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CONTINUOUS SYMMETRIZED SOBOLEYV INNER PRODUCTS OF
ORDER N (II)*

M. ISABEL BUENO', FRANCISCO MARCELLANT, AND JORGE SANCHEZ-RUIZ #

Abstract. Given a symmetrized Sobolev inner product of order IV, the corresponding sequence of monic or-
thogonal polynomials {Qr, } satisfies Q25 (T) = Pn(22), Q2n+1(z) = TR (x2) for certain sequences of monic
polynomials {Py} and { Ry }. In this paper we consider the particular case when all the measures that define the
symmetrized Sobolev inner product are equal, absolutely continuous and semiclassical. Under such restrictions, we
give explicit algebraic relations between the sequences { Py, } and { Ry, }, as well as higher-order recurrence relations
that they satisfy.
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1. Introduction. Let us consider the following inner product defined in the linear space
P x P, where PP denotes the linear space of polynomials with real coefficients,

N
(1) P, q)s = /pqduo+zx\i/p“) ¢ dy; .
R

i=1 R

In the previous expression ug, i41, --., 4y denote positive and absolutely continuous Borel
measures supported on a subset of the real line and such that the corresponding sequences of
moments are finite, p(i) denotes the ith derivative of p, and \; are nonnegative real numbers
(An # 0). The inner product given in (1.1) is known as Sobolev inner product of order N
[7]. Sobolev inner products and their corresponding sequences of orthogonal polynomials
have been exhaustively studied during the last ten years, although most of the results have
been obtained for N = 1.

The product (-, )5 is said to be symmetrized if (x™,x™)s = 0 when n + m is an odd
nonnegative integer. In this case, po, pi1,..., sty are supported on a subset of the real line which
is symmetric with respect to the origin and the measures themselves are also symmetric, so
that

622+1=Aw2"+1dui=0, i=0,1,..,N, neN.

This concept extends the definition of symmetric linear functional [5] to the bilinear case.

Assume that (-, -)s is quasi-definite, that is, there exists a sequence {Q),, } of polynomi-
als orthogonal with respect to (-, -)s. If {-,-)s is symmetrized, then there exist another two
sequences of polynomials {P,} and { R, } such that

(1.2) Qan(2) = Pa(2?), Qant1(z) = TRy (2?).

In the sequel, we will refer to these two sequences as the symmetric components of {Qn}.

In this paper we consider the bilinear symmetrization problem associated with (1.1), i.e.
the analog in the bilinear case of Chihara’s linear symmetrization problem [5], which consists
in:
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(1) finding the explicit expressions of the bilinear functionals such that { P, } and {R,}
are the corresponding sequences of orthogonal polynomials,

(2) determining recurrence relations with a finite number of terms that { P,,} and {R,, }
satisfy, and

(3) obtaining explicit algebraic relations between both sequences.

The problem (1) was solved for Sobolev inner products of order 1 in [3], and for general
N in [4]. As regards problems (2) and (3), till now they have only been solved in the particular
case when N = 1 and the two measures that define the product (-, -)s are equal, absolutely
continuous and semiclassical [3]. In this paper we extend these results for an arbitrary N > 1,
under the same restrictions on the measures involved.

The structure of the paper is the following: First, in Section 2, we present some auxiliary
results related with semiclassical functionals and semiclassical measures. In Section 3, we
find explicit algebraic relations between the sequences {P,} and {R,}. In Section 4, we
determine recurrence relations with a finite number of terms that the sequences { P, }, { R}
and {@,} satisfy. Finally, in Section 5, we apply our general results to a particular case of
the so-called Freud-Sobolev polynomials [2].

