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RESUMEN  

 

En esta tesis doctoral, se ha desarrollado un modelo capaz de tratar y 

manipular información, tanto numérica (aunque pueda provenir de medidas 

afectadas de errores), como subjetiva, que normalmente viene expresada en 

términos ambiguos o difusos. Asimismo, el modelo es capaz de imputar valores 

a los datos perdidos. 

 

Este método, se ha aplicado a diversos problemas relacionados con la 

Ingeniería Civil y más específicamente, con el área de la ingeniería de los 

Transportes. 

 

El valor añadido que presenta respecto a los métodos clásicos, donde sólo se 

permite el uso de información numérica, es que permite añadir información 

subjetiva procedente del analista. El uso de esta información, de la que 

usualmente se dispone y que los métodos clásicos desprecian por no ser 

capaces de tratarla, permite abaratar costes o mejorar la precisión en el ajuste 

de datos. 

 

Para verificar su utilidad, se ha aplicado a distintos problemas dentro del ámbito 

de la planificación del transporte. Estos problemas se caracterizan por un gran 

volumen de datos, alta interdependencia entre ellos, numerosas restricciones, 

que junto con los métodos de medidas afectados de errores, producen valores 

observados inconsistentes y, por tanto, tienen que ser preprocesados antes de 

que puedan ser utilizados en los algoritmos de predicción y toma de decisiones, 

monitoreo y evaluación en la planificación del transporte para obtener una base 

de datos consistente.  

 

Concretamente, el modelo se ha aplicado al ajuste de datos de aforo en redes 

de carreteras, y a la detección de las estaciones aforo que están fallando. Los 

trabajos desarrollados durante la elaboración de la tesis tratan también de 

resolver uno de los principales problemas de operación en la planificación de 

transporte público: el ajuste de pasajeros que suben y bajan en una línea de 

transporte público. 
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Las principales aportaciones de esta tesis a través del modelo creado son: 

1) La obtención de un conjunto valores ajustados y consistentes 

preservando la integridad de los valores observados, gracias a la 

posibilidad de incluir la percepción subjetiva del analista. 

2) La detección de las estaciones de aforo que están fallando sin 

necesidad de disponer de información adicional. 

3) La imputación de valores a los datos recogidos en campo, cuya 

información se ha perdido. 

4) El ajuste de viajeros que suben y bajan en una línea de tránsito de 

transporte público, sin necesidad de realizar conteos en todas las 

paradas. 

 

Los beneficios del método propuesto son diversos. En primer lugar, que 

funciona en los casos en que otros métodos no proporcionan ninguna solución, 

porque no disponen de medios para obtener un valor numérico de los datos de 

campo, ya sea el volumen de tráfico, o los pasajeros que se bajan en las 

paradas. En segundo lugar, permite obtener los datos ajustados incluso en los 

casos en los que aún habiéndose realizado los conteos, se ha perdido 

información, evitando así la necesidad de repetir la colecta de los datos de 

campo. 

 

Para resumir, en esta tesis se presenta un potente método, que se puede 

aplicar a diferentes problemas de transporte que tienen que tratar con datos en 

los que subyace la incertidumbre y la ambigüedad, pudiendo diferenciar entre 

datos fiables y datos poco fiables. 

 

Esto último es muy alentador ya que, como se verá en las futuras líneas de 

investigación, se está empezando a aplicar en la predicción de matrices O/D, y 

tiene un alto potencial para poder ser aplicado en muchos otros problemas 

donde existe incertidumbre en el transporte. 
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ABSTRACT 

In this PhD thesis a model is developed to process and handle both 

numerical information, including that derived from error-affected measurements, 

and subjective information, which may be expressed in ambiguous or vague 

terms. The model is also able to impute values for missing data. 

This method has been applied to various problems related to Civil 

Engineering and, more specifically, in the area of Transport Engineering. 

In contrast to classical methods, which only accept numerical data, the 

novelty of this model is that it can include subjective information from the 

analyst. Such information may reduce costs or improve the accuracy of the 

adjustment data. 

To verify its usefulness, the model has been applied to various problems 

in the field of transport planning. These problems are characterized by a large 

volume of highly interdependent data and numerous constraints, which together 

with error-prone measuring methods produce inconsistent observed values. 

Such data therefore need to be pre-processed in a way that will make them 

consistent before they can be used in algorithms for prediction, monitoring and 

decision-making purposes.  

Specifically, the model has been applied to produce a consistent set of 

traffic volume data, which arguably are the most important traffic data in a road 

network, to detect faulty traffic count stations (TCS) and lastly to deal with 

operational problems in public transport planning by adjusting  numbers of 

boarding and alighting passengers on a transit line. 

The main contributions made by this thesis through the model created are: 

1) Obtaining a consistent set of values while preserving the integrity of the 

observed values, which may include their reliability as perceived subjectively by 

the analyst; 

2) Identifying faulty TCS without the need for additional information; 
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3) Imputing values for data collected in the field whose information is lost; 

4) Adjusting the numbers of boarding and alighting passengers on a public 

transport transit line, without requiring counts at all stops. 

Among the numerous benefits of the proposed method, two stand out. 

Firstly, it works in situations where other methods provide no solution, when no 

means are available to obtain a numeric value for field data, whether traffic 

volume or numbers of alighting passengers. Secondly, data can be adjusted in 

those cases where counts can be made but certain data are missing, thereby 

avoiding the need to measure the field data all over again. 

To sum up, a powerful method is presented that can be applied to different 

transport problems involving data in which there is uncertainty or ambiguity, by 

taking into account the analyst’s subjective perception of the reliability of the 

data. 

This is very encouraging because, as shown in the section on future 

research, the model has started to be applied in the prediction of origin-

destination matrices, and has the potential to deal with the uncertainty that 

exists in many other transport problems. 
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1 Chapter 1: INTRODUCTION 
 
 
 

CHAPTER 1 
 

Introduction 
 
 
1.1. Presentation 

Civil engineering is a field that includes numerous other disciplines that 

produce useful facilities for the human beings, including roads, dams, waste 

disposal and others that are used in our daily life. Civil engineering is 

progressing at a fast pace, as are other disciplines. 

Civil engineering is considered as the first discipline of the various 

branches of engineering after military engineering, and includes the designing, 

planning, construction, and maintenance of the infrastructure. The works 

include roads, bridges, buildings, dams, canals, water supply and numerous 

other facilities that affect the life of human beings. Civil engineering is intimately 

associated with the private and public sectors, including the individual 

homeowners and international enterprises. It is one of the oldest engineering 

professions, and ancient engineering achievements due to civil engineering 

include the pyramids of Egypt and road systems developed by the Romans. 

Civil engineering has a significant role in the life of every human being, 

though one may not truly sense its importance in our daily routine. The function 

of civil engineering commences with the start of the day when we take a 

shower, since the water is delivered through a water supply system including a 
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well-designed network of pipes, water treatment plant and other numerous 

associated services. The network of roads on which we drive while proceeding 

to school or work, the huge structural bridges we come across and the tall 

buildings where we work, all have been designed and constructed by civil 

engineers. Even the benefits of electricity we use are available to us through the 

contribution of civil engineers who constructed the towers for the transmission 

lines. In fact, no sphere of life may be identified that does not include the 

contribution of civil engineering. Thus, the importance of civil engineering may 

be determined according to its usefulness in our daily life. 

Civil engineering is a multiple science encompassing numerous sub-

disciplines that are closely linked with each other. Every sub-disciplines utilizes 

technical information obtained from numerous other sciences, and with the 

advancement in all types of technologies, the civil engineering has also 

benefited tremendously.  

Among all these sub-disciplines, this thesis is developed within the field of 

Transportation Engineering. Transportation Engineering covers aspects of the 

highway engineering, traffic engineering, transportation and travelling in 

general.  

The importance of transportation engineering has recently escalated, as 

the daily demands of life in the modern and globalised world is being much and 

at times overly dependent on an efficient and safe transport system. It is now 

accepted that an efficient transport system promotes productivity, whilst a poor 

transport system hampers the economy.  

On the social aspect, transport is regarded as an essential ingredient to 

maintain one's satisfactory life style. This is added by the fact that a gloomy side 

of transport is also a cause of concerns, which are the environmental effects of 

travelling and transport in general. 

With these concerns, transportation engineering has evolved from being a 

pure engineering subject to the point where it has to be closer to the social 

requirement as well as being sensitive to environmental concerns. 
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In general terms, transportation engineering covers the knowledge of 

pavement engineering, alignment design, highway design, construction and 

maintenance for the highway engineering component. The traffic engineering 

discipline covers issues of traffic characteristics, road and junction capacity, 

performance levels, traffic management, and congestion management. Other 

fields include public transportation, safety, environmental issues, travel behavior 

and the intelligent transport system. 

Many people see Transportation Engineering as an essential motivator for 

upholding the sustainable development concept. A new dawn for transportation 

is the Intelligent Transport System (ITS), which is defined as a collection of 

products and systems which utilizes the state of the art technologies in IT, 

communication, electronics and control to help ensure an efficient, safe and 

environmentally friendly transportation system 

1.2. Statement of the problem 

Information on traffic flows between specific origins and destinations in a 

road network is the main kind of information required by planners and engineers 

for effective traffic planning, management and control. Origin-destination (O/D) 

matrices are of vital importance for transport system planning and design, as 

well as for analysis, modelling and simulation. They contain information about 

the spatial and temporal distribution of movements between different traffic 

zones in an area (i.e. each cell represents the number of trips between an origin 

and a destination). O/D matrices are used to represent the current demand for 

transport systems; or, in conjunction with anticipated economic and population 

growth, land-use changes and planning policies, to identify and forecast future 

demand and other alternative scenarios.  

The methods used to estimate O/D matrices are based on the hypothetical 

availability of accurate traffic volume data and reliable preliminary O/D data. 

The input data for most traffic networks, however, are either unavailable or 

contain measurement errors, as in the case of traffic counts and sensor speed 

measurements. In the past, certain methods were applied to adjust the 

observed values so they would comply with flow conservation laws at each 
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network node, aside from other requirements that values need to meet before 

they can be used as input data in traffic planning algorithms. These are the so-

called classical methods.  

Missing data processing is another common issue. When input data are 

available from all sensors, they often contain errors due to sensor operating 

faults. Most efforts have focused on processing missing values and on detecting 

and debugging them. Inconsistencies have been avoided by using redundant or 

related information. Some classical techniques are mean, median, regression 

and hot-deck imputation. New techniques based on Artificial Intelligence and 

neural networks, in particular, are being developed. The aim of this thesis is to 

propose a method that can pre-process field data to make them consistent, 

while as far as possible preserving their integrity, and that can include their 

reliability as perceived subjectively by the analyst. The method is based on 

fuzzy logic and is intended to optimize the solution obtained. The result is a 

reliable solution that comes close to the observed values, thereby resolving 

measurement errors in traffic count stations (TCS). The method is also able to 

detect which TCS is most likely to be faulty. It also allows field data to be 

processed when there are missing values. 

The planning and analysis of transit and public transport operations is 

problematic and costly. Most current ticketing methods can be used to record 

where passengers get on board but not where they alight. Current methods are 

unable to properly reconcile boardings and alightings based on the available 

data unless they do alighting counts, which is a costly process. As an extension 

of the research work developed in this thesis, the fuzzy logic method defined in 

the first part of the thesis is modified and applied to a transit line: counts are 

made at fewer stops and fuzzy information on alightings and/or vehicle loads 

between consecutive stops are used to make the boarding and alighting 

adjustment. Fuzzy information can be obtained from the vehicle driver or an on-

board observer, which makes it less costly than the counting method. The 

proposed method has two main benefits: first, it works in those cases where 

other methods provide no solution because there is no available means to count 

the number of passengers who alight at each stop; and, secondly, it makes it 

possible to adjust data in cases where counts can be made but certain data are 
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missing, thereby avoiding the need to measure the data on the public transport 

line all over again. 

1.3. Objectives and Research Hypotheses 

1.3.1. General Objective 

The purpose of this thesis is to address the possibility of using fuzzy set 

theory in solving complex traffic and transport engineering problems. 

Decisions to be made in traffic planning, transport organization and 

transport management usually need a large volume of input data, which, 

depending on the context of the problem, include travel time, travel costs, 

number of vehicles, number of transport facilities, number of passengers, etc. 

All these data must be sufficiently accurate to help the analyst to understand 

their dependence on each other. In some situations, very accurate input data 

are available and, by using a suitable decision-support model, the designer is 

able to find very satisfactory solutions. 

Unfortunately, sufficiently accurate input data are often not available. The 

input data needed to make decisions are often surrounded by uncertainty.  

This uncertainty is especially significant when traffic volume data are 

involved in the traffic analysis because they generally come from field 

measurements. Traffic counters and speed sensors are normally used to collect 

the data, and a variety of factors, including measuring equipment malfunction, 

unexpected behaviour of a large number of vehicles and human error, will 

generally make field data inconsistent in many ways. 

Field data therefore need to be processed in a way that will make them 

consistent before they can be used in algorithms for prediction, monitoring and 

decision-making purposes. The methods used to estimate O/D matrices are 

based on the hypothetical availability of accurate traffic volume data and reliable 

preliminary O/D data, so pre-processing the data to ensure it is consistent is 

essential in order to provide a reliable dataset for making decisions. 
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The main general objective of this research work is to create a model 

capable of dealing with the uncertainty underlying any transport problem with a 

view to producing an O/D matrix that contains accurate and reliable preliminary 

traffic volume data in the specific case of road networks, or data on alighting 

and boarding passengers on a public transport route.  

1.3.2. Specific Objectives  

This thesis focuses on proposing a new method for pre-processing field-

collected data to achieve consistency and, whilst pursuing this aim, extending 

the model to detect malfunctioning TCS.  

Arrays of different traffic and transport parameters are all clearly 

characterized by uncertainty, subjectivity, imprecision and ambiguity. Thus, in 

the mathematical modelling of traffic and transport processes in which the 

individual parameters are uncertain, ambiguous or subjectively estimated, 

mathematical methods must be used that can deal satisfactorily with that 

uncertainty, ambiguity and subjectivity. Fuzzy set theory is a very convenient 

mathematical tool for treating these problems.  

The existing methods for detecting malfunctioning TCS are reviewed. In 

these methods the data used for correction always belong to actual historical 

datasets which are correlated with the erroneous data either temporally or 

spatially. A problem occurs, however, when no historical data are available, 

either because they were not measured or because they are missing. To solve 

this problem, a method for the automatic detection of malfunctioning TCS in a 

transport system is also presented. 

In the planning of public transport networks, it is crucial to know the real 

O/Ds of passengers, and also the vehicle loads during service operations, in 

order to decide if an additional vehicle is required because the maximum load 

has been exceeded, thereby helping to adapt the service as closely to demand 

as possible. 

Obtaining data to use in the planning and analysis of an urban public 

transport operation is problematic, particularly for urban bus routes. Most urban 
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bus ticketing methods can be used to record passengers getting on board but 

not those getting off, and current methods are unable to properly adjust 

boardings and alightings based on the available data, unless they include 

alighting counts. To solve this problem, this thesis proposes a method whereby 

counts are made at fewer stops and qualitative information on alightings and/or 

vehicle loads between consecutive stops is used to adjust the boarding and 

alighting figures, prior to obtaining the real O/D of passengers and calibrating 

the O/D matrix by using the loads between stops. Qualitative information can be 

obtained from the vehicle driver or an on-board observer, avoiding the need to 

count many stops during the planning period. 

1.3.3. Research hypotheses  

The assumptions on which this research is based are presented below 

and are closely related to the objectives: 

Since numerical information is very expensive and sometimes difficult to 

obtain, is it possible to make use of subjective information to deal with the 

uncertainties in the field data? Indeed it is, but classical methods cannot be 

used to process this kind of information, so a more appropriate mathematical 

tool must be used, such as fuzzy set theory.  

After a review of the fuzzy logic methods that have already been applied to 

transport engineering, a new model based on fuzzy logic is created to  adjust 

the data. However, does this model achieve a better adjustment of field data 

than the classical ones? In fact, the classical methods are not able to deal with 

subjective information so they cannot provide a solution. This is shown in this 

thesis. 

Existing methods for detecting malfunctioning TCS use historical data to 

identify the error, but since such historical data is not always available, the 

proposed model detects faulty TCS on the assumption that no additional 

information is available. 

In public transport planning, counting alighting passengers is expensive 

and the collected information is very limited because such fieldwork is only 
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conducted for a short period of time and only on a sample of the transit lines in 

the city under study. Could subjective information on the loads and alightings 

between consecutive stops be used to adjust the boarding and alighting 

figures? This could be done using fuzzy logic optimization. The model created 

deals with this adjustment problem and allows the analyst to use subjective 

information on loads and alightings to forecast the number of passengers 

alighting at every stop. 

1.3.4. Justification and structure of the thesis 

The first stage of this research was to create the model to be applied to all 

these specific transport problems. Once the model had been created, it was 

applied to three different but related issues. Three papers have been published 

in three journals indexed in the Journal Citation Reports. The above justifies 

that this PhD thesis is presented as a group of published articles. 

Methods to Adjust and Optimize Field data to reach consistency 

Traffic data obtained in the field usually have some errors. For instance, 

traffic volume data on the various links of a network must be consistent and 

satisfy flow conservation, but this rarely occurs. This paper presents a method 

for using fuzzy optimization to adjust observed values so they meet flow 

conservation equations and any consistency requirements. The novelty lies in 

the possibility of obtaining the best combination of adjusted values, thereby 

preserving data integrity as much as possible. The proposed method allows 

analysts to manage field data reliability by assigning different ranges to each 

observed value. The paper is divided into two sections: The first section 

explains the theory through a simple example of a case in which the data is 

equally reliable and a case in which the observed data comes from more or less 

reliable sources, and the second one is an actual application of the method in a 

freeway network in southern Spain where data were available but some data 

were missing. 
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Detection of malfunctioning traffic count stations 

This study presents a method for the automatic detection of malfunctioning 

traffic count stations (TCS) in a transport system. First, double linear 

optimisation is used to detect inadmissible errors in the recordings of a series of 

TCS and next, the TCS that are most likely to be failing are identified. The 

method has been applied to an urban traffic network showing success rates up 

to 93% in identifying the TCS that are failing. 

Adjustment boarding and alighting passengers on a bus transit line using 

qualitative information 

Obtaining data to use in an urban public transport operation planning and 

analysis is problematic, specifically in urban bus transit lines. Most ticketing 

methods can be used to record passengers getting on board but not getting off, 

and current methods are unable to make a proper adjustment of boardings and 

alightings based on the available data unless they do alighting counts. This 

paper presents a method whereby counts are made at fewer stops and 

qualitative information on alightings and/or vehicle loads between consecutive 

stops is used to make the boarding and alighting adjustment as a previous step 

to obtain the real O/D of passengers allowing the O/D matrix calibration by 

using the loads among stops. Qualitative information can be obtained by the 

vehicle's driver or an on board observer, avoiding the necessity of counting 

many stops in planning period. The method is applied to a real transit line in 

Malaga (Spain) and to a set of 50 different transit lines with number of stops 

ranging from 10 to 75. The results show that the proposed method reduces the 

adjustment errors with regard to traditional methods, such as Least Square 

Method, even in the situation where no qualitative information is used. When 

qualitative data is used on alightings and loadings, the reduction of the average 

error is over 50%. 

1.4. Thesis Organization 

This thesis consists in five chapters:  
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Chapter 1  includes an introduction to the thesis, a brief description of the 

general and specific objectives, the research assumptions and the justification 

of the structure of this document as a group of published papers. 

 Chapter 2  presents an overview of the theoretical and methodological 

bases, with reference purpose. This chapter is divided in three subsections, 

where the theoretical bases of the three legs of this thesis are exposed. 

Chapter 3  presents the materials and method, which constitutes the main 

contribution of this doctorate.  

In this chapter the model is explained with an example, to verify its 

goodness. Once it is demonstrated that the new model leads to better 

adjustment than the existing methods and allows dealing with uncertainty by 

using fuzzy information, it will be applied to a road network, to detect 

malfunctioning TCS and to adjust boardings and alighting passengers in a 

transit lines. These applications have been published in three different scientific 

and indexed journals. These articles are shown in Chapter 4 , which is divided 

into three subsections and presents the three published papers.  

Chapter 5  presents the major conclusions of this work and future research 

lines. 

Finally, we include all the references  used in this thesis. 

The final version of the published papers is in the Appendix . 
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CHAPTER 2 
 

Theoretical Preliminaries 
 

The first step in any thesis, after selecting the central theme of the study, 

is to conduct a thorough review of the existing bibliography in order to establish 

the theoretical and methodological bases to support the subsequent phases of 

the research. The approach and development of the methodology proposed 

here were reached after reviewing the main studies on pre-processing field data 

to satisfy the law of flow conservation. 

This chapter is organised in three sections. First section, contains a review 

of existing method to pre-process traffic data, and in the second section, there 

is a brief review of the existing literature for the detection of malfunctioning 

traffic count stations (TCS) in a transport system.  

These two researching issues far from be independent, are closely 

related. It can be stated that generally, pre-processing of a traffic data set 

obtained in the field must include two phases:  

On one side, traffic volume data on the various links of a network must be 

consistent and satisfy flow conservation, but this rarely occurs. This chapter 

presents an overview and a discussion of the existent methods proposed to 
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optimize the pre-processing of this data, in order to obtain a reliable set of traffic 

data. 

But also, it is important to be able to detect a TCS that is not working 

properly so its measured values must be rejected or pre-process separately. 

This is the subject of the second part of the thesis, so this chapter includes a 

description of the existing methods developed for the detection of 

malfunctioning traffic count stations. 

Finally, there is a third section related to passengers’ adjustment in an 

urban public transport system. In particular, the subject is about the problem of 

obtaining data to use in an urban public transport operation planning and 

analysis, particularly in urban bus transit lines. Nevertheless, although the aim 

is different in this third case, the model used is the same by spreading the 

aforementioned to be able to adjust the in and out passengers in a transit line. 

In an urban environment and for bus services, most ticketing methods can 

be used to record passengers getting on board but not getting off, and current 

methods are unable to make a proper adjustment of boardings and alightings 

based on the available data unless they do alighting counts. 

Therefore, this chapter contains a third section to show a literature review 

about obtaining and pre-processing data to use in an urban public transport 

operation planning and analysis.     

2.1. Methods to adjust and optimize field data to reach consistency 

The methods used to estimate Origin–Destination (O/D) matrices are 

based on the hypothetical availability of accurate traffic volume data and reliable 

preliminary O/D data. However, it is very common that the input data for most 

traffic networks are either unavailable or contain measurement errors, 

particularly in the case of traffic counts and sensor speed measurements. In 

fact, some studies (e.g., Zhong et al., 2004) demonstrate that 50% of the 

permanent traffic counts set up on highways contain missing data, making it 

difficult to ignore measurement errors when processing data used to plan, 

design, control and manage traffic (Sharma et al., 1996). So the analysis of a 
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traffic network becomes a big deal because of the existence of errors and data 

with a high level of uncertainty. That is why many authors have developed 

methods for pre-processing data of traffic networks in order to obtain an 

accuracy level of the data, which allows a proper decision-making.  

To illustrate this problem, Figure 1 shows a typical case of non 

consistency in field data, due to multiple factors that will be discussed all along 

this paragraph. Arrows in Figure 1 mean observed traffic volumes that must be 

adjusted to fulfil the requirements of flow conservation. That is to say, in a 

general traffic network, the sum of in-flows volumes in a node must be equal to 

total out-flows volumes of the same node. 

 

 

 

Figure 1. Typical case of in-flow and out-flow volume inconsistency. 

Several well-known methods have been developed in order to solve this 

inconsistency of data. Ideally, any method should meet the following 

requirements (Kikuchi et al., 2000): 

• Ensures the flow consistency at any point (or node) of the network; 

• Preserves the integrity of the observed values as much as possible 

and also incorporates the analyst’s knowledge about the 

differences in accuracy and reliability among the observed values; 

• Is able of incorporating the analyst’s knowledge about the 

relationships among the volumes; 
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• Possesses the logical base for the calculations and a measure that 

indicates the reasonableness of the adjusted values; 

• Handles a large, complicated network with simple computation; 

• Is consistent with the structural properties of the data. 

Existing methods used for pre-process field volume data are divided into 

two groups, except for manual method1, attending on the treatment and 

characterization of the obtained values. 

Group 1 are classic methods and consider that every observed measure 

value is exact but they may be erroneous. So the analytical framework used in 

this group is therefore the same as the one used in the statistical-regression 

analysis. In this case, all the constraints that represent the relationship among 

the volumes are expressed in rigid terms. 

Group 2 assumes that an observed value is not exact but it is very close to 

the real value. So, the adjusted value is located within a range around the 

observed values. The analyst must determine the size of the range according to 

the acceptable deviation and the accuracy of counts. Later, each adjusted value 

is determined inside that range, as close to the observed value as possible, 

subject to the constraints of flow conservation. In this case, the constraints can 

be soft, while approximate information about volume relationships is added to 

the constraints. 

Different methods and its classification are summarized in Figure 2. 

                                                 
1 The manual method tries to adjust values adding or subtracting one number at a time 
to every measured flow value at nodes. The analyst starts in one arbitrary selected 
node and continues with adjacent nodes in a way that, at the end of the process, all 
nodes are balanced in the whole network. This method can be useful for small 
networks where the analyst has sufficient knowledge about local traffic conditions to 
validate the reasonableness of the solution. That is because the adjusted values are 
heavily dependent on the selection of the node from which the computation begins and 
the process and obtained results can be scarcely controllable. 
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A detailed revision of existing methods can be seen in Kikuchi et al., 

(2000).  

Following we will described the Fuzzy Optimization method as it 

constitutes the theoretical base of our research work. 

2.1.1.  Fuzzy-Optimization Method 

In 1965, Lotfi A. Zadeh published "Fuzzy Sets," which lays out the 

mathematics of fuzzy set theory and, by extension, fuzzy logic. Zadeh observes 

that conventional computer logic could not manipulate data that representes 

subjective or vague ideas, so he creates fuzzy logic to allow computers to 

determine the distinctions among data with shades of gray, similar to the 

process of human reasoning.  

 Although, the technology was introduced in the United States (US), US 

and European scientist and researchers largely ignored it for years, perhaps 

because of its unconventional name. They refused to take seriously something 

that sounded so childlike. Some mathematicians argued that fuzzy logic was 

merely probability in disguise. But fuzzy logic was readily accepted in Japan, 

China and other Asian countries. The greatest number of fuzzy researchers 

today is found in China, with over 10,000 scientists. Japan, though considered 

at the leading edge of fuzzy studies, has fewer people engaged in fuzzy 

Group 1 

Group 2 

• Least-squares method:  

• Maximum-likelihood method 

 

• Fuzzy-regression method  

• Fuzzy-optimization method 

• Necessity-interval-regression method 

Manual method 

Figure 2. Existing methods used to resolve inconsistency of volume flow data. 
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research. A decade ago, the Chinese University of Hong Kong surveyed 

consumer products using fuzzy logic, producing a 100-plus-page report listing 

washing machines, camcorders, microwave ovens and dozens of other kinds of 

electrical and electronic products. From the early 70’s, the fuzzy logic theory 

started to be developed, trying to alleviate difficulties in developing and 

analyzing complex systems encountered by conventional mathematical tools, 

by observing that human reasoning can utilize concepts and knowledge that do 

not have well-defined, sharp boundaries. 

When solving real-life traffic and transportation problems we should not 

use only objective knowledge (formulae and equations) or only subjective 

knowledge (linguistic information). We simply cannot and should not ignore the 

existence of linguistic information (i.e., subjective knowledge). Fuzzy logic is an 

extremely suitable tool for combining subjective and objective knowledge. 

Traffic planning, transport organization, and traffic and transportation 

management are processes that are linked to certain decisions that must be 

made. However, uncertainty often surrounds the input data needed to take 

those decisions. Thus, in the mathematical modelling phase of traffic and 

transportation process, whose individual parameters are uncertain, ambiguous 

or subjectively estimated, mathematical methods used should be able to 

satisfactorily deal with uncertainty, ambiguity and subjectivity. 

The main objective of this thesis is to propose a method for pre-processing 

field data in a transportation problem, which carries out data’s adjustment taking 

into account subjective information. For that aim, fuzzy logic is applied whose 

theoretical bases will be exposed all over this chapter. 

This procedure considers the notion that each observed data obs
ix  is an 

approximately obs
ix  as a fuzzy set, that is to say, a fuzzy range around obs

ix , and 

the adjusted value is expected to be into a range around the observed value. 

This idea is proposed originally by Kikuchi (1997), and later is extended and 

improved by Kikuchi and Miljkovic (1999).  
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In this method there is a membership function of the fuzzy set [ℎ�����(�	).] 

that is placed around de observed value, so the adjusted value is located in 

some place within its base. The analyst must define a membership function for 

each observed value that represents how close he expects the adjusted value 

to be found. In other words, the observed value is consider to have the 

maximum value of membership function and the base width is defined as the 

acceptable deviation that can have the adjusted value (see Figure 3). 

 

 

 

 

 

Figure 3. Fuzzy-Optimization Method. 

Accordingly to that, for a particular membership function of a fuzzy set 

around obs
ix , ℎ�����(�	), the adjusted values �� = (�	) can be found applying two 

methods: by maximizing the minimum ℎ�����(�	) for all components i’s, and by 

maximizing the sum of ℎ�����(�	). Mathematically expressed: 

max
x�∈A

mini �hxi
obs(xi)�  (1) 

or 

max
x�∈A

�∑ hxi
obs(xi)	 �  (2) 

Where A is the feasible region, that is, given a set of observed values

{ }obs
ix , i∈I, (where I is a set of indexes) each with a tolerance of αi, we define the 

feasible region as the set A ⊂ nℜ , such that { } Axx i ∈=∀r

 where the following 

conditions are satisfied: 
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1. �	 ≥ 0 

2. �	��� −∝	 �	��� ≤ �	 ≤ �	��� +∝	 �	���  
3. Vector �� verifies flow conservation laws 

For both cases, the problem is formulated as a linear programming 

problem. 

Fuzzy-Optimization method based on the assumption of maximizing the 

minimum value of hi is developed by Kikuchi and Miljkovic (1999). They follow 

the process of fuzzy optimization principle, first time presented by Bellman-

Zadeh (1970) and solve the problem using the fuzzy linear programming 

method suggested by Zimmermann (1996).  

For Fuzzy-Optimization, Kikuchi and Miljkovic (1999) “fuzzify” each 

observed value considering a fuzzy set with a triangular and symmetric 

membership function. The membership function needs not to be triangular but if 

there isn’t any other information this is a very reasonable assumption in order to 

use linear programming formulation because of its straight-line expressions. A 

nonlinear shape can be used for the membership function, but then, a nonlinear 

optimization program is needed to find the solutions that will lead to an increase 

of the computational effort, becoming a problem for larger networks. 

Delgado et al. (1992) stated that it makes no sense to use sophisticated 

shapes for membership functions, taking into account that the linguistic 

assessments are just approximate assessments, given by the experts and 

accepted by the decision makers because obtaining more accurate values is 

impossible or unnecessary. In fact, we consider triangular or trapezoidal 

membership functions good enough to capture vagueness of linguistics 

assessments.  

In this method, another important step is the selection of the size of the 

range within the adjusted value that must be found. This range represents the 

adjusted value’s acceptable deviation from the observed data and the analyst 

has to define it. Anyway, Kikuchi and Miljkovic (1999) prove that the size of the 
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range has not significant effect on the final adjusted values, but it has to be 

large enough to find a feasible set of solutions. 

In particular, this thesis presents an evolution of this Fuzzy-Optimization 

Method, so a literature review of this method is shown below.  

2.1.2. Fuzzy logic applied to transportation engineering. 

The problems in transportation planning and traffic control are frequently 

ambiguous, vague and deficient in definition and data values reliability; 

therefore, decisions to be made after a deep analysis of the subject are often 

characterized by subjectivity. 

A variety of complex traffic and transportation problems have been solved 

using deterministic and stochastic models developed by mathematics based on 

binary logic. But, since the fuzzy set theory recognizes the vague boundary that 

exists in some sets of data, fuzzy set theory techniques are highly suitable to be 

applied to transportation analysis. 

As a consequence, there are broad applications on transportation 

engineering for fuzzy set theory. Since Pappis and Mamdani (1977) first apply 

fuzzy logic to a transport subject, specifically to traffic signal controllers, many 

other authors have applied this theory in a wide number of fields within 

transportation engineering. 

In particular, some transportation subjects where fuzzy logic is widely 

applied are shown below: 

Trip generation : Kalić and Teodorović (1997b) solve this problem for the 

first time applying fuzzy logic techniques, using Wang and Mendel (1992a) 

procedure. The number of trips for the subsets generated in a given area is 

estimated by different methods: fuzzy logic, artificial neural networks and 

multiple linear regressions, resulting that the fuzzy logic approach gives the 

closest estimate. Also, is in this context where the origin-destination estimation 

from link counts is settled, being Xu and Chan (1993a, 1993b) who first use 

fuzzy set theory to analyse the problems arising from the poor quality of link 

count data. Later, Kikuchi and Miljkovic (1999) develop an improved technique 
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using fuzzy linear programming method suggested by Zimmermann (1996) that 

serves as a base for this thesis. 

Trip distribution: Kalić and Teodorović (1996, 1997a) use fuzzy logic to 

estimate the number of air passengers travelling between major industrial cities 

and given regions and, compared to other non-fuzzy methods, it gives the best 

approach to the problem.  

Modal split: Based on the results obtained by Teodorovi ć and Kalić 

(1996), Quadrado and Quadrado (1996) use fuzzy logic to establish the 

accessibility of several transportation modes in the Lisbon Metropolitan Area. 

They consider that all variables used in the “classical” method for calculating 

accessibility are characterized by fuzziness, so they develop a fuzzy rule base 

for each transportation mode. 

Route choice:  Teodorović and Kikuchi (1991) study the binary route 

choice problem using fuzzy inference techniques. Akiyama et al. (1993) also 

develop a model for route choice behaviour based on the fuzzy reasoning 

approach. Also, Lotan and Koutsopoulos (1993a, 1993b) study models for route 

choice behaviour in the presence of information based on ideas from 

approximate reasoning and fuzzy control. This last model has been very 

important for later researches in Intelligent Vehicle Highway Systems (IVHS). 

Akiyama and Tsuboi (1996) study route choice behaviour using multi-stage 

fuzzy reasoning to describe the driver decision-making process on road 

networks. For that task they consider the multi-route choice problem. They also 

include a second stage of estimation with a neural network model to represent 

the number of alternative routes and the values of the utilities of individual 

alternative routes. After their analysis, they obtain better results with the 

combination of fuzzy logic (first stage) and neural network (second stage) than 

using only fuzzy logic for every stage. 

Traffic assignment:  Akiyama et al. (1994) present a study on the 

relationship between traffic information and drivers' behaviour. They start from 

the premise that drivers' perception of time is a triangular fuzzy number and 
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develop Fuzzified Frank-Wolfe algorithm to design the traffic assignment model 

on the network of Hanshin Expressway and urban streets in the Osaka area. 

Transportation investment project selection : Tzeng and Teng (1993) 

show the possibilities of using the fuzzy set theory in this field considering a 

fuzzy multi-objectives problem. Smith (1993) applies it for the evaluation of 

potential suburban railway station locations on one of three possible railway line 

extensions to Brisbane's suburban network and including several criteria as 

population trends or possibility of bus/rail interchange at each possible station 

location. 

