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Abstract: This paper proposes NAPA (Non-supervised 

Adaptative Publication Algorithm) a framework for auto-tuning 

unicast reliable communications over DDS. We provide the 

NAPA design rationale, and some implementation details. After 

the experimental conducted evaluation, we demonstrate how 

using the subscriber's feedback, as NAPA does,  the publisher 

can vary its sending rate in order to improve the overall 

performance in terms of end-to-end latency and throughput in 

DDS applications. 
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I. INTRODUCTION 

This paper focuses on the publish-subscribe interaction 

model. In the publish-subscribe model, the publish-subscribe 

service decouples the information producers (publishers) from 

information consumers (subscribers). Publishers update a 

shared information space and subscribers indicate what data are 

they interested in. It’s the publish-subscribe service who 

delivers the desired information from publishers to subscribers. 

Publish-subscribe systems can be classified according to the 

mechanism they use to choose what the events of interest for 

the different entities are. They can be topic-based (events 

classified according to a label), content-based (events classified 

according to their content) or type-based (event classified 

according to their structure). 

Data Distribution Service (DDS) [1] is a middleware 

specification adopted by the Object Management Group 

(OMG) [4] aimed to standardize data-centric publish/subscribe 

communications in distributed scenarios. DDS was specified in 

2004 and that specification includes the advances developed by 

different companies until the moment. This specification 

defines an Application Programming Interface (API) designed 

for data distribution in real-time using publish-subscribe 

model.  

Over the last few years, DDS has been deployed in many 

different contexts ranging from mission critical systems to 

healthcare systems or financial systems. All these scenarios 

have in common that different remote entities exchange data 

from different sources in a well controlled environment and 

with certain guarantees like reliability and determinism. 

Publish/subscribe communication systems are able to de-

couple in time and space the publishers and subscribers. The 

existence of projects like PSIRP [5] and PURSUIT[6] 

evidence the potential benefits of this model. These projects 

are aimed to define a publish-subscribe based Internet that can 

be considered a plausible alternative (even complementary) to 

the current design. 

DDS defines a virtual data space –typically implemented as 

a distributed cache memory- where applications can share 

information just by writing or reading data identified by a name 

(topic), a type and optionally a key. Using this virtual data 

space reduces the difficulty implementing communications 

between system nodes, what eases the designing of distributed 

systems.  

 DDS is based on a data-centric model (where data is not 

opaque to the middleware) and provides a rich set of Quality of 

Service (QoS) that define the requirements of communications 

on each different scenario. 

DDS specification defines two different interface levels and 

a layer for interoperability. 

The Real-time Publish-Subscribe Wire Protocol DDS 

Interoperability Wire Protocol (DDS-RTPS) interoperability 

layer. This layer allows different implementations of DDS to 

interoperate. It defines the discovery protocol, data 

representation format and message format. This layer was 

specified by the OMG in order to provide interoperability 

between the different implementations of DDS. 

 

The Data-Centric Publish-Subscribe (DCPS) interface 

level. It defines the Application Programming Interface and the 

programming model for developing applications. Using the 

functionality provided by this layer DDS is able to interpret the 

data exchanged and so, provide advanced functionalities such 

as content-based filtering or temporal data-caching. In addition, 

DCPS based applications are decoupled in platform: Operative 

Systems, Hardware and Programming Language.  

  

 

Fig 1. An overview of DDS entities. 



The DCPS layer defines the concept of Data-space, Topic 

(group of data of same type), Publishers (data producers) and 

Subscribers (data consumers) (see Fig. 1). Also, this layer 

introduces the support of QoS Policies, group of settings that 

determines the behavior of the middleware and releases the 

application developers of certain tasks such as communication 

reliability. 

DDS scenarios may vary considerably. In this regard, 

system administrators usually need to tune the middleware and 

nodes forming the full system in order to get better 

performance in terms of throughput and latency. 

Although manual tuning may improve the performance 

achieved, tuned parameters' sensibility and scenario's 

variability (network variations, number of nodes and CPU load 

in nodes) reduce the effectiveness of the tuning. This issue 

could even discourage system administrators from performing 

any adjustment at all. 

In this paper we propose an algorithm for dynamically 

tuning reliable communications over DDS. In particular, this 

algorithm adjusts data publishing rate according to subscriber’s 

feedback (Acknowledge messages). 

Regarding the performance and evaluation, to the author’s 

knowledge there aren’t any benchmarks universally accepted 

for evaluating real-time scenarios. However, some initiatives 

are gaining popularity for the case of real-time system 

benchmarking. Two of these famous benchmarks are 

SPECjms2007 [7] and STAC-M2 [8]. Nevertheless, these 

benchmarks are for MOM (Message Oriented Software), not 

for data-centric middleware. 