2. Auxiliary results. Consider a quasi-definite linear functional U in P, with integral
representation

@1 U(p) = /R p(z)dp = / p(@)w(z)de |

where p is an absolutely continuous positive Borel measure and w is the corresponding weight
function. The functional U is said to be a semiclassical linear functional if

(2.2) D(¢U) = yU,

where ¢ and 1) are polynomials with deg(¢) = r > 0 and deg(¢)) > 1, and D denotes the
derivative operator. The condition of being semiclassical can also be characterized in terms
of the weight function w:

PROPOSITION 2.1. [6] Let U be a semiclassical linear functional with integral repre-
sentation (2.1), where w is a continuously differentiable function in an interval [a, b] satisfying
lim, 45 ¢(z)p(x)w(x) = 0 with p € P. Then,

(2.3) (w)' = tYw,

and w is said to be a semiclassical weight function. Equation (2.3) is the so-called Pearson
equation.

DEFINITION 2.2. [8] Given a semiclassical linear functional U, let Iy be the set of all
the pairs of polynomials satisfying (2.2). Then, the class § of U is defined as

(2.4) 5= (d),rd%iennu { max {deg(¢) — 2, deg(y)) — 1}}.

LEMMA 2.3. [7] If w is a semiclassical weight function, then for every nonnegative
integer N,

¢" (@)D" (w(z)) = 9 (z, N)w(z),

where

(z, N) = ¢(z)¢'(z, N = 1) + (2, N = D)[p(z) - N¢'(z)], N >1.
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LEMMA 2.4. [7] Given a semiclassical weight function w, the polynomials (x, N)
defined in the previous lemma satisfy

deg (¢(z,N)) < N(5+1), N >0,

where 5 is the class of the semiclassical linear functional defined by w.
Consider the following linear differential operator in the linear space P:

N

(2.5) F®N) = 3" (1) A Z( )abN " (2)y (2, m — i) D™

m=0

where Ao = 1 and D° = I, the identity operator.
PROPOSITION 2.5. Let U be a semiclassical linear functional with integral representa-
tion (2.1). Using the notations introduced above, for all nonnegative integers N and n,
(1) If§ —r > 0, then deg (F™)(2™)) < n + Nr + (§ — r) min{N, n}.
(2) If§ —r <0, then deg (F™)(2™)) = n + Nr.
Proof. From (2.5),

N

FM(z™) =Y (=)™ Ap Z( )¢N i (@)p(e,m — i) D™ (") .

m=0

Notice that D™+¢(z™) = 0 when m + i > n. It follows that the upper bounds on the
summations over m and i can be replaced, respectively, by N = min{N,n} and 7 =

min{m,n — m}, with the condition that empty sum equals zero if n < m. Using Lemma
2.4,

deg (FM(z™)) < max {r(N—-m+i)+(m—-i)E+1)+n—m—i}
m=0:N

= Inax {n+Nr+m@E—r)—i(3+2-r)}.
=0:m

m=0:N

From (2.4), we know that § + 2 — r > 0. Therefore, the maximum is attained for : = 0,

deg (FIM(z™)) < max {n+ Nr+m(5—r)} .

m=0:N

If § — r > 0, then the maximum is attained for m = N , and the result in (1) follows. On the
other hand, if § — r < 0, then the maximum is attained for m = 0; since the termm =1 =0
in F(N) (™) has exact degree n + N, (2) holds. O

COROLLARY 2.6. Let s := max{r, §}. Then, for all nonnegative integers N, n,

deg (FN)(z™)) <n+ Ns.

3. Explicit algebraic relations between { P, } and { R, }. Let us consider a symmetrized
quasi-definite Sobolev inner product given by (1.1) with u; = pforall¢ (0 <i < N), i.e.,

3.0 (P, 4)s —/pqdu + Z)\ /p(")q(")du-
R

i=1
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We denote by {@Q,, } the sequence of monic polynomials orthogonal with respect to (3.1), and
by {P,} and {R,} the corresponding symmetric components defined by (1.2). The weight
function w satisfying du = w(z)dz and the corresponding linear functional U given by (2.1)
are both symmetric. Furthermore, the sequence {7, } of monic polynomials orthogonal with
respect to U satisfies a three-term recurrence relation,

(3.2) 2T (z) = Thy1(z) + enTh-1(z), n>1,
where ¢, # 0, and there exists a sequence of monic polynomials {5, } such that
(3.3) Ton(z) = Sp(2?), Tonii(z) = 2S5 (2?),

where {S}:} denotes the sequence of monic kernel polynomials associated with {S,,} [5].

