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Resumen

Los algoritmos evolutivos inspiran su funcionamiento en base a los procesos evolu-

tivos naturales con el objetivo de resolver problemas de búsqueda y optimización.

En esta Tesis Doctoral se presentan nuevos modelos y algoritmos que abordan

problemas abiertos y nuevos retos en la tarea de clasificación mediante el uso de

algoritmos evolutivos. Concretamente, nos marcamos como objetivo la mejora del

rendimiento, escalabilidad, interpretabilidad y exactitud de los modelos de clasifi-

cación en conjuntos de datos complejos. En cada uno de los trabajos presentados, se

ha realizado una búsqueda bibliográfica exhaustiva de los trabajos relacionados en

el estado del arte, con el objetivo de estudiar propuestas similares de otros autores

y su empleo como comparativa con nuestras propuestas.

En primer lugar, hemos analizado el rendimiento y la escalabilidad de los modelos

evolutivos de reglas de clasificación, que han sido mejorados mediante el uso de

la programación paralela en tarjetas gráficas de usuario (GPUs). El empleo de

GPUs ha demostrado alcanzar una gran eficiencia y rendimiento en la aceleración

de los algoritmos de clasificación. La programación de propósito general en GPU

para tareas de aprendizaje automático y mineŕıa de datos ha resultado ser un

nicho de investigación con un amplio abanico de posibilidades. El gran número de

publicaciones en este campo muestra el creciente interés de los investigadores en la

aceleración de algoritmos mediante arquitecturas masivamente paralelas.

Los modelos paralelos desarrollados en esta Tesis Doctoral han acelerado algo-

ritmos evolutivos poblacionales, paralelizando la evaluación de cada unos de los

individuos, además de su evaluación sobre cada uno de los casos de prueba de

la función de evaluación. Los resultados experimentales derivados de los modelos

propuestos han demostrado la gran eficacia de las GPUs en la aceleración de los

algoritmos, especialmente sobre grandes conjuntos de datos, donde anteriormente

era inviable la ejecución de los algoritmos en un tiempo razonable. Esto abre la



puerta a la aplicación de esta tecnoloǵıa a los nuevos retos de la década en apren-

dizaje automático, tales como Big Data y el procesamiento de streams de datos en

tiempo real.

En segundo lugar, hemos analizado la dualidad intpretabilidad-precisión de los mo-

delos de clasificación. Los modelos de clasificación han buscado tradicionalmente

maximizar únicamente la exactitud de los modelos de predicción. Sin embargo,

recientemente la interpretabilidad de los modelos ha demostrado ser de gran in-

terés en múltiples campos de aplicación tales como medicina, evaluación de riesgos

crediticios, etc. En este tipo de dominios es necesario motivar las razones de las

predicciones, justificando las caracteŕısticas por las que los modelos ofrecen tales

predicciones. No obstante, habitualmente la búsqueda de mejorar la interpretabili-

dad y la exactitud de los modelos es un problema conflictivo donde ambos objetivos

no se pueden alcanzar simultáneamente.

El problema conflictivo de la interpretabilidad y exactitud de los modelos de clasifi-

cación ha sido tratado mediante la propuesta de un modelo de clasificación basado

en reglas interpretables, llamado ICRM, que proporciona reglas que producen re-

sultados exactos y a la vez, son altamente comprensibles por su simplicidad. Este

modelo busca buenas combinaciones de comparaciones atributo-valor que compon-

gan el antecedente de una regla de clasificación. Es responsabilidad del algoritmo

evolutivo encontrar las mejores combinaciones y las mejores condiciones que com-

pongan las reglas del clasificador.

En tercer lugar, hemos analizado conjuntos datos no balanceados. Este tipo de con-

juntos de datos se caracterizan por el alto desbalanceo entre las clases, es decir, el

número de instancias que pertenecen a cada una de las clases de datos no se encuen-

tra equilibrado. Bajo estas circunstancias, los modelos tradicionales de clasificación

suelen estar sesgados a predecir las clases con un mayor número de ejemplos, olvi-

dando habitualmente las clases minoritarias. Precisamente, en ciertos dominios el

interés radica verdaderamente en las clases minoritarias, y el verdadero problema es

clasificar correctamente estos ejemplos minoritarios. En esta Tesis Doctoral hemos

realizado una propuesta de un modelo evolutivo de clasificación basado en grav-

itación. La idea de este algoritmo se basa en el concepto f́ısico de gravedad y la

interacción entre las part́ıculas. El objetivo era desarrollar un modelo de predicción

que lograse buenos resultados tanto en conjuntos de datos balanceados como no

balanceados. La adaptación de la función de ajuste teniendo en cuenta las carac-

teŕısticas del dominio y propiedades del conjunto de datos ha ayudado a lograr su

buen funcionamiento en ambos tipos de datos. Los resultados obtenidos han de-

mostrado alcanzar una gran exactitud, y a su vez una suave y buena generalización

de la predicción a lo largo del dominio del conjunto de datos.



Todos los modelos propuestos en esta Tesis Doctoral han sido evaluados bajo un

entorno experimental apropiado, mediante el uso de un gran número de conjuntos

de datos de diversa dimensionalidad, número de instancias, atributos y clases, y

mediante la comparación de los resultados frente a otros algoritmos del estado del

arte y recientemente publicados de probada calidad. La metodoloǵıa experimen-

tal empleada busca una comparativa justa de la eficacia, robustez, rendimiento

y resultados de los algoritmos. Concretamente, los conjuntos de datos han sido

particionados en un esquema de 10 particiones cruzadas, y los experimentos han

sido repetidos al menos 10 veces con diferentes semillas, para reflejar la naturaleza

estocástica de los algoritmos evolutivos. Los resultados experimentales obtenidos

han sido verificados mediante la aplicación de tests estad́ısticos no paramétricos de

comparaciones múltiples y por pares, tales como el de Friedman, Bonferroni-Dunn,

o Wilcoxon, que apoyan estad́ısticamente los mejores resultados obtenidos por los

modelos propuestos.





Abstract

This Doctoral Thesis presents new computational models on data classification

which address new open problems and challenges in data classification by means of

evolutionary algorithms. Specifically, we pursue to improve the performance, scal-

ability, interpretability and accuracy of classification models on challenging data.

The performance and scalability of evolutionary-based classification models were

improved through parallel computation on GPUs, which demonstrated to achieve

high efficiency on speeding up classification algorithms.

The conflicting problem of the interpretability and accuracy of the classification

models was addressed through a highly interpretable classification algorithm which

produced very comprehensible classifiers by means of classification rules.

Performance on challenging data such as the imbalanced classification was improved

by means of a data gravitation classification algorithm which demonstrated to

achieve better classification performance both on balanced and imbalanced data.

All the methods proposed in this Thesis were evaluated in a proper experimental

framework, by using a large number of data sets with diverse dimensionality and by

comparing their performance against other state-of-the-art and recently published

methods of proved quality. The experimental results obtained have been verified

by applying non-parametric statistical tests which support the better performance

of the methods proposed.
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1
Introduction

Discovering knowledge in large amounts of data collected over the last decades has

become significantly challenging and difficult, especially in high-dimensional and

large-scale databases. Knowledge discovery in databases (KDD) is the process of

discovering useful, nontrivial, implicit, and previously unknown knowledge from

a collection of data [1]. Data mining (DM) is the step of the KDD process that

involves the use of data analysis tools to discover valid patterns and relationships

in large data sets. The data analysis tools used for DM include statistical models,

mathematical methods, and machine learning algorithms. Machine learning (ML)

is a branch of artificial intelligence that aims for the construction of computer

algorithms that can learn from data to accomplish a task.

Classification is a data mining and machine learning task which consists in pre-

dicting the class membership of uncategorized examples, whose label is not known,

using the properties of examples in a model learned previously from training exam-

ples, whose label was known. Classification tasks include a broad range of domains

and real world application: disciplines such as bioinformatics, medical diagnosis,

image recognition, and financial engineering, among others, where domain experts

can use the model learned to support their decisions [2, 3].
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Evolutionary computation and its application to machine learning and data mining,

and specifically, to classification problems, has attracted the attention of researchers

over the last decade [4–8]. Evolutionary algorithms (EAs) are search methods in-

spired by natural evolution to find a reasonable solution for data mining and knowl-

edge discovery [9, 10]. Genetic programming (GP) is a specialization of EAs, where

each individual represents a computer program. It is a machine learning technique

used to optimize a population of computer programs according to a fitness function

that determines the program’s ability to perform a task. Recently, GP has been

applied to different common data mining tasks such as classification [11], feature

selection [12], and clustering [13].

In spite of the numerous studies and applications of EAs to DM, there are still many

open problems and new arising issues to the scientific community. These open

tasks call for new computational methods capable of solving the new challenges

of the present decade in DM, focusing on performance, scalability, accuracy and

interpretability of the classification models on heterogeneous types of data. This

chapter introduces the different issues that will be faced in the dissertation and

provides their the motivation and justification.

1.1 Performance and scalability of classification algorithms

The increasing amount of data is a big challenge for machine learning algorithms

to perform efficiently. This issue, known as Big data, comprises a collection of data

sets so large and complex that it becomes very difficult to process using tradi-

tional methods. Therefore, performance and scalability of algorithms to large-scale

and high-dimensional datasets become crucial. Many parallelization strategies have

been adopted to overcome this problem of machine learning algorithms. The use

of multi-core CPUs, many-core graphic processing units (GPUs), and distributed

computation systems is nowadays vital to handle vast amounts of data under the

constraints of computation time.

Parallel computation designs and implementations have been employed to speed

up evolutionary algorithms [14, 15], including multi-core and distributed comput-

ing [16, 17], master–slave models [18], and grid computing environments [19, 20].

Over the last few years, GPUs have focused increasing attention in academia.
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GPUs are devices with many-core architectures and massive parallel processor

units, which provide fast parallel hardware at a fraction of the cost of a traditional

parallel system. Since the introduction of the computer unified device architecture

(CUDA) [21] in 2007, researchers all over the world have harnessed the power of the

GPU for general purpose GPU computing (GPGPU) [22–25]. The use of GPGPU

models has already been studied for speeding up algorithms within the framework

of evolutionary computation and data mining [26–29], achieving high performance

and promising results.

1.2 Interpretability vs accuracy of classification models

The interpretability of the classifiers is also a key issue in decision support systems.

There are hundreds of classification algorithms in the literature which provide ac-

curate classification models but many of them must be regarded as black boxes,

i.e., they are opaque to the user. Artificial neural networks (ANN) [30], support

vector machines (SVM) [31], and instance-based learning methods [32] belong to

this type of algorithms. Opaque predictive models prevent the user from tracing

the logic behind a prediction and obtaining interesting knowledge previously un-

known from the model. These classifiers do not permit human understanding and

inspection, they are not directly interpretable by an expert and it is not possible

to discover which are the relevant attributes to predict the class of an example.

This opacity prevents them from being used in many real-life knowledge discovery

applications where both accuracy and comprehensibility are required, such as med-

ical diagnosis [33], credit risk evaluation [34], and decision support systems [35],

since the prediction model must explain the reasons for classification. On the other

hand, there are machine learning approaches which overcome this limitation and

provide transparent and comprehensible classifiers such as decision trees [36] and

rule-based systems [37].

Evolutionary Algorithms, and specifically Genetic Programming, have been suc-

cessfully applied to build decision trees and rule-based systems easily. Rule-based

systems are especially user-friendly and offer compact, understandable, intuitive

and accurate classification models. To obtain comprehensibility, accuracy is often

sacrificed by using simpler but transparent models, achieving a trade-off between
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accuracy and comprehensibility. Even though there are many rule based classifica-

tion models, it has not been until recently that the comprehensibility of the models

is becoming a more relevant objective. Proof of this trend is found in recent studies

of this issue [38–41], i.e, improving the comprehensibility of the models is a new

challenge as important as obtaining high accuracy.

1.3 Improving performance on challenging data

The problem of learning from imbalanced data is also a novel challenging task

that attracted attention of both academical and industrial researchers. It concerns

the performance of learning algorithms in the presence of severe class distribution

skews (some classes have many times more instances than other classes). Tradi-

tional algorithms fail minority class predictions in the presence of imbalanced data

because of the bias of classical algorithms to majority class instances. Thereby,

this issue calls for new algorithm capable of handling appropriately both balanced

and imbalanced data. Proof of this trend is found in many recent studies of this

issue [42–45]. Therefore, it is essential to adapt algorithms to consider the presence

of imbalanced and challenging data.

For example, the nearest neighbor (NN) algorithm [46] is an instance-based method

which might be the simplest classification algorithm. Its classification principle is

to classify a new sample with the class of the closest training sample. The extended

version of NN to k neighbors (KNN) and their derivatives are indeed one of the

most influential data mining techniques, and they have been shown to perform

well in many domains [47]. However, the main problem with these methods is that

they severely deteriorate with imbalanced, noisy data or high dimensionality: their

performance becomes very slow, and their accuracy tends to deteriorate as the

dimensionality increases, especially when classes are nonseparable, imbalanced, or

they overlap [48].

In recent years, new instance-based methods based on data gravitation classification

(DGC) have been proposed to solve the aforementioned problems of the nearest

neighbor classifiers [49–51]. DGC models are inspired by Newton’s law of universal

gravitation and simulate the accumulative attractive force between data samples

to perform the classification. These gravitation-based classification methods extend
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the NN concept to the law of gravitation among the objects in the physical world.

The basic principle of DGC is to classify data samples by comparing the data

gravitation among the training samples for the different data classes, whereas KNNs

vote for the k training samples that are the closest in the feature space.

DGC models can be combined with evolutionary-based learning to improve the

accuracy of the classifiers [49]. The learning process may be useful for detecting

properties of data in order to help to overcome the problems of the presence of

imbalanced or noisy data.





2
Objectives

The main objective of this thesis is to develop new classification models using the

evolutionary computation paradigm which solve open problems and new challenges

in the classification task domain. Specifically, the following objectives were pursued

to successfully accomplish this aim:

Analysis of the state of the art in the classification task domain to identify

open problems and new challenges. Review of recently proposed and best

performance algorithms to analyze their approach to new challenges and open

issues in classification. Listing of the unsolved problems of algorithms and

classification databases, focusing on performance, scalability, accuracy and

interpretability of the classification models.

Review of the application of evolutionary-based computation to the classifi-

cation task, giving special attention to the Genetic Programming paradigm.

Analysis of the open issues of algorithms when addressing large and com-

plex databases. Design of evolutionary-based model to solve the classification

problem.
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Design and implementation of parallel computation algorithms which speed

up the classification task, especially seeking for their scalability to large-

scale and high-dimensional datasets. Analysis of the efficiency and the per-

formance of current algorithms after their parallelization on multi-core CPUs

and many-core GPUs. Development of new, efficient, scalable and high per-

formance classification algorithms on large datasets, taking advantage of the

massively parallel computation capabilities of GPUs.

Exploration of the interpretability of classification models, focusing on the

comprehensibility, complexity, accuracy and human understanding of rule-

based classifiers. Development of classification models capable of handling

the conflicting objectives of accuracy and interpretability of the classifiers.

Development of novel high performance classification models to strive for

their application to complex data, open problems and new challenges in the

classification task, such as the imbalanced data classification and the presence

of noise in the data input.



3
Methodology

This chapter summarizes the methods and tools used for the development of the

algorithms proposed in this dissertation. Detailed information about the method-

ology employed in each of the experimental studies is provided in their respective

article’s documentation.

Datasets

The datasets used in the experimentation of the algorithms were collected from the

UCI machine learning repository [52] and the KEEL data sets repository [53]. The

datasets represented a wide variety of data problem complexities, with significantly

different number of instances, attributes, and classes. This variety allows us for

evaluating the performance and soundness of the algorithms under types of data

problems.

Concretely, it is possible to find datasets already formatted in ARFF and KEEL

formats for classification on particular domains such as multi-label, multi-instance

and imbalanced data classification.
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Software

The parallel computation was performed with the NVIDIA CUDA Toolkit [21],

which allows for programming GPUs for general purpose computation, using a C-

style encoding scheme. Java was employed when developing algorithms and genetic

operators under the JCLEC [54] software environment, an open-source software for

evolutionary computation. Java was also employed for encoding algorithms within

the well-known WEKA software tool [55].

Hardware

The experiments were run on a machine equipped with an Intel Core i7 quad-core

processor running at 3.0 GHz and 12 GB of DDR3-1600 host memory. The GPU

video cards used were two dual-GPU NVIDIA GTX 690 equipped with 4 GB of

GDDR5 video RAM. Each GTX 690 video card had two GPUs with 1,536 CUDA

cores. In total there were 4 GPUs and 6,144 CUDA cores at default clock speeds.

Older hardware was also employed with two NVIDIA GeForce 480 GTX video cards

equipped with 1.5GB of GDDR5 video RAM, 15 multiprocessors and 480 CUDA

cores clocked at 1.4 GHz. The host operating system was GNU/Linux Ubuntu 64

bits along with NVIDIA CUDA runtime.

Performance evaluation

The evaluation framework we employed in the experimentation of the algorithms

followed the 10-fold cross-validation procedure [56, 57] (5-fold cross-validation for

imbalanced data). Stochastic algorithms such as seed-based evolutionary methods

were also run at least 10 times with different seeds. The statistical analysis of the

results was carried out by means of the Bonferroni–Dunn [58] and Wilcoxon rank-

sum [59] non-parametric statistical tests, in order to validate multiple and pairwise

comparisons among the algorithms [60, 61].



4
Results

This chapter summarizes the different proposals developed in this dissertation and

presents a joint discussion of the results achieved in regard to the objectives aimed

in the thesis.

4.1 Performance and scalability of classification algorithms

The performance of evolutionary-based classification algorithms decreases as the

size of the data and the population size increase. Therefore, it is essential to propose

parallelization strategies which allow to scale algorithms to larger data sets and

more complex problems.

In [62, 63] we proposed a parallel evaluation model for evolutionary rule learning

algorithms based on the parallelization of the fitness computation on GPUs. The

proposed model parallelized the evaluation of the individuals of the algorithm’s

population, which is the phase that requires the most computational time in the

evolutionary process of EAs. Specifically, the efficient and scalable evaluator model

designed uses GPUs to speed up the performance, receiving rule-based classifiers

and returning the confusion matrix of the classifiers on a database. To show the

generality of the model proposed, it was applied to some of the most popular
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GP classification algorithms [64–66] and several datasets with distinct complexity.

Thus, among the datasets used in experiments, there were some widely used as

benchmark datasets on the classification task characterized by its simplicity and

with others that had not been commonly addressed to date because of their ex-

tremely high complexity when applied to previous models. The use of these datasets

of varied complexity allowed us to demonstrate the high performance of the GPU

proposal on any problem complexity and domain. Experimental results showed the

efficiency and generality of our model, which can deal with a variety of algorithms

and application domains, providing a great speedup of the algorithm’s performance

of up to 820 times as compared with the non-parallel version executed sequentially,

and up to 196 as compared with the CPU parallel implementation. Moreover, the

speedup obtained was higher when the data problem complexity increased. The

proposal was compared with other different GPU computing evolutionary learning

system called BioHEL [67]. The comparison results showed the efficiency far better

obtained by our proposal.

In [29, 68] we presented an efficient Pittsburgh individuals evaluation model on

GPUs which parallelized the fitness computation for both rules and rules sets,

applicable to any individual = set of rules evolutionary algorithm. The GPU model

was scalable to multiple GPU devices, which allowed to address larger data sets

and population sizes. The rules interpreter, which checks the coverage of the rules

over the instances, was carefully designed to maximize its efficiency compared to

traditional rules stack-based interpreters. Experimental results demonstrated the

great performance and high efficiency of the proposed model, achieving a rules

interpreter performance of up to 64 billion operations per second. On the other

hand, the individual evaluation performance achieved a speedup of up to 3.461×
when compared to the single-threaded CPU implementation, and a speedup of

1.311× versus the parallel CPU version using 12 threads.

In [69] we presented a GPU parallel implementation of the G3P-MI [70] algorithm,

which allowed the acceleration of the evaluation of multiple instance rules learn-

ing [71, 72]. G3P-MI is an evolutionary algorithm based on classification rules that

has proven to be a suitable model because of its high flexibility, rapid adaptation,

excellent quality of knowledge representation, and competitive data classification

results. However, its performance becomes slow when learning form large-scale and
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high-dimensional data sets. The proposal aimed to be a general purpose model for

evaluating multi-instance classification rules on GPUs, which was independent to

algorithm behavior and applicable to any of the multi-instance hypotheses [72]. The

proposal addressed the computational time problem of evolutionary rule-based al-

gorithms for the evaluation of the rules on multi-instance data sets, especially when

the number of rules was high, or when the dimensionality and complexity of the da-

ta increased. The design of the model comprised three different GPU kernels which

implement the functionality to evaluate the classification rules over the examples

in the data set. The interpreter of the rules was carefully designed to maximize

efficiency and performance. The GPU model was distributable to multiple GPU

devices, providing transparent scalability to multiple GPUs. Moreover, it was de-

signed to achieve good scalability across large-scale and high-dimensional data sets.

The proposal was evaluated over a series of real-world and artificial multi-instance

data sets and its execution times were compared with the multi-threaded CPU

ones, in order to analyze its efficiency and scalability to larger data sets. Experi-

mental results showed the great performance and efficiency of the model, achieving

an speedup of up to 450× when compared to the multi-threaded CPU implemen-

tation. The efficient rules interpreter demonstrated the ability to run up to 108

billion Genetic Programming operations per second (GPops/s) whereas the multi-

threaded CPU interpreter run up to 98 million GPops/s. Moreover, it showed great

scalability to two and four GPUs. This means that more complex multi-instance

problems with larger number of examples can be addressed.

The publications associated to this part of the dissertation are:

A. Cano, A. Zafra, and S. Ventura. Speeding up the evaluation phase

of GP classification algorithms on GPUs. Soft Computing, 16 (2),

pages 187-202, 2012.

A. Cano, A. Zafra, and S. Ventura. Parallel evaluation of Pitts-

burgh rule-based classifiers on GPUs. Neurocomputing, vol. 126,

pages 45-57, 2014.
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A. Cano, A. Zafra, and S. Ventura. Speeding up Multiple Instance

Learning Classification Rules on GPUs. Knowledge and Information

Systems, submitted, 2013.

A. Cano, A. Zafra, and S. Ventura. A parallel genetic programming

algorithm for classification. In Proceedings of the 6th International

Conference on Hybrid Artificial Intelligent Systems (HAIS). Lecture Notes

in Computer Science, 6678 LNAI(PART 1):172-181, 2011.

A. Cano, A. Zafra, and S. Ventura. Solving classification problems

using genetic programming algorithms on GPUs. In Proceedings

of the 5th International Conference on Hybrid Artificial Intelligent Systems

(HAIS). Lecture Notes in Computer Science, 6077 LNAI(PART 2):17-26,

2010.

4.2 Interpretability vs accuracy of classification models

Accuracy and interpretability are conflicting objectives in building classification

models, and usually it is necessary to achieve a trade-off between the accuracy and

comprehensibility of the classifiers. In [73, 74] we proposed a classification algorithm

focusing on the interpretability, trying to reach more comprehensible models than

most of the current proposals and thus covering the needs of many application

domains that require greater comprehensibility than the provided by other available

classifiers. This model was based on Evolutionary Programming, and called ICRM

(Interpretable Classification Rule Mining). It was designed to obtain a base of

rules with the minimum number of rules and conditions, in order to maximize its

interpretability, while obtaining competitive accuracy results. The algorithm used

an individual = rule representation, following the Iterative Rule Learning (IRL)

model. Individuals were constructed by means of a context-free grammar [75, 76],

which established a formal definition of the syntactical restrictions of the problem to

be solved and its possible solutions, so that only grammatically correct individuals

were generated.
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The main characteristics of the proposal were the following. Firstly, the algorithm

guaranteed obtaining the minimum number of rules. This was possible because

it generated one rule per class, together with a default class prediction, which

was assigned when none of the available rules were triggered. Moreover, it was

guaranteed that there were no contradictory or redundant rules, i.e., there was no

pair of rules with the same antecedents and different consequents. Finally, it also

guaranteed the minimum number of conditions forming the antecedents of these

rules, which was achieved by selecting only the most relevant and discriminating

attributes that separate the classes in the attribute domains.

The experiments carried out on 35 different data sets and 9 other high-performance

rule-based classification algorithms showed the competitive performance of the

ICRM algorithm in terms of predictive accuracy and execution time, obtaining

significantly better results than the other methods in terms of the interpretabili-

ty measures considered in the experimental study: the minimum number of rules,

minimum number of conditions per rule, and minimum number of conditions of

the classifier. The experimental study included a statistical analysis based on the

Bonferroni–Dunn [58] and Wilcoxon [59] non-parametric tests [60, 61] in order to

evaluate whether there were statistically differences in the results of the algorithms.

The ICRM algorithm demonstrated to obtain more comprehensible rule-based clas-

sifiers than other known algorithms such as C4.5 [77] and MPLCS [78].

The ICRM algorithm was also applied on the educational data mining domain using

real data from high school students from Zacatecas, Mexico [79]. Predicting student

failure at school has become a difficult challenge due to both the high number

of factors that can affect the low performance of students and the imbalanced

nature of these types of datasets. Firstly, we selected the best attributes in order

to resolve the problem of high dimensionality. Then, rebalancing of data and cost

sensitive classification were applied in order to resolve the problem of classifying

imbalanced data. We compared the performance of the ICRM algorithm versus

different white box techniques in order to obtain both more comprehensible and

accurate classification rules.
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The publications associated to this part of the dissertation are:

A. Cano, A. Zafra, and S. Ventura. An Interpretable Classification

Rule Mining Algorithm. Information Sciences, vol. 240, pages 1-20, 2013.

C. Márquez-Vera, A. Cano, C. Romero, and S. Ventura. Predicting

student failure at school using genetic programming and different

data mining approaches with high dimensional and imbalanced

data. Applied Intelligence, 38 (3), pages 315-330, 2013.

A. Cano, A. Zafra, and S. Ventura. An EP algorithm for learn-

ing highly interpretable classifiers. In Proceedings of the 11th

International Conference on Intelligent Systems Design and Applications,

ISDA’11, pages 325-330, 2011.

4.3 Improving performance on challenging data

Challenging and complex data such as imbalanced and noisy data classification

call for new algorithms capable of handling complex data appropriately. In [80]

we presented a data gravitation classification algorithm, named DGC+, that uses

the gravitation concept to induct data classification. The algorithm compared the

gravitational field for the different data classes to predict the data class with the

highest magnitude. The proposal improved previous data gravitation algorithms

by learning the importance of attributes in classification by means of optimizing

weights of the attributes for each class. The proposal solved some of the known

issues of previous methods such as nominal attributes handling, imbalanced data

classification performance, and noisy data filtering. The weights of the attributes

in the classification of each class were learned by means of the covariance matrix

adaptation evolution strategy (CMA-ES) [81] algorithm, which is a well-known,

robust, and scalable global stochastic optimizer for difficult nonlinear and noncon-

vex continuous domain objective functions [82]. The proposal improved accuracy

results by considering both global and local data information, especially in decision

boundaries.
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The experiments were carried out on 35 standard and 44 imbalanced data sets

collected from the KEEL [53] and UCI [52] repositories. A total of 14 algorithms

were compared for evaluating standard and imbalanced classification performance.

These algorithms belong to the KEEL [83] and WEKA [55] software tools, and they

comprise neural networks, support vector machines, rule-based, and instance-based

classifiers. The experiments considered different problem domains, with a wide

variety on the number of instances, attributes, and classes. The results showed the

competitive performance of the proposal, obtaining significantly better results in

terms of predictive accuracy, Cohen’s kappa rate [84, 85], and area under the curve

(AUC) [86, 87]. DGC+ performance differences with other algorithms were more

significant as compared with classical instance-based nearest neighbor classifiers,

especially they are noteworthy on imbalanced datasets where bias of algorithms

to majority class instances is notable. The experimental study was also completed

with a statistical analysis based on the Bonferroni–Dunn [58] and Wilcoxon [59]

nonparametric tests [60, 88] in order to evaluate whether there were significant

differences in the results of the algorithms.

The publication associated to this part of the dissertation is:

A. Cano, A. Zafra, and S. Ventura. Weighted Data Gravitation

Classification for Standard and Imbalanced Data.

IEEE Transactions on Cybernetics, 43 (6), pages 1672-1687, 2013.





5
Conclusions and future work

This chapter summarizes the concluding remarks obtained from the research of the

dissertation and provides research lines for future work.

5.1 Conclusions

In this Ph.D. thesis we have explored the domain of the classification task on data

mining and machine learning, and analyzed the open problems and challenges of

data and algorithms. We have reviewed the application of evolutionary algorithms

to solve this task and identified the open issues for the new data of the present

decade. Specifically, we pursued for several objectives, namely the performance,

scalability, interpretability and accuracy of classification algorithms.

Performance and scalability of classification algorithms

First, we analyzed performance and scalability of evolutionary-based classification

algorithms. The classification of large datasets using EAs is a high time consuming

computation as the problem complexity increases. In [63] we proposed a GPU-based

evaluation model to speed up the evaluation phase of GP classification algorithms.
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The parallel execution model proposed along with the computational requirements

of the evaluation of individuals of the algorithm’s population, created an ideal

execution environment where GPUs demonstrated to be powerful. Experimental

results showed that our GPU-based contribution greatly reduced the execution

time using a massively parallel model that takes advantage of fine-grained and

coarse-grained parallelization to achieve a good scalability as the number of GPUs

increases. Specifically, its performance was better in high dimensional problems and

databases with a large number of patterns where our proposal achieved a speedup

of up to 820× as compared with the non-parallel version.

In [68] we presented a high-performance and efficient evaluation model on GPUs

for Pittsburgh genetic rule-based algorithms. The rule interpreter and the GPU

kernels were designed to maximize the GPU occupancy and throughput, reducing

the evaluation time of the rules and rule sets. The experimental study analyzed the

performance and scalability of the model over a series of varied data sets. It was

concluded that the GPU-based implementation was highly efficient and scalable

to multiple GPU devices. The best performance was achieved when the number of

instances or the population size was large enough to fill the GPU multiprocessors.

The speedup of the model was up to 3.461× when addressing large classification

problems with two GPUs, significantly higher than the speedup achieved by the

CPU parallel 12-threaded solution. The rule interpreter obtained a performance

above 64 billion GPops/s and even the efficiency per Watt was up to 129 million

GPops/s/W.

Interpretability vs accuracy of classification models

Second, we addressed the conflicting problem of interpretability vs accuracy of data

classification models. In [69] we proposed an efficient algorithm for interpretable

classification rule mining (ICRM), which is a rule-based evolutionary program-

ming classification algorithm. The algorithm solved the cooperation–competition

problem by dealing with the interaction among the rules during the evolutionary

process. The proposal minimized the number of rules, the number of conditions per

rule, and the number of conditions of the classifier, increasing the interpretability

of the solutions. The algorithm did not require to configure or optimize its pa-

rameters; it was self-adapted to the data problem complexity. The experiments
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performed compared the performance of the algorithm with several other machine

learning classification methods, including crisp and fuzzy rules, decision trees, and

an ant colony algorithm. Experimental results showed the competitive performance

of our proposal in terms of predictive accuracy, obtaining significantly better re-

sults. ICRM obtained the best results in terms of interpretability, i.e, it minimized

the number of rules, the number of conditions per rule, and the number of con-

ditions of the classifier. Experimental results showed the good performance of the

algorithm, but it would be honest to note its limitations. The algorithm was capa-

ble of finding comprehensible classifiers with low number of rules and conditions,

while achieving competitive accuracy. However, the comprehensibility was priori-

tized between these conflicting objectives. The one rule per class design allows to

obtain very interpretable solutions and it is useful to extract fast “big pictures”

of the data. Nevertheless, the accuracy on very complex data might be lower than

the obtained by other algorithms but with much more complex classifiers. There

was no classifier which achieved best accuracy and comprehensibility for all data.

Thus, this algorithm focused on the interpretability of the classifier, which is very

useful for knowledge discovery and decision support systems.

Improving performance on challenging data

Third, we challenged to improve classification performance on complex data such

as imbalanced data sets. In [80] we presented a data gravitation classification al-

gorithm called DGC+. The proposal included attribute–class weight learning for

distance weighting to improve classification results, especially on imbalanced data

and to overcome the presence of noisy data. The weights were optimized by means

of the CMA-ES algorithm, which showed to perform an effective learning rate of op-

timal weights for the different attributes and classes, ignoring noisy attributes and

enhancing relevant ones. The effects of gravitation around the instances allowed an

accurate classification considering both local and global data information, providing

smooth classification and good generalization. Gravitation was successfully adapt-

ed to deal with imbalanced data problems. The gravitation model achieved better

classification accuracy, Cohen’s kappa rate and AUC results than other well-known

instance-based methods, especially on imbalanced data.
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5.2 Future work

In this section we provide some remarks for futures lines of research that arise from

the developed research in this dissertation.

First, there are many other applications of the GPU methodology to classification

and data mining problems. The latest developed method about feature extraction

and data visualization opens a new field of research in which the use of GPUs for

parallel computation is crucial. Moreover, we intend to extend the application of

the GPU parallelization to other artificial intelligence tasks such as video tracking

through evolutionary algorithms. This problem seems to be very appropriate for

GPU computing since it involves high computational resources and implies very

fast response, currently not available for real-time systems.

Second, we seek the scalability of algorithms to big data. Data processing in a fast

and efficient way is an important functionality in machine learning, especially with

the growing interest in data storage that has made the data size to be exponentially

increased. Thereby, it is necessary to design new efficient distributed data structures

to support the manage of massive amount of data. We will develop a Map-Reduce

model on big data, which can bring to machine learning the ability to handle

efficiently and compute faster enormous datasets.

Third, we will extend the developed models to the multi-instance and multi-label

classification problems, which are now hot topics in classification. In multi-instance

multi-label classification, examples are described by multiple instances and asso-

ciated with multiple class labels. Therefore, it is not much complex to adapt the

developed methods in this dissertation to the multi-instance and multi-label clas-

sification problems.



Bibliography

[1] U. Fayyad, G. Piatetsky-shapiro, and P. Smyth, “From data mining to knowl-

edge discovery in databases,” AI Magazine, vol. 17, pp. 37–54, 1996.

[2] A. K. Jain, R. P. Duin, and J. Mao, “Statistical pattern recognition: A review,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22,

no. 1, pp. 4–37, 2000.

[3] D. T. Larose, Discovering Knowledge in Data: An Introduction to Data Min-

ing. Wiley, 2005.

[4] A. Ghosh and L. Jain, Eds., Evolutionary Computation in Data Mining, ser.

Studies in Fuzziness and Soft Computing. Springer, 2005, vol. 163.

[5] A. Abraham, E. Corchado, and J. M. Corchado, “Hybrid learning machines,”

Neurocomputing, vol. 72, no. 13-15, pp. 2729–2730, 2009.

[6] E. Corchado, M. Graña, and M. Wozniak, “New trends and applications on

hybrid artificial intelligence systems,” Neurocomputing, vol. 75, no. 1, pp. 61–

63, 2012.

[7] E. Corchado, A. Abraham, and A. de Carvalho, “Hybrid intelligent algorithms

and applications,” Information Sciences, vol. 180, no. 14, pp. 2633–2634, 2010.

[8] W. Pedrycz and R. A. Aliev, “Logic-oriented neural networks for fuzzy neu-

rocomputing,” Neurocomputing, vol. 73, no. 1-3, pp. 10–23, 2009.

[9] A. A. Freitas, Data Mining and Knowledge Discovery with Evolutionary Algo-

rithms. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2002.

[10] X. Yu and M. Gen, Introduction to Evolutionary Algorithms. Springer, 2010.

[11] P. Espejo, S. Ventura, and F. Herrera, “A Survey on the Application of Genetic

Programming to Classification,” IEEE Transactions on Systems, Man, and

Cybernetics, Part C, vol. 40, no. 2, pp. 121–144, 2010.

25



26 BIBLIOGRAPHY

[12] J. Landry, L. D. Kosta, and T. Bernier, “Discriminant feature selection by

genetic programming: Towards a domain independent multi-class object de-

tection system,” Journal of Systemics, Cybernetics and Informatics, vol. 3,

no. 1, 2006.

[13] I. De Falco, A. Della Cioppa, F. Fontanella, and E. Tarantino, “An Innovative

Approach to Genetic Programming-based Clustering,” in Proceedings of the

9th Online World Conference on Soft Computing in Industrial Applications,

2004.

[14] E. Alba and M. Tomassini, “Parallelism and evolutionary algorithms,” IEEE

Transactions on Evolutionary Computation, vol. 6, no. 5, pp. 443–462, 2002.

[15] G. Luque and E. Alba, Parallel Genetic Algorithms: Theory and Real World

Applications, ser. Studies in Computational Intelligence. Springer, 2011.

[16] P. E. Srokosz and C. Tran, “A distributed implementation of parallel genetic

algorithm for slope stability evaluation,” Computer Assisted Mechanics and

Engineering Sciences, vol. 17, no. 1, pp. 13–26, 2010.
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Abstract The efficiency of evolutionary algorithms has

become a studied problem since it is one of the major

weaknesses in these algorithms. Specifically, when these

algorithms are employed for the classification task, the

computational time required by them grows excessively as

the problem complexity increases. This paper proposes an

efficient scalable and massively parallel evaluation model

using the NVIDIA CUDA GPU programming model to

speed up the fitness calculation phase and greatly reduce

the computational time. Experimental results show that our

model significantly reduces the computational time com-

pared to the sequential approach, reaching a speedup of up

to 8209. Moreover, the model is able to scale to multiple

GPU devices and can be easily extended to any evolu-

tionary algorithm.

Keywords Evolutionary algorithms �
Genetic programming � Classification �
Parallel computing � GPU

1 Introduction

Evolutionary algorithms (EAs) are search methods inspired

by natural evolution to find a reasonable solution for data

mining and knowledge discovery (Freitas 2002). Genetic

programming (GP) is a specialization of EAs, where each

individual represents a computer program. It is a machine

learning technique used to optimize a population of com-

puter programs according to a fitness function that deter-

mines the program’s ability to perform a task. Recently, GP

has been applied to different common data mining tasks

such as classification (Espejo et al. 2010), feature selection

(Landry et al. 2006), and clustering (De Falco et al. 2004).

However, they perform slowly with complex and high-

dimensional problems. Specifically, in the case of classi-

fication, this slowness is due to the fact that the model must

be evaluated according to a fitness function and training

data. Many studies, using different approaches (Harding

2010; Schmitz et al. 2003), have focused on solving this

problem by improving the execution time of these algo-

rithms. Recently, the use of GPUs has increased for solving

high-dimensional and parallelizable problems and in fact,

there are already EA models that take advantage of this

technology (Franco et al. 2010). The main shortcoming of

these models is that they do not provide a general purpose

model: they are too specific to the problem domain or their

efficiency could be significantly improved.

