
Journal of Machine Learning Research 7 (2006) 2149-2187 Submitted 3/06; Revised 7/06; Published 10/06

A Scoring Function for Learning Bayesian Networks based on Mutual
Information and Conditional Independence Tests

Luis M. de Campos LCI@DECSAI.UGR.ES

Departamento de Ciencias de la Computación e Inteligencia Artificial
E.T.S.I. Informática y de Telecomunicaciones, Universidad de Granada
18071-Granada, Spain

Editor: Nir Friedman

Abstract
We propose a new scoring function for learning Bayesian networks from data using score+search
algorithms. This is based on the concept of mutual information and exploits some well-known
properties of this measure in a novel way. Essentially, a statistical independence test based on the
chi-square distribution, associated with the mutual information measure, together with a property
of additive decomposition of this measure, are combined in order to measure the degree of inter-
action between each variable and its parent variables in the network. The result is a non-Bayesian
scoring function called MIT (mutual information tests) which belongs to the family of scores based
on information theory. The MIT score also represents a penalization of the Kullback-Leibler di-
vergence between the joint probability distributions associated with a candidate network and with
the available data set. Detailed results of a complete experimental evaluation of the proposed scor-
ing function and its comparison with the well-known K2, BDeu and BIC/MDL scores are also
presented.
Keywords: Bayesian networks, scoring functions, learning, mutual information, conditional in-
dependence tests

1. Introduction

Nowadays, Bayesian networks (Jensen, 1996; Pearl, 1988) constitute a widely accepted formalism
for representing knowledge with uncertainty and efficient reasoning. A Bayesian network comprises
a qualitative and a quantitative component. While the qualitative part represents structural informa-
tion about a problem domain, in the form of causality, relevance or (in)dependence relationships
between variables, the quantitative part (which allows us to introduce uncertainty into the model)
represents probability distributions that quantify these relationships. Once a complete Bayesian net-
work has been built, it is an efficient tool for performing inferences. However, there still remains
the previous problem of building such a network, that is, to provide the graph structure and the
numerical parameters necessary for characterizing it. As it may be difficult and time-consuming to
build Bayesian networks using the method of eliciting opinions from domain experts, and given the
increasing availability of data in many domains, directly learning Bayesian networks from data is
an interesting alternative.

There are many learning algorithms for automatically building Bayesian networks from data.
Although some of these are based on testing conditional independences, in this paper we are more
interested in those algorithms based on the so-called score+search paradigm. These see the learning
task as a combinatorial optimization problem, where a search method operates on a search space
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associated with Bayesian networks, the search being guided by a scoring function that evaluates the
degree of fitness between each element in this space and the available data.

The aim of this work is to define and study a new scoring function to be used by this class
of Bayesian network learning algorithms as a competitive alternative to existing scoring functions
(Bouckaert, 1993, 1995; Buntine, 1991; Chow and Liu, 1968; Cooper and Herskovits, 1992; Fried-
man and Goldszmidt, 1996; Heckerman et al., 1995; Herskovits and Cooper, 1990; Lam and Bac-
chus, 1994; Suzuki, 1993). We also want to empirically evaluate the merits of the new score by
means of a comparative experimental study.

The proposed scoring function is based on the concept of mutual information. This measure has
several interesting properties, the most important for our purposes being the possibility of building a
statistical test of independence based on the chi-square distribution. Mutual information has already
been used either directly or indirectly within Bayesian network learning algorithms based on score
and search (Bouckaert, 1993; Chow and Liu, 1968; Lam and Bacchus, 1994). The associated statis-
tical test has also been used by several learning algorithms based on conditional independence tests
(Acid and de Campos, 2001; Cheng et al., 2002; de Campos and Huete, 2000; Spirtes et al., 1993).
However, what is new is the simultaneous quantification of the results of a set of independence tests
based on mutual information. Basically, we use mutual information in order to measure the degree
of interaction between each variable and its parent variables in the network, but penalizing this value
using a term related to the chi-square distribution. This penalization term takes into account not only
the network complexity but also its reliability. The result will undoubtedly be a scoring function,
but any score+search-based algorithm using it will have some similarities with the learning methods
based on independence tests (although we believe that our scoring function makes better use of the
information provided by the tests than these methods). To a certain extent what we are proposing is
a hybrid algorithm (either an algorithm based on scoring independences and search or an algorithm
based on quantitative conditional independence tests).

Sections 2 and 3 of this paper provide some background about learning Bayesian networks and
types of scoring functions, respectively. Section 4 covers the development of the new scoring func-
tion, which we shall call MIT (mutual information tests). Section 5 carries out an empirical com-
parative study of MIT against several state-of-the-art scoring functions (K2, BDeu and BIC/MDL).
We first define the performance measures to be used and we then describe the corresponding exper-
imental designs and the obtained results. Section 6 contains our conclusions and some proposals for
future research. Finally, Appendix A includes proof of all the theorems set out in the paper.

2. Learning Bayesian Networks

Let us consider a finite set Un = {X1,X2, . . . ,Xn} of discrete random variables.1 A generic variable
of the set Un will be denoted as either Xi or X . The domain of each variable Xi is a finite set Vi =
{xi1, . . . ,xiri}. A generic element of Vi will be denoted as xi. In general, we shall use uppercase letters
to denote variables, lowercase letters to denote states of the variables, and bold-faced letters (either
uppercase or lowercase) to denote sets (of either variables or states of the variables, respectively).

A Bayesian network (BN) is a graphical representation of a joint probability distribution (Pearl,
1988) that includes two components:

1. Although there are also Bayesian networks with continuous variables, here we are only interested in the case where
all the variables are discrete.
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• First, a directed acyclic graph (DAG) G = (Un,EG), where Un, the set of nodes, represents
the system variables,2 and EG, the set of arcs, represents direct dependency relationships
between variables; the absence of arcs linking pairs of variables in turn represents the ex-
istence of conditional independence relationships between these variables. A conditional
independence relationship between two variables Xi and X j, given a subset of variables Z,
denoted as I(Xi,X j|Z), means that given the values of the variables in Z, our degree of be-
lief about the possible values of Xi is not modified once we know the value of variable X j:
p(xi|x j,z) = p(xi|z). Each variable Xi ∈ Un has an associated parent set in the graph G,
PaG(Xi) = {X j ∈ Un | X j→Xi ∈ EG}. If Xi has no parent (it is a root node), then PaG(Xi) = /0.

• The second component is a set of numerical parameters, which usually represent conditional
probability distributions: for each variable Xi in Un, we store a family of conditional distri-
butions p(Xi|paG(Xi)), one for each possible configuration,3 paG(Xi), of the parent set of Xi

in the graph. If Xi has no parent, then p(Xi|paG(Xi)) equals p(Xi). From these conditional
distributions, we can obtain the joint distribution over Un using:

p(x1,x2, . . . ,xn) = ∏
Xi∈Un

p(xi|paG(Xi))

The problem of learning Bayesian networks from data consists in finding the BN that (according
to certain criterion) best fits the available data. This problem has been studied in depth over the last
ten years and consequently, there are currently a considerable number of learning algorithms. As
Bayesian networks have two different components (the graphical and the numerical model), the
algorithms for learning BNs must deal with two different but highly related tasks: learning the
structure (the DAG) and learning the parameters (the conditional probabilities). These two tasks
cannot be carried out completely independently: on the one hand, in order to estimate the conditional
probabilities, we must know the graphical structure; on the other, in order to determine whether the
graph we are trying to find contains certain arcs, we need to estimate certain statistics from the data
which, depending on the kind of learning algorithm being used, will be employed either to carry
out some conditional independence tests or to measure the intensity of the relationships between the
nodes involved in these arcs.

In this paper, we are only interested in algorithms for learning the structure of Bayesian net-
works. As we mentioned previously, most of these algorithms can be grouped into two different
categories: methods based on conditional independence tests (also called constraint-based meth-
ods) and methods based on scoring functions and search, although there are also algorithms that
use a combination of independence-based and scoring-based methods with different hybridization
strategies (Acid and de Campos, 2000, 2001; Dash and Druzdzel, 1999; de Campos et al., 2003;
Singh and Valtorta, 1995; Spirtes and Meek, 1995).

The algorithms based on independence tests (Cheng et al., 2002; de Campos, 1998; de Cam-
pos and Huete, 2000; Meek, 1995; Pearl and Verma, 1991; Spirtes et al., 1993; Verma and Pearl,
1990; Wermuth and Lauritzen, 1983) perform a qualitative study of the dependence and indepen-
dence relationships between the variables in the domain (obtained from the data by means of con-
ditional independence tests), and attempt to find a network that represents these relationships as far
as possible. Two fundamental issues for these algorithms are the number and the complexity of

2. In the same way, we shall represent a variable and its associated node in the graph.
3. A configuration of a set of variables Z is an assignment of values to each of the variables in Z.
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the independence tests, and this can also cause unreliable results. Nevertheless, constraint-based
algorithms generally come with rigorous theoretical founding and have developed a body of work
that details sound and complete methods to make use of independence relations in the data while
correctly accounting for structure.

The algorithms based on a scoring function attempt to find a graph that maximizes the selected
score, which is usually defined as a measure of fitness between the graph and the data. All of them
use the scoring function in combination with a search method in order to measure the goodness of
each explored structure from the space of feasible solutions. Different learning algorithms are ob-
tained depending on the search procedure used, as well as on the definitions of the scoring function
and the search space.

The scoring functions are based on different principles, such as entropy and information (Chow
and Liu, 1968; Herskovits and Cooper, 1990), the minimum description length (Bouckaert, 1993,
1995; Friedman and Goldszmidt, 1996; Lam and Bacchus, 1994; Suzuki, 1993), or Bayesian ap-
proaches (Buntine, 1991; Cooper and Herskovits, 1992; Heckerman et al., 1995; Kayaalp and
Cooper, 2002). The most usual scoring functions will be described later in more detail.

As far as the search is concerned, although the most frequently used are local search methods
(Buntine, 1991; Chickering et al., 1995; Cooper and Herskovits, 1992; de Campos et al., 2003;
Heckerman et al., 1995) due to the exponentially large size of the search space, there is a growing
interest in other heuristic search methods such as simulated annealing (Chickering et al., 1995),
tabu search (Acid and de Campos, 2003; Bouckaert, 1995), branch and bound (Tian, 2000), genetic
algorithms and evolutionary programming (Larrañaga et al., 1996; Myers et al., 1999; Wong et
al., 1999), Markov chain Monte Carlo (Kocka and Castelo, 2001; Myers et al., 1999), variable
neighborhood search (de Campos and Puerta, 2001a), ant colony optimization (de Campos et al.,
2002), greedy randomized adaptive search procedures (GRASP) (de Campos et al., 2002), and
estimation of distribution algorithms (Blanco et al., 2003).

Most learning algorithms employ different search methods but the same search space: the DAG
space. Possible alternatives are the space of the orderings of the variables (de Campos et al., 2002;
de Campos and Huete, 2002; de Campos and Puerta, 2001b; Friedman and Koller, 2003; Larrañaga
et al., 1996), with a secondary search in the DAG space compatible with a given ordering; the space
of essential graphs (Pearl and Verma, 1990) (also called patterns or completed PDAGs), which are
partially directed acyclic graphs4 or PDAGs that canonically represent equivalence classes of DAGs
(Andersson et al., 1997; Chickering, 2002; Dash and Druzdzel, 1999; Madigan et al., 1996; Spirtes
and Meek, 1995); and the space of RPDAGs (restricted PDAGs), which also represent equivalence
classes of DAGs (Acid and de Campos, 2003; Acid et al., 2005).

3. Scoring Functions for Learning Bayesian Networks

Focusing on the methods for learning Bayesian networks based on the score+search paradigm, the
problem can be formally expressed as follows: given a complete5 training data set D = {u1, . . . ,uN}
of instances of Un, find a DAG G∗ such that

G∗ = arg max
G∈Gn

g(G : D),

4. Containing both directed (arcs) and undirected (links) edges.
5. We consider neither missing values nor latent variables.
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where g(G : D) is the scoring function measuring the degree of fitness of any candidate DAG G to
the data set, and Gn is the family of all the DAGs defined on Un.

