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Abstract. We show examples of compact linear operators between Banach spaces which

cannot be approximated by norm attaining operators. This is the negative answer to an

open question posed in the 1970’s. Actually, any strictly convex Banach space failing the
approximation property serves as the range space. On the other hand, there are examples

in which the domain space has Schauder basis. It now makes sense to discuss sufficient
conditions on the domain or the range space to ensure that every compact linear operator

between them can be approximated by norm attaining operators. We get several basic results

in this line and mention some open problems.

1. Introduction

Motivated by the classical Bishop-Phelps theorem of 1961 [6] stating the density of norm-
attaining functionals on every Banach space, the study of the density of norm-attaining opera-
tors started with J. Lindenstrauss’ 1963 paper [20], where the author showed that the Bishop-
Phelps theorem is not longer true for operators and gave some partial positive results. We recall
that an operator T between two Banach spaces X and Y is said to attain its norm whenever
there is x ∈ X with ‖x‖ = 1 such that ‖T‖ = ‖T (x)‖ (i.e. the supremum defining the operator
norm is actually a maximum). An intensive research about this topic has been developed by,
among others, J. Bourgain in the 1970’s, J. Partington and W. Schachermayer in the 1980’s,
and M. Acosta, W. Gowers and R. Payá in the 1990’s. We will give a short account on the
subject at the beginning of section 3. The expository paper [3] can be used for reference and
background.

All known examples of operators which cannot be approximated by norm-attaining ones are
non-compact, so the question of whether every linear compact operator between Banach spaces
can be approximated by norm-attaining operators seems to be open. It was explicitly asked by
J. Diestel and J. Uhl in the 1976 paper [9] (as Problem 4 in page 6) and in their monograph
on vector measures [10, p. 217], and also in the 1979 paper by J. Johnson and J. Wolfe [19] (as
Question 2 in page 17). More recently, the question also appeared in the 2006 expository paper
by M. Acosta [3, p. 16].
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2 NORM-ATTAINING COMPACT OPERATORS

The main aim of this paper is to answer the question in the negative by providing two Banach
spaces X and Y and a compact linear operator from X into Y which cannot be approximated
by norm-attaining operators. This comes from extending an idea of Lindenstrauss for c0 to
its closed subspaces and applying it to Enflo’s counterexample to the approximation problem.
Moreover, thanks to an example of W. Johnson and G. Schechtman, the space X can be taken
with Schauder basis. It is also possible to get an example where X = Y . We also show that
for every strictly convex Banach space Y without the approximation property, there exists a
Banach space X such that K(X,Y ) is not contained in the closure of the set of norm-attaining
operators. All of these is the content of section 2.

Once we know that the density of norm-attaining operators in the space of compact operators
may fail, it makes sense to study conditions assuring such a density. To do so and imitating
what Lindenstrauss did in 1963, we introduce in section 3 two properties that we will call Ak

and Bk. We present some new examples and results, and discuss open problems.

Let us finish the introduction with the needed notation. Given two (real or complex) Banach
spaces X and Y , we write L(X,Y ) for the Banach space of all bounded linear operators from X
into Y , endowed with the operator norm. By K(X,Y ) and F (X,Y ) we denote the subspaces of
L(X,Y ) of compact operators and finite-rank operators, respectively. We write BX to denote
the closed unit ball of X. The set of all norm-attaining operators from X into Y is denoted by
NA(X,Y ).

2. Main results

Let us start with the promised counterexample.

Fact 2.1. There exist compact linear operators between Banach spaces which cannot be approx-
imated by norm-attaining operators.

The idea for the proof of the above fact comes from extending (the proof of) [20, Proposi-
tion 4] to closed subspaces of c0 and then apply it to Enflo’s counterexample to the approxima-
tion problem. We state the first ingredient for further use. Recall that a Banach space Y is said
to be strictly convex if the unit sphere of Y fails to contain non-trivial segments, equivalently,
if for every y ∈ Y with ‖y‖ = 1 and z ∈ Y , ‖y ± z‖ 6 1 implies z = 0.

Lemma 2.2. Let X be a closed subspace of c0 and let Y be a strictly convex Banach space.
Then, NA(X,Y ) ⊆ F (X,Y ).

Proof. Fix T ∈ NA(X,Y ) and x0 ∈ BX such that ‖T (x0)‖ = ‖T‖ = 1. As x0 ∈ c0, there is
N ∈ N such that |x0(n)| < 1/2 for every n > N . Now, consider the subspace Z of X given by

Z :=
{
x ∈ X : x(i) = 0 for 1 6 i 6 N

}
and observe that for every z ∈ Z with ‖z‖ 6 1/2, we have

‖x0 ± z‖ 6 1.