In this paper, we present an efficient and scalable GPU-

based parallel evaluation model to speed up the evaluation

phase of GP classification algorithms that overcomes the

shortcomings of the previous models. In this way, our pro-

posal is presented as a general model applicable to any domain

within the classification task regardless of its complexity and

whose philosophy is easily adaptable to any other paradigm.

The proposed model parallelizes the evaluation of the

individuals, which is the phase that requires the most

computational time in the evolutionary process of EAs.

Specifically, the efficient and scalable evaluator model

designed uses GPUs to speed up the performance, receiv-

ing a classifier and returning the confusion matrix of that
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classifier on a database. To show the generality of the

model proposed, it is applied to some of the most popular

GP classification algorithms and several datasets with

distinct complexity. Thus, among the datasets used in

experiments, there are some widely used as benchmark

datasets on the classification task characterized by its

simplicity and with others that have not been commonly

addressed to date because of their extremely high com-

plexity when applied to previous models. The use of these

datasets of varied complexity allows us to demonstrate the

performance of our proposal on any problem complexity

and domain. Experimental results show the efficiency and

generality of our model, which can deal with a variety of

algorithms and application domains, providing a great

speedup of the algorithm’s performance, of up to 820

times, compared to the non-parallel version executed

sequentially. Moreover, the speedup obtained is higher

when the problem complexity increases. The proposal is

compared with other different GPU computing evolution-

ary learning system called BioHEL (Franco et al. 2010).

The comparison results show that the efficiency obtained is

far better using our proposal.

The remainder of this paper is organized as follows.

Section 2 provides an overview of previous works related

to evolutionary classification algorithms and GPU imple-

mentations. Section 3 discusses the GP model and analyzes

the computational cost associated with its different phases.

Section 4 describes the GPU architecture and the CUDA

programming model. Section 5 explains our proposal and

its advantages as a scalable and efficient evaluation model.

Section 6 describes the experimental study. In Sect. 7, the

results will be announced and finally the last section pre-

sents the final remarks of our investigation and outlines

future research work.

2 Related works

GP has been parallelized in multiple ways to take advan-

tage both of different types of parallel hardware and of

different features of particular problem domains. Most of

the parallel approaches during the last decades deal with

the implementation over CPU machine clusters. More

recently, works about parallelization have been focusing on

using graphics processing units (GPUs) which provide fast

parallel hardware for a fraction of the cost of a traditional

parallel system. GPUs are devices with multicore archi-

tectures and parallel processor units. The GPU consists of a

large number of processors and recent devices operate as

multiple instruction multiple data (MIMD) architectures.

Today, GPUs can be programmed by any user to perform

general purpose computation (GPGPU) (General-Purpose

Computation on Graphics Hardware 2010). The use of

GPUs has been already studied for speeding up algorithms

within the framework of evolutionary computation. Con-

cretely, we can cite some studies about the evaluation

process in genetic algorithms and GP on GPUs (Harding

2010).

Previous investigations have focused on two evaluation

approaches (Banzhaf et al. 1998): population parallel or

fitness parallel and both methods can exploit the parallel

architecture of the GPU. In the fitness parallel method, all

the fitness cases are executed in parallel with only one

individual being evaluated at a time. This can be consid-

ered an SIMD approach. In the population parallel method,

multiple individuals are evaluated simultaneously. These

investigations have proved that for smaller datasets or

population sizes, the overhead introduced by uploading

individuals to evaluate is larger than the increase in com-

putational speed (Chitty et al. 2007). In these cases there is

no benefit in executing the evaluation on a GPU. Therefore,

the larger the population size or the number of instances

are, the better the GPU implementation will perform.

Specifically, the performance of the population parallel

approaches is influenced by the size of the population and

the fitness case parallel approaches are influenced by the

number of fitness cases, i.e., the number of training patterns

from the dataset.

Next, the more relevant proposals presented to date are

discussed. Chitty et al. (2007) describes the technique of

general purpose computing using graphics cards and how

to extend this technique to GP. The improvement in the

performance of GP on single processor architectures is also

demonstrated. Harding and Banzhaf (2007) goes on to

report on how exactly the evaluation of individuals on GP

could be accelerated; both proposals are focused on pop-

ulation parallel.

Robilliard et al. (2009) proposes a parallelization

scheme to exploit the performance of the GPU on small

training sets. To optimize with a modest-sized training set,

instead of sequentially evaluating the GP solutions paral-

lelizing the training cases, the parallel capacity of the GPU

is shared by the GP programs and data. Thus, different GP

programs are evaluated in parallel, and a cluster of ele-

mentary processors are assigned to each of them to treat the

training cases in parallel. A similar technique, but using an

implementation based on the single program multiple data

(SPMD) model, is proposed by Langdon and Harrison

(2008). They implement the evaluation process of GP trees

for bioinformatics purposes using GPGPUs, achieving a

speedup of around 89. The use of SPMD instead of SIMD

affords the opportunity to achieve increased speedups

since, for example, one cluster can interpret the if branch

of a test while another cluster treats the else branch
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independently. On the other hand, performing the same

computation inside a cluster is also possible, but the two

branches are processed sequentially in order to respect

the SIMD constraint: this is called divergence and is, of

course, less efficient. Moreover, Maitre et al. (2009)

presented an implementation of a genetic algorithm

which performs the evaluation function using a GPU.

However, they have a training function instead of a

training set, which they run in parallel over different

individuals. Classification fitness computation is based

on learning from a training set within the GPU device

which implies memory occupancy, while other proposals

use a mathematical representation function as the fitness

function.

Franco et al. (2010) introduce a fitness parallel

method for computing fitness in evolutionary learning

systems using the GPU. Their proposal achieves speed-

ups of up to 529 in certain datasets, performing a

reduction function (Hwu 2009) over the results to reduce

the memory occupancy. However, this proposal does not

scale to multiple devices and its efficiency and its spread

to other algorithms or to more complex problems could

be improved.

These works are focused on parallellizing the evaluation

of multiple individuals or training cases and many of these

proposals are limited to small datasets due to memory

constraints where exactly GPU are not optimal. By con-

trast, our proposal is an efficient hybrid population and

fitness parallel model, that can be easily adapted to other

algorithms, designed to achieve maximum performance

solving classification problems using datasets with differ-

ent dimensions and population sizes.

3 Genetic programming algorithms

This section introduces the benefits and the structure of GP

algorithms and describes a GP evolutionary system for

discovering classification rules in order to understand the

execution process and the time required.

GP, the paradigm on which this paper focuses, is a

learning methodology belonging to the family of evo-

lutionary algorithms (Bäck et al. 1997) introduced by

Koza (1992). GP is defined as an automated method for

creating a working computer program from a high-level

formulation of a problem. GP performs automatic pro-

gram synthesis using Darwinian natural selection and

biologically inspired operations such as recombination,

mutation, inversion, gene duplication, and gene dele-

tion. It is an automated learning methodology used to

optimize a population of computer programs according

to a fitness function that determines their ability to

perform a certain task. Among successful evolutionary

algorithm implementations, GP retains a significant

position due to such valuable characteristics as: its

flexible variable length solution representation, the fact

that a priori knowledge is not needed about the statis-

tical distribution of the data (data distribution free), data

in their original form can be used to operate directly on

them, unknown relationships that exist among data can

be detected and expressed as mathematical expressions,

and, finally, the most important discriminative features

of a class can be discovered. These characteristics suit

these algorithms to be a paradigm of growing interest

both for obtaining classification rules (De Falco et al.

2001; Freitas 2002; Tan et al. 2002) and for other tasks

related to prediction, such as feature selection (Landry

et al. 2006) and the generation of discriminant functions

(Espejo et al. 2010).

3.1 GP classification algorithms

In this section we will detail the general structure of GP

algorithms before proceeding to the analysis of its com-

putational cost.

Individual representation GP can be employed to con-

struct classifiers using different kinds of representations,

e.g., decision trees, classification rules, discriminant func-

tions, and many more. In our case, the individuals in the

GP algorithm are classification rules whose expression tree

is composed by terminal and non-terminal nodes. A clas-

sifier can be expressed as a set of IF-antecedent-THEN-

consequent rules, in which the antecedent of the rule

consists of a series of conditions to be met by an instance in

order to consider that it belongs to the class specified by the

consequent.

The rule consequent specifies the class to be predicted

for an instance that satisfies all the conditions of the rule

antecedent. The terminal set consists of the attribute names

and attribute values of the dataset being mined. The

function set consists of logical operators (AND, OR, NOT),

relational operators (\; � ;¼;\ [ ; � ; [ ) or interval

range operators (IN, OUT). These operators are constrained

to certain data type restrictions: categorical, real or

boolean. Figure 1 shows an example of the expression

tree of an individual.

Fig. 1 Example of an individual expression tree
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Generational model The evolution process of GP algo-

rithms (Deb 2005), similar to other evolutionary algo-

rithms, consists of the following steps:

1. An initial population of individuals is generated using

an initialization criterion.

2. Each individual is evaluated based on the fitness

function to obtain a fitness value that represents its

ability to solve the problem.

3. In each generation, the algorithm selects a subset of the

population to be parents of offspring. The selection

criterion usually picks the best individuals to be

parents, to ensure the survival of the best genes.

4. This subset of individuals is crossed using different

crossover operators, obtaining the offspring.

5. These individuals may be mutated, applying different

mutation genetic operators.

6. These new individuals must be evaluated using the

fitness function to obtain their fitness values.

7. Different strategies can be employed for the replace-

ment of individuals within the population and the

offspring to ensure that the population size in the next

generation is constant and the best individuals are kept.

8. The algorithm performs a control stage that determines

whether to finish the execution by finding acceptable

solutions or by having reached a maximum number of

generations, if not the algorithm goes back to step 3

and performs a new iteration (generation).

The pseudo-code of a simple generational algorithm is

shown in Algorithm 1.

Evaluation: fitness function The evaluation stage is the

evaluation of the fitness function over the individuals.

When a rule or individual is used to classify a given

training instance from the dataset, one of these four

possible values can be obtained: true positive tp false

positive fp true negative tn and false negative fn. The true

positive and true negative are correct classifications,

while the false positive and false negative are incorrect

classifications.

• True positive The rule predicts the class and the class of

the given instance is indeed that class.

• False positive The rule predicts a class but the class of

the given instance is not that class.

• True negative The rule does not predict the class and

the class of the given instance is indeed not that class.

• False negative The rule does not predict the class

but the class of the given instance is in fact that

class.

The results of the individual’s evaluations over all the

patterns from a dataset are used to build the confusion

matrix which allows us to apply different quality indexes to

get the individual’s fitness value and its calculation is

usually the one that requires more computing time.

Therefore, our model will also perform this calculation

so that each algorithm can apply the most convenient

fitness function.

The main problem of the evaluation is the computational

time required for the match process because it involves

comparing all the rules with all the instances of the dataset.

The number of evaluations is huge when the population

size or the number of instances increases, thus the

algorithm must perform up to millions of evaluations in

each generation.

Evaluation: computational study Several previous experi-

ments have been conducted to evaluate the computational

time of the different stages of the generational algorithm.

These experiments execute the different algorithms

described in Sect. 6.1 over the problem domains proposed

in Sect. 6.3. The population size was set to 50, 100 and 200

individuals, whereas the number of generations was set to

100 iterations. The results of the average execution time of

the different stages of the algorithms among all the con-

figurations are shown in Table 1.

Table 1 GP classification execution time

Phase Percentage

Initialization 8.96

Creation 0.39

Evaluation 8.57

Generation 91.04

Selection 0.01

Crossover 0.01

Mutation 0.03

Evaluation 85.32

Replacement 0.03

Control 5.64

Total 100.00
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The experience using these GP algorithms proves that

on average around 94% of the time is taken by the

evaluation stage. This percentage is mainly linked to the

algorithm, the population size and the number of patterns,

increasing up to 99% on large problems. Anyway, the

evaluation phase is always more expensive regardless of

the algorithm or its parameters. We can conclude that

evaluation takes most of the execution time so the most

significant improvement would be obtained by accelerating

this phase. Therefore, we propose a parallel GPU model

detailed in Sect. 5 to speed up the evaluation phase.

4 CUDA programming model

Computer unified device architecture (CUDA) (NVIDIA

2010) is a parallel computing architecture developed by

NVIDIA that allows programmers to take advantage of the

computing capacity of NVIDIA GPUs in a general purpose

manner. The CUDA programming model executes kernels

as batches of parallel threads in a SIMD programming

style. These kernels comprise thousands to millions of

lightweight GPU threads per each kernel invocation.

CUDA’s threads are organized into a two-level hierar-

chy represented in Fig. 2: at the higher one, all the threads

in a data-parallel execution phase form a grid. Each call to

a kernel execution initiates a grid composed of many thread

groupings, called thread blocks. All the blocks in a grid

have the same number of threads, with a maximum of 512.

The maximum number of thread blocks is 65,535 9

65,535, so each device can run up to 65,535 9 65,535 9

512 = 2 9 1012 threads per kernel call.

To properly identify threads within the grid, each thread

in a thread block has a unique ID in the form of a three-

dimensional coordinate, and each block in a grid also has a

unique two-dimensional coordinate.

Thread blocks are executed in streaming multiproces-

sors. A stream multiprocessor can perform zero overhead

scheduling to interleave warps and hide the overhead of

long-latency arithmetic and memory operations.

There are four different main memory spaces: global,

constant, shared and local. These GPU memories are spe-

cialized and have different access times, lifetimes and

output limitations.

• Global memory is a large, long-latency memory that

exists physically as an off-chip dynamic device mem-

ory. Threads can read and write global memory to share

data and must write the kernel’s output to be readable

after the kernel terminates. However, a better way to

share data and improve performance is to take advan-

tage of shared memory.

• Shared memory is a small, low-latency memory that

exists physically as on-chip registers and its contents

are only maintained during thread block execution and

are discarded when the thread block completes. Kernels

that read or write a known range of global memory with

spatial or temporal locality can employ shared memory

as a software-managed cache. Such caching potentially

reduces global memory bandwidth demands and

improves overall performance.

• Local memory each thread also has its own local

memory space as registers, so the number of registers a

thread uses determines the number of concurrent

threads executed in the multiprocessor, which is called

multiprocessor occupancy. To avoid wasting hundreds

of cycles while a thread waits for a long-latency global-

memory load or store to complete, a common technique

is to execute batches of global accesses, one per thread,

exploiting the hardware’s warp scheduling to overlap

the threads’ access latencies.

• Constant memory is specialized for situations in which

many threads will read the same data simultaneously.

Fig. 2 CUDA threads and

blocks model
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This type of memory stores data written by the host

thread, is accessed constantly and does not change

during the execution of the kernel. A value read from

the constant cache is broadcast to all threads in a warp,

effectively serving 32 loads from memory with a

single-cache access. This enables a fast, single-ported

cache to feed multiple simultaneous memory accesses.

The amount of constant memory is 64 KB.

For maximum performance, these memory accesses must

be coalesced as with accesses to global memory. Global

memory resides in device memory and is accessed via 32, 64,

or 128-byte segment memory transactions. When a warp

executes an instruction that accesses global memory, it coa-

lesces the memory accesses of the threads within the warp into

one or more of these memory transactions depending on the

size of the word accessed by each thread and the distribution of

the memory addresses across the threads. In general, the more

transactions are necessary, the more unused words are trans-

ferred in addition to the words accessed by the threads,

reducing the instruction throughput accordingly.

To maximize global memory throughput, it is therefore

important to maximize coalescing by following the most opti-

mal access patterns, using data types that meet the size and

alignment requirement or padding data in some cases, for

example, when accessing a two-dimensional array. For these

accesses to be fully coalesced, both the width of the thread block

and the width of the array must be multiple of the warp size.

5 Model description

This section details an efficient GPU-based evaluation model

for fitness computation. Once it has been proved that the

evaluation phase is the one that requires the most of the

computational time, this section discusses the procedure of

the fitness function to understand its cost in terms of runtime

and memory occupancy. We then employ this knowledge to

propose an efficient GPU-based evaluation model in order to

maximize the performance based on optimization principles

(Ryoo et al. 2008) and the recommendations of the NVIDIA

CUDA programming model guide (NVIDIA 2010).

5.1 Evaluation complexity

The most computationally expensive phase is evaluation since

it involves the match of all the individuals generated over all

the patterns. Algorithm 2 shows the pseudo-code of the fitness

function. For each individual its genotype must be interpreted

or translated into an executable format and then it is evaluated

over the training set. The evaluation process of the individuals

is usually implemented in two loops, where each individual

iterates each pattern and checks if the rule covers that pattern.

Considering that the population size is P and the training set

size is T the number of iterations is OðP� TÞ:These two loops

make the algorithm really slow when the population size or the

pattern count increases because the total number of iterations

is the product of these two parameters. This one by one iter-

ative model is slow but it only requires 4 9 population-

Size 9 size of(int) bytes from memory, i.e., the four integer

counters for tp, tn, fp and fn and values for each individual, this

is O(P) complex.

5.2 Efficient GPU-based evaluation

The execution of the fitness function over the individuals is

completely independent from one individual to another.

Hence, the parallelization of the individuals is feasible. A

naive way to do this is to perform the evaluations in par-

allel using several CPU threads, one per individual. The

main problem is that affordable PC systems today only run

CPUs with 4 or 8 cores, thus larger populations will need to

serialize its execution so the speedup would be limited up

to the number of cores that there is. This is where GPGPU

systems can exploit its massively parallel model.

Using the GPU, the fitness function can be executed

over all individuals concurrently. Furthermore, the simple

match of a rule over an instance is a self-dependent oper-

ation: there is no interference with any other evaluation.

Hence, the matches of all the individuals over all the

instances can be performed in parallel in the GPU. This

means that one thread represents the single match of a

pattern over an instance. The total number of GPU threads

required would be equal to the number of iterations from

the loop of the sequential version. Once each thread has
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obtained the result of its match in the GPU device, these

results have to be copied back to the host memory and

summed up to get the fitness values. This approach would

be very slow because in every generation it will be nec-

essary to copy a structure of size OðP� TÞ; specifically

populationSize 9 numberInstances 9 sizeof(int) bytes from

device memory to host memory, i.e, copying the match

results obtained from the coverage of every individual over

every pattern. This is completely inefficient because the

copy transactions time would be larger than the speedup

obtained. Therefore, to reduce the copy structure size it is

necessary to calculate the final result for each individual

inside the GPU and then only copy a structure size

O(P) containing the fitness values. Hence, our fitness cal-

culation model involves two steps: matching process and

reducing the results for fitness values computation. These

two tasks correspond to two different kernels detailed in

Sect. 5.2.2.

The source code of our model can be compiled into a

shared library to provide the user the functions to perform

evaluations in GPU devices for any evolutionary system.

The schema of the model is shown in Fig. 3.

At first, the user must call a function to perform the

dynamic memory allocation. This function allocates the

memory space and loads the dataset instances to the GPU

global memory. Moreover, it runs one host thread per GPU

device because the thread context is mandatorily associated

to only one GPU device. Each host thread runs over one

GPU and performs the evaluation of a subset of the indi-

viduals from the population. The execution of the host

threads stops once the instances are loaded to the GPU

awaiting a trigger. The evaluate function call is the trigger

that wakes the threads to perform the evaluations over their

population’s subset. Evaluating the present individuals

require the copy of their phenotypes to a GPU memory

space. The GPU constant memory is the best location for

storing the individual phenotypes because it provides

broadcast to all the device threads in a warp. The host

threads execute the kernels as batches of parallel threads,

first the match kernel obtains the results of the match

process and then the reduction kernel calculates the fitness

values from these results. The fitness values must be copied

back to host memory and associated to the individuals.

Once all the individuals from the thread have been evalu-

ated, the host thread sends a signal to the main thread

telling it its job has finished and the algorithm process can

continue once all the host threads have sent the go-ahead.

This stop and go model continues while more generations

are performed. At the end, a free memory function must be

called to deallocate the dynamic memory previously

allocated.

5.2.1 Data structures

The scheme proposed attempts to make full use of global

and constant memory. The purpose is to optimize memory

usage to achieve maximum memory throughput. Global

memory is employed to store the instances from the data-

set, the results of the match process, and the fitness values.

The most common dataset structure is a 2D matrix

where each row is an instance and each column is an

attribute. Loading the dataset to the GPU is simple: allocate

a 2D array of width number Instances 9 number Attributes

and copy the instances to the GPU. This approach, repre-

sented in Fig. 4, is simple-minded and it works but for

maximum performance, the memory accesses must be

Fig. 3 Model schema
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coalesced. When a warp executes an instruction that

accesses global memory, it coalesces the memory accesses

of the threads within the warp into one or more 32, 64, or

128-byte memory transactions depending on the size of the

word accessed by each thread and the distribution of the

memory addresses across the threads. In general, the more

transactions are necessary, the more unused words are

transferred in addition to the words accessed by the threads,

reducing the instruction throughput accordingly.

The threads in the match kernel perform the match

process of the classifiers over the instances. The i thread

performs the match process over the i instance. Therefore,

consecutive threads are executed over consecutive instan-

ces. The threads execute the phenotype of the individuals

represented in reverse Polish notation using a stack and an

interpreter. The phenotype follows the individual repre-

sentation shown in Sect. 3.1. Thus, when attribute nodes

have to obtain the attribute values for each instance cov-

ered by the threads within the warp, the attributes’

addresses are spaced numberAttributes memory addresses

(stride is numberAttributes 9 sizeof (datatype). Depending

on the number of attributes, a memory transaction would

transfer more or less useful values. Anyway, this memory

access pattern shown in Fig. 5 is altogether inefficient

because the memory transfer engine must split the memory

request into many memory transactions that are issued

independently.

The second approach shown in Fig. 6 for storing the

instances is derived from the first one. The problem is the

stride of the memory requests which is numberAttributes.

The solution is to lower the stride to one transposing the 2D

array that stores the instances. The length of the array

remains constant but instead of storing all the attributes of

an instance first, it stores the first attributes from all the

instances. Now, the memory access pattern shown in Fig. 7

demands attributes which are stored in consecutive mem-

ory addresses. Therefore, a single 128-byte memory

transaction would transfer the 32 integer or float attributes

requested by the threads in the warp.

For these accesses to be fully coalesced, both the width

of the thread block and the number of the instances must be

a multiple of the warp size. The third approach for

achieving fully coalesced accesses is shown in Figs. 8 and

9. Intra-array padding is necessary to align the addresses

requested to the memory transfer segment sizes. Thus, the

array must be expanded to multiple(numberInstances,32) 9

values.

The individuals to be evaluated must be uploaded in

each generation to the GPU constant memory. The GPU

has a read-only constant cache that is shared by all func-

tional units and speeds up reads from the constant memory

space, which resides in device memory. All the threads in a

warp perform the match process of the same individual

over different instances. Thus, memory requests point to

Fig. 5 Uncoalesced attributes request

Fig. 6 Coalesced instances data array structure

Fig. 7 Coalesced attributes request

Fig. 8 Fully coalesced intra-array padding instances data array structure

Fig. 9 Fully coalesced attributes request

Fig. 4 Uncoalesced instances data array structure
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the same node and memory address at a given time.

Servicing one memory read request to several threads

simultaneously is called broadcast. The resulting requests

are serviced at the throughput of the constant cache in case

of a cache hit, or at the throughput of device memory

otherwise.

The results of the match process for each individual and

instance must be stored in global memory for counting.

Again, the memory accesses must be coalesced to device

global memory. The best data structure is a 2D array

numberInstances 9 populationSize shown in Fig. 10.

Hence, the results write operations and the subsequent read

operations for counting are both fully coalesced.

The fitness values calculated by the reduction kernel

must be stored in global memory, then copied back to host

memory and set to the individuals. A simple structure to

store the fitness values of the individuals is a 1D array of

length populationSize.

5.2.2 Evaluation process on GPU

The evaluation process on the GPU is performed using two

kernel functions. The first kernel performs the match

operations between the individuals and the instances stor-

ing a certain result. Each thread is in charge of a single

match. The second kernel counts the results of an indi-

vidual by a reduction operation. This 2-kernel model

allows the user to perform the match processes and the

fitness values’ calculations completely independently.

Once the results of the match process are obtained, any

fitness function can be employed to calculate the fitness

values. This requires copying back to global memory a

large amount of data at the end of the first kernel. Franco

et al. (2010) proposes to minimise the volume of data by

performing a reduction in the first kernel. However, the

experiments carried out indicate to us that the impact on

the run-time of reducing data in the first kernel is larger

than that of storing the whole data array because our

approach allows the kernels to avoid synchronization

between threads and unnecessary delays. Furthermore, the

threads block dimensions can be ideally configured for

each kernel independently.

Match kernel The first kernel performs in parallel the

match operations between the classifiers and the instances.

Algorithm 3 shows the pseudo-code for this kernel.

The number of matches and hence the total number

of threads is populationSize 9 numberInstances. The

maximum amount of threads per block is 512 or 1,024

depending on the device’s computing capability. How-

ever, optimal values are multiples of the warp size.

A GPU multiprocessor relies on thread-level parallelism

to maximize utilization of its functional units. Utilization

is therefore directly linked to the number of resident

warps. At every instruction issue time, a warp scheduler

selects a warp that is ready to execute, if any, and issues

the next instruction to the active threads of the warp. The

number of clock cycles it takes for a warp to be ready to

execute its next instruction is called latency, and full

utilization is achieved when the warp scheduler always

has some instruction to issue for some warp at every

clock cycle during that latency period, i.e., when the

latency of each warp is completely hidden by other

warps.

The CUDA occupancy calculator spreadsheet allows

computing the multiprocessor occupancy of a GPU by a

given CUDA kernel. The multiprocessor occupancy is the

ratio of active warps to the maximum number of warps

supported on a multiprocessor of the GPU. The optimal

number of threads per block obtained from the experiments

carried out for this kernel is 128 for devices of compute

capability 19, distributed in 4 warps of 32 threads. The

active thread blocks per multiprocessor is 8. Thus, the

active warps per multiprocessor is 32. This means a 100%

occupancy of each multiprocessor for devices of compute

capability 19. Recent devices of compute capability 29

requires 192 threads per block to achieve 48 active warps

per multiprocesor and a 100% occupancy. The number of

Fig. 10 Results data array structure
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threads per block does not matter, since the model is

adapted to achieve maximum performance in any case.

The kernel is executed using a 2D grid of thread blocks

as shown in Fig. 11. The first dimension length is

populationSize. Using N threads per block, the number of

thread blocks to cover all the instances is ceil(number

Instances/N) in the second dimension of the grid. Thus,

the total number of thread blocks is populationSize 9

ceil(numberInstances/N). This number is important as it

concerns the scalability of the model in future devices.

NVIDIA recommends that one run at least twice as many

thread blocks as the number of multiprocessors.

Reduction kernel The second kernel reduces the results

previously calculated in the first kernel and obtains the fitness

value for each individual. The naive reduction operation

shown in Fig. 12 sums in parallel the values of an array

reducing iteratively the information. Our approach does not

need to sum the values, but counting the number of tp, fp, tn and

fn resulted for each individual from the match kernel. These

four values are employed to build the confusion matrix. The

confusion matrix allows us to apply different quality indexes

defined by the authors to get the individual’s fitness value.

Designing an efficient reduction kernel is not simple

because it is the parallelization of a natively sequential

task. In fact, NVIDIA propose six different approaches

(NVIDIA 2010). Some of the proposals take advantage of

the device shared memory. Shared memory provides a

small but fast memory shared by all the threads in a block.

It is quite desirable when the threads require synchroniza-

tion and work together to accomplish a task like reduction.

A first approach to count the number of tp, fp, tn and fn in

the results array using N threads is immediate. Each thread

counts for the Nth part of the array, specifically numberIn-

stances/numberThreads items, and then the values for each

thread are summed. This 2-level reduction is not optimal

because the best would be the N/2-level reduction, but

reducing each level requires the synchronization of the

threads. Barrier synchronization can impact performance by

forcing the multiprocessor to idle. Therefore, a 2 or 3-level

reduction has been proved to perform the best.

To achieve a 100% occupancy, the reduction kernel

must employ 128 or 192 threads, for devices of compute

capability 19 or 29, respectively. However, it is not trivial

to organize the threads to count the items. The first

approach involves the thread i counting numberInstances/

numberThreads items from the thread Idx 9 numberIn-

stances/numberThreads item. The threads in a thread-warp

would request the items spaced numberInstances memory

addresses. Therefore, once again one has a coalescing and

undesirable problem. Solving the memory requests pattern

is naive. The threads would count again numberInstances/

number Threads items but for coalescing purposes the

memory access pattern would be iteration 9 number-

Threads ? thread Idx. This way, the threads in a warp

request consecutive memory addresses that can be serviced

in fewer memory transactions. This second approach is

shown in Fig. 13. The reduction kernel is executed using a

Fig. 11 Match kernel 2D grid of thread blocks

Fig. 12 Parallel reduction algorithm

Fig. 13 Coalesced reduction kernel
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1D grid of thread blocks whose length is populationSize.

Using 128 or 192 threads per block, each thread block

performs the reduction of the results for an individual. A

shared memory array of length 4 9 numberThreads keeps

the temporary counts for all the threads. Once all the items

have been counted, a synchronization barrier is called and

the threads wait until all the threads in the thread block

have reached this point and all global and shared memory

accesses made by these threads prior to the synchronization

point are visible to all threads in the block. Finally, only

one thread per block performs the last sum, calculates the

fitness value and writes it to global memory.

6 Experimental study

This section describes the details of the experiments, dis-

cusses the application domains, the algorithms used, and

the settings of the tests.

6.1 Parallelized methods with our proposal

To show the flexibility and applicability of our model,

three different GP classification algorithms proposed in the

literature are tested using our proposal in the same way as

could be applied to other algorithms or paradigms. Next,

the major specifications of each of the proposals that have

been considered in the study are detailed.

(1) De Falco et al. (2001) propose a method to get the

fitness of the classifier by evaluating the antecedent over all

the patterns within the dataset. Falco et al. uses the logical

operators AND, OR, NOT, the relational operators

¼;\; [ ; � ; � and two numerical interval comparator

operators IN and OUT. The evolution process is repeated

as many times as classes holds the dataset. In each iteration

the algorithm focuses on a class and keeps the best rule

obtained to build the classifier.

The crossover operator selects two parent nodes and

swaps the two subtrees. The crossover is constrained by

two restrictions: the nodes must be compatible and the

depth of the tree generated must not exceed a preset depth.

The mutation operator can be applied either to a terminal

node or a non-terminal node. This operator selects a node ran-

domly, if it is a terminal node, it is replaced by another randomly

selected compatible terminal node, otherwise, the non-terminal

node is replaced by another randomly selected compatible

terminal node with the same arity and compatibility.

The fitness function calculates the difference between

the number of instances where the rule correctly predicts

the membership or not of the class and number of examples

where the opposite occurs and the prediction is wrong.

Finally, the fitness function is defined as:

fitness ¼ nI � ððtp þ tnÞ � ðfp þ fnÞÞ þ a � N

where nI is the number of instances, a is a value between 0

and 1 and N is the number of nodes in the rule. The closer

is a to 1, the more importance is given to simplicity.

(2) Tan et al. (2002) proposes a modified version of the

steady-state algorithm (Banzhaf et al. 1998) which uses an

external population and elitism to ensure that some of the

best individuals of the current generation survive in the

next generation.

The fitness function combines two indicators that are

commonplace in the domain, namely the sensitivity (Se)

and the specifity (Sp) defined as follows:

Se ¼ tp

tp þ w1fn
Sp ¼ tn

tn þ w2fp

The parameters w1 and w2 are used to weight the influence of

the false negatives and false positives cases in the fitness cal-

culation. This is very important because these values are crit-

ical in problems such as diagnosis. Decreasing w1 or

increasing w2 generally improves the results but also increases

the number of rules. The range [0.2–1] for w1 y [1–20] for w2 is

usually reasonable for the most cases. Therefore, the fitness

function is defined by the product of these two parameters:

fitness = Se 9 Sp. The proposal of Tan et al. is similar to that of

Falco et al. but the for OR operator because combinations of

AND and NOT operators which can generate all the necessary

rules. Therefore, the simplicity of the rules is affected. Tan

et al. also introduces the token competition technique pro-

posed by Wong and Leung (2000) and it is employed as an

alternative niche approach to promote diversity. Most of the

time, only a few rules are useful and cover most of the instances

while most others are redundant. The token competition is an

effective way to eliminate redundant rules.

(3) Bojarczuk et al. (2004) present a method in which

each rule is evaluated for all of the classes simultaneously

for a pattern. The classifier is formed by taking the best

individual for each class generated during the evolutionary

process. The Bojarczuk et al. algorithm does not have a

mutation operator.

This proposal uses the logical operators AND, OR and

NOT, although AND and NOT would be sufficient; this

way the size of the generated rules is reduced. GP does not

produce simple solutions. The comprehensibility of a rule

is inversely proportional to its size. Therefore Bojarczuk

et al. define the simplicity Sy of a rule:

Sy ¼ maxnodes� 0:5� numnodes� 0:5

maxnodes � 1

where maxnodes is the maximum depth of the syntaxtree,

numnodes is the number of nodes of the current rule, and Se

and Sp are the sensitivity and the specifity parameters

described in the Tan et al. with w1 and w2 equal to 1. The

fitness value is the product of these three parameters.

Speeding up the evaluation phase of GP classification algorithms 197

123



fitness ¼ Se� Sp� Sy

These three methods implement the match kernel and the

reduction kernel. The match kernel obtains the results from

the match processes of the prediction of the examples with

their actual class. The reduction kernel counts the tp, tn, fp
and fn values and computes the fitness values.

6.2 Comparison with other proposal

One of the most recent works and similar to our proposal is the

one by Franco et al. (2010). This work speeds up the evalu-

ation of the BioHEL system using GPGPUs. BioHEL is an

evolutionary learning system designed to cope with large-

scale datasets. They provide the results, the profiler informa-

tion, the CUDA and the serial version of the software in the

website http://www.cs.nott.ac.uk/*mxf/biohel. The experi-

ments carried out compare our model and its speedup to the

speedup obtained from the CUDA version of BioHEL system

over several problem domains in order to demonstrate the

improvements provided by the parallelization model pro-

posed. The configuration settings of the BioHEL system were

the provided by the authors in the configuration files.

6.3 Problem domains used in the experiments

To evaluate the performance of the proposed GP evaluation

model, some datasets selected from the UCI machine

learning repository (Newman and Asuncion 2007) and the

KEEL website (Alcalá-Fdez et al. 2009) are benchmarked

using the algorithms previously described. These datasets

are very varied considering different degrees of complex-

ity. Thus, the number of instances ranges from the simplest

containing 150 instances to the most complex containing

one million instances. Also, the number of attributes and

classes are different in different datasets. This information

is summarized in Table 2. The wide variety of datasets con-

sidered allows us to evaluate the model performance in both

low and high problem complexity. It is interesting to note that

some of these datasets such as KDDcup or Poker have not

been commonly addressed to date because they are not

memory and CPU manageable by traditional models.

6.4 General experimental settings

The GPU evaluation code is compiled into a shared library

and loaded into the JCLEC (Ventura et al. 2007) frame-

work using JNI. JCLEC is a software system for evolu-

tionary computation research developed in the Java

programming language. Using the library, our model can

be easily employed in any evolutionary learning system.

Experiments were run on two PCs both equipped with

an Intel Core i7 quad-core processor running at 2.66GHz

and 12 GB of DDR3 host memory. One PC features two

NVIDIA GeForce 285 GTX video cards equipped with

2 GB of GDDR3 video RAM and the other one features

two NVIDIA GeForce 480 GTX video cards equipped with

1.5 GB of GDDR5 video RAM. No overclock was made

to any of the hardware. The operating system was GNU/

Linux Ubuntu 10.4 64 bit.

The purpose of the experiments is to analyze the effect

of the dataset complexity on the performance of the GPU

evaluation model and the scalability of the proposal. Each

algorithm is executed over all the datasets using a

sequential approach, a threaded CPU approach, and a

massively parallel GPU approach.

7 Results

This section discusses the experimental results. The first

section compares the performance of our proposal over

different algorithms. The second section provides the

results of the BioHEL system and compares them with the

obtained by our proposal.

7.1 Results obtained using our proposal

In this section we discuss the performance achieved by our

proposal using three different GP algorithms. The execution

time and the speedups of the three classification algorithms

solving the various problems considered are shown in

Tables 3, 4 and 5 where each column is labeled with the

execution configuration indicated from left to right as fol-

lows: the dataset, the execution time of the native sequential

version coded in Java expressed in seconds, the speedup of

the model proposed using JNI and one CPU thread, two CPU

threads, four CPU threads, one GTX 285 GPU, two GTX 285

GPUs, and with one and two GTX 480 GPUs. The results

correspond to the executions of the algorithms with a popu-

lation of 200 individuals and 100 generations.

Table 2 Complexity of the datasets tested

Dataset #Instances #Attributes #Classes

Iris 150 4 3

New-thyroid 215 5 3

Ecoli 336 7 8

Contraceptive 1,473 9 3

Thyroid 7,200 21 3

Penbased 10,992 16 10

Shuttle 58,000 9 7

Connect-4 67,557 42 3

KDDcup 494,020 41 23

Poker 1,025,010 10 10
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The results in the tables provide useful information that

in some cases, the external CPU evaluation is inefficient

for certain datasets such as Iris, New-thyroid or Ecoli. This

is because the time taken to transfer the data from the Java

virtual machine memory to the native memory is higher

than just doing the evaluation in the Java virtual machine.