The learning algorithms that search in the DAG space with local search-based methods can be
more efficient if the scoring function being used has the property of decomposability: a scoring
function g is decomposable if the value assigned to each structure can be expressed as a sum (in the
logarithmic space) of local values that depend only on each node and its parents:

g(G : D) = ∑
Xi∈Un

g(Xi,PaG(Xi) : D)

g(Xi,PaG(Xi) : D) = g(Xi,PaG(Xi) : ND
Xi,PaG(Xi)

),

where ND
Xi,PaG(Xi)

are the sufficient statistics of the set of variables {Xi}∪PaG(Xi) in D, that is, the
number of instances in D corresponding to each possible configuration of {Xi}∪PaG(Xi).

For example, a search procedure that only changes one arc at each move can efficiently evaluate
the improvement obtained by this change. It can reuse most of the previous computations and
only the statistics for the variables whose parent sets have been modified must be recomputed. In
this way, the insertion or deletion of an arc X j → Xi in a DAG G can be evaluated by computing
only one new local score, g(Xi,PaG(Xi)∪{X j} : D) or g(Xi,PaG(Xi) \ {X j} : D), respectively; the
reversal of an arc X j → Xi requires the evaluation of two new local scores, g(Xi,PaG(Xi)\{X j} : D)
and g(X j,PaG(X j)∪{Xi} : D).

Another property which is particularly interesting if the learning algorithm searches in a space
of equivalence classes of DAGs is called the score equivalence: a scoring function g is score-
equivalent if it assigns the same value to all DAGs that are represented by the same essential graph.
In this way, the result of evaluating an equivalence class will be the same regardless of which DAG
from this class is selected.

There are different ways to measure the degree of fitness of a DAG with respect to a data set.
Most can be grouped into two categories: Bayesian and information measures. We shall use the
following notation: the number of states of the variable Xi is ri; the number of possible configura-
tions of the parent set PaG(Xi) of Xi is qi; obviously, qi = ∏X j∈PaG(Xi) r j; wi j, j = 1, . . .qi, represents
a configuration of PaG(Xi); Ni jk is the number of instances in the data set D where the variable
Xi takes the value xik and the set of variables PaG(Xi) take the value wi j; Ni j is the number of in-
stances in the data set where the variables in PaG(Xi) take their j-th configuration wi j; obviously
Ni j = ∑ri

k=1 Ni jk; similarly, Nik is the number of instances in D where the variable Xi takes its k-th
value xik, and therefore Nik = ∑qi

j=1 Ni jk; the total number of instances in D is N.

3.1 Bayesian Scoring Functions

Starting from a prior probability distribution on the possible networks, the general idea is to compute
the posterior probability distribution conditioned to the available data D, p(G|D). The best network
is the one that maximizes the posterior probability. It is not in fact necessary to compute p(G|D)
and for comparative purposes, computing p(G,D) is sufficient since the term p(D) is the same for
all the possible networks. As it is easier to work in the logarithmic space, in practice, the scoring
functions use the value log(p(G,D)) instead of p(G,D).

One of the first Bayesian scoring functions, called K2, was proposed by Cooper and Herskovits
(1992). It relies on several assumptions (multinomiality, lack of missing values, parameter inde-
pendence, parameter modularity, uniformity of the prior distribution of the parameters given the
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network structure), and can be expressed as follows:

gK2(G : D) = log(p(G))+
n

∑
i=1

[

qi

∑
j=1

[

log

(

(ri −1)!
(Ni j + ri −1)!

)

+
ri

∑
k=1

log
(

Ni jk!
)

]]

, (1)

where p(G) represents the prior probability of the DAG G. Afterwards, the so-called BD (Bayesian
Dirichlet) score was proposed by Heckerman et al. (1995) as a generalization of K2:

gBD(G : D) = log(p(G))+
n

∑
i=1

[

qi

∑
j=1

[

log

(

Γ(ηi j)

Γ(Ni j +ηi j)

)

+
ri

∑
k=1

log

(

Γ(Ni jk +ηi jk)

Γ(ηi jk)

)

]]

, (2)

where the values ηi jk are the hyperparameters for the Dirichlet prior distributions of the parameters
given the network structure, and ηi j = ∑ri

k=1 ηi jk. Γ(.) is the function Gamma, Γ(c) =
R ∞

0 e−uuc−1du.
It should be noted that if c is an integer, Γ(c) = (c−1)!. If the values of all the hyperparameters are
ηi jk = 1, we obtain the K2 score as a particular case of BD.

In practical terms, the specification of the hyperparameters ηi jk is quite difficult (except if we
use non-informative assignments, as the ones employed by K2). However, by considering the ad-
ditional assumption of likelihood equivalence (Heckerman et al., 1995), it is possible to specify the
hyperparameters relatively easily. While the result is a scoring function called BDe (and its expres-
sion is identical to the BD one in Equation 2), the hyperparameters can now be computed in the
following way:

ηi jk = η× p(xik,wi j|G0),

where p(.|G0) represents a probability distribution associated with a prior Bayesian network G0 and
η is a parameter representing the equivalent sample size.

A particular case of BDe which is especially interesting appears when p(xik,wi j|G0) = 1
riqi

, that
is, the prior network assigns a uniform probability to each configuration of {Xi}∪PaG(Xi). The
resulting score is called BDeu, which was originally proposed by Buntine (1991). This score only
depends on one parameter, the equivalent sample size η, and is expressed as follows:

gBDeu(G : D) = log(p(G))+
n

∑
i=1

[

qi

∑
j=1

[

log

(

Γ( η
qi

)

Γ(Ni j +
η
qi

)

)

+
ri

∑
k=1

log

(

Γ(Ni jk + η
riqi

)

Γ( η
riqi

)

)]]

. (3)

Regarding the term log(p(G)) which appears in all the previous expressions, it is quite common to
assume a uniform distribution (except if we really have information about the greater desirability of
certain structures) so that it becomes a constant and can be removed.

3.2 Scoring Functions based on Information Theory

These scoring functions represent another option for measuring the degree of fitness of a DAG
to a data set and are based on codification and information theory concepts. Coding attempts to
reduce as much as possible the number of elements which are necessary to represent a message
(depending on its probability). Frequent messages will therefore have shorter codes whereas larger
codes will be assigned to the less frequent messages. The minimum description length principle
(MDL) selects the coding that requires minimum length to represent the messages. Another more
general formulation of the same idea establishes that in order to represent a data set with one model
from a specific type, the best model is the one that minimizes the sum of the description length
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of the model and the description length of the data given the model. Complex models usually
require greater description lengths but reduce the description length of the data given the model
(they are more accurate). On the other hand, simple models require shorter description lengths
but the description length of the data given the model increases. The minimum description length
principle establishes an appropriate trade-off between complexity and precision.

In our case, the data set to be represented is D and the selected class of models are Bayesian
networks. Therefore, the description length includes the length required to represent the network
plus the length necessary to represent the data given the network (Bouckaert, 1993, 1995; Friedman
and Goldszmidt, 1996; Lam and Bacchus, 1994; Suzuki, 1993). In order to represent the network,
we must store its probability values, and this requires a length which is proportional to the number
of free parameters of the factorized joint probability distribution.6 This number, called network
complexity and denoted as C(G), is:

C(G) =
n

∑
i=1

(ri −1)qi.

The usual proportionality factor is 1
2 log(N) (Rissanen, 1986). Therefore, the description length of

the network is:
1
2

C(G) log(N).

Regarding the description of the data given the model, by using Huffmann codes its length turns out
to be the negative of the log-likelihood, that is, the logarithm of the likelihood function of the data
with respect to the network. This value is minimum for a fixed network structure when the network
parameters are estimated from the data set itself by using maximum likelihood. The log-likelihood
can be expressed in the following way (Bouckaert, 1995):

LLD(G) =
n

∑
i=1

qi

∑
j=1

ri

∑
k=1

Ni jk log

(

Ni jk

Ni j

)

. (4)

Therefore, the MDL scoring function (by changing the signs to deal with a maximization problem)
is:

gMDL(G : D) =
n

∑
i=1

qi

∑
j=1

ri

∑
k=1

Ni jk log

(

Ni jk

Ni j

)

−
1
2

C(G) log(N). (5)

Another way of measuring the quality of a Bayesian network is to use measures based on in-
formation theory and some of these are closely related with the previous one. The basic idea is to
select the network structure that best fits the data, penalized by the number of parameters which are
necessary to specify the joint distribution. This leads to a generalization of the scoring function in
Equation 5:

g(G : D) =
n

∑
i=1

qi

∑
j=1

ri

∑
k=1

Ni jk log

(

Ni jk

Ni j

)

−C(G) f (N), (6)

where f (N) is a non-negative penalization function. If f (N) = 1, the score is based on the Akaike
information criterion (AIC) (Akaike, 1974). If f (N) = 1

2 log(N), then the score, called BIC, is

6. There are other versions (Lam and Bacchus, 1994) that also include the description length of the graph itself, which is
proportional to the sum of the number of parents for each node, ∑n

i=1 |PaG(Xi)|. However, the most usual formulation
does not consider it.
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based on the Schwarz information criterion (Schwarz, 1978), which coincides with the MDL score.
If f (N) = 0, we have the maximum likelihood score, although this is not very useful as the best
network using this criterion is always a complete network which includes all the possible arcs.

It is interesting to note that another way of expressing the log-likelihood in Equation 4 is:

LLD(G) = −N
n

∑
i=1

HD(Xi|PaG(Xi)), (7)

where HD(Xi|PaG(Xi)) represents the conditional entropy of the variable Xi given its parent set
PaG(Xi), for the probability distribution pD:

HD(Xi|PaG(Xi)) =
qi

∑
j=1

pD(wi j)

(

−
ri

∑
k=1

pD(xik|wi j) log(pD(xik|wi j))

)

,

and pD is the joint probability distribution associated with the data set D, obtained from the data
by maximum likelihood. The log-likelihood LLD(G) can also be expressed as follows (Bouckaert,
1995):

LLD(G) = −NHD(G),

where HD(G) represents the entropy of the joint probability distribution associated with the graph
G when the network parameters are estimated from D by maximum likelihood:

HD(G) = − ∑
x1,...,xn

((

n

∏
i=1

pD(xi|paG(Xi))

)

log

(

n

∏
i=1

pD(xi|paG(Xi))

))

.

Therefore, another interpretation of the scoring functions based on information is that they attempt
to minimize the conditional entropy of each variable given its parents, and so they search for the par-
ent set of each variable that gives as much information as possible about this variable (or which most
restricts the distribution). It is necessary to add a penalization term since the minimum conditional
entropy is always obtained after adding all the possible variables to the parent set.

An alternative way to avoid this overfitting without using a penalization function was proposed
by Herskovits and Cooper (1990) who used the maximum likelihood score, but the process of insert-
ing arcs into the network was stopped by means of a statistical test, which determined whether the
difference in entropy between the current network and the one obtained by including an additional
arc was statistically significant.

With respect to the characteristics of the different scoring functions, all are decomposable and
with the exception of K2 and BD, they are also score-equivalent (Chickering, 1995).

4. A New Scoring Function based on Mutual Information and Independence Tests

In order to explain the ideas behind the proposed scoring function more clearly, we shall first intro-
duce several preliminary considerations. These will lead to a first version of the scoring function,
which will be later refined in order to obtain the final version.

4.1 Preliminary Considerations

Our goal is to design a scoring function in such a way that the value g(G : D) represents a measure
of the distance between the joint probability distribution associated with the DAG G, pG, and the
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joint probability distribution associated with the data, pD. We should mention that pG must be
understood to be the joint probability distribution that factorizes according to G and whose local
conditional probability distributions are estimated from D by means of maximum likelihood, that
is,

pG(x1, . . . ,xn) =
n

∏
i=1

pD(xi|paG(Xi)).

A reasonable choice for the distance measure is the Kullback-Leibler divergence (Kullback, 1968):

KL(pD, pG) = ∑
x1,...,xn

pD(x1, . . . ,xn) log

(

pD(x1, . . . ,xn)

pG(x1, . . . ,xn)

)

.