In addition to these, the authors have already published 

other works related to DDS and its performance and 

evaluation. Most related publications are “A content-aware 

bridging service for publish/subscribe environments” [9] and 

”Performance evaluation of Publish/Subscribe middleware 

technologies for ATM (air traffic management) systems” [10]. 

The remainder of this paper is organized as follows. In 

Section 2, we elaborate about the reasons that motivate 

researching on this topic. Section 3 describes the proposed 

algorithm design. In Section 4 we explain the Implementation 

details. In Section 5 we show the results obtained when 

evaluating our algorithm. Finally, in Section 6 the main 

conclusions of this paper are shown. 

II. MOTIVATION 

 By definition, in reliable communications involved nodes 
do their best to provide data with no errors, typically by 
resending lost samples. The additional generated traffic reduces 
the available bandwidth for the main communication and 
increases the latency both in the resent samples and the 
following ones. This is mainly due to two effects of sample 
resending: first, the increase of buffer waiting time; and 
secondly, the blocking of the publisher while it waits to receive 
the delayed data acknowledgments. 

Losses are not the only reason of transmission blocking in 
reliable communications. In the DDS middleware, publishers 
have a size-limited send window that blocks communication 
when it is full. Since DDS does not removes samples from the 
window until the subscriber has acknowledged them, 
publishers get blocked when they send data faster than 
subscribers can receive and process it.  

For this reason, sending data as fast as possible is not the 
optimal behavior, due to it can cause getting the publisher 
blocked. It means that  those samples --being ready to be sent-- 
experiment an increased latency due to the incurred buffer 
waiting time. Note that latency is not only affected by the time 
spent in the link (transmission and propagation), but also the 
incurred time between different communication layers. 

These are the reasons why there is a known need of tuning 
communication between publishers and subscribers: if 
publishers send data at the maximum rate that subscribers 
allow, resends' traffic will be reduced, as well as time spent in 
buffers. 

The effect of this additional traffic is shown in Fig. 2. This 
Figure depicts throughput and one-way latency in function of 
the elapsed time between consecutive sent data, in a 1 to 1 
reliable communications. In this case we use 100kB messages. 
As it can be seen, waiting enough time between consecutive 
samples may result in a better performance than sending data 
as fast as possible. However, if the publisher waits too much 
time, throughput will get worse although latency is reduced 
considerably.  

 

  

 

Fig 2. Performance versus inter-packet elapsed time. 



In Figure 2 there is a range of elapsed time values that 
provides the best trade-off, that is, better throughput and 
latency. However, this range of value is dynamic and depends 
on sample data size, network status, CPU usage, etc. 

This paper studies these DDS performance issues and 
particularly proposes an auto-tuning algorithm for making the 
system to work in the optimal operation point. 

III. ALGORITHM DESIGN 

The purpose of using reliable communications is to ensure 
that the subscriber receives all the samples (in order, with no 
errors either losses). Analyzing results shown in the previous 
section, we can enunciate the following statements: 

1. As the inter-packet elapsed time is reduced, subscriber 
can potentially receive them faster than it can process. 
In this case, it starts rejecting new incoming samples 
and it will ask for retransmissions.  As a consequence, 
the throughput gets lower and latency will accordingly 
increase. 

2. For large inter-packet elapsed times, the publisher will 
be sending at a lower rate than the subscriber can 
receive. Throughput is decreased due that low rate, but 
latency is smaller because the system is more relaxed 
and there is no need to wait so much time in buffers. 

3. In the correct operation point, publisher sends samples 
at the same rate that the subscriber can process. This 
makes throughput be better because retransmissions 
are not needed and latency gets minimized because 
there is no congestion in the communication path. 

Now that the effect of varying the time elapsed between 
packets is characterized, we  analyze what are the requirements 
that must accomplish the tuning algorithm. An algorithm that 
tunes the communications must consider the following points: 

- The publisher should send data in such a way that the 
subscriber never gets empty. 

- The publisher should avoid filling its sending window, 
so it does not get blocked. 

When the communication is reliable (by setting DDS QoS 

reliable = reliability), samples are kept in the 

sending window until the subscriber acknowledges them. This 

makes the sending window to be used as subscriber’s feedback 

in the publisher’s side. In terms of the publisher’s sending 

window, according to the previous rationale: 

- Sending window occupation should be highly enough 
to involve continuous transmission. 

- Sending window should never get full. 

These both are the two conditions that define the proposed 
algorithm behavior, hereafter referred to as Non-supervised 
Adaptative Publication Algorithm (NAPA). 