In the sequel, we assume that U is a semiclassical linear functional, and we use the
notations introduced in the previous section. The following proposition states an algebraic
relation between the sequences {Q,} and {T},} that will be useful to determine algebraic
relations between { P, } and { R, }.

LEMMA 3.1. [7] Let p and q be arbitrary polynomials. Then,

(6" p,q)s = U(pF M (q)).

PROPOSITION 3.2. For every nonnegative integer n > N s, there exist real numbers
Qup,j such that

n+Nr

3.4) N (2)Ty (z) = Z an,; Qi(z) .

j=n—Ns

Proof. Expanding the polynomial ¢~ (x)T}, () in terms of the Sobolev polynomials we
get

n+Nr

N Tam) = Y an; Qi(a) -
7=0

Then, we use Lemma 3.1 to compute the coefficients a, ;,

_ N @OT(),Q,(@)s _ U (Tu(@)FNV(Q;(2)))

TTQ@, Q@ (@@.Q,@),

Since {1, } is the sequence of polynomials orthogonal with respect to U, Corollary 2.6 im-
plies thata, ; = 0if 0 < j <n — Ns. O

REMARK 3.3. Ifin the above proof Proposition 2.5 is used instead of Corollary 2.6, a
sharper lower bound can be obtained for the summation in (3.4). This means that the first
terms of the sum in (3.4) may be zero. However, since the use of Proposition 2.5 would require
two parallel developments in what follows, for the sake of brevity we use the general bound
given by Corollary 2.6.
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3.1. Semiclassical functional U of even class.
PROPOSITION 3.4. If the class § of the functional U is even, then the following explicit
algebraic relation between the sequences { P} and { Ry} is obtained,

m+N#
Z Q2m,2; Pj (%) = com1,2mtNr+1 Ry N7 ()
j=m—N3
(3'5) m+N7—1
+ Z (2m+1,2j+1 + CamQam—1,2j41)R;(x)
j=m-N3

+ com0am—1,2m—Ns—1Rm-ns—1(z),

where # =r/2and § = s/2.
Proof. Since 5 is an even number, ¢ is an even polynomial [3, Prop. 2.6]. That is, there
exists another polynomial ¢ such that

(3.6) $(x) = d(z?).
Therefore, r and s are also even numbers. We write » = 27 and s = 25.

For n = 2m, Proposition 3.2 reads

2m+Nr

3.7 N (@) Tom(@) = D aom;Q;(2).

j=2m—Ns
Since the term in the left-hand side of the previous identity is an even polynomial, we get

m+N7

¢ ( T2m Z an2]Q2J )

j=m—N§

Taking into account (1.2), (3.3), and (3.6), the previous equation can be rewritten as

m+N7T
(38) ¢N( Z Q2 2] )
j=m—N3§
In a similar way, for n = 2m + 1 we obtain
. m+N7
(3.9) V(@S (x) = Y comir2n1R;(@).
j=m—N3

Taking into account (3.3) and (3.2) with n replaced by 2m, we get
(3.10) Sm(z) = Sk (2) + cam Sy, 1 ().

Multiplying (3.10) by q~)N and using (3.8) and (3.9), we obtain

m+N7?
> omaPi(@)
j=m—Ns
3.11) ) )
m+N7 m+N7—1
> tamt12j11Ri(@) + cam Y, 0om 1241 R;(®).
j=m—N3 j=m—Ns—1

The result in (3.5) can be obtained in a straightforward way from the previous expression.
O
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3.2. Semiclassical functional U of odd class.
PROPOSITION 3.5. Let the class § of the functional U be an odd number. The following
explicit algebraic relations between the sequences { P} and { R, } are obtained:
(1) If N is an even number and T = N /2, then

m+Tr
Z Qom,2i P (2) = @amt1,2m+ Nr+1 R 1r ()
j=m-—-Ts
m+Tr—1
+ ) (C2mg12i41 + ComO2mo1,241) R;(x)
j=m-—Ts