This distance can also be expressed in another more convenient way:

KL(pD, pG) = −HD({X1, . . . ,Xn})+
n

∑
i=1

PaG(Xi)= /0

HD(Xi)

+
n

∑
i=1

PaG(Xi)6= /0

(

HD({Xi}∪PaG(Xi))−HD(PaG(Xi))
)

, (8)

where HD(X) represents the entropy of the set of variables X with respect to the distribution pD.
We shall now consider the concept of mutual information. Given a probability distribution p

defined over two sets of variables X and Y, the mutual information between X and Y is:

MI(X,Y) = ∑
x,y

p(x,y) log

(

p(x,y)

p(x)p(y)

)

,

which can also be expressed in terms of entropy as:

MI(X,Y) = H(X)+H(Y)−H(X∪Y). (9)

Mutual information (which is simply the Kullback-Leibler divergence between the joint distribution
for X and Y and the product of the corresponding marginals) can be considered as a way of mea-
suring the dependence degree between the sets of variables X and Y, which is null when the two
sets of variables are independent and maximum when they are functionally dependent. By using
Equation 9, we can rewrite Equation 8 as follows (Lam and Bacchus, 1994):

KL(pD, pG) = −HD({X1, . . . ,Xn})+
n

∑
i=1

HD(Xi)−
n

∑
i=1

PaG(Xi)6= /0

MID(Xi,PaG(Xi)). (10)

As the two first terms in Equation 10 do not depend on the DAG G being considered, we obtain:

arg min
G∈Gn

KL(pD, pG) = arg max
G∈Gn

n

∑
i=1

PaG(Xi)6= /0

MID(Xi,PaG(Xi)), (11)

and therefore minimizing the Kullback-Leibler divergence is equivalent to maximizing the sum of
the measures of mutual information between each variable and its parent variables in the graph.
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We have still not achieved anything useful, however, since mutual information has the property
that MI(X,Y∪W) ≥ MI(X,Y), in other words, mutual information always increases by including
additional variables. Therefore, the complete network will always have minimum Kullback-Leibler
divergence with respect to the data. In fact, by taking into account Equation 7 and the relation
between mutual information and conditional entropy, namely MI(X,Y) = H(X)−H(X|Y), we can
write:

n

∑
i=1

PaG(Xi)6= /0

MID(Xi,PaG(Xi)) =
LLD(G)

N
+

n

∑
i=1

HD(Xi). (12)

Therefore, minimizing the Kullback-Leibler divergence is also equivalent to maximizing
log-likelihood. The following expression is equivalent to the previous one:

n

∑
i=1

PaG(Xi)6= /0

MID(Xi,PaG(Xi)) =
1
N

n

∑
i=1

qi

∑
j=1

ri

∑
k=1

Ni jk log

(

N Ni jk

NikNi j

)

.

However, there are certain advantages to using mutual information instead of log-likelihood as we
shall see later. First, let us consider the concept of conditional mutual information between X and
Y given a set of variables Z, defined as:

MI(X,Y|Z) = ∑
z

(

p(z)∑
x,y

p(x,y|z) log

(

p(x,y|z)
p(x|z)p(y|z)

)

)

,

which can be expressed by MI(X,Y|Z) = H(X|Z)−H(X|Y∪Z), and also by:

MI(X,Y|Z) = H(X∪Z)+H(Y∪Z)−H(Z)−H(X∪Y∪Z).

The following property7 of conditional mutual information is important for our purposes:

MI(X,Y∪W|Z) = MI(X,Y|Z)+MI(X,W|Z∪Y). (13)

Another fundamental property of mutual information is:

Theorem 1 (Kullback, 1968) Given a data set D with N elements, if the hypothesis that X and Y
are conditionally independent given Z is true, then the statistics 2N MID(X,Y|Z) approximates to a
distribution χ2(l) (Chi-square) with l = (rX−1)(rY−1)rZ degrees of freedom, where rX, rY and rZ

represent the number of configurations for the sets of variables X, Y and Z, respectively. If Z = /0,
the statistics 2N MID(X,Y) approximates to a distribution χ2(l) with l = (rX − 1)(rY − 1) degrees
of freedom.

4.2 Developing a New Scoring Function

The basic idea underlying the new scoring function that we shall propose is very simple: to use the
mutual information MID(Xi,PaG(Xi)) in order to measure the degree of interaction between each
variable Xi and its parents PaG(Xi), as in Equation 11, but penalizing this value using a term related

7. It should be noted that this property is a numeric version of the properties of decomposition, weak union and con-
traction of the probabilistic independence relationships and other dependence models (Pearl, 1988). These three
properties, together with symmetry, characterize the dependence models called semi-graphoids.
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to the χ2 distribution. This term attempts to re-scale the mutual information values in order to
prevent these values from systematically increasing as the number of variables in PaG(Xi) does.

In our opinion, one problem with the scoring functions based on information (Equation 6) is that
they penalize log-likelihood globally, with a combination of the network complexity and a function
that depends only on the number of instances. Since we believe that as the log-likelihood can be
decomposed as a sum of components (each being associated with a variable and its parents), then
each of these components should be penalized differently, depending not only on its complexity but
also on its reliability. For example, a DAG where a variable Xi has many parents is always penalized
in the same way, without taking into account to what extent this topology is actually necessary to
adequately and reliably represent the distribution for Xi. The scoring function that we shall propose
naturally incorporates this kind of penalization, and is based on solid statistical grounds.

Given a DAG G, let us consider the mutual information between a variable Xi and its parents,
MID(Xi,PaG(Xi)). Let si be the number of parent variables8 of Xi, si = |PaG(Xi)|. Let us assume that
PaG(Xi) = {Xi1, . . . ,Xisi}. By iteratively applying Equation 13, we can express MID(Xi,PaG(Xi)) as:

MID(Xi,PaG(Xi)) = MID(Xi,{Xi1, . . . ,Xisi})

= MID(Xi,{Xi1, . . . ,Xi(si−1)})+MID(Xi,Xisi |{Xi1, . . . ,Xi(si−1)})

= MID(Xi,{Xi1, . . . ,Xi(si−2)})+MID(Xi,Xi(si−1)|{Xi1, . . . ,Xi(si−2)})+

MID(Xi,Xisi |{Xi1, . . . ,Xi(si−1)}) = . . . . . .

= MID(Xi,Xi1)+
si

∑
j=2

MID(Xi,Xi j|{Xi1, . . . ,Xi( j−1)}). (14)

The elements in this decomposition of the mutual information will be interpreted as follows: start-
ing with an empty set of parents of Xi, we have first included the arc Xi1 → Xi, and the degree of
dependence between these variables is MID(Xi,Xi1). We then insert the arc Xi2 → Xi and as Xi1 is
already a parent of Xi, the dependence degree between Xi2 and Xi is MID(Xi,Xi2|Xi1). We continue
inserting arcs in this way until the last one Xisi → Xi (with a dependence degree between Xisi and Xi

equal to MID(Xi,Xisi |{Xi1, . . . ,Xi(si−1)})) has been included. If we do not insert any additional arcs,
this is because each remaining variable Xh does not contribute any additional information9 with re-
spect to Xi, this information being measured as MID(Xi,Xh|{Xi1, . . . ,Xisi}). The key question is how
to determine whether the values of mutual information represent an appreciable (i.e., statistically
significant) amount of information. At this point, we can use the result in Theorem 1.

We know that 2NMID(Xi,Xi j|{Xi1, . . . ,Xi( j−1)}) approximates to a distribution χ2(li j), with the
appropriate degrees of freedom li j. Let us fix a confidence level α and determine the value χα,li j such
that p(χ2(li j)≤ χα,li j) = α. This does in fact represent a statistical test of conditional independence:
if 2NMID(Xi,Xi j|{Xi1, . . . ,Xi( j−1)})≤ χα,li j , then we accept the hypothesis of independence between
Xi and Xi j given {Xi1, . . . ,Xi( j−1)} (with probability α); otherwise we reject it.

The use of this kind of independence test within BN learning algorithms is quite frequent (Acid
and de Campos, 2001; de Campos and Huete, 2000; Spirtes et al., 1993). It has also been used by
algorithms based on score+search to stop the search process (Acid and de Campos, 2000; Herskovits
and Cooper, 1990). The problem with an independence test is that it only asserts whether the

8. si should not be confused with qi, which represents the number of configurations of these variables.
9. There may obviously be some variables that cannot be included as parents of Xi since they would create directed

cycles in the graph.
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variables are independent or not, rather than quantifying the extent to which they are. For example,
if an algorithm is trying to decide which of the two variables X j and Xk to exclude from the parent
set of another variable Xi, if both variables turn out to be dependent on Xi (given its current parent
set), the test is not able to discriminate between them, although it may be possible for one variable
to be more closely dependent on Xi than the other.

Our proposal is to quantify the result of the independence test to build the scoring function. The
difference 2NMID(Xi,Xi j|{Xi1, . . . ,Xi( j−1)})−χα,li j gives us a measure of the degree of interest for
adding the variable Xi j to the current parent set of Xi: if the difference is negative (the test would
say that Xi and Xi j are independent), the score will decrease, and the more clearly independent the
variables are, the more it will decrease; when the difference is positive (the test would assert that
these two variables are dependent), the score will increase, and the more dependent Xi and Xi j are,
the more it will increase.

Therefore, a measure of the global quality of the set PaG(Xi) as the parent set of variable Xi is:

g(Xi,PaG(Xi) : D) =
si

∑
j=2

(

2N MID(Xi,Xi j|{Xi1, . . . ,Xi( j−1)})−χα,li j

)

+2N MID(Xi,Xi1)−χα,li1 , (15)

where χα,li j is the value such that p(χ2(li j) ≤ χα,li j) = α, and the number of degrees of freedom is:

li j =

{

(ri −1)(ri j −1)∏ j−1
k=1 rik j = 2, . . . ,si

(ri −1)(ri1 −1) j = 1 .
(16)

The expression in Equation 15 is then a global quantification of a series of si simultaneous condi-
tional independence tests, and by virtue of the decomposition of mutual information in Equation 14,
it is equivalent to:

g(Xi,PaG(Xi) : D) = 2N MID(Xi,PaG(Xi))−
si

∑
j=1

χα,li j . (17)

The scoring function would therefore be defined according to Equation 11 as:

g(G : D) =
n

∑
i=1

PaG(Xi)6= /0

(

2N MID(Xi,PaG(Xi))−
si

∑
j=1

χα,li j

)

. (18)

It should be noted that although the value of mutual information will increase after new variables
are added to the parent set, the penalization component (which contains one term for each parent
variable) will also increase. In this way, we are able to appropriately re-scale the mutual information
measure.

The value of α, which represents the confidence level associated with the statistical test, is a
free parameter that may be fixed to any standard value (for example 0.90, 0.95 or 0.99). However,
since we are in fact performing several simultaneous tests (as many as the number of variables in
PaG(Xi)), and also taking into account the Bonferroni inequality,10 in order for the global confidence
level to be acceptable (that is to say, a reasonably high value of p(∩si

j=1(χ2(li j) ≤ χα,li j))), it will be
necessary for α to be greater than the standard values used when performing a single test.

10. p(∩n
i=1Ai) ≥ 1−∑n

i=1

(

1− p(Ai)
)

, where Ai represent any events.
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In order to accurately compute the values χα,l , we can use a standard method which is based
on the algorithm proposed by Hill and Pike (1965, 1985) to compute the chi-squared integral (i.e.,
the probability p(χ2(l) > x)) in combination with a simple bisection search. Alternatively, if speed
is more important than great accuracy, as the χ2(l) distribution can be approximated by several
transformations of the standardized normal distribution N(0,1) for large degrees of freedom (Evans
et al., 1993), we can use tabulated exact values for l ≤ 100 and the Wilson-Hilferty approximation
(which is quite accurate) for l > 100:

χ2(l) ≈ l
[

1−
2
9l

+

√

2
9l

N(0,1)
]3

.

4.3 The MIT Score

Throughout the previous discussion, we have omitted one very important detail: the decomposi-
tion of mutual information that we have used (Equation 14) is not unique and we can decompose
MID(Xi,PaG(Xi)) in many other ways - as many as the number of possible orderings of the variables
in PaG(Xi), that is, si!. Each corresponds to a different way of including the variables in the parent
set of Xi one at a time. The ordering does not affect the value MID(Xi,PaG(Xi)), but it can affect the
penalization component (this will be the case whenever the number of states rik of all the variables
is not the same). By way of example, let us assume that PaG(Xi) = {X1,X2,X3}. The six possible
decompositions of MID(Xi,{X1,X2,X3}) are:

MID(Xi,X1)+MID(Xi,X2|X1)+MID(Xi,X3|{X1,X2})

MID(Xi,X1)+MID(Xi,X3|X1)+MID(Xi,X2|{X1,X3})

MID(Xi,X2)+MID(Xi,X1|X2)+MID(Xi,X3|{X1,X2})

MID(Xi,X2)+MID(Xi,X3|X2)+MID(Xi,X1|{X2,X3})

MID(Xi,X3)+MID(Xi,X1|X3)+MID(Xi,X2|{X1,X3})

MID(Xi,X3)+MID(Xi,X2|X3)+MID(Xi,X1|{X2,X3}).

