM

√
T(1)

M−1,11(ω) + DM,11e jωmM

√
T(1)

M−1,12(−ω)

)2

= T(1)
12 (−ω),

(D.5)
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T(1)
22 (ω) = D2

M,12e−2 jωmM T(1)
M−1,12(ω) + D2

M,11e2 jωmM T(1)
M−1,11(−ω)

+ 2DM,11DM,12

√
T(1)

M−1,11(−ω)T(1)
M−1,12(ω)

=

(
DM,12e− jωmM

√
T(1)

M−1,12(ω) + DM,11e jωmM

√
T(1)

M−1,11(−ω)

)2

= T(1)
11 (−ω),

(D.6)

T(1)
23 (ω) = 2D2

M,12e−2 jωmM

√
T(1)

M−1,11(ω)T(1)
M−1,12(ω)

+ 2D2
M,11e2 jωmM

√
T(1)

M−1,11(−ω)T(1)
M−1,12(−ω)

+ 2DM,11DM,12

(√
T(1)

M−1,11(ω)T(1)
M−1,11(−ω) +

√
T(1)

M−1,12(ω)T(1)
M−1,12(−ω)

)

= 2
(

DM,12e− jωmM

√
T(1)

M−1,11(ω) + DM,11e jωmM

√
T(1)

M−1,12(−ω)

)

·
(

DM,12e− jωmM

√
T(1)

M−1,12(ω) + DM,11e jωmM

√
T(1)

M−1,11(−ω)

)

= 2
√

T(1)
11 (−ω)T(1)

12 (−ω),
(D.7)

T(1)
31 (ω) = DM,11DM,12e−2 jωmM T(1)

M−1,11(ω) + DM,11DM,12e2 jωmM T(1)
M−1,12(−ω)

+
(

D2
M,11 + D2

M,12

)√
T(1)

M−1,11(ω)T(1)
M−1,12(−ω)

=

(
DM,11e− jωmM

√
T(1)

M−1,11(ω) + DM,12e jωmM

√
T(1)

M−1,12(−ω)

)

·
(

DM,12e− jωmM

√
T(1)

M−1,11(ω) + DM,11e jωmM

√
T(1)

M−1,12(−ω)

)

=

√
T(1)

11 (ω)T(1)
12 (−ω),

(D.8)

T(1)
32 (ω) = DM,11DM,12e−2 jωmM T(1)

M−1,12(ω) + DM,11DM,12e2 jωmM T(1)
M−1,11(−ω)

+
(

D2
M,11 + D2

M,12

)√
T(1)

M−1,11(−ω)T(1)
M−1,12(ω)

=

(
DM,12e− jωmM

√
T(1)

M−1,12(ω) + DM,11e jωmM

√
T(1)

M−1,11(−ω)

)

·
(

DM,11e− jωmM

√
T(1)

M−1,12(ω) + DM,12e jωmM

√
T(1)

M−1,11(−ω)

)

=

√
T(1)

11 (−ω)T(1)
12 (ω),

(D.9)
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and

T(1)
33 (ω) = 2DM,11DM,12e−2 jωmM

√
T(1)

M−1,11(ω)T(1)
M−1,12(ω)

+ 2DM,11DM,12e2 jωmM

√
T(1)

M−1,11(−ω)T(1)
M−1,12(−ω)

+
(

D2
M,11 + D2

M,12

)(√
T(1)

M−1,11(ω)T(1)
M−1,11(−ω) +

√
T(1)

M−1,12(ω)T(1)
M−1,12(−ω)

)

=

(
DM,11e− jωmM

√
T(1)

M−1,11(ω) + DM,12e jωmM

√
T(1)

M−1,12(−ω)

)

·
(

DM,12e− jωmM

√
T(1)

M−1,12(ω) + DM,11e jωmM

√
T(1)

M−1,11(−ω)

)

+

(
DM,11e− jωmM

√
T(1)

M−1,12(ω) + DM,12e jωmM

√
T(1)

M−1,11(−ω)

)