Traffic control at intersections : This is the first field in which fuzzy logic 

was applied. Pappis and Mamdani (1977) develop an approximate reasoning 

algorithm to control traffic at intersections. For that goal, they assume that 

vehicles arrive at the intersection with a uniform distribution and suppose that 

the vehicle detectors are placed upstream from the intersection in a way that is 

possible to inform the controller about vehicle arrivals at the intersection within 

the next 11 s. Later, Chang and Shyu (1993) generate a fuzzy expert system to 

determine whether a traffic signal is needed in an intersection.  

Traffic control in a corridor : Nakatsuyama et al. (1983) make a study of 

a fuzzy logic controller in comparison with a standard vehicle-actuated controller 

for different values of traffic flow rates. As result, they obtain considerably 

shorter average delay times using fuzzy logic than using a standard vehicle-

actuated controller. Sasaki and Akiyama (1986, 1987, 1988) show that control 

of an urban expressway depends upon a skilled operator's judgment and 

decisions, so they describe this operator's judgment process using fuzzy logic. 

They design a simple fuzzy reasoning model for on-ramp control that is 

introduced in a model tested on the Osaka-Sakai route of the Hanshin 

expressway with very reasonably well results. Chen et al. (1990) also develop a 

model of a fuzzy controller for freeway ramp metering that is tested on the San 

Francisco-Oakland Bay Bridge. They find that the fuzzy controller is very 

efficient in reducing efficiency losses due to incidents 
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Network control :  Chiu (1992) uses fuzzy logic to develop an adaptive 

traffic signal control for small networks of intersections. For this aim, he adjusts 

independently signal-timing parameters (cycle time, phase split and offset) as 

functions of the local traffic condition and of the signal timing parameters at 

adjacent intersections. He develops a fuzzy rule base for the adjustment of 

every parameter. 

Accident analysis and prevention : Akiyama and Shao (1993) investigate 

the problem of the construction of traffic safety facilities on urban expressways 

by evaluating costs and benefits from reducing the number of accidents. During 

the decision analysis, the cost and effectiveness of the traffic safety facilities to 

be installed are evaluated in monetary terms. But the big problem of the study is 

that safety costs cannot be defined deterministically, and the cost and benefit of 

alternatives cannot be measured without fuzziness. In other words, factors such 

as feeling of safety, driving comfort, etc., must be taken into account when 

evaluating certain alternatives. The authors use incremental cost-benefit 

analysis with fuzzy constraints and dynamic programming to solve this problem. 

This model is tested on the Hanshin Expressway in Japan. Another problem 

very suitable for fuzzy set theory techniques is the incident detection and the 

identification of accident-prone locations, studied by Sayed et al. (1995). In 

addition, Schretter and Hollatz (1996) use fuzzy logic to determine the required 

period of waiting after a traffic accident when nobody is present at the place of 

an accident.  

Level of service (LOS) : Chakroborthy and Kikuchi (1990) apply fuzzy set 

theory to the analysis of highway capacity and LOS. For the development of the 

model, they represent the values of input variables (i.e., ideal capacity, sight 

distance, volume of traffic, and headway between cars) and output variables 

(i.e., adjustment factors, actual capacity, and LOS criteria) by fuzzy numbers. 

The authors prove that, if the LOS categories are defined as fuzzy sets, the 

results are more accurate. Also in this field, Ndoh and Ashford (1994) present a 

model to evaluate airport passenger services using fuzzy set theory techniques, 

and Pattnaik and Ramesh Kumar (1996) develop a methodology to define LOS 

of urban roads taking into account users' perceptions. 
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Vehicle and crew routing, scheduling and dispatching problems : 

Although combinatorial optimization methods or different heuristic algorithms 

with deterministic characteristics usually solve complex vehicle routing 

problems, during last years, several authors have published many works for 

solving these problems with fuzzy set theory. Perincherry and Kikuchi (1990) 

study the transhipment problem as a fuzzy approach. The transhipment 

problem has to choose the optimal allocation of goods and services between 

supply and demand locations taking into account intermediate points where 

goods can be stored to satisfy the demand at a later date. They plan the 

problem assuming fuzziness in the quantity of supplies available and the 

quantities demanded. And consider costs and travel time between the locations 

as precise information. Another important field for fuzzy theory is the daily 

planning of transportation companies (Milosavljević et al., 1996). They receive a 

great number of requests every day from clients wanting to send goods to 

different destinations. Every request is characterized by the type of freight, the 

amount of freight (weight and volume), the loading and unloading sites, the 

preferred time of loading and/or unloading and the transportation distance. So, 

they have to choose type of vehicles, routes, etc., taking into account the total 

number of available vehicles, the number of vehicles temporarily out of order, 

and vehicles undergoing technical examination or preventive maintenance 

work. The authors prove that using fuzzy logic for this decision problem 

provides better results in terms of number of ton-kilometres transported. 

Air transportation : Larkin (1985) make the first application of fuzzy logic 

in the field of air traffic control by developing a model for an autopilot controller 

based on fuzzy logic. Teodorović and Babić (1993), by contrast, apply fuzzy 

logic for air traffic flow management, including factors concerning congestions 

at airports. On the other hand, Teodorović et al. (1994) solve the airline network 

design problem using fuzzy logic and fuzzy mathematical programming. 

River transportation : In relation to the process of transporting bulk freight 

in river traffic, Vukadinović and Teodorović (1994) develop an approximate 

reasoning model to control the process of loading, transporting and unloading 

gravel since a dispatcher managed this procedure under high uncertainty 

conditions.  
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According to this discussion about fuzzy logic applications in 

transportation engineering, it could be concluded that almost every problem 

associated with a degree of uncertainty and/or lack of accuracy may be 

formulated with a fuzzy logic approach obtaining, in most of the cases, good 

results. 

2.2. Detection of malfunctioning traffic count stations 

As mentioned before, transport network models need great amount of data 

to analyse traffic flows in order to make decisions to improve transport in a 

certain area. 

The accuracy of available data will have a decisive influence in the 

analysis’ results and therefore, in the decisions. So, a correct pre-processing of 

data is very important at the beginning of the transport model construction. 

Nowadays, flow data comes from measures carried out on the field using 

TCS’s located at different places all along the transport network. TCS’s are 

integrated in an Intelligent Transportation System (ITS) that is operated by a 

Traffic Management Centre that maintains control and communication links and 

also assumes responsibility for archiving the data and performing any quality 

control measures specified by agency policy.  

These systems are very usual in big cities with complex transport 

infrastructures, but they are not so common in rural areas. There are many 

detector technologies for field data collection. They are very different and are 

used depending on the magnitudes to be measured. Table 1 shows the 

detectors most often used in traffic counts stations (TCS).   

Technology  Image Brief description  

Video Detection 
Technology 

 

 
 

Cameras record images of 
traffic conditions, which 
can be used to extract 

several kind of information 



Technology  

Radar and 
Acoustic Traffic 

Sensor 

Infrared 
Technology 

Laser Detection 

Inductive Loop 
Detector 
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Image Brief description
 

 
 

The device emits radar or 
acoustic signals and the 
reflection of the signal is 

used to collect traffic data. 

 

 
 

Vehicles can be observed 
by means of disturbances 

in the infrared beam.

 

 
 

A laser is installed above 
the railway, emitting a 

beam aimed at a 
photodiode array placed 
on the pavement. The 

beam breaks when 
vehicles pass underneath 

 

 
 

A circular loop is placed on 
the pavement, and 

connected to an 
electronics box. Vehicles 

passing induce a current in 
the loop, allowing detecting 
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Brief description  

The device emits radar or 
acoustic signals and the 
reflection of the signal is 

used to collect traffic data.  

Vehicles can be observed 
by means of disturbances 

in the infrared beam. 

A laser is installed above 
the railway, emitting a 

beam aimed at a 
photodiode array placed 
on the pavement. The 

beam breaks when 
vehicles pass underneath 

the laser. 

A circular loop is placed on 
the pavement, and 

connected to an 
electronics box. Vehicles 

passing induce a current in 
the loop, allowing detecting 

them. 
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Technology  Image Brief description  

Wireless Magnetic 
Technology 

 

 
 

Magnetic equipment is 
installed on the road. 

Vehicles are detected by 
means of perturbations on 

the magnetic field. 

Table 1. Detector technologies for traffic counts in a traffic network.  

Normally, the most common detector used in urban areas are induction 

loops, due to its low costs and power requirements, although new technologies 

(such as video or infrared detection) continue to improve and have been 

successfully implemented. 

Most common parameters to be measured in traffic systems 

implementations are quantities such as traffic volumes, speeds, occupancy, and 

even weight or length of the vehicles. Depending on the needed data, different 

technologies of detectors will be installed.  

When automated devices are used, this data is typically collected in a 

continuous way and at a relatively fine resolution, except for communication or 

technical failures. Other times, when there is not any permanent infrastructure 

in the area, it is necessary to turn to provisional TCS’s installations or even 

traffic counts carried out by qualified persons. As seen at the first part of this 

chapter, it is necessary that every data fulfils the flow conservation laws all 

along the network, and that is why several methods of adjustment and 

optimization are developed to obtain a reliable set of data to analyse the 

transport network. 

Generally, two types of errors can be committed during the acquisition of 

field flow volume data in a road: 

Admissible errors . Errors that are within the measuring device’s 

tolerance and, consequently, they depend on the precision defined for each 

device by the manufacturer. For example, if the manufacturer of the detectors in 

the TCS indicates 3% reliability, it means that if one of the measurements is xobs 
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= 924, the real value �∗ ∈ [924(1 - 0.03), 924(1 + 0.03)]. In practice, the 

admissible range of error is often higher, since margins tend to increase with 

use and over time. 

Inadmissible errors. These are errors that not only give erroneous 

information, but also invalidate the work done. They can be due to detector 

malfunctioning (e.g., failure to record passing vehicles, constant recording of 

non-existent vehicles, always counting an arbitrary number, etc.) or to failure on 

the part of the person who handles the detector (e.g., failure to set the counter 

to zero, erroneous readings, even human error in the installation, reading or 

recording of the data, etc.). 

Accordingly to this, apart from possible TCS’s errors due to several 

reasons inherent to traffic flows (admissible errors), it is possible that an 

undetermined number of data come from loop detectors that are malfunctioning 

and reporting erroneous data to the Traffic Management Centre (inadmissible 

errors).   

Therefore, when an analyst is creating a traffic model to study an specific 

problem in a network, he has to deal with a set of data into which he may find 

several levels of data’s accuracy, that would force him to introduce a pre-

processing of the data previously to the analysis of the traffic network in order to 

determine and improve the accuracy of the data. 

On the first hand, as seen in section 2.1, all along a network it is 

necessary that traffic volume data will be consistent and satisfy flow 

conservation, but this rarely occurs. So, within a set of observed data there are 

“exact data” and “admissible erroneous data” that may need an adjustment by 

means of different methods that have been discussed previously.  

But, on the other hand, it can be found either a group of missing data or 

incorrect with inadmissible errors from non-working detectors whose pre-

processing will consist on assigning them new values obtained by imputation 

data techniques. That is an added problem to the analyst of the transport 

network during the pre-processing of the data, because he will have to deal with 

a set of data with a high level of uncertainty in many cases. 
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A graphical representation of this problem can be found in the following 

figure. 

 

Figure 4. Schema of general pre-processing of observed data in a traffic network. 

In the absence of error-checking procedures, this missing and erroneous 

data might lead to distorted optimization of the data during the processing, so it 

is required to try to identify the wrong data to pre-process them in a different 

way from the rest of the data set.   

Some researchers analyse different ITS’s installed in big cities all along 

the world to try to estimate the magnitude of the problem of missing and 

erroneous data in a traffic network. They find that, due to technical failures of 

TCS’s or general measure error of the devices, it is very common to have an 

amount of missing data.  

Turner et al. (2000) make an analysis of recorded historical data from 

several cities in Unites States and found that there were almost a 25% of 

missing data or under suspicion to be erroneous. Along the same lines, Nguyen 

and Scherer (2003) indicate that in Virginia Department of Transportation at 

least the 25% of the detectors are working offline or have any kind of failure at 

any given time and, moreover, even properly working detectors often have until 

a 5% of missing data, as suggested by Kwon et al. (2004). 
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2.2.1. The problem of missing data: Imputation data. 

The problem of lack of information due to missing field flow data is very 

often in transportation studies, so multiple methods have been developed for 

the estimation of new correct values for these data.  

Most of methods for imputation data involve the estimation of missing or 

suspicious data using statistical procedures that allow accurate imputation 

based on current observations. These statistical methods can be applied in 

different forms that can be summarized in the followings: 

• Using overall series: This technique replaces missing values for the 

statistical mean of observed values in the data set. 

• Using a period within the series in observation is missing: If there 

are missing values that occur in a particular period, they are 

substituted for observed values within that specified period. 

• Using adjacent observations: In this algorithm the analyst specify a 

“sliding window” size and computes the statistical using 

observations before and after the interval of missing values. 

• Interpolation: These algorithms replace missing values by 

interpolating from previously observed values. These techniques 

involve moving averages, exponential smoothing, linear splines, 

cubic splines, etc. 

• Regression Imputation: These models fill in the missing values 

using predicted values using regression of a given variable on other 

variables in the analysis 

• Time Series: It is used most of all for forecasting techniques to 

estimate values for one to several intervals into the future. 

The easiest methods involve linear regression, using close (spatially and 

temporally) observed data to estimate the missing value, according to a past set 

of data.  
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Chen et al. (2003) and Nguyen and Scherer (2003) recommend estimating 

a linear regression model based on neighbouring loop detectors by using 

historical data.  

Al-Deek and Chandra (2004) propose estimating a set of linear regression 

models where every missing data is related to data at a nearby detector, and 

then they take the median of all estimates generated in this way. The 

advantages of linear regression models are their simplicity, ease of 

computation, and ease of interpretation. However, they are not very useful 

when neighbouring data is missing as well or not available. So, Al-Deek and 

Chandra's method is more robust for missing data if there are individual 

neighbouring detectors, but still cannot be used when all neighbouring data is 

missing (i.e., when all detectors in a particular area are affected by a power 

failure). 

Kwon et al. (2004) suggests a combination of linear regression with non-

normal Bayesian imputation. This procedure estimate a linear regression model, 

as described by Al-Deek and Chandra (2004), together with the deviation 

between each past observation and the estimate obtained with the linear 

regression predicted value. Missing data are imputed by performing a linear 

regression and, later, applying a deviation sampled from the past set. 

Other methods remove the requirement of available neighbouring data 

and use data only from the missing detector to perform the imputation. Nguyen 

and Scherer (2003) mention that missing data can be replaced by using 

historical averages, and Gold et al. (2000) suggests replacing missing data of a 

detector in a period of time by the average of observed data of that particular 

detector at nearby time periods. They refer this operation by a “factoring-up” 

approach. 

These approaches can be more reliable, as long as they do not depend on 

neighbouring data that may be not very accurate itself; however, they are less 

able to represent current conditions if they perform differently from historical 

norms. 
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More recently, Zhong and Sharma (2003) introduce improved imputation 

methods by means of incorporating correction factors and data from both before 

and after the failure periods into the traditional models.  They find that most 

imputation models from highway agencies only use historical data and the 

information available from detectors after the failure period is usually neglected. 

So, imputation techniques may provide more accurate estimates incorporating 

more data information. 

Also, some new techniques based on Artificial Intelligence and on neural 

networks, in particular, are being developed (Silva-Ramírez, 2007; Tussel, 

2002). Other methods based on weighted least squares regression also exist, 

such as the methods submitted by Kwon et al. (2008). Certain authors 

(Kaczmarek, 2005; Marzano et al., 2008; Rudy et al., 2008) propose methods 

based on the characteristics of erroneous traffic data in urban networks, 

supplemented with the latest data imputation models (Lee et al., 1998; Geng 

and Wu, 2008).  

2.2.2. Detecting erroneous data 

The problem of missing data is very common and easy to detect, but also 

it is necessary to take into account that there may be data that can be incorrect 

(due to detectors malfunctioning or other causes) and therefore, they must be 

subject to imputation as well. To identify this erroneous data within a set of data 

from a network is very difficult and it has been considered by many researchers. 

The most common process to identify these data is the comparison with 

historical data, or even including in the analysis fundamental physical 

relationships. 

Although it is not possible to evaluate every single value of data as either 

correct or incorrect, observation of general patterns and internal consistency 

can be used to mark data that are highly unlikely or physically impossible 

Zadeh (1996) develop the Continuous Set theory that is based on the 

construction of a set of decision rules, by phrasing the decision in natural 
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language, that later would be included in a decision table showing actions to be 

taken for each combination of states.  

The state of each data depends on a preliminary classification into several 

levels of reliability (e.g., Probably correct, Maybe correct, Probably incorrect and 

Absolutely incorrect), and this classification is made according to three inputs or 

consistency criterion listed below:  

Fundamental consistency observation . Data should be consistent with 

basic notions of traffic flow theory and should be physically possible. So, in a 

first revision of the flow in the network two questions have to be formulated: Is it 

consistent with basic traffic laws? Are the volume and density measurements 

reasonable? 

Network consistency . Data should be related to nearby measurements in 

space and time. So, the measured data must be compared to upstream and 

downstream flows to ensure its accuracy in an acceptable range. 

Historical consistency . If historical observations at the same location are 

available, they can provide insight to the plausibility of current observed data. 

Practice tells us that the values measured on a road are almost always given for 

an interval. Values outside of the interval may be plausible, but they indicate 

outliers, an anomaly that should alert the control service. The historical values 

constitute a basis for determining the boundaries of the interval in which 

normally consistent values must be found. 

Many authors mathematically treat the Continuous Set theory, as Von 

Altrock (1995). Later, Payne et al. (1976) use fundamental physical 

relationships in their analysis to mark data with physically impossible values for 

volume, speed, and density. They identify five kinds of detector errors and 

suggested several methods to detect them from 20-second and 5-minute 

volume and occupancy measurements. These methods determine minimum 

and maximum flow, density, and speed, and according to that, they declare a 

sample to be wrong if they fail any of the tests. 
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Turner et al. (2000) and Chen et al. (2003) look at combinations of data 

that are impossible, in order to identify this erroneous data, such as zero 

volume and positive occupancy.  

As a matter of fact, Chen et al. (2003) present algorithms to detect bad 

loop detectors from their outputs, and make a missing data imputation from 

neighbouring good loops. They find that there is much more information in how 

detectors behave over time, because empirical observations show that good 

detectors behave very differently over time from bad detectors. So their 

algorithm makes diagnoses based on the sequence of measurements from 

each detector over a whole day.  

More sophisticated methods are developed by other authors, such as 

defining an acceptable set of volume/density values (Nihan et al., 1990), data 

storage rates (Nihan et al., 2002), or statistical entropy (Al-Deek and Chandra, 

2004). 

On the other hand, Coifman (1999) and Vanajakshi and Rilett (2004) mark 

suspicious data taking into account observations from nearby detectors. 

2.3. Adjustment boarding and alighting passengers on a bus transit line 

using qualitative information 

So far, this study has dealt with problems involving vehicle counts in traffic 

networks, but in this third section of the thesis, the main subject is slightly 

different. It is also related to the O/D matrix obtainment, but this time, the object 

of the study deals with passengers’ counts in urban public transport. 

When planning public transport networks, it is crucial to know the real O/D 

of passengers. Surveys about the O/D of travelers are mandatory to obtain this 

information at every transport system. Once the O/D matrix is obtained (based 

on the survey), it has to be calibrated with collected data. For that aim, in the 

case of bus services, the number of passengers between the bus stops (bus 

loads) is key information. To get this information, the transport planner needs to 

know the actual in and out movements of passengers at each stop along the 

line. Besides, bus loads are also crucial in the service operation activities, such 
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as when deciding if an additional vehicle is required because the maximum load 

has been overtaken at peak time, helping to adapt the service to the demand as 

much as possible.  

Regarding to urban transit buses, collecting data on passenger boardings 

has progressed with the new electronic ticketing systems, like the smart card as 

a payment option, as can be seen in the literature review made by Pelletier et 

al. (2011). Smart cards are very similar to credit cards and they are used 

instead of traditional systems such as paper tickets or magnetic stripe cards. 

Each smart card is identified by a unique serial number and can be registered to 

a named person, or they can be anonymous. These smart cards are able to 

retain information such as the amount of credit left needed for payment on 

every load station. 

So, the big potential of the generalized use of these smart cards is the 

possibility of recording lots of data about passengers’ behaviour that, 

eventually, may serve to achieve a better design of public transport networks 

and vehicles planning optimization (Bagchi and White, 2005). 

So, through smart card systems, transport service providers may have 

access to: 

• Larger volumes of personal travel data 

• Have the possibility to link those data to the individual card and/or 

traveller 

• Have access to continuous trip data during longer periods of time 

than it is possible to obtain using existing transport data sources 

• Identify the kind of most frequent customers 

Smart cards improve the quality of data (Dempsey, 2008) and the ticket 

validation systems provide information on the number of boardings. Therefore, 

this information is quite accurate and the only errors are due to potential device 

failures. 
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However, the systems cannot be used to obtain data on the number of 

alightings, so passenger detection systems and surveys on board, or at the 

stops, are needed for that purpose. Several surveyors may be needed if there 

are several exits (e.g., in articulated buses) and high passenger volumes. Such 

data collection is much more costly and subject to more errors than boarding 

counts. So, improved techniques for collecting data on transit operation are 

essential to improvements in transit operating efficiency. Two-time mode cards 

are adopted in certain exceptional cases (Qing et al., 2009) (i.e., Beijing 

Municipal Government Public Traffic) to record where passengers board and 

alight. Card scanners are placed at the entrance and at the exit, but the 

systems are not used on most transport services at a global level, and the fact 

that passenger tickets need to be scanned twice means double investment. 

In the case of smart cards, there is a wide research by several authors 

trying to estimate the alighting point in order to obtain de O/D matrix. Normally 

they assume that the next transaction occurs after alighting, because the 

system of smart cards has boarding validation only. 

Barry et al. (2002) develop a method to estimate the alighting station for 

the New York subway system based on two assumptions:  

• After a trip, users will return to the destination of the previous trip 

station.  

• At the end of a day, users will return to the station where they 

boarded for the first trip of that same day.  

Later, Zhao et al. (2007) propose a method to forecast the alighting point 

for rail boarding transactions in the Chicago CTA system, focusing on rail 

boardings followed by a bus boarding transaction. They consider rail stations 

inside a 400 m radius of distance as the alighting station depending on next 

boarding bus stop. To apply this method, they make the same assumptions as 

Barry et al. (2002) but also contemplate that the maximum walking distance is 

400 m, or 5 min. Trépanier et al. (2007) develop an object-oriented method to 

estimate the alighting bus stop in the bus system of Gatineau STO. They also 

use assumptions from Barry et al. (2002) and use the distance to the next 
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boarding as the principal criteria to determinate the alighting bus stop but add 

the possibility of considering the next day, even using weekly travel patterns to 

complete missing information. Zhao et al. (2007) achieve a 71% success rate in 

estimating alighting stations for rail boardings, while Trépanier et al. (2007) 

obtain a 66% success for the bus-only Gatineau system. 

Munizaga et al. (2010) propose a method to estimate the alighting station 

in a multimodal public transport system, where boarding transactions are 

observed in a complex network in which users travel using the Metro and buses 

and sometimes validate their trip in a bus station instead of doing so directly on 

a bus. The assumptions they make are: 

• Each card corresponds to a user. 

• The nearest station to the next boarding bus stop within a 400 m 

radius or 5 min walking distance is the alighting station. 

• In case of the last transaction of the day, as in previous works, is 

assumed that its destination is close to the point where the first trip 

of the day began, finishing the daily trip cycle for that particular 

user. 

• If there is only one trip per card, no inference is possible with single 

day information. 

The basic idea is to follow the trip chain of a card and identify the alighting 

position (bus or Metro station) by looking at the position and time of the next 

boarding. 

Munizaga et al. (2010) apply their method to two 1-week datasets 

obtained for different time periods. From the data available, they obtain detailed 

information about the time and position of boarding public transportation and 

estimate time and position of alighting for over 80% of the boarding 

transactions. 

On the other hand, new emerging technologies are being developed, such 

as images recognition, weight sensors or counting sensors but, so far, the pilot 
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project experiences have failed because they still present too many errors (i.e., 

open field, shadows, partial vision, etc.) and it seems to give erroneous 

information, which at the end must be used as fuzzy data, that no traditional 

method is able to work with. 
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CHAPTER 3 

Materials and Method 

In view of the theoretical bases detailed above, this section introduces the 

model created to deal with uncertainty and solve transport problems. 

In order to facilitate the explanation of the proposed methodology, a 

simple example (Figure 5) is presented to demonstrate the method, followed by 

the data to be used and the inputs required. 

 

 

 

 

 

Consider the situation shown in Figure 5, in which traffic volumes are 

observed at the various links, as marked. Theoretically, the total ‘incoming 

volumes’ should be equal to the total ‘outgoing volumes’ at any node in the 

network so that the law of conservation of flow is satisfied. In real life, this is not 

usually the case (as in Figure 5), particularly when the network is large. It is 

known that a large proportion of traffic measurement devices in the field always 

have some error. Consistency in volume counts in different links is critical to 

Figure 5. Simple network  
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ensuring the integrity of the results of any Intelligent Transport System (ITS)-

related algorithm. The following subsection therefore introduces the different 

sources of data that may be found in any transport problem. 

3.1. Data 

Different kinds of information are available: 

Fixed numbers: quantitative information in which it is assumed that there 

are no errors and therefore the values are deemed to be exact fixed integers. In 

a context of scarce information, the few data with no errors (only in the case of 

potential failures in the devices) will be considered fixed data. As a 

consequence of the ticketing systems on a transit line, the boardings will also 

be considered fixed numbers. The same criterion is followed when no 

passengers board the vehicle. 

Crisp numbers: quantitative numerical data with errors, such as loop 

detector data or field data, which will have different membership functions 

depending on their reliability. They are considered to approximate their values, 

and are allowed to change within a range defined by the parameter ∝	. For 

instance, if a TCS installed on a network counts 50 vehicles, the true number of 

vehicles may be 47 or 52, etc. 

Fuzzy information: qualitative information (from an analyst’s viewpoint). 

We may want to codify subjective measurements, such as congested traffic in a 

lane; or low, medium, almost full or almost at the limit of road capacity, 

depending on how the specific problem is defined and whether a maximum, ���� is established. For instance, for a vehicle capacity of 50 passengers, 

‘medium’ could correspond to a load ranging from 21 to 29, with a central or 

most plausible value of 25. 

Missing information (when no information is available): in this case, since 

no information is available, or it was detected as erroneous, and it will not be 

used as input data, any solution may achieve the same membership grade. This 

means that every solution is possible. This value will be imputed in light of 

network consistency and data redundancy. 
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The first step is to define membership functions to represent the available 

information. Figure 6 shows the shape of the membership function with the 

central value �	 !" and a range#�	 !" − $	 ∙ �	 !", �	 !" + $	 ∙ �	 !"', where $	 is a 

constant higher than 0. The adjusted value �	 will be found within the range 

defined by the base of the membership function. 

A membership function is convenient for representing the idea that the 

adjusted value should be an integer ≥0 and ‘close’ to the observed value. 

Hence, the acceptability of the adjusted value gradually diminishes as it 

deviates from the observed value. Figure 6 shows the membership function for 

each kind of information. 

 

a) Fixed Number b) Crisp Number 
 

c) Fuzzy Information d) Missing Value 
  

 

 

In the case of a fixed number (Figure 6 (a)), we assume that the observed 

value has no error so it is the same as the adjusted value. 
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Figure 6. Membership functions for (a) fixed number, (b) crisp number, (c) fuzzy 
information and (d) missing value  
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Based on the literature on full fuzzy linear programming using symmetric 

triangular fuzzy numbers (Lotfi et al., 2009), we assume triangular-shaped 

membership functions for cases (b) and (c) in Figure 6. This representation is 

computationally convenient (a linear program can be used). Given an observed 

value (�	 !") and its tolerance ($	) (usually expressed as a percentage of the 

observed value), Eq. 3 defines the membership function. Notice that if additional 

information about the character of the observed value is available, the shape of 

the membership function could be modified (e.g., its triangular shape or the 

length of the base) but the solution would not change: 

 ℎ	(�	) = /0� 10, 1 − 3��4��56738�∙�� 9   ∀;; �	 ∈ �	 !" − $	 ∙ �	 !", �	 !" + $	 ∙ �	 !"           (3) 

where xi is the adjusted value for the i-th variable.  

The selection of the constant αi depends on the judgement of the analyst 

with respect to the adjusted value’s acceptable deviation from the observed 

value. It is shown that this value allows the analyst to enter the reliability of each 

datum (i.e. more reliable data will have a lower value of αi). If only one value of 

αi is used for all data, then the defined range has little effect on the final 

adjusted values, assuming that it is broad enough for a feasible set of solutions 

to be found. 

Finally, in case (d), where there is no observed value either because it is 

missing or has an inadmissible error, a membership function is assumed in 

which all adjusted values are possible and they are all given the same 

membership grade h=1. 

3.2. Relationships among data 

Regardless of the type of information, all data are closely related and are 

underlain by a high degree of dependence. These relationships are expressed 

as constraints: 
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Equality constraints : Constraints related to the conservation of flow at 

each control point. They are defined by reviewing the flow pattern at each node 

in Figure 5 as follows: 

x1+x2=x3 
x3-x4=x5 

 x5+x6=x7    (4) 
x8+x9=x7 

Inequalities : Constraints related to the membership functions: 

hi(xi)≥h  for  i=1,2,…,k Where h, xi≥0                          (5) 

which means there are 2k+k constraints (where k is the number of control 

points). 

In some situations, as in the case of a transit line, there might exist a limit 

to xi, such as the maximum load of the vehicle, ����, which will result in a new 

inequality condition �	 ≤ ����. 

3.3. Optimization criteria 

Given a set of observed values, there is an infinite number of 

combinations of consistent values, �� = (�	), each of which satisfies the 

aforementioned relationships among the data. The set of these combinations 

constitutes the feasible region A. For a given combination ��, the membership 

grade of each component (�	) in the corresponding fuzzy set is calculated. Two 

methods of optimization have been used in the past (Kikuchi and Miljkovic, 

1999):  

a. by Maximizing the Minimum (MM) ℎ	(�	) for all i: 

maxx�∈A mini �hxi
obs(xi)�  (6) 

b. by Maximizing the Sum (MS) of ℎ	(�	) , 

max
x�∈A

�∑ hxi
obs(xi)	 �  (7) 

In case (a) (the MM method) the lowest membership grade for the 

combination is recorded. By comparing the lowest membership grades among 
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all the combinations of traffic volumes, the one that has the highest value is 

chosen as the best combination of a set of adjusted values. 

The problem with the objective function used in this method is that there 

may be several imputations for the adjusted data that produce the same value 

for ℎ = /0�?/;@(ℎ	)A (Silva-Ramírez, 2007). Therefore, they would be the 

same from the objective function point of view, whereas, in fact, some are better 

than others. The combination (0.9, 0.9, 0.9, 0.9), for instance, would have the 

same value as (0.9, 1, 1, 1), whereas the latter is better than the former. 

In the MS method (case (b)), for a given combination the membership 

grade of each adjusted value in the corresponding fuzzy set is calculated. The 

sum of the membership grades among all the combinations of traffic volumes is 

recorded, and the one that has the highest sum of membership grades is 

chosen as the best combination of a set of adjusted values. 

This method often leads to some values having hi=0, despite the fact that 

almost all the rest are 1, which is of no interest. It has been shown that whereas 

several of the observed values have h=1, other values have lower h and even 

h=0, as can be seen for the third adjusted value in Table 2. This situation is not 

desirable either, since it allows a set of values with some h=0 to be considered, 

providing the sum is the maximum. 

xi Observed Value 
max-min(h ) max  ΣΣΣΣhi 

Adjusted value hi Adjusted value hi 

x1 1,170 1,195 0.7863 1,285 0.0171 

x2 750 772 0.7067 750 1.0000 

x3 1,850 1,967 0.3676 2,035 0.0000 

x4 700 656 0.3714 635 0.0714 

x5 1,400 1 311 0.3643 1,400 1.0000 

x6 800 797 0.9625 800 1.0000 

x7 2,200 2,108 0.5818 2,200 1.0000 

x8 1,450 1,358 0.3655 1,400 0.6552 

x9 800 750 0.3750 800 1.0000 

 min hi 0.3643 0.0000 

 sum hi 4.8811 5.7437 

Table 2. Results of MM and MS in the simple example of Figure 5 
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To solve the aforementioned problems, and with the aim of obtaining the 

best adjustment data by optimizing all the observed data, a new fuzzy 

optimization method, Bilevel Optimization (BO), is proposed herein. The method 

consists of maximizing min ℎ	(�	) for all i at the first level and, after this has 

been done, applying a second level of optimization by maximizing (∑ (ℎ	(�	))	 ), 
considering only those combinations that have max(minℎ	(�	)).  

Thus, the combination with the highest sum is selected from among all 

the combinations that could maximize the lowest membership grade. The value 

with the lowest membership grade is taken into consideration, and also all the 

other observed data.  

This method is a two-step or bilevel optimization method: 

Step 1. Obtain the set of all the combinations �� that give the same 

maximum minimum value h or, in other words, the set that satisfies the following 

expression (Eq. 6): maxx�∈A mini �hxi
obs(xi)�. This set is named A1. 

Step 2. Obtain the combination �� ∈ CD, that satisfies Eq. 7, /0���∈EF �∑ ℎ�����(�	)	 � .  
Table 3 shows the results of this new model, compared with those of the 

MM and MS methods. 

xi 
Observed 

Value 
max-min(h) max ΣΣΣΣhi BO 

Adjusted value hi Adjusted value hi Adjusted value hi 

x1 1,170 1,195 0.7863 1,285 0.0171 1,217 0.5983 

x2 750 772 0.7067 750 1.0000 750 1.0000 

x3 1,850 1,967 0.3676 2,035 0.0000 1,967 0.3676 

x4 700 656 0.3714 635 0.0714 656 0.3714 

x5 1,400 1,311 0.3643 1,400 1.0000 1,311 0.3643 

x6 800 797 0.9625 800 1.0000 847 0.4125 

x7 2,200 2,108 0.5818 2,200 1.0000 2,158 0.8091 

x8 1,450 1,358 0.3655 1,400 0.6552 1,358 0.3655 

x9 800 750 0.3750 800 1.0000 800 1.0000 

 min  hi 0.3643 0.0000 0.3643 

 sum  hi 4.8811 5.7437 5.2887 

Table 3. Comparison of results of existing fuzzy optimization methods and BO 
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Table 3 shows that the BO method obtains the maximum minimum 

membership grade while optimizing the rest of the adjusted values.  

The following are the mathematical steps involved in addressing the 

optimization problem: 

1. Use fuzzy numbers to represent observed values. 

2. Formulate the objective and constraints. 

3. Solve as a mixed linear integer-programming problem. 

3.4. Results 

Certain indicators should be borne in mind when the results are analysed: 

• The first indicator is the lowest value of h, which indicates the 

membership grade of the worst-adjusted value (the degree of compatibility 

between the adjusted value and the observed value). If the value of h is close to 

zero, then the adjusted value is close to the right or left end of the base of the 

membership function; if the value of h is close to one, then the adjusted value is 

close to the observed value. Therefore, the solution in which the lowest value of 

h is maximum is chosen as the best solution in terms of this parameter.  

• The second indicator is the sum of hi. The best solution is where the sum 

of hi is maximum, because the adjusted values are closer to the observed 

values and data integrity is better preserved. 