However, in all the cases, regardless of the size of the dataset,

the native GPU evaluation is always considerably faster. If we

Table 3 Falco et al. algorithm execution time and speedups

Execution time (s) Speedup

Dataset Java 1 CPU 2 CPU 4 CPU 1 285 2 285 1 480 2 480

Iris 2.0 0.48 0.94 1.49 2.96 4.68 2.91 8.02

New-thyroid 4.0 0.54 1.03 1.99 4.61 9.46 5.18 16.06

Ecoli 13.7 0.49 0.94 1.38 6.36 10.92 9.05 17.56

Contraceptive 26.6 1.29 2.52 3.47 31.43 55.29 50.18 93.64

Thyroid 103.0 0.60 1.15 2.31 37.88 69.66 75.70 155.86

Penbased 1,434.1 1.15 2.26 4.37 111.85 207.99 191.67 391.61

Shuttle 1,889.5 1.03 2.02 3.87 86.01 162.62 182.19 356.17

Connect-4 1,778.5 1.09 2.14 3.87 116.46 223.82 201.57 392.86

KDDcup 154,183.0 0.91 1.77 3.30 136.82 251.71 335.78 653.60

Poker 108,831.6 1.25 2.46 4.69 209.61 401.77 416.30 820.18

Table 4 Bojarczuk et al. algorithm execution time and speedups

Execution time (s) Speedup

Dataset Java 1 CPU 2 CPU 4 CPU 1 285 2 285 1 480 2 480

Iris 0.5 0.50 0.96 1.75 2.03 4.21 2.39 5.84

New-thyroid 0.8 0.51 1.02 1.43 2.99 5.85 3.19 9.45

Ecoli 1.3 0.52 1.02 1.15 3.80 8.05 5.59 11.39

Contraceptive 5.4 1.20 2.40 2.47 14.58 31.81 26.41 53.86

hyroid 27.0 0.56 1.11 2.19 25.93 49.53 56.23 120.50

Penbased 42.6 0.96 1.92 3.81 18.55 36.51 68.01 147.55

Shuttle 222.5 1.18 2.35 4.66 34.08 67.84 117.85 253.13

Connect-4 298.9 0.69 1.35 2.65 42.60 84.92 106.14 214.73

KDDcup 3,325.8 0.79 1.55 2.98 30.89 61.80 135.28 306.22

Poker 6,527.2 1.18 2.32 4.45 39.02 77.87 185.81 399.85

Table 5 Tan et al. algorithm execution time and speedups

Execution time (s) Speedup

Dataset Java 1 CPU 2 CPU 4 CPU 1 285 2 285 1 480 2 480

Iris 2.6 0.44 0.80 1.01 2.94 5.44 4.90 9.73

New-thyroid 6.0 0.77 1.43 1.78 7.13 12.03 9.15 21.74

Ecoli 22.5 0.60 1.16 2.09 9.33 16.26 14.18 25.92

Contraceptive 39.9 1.28 2.44 3.89 40.00 64.52 60.60 126.99

Thyroid 208.5 1.10 2.11 2.66 64.06 103.77 147.74 279.44

Penbased 917.1 1.15 2.23 4.25 86.58 148.24 177.78 343.24

Shuttle 3,558.0 1.09 2.09 3.92 95.18 161.84 222.96 431.80

Connect-4 1,920.6 1.35 2.62 4.91 123.56 213.59 249.81 478.83

KDDcup 185,826.6 0.87 1.69 3.20 83.82 138.53 253.83 493.14

Poker 119,070.4 1.27 2.46 4.66 158.76 268.69 374.66 701.41
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look at the results of the smallest datasets such as Iris, New-

thyroid and Ecoli, it can be seen that its speedup is acceptable

and specifically Ecoli performs up to 259 faster. Speeding up

these small datasets would not be too useful because of the

short run time required, but it is worthwhile for larger data sets.

On the other hand, if we focus on complex datasets, the

speedup is greater because the model can take full advantage

of the GPU multiprocessors’ offering them many instances to

parallelize. Notice that KDDcup and Poker datasets perform

up to 6539 and 8209 faster, respectively. We can also

appreciate that the scalability of the proposal is almost perfect,

since doubling the number of threads or the graphics devices

almost halves the execution time. Figure 14 summarizes the

average speedup, depending on the number of instances.

The fact of obtaining significant enhancements in all

problem domains (both small and complex datasets) as has

been seen is because our proposal is a hybrid model that takes

advantage of both the parallelization of the individuals and

the instances. A great speedup is not only achieved by clas-

sifying a large number of instances but by a large enough

population. The classification of small datasets does not

require many individuals but high-dimensional problems

usually require a large population to provide diversity in the

population genetics. Therefore, a great speedup is achieved

by maximizing both parameters. These results allow us to

determine that the proposed model achieves a high speedup

in the algorithms employed. Specifically, the best speedup is

8209 when using the Falco et al. algorithm and the poker

dataset; hence, the execution time can be impressively

reduced from 30 h to only 2 min.

7.2 Results of the other proposal

This section discusses the results obtained by BioHEL. The

results for the BioHEL system are shown in Table 6 where

the first column indicates the execution time of the serial

version expressed in seconds, the second column shows the

speedup of the CUDA version using a NVIDIA GTX 285

GPU, and the third using a NVIDIA GTX 480 GPU. These

results show that for a dataset with a low number of

instances, the CUDA version of BioHEL performs slower

than the serial version. However, the speedup obtained is

higher when the number of instances increases, achieving a

speedup of up to 34 times compared to the serial version.

The speedup results for the BioHEL system shown in

Table 6 compared with the results obtained by our proposal

shown in Tables 3, 4 and 5 demonstrate the better perfor-

mance of our model. One of the best advantages of our

proposal is that it scales to multiple GPU devices, whereas

BioHEL does not. Both BioHEL and our proposal employ

a 2-kernel model. However, we do not to perform a one-

level parallel reduction in the match kernel, in order to

avoid synchronization between threads and unnecessary

delays even if it means storing the whole data array. Thus,

the memory requirements are larger but the reduction

performs faster as the memory accesses are fully coalesced

and synchronized. Moreover, our proposal improves the

instruction throughput upto 1.45, i.e., the number of

instructions that can be executed in a unit of time. There-

fore, our proposal achieves 1 Teraflops performance using

two GPUs NVIDIA GTX 480 with 480 cores running at

700 MHz. This information is provided in the CUDA

profiler available in the respective websites.

Additional information of the paper such as the details of the

kernels, the datasets employed, the experimental results and

the CUDA profiler information are published in the website:

http://www.uco.es/grupos/kdis/kdiswiki/SOCOGPU.

8 Conclusions and future work

The classification of large datasets using EAs is a time

consuming computation as the problem complexity

increases. To solve this problem, many studies have aimed

at optimizing the computational time of EAs. In recent

years, these studies have focused on the use of GPU

devices whose main advantage over previous proposals are

Table 6 BioHEL execution time and speedups

Execution time (s) Speedup

Dataset Serial 1 285 1 480

Iris 0.5 0.64 0.66

New-thyroid 0.9 0.93 1.32

Ecoli 3.7 1.14 6.82

Contraceptive 3.3 3.48 3.94

Thyroid 26.4 2.76 8.70

Penbased 147.9 5.22 20.26

Shuttle 418.4 11.54 27.84

Connect-4 340.4 10.18 12.24

KDDcup 503.4 14.95 28.97

Poker 3,290.9 11.93 34.02

Fig. 14 Average speedups
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their massively parallel MIMD execution model that allows

researchers to perform parallel computing where million

threads can run concurrently using affordable hardware.

In this paper there has been proposed a GPU evaluation

model to speed up the evaluation phase of GP classification

algorithms. The parallel execution model proposed along

with the computational requirements of the evaluation of

individuals, creates an ideal execution environment where

GPUs are powerful. Experimental results show that our

GPU-based proposal greatly reduces the execution time

using a massively parallel model that takes advantage of

fine-grained and coarse-grained parallelization to achieve a

good scalability as the number of GPUs increases. Spe-

cifically, its performance is better in high-dimensional

problems and databases with a large number of patterns

where our proposal has achieved a speedup of up to 8209

compared to the non-parallel version.

The results obtained are very promising. However, more

work can be done in this area. Specifically, the develop-

ment of hybrid models is interesting from the perspective

of evolving in parallel a population of individuals. The

classical approach of genetic algorithms is not completely

parallelizable because of the serialization of the execution

path of certain pieces of code. There have been several

proposals to overcome these limitations achieving excel-

lent results. The different models used to perform distrib-

uted computing and parallelization approaches focus on

two approaches (Dorigo and Maniezzo 1993): the islands

model, where several isolated subpopulations evolve in

parallel and periodically swap their best individuals from

neighboring islands, and the neighborhood model that

evolves a single population and each individual is placed in

a cell of a matrix.

These two models are available for use in MIMD

parallel architectures in the case of islands and SIMD

models for the neighborhood. Therefore, both perspec-

tives can be combined to develop multiple models of

parallel and distributed algorithms (Harding and Banzhaf

2009), which take advantage of the parallel threads in the

GPU, the use of multiple GPUs, and the distribution of

computation across multiple machines networked with

these GPUs.
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a b s t r a c t

Individuals from Pittsburgh rule-based classifiers represent a complete solution to the classification
problem and each individual is a variable-length set of rules. Therefore, these systems usually demand
a high level of computational resources and run-time, which increases as the complexity and the size of
the data sets. It is known that this computational cost is mainly due to the recurring evaluation process of
the rules and the individuals as rule sets. In this paper we propose a parallel evaluation model of rules
and rule sets on GPUs based on the NVIDIA CUDA programming model which significantly allows
reducing the run-time and speeding up the algorithm. The results obtained from the experimental study
support the great efficiency and high performance of the GPU model, which is scalable to multiple GPU
devices. The GPUmodel achieves a rule interpreter performance of up to 64 billion operations per second
and the evaluation of the individuals is speeded up of up to 3.461� when compared to the CPU model.
This provides a significant advantage of the GPU model, especially addressing large and complex
problems within reasonable time, where the CPU run-time is not acceptable.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Evolutionary computation and its application to machine
learning and data mining, and specifically, to classification pro-
blems, has attracted the attention of researchers over the last
decade [1–5]. Classification is a supervised machine learning task
which consists in predicting class membership of uncategorised
examples using the properties of a set of train examples from
which a classification model has been inducted [6].

Rule-based classification systems are especially useful in appli-
cations and domains which require comprehensibility and
clarity in the knowledge discovery process, expressing information
in the form of IF–THEN classification rules. Evolutionary rule-
based algorithms take advantage of fitness-biased generational
inheritance evolution to obtain rule sets, classifiers, which
cover the train examples and produce class prediction over new
examples.

Rules are encoded into the individuals within the population of
the algorithm in two different ways: individual¼rule, or indivi-
dual¼set of rules. Most evolutionary rule-based algorithms follow
the first approach due to its simplicity and efficiency, whereas the
latter, also known as Pittsburgh style algorithms, are not so usually
employed because they are considered to perform slowly [7].
However, Pittsburgh approaches comprise other advantages such
as providing individuals as complete solutions to the problem

and allowing considering relations between the rules within the
evolutionary process.

The efficiency, computational cost, and run-time of Pittsburgh
rule-based systems are a primary concern and a challenge for
researchers [8,9], especially when seeking their scalability to large
scale databases [10,11], processing vast amounts of data within
a reasonable amount of time. Therefore, it becomes crucial to
design efficient parallel algorithms capable of handling these large
amounts of data [12–15].

Parallel implementations have been employed to speed up
evolutionary algorithms, including multi-core and distributed
computing [16,17], master–slave models [18], and grid computing
environments [19,20]. Over the last few years, increasing attention
has focused on graphic processing units (GPUs). GPUs are devices
with multi-core architectures and massive parallel processor units,
which provide fast parallel hardware for a fraction of the cost of
a traditional parallel system. Actually, since the introduction of the
computer unified device architecture (CUDA) in 2007, researchers
all over the world have harnessed the power of the GPU for
general purpose GPU computing (GPGPU) [21–24].

The use of GPGPU has already been studied for speeding up
algorithms within the framework of evolutionary computation and
data mining [25–28], achieving high performance and promising
results. Specifically, there are GPU-accelerated genetic rule-based
systems for individual¼rule approaches, which have been shown
to achieve high performance [29–31]. Franco et al. [29] reported
a speedup of up to 58� using the BioHEL system. Cano et al. [30]
reported a speedup of up to 820� , considering a scalable model
using multiple GPU devices. Augusto [31] reported a speedup of up
to 100� compared to a single-threaded model and delivering
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almost 10� the throughput of a twelve-core CPU. These proposals
are all focused on speeding up individual¼rule approaches. How-
ever, as far as we know, there are no GPU-based approaches to date
using an individual¼set of rules representation.

In this paper we present an efficient Pittsburgh individuals
evaluation model on GPUs which parallelises the fitness computation
for both rules and rules sets, applicable to any individual¼set of rules
evolutionary algorithm. The GPU model is scalable to multiple GPU
devices, which allows addressing of larger data sets and population
sizes. The rules interpreter, which checks the coverage of the rules
over the instances, is carefully designed to maximise its efficiency
compared to traditional rules stack-based interpreters. Experimental
results demonstrate the great performance and high efficiency of the
proposed model, achieving a rules interpreter performance of up to 64
billion operations per second. On the other hand, the individual
evaluation performance achieves a speedup of up to 3.461� when
compared to the single-threaded CPU implementation, and a speedup
of 1.311� versus the parallel CPU version using 12 threads.

This paper is organised as follows. In the next section, genetic
rule-based systems and their encodings are introduced, together
with the definition of the CUDA programming model on the GPU.
Section 3 presents the GPU evaluation model and its implementa-
tion in CUDA kernels. Section 4 introduces the experimental study
setup, whose results are given in Section 5. Finally, Section 6
collects some concluding remarks.

2. Background

This section introduces the genetic rule-based systems and the
encoding of the individuals. Finally, the CUDA programming model
on the GPU is presented.

2.1. Genetic rule-based systems

Genetic algorithms (GAs) evolve a population of individuals
which correspond to candidate solutions to a problem. GAs have
been used for learning rules (Genetic rule-based systems), includ-
ing crisp and fuzzy rules, and they follow two approaches for
encoding rules within a population.

The first one represents an individual as a single rule (indivi-
dual¼rule). The rule base is formed by combining several indivi-
duals from the population (rule cooperation) or via different
evolutionary runs (rule competition). This representation results
in three approaches:

� Michigan: they employ reinforcement learning and the GA is
used to learn new rules that replace the older ones via
competition through the evolutionary process. These systems
are usually called learning classifier systems [32], such as XCS
[33], UCS [34], Fuzzy-XCS [35], and Fuzzy-UCS [36].

� Iterative Rule Learning (IRL): individuals compete to be chosen
in every GA run. The rule base is formed by the best rules
obtained when the algorithm is run multiple times. SLAVE [37],
SIA [38] and HIDER [39] are examples which follow this model.

� Genetic Cooperative-Competitive Learning (GCCL): the whole
population or a subset of individuals encodes the rule base. In
this model, the individuals compete and cooperate simulta-
neously. This approach makes it necessary to introduce
a mechanism to maintain the diversity of the population in
order to avoid a convergence of all the individuals in the
population. GP-COACH [40] or COGIN [41] follow this approach.

The second one represents an individual as a complete set of rules
(individual¼set of rules), which is also known as the Pittsburgh
approach. The main advantage of this approach compared to the first

one is that it allows addressing of the cooperation–competition
problem, involving the interaction between rules in the evolutionary
process [42,43]. Pittsburgh systems (especially naive implementations)
are slower, since they evolve more complex structures and they assign
credit at a less specific (and hence less informative) level [44].
Moreover, one of their main problems is controlling the number of
rules, which increases the complexity of the individuals, adding
computational cost to their evaluation and becoming an unmanage-
able problem. This problem is known as the bloat effect [45], i.e., a
growth without control of the size of the individuals.

One method based on this approach is the Memetic Pittsburgh
Learning Classifier System (MPLCS) [8]. In order to avoid the
bloat effect, they employ a rule deletion operator and a fitness
function based on the minimum description length [46],
which balances the complexity and accuracy of the rule set.
Moreover, this system uses a windowing scheme [47] that reduces
the run-time of the system by dividing the training set into many
non-overlapping subsets over which the fitness is computed at
each GA iteration.

2.2. CUDA programming model

Computer unified device architecture (CUDA) [48] is a parallel
computing architecture developed by NVIDIA that allows program-
mers to take advantage of the parallel computing capacity of NVIDIA
GPUs in a general purpose manner. The CUDA programming model
executes kernels as batches of parallel threads. These kernels comprise
thousands to millions of lightweight GPU threads per each kernel
invocation.

CUDA's threads are organised into thread blocks in the form of a
grid. Thread blocks are executed in streaming multiprocessors.
A stream multiprocessor can perform zero-overhead scheduling to
interleave warps (a warp is a group of threads that execute
together) and hide the overhead of long-latency arithmetic and
memory operations. GPU's architecture was rearranged from SIMD
(Single Instruction, Multiple Data) to MIMD (Multiple Instruction,
Multiple Data), which runs independent of separate program codes.
Thus, up to 16 kernels can be executed concurrently as long as there
are multiprocessors available. Moreover, asynchronous data trans-
fers can be performed concurrently with the kernel executions.
These two features allow speeding up of the execution compared to
a sequential kernel pipeline and synchronous data transfers, as in
the previous GPU architectures.

There are four different main memory spaces: global, constant,
shared, and local. These GPU memories are specialised and have
different access times, lifetimes, and output limitations.

� Global memory: A large long-latency memory that exists
physically as an off-chip dynamic device memory. Threads
can read and write global memory to share data and must
write the kernel's output to be readable after the kernel
terminates. However, a better way to share data and improve
performance is to take advantage of shared memory.

� Shared memory: A small low-latency memory that exists
physically as on-chip registers and its contents are only main-
tained during thread block execution and are discarded
when the thread block completes. Kernels that read or write
a known range of global memory with spatial or temporal
locality can employ shared memory as a software-managed
cache. Such caching potentially reduces global memory band-
width demands and improves overall performance.

� Local memory: Each thread also has its own local memory
space as registers, so the number of registers a thread uses
determines the number of concurrent threads executed in the
multiprocessor, which is called multiprocessor occupancy. To
avoid wasting hundreds of cycles while a thread waits for a
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long-latency global-memory load or store to complete, a
common technique is to execute batches of global accesses,
one per thread, exploiting the hardware's warp scheduling to
overlap the threads' access latencies.

� Constant memory: This memory is specialised for situations in
which many threads will read the same data simultaneously.
This type of memory stores data written by the host thread, is
accessed constantly, and does not change during the execution
of the kernel. A value read from the constant cache is broadcast
to all threads in a warp, effectively serving all loads from
memory with a single-cache access. This enables a fast, single-
ported cache to feed multiple simultaneous memory accesses.
There are some recommendations for improving the performance

on a GPU [49]. Memory accesses must be coalesced as with accesses
to global memory. Global memory resides in device memory and is
accessed via 32, 64, or 128-byte segment memory transactions. It is
recommended to perform a fewer but larger memory transactions.
When a warp executes an instructionwhich accesses global memory,
it coalesces the memory accesses of the threads within the warp into
one or more of these memory transactions depending on the size of
the word accessed by each thread and the distribution of the
memory addresses across the threads. In general, the more the
transactions are necessary, the more the unused words are trans-
ferred in addition to the words accessed by the threads, reducing the
instruction throughput accordingly.

To maximise global memory throughput, it is therefore important
to maximise the coalescing, by following optimal access patterns,
using data types that meet the size and alignment requirements, or
padding data. For these accesses to be fully coalesced, both the width
of the thread block and the width of the array must be a multiple of
the warp size.

3. Parallel Pittsburgh evaluation on GPU

This section first introduces the encoding of the Pittsburgh
individuals on the GPU. Then, it will present the evaluation
procedure of an individual's rules. Finally, it will describe the
evaluation process of an individual's fitness.

3.1. Pittsburgh individual encoding

Pittsburgh individuals are variable-length sets of rules which
may include a default rule class prediction, interesting when using
decision lists [50] as individual representation. Rules are one of the
formalisms most often used to represent classifiers (decision trees
can be easily converted into a rule set [51]). The IF part of the rule
is called the antecedent and contains a combination of attribute-
value conditions on the predicting attributes. The THEN part is
called the consequent and contains the predicted value for the
class. This way, a rule assigns a data instance to the class pointed

out by the consequent if the values of the predicting attributes
satisfy the conditions expressed in the antecedent. Rule specifica-
tion can be formally defined by means of a context-free grammar
[52] as shown in Fig. 1.

Fig. 2 shows how the rules are stored in the GPU memory. Rules
are usually computed by means of a stack-based interpreter [53,54].
Traditional stack-based interpreters perform push and pop operations
on a stack, involving the operator and operands found in the rule. The
rule encoding we employ allows the interpreter to achieve maximal
efficiency by minimizing the number of push and pop operations on
the stack, reading the rules from the left to the right. Attribute-value
comparisons are expressed in prefix notation, which places operators
to the left of their operands, whereas logical operators are expressed in
postfix notation, in which the operator is placed after the operands.
This way, the efficiency of the interpreter is increased by minimizing
the number of operations on the stack. The interpreter avoids pushing
or popping unnecessary operands and behaves as a finite-state
machine. For example, the first rule represented in the individual
from Fig. 2 reads the first element and finds the 4 operator. The
interpreter knows the cardinality of the 4 operator, which has two
operands. Thus, it directly computes 4 At1 V1 and pushes the result
into the stack. Then, the next element is o , it computes o At2 V2 and
pushes the result. Finally, the AND operator is found, the interpreter
pops the two operands from the stack and returns the AND Boolean
computation.

This interpreter model provides a natural representation
which allows dealing with all types of logical operators with
different cardinalities and operand types while keeping an effi-
cient performance.

3.2. Evaluation of particular rules

Rules within individuals must be evaluated over the instances of
the data set in order to assign a fitness to the rules. The evaluation of
the rules is divided into two steps, which are implemented in two
GPU kernels. The first one, the coverage kernel, checks the coverage of
the rules over the instances of the data set. The second one, the
reduction kernel, performs a reduction count of the predictions of the
rules, to compute the confusion matrix fromwhich the fitness metrics
for a classification rule can be obtained.

3.2.1. Rule coverage kernel
The coverage kernel executes the rule interpreter and checks

whether the instances of the data set satisfy the conditions
comprised in the rules within the individuals. The interpreter
takes advantage of the efficient representation of the individuals
described in Section 3.1 to implement an efficient stack-based
procedure in which the partial results coming from the child nodes
are pushed into a stack and pulled back when necessary.

The interpreter behaves as a single task being executed on the
Single Instruction Multiple Data (SIMD) processor, while the rules
and instances are treated as data. Therefore, the interpreter
parallelises the fitness computation cases for individuals, rules,
and instances. Each thread is responsible for the coverage of a
single rule over a single instance, storing the result of the
matching of the coverage and the actual class of the instance to
an array. Threads are grouped into a 3D grid of thread blocks,
whose size depends on the number of individuals (width),
instances (height), and rules (depth), as represented in Fig. 3.Fig. 1. Grammar specification for the rules.

Fig. 2. Pittsburgh individual encoding.
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Thus, a thread block represents a collection of threads which
interpret a common rule over a subset of different instances,
avoiding a divergence of the kernel, which is known to be one of
the major efficiency problems of NVIDIA CUDA programming.

The number of threads per block is recommended to be a multiple
of the warp size (a warp is a group of threads that execute together in
a streaming multiprocessor), usually being 128, 192, 256, …, up to
1024 threads per block. This number is important as it concerns the
scalability of the model in future GPU devices with a larger number of
processors. NVIDIA recommends running at least twice as many
thread blocks as the number of multiprocessors in the GPU, and
provides an occupancy calculator which reports the GPU occupancy
regarding the register and shared memory pressure, and the number
of threads per block. Table 1 shows the GPU occupancy to be
maximised for different block sizes. 192 threads per block is the best
choice since it achieves 100% occupancy and provides more active
thread blocks per multiprocessor to hide latency arising from register
dependencies, and therefore, a wider range of possibilities given to the
scheduler to issue concurrent block to the multiprocessors. Moreover,

while the occupancy is maximal, the smaller number of threads per
block there is, the higher the number of blocks, which provides better
scalability to future GPU devices capable of handling more active
blocks concurrently. Scalability to multiple GPU devices is achieved by
splitting the population into as many GPUs as available, and each GPU
is responsible for evaluating a subset of the population.

Thread accesses to global memory must be coalesced to achieve
maximum performance and memory throughput, using data types
that meet the size and alignment requirements, or padding data
arrays. For these accesses to be fully coalesced, both the width of
the thread block and the width of the array must be a multiple of
the warp size. Therefore, the results array employs intra-array
padding to align the memory addresses to the memory transfer
segment sizes [30,55]. Since the number of threads per block is
said to be 192, the results array intra-array padding forces the
memory alignment to 192 float values, i.e., 768 bytes. Thus,
memory accesses are fully coalesced and the best throughput is
achieved. Memory alignment and padding details can be found in
Section 5.3.2 from the NVIDIA CUDA programming guide.

Listing 1. Rule coverage kernel and interpreter.
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Threads within a warp shall request consecutive memory
addresses that can be serviced in fewer memory transactions. All
the threads in a warp evaluate the same rule but over different
instances. Thus, the data set must be stored transpose in memory
to provide fully coalescing memory requests to the threads from
the warp.

The codes for the coverage kernel and the rule interpreter are
shown in Listing 1. The coverage kernel receives as input four
arrays: an array of attributes values, an array of class values of the
instances of the dataset, an array containing the rules to evaluate,
and an array containing the consequents of the rules. It computes
the matching of the results and returns them in an array of
matching results. The result of the matching of the rule prediction
and the actual class of an instance can take four possible values:
true positive (TP), true negative (TN), false positive (FP), or false
negative (FN). Threads and blocks within the kernel are identified
by the built-in CUDA variables threadIdx, blockIdx and blockDim,
which specify the grid and block dimensions and the block and
thread indexes, following the 3D representation shown in Fig. 3.
Further information about CUDA threads indices can be seen in
Section B.4 from CUDA programming guide.

3.2.2. Rule fitness kernel
The rule fitness kernel calculates the fitness of the rules by

means of the performance metrics obtained from the confusion

matrix. The confusion matrix is a two dimensional table
which counts the number of true positives, false positives, true
negatives, and false negatives resulting from the matching of a
rule over the instances of the data set. There are many well-known
performance metrics for classification, such as sensitivity,
specificity, precision, recall, F-Measure. The algorithm assigns the
fitness values corresponding to the objective or objectives to
optimise, e.g., to maximise both sensitivity and specificity at the
same time.

The rule fitness kernel is implemented using a 2D grid
of thread blocks, whose size depends on the number of
individuals (width) and the number of rules (height). The
kernel performs a parallel reduction operation over the matching
results of the coverage kernel. The naive reduction operation sums
in parallel the values of an array reducing iteratively the
information.

Our approach does not need to sum the values, but coun-
ting the number of TP , TN , FP and FN . Oðlog 2 NÞ parallel
reduction is known to perform most efficiently in multi-core
CPU processors with large arrays. However, our best results on
GPUs were achieved using a 2-level parallel reduction
with sequential addressing using 128 threads per block, which
is shown in Fig. 4. Accessing sequential memory address in
parallel is more efficient than accessing non-contiguous
addresses since contiguous data are transferred in a single
memory transaction and provides coalesced accesses to
threads. Finally, the code for the rule fitness kernel is shown
in Listing 2. The input of the kernel is the array of
matching results, and returns an array of fitness values. The 2-
level parallel reduction takes advantage of GPU shared
memory, in which threads within a block collaborate to
compute partial counts of the confusion matrix values.
Each thread is responsible to count the results from the
base index to the top index. Therefore, contiguous threads
address contiguous memory indexes, achieving maximum
throughput.

Fig. 3. 3D grid of thread blocks.

Table 1
Threads per block and GPU occupancy.

Threads per block 128 192 256 320
Active threads per multiprocessor 1024 1536 1536 1280
Active warps per multiprocessor 32 48 48 40
Active thread blocks per multiprocessor 8 8 6 4
Occupancy of each multiprocessor (%) 67 100 100 83
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Listing 2. Rules fitness kernel.

Fig. 4. 2-level parallel reduction with sequential addressing.
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3.3. Evaluation of rule sets

Pittsburgh individuals encode sets of rules as complete solu-
tions to the classification problem (classifiers). Many performance
measures of a classifier can be evaluated using the ion matrix. The
standard performance measure for classification is the accuracy
rate, which is the number of successful predictions relative to the
total number of classifications. The evaluation of the classifiers is
divided into two steps, which are implemented in two GPU
kernels. The first one, the classification kernel, performs the class
prediction for the instances of the data set. The second one, the
rule set fitness kernel, performs a reduction count of the classifier
predictions to compute the confusion matrix, from which the
fitness metrics for a classifier can be obtained.

3.3.1. Rule set classification kernel
The rule set classification kernel performs the class prediction

for the instances of the data set using the classification rules,
which are linked as a decision list. An instance is predicted to the
class pointed out by the consequent of the first rule which satisfies
the conditions of the antecedent. If no rule covers the instance, it is
classified using the default class.

In order to save time, the classification kernel reuses the
matching results from the rule coverage kernel, and therefore,
the rules do not need to be interpreted again. The classifier follows
the decision list inference procedure to perform the class
prediction. Notice that the class prediction is only triggered when
the rule is known to cover the instance (true positive or false
positive).

Listing 3. Rule set classification kernel.
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The classification kernel is implemented using a 2D grid of
thread blocks, whose size depends on the number of indivi-
duals (width) and instances (height). The kernel setup is
similar to the rule coverage kernel. The number of threads
per block is also 192, to maximise the occupancy of the
streaming multiprocessors. Listing 3 shows the code for the
classification kernel. The input of the kernel is the array of
matching results, an array with information about the instance
class and the default class, which applies when none of the
rules covers the instance (default hypothesis).

3.3.2. Rule set fitness kernel

Listing 4. Rule sets fitness kernel.

The rule set fitness kernel performs a reduction operation over
the classifier predictions to count the number of successful
predictions. The reduction operation is similar to the one from
the rule fitness kernel from Section 3.2.2 and counts the number of
correctly classified instances to compute the accuracy of the
classifier. The settings for the kernel and the reduction operation
are the same. The kernel is implemented using a 1D grid of thread
blocks whose length depends only on the number of individuals.
The code for the rule set fitness kernel is shown in Listing 4. The
kernel receives as input the array of prediction results from the
rule set classification kernel, and returns an array of fitness values
which defines the accuracy of the classifiers. Similarly than the
rules fitness kernel, shared memory is employed to count partial
results and guarantee contiguous and coalesced memory accesses.

4. Experimental setup

This section describes the experimental study setup, the hard-
ware configuration, and the experiments designed to evaluate the
efficiency of the GPU model.

4.1. Hardware configuration

The experiments were run on a cluster of machines equipped
with dual Intel Xeon E5645 processors running at 2.4 GHz and
24 GB of DDR3 host memory. The GPUs employed were two
NVIDIA GTX 480 video cards equipped with 1.5 GB of GDDR5
video RAM. The GTX 480 GPU comprised 15 multiprocessors and
480 CUDA cores. The host operating system was a GNU/Linux
Rocks cluster 5.4.3 64 bit together with CUDA 4.1 runtime.

4.2. Problem domains

The performance of the GPUmodel was evaluated on a series of
data sets collected from the UCI machine learning repository [56]
and the KEEL data sets repository [57]. These data sets are very
varied, with different degrees of complexity. Thus, the number of

instances ranges from the simplest, containing 150 instances, to
the most complex, containing one million instances. The number
of attributes and classes also differ significantly to represent a
wide variety of real word data problems. This information is
summarised in Table 2. The wide variety of data sets allowed us
to evaluate the model performance on problems of both low and
high complexities.

4.3. Experiments

The experimental study comprises three experiments designed
to evaluate the performance and efficiency of the model. Firstly,
the performance of the rules interpreter was evaluated. Then, the
times required for evaluating individuals by CPU and GPU were
compared. Finally, the efficiency of the model was analysed
regarding performance and power consumption.

4.3.1. Rule interpreter performance
The efficiency of rule interpreters is often reported by means of

the number of primitives interpreted by the system per second,
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similar to Genetic Programming interpreters, which determine the
number of Genetic Programming operations per second (GPops/s)
[31,53,54].

In this experiment, the performance of the rules interpreter
was evaluated by running the interpreter with a different number
of rules over data sets with varied number of instances and
attributes. Thus, the efficiency of the interpreter was analysed
regarding its scalability to larger numbers of rules and instances.

4.3.2. Individual evaluation performance
The second experiment evaluated the performance of the

evaluation of the individuals and their rules in order to compute
their fitness values. This experiment compared the execution
times (these times consider in the case of CPU cluster, data
transfers between compute nodes and the GPU times, the data
transfer between host and GPU memory) dedicated to evaluate
different population sizes over the data sets. The range of popula-
tion sizes varies from 10 to 100 individuals. This range of popula-
tion sizes is commonly used in most of the classification problems
and algorithms, and represents a realistic scenario for real world
data. The number of rules of each individual is equal to the
number of classes of the data set, and the length of the rules
varies stochastically regarding the number of attributes of the data
set, i.e., rules are created adapted to the problem complexity. Thus,
the experiments are not biased for unrealistic more complex rules
and individuals which would obtain better speedups. The purpose
of this experiment was to obtain the speedups of the GPU model
and check its scalability to large data sets and multiple GPU
devices. Extension to multiple GPUs is simple, the population is
divided into as many GPUs as available, and each GPU is respon-
sible for evaluating a subset of the population. Therefore, the
scalability is guaranteed to larger population sizes and further
number of GPU devices.

4.3.3. Performance per Watt
Power consumption has increasingly become a major concern

for high-performance computing, due not only to the associated
electricity costs, but also to environmental factors [58]. The power
efficiency is analysed based on the throughput results on the
evaluated cases. To simplify the estimates, it is assumed that the
devices work at their full occupancy, that is, at maximum power
consumption [31]. One NVIDIA GTX 480 GPU consumes up to
250 W, whereas one Intel Xeon E5645 consumes up to 80 W. The
efficiency of the model is evaluated regarding the performance per
Watt (GPops/s/W). The power consumption is reported to the CPU
or GPU itself and it does not take into account the base system
power consumption. We followed this approach because it is the
commonly accepted way both in academia and industry [31] to
report the performance per Watt efficiency.

5. Results

Table 3 shows the rule interpreter execution times and perfor-
mance in terms of the number of primitives interpreted
per second (GPops/s). Each row represents the case of a stack-
based interpretation of the rules from the population over the
instances of the data sets. The number of rules of each individual is
equal to the number of classes of the data set. The number of
primitives, Genetic Programming operations (GPops), reflects the
total number of primitives to be interpreted for that case, which
depends on the variable number of rules, their length, and the
number of instances, representing the natural variable length of
Pittsburgh problems.

The single-threaded CPU interpreter achieves a performance of
up to 9.63 million GPops/s, whereas multi-threading with 4 CPU
threads brings the performance up to 34.70 million GPops/s. The
dual socket cluster platform allows two 6-core CPUs and a total of
12 CPU threads, which are capable of running up to 92.06 million
GPops/s in parallel.

On the other hand, the GPU implementation obtains great
performance in all cases, especially over large scale data sets
with a higher number of instances. One GPU obtains up to
31 billion GPops/s, whereas scaling to two GPU devices enhances
the interpreter performance up to 64 billion GPops/s. The best
scaling is achieved when a higher number of instances
and individuals are considered, i.e., the GPU achieves its maximum
performance and occupancy when there are enough threads
to fill the GPU multiprocessors. Fig. 5 shows the GPops/s
scaling achieved by the GPU model regarding the number of
nodes to interpret. The higher the number of nodes to interpret,
the higher the occupancy of the GPU and thus, the higher the
efficiency.

Table 4 shows the evaluation times and the speedups of the
GPUs versus the single-threaded and 12-threaded CPU implemen-
tations. The GPU model has high performance and efficiency,
which increase as the number of individuals and instances
increase. The highest speed up over the single-threaded CPU
version is achieved for the Connect-4 data set using 100 indivi-
duals (1.880� using one GPU and 3.461� using two GPU
devices). On the other hand, compared to the parallel 12-
threaded CPU version, the highest speedup is 933� using one
GPU and 1.311� using two GPUs. The evaluation times for the
Poker data set using 100 individuals are reduced from 818 s
(13 min and 38 s) to 0.2390 s using two NVIDIA GTX 480 GPUs.
Since evolutionary algorithms perform the evaluation of the
population each generation, the total amount of time dedicated
to evaluate individuals along generations becomes a major con-
cern. GPU devices allow greatly speeding up the evaluation
process and save much time.

Fig. 6 shows the speedup obtained by comparing the evaluation
time when using two NVIDIA GTX 480 GPUs and the single-
threaded CPU evaluator. The figure represents the speedup over
the four largest data sets with the higher number of instances. The
higher the number of instances, the more the number of parallel
and concurrent threads to evaluate and thus, the higher the
occupancy of the GPU.

Finally, Table 5 shows the efficiency of the model regarding the
computing devices, their power consumption, and their perfor-
mance in terms of GPops/s. Parallel threaded CPU solutions
increase their performance as more threads are employed. How-
ever, their efficiency per Watt is decreased as more CPU cores are
used. On the other hand, GPUs require many Watts but their
performance is justified by a higher efficiency per Watt. Specifi-
cally, the single-threaded CPU performs around 0.7 million GPops/
s/W whereas using two GPUs increases its efficiency up to
129.96 million GPops/s, which is higher than the efficiency

Table 2
Complexity of the data sets.

Data set # Instances # Attributes # Classes

Iris 150 4 3
New-thyroid 215 5 3
Ecoli 336 7 8
Contraceptive 1473 9 3
Thyroid 7200 21 3
Penbased 10,992 16 10
Shuttle 58,000 9 7
Connect-4 67,557 42 3
KDDcup 494,020 41 23
Poker 1,025,010 10 10
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reported in related works [31], which achieve a performance up to
52.7 million GPops/s per Watt.

6. Conclusions

In this paper we have presented a high-performance and
efficient evaluation model for individual¼rule set (Pittsburgh)
genetic rule-based algorithms. The rule interpreter and the
GPU kernels have been designed to maximise the GPU occupancy
and throughput, reducing the evaluation time of the rules
and rule sets. The experimental study has analysed the
performance and scalability of the model over a series of varied
data sets with different numbers of instances. It is concluded
that the GPU implementation is highly efficient, scalable to
multiple GPU devices. The best performance was achieved when
the number of instances or the population size was large
enough to fill the GPU multiprocessors. The speedup of the model

was up to 3.461�when addressing large scale classification
problems with two GPUs, significantly higher than the speed-
up achieved by the CPU parallel 12-threaded solution.

Fig. 5. GPU model GPops/s scaling.

Table 3
Rule interpreter performance.