·
(

DM,12e− jωmM

√
T(1)

M−1,11(ω) + DM,11e jωmM

√
T(1)

M−1,12(−ω)

)

=
√

T(1)
11 (ω)T(1)

11 (−ω) +
√

T(1)
12 (ω)T(1)

12 (−ω).
(D.10)

This reasoning can be further applied to the lower-right elements of the fourth and fifth

rows, leading to:

T(1)
44 (ω) = DM,11e−2 jωmM

√
T(1)

M−1,11(2ω) + DM,12e2 jωmM

√
T(1)

M−1,12(−2ω)

=

√
T(1)

11 (2ω),
(D.11)

T(1)
45 (ω) = DM,11e−2 jωmM

√
T(1)

M−1,12(2ω) + DM,12e2 jωmM

√
T(1)

M−1,11(−2ω)

=

√
T(1)

12 (2ω),
(D.12)

T(1)
54 (ω) = DM,12e−2 jωmM

√
T(1)

M−1,11(2ω) + DM,11e2 jωmM

√
T(1)

M−1,12(−2ω)

=

√
T(1)

12 (−2ω),
(D.13)

and

T(1)
55 (ω) = DM,12e−2 jωmM

√
T(1)

M−1,12(2ω) + DM,11e2 jωmM

√
T(1)

M−1,11(−2ω)

=

√
T(1)

11 (−2ω),
(D.14)

Finally, the remaining six elements of the fourth and fifth rows which explicitly contain the

nonlinear terms can obviously not be directly related to those two elements, and they thus

keep their original denomination. Nevertheless, some relations can be established between
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them. To this end, let us consider the three first elements of the fourth row. Hence,

T(1)
41 (ω) = DM,11HNL

M (ω)e−2 jωmM T(1)
M−1,11(ω) + DM,12HNL

M (ω)e2 jωmM T(1)
M−1,12(−ω)

+ DM,11e−2 jωmM T(1)
M−1,41(ω) + DM,12e2 jωmM T(1)

M−1,42(−ω),
(D.15)

T(1)
42 (ω) = DM,11HNL

M (ω)e−2 jωmM T(1)
M−1,12(ω) + DM,12HNL

M (ω)e2 jωmM T(1)
M−1,11(−ω)

+ DM,11e−2 jωmM T(1)
M−1,42(ω) + DM,12e2 jωmM T(1)

M−1,41(−ω),
(D.16)

and

T(1)
43 (ω) = 2DM,11HNL

M (ω)e−2 jωmM

√
T(1)

M−1,11(ω)T(1)
M−1,12(ω)

+ 2DM,12HNL
M (ω)e2 jωmM

√
T(1)

M−1,11(−ω)T(1)
M−1,12(−ω)

+ DM,11e−2 jωmM T(1)
M−1,43(ω) + DM,12e2 jωmM T(1)

M−1,43(−ω).

(D.17)

By making use of the identities −Di,41(ω) = Di,41(−ω), −Di,43(ω) = Di,43(−ω), and

HNL
i (ω) = HNL

i (−ω), ∀i, the three first elements of the fifth row can be written down

as follows,

T(1)
51 (ω) = DM,12HNL

M (ω)e−2 jωmM T(1)
M−1,11(ω) + DM,11HNL

M (ω)e2 jωmM T(1)
M−1,12(−ω)

+ DM,12e−2 jωmM T(1)
M−1,41(ω) + DM,11e2 jωmM T(1)

M−1,42(−ω)

= T(1)
42 (−ω),

(D.18)
T(1)

52 (ω) = DM,12HNL
M (ω)e−2 jωmM T(1)

M−1,12(ω) + DM,11HNL
M (ω)e2 jωmM T(1)

M−1,11(−ω)

+ DM,12e−2 jωmM T(1)
M−1,42(ω) + DM,11e2 jωmM T(1)

M−1,41(−ω)

= T(1)
41 (−ω),

(D.19)

and

T(1)
53 (ω) = 2DM,12HNL

M (ω)e−2 jωmM

√
T(1)

M−1,11(ω)T(1)
M−1,12(ω)

+ 2DM,11HNL
M (ω)e2 jωmM

√
T(1)

M−1,11(−ω)T(1)
M−1,12(−ω)

+ DM,12e−2 jωmM T(1)
M−1,43(ω) + DM,11e2 jωmM T(1)

M−1,43(−ω)

= T(1)
43 (−ω).