In the examples, networks were studied in which the true values were 

known, so a third indicator should be taken into account in those examples: the 

average difference between the true consistent values and the adjusted values, 

which measures the goodness of fit of the adjustment. These results are shown 

in the following chapters. �	GH�I → �	��� 

  �	�KL 

When the true values are available, the adjusted values may be 

compared with them in order to obtain the goodness of fit of the method. 
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3.5. Applications  

Once the model had been generated and testing had shown that it gave a 

better adjustment than the existing methods and that it could deal with 

uncertainty and use fuzzy (subjective) information, it was applied to three 

different transport problems selected from all the possible applications of the 

model.  

First, the model was applied to a road network where loop detectors 

collect data that do not satisfy the law of conservation of flow. The data were 

adjusted so as to satisfy this condition and to keep as much integrity as 

possible. The main conclusions of this application are presented in the first 

paper published, as described in section 4.2. 

Second, the method was applied to detect malfunctioning TCS when no 

historical data were available. The main conclusions are given in the second 

published paper (see section 4.3). 

The model was also applied to a third transport problem: adjusting 

boarding and alighting passengers on a public transport route. The major 

conclusions are given in the third paper published, as described in section 4.4. 

Many other applications are sketched out in the final section of this thesis 

(Future research). 
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4.1. Introduction 

The study of any transport system requires enormous quantities of data 

and an understanding of their dependence on each other. Arguably, for road 

traffic, the volume is one of the most important traffic datum of them all. Field 

data is generally inconsistent, and therefore they need to be processed in a way 

that will make them consistent before they can be used in algorithms for 

prediction, monitoring and decision-making purposes. The methods used to 

estimate Origin-Destination (O/D) matrices are based on the hypothetical 

availability of precise traffic volume data and reliable preliminary O/D data. The 

input data for most traffic networks, however, are either unavailable or contain 

measurement errors, as in the case of traffic counts and sensor speed 

measurements. In the past, certain methods were applied to adjust the 

observed values so they would comply with flow conservation laws at each 

network node, aside from other requirements that values need to meet before 

they can be used as input data in traffic planning algorithms. They are the so-

called classic methods. A number of important publications on fuzzy logic have 

been submitted over the past twenty years, although most of them are based on 

the fields of deduction and control in situations of complex behavior.  
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Lost data processing is another frequent issue. When available input data 

exist, they often contain errors due to the sensors´ operating faults. Most efforts 

have focused on processing ‘Missing values’, and on detecting and debugging 

them. Inconsistencies have been avoided by using redundant or related 

information. Some classical techniques are: imputation by mean, median, 

regression or hot-deck. Recently, some new techniques based on Artificial 

Intelligence and, in particular, on neural networks are being developed.  

The aim of this thesis is to propose a new method whereby field data 

could be pre-processed to make them consistent while preserving their integrity 

as much as possible, and which would include their reliability as perceived 

subjectively by the analyst.  The method is based on fuzzy logic and is intended 

to optimize the solution obtained. The result would be a reliable solution that 

comes close to the observed values, thereby resolving measurement errors in 

Traffic Counts Stations (TCS) and the method is also able to detect which is the 

most likely TCS to be failing. The method also allows field data to be processed 

when there are lost values. The results of the aforementioned applications are 

shown in the first two papers published by the PhD candidate and they are 

shown in section 4.2, 4.3 and 4.4. 

Regarding to transit and public transport, the operation planning and 

analysis is a concern. Most current ticketing methods can be used to record 

where passengers get on board but not where they alight. Current methods are 

unable to make a proper adjustment of boardings and alightings based on the 

available data unless they do alighting counts, which is very costly. As a spread 

of the research work developed in this PhD, the proposed fuzzy logic method 

has been slightly modified and applied to a transit line whereby counts are 

made at fewer stops and fuzzy information on alightings and/or vehicle loads 

between consecutive stops are used to make the boarding and alighting 

adjustment. Fuzzy information can be obtained by the vehicle's driver or an on 

board observer, which makes it less costly than the counting method. The 

proposed method presents many benefits: firstly, it works on those cases where 

other methods provide no solution, when there are not available means to 

obtain a value on the passengers who alight at the stops and; on second hand, 

it enables data adjustments in the cases where counts can be made, but certain 
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data is missing, thereby preventing the need to make a complete measurement 

of the public transport line all over again. The results of this application are 

shown in the third published paper (see section 4.4). 

4.2. Bilevel fuzzy optimization to pre-process traffic data to satisfy the 

law of flow conservation 

De Oña, J., Gomez, P. and Merida-Casermeiro, E. (2011). Bilevel fuzzy 

optimization to pre-process traffic data to satisfy the law of flow conservation. 

Transportation Research Part C, 19 (1), pp. 29-39. http://dx.doi:10.1016/ j.trc. 

2010.02.005 

For 2011, the journal TRANSPORTATION RESEARCH PART C-

EMERGING TECHNOLOGIES had an Impact Factor of 1.957 and is within 

Quartile Q1 in the Category Transportation Science & Technology. 

Category Name Total Journals in 
Category 

Journal Rank in 
Category 

Quartile in 
Category 

Transportation Science & 
Technology 28 5 Q1  

The preliminary results of this work were presented at the IV Road 

Andalusian Meeting in Jaen, held in October 23-26th 2007; at the 87th Annual 

Meeting of Transportation Research Board in Washington D.C., held in January 

13-17th 2008; and at the VIII Transport Engineering Conference (CIT2008) 

which took place in A Coruña in July 2-4th 2008. 
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Abstract 

Traffic data obtained in the field usually have some errors. For instance, 

traffic volume data on the various links of a network must be consistent and 

satisfy flow conservation, but this rarely occurs. This paper presents a method 

for using fuzzy optimization to adjust observed values so they meet flow 

conservation equations and any consistency requirements. The novelty lies in 

the possibility of obtaining the best combination of adjusted values, thereby 

preserving data integrity as much as possible. The proposed method allows 

analysts to manage field data reliability by assigning different ranges to each 

observed value. The paper is divided into two sections: The first section 

explains the theory through a simple example of a case in which the data is 

equally reliable and a case in which the observed data comes from more or less 

reliable sources, and the second one is an actual application of the method in a 

freeway network in southern Spain where data were available but some data 

were missing. 

Keywords : traffic counts, fuzzy logic, transport planning, optimization, 

data consistency, subjective analyst knowledge 

4.2.1. Introduction 

The study of any transport system requires enormous quantities of data 

and an understanding of their dependence on each other. Arguably, volume is 

the most important traffic datum of them all. Field data is generally inconsistent, 

and therefore they need to be processed in a way that will make them 

consistent before they can be used in algorithms for prediction, monitoring and 

decision-making purposes. The methods used to estimate Origin-Destination 

(O/D) matrices are based on the hypothetical availability of precise traffic 

volume data and reliable preliminary O/D data. The input data for most traffic 

networks, however, are either unavailable or contain measurement errors, as in 

the case of traffic counts and sensor speed measurements. In fact, some 

studies (Zhong et al., 2004) demonstrate that 50% of the Permanent Traffic 

Counts (PTCs) set up on highways contain lost data, making it difficult to ignore 

measurement errors when processing data used to plan, design, control and 
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manage traffic (Sharma et al., 1996). The existence of errors makes data 

obtained in the field difficult to manage and to analyze. 

In the past, certain methods were applied to adjust the observed values so 

they would comply with flow conservation laws at each network node, aside 

from other requirements that values need to meet before they can be used as 

input data in traffic planning algorithms. The methods used were manual value 

adjustment, least square adjustment and the maximum likelihood method 

(Kikuchi et al., 2000). Recently, new methods of value adjustment based on 

fuzzy logic have been developed to preserve data integrity as much as possible. 

The methods are: fuzzy regression, fuzzy optimization and necessity-interval-

regression method (Kikuchi et al., 2000). A number of important publications on 

fuzzy logic have been submitted over the past twenty years, although most of 

them are based on the fields of deduction and control in situations of complex 

behaviour. Papis and Mamdani (1977) were the first to apply fuzzy logic to 

transport; specifically, to traffic signal controllers.  

Lost data processing is another frequent issue. When available input data 

exist at all, they often contain errors due to the sensors´ operating faults (Kwon 

et al., 2008). From a formal viewpoint, the problem of debugging input data in 

order to avoid inconsistency and of assigning values to missing data has 

generally been analyzed by an area of Statistics (Data Editing and Imputation). 

Most efforts have focused on processing ‘Missing values’, and on detecting and 

debugging. Inconsistencies have been avoided by using redundant or related 

information. Some classical techniques are: imputation by mean, median, 

regression or hot-deck (Chambers, 2001; Laaksonen, 1999). Recently, some 

new techniques based on Artificial Intelligence and on neural networks, in 

particular, are being developed (Silva-Ramírez, 2007; Tussel, 2002). Certain 

authors (Kaczmarek, 2005; Marzano et al., 2008; Rudy et al., 2008) have 

submitted methods based on the characteristics of erroneous traffic data in 

urban networks, supplemented with the latest data imputation models (Lee et 

al., 1998; Geng and Wu, 2008). Other methods based on weighted least 

squares regression also exist, such as the methods submitted by Kwon et al. 

(2008). 
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The aim of this article is to submit a method whereby field data could be 

pre-processed to make them consistent while preserving their integrity as much 

as possible, and which would include their reliability as perceived subjectively 

by the analyst. The method is based on fuzzy logic and is intended to optimize 

the solution obtained. The result would be a reliable solution that comes close 

to the observed values, thereby resolving measurement errors in traffic counts. 

The method also allows field data to be processed when there are lost values. 

4.2.2. Description of the problem 

A simple freeway network is used to explain the method. Consider the 

situation shown in Figure 7, in which real consistent data are available (Table 4, 

column 2).  

 

Figure 7. Example of situation in which consistent data are available and are randomized 
to get traffic counts not consistent to explain the theory 

The data are used to simulate a scenario with non consistent data: traffic 

counts from the database are randomized within ±25% of their values at all 

intersections to simulate a case in which data is not consistent (Table 4, column 

3). Next, the randomly obtained data in the database are considered to be field 

data; i.e., the observed values (OV). 



Chapter 4: ARTICLES 

55 

(1) (2) (3)   (4)     (5)     (6)     (7)     (8)     (9)   

  
RV OV 

MM  α=α=α=α=
0.40.40.40.4    

MM  α∗α∗α∗α∗    MS  α=α=α=α=
0.40.40.40.4    

MS  α∗α∗α∗α∗    BO  α=α=α=α=
0.40.40.40.4    

BO  α∗α∗α∗α∗    

  AV hi ∆∆∆∆    AV hi ∆∆∆∆    AV hi ∆∆∆∆    AV hi ∆∆∆∆    AV hi ∆∆∆∆    AV hi ∆∆∆∆    

w1 135 113 128 0.68 7 126 0.63 9 113 1.00 22 113 1.00 22 128 0.68 7 126 0.63 9 

w2 30 37 39 0.87 9 40 0.91 10 37 1.00 7 37 1.00 7 37 1.00 7 37 1.00 7 

w3 43 42 42 1.00 1 44 0.92 1 42 1.00 1 42 1.00 1 42 1.00 1 42 1.00 1 

w4 104 96 95 0.97 9 97 0.97 7 96 1.00 8 96 1.00 8 95 0.97 9 97 0.97 7 

w5 148 134 152 0.67 4 150 0.61 2 134 1.00 14 134 1.00 14 152 0.67 4 150 0.61 2 

w6 19 18 21 0.59 2 20 0.82 1 18 1.00 1 18 1.00 1 18 1.00 1 18 1.00 1 

w7 28 27 30 0.73 2 30 0.64 2 27 1.00 1 27 1.00 1 30 0.73 2 30 0.64 2 

w8 35 37 40 0.80 5 40 0.91 5 37 1.00 2 37 1.00 2 37 1.00 2 37 1.00 2 

w9 22 18 21 0.59 1 20 0.82 2 18 1.00 4 18 1.00 4 18 1.00 4 18 1.00 4 

w10 102 78 77 0.97 25 79 0.96 23 78 1.00 24 78 1.00 24 77 0.97 25 79 0.96 23 

w11 175 171 172 0.99 3 169 0.96 6 171 1.00 4 171 1.00 4 172 0.99 3 170 0.98 5 

w12 3 4 4 1.00 1 4 1.00 1 4 1.00 1 4 1.00 1 4 1.00 1 4 1.00 1 

x1 265 215 253 0.57 12 255 0.71 10 220 0.94 45 220 0.96 45 253 0.57 12 253 0.73 12 

x2 54 53 62 0.59 8 61 0.77 7 53 1.00 1 53 1.00 1 62 0.59 8 61 0.77 7 

x3 105 116 109 0.85 4 111 0.93 6 116 1.00 11 116 1.00 11 109 0.85 4 111 0.93 6 

x4 110 132 130 0.96 20 133 0.99 23 132 1.00 22 132 1.00 22 130 0.96 20 133 0.99 23 

x5 200 177 168 0.88 32 168 0.92 32 161 0.78 39 161 0.86 39 168 0.88 32 168 0.92 32 

x6 58 51 48 0.86 10 52 0.97 6 51 1.00 7 51 1.00 7 50 0.95 8 51 1.00 7 

y1 26 31 26 0.61 0 28 0.79 2 20 0.13 6 20 0.25 6 26 0.61 0 26 0.66 0 

y2 20 17 15 0.71 5 14 0.62 6 17 1.00 3 17 1.00 3 15 0.71 5 15 0.75 5 

y3 18 21 21 1.00 3 18 0.70 0 21 1.00 3 21 1.00 3 21 1.00 3 18 0.70 0 

y4 293 353 289 0.56 4 288 0.61 5 253 0.31 40 253 0.40 40 289 0.56 4 288 0.61 5 

y5 45 39 39 1.00 6 41 0.89 4 41 0.87 4 41 0.89 4 39 1.00 6 41 0.89 4 

y6 260 226 238 0.87 22 238 0.89 22 236 0.89 24 236 0.91 24 238 0.87 22 238 0.89 22 

z1 33 26 29 0.72 4 29 0.75 4 26 1.00 7 26 1.00 7 29 0.72 4 29 0.75 4 

z2 22 17 20 0.57 2 20 0.87 2 17 1.00 5 17 1.00 5 17 1.00 5 17 1.00 5 

z3 25 27 29 0.82 4 31 0.92 6 27 1.00 2 27 1.00 2 27 1.00 2 27 1.00 2 

z4 13 11 12 0.78 1 13 0.61 0 11 1.00 2 11 1.00 2 12 0.78 1 12 0.81 1 

z5 28 33 32 0.93 4 31 0.87 3 33 1.00 5 33 1.00 5 32 0.93 4 31 0.87 3 

z6 35 29 28 0.92 7 28 0.93 7 29 1.00 6 29 1.00 6 28 0.92 7 28 0.93 7 
 

sum hi 
24.04 24.92 27.93 28.26 25.89 25.98 

 
min h 0.56 0.61 0.13 0.25 0.56 0.61 

 
Average ∆∆∆∆ 7.23 7.13 10.70 10.70 7.10 6.97 

Note: RV (Real Value); OV (Observed Value); AV (Adjusted Value); ∆ (difference between RV and AV in absolute value) 

* α=0.65 for xi; α=0.5 for yi and zi; α=0.3 for wi 

Table 4. Example 1: base data, randomized inconsistent data, adjusted data, and results 
for different αααα ranges 

Theoretically, in any transport network such as the one shown in Figure 7, 

the total “incoming volumes” should be equal to the total “outgoing volumes” at 

any node in the network and in any flow direction in such a way that the law of 
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conservation of flow is satisfied. In the simulated scenario, (Table 4, column 3), 

however, it is found that:  

x3+x5≠y5+y6 

x1+x2≠y1 +y4 

y1+y2 ≠ z1+z4      (8) 

y3+y5 ≠ z5+z6 

y2+y6 ≠ w10+w11+w12 

y3+y4 ≠ w1+w5+w7 

Actually, this is usually the case, particularly when the network is large. 

Pentrice (1987) stated that data inconsistency is inevitable even in a well-

controlled survey, but volume count consistency at different links is critical to 

ensuring the integrity of the results of any of the ITS-related algorithms. 

When the network becomes larger, the possibility of inconsistency in traffic 

volume counts increases, so flow conservation is more difficult. The concern in 

this paper is how to adjust the individual observed volumes to a set of new 

values that satisfy the flow conservation principle at any point in the network. 

Furthermore, the adjustment should be such that the integrity of the observed 

values is preserved as much as possible. To this end, a fuzzy optimization 

method is used to obtain adjusted values that comply with the law of flow 

conservation and that resemble consistent real data as closely as possible. In 

this example, the integrity of the results obtained can be verified with the 

available real consistent data.  

4.2.3. The bilevel fuzzy optimization method 

The search for the “best” set of adjusted values is an optimization process 

that aims to find a set of values close to the observed ones that verifies the 

conservation of flow principle.  
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The proposed method is based on the following concept: Each observed 

value is considered an approximate value represented by a fuzzy number, 

defined by a membership function. If the value is x, it is interpreted as 

“approximately x”. The true value is considered to lie near x. The method 

attempts to find an adjusted value as close to the observed value as possible 

while satisfying the conservation of flow at every point in the network. This is 

accomplished by applying the concept of fuzzy optimization developed in fuzzy 

set theory.  

Given a set of observed values, there are an infinite number of 

combinations of adjusted values, each of which satisfies the set of flow 

conservation equations. For a given combination, the membership grade )(x'h ixi
 

of each adjusted value (x’i) in the corresponding fuzzy set (xi) is calculated. 

Three methods of optimization could be used:  

a) by Maximizing the Minimum ℎ��(�	M) for all i,  

b) by Maximizing the Sum of ℎ��(�	M), and, 

c) by maximizing the Minimum ℎ��(�	M) for all i at one level and, after 

this has been achieved, by applying a second level of optimization 

by Maximizing the Sum of ℎ��(�	M). Thus, the combination with the 

highest sum is selected from among all the combinations that could 

maximize the lowest membership grade. The value with the least 

membership grade is taken into consideration, and also all the other 

observed data. 

In case (a) (MM method), the lowest membership grade for the 

combination is recorded. By comparing the lowest membership grades among 

all the combinations of traffic volumes, the one that has the highest value is 

chosen as the best combination of a set of adjusted values. This method was 

already introduced by Kikuchi and Miljkovic (1999).  

On the other hand, in the objective function sum of ℎ��(�	M)’s (case (b)) (MS 

method) for a given combination, the membership grade of each adjusted value 
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in the corresponding fuzzy set is calculated. The sum of the membership grades 

among all the combinations of traffic volumes is recorded, and the one that has 

the highest sum of membership grades is chosen as the best combination of a 

set of adjusted values. 

The third possibility is a two step way of optimization or Bilevel 

Optimization method (BO method). In step one, case a), the lowest membership 

grade is maximized. In step two, the membership grades that would produce 

the largest possible max(min(hi)) and that would seek to increase the value of 

all of the hi at the same time (which would achieve the sum of both) are 

summed up and maximized. 

The MM method can attend to a set of data which its minimum 

membership grade is maximized but the problem is that an infinite number of 

combinations could satisfy this condition and the MM method randomly chooses 

one of them. The BO method chooses a set that while it satisfies that condition; 

it optimizes the rest of the values, maximizing the membership grade of all the 

data, so the BO method uses both ways of optimization in order to improve the 

solution. 

The mathematical steps involved in addressing the optimization problem 

are: 

• Use fuzzy numbers to represent observed values 

• Formulate the objective and constraints 

• Solve as a mixed linear programming problem 

The process is explained step by step by using the simple highway 

network shown in Figure 7. 

Using fuzzy numbers to represent observed values 

The observed values are “fuzzified” and are considered a fuzzy set with a 

triangular membership function. 
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Figure 8 shows the shape of the membership function with the centre 

value xi and a range [xi-αxi, xi+αxi], where α is a constant higher than 0. The 

triangular membership function is not a prerequisite but, in the absence of any 

other information, this is a reasonable assumption, and such assumption is 

often used in fuzzy set theory (Zimmermann, 2001).  

The selection of the constant α depends on the judgement of the analyst 

with respect to the adjusted value’s acceptable deviation from the observed 

value. This value allows the analyst to enter the reliability of each datum (i.e. the 

more reliable data will have a lower value of α than if they were less reliable). If 

only one value of α is used for all data, the scope of the range has little effect on 

the final adjusted values, once it is broad enough for a feasible set of solutions 

to be found.  

The membership function is defined for the left- and right-hand sides of the 

triangle. For an observed value of xi and the assumed range [xi-αxi, xi+αxi], the 

general expression of the membership functions is: 

ℎ��(�	M) = Nℎ��O = ��P4(��4(��4∝��)∝��     ;Q �	−∝ �	 < �	M ≤ �	ℎ��S = ��P4(��4(��T∝��)4∝��     ;Q �	 < �	M ≤ �	+∝ �	U            (9) 

 In this formula −∞ < �	−∝ �	 ≤ �	 ≤ �	+∝ �	 < ∞ , the triangular fuzzy 

number xi is presented by (�	−∝ �	 , �	+∝ �	). 

h 

1 

Volume 
 

xi +α xi xi xi -α xi 

( )zh i

R

ix

 

( )zh i

L

ix

 

Figure 8. Triangular membership function  
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For the sake of simplicity, a symmetric triangle is used in this paper for the 

membership function. However, the left and right-hand limits can be set 

separately. To solve this example problem, it is assumed that the value xi is the 

observed value and that the value of α > 0. So the value of α is the spread of 

triangular fuzzy number xi. The narrower the spread area, the less fuzzy the 

evaluation data will be, hence more precise. To the contrary, fuzziness is higher 

and thus more vague and ambiguous when the spread area increases (Tzeu-

Chen Han, 2008). 

Some authors have researched calibration of the membership function 

extensively. The classical approach to calibration has been the intuitive trial and 

error process, in which the analyst modifies the shapes of the membership 

functions little by little until the predicted output approximately fits the output 

data obtained from the real world (Chakroborty and Kikuchi, 2003). However, 

this process is time consuming. Other authors have developed a systematic 

way of carrying out the trial and error process (Wang and Mendel, 1992a, 

1992b, 1992c; Homaifar and McCormick, 1995). The purpose of calibration is to 

modify the membership functions of the Fuzzy Inference System (FIS) so that 

the outcome predicted by the model is equal (or nearly equal) to the outcome 

obtained in the real world. Therefore, Chakroborty and Kikuchi (2003) presented 

a method in which  a representation framework allows the FIS parameters to be 

modified in relation to the bases. FIS outputs are dictated by the parameters 

that define the membership functions of the fuzzy sets appearing in the 

antecedents and the consequents of the rules and the algebraic operators used 

for the logical connectives and to determine the final inferred value. They have 

developed a procedure that calibrates the membership function of the fuzzy 

sets by transforming the inference system into an Artificial Neural Network 

format. They have applied this procedure to the complex control task of car-

following, but this procedure has not been applied yet to an urban transport 

system or a large-scale civil infrastructure system. 

Formulating the objective function and its constraints 

In a fuzzy number representation of observed values, fuzzy optimization 

techniques would be used to search for the adjusted values. The mathematical 
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formulation of the three proposed methods used to solve the problem would be 

as follows: 

A. MM method: 

Max(h) where h is min(hi)              (10) 

Subject to 

Constraints related to the membership functions: 

ℎ��O (�	M) ≥ ℎ                   ℎ��S (�	M) ≥ ℎ           ℎ	 ≥ ℎ        for i=1, k      (11) 

which means there are 2k+k constraints (where k is the number of control 

points) 

Constraints related to the conservation of flow at each control point. The 

constraints are defined by reviewing the flow pattern at each node in Figure 7 

as follows: 

x’3+x’5= y’5+y’6 

x’1+x’2= y’1 +y’4 

y’1+y’2 = z’1+z’4            (12) 

y’3+y’5 = z’5+z’6    

y’2+y’6 = w’10+w’11+w’12 

y’3+y’4 = w’1+w’5+w’7 

x’i, y’i, z’i, w’i ≥ 0 for all i 

Where 

x’i, y’i, z’i, w’i integer unknown adjusted values 

xi, yi, zi, wi fuzzy set corresponding to the observed value xi 

ℎ��(�	M) membership grade of x’i in the fuzzy set xi, the same treatment for 

yi, zi and wi; h is an operational parameter that represents the smallest 

membership grade among all ℎ��(�	M)’s. Where ℎ��O (�	M) ≥ ℎ and ℎ��S (�	M) ≥ ℎ, 
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respectively, show the expressions for the left- and right-hand sides of the 

triangle. 

B. MS method: 

Max(g) where g is sum(hi)           (13) 

Subject to the same constraints as in MM method related to the 

membership functions (Eq. 11) and related to the conservation of flow at each 

control point (Eq. 12). 

C. BO method: 

Step 1: The problem is solved using MM method (Eq. 10), and we obtain a 

value of h=h*. 

Step 2: The problem is solved using MS method (Eq. 13) subject to the 

same constraints related to the conservation of flow at each control point (Eq. 

12) as in the MM or MS method, and to the following constraints related to the 

membership functions: 

ℎ��O (�	M) ≥ ℎ∗ ℎ��S (�	M) ≥ ℎ∗ ℎ	 ≥ ℎ∗ for i=1, k       (14) 

The total number of unknowns in Step 2 is reduced by one compared to 

Step 1.  

If only Max(h) is performed (case A), there may be several imputations for 

the observed data that produce the same value for h (Tussel, 2002; Silva-

Ramírez, 2007). Therefore, they would be the same from the objective function 

point of view, whereas, in fact, some are better than others. The combination 

(0.9, 0.9, 0.9), for instance, would have the same value as (0.9, 1, 1), whereas 

the latter is better than the former. On the other hand, if the objective function 

were just Max(g) (case B), some values would show a hi=0.00, despite the fact 

that almost all the rest are 1.00, which is of no interest. The bilevel optimization 

process (case C) allows the combination where the remaining membership 

degrees are the highest ones to be chosen from among all the combinations 

where the lowest value of h is maximized. 
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Solving as a mixed linear programming problem 

Since every x’i must be an integer number and hi are real numbers, this is 

a mixed linear programming formulation. A mixed linear programming algorithm 

is formulated for the problem to maximize the membership grade of the 

adjusted values.  

In Figure 7, the mixed linear programming algorithm consists of 90 (3x30 

observed volumes) inequality constraints related to membership functions and 

six equations related to flow conservation. 

Introduction of data reliability 

The selection of the value of α depends on the judgement of the analyst 

with respect to the adjusted value’s acceptable deviation from the observed 

value.  

In a complex transport network, there may be permanent traffic count 

stations where count data are fairly reliable, and other nodes where counting is 

sporadic, as well as points where traffic volumes have not been measured. 

Therefore, to define the α parameter coherently, the method must allow the 

analyst to assign different values to the α parameter in order to define the 

membership functions of each observed value. The values will depend on 

whether the parameter belongs to a set of data that are highly reliable 

(permanent traffic count station), averagely reliable (sporadic count) or highly 

unreliable (lost data). 

4.2.4. Example network 

As shown in Figure 7, the example consists in analysing a network of 4 

intersections, of which three have 6 movements and one has twelve.  

In this example, the real consistent data are known (RV) (Table 4 column 

2). The data are used to simulate a scenario with non consistent data. The 

simulated data are considered the OV (Table 4 column 3). 

In this example, it is considered that traffic count station W is a permanent 

station, so the values have maximum reliability and their α parameter is the 
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lowest, α=0.3. The reliability of stations Y and Z is lower so α takes a value of 

0.5 (sporadic count stations) and, finally, the data from traffic count station X is 

supposed to be the least reliable one, so α is assigned a value of 0.65.  

4.2.5.  Results 

In this case, since real data were available, three indicators could be used 

to verify the goodness of the adjustment of each one of the three optimization 

methods used (MM, MS and BO methods): 

The first indicator is the lowest value of h, which indicates the membership 

grade of the worst adjusted value (the degree of compatibility between the 

adjusted value and the observed value). If the value of h is near zero, then the 

adjusted value is close to the right or left end of the base of the membership 

function; if the value of h is near 1, then the adjusted value is close to the 

observed value. Therefore, the solution where the lowest value of h is maximum 

is chosen as the best solution from the point of view of this parameter.  

The second indicator is the sum of hi. The best solution is where the sum 

of hi is maximum, because the adjusted values are closer to the observed 

values and integrity is more preserved. 

The last indicator, for which the consistent real data are available, is the 

average of the differences between the real consistent values and the adjusted 

values. 

The results for the three methods are given in Table 4, where the adjusted 

values (AV) and the value of the membership grade (h) for each observed value 

are shown. The membership grade of the individual AV is computed by entering 

the adjusted value (x’i) in the respective membership function ℎ��(�	M). The table 

also shows the effect of using different α values, depending on the reliability of 

the observed volumes at each intersection. 

Column 1 of Table 4 shows each movement in nodes W, X, Y and Z. 

Column 2 shows  the consistent RV used to obtain the OV that show 

inconsistencies by randomizing the values within ±25%. 
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Columns 4, 6 and 8 in Table 4 shows the AV, the corresponding values of 

h (hi) and the difference (∆) between RV and AV in absolute value, using the 

MM method, MS method and BO method respectively for an α parameter of 0.4 

in all cases: 

MM method’s results are shown in column 4. The lowest value of h in 

column 4 (h=0.56) indicates the membership grade of the worst adjusted value. 

In this case Σhi is 24.04. 

In column 6, MS method’s results show that whereas most of the adjusted 

values get h=1.00, other values show lower h and h could even be 0.00, in 

order to manage the highest Σhi. The lowest value of h is reached for y1 

(h=0.13). This situation, therefore, is not desirable either, since it allows a set of 

values with some h very close to 0.00 to be considered, providing the sum is the 

maximum. In this case, Σhi is 27.93. 

The BO method’s results are shown in column 8. If columns 4 and 8 are 

compared, it can be seen that the minimum value of h remains the same 

(h=0.56). However, there has been an increase in Σhi, which has gone from 

24.04 (MM method) to 25.89 (BO method). Thus, this new method allows a 

combination where the remaining membership degrees are the highest ones to 

be chosen from among all the combinations with the lowest value of h.  

As explained above, introducing the analyst’s knowledge of the different 

precisions of the data he is working with improves the results of the adjustment. 

This is shown in columns 5, 7 and 9 in Table 4 where the AV, hi and ∆ are 

calculated, using the three methods for different α parameters depending on the 

reliability of the data. The α values used in this example have been 0.65 for “X”, 

0.5 for “Y” and “Z” and 0.3 for “W”.  

As in the case of the same α for every observed value, for any α 

parameter, the MM and the BO methods obtain the same and a higher value of 

h minimum (h=0.61) than the MS method (h=0.25). However, the latter method 

obtains a higher value of Σhi (28.26 versus 24.92 for the MM method and 25.98 

for the BO method).  
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The results shown in column 5 are better than those shown in column 4. 

This is because the minimum value of h and Σhi were higher and the value of 

average ∆ was lower. Similar results are obtained by comparing columns 6-7 

and 8-9 for the MS and the BO methods. This confirms the advantage of 

distinguishing between reliable data and less reliable data or, in other words, of 

introducing the subjective perception of the analyst. 

The last row in Table 4 shows the average of ∆ for each of the three 

methods used. It can be seen that the lowest value (6.97) is obtained for the BO 

method with different values of α, in comparison to the values of the MM 

method (7.13) and the MS method (10.70) with different values of α. This shows 

that the AV obtained with the BO method are closer to the real values than with 

the other two methods, so this is the method that best preserves the integrity of 

data. 

Real intersections in Andalucía motorway´s network 

Next, the three methods are used to adjust the traffic volumes of a series 

of adjacent intersections in Andalusia’s freeway network (see Figures 9 and 10) 

for which real and therefore inconsistent data are available. In this example, the 

parameter ∆ is omitted, and only two parameters have been used to verify the 

goodness of the adjustment: the lowest value of h and the sum of hi.  

 

Figure 9.  Not consistent real base data set of traffic counts for intersection in Andalusia 
(South of Spain) 
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Figure 10. Movements in every node of the network 

The network has five intersections, of which three have six movements 

(intersections V, X and Z), while the other two have twelve potential movements 

(intersections W and Y). Data is available for all potential movements except for 

movements v1, v2, v3, v4, y6, y7, and y8, whose values were lost. A special 

membership function with h=1.00 always (α→∞) was assigned to the lost 

values so that any adjusted value that met the boundary conditions would 

always have a membership grade of 1.00 (Figure 11). Table 5 shows that for 

movements v1, v2, v3, v4, y6, y7 and y8, the value of h associated to the AV is 

always 1.00 for the three methods studied and for the hypothesis of equal or 

different α. 