Therefore,

‖T (x0)± T (z)‖ 6 1

and, being Y strictly convex and ‖T (x0)‖ = 1, it follows that T (z) = 0. Therefore, T vanished
on a finite-codimensional space. �
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Prior to give the proof of the fact, we have to recall the concept of (Grothendieck) approx-
imation property. We refer to [21] for background. A Banach space X has the approxima-
tion property if for every compact set K and every ε > 0, there is R ∈ F (X,X) such that
‖x− R(x)‖ < ε for all x ∈ K. It was shown by P. Enflo in 1973 that there are Banach spaces
failing the approximation property showing, actually, that there are closed subspaces of c0
without the approximation property.

Proof of Fact 2.1. Let X be a closed subspace of c0 failing the approximation property (Enflo’s
example works, see [21, Theorem 2.d.6]). Then, X∗ also fails the approximation property so
there is a Banach space Y and a compact operator T : X −→ Y which cannot be approximated
by finite-rank operators (see [21, Theorem 1.3.5]). As we may clearly suppose that Y is separable
(considering the closure of T (X)) and the approximation property if of isomorphic nature, we
may and do suppose that Y is strictly convex (recall that every separable Banach space admits
a strictly convex equivalent renorming by an old result of M. Kadec, see [8, §II.2]). Now,
Lemma 2.2 shows that T cannot be approximated by norm-attaining operators. �

Next, we would like to present two ways to obtain examples as in Fact 2.1. First, with
respect to domain spaces, we observe that the above proof works for arbitrary closed subspaces
of c0 whose dual fails the approximation property.

Theorem 2.3. For every closed subspace X of c0 such that X∗ fails the approximation property,
there exist a Banach space Y and a compact linear operator from X into Y which cannot be
approximated by norm-attaining operators.

Using the result due to W. Johnson and G. Schechtman [18, Corollary JS, p. 127] that there
is a closed subspace of c0 with Schauder basis whose dual fails the approximation property, we
may state the following corollary.

Corollary 2.4. There exist a Banach space X with Schauder basis, a Banach space Y and a
compact linear operator T between X and Y which cannot be approximated by norm-attaining
operators.

Dealing with range spaces, the idea of Fact 2.1 can be also squeezed to show that for every
strictly convex Banach space Y without the approximation property, an example of the same
kind can be constructed. We will use the following characterization of the approximation
property, known to A. Grothendieck (see “Proposition” 37 in p. 170 of [14]), which follows
easily from the compact factorization of every compact operator through a closed subspace of
c0. A proof of the lemma can be found in [17, Theorem 18.3.2].

Lemma 2.5 (Grothendieck). A Banach space Y has the approximation property if and only if
F (X,Y ) is dense in K(X,Y ) for every closed subspace X of c0.

We are now able to present the promised result.

Theorem 2.6. Let Y be a strictly convex Banach space without the approximation property.
Then, there exist a Banach space X and a compact linear operator from X into Y which cannot
be approximated by norm-attaining operators.

Proof. By Lemma 2.5, there is a closed subspace X of c0 such that F (X,Y ) is not dense in
K(X,Y ). But Lemma 2.2 implies that NA(X,Y ) ⊂ F (X,Y ), so there are compact operators
from X into Y which cannot be approximated by norm-attaining operators. �
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Compare the result above with the one by M. Acosta [1] of 1999, stating that there is a
Banach space X such that for every infinite-dimensional strictly convex Banach space Y , there
exists a (non-compact) operator T ∈ L(X,Y ) which cannot be approximated by norm-attaining
operators. The case when Y = `p was previously done by W. Gowers [13] in 1990.

Next, we would like to give a result for subspaces of complex L1(µ) spaces. We first need to
recall the notion of complex strict convexity. A complex Banach space Y is said to be complex
strictly convex if for every y ∈ Y with ‖y‖ = 1 and z ∈ Y , the condition ‖y+ θz‖ 6 1 for every
θ ∈ C with |θ| = 1 implies z = 0. Clearly, strictly convex spaces are complex strictly convex,
but the converse is false, as L1(µ) spaces are complex strictly convex, see [16, Proposition 3.2.3].
By an obvious adaption of the proof of Lemma 2.2, we get that, in the complex case, if X is
a closed subspace of c0 and Y is a complex strictly convex space, then NA(X,Y ) ⊆ F (X,Y ).
Therefore, the following result follows with the same proof than Theorem 2.6.