+ CZmQZm—l,Zm—Ns—lRm—Ts—l(x)-
(2) If N is an odd number, and T = (N — 1)/2, then

m+Tr+7+1
Z 062m+1,2ij (SC) = a2m+2,2m+N7‘+2Rm+T7‘+i‘+1 (50)
j=m—Ts—§
m~+Tr++
+ Z (02m+42,2j4+1 + Comt102m 2j4+1) Rj(x)
j=m—Ts—3§
+ C2m+1a2m,2m—NsRm—Ts—§—1(x);
where# = (r —1)/2and § = (s — 1)/2.
Proof. Since § is an odd number, ¢ is an odd polynomial [3, Prop. 2.6]. Therefore, there
exists another polynomial qAS such that

(3.12) $(z) = zd(a?).

Since r and § are odd numbers, so it is s. In the sequel, we write r = 27 + 1 and s = 25 + 1.
(1) Assume that N is even. Then, we write N = 2T, for some nonnegative integer 7.
From (3.4), we get

m+Tr
N (@) Tom(z) = D Com,2iQ24().
j=m—Ts
Taking into account (1.2), (3.12), and (3.3), we get
. m~+Tr
(313) $T¢N($)Sm (33) = Z Osz,Qij (l‘)
j=m—Ts

Consider Proposition 3.2 with n = 2m + 1 to obtain, in a similar way,

m~+Tr

(3.14) TN (2)S%, (z) = Z Qom+1,2j+1 R (x).

j=m-—Ts
By multiplying both sides of (3.10) by ;chASN (z), (3.13) and (3.14) lead us to the following
explicit algebraic relation between { P, } and {R,},

m+Tr
D oma2;Pi(x)
j=m—-Ts
m~+Tr m~+Tr—1
= Z 0om1,2j41 R () + com Z om—1,2j+1R;(z),

j=m—Ts j=m—Ts—1

(3.15)
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and the result follows in a straightforward way.

(2) Assume that N is odd. Then N = 2T + 1 for some nonnegative integer 7". In this
case, the term on the left-hand side of (3.7) is an odd polynomial, and taking into account
(1.2), (3.12), and (3.3), we get

m+Tr+7
(3.16) TN (@)Sm(z) = D aemainR;(@).

j=m—Ts—5§—-1
A similar procedure gives, using Proposition 3.2 with n = 2m + 1,

m+Tr+r+1
(3.17) 2N (@)Sn (@) = D camr1a; Pi(@).

j=m—Ts—35
From (3.2) withn = 2m + 1, and (3.3),
(3.18) zS; () = Sm41(x) + c2m41Sm ().
Replacing (3.16) and (3.17) into (3.18), the following relation is obtained,

m~+Tr+7+1

> awmi12iPi(2)

j=m—Ts—§

(3.19) R .
m~+Tr4+7+4+1 m+Tr++#
= D omppginRi@ temn ) compginRi(@),
j=m—-Ts—3 j=m—-Ts—5-1
and the result follows straightforwardly. O

4. Recurrence relations. In this section we deduce recurrence relations with a finite
number of terms for the sequences {P,}, {R,}, and {Q,}. The number of terms in these
relations depends on the class of the functional U and the degree of the polynomial ¢.

4.1. Recurrence relations for {P,}.
PROPOSITION 4.1. If the class § of U is an even number, then the sequence {P,}
satisfies the following [N (8 + 7) + 3]-term recurrence relation,

2m42,2m+Nr4+2Pminat1(e)

= (Za2m,2m+Nr — @2m+2,2m+Nr — C2m+102m,2m+Nr — C2m ®2m,2m+Nr)Pmi+n# ()
mANA—1

+ > [wazm2; — 02m42.2j — Com4102m .25 — C2m(Q2m,2j + Cam—102m—_2,2;)] Pj(z)
j=m—_Ni+1

+ [Za2m ,2m—Ns — C2m4+132m,2m—Ns — C2m (Q@2m,2m—Ns + C2m—102m —2,2m—Ns)]Pm—n~ns(Z)