 

 
 
 
 
 
 
 

Figure 11. Missing values’ membership function 
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h 
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(1) (2) (3) (4) (5) (6) (7) (8) 

 
OV 

MM  αααα=0.1 MM  αααα* MS  αααα=0.1 MS  αααα* BO  αααα=0.1 BO  αααα* 

AV hi AV hi AV hi AV hi AV hi AV hi 

v1
# - 11,091 1.00 10,819 1.00 10,703 1.00 10,704 1.00 10,951 1.00 10,893 1.00 

v2
# - 1,764 1.00 1,758 1.00 1,743 1.00 1,743 1.00 1,497 1.00 1,555 1.00 

v3
# - 11,085 1.00 11,014 1.00 11,240 1.00 11,240 1.00 10,994 1.00 10,847 1.00 

v4
# - 10,288 1.00 10,307 1.00 10,329 1.00 10,329 1.00 10,575 1.00 10,517 1.00 

v5
# 10,865 10,727 0.87 10,809 0.95 10,865 1.00 10,865 1.00 10,618 0.77 10,865 1.00 

v6 1,207 1,174 0.73 1,201 0.95 1,207 1.00 1,207 1.00 1,207 1.00 1,207 1.00 

w1 5,427 5,669 0.56 5,491 0.94 5,427 1.00 5,427 1.00 5,445 0.97 5,445 0.98 

w2 2,714 2,905 0.30 2,719 0.99 2,714 1.00 2,714 1.00 2,714 1.00 2,714 1.00 

w3 3,135 2,914 0.30 3,023 0.82 3,135 1.00 3,135 1.00 3,135 1.00 3,135 1.00 

w4 3,123 3,258 0.57 3,179 0.91 3,123 1.00 3,124 1.00 3,123 1.00 3,123 1.00 

w5 3,735 3,764 0.92 3,773 0.95 3,735 1.00 3,735 1.00 3,735 1.00 3,735 1.00 

w6 5,601 5,313 0.49 5,311 0.74 5,600 1.00 5,600 1.00 5,354 0.56 5,207 0.65 

w7 695 744 0.30 695 1.00 695 1.00 695 1.00 695 1.00 695 1.00 

w8 3,112 3,182 0.78 3,131 0.97 3,112 1.00 3,112 1.00 3,112 1.00 3,112 1.00 

w9 3,880 3,928 0.88 3,907 0.97 3,896 0.96 3,896 0.98 3,880 1.00 3,880 1.00 

w10 505 470 0.31 502 0.97 505 1.00 505 1.00 505 1.00 505 1.00 

w11 310 289 0.32 307 0.95 310 1.00 310 1.00 310 1.00 310 1.00 

w12 904 841 0.30 913 0.97 904 1.00 904 1.00 904 1.00 904 1.00 

x1 4,935 4,588 0.30 4,711 0.54 4,812 0.75 4,812 0.75 4,800 0.73 4,709 0.54 

x2 4,725 5,021 0.38 4,788 0.87 4,848 0.74 4,848 0.74 4,719 0.99 4,715 0.98 

x3 7,236 6,739 0.31 6,905 0.54 7,236 1.00 7,236 1.00 6,990 0.66 6,905 0.54 

x4 1,809 1,777 0.82 1,736 0.60 1,809 1.00 1,809 1.00 1,809 1.00 1,747 0.66 

x5 4,197 4,394 0.53 4,335 0.67 4,197 1.00 4,197 1.00 4,344 0.65 4,348 0.64 

x6 3,350 3,306 0.87 3,197 0.54 3,350 1.00 3,350 1.00 3,351 1.00 3,197 0.54 

y1 1,230 1,176 0.56 1,236 0.97 1,230 1.00 1,230 1.00 1,230 1.00 1,230 1.00 

y2 3,700 3,662 0.90 3,717 0.95 3,700 1.00 3,700 1.00 3,700 1.00 3,700 1.00 

y3 4,255 4,555 0.29 4,307 0.88 4,257 1.00 4,257 1.00 4,555 0.29 4,255 1.00 

y4 1,410 1,509 0.30 1,441 0.78 1,410 1.00 1,410 1.00 1,509 0.30 1,410 1.00 

y5 2,140 2,076 0.70 2,094 0.79 2,140 1.00 2,140 1.00 1,990 0.30 2,140 1.00 

y6
# - 2,320 1.00 2,332 1.00 2,369 1.00 2,369 1.00 2,369 1.00 2,369 1.00 

y7
# - 658 1.00 611 1.00 521 1.00 521 1.00 671 1.00 521 1.00 

y8
# - 1,527 1.00 1,494 1.00 1,691 1.00 1,691 1.00 1,679 1.00 1,526 1.00 

y9 1,150 1,069 0.30 1,131 0.83 1,150 1.00 1,150 1.00 1,150 1.00 1,150 1.00 

y10 310 289 0.32 324 0.65 310 1.00 310 1.00 310 1.00 310 1.00 

y11 1,013 1,044 0.69 1,023 0.91 1,013 1.00 1,013 1.00 1,013 1.00 1,013 1.00 

y12 1,410 1,509 0.30 1,442 0.77 1,410 1.00 1,410 1.00 1,509 0.30 1,410 1.00 

z1 4,960 4,975 0.97 4,968 0.99 4,962 1.00 4,962 1.00 4,962 1.00 4,962 1.00 

z2 2,120 2,051 0.67 2,104 0.97 2,120 1.00 2,120 1.00 2,120 1.00 2,120 1.00 

z3 1,207 1,122 0.30 1,092 0.68 1,207 1.00 1,207 1.00 1,122 0.30 1,087 0.67 

z4 10,865 10,930 0.94 10,973 0.97 10,865 1.00 10,865 1.00 10,950 0.92 10,985 0.96 

z5 9,660 9,850 0.80 9,906 0.92 9,952 0.70 9,952 0.90 9,705 0.95 9,952 0.90 

z6 6,940 6,451 0.30 6,098 0.60 5,870 0.00 5,870 0.49 6,451 0.30 5,988 0.54 

 sum hi 26.16 36.50 40.14 40.85 35.97 38.61 

 min h 0.29 0.54 0.00 0.49 0.29 0.54 

Note: OV (Observed Value); AV (Adjusted Value); * a=0.2 for wi; a=0.3 for zi and zi; a=0.1 for rest of cases; #  missing values 

Table 5. Real intersection in the South of Spain: real base data with missing values, 
adjusted data, and results for different αααα ranges 
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Columns 3, 5 and 7 in Table 5 show the AV and hi using the three 

methods for α=0.1. 

On the other hand, columns 4, 6 and 8 in Table 5 show the AV and hi 

using the three methods for different α parameters depending on the reliability 

of the data. The α values used in this example were 0.2 for “W”, 0.3 for “Z”, and 

0.1 for the rest.  

As in the previous example, for any α parameter, the MM and the BO 

methods obtain the same and a higher value of minimum h (h=0.29) than the 

MS method (h=0.00). However, MS method obtains a higher value of Σhi (40.14 

versus 26.16 for the MM method and 35.97 for the BO method). Thus, the 

results demonstrate that the BO method, while keeping the highest minimum of 

h, attains the best sum of hi, so the best solution is chosen from among all the 

possibilities that satisfy the condition of maximizing the minimum h. 

Furthermore, introducing the analyst’s knowledge of the different precisions of 

the data he is working with improves the results of the adjustment.  

4.2.6. Summary and conclusions 

The consistency of the observed traffic data is a concern because in 

nearly all cases traffic data contain some errors. The degree to which 

consistency must be satisfied depends on the purpose of the analysis. 

Processing observed data for consistency is crucial in an analysis where data 

interrelationships are important. 

This paper proposes another step forward in using fuzzy logic optimization 

to obtain adjusted values. Two examples are given to present and explain the 

theoretical formulation and computational procedure. The proposed approach is 

robust enough to deal with other typical data discrepancies in transport 

situations. It preserves the integrity of observed data as much as possible, and 

allows the analyst to distinguish between reliable and less reliable data.  

The approach is able to: 
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Preserve the integrity of the observed data as much as possible. There 

are increasing concerns about data imputation and Base Data Integrity. The 

principle of Base Data Integrity is an important theme discussed by the 

American Society for Testing and Materials (ASTM, 1991) and the American 

Association of State Highway and Transportation Officials (AASHTO, 1992). 

The principle says that traffic measurements must be retained without 

modification and adjustment. Missing values should not be imputed in the base 

data. However, this does not prohibit imputing data at the analysis stage. In 

some cases, traffic counts with missing values could be the only data available 

for certain purposes and data imputation is necessary for further analysis. In 

accordance with the principle of Truth-in Data, AASHTO Guidelines (AASHTO, 

1992) also recommends highway agencies to document the procedures for 

editing traffic data. For traffic counts with missing values, highway agencies 

usually either retake the counts or estimate the missing values. Estimating 

missing values is known as data imputation. 

Ensure flow consistency at any point in the network; the final estimate 

satisfies the law of flow conservation. 

Handle a large complicated network of any size and shape. The aim is to 

be able to solve any real problem, as shown in example 2. 

Handle data reliability; traffic-responsive control systems require reliable 

real-time information on the prevailing traffic counts to make sensible control 

decisions. This requisite is met by using the α parameter to define a different 

range for the membership function associated to each observed value. 

Limit the adjusted value within a tolerable deviation from the observed 

value, but allowing one tolerance for each value to be defined; this is achieved 

by using fuzzy logic and the definition of the α parameter. 

Be solved in a short computation time. The triangular membership function 

allows solving the problem using mixed linear programming. 

The method is flexible so that it can handle cases in which data are 

questionable, some of the observed values are known and fixed (α=0), and 
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there are considerable discrepancies in the observed data. The base of the 

membership function within which a feasible set of solutions is searched should 

be established according to the acceptable difference between adjusted and 

observed values. 

Finally, the method is applicable to many other transportation problems in 

which consistency is important.  
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4.3. Method to Detect Malfunctioning Traffic Count Stations 
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Abstract :  

This study presents a method for the automatic detection of malfunctioning 

traffic count stations (TCS) in a transport system. First, double linear 

optimisation is used to detect inadmissible errors in the recordings of a series of 

TCS and next, the TCS that are most likely to be failing are identified. The 

method has been applied to an urban traffic network showing success rates up 

to 93% in identifying the TCS that are failing. 

Keywords : traffic count errors, linear optimization, transport planning, 

data consistency 

4.3.1.  Introduction 

In traffic operation management and control field, accurate estimates of 

the density of vehicle flow density in road networks are very important. 

Information on traffic density may be ascertained from gross counts taken by 

loop detectors and other detection devices. However, the counts available may 

be incorrect due to an improper collection process and errors. 

When counting the number of vehicles that travel on a road, two types of 

errors can be committed: 
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• Admissible: In general, admissible errors are the errors that are within the 

measuring device’s tolerance and, therefore, they depend on the precision 

defined for each device by the manufacturer. For instance, if the manufacturer 

of the detectors in the traffic counts stations (TCS) indicates 3% reliability, it 

means that if one of the measurements is xobs = 784, the real value x* ∈ [784(1 

– 0,03), 784(1 + 0,03)]. In practice, the admissible boundary of error tends to be 

somewhat higher, since margins tend to increase with use and over time. 

• Inadmissible: These are errors that not only give erroneous information, 

but also invalidate the work done. They can be due to detector malfunctioning 

(failure to record passing vehicles, constant recording of non-existent vehicles, 

always counting an arbitrary number, etc.) or to failure on the part of the person 

who handles the detector (failure to set the counter to zero, erroneous readings, 

etc.)  

In an intersection with two in (x1 and x2) and three out movements (x3, x4 

and x5), the principle of flow conservation should verify that: 

x1 + x2 = x3 + x4 + x5  (15) 

Let the measurements be taken and the following is obtained: 

Case 1 �D��� = 800, �X��� = 1200, �Y��� = 600, �Z��� = 700 and �[��� = 740.  

It is found that the above-mentioned condition is not verified, since: x1 + x2 

= 2000, whereas x3 + x4 + x5 = 2040. Are the measurements reliable and 

therefore they can provide relevant information? Or are they indicating that a 

detector is failing and giving inadmissible measurements? In this case, and 

assuming that 3% of errors is admissible, we can indicate the existence of a set 

of values for the measurements that verifies the condition of conservation flow 

and is within the tolerance range: �D�KL= 808, �X�KL= 1212, �Y�KL= 594, �Z�KL = 693 

and �[�KL = 733. Therefore, they should be close to the real values. 

Case 2 �D��� = 800, �X��� = 1200,  �Y��� = 1600,  �Z��� = 700 and �[��� = 740.  
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It is found that the above condition is not verified either, since: x1+x2 = 

2000, whereas x3+x4+x5 = 3040. However, at present no combination of �	�KL 

values verifies flow conservation and falls within the 3% tolerance range. The 

inference would be that one of the measurements was erroneous and a 

detector must be repaired or replaced (unless there was a human error in the 

installation, reading or recording of the data).  

A number of studies (Kikuchi and Miljkovic, (1999); Wall and Dailey 

(2003); Vanajakshi and Rilett, (2004); de Oña et al., (2011)) attempt to find a 

solution to Case 1 (admissible errors) to obtain adjusted data that are consistent 

with flow conservation laws. 

For Case 2 (inadmissible errors) , several approaches (Nihan and Davis, 

(1987a, 1987b, 1989); Tavana and Mahmassani, (2000)) have been attempted 

to resolve or diminish count errors after they have been detected, but they do 

not address how they can be detected.  

The methods for trying to detect errors may be classified according to the 

consistency criterion (Lin et al., (2012)):  

•Fundamental consistency: data should be consistent with basic notions of 

traffic theory and should be physically plausible; establishes upper and lower 

boundaries for traffic values (e.g. negative values and vehicle volumes that 

exceed the road's capacity cannot be measured).  

•Network consistency: data should be related to measurements that are 

close in space and time. It is based on flow conservation when several 

connected nodes in a transport network are studied. This is the type of 

consistency shown in the preceding example. 

•Historical consistency: historical observations can provide insight as to 

the plausibility of current data. Practice tells us that the values measured on a 

road are almost always given for an interval. Values outside of the interval may 

be plausible, but they indicate outliers, an anomaly that should alert the control 

service. The historical values constitute a basis for determining the boundaries 

of the interval in which normally consistent values must be found.  
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In current traffic control centres, detecting a malfunctioning count station is 

pseudo-automated because historical consistency marks the value interval each 

observation should have. If a measurement is not within that interval, an alarm 

is triggered, indicating a potential error in one of the TCS.  

The problem arises when no historical values are available or when they 

exist but may indicate measurements as erroneous when they are actually 

correct. An incident on the network – repair work, accidents and weather issues, 

for instance – may alter track conditions significantly and cause outliers in the 

above-mentioned measurements without presupposing that the detector has 

failed, in fact there is a research field on this issue (among others Thomas and 

van Berkum (2009), Zhang et al. (2008), Srinivasan et al. (2007) Tang. and Gao 

(2005)). 

The bibliography Lin et al. (2012) indicates several error detection 

techniques based solely on historical consistency. They do not take nearby 

detectors, that is, network consistency, into consideration. Other approach is to 

incorporate observations from nearby detectors Vanajakshi and Rillett (2004). 

This paper presents a method that is complementary to the existing ones, 

where  basic consistency and network consistency are taken into consideration. 

The method automatically detects a TCS that is failing, by only considering 

the data observed by the network detectors as input data. Once the detector 

that is failing has been detected, the procedure can be repeated to see if the 

remaining measurements are consistent and free of errors. 

This paper is organized as follows: Section 2 describes the method and 

the computational issues; in Section 3 the method is applied to a real urban 

network; Section 4 discuss the effect of the model’s variables on the results; 

and, finally, Section 5 presents the main conclusions of the paper. 

4.3.2. Methodology 

The method presented in this paper to detect and identify a malfunctioning 

detector is based on the resolution of a linear programming problem (LP).  
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In general terms, the nℜ  region that meets certain restrictions is known as 

the LP’s feasible region. That is what will be built for the problem posed in this 

paper. 

Feasible region 

Let a series of measurements be taken { }obs
ix  and that the tolerance 

indicated for each measurement is αi. This tolerance is usually expressed as a 

percentage of the measured value, since it is reasonable to assume that any 

absolute errors incurred will be lower for small magnitudes than for larger ones, 

assuming the detectors function under the conditions specified by the 

manufacturer: ∀i; x*i ∈ [ai, bi], where obs
ii

obs
ii xxa α−= and obs

ii
obs
ii xxb α+= . In 

example 1, a 3% error was considered admissible for all the measurements, 

and therefore we would take ∀i, αi = 3%, although in other cases a different 

error for each detector could be considered. 

Given a set of observed values { }obs
ix , i∈I, (where I is a set of indexes) 

each with a tolerance of αi, we define the admissible region as the set A ⊂ nℜ , 

such that { } Axx i ∈=∀r
where the following conditions are satisfied: 

1. �	��� −∝	 �	��� ≤ �	 ≤ �	��� +∝	 �	���. 

2. Vector �� verifies flow conservation laws. 

Attention should be paid to the fact that the cardinal of the set of observed 

values and the number's n dimension do not necessarily coincide. Thus, to 

continue with the previous example, the set of observed values could be obsx1  = 

800, obsx2  = 1200, obsx3 = 600 y obsx4 = 700, which would give the admissible 

region: 

A = { 5ℜ∈x
r

/776 ≤ x1 ≤ 824; 1164 ≤ x2 ≤ 1236; 582 ≤ x3 ≤618; 679 ≤ x4 ≤ 

721; x5 = x1+x2-x3-x4} 

Where the first 4 intervals are obtained by �	 = �	��� ± $	�	��� =�	���(1 ± $	) adding the flow conservation law: x1 + x2 = x3 + x4 + x5. 
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Theorem 1 If all the detectors function properly, the feasible region is not 

empty (A ≠φ).  

Obviously, if all the detectors give admissible errors, then the true values 

vector belongs to the feasible region (��∗ ∈ C).  
Therefore, the inference is: 

Corolary 1 If A =φ, one of the detectors is giving an inadmissible error. 

Corolary 1 provides a method for detecting incorrect measurements by 

taking into consideration fundamental inconsistencies and network 

inconsistencies. Although the reciprocity theorem is not true, that is:  

A detector may produce an inadmissible error, but the remaining 

detectors’ margins permit admissible values and, therefore, A≠φ. In practice, 

this means that although a measurement’s margin may be wider than required, 

it is not too inconsistent. So, if a detector is severely malfunctioning it will be 

impossible to generate consistent traffic counts. 

We should also consider that if there are several vectors in A (A ≠φ), some 

are more plausible than others, in so far as they are closer to the observed 

values. So, for a vector ��∗ ∈ C we can associate another vector ℎ� = ]ℎ	^such 

that the verisimilitude of the i-th component is: 

ℎ	∗ = 1 − 3��4�����3∝�_�����_                   ℎ	 = /0�]0, ℎ	∗^  (16) 

Figure 12 shows the verisimilitude of assigning a value xi when �	��� with 

reliability αi has been observed. 

 

Figure 12. Verisimilitude function for a single observation 
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For the sake of simplicity, a triangular shape function has been chosen 

since the function shape is not an important issue, since the aim is to check if 

the adjusted value is in or out of the feasible region and simplicity of linear 

decay allows it to be solved by linear programming. However, other polygonal 

function could be used as it is stated in Kikuchi and Miljkovic (1999). 

Assuming obs
ix > 0, ∀i ∈ I and making the relevant transformations in the 

above equation, finding out whether an admissible set of values exists becomes 

a problem of finding out whether a solution to the linear optimization problem 

exists:  

Problem 1 

∑
∈Ii

ihMaximize :
 

      (17) 

 

 

where xi, hi and h are the variables that can be considered adjusted 

(consistent) values, variable verisimilitude and minimal verisimilitude, 

respectively, and where the flow conservation laws are represented by the 

homogeneous linear system 0=xM
r . Thus, for case 1 with the single 

conservation law: x1 + x2 - x3 - x4 - x5 = 0, the matrix M = (1, 1,-1,-1,-1). In 

general, the matrix M will have as many rows as existing flow conservation 

equations. Very different target functions could have been selected for this task, 

but this will also serve the second aim of this paper: To determine which 

detector is producing erroneous values. The benefit of transforming the problem 

into a linear programming problem is being able to count on multiple and 

optimized routines for the solution. See Saameño et al. (2006). It is easy to 

amend the above method to consider different margins to the right and to the 

left of the observed values, i.e. ( )obs
i

R
i

obs
i

obs
i

L
i

obs
i

obs
i xxxxx αα −−∈ , . 

 

( )
( )













=
−≤+−

+≤+

≥≤≤

0xM

1αxhxαx

1αxhxαx

0,x1,h0

toSubject
i

obs
iiiii

i
obs
iiiii

ii

r
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Detection of inadmissible measurements 

Let the problem of resolving linear programming 1 in the above section be 

posed and that there is no solution, since A = φ. We would be in the case of 

Corolary 1, which indicates that one of the measurements is inadmissible. 

Unfeasible should not be confused with outliers, since the latter may be correct 

and due to traffic anomalies (an accident, repairs, etc.) but consistent with flow 

conservation laws.  

To detect an incorrect measurement, we relax the manufacturer's αi 

margins, multiplying them by a constant K >> 0 so the new linear optimization 

problem will have a non-empty admissible region. That is: 

Problem 2 

∑
∈Ii

ihMaximize :
 

                                              (18) 

 

 

It is known that one property of the ‘maxsum’ objective function is that it 

gives high values to most variables at the expense of giving low values to a few 

ones, Saameño et al. (2006). In this case, its effect is to assign values very 

close to the observed values (high verisimilitude) to the detriment of assigning 

very distant values to a few (low verisimilitude). The measurement that 

produces h = min{hi} in problem 2 will be proposed as inadmissible.  

We can always obtain a K that is large enough to make A ≠φ ; for its effect 

is to increase the variables’ admissible margin. In an extreme case, any 

measurement xi would fit into the ?�	��� ± `$	�	���A interval. It could be assumed 

that selecting K would modify the solution obtained, but the following theorem 

shows that such is not the case: 

( )
( )














=

−≤+−

+≤+

≥≤≤

0

1

1

010

xM

KαxhxKαx

KαxhxKαx

,,xh

toSubject
i

obs
iiiii

i
obs
iiiii

ii

r



Chapter 4: ARTICLES 

80 

Theorem 2  If the problem 2 is solved by using two different values for K 

(K1 ≠ K2), performing both feasible solutions, then optimum solutions for K1 and 

K2 verify: 

The optimum vector ( )*1x
r

 for K1 is also optimum vector for K2: 
( ) ( )*1*2 xx

rr =  

The index of observation with minimum value for hi is the same for both 

constants: 0ab/;@	�ℎ	(D)� = 0ab/;@	�ℎ	(X)� 

Proof is given in Appendix (shown in the published paper enclosed in the 

Annexe of this document) 

Proposed algorithm. 

From previous considerations, next algorithm is proposed. 

Algorithm 1 (Erroneous sensor detector) 

1) Read values for �	O , �	S  c �	���. 

2) Represent the flow conservation laws by matrix M. 

3) Repeat until all ℎ	 > 0,  
a) Represent all inequalities by matrix A and vector b

r

: 

 �	 + $	S�	ℎ	∗ ≤ �	���($	S + 1) 

 −�	 + $	O�	ℎ	∗ ≤ �	���($	O − 1) 

b) Express restrictions 0≥ix  

c) Solve LP with the target function Maximize: ∑ hi
*

i  

d) If all ,0* ≥ih go to step 4, else: 

d1) Evaluate ℎ∗ = min	 ℎ	∗ , 
9.0

1 *h
K

−=  
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d2) Replace R
i

R
i Kαα ←  and L

i
L
i Kαα ← , into A and b

r

(step 2a) 

d3) Solve LP with the target function ∑
i

ihMaximize *:  

d4) The index k that produces ** min i
i

k hh =  is obtained 

d5) Observation obs
kx  is ellipsed and considered as erroneous 

d6) Return to step 3). With initial values of R
iα and L

iα , but the ellipsed one. 

4) Finish (Ellipsed observations are considered as inadmissible ones). 

The algorithm is focused on detecting inadmissible observations from the 

network consistency viewpoint. However, it is easy to incorporate any available 

additional information. For instance, by changing the upper bound of any 

variable (adding the restriction xi ≤Ui in step 3b), or by changing the lower 

bound of any variable, which by default is 0 (xi ≥ Li), etc. This fact allows making 

it suitable to perform fundamental consistency, generally expressed by bounds. 

This method could be complementary to standard pre-process that 

analyzes historical consistency, Lin et al. (2010). That is, observed variables 

must be into a real interval, in other case the observation is considered an 

outlier. An outlier must be analyzed separately since it can be produced by 

anomalous traffic, but be correct. 

Perhaps the algorithm 1 was only executed to verify that the detectors 

were working properly, but it is usually part of the study on a region's traffic. In 

such case, the next step would be to obtain the adjusted data, that is, the 

consistent data that most closely resembles the observed data. Any data 

deemed inadmissible during the pre-process will have been eliminated from the 

observed data using one of the procedures suggested by other authors as 

Kikuchi and Miljkovic (1999), Wall and Dailey (2003), Vanajakshi and Rilett 

(2004) and de Oña et al. (2011). 
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4.3.3. Application to an urban network 

Road network data 

The method is applied to the urban network shows in Figure 13.  

 

 

Figure 13.  Example of an Urban Network 

The network has seven intersections, of which four have twelve 

movements (intersections D, E, F and G), two have six movements (A and C), 

while the last one has five potential movements (intersection B). So, in total, 

there are 86 unknown variables. Since it is impossible to guarantee that a set of 

true data will always be available, the initial set of data will be a set of consistent 

data that is very close to the observed data.  

Consider the situation shown in Figure 13, in which consistent true data 

are available (Theoretical Values – TV), where the data that comply with flow 

conservation in the traffic network concerned is deemed to be consistent. In 

other words, the sum of incoming vehicles is equal to the sum of outgoing 

vehicles at any network intersection. 
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This consistent data-base is used to randomly deform values with a 

tolerance of ±3% (by an uniform distribution), which is the tolerance shown by 

the count stations most commonly used in urban networks, Cegasa, (2010). 

This is not deterministic, however, because if the detector was of another type 

or had a different tolerance, a value other than ±3% could be considered. The 

model allows a different α for each observed datum to be defined (several types 

of detectors with different tolerances). As shown in section 2, it even permits the 

definition of asymmetric feasible regions. 

Having obtained a randomly distorted data base within the above-

mentioned tolerance, it could then be considered as the data that would be 

obtained in an ideal counting campaign in which all 86 potential movements 

would be measured. Therefore, it could be taken as the series of observed data 

in an urban network (Observed Values – OV). In this case, the values would not 

be consistent, according to the above definition (the sum of incoming vehicles 

would not be equal to the sum of outgoing vehicles).  

The fact that a base of consistent true data is used and subsequently 

randomly distorted permits a comparison between the results obtained and real 

life, and verification of the goodness of the method proposed. 

Results 

OV obtained randomly from TV with a tolerance of ±3% is used to verify 

the goodness of the model. Next, a datum is randomly selected and distorted to 

simulate a detector error that exceeds the error specified by the manufacturer 

or, in other words, a deviation from the detector’s allowed tolerance. 

Specifically, deviations of 75%, 50%, 25% and 10% from OV are simulated. 

This deformation gives an initial data base for each example generated 

(each of which contains an erroneous datum). For each one of the 4 deviations, 

500 examples are randomly generated from OV. In all, 2,000 examples are 

executed. Table 6 shows the results for the random examples. 
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1 2 3 4 5 6 7 8 

Percentage 
simulated 

error 

 Error is detected Error is pointed out 
and gets by hmin 

Error is pointed out 
and gets by 2 nd hmin 

Error is 
pointed 
out in 
total 

Number 
of times 

(A) 

Proportion       
A/500 

Number 
of times 

(B) 

Proportion 
B/500 

Number 
of times 

( C) 

Proportion 
(C)/500 

Success 
proportion         
(B+C)/500 

75 491 0.982 443 0.886 23 0.046 0.932 

50 486 0.972 386 0.772 37 0.074 0.846 

25 438 0.876 269 0.538 27 0.054 0.592 

10 266 0.532 137 0.274 24 0.048 0.322 

Table 6. Results with a simulated error of 75, 50, 25 and 10% 

Column 1 in Table 6 shows the simulated error in a randomly selected 

measurement apparatus. Columns 2-3 show the number of times an error is 

detected in all the random samples. That is, the number of times A=φ is 

obtained applying theorem 1. Column 2 points out the number of times A=φ is 

obtained for the random examples, which is when the adjusted value lies 

outside of the detector’s allowed tolerance, and outside of the set boundaries of 

the feasible region. This indicates that a detector is giving a value that is higher 

than the allowed deviation, which in turn means that a detector is failing. 

Column 3 shows the same thing in relative terms. 

By increasing α from 0.03, (see d1) in the algorithm 1) in an iterative 

process, the feasible region is extended in order to allow A≠0 to be found for 

every i. This value was selected because it was considered a sufficiently large 

amount for adjusted values to be found in the feasible region. If any hi equal to 

0 was found when linear programming was executed, the constant would be 

increased even further, since it would not affect the results, as justified by 

Theorem 2.  

Table 6, column 4 shows the number of times the index i that produces 

h=min hi coincides with the failing TCS. Columns 6-7 show the number of times 

(and proportion, respectively) in which the failing TCS is the one that shows the 

second lowest value. So, when a TCS perform a 75% of error, it coincides with 

the error obtained by the second minor value of hi in 5% of cases. 
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Column 8 shows the proportion of times that the model is able to detect 

the failing detector (i.e. adding the number of times it detects the detector that 

fails, whether it is the hi minimum or the value immediately above it). This result 

points out the proportion of times at which it indicates a detector that is failing, 

out of all the random examples. This is the model’s proportion of success, and it 

is calculated by adding column 4 and column 6, and dividing by the total 

number of examples simulated. For an error of 75%, the success rate is 93%. 

For the remaining cases, the model finds that there is a malfunctioning detector, 

but it does not point it out in the first or second places. 

Table 6 shows that the model’s success increases in the same measure 

as the device’s error increases and worsens as the error diminishes, and the 

closer it is to the measurement device’s tolerance range. 

If the ratio (r) is expressed as the proportion of times that an error is 

detected compared to the number of examples executed (Table 6, column 2), 

the ratio of cases in which a failing detector is detected for each simulated error 

can be compared. 

In other words, if N random examples have been executed (in this case, N 

= 500) and A times errors have been detected (Table 6, column 2), the 

estimated ratio obtained experimentally is 
N
A

r =  (Table 6, column 3). In this 

manner, for an error of 75%, the error is detected in 98% of cases; for an error 

of 50%, in 97% of cases; for an error of 25%, in 88% of cases; and finally, for a 

simulated error of 10%, an error is detected in 53% of cases. 

4.3.4. Sensibility analysis to different variables 

First, the effect of the situation of the failing traffic counts will be analyzed. 

Second, what happens when certain points of the network have not been 

counted? Finally, the sensitivity to the number of not counted data in the 

network will be analyzed (with approximately 50% more and 50% less points 

not counted). 
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Percentage 
simulated 

error 

Error is detected Error is pointed out 
and gets by hmin 

Error is pointed out 
and gets by 2 nd hmin 

center edge center edge center edge 

75 492 500 426 500 24 0 

50 474 500 340 486 49 6 

25 419 500 227 428 32 25 

10 205 466 90 249 11 45 

Table 7. Results for center and edge detectors with a simulated error of 75, 50, 25 and 
10% 

Effect of the situation of the failing detector 

How does the sensitivity depend on which detector is malfunctioning? In 

order to analyze the method’s sensitivity to the detector position, a selective 

choosing of the malfunctioning detector has been made. At first stage, for each 

scenario, the model was forced to choose an edge detector, (S1, S2,. . . , S21, or 

b1 in Figure 13), and at second stage the central ones (the remaining detectors) 

have been chosen to be failing. Table 7 shows the results. 

The method detects an error on the edge of the network better than when 

the detector is situated in the center. This is logical due to the following reason: 

when an edge detector is getting an inadmissible error, while the rest adjacent 

measurements are corrects, must significantly modify its value in order to reach 

network consistency. That is because a small amount of adjacent detectors 

exists which can be modified within the margin established by the feasible 

region. On the other hand, a major modification of these adjacent detectors 

makes the constraints able to be affected; therefore the ∑ ℎ		  is reduced. The 

target function forces to modify the one that is giving an erroneous 

measurement. 

While, for center detectors, the measurements are linked to more variables 

that can be modified within the feasible region. So, for an inadmissible small 

error (around 10%) is easier to count on the adjacent values margin and move 

all of them, in order to get all measures within its feasible region, than a big 

change in the malfunctioning detector. 
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Effect of points that are not counted  

In this subsection the effect of movements that have not been counted is 

analysed. 

Presumably, the network in Figure 13 shows seven movements that have 

not been counted (movements c2, c3, c4, d9, d10, d11 and d12). This implies 

around 8% of all the movements in the network. This percentage is considered 

normal in counting campaigns in a traffic network (Zhong et al, 2004). A case 

consisting of 500 random examples is simulated below, in which the number of 

not measured movements is increased 50% (10 not measured movements), 

followed by a case in which the number of not measured points is diminished in 

50% (4 not measured movements) . 

Table 8 and Figure 14 show a comparison between the results obtained in 

the study with 4 hypotheses (all measured data, 4, 7, and 10 not measured 

data). In Figure 14 the x-axis represents the simulated distortions for the 

measurement device and the y-axis represents the proportion of times the error 

is detected. 

Percentage 
simulated 

error 

 Error is detected Error is pointed out 
and gets by h min  

Error is pointed out 
and gets by 2 nd hmin  

Error is 
pointed out  

Number 
of times 

(A) 

Proportion 
A/500 

Number 
of times 

(B) 

Proportion 
B/500 

Number 
of times 

(C) 

Proportion 
C/500 

Success 
proportion 
(B+C)/500 

4  not measured movements (50% less) 

75 466 0.932 397 0.794 27 0.054 0.848 

50 447 0.894 353 0.706 36 0.072 0.778 

25 391 0.782 234 0.468 38 0.076 0.544 

10 242 0.484 95 0.190 29 0.058 0.248 
7  not measured movements 

75 449 0.898 374 0.748 30 0.060 0.808 

50 425 0.850 315 0.630 42 0.084 0.714 

25 351 0.702 201 0.402 28 0.056 0.458 

10 226 0.452 100 0.200 30 0.060 0.260 
10 not measured movements (50% more) 

75 418 0.836 360 0.720 22 0.044 0.764 

50 372 0.744 282 0.564 35 0.070 0.634 

25 338 0.676 211 0.422 29 0.058 0.480 

10 203 0.406 87 0.174 28 0.056 0.230 

Table 8. Results with a simulated error of 75, 50, 25 and 10% with four, seven and ten not 
measured movements. 
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Taking column 3 (A/500) in Tables 6 and 8 into consideration, a 

comparison can be made about the number of times an error is detected in 

each case. Table 8 shows that the ratio of errors detected for the simulated 

scenarios gradually diminish when there is less measured data available (i.e. 

less information). 

From Figure 14, Tables 6 and 8, it is possible to analyze the model’s 

sensitivity to the number of not measured movements in a case where all the 

data from all the TCS (i.e. all measured data) is available. 

 

Figure 14. Sensitivity analysis of success versus increase in the number of data not 
measured. 

The x-axis represents the simulated percentage of the device error (10, 

25, 50 and 75%) and the y-axis data shows the percentage of success for every 

case, in comparison with the one in which all the data are measured. In the 

event that a 75% error occurs in a detector, for instance, the chart will show that 

the model presented in this paper is 93% successful if 4 network data are not 

measured, 90% if 7 network data are not measured, and 84% if 10 data are not 

measured. 

Thus, the conclusion would be that the model gives good success results 

even when the number of not measured data increases, although, obviously, 

when more data is available, the more it improves. 
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Combined effect of the size of the error and the number of points that are 

not counted 

Figure 14 shows the ascending trend of the ratio when a detector’s error 

increases in all the hypotheses. The trend is even more pronounced when it 

moves from an error close to the detector’s tolerance range (such as 10%) to 

around 25%, after which the detector’s behaviour is asymptotic, reaching an 

error ratio within the range 0.9-1 for the biggest device error simulated. In other 

words, when the error exceeds the threshold at around 25%, it can be asserted 

that the model succeeds in around 90% of the cases. 

In figure 14 the 1-σ errors bars have been included in order to show 

conclusions do not owe to random. 

Percentage 
of simulated 

error 

All movements 
are measured 

4 not measured 
movements 

7 not measured 
movements 

10 not measured 
movements 

Proportion  σ Proportion  σ Proportion  σ Proportion  σ 

75 0.982 0.006 0.932 0.011 0.898 0.014 0.836 0.017 

50 0.972 0.007 0.894 0.014 0.850 0.016 0.744 0.020 

25 0.876 0.015 0.782 0.018 0.702 0.020 0.676 0.021 

10 0.532 0.022 0.484 0.022 0.452 0.022 0.406 0.022 

Table 9. Ratios calculated for every scenario providing the standard deviation 

Table 9 showed the ratios (or proportion of success, pi) at which error is 

detected in every scenario. To demonstrate that the model’s proportion of 

success increases when more data are measured (pi+1 < pi) and that the 

observed results are not due to chance, a hypotheses of proportional difference 

was tested at a significance level of 5%, taking Ni+1 = Ni = 500. See Anderson 

and Sclove, (1986) and Mendenhall and Sincich (1988). 

Three statistical tests were conducted to compare the three hypotheses in 

groups of two. That is, firstly hypothesis of all movement measured was tested 

versus 4 not measured movements, the case of 4 not measured movements 

versus 7 not measured data, and lastly, 7 not measured data were tested 

versus 10 not measured data. The gH�h = h�4h�iFj  is calculated and compared 

with the Ztheoretical = 1.645, it determines the significant region (Zexp > 1.645). The 

results are given in Table 10. 
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It is found that pi+1 < pi in all cases and statistically significant results are 

obtained for the cases of 75, 50 and 25% error in the first and second tests, and 

in the third one the results are significant after the 50% error. 

Therefore, it can be asserted that the success proportion improves with 

the number of counted data and this fact is not due to chance. 

% error  pi pi+1 Z exp 

All movements measured vs 4 not measured movements 
75 0.9820 0.9320 3.92711065 
50 0.9720 0.8940 4.99384767 
25 0.8760 0.7820 3.97862436 
10 0.5320 0.4840 1.51983992 

4 vs 7 not measured movements  
75 0.9320 0.8980 1.93124468 
50 0.8940 0.8500 2.0869071 
25 0.7820 0.7020 2.90315821 
10 0.4840 0.4520 1.01452938 

7 vs 10 not measured movements  
75 0.8980 0.8360 2.89896925 
50 0.8500 0.7440 4.20341134 
25 0.7020 0.6760 0.8884334 
10 0.4520 0.4060 1.47112841 

Table 10. Test of hypotheses. Significant cases in bold. 