Proposition 2.7. Let µ be a measure and let Y be a closed subspace of the complex space L1(µ)
without the approximation property. Then, there exist a Banach space X and a compact linear
operator from X into Y which cannot be approximated by norm-attaining operators.

We do not know whether this result is also true in the real case. It is known that there is a
Banach space X such that for every measure µ such that L1(µ) is infinite dimensional, there is a
(non-compact) operator T from X into L1(µ) which cannot be approximated by norm-attaining
operators (M. Acosta, [2]).

We finish the section providing an example in which the domain and the range space coin-
cides.

Example 2.8. There exist a Banach space Z and a compact operator from Z into Z which
cannot be approximated by norm-attaining operators.

Proof. Let X and Y be Banach spaces and fix T0 ∈ K(X,Y ) with ‖T0‖ = 1 and 0 < ε < 1/2.
Write Z = X⊕∞ Y (i.e. ‖(x, y)‖ = max{‖x‖, ‖y‖} for (x, y) ∈ X×Y ) and define S0 ∈ K(Z,Z)
by S0(x, y) = (0, T0(x)) for every (x, y) ∈ X ⊕∞ Y , which clearly satisfies ‖S0‖ = 1. We claim
that if there is an operator S ∈ NA(Z,Z) such that ‖S0−S‖ < ε, then there is T ∈ NA(X,Y )
such that ‖T0 − T‖ < ε. Indeed, take (x0, y0) ∈ BZ = BX × BY such that ‖S(x0, y0)‖ = ‖S‖
and write P1 : Z −→ X and P2 : Z −→ Y for the natural projections. Now, observe that

‖P1S‖ = ‖P1S − P1S0‖ 6 ‖S − S0‖ < ε < 1/2

so, as ‖S‖ > 1− ε > 1/2, we get that

‖P2S(x0, y0)‖ = ‖P2S‖ = ‖S‖.

Next, take x∗0 ∈ SX∗ such that x∗0(x0) = 1 and define the operator T ∈ L(X,Y ) by

T (x) = P2S
(
x, x∗0(x)y0

) (
x ∈ X

)
.

Then, ‖T‖ 6 ‖P2S‖ and ‖T (x0)‖ = ‖P2S(x0, y0)‖ = ‖P2S‖, so T ∈ NA(X,Y ). On the other
hand, for x ∈ BX ,

‖T0(x)− T (x)‖ =
∥∥P2S0(x, x∗0(x)y0) − P2S(x, x∗0(x)y0)

∥∥ 6 ‖P2S0 − P2S‖ 6 ‖S0 − S‖ < ε,

as claimed.

Now, if we take X, Y , and T0 ∈ K(X,Y ) which cannot be approximated by norm-attaining
operators, then Z = X⊕∞ Y and S0 ∈ K(Z,Z) defined as above, give the desired example. �
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3. The properties Ak and Bk

Once we know that the density of norm-attaining operators in the space of compact operators
may fail, it makes sense to study the question of when this density holds or not. As this question
is too general, and imitating what Lindenstrauss did in 1963, we will introduce two properties,
which we will call Ak and Bk.

Let us first present a short account on Lindenstrauss’ properties. We refer the reader to
the expository paper [3] for a detailed account and also for references. In the cited seminal
paper of 1963, J. Lindenstrauss introduced two properties to study norm-attaining operators: a
Banach space X (resp. Y ) has property A (resp. B) if NA(X,Y ) is dense in L(X,Y ) for every
Banach space Y (resp. every Banach space X). It is shown that c0 does not have property A
since NA(c0, Y ) is not dense in L(c0, Y ) for every strictly convex renorming Y of c0. Examples
of spaces having property A (including reflexive spaces and `1) and of spaces having property
B (including c0, `∞ and every finite-dimensional space whose unit ball is a polyhedron) are
also shown in this paper. There are many extensions of Lindenstrauss results from which we
will comment only a representative sample. With respect to property A, J. Bourgain showed in
1977 that every Banach space with the Radon-Nikodým property (RNP in short) have property
A and that, conversely, if a Banach space X has property A in every equivalent norm, then
it has the RNP (this direction needs a refinement due to R. Huff, 1980). W. Schachermayer
(1983) and B. Godun and S. Tronyanski (1993) showed that “almost” every Banach space can
be equivalently renormed to have property A, and J. Uhl (1976) showed that L1[0, 1] does not
have property A. With respect to property B, J. Partington proved that every Banach space
can be renormed to have property B (1982) and W. Schachermayer showed that C[0, 1] fails the
property (1983). W. Gowers showed in 1990 that `p does not have property B for 1 < p <∞, a
result extended by M. Acosta (1999) to all infinite-dimensional strictly convex spaces and to `1.
With respect to pairs of classical Banach spaces not covered by the results above, J. Johnson
and J. Wolfe (1979) proved that, in the real case, NA(C(K), C(S)) is dense in L(C(K), C(S))
for all compact spaces K and S, and C. Finet and R. Payá (1998) showed the same result for
the pair (L1[0, 1], L∞[0, 1]).