Data set Population GPops Interpreter time (s) GPops/s (million)

1 CPU 4 CPU 12 CPU 1 GPU 2 GPU 1 CPU 4 CPU 12 CPU 1 GPU 2 GPU

Iris 10 88,560 12 10 8 0.0272 0.0201 7.38 8.86 11.07 3259.72 4406.85
25 225,450 25 12 11 0.0390 0.0276 9.02 18.79 20.50 5774.85 8163.75
50 458,460 49 19 15 0.0526 0.0295 9.36 24.13 30.56 8719.95 15,522.07
100 929,340 100 34 21 0.0988 0.0491 9.29 27.33 44.25 9410.85 18,919.79

New-thyroid 10 126,608 15 12 10 0.0274 0.0204 8.44 10.55 12.66 4627.49 6211.15
25 322,310 35 19 11 0.0400 0.0265 9.21 16.96 29.30 8064.20 12,164.48
50 655,428 71 22 13 0.0505 0.0340 9.23 29.79 50.42 12,988.03 19,268.23
100 1,328,612 144 41 24 0.0967 0.0535 9.23 32.41 55.36 13,734.41 24,832.01

Ecoli 10 539,976 58 18 13 0.0516 0.0392 9.31 30.00 41.54 10,461.41 13,763.66
25 1,354,168 152 44 23 0.0972 0.0533 8.91 30.78 58.88 13,929.48 25,416.07
50 2,830,344 299 89 41 0.1813 0.1075 9.47 31.80 69.03 15,607.60 26,339.56
100 5,658,272 587 166 69 0.3471 0.1708 9.64 34.09 82.00 16,299.87 33,118.75

Contraceptive 10 869,200 96 30 22 0.0550 0.0322 9.05 28.97 39.51 15,801.34 27,000.50
25 2,212,750 243 70 32 0.1107 0.0625 9.11 31.61 69.15 19,990.88 35,424.40
50 4,499,700 499 134 102 0.1974 0.1107 9.02 33.58 44.11 22,793.91 40,640.35
100 9,121,300 989 295 112 0.3857 0.1950 9.22 30.92 81.44 23,646.97 46,773.98

Thyroid 10 4,250,880 488 159 74 0.1625 0.0903 8.71 26.74 57.44 26,165.06 47,089.68
25 10,821,600 1204 312 153 0.3810 0.2024 8.99 34.68 70.73 28,406.13 53,474.86
50 22,006,080 2394 703 308 0.7508 0.3780 9.19 31.30 71.45 29,308.30 58,219.61
100 44,608,320 4824 1403 616 1.5396 0.7536 9.25 31.79 72.42 28,974.27 59,196.14

Penbased 10 22,712,032 2422 1001 550 0.7889 0.3928 9.38 22.69 41.29 28,789.64 57,820.86
25 55,672,176 6233 1829 777 1.9124 1.0215 8.93 30.44 71.65 29,110.43 54,498.50
50 115,617,696 12,259 3332 1371 3.9284 1.9120 9.43 34.70 84.33 29,431.36 60,470.52
100 228,030,384 24,292 7447 2477 7.7361 3.9117 9.39 30.62 92.06 29,476.28 58,294.27

Shuttle 10 80,804,052 9079 3310 2416 2.6057 1.3069 8.90 24.41 33.45 31,010.93 61,826.71
25 204,515,682 23,116 7325 3332 6.5364 3.4067 8.85 27.92 61.38 31,288.50 60,033.02
50 424,691,064 45,834 14,661 5839 13.4832 6.5357 9.27 28.97 72.73 31,497.72 64,980.39
100 852,514,068 90,649 71,206 11,197 27.0089 13.4812 9.40 11.97 76.14 31,564.16 63,237.33

Connect-4 10 39,886,112 5206 2026 1772 1.3552 0.7188 7.66 19.69 22.51 29,431.90 55,491.10
25 101,539,340 13,164 4455 2472 3.3903 1.7277 7.71 22.79 41.08 29,949.92 58,770.99
50 206,483,592 25,123 8250 3714 6.8567 3.3941 8.22 25.03 55.60 30,114.12 60,835.82
100 418,560,968 54,029 37,498 7251 13.8397 6.8558 7.75 11.16 57.72 30,243.40 61,051.74

Kddcup 10 2,297,785,824 293,657 99,679 64,722 73.1540 37.1375 7.82 23.05 35.50 31,410.28 61,872.44
25 5,985,447,516 733,670 208,969 86,570 189.2256 96.7096 8.16 28.64 69.14 31,631.28 61,890.96
50 11,748,586,032 1,466,624 389,555 145,077 372.2638 189.2589 8.01 30.16 80.98 31,559.84 62,076.80
100 23,408,248,464 2,900,167 1,926,780 290,873 742.0416 372.2767 8.07 12.15 80.48 31,545.73 62,878.63

Poker 10 2,118,078,368 237,524 104,783 73,069 70.1586 33.9806 8.92 20.21 28.99 30,189.86 62,331.92
25 5,191,875,024 616,642 191,831 97,471 172.5495 91.4097 8.42 27.06 53.27 30,089.19 56,797.84
50 10,782,273,504 1,222,919 376,896 162,384 356.6680 172.6337 8.82 28.61 66.40 30,230.56 62,457.54
100 21,265,654,416 2,404,491 1,649,626 284,182 704.3908 356.5822 8.84 12.89 74.83 30,190.13 59,637.45
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The rule interpreter obtained a performance above 64 billion
GPops/s and even the efficiency per Watt is up to 129 million -
GPops/s/W.

Table 4
Individual evaluation performance.

Data set Population Evaluation time (s) Speedup vs 1 CPU Speedup vs 12 CPU

1 CPU 4 CPU 12 CPU 1 GPU 2 GPU 1 GPU 2 GPU 1 GPU 2 GPU

Iris 10 0.0096 0.0093 0.0090 0.0010 0.0007 9.60 13.71 9.00 12.86
25 0.0135 0.0122 0.0106 0.0014 0.0009 9.64 15.00 7.57 11.78
50 0.0203 0.0200 0.0191 0.0016 0.0010 12.69 20.30 11.94 19.10

100 0.0420 0.0369 0.0247 0.0019 0.0013 22.11 32.31 13.00 19.00

New-thyroid 10 0.0094 0.0090 0.0088 0.0008 0.0006 11.75 15.67 11.00 14.67
25 0.0166 0.0129 0.0167 0.0012 0.0008 13.83 20.75 13.92 20.88
50 0.0300 0.0280 0.0188 0.0017 0.0010 17.65 30.00 11.06 18.80

100 0.0611 0.0533 0.0294 0.0027 0.0012 22.63 50.92 10.89 24.50

Ecoli 10 0.0323 0.0182 0.0122 0.0015 0.0013 21.53 24.85 8.13 9.38
25 0.0543 0.0475 0.0303 0.0021 0.0014 25.86 38.79 14.43 21.64
50 0.1026 0.0818 0.0428 0.0029 0.0025 35.38 41.04 14.76 17.12

100 0.2090 0.1596 0.0717 0.0042 0.0031 49.76 67.42 17.07 23.13

Contraceptive 10 0.0459 0.0419 0.0328 0.0010 0.0008 45.90 57.38 32.80 41.00
25 0.1002 0.0828 0.0474 0.0013 0.0010 77.08 100.20 36.46 47.40
50 0.2036 0.1774 0.1046 0.0017 0.0011 119.76 185.09 61.53 95.09

100 0.4177 0.3415 0.1617 0.0020 0.0017 208.85 245.71 80.85 95.12

Thyroid 10 0.2112 0.1999 0.1691 0.0010 0.0007 211.20 301.71 169.10 241.57
25 0.4933 0.4162 0.2185 0.0012 0.0010 411.08 493.30 182.08 218.50
50 1.0148 0.8749 0.3709 0.0015 0.0011 676.53 922.55 247.27 337.18

100 2.0318 1.5358 0.6768 0.0029 0.0013 700.62 1562.92 233.38 520.62

Penbased 10 0.7738 0.7118 0.4548 0.0017 0.0011 455.18 703.45 267.53 413.45
25 2.0064 1.5883 0.7367 0.0030 0.0019 668.80 1056.00 245.57 387.74
50 4.0047 3.0185 1.3909 0.0050 0.0032 800.94 1251.47 278.18 434.66

100 8.5293 6.2505 2.4959 0.0094 0.0049 907.37 1740.67 265.52 509.37

Shuttle 10 2.6452 2.7268 2.2034 0.0028 0.0018 944.71 1469.56 786.93 1224.11
25 7.2141 5.8981 3.4525 0.0057 0.0034 1265.63 2121.79 605.70 1015.44
50 15.6694 12.8749 5.4326 0.0100 0.0057 1566.94 2749.02 543.26 953.09

100 32.1477 24.6465 9.8108 0.0200 0.0111 1607.38 2896.19 490.54 883.86

Connect-4 10 2.2684 1.9459 1.2467 0.0020 0.0014 1134.20 1620.29 623.35 890.50
25 4.9263 4.2588 2.3661 0.0034 0.0021 1448.91 2345.86 695.91 1126.71
50 10.3063 8.4253 4.7221 0.0064 0.0036 1610.36 2862.86 737.83 1311.69

100 21.8092 16.0537 5.6394 0.0116 0.0063 1880.10 3461.78 486.16 895.14

Kddcup 10 84.7511 78.6884 31.2643 0.0515 0.0267 1645.65 3174.20 607.07 1170.95
25 208.7099 161.4730 73.0745 0.1236 0.0646 1688.59 3230.80 591.22 1131.18
50 426.7217 291.6318 123.8365 0.2471 0.1246 1726.92 3424.73 501.16 993.87

100 841.4498 578.6901 213.8102 0.4850 0.2447 1734.95 3438.70 440.85 873.76

Poker 10 74.0020 69.8736 46.0978 0.0494 0.0277 1498.02 2671.55 933.15 1664.18
25 193.5917 162.2887 81.8815 0.1203 0.0648 1609.24 2987.53 680.64 1263.60
50 385.2833 293.4088 126.4694 0.2325 0.1189 1657.13 3240.40 543.95 1063.66

100 818.7177 591.6098 229.6941 0.4749 0.2390 1723.98 3425.60 483.67 961.06
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Fig. 6. Model speedup using two GPUs. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.).

Table 5
Performance per Watt.

Compute device Watts
(W)

GPops/s
(million)

GPops/s/W
(million)

Intel Xeon E5645/1 CPU/1
core

12.5 9.63 0.77

Intel Xeon E5645/1 CPU/4
cores

50 34.70 0.69

Intel Xeon E5645/2 CPU/12
cores

160 92.06 0.58

NVIDIA GTX 480/1 GPU 250 31,631.28 126.52
NVIDIA GTX 480/2 GPU 500 64,980.39 129.96
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Abstract Multiple instance learning is a challenging task in supervised learning and data mining. How-

ever, algorithm performance becomes slow when learning from large-scale and high-dimensional data sets.

Algorithms from a considerable number of areas of knowledge are reducing their computing time using

graphics processing units (GPUs) and the compute unified device architecture (CUDA) platform. Simi-

larly, application of this technology to the multiple instance learning problem could prove to be highly

advantageous. This paper presents an implementation of the G3P-MI algorithm in CUDA for solving mul-

tiple instance problems using classification rules. The GPU model proposed is distributable to multiple

GPU devices, seeking for its scalability across large-scale and high-dimensional data sets. The proposal

is evaluated and compared to the multi-threaded CPU algorithm over a series of real-world and artifi-

cial multi-instance data sets. Experimental results report that the computation time can be significantly

reduced and its scalability improved. Specifically, an speedup up to 450× can be achieved over the multi-

threaded CPU algorithm when using four GPUs, and the rules interpreter achieves great efficiency and

runs over 108 billion Genetic Programming operations per second (GPops/s).

Keywords Multi-instance learning · classification · parallel computing · GPU

1 Introduction

Multiple instance learning (MIL) is a generalization of traditional supervised learning that has received

a significant amount of attention over the last few years [8,13,17,41]. Unlike traditional learning, in

multi-instance learning, an example is called a bag and it represents a set of non-repeated instances. The

bag is associated with a single class label, although the labels of the instances are unknown. The way in

which bags are labelled depends on the multi-instance hypothesis or assumption. The standard hypothesis,

introduced by Dietterich et al. [13], assumes a bag to be positive if it contains at least one positive instance.

More recently, other generalized multi-instance models have been formalized [17,41]. According to its own

definition, MIL is highly suitable for parallelization due to the fact that learners receive a set of bags

composed by instances rather than a set of instances directly. With this data structure, the different bags

and instances could be evaluated in a parallel way to reduce the execution time of the algorithms.
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Multi-instance learning has received much attention in the machine learning community because many

real-world problems can be represented as multi-instance problems. It has been applied successfully to

several problems such as text categorization [2], content-based image retrieval [27,53] and image an-

notation [40], drug activity prediction [37,56], web index page recommendation [52,57], video concept

detection [22,25], semantic video retrieval [9] and predicting student performance [51,54].

Similarly, there are many machine learning methods available to solve these problems, such as multi-

instance lazy learning algorithms [46], multi-instance tree learners [10], multi-instance rule inducers [11],

multi-instance bayesian approaches [29], multi-instance neural networks [7], multi-instance kernel meth-

ods [24,40], Markov chain-based [49], multi-instance ensembles [48,56], and evolutionary algorithms [53,

55]. However, most of the MIL algorithms are very slow and cannot be applied to large data sets. The

main problem is that the MIL problem is more complex than the traditional supervised learning problem.

Therefore, this type of algorithms over MIL still causes an increase in computation time, especially for

high-dimensional and large-scale input data. Since real applications often work under time constraints, it

is convenient to adapt the learning process in order to complete it in a reasonable time. There are several

works that try to optimize the computation time of some algorithms in MIL [5,18,36,39,42], showing the

growing interest in this area.

In this context, graphics processing units (GPUs) have demonstrated efficient performance in tra-

ditional rule-based classification [6,19]. Moreover, GPU systems have been widely used in many other

evolutionary algorithms and data mining techniques in recent years [16,26,33,35]. However, we have not

been able to find any proposal based on GPU implementation of MIL. Therefore, we think that a GPU-

based model for MIL could be an interesting alternative to reduce the excessive execution time inherent

to this learning framework. Especially, we seek the scalability of MIL algorithms to large-scale and high-

dimensional problems in which larger population sizes should be employed to achieve accurate results.

This paper presents a GPU-based parallel implementation of the G3P-MI [53] algorithm using CUDA,

which allows the acceleration of the learning process. G3P-MI is an evolutionary algorithm based on clas-

sification rules which has proven itself to be a suitable model because of its flexibility, rapid adaptation,

excellent quality of representation, and competitive results. However, its performance becomes slow when

learning form large-scale and high-dimensional data sets. The proposal presented here aims to be a gen-

eral purpose model for evaluating multi-instance classification rules on GPUs, which is independent to

algorithm behaviour and applicable to any of the multi-instance hypotheses. The proposal addresses the

computational time problem of evolutionary rule-based algorithms when evaluating the rules on multi-

instance data sets, especially when the number of rules is high, or when the dimensionality and complexity

of the data increase. The design of the model comprises three different GPU kernels which implement the

functionality to evaluate the classification rules over the examples in the data set. The interpreter of

the rules is carefully designed to maximize efficiency, performance, and scalability. The GPU model is

distributable to multiple GPU devices, providing transparent scalability to multiple GPUs. Moreover,

scalability to multiple GPUs allow to extend the application of MIL algorithms across large-scale and

high-dimensional data sets.

The proposal is evaluated over a series of real-world and artificial multi-instance data sets and its execu-

tion times are compared with the multi-threaded CPU ones, in order to analyze its efficiency and scalability

to larger data sets having different population sizes. Experimental results show the great performance and

efficiency of the model, achieving an speedup of up to 450× when compared to the multi-threaded CPU

implementation. The efficient rules interpreter demonstrates the ability to run up to 108 billion Genetic

Programming operations per second (GPops/s) whereas the multi-threaded CPU interpreter runs up to

98 million GPops/s. Moreover, it has shown great scalability to two and four GPUs. This means that more

complex multi-instance problems with larger number of examples can be addressed within reasonable time,

which was not previously possible without GPU parallelization.

This paper is organized as follows. The next section defines the multi-instance classification problem

and presents the rule-based approach to the multi-instance problem. Section 3 introduces the CUDA

programming model. Section 4 presents a computational analysis of the multi-instance algorithm. Section 5

presents the GPU implementation of the multi-instance model. Section 6 describes the experimental study,

whose results are discussed in Section 7. Finally, Section 8 presents the conclusions.
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2 Multi-instance classification

This section defines the multi-instance learning problem and presents the basis of multi-instance rule-based

models.

2.1 Problem definition

Standard classification consists in predicting the class membership of uncategorized examples, whose label

is not known, using the properties of the examples. An example (instance) is represented using a feature

vector x̄, which is associated with a class label C. Traditional classification models induct a prediction

function f(x̄) → C.

On the other hand, multi-instance classification examples are called bags, and represent a set of

instances. The class is associated with the whole bag although the instances are not explicitly associated

with any particular class. Therefore, multi-instance models induct a prediction function f(bag) → C where

the bag is a set of instances {x̄1, x̄2, ..., x̄n}.
The way in which a bag is classified as positive or negative depends on the multi-instance hypotheses.

In the early years of multi-instance learning research, all multi-instance classification work was based on

the standard or Dietterich hypothesis [13]. The standard hypothesis assumes that if the result observed is

positive, then at least one of the instances from the bag must have produced that positive result. However,

if the result observed is negative, then none of the instances from the bag could have produced a positive

result. Therefore, a bag is positive if and only if at least one of its instances is positive. This can be

modelled by introducing a second function g(bag, j) that takes a single variant instance j and produces a

result. The externally observed result f(bag) can be defined as follows:

f(bag) =

{
1 if ∃ j | g(bag, j) = 1

0 otherwise

}
(1)

More recently, generalized multi-instance models have been formulated where a bag is qualified to be

positive if the instances in the bag satisfy more sophisticated constraints than simply having at least one

positive instance. Firstly, Weidmann et al. [47] defined three kinds of generalized multi-instance problems,

based on employing different assumptions of how the classification of instances determines the bag label.

These definitions are presence-based, threshold-based, and count-based.

– Presence-based is defined in terms of the presence of at least one instance of each concept in a bag (the

standard hypothesis is a special case of this assumption which considers just one underlying concept).

– Threshold-based requires a certain number of instances of each concept in a bag.

– Count-based requires a maximum and a minimum number of instances of a certain concept in a bag.

Independently, Scott et al. [43] defined another generalized multi-instance learning model in which a

bag label is not based on the proximity of one single instance to one single target point. In this model, a

bag is positive if and only if it contains a collection of instances, each near one of a set of target points.

Regardless of the multi-instance hypothesis, MIL algorithms generally demand significant resources,

taking excessive computing time when data size increases. The high computational cost of MIL algorithms

prevent their application in large-scale and high-dimensional real world problems within reasonable time,

such as text categorization, image annotation, or web index page recommendation on large databases.

However, the multiple instances learning process using data structures representation with bags and in-

stances is inherently parallel. Therefore, it is essential to take advantage of the parallel capabilities of

modern hardware to speed up the learning process and reduce computing time.

2.2 Rule-based models

Rule-based models are white box classification techniques which add comprehensibility and clarity to the

knowledge discovery process, expressing information in the form of IF-THEN classification rules. The com-

prehensibility of the knowledge discovered has been an area of growing interest and this comprehensibility

is currently considered to be just as important as obtaining high predictive accuracy [3,30].
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The evaluation of the classification rules over a data set requires the interpreting of the conditions

expressed in the antecedent of the rule and checking whether the data examples satisfy them. The rule

interpreter has usually been implemented in a stack-based manner, i.e., operands are pushed onto the

stack, and when an operation is performed, its operands are removed from the stack and its result pushed

back on. Therefore, its performance and the amount of time taken up depend on the number of examples,

the number of rules, and their complexity (i.e. the number of conditions of the rule to evaluate).

Evolutionary Algorithms [20,21], and specifically, Genetic Programming [14], have been successfully

employed for obtaining classification rules over a wide range of problems, including multi-instance classi-

fication. The performance impact of rule evaluation is increased in these algorithms since each generation

of the algorithm, a population of solutions (rules or set of rules) must be evaluated according to a fitness

function. Thus, the algorithms perform slowly and their scalability is severely limited to the problem

dimensionality and complexity. The use of GPUs for the evaluation of individuals in an evolutionary com-

putation environment has demonstrated high performance and efficient results in multiple heuristics and

tasks in many studies. These studies include using genetic programming for stock trading [38], classification

rules [6,19], differential evolution [12,45], image clustering [31], or optimization problems [15]. However, to

the best of our knowledge there are no GPU-based implementations of multi-instance classification rules

algorithms to date.

G3P-MI [53] is a Grammar-Guided Genetic Programming (G3P) [28] algorithm for multi-instance

learning. It is based on the presence-based hypothesis and has demonstrated accurate classification results

when applied in varied application domains, as well as better performance than many other multi-instance

classification techniques. However, the large population required and the highly complex rules generated

prevent the algorithm running as fast as desired, especially across large data sets. Therefore, a GPU-

based parallel implementation of the algorithm which reduces execution time significantly makes for a

very appealing and valuable proposal. Moreover, the GPU-based model to speed up the learning process

is applicable to any other multi-instance rule-based method with any of the multi-instance hypotheses.

3 CUDA programming model

Computer unified device architecture (CUDA) [1] is a parallel computing architecture developed by

NVIDIA that allows programmers to take advantage of the parallel computing capacity of NVIDIA GPUs

in a general purpose manner. The CUDA programming model executes kernels as batches of parallel

threads. These kernels comprise thousands or even millions of lightweight GPU threads per each kernel

invocation.

CUDA’s threads are organized into threads blocks in the form of a grid. Thread blocks are executed

by streaming multiprocessors. A stream multiprocessor can perform zero overhead scheduling to inter-

leave warps (a warp is a group of threads that execute together) and hide the overhead of long-latency

arithmetic and memory operations. GPU’s architecture was rearranged from SIMD (Single Instruction,

Multiple Data) to MIMD (Multiple Instruction, Multiple Data), which runs independent separate program

codes. Thus, up to 16 kernels can be executed concurrently as long as there are available multiprocessors.

Moreover, asynchronous data transfers can be performed concurrently with kernel executions. These two

features allow a speedup in execution compared to the sequential kernel pipeline and synchronous data

transfers from previous GPU architectures.

There are four different specialized memory spaces with different access times, lifetimes and output

limitations.

– Global memory: is a large long-latency memory that exists physically as an off-chip dynamic device

memory. Threads can read and write global memory to share data and must write the kernel’s output to

be readable after the kernel terminates. However, a better way to share data and improve performance

is to take advantage of shared memory.

– Shared memory: is a small low-latency memory that exists physically as on-chip registers. Its contents

are only maintained during thread block execution and are discarded when the thread block completes.

Kernels which read or write a known range of global memory with spatial or temporal locality can

employ shared memory as a software-managed cache. Such caching potentially reduces global memory

bandwidth demands and improves overall performance.
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– Local memory: each thread also has its own local memory space as registers, so the number of registers

a thread uses determines the number of concurrent threads executed in the multiprocesor, which is

called multiprocessor occupancy. To avoid wasting hundreds of cycles while a thread waits for a long-

latency global-memory load or store to complete, a common technique is to execute batches of global

accesses, one per thread, exploiting the hardware’s warp scheduling to overlap the threads’ access

latencies.

– Constant memory: is specialized for situations in which many threads will read the same data simulta-

neously. This type of memory stores data written by the host thread, is accessed constantly and does

not change during the execution of the kernel. A value read from the constant cache is broadcast to all

threads in a warp, effectively serving all loads from memory with a single-cache access. This enables

a fast, single-ported cache to feed multiple simultaneous memory accesses.

There are some recommendations for improving the performance on the GPU [23]. Memory accesses

must be coalesced as with accesses to global memory. Global memory resides in device memory and

is accessed via 32, 64, or 128-byte segment memory transactions. It is recommended to perform fewer

but larger memory transactions. When a warp executes an instruction which accesses global memory, it

coalesces the memory accesses of the threads within the warp into one or more of these memory transactions

depending on the size of the word accessed by each thread and the distribution of memory addresses across

the threads. In general, the more transactions necessary, the more unused words are transferred in addition

to the words accessed by the threads, reducing the instruction throughput accordingly.

To maximize global memory throughput, it is therefore important to maximize coalescing by following

optimal access patterns, using data types which meet the size and alignment requirement or padding data.

For these accesses to be fully coalesced, both the width of the thread block and the width of the array

must be a multiple of the warp size.

4 Computational analysis of the multi-instance algorithm

This section analyzes the computational cost of the multi-instance algorithm in order to identify compu-

tational bottlenecks and to propose parallelization strategies to overcome these issues.

G3P-MI is a Genetic Programming algorithm that consists of the traditional stages of an evolutionary-

based algorithm: initialization, selection, genetic operators, evaluation, and replacement. The initialization

process creates a randomly-initialized population of rules by means of a context-free grammar that con-

ducts the generation of the rule syntaxes. The selection process selects the parent candidates from the

population, on which the genetic operators (crossover and mutation) will be applied. The evaluation pro-

cess checks the fitness of the new rules (offspring) resulted from the application of the genetic operators.

The replacement process selects the best rules from the parent population and the offspring, keeping the

population size constant and leading the population to better fitness landscapes. This process is iteratively

repeated along a given number of generations, after which the best rules from the population are selected

to build the classifier. However, it is well-known and it has been demonstrated in several studies [6,19,

35] that the evaluation phase is the one that demands most of the computational cost of the algorithm,

requiring from 90% to 99% of the execution time, which increases as the data set becomes bigger. Thereby,

significant effort should be focus on speeding up this stage. Thus, we analyze the computational cost of

the evaluation function.

The evaluation process consists on predicting the class membership of the examples of the data set

and to compare the predicted class with the actual class to measure the prediction error. Specifically, it

is measured the number of true positives (tp), true negatives (tn), false positives (fp) and false negatives

(fn). These values are used to build the confusion matrix, from which any classification performance metric

is obtained (sensitivity, specificity, accuracy, etc). Each individual from the population represents a clas-

sification rule which comprises several attribute–value conditions combined using logical operators. The

evaluation process is usually implemented using two nested loops. Thereby, the algorithmic complexity

of the fitness function is O(population size × number of examples). This makes the algorithm to perform

slow when the population size and the number of examples of the data set increase. The multiple in-

stance problem representation particularizes an example as a bag containing a set of instances. Therefore,
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the computational complexity increases as the examples (bags) contain higher number of instances. The

pseudo-code of the fitness function is shown in Algorithm 1, particularized for the Dietterich hypothesis (a

single positive instance makes the whole bag prediction as positive), and Algorithm 2, particularized for

the generalized hypothesis. It is noted that for the Dietterich hypothesis, the inner loop must be stopped

as soon as one instance is covered, whereas for the generalized hypothesis it is necessary to evaluate all

the instances of the bag. Therefore, performance on data sets having large bag sizes is penalized.

Algorithm 1 Evaluation: Dietterich hypothesis

Input: population size, number examples

1: for each individual within the population do
2: tp ← 0, fp ← 0, tn ← 0, fn ← 0
3: for each example from the dataset do
4: for each instance from the example’s bag do
5: if individual’s rule covers actual instance then
6: if the bag is labelled as positive then
7: tp++
8: else
9: fp++
10: end if
11: continue with the next example
12: end if
13: end for
14: // None of the instances were covered
15: if the bag is labelled as positive then
16: fn++
17: else
18: tn++
19: end if
20: end for
21: fitnessValue ← fitnessMetric(tp,tn,fp,fn)
22: end for

Algorithm 2 Evaluation: Generalized hypothesis

Input: population size, number examples

1: for each individual within the population do
2: tp ← 0, fp ← 0, tn ← 0, fn ← 0
3: for each example from the dataset do
4: coverCount ← 0
5: for each instance from the example’s bag do
6: if individual’s rule covers actual instance then
7: coverCount++
8: end if
9: end for
10: if coverCount ≥ minimumCount && coverCount ≤ maximumCount then
11: if the bag is labelled as positive then
12: tp++
13: else
14: fp++
15: end if
16: else
17: if the bag is labelled as positive then
18: fn++
19: else
20: tn++
21: end if
22: end if
23: end for
24: fitnessValue ← fitnessMetric(tp,tn,fp,fn)
25: end for
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The evaluation process is noted to have three main stages: rule-instance coverage, bag class prediction,

and confusion matrix building by means of counting the number of tp, tn, fp, and fn values. As seen,

the complexity of the fitness function lies in the population size (number of rules) and the data set size

(number of bags and instances). Evaluating them along high number of generations is the reason for the

high computational cost of MIL algorithms, and motivates their parallelization on GPUs. Fortunately,

the evaluation process of each rule from the population is an individual computation problem that can

be solved independently (population parallel approach). Moreover, the coverage of a rule against all the

examples of the dataset is also an independent task that can be performed concurrently (data parallel

approach). Therefore, multiple parallelization strategies can be employed to take advantage of the parallel

capabilities of the evaluation process.

The parallelization of the evaluation function in the CPU is straightforward by means of a population-

parallel approach. The algorithm can take advantage of multi-core CPUs and create as many CPU threads

as number of cores, evaluating independently and concurrently each of the individuals of the population.

However, the hardware industry provide today 4-cores desktop processors, which limit the parallelism

of this approach. Nevertheless, fortunate users having a CPU cluster or a grid environment may exploit

this parallel approach more significantly, having multiple nodes connected through a local area network.

Furthermore, the data-parallel approach may be also employed for distributing rule evaluation among

multiple hosts. However, this complicates the evaluator code by means of including more complex message

transfer between the hosts of the network, which eventually reduces the absolute efficiency of the process.

On the other hand, GPUs have demonstrated to achieve high performance on similar computational tasks

and avoid many of the problems of distributed computing systems. Therefore, the next section presents

the GPU model proposed to address this highly parallelizable evaluation process.

5 Multi-instance rules evaluation on GPUs

This section presents the GPU-based evaluation model of the multi-instance rules. According to the

computational analysis presented in the previous section, the evaluation of the rules is divided into three

steps, which are implemented through three GPU kernels. The first one, the coverage kernel, checks the

coverage of the rules over the instances within the bags. The second one, the hypothesis kernel, implements

the bag class prediction regarding to the bag instances which satisfy the concepts of the rule. The three

hypotheses are considered to provide generalization to any multi-instance approach. Finally, the fitness

computation kernel builds the confusion matrix from the predicted bag class and actual bag class values,

and computes the fitness (quality metrics) of the rules. The data and computation flow is overviewed in

Fig. 1, whereas the GPU evaluation model is shown in Fig. 2 and it is described in the following sections.

Data memory transactions between CPU and GPU memories are shown dashed and light gray, whereas

GPU kernels computation are shown dotted and black gray.

Fig. 1 Data & computation flow overview
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Fig. 2 GPU evaluation model using three kernels

The data set values are stored in the GPU global memory using an array whose length is (number

of attributes × number of instances), and it is allocated transposed to facilitate memory coalescing when

GPU threads request instances values. Data set values are copied at the beginning of the algorithm’s

execution and they can be transferred asynchronously while the population is being initialized. This

means that no delay is introduced to the algorithm execution due to data set transfer to GPU memory.

Rules and fitness are also stored in global memory, but they require synchronous transfers, meaning that

the evaluation process cannot begin until the rules are copied to the GPU memory, and the evolutionary

process cannot continue until the fitness values are copied back on the host memory. Fortunately, the

data size for both elements is very small and memory transfers complete within few nanoseconds, as

measured by the NVIDIA Visual Profiler tool. Both data structures facilitate to maximize the coalescing

and minimize the effective number of memory transactions.

5.1 Coverage kernel

The coverage kernel interprets the rules and checks whether the instances of the data set satisfy the

conditions of the rules. These rules are very clear and comprehensible since they provide a natural extension

for knowledge representation. For example:

IF [(At1 ≥ V1 AND At2 < V2) OR At3 > V3] THEN Class1

where At1, At2, and At3 are attributes of the data set, and V1, V2, and V3 are specific values in the range

of each attribute.

Rules are easily represented in prefix notation on a computer, which is a form of notation that has

been widely used in many applications and computer languages such as Lisp. Prefix notation is popular

with stack-based operations due to its ability to distinguish the order of operations without the need for

parentheses. The example rule from above is represented in prefix notation as:

IF [OR > At3 V3 AND ≥ At1 V1 < At2 V2] THEN Class1

The interpreter we first used for traditional classification in [6] employed these kind of expressions. The

implementation of a prefix or postfix interpreter require the usage of a stack and every operand/operator
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perform push/pop operations. Thus, the number of reads and writes over the stack increases with the

length of the rule. However, seeking for an efficient implementation on GPUs is not straightforward.

GPUs are not especially designed for stack-based memory operations. Therefore, we propose to employ

an intermediate rule representation to take advantage of the flexibility of the stack-based operations and

minimize as well the number of operations over the stack. The conditions are internally represented in

prefix notation whereas the rule set is written in postfix. The antecedent of the rule is rewritten as:

< At2 V2 ≥ At1 V1 AND > At3 V3 OR

Fig. 3 shows the performance differences of the prefix interpreter and the intermediate interpreter as

the interpreter finds tokens and computes given actions. The intermediate interpreter reads the rule from

the left to the right. It first finds the < operand, which is known to have two operands, so it knows it has

to compute < At2 V2 and pushes only the result into the stack. The rule pointer must be placed to the

right of the number of operands. Similarly, it operates with the other operations. Finally, the OR operator

pops the two operands and returns their OR operation.

Prefix: OR > At3 V3 AND ≥ At1 V1 < At2 V2

1. Item: V2

2. Item: At2

3. Item: <

4. Item: V1

5. Item: At1

6. Item: ≥

6. Item: AND

7. Item: V3

8. Item: At3

9. Item: >

10. Item: OR

Action: Push V2

Action: Push At2

Action: Pop At2

            Pop V2

            R1 = At2 < V2

            Push R1

Action: Push V1

Action: Push At1

Action: Pop At1

            Pop V1

            R2 = At1 ≥ V1

            Push R2

Action: Pop R2

            Pop R1

            R3 = R1 AND R2

            Push R3

Action: Push V3

Action: Push At3

Action: Pop At3

            Pop V3

            R4 = At3 > V3

            Push R4

Action: Pop R4

            Pop R3

            R5 = R3 OR R4

            Return R5

Intermediate: < At2 V2 ≥ At1 V1 AND > At3 V3 OR

1. Item: <

2. Item: ≥

3. Item: AND

4. Item: >

5. Item: OR

Action: Read At2 and V2

            R1 = At2 < V2

            Push R1

Action: Read At1 and V1

            R2 = At1 ≥ V1

            Push R2

Action: Pop R2

            Pop R1

            R3 = R1 AND R2

            Push R3

Action: Read At3 and V3

            R4 = At3 > V3

            Push R4

Action: Pop R4

            Pop R3

            R5 = R3 OR R4

            Return R5

Fig. 3 Prefix and intermediate rule interpreter

This representation allows the interpreter performance to speed up, and minimizes the number of push

and pop operations on the stack. For instance, the traditional interpreter requires 10 push and 10 pop

operations whereas the proposed representation requires only 4 push and 4 pop operations, which reduces

memory accesses and increases interpreter performance. The CPU interpreter loops the interpretation of

every rule within the algorithm’s population on another loop for every single instance within the data set,

which notes its high computational complexity.

Fortunately, the evaluation of every single rule over every single instance can be parallelized on the

GPU using a two dimensional matrix of threads. The first kernel checks the coverage of the rules over

the instances of the data set, and stores the results of the coverage matching into a bitset (array of bits).

Each thread is responsible for the coverage of a single rule over a single instance. Threads are grouped

into a 2D grid of thread blocks, whose size depends on the number of rules (width) and instances (height).

Eventually, a warp (group of threads that are evaluated concurrently at a given time in the multiprocessor)

represents the evaluation of a given rule over multiple data, following a SIMD model. Thereby, there is no

divergence in the instruction path of the kernel, which is one of the known main reasons for decreasing

performance and we avoid this issue. Moreover, reading from multiple data is guaranteed to be coalesced
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__global__ void coverageKernel(float* rules , unsigned char* bitset, int numberInstances)
{

int instance = blockDim .y * blockIdx .y + threadIdx.y;

bitset[blockIdx .x * numberInstances + instance ] = covers (& rules[blockIdx .x], instance );
}

__device__ unsigned char covers(float* rule , int instance )
{

...
for(int ptr = 0; ptr < ruleLength; )
{

switch (rule[ptr]) {
...
case GREATER :

attribute = expr[prt+1];
op1 = instancesData[instance + numberInstances * attribute];
op2 = expr[prt+2];
if (op1 > op2) push(1, stack);
else push(0, stack);
ptr += 3;
break;

...
case AND:

op1 = pop(stack);
op2 = pop(stack);
if (op1 * op2 == 1) push(1, stack);
else push(0, stack);
ptr++;
break;

...
}

}

return (unsigned char) pop(stack);
}

Fig. 4 Coverage kernel and rules interpreter

since threads are responsible of handling the adjacent memory addresses. Bitset storage of coverage result

is also coalesced by addressing adjacent memory addresses. Coalescing avoids memory addressing conflicts

and permits to improve efficiency of memory transactions. The code for the coverage kernel and the rule

interpreter using the intermediate representation is shown in Fig. 4.

The kernel parameters configuration is essential to maximize occupancy and performance. The number

of vertical blocks depends on the number of instances and the number of threads per block, which is rec-

ommended to be a multiple of the warp size, usually being 128, 256 or 512 threads per block. This number

is important as it concerns the scalability of the model in future devices. NVIDIA recommends running

at least twice as many thread blocks as the number of multiprocessors in the GPU. 256 threads per block

are used since it provides both maximum occupancy and more active threads blocks per multiprocessor

to hide latency arising from register dependencies and, therefore, a wider range of possibilities is given to

the dispatcher to issue concurrent blocks to the execution units. Moreover, it provides better scalability

for future GPU devices, with more multiprocessors, and capable of handling more active blocks. Details

about the setup settings of the kernels are shown in Section 6.

5.2 Hypothesis kernel

The hypothesis kernel performs the class prediction for the bags, using the coverage results from their

instances and the coverage kernel. Three functions implement the different hypothesis kernels concerning

their requirements based on the presence-based, threshold-based, or count-based multiple instance learning

hypotheses. The presence-based kernel only requires that one instance is active in order to predict the

bag to be positive (Dietterich hypothesis) as previously shown in Algorithm 1. The threshold-based kernel

computes first the count of the number of instances from the bag that satisfy the concepts of the rule.