 
4.3.5. Summary and Conclusions 

This paper presents a method for detecting inadmissible errors in TCS and 

identifying which device is more likely to be failing. The method is based on a 

double linear optimization process that can easily be solved with existing 

software on the market, and which we consider highly useful for practitioners.  

If the method detects the existence of an inadmissible error in the TCS’ 

measurements when the first linear optimization is used, a second optimization 

can be used so the method can obtain the detector that is most likely to be 

failing (the one that obtains the mini hi). This facilitates to replace or fix them for 

obtaining adjusted data.  

Four different cases of potential errors were simulated in order to identify 

the effects on the method (deviations of 10%, 25%, 50% and 75%). The results 
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show that the method works better with bigger errors (75%), which are more 

frequent when dealing with malfunctioning detectors, than with small errors 

(10%), close to the TCS’s tolerance (3%). For deviations of around 25% of their 

theoretical value, the method is 88% efficient for detecting that there is an error 

in the measures. The efficiency in identifying a failing detector can be 

considered good (over 90%) when the error is over 75% of the deviation, and 

diminishes as the errors become smaller. 

The same tolerance was considered for all the TCS (3%), but the model is 

versatile and allows assigning a different tolerance to each detector according 

to its type and level of precision. 

Finally, a statistical test has been conducted to demonstrate that the 

increase in the number of times an error is detected when more movement 

counts were obtained as opposed to a gradually decreasing number of times is 

not due to chance. This serves to assert that the results are significant and the 

size of the sample selected is sufficient to corroborate the conclusions arrived at 

in this paper. 

Usually studies perform automated data checking by comparing measured 

data to historical data for consistency Lin et al. (2012). Sometimes, however, 

there are no historical data and only the observed database is available. This is 

when the method proposed in this paper becomes a good tool for detecting 

errors, since the only incoming data required are the observed data, with no 

need for preprocessing. Actually, both approaches could be considered as 

complementary: it is possible to use fundamental and network consistency for 

detecting inadmissible errors and, historical consistency as alarm signal. 
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4.4. Adjustment boarding and alighting passengers on a bus transit line 

using qualitative information 
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Applications 92 18 Q1 
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The preliminary results of this work were presented at the X Transport 

Engineering Conference (CIT2012) held in Granada, June 20-22th 2012. 

Abstract 

Obtaining data to use in an urban public transport operation planning and 

analysis is problematic, specifically in urban bus transit lines. Most ticketing 

methods can be used to record passengers getting on board but not getting off, 

and current methods are unable to make a proper adjustment of boardings and 

alightings based on the available data unless they do alighting counts. This 

paper presents a method whereby counts are made at fewer stops and 

qualitative information on alightings and/or vehicle loads between consecutive 

stops is used to make the boarding and alighting adjustment as a previous step 

to obtain the real O/D of passengers allowing the O/D matrix calibration by 

using the loads among stops. Qualitative information can be obtained by the 

vehicle's driver or an on board observer, avoiding the necessity of counting 

many stops in planning period. The method is applied to a real transit line in 

Malaga (Spain) and to a set of 50 different transit lines with number of stops 
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ranging from 10 to 75. The results show that the proposed method reduces the 

adjustment errors with regard to traditional methods, such as Least Square 

Method, even in the situation where no qualitative information is used. When 

qualitative data is used on alightings and loadings, the reduction of the average 

error is over 50%. 

Keywords : fuzzy optimization; transport planning; public transport 

4.4.1. Introduction 

When planning public transport, it is crucial to know the real O/D of 

passengers. Surveys about the starting point and destination of travelers are 

mandatory to obtain the real O/D matrix at every transport system. Once the 

former is configured, it has to be calibrated with collected or measured data. For 

that aim, the loads among transit line stops are used, and to get them, in and 

out movements of passengers at each stop along a transit line are required. On 

the other side, loads become crucial in the operation activities, such as when 

deciding if an additional vehicle is required because the maximum load has 

been overtaken at peak time, helping to adapt the service to the demand as 

much as possible. Regarding to urban transit buses, collecting data on 

passenger boardings has progressed with the new electronic ticketing systems, 

like the smart card as a payment option as can be seen in the literature review 

made by Pelletier et al. (2011), and thanks to the increased sophistication of 

mobile communication technologies (Blythe, 2004). Smart cards improve the 

quality of data (Dempsey, 2008) and the ticket validation systems provide 

information on the number of boardings. Therefore, the information is quite 

accurate and the only errors are due to potential device failures. 

However, the systems cannot be used to obtain data on the number of 

alightings, so passenger detection systems and surveyors on board or at the 

stops are needed for that purpose. Several surveyors may be needed if there 

are several exits and high passenger volumes. Such data collection is much 

more costly and subject to more errors than boarding counts, so improved 

techniques for collecting data on transit operation are essential to improvements 

in transit operating efficiency. Two-time mode cards have been adopted in 
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certain exceptional cases (Qing et al., 2009) (i.e. Beijing Municipal Government 

Public Traffic) to record where passengers board and alight. Card scanners are 

placed at the entrance and at the exit, but the systems are not used on most of 

transport services at a global level, passenger tickets need to be scanned twice 

which means double investment. 

New emerging technologies are being developed, such as images 

recognition, weight sensors or counting sensors, but so far the pilot project 

experiences have failed because they still present too many errors (i.e. open 

field, shadows, partial vision, etc ) and it seems to give erroneous information, 

which at the end must be used as fuzzy data, that no traditional method is able 

to work with. 

It is important to remember that in both, the case of interurban and 

underground transport systems, where passengers buy ticket before boarding 

and in most cases in underground network the passengers must scan their 

tickets before they exit, this method would be useless. But it still remains a wide 

field to be applied on bus urban or metropolitan transit lines worldwide. 

4.4.2. Background 

Several methods have been developed to adjust data on a transit line 

when both boarding and alighting data are available (Kikuchi et al., 2000). In 

general, all methods seek to narrow the gap between observed values and 

adjusted values as much as possible, subject to contour conditions. 

The existing methods can be classified into two groups, depending on the 

nature of the observed values and how they are processed: 

• Group One: The adjusted values are based on their closeness to the 

observed values. The methods used are: the least squares method (LSM); the 

maximum likelihood adjustment; and the fuzzy regression adjustment (Kikuchi 

and Miljkovic, 1999). In addition to the above methods, other authors have 

defined a stochastic method in which it is assumed that passenger boardings 

follow a Poisson distribution and the number of passengers alighting follows a 

binomial distribution (Chen, 2002). 
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• Group Two: These methods assume that the observed value is 

approximate and that the adjusted value is within a range created around the 

observed values. This group can include fuzzy optimization and the required 

interval regression adjustment. Using the fuzzy sets theory, fuzzy optimization 

adjustments allow soft constraints to be added to the relationships between 

volumes at transport nodes, seeking data reliability and the relationships 

between volumes. The adjustment with the required interval regression seeks 

the adjusted value within a crisp contour. This method is appropriate for those 

cases in which the analyst does not trust the accuracy of the observed data. 

All the above methods require quantitative data to be able to make the 

adjustment, and obtaining such data is expensive. On the other hand, 

information on vehicle loads between stops is not often used to make the 

adjustment between boarding and alighting data. Rather, it is the final output of 

the adjustment. 

At almost no extra effort, qualitative information on the number of 

passengers who alight at a stop or on loads between stops on a transit line 

could be obtained, along the lines such as: a few passengers, many 

passengers, half the load, or I don't know how many alighted at stop xi; the bus 

was half full, almost empty or half full between stop xi and xi+1. 

The above-mentioned methods are not able to use qualitative information, 

however. Although the methods in Group Two use fuzzy logic, they are based 

on quantitative values, so they can only be applied if a quantitative value is 

assigned to each observed value. Doing so would add an element of 

randomness to the results obtained. To explain this, let us suppose that there 

are five stops on a line and the boarding data is available (80, 20, 20, 20, 0) but 

the number of passengers alighting could not be quantified. To be able to apply 

the existing methods, a quantitative value would need to be assigned to each 

alighting. If that information is not available, one analyst could suppose that (0, 

0, 0, 0, 140) have alighted, whereas another analyst might suppose (0, 80, 20, 

20, 20). The results obtained by both analysts would be completely different. 
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In this paper, we present a new method that uses fuzzy optimization 

based on qualitative information about the number of passengers alighting at 

each stop and about the vehicle load between stops. The aim of the method is 

to use this information to enhance boarding and alighting adjustments, with two 

possibilities: 

• One, the information on the alightings provided by surveyors 

(quantitative, at a high effort and cost) could be replaced by qualitative 

information on the number of passengers who alight at each stop and on the 

vehicle load between stops, which could be provided by the vehicle's driver. 

This would dispense with the need to hire surveyors to do the job, with the 

resulting financial saving. 

• Two, to see the percentage of alightings that would not need to be 

counted while retaining the adjustment's accuracy, if we used qualitative 

information on the vehicle load between stops provided by the vehicle's driver. 

This paper is organized as follows: Section 2 describes the method and 

the computational issues; in Section 3 the method is applied to a real transit line 

and, in order to verify the results, it is applied to a set of different types of lines; 

Section 4 discuss results; and, finally, Section 5 presents the main conclusions 

of the paper. 

4.4.3. Theoretical Approach 

Description of the problem 

Given a transit line with N stops, we want to adjust passenger boardings 

and alightings at each stop, as well as the loads between two consecutive 

stops, based on information obtained by several different methods, in such a 

way that the following basic principles of flow conservation are met: 

• the total number of boarding passengers should be equal to the 

total number of alighting passengers, and 
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• the number of passengers on board between stops k and k+1 

should be greater than zero and less than the vehicle capacity 

(Lmax) 

The initial variables and data for solving the problem are the values for 

passenger boardings and alightings, vehicle loads between stops and Lmax. 

The data collection can provide several types of information: quantitative 

numerical data (precise integer values or with an error), qualitative data (many, 

a few, etc.) or missing data (no information is available on the value adopted by 

a specific variable). 

e) Fix Number f) Crisp Number 
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Figure 15. Membership functions for (a) fix number, (b) crisp number, (c) fuzzy information 
and (d) missing value 
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Passenger boardings: these are obtained by the ticket sales method, so 

it can be assumed that there are no errors and therefore the values are deemed 

to be exact fixed integers. In a context of scarce information, the few data with 

small or null error (only in the case of potential failures in the devices) will be 

considered as fixed data. 

Passenger alightings: depending on the method used for data collection, 

it can be quantitative numerical data with errors (from counts), qualitative 

information (from the perception of and analyst or driver), or missing information 

(when no information is available). 

Vehicle load between stops : it may be considered as qualitative 

information (from the perception of an analyst or driver) or missing (if an analyst 

or driver has not additional information on loads). 

Capacity of the vehicle (L max): it is considered to be a fixed numerical 

value, used as a framework for establishing the different categories of 

qualitative information (many, some, few, etc.). 

The proposed method 

The first step to solve this problem is to use membership functions to 

represent the above concepts. Figure 15 shows the membership functions for 

four concepts: fixed number (quantitative information with no error); crisp 

number (quantitative information with errors); fuzzy information (qualitative 

information) and; missing value.  

A membership function is convenient for representing the idea that the 

adjusted value should be “close” to the observed value and the acceptability of 

the adjusted value “gradually” diminishes as it deviates farther from the 

observed value. A large volume of literature is available on interpretations and 

applications of fuzzy sets and membership functions, including the work of 

Tanaka (1990), Yager and Filev (1994), Zimmermann (1996), and Klir and 

Wierman (1999). 

Here triangular-shaped membership functions are assumed, following the 

discussion made by other authors about the use of full fuzzy linear 
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programming using symmetric triangular fuzzy number (Lotfi et al., 2009). This 

representation is convenient computationally (a linear program can be used) 

and is consistent with uncertainty about the “most probable” value. Given an 

observed value ( obs

i
x ) and its tolerance (αi) (usually expressed as a percentage 

of the observed value), Eq. 19 defines the membership function. However, if 

additional information about the character of the observed value is available, the 

shape of the membership function could be modified. 

  hi(xi)= max{0, 1-
3��4�����38��� }          (19) 

xi is the adjusted value for the i-th variable. That is: ∀i; xi ∈ [ -αi obs

i
x , 

+αi obs

i
x ]. αi may have a different value for each observed value, depending 

on how reliable it is (the less reliable the input data is, the higher it will be). 

Cases (a) and (d) in Figure 15 are specific cases of case (b). A fixed 

number αi=0 forces its value to be kept after the adjustment, i.e. = xi. In the 

case of a missing value hi(xi)=1 in (0, Lmax), where hi(xi) is the membership 

grade. 

The mathematical problem that needs to be solved in order to find the 

solution is: 

Given a set of observed values { obs

i
x } i∈Ib∪Ia∪IL=I, (where I is a set of 

indexes, and Ib, Ia and IL are the number of boardings, alightings and loads 

respectively) each with a tolerance of αi, we define the feasible region as the set 

A ⊂Rn, such that ∀ x
r  = {xi}∈ A where the following conditions are satisfied: 

1.  obs

i
x  -αi 

obs

i
x  ≤ xi ≤ obs

i
x  + αi obs

i
x  . Where obs

i
x  is the number of 

passengers who have observed boarding or alighting  at stop i and xi is the 

adjusted value based on the observed value i. 

obs

i
x

obs

i
x

obs

i
x
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2. Vector xr  verifies flow conservation law: ∑∑
∈∈

=
II ab i

i
i

i xx    

Assuming obs

i
x  ≥ 0, ∀i ∈ I, this adjustment becomes a problem of finding 

out the best solution to the linear optimization problem proposed. The 

methodology proposed comprises two steps and was already introduced by the 

authors in de Oña et al. (2011): 

Step 1:  The problem is solved using MaxMin Method (MM method), (Eq. 

20), and we obtain a value of h=min(hi). 

Max(h) where h is min(hi)            (20) 

Subject to 

Constraints related to the membership functions: 

  hi(xi) ≥ h    for i=1, 2, …, 3N         (21) 

Where N is the number of transit stops, which means there are 2N+N 

constraints  

Constraints related to the conservation of flow in the transit line:  

  
∑∑
∈∈

=
II ab i

i
i

i xx ;      for i=1, 2, …, 3N,          (22) 

where N is the number of transit stops 

Constraints related to vehicle conditions: 

  lk≥0 and lk≤Lmax            (23) 

where lk is the number of passengers on board between stops k and k+1 

and Lmax is maximum vehicle load. 

Once, the Step 1 is finished, the optimum value for h=h* is recorded. 

Step 2:  The problem is solved using the Maximum Sum Method (MS 

method) (Eq. 24): 



Chapter 4: ARTICLES 

101 

Max(g) where g is sum(hi)           (24) 

Subject to the same constraints related to the conservation of flow at the 

transit line (Eqs. 22 and 23), and to the following constraints related to the 

membership functions: 

  hi(xi) ≥ h*    for i=1, 2, …, 3N         (25) 

The total number of unknowns in Step 2 is reduced by one compared to 

Step 1.  

The main difference here with regard to existing models is that now the 

input data can be qualitative, and the proposed method is able to preprocess 

them by assigning them a membership function in order to be processed in the 

same way as the crisp data. 

The benefit of transforming the problem into a linear programming problem 

is being able to count on multiple and optimized routines for the solution 

(Linprog, 2011; Lotfi et al., 2009). 

4.4.4.  Data, Methodology and Statistical Analysis 

In this section, the proposed method is applied to a real transit line in 

Malaga to analyze the results. Furthermore, to generalize and validate the 

results the method is applied to a set of different lines with different number of 

stops, different boardings, alightings and load data, that have been generated 

specifically for this purpose. Depending on the amount of qualitative information 

available, different scenarios are considered and analyzed. 

Example 1: transit line in Malaga 

Figure 16 shows line number 20 in Malaga (Spain). This transit line runs 

between the City Centre of Malaga (Alameda Principal) to the west area of the 

city (University). It is 10.6 km long and presents 21 bus stops. Table 11 shows 

the true boarding and alighting data (True Value, true

i
x ) for bus number 541. The 

consistency of the data can be verified: data comply with flow conservation 



Chapter 4: ARTICLES 

102 

along the line, so the sum of boarding passengers is equal to the sum of 

alighting passengers on the transit line (Eq. 22).  

 

Figure 16. Example of a transit line in Malaga 

STOP STOP ID 
EMTSAM BOARDING ALIGHTING LOAD 

1 2301 45 0 45 

2 2009 17 2 60 

3 1403 4 3 61 

4 1404 10 2 69 

5 1405 4 1 72 

6 2003 15 2 85 

7 2007 0 11 74 

8 833 0 24 50 

9 818 0 37 13 

10 2056 0 8 5 

11 2056 2 2 5 

12 850 0 1 4 

13 832 4 3 5 

14 2058 1 2 4 

15 2059 2 0 6 

16 2055 6 1 11 

17 1460 1 3 9 

18 1461 3 0 12 

19 1462 0 2 10 

20 1463 0 3 7 

21 2301 0 7 0 

Table 11. Alightings and boardings true values for a transit line in Malaga 
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From this consistent data we randomly deform values ±25% for the 

alightings and ±20% for the loads between stops, keeping the boarding fixed. 

The maximum load for the articulated buses used in this line is 100 passengers. 

Having obtained a database within the above-mentioned tolerance, it 

could then be considered as the data that would be obtained in a counting 

campaign in which all 60 potential boardings, alightings and loads would be 

measured. Therefore, it could be taken as the series of observed data in a 

public transit line (Observed Values, �	���). In this case, the values would not be 

consistent; according to the above definition (the sum of boarding passengers is 

equal to the sum of alighting passengers on the transit line). In order to state 

conclusions about the goodness of the method, this process was repeated 

1,000 times Therefore, from the true consistent data �	kGlH (see Table 11), 1,000 

random databases were generated to be used as the potential observed data in 

different tours of the line or different hourly base. 

The fact that a base of consistent data is used and subsequently randomly 

distorted allows verifying the goodness of fit of the proposed method. 

Examples to validate and generalize the results 

In order to verify that the results obtained can be generalized to any transit 

line, the method is also applied to a set of 50 different lines, where the number 

of stops is chosen within the range (10, 75). The procedure was the following: 

The number of stops is defined and a fictitious transit line is generated 

with a set of boardings, alightings and loads. Apart from the number of stops, 

the conditions that boardings, alightings and loads verify the constraints related 

to the conservation of flow (Eq. 22) and related to vehicle conditions (Eq. 23) 

are imposed. This database is used to verify the goodness of fit of the method 

(see following Sections). 

In every fictitious transit line, the consistent data generated is randomly 

deform in the same way and with the same tolerance as it was for the transit 

line in Malaga (see Section above): ±25% for the alightings; ±20% for the loads 

between stops, keeping the boardings fixed. These boardings, alightings and 
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loads, do not satisfy the conditions defined by Eq. 22 and 23, and are 

considered as the data that would be obtained during a conventional data 

collection, and they are the input for the model. 

In the aim of considering different tours of the same line, different hourly or 

daily volumes along the line, or even different lines; for every fictitious transit 

line in Step 1 (50 lines) 100 potential boardings, alighting and loads database 

are obtained.  

So, to generalize and validate the proposed method we will apply it to 

5,000 different transit lines with a number of stops between 10 and 75.  

Scenarios 

As pointed in the above Section, it is considered that quantitative 

information on the passengers boarding at all stops is available and these 

values are assumed to be exact fixed integers. Furthermore, it is considered 

that quantitative information on the alightings in some of the stops is also 

available.  

Depending on the remaining amount of qualitative and quantitative 

information available on alightings (A) and on loads (L) different scenarios are 

considered: 

No further qualitative information is available on the remaining alightings 

and loads: missing alighting (MA) and missing loads (ML) 

Qualitative information is available on the alightings (FA) where no 

quantitative information exist  

Qualitative information is available on the vehicle loads (FL) between 

successive stops  

Qualitative information is available on alightings (FA) and also on vehicle 

loads (FL). 
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In the case of the transit line in Malaga 40 scenarios are considered (see 

Table 12). To analyse the 5,000 transit lines for generalization and validation of 

the method, 12 scenarios are considered (bold scenarios in Table 12). 

Cases ML/MA Cases ML/FA Cases FL/MA Cases FL/FA 

ML/20MA ML/20FA FL/20MA FL/20FA 

ML/25MA ML/25FA FL/25MA FL/25FA 

ML/30MA ML/30FA FL/30MA FL/30FA 

ML/40MA ML/40FA FL/40MA FL/40FA 

ML/45MA ML/45FA FL/45MA FL/45FA 

ML/50MA ML/50FA FL/50MA FL/50FA 

ML/60MA ML/60FA FL/60MA FL/60FA 

ML/75MA ML/75FA FL/75MA FL/75FA 

ML/80MA ML/80FA FL/80MA FL/80FA 

ML/90MA ML/90FA FL/90MA FL/90FA 
Note: ML: missing load; FL: fuzzy load; MA: missing alightings; FA: fuzzy alightings; 
xxMA: xx% of missing alightings, (100-xx)% of alightings crisp; 
xxFA: xx% of alightings fuzzy, (100-xx)% of alightings crisp 

Table 12. Scenarios definition 

In Table 12, ML means that all the loads are missing; FL means that we 

have qualitative information on all the loads; xxMA represents the case that a 

percentage xx of the alightings are missing; and xxFA represents the case that 

we have qualitative information about a percentage xx of the alightings. 

Boardings were considered as fixed data in all cases. 

Statistical Methods 

Conventional statistical parameters are used in order to compare the 

results of the different scenarios such as: average error, standard deviation, 

minimum and maximum error, and analysis of the variance (ANOVA).  

None of the existing methods in the literature is able to process qualitative 

data for alightings and loads (FA or FL). Therefore, in the scenarios (b), (c) or 

(d) they miss a lot of information and they are expected to provide worse 

results. For comparison purposes, we use the Least Square Method (LSM) as 

benchmark. LSM uses only quantitative data, so it is applied and only compared 

with the 10 Cases ML/MA (see Table 12). 
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In both cases under study (one in the case of the transit line in Malaga; 

and 50 for validation and generalization of the method) the true boarding and 

alighting data (�	kGlH) are used as reference to calculate the error that occurs in 

every database of non-consistent boardings, alightings and loads, in every 

scenario. Eq. 26 define the absolute error (ε) for the consistent adjusted values 

(xi) in relation to �	kGlH for each line with a certain combination of non-consistent 

boardings, alightings and loads. ε is defined as the average distance between xi 

and true

i
x , where n is the number of values observed. ε is calculated using only 

the alightings, since the boardings were considered to be fixed (i.e. with no 

errors). If it is capable of obtaining good adjusted values for the alightings, the 

loads can be obtained by the difference and it can be asserted that the 

adjustment was good.  

m = ∑ _��4��nopq_r�st u   (26) 

The average error, the standard error deviation, the minimum and 

maximum error can be obtained from ε. Table 13 shows the average errors 

obtained from ε committed in the 1,000 defined cases in Example 1, under the 

40 different scenarios. Furthermore, this Table 13 also shows the average 

errors when LSM is used under the 10 aforementioned scenarios. 

Table 13 shows the average error, the standard error deviation, the 

minimum and maximum error in the case of validation and generalization of the 

method. These values are obtained from ε using the 5,000 cases under study 

for the 12 different scenarios. Table 13 also shows the results when LSM is 

used. 

The statistical analysis has been completed by means of analysis of 

variance (ANOVA), on a quantitative dependent variable (average error) and 

the independent variables (factors). ANOVA is used to test the hypothesis that 

several means are not the same. In our analysis we performed one- and two-

way ANOVA. In addition to determining that differences between the means 

exist, several post-hoc LSD tests were considered on factor levels. The factors 

considered are: for one-way ANOVA, the scenario; and for two-way ANOVA, 
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the percentage of crispy alightings (10%, 40% and 70%), the fuzzy alightings 

(yes or no) and the fuzzy loads (yes or no). Interactions between factors were 

also considered, in order to determine if the presence/absence of a factor level 

increases/decreases the effect on the response variable (average error). Study 

of Residuals and Bartlett tests were performed for checking assumptions of 

normality and homoscedasticity, respectively. Calculations were performed 

using R-statistical program. 

4.4.5. Results and Discussion. 

The procedure starts using fuzzy functions to code the qualitative 

information obtained by the analyst or driver. To that end, a fuzzy class and a 

triangular type membership function is assigned to each one of the qualitative 

concepts for loads and alightings, and the analyst is asked to provide 

information according to that coding. Figure 17 shows the membership 

functions of the load and of the alightings in a bus carrying 100 passengers. 

 

Figure 17. Membership functions of loads and alightings in a transit line 
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Table 13 shows the results for the 40 scenarios in the transit line in 

Malaga. The values in Table 13 represent the average error (n=1,000) for each 

scenario. Figure 18 shows the results in Table 13 graphically. 

LSM Cases ML/MA Cases ML/FA Cases FL/MA Cases FL/FA 

CASE εεεε    CASE εεεε     CASE εεεε    CASE εεεε    CASE εεεε    

ML/20MA 2.13 ML/20MA 1.90 ML/20FA 0.91 FL/20MA 0.90 FL/20FA 0.82 

ML/25MA 2.70 ML/25MA 2.31 ML/25FA 0.97 FL/25MA 1.00 FL/25FA 0.88 

ML/30MA 3.16 ML/30MA 2.62 ML/30FA 1.00 FL/30MA 1.11 FL/30FA 0.90 

ML/40MA 4.11 ML/40MA 3.28 ML/40FA 1.10 FL/40MA 1.33 FL/40FA 0.96 

ML/45MA 4.50 ML/45MA 3.54 ML/45FA 1.14 FL/45MA 1.41 FL/45FA 0.99 

ML/50MA 4.96 ML/50MA 3.84 ML/50FA 1.18 FL/50MA 1.52 FL/50FA 1.01 

ML/60MA 5.75 ML/60MA 4.37 ML/60FA 1.28 FL/60MA 1.72 FL/60FA 1.07 

ML/75MA 6.87 ML/75MA 5.21 ML/75FA 1.35 FL/75MA 2.05 FL/75FA 1.09 

ML/80MA 7.24 ML/80MA 5.49 ML/80FA 1.39 FL/80MA 2.17 FL/80FA 1.12 

ML/90MA 7.93 ML/90MA 6.02 ML/90FA 1.47 FL/90MA 2.40 FL/90FA 1.20 

Table 13. Results for the 40 different scenarios of 1,000 examples 

 

Figure 18. Error evolution 
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The error is gradually lowered in all cases as the percentage of 

quantitative information on the alightings increases (e.g. for the LSM, the error 

diminishes 50% when it goes from 10% to 60% of quantitative data on 

alighting). 

The LSM shows the largest errors for the same level of quantitative 

information on alightings. 

The more qualitative information is used, the more the average error 

diminishes (from the ML/MA cases to the FL/FA cases). 

The less quantitative information there is, the greater the effect of 

qualitative information on the average error. The separation between the curves 

in Figure 18 is much greater when only 10% of crisp alightings are available 

than when 80% are available. 

Results in Table 13 show that the larger errors occur when LSM is used 

(column 1), followed by the results obtained when the method proposed in this 

paper is used with no qualitative information available, cases ML/MA (column 

2). The smallest errors are committed when the proposed method is used with 

qualitative information available on alightings and on loads, cases FL/FA 

(column 5). However, the results for the remaining cases, (where only 

qualitative information is available on the alightings, cases ML/FA, or on the 

loads, cases FL/MA) are very similar and results are not conclusive based on 

the analysis of just one transit line. 

Table 14 shows the results based on the analysis using 50 different transit 

lines with a number of stops ranging from 10 to 75. 100 possible combinations 

of non-consistent boardings, alightings and loads have been used for each one 

of the 50 lines. These combinations data have been adjusted by using the 

proposed method (n=5,000) under the 12 scenarios considered (bold scenarios 

in Table 12). In order to compare the results, the 3 scenarios that do not 

consider qualitative information have been adjusted by using the LSM. 15 cases 

are compared in total (3 scenarios with LSM and 12 scenarios with the 

proposed method). 
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%crisp 

alightments  
%fuzzy 

alightments  
fuzzy 
loads 

No. 
Cases 

Average 
Error 

Standard 
Dev Min Max 

Total       75,000 4.86 2.32 1.00 15.33 

Least Squared Method (LSM) 

ML/90MA 10% 0% N 5,000 9.95 a 1.47 5.76 15.33 

ML/60MA 40% 0% N 5,000 7.98 b 1.35 4.16 14.33 

ML/30MA 70% 0% N 5,000 5.61 c 1.10 2.22 11.89 

Proposed Method 

ML/90MA 10% 0% N 5,000 7.59 d 1.01 4.13 12.70 

ML/60MA 40% 0% N 5,000 5.90 e 0.84 2.80 10.78 

ML/30MA 70% 0% N 5,000 4.27 f 0.68 1.67 8.00 

ML/90FA 10% 90% N 5,000 3.45 g 0.53 1.83 6.60 

ML/60FA 40% 60% N 5,000 3.12 h 0.53 1.42 6.10 

ML/30FA 70% 30% N 5,000 2.75 i 0.53 1.00 6.10 

FL/90MA 10% 0% Y 5,000 5.70 j 1.11 2.24 10.78 

FL/60MA 40% 0% Y 5,000 4.43 k 0.87 1.52 8.24 

FL/30MA 70% 0% Y 5,000 3.37 l 0.65 1.25 6.24 

FL/90MA 10% 90% Y 5,000 3.06 m 0.49 1.55 5.46 

FL/60MA 40% 60% Y 5,000 2.90 n 0.49 1.45 5.10 

FL/30MA 70% 30% Y 5,000 2.74 i 0.49 1 5.10 

Table 14. Results (average error, standard deviation, min, max, and one-factor ANOVA) 
for 3 scenarios with LSM and 12 scenarios with the proposed method (n=5,000) 

In global terms, for all cases (n=75,000), the average error is 4.86, the 

standard deviation is 2.32, and the minimum and maximum errors are 1.00 and 

15.33 respectively.  

When the same percentage of crisp alightings is considered (10, 40 or 

70%), LSM produces larger average error, standard deviation, minimum and 

maximum error. The average error ranges from 5.61 for 70% of crisp alightings 

to 9.95 for 10% of crisp alightings. The standard deviation ranges from 1.10 to 

1.47 (for 70% and 10% of crisp alightings), and the error ranges from 2.22 for 

70% of crisp alightings (minimum value) to 15.33 for 10% (maximum value). 

From the average error point of view, LSM is followed by the proposed 

method when no qualitative information is used (ML/MA). The proposed method 

when only qualitative information on loads is used (FL/MA) is placed the third. In 

fourth place, when qualitative information on alightings is used (ML/FA) and, 

finally, the proposed method with qualitative information on both alightings and 

loads (FL/FA) is the one that produces the smallest average error. For the 
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proposed method, the average error ranges from 2.74 for FL/30FA to 7.59 for 

ML/90MA; the standard deviation ranges from 0.49 for cases FL/FA to 1.11 for 

FL/90MA; and the error ranges from 1.00 for ML/30FA and FL/30FA (minimum 

value) to 12.70 for ML/90MA (maximum value). 

The LSD test shows that the scenario has a statistically significant 

(p<0.05) effect on the average error. 14 different groups were identified (almost 

one group for each one of the 15 cases being compared). Only the scenarios 

ML/30FA and FL/30FA show homogeneous groups.  

No.Cases Average Error 

Total 60,000 4.11 

Fuzzy Alightments 

NO 30,000 5.21 a 

YES 30,000 3.00 b 

Fuzzy Loads 

NO 30,000 4.51 a 

YES 30,000 3.70 b 

Crispy Alightments 

10% 20,000 4.95 a 

40% 20,000 4.09 b 

70% 20,000 3.28 c 

Fuzzy Alightments / Fuzzy Loads 

NO/YES 15,000 4.50 

NO/NO 15,000 5.92 

YES/YES 15,000 2.90 

YES/NO 15,000 3.10 

Fuzzy Alightments / Crispy Loads 

NO/10% 10,000 6.65 

NO/40% 10,000 5.17 

NO/70% 10,000 3.82 

YES/10% 10,000 3.25 

YES/40% 10,000 3.01 

YES/70% 10,000 2.75 

Fuzzy Loads / Crispy Alightments 

NO/10% 10,000 5.52 

NO/40% 10,000 4.51 

NO/70% 10,000 3.51 

YES/10% 10,000 4.38 

YES/40% 10,000 3.67 

YES/70% 10,000 3.06 

a, b, c denotes differences statistically significant (p<0.05). 

Table 15. Results of two-factor ANOVA for the proposed method 
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Table 15 shows the two-factor ANOVA results. For this analysis LSM 

results are not considered. Table 15 shows factors’ effect when they are 

considered in isolation (fuzzy alightings, fuzzy loads and crispy alightings) and 

the interactions between factors (fuzzy alightings and fuzzy loads, fuzzy 

alightings and crispy alightings, and fuzzy loads and crispy alightings). 

Table 15 shows that when qualitative information is used on the alightings 

the average error is reduced by an average of 42% by using the proposed 

method in both cases. When this qualitative information is not used, the 

average error (n=30,000) is 5.21 whereas if this information is used the average 

error is 3.00. The LSD test shows that the use of qualitative information on 

alightings has a statistically significant (p<0.05) effect on average error. The use 

of qualitative information on the loads between stops reduces the average error 

an average of 18% (from 4.51 to 3.70). The LSD test also shows that this 

reduction is statistically significant (p<0.05). Finally, the more qualitative 

information is available on the alightings, the more the average error 

diminishes: when qualitative information is increased 30% (from 10 to 40%, or 

from 40 to 70%) the average error is reduced more than 15%. 

When no qualitative information is use on loads and on alightings, the 

average error is 5.92 when the proposed method is used. This error is lowered 

in 51% when qualitative information is used on both loads and alightings, 

reaching an average error of 2.90. When qualitative information is used only on 

the alightings, the average error is lowered in 48%, reaching an average value 

of 3.10. These results show that the marginal reduction in the average error 

when qualitative information on loads is considered is small, (around 24%) with 

regard to the reduction when qualitative information on alightings is available. 

Table 15 also shows that the effect of introducing qualitative information is 

greater the smaller the quantitative information available. When qualitative 

information on the alightings is used, the average error is reduced between 28% 

(from 3.82 to 2.75) and 51% (from 6.65 to 3.25) in the case of 70% of crisp 

alightings available or 10%, respectively. When qualitative information on loads 

is used, the average error is reduced between 13% (from 3.51 to 3.06) and 21% 

(from 5.52 to 4.38) in the case of 70% of crisp alightings or 10%, respectively. 
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4.4.6. Summary and Conclusions 

The number of passengers boarding and alighting at each transit stop is 

basic information used in the analysis of urban transit buses operations, to get 

the loads and being able to calibrate the O/D matrix obtained from surveys. 

However, observed counts of boardings and alightings often do not match, and 

on the other hand, alighting data are barely available in the actual urban transit 

buses systems. The literature gives several different methods that are used to 

adjust boardings and alightings so the basic principles of flow conservation are 

met. The methods are characterized by the need for numeric information in 

order to make the adjustment and the fact that the information must be obtained 

by automated or manual counts. Therefore, the effort tends to be considerable. 

In this paper we propose a method that allows adjustments to boardings 

and alightings in a transit line based on the qualitative information of the driver, 

observer or analyst's perception of vehicle loads between stops and on the 

number of passengers who alights at each stop. This information can be 

obtained at a low cost by public transport companies since by having a quick 

look of the vehicle, the driver can choose one of the options defined beforehand 

(empty, almost empty,…) by the analyst. 