(D.20)

From those expressions, we recover all the identities used in Equation (8.37), and show that

the 19 non-zero elements of the frequency response of first-order T(1)(ω) can be expressed

using only five elements, namely T(1)
11 (ω), T(1)

12 (ω), T(1)
41 (ω), T(1)

42 (ω), and T(1)
43 (ω).
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The outcomes from this dissertation and other contributions of the PhD fellow are par-

tially reflected in the refereed journals and conference proceedings listed below.

• Refereed journal publications:

◦ N. Bochud and G. Rus, Probabilistic inverse problem to characterize tissue-

equivalent material mechanical properties, IEEE Transactions on Ultrasonics, Ferro-
electrics and Frequency Control (Special Issue: Novel Embedded Systems for Ultrasonic
Imaging and Signal), 59(7):1443–1456, 2012 (Journal ranking: SCI – 1.822; 7/31

(Q1): Acoustics; cited by 1).

◦ A. Fahim, R. Gallego, N. Bochud, and G. Rus, Model-based damage reconstruc-

tion in composites from ultrasound transmission, Composites Part B: Engineering,

45(1):50–62, 2013 (Journal ranking: SCI – 2.143; 7/90 (Q1): Multi. Eng.; cited by

3).

◦ N. Bochud, A. Gomez, G. Rus, and A. Peinado, A sparse digital signal model for

ultrasonic nondestructive evaluation of composite materials, Submitted to IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control (under review), 2014

(Journal ranking: SCI – 1.822; 7/31 (Q1): Acoustics).

◦ L. Peralta, N. Bochud, and G. Rus, Mechanical characterization of cervical tis-

sue by ultrasound, Submitted to the Journal of the Mechanical Behavior of Biomedical
Materials (under review), 2014 (Journal ranking: SCI – 2.368; 25/79 (Q2): Biomed.

Eng.).
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◦ G. Rus, J. Melchor, N. Bochud, L. Peralta, and W.J. Parnell, A micro-mechanical

approach for nonlinear quantitative ultrasound, Submitted to Ultrasonics (under
review), 2014 (Journal ranking: SCI – 2.018; 5/31 (Q1): Acoustics).

• Relevant conference proceedings:

◦ N. Bochud, A. Fahim, A. Gomez, and G. Rus, Impact damage characteriza-

tion in composites using signal processing techniques, Procedia Engineering of the
The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction,

14:169–176, Hong-Kong, January 2011.

◦ N. Bochud, A. Gomez, G. Rus, J. L. Carmona, and A. Peinado, Robust

parametrization for non- destructive evaluation of composites using ultrasonic

signals, IEEE International Conference on Acoustics Speech, and Signal Processing, p.

1789–1792, Praga, May 2011 (cited by 6).

◦ B. Fuentes, J. L. Carmona, N. Bochud, A. Gomez, and A. Peinado, Model-based

cepstral analysis for ultrasonic non-destructive evaluation of composites, IEEE
International Conference on Acoustics Speech, and Signal Processing, p. 1717–1720,

Tokyo, March 2012 (cited by 3).

◦ G. Rus, N. Bochud, J. Melchor, M. Alaminos, and A. Campos, Dispersive model

selection and reconstruction for tissue culture ultrasonic monitoring, International
Congress on Ultrasonics, p. 375–378, Gdansk, September 2012.

◦ N. Bochud, A. Gomez, G. Rus, and A. Peinado, Sparse signal model for ultra-

sonic nondestructive evaluation of CFRP plates, IEEE International Conference on
Acoustics Speech, and Signal Processing, p. 2844–2847, Vancouver, May 2013.
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