Assuming the existence of an optimal local operation point, 
NAPA varies the time elapsed between consecutive data (T) as 
a function of the sending window occupation (N). As shown in 
Figure 3:  

1. If  N < low_threshold, decrease T. 

2. If  N > high_threshold, increase T. 

3. If low_threshold ≤ N ≤ high_threshold do 

nothing. 

 Where low_threshold, and high_threshold 
(referred to as  Acceptance Range)  define the interval where 
the sending window occupation is expected to be in order to 
work in an optimal way. 

 To estimate the best values for the thresholds, we will 
follow two different approaches: 

1. Low_threshold: The goal of this value is to modify 
the publisher’s sending rate to have at least one 
unacknowledged sample in the sending window, so it 
does not get empty. For this reason, 

low_threshold is set equal to 1 for all the 
experiments in this paper. 

2. High_threshold: The goal of this value is to reduce 
the publisher’s sending rate when the publisher is 
being faster than the reception subscriber’s capacity. 
To estimate the proper value for this variable, we are 
going to analyze the message passing diagram 
between publisher and subscriber. 

  

 

Fig 4. Time elapsed until first acknowledge message is received in the DDS 

Writer (A) when the DDS Reader (B) acknowledges samples in group of K 

samples. 

 

Fig 3. High level view of NAPA. 

 



Fig. 4 shows the elapsed time between different events that 

occur during the message passing. First, let´s estimate the size 

of the sending window (W) that allows the publisher to send 

data continuously: 
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- W: Sending window size. 

- tm: Time spent to put a message into the wire. 

- RTTk: Round-Trip Time measured when the subscriber 

needs to receive k messages to acknowledge. 

- tprop: Propagation time between publisher and subscriber. 

- tproc: Processing time in the subscriber. 

- tack: Time spent to put an ack-message in the wire. 

- C: Capacity of the network that connects publisher and 

subscriber. 

- sizem: Size of the message. 

- K: Number of messages that the subscriber needs to 

receive before sending an ACK. DDS defines this 

configuration parameter to save bandwidth. 

After defining the minimum sending window size that is 

needed to have continuous transmission, 

high_threshold of the Acceptance Range must be 

determined. If we chose a value much higher than the defined 

by the above expressions, we would have bursts in the 

communication. In order to avoid that behavior, we chose the 

value defined by the following equation: 
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Given that the bandwidth, the message size and K are 

known values, only the RTT estimation is needed to estimate 

W. This can be statically done at the beginning of the 

communication or periodically in the transmission, what would 

modify the Acceptance Range and would get a better 

adaptation in dynamic operation scenarios. 

IV. IMPLEMENTATION 

For NAPA algorithm implementation, we adopted the 

following decisions: 

- RTT is measured before the communication proceeds. 

- The obtained value for the high_threshold (W) 

remains static for the session. 

- To have full control, we need to spend time between 

sending consecutive samples without involving the 

CPU. To do this, elapsed time are expressed as the 

number of repetitions (LoopCounter) of a 

worthless operation. Time between consecutive 

samples will be modified indirectly just by increasing 

or decreasing LoopCounter. Note that this 

approach spends just a few microseconds in every 

execution, what provides a better granularity in 

comparison with the use of Sleep functions (which 

involves the CPU). 

- The elapsed time between consecutive samples will 

not be modified every sent sample. Instead of that, we 

set an algorithm execution period. 

- The elapsed time between consecutive samples will be 

modified as a function of the message size, a gain 

factor and a stability factor. 

- Aiming at better adaptation speed as well as having 

higher precision, the gain factor will be dynamically 

adapted, starting at a high value and decreasing it with 

time. 

Fig. 5 shows the NAPA implementation diagram flow: 

1. At the beginning of the transmission, RTT is measured 

in order to estimate W. 

2. NAPA modifies the LoopCounter once in each 

control period. During the transmission: 

a. If it is time for LoopCounter updating, 

compare the current sending window 

occupation with the Acceptance Range, and 

modify it consequently. 

b. If it is not time for updating it, do nothing. 

3. Repeat LoopCounter times the worthless 

operations. 

4. Send the message. 

5. If we have sent all the messages, go to end. If not, 

back to step (2).  

 

Fig 5. NAPA flow diagram. 



 

We developed a NAPA prototype to evaluate our design 

and its performance improvement in comparison with non-

using the proposed auto-tuning algorithm. 

NAPA was implemented at the application level using the 

application RTIPerftest [2] as communications infrastructure. 

RTIPerftest is a tool used for analyzing communication 

performance within scenarios based in RTI Connext DDS [3].  