Let us suppose that the number of states of the variables Xi, X1, X2 and X3 is ri = 3, r1 = 2, r2 = 3
and r3 = 4. The penalization component in Equation 17 for each of the six previous decompositions
is therefore:

χα,2 +χα,8 +χα,36 = 107.93

χα,2 +χα,12 +χα,32 = 109.21

χα,4 +χα,6 +χα,36 = 108.91

χα,4 +χα,18 +χα,24 = 111.96

χα,6 +χα,8 +χα,32 = 111.07

χα,6 +χα,16 +χα,24 = 112.89.

The numerical values in these expressions are computed for the parameter α = 0.999. It should
be noted that the total number ∑si

j=1 li j of degrees of freedom is always the same, 46 in this case,
which would correspond to the degrees of freedom of a marginal independence test between Xi

and PaG(Xi); such a test would use (ri − 1)(∏si
j=1 ri j − 1) degrees of freedom11 (the value of χα,46

11. Observe that ∑si
j=1 li j = ∑si

j=1

(

(ri −1)(ri j −1)∏ j−1
k=1 rik

)

= (ri −1)(∏si
j=1 ri j −1).
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in the example is 81.40). In any case, the values are different since the chi-square distribution
is not additive with respect to the number of degrees of freedom.12 Therefore, depending on the
selected ordering, the score in Equation 17 will be different. This is undesirable since the same DAG
(depending on the path that the search process follows to reach it) would be evaluated differently.
In order to solve this problem, we believe that the best we can do is to use the most conservative
option, that is, to use the greatest of all these values so as to evaluate each parent set in the worst
possible way.

In order to formalize this idea, let σi = (σi(1), . . . ,σi(si)) denote any permutation of the index
set (1, . . . ,si) of the variables in PaG(Xi) = {Xi1, . . . ,Xisi}, and let us define:

liσi( j) =

{

(ri −1)(riσi( j)−1)∏ j−1
k=1 riσi(k) j = 2 . . . ,si

(ri −1)(riσi(1)−1) j = 1 .
(19)

Then, instead of using Equation 17, the global quality measure of the set PaG(Xi) that we propose
is:

g(Xi,PaG(Xi) : D) = 2N MID(Xi,PaG(Xi))−max
σi

si

∑
j=1

χα,liσi( j)
.

The final expression of the proposed scoring function, which we shall call MIT (from mutual infor-
mation tests), is:

gMIT (G : D) =
n

∑
i=1

PaG(Xi)6= /0

(

2N MID(Xi,PaG(Xi))−max
σi

si

∑
j=1

χα,liσi( j)

)

. (20)

Computing each penalization component maxσi ∑si
j=1 χα,liσi( j)

in the previous expression might seem
to be a very time-consuming task since it would be necessary to evaluate all the si! possible permu-
tations of the variables in the set PaG(Xi) in order to calculate the maximum. Fortunately, this will
not be necessary as this maximum can be obtained in a much simpler way:

Theorem 2 For the values liσi( j) defined in Equation 19,

max
σi

si

∑
j=1

χα,liσi( j)
=

si

∑
j=1

χα,liσ∗i ( j)
,

where σ∗
i is any permutation of PaG(Xi) satisfying riσ∗

i (1) ≥ riσ∗
i (2) ≥ . . . ≥ riσ∗

i (si), whenever the
function fi,α : N si −→ R , defined as fi,α(l1, . . . , lsi) = ∑si

j=1 χα,l j , is a Shur-concave function.

This result says that the permutation that produces the maximum penalization value is the one where
the first variable has the greatest number of states, the second variable has the second largest number
of states, and so on. In the previously considered example, this permutation is {X3,X2,X1}, and this
reaches a maximum value equal to 112.89.

Conjecture 3 The function fi,α defined in Theorem 2 is Shur-concave, whenever α ≥ 0.59.

12. With the exception of a sum of independent chi-square distributions, which obviously is not the case.
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The combination of theoretical and empirical arguments that support this conjecture is included
in the Appendix. The restriction concerning α does not represent any practical problem since we
shall always use values of α which are much greater than 0.59.

Another way of measuring the quality of a set of variables Z as the parent set of Xi, which as
it turns out is equivalent to the previous one, is as follows: we can consider that Z will be a good
parent set if it continues to be a good parent set when one of its variables is removed, Z\{Y}, and
also the variable Y that we have removed should not have been removed, that is, Y is not independent
of Xi given Z\{Y}. As we can do this for each variable in Z, the final value should be the smallest
one (we are again using a conservative or pessimistic view). This leads to a recursive definition
of g(Xi,PaG(Xi) : D). The way of measuring the degree of undesirability of removing the variable
Y from Z is to use the difference between the mutual information statistic 2N MID(Xi,Y |Z \ {Y})
and the chi-square value χα,l with the appropriate degrees of freedom. In this way, if Y is truly
independent on Xi given Z \ {Y}, then this difference will be negative and in this case we would
prefer to use Z \ {Y} instead of Z as the parent set of Xi. If, on the contrary, the difference is
positive, the set Z will be preferable to Z\{Y}.

We can therefore recursively define the score gr(Xi,PaG(Xi) : D) in the following way:

gr(Xi,PaG(Xi) : D) = min
Xi j∈PaG(Xi)

{

gr(Xi,PaG(Xi)\{Xi j} : D)+

2N MID(Xi,Xi j|PaG(Xi)\{Xi j})−χα,lr
i j

}

, (21)

where χα,lr
i j

is the value such that p(χ2(lr
i j) ≤ χα,lr

i j
) = α and the number of degrees of freedom is

lr
i j = (ri − 1)(ri j − 1)∏si

k=1
k 6= j

rik. The starting point of this recursive definition is obviously gr(Xi, /0 :

D) = 0. We can prove the following result:

Theorem 4 The MIT scoring function defined in Equation 20 can also be expressed as:

gMIT (G : D) =
n

∑
i=1

PaG(Xi)6= /0

gr(Xi,PaG(Xi) : D),

where gr(Xi,PaG(Xi) : D) are the local scores defined in Equation 21.

Let us study some of the properties of the MIT score.

Theorem 5 The MIT scoring function defined in Equation 20 is decomposable.

Unfortunately, MIT is not score-equivalent. Let us consider the following example: for the two
DAGs G1 and G2 in Figure 1 and which are equivalent, let us suppose that the number of states of
each variable is: r1 = 5, r2 = 4, r3 = 3, r4 = 2. Therefore:

g(G1 : D) = 2N(MID(X1,{X2,X3})+MID(X2,X3)+MID(X3,X4))

−(χα,12 +χα,32 +χα,6 +χα,2)

g(G2 : D) = 2N(MID(X2,{X1,X3})+MID(X3,X1)+MID(X4,X3))

−(χα,12 +χα,30 +χα,8 +χα,2).

Although it seems that the part corresponding to mutual information is different in both cases,
it is in fact not. It is sufficient to take into account Equation 12 and remember that the maximum
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Figure 1: Two equivalent DAGs with different values of the MIT score

likelihood score is score-equivalent. The problem appears with the penalization by means of the
sum of chi-square values: if the variables have a different number of states (as in this case), the
results are different. More specifically, the penalization component is 131.67 for G1 but 132.55 for
G2 (assuming that α = 0.999).

The MIT score, however, satisfies a less demanding property than score-equivalence, and this
concerns another type of space of equivalent DAGs, namely RPDAGs (Acid and de Campos, 2003).
They are PDAGs which represent sets of equivalent DAGs, although they are not a canonical rep-
resentation of equivalence classes of DAGs (two different RPDAGs may correspond to the same
equivalence class). Let us introduce some additional notation and then the concept of RPDAG. The
skeleton of a DAG is the undirected graph that results from ignoring the directionality of every arc.
A h-h pattern (head-to-head pattern) in a DAG G is an ordered triplet of nodes, (Xi,Xk,X j), such
that G contains the arcs Xi→Xk and X j →Xk. Given a PDAG G = (Un,EG), for each node Xi∈Un,
SibG(Xi) = {X j ∈ Un | Xi—X j ∈ EG} is the set of siblings or neighbors of Xi. A PDAG G is an
RPDAG if and only if it satisfies the following conditions:

1. ∀Xi ∈ Un, if PaG(Xi) 6= /0 then SibG(Xi) = /0.

2. G contains neither directed nor completely undirected cycles.

3. ∀Xi,X j ∈ Un, if X j ∈ PaG(Xi) then either |PaG(Xi)| ≥ 2 or PaG(X j) 6= /0.

The difference between essential graphs and RPDAGs appears when there are triangular structures:
essential graphs may have completely undirected cycles, but these cycles must be chordal (Anders-
son et al., 1997). In other words, undirected cycles are forbidden in RPDAGs, whereas in essential
graphs only undirected non-chordal cycles are forbidden. It can be seen that all the DAGs which
are represented by a given RPDAG are equivalent and have the same skeleton and the same h-
h patterns, whereas the DAGs associated with an essential graph have the same skeleton and the
same v-structures (h-h patterns where the extreme nodes are not adjacent) (Pearl and Verma, 1990).
Therefore, the role played by the v-structures in essential graphs is the same as that played by the
h-h patterns in RPDAGs. The objective of RPDAGs is to trade the uniqueness of the representation
of equivalence classes of DAGs for a more manageable one, because testing whether a given PDAG
G is an RPDAG is easier than testing whether G is an essential graph.

Theorem 6 The MIT scoring function assigns the same value to all DAGs that are represented by
the same RPDAG.

Although the MIT score should not be used to search in the space of essential graphs, we can
therefore use it without any problem to search in both the DAG and the RPDAG space.
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To conclude our study of the new score, we have observed an interesting relation between MIT
and the scoring functions based on Equation 6. First, it should be noted that the log-likelihood of the
simplest possible network, namely the empty network G /0, is, according to Equation 4 (and taking
into account that in this case qi = 1 and Ni jk = Nik):

LLD(G /0) =
n

∑
i=1

ri

∑
k=1

Nik log

(

Nik

N

)

= −N
n

∑
i=1

HD(Xi).

Then, considering Equation 12, we can express the sum of mutual information measures between
each variable and its set of parents in G as follows:

n

∑
i=1

PaG(Xi)6= /0

MID(Xi,PaG(Xi)) =
LLD(G)−LL(G /0)

N
.

Therefore, the sum of mutual information measures coincides with the difference between the log-
likelihood of G and the one of G /0 or, equivalently, with the difference between the description length
of the data given G /0 and given G. Now, let us consider the difference between G and G /0 in terms of
complexity, which is:

C(G)−C(G /0) =
n

∑
i=1

(ri −1)qi −
n

∑
i=1

(ri −1) =
n

∑
i=1

PaG(Xi)6= /0

(ri −1)(qi −1) =
n

∑
i=1

PaG(Xi) 6= /0

si

∑
j=1

li j,

with li j defined as in Equation 16. Therefore, for the information-based scoring function defined in
Equation 6, using f (N) = 1/2, the difference between the scores of G and G /0 is:

g(G : D)−g(G /0 : D) =
(

LL(G)−C(G) f (N)
)

−
(

LL(G /0)−C(G /0) f (N)
)

= N
n

∑
i=1

PaG(Xi)6= /0

MID(Xi,PaG(Xi))−
1
2

n

∑
i=1

PaG(Xi)6= /0

si

∑
j=1

li j

=
1
2

n

∑
i=1

PaG(Xi)6= /0

(

2N MID(Xi,PaG(Xi))−
si

∑
j=1

li j

)

. (22)

The similarity of this expression with those in Equations 18 and 20 is apparent. Therefore, the MIT
score of a network G could be interpreted in terms of the difference between the information-based
scores of G and G /0, and also as the decrease in description length achieved by using G instead of
G /0. By considering that the mean value of a χ2 distribution with l degrees of freedom is just l, we
can see that the MIT score appears when we replace in Equation 22 the mean values of the χ2(li j)
distributions by the corresponding α-quantiles.