It predicts as positive if the count is higher than a minimum number of instances. The count-based
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__global__ void presenceHypothesis(unsigned char* bitset , int* bagPrediction , int numInstances ,
int numBags , int* bag) {

int instance = blockDim .y * blockIdx .y + threadIdx.y;

if(bitset[blockIdx .x * numInstances + instance ] == 1)
bagPrediction[blockIdx .x * numBags + bag[instance ]] = 1;

}

__global__ void thresholdHypothesis(unsigned char* bitset , int* bagPrediction , int numInstances
int numBags , int minimumCount , int* firstInstanceBag ,
int* lastInstanceBag) {

int bag = blockDim .y * blockIdx .y + threadIdx.y;
int begin = firstInstanceBag[bag], end = lastInstanceBag[bag];
int coverCount = 0;

for(int i = begin; i < end; i++)
if(bitset[blockIdx .x * numInstances + i] == 1)

coverCount++;

if(coverCount >= minimumCount)
bagPrediction[blockIdx .x * numBags + bag] = 1;

}

__global__ void countHypothesis(unsigned char* bitset , int* bagPrediction , int numInstances ,
int numBags , int minimumCount , int maximumCount ,
int* firstInstanceBag , int* lastInstanceBag) {

int bag = blockDim .y * blockIdx .y + threadIdx.y;
int begin = firstInstanceBag[bag], end = lastInstanceBag[bag];
int coverCount = 0;

for(int i = begin; i < end; i++)
if(bitset[blockIdx .x * numInstances + i] == 1)

coverCount++;

if(coverCount >= minimumCount && coverCount <= maximumCount)
bagPrediction[blockIdx .x * numBags + bag] = 1;

}

Fig. 5 Hypothesis kernels

kernel counts the number of active instances as does the threshold-based, but its prediction depends on a

minimum and maximum number of active instances. The threshold-based and count-based are known as

the generalized hypothesis which was shown in Algorithm 2. Counting is a reduction operation and there

are several parallel ways to count using the GPU. However, the average bag size of the multiple instances

datasets available is relatively very small, usually having less than 10 instances per bag. Therefore, a

parallel reduction scheme of the counting process would be excessive and inefficient for such small number

of values. Thereby, it is more efficient to propose a parallel prediction model in which a thread is responsible

of the prediction of a single bag, and the thread iterates among the instances from the bag to check the

number of covered instances. The code for the different hypotheses is shown in Fig. 5.

It is very important to note that the Dietterich hypothesis only requires one instance to be active

to predict the bag class as positive. Therefore, as soon as one instance is found to be active, there is no

need to check the remaining instances in the bag. This allows a significantly amount of time to be saved,

especially when the size of the bag increases. The CPU evaluator checks the instances from the bag from

the first to the last, and it is not known a priori if the positive instance is going to happen earlier or later.

Thus, the average number of instance checks required to find the positive instance is said to be the half

of the bag size. On the other hand, the GPU model checks in parallel all the instances at a given time.

Therefore, the GPU checking process always requires a single scan to find the positive instance.

Furthermore, the generalized hypotheses (threshold-based and count-based) require all of the instances

to be processed in order to predict the bag class using the count values. This means that the runtime of

the CPU process is inevitably increased as the number of instances increases, not existing the possibility

of an earlier loop breaking. On the other hand, the GPU approach keeps its efficiency and is capable of

counting the number of positives instances for all bags in a single call. Therefore, it is expected to have

better efficiency and speedups on the generalized hypotheses.
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5.3 Fitness kernel

The fitness computation kernel evaluates the fitness of the rule, i.e., its ability to perform accurate classi-

fications. It computes the confusion matrix values: true positives (tp), true negatives (tn), false positives

(fp), and false negatives (fn) to calculate some well-known indicators in classification such as sensitivity,

specificity, precision, recall, F-Measure, etc. For instance, the goal of the G3P-MI [53] algorithm is to

maximize both sensitivity and specificity, computing fitness as their product.

The confusion matrix values result from a reduction operation [50] of the bag class predictions and the

actual values. The naive reduction operation is conceived as an iterative and sequential process. However,

there are many ways to perform this operation in parallel. For instance, NVIDIA provides six different

ways of optimizing parallel reduction in CUDA [1]. The one which performs best in this problem for

reducing the confusion matrix values is the 2-level parallel reduction with shared memory storage, and it

is illustrated in Fig. 6. The first level of the reduction reads the bag class prediction and compares with

the actual bag class, producing one of the four possible values of the confusion matrix. To compute the

fitness of a rule, 128 threads are used to read bag class predictions and match with the actual class labels.

Therefore, each thread is responsible of processing (numberBags / 128) bags. The reason for using 128

threads is that threads in a thread block must share shared memory resources, which is limited in many

architectures to 16 KB. Since a thread must employ 4 32-bit integers to count the confusion matrix values,

it gives that a thread block requires 512 integers (2 KB) on shared memory. This limits the number

of concurrent blocks to 8 per multiprocessor. Doubling the number of threads would only reduce the

number of concurrent blocks capable of running in a multiprocessor, which reduces effective performance.

Fortunately, this is parametrizable to adapt the number of threads to the hardware capacities of the

GPU, adapting automatically the configuration parameters in order to be capable of achieving maximum

performance.

The key point of the reduction operations is that accesses are fully coalesced to avoid memory address-

ing divergences as shown in the figure. Temporary results are stored in the shared memory of the GPU

multiprocessors, which provides fast and low latency access. The second level of the reduction operation

reads the partial sums of the counting and computes the final count of the confusion matrix values. Finally,

the fitness metrics are calculated. This process is performed in parallel for all the rules of the population.

The code for the fitness kernel, including the reduction operation, is shown in Fig. 7.

TP TN TP FP FN TP FN FP TN TP TP TN FN FN FP ...Matching

Result

Th 1
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Th 3

Th 128

...

+

+

+

+

+
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Fig. 6 Fitness computation using 2-level parallel reduction
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__global__ void fitnessKernel(float* fitness , int* bagPrediction , int* bagClass , int numBags ) {
__shared__ int MC[512];
int base = blockIdx .x * numBags + threadIdx.y;
int top = blockIdx .x * numBags + numBags - base;

MC[threadIdx.y] = MC[threadIdx.y+128] = MC[threadIdx.y+256] = MC[threadIdx.y+384] = 0;

// Performs the reduction of the confusion matrix values
for(int i = 0; i < top; i+=128) {

if(bagClass [threadIdx.y + i] == 1 && bagPrediction[base + i] == 1)
MC[threadIdx.y*4]++; // True positive

else if(bagClass [threadIdx.y + i] == 0 && bagPrediction[base + i] == 1)
MC[threadIdx.y*4 + 2]++; // False positive

else if(bagClass [threadIdx.y + i] == 1 && bagPrediction[base + i] == 0)
MC[threadIdx.y*4 + 3]++; // False Negative

else
MC[threadIdx.y*4 + 1]++; // True negative

}

__syncthreads();

if(threadIdx.y < 4) {
for(int i = 4; i < 512; i+=4) {

MC[0] += MC[threadIdx.y]; // Number of true positives
MC[1] += MC[threadIdx.y+1]; // Number of true negatives
MC[2] += MC[threadIdx.y+2]; // Number of false positives
MC[3] += MC[threadIdx.y+3]; // Number of false negatives

}

if(threadIdx.y == 0) { // Perform final reduction and fitness computation
float sensitivity , specificity;
int tp = MC[0], tn = MC[1], fp = MC[2], fn = MC[3];

sensitivity = tp / (float) (tp + fn);
specificity = tn / (float) (tn + fp);

// Fitness function
fitness [blockIdx .x] = sensitivity * specificity;

}
}

Fig. 7 Fitness kernel with 2-level reduction

6 Experimental Setup

This section presents the experimental study setup, the hardware configuration and the different experi-

ments designed to evaluate the performance and efficiency of the GPU-based model.

6.1 Hardware configuration

The experiments were run on a machine equipped with an Intel Core i7 quad-core processor running at

3.0 GHz and 12 GB of DDR3-1600 host memory. The video cards used were two dual-GPU NVIDIA

GTX 690 equipped with 4 GB of GDDR5 video RAM. Each GTX 690 video card had two GPUs with

1,536 CUDA cores. In total there were 4 GPUs and 6,144 CUDA cores at default clock speeds. The host

operating system was GNU/Linux Ubuntu 12.10 64 bit along with CUDA runtime 5.0, NVIDIA drivers

310.40, and GCC compiler 4.6.3 (O3 optimization level).

6.2 Configuration settings

The G3P-MI algorithm is implemented in the JCLEC software [44] and its main parameters (collected

from the author’s proposal) are shown in Table 1.

On the other hand, the GPU kernels require two parameters which define the number of threads per

block and the number of blocks per grid. The compiler and hardware threads scheduler will schedule
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Table 1 G3P-MI parameter configuration

Parameter Value

Population size 1000
Number of generations 100
Crossover probability 0.95
Mutation probability 0.3
Elitist probability 0.05
Parent selector Binary Tournament
Maximum tree depth 50

Table 2 Threads per block and multiprocessor occupancy

Threads per block 64 128 256 512 1024

Active Threads per Multiprocessor 768 1536 2048 2048 2048
Active Warps per Multiprocessor 24 48 64 64 64
Active Thread Blocks per Multiprocessor 12 12 8 4 2
Occupancy of each Multiprocessor 38% 75% 100% 100% 100%

instructions as optimally as possible to avoid register memory conflicts. The CUDA GPU occupancy cal-

culator provides information about the GPU multiprocessors occupancy regarding to the device capability,

the number of threads per block, the registers used per thread and the shared memory employed by the

blocks. One of the keys to achieve optimum performance is to keep the device multiprocessors as busy as

possible. Configuration settings where work is poorly balanced across the multiprocessors will result in

suboptimal performance.

Table 2 shows the GPU occupancy data for the different number of threads per block. Occupancy is the

ratio of the number of active warps per multiprocessor to the maximum number of possible active warps.

64 and 128 threads per block reports a multiprocessor occupancy of 38% and 75% respectively, limited

by the shared memory per multiprocessor. 256, 512, and 1024 threads per block report an occupancy

of 100%. In both cases the number of active threads per multiprocessor is 2048, but they differ in the

number of active thread blocks per multiprocessor. Best choice is 256 threads per block since it provides

full occupancy and a trade-off between the number of active thread blocks per multiprocessor and the

total number of thread blocks. This guarantees the scalability of the model design for future GPUs with

larger number of CUDA multiprocessors.

6.3 Experiments

The experimental study comprises two experiments. Firstly, the performance and efficiency of the rules

interpreter is evaluated. Secondly, the rule-based classification performance is evaluated over a series of

data sets. Detailed information about the data sets is provided as additional material at link1.

6.3.1 Rules interpreter performance

The efficiency of rules interpreters is often reported using the number of primitives interpreted by the

system per second, similarly to Genetic Programming (GP) interpreters, which determine the number of

GP operations per second (GPops/s) [4,32–34]. GP interpreters evaluate expression trees, which represent

solutions to perform a user-defined task. In this experimental stage, the performance of the rules interpreter

is evaluated by running over different number of instances and rules. This way, it achieves a sensitivity

analysis of the effect of these parameters on the speed of the interpreter in terms of GPops/s.

1The collection of multi-instance data sets are publicly available to facilitate the replicability of the experiments
and future comparisons at:

http://www.uco.es/grupos/kdis/kdiswiki/MIL-GPU
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6.3.2 Rule-based classification performance

The second experiment evaluates the performance of the proposal across a series of 14 real-world multi-

instance data sets. However, these real-world data sets may be categorized as medium size. In order to

evaluate larger data, we generated 7 artificial data sets which comprise a wide dimensionality range,

containing from 100 to 1 million instances. The objective of this experiment was to analyze the scalability

of the GPU model regarding the data sets’ complexity and dimensionality (number of bags, instances

and attributes). Moreover, the use of one, two, and four GPUs will provide useful information about its

scalability to big data and multiple GPU devices. All experiments were run 100 times using 10 × 10-fold

cross-validation scheme and the average runtimes are reported.

7 Results

This section presents and discusses the experimental results obtained from different experimental studies.

7.1 Rules interpreter performance

Table 3 shows the rules interpreter performance regarding the number of rules to evaluate and the number

of instances of the data set, which determine the total number of GP operations (GPops) to be interpreted

by the evaluator. The table provides the evaluation times expressed in milliseconds for the multi-threaded

CPU and the GPU-based interpreter using one, two, and four GPUs.

The number of GP operations per second (GPops/s) is calculated using the number of GPops evaluated

and the time required. The multi-threaded CPU interpreter achieves up to 98 million GPops/s, whereas

the GPU interpreter achieves up to 108 billion GPops/s when distributing the computation into four

GPUs. Maximum performance is achieved when the number of rules or the number of instances are high

enough to fill the GPU multiprocessors with enough thread blocks. In other words, maximum performance

is achieved when the GPU cores are fully occupied by a large number of threads.

On the other hand, performance is reduced when the number of rules or instances is small, i.e, there

are less threads to compute. Nevertheless, even with a low number of rules or instances, the performance

of the GPU-based interpreter is still significantly better than the multi-threaded CPU. The increasing
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Table 3 Rules interpreter performance

Runtime (ms) GPops/s (Million)

Rules Instances GPops 4 CPUs 1 GPU 2 GPUs 4 GPUs 4 CPUs 1 GPU 2 GPUs 4 GPUs

50 500 1.23×106 25 6.64 3.55 2.55 49 185 347 483

1,000 2.46×106 49 6.94 4.23 2.83 50 355 581 869

5,000 1.23×107 139 7.42 5.93 3.43 89 1,660 2,076 3,585

50,000 1.23×108 1352 9.26 7.35 4.30 91 13,295 16,752 28,643

100,000 2.46×108 2783 11.30 9.27 4.95 88 21,791 26,566 49,757

100 500 2.45×106 44 4.72 2.74 1.64 56 519 892 1,489

1,000 4.90×106 76 5.10 2.89 1.91 64 961 1,692 2,561

5,000 2.45×107 289 5.54 3.75 2.08 85 4,415 6,534 11,760

50,000 2.45×108 2721 13.65 7.23 4.09 90 17,931 33,858 59,834

100,000 4.90×108 5556 20.84 11.66 5.02 88 23,489 41,987 97,555

250 500 6.10×106 104 7.50 2.11 1.89 59 814 2,888 3,225

1,000 1.22×107 124 7.84 4.32 2.49 98 1,557 2,826 4,900

5,000 6.10×107 620 7.89 5.32 2.77 98 7,734 11,474 22,027

50,000 6.10×108 6616 25.03 13.86 9.59 92 24,390 44,061 63,672

100,000 1.22×109 13880 48.86 24.66 14.55 88 24,991 49,505 83,910

500 500 1.20×107 142 9.38 5.52 3.52 85 1,283 2,180 3,423

1,000 2.41×107 261 11.51 6.26 3.85 92 2,091 3,849 6,248

5,000 1.20×108 1230 14.64 7.91 4.83 98 8,222 15,214 24,924

50,000 1.20×109 12860 47.22 25.29 13.09 94 25,491 47,596 91,962

100,000 2.41×109 27571 90.11 46.99 23.73 87 26,717 51,239 101,465

1,000 500 2.43×107 255 11.50 7.79 2.56 95 2,111 3,118 9,481

1,000 4.85×107 505 15.59 8.17 4.10 96 3,114 5,941 11,836

5,000 2.43×108 2486 16.13 11.60 7.83 98 15,047 20,923 30,999

50,000 2.43×109 26372 93.79 47.63 25.31 92 25,881 50,960 95,917

100,000 4.85×109 53434 179.43 89.38 44.58 91 27,057 54,315 108,908

performance of the interpreter is shown in Fig. 8, which illustrates the interpreter performance regarding

the number of rules to evaluate and the number of instances of the data set.

Moreover, Table 3 also shows the good scalability of the model from one to two and four GPUs,

regardless the number of instances and rules to evaluate. In best performance scenarios with a high number

of rules and instances, doubling the number of GPU devices doubles the interpreter’s performance.

7.2 Rule-based classification performance

Table 4 shows the classification performance of the G3P-MI algorithm using the Dietterich hypothesis.

The table shows the time dedicated evaluating the population of classification rules over a series of multi-

instance data sets, considering different number of attributes, bags and instances. The speedup is the

ratio of multi-threaded CPU time to GPU time. Similarly to the interpreter performance, classification

results indicate that the higher the dimensionality of the data with a larger number of instances, the better

the speedup achieved. The best performance scenario in which the highest speedup is achieved (408×)

corresponds with the process data set when using four GPUs, which allows the evaluation time to be

reduced from 57 minutes to only 8.43 seconds, which is a significant reduction.
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Table 4 UCI data sets evaluation performance (Dietterich Hypothesis)

Evaluation Time (s) Speedup

Data set Atts Bags Instances 4 CPUs 1 GPU 2 GPUs 4 GPUs 1 GPU 2 GPUs 4 GPUs

Component 201 3,130 36,894 1,024 11.15 5.85 3.92 91.94 175.14 261.51

EastWest 25 20 213 5.15 2.25 2.06 1.00 2.29 2.50 5.17

Elephant 231 200 1,391 34.38 1.76 1.36 1.15 19.51 25.35 30.00

Fox 231 200 1,320 33.77 1.90 1.69 1.17 17.81 19.94 28.89

Function 201 5,242 55,536 1,555 15.33 8.62 4.58 101.52 180.45 339.49

Musk1 167 92 476 11.29 1.77 1.01 1.13 6.37 11.19 10.01

Musk2 167 102 6,598 89.77 2.26 1.71 1.21 39.71 52.58 74.33

Mut-atoms 11 188 1,618 36.82 2.17 1.44 1.61 16.99 25.55 22.82

Mut-bonds 17 188 3,995 74.90 2.06 1.91 1.75 36.39 39.14 42.85

Mut-chains 25 188 5,349 96.98 2.55 1.35 1.07 38.04 71.67 90.52

Process 201 11,718 118,417 3,448 29.99 16.25 8.43 114.99 212.24 408.93

Suramin 21 11 2,378 41.76 3.53 2.09 1.04 11.84 19.95 40.13

Tiger 231 200 1,220 31.15 2.48 1.67 1.08 12.58 18.60 28.75

Trx 9 193 26,611 482.8 6.81 4.36 2.01 70.90 110.78 240.21

Artificial1 100 10 1,000 6.28 2.90 2.15 1.42 2.16 2.93 4.43

Artificial2 100 100 1,000 20.45 3.16 1.62 1.85 6.48 12.60 11.04

Artificial3 100 100 1×104 54.89 4.49 2.88 1.84 12.22 19.09 29.89

Artificial4 100 1,000 1×104 175.6 4.55 2.52 1.51 38.56 69.59 116.22

Artificial5 100 1,000 1×105 551.3 20.42 10.50 6.10 27.00 52.49 90.40

Artificial6 100 1×104 1×105 1,850 25.07 13.45 6.55 73.81 137.55 282.48

Artificial7 100 1×105 1×106 18,431 213.2 109.3 57.38 86.45 168.51 321.23

On the other hand, good speedups are also achieved over small data sets with a low number of

instances. It is important to note that even with a small data set, the speedup is greater than one, i.e.,

GPU runtimes are always lower than CPU ones. Thus, we can conclude that we recommend the use of

GPU evaluation regardless of the size of the data set. This is non-trivial because in some computation

problems with GPUs, it is only recommended to use GPUs when the problem size is higher than a certain

threshold, whereas GPU times for small problems are higher than CPU ones.

Table 5 shows the classification performance of the G3P-MI algorithm using the generalized hypothesis

(threshold-based or count-based). Similarly to the presence-based hypothesis, the speedup follows the

same trend line when the data set size is increased and also shows good scalability to multiple GPU

devices. However, there is a significant difference which can be observed when analyzing performance

over the artificial data sets. Specifically, note and compare the CPU evaluation times for the Artificial5

and Artificial6 data sets in Tables 4 and 5. These data sets have the same number of instances, but

the Artificial6 data set has 10 times the number of bags. For the presence-based hypothesis, Artificial6

triples the evaluation times of the Artificial5 data set, whereas for the generalized hypothesis their times

are similar. This difference in the runtime is due to the Dietterich hypothesis behaviour. As described in

Section 5.2, the presence-based hypothesis allows instances matching to be stopped as soon as there is

one instance that meets the rule conditions. However, for the generalized hypotheses, it is necessary to

complete rule matching with all the instances of the bag to compute counts. Therefore, evaluation times for

the generalized hypotheses depend on the number of instances rather than the number of bags. Thus, the

GPU evaluation model benefits from the behaviour of the generalized hypotheses, achieving significantly

higher speedup values.
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Table 5 UCI data sets evaluation performance (Generalized Hypothesis)

Evaluation Time (s) Speedup

Data set Atts Bags Instances 4 CPUs 1 GPU 2 GPUs 4 GPUs 1 GPU 2 GPUs 4 GPUs

Component 201 3,130 36,894 1,874 15.94 8.47 4.32 117.64 221.27 434.38

EastWest 25 20 213 9.96 1.84 1.18 0.94 5.40 8.44 10.63

Elephant 231 200 1,391 59.05 1.73 1.21 0.77 34.19 48.99 76.90

Fox 231 200 1,320 56.17 1.72 1.23 0.73 32.65 45.69 76.90

Function 201 5,242 55,536 2,833 25.36 14.37 7.84 111.72 197.10 361.38

Musk1 167 92 476 20.37 1.55 1.04 0.72 13.12 19.53 28.15

Musk2 167 102 6,598 291.2 2.55 1.47 1.05 114.38 197.50 276.17

Mut-atoms 11 188 1,618 66.37 1.76 1.18 0.79 37.74 56.11 83.82

Mut-bonds 17 188 3,995 163.1 2.17 1.24 0.79 75.21 131.81 207.29

Mut-chains 25 188 5,349 218.5 2.20 1.38 0.94 99.52 157.87 231.95

Process 201 11,718 118,417 6,217 85.03 45.64 24.20 73.12 136.24 256.93

Suramin 21 11 2,378 105.8 2.76 2.07 1.14 38.31 51.04 93.11

Tiger 231 200 1,220 52.00 1.71 1.12 0.87 30.35 46.37 59.53

Trx 9 193 26,611 1,215 6.58 3.98 5.02 184.66 305.70 242.31

Artificial1 100 10 1,000 50.05 2.79 1.65 1.68 17.94 30.38 29.71

Artificial2 100 100 1,000 49.95 2.59 1.61 1.44 19.28 31.02 34.68

Artificial3 100 100 1×104 503.4 4.52 2.55 1.41 111.32 197.06 356.36

Artificial4 100 1,000 1×104 522.1 4.95 2.67 1.31 105.36 195.73 398.26

Artificial5 100 1,000 1×105 5,542 44.93 24.39 12.63 123.37 227.21 439.00

Artificial6 100 1×104 1×105 5,560 45.97 24.97 12.62 120.96 222.71 440.71

Artificial7 100 1×105 1×106 55,897 454.7 243.4 124.1 122.94 229.65 450.25

Number of instances

Fig. 9 Analysis of performance scalability using 1, 2, and 4 GPUs

Finally, the scalability of the model performance regarding to the increasing size of the data set is

shown in Fig. 9 (log scale), which illustrates and summarizes the speedup values achieved with one, two,

and four GPUs when compared to the multi-threaded CPU performance. This figure shows the speedup

trend line and proves the great efficiency and scalability of GPUs. The figure indicates that as soon as

the data set size is big enough, the high costs of the MIL algorithm makes the GPU parallelization highly

recommended to run within reasonable time.
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8 Concluding Remarks

Multi-instance classification is a challenging task which has been solved using evolutionary rule-based

algorithms such as G3P-MI. Evolutionary rule-based classification algorithms become slow when the di-

mensionality and complexity of the data set increases. In this paper we proposed a GPU-based model for

evaluating multi-instance classification rules to speed up the algorithm process. The GPU evaluation model

was evaluated to analyze its efficiency regarding to the rules interpreter and classification performance,

and compared to the multi-threaded CPU implementation over a series of real-world and artificial multi-

instance data sets. The performance of the GPU rules interpreter achieved up to 108 billion GPops/s. The

GPU evaluation model demonstrated efficient performance and to speedup the classification task up to

450×. Moreover, its efficiency increased as the dimensionality of the data. The distributed implementation

into multiple GPUs allowed scalability across large-scale and high-dimensional data sets, in which the

application of evolutionary rule-based algorithms, until now, was difficult within reasonable time.

Nevertheless, it is noteworthy to mention that highest speedups were obtained when using 4 high-

performance GPUs on very big data sets, where GPUs are capable to show their full power. These scenarios

are ideal for GPU parallelization (millions of parallel threads), while on other data sets with average size,

GPUs show not such impressive speedups. Indeed, when comparing single GPU performance, it was

achieved similar performance than other related works in literature. Using 4 high-performance GPUs is

a non-trivial contribution while most of related works focus only on single-GPU designs, which prevent

their scalability to multiple GPU devices.
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a b s t r a c t

Obtaining comprehensible classifiers may be as important as achieving high accuracy in
many real-life applications such as knowledge discovery tools and decision support
systems. This paper introduces an efficient Evolutionary Programming algorithm for
solving classification problems by means of very interpretable and comprehensible IF-THEN
classification rules. This algorithm, called the Interpretable Classification Rule Mining
(ICRM) algorithm, is designed to maximize the comprehensibility of the classifier by
minimizing the number of rules and the number of conditions. The evolutionary process
is conducted to construct classification rules using only relevant attributes, avoiding noisy
and redundant data information. The algorithm is evaluated and compared to nine other
well-known classification techniques in 35 varied application domains. Experimental
results are validated using several non-parametric statistical tests applied on multiple
classification and interpretability metrics. The experiments show that the proposal obtains
good results, improving significantly the interpretability measures over the rest of the
algorithms, while achieving competitive accuracy. This is a significant advantage over other
algorithms as it allows to obtain an accurate and very comprehensible classifier quickly.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Discovering knowledge in large amounts of data collected over the last decades has become significantly challenging and
difficult, especially in large-scale databases. Data mining (DM) [60] involves the use of data analysis tools to discover
previously unknown, valid patterns and relationships in large data sets. Classification and regression are two forms of data
analysis which can be used to extract models describing important data classes or to predict future data trends. Classification
predicts categorical labels whereas regression models predict continuous-valued functions.

The data analysis tools used for DM include statistical models, mathematical methods, and machine learning algorithms.
Classification is a common task in supervised machine learning with the search for algorithms that learn from training
examples to produce predictions about future examples.

Classification has been successfully solved using several approaches [26]. On the one hand, there are approaches such as
artificial neural networks (ANN) [46], support vector machines (SVM) [16], and instance-based learning methods [2]. These
approaches obtain accurate classification models but they must be regarded as black boxes, i.e., they are opaque to the user.
Opaque predictive models prevent the user from tracing the logic behind a prediction and obtaining interesting knowledge
previously unknown from the model. These classifiers do not permit human understanding and inspection, they are not
directly interpretable by an expert and it is not possible to discover which are the relevant attributes to predict the class
of an example. This opacity prevents them from being used in many real-life knowledge discovery applications where both
accuracy and comprehensibility are required, such as medical diagnosis [55], credit risk evaluation [42], and decision support
systems [6], since the prediction model must explain the reasons for classification.
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On the other hand, there are machine learning approaches which overcome this limitation and provide transparent and
comprehensible classifiers such as decision trees [62] and rule-based systems [49]. Evolutionary Algorithms [65], and spe-
cifically Evolutionary Programming (EP) [13,64] and Genetic Programming (GP) [25], have been successfully applied to build
decision trees and rule-based systems easily. Rule-based systems are especially user-friendly and offer compact, understand-
able, intuitive and accurate classification models. To obtain comprehensibility, accuracy is often sacrificed by using simpler
but transparent models, achieving a trade-off between accuracy and comprehensibility. Even though there are many
rule based classification models, it has not been until recently that the comprehensibility of the models is becoming a more
relevant objective. Proof of this trend is found in recent studies of issue [18,27,34,57], i.e, the comprehensibility of the mod-
els is a new challenge as important as accuracy. This paper focuses on the interpretability, trying to reach more
comprehensible models than most of the current proposals and thus covering the needs of many application domains that
require greater comprehensibility than the provided by current methods.

This paper presents an EP approach applied to classification problems to obtain comprehensible rule-based classifiers.
This algorithm, called ICRM (Interpretable Classification Rule Mining), is designed to obtain a base of rules with the mini-
mum number of rules and conditions, in order to maximize its interpretability, while obtaining competitive accuracy results.
The algorithm uses an individual = rule representation, following the Iterative Rule Learning (IRL) model. Individuals are con-
structed by means of a context-free grammar [33,61], which establishes a formal definition of the syntactical restrictions of
the problem to be solved and its possible solutions, so that only grammatically correct individuals are generated. Next, the
most important characteristics of the algorithm are detailed. Firstly, the algorithm guarantees obtaining the minimum num-
ber of rules. This is possible because it generates one rule per class, together with a default class prediction, which is assigned
when none of the available rules are triggered. Moreover, it is guaranteed that there are no contradictory or redundant rules,
i.e., there is no pair of rules with the same antecedents and different consequents. Finally, it also guarantees the minimum
number of conditions forming the antecedents of these rules, which is achieved by selecting only the most relevant and dis-
criminating attributes that separate the classes in the attribute domains.

The experiments carried out on 35 different data sets and nine other algorithms show the competitive performance of our
proposal in terms of predictive accuracy and execution time, obtaining significantly better results than all the other algo-
rithms in terms of all the interpretability measures considered: the minimum number of rules, minimum number of condi-
tions per rule, and minimum number of conditions of the classifier. The experimental study includes a statistical analysis
based on the Bonferroni–Dunn [24] and Wilcoxon [59] non-parametric tests [28,29] in order to evaluate whether there
are statistically differences in the results of the algorithms.

This paper is structured as follows. Section 2 briefly reviews the related background works. Section 3 describes the ICRM
algorithm. Section 4 describes the experimental study whose results are discussed in Section 5. Finally, Section 6 draws some
conclusions raised from the work.

2. Background

This section introduces the accuracy vs interpretability problem and discusses the interpretability definition and metrics.
Finally, it briefly reviews the most important works related to genetic rule-based classification systems in recent years.

2.1. Accuracy vs interpretability

Classification with rule-based systems comes with two contradictory requirements in the obtained model: the interpret-
ability, capability the behavior of the real system in an understandable way, and the accuracy, capability to faithfully rep-
resent the real system. Obtaining high degrees of interpretability and accuracy is a contradictory purpose and, in practice,
one of the two properties prevails over the other. To find the best trade-off between them is an optimization problem that
is very difficult to solve efficiently [36].

In contrast, when looking for interpretability, fuzzy-based systems are usually considered [5,41]. These systems comprise
very interpretable rules since they employ linguistic variables to address the vagueness of human language [44]. One of these
systems is the algorithm by González and Pérez, SLAVE (Structural Learning Algorithm on Vague Environment) [30], which is
a genetic learning algorithm that uses the iterative approach to learn fuzzy rules. Another fuzzy rule-based algorithm is GFS-
GP [52], which combines genetic programming operators with simulated annealing search. The use of evolutionary program-
ming, genetic programming and grammars to construct classification rules has been widely used [7,20,25,66]. However, this
interpretability perspective is not related to the search for simpler classifiers in terms of fewer number of rules and condi-
tions, in which we are really interested.

2.2. Interpretability metrics

There is no well-established definition of the interpretability of a rule-based system. The interpretability of a rule set is
very important, due to the fact that very large sets of rules or very complex rules are rather lacking in interest. In fact, studies
have focused on reducing the complexity of rule-based classifiers [35,53]. Nevertheless, there are some indicators that allow
us to estimate the interpretability and comprehensibility of a rule-based classifier, which are described by García et al. [27]:
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these are the number of rules and the number of conditions. A complexity value of a rule-based classifier was provided by
Nauck [43], who proposes an interpretability measure related to the number of conditions of the classifier and the number of
classes to be covered:

complexity ¼ m
Pr

i¼1ni
ð1Þ

where m is the number of classes, r is the number of rules, and ni is the number of conditions used in the ith rule. This mea-
sure is 1 if the classifier contains only one rule per class using one condition each and it approaches 0 the more rules and
conditions are used. However, this measure can be up to 2 for a two class data set where the algorithm learns a classifier
containing one rule with one condition and another default rule with no conditions predicting the default class.

2.3. Genetic rule-based systems

Genetic algorithms (GAs) evolve a population of individuals which correspond to candidate solutions to a problem. GAs
have been used for learning rules (Genetic rule-based systems) [21], including crisp and fuzzy rules, and they follow two
approaches for encoding rules within a population.

The first one represents an individual as a single rule (individual = rule). The rule base is formed by combining several
individuals from the population (rule cooperation) or via different evolutionary runs (rule competition). This representation
results in three approaches:

� Michigan: they employ reinforcement learning and the GA is used to learn new rules that replace the older ones via
competition through the evolutionary process. These systems are usually called learning classifier systems [14,40], such
as XCS [15] and UCS [12].

� Iterative Rule Learning (IRL): individuals compete to be chosen in every GA run. The rule base is formed by the best rules
obtained when the algorithm is run multiple times. SLAVE [30] and HIDER [1] are examples which follow this model.

� Genetic Cooperative-Competitive Learning (GCCL): the whole population or a subset of individuals encodes the rule
base. In this model, the individuals compete and cooperate simultaneously. This approach makes it necessary to intro-
duce a mechanism to maintain the diversity of the population in order to avoid a convergence of all the individuals in
the population. GP-COACH [11] or COGIN [31] follow this approach.

The second one represents an individual as a complete set of rules (individual = set of rules), which is also known as the
Pittsburgh approach. The main advantage of this approach compared to the first one is that it allows of addressing the coop-
eration–competition problem, involving the interaction between rules in the evolutionary process [8,45]. Pittsburgh systems
are generally slower, since they evolve more complex structures [39]. Therefore, studies have focused on improving the
effectiveness and efficiency of the rule structure exploration [63]. Moreover, one of their main problems is controlling the
number of rules, which increases the complexity of the individuals, adding computational cost to their evaluation and
becoming an unmanageable problem. This problem is known as the bloat effect [9], i.e., a growth without control of the size
of the individuals.

One method based on this approach is the Memetic Pittsburgh Learning Classifier System (MPLCS) [10], which evaluates
several local search mechanisms that heuristically edit classification rules and rule sets to improve their performance. In or-
der to avoid the bloat effect, they employ a rule deletion operator and a fitness function based on the minimum description
length [9,50], which balances the complexity and accuracy of the rule set. Moreover, this system uses a windowing scheme
that reduces the run-time of the system by dividing the training set into many non-overlapping subsets over which the fit-
ness is computed at each GA iteration. Another Pittsburgh style method is ILGA [32], which fixes the number of rules a priori,
i.e., the complexity regarding to the number of rules is let to the user.

The order of the rules in the rule base is critical when dealing with decision lists [51]. A decision list is an ordered list of
conjunctive rules. The classifier predicts the class membership of the highest priority rule which matches the antecedent of
the rule and the data instance. Some authors have used evolutionary algorithms to sort the rules a posteriori, such as Tan
et al. and their the CO-Evolutionary Rule Extractor (CORE) algorithm [54]. This GCCL model uses a gene to represent the rule
index and the chromosome represents the ordering of the rules. Thus, the ordering of the rules is optimized.

There are also hybrid models such as DTGA [19] by Carvalho and Freitas, which is a hybrid decision tree/genetic algorithm
method. The idea of this hybrid method involves the concept of small disjuncts. A set of classification rules can be regarded
as a logical disjunction of rules, so that each rule can be regarded as a disjunct. A small disjunct is a rule covering a small
number of examples. However, although each small disjunct covers just a few examples, the set of all small disjuncts can
cover a large number of examples.

3. The ICRM algorithm

This section describes the most relevant features and the execution model of the ICRM algorithm. This paper presents a
comprehensive and extended version of the ICRM algorithm, whose initial results were reported in [17]. The algorithm
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consists of three phases. In the first phase, the algorithm creates a pool of rules that explore the attribute domains. In the
second phase, the algorithm iterates to find classification rules and builds the classifier. Finally, the third phase optimizes
the accuracy of the classifier. Fig. 1 shows the workflow of the algorithm. The following three sections describe the phases
of the algorithm.

3.1. Phase 1: exploring the attribute domains

This phase explores the attribute domains, whose output is a pool of rules composed of a single attribute–value compar-
ison. The idea is to find the best attribute–value comparisons to classify each of the classes. Fig. 2 shows the grammar used to
represent single attribute–value comparisons.

The point is to ensure the exploration of the entire range of attribute domains. The domains can be categorical or numer-
ical. On the one hand, categorical domains are constrained to a limited number of labels or nominal values. Therefore, finding
a relevant label that best classifies a class is simple and it is a combinatorial problem with a relatively low number of solu-
tions. The algorithm creates a single attribute–label comparison for each label and nominal relational operator.

On the other hand, numerical domains have infinite solutions. Therefore, a method to explore numerical domains is de-
scribed now. The idea is to initially explore the range of the numerical domain at multiple points uniformly distributed (then,
the rules’ numerical values are optimized in Phase 2). The algorithm creates a single attribute–value comparison rule for
each of these points and numerical relational operators. All these rules are stored in a pool and they will be used in Phase
2. The pseudo-code of the creation procedure of these single attribute–value comparison is shown in Algorithm 1.

Algorithm 1. Pool creation procedure

1: for i = 1 to numberAttributes do
2: if attribute (i) is numerical then
3: step domain (i)/numberPoints
4: left minValueDomain (i)
5: for j = 1 to numberPoints-1 do
6: value left + j ⁄ step
7: createComparison (Pattribute (i) value)
8: createComparison (6attribute (i) value)
9: end for
10: else if attribute (i) is categorical then
11: for all label in domain(i) do
12: createComparison (=attribute (i) label)
13: createComparison (–attribute (i) label)
14: end for
15: end if
16: end for

Fig. 1. Algorithm’s workflow.
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3.2. Phase 2: obtaining the classifier

The objective of this phase is to obtain interpretable, accurate and complete classification rules. The input of this phase is
the pool of single attribute–value comparisons created in the first phase and the output is a set of classification rules forming
a classifier. Fig. 3 shows the workflow of this phase. The following sections detail the procedure to obtain the rules, the
encoding of the individuals, the genetic operator, and the fitness function.

3.2.1. Obtaining classification rules
The goal of Phase 2 is to obtain a complete base of rules with as many rules as classes. Each rule predicts a single class and

each class is predicted by a single rule. In each iteration of this procedure a classification rule is obtained. The rule predicts a
class that has not been covered yet and which is the easiest class to classify among the remaining classes. To do so, it evolves
in parallel as many evolutionary processes as classes to be covered. The output of each evolutionary process is a classification
rule that predicts a unique class. The best rule among all the outputs from the evolutionary processes is selected and re-
turned to be inserted into the classifier. The class predicted by this rule is set as covered and the algorithm removes the in-
stances of that class from the training set. This process is repeated as many times as the number of classes but one, and the
last class is set as the default class of the classifier.

This iterative procedure implies to evolve as many evolutionary algorithms as number of classes, i.e., that for a data set
with N classes, the first iteration evolves N evolutionary algorithms, the second, N � 1, the third, N � 2, and so on, until there
is only one remaining class to be covered. This may seem to require a high computational cost. However, in every iteration
the number of classes to discern and the number of instances is lower than in the previous iteration, reducing the dimen-
sionality of the problem (number of instances and classes to cover). Consequently, each iteration runs faster than the pre-
vious one. The experimental results and the execution times shown in Section 5.6 demonstrate the great efficiency of the
algorithm.