Our two new properties are the following.

Definition 3.1.

(a) A Banach space X is said to have property Ak if K(X,Y ) ∩ NA(X,Y ) is dense in
K(X,Y ) for every Banach space Y .

(b) A Banach space Y is said to have property Bk if K(X,Y ) ∩ NA(X,Y ) is dense in
K(X,Y ) for every Banach space X.

Even though we do not know whether, in general, property A implies property Ak or property
B implies property Bk, all known sufficient conditions for Lindenstrauss properties A and B
also implies, respectively, properties Ak and Bk. This is so because the way of establishing
the density of norm-attaining operators is by proving that for every operator there can be
approximated by compact perturbations of it attaining the norm. This produces the following
list of examples. For the definitions, background and concrete references, we refer the reader
again to the survey paper [3].

Examples 3.1.

(a) (Bourgain) RNP implies property Ak.
(b) (Schachermayer) Property α implies property Ak.
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(c) (Godun–Troyanski) Therefore, Banach spaces admitting long biorthogonal systems (in
particular, separable spaces) can be equivalently renormed to have property Ak.

(d) (Choi–Song) Property quasi-α implies property Ak.
(e) (Lindenstrauss) Property β implies property Bk.
(f) (Partington) Therefore, every Banach space can be renormed to have property Bk.
(g) (Acosta–Aguirre–Payá) Property quasi-β implies property Bk.

Concerning the study of norm-attaining compact operators, J. Diestel and J. Uhl (1976) [9]
showed that norm-attaining finite-rank operators from L1(µ) into any Banach space are dense
in the space of all compact operators. This study was continued by J. Johnson and J. Wolfe
[19] (1979), who proved that NA(X,Y ) ∩ F (X,Y ) is dense in K(X,Y ) whenever X is a C(K)
space or Y is an L1-space or a predual of an L1-space. The results in [19] are proved in the real
case. All the proofs, but the one for Y = L1(µ), easily extends to the complex case. Also, the
proof for C(K) extends to C0(L).

Let us enunciate these examples.

Examples 3.2.

(a) (Diestel–Uhl) For every measure µ, L1(µ) has property Ak.
(b) (Johnson-Wolfe) C0(L) has property Ak for every locally compact Hausdorff topological

space L.
(c) (Johnson-Wolfe) For every measure µ, every predual of L1(µ) have property Bk. In

particular, C(K) has property Bk for every compact Hausdorff topological space K.
(d) (Johnson-Wolfe) For every measure µ, the real space L1(µ) has property Bk.

Next, we write the result of section 2 as (negative) results on properties Ak and Bk.

Examples 3.3.

(a) Property Ak fails in every closed subspace of c0 whose dual lacks the approximation
property.

(b) In particular, there is a Banach space with Schauder basis failing property Ak.
(c) Strictly convex Banach spaces without the approximation property fails property Bk.
(d) Closed subspaces of complex L1(µ) spaces failing the approximation property do not

have property Bk.

We would like now to discuss some open question and some partial positive results. The
main open question in the subject is the following.

Question 3.4. Does every finite-dimensional Banach space have Lindenstrauss property B?

With respect to domain spaces, we have the following open question.

Question 3.5. Does every Banach space whose dual has the approximation property have
property Ak ?

Observe that a positive answer to Question 3.4 would give a positive answer to the above
one. On the other hand, it would be interesting to characterize those Banach spaces having
property Ak in every equivalent norm. The approximation property of the dual cannot provide
such a characterization, as all reflexive spaces have property Ak.