— C2mCam—102m—2,2m—Ns—2Pm_nz-1(Z),

where ¥ =r[2and § = s/2. ~
Proof. Assume that 5 is an even number. Multiplying both sides of (3.18) by ¢* (x), and
plugging (3.8) and (3.9) into it, we get

m+N7

z| Y ami141R;(@)

=
4.1 J=m— e
m+N7P+1 m~+N7

= Z aom+2,2;Pj(z) + comt1 Z 2m,2; Pj(z).

j=m—Ns+1 j=m—Ns
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Now, we multiply both sides of (3.11) by 2 and replace (4.1) in it to obtain

m+ N7

X E a2m,2ij (.’L‘)

j=m—N3
m+Ni+1 m+N#
= E a2m+2,2ij (1’) + Com+1 § a2m,2ij (:E)
m+N# mAN#—1
+ com E @2m,2; P (z) + com—1 E Qo2m—2,2; Pj(x)
j=m—N3 j=m—-N3s—1

From the previous expression we get the (N§ + N7 + 3)-term recurrence relation for { P, }
given in the statement of the proposition. O

PROPOSITION 4.2. Let the class § of U be an odd number, and put + = (r — 1)/2 and
§ = (s — 1)/2. Then the sequence {P,} satisfies the following [N(5 + 7 + 1) + 3]-term
recurrence relations:

(1) If N is an even number, and T = N /2, then

C“2m—i—2,2m—|—N7‘+2-Prn—i-Tr—i-l (IL’)
= [Oé2m,2m+Nr(£U —Com+1 — sz) - a2m+2,2m+Nr]Pm+Tr (flf)
m+Tr—1
+ Z [(33 — Cam41 — C2m)a2m,2j — Q2m4-2,25 — C2m62m—1azm—2,2j]Pj($)
j=m—Ts+1
+ [(:L' — Com+1 — c2m)a2m,2mst - C2m02m71O‘2m72,2mst]Pm7Ts(a:)

- C2m02m71a2m72,2mstf2Pm7Tsfl(m)-
(2) If N is an odd number, and T = (N — 1)/2, then

a2m+43,2m+Nr+3PmTr4it2
= (TA2m+41,2m+Nrtl — A2m43,2m+Nrt1 — C2m+202m41,2m+Nr+1 — C2m+102m+1,2m+Nr+1)PmyTrtss1(z)
m4Trts
+ Z [Taem41,2) — @2m43,2; — (Com42 + C2m41)@2m 41,25 — Cam4+1C2m ¥2m—1,2;]P; (z)
j=m—-Ts—5§+1
— (Ta2m4+1,2m—Ns+1 — C2m+202m+1,2m—Ns+1 — C2m+102m+1,2m—Ns+1 — C2m+1C2m A2m—1,2m—Ns+1)Pm_1s—35()
— Com+1C2m@2m—1,2m—Ns—1Pm_1s—35-1(2)-

Proof. Again, we must distinguish between IV being odd or even.

(1) Assume that N is even. Multiplying both sides of (3.18) by a:T<Z)N (z) and applying
(3.13) and (3.14) into it, we get

m~+Tr
2| Y wmtii1R;(z)
S—
(4.2) Jmmee
m~+Tr+1 m+Tr
= Z Q2m42,2; P () + camy1 Z Q2m,2; Pj (7).
j=m—Ts+1 j=m—Ts

Now, multiplying both sides of (3.15) by z and using (4.2) in the resulting equation, we obtain
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the following T'(r + s) + 3 = (N7 + N§ + 3 + N)-term recurrence relation for { P, },

m~+Tr
z| Y. aoma;Pi(e)
j=m—Ts
m+Tr+1 m+Tr
= Y 22 P(@) + omi1 D 0ompa; Pi(@)
j=m—Ts+1 j=m—Ts
m+Tr m+Tr—1
+ cam E 0am,2; Pj () + com—1 E aom—2,2Pj(z)| ,
j=m—-Ts j=m—-Ts—1

from which the statement (1) of the proposition follows straightforwardly.
(2) Assume now that N is odd. Considering (3.10), (3.16), and (3.17), we get