Fig. 2. Grammar used to create single attribute–value comparisons.

Fig. 3. Phase 2 workflow.
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The following sections describe the individual representation, the overview of the algorithm, the genetic operator and the
fitness function of the evolutionary algorithm employed to obtain the optimized classification rules which will comprise the
classifier.

3.2.2. Individual representation
Phase 2 uses an individual = rule representation to learn interpretable IF-THEN rules that are inserted into a decision list

forming a classifier. This representation provides greater efficiency, and addresses the cooperation–competition problem by
dealing with the order of the rules in the evolutionary process. The antecedent of the rules represents a conjunction of attri-
bute–value comparisons and the rule consequent contains the predicted class for the concepts satisfied by the antecedent of
the rule. Fig. 4 shows the grammar used to represent the rules, i.e., a rule is a conjunction of one or more attribute–value
comparisons.

3.2.3. Evolutionary rule generation
The learning process of the algorithm performs as a generational and elitist evolutionary algorithm. The evolutionary pro-

cess will find the conjunction of attribute–value comparisons over the relevant attributes to discriminate a class from the
other classes, by means of the genetic operator. For each rule, the genetic operator employs the not-yet covered attributes
of the individual’s rule to find the best condition over any other attribute that, appended to the rule, improves its accuracy.
Therefore, the maximum number of generations is set as the number of attributes. The survival of the best individuals is
guaranteed by copying them to the next generation. Fig. 5 shows the workflow of the evolutionary algorithm.

The genetic operator adds new clauses to the rule. When a new condition is added, the search area and the number of
instances covered by the rule are both reduced. Thus, rather than search new conditions on the entire training set, the

Fig. 5. Rule generation workflow.

Fig. 4. Rule = conjunction of attribute–value comparisons.
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genetic operator focuses on finding which attribute is now relevant in the training subset of instances covered by the rule.
The genetic operator will return a condition to be appended to the rule, creating a new individual. If the genetic operator did
not find a relevant attribute that improves the accuracy of the rule, the individual is marked as unbeatable. Moreover, once
an individual is constrained to all the attributes, it is also marked as unbeatable (all the attributes have been covered).

The evaluation method computes the fitness value for each individual created by the genetic operator. The higher the fit-
ness value is, the better the rule classifies.

Finally, the replacement method selects the best individuals from the previous generation and the offspring as the pop-
ulation for the next generation, keeping the population size constant. The algorithm finishes when the maximum number of
generations is reached or all the individuals from the population are marked as unbeatable. Finally, the best individual is
returned, which maximizes the fitness function and is constrained only to relevant attributes.

3.2.4. Genetic operator
This section describes the genetic operator designed to find the relevant attributes that, appended to a parent rule, im-

proves its fitness. The parameters of this operator are the pool of single attribute–value comparisons, the class to predict, and
the training subset of instances covered by the parent rule. The operator executes a hill-climbing microgenetic algorithm
(MGA) [37] to optimize the numerical values of the attribute–value comparisons over the instances subset. The operator re-
turns a new attribute–value comparison that best discriminates the predicted class among the other classes. This new attri-
bute–value comparison is appended to the parent rule, creating a new individual.

The optimization of the numeric values of the attribute–value comparisons is treated as an optimization problem of a
continuous variable real function. The MGA uses a mutation operator to approximate the numerical values of the rules to
the maximum of the function. Each rule mutates the value of the comparison within a close range [ � step, + step] using
the step size described in Algorithm 1. The selection procedure is responsible for ensuring the survival of the best individuals
and after a small number of generations, the individuals converge to the value that best classifies the target class.

3.2.5. Fitness function
The results of the matching of the rules and the instances from the data set are used to build the confusion matrix, which

is a table with two rows and two columns that reports the number of true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN). The algorithm fitness function uses these values and combines two indicators that are com-
monplace in the domain, namely the sensitivity (Se) and the specificity (Sp). Sensitivity, also called recall in some fields, mea-
sures the proportion of actual positives which are correctly identified as such, whereas specificity measures the proportion of
negatives which are correctly identified.

Se ¼ TP

TP þ FN
Sp ¼ TN

TN þ FP

The fitness value is computed by means of the sensitivity and the specificity in order to maximize both metrics. In addition,
to ensure the better interpretability of the rules represented by the individuals, for equally accurate rules, the simplest one
with the lowest number of conditions prevails.

Fitness ¼ Se � Sp

3.3. Phase 3: optimizing the accuracy

This section describes the evolutionary process for optimizing the classifier obtained in Phase 2. The rules of the classifier
have been selected and optimized individually to maximize the product of sensitivity and specificity. However, the values
from the numerical comparisons of the rules can be slightly tuned to improve the overall accuracy of the classifier. Therefore,
Phase 3 runs an evolutionary process which improves the accuracy of the classifier.

Phase 3 uses an individual = classifier representation. The population is initialized using the classifier provided by Phase 2
as the seed. The algorithm iterates mutating the rules of the classifiers and selecting the best offspring until a certain number
of generations have been performed. The population size and the maximum number of generations are parameters specified
in Section 4.3.

The mutation operator is applied to every individual within the population. Given a parent individual, it creates as many
new individuals as there are rules in the parent classifier in order to tune the comparisons of the rules to improve the overall
performance of the classifier. Every new individual is a copy of the parent, but one rule has been mutated. The mutation of a
rule performs as a local search and tunes the values from the attribute–value comparisons within a close range [ � step,
+ step] using the step size described in Algorithm 1, similar to the MGA described in the genetic operator from Phase 2.

The fitness function computes the fitness value of the individuals from the population. In Phase 3, the fitness of an indi-
vidual is the accuracy of the classifier, since all the individuals have the same complexity. The accuracy is the ratio of suc-
cessfully classified instances, i.e., the number of instances where the class prediction was correct compared to the total
number of instances.
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4. Experimental study

This section describes the details of the experiments performed in various problem domains to evaluate the capabilities of
the proposal and compare it to other classification methods.

The experiments carried out compare the results of the ICRM algorithm and nine other classification algorithms over 35
data sets. These data sets were collected from the KEEL repository website [3] and the algorithms are available on the KEEL
software tool [4]. The data sets together with their partitions are available to facilitate the replicability of the experiments
and future comparisons with previous or new proposals.1

First, the application domains and the algorithms used for the comparison are presented. Second, an analysis of the
parameters of ICRM algorithm is performed in order to find appropriate parameter settings. Third, a brief description of
the experimental methodology and computed metrics is given. Finally, the statistical tests used for validating the results
are presented.

4.1. Problem domains

The data sets used in the experiments were collected from the KEEL repository website [3] and are very varied in their
degrees of complexity, number of classes, number of attributes and number of instances. The number of classes ranges
up to 10, the number of attributes ranges from 3 to 60 and the number of instances ranges from 101 to 10,992. Table 1 sum-
marizes the information about these data sets, which are available through the link 1.

4.2. Classification algorithms

This section describes the algorithms used in our experiments, which are obtained from the KEEL software tool [4]. The
most relevant rule-based proposals presented to date are compared to determine whether our evolutionary algorithm is
competitive in the different domains with the other approaches. Six of the methods were presented in the background sec-
tion (MPLCS, ILGA, CORE, SLAVE, GFS-GP, DTGA), but we also consider interesting to compare with three other well-known
methods, including one non-evolutionary crisp rule method (RIPPER), the classical decision tree (C4.5) from which extract
rules (C45R), and one ant colony method (Ant Miner+).

� MPLCS [10]: a Memetic Pittsburgh Learning Classifier System that combines LS operators and policies.
� ILGA [32]: an Incremental Learning approach to Genetic Algorithms, with different initialization schemes based on dif-

ferent initializations of the GA population.
� CORE [54]: COevolutionary Rule Extractor that coevolves rules and rule sets concurrently in two cooperative popula-

tions to confine the search space and to produce good rule sets that are comprehensive.
� SLAVE [30]: Structural Learning Algorithm on Vague Environment is a genetic learning algorithm that uses the iterative

approach to learn fuzzy rules.
� GFS-GP [52]: GP algorithm used to learn fuzzy rule-based classifiers.
� DTGA [19]: hybrid decision tree/ genetic algorithm discovering rules on small disjuncts.
� Ant Miner+ [47]: Ant Colony-based data miner to extract classification rules inspired by the research on the behavior of

real ant colonies.
� RIPPER [22]: improvement of the efficient incremental reduced error pruning (IREP) algorithm.
� C45R [48]: C45Rules reads the decision tree or trees produced by C4.5 and generates a set of production rules from each

tree and from all trees together.

Many different configurations have been established by the authors of each paper for the different techniques. The
parameters used for the experimental study in all classification methods are the optimal values provided by their authors.

4.3. ICRM parameters

This section discusses the ICRM parameter settings to determine the influence of each parameter and their combinations
in terms of accuracy and computational cost. ICRM has been implemented in the JCLEC software [56] and its main param-
eters are shown in Table 2. The three different phases of the algorithm have some parameters whose optimal values are
shown in Table 2. Phase 1 requires the number of points in which the domains are initially explored. Phase 2 requires a selec-
tion pressure value in (0,1], which determines the number of relevant attributes to explore regarding to the number of attri-
butes. The genetic operator from Phase 2 requires two parameters: the population size and the number of generations of the
MGA which optimizes the rules. Phase 3 also requires two parameters: the population size and the number of generations of
the algorithm that optimizes the full classifier. The effect of these parameters has no relevance in the accuracy results, but is

1 http://www.uco.es/grupos/kdis/kdiswiki/ICRM.
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significant as to the computational time, increasing it considerably as long as the population size or the number of genera-
tions increases.

4.4. Experimental settings

The experiments consider the following metrics: the predictive accuracy, the number of rules of the classifier, the number
of conditions per rule, the number of conditions per classifier, the complexity measure from Eq. (1), and the execution time.
All experiments are repeated with 10 different seeds for stochastic methods and the average results are shown in the results
tables. All algorithms are tested using 10-fold stratified cross validation [38,58] on all data sets. Experiments were run on a
PC equipped with an Intel Core i7 quad-core processor running at 2.66 GHz and 12 GB of DDR3 memory. The host operating
system was GNU/Linux Ubuntu 12.10 64 bit.

4.5. Statistical analysis

In order to analyse the results from the experiments, some non-parametric statistical tests are used to validate the results
and conclusions [28,29]. To evaluate whether there are significant differences in the results of the different algorithms, the

Table 1
General information about the data sets.

Data set # Instances # Attributes # Classes

Appendicitis 106 7 2
Australian 690 14 2
Balance 625 4 3
Breast 286 9 2
Bupa 345 6 2
Car 1728 6 4
Chess 3196 36 2
Contraceptive 1473 9 3
Dermatology 366 34 6
Ecoli 336 7 8
Flare 1066 11 6
German 1000 20 2
Glass 214 9 7
Haberman 306 3 2
Heart 270 13 2
Ionosphere 351 33 2
Iris 150 4 3
Lymphography 148 18 4
Monk-2 432 6 2
New-thyroid 215 5 3
Page-blocks 5472 10 5
Penbased 10,992 16 10
Pima 768 8 2
Saheart 462 9 2
Satimage 6435 36 7
Segment 2310 19 7
Sonar 208 60 2
Tae 151 5 3
Thyroid 7200 21 3
Tic–tac–toe 958 9 2
Twonorm 7400 20 2
Vehicle 846 18 4
Wine 178 13 3
Yeast 1484 8 10
Zoo 101 16 7

Table 2
Parameter of ICRM algorithm.

Parameter Value

Phase 1 Number points 10
Selection pressure 0.5

Phase 2 MGA population 10
MGA generations 10

Phase 3 Fitting population 5
Fitting generations 100
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Iman and Davenport test is performed. This useful non-parametric test, recommended by Demsar [23], is applied to rank the
K algorithms over the N data sets (in our case there re 10 algorithms and 35 data sets) according to the F-distribution. When
the Iman and Davenport test indicates that the results are significantly different, the Bonferroni–Dunn post hoc test [24] is
used to find the significant differences occurring between algorithms in the multiple comparison. It assumes that the per-
formance of two classifiers is significantly different if the corresponding average ranks differ by at least a critical difference
value. Finally, the Wilcoxon rank-sum test [59] is used to perform multiple pairwise comparisons among the algorithms. The
Wilcoxon rank-sum test statistic is the sum of the ranks for observations from one of the samples.

5. Results

This section discusses the experimental results and compares our method to different algorithms. In order to demonstrate
the effectiveness and efficiency of our model, the accuracy, the execution time, and the different interpretability measures
are evaluated.

5.1. Predictive accuracy

The predictive accuracy determines the ratio of successfully classified patterns by the model. Obviously, this is one of the
most relevant factors when designing a classification algorithm, since it is desired to be as accurate as possible when making
the predictions.

Table 3 shows the average accuracy results for the test folds and the ranking of the algorithms. The best values for accu-
racy, at a ranking value of 2.4286, are obtained by the MPLCS algorithm. The Iman and Davenport statistic for average
accuracy distributed according to F-distribution with K � 1 = 9 and (K � 1) (N � 1) = 306 degrees of freedom is 18.8472.
The test establishes an F-distribution value = 2.4656 for a significance level of alpha = 0.01. This value is lower than the

Table 3
Accuracy results from the test folds of the 10-fold cross-validation.

Accuracy ICRM C45R RIPPER MPLCS AntMin+ CORE ILGA SLAVE DTGA GFS-GP

Appendicitis 0.8551 0.8517 0.8300 0.8623 0.8565 0.8415 0.8498 0.7063 0.8327 0.8518
Australian 0.8551 0.8517 0.8300 0.8623 0.8565 0.8415 0.8498 0.7063 0.8609 0.8449
Balance 0.7985 0.8128 0.5168 0.8043 0.7041 0.6460 0.5003 0.7460 0.7520 0.7234
Breast 0.7162 0.6970 0.6589 0.7186 0.7269 0.7234 0.7404 0.7080 0.7546 0.7691
Bupa 0.5961 0.6505 0.6232 0.6226 0.4154 0.5912 0.5540 0.5877 0.6589 0.5737
Car 0.8078 0.8794 0.8957 0.9890 0.8080 0.7982 0.7002 0.7002 0.8310 0.7882
Chess 0.7741 0.9945 0.9931 0.9927 0.8673 0.5438 0.9662 0.5222 0.9900 0.7650
Contraceptive 0.5119 0.5114 0.5169 0.5484 0.4626 0.4628 0.4417 0.4368 0.5275 0.4847
Dermatology 0.9635 0.9436 0.9300 0.9561 0.8710 0.3594 0.5877 0.9165 0.9408 0.6667
Ecoli 0.7774 0.7767 0.7482 0.8089 0.7409 0.6549 0.6352 0.8444 0.7709 0.7022
Flare 0.6857 0.6839 0.6720 0.7296 0.7049 0.6592 0.6273 0.0000 0.7402 0.5826
German 0.6920 0.7000 0.6610 0.7250 0.6840 0.6930 0.7100 0.7050 0.7120 0.7100
Glass 0.6855 0.6805 0.6397 0.6541 0.4936 0.5026 0.5013 0.5961 0.6117 0.5515
Haberman 0.7459 0.7119 0.4782 0.7349 0.7049 0.7394 0.7200 0.7178 0.7348 0.7156
Heart 0.7481 0.7901 0.7568 0.8136 0.8037 0.7198 0.6543 0.7975 0.7778 0.7370
Ionosphere 0.8578 0.9005 0.8606 0.9173 0.8550 0.5810 0.8206 0.9259 0.8890 0.8091
Iris 0.9707 0.9667 0.9378 0.9578 0.9356 0.9467 0.9289 0.9533 0.9600 0.9333
Lymphography 0.8031 0.7360 0.7475 0.8074 0.7420 0.6332 0.7769 0.6875 0.7425 0.7187
Monk-2 0.9727 1.0000 1.0000 0.9955 0.9727 0.9284 0.5437 0.9727 1.0000 0.9471
New-thyroid 0.9275 0.9353 0.9320 0.9242 0.8916 0.9136 0.9166 0.9013 0.9208 0.8374
Page-blocks 0.9502 0.9551 0.9646 0.9434 0.9376 0.9038 0.9278 0.9355 0.9662 0.9331
Penbased 0.7533 0.9490 0.9648 0.9420 0.4728 0.1569 0.5325 0.9322 0.9377 0.5330
Pima 0.7411 0.7183 0.6923 0.7483 0.7210 0.7297 0.7336 0.7337 0.7331 0.7293
Saheart 0.6919 0.6804 0.6002 0.6870 0.6795 0.6883 0.6730 0.6406 0.6773 0.6861
Satimage 0.7587 0.8406 0.8552 0.8612 0.7063 0.3978 0.7293 0.6566 0.8281 0.7346
Segment 0.9177 0.9515 0.9537 0.9532 0.8121 0.4294 0.8264 0.8784 0.9494 0.6571
Sonar 0.6939 0.7055 0.7528 0.7733 0.7463 0.5338 0.7080 0.7363 0.6576 0.6969
Tae 0.4918 0.4549 0.4929 0.5706 0.3312 0.4500 0.4251 0.4747 0.3783 0.4629
Thyroid 0.9879 0.9960 0.9947 0.9457 0.9826 0.7589 0.9405 0.9304 0.9950 0.9301
Tic–tac–toe 0.8993 0.8423 0.9760 1.0000 0.9833 0.6986 0.7811 0.6535 0.7880 0.7599
Twonorm 0.8607 0.8677 0.9142 0.8797 0.7878 0.6811 0.9284 0.8516 0.8315 0.7939
Vehicle 0.6312 0.6666 0.6915 0.7053 0.6332 0.3853 0.5853 0.6369 0.7174 0.5224
Wine 0.9356 0.9490 0.9377 0.9227 0.8690 0.9439 0.8893 0.9211 0.9490 0.8925
Yeast 0.4428 0.5594 0.5054 0.5755 0.4324 0.3767 0.4252 0.5013 0.4812 0.4628
Zoo 0.9583 0.9281 0.9269 0.9656 0.4990 0.9325 0.8587 0.0000 0.8561 0.8236
Avg. values 0.7845 0.8040 0.7843 0.8256 0.7340 0.6528 0.7140 0.7033 0.7930 0.7237
Avg. ranks 4.2857 3.9000 4.7714 2.4286 6.7143 7.7429 7.2000 6.6429 4.1286 7.1857
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statistic critical value 18.8472. Thus, the test rejects the null hypothesis and therefore it can be said that there are statisti-
cally significant differences between the accuracy results of the algorithms.

Fig. 6 shows the application of the Bonferroni–Dunn test to accuracy for alpha = 0.01, whose critical difference is 2.3601.
This graph is a bar chart, whose values are proportional to the mean rank obtained from each algorithm. The critical differ-
ence value is represented as a thicker horizontal line and those values that exceed this line are algorithms with significantly
different results than the control algorithm, which is the one with the lowest rank value. Therefore, the algorithms right be-
yond the critical difference are significantly worse than the control algorithm. For accuracy, MPLCS is the best ranked algo-
rithm and therefore, it is the control algorithm. Observing this figure, C45R, DTGA, ICRM and RIPPER achieve statistically
similar accuracy results than MPLCS. On the other hand, AntMiner+, CORE, ILGA, SLAVE, and GFS-GP perform statistically sig-
nificantly worse.

Table 4 shows the results of the Wilcoxon rank-sum test for the accuracy to compute multiple pairwise comparisons
among the ICRM algorithm and the other methods. The p-values reported indicate that no significant differences can be
found when comparing ICRM vs C45R, RIPPER, MPLCS, and DTGA. However, these differences are significant when compared
to AntMiner+, CORE, ILGA, SLAVE, and GFS-GP, achieving p-values lower than 0.01, i.e., a statistical confidence higher than
99%.

5.2. Number of rules

The number of rules determines the complexity of the model. The greater the number of rules, the greater probability of
conflicts between them and the greater difficulty in understanding the conditions necessary to predict a particular class.

Table 5 shows the average number of rules of the classifiers and the ranking of the algorithms. The best values are the
lowest number of rules, at a ranking value of 1.63, ICRM performs better than the others and it is followed by CORE and ANT-
Miner+. The Iman and Davenport statistic for the number of rules distributed according to an F-distribution with K � 1 = 9
and (K � 1)(N � 1) = 306 degrees of freedom is 104.4333. The test establishes an F-distribution value = 2.4656 for a signifi-
cance level of alpha = 0.01. This value is lower than the statistic critical value 104.4333. Thus, the test rejects the null hypoth-
esis and therefore it can be said that there are statistically significant differences between the number of rules of the
algorithms.

Fig. 7 shows the application of the Bonferroni–Dunn test to the number of rules for alpha = 0.01, whose critical difference
is 2.3601. The algorithms right beyond the critical difference from the ICRM rank are significantly worse than ICRM with a
confidence level higher than 99%. Observing this figure, all the algorithms but ANTMiner + and CORE are significantly worse
than ICRM, whereas MPLCS is borderline.

Table 6 shows the results of the Wilcoxon rank-sum test for the number of rules to compute multiple pairwise compar-
isons among the proposal and the other methods. The p-values reported indicate significant differences in the number of
rules of the algorithms with a confidence level higher than 99%. All methods are shown to obtain classifiers with significantly
higher number of rules.

5.3. Conditions per rule

The number of conditions in a rule determines the length and complexity of a rule. The greater the number of conditions,
the lower the interpretability of the rule.

Table 4
Wilcoxon test for accuracy.

ICRM vs R+ R� p-value

C45R 224.0 406.0 P0.2
RIPPER 296.0 334.0 P0.2
MPLCS 103.0 527.0 P0.2
AntMiner+ 471.5 123.5 0.002256
CORE 618.0 12.0 4.074E�9
ILGA 555.0 75.0 2.612E�5
SLAVE 465.0 130.0 0.003394
DTGA 272.0 358.0 P0.2
GFS-GP 588.0 42.0 6.602E�7

Fig. 6. Bonferroni-Dunn for accuracy.
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Table 7 shows the average number of conditions per rule of the classifiers and the ranking of the algorithms. The best
values are the lowest number of conditions, at a ranking value of 1.31, our method performs better than the others and it
is followed distantly by AntMiner+. The Iman and Davenport statistic for the number of conditions per rule distributed

Table 5
Number of rules.

# Rules ICRM C45R RIPPER MPLCS AntMin+ CORE ILGA SLAVE DTGA GFS-GP

Appendicitis 2.00 11.07 23.53 4.83 5.50 4.03 30.00 6.97 3.00 219.40
Australian 2.00 11.07 23.53 4.83 5.50 4.03 30.00 6.97 27.70 197.75
Balance 3.00 34.80 37.47 14.83 6.13 4.23 30.00 24.10 53.70 83.10
Breast 2.00 14.60 35.60 17.90 7.50 5.20 30.00 1.00 11.00 175.25
Bupa 2.00 8.57 23.80 6.60 2.00 3.43 30.00 6.30 30.10 174.90
Car 4.00 76.87 68.67 19.73 25.13 3.33 30.00 1.00 131.80 82.55
Chess 2.00 30.40 22.50 9.70 16.20 14.00 30.00 1.00 34.00 153.85
Contraceptive 3.00 31.00 64.60 5.67 3.13 8.93 30.00 44.90 138.80 82.85
Dermatology 6.00 9.20 14.27 7.77 6.70 6.47 30.00 10.57 10.30 118.10
Ecoli 8.00 11.40 35.50 8.90 7.63 6.33 30.00 12.77 27.70 79.10
Flare 6.00 27.90 101.60 16.67 20.30 4.80 30.00 0.00 49.60 110.65
German 2.00 27.20 36.30 12.40 14.80 3.30 30.00 8.80 84.10 71.05
Glass 7.00 10.07 22.20 8.27 4.57 7.03 30.00 16.27 39.50 176.25
Haberman 2.00 4.30 17.67 4.37 2.00 4.13 30.00 5.63 2.60 230.40
Heart 2.00 10.83 13.97 6.90 4.87 5.47 30.00 7.47 17.70 100.30
Ionosphere 2.00 12.30 11.60 4.70 9.80 2.30 30.00 4.30 14.80 153.25
Iris 3.00 5.00 6.30 4.07 2.97 3.63 30.00 3.00 4.70 85.95
Lymphography 4.00 11.60 13.10 7.57 3.70 6.43 30.00 4.37 17.90 84.75
Monk-2 2.00 6.00 4.00 4.00 3.00 3.57 30.00 3.00 5.00 121.05
New-thyroid 3.00 6.80 6.93 5.43 3.57 3.30 30.00 5.50 8.70 185.65
Page-blocks 5.00 22.50 51.23 7.10 14.70 5.43 30.00 9.90 51.60 65.85
Penbased 10.00 125.50 109.90 47.70 82.70 6.00 30.00 40.20 201.10 56.00
Pima 2.00 8.40 25.10 5.43 12.30 3.13 30.00 8.57 21.10 156.10
Saheart 2.00 6.70 24.57 6.23 3.70 6.37 30.00 11.30 11.90 112.95
Satimage 7.00 75.10 109.00 30.90 69.70 1.00 30.00 36.60 334.30 85.45
Segment 7.00 26.30 33.20 16.90 35.00 4.40 30.00 18.80 50.60 137.75
Sonar 2.00 8.70 8.13 6.17 4.83 1.00 30.00 8.37 20.20 97.25
Tae 3.00 7.57 28.43 5.57 2.00 6.47 30.00 11.03 27.30 224.60
Thyroid 3.00 10.33 11.43 4.03 24.17 3.97 30.00 6.93 19.60 108.30
Tic–tac–toe 2.00 50.40 16.00 9.00 9.00 3.43 30.00 1.00 83.20 211.15
Twonorm 2.00 57.70 56.60 23.20 39.10 7.10 30.00 35.80 287.70 96.30
Vehicle 4.00 19.80 46.70 15.17 25.97 6.77 30.00 34.77 69.30 156.50
Wine 3.00 5.00 5.47 4.47 3.77 3.07 30.00 4.03 5.70 96.35
Yeast 10.00 36.40 140.10 13.70 36.00 7.20 30.00 23.20 174.70 121.70
Zoo 7.00 8.70 9.10 7.00 4.20 7.03 30.00 0.00 13.00 80.15
Avg. values 3.89 23.72 35.95 10.79 14.92 5.04 30.00 12.13 59.54 128.36
Avg. ranks 1.63 6.23 7.44 3.99 3.83 2.54 7.54 4.20 7.94 9.66

Fig. 7. Bonferroni-Dunn for the number of rules.

Table 6
Wilcoxon test for the number of rules.

ICRM vs R+ R� p-value

C45R 630.0 0.0 5.82E�11
RIPPER 630.0 0.0 5.82E�11
MPLCS 595.0 0.0 1.16E�10
AntMiner+ 577.0 53.0 2.584E�6
CORE 464.0 166.0 0.013682
ILGA 630.0 0.0 5.82E�11
SLAVE 533.5 61.5 1.325E�5
DTGA 630.0 0.0 5.82E�11
GFS-GP 630.0 0.0 5.82E�11
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according to an F-distribution with K � 1 = 9 and (K � 1)(N � 1) = 306 degrees of freedom is 23.8287. The test establishes an
F-distribution value = 2.4656 for a significance level of alpha = 0.01. Thus, the test rejects the null hypothesis and therefore it
can be said that there are statistically significant differences between the number of conditions per rule of the algorithms.

Fig. 8 shows the application of the Bonferroni-Dunn test to the number of conditions per rule for alpha = 0.01, whose crit-
ical difference is 2.3601. The algorithms right beyond the critical difference from the ICRM value are significantly worse than
ICRM. All the algorithms show significant differences compared to our proposal, which is the one that obtains the best re-
sults. Moreover, our proposal employs an attribute only once at most, performing a selection of relevant features. Looking at
the results of Table 7, there are significant differences, e.g., between our proposal and ILGA over the two classes and 60 attri-
butes Sonar data set. While our proposal uses on average 0.89 conditions per rule, i.e., almost one rule with one condition
and another default class rule, ILGA requires 25.09 conditions per rule. Therefore, ICRM considers only one of the 60 attri-
butes as relevant to discriminate between the two classes, while ILGA considers 25. In this case the predictive accuracy dif-
ference between ICRM and ILGA is only 1.4%.

Table 8 shows the results of the Wilcoxon rank-sum test for the number of conditions per rule to compute multiple pair-
wise comparisons among the proposal and the other methods. The p-values reported indicate significant differences with a
confidence level higher than 99% from ICRM versus all.

Table 7
Conditions per rule.

# Cond/ Rule ICRM C45R RIPPER MPLCS AntMin+ CORE ILGA SLAVE DTGA GFS-GP

Appendicitis 0.50 3.15 3.22 3.49 4.00 2.21 8.36 3.52 1.43 3.45
Australian 0.50 3.15 3.22 3.49 4.00 2.21 8.36 3.52 3.66 2.86
Balance 1.27 3.12 3.33 2.39 2.49 0.99 1.95 2.75 3.44 3.73
Breast 0.55 3.40 3.28 5.63 1.01 1.86 7.51 0.00 1.59 2.54
Bupa 0.90 2.48 3.28 3.25 1.50 1.83 2.81 3.40 3.23 3.97
Car 1.95 3.98 4.40 3.60 3.59 2.42 5.20 0.00 2.99 4.48
Chess 1.00 3.74 3.37 5.82 1.07 10.64 29.18 0.00 9.05 3.24
Contraceptive 1.00 5.04 5.93 2.92 3.14 1.76 4.09 4.19 6.17 5.99
Dermatology 1.43 2.56 2.44 3.38 8.30 9.15 14.12 1.98 4.73 3.25
Ecoli 1.89 2.98 2.43 2.47 2.82 2.69 3.18 3.30 5.13 3.75
Flare 1.23 3.02 5.20 6.20 4.71 3.42 9.14 0.00 3.00 3.58
German 0.50 3.81 3.79 8.73 1.36 3.41 12.75 3.25 3.18 7.84
Glass 2.06 3.17 2.46 2.67 2.65 3.21 4.16 3.46 5.68 3.46
Haberman 0.50 1.31 2.63 1.54 0.65 0.94 1.47 2.19 1.80 1.80
Heart 1.00 2.68 2.52 3.97 4.07 2.03 5.48 3.59 2.73 4.09
Ionosphere 1.00 2.28 1.70 4.60 1.11 6.20 13.69 3.35 3.03 3.31
Iris 1.00 1.14 1.53 0.87 1.29 1.28 1.87 1.36 2.17 66.75
Lymphography 1.25 2.06 2.14 4.61 3.61 3.96 13.13 1.97 2.91 3.66
Monk-2 1.00 1.67 1.25 1.31 2.31 0.98 2.87 0.67 2.10 2.55
New-thyroid 1.29 1.87 1.55 1.69 1.51 2.38 2.34 1.67 2.35 21.51
Page-blocks 1.43 3.46 3.31 2.56 3.36 2.72 4.40 3.61 5.03 3.01
Penbased 1.70 5.67 4.05 4.55 1.05 3.61 6.61 7.21 5.11 2.99
Pima 0.50 2.34 4.06 3.35 4.72 1.50 3.60 3.42 3.78 3.76
Saheart 0.50 1.97 3.48 3.38 3.94 1.70 4.40 3.83 2.78 3.85
Satimage 1.39 5.76 4.75 4.79 1.00 2.00 16.55 6.54 10.46 6.55
Segment 1.41 3.78 2.96 3.42 1.03 4.26 8.28 4.22 4.65 3.75
Sonar 0.89 2.66 1.93 6.43 14.82 15.00 25.09 6.07 39.26 3.97
Tae 1.17 2.17 2.91 2.50 1.17 1.37 2.27 2.94 3.84 3.15
Thyroid 1.38 2.70 3.97 1.94 10.34 2.98 9.43 3.12 5.53 4.09
Tic–tac–toe 0.50 3.31 3.68 2.67 2.67 1.69 7.60 0.00 3.72 3.46
Twonorm 0.55 5.14 4.92 5.47 1.00 4.32 9.42 5.74 5.10 5.68
Vehicle 1.25 3.60 3.06 3.72 6.60 3.46 8.03 5.96 4.24 3.50
Wine 1.47 1.62 1.72 2.18 2.26 4.34 5.71 3.14 2.60 4.11
Yeast 1.18 4.74 4.21 2.49 1.53 3.31 3.77 3.56 6.08 3.55
Zoo 1.14 2.11 1.94 1.39 3.26 4.85 13.53 0.00 5.31 14.30
Avg. values 1.09 3.08 3.16 3.53 3.25 3.45 8.01 2.96 5.08 6.44
Avg. ranks 1.31 5.11 5.29 5.39 4.94 4.57 8.63 5.50 7.16 7.10

Fig. 8. Bonferroni–Dunn for the number of conditions per rule.
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5.4. Conditions per classifier

The total number of conditions of the classifier determines its overall complexity, regardless of the number of rules, since
it measures the number of conditions that must be evaluated to classify instances. The greater the number of conditions, the
lower the interpretability of the classifier and the more time required to evaluate the conditions.

Table 9 shows the average number of conditions of the classifiers and the ranking of the algorithms. The best ranking val-
ues are the lowest number of conditions, at an average ranking value of 1.27, our method performs better than the others and
it is followed distantly by CORE. The Iman and Davenport statistic for the number of conditions per classifier distributed
according to an F-distribution with K � 1 = 9 and (K � 1)(N � 1) = 306 degrees of freedom is 86.5088. The test establishes
an F-distribution value = 2.4656 for a significance level of alpha = 0.01. Thus, the test rejects the null hypothesis and there-
fore it can be said that there are statistically significant differences between the number of conditions per classifier of the
algorithms.

Table 8
Wilcoxon test for the number of conditions per rule.

ICRM vs R+ R� p-value

C45R 630.0 0.0 5.82E�11
RIPPER 630.0 0.0 5.82E�11
MPLCS 629.0 1.0 1.16E�10
AntMiner+ 567.0 28.0 1.726E�7
CORE 625.5 4.5 4.94E�10
ILGA 630.0 0.0 5.82E�11
SLAVE 574.5 55.5 3.451E�6
DTGA 630.0 0.0 5.82E�11
GFS-GP 630.0 0.0 5.82E�11

Table 9
Conditions per classifier.

# Cond/ Clrf ICRM C45R RIPPER MPLCS AntMin+ CORE ILGA SLAVE DTGA GFS-GP

Appendicitis 1.00 35.17 75.93 17.20 23.20 10.50 250.83 24.70 4.70 761.60
Australian 1.00 35.17 75.93 17.20 23.20 10.50 250.83 24.70 102.10 544.70
Balance 3.80 108.60 124.83 35.27 15.80 4.37 58.40 66.53 182.50 316.80
Breast 1.10 49.70 117.10 101.40 7.60 10.20 225.30 0.00 19.20 438.70
Bupa 1.80 21.37 78.47 21.60 3.00 6.03 84.17 21.60 97.80 619.50
Car 7.80 306.20 302.70 71.30 90.23 8.00 155.90 0.67 393.60 371.20
Chess 2.00 113.80 76.20 56.90 17.40 149.00 875.50 0.00 301.90 422.50
Contraceptive 3.00 156.43 382.50 17.27 11.73 16.77 122.70 188.00 846.70 442.10
Dermatology 8.60 23.60 34.90 26.23 55.17 62.27 423.73 21.20 47.20 381.10
Ecoli 15.14 34.10 86.40 21.80 21.60 17.07 95.43 42.03 129.90 322.70
Flare 7.40 84.57 528.40 103.80 95.80 16.23 274.10 0.00 147.50 381.50
German 1.00 103.80 137.30 108.30 20.10 12.20 382.40 29.50 270.40 301.30
Glass 14.42 31.87 54.67 22.07 12.23 22.70 124.67 56.47 204.90 601.10
Haberman 1.00 5.80 46.60 6.70 1.30 4.03 44.10 12.30 4.70 728.30
Heart 2.00 29.40 35.30 27.47 19.93 12.97 164.50 27.07 48.60 446.20
Ionosphere 2.00 28.30 19.70 20.70 10.90 13.70 410.80 13.40 45.10 488.10
Iris 3.00 5.70 9.70 3.57 3.83 4.70 55.97 4.07 10.30 539.80
Lymphography 5.00 23.97 28.10 34.97 13.47 26.80 393.87 8.40 51.90 309.90
Monk-2 2.00 10.00 5.00 5.23 6.93 4.20 86.07 2.00 10.50 302.20
New-thyroid 3.86 12.70 10.73 9.27 5.33 7.80 70.17 9.10 20.60 770.90
Page-blocks 7.17 78.20 169.47 18.50 49.40 14.67 131.97 35.77 253.20 196.10
Penbased 17.00 710.90 444.90 220.50 86.70 21.70 198.40 291.20 1,025.9 170.60
Pima 1.00 20.10 101.90 18.30 58.03 5.00 108.13 29.83 83.20 563.50
Saheart 1.00 13.37 85.53 21.10 14.90 12.03 132.10 43.30 34.20 416.40
Satimage 9.70 433.20 517.70 147.90 69.70 2.00 496.40 239.90 3,433.7 439.30
Segment 9.90 99.70 98.10 58.30 36.00 18.40 248.40 79.30 232.40 494.30
Sonar 1.78 23.10 15.80 39.73 73.73 15.00 752.67 51.13 651.90 443.80
Tae 3.50 16.53 83.13 13.83 2.33 9.20 68.23 32.40 106.40 704.20
Thyroid 4.14 27.80 45.60 7.77 250.17 14.70 282.83 23.07 106.80 371.20
Tic–tac–toe 1.00 167.50 58.93 24.00 24.00 6.63 227.87 0.67 310.40 661.90
Twonorm 1.10 296.20 278.30 126.70 39.10 30.20 282.70 203.60 1,467.1 387.40
Vehicle 5.00 71.33 143.50 56.70 171.40 28.10 240.97 208.17 297.00 570.50
Wine 4.42 8.10 9.37 9.73 8.50 13.27 171.23 12.60 16.10 440.80
Yeast 11.80 173.40 590.00 33.90 55.00 23.30 113.20 82.20 1,059.5 456.00
Zoo 8.00 18.40 17.73 9.73 13.93 34.17 405.77 0.00 67.30 442.30
Avg. values 4.96 96.52 139.73 43.86 40.33 19.10 240.29 53.85 345.29 464.24
Avg. ranks 1.27 5.63 6.74 4.37 3.76 3.23 8.23 4.34 8.06 9.37
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Fig. 9 shows the application of the Bonferroni–Dunn test to the number of conditions of the classifier for alpha = 0.01,
whose critical difference is 2.3601. The algorithms right beyond the critical difference from the ICRM value are significantly
worse than ICRM, which is again the best algorithm and the most interpretable regarding the total number of conditions of
the rule-based classifier. Looking at the values from Table 9, there are significant differences with all the algorithms but CORE
regarding the average number of conditions of the classifiers.