5. Experimental Evaluation

In order to determine the possible merit of the proposed scoring function in practical terms, in this
section we shall carry out an experimental evaluation of the MIT score, comparing it with other
well-known scoring functions. The selected scoring functions are the most frequently used: K2
(Equation 1), BDeu (Equation 3) and BIC/MDL (Equation 5). For BDeu, we shall use a uniform
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prior distribution over possible structures and as this score is quite sensitive with respect to the
value of the equivalent sample size, we shall use five values of this parameter, more precisely η =
1,2,4,8,16. For the single parameter of the MIT score (i.e., the confidence level), we shall use three
values: α = 0.99,0.999,0.9999.

The software necessary to carry out the experiments has been developed on the Elvira system
(Elvira, 2002), a Java tool for building and using Bayesian networks and influence diagrams.

First, we define the performance criteria that we shall use to compare the different scoring
functions.

5.1 Performance Criteria

One way of measuring the quality of a scoring function is to study its ability to reconstruct (in com-
bination with a learning algorithm based on score+search) the Bayesian network which generated
the data. In other words, we begin with a Bayesian network G0 which is completely specified in
terms of structure and parameters, and we obtain a data set of a given size by sampling from G0.
Then, using the scoring function together with a search method, we obtain a learned network G,
which must be compared with the original network G0. This capacity for reconstruction can be
understood in two different but complementary ways: reconstructing the graphical structure and
reconstructing the associated joint probability distribution. In terms of the first of these, the usual
evaluation consists in measuring the structural differences between the original and the learned net-
works. More precisely, the number of added arcs (A(G)), deleted arcs (D(G)), and inverted arcs
(I(G)) in the learned network with respect to the original one is computed. In order to eliminate
fictitious differences or similarities between the two networks regarding the number of inverted arcs
(caused by different but equivalent subDAG structures), before the two networks are compared they
will be converted into their corresponding essential graph representation using the algorithm pro-
posed by Chickering (1995). If G′ and G′

0 represent the essential graphs associated with G and G0,
respectively, then the three measures of structural difference can be calculated using the following
expressions:

A(G) =
1
2

n

∑
i=1

|AdG′(Xi)\AdG′
0
(Xi)|

D(G) =
1
2

n

∑
i=1

|AdG′
0
(Xi)\AdG′(Xi)|

I(G) =
n

∑
i=1

(

|PaG′
0
(Xi)∩SibG′(Xi)|+|PaG′(Xi)∩SibG′

0
(Xi)|+|PaG′

0
(Xi)∩ChG′(Xi)|

)

.

where ChH(Xi) = {X j ∈ Un | Xi → X j ∈ EH} and AdH(Xi) = PaH(Xi)∪ChH(Xi)∪SibH(Xi) are the
sets of children and adjacent nodes of Xi in a PDAG H. As a way of summarizing these three
measures, the Hamming distance, which is simply the sum of all the structural differences, H(G) =
A(G)+D(G)+ I(G), is also usually considered.

In terms of the ability to reconstruct the joint probability distribution, we can evaluate this by
means of a distance measure between the distributions associated with the original and the learned
networks, pG0 and pG, respectively. We shall use the Kullback-Leibler divergence:

KL(G) = KL(pG0 , pG) = ∑
x1,...,xn

pG0(x1, . . . ,xn) log

(

pG0(x1, . . . ,xn)

pG(x1, . . . ,xn)

)

.
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The conditional probability distributions that constitute the factorization of pG will be calculated
from the data set using the Laplace estimation (Good, 1965), which avoids the problem of obtaining
an infinite value of the Kullback-Leibler divergence, caused by zero probability values in pG.

The calculus of this distance measure for joint distributions with many variables is computa-
tionally very expensive. However, by taking advantage of the factorization of the distributions, the
complexity may be considerably reduced and the value KL(G) can be expressed as follows:

KL(G) =
n

∑
i=1

ri

∑
k=1

q
G0
i

∑
j=1

pG0(xik,w
G0
i j ) log(pG0(xik|w

G0
i j ))

−
n

∑
i=1

ri

∑
k=1

qG
i

∑
j=1

pG0(xik,w
G
i j) log(pG(xik|w

G
i j)),

where wG0
i j and wG

i j represent the j-th configuration of the parent sets of Xi in G0 and G, respectively

(each having a total number of possible configurations equal to qG0
i and qG

i , respectively). In this
way, the only probability values that must be computed are pG0(xik,w

G0
i j ) and pG0(xik,wG

i j), and this
can be done relatively efficiently by using a propagation algorithm in the network G0. We have used
an exact algorithm based on variable elimination.

One alternative way of measuring the quality of a scoring function which does not require an
initial Bayesian network to be used as a starting point is to use the network learned with such a
scoring function for a specific task and then to evaluate the level of success achieved. As Bayesian
networks have been used in different ways to build classifiers, we can evaluate the quality of a scor-
ing function (at least in comparative terms) by building a classifier using an algorithm for learning
Bayesian networks which is specific for classification and equipped with the scoring function, and
then measuring its classification capacity.

5.2 Experiments for Reconstructing Bayesian Networks

In order to make our comparative study more representative, we shall use different problems or
rather different original networks. We shall also use different database sizes. Although this parame-
ter clearly affects the quality of the networks learned with any scoring function (greater sizes lead to
better estimations), we want to check which of the scoring functions may be more or less sensitive
in the sense that their behavior deteriorates more quickly when smaller sample sizes are used.

In the following sections, we shall first give details of the experimental design before presenting
the obtained results.

5.2.1 EXPERIMENTAL DESIGN

We have selected four Bayesian networks corresponding to different problems: Alarm (Figure 2),
Boblo (Figure 3), Insurance (Figure 4) and Hailfinder (Figure 5).

The Alarm network displays the relevant variables and relationships for the Alarm Monitor-
ing System (Beinlich et al., 1989), a diagnostic application for patient monitoring. This network
contains 37 variables and 46 arcs. Boblo (Rasmussen, 1995) is part of a system for determining
the blood group of Jersey cattle. The Boblo network contains 23 variables and 24 arcs. Hailfinder
(Abramson et al., 1996) is a normative system that forecasts severe summer hail in northeastern
Colorado. The Hailfinder network contains 56 variables and 66 arcs. Insurance (Binder et al., 1997)
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Figure 2: The Alarm network

is a network for evaluating car insurance risks. The Insurance network contains 27 variables and 52
arcs. All these networks have been widely used in specialist literature for comparative purposes.

Figure 3: The Boblo network

Each network has been used to generate several databases, each of which contains 10000 in-
stances; more precisely, we have generated five data sets for each problem. The results that we
will show are the averages across the five data sets. The sample sizes considered are N = 10000,
5000 and 1000 (using the complete data sets and the first 5000 and 1000 instances of each one,
respectively).

2168



SCORING BAYESIAN NETWORKS USING MUTUAL INFORMATION AND INDEPENDENCE TESTS

SocioEcon

GoodStudent RiskAversion

VehicleYear MakeModel

AntiTheft HomeBase

OtherCar

Age

DrivingSkill

SeniorTrain

MedCost

DrivQuality DrivHistRuggedAuto AntilockCarValue Airbag

Accident

ThisCarDam OtherCarCost ILiCost

ThisCarCost

Cushioning

Mileage

PropCost

Theft

Figure 4: The Insurance network

The search method that we shall use is a local search in the DAG space with the classical
operators of arc addition, arc deletion and arc reversal. The starting point of the search is always
the empty graph. Although our main objective is to compare the proposed score with others, given
that MIT has some similarities with constraint-based methods, it is also interesting to include one
of these methods in the comparison. We have selected the well-known PC algorithm (Spirtes et al.,
1993). This algorithm also depends on one parameter α representing the confidence level of the
independence tests. We shall use three values: α = 0.90,0.95,0.99.

We therefore have a design 13× 4× 3 (10 scoring functions plus 3 versions of a constraint-
based algorithm, 4 problems and 3 sample sizes), and for each of these 156 configurations we use 5
different databases, which gives us a total of 780 experiments.

5.2.2 RECONSTRUCTION RESULTS

Tables 1, 2, 3 and 4 display the results obtained for the Alarm, Boblo, Hailfinder and Insurance
networks, respectively. For each sample size and each method, each table shows the average values
of the previously mentioned performance measures (A, D, I, H and KL). The best value for each
performance measure is written in bold and the second best in italics. In the last two rows of each
table, we also show the KL values for the original network (with parameters re-trained from the cor-
responding database) and the empty network, which may serve as a kind of scale. Table 5 displays
an illustrative summary of the results: it shows the number of times (from the 12 configurations
being considered for each method) that each method has obtained the best result (and either the best
or the second best result) for each of the five performance measures.

The first thing that can be observed is that these results seem to confirm our intuition about the
need to use MIT with a greater confidence level α than those typically used for independence tests,

2169



DE CAMPOS

Scenario

MvmtFeatures MidLLapse ScenRelAMCIN Dewpoints

ScnRelPlFcst

SfcWndShfDis RHRatioScenRelAMIns WindFieldPln TempDis SynForcng MeanRH LowLLapse

ScenRel3_4

WindFieldMt WindAloft

AMInsWliScen

InsSclInScen

PlainsFcst

InsChange AMCINInScen

CapInScen

CapChange

CompPlFcst

AreaMoDryAir

CldShadeOth

InsInMt

AreaMeso_ALS

CombClouds

MorningCIN

CldShadeConv OutflowFrMt

MountainFcst

WndHodograph

Boundaries

CombMoisture

CurPropConv

N34StarFcst

LoLevMoistAd

MorningBound

AMInstabMt

CombVerMo

LatestCINLLIW

SatContMoistRaoContMoist

Date

R5Fcst

LIfr12ZDENSdAMDewptCalPl

VISCloudCov IRCloudCover

N0_7muVerMo SubjVertMoQGVertMotion

Figure 5: The Hailfinder network

since MIT with the values α = 0.999,0.9999 offers better results than with α = 0.99. It is also
possible to observe how MIT generally behaves better than the other scores, with respect to all the
performance measures, and more specifically, in terms of BIC/MDL (which is the closest scoring
function in spirit to the new score), MIT systematically obtains much better results. Although BIC
behaves acceptably in terms of the number of added arcs, it does however have a marked propensity
to remove a large number of arcs. This suggests that the penalization component used by BIC is
not well calibrated. On the other hand, the different versions of BDeu behave rather poorly (except
in terms of the number of deleted arcs). K2 only offers good results for the KL divergence. The
PC algorithm behaves very good for the number of added and inverted arcs. However, its results in
terms of the number of deleted arcs and KL divergence are extremely poor.