m~+Tr4+
x Z a2m’2j+1Rj (.’E)

j=m—Ts—5—1

(4.3)
m+Tr+7+1 m~+Tr+4+
= Y ompgPi@ tcm DY, aamo1,;P5(a)
j=m—Ts—3§ j=m—-Ts—5§-1

Now plug the previous result in (3.19). We get the following (N7 + N§ + 3 + N)-term
recurrence relation for { P, },

m+Tr4+741

| > oami12;Pi(x)

j=m—Ts—3

m+Tr4+742 m~+Tr4+741
= Y @apgP@+ ente Y 2P
j=m—Ts—§+1 j=m—-Ts—3
m+Tr4+7+1 m+Tr+#
+ Com+1 > tamt12iPi(@) + om Y am-12;Pi(2)]
j=m—-Ts—§ j=m—-Ts—5§-1
which implies the result (2) in the statement of the proposition. d

4.2. Recurrence relations for { R,,}. In the sequel, and for the sake of brevity, we will
omit the extended expression of the recurrence relations.

PROPOSITION 4.3. If the class 3 of U is an even number, the sequence {R,} satisfies
the following [N (§ + 7) + 3]-term recurrence relation,

m+N7
2| Y amiR(@)
j=m—N3
mA+Ni+1 m+N#
= E Q2m+3,2j4+1 R () + comyo E Q2m+1,2j4+1R;(x)
j=m—Né+1 j=m—N3

m~+N7 m+N7—1

+ Com41 Z aom+1,2j+1Ri(x) + com Z aom—1,2j+1R;(x) | ,
j=m—N3 j=m—-Nj—1
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where # =r[2and § = s/2.

Proof. Replacing (3.11) into (4.1), we get the result. d

PROPOSITION 4.4. Let the class § of U be an odd number, and put + = (r — 1)/2 and
§ = (s — 1)/2. Then the sequence {Ry} satisfies the following [N(§ + # + 1) + 3]-term
recurrence relations:

(1) If N is even, and T = N2, then

m~+Tr
2| > amiiiR;(@)
j=m-—-Ts
m+Tr+1 m+Tr
= E Q2m+3,2j+1 R (%) + comyo E Q2m41,2j+1R; ()
j=m—-Ts+1 j=m-—-Ts
m+Tr m+Tr—1
+ C2am+1 E Qomi1,2j+1 R (x) + com E Q21,2541 R (x)
j=m-Ts j=m—-Ts—1

(2) If N is odd, and T = (N — 1)/2, then

m+Tr4+
z Y campinR(@)

j=m—Ts—5—1
m~+Tr+r+1 m+Tr+r
= E Qom+2,2j41 R (x) + Comi1 E Qom,2j+1R;(x)

j=m—Ts—§ j=m—Ts—5§—-1
m~+Tr+r m~+Tr+r—1
+ com Z Qom 2j+1R; (z) + com—1 Z Qam—2,2;+1R;(x)

j=m—-Ts—5—-1 j=m-—-Ts—§-2

Proof. We must distinguish again between N even or odd. In the case IV even, replace
(3.15) into (4.2), and in the case N odd, replace (3.19) into (4.3), and so the results are
obtained. d

4.3. Recurrence relation for {Q,}.
PROPOSITION 4.5. The sequence {Qn} satisfies the following (Ns + Nr + 3)-term
recurrence relation,

an+1,n+Nr+1Qn+Nr+1 (.23) = (a"an,n+Nr - an+1,n+Nr)Qn+Nr($)
n+Nr—1

Y (@an; = angiy — catn1,)Q;(@)
j=n—Ns+1

+ (xan,n—Ns - Cnan—l,n—Ns)Qn—Ns(x) - Cnan—l,n—Ns—lQn—Ns—l(ﬂf)-

Proof. Multiplying both sides of (3.4) by z, from (3.2) we get

n+NrT

N (@)[Tnp1(@) + caTur(@)] = Y anj2Q;(a).