Table 10 shows the results of the Wilcoxon rank-sum test for the total number of conditions to compute multiple pair-
wise comparisons among the proposal and the other methods. The p-values reported indicate significant differences with a
confidence level higher than 99% from ICRM with all the other methods.

5.5. Complexity

The complexity metric provided by Nauck [43] permits to compute an interpretability value that combines all the previ-
ous results.

Table 11 shows the average complexity values and the ranking of the algorithms. The best values are the higher complex-
ity values, at a ranking value of 1.16, our method performs best. The Iman and Davenport statistic for the complexity distrib-
uted according to an F-distribution with K � 1 = 9 and (K � 1)(N � 1) = 306 degrees of freedom is 74.2908. The test
establishes an F-distribution value = 2.4656 for a significance level of alpha = 0.01. Thus, the null hypothesis is rejected
and there are significant complexity differences.

Fig. 10 shows the application of the Bonferroni–Dunn test to the complexity for alpha = 0.01, whose critical difference is
2.3601. The algorithms right beyond the critical difference from the ICRM value have significantly worse complexity values
than ICRM. Observing this figure, all the algorithms but CORE have significantly worse results than ICRM regarding to the
complexity value, i.e., worse interpretability. Interestingly, the results of CORE show it to be the second most interpretable
algorithm in the comparison, but its accuracy results are among the worst.

Table 12 shows the results of the Wilcoxon rank-sum test for the complexity metric to compute multiple pairwise com-
parisons among the proposal and the other methods. The p-values reported indicate significant differences with a confidence
level higher than 99% from ICRM versus all. These are the best results achieved by the ICRM method among all the metrics
considered.

5.6. Execution time

The execution times for the different algorithms and data sets are shown in Table 13. These values represent the time
(in s) taken by an algorithm to learn from the training data, build a classifier and perform the classification over both the
training and test data. The best values are the lowest running times, at a ranking value of 2.21, C45R is the fastest algorithm
followed by RIPPER. The Iman and Davenport statistic for the execution time distributed according to an F-distribution with
K � 1 = 9 and (K � 1)(N � 1) = 306 degrees of freedom is 86.6229. The test establishes an F-distribution value = 2.4656 for a
significance level of alpha = 0.01. Thus, the test rejects the null hypothesis and therefore it can be said that there are signif-
icant differences between the execution times of the algorithms.

Fig. 11 shows the application of the Bonferroni–Dunn test to the execution time for alpha = 0.01, whose critical difference
is 2.3601. The algorithms right beyond the critical difference from the C45R value are significantly slower. Observing this

Fig. 9. Bonferroni-Dunn for the number of conditions per classifier.

Table 10
Wilcoxon test for the total number of conditions.

ICRM vs R+ R� p-value

C45R 630.0 0.0 5.82E�11
RIPPER 630.0 0.0 5.82E�11
MPLCS 630.0 0.0 5.82E�11
AntMiner+ 621.0 9.0 1.921E�9
CORE 616.0 14.0 6.402E�9
ILGA 630.0 0.0 5.82E�11
SLAVE 563.0 32.0 3.218E�7
DTGA 630.0 0.0 5.82E�11
GFS-GP 630.0 0.0 5.82E�11
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figure, C45R, RIPPER, DTGA and ICRM have no statistically significant differentes in the execution time of the algorithsm. On
the other hand, AntMiner+, SLAVE, MPLCS, CORE, ILGA and GFS-GP do perform significantly slower.

Table 14 shows the results of the Wilcoxon rank-sum test for the execution time to compute multiple pairwise compar-
isons among the proposal and the other methods. The p-values reported indicate significant differences with a confidence
level higher than 99% from ICRM with MPLCS, AntMiner+, CORE, ILGA, SLAVE, and GFS-GP.

Table 11
Complexity.

Complexity ICRM C45R RIPPER MPLCS AntMin+ CORE ILGA SLAVE DTGA GFS-GP

Appendicitis 2.00 0.06 0.03 0.12 0.09 0.19 0.01 0.08 0.43 0.00
Australian 2.00 0.06 0.03 0.12 0.09 0.19 0.01 0.08 0.02 0.00
Balance 0.79 0.03 0.02 0.09 0.19 0.69 0.05 0.05 0.02 0.01
Breast 1.82 0.04 0.02 0.02 0.26 0.20 0.01 0.00 0.10 0.00
Bupa 1.11 0.09 0.03 0.09 0.67 0.33 0.02 0.09 0.02 0.00
Car 0.51 0.01 0.01 0.06 0.04 0.50 0.03 6.00 0.01 0.01
Chess 1.00 0.02 0.03 0.04 0.11 0.01 0.00 0.00 0.01 0.00
Contraceptive 1.00 0.02 0.01 0.17 0.26 0.18 0.02 0.02 0.00 0.01
Dermatology 0.70 0.25 0.17 0.23 0.11 0.10 0.01 0.28 0.13 0.02
Ecoli 0.53 0.23 0.09 0.37 0.37 0.47 0.08 0.19 0.06 0.02
Flare 0.81 0.07 0.01 0.06 0.06 0.37 0.02 0.00 0.04 0.02
German 2.00 0.02 0.01 0.02 0.10 0.16 0.01 0.07 0.01 0.01
Glass 0.49 0.22 0.13 0.32 0.57 0.31 0.06 0.12 0.03 0.01
Haberman 2.00 0.34 0.04 0.30 1.54 0.50 0.05 0.16 0.43 0.00
Heart 1.00 0.07 0.06 0.07 0.10 0.15 0.01 0.07 0.04 0.00
Ionosphere 1.00 0.07 0.10 0.10 0.18 0.15 0.00 0.15 0.04 0.00
Iris 1.00 0.53 0.31 0.84 0.78 0.64 0.05 0.74 0.29 0.01
Lymphography 0.80 0.17 0.14 0.11 0.30 0.15 0.01 0.48 0.08 0.01
Monk-2 1.00 0.20 0.40 0.38 0.29 0.48 0.02 1.00 0.19 0.01
New-thyroid 0.78 0.24 0.28 0.32 0.56 0.38 0.04 0.33 0.15 0.00
Page-blocks 0.70 0.06 0.03 0.27 0.10 0.34 0.04 0.14 0.02 0.03
Penbased 0.59 0.01 0.02 0.05 0.12 0.46 0.05 0.03 0.01 0.06
Pima 2.00 0.10 0.02 0.11 0.03 0.40 0.02 0.07 0.02 0.00
Saheart 2.00 0.15 0.02 0.09 0.13 0.17 0.02 0.05 0.06 0.00
Satimage 0.72 0.02 0.01 0.05 0.10 3.50 0.01 0.03 0.00 0.02
Segment 0.71 0.07 0.07 0.12 0.19 0.38 0.03 0.09 0.03 0.01
Sonar 1.12 0.09 0.13 0.05 0.03 0.13 0.00 0.04 0.00 0.00
Tae 0.86 0.18 0.04 0.22 1.29 0.33 0.04 0.09 0.03 0.00
Thyroid 0.72 0.11 0.07 0.39 0.01 0.20 0.01 0.13 0.03 0.01
Tic–tac–toe 2.00 0.01 0.03 0.08 0.08 0.30 0.01 3.00 0.01 0.00
Twonorm 1.82 0.01 0.01 0.02 0.05 0.07 0.01 0.01 0.00 0.01
Vehicle 0.80 0.06 0.03 0.07 0.02 0.14 0.02 0.02 0.01 0.01
Wine 0.68 0.37 0.32 0.31 0.35 0.23 0.02 0.24 0.19 0.01
Yeast 0.85 0.06 0.02 0.29 0.18 0.43 0.09 0.12 0.01 0.02
Zoo 0.88 0.38 0.39 0.72 0.50 0.20 0.02 0.00 0.10 0.02
Avg. values 1.11 0.13 0.09 0.19 0.28 0.38 0.03 0.40 0.07 0.01
Avg. ranks 1.16 5.56 6.76 4.19 3.73 3.13 8.09 5.37 7.89 9.14

Table 12
Wilcoxon test for complexity.

ICRM vs R+ R� p-value

C45R 630.0 0.0 5.82E�11
RIPPER 630.0 0.0 5.82E�11
MPLCS 630.0 0.0 5.82E�11
AntMiner+ 622.0 8.0 1.455E�9
CORE 595.0 35.0 2.508E�7
ILGA 630.0 0.0 5.82E�11
SLAVE 538.5 56.5 7.672E�6
DTGA 630.0 0.0 5.82E�11
GFS-GP 630.0 0.0 5.82E�11

Fig. 10. Bonferroni–Dunn for complexity.
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5.7. Overall comparison

Table 15 summarizes the ranks obtained by the algorithms using the different metrics. The bottom rows show the average
rank values and the meta rank (rank of the ranks). This table shows the great overall performance of the ICRM algorithm and

Table 13
Execution time.

Time ICRM C45R RIPPER MPLCS AntMin+ CORE ILGA SLAVE DTGA GFS-GP

Appendicitis 2.26 1.00 1.19 18.56 55.93 35.41 56.89 32.26 0.11 129.11
Australian 2.26 1.00 1.19 18.56 55.93 35.41 56.89 32.26 1.00 683.78
Balance 1.15 1.07 0.67 19.78 26.11 12.89 9.07 26.56 2.56 412.22
Breast 0.09 0.44 0.44 32.33 0.33 8.11 10.44 2.33 0.44 233.44
Bupa 0.54 0.59 0.56 8.22 5.56 10.63 8.63 8.00 0.78 482.11
Car 0.33 1.04 5.07 69.74 458.85 109.96 29.26 10.81 5.44 1,222.6
Chess 1.60 2.33 2.89 470.00 2.00 551.56 1,402.4 67.56 6.22 2,643.9
Contraceptive 2.94 11.52 3.59 45.22 66.74 42.89 55.15 194.19 9.00 1,506.0
Dermatology 134.59 0.59 0.48 48.70 118.44 60.96 144.59 51.81 0.78 304.11
Ecoli 26.49 0.59 0.56 13.30 32.07 22.70 15.41 29.63 1.67 381.89
Flare 1.44 0.81 3.52 38.37 178.56 59.67 73.11 17.67 2.78 992.78
German 0.78 1.89 2.33 109.11 0.67 134.78 167.44 66.22 1.67 689.89
Glass 24.45 0.52 0.52 9.30 11.74 13.96 15.52 26.52 2.22 206.44
Haberman 0.12 0.30 0.33 4.89 5.48 8.00 3.22 3.70 0.22 441.44
Heart 1.64 0.63 0.48 13.70 33.04 13.04 27.00 12.19 0.67 358.44
Ionosphere 2.28 0.56 1.00 102.44 1.00 55.11 89.11 16.00 0.67 415.89
Iris 0.71 0.15 0.11 4.11 4.07 9.33 2.93 2.41 0.11 132.00
Lymphography 3.54 0.30 0.26 6.30 12.15 21.15 19.96 10.67 0.56 142.44
Monk-2 0.27 0.33 0.19 10.74 12.22 14.44 7.41 4.37 0.22 305.22
New-thyroid 1.49 0.22 0.19 5.41 7.52 10.81 5.70 5.11 0.33 265.67
Page-blocks 46.22 10.26 14.67 191.30 616.30 225.63 469.74 352.11 22.33 3,044.2
Penbased 62.62 40.78 21.11 9,343.0 19.11 1,011.3 4,261.0 4,976.7 62.67 4,969.7
Pima 1.36 0.96 1.48 19.11 115.33 24.15 35.63 22.59 3.22 916.78
Saheart 1.08 0.67 1.04 11.48 28.78 13.63 33.96 20.74 0.67 533.89
Satimage 123.52 39.67 27.78 7,040.4 95.67 924.44 2811.1 2,886.4 142.78 6,984.8
Segment 14.70 3.11 7.22 794.00 5.33 301.56 508.00 501.11 8.78 1,988.4
Sonar 98.20 0.70 0.96 34.63 78.44 34.11 152.74 21.96 3.44 197.00
Tae 0.65 0.33 0.26 4.52 2.78 5.85 4.19 6.26 0.56 172.11
Thyroid 71.61 4.37 4.15 629.81 9,671.8 893.44 813.78 331.07 9.78 4,988.6
Tic–tac–toe 0.08 0.81 0.70 20.37 151.52 27.37 56.07 6.04 5.89 1,096.9
Twonorm 4.74 36.33 270.67 2,757.8 7.67 913.33 3761.78 1,454.2 9.67 7,898.0
Vehicle 32.74 2.00 2.63 85.85 274.22 73.67 158.52 204.15 2.78 880.22
Wine 13.86 0.26 0.26 9.41 12.78 16.48 14.59 7.19 0.33 167.56
Yeast 6.08 11.67 4.56 232.11 18.17 83.89 97.22 234.22 16.33 1,221.1
Zoo 2.98 0.19 0.19 3.07 9.59 14.93 16.70 5.19 0.56 95.67
Avg. values 19.70 5.09 10.95 635.02 348.45 165.56 439.86 332.86 9.35 1,345.8
Avg. ranks 3.60 2.21 2.24 6.51 6.39 7.06 7.54 6.41 3.13 9.90

Fig. 11. Bonferroni–Dunn for the execution time.

Table 14
Wilcoxon test for the execution time.

ICRM vs R+ R� p-value

C45R 139.0 491.0 P0.2
RIPPER 150.0 480.0 P0.2
MPLCS 551.0 79.0 3.796E�5
AntMiner+ 500.0 130.0 0.001843
CORE 570.0 60.0 5.686E�6
ILGA 609.0 21.0 2.602E�8
SLAVE 568.0 62.0 7.052E�6
DTGA 234.0 396.0 P0.2
GFS-GP 630.0 0.0 5.82E�11
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the bad performance of GFS-GP and ILGA. Ripper and C45R are the fastest algorithms since they are not evolutionary, but
they provide classifiers with many rules and significantly more complex. MPLCS provides the most accurate classifier but
its execution time is significantly slower. AntMiner + and CORE provide a relatively low number of rules but they run slower.
ILGA and GFS-GP are definitely the worst algorithms from the comparison. Specifically, GFS-GP achieves the worst ranks over
four of the metrics considered. Our proposal, ICRM, obtains the best rankings regarding the number of rules, the number of
conditions per rule, the number of conditions per classifier, and complexity. The accuracy, the complexity of the classifier
and the execution time are conflicting objectives on which ICRM has shown best overall performance.

6. Conclusion

In this paper we have proposed an interpretable classification rule mining (ICRM) algorithm, which is an interpretable
and efficient rule-based evolutionary programming classification algorithm. The algorithm solves the cooperation–competi-
tion problem by dealing with the interaction among the rules during the evolutionary process. The proposal minimizes the
number of rules, the number of conditions per rule, and the number of conditions of the classifier, increasing the interpret-
ability of the solutions. The algorithm does not explore already explored search spaces. Once one rule has no better condi-
tions to be appended, the rule is marked as unbeatable and no more searches are performed over that rule, saving
computational resources. Moreover, the algorithm stops when all the individuals are marked as unbeatable, i.e., there is
no possibility of improving any individual, saving further generations. The population size and the maximum number of gen-
erations are equal to the number of features. Thus, it is not necessary to configure or optimize these parameters; it is self-
adapting to the problem complexity.

The experiments performed compared our algorithm with other machine learning classification methods, including crisp
and fuzzy rules, rules extracted from decision trees, and an ant colony algorithm. The results show the competitive perfor-
mance of our proposal in terms of predictive accuracy, obtaining significantly better results than AntMiner+, CORE, ILGA,
GFS-GP, and SLAVE. ICRM obtains the best results in terms of interpretability, i.e, it minimizes the number of rules, the num-
ber of conditions per rule, and the number of conditions of the classifier. These interpretability measures can be summarized
using the Nauck complexity metric. Using this measure, ICRM obtains significantly better interpretability results than all the
other techniques. The algorithms whose overall performances are closest to ICRM, in accuracy vs interpretability, are C45R
and MPLCS. They obtain significantly worse interpretability results but a little improvement in accuracy.

Experimental results have shown the good performance of the algorithm, but it would be honest to note its limitations. The
algorithm is capable of finding comprehensible classifiers with low number of rules and conditions, while achieving compet-
itive accuracy. However, the comprehensibility is prioritized between these conflicting objectives. The one rule per class de-
sign allows to obtain very interpretable solutions and it is useful to extract fast ‘‘big pictures’’ of the data. Nevertheless, the
accuracy on very complex data might be lower than the obtained by other algorithms but with much more complex classifiers.
There is no classifier which achieves best accuracy and comprehensibility for all data. Thus, this algorithm focuses on the
interpretability of the classifier, which is very useful for knowledge discovery and decision support systems.

The algorithm runs quite fast, significantly faster than other evolutionary-based algorithms, according to the experi-
ments. However, there exits linear performance complexity regarding to the number of attributes. Therefore, mining extre-
mely high-dimensional data with thousands of attributes would impact the time performance. The solution to this problem
would be the execution of a feature selection algorithm prior to the classification algorithm.
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Weighted Data Gravitation Classification
for Standard and Imbalanced Data

Alberto Cano, Member, IEEE, Amelia Zafra, Member, IEEE, and Sebastián Ventura, Senior Member, IEEE

Abstract—Gravitation is a fundamental interaction whose con-
cept and effects applied to data classification become a novel data
classification technique. The simple principle of data gravitation
classification (DGC) is to classify data samples by comparing the
gravitation between different classes. However, the calculation of
gravitation is not a trivial problem due to the different relevance
of data attributes for distance computation, the presence of noisy
or irrelevant attributes, and the class imbalance problem. This
paper presents a gravitation-based classification algorithm which
improves previous gravitation models and overcomes some of their
issues. The proposed algorithm, called DGC+, employs a matrix
of weights to describe the importance of each attribute in the
classification of each class, which is used to weight the distance
between data samples. It improves the classification performance
by considering both global and local data information, especially
in decision boundaries. The proposal is evaluated and compared to
other well-known instance-based classification techniques, on 35
standard and 44 imbalanced data sets. The results obtained from
these experiments show the great performance of the proposed
gravitation model, and they are validated using several nonpara-
metric statistical tests.

Index Terms—Classification, covariance matrix adaptation evo-
lution strategy (CMA-ES), data gravitation, evolutionary strate-
gies, imbalanced data.

I. INTRODUCTION

SUPERVISED learning is one of the most fundamental
tasks in machine learning. A supervised learning algorithm

analyzes a set of training examples and produces an inferred
function to predict the correct output for any other examples.
Classification is a common task in supervised machine learning
which aims at predicting the correct class for a given example.
Classification has been successfully implemented using many
different paradigms and techniques, such as artificial neural
networks [1], support vector machines (SVMs) [2], instance-
based learning methods [3], or nature-inspired techniques such
as genetic programming [4].

The nearest neighbor (NN) algorithm [5] is an instance-based
method which might be the simplest classification algorithm.
Its classification principle is to classify a new sample with the
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class of the closest training sample. The extended version of
NN to k neighbors (KNN) and their derivatives are indeed one
of the most influential data mining techniques, and they have
been shown to perform well in many domains [6]. However, the
main problem with these methods is that they severely deterio-
rate with noisy data or high dimensionality: their performance
becomes very slow, and their accuracy tends to deteriorate
as the dimensionality increases, especially when classes are
nonseparable or they overlap [7].

In recent years, new instance-based methods based on data
gravitation classification (DGC) have been proposed to solve
the aforementioned problems of the NN classifiers [8]–[10].
DGC models are inspired by Newton’s law of universal grav-
itation and simulate the accumulative attractive force between
data samples to perform the classification. These gravitation-
based classification methods extend the NN concept to the law
of gravitation among the objects in the physical world. The
basic principle of DGC is to classify data samples by comparing
the data gravitation among the training samples for the different
data classes, whereas KNNs vote for the k training samples that
are the closest in the feature space.

This paper presents a DGC algorithm (DGC+) that compares
the gravitational field for the different data classes to predict
the class with the highest magnitude. The proposal improves
previous data gravitation algorithms by learning the optimal
weights of the attributes for each class and solves some of
their issues such as nominal attributes handling, imbalanced
data performance, and noisy data filtering. The weights of the
attributes in the classification of each class are learned by
means of the covariance matrix adaptation evolution strategy
(CMA-ES) [11] algorithm, which is a well-known, robust, and
scalable global stochastic optimizer for difficult nonlinear and
nonconvex continuous domain objective functions [12]. The
proposal improves accuracy results by considering both global
and local data information, especially in decision boundaries.

The experiments have been carried out on 35 standard and
44 imbalanced data sets collected from the KEEL [13] and UCI
[14] repositories. The algorithms compared for both standard
and imbalanced classifications have been selected from the
KEEL [15] and WEKA [16] software tools. The experiments
consider different problem domains, number of instances, at-
tributes, and classes. The algorithms from the experiments
include some of the most relevant instance-based and imbal-
anced classification techniques presented up to now. The results
reported show the competitive performance of the proposal,
obtaining significantly better results in terms of predictive ac-
curacy, Cohen’s kappa rate [17], [18], and area under the curve
(AUC) [19], [20]. The experimental study includes a statistical

2168-2267 © 2013 IEEE
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analysis based on the Bonferroni–Dunn [21] and Wilcoxon [22]
nonparametric tests [23], [24] in order to evaluate whether there
are significant differences in the results of the algorithms.

The remainder of this paper is organized as follows. The
next section presents some definitions and briefly reviews re-
lated background. Section III describes the proposed algorithm.
Section IV describes the experimental study, whose results
are discussed in Section V. Finally, Section VI presents some
concluding remarks.

II. BACKGROUND

This section briefly reviews the most important developments
related to distance and instance weighting in NN classifiers and
overviews data gravitation models.

A. NN Models

The following proposals focus on improvements of the
NN classifier to consider distance weighting and training set
transformation because these ideas have been considered when
designing the proposed algorithm.

NN classifiers simply perform a class voting among the k
closest training instances. Thus, the real problem is to decide
which are the k closest instances based on a distance criterion
and how they compete for class voting.

Dudani introduced the distance-weighted NN rule (DW-
KNN) [25] based on the idea that evidences nearby sample
observations are stronger. More specifically, he proposed to
weight the evidence of a neighbor close to an unclassified
example more heavily than the evidence of another neighbor
which is at a greater distance from the unclassified example.
Thus, the k closest neighbors p1, p2, . . . , pk are ordered so that
p1 is the nearest and pk is the farthest from the unclassified
example. The corresponding distances of these neighbors from
the unclassified example are d1, d2, . . . , dk. The voting weight
for a neighbor pj is defined as

wj =

{
dk−dj

dk−d1
if dk �= d1

1 if dk = d1

}
. (1)

Having computed the weights, the DW-KNN assigns the
unclassified example to the class for which the weights of the
representatives among the k NNs sum to the greatest value.

Gao and Wang applied this idea and proposed a center-based
NN classifier (CNN) [26] which uses the distance between train
instances and centers of their class as a reference of how far the
train instance is from the unclassified example. CNN considers
the center-based line passing through an example with known
label and the center of the data class. However, this method
performs bad classification when the center of the data classes
is overlapped.

Wang et al. proposed an adaptive k NN algorithm (KNN-A)
[27] which involves both a locally adaptive distance measure
for identifying the NNs to an unknown example and a weighting
scheme that assigns a weight to each NN based on its statistical
confidence.

Paredes and Vidal [28], [29] proposed a class-dependent
weighted dissimilarity measure in vector spaces to improve
the performance of the NN classifier. Under their proposed

framework, the accuracy is improved by using a dissimilarity
measure such that distances between points belonging to the
same class are small while interclass distances are large.

Prototype selection [30] and prototype generation [31] are
also commonly employed together with NN classifiers to re-
duce the data size and to improve the accuracy.

Paredes and Vidal extended their NN model together with
a prototype reduction algorithm [32], which simultaneously
trains both a reduced set of prototypes and a suitable local
metric for them. Starting with an initial selection of a small
number of prototypes, their proposal iteratively adjusts both the
position (features) of these prototypes and the corresponding
local-metric weights.

Zhou and Chen [33] proposed a cam weighted distance
(CamNN) to ameliorate the curse of dimensionality which
optimizes the distance measure based on the analysis of inter-
prototype relationships.

Triguero et al. [34] applied differential evolution to the pro-
totype selection problem as a position adjusting of prototypes.
Their experimental results advocate for the great performance
of SSMA [35] + SFLSDE [36], which results in a combination
of a prototype selection stage with an optimization of the
position of prototypes, prior to the NN classification. Similarly,
Jahromi et al. [37] improve the classification rate of the NN rule
by adjusting the weights of the training instances, thus reducing
the size of the training set.

As observed, these proposals weight the class voting of the
k NNs based on the relative distances between data samples
and/or perform data reduction via prototype selection or gen-
eration. The NN classification process is transparent and easy
to understand, implement, and debug. However, most of these
methods are very sensitive to irrelevant, redundant, or noisy fea-
tures because all features contribute to the similarity/distance
function and thus to the classification. This problem is enhanced
as the dimensionality of the data increases.

B. Data Gravitation Models

The first machine learning algorithm inspired by the phys-
ical gravitation was proposed in 1977 by Wright [38] for
performing cluster analysis on Euclidean data. More recently,
Endo and Iwata [39] proposed in 2005 a dynamic clustering
algorithm based on universal gravitation which takes advantage
of both global and local information of the data. Although both
proposals are focused on clustering, they are inspired by the
gravitation principles.

Regarding gravitational classification models, Wang and
Chen [9] presented in 2005 an improvement of the NN classi-
fier using simulated gravitational collapse. They simulated the
physical process of gravitational collapse to trim the boundaries
of the distribution of each class, since the performance of the
NN classifier drops significantly with the increase of the over-
lapping of the distribution of different classes. Their algorithm
generates prototypes for the NN classifier by a migration of the
original samples.

There are more contributions that apply gravitation theory to
classification, such as Yang et al. [40] for abnormal network
intrusion detection or Zong-Chang [10] who proposed in 2007
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a vector gravitational force model derived from the vector
geometric analysis of the linear classifier.

The most recent and complete work related to DGC was
presented by Peng et al. [8] in 2009. They employ weights
to describe the importance of the attributes in the distance
calculation of the gravitation model. The weights are optimized
by a random iterative algorithm named tentative random feature
selection (TRFS). Artificial data particles are created from the
training data to represent set of samples for the different classes.
Gravitation from a particle to the different classes is calculated
using the mass of the data particles (number of instances
represented) and the distance to its centroid, which represents
the mass center of the data particle.

The algorithm creates data particles using the maximum
distance principle. However, this method reduces the accuracy,
especially in the area away from the data particle centroid
and along the border between classes. The gravitation function
performs well on standard data, but it suffers severely from im-
balanced data, which is one of the major drawbacks concluded
by their authors.

III. ALGORITHM DESCRIPTION

This section presents the proposed algorithm, whose main
characteristics are depicted in the following sections. First, the
main concepts and principles of DGC are presented. Second,
the definition of distance and the procedure to calculate the
optimal weights of the attributes for the different classes are
presented. Third, the adaptation of the gravitation function to
consider the imbalance data problem is discussed. Finally, the
main steps conducted by the evolutionary algorithm to obtain
the classifier are summarized.

A. DGC Principles

Newton published in 1687 the law of universal gravitation,
which states that every point mass in the universe attracts
every other point mass with a force that is directly proportional
to the product of their masses and inversely proportional to
the square of the distance between them. General relativity
generalizes Newton’s law of universal gravitation, providing a
unified description of gravity as a geometric property of space-
time. The curvature of space-time is usually represented using
embedding diagrams [41]. These diagrams show the gravity
well, which represents the gravitational field surrounding an
object in space. Each point in space will have a value of the
gravitational field proportional to the function

�g = −G
M

r2
�ur (2)

where G is the gravitational constant, M is the mass of the
object, and r is the distance to the object.

The principle of DGC is to assign to an instance the class
with the highest gravitational field magnitude. Therefore, given
a sample �x, the algorithm calculates the gravitation to �x using
the training samples for the different classes and predicts the
class with the highest gravitation

Class(�x) = arg max g(�x, k) ∀k ∈ C (3)

where g(�x, k) is the gravitation exerted to a data sample �x
by the instances from the class k and C is the set of classes.
There are significant differences between this proposal, NN,
and previous gravitation methods, especially concerning how
gravitation is calculated considering the distances among the
samples. These differences are detailed in the next sections.

B. Definition of Distance

Gravitation is inversely proportional to the square of the
distance. Newtonian gravitation usually considers the case of
Euclidean geometry. The Euclidean distance between two ob-
jects �x1 and �x2 is defined as

d(�x1, �x2) =

√√√√
f∑

i=1

(x1i − x2i)
2 (4)

where the number of attributes (features or dimensions) is f .
Normalization is an essential preprocessing step in data mining
[42], especially concerning instance-based methods [43]. All
numerical attributes have to be scaled to [0, 1] for an equi-
table calculation of distances using the min–max normalization
[44]. Otherwise, distances from attributes with larger domains
would disrupt others from smaller domains. In order to find a
reasonable distance between a pair of samples with nominal at-
tributes, the overlap metric is used for the labels. This metric is
defined as

δ (x1i, x2i) =

{
0 if x1i = x2i

1 if x1i �= x2i

}
. (5)

Although the definition of distance from (4) considers all the
attributes equally relevant, feature selection has been shown
to improve the performance of classification algorithms [45],
[46]. Feature selection selects a subset of relevant features
and removes most irrelevant and redundant features from the
data. Embedded feature selection methods [47] realize that the
learning part and the feature selection part cannot be separated.

Peng et al. [8] proved that weighting attributes performed
well in calculating the gravitation using the relevant attributes.
Weighting attributes within the learning process is a way of
embedded feature selection by giving more or less importance
to the different attributes. However, similar to Paredes and Vidal
[28], [29], we consider that the weight of each attribute must be
different for each class since the distribution of the samples is
not usually similar. Thus, instead of using an attribute weight
vector of length f , the proposed algorithm employs a class-
dependent attribute-class weight matrix W [f, c], where f is the
number of attributes and c is the number of classes.

W =

⎡
⎣

w1,1 . . . w1,c

. . . . . . . . .
wf,1 . . . wf,c

⎤
⎦ . (6)

Therefore, the distance function from (4) is rewritten to take
into account the weights of the attributes for each class

d(�x1, �x2, k) =

√√√√
f∑

i=1

wi,k · (x1i − x2i)
2 (7)

where wi,k is the weight of the attribute i for the class k.
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The optimization of the W attribute-class weight matrix is
a real optimization problem whose dimension f · c depends on
the number of attributes and the number of classes. Accord-
ingly, the CMA-ES is one of the most powerful evolutionary
algorithms for difficult nonlinear nonconvex real-valued single-
objective optimization [11]. The main advantages of CMA-ES
lie in its invariance properties, which are achieved by carefully
designed variation and selection operators, and in its efficient
self-adaptation of the mutation distribution. CMA-ES does not
require a tedious parameter tuning for its application since a
strategy for finding good parameters is considered as part of the
algorithm design and not as part of its application. Therefore,
the proposal employs CMA-ES to optimize the real values of
the attribute-class weight matrix instead of the TRFS algorithm
proposed by Peng et al. [8] to optimize their attribute weight
vector.

C. Definition of Gravitation

Gravitation depends on the mass and the distances among
the objects. Peng et al. [8] perform data transformation by
creating artificial data particles which replace the original train-
ing samples. Gravitation to a data class is calculated using
the superposition principle, i.e., the sum of gravitation to the
samples belonging to the data class. Therefore, their approach
may fail because of the imbalance data since gravitation from
a certain class is extremely strong or extremely weak, misclas-
sifying minority class examples. The problem of learning from
imbalanced data is a relatively new challenge that has attracted
growing attention from both academia and industry [48]–[50].
This problem is concerned with the performance of learning
algorithms in the presence of underrepresented data and severe
class distribution skews.

This problem would be enhanced in our proposal since it
considers all of the training instances. Gravitation of minority
classes would be eclipsed by those of the majority classes.
Therefore, the gravitation of a class is weighted by its number
of instances and the total number of instances. In this way,
a balance between the gravitation of majority and minority
classes is achieved. Finally, the gravitation of a sample �x for
a class k is defined as

g(�x, k) =

(
1 − Nk − 1

N

)
·

N∑

i=1

1

d(�xi, �x, k)2
|�xi ε k (8)

where Nk is the number of instances of the class k and N is the
total number of instances.

Peng et al.’s proposal calculates the centroid of data parti-
cles, which is the center of masses, for distance computation.
However, the weakness of the data class centroid is the loss
of information about the shape of the instance cloud (local
information), which does not happen when using all of the
samples. The aforementioned problem is especially noticeable
when the shape of the instance cloud is irregular; hence, the
path of the border between the classes cannot be properly fitted.
Instead, our proposal deals with all of the training samples. The
advantage of using all of the samples to calculate gravitation
is that it provides accurate classification in local classification,

where there are many closer train instances which provide high
gravitation nearby. It also provides good generalization where
there are no closer training instances (global information) since
gravitation is inversely proportional to the square of the dis-
tance, disregarding confidence from those faraway.

D. Evolutionary Algorithm

The main steps conducted by the algorithm to obtain the clas-
sifier, the optimal attribute-class weights, and the predictions
for a data set are now summarized.

First, all attributes from the data set are scaled and normal-
ized to the range [0, 1] using the min–max normalization. The
problem of absolute distance calculation is that the outcome
depends on the range and the values of each attribute domain.
Thus, distances from attributes with larger domains would
disrupt others from smaller domains. Therefore, scaling is used
to avoid this problem and to relativize the distance calculation
from the different attributes. For every attribute in the data
set, we find the maximum value vmax and the minimum value
vmin. For every instance within the data set and attribute, the
normalized attribute value vnorm for an original attribute value
v is scaled as follows:

vnorm =
v − vmin

vmax − vmin
. (9)

Second, we must find the optimal values for the attribute-
class weight matrix W in order to discriminate irrelevant or
noisy attributes and to enhance truly relevant attributes for
each class. Therefore, we encode a population of real array
individuals to represent the weights of the attributes for each
class. The initial values are set to 0.5, i.e., all attributes are
initially considered equally relevant. CMA-ES is run to op-
timize these values according to the fitness function, which
evaluates the accuracy of the candidate gravitation classifiers
using the current attribute-class matrix values and the train
data. The configuration settings and parameters of CMA-ES are
described in Section IV-C. When CMA-ES meets any of the
stop criteria, the best attribute-class matrix from the CMA-ES
population is employed to build the final classifier.

Finally, the class predictions are obtained from submitting
the instances from the data set to the final classifier. The class
predictions are compared to the actual class of the instances,
obtaining the values of the confusion matrix. The confusion
matrix is used to compute the quality performance metrics
described in Section IV-B.

IV. EXPERIMENTAL STUDY

This section describes the details of the experiments per-
formed in order to evaluate the capabilities of the proposal and
compares it to other classification methods. The experimental
study is divided in two sets of experiments. On the one hand,
the proposal is evaluated and compared to seven other instance-
based classification techniques over 35 standard classification
data sets. On the other hand, the proposal is evaluated over 44
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imbalanced data sets and compared to eight other techniques
specifically designed for imbalanced classification.1

First, the application domains are presented, followed by a
description of the performance measures to evaluate. Then, the
algorithms used for the comparison and the description of the
experimental methodology are presented. Finally, the statistical
tests used for validating the results are described.

A. Problem Domains

The data sets used in the experiments have been collected
from the KEEL [13] and UCI [14] machine learning repos-
itory Web sites, and they are very varied in their degree of
complexity, number of classes, number of attributes, number
of instances, and imbalance ratio (the ratio of the size of the
majority class to the size of the minority class). There are 35
standard and 44 imbalanced data sets. The number of classes
ranges up to 11, the number of attributes ranges from 2 to 60,
the number of instances ranges from 148 to 12 690, and the
imbalance ratio is up to 129.44. Detailed information about the
data sets and their number of instances, classes, attributes, and
imbalance ratio are shown in the Web site.1

The standard data sets are partitioned using the stratified
tenfold cross-validation procedure [51], [52]. The imbalanced
data sets are partitioned using the stratified fivefold cross-
validation procedure to ensure the presence of minority class
instances in the test sets. All experiments are repeated with ten
different seeds for stochastic methods.

B. Performance Measures

There are many performance measures for classification
algorithms depending on the classification subfield problem
[53], [54]. Different measures allow us to observe different
behaviors, which increases the strength of the empirical study
in such a way that more complete conclusions can be obtained
from different (not opposite yet complementary) deductions
[55], [56]. These measures are based on the values of the
confusion matrix, where each column of the matrix represents
the count of instances in a predicted class, while each row
represents the number of instances in an actual class.

The standard performance measure for classification is the
accuracy rate, which is the number of successful predictions
relative to the total number of classifications. However, the
accuracy rate may be misleading when data classes are strongly
imbalanced since the all-positive or all-negative classifier may
achieve a very good classification rate. Real-world problems
frequently deal with imbalanced data. Therefore, the evaluation
of the model should be done by means of other criteria rather
than accuracy.

Cohen’s kappa rate [17], [18] is an alternative measure to
accuracy since it compensates for random hits. The kappa
measure evaluates the merit of the classifier, i.e., the actual hits

1The data set description together with their partitions, the algorithms as
stand-alone runnable files, and the experimental settings are fully described and
publicly available to facilitate the replicability of the experiments and future
comparisons with previous or new proposals in the Web site http://www.uco.
es/grupos/kdis/kdiswiki/DGC.

that can be attributed to the classifier and not by mere chance.
Cohen’s kappa statistic ranges from −1 (total disagreement) to
0 (random classification) to 1 (total agreement). It is calculated
by means of the confusion matrix as follows:

Kappa =

N
k∑

i=1

xii −
k∑

i=1

xi.x.i

N2 −
k∑

i=1

xi.x.i

(10)

where xii is the count of cases in the main diagonal of the
confusion matrix, N is the number of examples, and x.i and
xi. are the column and row total counts, respectively. Cohen’s
kappa rate also penalizes all-positive or all-negative predictions,
especially in imbalanced data problems. Kappa is very useful
for multiclass problems, measuring a classifier’s accuracy while
compensating for random successes.