Let us also comment that the results in [19] about property Ak holds by proving a stronger
version of the approximation property of the dual. The argument can be abstracted using
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the concept of π-property given by J. Lindenstrauss in 1964 (see [7, §5] for background). A
Banach space X is said to have the metric π-property if there is a net of finite-rank contractive
projections {Pα} on X converging to the identity in the strong operator topology. We will
need the following version of the property: X∗ has the metric π-property with w∗-continuous
projections, that is, there exists a net of finite-rank contractive projections {Pα} on X such
that {P ∗α} converges to the identity of X∗ in the strong operator topology. We include the
proof of the following result (which is omitted in [19]) for completeness.

Proposition 3.6. Let X be a Banach space. Suppose there is a net (Pα) of finite-rank con-
tractive projections on X such that for every x∗ ∈ X∗, (P ∗αx

∗) −→ x∗ in norm. Then X has
property Ak.

Proof. Let Y be a Banach space and consider T ∈ K(X,Y ). For every α, the operator TPα
attains its norm since TPα(BX) = T (BPα(X)) (here we use that Pα is a norm-one projection)
and BPα(X) is compact. We claim that (TPα) −→ T in the operator norm, finishing the proof.
Indeed, given ε > 0, as T ∗ is compact, we may find an ε/3-net x∗1, . . . , x

∗
n ∈ X∗ for T ∗(BY ∗)

and we may find α0 such that ‖P ∗α(x∗i ) − x∗i ‖ < ε/3 for i = 1, . . . , n and every α > α0. Now,
given y∗ ∈ BY ∗ , we take i ∈ {1, . . . , n} such that ‖T ∗(y∗)− x∗i ‖ < ε/3 and observe that

‖P ∗αT ∗(y∗)− T ∗(y∗)‖ 6 ‖P ∗αT ∗(y∗)− P ∗α(x∗i )‖+ ‖P ∗α(x∗i )− x∗i ‖+ ‖x∗i − T ∗(y∗)‖ < ε.

In other words, ‖TPα − T‖ = ‖P ∗αT ∗ − T ∗‖ 6 ε for every α > α0. �

It is shown in [19, Proposition 3.2] that every C(K) space satisfies the condition of the above
proposition. Actually, the proof also works for C0(L) spaces. On the other hand, it is easy to
show that every L1(µ)-space satisfies such a condition when µ is finite, giving an alternative
proof for the result in [9] stating that L1(µ) has property Ak for every measure µ (for non-finite
measures, we may just use Proposition 3.15 below).

New examples of spaces with property Ak can be deduced from Proposition 3.6. The first
set is the family of preduals of `1.

Corollary 3.7. Let X be a Banach space such that X∗ is isometrically isomorphic to `1. Then
X has property Ak.

Proof. Let (x∗n)n∈N be a Schauder basis of X∗ isometrically equivalent to the usual `1-basis
and for every n ∈ N, let Yn the linear span of {x∗1, . . . , x∗n}. In the proof of [12, Corollary 4.1],
a sequence of w∗-continuous contractive projections Qn : X∗ −→ X∗ with Qn(X∗) = Yn
is constructed. The w∗-continuity of Qn provides then a sequence of finite-rank contractive
projections on X satisfying the hypothesis of Proposition 3.6. Let us note that the results in
[12] are given in the real case, but the proofs work in the complex case as well. �

We do not know whether the corollary above extends to isometric preduals of arbitrary L1(µ)
spaces.

Proposition 3.6 applied to spaces with a shrinking monotone Schauder basis. Recall that
a Schauder basis of a Banach space X is said to be shrinking if its sequence of coordinate
functionals is a Schauder basis of X∗.

Corollary 3.8. Every Banach space with a shrinking monotone Schauder basis has property
Ak.
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It is well-known that an unconditional Schauder basis of a Banach space is shrinking if the
space does not contain `1 (see [5, Theorem 3.3.1] for instance), so the following particular case
appears.

Corollary 3.9. Let X be a Banach space with unconditional monotone Schauder basis which
does not contain `1. Then X has property Ak.

For the class of M -embedded spaces, this last result can be improved removing the uncon-
ditionality condition on the basis, by using the 1988 result of G. Godefroy and P. Saphar
that Schauder bases in M -embedded spaces with basis constant less than 2 are shrinking
(see [15, Corollary III.3.10], for instant). We recall that a Banach space X is said to be
M -embedded if X⊥ is the kernel of an L1-projection in X∗ (i.e. X∗ = X⊥ ⊕ Z for some Z
and ‖x⊥ + z‖ = ‖x⊥‖ + ‖z‖ for every x⊥ ∈ X⊥ and z ∈ Z). We refer the reader to [15] for
background.