Focusing on the two main performance measures (the Hamming distance and the KL diver-
gence), for each pair of methods, Tables 6 and 7 contain the number of times that each method
obtains better results than the other. Table 6 refers to the KL divergence and Table 7 to the Ham-
ming distance. In both cases, the MIT versions using high confidence levels (0.9999 and 0.999)
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ALARM
N 1000 5000 10000

Score A D I H KL A D I H KL A D I H KL
M9999 4.2 4.6 9.6 18.4 0.32752 4.6 2.4 4.6 11.6 0.06384 7.6 2.6 9.2 19.4 0.04372
M999 4.2 4.0 9.4 17.6 0.31571 4.2 3.0 4.6 11.8 0.06448 9.8 2.6 10.0 22.4 0.04563

M99 7.8 4.0 9.4 21.2 0.31270 8.4 2.0 4.8 15.2 0.06925 12.6 2.4 10.0 25.0 0.04743
BIC 7.2 7.4 20.0 34.6 0.49799 7.4 4.6 14.0 26.0 0.18683 9.6 3.4 18.2 31.2 0.09983
K2 10.0 4.2 16.0 30.2 0.27079 8.4 3.2 14.2 25.8 0.07222 8.8 3.0 14.6 26.4 0.04375

BD1 11.0 4.0 17.4 32.4 0.32570 9.6 3.2 13.4 26.2 0.08782 8.2 3.0 14.2 25.4 0.04855
BD2 14.6 4.2 20.6 39.4 0.33198 11.0 2.8 15.0 28.8 0.09294 7.4 2.6 16.0 26.0 0.04387
BD4 18.0 3.4 15.4 36.8 0.32044 11.6 2.4 17.6 31.6 0.06652 14.0 3.2 19.4 36.6 0.04797
BD8 27.8 3.8 17.8 49.4 0.34363 16.8 2.6 16.0 35.4 0.07469 13.4 2.4 15.0 30.8 0.04491

BD16 48.8 3.6 19.4 71.8 0.42465 31.8 3.0 15.2 50.0 0.09508 24.4 2.8 14.2 41.4 0.04582
PC90 2.8 17.0 8.4 28.2 2.63819 0.6 9.0 5.4 15.0 1.21272 0.4 8.0 4.6 13.0 1.06377
PC95 2.2 17.6 8.4 28.2 2.69645 0.4 9.2 5.4 15.0 1.29207 0.2 7.6 5.8 13.6 0.95810
PC99 1.8 18.8 8.8 29.4 2.82810 0.2 10.6 6.0 16.8 1.63841 0.4 7.8 6.2 14.4 1.00228

true 0.21351 0.04759 0.02421
empty 10.2445 10.0677 10.0631

Table 1: Results for the Alarm network

BOBLO
N 1000 5000 10000

Score A D I H KL A D I H KL A D I H KL
M9999 0.4 5.0 0.8 6.2 0.15105 0.0 2.2 0.0 2.2 0.03359 0.8 0.2 1.6 2.6 0.01396

M999 0.4 4.4 0.4 5.2 0.14458 0.2 1.8 0.0 2.0 0.03266 0.8 0.2 1.6 2.6 0.01396
M99 1.0 4.0 1.2 6.2 0.14812 0.2 1.6 0.0 1.8 0.03208 1.2 0.0 1.6 2.8 0.01353
BIC 2.0 6.4 4.6 13.0 0.16222 3.0 3.8 4.6 11.4 0.03651 2.8 2.4 3.0 8.2 0.01993
K2 10.6 4.0 8.8 23.4 0.13805 11.0 2.6 7.6 21.2 0.03563 7.8 1.2 6.8 15.8 0.01748

BD1 28.6 3.2 2.8 34.6 0.15329 13.4 1.6 4.6 19.6 0.03211 7.2 2.0 4.4 13.6 0.01481
BD2 30.8 2.6 4.0 37.4 0.15452 21.2 2.2 7.2 30.6 0.03928 16.8 1.6 7.4 25.8 0.01705
BD4 37.4 2.6 2.8 42.8 0.16213 28.0 1.8 4.8 34.6 0.03983 26.2 1.4 6.4 34.0 0.02065
BD8 50.8 3.6 3.4 57.8 0.17616 41.2 1.4 5.2 47.8 0.04539 38.2 1.0 9.2 48.4 0.02317

BD16 64.2 2.6 6.6 73.4 0.18015 54.0 2.0 6.0 62.0 0.05415 49.6 1.4 3.2 54.2 0.02830
PC90 0.0 13.0 5.4 18.4 2.02929 0.8 10.0 6.2 17.0 1.44017 1.4 10.2 6.2 17.8 1.43512
PC95 0.0 14.4 5.0 19.4 2.22612 0.2 10.0 6.0 16.2 1.43634 0.2 9.6 6.4 16.2 1.42543
PC99 0.0 15.0 4.6 19.6 2.33032 0.0 10.8 5.6 16.4 1.50436 0.0 9.8 6.2 16.0 1.42574

true 0.13107 0.02712 0.01355
empty 7.44795 7.42898 7.42653

Table 2: Results for the Boblo network

compare favorably with the other scores. They systematically produce networks with much fewer
structural differences with respect to the original networks and, at the same time, they almost always
estimate the true joint probability distributions more closely. In terms of the Hamming distance, BIC
is somewhat better than K2 and much better than BDeu, which systematically obtains worse results
as the equivalent sample size increases. However, regarding the Kullback-Leibler divergence, K2
is much better than BIC and most of the versions of BDeu. The constraint-based algorithm is not
able to find a good approximation of the joint probability distribution, probably because of the high
number of deleted arcs together with the low number of added arcs.13 In terms of the Hamming
distance, PC performs better than all the Bayesian scores, although MIT and, to a lesser extent,
BIC, outperform it.

13. Extra arcs could be useful to compensate for the missing arcs.
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HAILFINDER
N 1000 5000 10000

Score A D I H KL A D I H KL A D I H KL
M9999 7.2 12.2 8.2 27.6 1.08438 8.0 5.8 4.2 18.0 0.26576 6.2 5.6 1.2 13.0 0.14678

M999 8.6 11.0 8.6 28.2 1.13183 9.6 5.6 4.6 19.8 0.29131 7.6 5.4 1.6 14.6 0.16634
M99 19.6 10.0 6.8 36.4 1.45014 21.2 5.8 8.8 35.8 0.47866 18.2 5.8 9.8 33.8 0.28220
BIC 6.4 16.2 15.0 37.6 1.36774 9.6 13.8 14.4 37.8 0.38606 10.0 10.2 17.2 37.4 0.21192
K2 10.4 13.2 18.2 41.8 1.09179 9.0 8.6 22.0 39.6 0.27891 10.2 7.6 22.2 40.0 0.15910

BD1 16.0 18.4 16.2 50.6 1.43422 17.0 13.0 21.4 51.4 0.40585 19.2 10.8 26.4 56.4 0.23520
BD2 16.2 17.0 20.4 53.6 1.35804 19.2 12.6 20.6 52.4 0.35806 16.2 9.8 18.8 44.8 0.19763
BD4 16.6 17.2 13.8 47.6 1.30878 18.4 13.2 18.0 49.6 0.36146 19.0 8.8 17.0 44.8 0.18702
BD8 15.8 15.8 16.8 48.4 1.25347 20.2 12.0 20.4 52.6 0.33352 21.4 9.2 25.6 56.2 0.18622

BD16 23.0 15.0 15.2 53.2 1.30559 22.8 10.4 15.0 48.2 0.33260 23.0 8.2 15.2 46.4 0.19391
PC90 10.2 36.6 8.8 55.6 9.19075 14.8 33.4 7.0 55.2 8.38057 16.6 33.2 8.4 58.2 8.25173
PC95 10.2 36.6 9.0 55.8 9.19961 13.8 33.2 6.8 53.8 8.38573 15.6 32.8 8.0 56.4 8.23382
PC99 11.6 36.8 9.4 57.8 9.15348 13.8 33.4 6.6 53.8 8.32864 14.8 32.4 7.2 54.4 8.21041

true 1.18225 0.28146 0.14798
empty 20.6712 20.6048 20.5969

Table 3: Results for the Hailfinder network

INSURANCE
N 1000 5000 10000

Score A D I H KL A D I H KL A D I H KL
M9999 3.4 14.8 13.4 31.6 0.50383 4.8 10.2 12.8 27.8 0.14468 3.8 7.2 6.4 17.4 0.06440

M999 3.6 14.0 13.0 30.6 0.50499 5.0 9.4 12.2 26.6 0.14226 4.2 6.6 9.0 19.8 0.06653
M99 3.8 12.2 13.4 29.4 0.45608 6.8 8.8 11.8 27.4 0.14513 4.6 6.4 14.0 25.0 0.06952
BIC 4.0 23.0 12.0 39.0 0.97628 4.4 14.8 15.8 35.0 0.25910 5.2 11.0 12.4 28.6 0.13403
K2 9.2 17.0 19.4 45.6 0.52187 10.6 12.8 23.2 46.6 0.16905 10.4 11.8 21.4 43.6 0.10118

BD1 6.2 17.2 13.8 37.2 0.57087 6.2 12.0 14.8 33.0 0.18197 7.2 10.6 19.0 36.8 0.12997
BD2 5.6 14.8 14.2 34.6 0.48989 7.2 12.6 21.0 40.8 0.16623 8.8 11.0 18.6 38.4 0.13644
BD4 9.4 15.0 19.0 43.4 0.50435 8.6 10.8 14.4 33.8 0.15113 6.0 8.4 16.4 30.8 0.08331
BD8 16.2 16.4 17.8 50.4 0.53299 14.6 11.6 21.6 47.8 0.15281 10.2 9.2 13.2 32.6 0.09064

BD16 22.2 14.6 19.6 56.4 0.58103 20.4 10.0 24.4 54.8 0.14247 18.8 7.6 19.8 46.2 0.08384
PC90 2.0 30.6 8.8 41.4 2.31070 0.2 22.2 8.4 30.8 0.96871 0.2 19.4 4.8 24.4 0.58962
PC95 1.8 30.6 9.0 41.4 2.31837 0.2 22.4 9.6 32.2 1.03911 0.2 19.6 5.0 24.8 0.57544
PC99 1.4 31.2 8.8 41.4 2.42852 0.2 23.2 10.8 34.2 1.05543 0.0 20.0 5.4 25.4 0.62231

true 0.55527 0.12023 0.06205
empty 8.46596 8.44041 8.43720

Table 4: Results for the Insurance network

We believe that these results support the conclusion that the MIT score can compete favor-
ably with state-of-the-art scoring functions and constraint-based algorithms for the task of learning
general purpose Bayesian networks. Moreover, in the case that we wish to select a non-Bayesian
scoring function based on information theory, we would recommend BIC/MDL be discarded and
MIT used instead.

It is also interesting to remark that the two scoring functions that behave best (MIT and K2)
are not score equivalent, whereas the two that obtain comparatively poor results (BIC and BDeu),
are. Therefore, score equivalence does not seem to be an important property for learning Bayesian
networks by searching in the DAG space. This confirms the previous results stated by Yang and
Chang (2002).

While it is clear from the previous experiments that the new score, in combination with the
particular search procedure being used, has an excellent performance, we would also like to test
whether the different scores differentiate structures that are more accurate or generalize better, inde-
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times best/times best or second best
Score A D I H KL

M9999 3 / 5 0 / 5 5 / 7 6 / 8 6 / 7
M999 0 / 3 2 / 8 4 / 6 4 / 11 1 / 5
M99 0 / 1 7 / 9 3 / 4 2 / 5 3 / 4
BIC 1 / 2 0 / 0 0 / 2 0 / 0 0 / 0
K2 0 / 1 0 / 0 0 / 0 0 / 0 2 / 6

BD1 0 / 0 0 / 2 0 / 1 0 / 0 0 / 1
BD2 0 / 0 1 / 2 0 / 0 0 / 0 0 / 1
BD4 0 / 0 2 / 3 0 / 0 0 / 0 0 / 0
BD8 0 / 0 2 / 2 0 / 0 0 / 0 0 / 0

BD16 0 / 0 1 / 2 0 / 0 0 / 0 0 / 1
PC90 2 / 4 0 / 0 5 / 5 1 / 1 0 / 0
PC95 3 / 9 0 / 0 1 / 5 0 / 1 0 / 0
PC99 8 / 9 0 / 0 1 / 2 0 / 0 0 / 0

Table 5: Number of times that each method obtained the best/the best or second best result in terms
of each performance measure

Kullback-Leibler
M9999 M999 M99 K2 BIC BD1 BD2 BD4 BD8 BD16 PC90 PC95 PC99

M9999 – 7 7 10 12 10 11 11 12 11 12 12 12
M999 4 – 8 6 12 11 10 11 11 12 12 12 12

M99 5 4 – 6 9 9 8 8 8 7 12 12 12
K2 2 6 6 – 12 10 9 8 10 10 12 12 12

BIC 0 0 3 0 – 3 2 2 3 3 12 12 12
BD1 2 1 3 2 9 – 6 3 4 6 12 12 12
BD2 1 2 4 3 10 6 – 6 6 7 12 12 12
BD4 1 1 4 4 10 9 6 – 8 8 12 12 12
BD8 0 1 4 2 9 8 6 4 – 9 12 12 12

BD16 1 0 5 2 9 6 5 4 3 – 12 12 12
PC90 0 0 0 0 0 0 0 0 0 0 – 7 7
PC95 0 0 0 0 0 0 0 0 0 0 5 – 9
PC99 0 0 0 0 0 0 0 0 0 0 5 3 –

Table 6: Number of times that the methods in rows are better than the ones in columns in terms of
the Kullback-Leibler divergence

pendently of the search issues. One way to do this is to generate an ensemble of networks that were
found by the search procedures using the different scores and see how each of the scores rank the
networks in this ensemble. So, for each of the sixty databases used in the previous experiments we
have considered the ten networks obtained by the different scoring functions, computing the ranking
of these networks according to each score. We have also computed the ranking of these networks
according to each of the two main performance measures, the KL divergence and the Hamming
distance.
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Hamming
M9999 M999 M99 K2 BIC BD1 BD2 BD4 BD8 BD16 PC90 PC95 PC99

M9999 – 5 8 12 12 12 12 12 12 12 11 11 11
M999 6 – 9 12 12 12 12 12 12 12 11 11 11

M99 3 3 – 12 12 12 12 12 12 12 9 9 11
K2 0 0 0 – 4 6 8 9 11 12 4 4 4

BIC 0 0 0 8 – 8 10 11 11 12 7 7 7
BD1 0 0 0 6 4 – 10 8 9 10 5 4 5
BD2 0 0 0 4 2 2 – 6 10 10 4 4 4
BD4 0 0 0 3 1 4 5 – 11 11 3 3 3
BD8 0 0 0 1 1 3 2 1 – 10 3 3 2

BD16 0 0 0 0 0 2 2 1 2 – 3 3 3
PC90 1 1 3 8 5 7 8 9 9 9 – 5 7
PC95 1 1 3 8 5 7 8 9 9 9 4 – 8
PC99 1 1 1 8 5 7 8 9 10 9 4 2 –

Table 7: Number of times that the methods in rows are better than the ones in columns in terms of
the Hamming distance

To measure the degree of association between the rankings generated by each scoring function
and each measure of performance, we have used the nonparametric Spearman correlation coeffi-
cient14 for ordinal data (Hogg and Craig, 1994), which varies between −1 (perfect negative corre-
lation) and +1 (perfect positive correlation).