The benefits of the proposed method are: 

1. It works on those cases where other methods provide no solution, 

when there are not available means to obtain a value on the passengers who 

alight at the stops. 

2. It enables data adjustments in the cases where counts can be 

made, but certain data is missing, thereby preventing the need to make a 

complete measurement of the public transport line all over again. 

To validate the proposed method, it was applied to the adjustment of 

boardings and alightings on a real transit line in Malaga (Spain) for which 

consistent real data were known. This enabled the simulation of different 

scenarios of inconsistent data and the error committed in the adjustment could 

be verified. Furthermore, to generalize the results, the method is applied to a 
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set of 50 different transit lines, with different number of stops and different in-out 

data. 

The main conclusions that can be drawn are: 

• Even without using qualitative information on loads and/or alightings, the 

errors committed by the proposed method are minor compared to the errors 

committed by the LSM. 

• When qualitative information is used only on the alightings, the average 

error is reduced in more than a 40% with regard to the case when no qualitative 

information is used. 

• When qualitative information is used only on the loads, the average error 

is reduced in more than a 15% with regard to the case when no qualitative 

information is used  

• So, using qualitative information on alightings can reduce the average 

error more than using qualitative information on loads. 

Finally, error reductions obtained when qualitative information on loads 

and alightings is used (51% in average) are lightly larger than those obtained 

when qualitative information only on alightings is used (48% in average). For 

that reason, results show that if it was mandatory to choose, it is better to use 

qualitative information on the alightings than on the loads.  

From the operation point of view, this paper present a new way to obtain 

the information about loads between stops, in order to regulate the service, 

improving and adapting it to the demand in the peak times, making it easier to 

know when additional vehicles are required and which are the zones where they 

go more loaded. 
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CHAPTER 5 

Conclusions and future Research 
 
 
 
5.1. General Conclusions 

The general objective of this thesis is to propose a new method for 

adjusting field data in order to achieve consistency with regard to uncertainty, 

ambiguity and subjectivity. The consistency of observed traffic data is a concern 

because in nearly all cases traffic data contain errors. Processing observed 

data for consistency is crucial in any analysis where data interrelationships are 

important. 

A new fuzzy optimization model has been developed so that subjective 

information can be incorporated. Its theoretical formulation and computational 

procedure are shown in the first paper published and are also presented in 

Chapter 3. The proposed approach is robust enough to deal with other common 

data discrepancies in transport situations. As has been shown, the model 

preserves the integrity of observed data as far as possible, and allows the 

analyst to distinguish between reliable and less reliable data.  

Another contribution is in the field of data imputation and Base Data 

Integrity. The principle of Base Data Integrity is an important topic discussed by 

the American Society for Testing and Materials (ASTM, 1991) and the American 
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Association of State Highway and Transportation Officials (AASHTO, 1992). 

The principle states that traffic measurements must be retained without 

modification and adjustment. Missing values should not be imputed in the base 

data. However, this does not prohibit data imputation at the analysis stage. In 

some cases, traffic counts with missing values could be the only data available 

for certain purposes and data imputation is necessary for further analysis. In 

others, the devices used to collect the data may be malfunctioning and a 

method is developed to resolve these situations; this brings us to the second 

part of the thesis.   

The method detects inadmissible TCS errors and identifies which device is 

most likely to be faulty. The method is based on a double linear optimization 

process that can easily be performed with existing software on the market, and 

which we consider highly useful for practitioners. 

If the method detects an inadmissible error in the TCS measurements 

when the first linear optimization is performed, a second optimization can be 

carried out in order to identify the detector that is most likely to be 

malfunctioning. It can then be replaced or fixed so as to produce adjusted data. 

The usual solution in such cases is to perform automated data checking 

by comparing measured data to historical data for consistency. A problem 

arises when there are no historical data and only the observed database is 

available. This is when the proposed method developed in this thesis becomes 

a good tool for detecting errors, since the only incoming data required are the 

observed data, with no need for pre-processing. Actually, both approaches 

could be regarded as complementary: it is possible to use fundamental and 

network consistency for detecting inadmissible errors, and historical consistency 

as an alarm signal. 

To conclude the research work, the fuzzy optimization model was used to 

solve the problem of adjusting passenger boarding and alighting figures at each 

transit stop. This information is basic and must be used in the analysis of urban 

bus operations to calculate loads and calibrate O/D matrices obtained from 

surveys. The problem solved here is that observed counts of boardings and 
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alightings often do not match and also that alighting data are rarely available for 

urban bus systems today. The literature gives several different methods that are 

used to adjust boardings and alightings so that the basic principles of flow 

conservation are met. The methods are characterized by the need for numerical 

information (crisp values) in order to make the adjustment and the fact that the 

information must be obtained by automated or manual counts. Therefore, the 

effort required tends to be considerable. 

In this part of the thesis a method is proposed that allows boardings and 

alightings on a transit line to be adjusted on the basis of qualitative information, 

consisting of the driver’s, observer’s or analyst's perception of vehicle loads 

between stops and the number of passengers who alight at each stop. This 

information can be obtained cheaply by public transport companies since, by 

having a quick look at the vehicle, the driver can choose one of the options that 

the analyst has defined beforehand (e.g. empty, almost empty, etc.). 

The proposed method therefore works in those cases where other 

methods provide no solution because there are no available means to count the 

number of passengers who alight at each stop. 

The method allows data adjustments to be made in cases where counts 

are possible but some data are missing, thereby avoiding the need to measure 

the data on the public transport line all over again. 

From an operational point of view, this work also presents a new way to 

obtain information about loads between stops in order to regulate the service 

and improve it by adapting it to demand during peak times, thus making it easier 

to know when additional vehicles are required. 

The main research objectives described in section 1 have been achieved: 

• Since numerical information is highly costly and sometimes difficult 

to obtain, it is possible to make use of subjective information to deal 

with the uncertainties of field data, by using fuzzy logic optimization. 

• A new fuzzy method has been developed to deal with field data 

uncertainty and to provide a database of adjusted values that are 
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consistent, by taking subjective information provided by the analyst 

into account. 

• The proposed model produces a better adjustment of field data 

than the classical models. In fact, it has been proved that the 

classical methods are not able to deal with subjective information 

and so cannot reach a solution. Furthermore, the proposed model 

achieves better results than existing models that use fuzzy logic 

optimization, as shown in Chapters 3 and 4. 

• Where malfunctioning TCS have to be detected, the proposed 

model is able to detect the faulty TCS with no additional 

information, while the existing methods require historical data to 

identify the error. 

• The model is applied to solve operational problems in public 

transport planning, where counting alighting passengers is 

expensive and the collected information is very limited because 

such fieldwork is only conducted for a short period of time and only 

on a sample of the transit lines in the city studied. Using subjective 

information on the loads and alightings between consecutive stops 

to adjust the boarding and alighting figures solves this problem. 

5.2. Future Research 

Throughout the period in which this work was being researched and 

drafted, new lines of research continually arose but it was not possible to 

include them in this thesis. This section describes various lines of research that 

are currently under way, as well as others that are scheduled to begin.  

Since information on traffic/passenger flows between specific origins and 

destinations in a transport network is the main kind of information required by 

planners and engineers for effective traffic management and control, O/D 

matrices are of vital importance for transport system planning and design, as 

well as for analysis, modelling and simulation. This is because of the 

information they contain about the spatial and temporal distribution of 
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movements between different traffic zones in an urban area (i.e. each cell 

represents the number of trips between an origin and a destination). O/D 

matrices are used to represent the current demand for transport systems, or, in 

conjunction with anticipated economic and population growth, land-use changes 

and planning policies, to identify and forecast future demand and other 

alternative scenarios. Future lines of research are therefore pursuing this aim, 

which is to forecast the O/D matrix for any transport system, whether a road 

network or a public transport system. 

In the case of road networks, research is currently under way into the 

estimation of O/D matrices using loop detector data in combination with floating 

car data (FCD). We may introduce a method for doing this based on a bi-level 

optimization (BO) model using fuzzy logic theory. This data combination is 

rather promising and could be highly valuable for identifying not only demand 

patterns but also other more operational aspects of traffic. Furthermore, we may 

also try to establish the evaluation of trade-offs between FCD penetration rate 

and loop detector coverage for different accuracy levels in the estimation of O/D 

matrices. On the same subject, other research lines could use alternative input 

data, making use of newly emerging data collection technologies. 

With regard to passenger flows in a public transport system, there may be 

another field of research to which the method may be applied, which involves 

creating a seed O/D matrix with the same input data described in the third 

paper, using redundant fuzzy information on loads and alightings, and in a 

second step updating it with a potentially available historical database of 

boardings and alightings. Additionally, the methodology proposed in this thesis 

could complement emerging technologies based on image recognition using 

street camera imaging; this could be useful to identify parking space availability, 

among other uses. Cameras are being installed in suburban railway stations to 

analyse transfers between lines and on urban buses to count alighting 

passengers. In any of these cases, the method created could be adapted for 

use with these new inputs to achieve the desired objective. The latest stage in 

the process, and one that we are planning to achieve soon, is to improve the 

method with artificial neural network techniques. 
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In conclusion, the methodology is versatile enough to be adapted and 

applied in any situation where uncertainty and ambiguity underlie the input data 

and represents a step forward in the planning and processing of input data for 

solving major transport problems.  
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a b s t r a c t

Traffic data obtained in the field usually have some errors. For instance, traffic volume data
on the various links of a network must be consistent and satisfy flow conservation, but this
rarely occurs. This paper presents a method for using fuzzy optimization to adjust observed
values so they meet flow conservation equations and any consistency requirements. The
novelty lies in the possibility of obtaining the best combination of adjusted values, thereby
preserving data integrity as much as possible. The proposed method allows analysts to
manage field data reliability by assigning different ranges to each observed value. The
paper is divided into two sections: the first section explains the theory through a simple
example of a case in which the data is equally reliable and a case in which the observed
data comes from more or less reliable sources, and the second one is an actual application
of the method in a freeway network in southern Spain where data were available but some
data were missing.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The study of any transport system requires enormous quantities of data and an understanding of their dependence on
each other. Arguably, volume is the most important traffic datum of them all. Field data is generally inconsistent, and there-
fore they need to be processed in a way that will make them consistent before they can be used in algorithms for prediction,
monitoring and decision-making purposes. The methods used to estimate Origin–Destination (O/D) matrices are based on
the hypothetical availability of precise traffic volume data and reliable preliminary O/D data. The input data for most traffic
networks, however, are either unavailable or contain measurement errors, as in the case of traffic counts and sensor speed
measurements. In fact, some studies (Zhong et al., 2004) demonstrate that 50% of the Permanent Traffic Counts (PTCs) set up
on highways contain lost data, making it difficult to ignore measurement errors when processing data used to plan, design,
control and manage traffic (Sharma et al., 1996). The existence of errors makes data obtained in the field difficult to manage
and to analyze.

In the past, certain methods were applied to adjust the observed values so they would comply with flow conservation
laws at each network node, aside from other requirements that values need to meet before they can be used as input data
in traffic planning algorithms. The methods used were manual value adjustment, least square adjustment and the maximum
likelihood method (Kikuchi et al., 2000). Recently, new methods of value adjustment based on fuzzy logic have been devel-
oped to preserve data integrity as much as possible. The methods are: fuzzy regression, fuzzy optimization and necessity-
interval-regression method (Kikuchi et al., 2000). A number of important publications on fuzzy logic have been submitted
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over the past 20 years, although most of them are based on the fields of deduction and control in situations of complex
behavior. Pappis and Mamdani (1977) were the first to apply fuzzy logic to transport; specifically, to traffic signal controllers.

Lost data processing is another frequent issue. When available input data exist at all, they often contain errors due to the
sensors’ operating faults (Kwon et al., 2008). From a formal viewpoint, the problem of debugging input data in order to avoid
inconsistency and of assigning values to missing data has generally been analyzed by an area of Statistics (Data Editing and
Imputation). Most efforts have focused on processing ‘missing values’, and on detecting and debugging. Inconsistencies have
been avoided by using redundant or related information. Some classical techniques are: imputation by mean, median,
regression or hot-deck (Chambers, 2001; Laaksonen, 1999). Recently, some new techniques based on Artificial Intelligence
and on neural networks, in particular, are being developed (Silva-Ramírez, 2007; Tussel, 2002). Certain authors (Kaczmarek,
2005; Marzano et al., 2008; Rudy et al., 2008) have submitted methods based on the characteristics of erroneous traffic data
in urban networks, supplemented with the latest data imputation models (Lee et al., 1998; Geng and Wu, 2008). Other meth-
ods based on weighted least squares regression also exist, such as the methods submitted by Kwon et al. (2008).

The aim of this article is to submit a method whereby field data could be pre-processed to make them consistent while
preserving their integrity as much as possible, and which would include their reliability as perceived subjectively by the ana-
lyst. The method is based on fuzzy logic and is intended to optimize the solution obtained. The result would be a reliable
solution that comes close to the observed values, thereby resolving measurement errors in traffic counts. The method also
allows field data to be processed when there are lost values.

2. Description of the problem

A simple freeway network is used to explain the method. Consider the situation shown in Fig. 1, in which real consistent
data are available (Table 1, column 2). The data are used to simulate a scenario with non consistent data: traffic counts from
the database are randomized within ±25% of their values at all intersections to simulate a case in which data is not consistent
(Table 1, column 3). Next, the randomly obtained data in the database are considered to be field data; i.e. the observed values
(OV).

Theoretically, in any transport network such as the one shown in Fig. 1, the total ‘‘incoming volumes” should be equal to
the total ‘‘outgoing volumes” at any node in the network and in any flow direction in such a way that the law of conservation
of flow is satisfied. In the simulated scenario, (Table 1, column 3), however, it is found that:

x3 þ x5–y5 þ y6

x1 þ x2–y1 þ y4

y1 þ y2–z1 þ z4

y3 þ y5–z5 þ z6

y2 þ y6–w10 þw11 þw12

y3 þ y4–w1 þw5 þw7

Fig. 1. Simple freeway network used to explain the method.
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Actually, this is usually the case, particularly when the network is large. Pentrice (1987) stated that data inconsistency is
inevitable even in a well-controlled survey, but volume count consistency at different links is critical to ensuring the integ-
rity of the results of any of the ITS-related algorithms.

When the network becomes larger, the possibility of inconsistency in traffic volume counts increases, so flow conserva-
tion is more difficult. The concern in this paper is how to adjust the individual observed volumes to a set of new values that
satisfy the flow conservation principle at any point in the network. Furthermore, the adjustment should be such that the
integrity of the observed values is preserved as much as possible. To this end, a fuzzy optimization method is used to obtain
adjusted values that comply with the law of flow conservation and that resemble consistent real data as closely as possible.
In this example, the integrity of the results obtained can be verified with the available real consistent data.

3. The bilevel fuzzy optimization method

The search for the ‘‘best” set of adjusted values is an optimization process that aims to find a set of values close to the
observed ones that verifies the conservation of flow principle.

The proposed method is based on the following concept: each observed value is considered an approximate value repre-
sented by a fuzzy number, defined by a membership function. If the value is x, it is interpreted as ‘‘approximately x”. The true
value is considered to lie near x. The method attempts to find an adjusted value as close to the observed value as possible
while satisfying the conservation of flow at every point in the network. This is accomplished by applying the concept of fuzzy
optimization developed in fuzzy set theory.

Table 1
Example 1: base data, randomized inconsistent data, adjusted data, and results for different a ranges.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

RV OV MM
method

a = 0.4 MM
method

aa MS method a = 0.4 MS
method

aa BO method a = 0.4 BO method aa

AV hi D AV hi D AV hi D AV hi D AV hi D AV hi D

wl 135 113 128 0.68 7 126 0.63 9 113 1.00 22 113 1.00 22 128 0.68 7 126 0.63 9
w2 30 37 39 0.87 9 40 0.91 10 37 1.00 7 37 1.00 7 37 1.00 7 37 1.00 7
w3 43 42 42 1.00 1 44 0.92 1 42 1.00 1 42 1.00 1 42 1.00 1 42 1.00 1
w4 104 96 95 0.97 9 97 0.97 7 96 1.00 8 96 1.00 8 95 0.97 9 97 0.97 7
w5 148 134 152 0.67 4 150 0.61 2 134 1.00 14 134 1.00 14 152 0.67 4 150 0.61 2
w6 19 18 21 0.59 2 20 0.82 1 18 1.00 1 18 1.00 1 18 1.00 1 18 1.00 1
w7 28 27 30 0.73 2 30 0.64 2 27 1.00 1 27 1.00 1 30 0.73 2 30 0.64 2
w8 35 37 40 0.80 5 40 0.91 5 37 1.00 2 37 1.00 2 37 1.00 2 37 1.00 2
w9 22 18 21 0.59 1 20 0.82 2 18 1.00 4 18 1.00 4 18 1.00 4 18 1.00 4
wl0 102 78 77 0.97 25 79 0.96 23 78 1.00 24 78 1.00 24 77 0.97 25 79 0.96 23
w11 175 171 172 0.99 3 169 0.96 6 171 1.00 4 171 1.00 4 172 0.99 3 170 0.98 5
w12 3 4 4 1.00 1 4 1.00 1 4 1.00 1 4 1.00 1 4 1.00 1 4 1.00 1
xl 265 215 253 0.57 12 255 0.71 10 220 0.94 45 220 0.96 45 253 0.57 12 253 0.73 12
x2 54 53 62 0.59 8 61 0.77 7 53 1.00 1 53 1.00 1 62 0.59 8 61 0.77 7
x3 105 116 109 0.85 4 111 0.93 6 116 1.00 11 116 1.00 11 109 0.85 4 111 0.93 6
x4 110 132 130 0.96 20 133 0.99 23 132 1.00 22 132 1.00 22 130 0.96 20 133 0.99 23
x5 200 177 168 0.88 32 168 0.92 32 161 0.78 39 161 0.86 39 168 0.88 32 168 0.92 32
x6 58 51 48 0.86 10 52 0.97 6 51 1.00 7 51 1.00 7 50 0.95 8 51 1.00 7
y1 26 31 26 0.61 0 28 0.79 2 20 0.13 6 20 0.25 6 26 0.61 0 26 0.66 0
y2 20 17 15 0.71 5 14 0.62 6 17 1.00 3 17 1.00 3 15 0.71 5 15 0.75 5
y3 18 21 21 1.00 3 18 0.70 0 21 1.00 3 21 1.00 3 21 1.00 3 18 0.70 0
y4 293 353 289 0.56 4 288 0.61 5 253 0.31 40 253 0.40 40 289 0.56 4 288 0.61 5
y5 45 39 39 1.00 6 41 0.89 4 41 0.87 4 41 0.89 4 39 1.00 6 41 0.89 4
y6 260 226 238 0.87 22 238 0.89 22 236 0.89 24 236 0.91 24 238 0.87 22 238 0.89 22
z1 33 26 29 0.72 4 29 0.75 4 26 1.00 7 26 1.00 7 29 0.72 4 29 0.75 4
z2 22 17 20 0.57 2 20 0.87 2 17 1.00 5 17 1.00 5 17 1.00 5 17 1.00 5
z3 25 27 29 0.82 4 31 0.92 6 27 1.00 2 27 1.00 2 27 1.00 2 27 1.00 2
z4 13 11 12 0.78 1 13 0.61 0 11 1.00 2 11 1.00 2 12 0.78 1 12 0.81 1
z5 28 33 32 0.93 4 31 0.87 3 33 1.00 5 33 1.00 5 32 0.93 4 31 0.87 3
z6 35 29 28 0.92 7 28 0.93 7 29 1.00 6 29 1.00 6 28 0.92 7 28 0.93 7

g = sum
hi

24.04 24.92 27.93 28.26 25.89 25.98

h = min
hi

0.56 0.61 0.13 0.25 0.56 0.61

Average
D

7.23 7.13 10.70 10.70 7.10 6.97

Note: RV (real value); OV (observed value); AV (adjusted value); D (difference between RV and AV in absolute value).
a a = 0.65 for xi; a = 0.5 for yi; and zi; a = 0.3 for wi.
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Given a set of observed values, there are an infinite number of combinations of adjusted values, each of which satisfies the
set of flow conservation equations. For a given combination, the membership grade hxi

ðx0iÞ of each adjusted value (x0i) in the
corresponding fuzzy set (xi) is calculated. Three methods of optimization could be used:

a. by maximizing the minimum hxi
ðx0iÞ for all i,

b. by maximizing the sum of hxi
ðx0iÞ, and,

c. by maximizing the minimum hxi
ðx0iÞ for all i at one level and, after this has been achieved, by applying a second level of

optimization by maximizing the sum of hxi
ðx0iÞ. Thus, the combination with the highest sum is selected from among all

the combinations that could maximize the lowest membership grade. The value with the least membership grade is
taken into consideration, and also all the other observed data.

In case (a) (MM method), the lowest membership grade for the combination is recorded. By comparing the lowest mem-
bership grades among all the combinations of traffic volumes, the one that has the highest value is chosen as the best com-
bination of a set of adjusted values. This method was already introduced by Kikuchi and Miljkovic (1999).

On the other hand, in the objective function sum of hxi
ðx0iÞ ’s (case (b)) (MS method) for a given combination, the mem-

bership grade of each adjusted value in the corresponding fuzzy set is calculated. The sum of the membership grades among
all the combinations of traffic volumes is recorded, and the one that has the highest sum of membership grades is chosen as
the best combination of a set of adjusted values.

The third possibility is a two step way of optimization or bilevel optimization method (BO method). In step one, case (a),
the lowest membership grade is maximized. In step two, the membership grades that would produce the largest possible
max(min(hi)) and that would seek to increase the value of all of the hi at the same time (which would achieve the sum of
both) are summed up and maximized.

The MM method can attend to a set of data which its minimum membership grade is maximized but the problem is that
an infinite number of combinations could satisfy this condition and the MM method randomly chooses one of them. The BO
method chooses a set that while it satisfies that condition; it optimizes the rest of the values, maximizing the membership
grade of all the data, so the BO method uses both ways of optimization in order to improve the solution.

The mathematical steps involved in addressing the optimization problem are:

1. Use fuzzy numbers to represent observed values.
2. Formulate the objective and constraints.
3. Solve as a mixed linear programming problem.

The process is explained step by using the simple highway network shown in Fig. 1.

3.1. Using fuzzy numbers to represent observed values

The observed values are ‘‘fuzzified” and are considered a fuzzy set with a triangular membership function.
Fig. 2 shows the shape of the membership function with the centre value xi and a range [xi � axi, xi + axi], where a is a

constant higher than 0. The triangular membership function is not a prerequisite but, in the absence of any other informa-
tion, this is a reasonable assumption, and such assumption is often used in fuzzy set theory (Zimmermann, 2001).

The selection of the constant a depends on the judgement of the analyst with respect to the adjusted value’s acceptable
deviation from the observed value. This value allows the analyst to enter the reliability of each datum (i.e. the more reliable
data will have a lower value of a than if they were less reliable). If only one value of a is used for all data, the scope of the
range has little effect on the final adjusted values, once it is broad enough for a feasible set of solutions to be found.

Fig. 2. Triangular membership function.
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The membership function is defined for the left- and right-hand sides of the triangle. For an observed value of xi and the
assumed range [xi � axi, xi + axi], the general expression of the membership functions is:

hxi
ðx0iÞ ¼

hL
xi
¼ x0

i
�ðxi�axiÞ

axi
if xi � axi < x0i 6 xi

hR
xi
¼ x0

i
�ðxiþaxiÞ
�axi

if xi < x0i 6 xi þ axi

8<
:

9=
; ð1Þ

In this formula �1 < xi � axi 6 xi 6 xi + axi <1, the triangular fuzzy number xi is presented by (xi � axi, xi, xi + axi).
For the sake of simplicity, a symmetric triangle is used in this paper for the membership function. However, the left and

right-hand limits can be set separately. To solve this example problem, it is assumed that the value xi is the observed value
and that the value of a > 0. So the value of a is the spread of triangular fuzzy number xi. The narrower the spread area, the less
fuzzy the evaluation data will be, hence more precise. To the contrary, fuzziness is higher and thus more vague and ambig-
uous when the spread area increases (Tzeu-Chen Han, 2008).

Some authors have researched calibration of the membership function extensively. The classical approach to calibration
has been the intuitive trial and error process, in which the analyst modifies the shapes of the membership functions little
by little until the predicted output approximately fits the output data obtained from the real world (Chakroborty and Kiku-
chi, 2003). However, this process is time consuming. Other authors have developed a systematic way of carrying out the
trial and error process (Wang and Mendel, 1992a,b,c; Homaifar and McCormick, 1995). The purpose of calibration is to
modify the membership functions of the Fuzzy Inference System (FIS) so that the outcome predicted by the model is equal
(or nearly equal) to the outcome obtained in the real world. Therefore, Chakroborty and Kikuchi (2003) presented a method
in which a representation framework allows the FIS parameters to be modified in relation to the bases. FIS outputs are dic-
tated by the parameters that define the membership functions of the fuzzy sets appearing in the antecedents and the con-
sequents of the rules and the algebraic operators used for the logical connectives and to determine the final inferred value.
They have developed a procedure that calibrates the membership function of the fuzzy sets by transforming the inference
system into an Artificial Neural Network format. They have applied this procedure to the complex control task of car-fol-
lowing, but this procedure has not been applied yet to an urban transport system or a large-scale civil infrastructure
system.

3.2. Formulating the objective function and its constraints

In a fuzzy number representation of observed values, fuzzy optimization techniques would be used to search for the ad-
justed values. The mathematical formulation of the three proposed methods used to solve the problem would be as follows:

3.2.1. MM method

maxðhÞ where h is minðhiÞ ð2Þ

Subject to

� Constraints related to the membership functions:

hL
xi
ðx0iÞP h hR

xi
ðx0iÞP h hi P h for i ¼ 1; k ð3Þ

which means there are 2k + k constraints (where k is the number of control points)

� Constraints related to the conservation of flow at each control point. The constraints are defined by reviewing the flow
pattern at each node in Fig. 1 as follows:

x03 þ x05 ¼ y05 þ y06
x01 þ x02 ¼ y01 þ y04
y01 þ y02 ¼ z01 þ z04
y03 þ y05 ¼ z05 þ z06
y02 þ y06 ¼ w010 þw011 þw012

y03 þ y04 ¼ w01 þw05 þw07
x0i; y

0
i; z
0
i;w

0
i P for all i

ð4Þ

where x0i, y0i, z0i, w0i is the integer unknown adjusted values; xi, yi, zi, wi the fuzzy set corresponding to the observed value xi;
hxi
ðx0iÞ the membership grade of x0i in the fuzzy set xi, the same treatment for yi, zi and wi; h is an operational parameter that

represents the smallest membership grade among all hxi
ðx0iÞ’s. Where hL

xi
ðx0iÞP h and hR

xi
ðx0iÞP h, respectively, show the

expressions for the left- and right-hand sides of the triangle.
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3.2.2. MS method

maxðgÞ where g is sumðhiÞ ð5Þ

Subject to the same constraints as in the MM method, with regard to the membership functions Eq. (3) and to the conser-
vation of flow at each control point Eq. (4).

3.2.3. BO method
Step 1: The problem is solved using the MM method Eq. (2), and we obtain a value of h = h*.
Step 2: The problem is solved using the MS method Eq. (5) subject to the same constraints with regard to the conservation

of flow at each control point Eq. (4) as in the MM or MS method, and to the following constraints related to the membership
functions:

hL
xi
ðx0iÞP h� hR

xi
ðx0iÞP h� hi P h� for i ¼ 1; k ð6Þ

The total number of unknowns in Step 2 is reduced by one compared to Step 1.
If only max(h) is performed (MS method), there may be several imputations for the observed data that produce the same

value for h (Tussel, 2002; Silva-Ramírez, 2007). Therefore, they would be the same from the objective function point of view,
whereas, in fact, some are better than others. The combination (0.9, 0.9, 0.9), for instance, would have the same value as
(0.9, 1, 1), whereas the latter is better than the former. On the other hand, if the objective function were just max(g) (MS
method), some values would show a hi = 0.00, despite the fact that almost all the rest are 1.00, which is of no interest.
The bilevel optimization process (BO method) allows the combination where the remaining membership degrees are the
highest ones to be chosen from among all the combinations where the lowest value of h is maximized.

3.3. Solving as a mixed linear programming problem

Since every x0i must be an integer number and hi are real numbers, this is a mixed linear programming formulation. A
mixed linear programming algorithm is formulated for the problem to maximize the membership grade of the adjusted
values.

In Fig. 1, the mixed linear programming algorithm consists of 90 (3 � 30 observed volumes) inequality constraints related
to membership functions and six equations related to flow conservation.

3.4. Introduction of data reliability

The selection of the value of a depends on the judgement of the analyst with respect to the adjusted value’s acceptable
deviation from the observed value.

In a complex transport network, there may be permanent traffic count stations where count data are fairly reliable, and
other nodes where counting is sporadic, as well as points where traffic volumes have not been measured. Therefore, to define
the a parameter coherently, the method must allow the analyst to assign different values to the a parameter in order to de-
fine the membership functions of each observed value. The values will depend on whether the parameter belongs to a set of
data that are highly reliable (permanent traffic count station), averagely reliable (sporadic count) or highly unreliable (lost
data).

3.5. Example network

As shown in Fig. 1, the example consists in analysing a network of four intersections, of which three have six movements
and one has twelve.

In this example, the real consistent data are known (RV) (Table 1 column 2). The data are used to simulate a scenario with
non consistent data. The simulated data are considered the OV (Table 1 column 3).

In this example, it is considered that traffic count station W is a permanent station, so the values have maximum reliabil-
ity and their a parameter is the lowest, a = 0.3. The reliability of stations Y and Z is lower so a takes a value of 0.5 (sporadic
count stations) and, finally, the data from traffic count station X is supposed to be the least reliable one, so a is assigned a
value of 0.65.

3.6. Results

In this case, since real data were available, three indicators could be used to verify the goodness of the adjustment of each
one of the three optimization methods used (MM, MS and BO methods):

� The first indicator is the lowest value of h, which indicates the membership grade of the worst adjusted value (the degree
of compatibility between the adjusted value and the observed value). If the value of h is near zero, then the adjusted value
is close to the right or left end of the base of the membership function; if the value of h is near 1, then the adjusted value is
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close to the observed value. Therefore, the solution where the lowest value of h is maximum is chosen as the best solution
from the point of view of this parameter.

� The second indicator is the sum of hi. The best solution is where the sum of hi is maximum, because the adjusted values are
closer to the observed values and integrity is more preserved.

� The last indicator, for which the consistent real data are available, is the average of the differences between the real con-
sistent values and the adjusted values.

The results for the three methods are given in Table 1, where the adjusted values (AV) and the value of the membership
grade (h) for each observed value are shown. The membership grade of the individual AV is computed by entering the ad-
justed value ðx0iÞ in the respective membership function, hxi

ðx0i). The table also shows the effect of using different a values,
depending on the reliability of the observed volumes at each intersection.

Column 1 of Table 1 shows each movement in nodes W, X, Y and Z. Column 2 shows the consistent RV used to obtain the
OV that show inconsistencies by randomizing the values within ±25%.

Columns 4, 6 and 8 in Table 1 shows the AV, the corresponding values of h (hi) and the difference (D) between RV and AV
in absolute value, using the MM method, MS method and BO method respectively for an a parameter of 0.4 in all cases:

� MM method’s results are shown in column 4. The lowest value of h in column 4 (h = 0.56) indicates the membership grade
of the worst adjusted value. In this case Rhi is 24.04.

� In column 6, MS method’s results show that whereas most of the adjusted values get h = 1.00, other values show lower h
and h could even be 0.00, in order to manage the highest Rhi. The lowest value of h is reached for y1 (h = 0.13). This sit-
uation, therefore, is not desirable either, since it allows a set of values with some h very close to 0.00 to be considered,
providing the sum is the maximum. In this case, Rhi is 27.93.

� The BO method’s results are shown in column 8. If columns 4 and 8 are compared, it can be seen that the minimum value
of h remains the same (h = 0.56). However, there has been an increase in Rhi, which has gone from 24.04 (MM method) to
25.89 (BO method). Thus, this new method allows a combination where the remaining membership degrees are the high-
est ones to be chosen from among all the combinations with the lowest value of h.

As explained above, introducing the analyst’s knowledge of the different precisions of the data he is working with im-
proves the results of the adjustment. This is shown in columns 5, 7 and 9 in Table 1 where the AV, hi and D are calculated,
using the three methods for different a parameters depending on the reliability of the data. The a values used in this example
have been 0.65 for ‘‘X”, 0.5 for ‘‘Y” and ‘‘Z” and 0.3 for ‘‘W”.

Fig. 3. Real intersections in Andalusia’s freeway network (South of Spain).
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As in the case of the same a for every observed value, for any a parameter, the MM and the BO methods obtain the same
and a higher value of h minimum (h = 0.61) than the MS method (h = 0.25). However, the latter method obtains a higher va-
lue of Rhi (28.26 versus 24.92 for the MM method and 25.98 for the BO method).

The results shown in column 5 are better than those shown in column 4. This is because the minimum value of h and Rhi

were higher and the value of average D was lower. Similar results are obtained by comparing columns 6–7 and 8–9 for the
MS and the BO methods. This confirms the advantage of distinguishing between reliable data and less reliable data or, in
other words, of introducing the subjective perception of the analyst.

The last row in Table 1 shows the average of D for each of the three methods used. It can be seen that the lowest value
(6.97) is obtained for the BO method with different values of a, in comparison to the values of the MM method (7.13) and the
MS method (10.70) with different values of a. This shows that the AV obtained with the BO method are closer to the real
values than with the other two methods, so this is the method that best preserves the integrity of data.

4. Real intersections in Andalucía motorwaýs network

Next, the three methods are used to adjust the traffic volumes of a series of adjacent intersections in Andalusia’s freeway
network (see Figs. 3 and 4) for which real and therefore inconsistent data are available. In this example, the parameter D is

Fig. 4. Movements in every node of the real network.

Fig. 5. Missing values’ membership function.
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omitted, and only two parameters have been used to verify the goodness of the adjustment: the lowest value of h and the
sum of hi.

The network has five intersections, of which three have six movements (intersections V, X and Z), while the other two
have 12 potential movements (intersections W and Y). Data is available for all potential movements except for v1, v2, v3,
v4, y6, y7, and y8, whose values were lost. A special membership function with h = 1.00 always (a?1) was assigned to the
lost values so that any adjusted value that met the boundary conditions would always have a membership grade of 1.00
(Fig. 5). Table 2 shows that for movements v1, v2, v3, v4, y6, y7 and y8, the value of h associated to the AV is always 1.00
for the three methods studied and for the hypothesis of equal or different a.

Columns 3, 5 and 7 in Table 2 show the AV and hi using the three methods for a = 0.1.
On the other hand, columns 4, 6 and 8 in Table 2 show the AV and hi using the three methods for different a parameters

depending on the reliability of the data. The a values used in this example were 0.2 for ‘‘W”, 0.3 for ‘‘Z”, and 0.1 for the rest.
As in the previous example, for any a parameter, the MM and the BO methods obtain the same and a higher value of min-

imum h (h = 0.29) than the MS method (h = 0.00). However, MS method obtains a higher value of Rhi (40.14 versus 26.16 for

Table 2
Real intersection in the South of Spain: real base data with missing values, adjusted data, and results for different a ranges.