RTIPerftest provides the features needed to measure latency 

and throughput, as well as the communication infrastructure 

needed to send data between two systems. There are several 

command-line options, including those to specify whether the 

application will act as the publisher or subscriber. 

Several copies of the application can be executed (typically 

1 publisher and 1 or more subscribers): The publisher 

application publishes throughput data and subscribes to 

latency echoes. The subscriber application subscribes to the 

throughput (in which the echo requests are embedded) and 

publishes the latency echoes (see Fig. 6). 

Latency results are measured in the publisher and 

throughput results are estimated in the subscriber. RTIPerfTest 

includes many options to test almost every type of scenario. 

Among other it is possible to change data size, to specify QoS 

settings, different transport as well as disable 

acknowledgements, specify IP addresses for static discovery, 

activate batching, etc.   

We adopted this tool for NAPA evaluation because of it 

could be easily done using the RTI Connext DDS API 

(specifically the C++ API). 

Nevertheless, note that NAPA design is implementation-

independent, as it only uses the sending window occupation as 

input to estimate the optimal sending speed. Consequently, 

NAPA can be implemented using any other DDS 

implementation. 

RTIPerftest was modified to include NAPA functionality. It 

was compiled using gcc version 4.4.3 whereas the DDS 

implementation was RTI DDS 4.5d.  

 

V. EVALUATION 

To evaluate the performance of NAPA, we made a set of 

experiments in a controlled LAN environment. Specifically, 

we measured the performance in terms of throughput and 

latency in a 1 to 1 reliable communication. 

The evaluation environment was composed of two Core i5 

at 2.66 GHz machines (lab01 and lab02) running Linux Kernel 

2.6.32_22 x86_64 (Ubuntu 10.04) and the RTI DDS 4.5d 

middleware. These machines were connected by a 24-port 

Gigabit switch with VLAN support. 

The experimental setup used in the evaluation of the NAPA 
algorithm were the following: 

- Message size: from 5kB to 200kB. 

- Reliable communication, one publisher to one 

subscriber via UDPv4. 

- Gain factor starting at 1 and reduced to 0.2 after 30 

seconds. 

- Acknowledge (ACK) messages sent every 10 samples 

received. 

Fig. 7 shows how NAPA improves the throughput for a 

wide range of message sizes. This is due to, as explained 

before, the number of retransmissions is reduced. The 

noticeable throughput reduction for using a data sizes slightly 

greater than 64kB is due to the size limit imposed by UDP 

packets: Note that form these message sizes it starts to use 

Asynchronous Writing in order to support bigger data sizes. 

NAPA reduces the performance loss when writing 

asynchronously and gets a better throughput for the rest of 

sizes. 

Regarding the latency impact (Fig. 8), we see how one-

way latency is decreased in almost an order of magnitude 

when applying NAPA. This reduction is the most important 

and noticeable result achieved by NAPA algorithm, because 

minimizing latency with a high level of throughput is 

considered one of the main goals of any real-time middleware. 

  

 

Fig 7. Throughput comparison between using and non-using NAPA. 

 

 

Fig 6. RTIPerfTest overview 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VI. CONCLUSIONS 

In this paper we have presented NAPA, a dynamic auto-
tuning algorithm for data-centric publish/subscribe systems. 

Our algorithm is focused on avoiding publisher blocking 
and subscriber starvation problems by dynamically adjusting 
middleware parameters according to system conditions. 

We have demonstrated that our algorithm effectively 
improves the performance of DDS-based systems both in terms 
of samples latency and overall throughput.  

As future work, we are interested in including more 
dimensions in NAPA applicability: 

- To apply NAPA in multicast scenarios. NAPA can be 
directly applied to 1 to many scenarios. DDS standard 
specifies that samples are removed from the send 
window in the publisher side when all the subscribers 
have acknowledged them. So, there won’t be any 
significant change in the algorithm in order to be 
applied in multicast scenarios. 

- To study the effect of applying NAPA in secure 
communications, where CPU usage is increased in the 
nodes due to secure protocols. 

- To apply NAPA in disadvantage networks, that is in 
those with  high loss communication. This 
investigation would show if NAPA improves 
performance when the nature of losses is not the 
communication congestion (overloading the subscriber 
writing faster than it can process). 

- To include NAPA algorithm in the core DDS 
implementation to facilitate the auto-tuning t any 
application. 

We are also interested in analyzing the performance 

improvement when increasing the NAPA complexity: 

- By replacing the gain factor reduction model (linear) 
for a higher order model. 

- By redesigning the “losing time between consecutive 
samples” method so it considers context switching. 
With the actual implementation, while the publisher 
application doesn’t have the CPU the losing time loop 
doesn’t advance, although in this cases time is going 
on what reduces its accuracy. 
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