Tables 8 and 9 display the average values of the Spearman coefficient with respect to Hamming
distance and KL divergence, respectively, grouped by problem and database size.

Average Spearman correlation w.r.t. Hamming distance
Problem Database size All

Alarm Boblo Hailfinder Insurance 1000 5000 10000
M9999 0.69 0.97 0.74 0.69 0.83 0.72 0.77 0.77
M999 0.62 0.98 0.71 0.68 0.81 0.70 0.73 0.75
M99 0.53 0.96 0.66 0.65 0.77 0.65 0.68 0.70

K2 0.55 0.63 -0.02 0.21 0.32 0.27 0.44 0.34
BIC 0.67 0.93 0.60 0.61 0.75 0.64 0.72 0.70
BD1 0.44 0.50 -0.40 0.40 0.12 0.18 0.40 0.23
BD2 0.41 0.29 -0.39 0.42 0.06 0.12 0.35 0.18
BD4 0.32 -0.12 -0.42 0.38 -0.13 -0.03 0.28 0.04
BD8 0.20 -0.59 -0.48 0.35 -0.27 -0.17 0.06 -0.13

BD16 -0.02 -0.77 -0.53 0.21 -0.50 -0.28 -0.05 -0.28

Table 8: Average values of the Spearman correlation coefficient between the rankings generated by
each scoring function and the Hamming distance

These results confirm that, in terms of the KL divergence, MIT and K2 are the best scores (with
K2 being in this case slightly better than MIT), whereas MIT and BIC are the best scores in terms of

14. ρ = 1− 6∑N
i=1 d2

i
N(N2−1)

, where {di} are the differences between the ranks of each observation on the two variables.
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Average Spearman correlation w.r.t. KL divergence
Problem Database size All

Alarm Boblo Hailfinder Insurance 1000 5000 10000
M9999 0.80 0.72 0.51 0.77 0.66 0.68 0.76 0.70
M999 0.83 0.74 0.47 0.80 0.71 0.69 0.74 0.71
M99 0.85 0.74 0.34 0.82 0.70 0.66 0.71 0.69

K2 0.92 0.81 0.55 0.70 0.76 0.70 0.77 0.74
BIC 0.48 0.65 0.33 0.30 0.34 0.44 0.55 0.44
BD1 0.84 0.51 -0.23 0.73 0.29 0.51 0.59 0.46
BD2 0.84 0.38 -0.17 0.79 0.28 0.52 0.58 0.46
BD4 0.84 0.05 -0.08 0.83 0.20 0.47 0.55 0.41
BD8 0.79 -0.37 -0.01 0.85 0.17 0.39 0.38 0.31

BD16 0.61 -0.51 -0.01 0.83 0.01 0.34 0.35 0.23

Table 9: Average values of the Spearman correlation coefficient between the rankings generated by
each scoring function and the KL divergence

the Hamming distance (with MIT being better than BIC). In our opinion, the fact that MIT behaves
very good in terms of both structural and distributional quality support the conclusion that it is a
very competitive scoring function.

5.3 Experiments in Automatic Classification

As we commented previously, another approach to evaluating the quality of a scoring function is to
use it to learn a Bayesian network classifier, and then to measure the performance of the classifier,
for example in terms of predictive accuracy. In this section, we shall apply this method in order to
compare MIT with the other scores.

Since the objective of a classifier is not to obtain a good representation of a joint probability
distribution for the class and the attributes but rather one for the posterior probability distribution of
the class given the attributes, several specialized algorithms that carry out the search into different
types of restricted DAG topologies have been developed (Acid et al., 2005; Cheng and Greiner,
1999; Ezawa et al., 1996; Friedman, Geiger and Goldszmidt, 1997; Sahami, 1996), most of these
being extensions (using augmenting arcs) or modifications of the well-known Naive Bayes basic
topology. This approach generally obtains more satisfactory results than the algorithms for learning
unrestricted types of Bayesian networks in terms of classification accuracy.

The BN learning algorithm that we shall use carries out a local search in a space of PDAGs called
class-focused RPDAGs (C-RPDAGs), which are RPDAGs representing sets of DAGs which are
equivalent in terms of classification (in the sense that they produce the same posterior probabilities
for the class variable). Using the BDeu score, this algorithm has proved more effective than other
Bayesian network classifiers (Acid et al., 2005).

As in the previous section, we shall first give details of the experimental design before going on
to present the obtained results.
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5.3.1 EXPERIMENTAL DESIGN

We have selected 29 data sets which were all obtained from the UCI repository of machine learn-
ing databases (Blake and Merz, 1998), with the exception of ‘mofn-3-7-10’ and ‘corral’, which
were designed by Kohavi and John (1997). All these data sets have been widely used in specialist
literature for comparative purposes in classification.

Table 10 briefly describes the characteristics of each database, including the number of in-
stances, attributes and states for the class variable. Some of these data sets have been preprocessed
in the following way: the continuous variables have been discretized using the procedure proposed
by Fayyay and Irani (1993), and the instances with undefined/missing values were eliminated. For
this preprocessing stage, we have used the MLC++ System (Kohavi et al., 1994).

# Database N. cases N. attributes N. classes
1 adult 45222 14 2
2 australian 690 14 2
3 breast 682 10 2
4 car 1728 6 4
5 chess 3196 36 2
6 cleve 296 13 2
7 corral 128 6 2
8 crx 653 15 2
9 diabetes 768 8 2

10 flare 1066 10 2
11 german 1000 20 2
12 glass 214 9 7
13 glass2 163 9 2
14 heart 270 13 2
15 hepatitis 80 19 2
16 iris 150 4 3
17 letter 20000 16 26
18 lymphography 148 18 4
19 mofn-3-7-10 1324 10 2
20 mushroom 8124 22 2
21 nursery 12960 8 5
22 pima 768 8 2
23 satimage 6435 36 6
24 segment 2310 19 7
25 shuttle-small 5800 9 7
26 soybean-large 562 35 19
27 vehicle 846 18 4
28 vote 435 16 2
29 waveform-21 5000 21 3

Table 10: Description of the data sets used in the classification experiments

For each database and each scoring function, we have built a classifier using the algorithm based
on C-RPDAGs. As in our previous experiments, the probability distributions associated with the
obtained network structures have been computed from the data sets using the Laplace estimation.
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The selected performance measure is predictive accuracy, that is, the percentage of successful
predictions on a test set which is different from the training set. This accuracy has been measured as
the average of three runs, the accuracy of each run being estimated using 10-fold cross-validation.
Within each run, the cross-validation folds were the same for all the classifiers on each data set.15

We used repeated runs and 10-fold cross-validation according to the recommendations by Kohavi
(1995) in order to obtain a good balance between bias and variance of the estimation.

As these experiments are much more computationally expensive than those in the previous sec-
tion, instead of using all the different versions of MIT and BDeu, we have selected only one. From
the results in Tables 6 and 7, we believe that the best candidate scores are M9999 and BD4. We
therefore have a 29× 4 design (29 problems and 4 scoring functions), and for each of these 116
configurations, we carry out 3 iterations of 10-fold cross-validation, with a total of 3480 runs of the
C-RPDAG learning algorithm.

5.3.2 CLASSIFICATION RESULTS

Table 11 displays the results of these experiments. The best results obtained for each problem are
highlighted in bold. We can observe that there are no great differences between the different scoring
functions (with the exception perhaps of BIC which seems to behave worst).

In order to determine whether the observed differences are statistically significant, we have also
used a non-parametric statistical test: the Wilcoxon paired signed rank test, with a significance level
equal to 0.01. We have used this test on each of the three cross-validation iterations. We shall then
say that there is a significant difference if the Wilcoxon test detects a difference in at least one of
the three iterations, and that there is a very significant difference if the test detects differences in all
the three iterations. Table 11 also indicates whether the results obtained for K2, BIC and BDeu are
significantly worse (–), very significantly worse (– –), significantly better (+) or very significantly
better (++) than those of MIT for each data set.

In Table 12, we compare each classifier with the others according to these criteria. The entry
in row i column j represents the number of times that classifier i is significantly better or very
significantly better than classifier j. These results confirm that K2, BDeu and MIT behave in a
similar way, with MIT being slightly better, and that BIC is clearly the worst score.

6. Concluding Remarks

In this paper, we have defined a new scoring function for learning Bayesian networks through
score+search algorithms. This is based on the well-known properties of the mutual information
measure and which are used in a novel way. We begin with the idea of minimizing the Kullback-
Leibler divergence between the joint probability distribution associated with a data set and the one
associated with a Bayesian network, which is equivalent to maximizing the sum of the mutual in-
formation measures between each variable and its set of parents in the network. We then use a
decomposition property of mutual information in order to express each of these measures as a sum
of the conditional mutual information measures between the variable and each of its parents, given
the subset of the remaining parent variables which antecede the current parent in a given order.

Using another mutual information property that allows us to build an independence test relying
on the chi-square distribution, it is possible to interpret mutual information between a variable and

15. The cross-validation folds are in fact the same as those considered by Acid et al. (2005).
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# Database K2 BIC BD4 M9999
1 adult 85.71 85.42 (–) 85.50 85.66
2 australian 85.65 86.28 85.27 85.22
3 breast 97.56 97.56 97.41 97.36
4 car 93.73 85.63 (– –) 93.83 94.17
5 chess 96.50 95.81 96.71 (+) 96.17
6 cleve 80.54 82.46 81.56 82.13
7 corral 100.00 100.00 100.00 100.00
8 crx 85.13 86.61 86.00 86.00
9 diabetes 78.65 78.56 78.60 78.60

10 flare 83.18 82.77 83.37 83.21
11 german 74.63 74.40 74.87 74.23
12 glass 71.57 70.12 71.56 71.85
13 glass2 85.45 84.83 85.22 85.44
14 heart 82.47 82.59 83.21 82.59
15 hepatitis 90.83 87.50 92.50 90.00
16 iris 93.33 94.22 94.44 94.22
17 letter 85.99 (+) 76.73 (– –) 85.55 85.45
18 lymphography 82.83 81.78 83.49 81.25
19 mofn-3-7-10 97.36 (–) 93.56 (– –) 99.09 100.00
20 mushroom 100.00 100.00 100.00 100.00
21 nursery 94.71 (– –) 91.30 (– –) 93.38 (– –) 95.45
22 pima 78.86 78.51 78.21 78.43
23 satimage 87.84 (–) 84.57 (– –) 88.32 88.51
24 segment 94.92 92.16 (– –) 94.55 95.11
25 shuttle-small 99.67 99.79 99.60 99.65
26 soybean-large 93.30 88.85 (–) 92.64 91.81
27 vehicle 72.46 71.75 72.10 72.26
28 vote 94.79 92.95 93.72 94.03
29 waveform-21 82.47 82.47 83.06 82.21

Average 87.94 86.52 88.06 87.97

Table 11: Predictive accuracy of the different scoring functions

K2 BIC BD4 M9999
K2 —– 9 / 5 2 / 1 1 / 0
BIC 0 / 0 —– 1 / 0 0 / 0
BD4 3 / 1 8 / 6 —– 1 / 0
M9999 3 / 1 8 / 6 1 / 1 —–

Table 12: Number of times that the classifiers in rows are significantly better / very significantly
better than the ones in columns

its parents as a sum of the statistics associated with a set of simultaneous conditional independence
tests. Each of these tests indicates whether it is worth adding a new parent, taking into account
those parents which have already been included. The value of each statistic is compared with a
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reference value, and the sum of the differences between statistics and reference values is used to
quantify the global quality of the parent set. The result is a scoring function (called MIT) which is
similar to those based on maximizing a penalized version of the log-likelihood, such as BIC/MDL.
In our case, however, the penalization component is specific rather than global for each variable and
its parents, and takes into account not only the complexity of the structure but also its reliability.
Although MIT is a scoring function, the result of using it within an algorithm based on score and
search has many similarities with learning algorithms based on independence tests. However, in our
case, the tests are not only used to decide whether the variables are independent or not, but they also
quantify the extent to which they are.