(1) (2) (3) (4) (5) (6) (7) (8)

MS
method

a = 0.1 MS
method

aa MS
method

a = 0.1 MS
method

aa BO
method

a = 0.1 BO
method

aa

OV AV hi AV hi AV hi AV hi AV hi AV hi

v1
b – 11,091 1.00 10,819 1.00 10,703 1.00 10,704 1.00 10,951 1.00 10,893 1.00

v2
b – 1764 1.00 1758 1.00 1743 1.00 1743 1.00 1497 1.00 1555 1.00

v3
b – 11,085 1.00 11,014 1.00 11,240 1.00 11,240 1.00 10,994 1.00 10,847 1.00

v4
b – 10,288 1.00 10,307 1.00 10,329 1.00 10,329 1.00 10,575 1.00 10,517 1.00

v5 10,865 10,727 0.87 10,809 0.95 10,865 1.00 10,865 1.00 10,618 0.77 10,865 1.00
v6 1207 1174 0.73 1201 0.95 1207 1.00 1207 1.00 1207 1.00 1207 1.00
wl 5427 5669 0.56 5491 0.94 5427 1.00 5427 1.00 5445 0.97 5445 0.98
w2 2714 2905 0.30 2719 0.99 2714 1.00 2714 1.00 2714 1.00 2714 1.00
w3 3135 2914 0.30 3023 0.82 3135 1.00 3135 1.00 3135 1.00 3135 1.00
w4 3123 3258 0.57 3179 0.91 3123 1.00 3124 1.00 3123 1.00 3123 1.00
w5 3735 3764 0.92 3773 0.95 3735 1.00 3735 1.00 3735 1.00 3735 1.00
w6 5601 5313 0.49 5311 0.74 5600 1.00 5600 1.00 5354 0.56 5207 0.65
w7 695 744 0.30 695 1.00 695 1.00 695 1.00 695 1.00 695 1.00
w8 3112 3182 0.78 3131 0.97 3112 1.00 3112 1.00 3112 1.00 3112 1.00
w9 3880 3928 0.88 3907 0.97 3896 0.96 3896 0.98 3880 1.00 3880 1.00
w10 505 470 0.31 502 0.97 505 1.00 505 1.00 505 1.00 505 1.00
w11 310 289 0.32 307 0.95 310 1.00 310 1.00 310 1.00 310 1.00
w12 904 841 0.30 913 0.97 904 1.00 904 1.00 904 1.00 904 1.00
x1 4935 4588 0.30 4711 0.54 4812 0.75 4812 0.75 4800 0.73 4709 0.54
x2 4725 5021 0.38 4788 0.87 4848 0.74 4848 0.74 4719 0.99 4715 0.98
x3 7236 6739 0.31 6905 0.54 7236 1.00 7236 1.00 6990 0.66 6905 0.54
x4 1809 1777 0.82 1736 0.60 1809 1.00 1809 1.00 1809 1.00 1747 0.66
x5 4197 4394 0.53 4335 0.67 4197 1.00 4197 1.00 4344 0.65 4348 0.64
x6 3350 3306 0.87 3197 0.54 3350 1.00 3350 1.00 3351 1.00 3197 0.54
y1 1230 1176 0.56 1236 0.97 1230 1.00 1230 1.00 1230 1.00 1230 1.00
y2 3700 3662 0.90 3717 0.95 3700 1.00 3700 1.00 3700 1.00 3700 1.00
y3 4255 4555 0.29 4307 0.88 4257 1.00 4257 1.00 4555 0.29 4255 1.00
y4 1410 1509 0.30 1441 0.78 1410 1.00 1410 1.00 1509 0.30 1410 1.00
y5 2140 2076 0.70 2094 0.79 2140 1.00 2140 1.00 1990 0.30 2140 1.00
y6

b – 2320 1.00 2332 1.00 2369 1.00 2369 1.00 2369 1.00 2369 1.00
y7

b – 658 1.00 611 1.00 521 1.00 521 1.00 671 1.00 521 1.00
y8

b – 1527 1.00 1494 1.00 1691 1.00 1691 1.00 1679 1.00 1526 1.00
y9 1150 1069 0.30 1131 0.83 1150 1.00 1150 1.00 1150 1.00 1150 1.00
yl0 310 289 0.32 324 0.65 310 1.00 310 1.00 310 1.00 310 1.00
y11 1013 1044 0.69 1023 0.91 1013 1.00 1013 1.00 1013 1.00 1013 1.00
yl2 1410 1509 0.30 1442 0.77 1410 1.00 1410 1.00 1509 0.30 1410 1.00
zl 4960 4975 0.97 4968 0.99 4962 1.00 4962 1.00 4962 1.00 4962 1.00
z2 2120 2051 0.67 2104 0.97 2120 1.00 2120 1.00 2120 1.00 2120 1.00
z3 1207 1122 0.30 1092 0.68 1207 1.00 1207 1.00 1122 0.30 1087 0.67
z4 10,865 10,930 0.94 10,973 0.97 10,865 1.00 10,865 1.00 10,950 0.92 10,985 0.96
z5 9660 9850 0.80 9906 0.92 9952 0.70 9952 0.90 9705 0.95 9952 0.90
z6 6940 6451 0.30 6098 0.60 5870 0.00 5870 0.49 6451 0.30 5988 0.54

g = sum hi 26.16 36.50 40.14 40.85 35.97 38.61
h = min hi 0.29 0.54 0.00 0.49 0.29 0.54

Note: OV (observed value); AV (adjusted value).
a a = 0.2 for wi; a = 0.3 for zi; a = 0.1 for rest of cases.
b v1, v2, v3, v4, y6, y7 and y8 are missing values.
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the MM method and 35.97 for the BO method). Thus, the results demonstrate that the BO method, while keeping the highest
minimum of h, attains the best sum of hi, so the best solution is chosen from among all the possibilities that satisfy the con-
dition of maximizing the minimum h. Furthermore, introducing the analyst’s knowledge of the different precisions of the
data he is working with improves the results of the adjustment.

5. Summary and conclusions

The consistency of the observed traffic data is a concern because in nearly all cases traffic data contain some errors. The
degree to which consistency must be satisfied depends on the purpose of the analysis. Processing observed data for consis-
tency is crucial in an analysis where data interrelationships are important.

This paper proposes another step forward in using fuzzy logic optimization to obtain adjusted values. Two examples are
given to present and explain the theoretical formulation and computational procedure. The proposed approach is robust en-
ough to deal with other typical data discrepancies in transport situations. It preserves the integrity of observed data as much
as possible, and allows the analyst to distinguish between reliable and less reliable data.

The approach is able to:

� Preserve the integrity of the observed data as much as possible. There are increasing concerns about data imputation and
Base Data Integrity. The principle of Base Data Integrity is an important theme discussed by the American Society for Test-
ing and Materials (ASTM, 1991) and the American Association of State Highway and Transportation Officials (AASHTO,
1992). The principle says that traffic measurements must be retained without modification and adjustment. Missing val-
ues should not be imputed in the base data. However, this does not prohibit imputing data at the analysis stage. In some
cases, traffic counts with missing values could be the only data available for certain purposes and data imputation is nec-
essary for further analysis. In accordance with the principle of Truth-in Data, AASHTO Guidelines (AASHTO, 1992) also rec-
ommends highway agencies to document the procedures for editing traffic data. For traffic counts with missing values,
highway agencies usually either retake the counts or estimate the missing values. Estimating missing values is known
as data imputation.

� Ensure flow consistency at any point in the network; the final estimate satisfies the law of flow conservation.
� Handle a large complicated network of any size and shape. The aim is to be able to solve any real problem, as shown in

example 2.
� Handle data reliability; traffic-responsive control systems require reliable real-time information on the prevailing traffic

counts to make sensible control decisions. This requisite is met by using the a parameter to define a different range for the
membership function associated to each observed value.

� Limit the adjusted value within a tolerable deviation from the observed value, but allowing one tolerance for each value to
be defined; this is achieved by using fuzzy logic and the definition of the a parameter.

� Be solved in a short computation time. The triangular membership function allows solving the problem using mixed linear
programming.

The method is flexible so that it can handle cases in which data are questionable, some of the observed values are known
and fixed (a = 0), and there are considerable discrepancies in the observed data. The base of the membership function within
which a feasible set of solutions is searched should be established according to the acceptable difference between adjusted
and observed values.

Finally, the method is applicable to many other transportation problems in which consistency is important.
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Abstract: This study presents a method for the automatic detection of malfunctioning traffic count stations (TCS) in a transport
system. First, double linear optimisation is used to detect inadmissible errors in the recordings of a series of TCS and next, the
TCS that are most likely to be failing are identified. The method has been applied to an urban traffic network showing success
rates up to 93% in identifying the TCS that are failing.

1 Introduction

In traffic operation management and control field, accurate
estimates of the density of vehicle flow density in road
networks are very important. Information on traffic density
may be ascertained from gross counts taken by loop
detectors and other detection devices. However, the counts
available may be incorrect owing to an improper collection
process and errors.

When counting the number of vehicles that travel on a road,
two types of errors can be committed:

1. Admissible: In general, admissible errors are the errors that
are within the measuring device’s tolerance and, therefore,
they depend on the precision defined for each device by the
manufacturer. For instance, if the manufacturer of the
detectors in the traffic counts stations (TCS) indicates 3%
reliability, it means that if one of the measurements is
xobs ¼ 784, the real value x∗ [ [784(1 2 0.03),
784(1 + 0.03)]. In practice, the admissible boundary of
error tends to be somewhat higher, since margins tend to
increase with use and over time.
2. Inadmissible: These are errors that not only give erroneous
information, but also invalidate the work done. They can be
due to detector malfunctioning (failure to record passing
vehicles, constant recording of non-existent vehicles, always
counting an arbitrary number etc.) or to failure on the part
of the person who handles the detector (failure to set the
counter to zero, erroneous readings etc.).

Let consider an intersection with two in (x1 and x2) and
three out movements (x3, x4 and x5) the principle of flow
conservation should verify that

x1 + x2 = x3 + x4 + x5

Let the measurements be taken and the following is obtained:

† Case 1: xobs
1 = 800, xobs

2 = 1200, xobs
3 = 600, xobs

4 = 700
and xobs

5 = 740.

It is found that the above-mentioned condition is
not verified, since xobs

1 + xobs
2 = 2000, whereas

xobs
3 + xobs

4 + xobs
5 = 2040. Are the measurements reliable

and therefore they can provide relevant information? Or are
they indicating that a detector is failing and giving
inadmissible measurements? In this case, and assuming that
3% of errors is admissible, we can indicate the existence of
a set of values for the measurements that verifies the
condition of conservation flow and is within the tolerance
range: xadj

1 = 808, xadj
2 = 1212, xadj

3 = 594, xadj
4 = 693 and

xadj
5 = 733. Therefore they should be close to the real values.

† Case 2: xobs
1 = 800, xobs

2 = 1200, xobs
3 = 1600, xobs

4 = 700
and xobs

5 = 740.

It is found that the above condition is not verified either,
since x1 + x2 ¼ 2000, whereas x3 + x4 + x5 ¼ 3040.
However, at present no combination of xadj

i values verifies
flow conservation and falls within the 3% tolerance range.
The inference would be that one of the measurements was
erroneous and a detector must be repaired or replaced
(unless there was a human error in the installation, reading
or recording of the data).

A number of studies [1–5] attempt to find a solution to case
1 (admissible errors) to obtain adjusted data that are consistent
with flow conservation laws.

For case 2 (inadmissible errors), several approaches [6–9]
have been attempted to resolve or diminish count errors after
they have been detected, but they do not address how they can
be detected.

The methods for trying to detect errors may be classified
according to the consistency criterion [10]:

1. Fundamental consistency: Data should be consistent with
basic notions of traffic theory and should be physically
plausible; establishes upper and lower boundaries for traffic
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values (e.g. negative values and vehicle volumes that exceed
the road’s capacity cannot be measured).
2. Network consistency: Data should be related to
measurements that are close in space and time. It is based
on flow conservation when several connected nodes in a
transport network are studied. This is the type of
consistency shown in the preceding example.
3. Historical consistency: Historical observations can
provide insight as to the plausibility of current data.
Practice tells us that the values measured on a road are
almost always given for an interval. Values outside of the
interval may be plausible, but they indicate outliers, an
anomaly that should alert the control service. The historical
values constitute a basis for determining the boundaries of
the interval in which normally consistent values must be
found.

In current traffic control centres, detecting a malfunctioning
count station is pseudo-automated because historical
consistency marks the value interval each observation
should have. If a measurement is not within that interval, an
alarm is triggered, indicating a potential error in one of the
TCS.

The problem arises when no historical values are available
or when they exist but may indicate measurements as
erroneous when they are actually correct. An incident on
the network – repair work, accidents and weather issues,
for instance – may alter track conditions significantly and
cause outliers in the above-mentioned measurements
without presupposing that the detector has failed, in fact
there is a research field on this issue (among others [11–14]).

In Lin et al. [10] indicates several error detection
techniques based solely on historical consistency. They do
not take nearby detectors, that is, network consistency, into
consideration. Other approach is to incorporate observations
from adjacent detectors [4]. This paper presents a method
that is complementary to the existing ones, where basic
consistency and network consistency are taken into
consideration.

The method automatically detects a TCS that is failing, by
only considering the data observed by the network detectors
as input data. Once the detector that is failing has been
detected, the procedure can be repeated to see if the
remaining measurements are consistent and free of errors.

This paper is organised as follows: Section 2 describes the
method and the computational issues; in Section 3 the method
is applied to an urban network; Section 4 discusses the effect
of the model’s variables on the results; and finally, Section 5
presents the main conclusions of the paper.

2 Methodology

The method presented in this paper to detect and identify a
malfunctioning detector is based on the resolution of a
linear programming (LP) problem. In general terms, the Rn

region that meets certain restrictions is known as the LP’s
feasible region. That is what will be built for the problem
posed in this paper.

2.1 Feasible region

Let a series of measurements be taken {xobs
i } and that the

tolerance indicated for each measurement is ai. This
tolerance is usually expressed as a percentage of the
measured value, since it is reasonable to assume that any
absolute errors incurred will be lower for small magnitudes

than for larger ones, assuming the detectors function under
the conditions specified by the manufacturer:
∀i; x∗i [ [ai, bi], where ai = xobs

i − aix
obs
i and

bi = xobs
i + aix

obs
i . In Example 1, a 3% error was

considered admissible for all the measurements, and
therefore we would take ∀i, ai ¼ 3%, although in other
cases a different error for each detector could be considered.

Given a set of observed values {xobs
i }, i [ I , (where I is a

set of indexes) each with a tolerance of ai, we define the
‘admissible region’ as the set A , Rn, such that
∀�x = {xi} [ A where the following conditions are satisfied:

1. xobs
i − aix

obs
i ≤ xi ≤ xobs

i + aix
obs
i .

2. Vector �x verifies flow conservation laws.

Attention should be paid to the fact that the cardinal of the
set of observed values and the number of variables, n, do not
necessarily coincide. Thus, to continue with the previous
example, let the set of observed values be xobs

1 = 800,
xobs

2 = 1200, xobs
3 = 600 and xobs

4 = 700, which would give
the admissible region

A = {�x [ R5/776 ≤ x1 ≤ 824, 1164 ≤ x2 ≤ 1236, 582

≤ x3 ≤ 618, 679 ≤ x4 ≤ 721, x5 = x1 + x2 − x3 − x4}

where the first four intervals are obtained by
xi = xobs

i + aix
obs
i = xobs

i (1 + ai), adding the flow
conservation law: x1 + x2 ¼ x3 + x4 + x5.

Theorem 1: If all the detectors function properly, the feasible
region is not empty (A = ∅).

Obviously, if all the detectors give admissible errors, then
the true values vector, �x∗, belongs to the feasible region
(�x∗ [ A).

Therefore the inference is

Corollary 1: Si A = ∅, one of the detectors is giving an
inadmissible error.

Corollary 1 provides a method for detecting incorrect
measurements by taking into consideration fundamental
inconsistencies and network inconsistencies. Although the
converse theorem is not true, that is,

A detector may produce an inadmissible error, but the
remaining detectors’ margins permit admissible values and,
therefore, A = ∅. In practice, this means that although
there exists out of range measures, it is possible even to
obtain a consistent vector.Hence, if a detector is severely
malfunctioning it will be impossible to generate consistent
traffic counts.

We should also consider that if there are several vectors in
A, (A = ∅), some are more plausible than others, insofar as
they are closer to the observed values.Hence, for a vector
�x [ A we can associate another vector �h = {hi} such that
the verisimilitude of the ith component is

h∗i = 1 − |xi − xobs
i |

ai|xobs
i |

, hi = max {0, h∗
i } (1)

Fig. 1 shows the verisimilitude of assigning a value xi when
xobs

i with reliability ai has been observed.
For the sake of simplicity, a triangular shape function has

been chosen since the function shape is not an important
issue, since the aim is to check if the adjusted value is in or
out of the feasible region and simplicity of linear decay
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allows it to be solved by linear programming. However, other
polygonal function could be used, as it is stated in [1].

Assuming xobs
i . 0, ∀i [ I and making the relevant

transformations in (1), finding out whether an admissible set
of values exists becomes a problem of finding out whether
a solution to the linear optimisation problem exists:

Problem 1

Maximise:
∑
i[I

hi

Subject to:

0 ≤ hi ≤ 1, xi ≥ 0
xi + aixihi ≤ xobs

i (ai + 1)
−xi + aixihi ≤ xobs

i (ai − 1)
M�x = 0

⎧⎪⎪⎨
⎪⎪⎩

where xi, hi and h are the variables that can be considered
adjusted (consistent) values, variable verisimilitude and
minimal verisimilitude, respectively, and where the flow
conservation laws are represented by the homogeneous
linear system M�x = 0. Thus, for case 1 with the single
conservation law: x1 + x2 2 x3 2 x4 2 x5 ¼ 0, the matrix
M ¼ (1, 1, –1, –1, –1). In general, the matrix M will have
as many rows as existing flow conservation equations. Very
different target functions could have been selected for this
task, but this will also serve the second aim of this paper:
To determine which detector is producing erroneous values.
The benefit of transforming the problem into a linear
programming problem is being able to count on multiple
and optimised routines for the solution. (See http://www.
mathworks.com/help/toolbox/optim/ug/linprog.html [15].) It
is easy to amend the above method by considering different
margins to the right and to the left of the observed values,
that is, xobs

i [ (xobs
i − aL

i xobs
i , xobs

i − aR
i xobs

i ).

2.2 Detection of inadmissible measurements

Let the problem of resolving linear programming 1 in Section
2.1 be posed and that there is no solution, since A = ∅. We
would be in the case of Corollary 1, which indicates that
one of the measurements is inadmissible. Unfeasible should
not be confused with outliers, since the latter may be
correct and owing to traffic anomalies (an accident, repairs
etc.) but consistent with flow conservation laws. To detect
an incorrect measurement, we relax the manufacturer’s ai

margins, multiplying them by a constant K ≫ 0 so the new
linear optimisation problem will have a non-empty
admissible region. That is,

Problem 2
Maximise:

∑
i[I

hi

Subjec to:

0 ≤ hi ≤ 1, xi ≥ 0
xi + Kaixihi ≤ xobs

i (Kai + 1)
−xi + Kaixihi ≤ xobs

i (Kai − 1)
M�x = 0

⎧⎪⎪⎨
⎪⎪⎩

It is known that one property of the ‘maxsum’ objective
function is that it gives high values to most variables at the
expense of giving low values to a few variables [16]. In this
case, its effect is to assign values very close to the observed
ones (high verisimilitude) to the detriment of assigning very
distant values to a few (low verisimilitude). The
measurement that produces h ¼ min{hi} in problem 2 will
be proposed as inadmissible. We can always obtain a K that
is large enough to make A = ∅, since its effect is to
increase the variables’ admissible margin. In an extreme
case, any measurement xi would fit into the
(xobs

i + Kaix
obs
i ) interval. It could be assumed that selecting

K would modify the solution obtained, but the following
theorem shows that such is not the case.

Theorem 2: If the problem 2 is solved by using two different
values for K (K1 = K2), performing both feasible solutions,
then optimum solutions for K1 and K2 verify:

1. The optimum vector �x (1)∗ for K1 is also optimum vector
for K2: �x (2)∗ = �x (1)∗

2. The index of observation with minimum value for hi is the
same for both constants: arg mini {h(1)

i } = arg mini {h(2)
i }

Proof is given in Appendix.

2.3 Proposed algorithm

From previous considerations, Fig. 2 is proposed.
Fig. 2 is focused on detecting inadmissible observations

from the network consistency viewpoint. However, it is
easy to incorporate any available additional information.
For instance, by changing the upper bound of any variable
(adding the restriction xi ≤ Ui in step 3b), or by changing
the lower bound of any variable, which by default is 0
(xi ≥ Li) etc. This fact allows making it suitable to perform
fundamental consistency, generally expressed by bounds.

This method could be complementary to standard pre-
process that analyses historical consistency [10]. That is,
observed variables must be into a real interval, in other case
the observation is considered an outliers. An outliers must
be analysed separately since it can be produced by
anomalous traffic, but be correct.

Perhaps Fig. 2 was only executed to verify that the
detectors were working properly, but it is usually part of the
study on a region’s traffic. In such case, the next step would
be to obtain the adjusted data, that is, the consistent data
that most closely resembles the observed data. Any data
deemed inadmissible during the pre-process will have been
eliminated from the observed data using one of the
procedures suggested by other authors [1–4].

3 Application to an urban network

3.1 Road network data

The method is applied to the urban network shown in Fig. 3.

Fig. 1 Verisimilitude function for a single observation
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The network has seven intersections, of which four have 12
movements (intersections D, E, F and G), two have six
movements (A and C), whereas the last one has five
potential movements (intersection B).Hence, in total, there
are 86 unknown variables. As it is impossible to guarantee
that a set of true data will always be available, the initial set
of data will be a set of consistent data that is very close to
the observed data.

Consider the situation shown in Fig. 3, in which consistent
true data are available (theoretical values – TVs), where the
data that comply with flow conservation in the traffic
network concerned are deemed to be consistent. In other
words, the sum of incoming vehicles is equal to the sum of
outgoing vehicles at any network intersection.

This consistent database is used to randomly deform
values, by an uniform distribution, with a tolerance of
+3%, which is the tolerance shown by the count stations
most commonly used in urban networks [17]. This is not
deterministic, however, because if the detector was of
another type or had a different tolerance, a value other than
+3% could be considered. The model allows a different a
for each observed datum to be defined (several types of
detectors with different tolerances). As shown in Section 2,
it even permits the definition of asymmetric feasible regions.

Having obtained a randomly distorted database within the
above-mentioned tolerance, it could then be considered as
the data that would be obtained in an ideal counting
campaign in which all 86 potential movements would be
measured. Therefore it could be taken as the series of
observed data in an urban network (observed values –
OVs). In this case, the values would not be consistent,
according to the above definition (the sum of incoming
vehicles would not be equal to the sum of outgoing vehicles).

The fact that a base of consistent true data is used and
subsequently randomly distorted permits a comparison
between the results obtained and real life, and verification
of the goodness of the method proposed.

3.2 Results

OV obtained randomly from TV with a tolerance of +3% is
used to verify the goodness of the model. Next, a datum is
randomly selected and distorted to simulate a detector error

Fig. 2 Erroneous sensor detector

Fig. 3 Example of an urban network
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that exceeds the error specified by the manufacturer or, in
other words, a deviation from the detector’s allowed
tolerance. Specifically, deviations of 75, 50, 25 and 10%
from OV are simulated.

This deformation gives an initial database for each example
generated (each of that contains an erroneous datum). For
each one of the four deviations, 500 examples are randomly
generated from OV. In all, 2000 examples are executed.
Table 1 shows the results for the random examples.

Column 1 in Table 1 shows the simulated error in a
randomly selected measurement apparatus. Columns 2 and
3 show the number of times an error is detected in all the
random samples. That is, the number of times A = ∅ is
obtained applying Theorem 1. Column 2 points out the
number of times A = ∅ is obtained for the random
examples, which is when the adjusted value lies outside of
the detector’s allowed tolerance, and outside of the set
boundaries of the feasible region. This indicates that a
detector is giving a value that is higher than the allowed
deviation, which in turn means that a detector is failing.
Column 3 shows the same thing in relative terms.

By increasing all ai from 0.03 [(see step d1) in Fig. 2] in a
two steps process, the feasible region is extended in order to
allow A = ∅ to be found for every i. This value was selected
because it produces all h∗i . 0 at next step, as can be deduced
from (2) in proof of Theorem 2.

Table 1, column 4 shows the number of times the index i
that produces h ¼ minhi, coincides with the failing TCS.
Columns 6 and 7 show the number of times (and
proportion, respectively) in which the failing TCS is the
one that shows the second lowest value.Hence, when a TCS
perform a 75% of error, it coincides with the error obtained
by the second minor value of hi in 5% of cases.

Column 8 shows the proportion of times that the model is
able to detect the failing detector (i.e. adding the number of
times it detects the detector that fails, whether it is the hi

minimum or the value immediately above it). This result
points out the proportion of times at which it indicates a
detector that is failing, out of all the random examples. This
is the model’s proportion of success, and it is calculated by
adding column 4 and column 6, and dividing by the total
number of examples simulated. For an error of 75%, the
success rate is 93%. For the remaining cases, the model
finds that there is a malfunctioning detector, but it does not
point it out in the first or second places.

Table 1 shows that the model’s success increases in the
same measure as the device’s error increases and worsens
as the error diminishes, and the closer it is to the
measurement device’s tolerance range.

If the ratio (r) is expressed as the proportion of times that an
error is detected compared to the number of examples

executed (Table 1, column 2), the ratio of cases in which a
failing detector is detected for each simulated error can be
compared.

In other words, if N random examples have been executed
(in this case, N ¼ 500) and A times errors have been detected
(Table 1, column 2), the estimated ratio obtained
experimentally is r ¼ A/N (Table 1, column 3). In this
manner, for an error of 75%, the error is detected in 98% of
cases; for an error of 50%, in 97% of cases; for an error of
25%, in 88% of cases; and finally, for a simulated error of
10%, an error is detected in 53% of cases.

4 Sensibility analysis to different variables

First, the effect of the situation of the failing traffic counts will
be analysed. Second, what happens when certain points of the
network have not been counted? Finally, the sensitivity to the
number of not counted data in the network will be analysed
(with �50% more and 50% less points not counted).

4.1 Effect of the situation of the failing detector

How does the sensitivity depend on which detector is
malfunctioning? In order to analyse the method’s sensitivity
to the detector position, a selective choosing of the
malfunctioning detector has been made. At first stage, for
each scenario, the model was forced to choose an edge
detector (S1, S2, . . ., S21, or b1 in Fig. 3), and at second
stage the central ones (the remaining detectors) have been
chosen to be failing. Table 2 shows the results.

The method detects an error on the edge of the network
better than when the detector is situated in the centre. This
is logical because of the following reason: when an edge
detector is getting an inadmissible error, whereas the rest
adjacent measurements are corrects, must significantly
modify its value in order to reach network consistency.
That is because a small amount of adjacent detectors exists
which can be modified within the margin established by the
feasible region. On the other hand, a major modification of
these adjacent detectors makes the constraints able to be
affected; therefore the

∑
i hi is reduced. The target function

forces to modify the one that is giving an erroneous
measurement.

Whereas, for centre detectors, the measurements are linked
to more variables that can be modified within the feasible
region.Hence, an inadmissible small error (around 10%) is
easier to count on the adjacent values margin and move all
of them, in order to obtain all measures within its feasible
region, than a big change in the malfunctioning detector.

Table 1 Obtained results with a simulated error of 75, 50, 25 and 10%

Percentage

simulated

error

Error is detected Error is pointed out

and gets by hmin

Error is pointed out

and gets by second hmin

Error is pointed

out in total

Number

of

times (A)

Proportion

A/500

Number

of

times (B)

Proportion

B/500

Number

of

times (C )

Proportion

C/500

Success

proportion

(B + C )/500

75 491 0.982 443 0.886 23 0.046 0.932

50 486 0.972 386 0.772 37 0.074 0.846

25 438 0.876 269 0.538 27 0.054 0.592

10 266 0.532 137 0.274 24 0.048 0.322
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4.2 Effect of points that are not counted

In this subsection the effect of movements that have not been
counted is analysed.

Presumably, the network in Fig. 3 shows seven movements
that have not been counted (movements c2, c3, c4, d9, d10, d11

and d12). This implies around 8% of all the movements in the
network. This percentage is considered to be normal in
counting campaigns in a traffic network [18]. A case
consisting of 500 random examples is simulated below, in
which the number of not measured movements is increased
50% (10 not measured movements), followed by a case in
which the number of not measured points is diminished in
50% (four not measured movements).

Table 3 and Fig. 4 show a comparison between the results
obtained in the study with four hypotheses (all measured data,
4, 7 and 10 not measured data). In Fig. 4 the x-axis represents
the simulated distortions for the measurement device and the
y-axis represents the proportion of times the error is detected.

Taking column 3 (A/500) in Tables 1 and 3 into
consideration, a comparison can be made about the number
of times an error is detected in each case. Table 3 shows
that the ratio of errors detected for the simulated scenarios
gradually diminish when there is less measured data
available (i.e. less information).

From Fig. 4, Tables 1 and 3, it is possible to analyse the
model’s sensitivity to the number of not measured
movements in a case where all the data from all the TCS
(i.e. all measured data) is available. The x-axis represents
the simulated percentage of the device error (10, 25, 50 and

75%) and the y-axis data show the percentage of success
for every case, in comparison with the one in which all the
data are measured. In the event that a 75% error occurs in a
detector, for instance, the chart will show that the model
presented in this paper is 93% successful if 4 network data
are not measured, 90% if 7 network data are not measured
and 84% if 10 data are not measured.

Thus, the conclusion would be that the model gives good
success results even when the number of not measured data
increases, although, obviously, when more data are
available, the more it improves.

4.3 Combined effect of the size of the error and the
number of points that are not counted

Fig. 4 shows the ascending trend of the ratio when a detector’s
error increases in all the hypotheses. The trend is even more
pronounced when it moves from an error close to the
detector’s tolerance range (such as 10%) to around 25%,
after which the detector’s behaviour is asymptotic, reaching
an error ratio within the range 0.9–1 for the biggest device
error simulated. In other words, when the error exceeds the
threshold at around 25%, it can be asserted that the model
succeeds in around 90% of the cases.

In Fig. 4 the 1 2 s errors bars have been included in order
to show conclusions do not owe to random.

Table 4 showed the ratios (or proportion of success, pi) at
which error is detected in every scenario. To demonstrate
that the model’s proportion of success increases when more
data are measured (pi+1 , pi) and that the observed results

Table 2 Results for centre and edge detectors with a simulated error of 75, 50, 25 and 10%

Percentage

simulated error

Error is detected Error is pointed out and

gets by hmin

Error is pointed out and

gets by second hmin

Centre Edge Centre Edge Centre Edge

75 492 500 426 500 24 0

50 474 500 340 486 49 6

25 419 500 227 428 32 25

10 205 466 90 249 11 45

Table 3 Results with a simulated error of 75, 50, 25 and 10% with4, 7 and 10 not measured movements

Percentage simulated

error

Error is detected Error is pointed out

and gets by hmin

Error is pointed out

and gets by second hmin

Error is pointed out in total

Number of

times (A)

Proportion

A/500

Number of

times (B)

Proportion

B/500

Number of

times (C )

Proportion

C/500

Success proportion

(B + C )/500

4 not measured movements

75 466 0.932 397 0.794 27 0.054 0.848

50 447 0.894 353 0.706 36 0.072 0.778

25 391 0.782 234 0.468 38 0.076 0.544

10 242 0.484 95 0.190 29 0.058 0.248

7 not measured movements

75 449 0.898 374 0.748 30 0.060 0.808

50 425 0.850 315 0.630 42 0.084 0.714

25 351 0.702 201 0.402 28 0.056 0.458

10 226 0.452 100 0.200 30 0.060 0.260

10 not measured movements

75 418 0.836 360 0.720 22 0.044 0.764

50 372 0.744 282 0.564 35 0.070 0.634

25 338 0.676 211 0.422 29 0.058 0.480

10 203 0.406 87 0.174 28 0.056 0.230
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are not due to chance, a hypotheses of proportional difference
was tested at a significance level of 5%, taking
Ni+1 ¼ Ni ¼ 500 [19, 20].

Three statistical tests were conducted to compare the three
hypotheses in groups of two. That is, first hypothesis of all
movement measured was tested against 4 not measured
movements, the case of 4 not measured movements against
7 not measured data, and last, 7 not measured data were
tested against 10 not measured data. The Zexp ¼ (pi 2 pi+1)/
s is calculated and compared with the Ztheoretical ¼ 1.645, it

determines the significant region (Zexp . 1.645). The results
are given in Table 5.

It is found that pi+1 , pi in all cases and statistically
significant results are obtained for the cases of 75, 50 and
25% error in the first and second tests, and in the third one
the results are significant after the 50% error.

Therefore it can be asserted that the success proportion
improves with the number of counted data and this fact is
not due to chance.

5 Summary and conclusions

This paper presents a method for detecting inadmissible errors
in TCS and identifying which device is more likely to be
failing. The method is based on a double linear
optimisation process that can easily be solved with existing
software on the market, and which we consider highly
useful for practitioners.

If the method detects the existence of an inadmissible error
in the TCS’ measurements when the first linear optimisation
is used, a second optimisation can be used so the method
can obtain the detector that is most likely to be failing (the
one that obtains the minihi). This facilitates to replace or fix
them for obtaining adjusted data.

Four different cases of potential errors were simulated in
order to identify the effects on the method (deviations of
10, 25, 50 and 75%). The results show that the method
works better with bigger errors (75%), which are more
frequent when dealing with malfunctioning detectors, than
with small errors (10%), close to the TCS’s tolerance (3%).
For deviations of around 25% of their theoretical value, the

Fig. 4 Sensitivity analysis of success against increase in the number of data not measured

Table 4 Ratios calculated for every scenario providing the standard deviation

Percentage of simulated error All movements are

measured

4 not measured

movements

7 not measured

movements

10 not measured

movements

Proportion s Proportion s Proportion s Proportion s

75 0.982 0.006 0.932 0.011 0.898 0.014 0.836 0.017

50 0.972 0.007 0.894 0.014 0.850 0.016 0.744 0.020

25 0.876 0.015 0.782 0.018 0.702 0.020 0.676 0.021

10 0.532 0.022 0.484 0.022 0.452 0.022 0.406 0.022

Table 5 Test of hypotheses

% error pi Pi+1 Zexp

all measured against 4 not measured movements

75 0.982 0.932 3.927110655

50 0.972 0.894 4.993847666

25 0.876 0.782 3.978624361

10 0.532 0.484 1.519839919

4 against 7 not measured movements

75 0.932 0.898 1.931244679

50 0.894 0.850 2.086907096

25 0.782 0.702 2.903158213

10 0.484 0.452 1.014529379

7 against 10 not measured movements

75 0.898 0.836 2.898969254

50 0.850 0.744 4.20341134

25 0.702 0.676 0.888433399

10 0.452 0.406 1.471128409

Significant cases in bold
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method is 88% efficient for detecting that there is an error in
the measures. The efficiency in identifying a failing detector
can be considered good (over 90%) when the error is over
75% of the deviation, and diminishes as the errors become
smaller.

The same tolerance was considered for all the TCS (3%),
but the model is versatile and allows assigning a different
tolerance to each detector according to its type and level of
precision.

Finally, a statistical test has been conducted to demonstrate
that the increase in the number of times an error is detected
when more movement counts were obtained as opposed to
a gradually decreasing number of times is not due to
chance. This serves to assert that the results are significant
and the size of the sample selected is sufficient to
corroborate the conclusions arrived at in this paper.