j=n—Ns
Applying twice Proposition 3.2 to the previous expression, we obtain

n+Nr+1 n+Nr—1 n+Nr

Z ant1,jQ;(2) + ¢ Z an-1,;Q;(x) = Z an,;TQ; (),

j=n—Ns+1 j=n—Ns—1 j=n—Ns



ETNA

Kent State University
etna@mcs.kent.edu

CONTINUOUS SYMMETRIZED SOBOLEV INNER PRODUCTS OF ORDER N (II) 65

from which the result follows straightforwardly. o

5. Example: Freud-Sobolev orthogonal polynomials. Consider the following inner
product of type (1.1),

N
G.D (p, Q>s =/ pqe’“dm + Z,\z/ p(z') q(i) e_“”4da:,
R R

i=1

and let us apply the results obtained in the previous sections to this particular example. The
polynomials {@,} orthogonal with respect to (5.1) are a particular case of the so-called
Freud-Sobolev polynomials [2].

It is well known that w(z) = e~*" is a semiclassical weight function [2]. In fact, w(z)
satisfies the Pearson equation (2.3) with ¢(x) = 1 and ¢)(z) = —4x3. Hence, using the
notations in Section 2, r = 0, § = 2, and s = 2. Since § is an even number, we can state that

(1) The sequences {P,} and {R,,} satisfy (N +3)-term recurrence relations (see Propo-
sitions 4.1 and 4.3).

(2) The sequence {Q,} satisfies a (2N + 3)-term recurrence relation (see Proposition
4.5).

(3) An explicit algebraic relation between {P,} and {R,} can be established. This
relation involves N + 1 terms of the sequence { P, } and N + 2 terms of the sequence {R,}
(see Proposition 3.4).

Acknowledgements. The authors wish to thank the anonymous referee for his/her care-
ful reading of the manuscript and the comments on it, which were very useful to improve its
presentation. The work of the authors has been partially supported by Direccién General de
Investigacién (Ministerio de Ciencia y Tecnologia) of Spain under grants BFM 2003-06335-
C03-02 (M.I.B., EM., J.S.R.) and BFM2001-3878-C02-01 (J.S.R.), INTAS Research Net-
work NeCCA INTAS 03-51-6637 (FM.), and the Junta de Andalucia research group FQM-
0207 (J.S.R).

REFERENCES

[1] J. ARVESU,J. ATIA, AND F. MARCELLAN, On semiclassical linear functionals: The symmetric companion,
Commun. Anal. Theory Contin. Fract., 10 (2002), pp. 13-29.

[2] A. CACHAFEIRO, F. MARCELLAN, AND J.J. MORENO-BALCAZAR, On asymptotic properties of Freud-
Sobolev orthogonal polynomials, J. Approx. Theory, 125 (2003), pp. 26-41.

[3] M.I. BUENO AND F. MARCELLAN, Continuous symmetric Sobolev inner products, Intern. Math. J., 3 (2003),
pp. 319-342.

[4] M.I. BUENO, F. MARCELLAN, AND J. SANCHEZ-RUIZ, Continuous symmetrized Sobolev inner products of
order N (I),J. Math. Anal. Appl., 306 (2005), pp. 83-96.

[S] T.S.CHIHARA, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.

[6] E. HENDRIKSEN AND H. VAN ROSSUM, Semiclassical orthogonal polynomials, in Polyndmes Orthogonaux
et Applications, C. Brezinski et al., eds., Lecture Notes in Math., 1171, Springer Verlag, Berlin, 1985,
pp. 354-361.

[71 F. MARCELLAN, T.E. PEREZ, M.A. PINAR, AND A. RONVEAUX, General Sobolev orthogonal polynomials,
J. Math. Anal. Appl., 200 (1996), pp. 614-634.

[8] P. MARONI, Une théorie algébrique des polynomes orthogonaux. Application aux polynémes orthogonaux
semiclassiques, in Orthogonal Polynomials and their Applications, C. Brezinski et al., eds., IMACS
Annals on Comp. and Appl. Math., 9, J.C. Baltzer, Basel, 1991, pp. 95-130.