We have also carried out a complete experimental evaluation of the proposed score, comparing
it with state-of-the-art scoring functions (such as K2, BDeu and BIC/MDL) and with a constraint-
based algorithm using different evaluation criteria: structural differences between the original and
the learned networks, distance between the probability distributions associated with these networks,
and predictive accuracy of the classifiers constructed using the different scores. The results of these
experiments show that MIT can compete with the Bayesian scores and that it should be the score of
reference within those based on information theory.

The MIT scoring function is decomposable and is not score equivalent, although it satisfies
a restricted form of score equivalence which allows us to use it to search not only in the DAG
space but also in the RPDAG space. Nevertheless, for future research we would like to develop a
scoring function which is based on the same MIT principles but which satisfies the score equivalence
property, to be used by learning algorithms that search in the space of essential graphs. Furthermore,
the expression of the MIT score depends on a free parameter: the confidence level α associated with
the chi-square independence tests. Although experimental results confirm our previous analysis
which states that this parameter should be set to a high value (much higher than is usual for a single
statistical test), it would also be interesting to find some guidelines in order to automatically select
an appropriate value of α depending on the characteristics of the problem domain being considered.
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Appendix A

Proof of Theorem 2. We should first explain what a Shur-concave function is. Let us consider
two n-dimensional vectors x = (x1, . . . ,xn) and y = (y1, . . . ,yn), and let x↓ = (x↓1, . . . ,x

↓
n) and y↓ =

(y↓1, . . . ,y
↓
n) be the vectors whose entries are the entries of x and y, arranged in decreasing order,

that is, x↓1 ≥ x↓2 ≥ . . . ≥ x↓n and y↓1 ≥ y↓2 ≥ . . . ≥ y↓n. If ∑m
j=1 x↓j ≤ ∑m

j=1 y↓j ∀m ≤ n, then it is said that
x is majorized by y, written x ≺ y. A function f : N n −→ R is Shur-concave if for every vector
x = (x1, . . . ,xn) and y = (y1, . . . ,yn) such that x ≺ y, then f (x1, . . . ,xn) ≥ f (y1, . . . ,yn). This is one
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of the essential properties of entropy and establishes that the more uniform a distribution is, the
greater the entropy.

Let us assume that the function fi,α(l1, . . . , lsi) = ∑si
j=1 χα,l j is Shur-concave, and we shall prove

the result stated in the theorem. For any permutation σi, let us consider the vector liσi = (liσi(1), . . . ,

liσi(si)). As rik ≥ 2∀k, then liσi( j) = (ri − 1)(riσi( j) − 1)∏ j−1
k=1 riσi(k) ≤ (ri − 1)riσi( j) ∏ j−1

k=1 riσi(k) ≤

(ri − 1) (riσi( j+1) − 1)riσi( j) ∏ j−1
k=1 riσi(k) = (ri − 1)(riσi( j+1) − 1)∏ j

k=1 riσi(k) = liσi( j+1). Therefore

liσi(si) ≥ . . . ≥ liσi(2) ≥ liσi(1), that is, l↓iσi(1) = liσi(si),. . ., l↓iσi(si)
= liσi(1).

Then, the values of ∑m
j=1 l↓iσi( j) can be expressed as follows:

m

∑
j=1

l↓iσi( j) =
si

∑
j=si−m+1

liσi( j) =
si

∑
j=si−m+1

(

(ri −1)(riσi( j)−1)
j−1

∏
k=1

riσi(k)

)

= (ri −1)
si

∑
j=si−m+1

(

riσi( j)

j−1

∏
k=1

riσi(k)−
j−1

∏
k=1

riσi(k)

)

= (ri −1)
si

∑
j=si−m+1

(

j

∏
k=1

riσi(k)−
j−1

∏
k=1

riσi(k)

)

= (ri −1)

(

si

∏
k=1

rik −
si−m

∏
k=1

riσi(k)

)

.

As the permutation σ∗
i ranks the variables in decreasing order of the number of states, ∏si−m

k=1 riσi(k)

≤ ∏si−m
k=1 riσ∗

i (k)
and therefore ∑m

j=1 l↓iσ∗
i ( j) ≤ ∑m

j=1 l↓iσi( j), that is, liσ∗
i
≺ liσi . By applying the Shur-

concavity of fi,α, we then obtain ∑si
j=1 χα,liσi( j)

≤ ∑si
j=1 χα,liσ∗i ( j)

∀σi, hence

∑si
j=1 χα,liσ∗i ( j)

= maxσi ∑si
j=1 χα,liσi( j)

.

Argument supporting Conjecture 3. We try to prove that the functions fi,α are Shur-concave. We
shall use the well-known result (Marshall and Olkin, 1979) which states that x ≺ y if and only if
F(x)≥F(y), where F(x) = ∑n

i=1 g(xi), for all concave functions f . In our case F(l) = fi,α(l1, . . . , lsi)
= ∑si

j=1 χα,l j , so that we must only prove that the function fα(l) = χα,l is concave in order to obtain

the result. A function f (l) is concave if and only if ∀l1 ≤ l2 ≤ l3,
f (l2)− f (l1)

l2−l1
≥ f (l3)− f (l1)

l3−l1
, which is

equivalent to
∀h,k ≥ 0, ∀l, (h+ k) f (l) ≥ k f (l +h)+h f (l− k).

We could prove the concavity of f by using induction on the ‘distances’ h and k. The base case is
h = k = 1, that is,

2 f (l) ≥ f (l +1)+ f (l−1), ∀l. (23)

Let us assume that ∀h ≤ h0,∀k ≤ k0, with k0 ≤ h0, (h + k) f (l) ≥ k f (l + h)+ h f (l − k)∀l. For the
values [l, h = h0, k = k0], we then obtain

(h0 + k0) f (l) ≥ k0 f (l +h0)+h0 f (l − k0). (24)

Using the values [l − k0, h = k0, k = 1], we now obtain

(k0 +1) f (l − k0) ≥ f (l)+ k0 f (l − k0 −1).

Simple algebraic manipulations of these two inequalities lead to (h0 + k0 + 1) f (l) ≥ (k0 + 1) f (l +
h0)+h0 f (l − k0 −1).
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Similarly, using the values [l +h0, h = 1, k = h0] instead of [l − k0, h = k0, k = 1], we obtain

(h0 +1) f (l +h0) ≥ h0 f (l +h0 +1)+ f (l). (25)

Once again, after algebraic manipulations of the inequalities (24) and (25), we obtain (h0 + k0 +
1) f (l) ≥ k0 f (l +h0 +1)+(h0 +1) f (l − k0). The induction step is therefore complete.

We must still prove the base case. Unfortunately, we have not been able to analytically prove
the inequality in Equation 23 when f (l) = fα(l) = χα,l . Therefore, in order to prove it empirically,
we have built a computer program that computes the values χα,l and tests the truth of the inequality.
It is obvious that while we cannot compute χα,l for all the values of l and α, we can for all the values
of practical interest. More specifically, we have tested all the values of l from 2 to 1000 and all the
values of α from 0.1000 to 0.9999 with a stepsize of 0.0001. The results of these experiments are as
follows: the inequality in Equation 23 is always true from α = 0.5827 to 0.9999; from α = 0.5429
to 0.5826, it is always true except for the case l = 2; from α = 0.4922 to 0.5428, the inequality
is false for many values of l (the lower α is, the more frequent the number of failures), and from
α = 0.1000 to 0.4921 it is always false. It can be seen that since the behavior of the function fα(l) is
quite homogeneous, we do not expect it to behave differently for the intermediate values of α which
have not been tested. We may therefore conclude that fα(l) is concave for all the values of α that
may be of interest when computing the MIT score.

Proof of Theorem 4. We shall use induction on the number of variables in PaG(Xi). The base case,
where |PaG(Xi)| = 1, is obviously true. Let us suppose that the result is true when the size of the
parent set of Xi is equal to si − 1 and consider a case where |PaG(Xi)| = si. Then, if σi j denotes a
permutation of the variables in the set PaG(Xi)\{Xi j}, we have

gr(Xi,PaG(Xi) : D) = min
Xi j∈PaG(Xi)

{

gr(Xi,PaG(Xi)\{Xi j} : D)+

2N MID(Xi,Xi j|PaG(Xi)\{Xi j})−χα,lr
i j

}

= min
Xi j∈PaG(Xi)

{

2N MID(Xi,PaG(Xi)\{Xi j})−max
σi j

si−1

∑
k=1

χα,liσi j(k)
+

2N MID(Xi,Xi j|PaG(Xi)\{Xi j})−χα,lr
i j

}

= min
Xi j∈PaG(Xi)

{

2N MID(Xi,PaG(Xi))−max
σi j

si−1

∑
k=1

χα,liσi j(k)
−χα,lr

i j

}

= 2N MID(Xi,PaG(Xi))− max
Xi j∈PaG(Xi)

{

max
σi j

si−1

∑
k=1

χα,liσi j(k)
+χα,lr

i j

}

= 2N MID(Xi,PaG(Xi))− max
Xi j∈PaG(Xi)

{

max
σi j

{ si−1

∑
k=1

χα,liσi j(k)
+χα,lr

i j

}}

.

The value ∑si−1
k=1 χα,liσi j(k)

+ χα,lr
i j

in the last expression can be seen as the value associated with a

permutation of the variables in PaG(Xi) where the last element is restricted to be Xi j, that is, if we
define a permutation σi\ j as σi\ j(k) = σi j(k), ∀k = 1, . . . ,si−1 and σi\ j(si) = j, then ∑si−1

k=1 χα,liσi j(k)
+

χα,lr
i j

= ∑si
k=1 χα,liσi\ j(k)

.
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The union of the sets of permutations of PaG(Xi) where the last element is fixed to Xi j, for all
Xi j, is the set of all the permutations of PaG(Xi), hence

max
Xi j∈PaG(Xi)

max
σi j

{ si−1

∑
k=1

χα,liσi j(k)
+χα,lr

i j

}

= max
Xi j∈PaG(Xi)

max
σi\ j

si

∑
k=1

χα,liσi\ j(k)
= max

σi

si

∑
k=1

χα,liσi(k)
.

Therefore, we have gr(Xi,PaG(Xi) : D) = 2N MID(Xi,PaG(Xi))−maxσi ∑si
k=1 χα,liσi(k)

and the re-
sult is also true for parent sets of Xi with size equal to si. This completes the induction step.

Proof of Theorem 5. This result is evident as the scoring function is, by definition, a sum of local
scores.

Proof of Theorem 6. As all DAGs that are represented by the same RPDAG have the same skeleton
and the same head-to-head patterns (either coupled or uncoupled), then the differences between
these DAGs can only be due to the different direction of certain arcs linking two nodes Xi and X j

that have at most a single parent. In such cases, the chi-square value associated with the local score
of the corresponding node (either Xi or X j) is always the same, χα,l , with l = (ri −1)(r j −1).
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