Usually studies perform automated data checking by
comparing measured data to historical data for consistency
[10]. Sometimes, however, there are no historical data and
only the observed database is available. This is when the
method proposed in this paper becomes a good tool for
detecting errors, since the only incoming data required are
the observed data, with no need for preprocessing. Actually,
both approaches could be considered as complementary: it
is possible to use fundamental and network consistency for
detecting inadmissible errors and, historical consistency as
alarm signal.
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8 Appendix: Proof of Theorem 2

Let �x [ A and ∀i, h(1)
i = 1 − (|xi − xobs

i |/K1aix
obs
i ),

h(2)
i = 1 − (|xi − xobs

i |/K2aix
obs
i ) then it is easily obtained

K1(h(1)
i − 1) = K2(h(2)

i − 1) (2)

and by naming m the number of observed variables

∑
i[I

{h(1)
i } − m =

∑
i[I

{h(1)
i − 1} = K2

K1

∑
i[I

{h(2)
i − 1}

= K2

K1

∑
i[I

{h(2)
i } − m

( ) (3)

From (3), it can be defined the monotonically increasing
function: S1 = (K2/K1)(S2 − m) + m between

S1 =
∑

i[I h(1)
i and S2 =

∑
i[I h(2)

i .

If we assume that �x(1)∗ [ A is the set of values that
produces the optimal solution to problem 2 with K1,
producing values for target functions S∗

1 and S∗
2 for the

constant K2. Then, if a �x′ = �x(1)∗ [ A exists and could
provide a better solution to problem 2 with K2 (S′

2 . S∗
2 ),

then the monotony of the equation produces that for this
vector �x′, (S′

1 . S∗
1 ), which is absurd, since no solution can

be better than the optimal solution. Therefore there cannot
exist any vector �x′ giving a better value to the target
function of problem 2 with K2 than �x(1)∗ . This verifies the
first part of the theorem. In addition, for (2), components
h(1)

i and h(2)
i are related by an increasing monotonous

function in such a way that the index of the function that
produces the minimum in {h(1)

i } is the same one that
produces the minimum in {h(2)

i }. This proves the second part.
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a b s t r a c t

Obtaining data to use in an urban public transport operation planning and analysis is prob-

lematic, particularly in urban bus transit lines. In an urban environment and for bus ser-

vices, most ticketing methods can be used to record passengers getting on board but not

getting off, and current methods are unable to make a proper adjustment of boardings

and alightings based on the available data unless they do alighting counts. This paper pre-

sents a method whereby counts are made at fewer stops and qualitative information on

alightings and/or vehicle loads between consecutive stops is used to make the boarding

and alighting adjustment as a previous step to obtain the real origin and destination (O/

D) of passengers allowing the O/D matrix calibration by using the loads between stops.

Qualitative information can be obtained by the vehicle’s driver or an on board observer,

avoiding the necessity of counting many stops in planning period. The method is applied

to a real bus transit line in Malaga (Spain) and to a set of 50 different bus transit lines with

number of stops ranging from 10 to 75. The results show that the proposed method reduces

the adjustment errors with regard to traditional methods, such as Least Square Method,

even in the situation where no qualitative information is used. When qualitative data is

used on alightings and loadings, the reduction of the average error is over 50%.

Ó 2013 Elsevier Inc. All rights reserved.

1. Introduction

When planning public transport networks, it is crucial to know the real origin and destination (O/D) of passengers. Sur-

veys about the O/D of travelers are mandatory to obtain this information at every transport system. Once the O/D matrix has

been obtained (based on the survey), it has to be calibrated with collected data. For that aim, in the case of bus services, the

number of passengers between the bus stops (bus loads) is key information. To get this information, the transport planner

needs to know the actual in and out movements of passengers at each stop along the line. Besides, bus loads are also crucial

in the service operation activities, such as when deciding if an additional vehicle is required because the maximum load has

been overtaken at peak time, helping to adapt the service to the demand as much as possible. Regarding to urban transit

buses, collecting data on passenger boardings has progressed with the new electronic ticketing systems, like the smart card

as a payment option as can be seen in the literature review made by Pelletier et al. [1], and thanks to the increased sophis-

tication of mobile communication technologies [2]. Smart cards improve the quality of data [3] and the ticket validation sys-

tems provide information on the number of boardings. Therefore, this information is quite accurate and the only errors are

due to potential device failures.
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However, the systems cannot be used to obtain data on the number of alightings, so passenger detection systems and

surveys on board or at the stops are needed for that purpose. Several surveyors may be needed if there are several exits

(e.g., in articulated buses) and high passenger volumes. Such data collection is much more costly and subject to more errors

than boarding counts. So, improved techniques for collecting data on transit operation are essential to improvements in tran-

sit operating efficiency. Two-time mode cards have been adopted in certain exceptional cases [4] (i.e., Beijing Municipal Gov-

ernment Public Traffic) to record where passengers board and alight. Card scanners are placed at the entrance and at the exit,

but the systems are not used on most of transport services at a global level, passenger tickets need to be scanned twice which

means double investment.

New emerging technologies are being developed, such as images recognition, weight sensors or counting sensors but, so

far, the pilot project experiences have failed because they still present too many errors (i.e., open field, shadows, partial vi-

sion, etc.) and it seems to give erroneous information, which at the end must be used as fuzzy data, that no traditional meth-

od is able to work with.

It is important to remember that in both, the case of interurban and underground transport systems, where passengers

buy the ticket before boarding and in many underground networks the passengers must scan their tickets before they exit,

this method would be useless. But it still remains a wide field to be applied on urban or metropolitan bus lines worldwide.

2. Background

Several methods have been developed to adjust data on a transit line when both boarding and alighting data are available

[5]. In general, all methods seek to narrow the gap between observed values and adjusted values as much as possible, subject

to contour conditions.

The existing methods can be classified into two groups, depending on the nature of the observed values and how they are

processed:

� Group One: The adjusted values are based on their closeness to the observed values. The methods used are: the least

squares method (LSM); the maximum likelihood adjustment; and the fuzzy regression adjustment [6]. In addition to

the above methods, other authors have defined a stochastic method in which it is assumed that passenger boardings fol-

low a Poisson distribution and the number of passengers alighting follows a binomial distribution [7].

� Group Two: These methods assume that the observed value is approximate and that the adjusted value is within a range

created around the observed values. This group can include fuzzy optimization and the required interval regression

adjustment. Using the fuzzy sets theory, fuzzy optimization adjustments allow soft constraints to be added to the rela-

tionships between volumes at transport nodes, seeking data reliability and the relationships between volumes. The

adjustment with the required interval regression seeks the adjusted value within a crisp contour. This method is appro-

priate for those cases in which the analyst does not trust the accuracy of the observed data.

All the above methods require quantitative data to be able to make the adjustment, and obtaining such data is expensive.

On the other hand, information on vehicle loads between stops is not often used to make the adjustment between boarding

and alighting data. Rather, it is the final output of the adjustment.

At almost no extra effort, qualitative information on the number of passengers who alight at a stop or on loads between

stops on a transit line could be obtained, along the lines such as: a few passengers, many passengers, half the load, or I do not

know how many alighted at stop xi; the bus was half full, almost empty or half full between stop xi and xi+1.

The above-mentioned methods are not able to use qualitative information, however. Although the methods in Group Two

use fuzzy logic, they are based on quantitative values, so they can only be applied if a quantitative value is assigned to each

observed value. Doing so would add an element of randomness to the results obtained. To explain this, let us suppose that

there are five stops on a line and the boarding data is available (80, 20, 20, 20, 0) but the number of passengers alighting

could not be quantified. To be able to apply the existing methods, a quantitative value would need to be assigned to each

alighting. If that information is not available, one analyst could suppose that (0, 0, 0, 0, 140) have alighted, whereas another

analyst might suppose (0, 80, 20, 20, 20). The results obtained by both analysts would be completely different.

In this paper, we present a new method that uses fuzzy optimization based on qualitative information about the number

of passengers alighting at each stop and about the vehicle load between stops. The aim of the method is to use this infor-

mation to enhance boarding and alighting adjustments, with two possibilities:

� One, the information on the alightings provided by surveyors (quantitative, at a high effort and cost) could be replaced by

qualitative information on the number of passengers who alight at each stop and on the vehicle load between stops,

which could be provided by the vehicle’s driver. This would dispense with the need to hire surveyors to do the job, with

the resulting financial saving.

� Two, to see the percentage of alightings that would not need to be counted while retaining the adjustment’s accuracy, if

we used qualitative information on the vehicle load between stops provided by the vehicle’s driver.
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This paper is organized as follows: Section 2 describes the method and the computational issues; in Section 3 the method

is applied to a real transit line and, in order to verify the results, it is applied to a set of different types of lines; Section 4

discuss results; and, finally, Section 5 presents the main conclusions of the paper.

3. Theoretical approach

3.1. Description of the problem

Given a transit line with N stops, we want to adjust passenger boardings and alightings at each stop, as well as the loads

between two consecutive stops, based on information obtained by several different methods, in such a way that the follow-

ing basic principles of flow conservation are met:

� the total number of boarding passengers should be equal to the total number of alighting passengers, and

� the number of passengers on board between stops k and k + 1 should be greater than zero and less than the vehicle capac-

ity (Lmax)

The initial variables and data for solving the problem are the values for passenger boardings and alightings, vehicle loads

between stops and Lmax.

The data collection can provide several types of information: quantitative numerical data (precise integer values or with

an error), qualitative data (many, a few, etc.) or missing data (no information is available on the value adopted by a specific

variable).

The type of data will depend on the variable taken into consideration:

� Passenger boardings: these are obtained by the ticket sales method, so it can be assumed that there are no errors and

therefore the values are deemed to be exact fixed integers. In a context of scarce information, the few data with small

or null error (only in the case of potential failures in the devices) will be considered as fixed data.

� Passenger alightings: depending on the method used for data collection, it can be quantitative numerical data with errors

(from counts), qualitative information (from the perception of and analyst or driver), or missing information (when no

information is available).

� Vehicle load between stops: it may be considered as qualitative information (from the perception of an analyst or driver)

or missing (if an analyst or driver has not additional information on loads).

� Capacity of the vehicle (Lmax): it is considered to be a fixed numerical value, used as a framework for establishing the dif-

ferent categories of qualitative information (many, some, few, etc.).

3.2. The proposed method

The first step to solve this problem is to use membership functions to represent the above concepts. Fig. 1 shows the

membership functions for four concepts: fixed number (quantitative information with no error); crisp number (quantitative

information with errors); fuzzy information (qualitative information) and; missing value.

A membership function is convenient for representing the idea that the adjusted value should be ‘‘close’’ to the observed

value and the acceptability of the adjusted value ‘‘gradually’’ diminishes as it deviates farther from the observed value. A

large volume of literature is available on interpretations and applications of fuzzy sets and membership functions, including

the work of Tanaka [8], Yager and Filev [9], Zimmermann [10], Klir and Wierman [11].

Here triangular-shaped membership functions are assumed, following the discussion made by other authors about the

use of full fuzzy linear programming using symmetric triangular fuzzy number [12]. This representation is convenient com-

putationally (a linear program can be used) and is consistent with uncertainty about the ‘‘most probable’’ value. Given an

observed value (xobsi ) and its tolerance (ai) (usually expressed as a percentage of the observed value), Eq. (1) defines the mem-

bership function. However, if additional information about the character of the observed value is available, the shape of the

membership function could be modified.

hiðxiÞ ¼ max 0;1ÿ
jxi ÿ xobsi j

aixi

� �

ð1Þ

xi is the adjusted value for the ith variable. That is: "i; xi 2 ½xobsi ÿ aix
obs
i ; xobsi þ aix

obs
i �. ai may have a different value for each

observed value, depending on how reliable it is (the less reliable the input data is, the higher it will be).

Cases (a) and (d) in Fig. 1 are specific cases of case (b). A fixed number ai=0 forces its value to be kept after the adjustment,

i.e., xobsi ¼ xi. In the case of a missing value hi(xi) = 1 in (0,Lmax), where hi(xi) is the membership grade.

The mathematical problem that needs to be solved in order to find the solution is:

Given a set of observed values fxobsi g i 2 Ib [ Ia [ IL = I, (where I is a set of indexes, and Ib, Ia and IL are the number of boar-

dings, alightings and loads respectively) each with a tolerance of ai, we define the feasible region as the set A � Rn, such that

8~x ¼ fxig 2 A where the following conditions are satisfied:
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1. xobsi - ai x
obs
i 6 xi 6 xobsi + ai x

obs
i , where xobsi is the number of passengers who have observed boarding or alighting at stop i

and xi is the adjusted value based on the observed value i.

2. Vector ~x verifies flow conservation law:
P

i�Ib

xi ¼
P

i�Ia

xi

Assuming xobsi P 0, "i 2 I, this adjustment becomes a problem of finding out the best solution to the linear optimization

problem proposed. The methodology proposed comprises two steps and was already introduced by the authors in De Oña

et al. [13]:

Step 1. The problem is solved using MaxMin Method (MM method), (Eq. (2)), and we obtain a value of h = min(hi).

Max ðhÞwhereh ismin ðhiÞ ð2Þ

subject to

� Constraints related to the membership functions:

hiðxiÞ � h for i ¼ 1;2; . . . ;3N ð3Þ

where N is the number of transit stops, which means there are 2N + N constraints

� Constraints related to the conservation of flow in the transit line:

X

i�Ib

xi ¼
X

i�Ia

xi ; for i ¼ 1;2; . . . ;3N ð4Þ

where N is the number of transit stops

� Constraints related to vehicle conditions:

lk � 0andlk � Lmax ð5Þ

where lk is the number of passengers on board between stops k and k + 1 and Lmax is maximum vehicle load.

Once, the Step 1 is finished, the optimum value for h = h⁄ is recorded.

Fig. 1. Membership functions for (a) fix number, (b) crisp number, (c) fuzzy information and (d) missing value.
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Step 2. The problem is solved using the Maximum Sum Method (MS method) (Eq. (6)):

MaxðgÞwheregissumðhiÞ ð6Þ

Subject to the same constraints related to the conservation of flow at the transit line (Eqs. (4) and (5)), and to the follow-

ing constraints related to the membership functions:

hiðxiÞ � h
�

for i ¼ 1;2; . . . ;3N ð7Þ

The total number of unknowns in Step 2 is reduced by one compared to Step 1.

The main difference here with regard to existing models is that now the input data can be qualitative, and the proposed

method is able to preprocess them by assigning them amembership function in order to be processed in the same way as the

crisp data.

The benefit of transforming the problem into a linear programming problem is being able to count on multiple and opti-

mized routines for the solution [14,12].

4. Data, methodology and statistical analysis

In this section, the proposed method is applied to a real transit line in Malaga to analyze the results. Furthermore, to gen-

eralize and validate the results the method is applied to a set of different lines with different number of stops, different boar-

dings, alightings and load data, that have been generated specifically for this purpose. Depending on the amount of

qualitative information available, different scenarios are considered and analyzed.

4.1. Example 1: transit line in Malaga

Fig. 2 shows line number 20 in Malaga (Spain). This transit line runs between the City Centre of Malaga (Alameda Prin-

cipal) to the west area of the city (University). It is 10.6 km long and presents 21 bus stops. Table 1 shows the true boarding

and alighting data (True Value, xtruei ) for bus number 541. The consistency of the data can be verified: data comply with flow

conservation along the line, so the sum of boarding passengers is equal to the sum of alighting passengers on the transit line

(Eq. (4)).

From this consistent data we randomly deform values ±25% for the alightings and ±20% for the loads between stops, keep-

ing the boarding fixed. The maximum load for the articulated buses used in this line is 100 passengers.

Having obtained a database within the above-mentioned tolerance, it could then be considered as the data that would be

obtained in a counting campaign in which all 60 potential boardings, alightings and loads would be measured. Therefore, it

could be taken as the series of observed data in a public transit line (Observed Values, xobsi ). In this case, the values would not

be consistent; according to the above definition (the sum of boarding passengers is equal to the sum of alighting passengers

on the transit line). In order to state conclusions about the goodness of the method, this process was repeated 1000 times

Therefore, from the true consistent data xtruei (see Table 1), 1000 random databases were generated to be used as the poten-

tial observed data in different tours of the line or different hourly base.

The fact that a base of consistent data is used and subsequently randomly distorted allows verifying the goodness of fit of

the proposed method.

Fig. 2. Example of a transit line in Malaga.
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4.2. Examples for validate and generalize the results

In order to verify that the results obtained can be generalized to any transit line, the method is also applied to a set of 50

different lines, where the number of stops is chosen within the range (10, 75). The procedure was the following:

1. The number of stops is defined and a fictitious transit line is generated with a set of boardings, alightings and loads. Apart

from the number of stops, the conditions that boardings, alightings and loads verify the constraints related to the conser-

vation of flow (Eq. (4)) and related to vehicle conditions (Eq. (5)) are imposed. This database is used to verify the goodness

of fit of the method (see Sections 3.3 and 3.4).

2. In every fictitious transit line, the consistent data generated is randomly deform in the same way and with the same tol-

erance as it was for the transit line in Malaga (see Section 3.1): ±25% for the alightings; ±20% for the loads between stops,

keeping the boardings fixed. These boardings, alightings and loads, do not satisfy the conditions defined by Eqs. (4) and

(5), and are considered as the data that would be obtained during a conventional data collection, and they are the input

for the model.

3. In the aim of considering different tours of the same line, different hourly or daily volumes along the line, or even differ-

ent lines; for every fictitious transit line in Step 1 (50 lines) 100 potential boardings, alighting and loads database are

obtained.

So, for generalize and validate the proposed method we will apply it to 5000 different transit lines with a number of stops

between 10 and 75.

4.3. Scenarios

As pointed in Section 2.1, it is considered that quantitative information on the passengers boarding at all stops is available

and these values are assumed to be exact fixed integers. Furthermore, it is considered that quantitative information on the

alightings in some of the stops is also available.

Depending on the remaining amount of qualitative and quantitative information available on alightings (A) and on loads

(L) different scenarios are considered:

(a) No further qualitative information is available on the remaining alightings and loads: missing alighting (MA) and

missing loads (ML)

(b) Qualitative information is available on the alightings (FA) where no quantitative information exist

(c) Qualitative information is available on the vehicle loads (FL) between successive stops

(d) Qualitative information is available on alightings (FA) and also on vehicle loads (FL).

In the case of the transit line in Malaga 40 scenarios are considered (see Table 2). To analyse the 5000 transit lines for

generalization and validation of the method, 12 scenarios are considered (bold scenarios in Table 2).

Table 1

Alightings and boardings true values for a transit line in Malaga*.

Stop Stop ID EMTSAM Boarding Alighting Load

1 2301 45 0 45

2 2009 17 2 60

3 1403 4 3 61

4 1404 10 2 69

5 1405 4 1 72

6 2003 15 2 85

7 2007 0 11 74

8 833 0 24 50

9 818 0 37 13

10 2056 0 8 5

11 2056 2 2 5

12 850 0 1 4

13 832 4 3 5

14 2058 1 2 4

15 2059 2 0 6

16 2055 6 1 11

17 1460 1 3 9

18 1461 3 0 12

19 1462 0 2 10

20 1463 0 3 7

21 2301 0 7 0

⁄

EMTSAM is the Public Transport Company in Malaga Municipality.
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In Table 2, ML means that all the loads are missing; FL means that we have qualitative information on all the loads; xxMA

represents the case that a percentage xx of the alightings are missing; and xxFA represents the case that we have qualitative

information about a percentage xx of the alightings. Boardings were considered as fixed data in all cases.

4.4. Statistical Methods

Conventional statistical parameters are used in order to compare the results of the different scenarios such as: average

error, standard deviation, minimum and maximum error, and analysis of the variance (ANOVA).

None of the existing methods in the literature is able to process qualitative data for alightings and loads (FA or FL). There-

fore, in the scenarios (b), (c) or (d) they miss a lot of information and they are expected to provide worse results. For com-

parison purposes, we use the Least Square Method (LSM) as benchmark. LSM uses only quantitative data, so it is applied and

only compared with the 10 Cases ML/MA (see Table 2).

In both cases under study (one in the case of the transit line in Málaga; and 50 for validation and generalization of the

method) the true boarding and alighting data ðxtruei ) are used as reference to calculate the error that occurs in every database

of non-consistent boardings, alightings and loads, in every scenario. Eq. (8) define the absolute error (e) for the consistent

adjusted values (xi) in relation to xtruei for each line with a certain combination of non-consistent boardings, alightings

and loads. e is defined as the average distance between xi and xtruei , where n is the number of values observed. e is calculated

using only the alightings, since the boardings were considered to be fixed (i.e., with no errors). If it is capable of obtaining

good adjusted values for the alightings, the loads can be obtained by the difference and it can be asserted that the adjustment

was good.

e ¼

Pn
i¼0jxi ÿ xtruei j

n
ð8Þ

The average error, the standard error deviation, the minimum and maximum error can be obtained from e. Table 3 shows

the average errors obtained from e committed in the 1000 defined cases in Example 1, under the 40 different scenarios. Fur-

thermore, this Table 3 also shows the average errors when LSM is used under the 10 aforementioned scenarios.

Table 2

Scenarios definition.

Cases ML/MA Cases ML/FA Cases FL/MA Cases FL/FA

ML/20MA ML/20FA FL/20MA FL/20FA

ML/25MA ML/25FA FL/25MA FL/25FA

ML/30MA ML/30FA FL/30MA FL/30FA

ML/40MA ML/40FA FL/40MA FL/40FA

ML/45MA ML/45FA FL/45MA FL/45FA

ML/50MA ML/50FA FL/50MA FL/50FA

ML/60MA ML/60FA FL/60MA FL/60FA

ML/75MA ML/75FA FL/75MA FL/75FA

ML/80MA ML/80FA FL/80MA FL/80FA

ML/90MA ML/90FA FL/90MA FL/90FA

Note: ML: missing load; FL: fuzzy load; MA: missing alightings; FA: fuzzy alightings.

xxMA: xx% of missing alightings, (100–xx)% of alightings crisp.

xxFA: xx% of alightings fuzzy, (100–xx)% of alightings crisp.

Table 3

Average errors (n = 1000) for the 40 different scenarios in the transit line in Malaga.

LSM Cases ML/MA Cases ML/FA Cases FL/MA Cases FL/FA

Case e Case e Case e Case e Case e

ML/20MA 2.13 ML/20MA 1.90 ML/20FA 0.91 FL/20MA 0.90 FL/20FA 0.82

ML/25MA 2.70 ML/25MA 2.31 ML/25FA 0.97 FL/25MA 1.00 FL/25FA 0.88

ML/30MA 3.16 ML/30MA 2.62 ML/30FA 1.00 FL/30MA 1.11 FL/30FA 0.90

ML/40MA 4.11 ML/40MA 3.28 ML/40FA 1.10 FL/40MA 1.33 FL/40FA 0.96

ML/45MA 4.50 ML/45MA 3.54 ML/45FA 1.14 FL/45MA 1.41 FL/45FA 0.99

ML/50MA 4.96 ML/50MA 3.84 ML/50FA 1.18 FL/50MA 1.52 FL/50FA 1.01

ML/60MA 5.75 ML/60MA 4.37 ML/60FA 1.28 FL/60MA 1.72 FL/60FA 1.07

ML/75MA 6.87 ML/75MA 5.21 ML/75FA 1.35 FL/75MA 2.05 FL/75FA 1.09

ML/80MA 7.24 ML/80MA 5.49 ML/80FA 1.39 FL/80MA 2.17 FL/80FA 1.12

ML/90MA 7.93 ML/90MA 6.02 ML/90FA 1.47 FL/90MA 2.40 FL/90FA 1.20
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Table 4 shows the average error, the standard error deviation, the minimum and maximum error in the case of validation

and generalization of the method. These values are obtained from e using the 5000 cases under study for the 12 different

scenarios. Table 4 also shows the results when LSM is used.

The statistical analysis has been completed by means of analysis of variance (ANOVA), on a quantitative dependent var-

iable (average error) and the independent variables (factors). ANOVA is used to test the hypothesis that several means are

not the same. In our analysis we performed one- and two-way ANOVA. In addition to determining that differences between

the means exist, several post-hoc LSD tests were considered on factor levels. The factors considered are: for one-way ANOVA,

the scenario; and for two-way ANOVA, the percentage of crispy alightings (10%, 40% and 70%), the fuzzy alightings (yes or no)

and the fuzzy loads (yes or no). Interactions between factors were also considered, in order to determine if the presence/ab-

sence of a factor level increases/decreases the effect on the response variable (average error). Study of Residuals and Bartlett

tests were performed for checking assumptions of normality and homoscedasticity, respectively. Calculations were per-

formed using R-statistical program.

5. Results and discussion

The procedure starts using fuzzy functions to code the qualitative information obtained by the analyst or driver. To that

end, a fuzzy class and a triangular type membership function is assigned to each one of the qualitative concepts for loads and

alightings, and the analyst is asked to provide information according to that coding. Fig. 3 shows the membership functions

of the load and of the alightings in a bus carrying 100 passengers.

Table 3 shows the results for the 40 scenarios in the transit line in Malaga. The values in Table 3 represent the average

error (n = 1000) for each scenario. Fig. 4 shows the results in Table 3 graphically.

Table 3 and Fig. 4 show that:

� The error is gradually lowered in all cases as the percentage of quantitative information on the alightings increases (e.g.,

for the LSM, the error diminishes 50% when it goes from 10% to 60% of quantitative data on alighting).

� The LSM shows the largest errors for the same level of quantitative information on alightings.

� The more qualitative information is used, the more the average error diminishes (from the ML/MA cases to the FL/FA

cases).

� The less quantitative information there is, the greater the effect of qualitative information on the average error. The sep-

aration between the curves in Fig. 4 is much greater when only 10% of crisp alightings are available than when 80% are

available.

Results in Table 3 show that the larger errors occur when LSM is used (column 1), followed by the results obtained when

the method proposed in this paper is used with no qualitative information available, cases ML/MA (column 2). The smallest

errors are committed when the proposed method is used with qualitative information available on alightings and on loads,

cases FL/FA (column 5). However, the results for the remaining cases, (where only qualitative information is available on the

Table 4

Results (average error, standard deviation, min, max, and one-factor ANOVA) for three scenarios with LSM and 12 scenarios with the proposed method

(n = 5000).

% Crisp alightings % Fuzzy alightings Fuzzy loads No. cases Average error Standard dev Min Max

Total 75,000 4.86 2.32 1.00 15.33

Least squared method (LSM)

ML/90MA 10 0 N 5000 9.95 a 1.47 5.76 15.33

ML/60MA 40 0 N 5000 7.98 b 1.35 4.16 14.33

ML/30MA 70 0 N 5000 5.61 c 1.10 2.22 11.89

Proposed method

ML/90MA 10 0 N 5000 7.59 d 1.01 4.13 12.70

ML/60MA 40 0 N 5000 5.90 e 0.84 2.80 10.78

ML/30MA 70 0 N 5000 4.27 f 0.68 1.67 8.00

ML/90FA 10 90 N 5000 3.45 g 0.53 1.83 6.60

ML/60FA 40 60 N 5000 3.12 h 0.53 1.42 6.10

ML/30FA 70 30 N 5000 2.75 i 0.53 1.00 6.10

FL/90MA 10 0 Y 5000 5.70j 1.11 2.24 10.78

FL/60MA 40 0 Y 5000 4.43 k 0.87 1.52 8.24

FL/30MA 70 0 Y 5000 3.37 l 0.65 1.25 6.24

FL/90FA 10 90 Y 5000 3.06 m 0.49 1.55 5.46

FL/60FA 40 60 Y 5000 2.90 n 0.49 1.45 5.10

FL/30FA 70 30 Y 5000 2.74 i 0.49 1.00 5.10

a, b, c, d, e, f, g, h, i, j, k, l, m, n Denotes differences statistically significant (p<0.05). Two levels with the same letter.
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alightings, cases ML/FA, or on the loads, cases FL/MA) are very similar and results are not conclusive based on the analysis of

just one transit line.

Fig. 3. Membership functions of loads and alightings in a transit line.

Fig. 4. Average error evolution in the case of a transit line in Malaga.
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Table 4 shows the results based on the analysis using 50 different transit lines with a number of stops ranging from 10 to

75. 100 possible combinations of non-consistent boardings, alightings and loads have been used for each one of the 50 lines.

These combinations data have been adjusted by using the proposed method (n = 5000) under the 12 scenarios considered

(bold scenarios in Table 2). In order to compare the results, the three scenarios that do not consider qualitative information

have been adjusted by using the LSM. 15 cases are compared in total (three scenarios with LSM and 12 scenarios with the

proposed method).

In global terms, for all cases (n = 75,000), the average error is 4.86, the standard deviation is 2.32, and the minimum and

maximum errors are 1.00 and 15.33, respectively.

When the same percentage of crisp alightings is considered (10%, 40% or 70%), LSM produces larger average error, stan-

dard deviation, minimum and maximum error. The average error ranges from 5.61 for 70% of crisp alightings to 9.95 for 10%

of crisp alightings. The standard deviation ranges from 1.10 to 1.47 (for 70% and 10% of crisp alightings), and the error ranges

from 2.22 for 70% of crisp alightings (minimum value) to 15.33 for 10% (maximum value).

From the average error point of view, LSM is followed by the proposed method when no qualitative information is used

(ML/MA). The proposed method when only qualitative information on loads is used (FL/MA) is placed the third. In fourth

place, when qualitative information on alightings is used (ML/FA) and, finally, the proposed method with qualitative infor-

mation on both alightings and loads (FL/FA) is the one that produces the smallest average error. For the proposed method,

the average error ranges from 2.74 for FL/30FA to 7.59 for ML/90MA; the standard deviation ranges from 0.49 for cases FL/FA

to 1.11 for FL/90MA; and the error ranges from 1.00 for ML/30FA and FL/30FA (minimum value) to 12.70 for ML/90MA (max-

imum value).

The LSD test shows that the scenario has a statistically significant (p < 0.05) effect on the average error. 14 different

groups were identified (almost one group for each one of the 15 cases being compared). Only the scenarios ML/30FA and

FL/30FA show homogeneous groups.

Table 5 shows the two-factor ANOVA results. For this analysis LSM results are not considered. Table 5 shows factors’ effect

when they are considered in isolation (fuzzy alightings, fuzzy loads and crispy alightings) and the interactions between fac-

tors (fuzzy alightings and fuzzy loads, fuzzy alightings and crispy alightings, and fuzzy loads and crispy alightings).

Table 5 shows that when qualitative information is used on the alightings the average error is reduced by an average of

42% by using the proposed method in both cases. When this qualitative information is not used, the average error

Table 5

Results of two-factor ANOVA for the proposed method.

No. cases Average error

Total 60,000 4.11

Fuzzy alightings

NO 30,000 5.21 a

YES 30,000 3.00 b

Fuzzy loads

NO 30,000 4.51 a

YES 30,000 3.70 b

Crispy alightings

10% 20,000 4.95 a

40% 20,000 4.09 b

70% 20,000 3.28 c

Fuzzy alightings/fuzzy loads

NO/YES 15,000 4.50

NO/NO 15,000 5.92

YES/YES 15,000 2.90

YES/NO 15,000 3.10

Fuzzy alightings/crispy alightings

NO/10% 10,000 6.65

NO/40% 10,000 5.17

NO/70% 10,000 3.82

YES/10% 10,000 3.25

YES/40% 10,000 3.01

YES/70% 10,000 2.75

Fuzzy loads/crispy alightings

NO/10% 10,000 5.52

NO/40% 10,000 4.51

NO/70% 10,000 3.51

YES/10% 10,000 4.38

YES/40% 10,000 3.67

YES/70% 10,000 3.06

a, b, c Denotes differences statistically significant (p < 0.05).
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(n = 30,000) is 5.21 whereas if this information is used the average error is 3.00. The LSD test shows that the use of qualitative

information on alightings has a statistically significant (p < 0.05) effect on average error. The use of qualitative information

on the loads between stops reduces the average error an average of 18% (from 4.51 to 3.70). The LSD test also shows that this

reduction is statistically significant (p < 0.05). Finally, the more qualitative information is available on the alightings, the

more the average error diminishes: when qualitative information is increased 30% (from 10% to 40%, or from 40% to 70%)

the average error is reduced more than 15%.

When no qualitative information is use on loads and on alightings, the average error is 5.92 when the proposed method is

used. This error is lowered in 51% when qualitative information is used on both loads and alightings, reaching an average

error of 2.90. When qualitative information is used only on the alightings, the average error is lowered in 48%, reaching

an average value of 3.10. These results show that the marginal reduction in the average error when qualitative information

on loads is considered is small, (around 24%) with regard to the reduction when qualitative information on alightings is

available.

Table 5 also shows that the effect of introducing qualitative information is greater the smaller the quantitative informa-

tion available. When qualitative information on the alightings is used, the average error is reduced between 28% (from 3.82

to 2.75) and 51% (from 6.65 to 3.25) in the case of 70% of crisp alightings available or 10%, respectively. When qualitative

information on loads is used, the average error is reduced between 13% (from 3.51 to 3.06) and 21% (from 5.52 to 4.38)

in the case of 70% of crisp alightings or 10%, respectively.

6. Summary and conclusions

The number of passengers boarding and alighting at each transit stop is basic information used in the analysis of urban

transit buses operations, to get the loads and being able to calibrate the O/D matrix obtained from surveys. However, ob-

served counts of boardings and alightings often do not match, and on the other hand, alighting data are barely available

in the actual urban transit buses systems. The literature gives several different methods that are used to adjust boardings

and alightings so the basic principles of flow conservation are met. The methods are characterized by the need for numeric

information in order to make the adjustment and the fact that the information must be obtained by automated or manual

counts. Therefore, the effort tends to be considerable.

In this paper we propose a method that allows adjustments to boardings and alightings in a transit line based on the qual-

itative information of the driver, observer or analyst’s perception of vehicle loads between stops and on the number of pas-

sengers who alights at each stop. This information can be obtained at a low cost by public transport companies since by

having a quick look of the vehicle, the driver can choose one of the options defined beforehand (empty, almost empty, . . .)

by the analyst.

The benefits of the proposed method are:

1. It works on those cases where other methods provide no solution, when there are not available means to obtain a value

on the passengers who alight at the stops.

2. It enables data adjustments in the cases where counts can be made, but certain data is missing, thereby preventing the

need to make a complete measurement of the public transport line all over again.

To validate the proposed method, it was applied to the adjustment of boardings and alightings on a real transit line in

Malaga (Spain) for which consistent real data were known. This enabled the simulation of different scenarios of inconsistent

data and the error committed in the adjustment could be verified. Furthermore, to generalize the results, the method is ap-

plied to a set of 50 different transit lines, with different number of stops and different in-out data.

The main conclusions that can be drawn are:

� Even without using qualitative information on loads and/or alightings, the errors committed by the proposed method are

minor compared to the errors committed by the LSM.

� When qualitative information is used only on the alightings, the average error is reduced in more than a 40% with regard

to the case when no qualitative information is used.

� When qualitative information is used only on the loads, the average error is reduced in more than a 15% with regard to the

case when no qualitative information is used

� So, using qualitative information on alightings can reduce the average error more than using qualitative information on

loads.

Finally, error reductions obtained when qualitative information on loads and alightings is used (51% in average) are

lightly larger than those obtained when qualitative information only on alightings is used (48% in average). For that reason,

results show that if it was mandatory to choose, it is better to use qualitative information on the alightings than on the loads.

From the operation point of view, this paper also presents a new way to obtain the information about loads between

stops, in order to regulate the service, improving and adapting it to the demand in the peak times, making it easier to know

when additional vehicles are required.
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