The area under the receiver operating characteristic (ROC)
curve (AUC) [19], [20] is a commonly used evaluation measure
for imbalanced classification. The ROC curve presents the
tradeoff between the true positive rate and the false positive
rate [57]. The classifier generally misclassifies more negative
examples as positive examples as it captures more true positive
examples. AUC is computed by means of the confusion matrix
values: true positives (TP ), false positives (FP ), true negatives
(TN ), and false negatives (FN ), and it is calculated by relating
the true positive and false positive ratio

AUC =
1+TPrate−FPrate

2
=

1 + TP

TP+FN
− FP

FP+TN

2
. (11)

C. Comparison of the Algorithms and Experimental Settings

This section describes the algorithms used in the experi-
mental study and their parameter settings, which are obtained
from the KEEL [15] and WEKA [16] software tools. Sev-
eral instance-based methods, including the most recent DGC
method, have been selected and compared to determine whether
the proposal is competitive in different domains with the other
approaches. Algorithms are compared on equal terms and with-
out specific settings for each data problem. The parameters used
for the experimental study in all classification methods are the
optimal values from the tenfold cross-validation, and they are
now detailed.

1) Classification Methods for Standard Data Sets: Table I
summarizes the experimental settings for the standard classifi-
cation algorithms.

1) DGC [8] employs weights to describe the importance of
the attributes in the DGC model. It transforms the data
set using data particles, which are constructed using the
nearest instances to reduce the complexity of the data set.
Gravitation from one particle to the different classes is
calculated using the mass of the data particles (number
of instances represented) and the distance to its centroid,
which represents the mass center of the data particle.

2) KNN [5] classifies an instance with the class with the
higher value of the number of neighbors to the instance
that belongs to such class. Vicinity is defined as the
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TABLE I
EXPERIMENTAL SETTINGS FOR STANDARD CLASSIFICATION

k instances with lower distances to the instance being
classified.

3) Adaptive KNN (KNN-A) [27] is a classifier in which
distances are weighted by the distance from the training
instance to its nearest instance belonging to a different
class. Thus, instances near to the decision boundaries
become more relevant.

4) DW-KNN [25] weights the vote of the k NNs regarding
their relative distances to the uncategorized example.

5) Cam weighted distance (CamNN) [33] addresses the
curse of dimensionality optimizing a distance measure
based on the analysis of relations among data samples.

6) Center NN (CNN) [26] classifier is an enhanced 1-NN
classifier which uses the distance between train instances
and centers of their class as a reference of how far the
train instance is from another instance. This algorithm is
parameter-free.

7) SSMA-SFLSDE [34] combines a prototype selection
stage with an optimization of the position of prototypes,
prior to the NN classification.

2) Classification Methods for Imbalanced Data Sets: There
are two common approaches to deal with imbalanced data: cost-
sensitive learning and resampling methods.

Cost-sensitive learning modifies the algorithm by introduc-
ing numeric costs to any formula used to estimate the error of
the model. A model builder will take into account the different
costs of the outcome classes and will build a model that does
not readily dismiss the very much underrepresented outcome.

Resampling is a data preprocessing step, and it aims to
redress the balance. Thus, the base classifier used by the model
builder does not need to be modified. Resampling methods
are divided in two categories: undersampling (remove over-

TABLE II
EXPERIMENTAL SETTINGS FOR IMBALANCED CLASSIFICATION

represented class instances) and oversampling (generate under-
represented class instances). The resampling methods used to
balance data class distribution are the following.

1) Random undersampling (RUS) [58] randomly removes a
subset of the overrepresented class to approach the same
number as the underrepresented class.

2) Synthetic minority oversampling technique (SMOTE)
[59] generates underrepresented class instances from
other instances in the original data set by selecting k
NNs and using them to perform arithmetical operations
to generate new instances.

3) Tomek links (TLs) [60] obtain the instance set belonging
to spaces near the decision boundaries. SMOTE is usually
employed together with TL (SMOTE-TL) [58] for over-
sampling with SMOTE and then for removing instances
near boundaries using TL.

These resampling techniques are combined with a classifier
to produce accurate imbalanced classification results. Next,
some commonly used imbalanced data classifiers, whose pa-
rameters for the experimental study are summarized in Table II,
are now detailed.

1) ADAC2 [61] is a boosting algorithm that produces an
ensemble of decision trees (C4.5) from a set of given
examples. Each instance has an associated cost depending



1678 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 43, NO. 6, DECEMBER 2013

on the class. It tries to solve the imbalance problem by
increasing the weight of the instances from the minority
class in each iteration of the boosting algorithm. It can
be executed using the cost-sensitive C4.5 or a resampling
procedure after the weight update. C2 modification refers
to the way in which the costs are introduced in the
boosting procedure. The costs are automatically selected
by considering the imbalance ratio.

2) NN-CS [62] is a neural network presented by Zhou
and Liu, in which they study the effect of sampling
and threshold-moving methods that have been shown to
be effective in addressing the class imbalance problem,
applied to cost-sensitive neural networks.

3) CSVM-CS [63] builds an SVM model with the training
data, taking into account the cost associated to the class
distribution, and then classifies all test data by means of
the trained SVM.

4) C4.5-CS [64] is the C4.5 decision tree algorithm that
weights the instances of the input data to consider the
associated costs from imbalanced classification.

5) C4.5-RUS preprocesses the data set by using RUS to
delete overrepresented class instances randomly. Then,
C4.5 decision tree is applied over the transformed
data.

6) C4.5-SMOTE preprocesses the data set by using SMOTE
to generate underrepresented class instances. Then,
C4.5 decision tree is applied over the transformed data.

7) C4.5-SMOTE-TL preprocesses the data set by using
SMOTE to generate underrepresented class instances and
then removes instances near the boundaries using TL.
Finally, C4.5 decision tree is applied over the transformed
data.

On the other hand, the proposed DGC+ has been imple-
mented in the JCLEC software [66], it is available as a WEKA
module, and its parameters are the ones from the CMA-ES
algorithm. CMA-ES does not require a laborious parameter
tuning since finding good parameters is considered as part of
the algorithm design and not as part of its application. For the
application of CMA-ES, the optimal values recommended by
Hansen [11] are employed, and it is only necessary to detail
some parameter information. CMA-ES employs a chromosome
whose dimension (CL) is the number of classes times the
number of attributes. Each gene represents the weight of an
attribute for a certain class. The initial solution is set to 0.5
for every gene within the chromosome, and the initial standard
deviation is set to 0.3. CMA-ES is run to optimize the attribute-
class weight matrix which obtains the highest accuracy. The
termination criterion is a drop of the difference of the fitness
function values below 1E − 13, and the maximum number
of iterations is set to 500. The population size self-adapts to
the problem dimension, and it is set to 4 ∗ log C2

L. In CMA-
ES, the population size can be freely chosen because the
learning rates prevent degeneration even for small population
sizes. Small population sizes usually lead to faster convergence,
while large population sizes help in avoiding local optima.
The number of restarts is two, and the population size is not
increased.

D. Statistical Analysis

In order to analyze the results from the experiments, some
nonparametric statistical tests are used to validate the results
[23], [67]. To evaluate whether there are significant differences
in the results of the algorithms, the Iman and Davenport test
is performed. This useful nonparametric test, recommended
by Demsar [68], is applied to rank the K algorithms over
the D data sets according to the F -distribution. If the Iman
and Davenport test indicates that the results are significantly
different, the Bonferroni–Dunn post hoc test [21] is used to
find the significant differences occurring between algorithms
in multiple comparisons. It assumes that the performance of
two classifiers is significantly different if the corresponding
average ranks differ by at least a critical difference value.
Finally, the Wilcoxon rank-sum test [22] is used to perform
multiple pairwise comparisons among the algorithms [69]. The
Wilcoxon rank-sum test statistic is the sum of the ranks for
observations from one of the samples.

V. RESULTS

This section presents and discusses the experimental results
from the different experimental studies. First, the accuracy and
Cohen’s kappa rate for standard data sets are compared for the
different methods, and the results are validated using nonpara-
metric statistical tests. Second, the AUC and Cohen’s kappa
rate for imbalanced data sets are compared, and the results are
validated. Third, the convergence process of the proposal and
the output weights are analyzed. Finally, a discussion is carried
out to analyze the reasons for the results obtained.

A. Standard Data Sets

1) Accuracy: Table III shows the average accuracy results
from the tenfold cross-validation test for the different data
sets (rows) and methods (columns). The proposed gravitation
algorithm outperforms the other methods in 16 of the 35 data
sets and obtains competitive accuracy results in the other data
sets. Next, some interesting comments to highlight the accuracy
results for some methods and data sets are discussed.

Hayes-Roth is an artificial data set originally created to test
the behavior of prototype-based classifiers. It contains an at-
tribute which was generated at random, adding noise to the data.
Therefore, NN methods sensitive to noisy data obtain the worst
accuracy since they are not able to filter the noisy attribute.
They are KNN, KNN-A, CamNN, and CNN, with the original
KNN being the worst with only an accuracy of 0.2500. On the
other hand, the DW-KNN is capable of avoiding noisy data, as
well as the prototypes generated by SSMA+SFLSDE and DGC
data particles. These proposals overcome successfully the noise
and perform much better than the other algorithms, proving
the good performance of attribute weighting and prototype
generation. Finally, DGC+ achieves the highest accuracy for
this data set with the best noisy attribute filtering.

The Iman and Davenport test establishes an F -distribution
value = 2.0482 for a significance level of alpha = 0.05. The
Iman and Davenport statistic (distributed according to the
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TABLE III
ACCURACY RESULTS FOR STANDARD DATA SETS

Fig. 1. Bonferroni–Dunn test for accuracy and standard data.

F -distribution with 7 and 238 degrees of freedom) is 9.2342
for accuracy. Thus, the test rejects the null hypothesis, and
therefore, it can be said that there are statistically significant
differences between the accuracy results of the algorithms.

Fig. 1 shows the application of the Bonferroni–Dunn test to
the accuracy rate with alpha = 0.05, whose critical difference
is 1.5751. This graph represents a bar chart, whose values are
proportional to the mean rank obtained from each algorithm.
The critical difference value is represented as a thicker horizon-
tal line, and those values that exceed this line are algorithms
with significantly different results than the control algorithm,
which is the proposed DGC+. Therefore, the algorithms right
beyond the critical difference from the proposal value are
significantly worse. Observing this figure, all the other methods
but KNN-A perform significantly worse than DGC+. DGC+
successfully overcomes the other gravitation method (DGC),
which obtains the fourth best ranking and third best average
results.

Table IV shows the results of the Wilcoxon rank-sum test for
accuracy to compute multiple pairwise comparisons among the

TABLE IV
WILCOXON TEST FOR ACCURACY AND STANDARD DATA

proposal and the other methods. KNN-A is the best among the
other methods, but DGC+ outperforms it, and there are signifi-
cant differences between the two algorithms with a confidence
level higher than 99%.

2) Cohen’s Kappa Rate: Table V shows the average kappa
results from the tenfold cross-validation test for the different
data sets (rows) and methods (columns). DGC+ outperforms the
other methods in 15 of the 35 data sets and obtains competitive
kappa results in the other data sets.

In the previous section, it was mentioned how noise-sensitive
NN methods performed badly over the Hayes-Roth data set.
The kappa metric is able to detect these errors and penalizes this
behavior with a significantly lower kappa value. Interestingly,
the kappa rate of KNN over Hayes-Roth is negative, i.e., the
predictions are completely wrong because of the noise, even
performing worse than doing random predictions.
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TABLE V
COHEN’S KAPPA RATE RESULTS FOR STANDARD DATA

Fig. 2. Bonferroni–Dunn test for kappa rate and standard data.

Another interesting kappa result is found with the thyroid
data set. The thyroid accuracy results from Table III do not
suggest a noticeable difference in the accuracy performance
of the different methods, all around 0.93. However, the kappa
results do indicate considerable differences, i.e., DGC+ obtains
0.7709, whereas DGC interestingly obtains −0.0002.

The Iman and Davenport test establishes an F -distribution
value = 2.0482 for a significance level of alpha = 0.05. The
Iman and Davenport statistic (distributed according to the
F -distribution with 7 and 238 degrees of freedom) is 7.0013
for kappa rate. Thus, the test rejects the null hypothesis, and
therefore, it can be said that there are statistically significant
differences between the kappa results of the algorithms.

Fig. 2 shows the application of the Bonferroni–Dunn test to
kappa for alpha = 0.05, whose critical difference is 1.5751.
Similar to the case with the accuracy rate, the algorithms
right beyond the critical difference from the proposal’s value
are significantly worse. Observing this figure, all the other
methods but SSMA+SFLSDE perform significantly worse than
our proposal. Interestingly, the ranking of DGC is relegated to
the sixth position.

TABLE VI
WILCOXON TEST FOR KAPPA AND STANDARD DATA

Table VI shows the results of the Wilcoxon rank-sum test
for kappa to compute multiple pairwise comparisons among the
proposal and the other methods. Even though SSMA+SFLSDE
is the algorithm with the second highest ranking in the multiple-
algorithm comparison, DW-KNN is the best algorithm from
the pairwise comparison versus DGC+. The p value for DGC+
versus DW-KNN is 0.004, which is lower than 0.01. Thus, our
DGC+ proposal outperforms it and the others with a confidence
level higher than 99% for pairwise comparisons.

B. Imbalanced Data Sets

1) AUC: Table VII shows the average AUC results from
the cross-validation test for the different imbalanced data
sets (rows) and methods (columns). DGC+ obtains the best
results in 14 of the 44 data sets, and CSVM-CS achieves
the best results in 12 of the 44 data sets. However, their
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TABLE VII
AUC RESULTS FOR IMBALANCED DATA SETS

Fig. 3. Bonferroni–Dunn test for AUC and imbalanced data.

average results and rankings are significantly different. On the
other hand, DGC stands out for achieving the worst AUC
results.

The Iman and Davenport test establishes an F -distribution
value = 1.9653 for a significance level of alpha = 0.05. The
Iman and Davenport statistic (distributed according to the
F -distribution with 8 and 344 degrees of freedom) is 26.2834
for AUC. Thus, the test rejects the null hypothesis, and there-
fore, it can be said that there are statistically significant differ-
ences between the AUC results of the algorithms.

Fig. 3 shows the application of the Bonferroni–Dunn test to
AUC for alpha = 0.05, whose critical difference is 1.5905. All

the other methods but C4.5-SMT and C4.5-SMT-TL show to
perform statistically worse than DGC+.

Table VIII shows the results of the Wilcoxon rank-sum test
for AUC. C4.5-SMOTE is the best from the other methods, but
our gravitational proposal outperforms it, and the test reports a
p value = 0.0558. On the other hand, DGC is the worst from
among the other methods.

2) Cohen’s Kappa Rate: Table IX shows the average kappa
results from the cross-validation test for the different imbal-
anced data sets (rows) and methods (columns). DGC+ obtains
the best results in 11 of the 44 data sets, and CSVM-CS
achieves the best results in 12 of the 44 data sets. However, their
average results and rankings are significantly different. On the
other hand, NN-CS and DGC stand out for achieving the worst
kappa results over imbalanced data.

The Iman and Davenport test establishes an F -distribution
value = 1.9653 for a significance level of alpha = 0.05. The
Iman and Davenport statistic (distributed according to the
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TABLE VIII
WILCOXON TEST FOR AUC AND IMBALANCED DATA

TABLE IX
COHEN’S KAPPA RATE RESULTS FOR IMBALANCED DATA SETS

Fig. 4. Bonferroni–Dunn test for kappa and imbalanced data.

F -distribution with 8 and 344 degrees of freedom) is 28.8119
for kappa. Thus, the test rejects the null hypothesis, and
therefore, it can be said that there are statistically significant
differences between the kappa results of the algorithms.

TABLE X
WILCOXON TEST FOR KAPPA AND IMBALANCED DATA

Fig. 5. Convergence rate.
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Fig. 6. Sonar weights.

Fig. 7. Vowel weights.

Fig. 4 shows the application of the Bonferroni–Dunn test
to kappa for alpha = 0.05, whose critical difference is 1.5905.
C4.5-SMT is competitive with DGC+, together with C4.5-CS,
but C4.5-SMT-TL and the other methods perform statistically
worse than DGC+ regarding the Cohen’s kappa rate.

Table X shows the results of the Wilcoxon rank-sum test for
kappa. C4.5-CS is the best compared to the other methods, but
our gravitational proposal outperforms it, and the test reports a
p value = 0.0730. On the other hand, NN-CS and DGC are the
worst from among the other methods.

C. Convergence Analysis

As mentioned in the description of the algorithm, the pro-
posal assigns a weight to each attribute and class, and these
weights allow us to recognize relevant attributes and thus im-
prove the classification performance by giving less importance
to those attributes that introduce noisy information into the
learning process. This section presents the convergence rate
of the best fitness values over the data sets sonar (2 classes
and 60 attributes), vowel (11 classes and 13 attributes), nursery
(5 classes and 8 attributes), and dermatology (6 classes and
34 attributes). These data sets have been selected because of
their high dimensionality regarding the product of the number
of classes and the number of attributes, which represents the
genotype length of the CMA-ES algorithm, whose lengths are
120, 143, 40, and 204, respectively. Fig. 5 shows the best
fitness values along the generations. The results at generation
0 indicate the initial accuracy when all of the attributes are
considered with the same weight (0.5). The CMA-ES algorithm
iterates, finding better weights for the different classes and
attributes over the generations. When CMA-ES meets any of

the stop criteria, the best solution from the CMA-ES population
is selected, and its attribute-class matrix is the one shown
in the previous section. The step-size control from CMA-
ES effectively prevents premature convergence yet allows fast
convergence to an optimum.

D. Attribute-Class Weighting Outputs

In this section, we evaluate and visualize the allocation of the
weights assigned to the attributes over the data sets analyzed
in the previous section. The weights assigned are shown in
Figs. 6–9, and they are valued within the range [0, 1], where
0 stands for unconsidered attributes and 1 for very important
ones. The most relevant attributes detected in sonar are the
frequency bands 4, 44, 46, and 49 for the rock class and 17
and 19 for the mine class, whereas bands 5, 33, 51, 57, and
58 are not considered for any class. Regarding vowel data set,
attributes F0 and F1 are the most relevant to classify class 10
and class 5, respectively. On the other hand, F5 is the less
relevant attribute for class 9. The weights from the nursery data
set indicate that the social behavior is not considered (but used
for predicting the class spec_prior), whereas the health attribute
is the most relevant (but for priority class). Finally, the high
deviation among the weight bars of the dermatology data set
indicate that the algorithm has been able to discriminate many
attributes, weighted lower than 0.2, and few attributes have been
considered truly relevant, weighted higher than 0.5.

Finally, it can be concluded that having different weights
for each class is a convenient idea as seen in the examples
(since an attribute is not equally relevant for all of the classes),
which differs with conventional feature selection algorithm
behaviors.
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Fig. 8. Nursery weights.

Fig. 9. Dermatology weights.

TABLE XI
TIME PERFORMANCE: DGC+ VS DGC

E. Time Performance: DGC+ vs DGC

Even though the experimental results advocate for the higher
accuracy of the proposed DGC+ over the previous gravitation
method DGC, it is interesting to analyze the time performance
of both methods, considering the data reduction of DGC by
means of the data particle creation, which transforms the train
data into a subset of prototypes to reduce the complexity of
the data set. Table XI shows the number of train instances,
the number of artificial data particles created by DGC, and the
evaluation time of a candidate classifier for both DGC+ and
DGC over a subset of representative data sets. Evaluation times
for all data sets are shown in the Web site provided in 1.

The computational complexity of the gravitation calculation
is similar for both methods. However, in original DGC theory,
the data particle is employed to obtain higher classification
speed but at the cost of the accuracy, whereas DGC+ uses all
train instances for the calculation of the gravitation. Therefore,

the higher speed of the evaluation of a DGC classifier will
depend on the size of the reduction of the data, which, in turn,
depends on the original data distribution. Thus, while some
data sets can be reduced to many fewer data particles, such as
banana, page-blocks, or thyroid, others cannot be simplified. In
this way, it would be recommended to apply a data reduction
preprocessing prior to DGC+ classification when the computa-
tion time due to the large number of instances exceeds the target
time of the researcher.

F. Discussion

This section analyzes the results from the exhaustive experi-
mental study with respect to data problem statistics which can
be helpful in showing the proposal’s performance, advantages,
and disadvantages under specific conditions. The proposed
DGC+ is generally better than other methods and achieves
the best accuracy, Cohen’s kappa rate, AUC, and average and
ranking results for the algorithms and data sets used in the
experimental study.

On the one hand, regarding standard data performance, the
35 data sets comprise an average number of 12.48 attributes,
1495.65 examples, and 3.74 classes. DGC+ obtains the first and
second best results in 22 of the 35 data sets, whose data subset
comprises an average number of 10.54 attributes, 1564.04
examples, and 3.22 classes. DGC+ worst results are among
the fifth and sixth in 6 of the 35 data sets, whose data subset
comprises an average number of 8 attributes, 2032 examples,
and 3.33 classes.
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Fig. 10. Two spiral data set predictions. (a) Data set. (b) DGC+. (c) DGC. (d) KNN. (e) KNN-A. (f) DW-KNN. (g) SSMA+SFLSDE.

On the other hand, regarding imbalance data performance,
the 44 data sets comprise an average number of 9.13 attributes,
831.5 examples, and an imbalance ratio of 14.55. DGC+ obtains
the first and second best results in 26 of the 44 data sets, whose
data subset comprises an average number of 9.42 attributes,
869.76 examples, and an imbalance ratio of 15.78. DGC+ worst
results are among the sixth, seventh, and eighth in 4 of the
44 data sets, whose data subset comprises an average number
of 9.25 attributes, 674.75 examples, and an imbalance ratio
of 17.98.

These results do not indicate solid evidences to conclude
that the proposal will perform badly in certain classification
domains. However, the lack of minority class examples in
extremely high imbalance data classification might result to a
condition where the minority class examples do not sufficiently
represent other minority class examples. On the other hand,
attribute-class weight learning has demonstrated to overcome
noisy and irrelevant data. Thus, the proposal will perform
accurate classification in these domains, better than those
from other methods without distance weighting or feature
selection.

Finally, it is interesting to show the smoothness of the classi-
fication border between data class predictions. Fig. 10 compares
the classification performance of the best ranked classification
methods used in the experimental study for standard data sets,
over the two spiral data sets with Gaussian noise. The proposed

DGC+ obtains accurate and smooth border classification. DGC
is noticed to suffer from data particle prototype generation,
achieving a worse local smoothness. KNN methods provide
less smooth predictions than DGC+ by means of sawtooth
predictions. SSMA+SFLSDE classifies according to the coarse
prototypes generated.

VI. CONCLUSION

In this paper, a DGC algorithm called DGC+ has been
presented. The proposal includes attribute-class weight learning
for distance weighting to improve classification results. The
weights were optimized by means of the CMA-ES algorithm,
which showed to perform an effective learning rate of optimal
weights for the different attributes and classes, ignoring noisy
attributes and enhancing relevant ones. The effects of gravi-
tation around the instances allowed an accurate classification
considering both local and global data information, providing
smooth classification and good generalization. Gravitation was
successfully adapted to deal with imbalanced data problems.
The proposal achieved better classification accuracy, Cohen’s
kappa rate, and AUC results than other well-known instance-
based and imbalanced classification methods. The results were
validated using multiple and pairwise nonparametric statistical
tests, whose reports support the statistically significant better
performance of the proposal.
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Abstract

JCLEC-Classification is a usable and extensible open source library for genetic program-
ming classification algorithms. It houses implementations of rule-based methods for clas-
sification based on genetic programming, supporting multiple model representations and
providing to users the tools to implement any classifier easily. The software is written in
Java and it is available from http://jclec.sourceforge.net/classification under the
GPL license.

Keywords: Classification, Evolutionary Algorithms, Genetic Programming, JCLEC

1. Introduction

In the last decade, the increasing interest in storing information has led to its automatic
processing, discovering knowledge that is potentially useful. Data mining involves the use
of data analysis tools to discover this knowledge previously unknown, valid patterns, and
close relationships in databases. One of the most used data mining tasks is classification,
which learns from a set of training examples to produce predictions about future examples.

The classification models are being applied to enormous databases in areas such as
bioinformatics, marketing, banks or web mining. Existing classification libraries provide
algorithms following many different methodologies. However, it is difficult to find a library
that contains GP (Genetic Programming) algorithms, an important evolutionary computa-
tion paradigm. The conceptual difficulty of GP makes it difficult to implement algorithms
following this paradigm despite its algorithms perform well as it is proved by many re-
searchers (Espejo et al., 2010).

GP is an efficient and flexible heuristic technique that uses complex representations
such as trees. This technique provides comprehensible models, which are useful in different
application domains. For instance, it is applied to supervised learning tasks like regression,
classification and unsupervised learning tasks like clustering and association. In classifica-
tion tasks, the application of GP is an important issue since it may offer results that are
comprehensible to humans. Additionally, it offers interesting advantages such as flexibility,
and the possiblity of using different kinds of representations, e.g., decision trees, rule-based

c©2013 Alberto Cano and José Maŕıa Luna and Amelia Zafra and Sebastián Ventura.
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systems, discriminant functions, etc. An extension of GP is grammar-guided genetic pro-
gramming (G3P), which makes the knowledge extracted more expressive and flexible by
means of a context-free grammar (McKay et al., 2010).

This paper presents an open source software for researchers and end-users to develop
classification algorithms based on GP and G3P models. It is an intuitive and usable tool
which extends the JCLEC evolutionary computation library (Ventura et al., 2007). The
software presented includes some GP and G3P proposals described in literature, and pro-
vides the necessary classes and methods to develop any kind of evolutionary algorithms for
solving classification problems easily.

This paper is organized as follows. Firstly, Section 2 provides a description of the
module, its structure and the way to use it. Finally, the documentation and the requirements
of this module are outlined in Section 3.

2. Description of the module

The classification module is presented in this section, describing the library structure and
its main characteristics.

2.1 Structure of the module

The net.sf.jclec.problem.classification.base package roots the hierarchical structure of the
classification module, and provides the abstract classes with the properties and methods
that any classification algorithm must contain, e.g., ClassificationAlgorithm, Classification-
Reporter, Rule and RuleBase. A new algorithm included in the module should inherit from
these classes regardless the classification model. In this context, we focus on rule-based
classifiers which comprise one or more classification rules, each of them being a knowledge
representation model consisting of an antecedent and a consequent. The antecedent of each
classification rule is made up of a series of conditions to be met by an instance to consider
that it belongs to the class specified by the consequent.

Based on whether an algorithm uses a GP or G3P encoding, JCLEC-Classification makes
a differentiation between expression-tree and syntax-tree respectively. In such a way, each
GP classification individual is represented by means of the ExprTreeRuleIndividual class,
which represents an individual, comprising all the features required to do it: the genotype,
the phenotype and the fitness function value. The nodes and functions in GP trees are
defined by the ExprTreeSpecies class. Similarly to GP individuals, the SyntaxTreeRuleIn-
dividual class specifies all the features required to represent a G3P individual, while the
SyntaxTreeSpecies allows us to define the terminal and nonterminal symbols of the gram-
mar used to generate individuals. Furthermore, the module allows to encode multiple syntax
and expression trees for Pittsburgh style encodings or Multi Expression Programming by
means of the MultiExprTree and MultiSyntaxTree classes.

In order to represent the phenotype of a rule-base individual, crisp and fuzzy rules are
generated by using the CrispRule and FuzzyRule classes, respectively. These classes provide
the antecedent of the rule in an expression-tree shape and the consequent assigned to this
antecedent. In addition, methods to classify a whole dataset or a particular instance are
provided in these classes. These methods compute whether the antecedent of a rule satisfies
an instance, returning the consequent of the rule, otherwise the instance is not covered by

2



A Classification Module for JCLEC

the antecedent and therefore no predictions can be made. Besides those packages that repre-
sent the main characteristics of any individual, the net.sf.jclec.problem.classification.listener
package to make reports for the train and test classification processes is provided. This
package contains the RuleBaseReporter class with methods to make reports specifying the
classifier features such as the rule base, the number of rules, the average number of condi-
tions, the percentage of correct predictions, the percentage of correct predictions per class,
the geometric mean, the kappa rate and the confusion matrix.

Finally, it is noteworthy that several utility classes, which make it easy to load data from
KEEL 1 and ARFF 2 formatted files, are provided by a dataset package. Three different
attribute types may be represented by this package, integer, continuous and categorical,
and a number of characteristics from the dataset are given, comprising type of attributes,
number of classes, number of instances, etc.

The module houses three G3P classification algorithms (De Falco et al., 2001; Bojarczuk
et al., 2004; Tan et al., 2002), which can guide developers to write new algorithms.

2.2 Usage of the module

Including new classification algorithms in this module is very simple. We focus on the al-
gorithm described by Bojarczuk et al. (Bojarczuk et al., 2004). This algorithm, which is
provided in the module (see the net.sf.jclec.problem.classification.algorithm.bojarczuk pack-
age), is constructed with only three additional classes. One of them, the BojarczukAlgorithm
class is inherited from the ClassificationAlgorithm class and provides the own features of
this algorithm.

Another class required to be implemented is the evaluator, which computes the fitness of
the individuals. This class, named BojarczukEvaluator in this algorithm, inherits from the
JCLEC core AbstractParallelEvaluator class or from the AbstractEvaluator class, depending
on whether the individuals are evaluated in a sequential or parallel way.

Finally, a class to define the grammar to be followed in the individual generation stage
is implemented. This class, named BojarczukSyntaxTreeSpecies in this example, inherits
from the class SyntaxTreeSpecies since G3P individuals are defined in this algorithm.

Only defining these three classes, the complete classification algorithm is represented.
Due to the core of this module is JCLEC, before an algorithm is ready to run, it is necessary
to carry out a set-up process by using a configuration file as shown in Figure 1. This
configuration file and the steps required to execute the algorithm are described in the
JCLEC website. In this file we specify those parameters required such as the algorithm
to be run, the parent selector, the genetic operators, the evaluator, etc. All the required
parameters are provided by JCLEC, existing a numerous variety of them as it is described
in the JCLEC specification (Ventura et al., 2007).

3. Documentation and Requirements

The JCLEC-Classification online documentation 3 describes the software packages, presents
a user oriented usage example, as well as developer information to include new algorithms,

1. http://www.keel.es
2. http://www.cs.waikato.ac.nz/ml/weka/arff.html
3. http://jclec.sourceforge.net/data/JCLEC-classification.pdf
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Figure 1: Sample configuration file

<experiment>
<proce s s algorithm−type=”net . s f . j c l e c . problem . c l a s s i f i c a t i o n . algor i thm . bojarczuk . BojarczukAlgorithm ”>

<rand−gen−f a c t o r y seed=”123456789 ” type=”net . s f . j c l e c . u t i l . random . RanecuFactory ”/>
<populat ion−s i z e>100</ populat ion−s i z e>
<max−of−generat i on s>100</max−of−generat i on s>
<max−der iv−s i z e>20</max−der iv−s i z e>
<datase t type=”net . s f . j c l e c . problem . u t i l . datase t . Arf fDataSet”>

<t ra i n−data>data/ i r i s / i r i s −10−1 t ra . a r f f</ t ra i n−data>
<t e s t−data>data/ i r i s / i r i s −10−1 t s t . a r f f</ te s t−data>

<at t r i bu te−c l as s−name>Class</ at t r i bu te−c l a s s−name>
</ datase t>
<recombination−prob>0 . 8</ recombination−prob>
<copy−prob>0.01</copy−prob>
< l i s t e n e r type=”net . s f . j c l e c . problem . c l a s s i f i c a t i o n . l i s t e n e r . RuleBaseReporter ”>

<report−di r−name>r epo r t s / r ep o r tF r e i t a s</ report−di r−name>
<global−report−name>summaryFreitas</ global−report−name>
<report−f requency>10</ report−f requency>

</ l i s t e n e r>
</ proce s s>

</experiment>

API reference and running tests. JCLEC requires Java 1.6, Apache commons logging 1.1,
Apache commons collections 3.2, Apache commons configuration 1.5, Apache commons lang
2.4, and JUnit 4.5 (for running tests).
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Software results and other applications

The software developed for classification models was made publicly available under

the JCLEC software [54] and produced another journal publication which presents

a classification module for JCLEC [89]. It is available through the JCLEC website

at http://jclec.sf.net/classification

Finally, we applied the developed models to other data mining tasks, heuristics, and

real-world applications, farther than the initial objectives aimed in this dissertation.

The GPU parallelization methodology was also applied on an Ant Programming

algorithm [90], the association rule mining problem [91], and the numeric data

discretization problem [92], all achieving high performance and good scalability to

increasing size of the data. This wide research over multiple domains demonstrates

the broad scope of GPU computing application to data mining problems and its

excellent performance.

The ICRM model was also applied on real-world data to predict student’s failure

in high school students from Zacatecas, Mexico [79]. The highly comprehensible

rule-based classifiers it created allowed for understanding of reasons of student’s

failure. This model helped teachers to support their decisions to improve teaching

and preventing school failure.

Performance on imbalanced data was also improved by proposing a new algorithm

capable of discretizing imbalanced data appropriately, named ur-CAIM [93]. This

model demonstrated to discretize accurately both balanced and imbalanced data

while most of the recently proposed state-of-the-art discretization methods failed

significantly on imbalanced data.

http://jclec.sf.net/classification
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Abstract:

Classification using Ant Programming is a challenging data mining task which

demands a great deal of computational resources when handling data sets of high

dimensionality. This paper presents a new parallelization approach of an existing

multi-objective Ant Programming model for classification, using GPUs and the

NVIDIA CUDA programming model. The computational costs of the different

steps of the algorithm are evaluated and it is discussed how best to parallelize

them. The features of both the CPU parallel and GPU versions of the algorithm

are presented. An experimental study is carried out to evaluate the performance

and efficiency of the interpreter of the rules, and reports the execution times and

speedups regarding variable population size, complexity of the rules mined and

dimensionality of the data sets. Experiments measure the original single-threaded

and the new multi-threaded CPU and GPU times with different number of GPU

devices. The results are reported in terms of the number of Giga GP operations

per second of the interpreter (up to 10 billion GPops/s) and the speedup achieved

(up to 834x vs CPU, 212x vs 4–threaded CPU). The proposed GPU model is

demonstrated to scale efficiently to larger datasets and to multiple GPU devices,

which allows of expanding its applicability to significantly more complicated data

sets, previously unmanageable by the original algorithm in reasonable time.
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Abstract:

Association rule mining is a well-known data mining task, but it requires much

computational time and memory when mining large scale data sets of high dimen-

sionality. This is mainly due to the evaluation process, where the antecedent and

consequent in each rule mined are evaluated for each record. This paper presents

a novel methodology for evaluating association rules on graphics processing units

(GPUs). The evaluation model may be applied to any association rule mining al-

gorithm. The use of GPUs and the compute unified device architecture (CUDA)

programming model enables the rules mined to be evaluated in a massively parallel

way, thus reducing the computational time required. This proposal takes advantage

of concurrent kernels execution and asynchronous data transfers, which improves

the efficiency of the model. In an experimental study, we evaluate interpreter per-

formance and compare the execution time of the proposed model with regard to

single-threaded, multi-threaded, and graphics processing unit implementation. The

results obtained show an interpreter performance above 67 billion giga operations

per second, and speed-up by a factor of up to 454 over the single-threaded CPU

model, when using two NVIDIA 480 GTX GPUs. The evaluation model demon-

strates its efficiency and scalability according to the problem complexity, number

of instances, rules, and GPU devices.
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Abstract:

CAIM (Class-Attribute Interdependence Maximization) is one of the state-of-the-

art algorithms for discretizing data for which classes are known. However, it may

take a long time when run on high-dimensional large-scale data, with large number

of attributes and/or instances. This paper presents a solution to this problem by

introducing a GPU-based implementation of the CAIM algorithm that significantly

speeds up the discretization process on big complex data sets. The GPU-based im-

plementation is scalable to multiple GPU devices and enables the use of concurrent

kernels execution capabilities of modern GPUs. The CAIM GPU-based model is

evaluated and compared with the original CAIM using single and multi-threaded

parallel configurations on 40 data sets with different characteristics. The results

show great speedup, up to 139 times faster using 4 GPUs, which makes discretiza-

tion of big data efficient and manageable. For example, discretization time of one

big data set is reduced from 2 hours to less than 2 minutes.
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Abstract:

Supervised discretization is one of basic data preprocessing techniques used in data

mining. CAIM (Class-Attribute Interdependence Maximization) has been state of

the art algorithm for almost a decade for discretization of data for which the classes

are known. However, new arising challenges such as the presence of unbalanced data

sets, call for new algorithms capable of handling them, in addition to balanced data.

This paper presents a new discretization algorithm, ur-CAIM, which improves on

the CAIM algorithm in three important ways. First, it generates more flexible

discretization schemes while keeping low number of intervals. Second, the quality

of the intervals is improved based on data classes distribution, which leads to better

classification performance on balanced and, importantly, unbalanced data. Third,

the runtime of the algorithm is lower than CAIM’s. The ur-CAIM was compared

with 11 well-known discretization methods on 28 balanced, and 70 unbalanced

data sets. The results show that it performs well on both types of data, which is

its significant advantage over other supervised discretization algorithms.
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Abstract:

Feature extraction transforms high-dimensional data into a new subspace of fewer dimen-

sions. Traditional algorithms do not consider the multi-objective nature of this task. Data

transformations should improve the classification performance on the new subspace, as

well as data visualization, which has attracted increasing attention in recent years. More-

over, new challenges arising in data mining, such as the need to deal with unbalanced data

sets call for new algorithms capable of handling this type of data, in addition to balanced

data. This paper presents a Pareto-based multi-objective genetic programming algorithm

for feature extraction and data visualization. The algorithm is designed to obtain data

transformations which optimize the classification and visualization performance both on

balanced and unbalanced data. Six different classification and visualization measures are

identified as objectives to optimize by the multi-objective algorithm. The algorithm is

evaluated and compared to 10 well-known feature extraction techniques, and to the per-

formance over the original high-dimensional data. Experimental results on 20 balanced

and 20 unbalanced data sets show that it performs very well on both types of data that

is its significant advantage over existing feature extraction algorithms.
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Abstract:

Predicting student failure at school has become a difficult challenge due to both the high

number of factors that can affect the low performance of students and the imbalanced

nature of these types of datasets. In this paper, a genetic programming algorithm and

different data mining approaches are proposed for solving these problems using real da-

ta about 670 high school students from Zacatecas, Mexico. Firstly, we select the best

attributes in order to resolve the problem of high dimensionality. Then, rebalancing of

data and cost sensitive classification have been applied in order to resolve the problem

of classifying imbalanced data. We also propose to use a genetic programming model

versus different white box techniques in order to obtain both more comprehensible and

accuracy classification rules. The outcomes of each approach are shown and compared

in order to select the best to improve classification accuracy, specifically with regard to

which students might fail.
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Congreso Español sobre Metaheuŕısticas, Algoritmos Evolutivos y Bioinspirados

(MAEB), pages 1603-1606, 2013.

A. Cano, J.L. Olmo, and S. Ventura. Programación Automática con Colonias de
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