Corollary 3.10. Every M -embedded space with monote Schauder basis has property Ak.

As c0 is an M -embedded space [15, Examples III.1.4] and M -embeddedness passes to closed
subspaces [15, Theorem III.1.6], we get the following interesting particular case

Corollary 3.11. Every closed subspace of c0 with monotone Schauder basis has property Ak.

Compare this result with the example of a closed subspace of c0 with Schauder basis failing
property Ak (Corollary 2.4). It is an interesting question whether Corollary 3.11 extends to
every closed subspace of c0 with the metric approximation property.

We next discuss on range spaces. We first observe that Question 3.4 is equivalent to whether
every Banach space with the approximation property have property Bk. Also, it would be inter-
esting to characterize those Banach spaces having property Bk in every equivalent renorming.
Here, Theorem 2.6 gives a necessary condition in the separable case (actually, when the space
admits a strictly convex equivalent norm).

Corollary 3.12. Let Y be a separable Banach space satisfying property Bk in every equivalent
norm. Then Y has the approximation property.

On the other hand, property Bk holds for each Banach space with the approximation prop-
erty satifying that all its finite-dimensional subspaces have Lindenstrauss property B. This is
the case of the so-called polyhedral spaces. We recall that a real Banach space is said to be
polyhedral if the unit balls of all of its finite-dimensional subspaces are polyhedra (i.e. the con-
vex hull of finitely many points). A typical example of polyhedral space is c0 and hence, so are
its closed subspaces. We refer to [11] for background on polyhedral spaces.

Proposition 3.13. If Y is a polyhedral Banach space with the approximation property, then Y
has property Bk. In particular, every closed subspace of the real space c0 with the approximation
property has property Bk.

Proof. Indeed, let X be a Banach space and take T ∈ K(X,Y ). Since Y has the approx-
imation property, T can be approximated by finite-rank operators. As Y is polyhedral, its
finite-dimensional subspaces have polyhedral balls, so they have property Bk by a result of
Lindenstrauss [20, Proposition 3]. This shows that every finite-rank operator from X into Y
can be approximated by norm-attaining operators, finishing the proof. �
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To deal with the complex case, we observe that polyhedrality is equivalent to the fact that
the norm of each finite-dimensional subspace can be calculated as the maximum of the absolute
value of finitely many functionals. With this idea, and the fact that this is what was used by
Lindenstrauss to get property B, the proof above can be extended to the complex case. It is
easy to see that closed subspaces of c0 satisfy this condition.

Proposition 3.14. Let X be a complex Banach space such that for every finite-dimensional
subspace, the norm of the subspace can be calculated as the maximum of the modulus of finitely
many functionals. If besides X has the approximation property, then X has property Bk. In
particular, every closed subspace of the complex space c0 with the approximation property has
property Bk.

We may replace polyhedrality in the results above by an stronger form of the approximation
property, as it was done in [19, Lemma 3.4]: a Banach space Y has property Bk provided that
there is a net of projections {Qβ} in Y with supβ ‖Qβ‖ < ∞, converging to IdY in the strong

operator topology, and such that Qβ(Y ) has property Bk for every β. This was used in [19] to
show that (real or complex) isometric preduals of L1(µ) spaces have property Bk (by a classical
result of A. Lazar and J. Lindenstrauss, the projections Qβ can be chosen to have ‖Qβ‖ = 1
and Qβ(Y ) ≡ `nβ

∞ ) and also to real L1(µ) spaces (here, we may take Qβ(Y ) ≡ `nβ

1 , so the result
is only know to be valid in the real case). We do not know of other situations in which the idea
above can be applied.

To finish the section, we present a result on the stability of properties Ak and Bk by, respec-
tively, `1-sums and c0- or `∞-sums. The proof is just an adaptation of the corresponding ones
for Lindenstrauss properties A and B given in [4, Proposition 3] and [22, Lemma 2], taking into
account that when one starts with compact operators, the resulting norm-attaining operators
are also compact.

Proposition 3.15. Let {Xi : i ∈ I} and {Yj : j ∈ J} be non-empty families of Banach
spaces. Let X denotes the `1-sum of the family {Xi} and let Y denotes the c0- or `∞-sum of
the family {Yj}. Then

(a) X has property Ak if and only if Xi does for every i ∈ I.
(b) Y has property Bk if and only if Yj does for every j ∈ J .

It would be interesting to study other stability results of this kind for some vector-valued
function spaces.
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